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RÉSUMÉ 

Le mot "Animat" fut introduit par Stewart W. Wilson en 1985 et a rapidement gagné en 

popularité dans la lignée des conférences SAB (Simulation of Adaptive Behavior: From Animals 

to Animats) qui se sont tenues entre 1991 à 2010. Comme la signification du terme "animat" a 

passablement évoluée au cours de ces années, il est important de préciser que nous avons choisi 

d'étudier l'animat tel que proposée originellement par Wilson. 

La recherche sur les animats est un sous-domaine du calcul évolutif, de l'apprentissage machine, 

du comportement adaptatif et de la vie artificielle. Le but ultime des recherches sur les animats 

est de construire des animaux artificiels avec des capacités sensorimotrices limitées, mais 

capables d'adopter un comportement adaptatif pour survivre dans un environnement imprévisible. 

Différents scénarios d'interaction entre un animat et un environnement donné ont été étudiés et 

rapportés dans la littérature. Un de ces scénario est de considérer un problème d'animat comme 

un problème d'apprentissage par renforcement (tel que les processus de décision markovien) et de 

le résoudre par l'apprentissage de systèmes de classeurs (LCS, Learning Classification Systems) 

possédant une certaine capacité de généralisation. L'apprentissage d'un système de classification 

LCS est équivalent à un système qui peut apprendre des chaînes simples de règles en 

interagissant avec l'environnement et en reçevant diverses récompenses. 

Le XCS (eXtended Classification System) introduit par Wilson en 1995 est le LCS le plus 

populaire actuellement. Il utilise le Q-Learning pour résoudre les problèmes d'affectation de 

crédit (récompense), et il sépare les variables d'adaptation de l'algorithme génétique de celles 

reliées au mécanisme d'attribution des récompenses. 

Dans notre recherche, nous avons étudié les performances de XCS, et plusieurs de ses variantes, 

pour gérer un animat explorant différents types d'environnements 2D à la recherche de nourriture. 

Les environnements 2D traditionnellement nommés WOODS1, WOODS2 et MAZE5 ont été 

étudiés, de même que des environnements S2DM (Square 2D Maze) que nous avons conçus pour 

notre étude. Les variantes de XCS sont XCSS (avec l'opérateur "Specify" qui permet de diminuer 

la portée de certains classificateurs), et XCSG (avec la descente du gradient en fonction des 

valeurs de prédiction). Nous avons constaté une amélioration sensible de leur performance 

d'apprentissage. 
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Nous avons proposé une version combinant XCSS et XCSG, appelée XCSSG. La comparaison 

des résultats montre que pour des environnements simples tels que WOODS1 et WOODS2, les 

performances de tous les algorithmes (soit le nombre d'étapes que l'animat doit faire pour 

atteindre la nourriture) déjà proposés sont très proches, mais que dans des environnements plus 

complexes tels que MAZE5, l'approche XCSSG converge rapidement près de la solution 

optimale (nombre minimum d'étapes). 

Pour étudier la capacité d'apprentissage de XCS et ses variantes sur une plus grande variété 

d'environnements (markoviens et non markoviens) que les environnements classiques WOODSx 

et MAZEy, nous avons conçu un générateur d'environnements S2DM. Les différents algorithmes 

XCS étudiés ont été testés sur ces environnements et les résultats montrent clairement que les 

capacités d'apprentissage des différents XCS s'approchent toutes des performances optimales. De 

plus, une analyse de l'évolution du nombre de classificateurs/règles d'une population a également 

été faite pour mieux illustrer les capacités de généralisation de chacun des algorithmes XCS. 

Nous avons finalement proposés trois nouveaux scénario pour étudier les variations de 

populations de classificateurs des différents XCS. D'abord, un scénario où les ressources se 

déplacent légèrement. Puis, un scénario compétitif inter-espèces (XCS vs XCSSG) pour le 

partage d'une ressource commune. Ce scénario est basé sur les équations de Lotka-Volterra et 

permet de comparer dynamiquement les performances des deux algorithmes. Un troisième 

scénario a été proposé faisant intervenir un animat ayant des capacités supérieures de vision afin 

d'étudier la possibilité d'apprendre dans des environnements non-markoviens pour un animat 

classique, mais markoviens pour un animat moins myope. Les résultats de ce troisième scénario 

ne sont pas ceux auxquels nous nous attendions. En effet, l'animat n'a pas su profiter de cette 

supériorité pour améliorer ses performances. C'est pour nous un problème ouvert que nous nous 

proposons d'explorer dans une nouvelle recherche. 
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ABSTRACT 

The word “Animat” was introduced by Stewart W. Wilson in 1985 and became popular since the 

SAB line conferences “Simulation of Adaptive Behavior: from Animals to Animats” that were 

held between 1991 and 2010. Since the use of this word in the scientific literature has fairly 

evolved over the years, it is important to specify in this thesis that we have chosen to adopt the 

definition that was originally proposed by Wilson. 

The research on animat is a subfield of evolutionary computation, machine learning, adaptive 

behavior and artificial life. The ultimate goal of animat research is to build artificial animals with 

limited sensory-motor capabilities but able to behave in an adaptive way to survive in an 

unknown environment. Different scenarios of interaction between a given animat and a given 

environment have been studied and reported in the literature. One of the scenarios is to consider 

animat problems as a reinforcement learning problem (such as a Markov decision processes) and 

solve it by Learning Classifier Systems (LCS) with certain generalization ability. A Learning 

classifier system is equivalent to a learning system that can learn simple strings of rules by 

interacting with the environment and receiving diverse payoffs (rewards). 

The XCS (eXtented Classification System) [1], introduced by Wilson in 1995, is the most 

popular Learning Classifier System at the moment. It uses Q-learning to deal with the problem of 

credit assignment and it separates the fitness variable for genetic algorithm from those linked to 

credit assignment mechanisms.  

In our research, we have studied XCS performances and many of its variants, to manage an 

animat exploring different types of 2D environments in search of food.  2D environments 

traditionally named WOODS1, WOODS 2 and MAZE5 have been studied, as well as several 

designed S2DM (SQUARE 2D MAZE) environments which we have conceived for our study. 

The variants of XCS are XCSS (with the Specify operator which allows removing detrimental 

rules), and XCSG (using gradient descent according to the prediction value).  

We have proposed a version combining XCSS and XCSG called XCSSG. The comparison of 

results shows that for simples environments such as WOODS1 and WOODS2, the performance 

(the number of steps that the animat must follow to reach the food) of all previously proposed 
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algorithms are very close, but in more complex environments such as MAZE5, the proposed 

approach of XCSSG converges rapidly to near optimal solution (minimum number of steps). 

To investigate the learning ability of XCS and its variants on a higher variety of environments 

(Markovian or non-Markovian) than the classic environments WOODSx and MAZEy, we have 

conceived an environment generator S2DM. Different XCS-family algorithms studied have been 

tested on these environments and the results clearly show the ability of XCS-family in learning 

all of these new environments and approaching the optimal performances. Furthermore, an 

analysis of the evolution in the number of classifiers/rules in a population set has also been done 

to illustrate the ability of XCS-family algorithms in producing general rules (generalization). 

We have finally presented three new scenarios to study the variations of population sets of 

different XCS classifiers. First of all, a scenario where resources shift gently. Then, an inter-

species competitive scenario (XCS and XCSSG) for sharing of a common resource. This scenario 

is based on Lotka- Volterra equations and allows to dynamically compare the performances of 

the two algorithms. A third scenario has been proposed involving an animat with higher vision 

abilities to investigate the ability to learn in non- Markovian environments for a classic animat 

but that become Markovians when the animat can perceive on a farther distance. The results of 

this third scenario are not the ones that we were expecting. Indeed, the animat does not take 

advantage of its visual superiority to improve its performance. For us it is an open problem that 

we intend to explore in a new search. 
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INTRODUCTION 

Motivation 

The concept of “Animat” was invented by Stewart W. Wilson in 1985 by publishing the paper 

“KNOWLEDGE GROWTH IN AN ARTIFICIAL ANIMAL [2].” Using this word became 

popular after conference “Simulation of adaptive behavior: from animals to animats (SAB90)” in 

1990 in Paris. After three conferences, the International Society for Adaptive Behaviour was 

formed that contains many contributions related to the animat approach. They have a journal, 

Adaptive Behaviour and a proceeding which is published every two years.  

In debates about artificial intelligence, several researchers believed that recreating the human 

intelligence as a purpose is a very far and doubtful goal, and it would be better to first understand 

basics and simpler capacities of intelligence that are common between human and animals while 

interacting with the environment, such as their adaptive behavior for foraging, navigation and 

obstacle avoidance. According to these debates two important things were considered: inspiration 

from biology and applying the bottom-up approach to AI (Artificial Intelligence). Wilson 

suggested using of animal models of increasing complexity and synthesize them to study natural 

and artificial intelligence [2]. Using the animal models to study intelligence depending on the 

complexity of the model or complexity of the animal can lead to intelligence at its primitive 

levels or more complex levels such as human. The primitive animal models give a good insight 

into the basis of intelligence in general. They solve basic problems which are common among a 

wide range of animals from the simplest ones such as C. elegans to the most complex ones such 

as human being. The behavioral models of simple animals are based on solving these problems. 

These behavioral models help us to understand the whole intelligence and design more complex 

models.  

Based on [2] the simple animals have four common basic characteristics: 

1. Animals at each moment receive only some sensory signals from the environment which 

are important at that moment. 

2. Animals have the ability of performing action to change these environmental signals. 
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3. Existence or absence of certain signals such as food consumption has special meaning for 

animals.  

4. Animals act to optimize the rate of occurrence of certain signals. This action is produced 

by an internal and external operation. 

1 and 2 are related to sensory-motor system of animals and 3 and 4 are related to the notion of 

“need”. Wilson called the artificial animals that follow these four rules “animat”. 

Animat Approach 

The animat approach is sub-category of evolutionary computation, machine learning, adaptive 

behavior, and artificial life. Artificial life or Alife investigates the logic and formal basis of life 

and living systems to understand the complex information processing in these systems and tries 

to simulate or synthesize based on these bases. Emergent property is central to alife research. It is 

a property that a system and its properties (a “whole”) as the interaction of its parts has a global 

behavior that can’t be understood of its parts [3]. Actually, alife focuses on those complex 

systems that are inspired from life [4]. Alife is a bottom-up (synthetic) approach constructing life 

from its basic elements. Adaptive behavior is the behaviour in a changing and unknown 

environment for survival that can change in response to agent’s environment [5]. 

Animats are artificial animals. They can be simulated animals or physical robots. The definition 

of the animat approach is: 

 

Understanding the formal basis of animals’ life and synthesize it in a form of an artificial animal 

in a changing and uncertain environment to provide understanding of adaptive behavior of 

animals for surviving in artificial and real world.  

 

Life of animat is considered as its adaptive behaviour which is the interaction between animat 

and the environment for surviving, thus, environmental complexity has effect on the adaptive 

behavior of the animat. Complex adaptive behaviors are the result of complex environments. So, 

a general model of interaction between agent (animat) and environment needs a general theory of 

environment. Wilson in [6] introduced a general theory of environment based on finite state 
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machines. The general theory of environment can be a dynamic system model too, i.e. the 

behavior of agent in an environment is a dynamic system, where a state is the condition of animat 

at a given time and its dynamic determines the state change [7]. Two capabilities are central to 

animat approach: sensing the environment and action. These abilities together are considered a 

sensory-motor system. Animats search for essential sensory information and select actions to 

perform beneficially in the environment [3]. Sensory system links the agent to environment and 

actions allow it to behave adaptively [5]. Adaptive behavior is the consequence of actions that 

animat performs based on the sensory information from the environment and application of a 

control algorithm (control architecture). Needs are the main drivers of animal behavior and can 

be regarded the root of intelligence. The concept of needs is common from human to very simple 

animals, i.e. all of them have a number of needs. To satisfy needs animat has to live in the 

environment and the complexity of environment influences the complexity of its behavior and the 

performance of its operation.  

The long-term goal of animat approach is to understand human intelligence incrementally, i.e. 

starting from simple environments and increasing the complexity of environments and 

architectures by adding necessary features (bottom-up approach). The meaning of 

“incrementally” is increasing the complexity of needs or complexity of environment to determine 

change in the animat behavior necessary to satisfy the needs [6].  

Animat Approach and AI 

AI is the synthetic and computational study of intelligence. AI includes two approaches to deal 

with the problems of agent behaving in the environment: standard AI and Behavior-based AI. 

Standard AI concerns with the competition of machine with human by simulation of the abilities 

of human cognition in the form of computer programs that are connection of symbols in internal 

reasoning that yield external stimuli [6]. Standard AI was popular until near 1990. In behavior-

based AI agent interacts with the environment through sensing and making action.  

The behavior-based AI emerged against the limitations of the standard AI in which uses symbol-

based tasks and ignores sensory information, needs, perception, adaptation, learning, and coping 

with the environment. The standard AI is limited for controlling of a physical agent in an 

environment and has a big processing delay when interacts with an unknown environment, and 

therefore, it is limited for understanding of intelligence.  
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The animat approach is a behavior-based approach which considers interaction with the 

environment through sensing and action. Its aim is to simulate and understand complete animal-

like systems at simple level and reach to human intelligence “from below” incrementally. 

Reinforcement learning description of the animat problem 

Animat problem can be described in several ways. One way is the problem of an animat in the 

environment containing payoff (reward or punishment) that are given to each action that animat 

performs. In this kind of problem the animat tries to learn and maximize its total reward by 

searching the environment. Among several methods to solve a reinforcement learning problem, 

learning classifier systems have the ability of generalization (ability of the system to reach to a 

rule for assigning of each action to each state more general than having a table for assignment of 

actions to all states). Learning classifier systems learn the payoff environment by a set of rules 

called classifiers. Among different learning classifier system methods, XCS that was introduced 

by Wilson (1995) is the most popular and has better performance and generalization ability in 

comparison to the other learning classifier systems methods. Animat problems can be represented 

in a framework to be solved with XCS classifier systems. The developed models of XCS for 

more complex Markovian environments are XCS-with-Specify (XCSS) and gradient-based XCS 

(XCSG). XCSS removes rules with mal-functionalities and XCSG presents a gradient-based 

prediction of reward to improve the performance of XCS. 

Objectives 

The objective of this thesis is to solve a reinforcement learning-based animat problem using XCS 

classifier systems and compare the performance in different 2-D environments. The contribution 

of this work is the presentation of a new method that is a combination of XCS-with-Specify 

operator (XCSS) and gradient-based XCS (XCSG) that is called XCSSG to improve the 

performance and speed of the system. A comparison between performance of several developed 

models of XCS such as XCS, XCSS, XCSG, residual XCSG, and XCSSG is done in this thesis. 

Study of the effect of the subsumption mechanism (a mechanism that removes useless rules of 

the system) on the performance of XCS in various Wilson’s animat problems in different 

environments is also presented. Other contributions of this work are introducing new maze 

environments beyond the traditional environments that are presented in the literature and trying to 

solve them using XCS-family algorithms (XCS, XCSG, XCSS, XCSSG, XCS with 



5 

 

subsumption). Introducing an unstable resource problem with XCS animat to test the ability of 

XCS to adapt to a changing environment is presented in this work. A competitive platform for 

comparison of XCS and XCSSG is introduced based on Lotka-Volterra equation to introduce 

new way for comparison of two adaptive algorithms. An animat with higher vision abilities is 

also introduced in this thesis to provide conditions to convert a non-Markovian environment to a 

Markovian environment for the animat and let XCS and XCSSG to learn with these new sensory 

abilities. In Chapter 1 first the animat problem and its basic components are described and 

Wilson’s animat that is a particular kind of reinforcement learning (RL) animat will be 

introduced. It is followed in Chapter 2 by providing an introduction to the mathematical 

description of a reinforcement learning problem, methods to solve it, and description of learning 

classifier systems. In Chapter 3 XCS is introduced as the main method in this thesis to deal with 

the Wilson’s animat problem and it finishes by a literature review on XCS animat. To use XCS in 

more complex environments and improve its performance, XCSS, XCSG, and their combination 

(XCSSG) are introduced in Chapter 4. At the end of this chapter a comparison of different 

methods and also their comparison with Q-learning are made to compare the work with the older 

basic methods. To study the abilities of XCS beyond the traditional works on XCS, in Chapter 5 

new environments are presented and new scenarios are introduced to test the ability of the XCS 

animat in operating in new situations. Results of learning XCS are then compared and 

conclusions are presented.   
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CHAPITRE 1 ANIMAT PROBLEM 

In this chapter the basic components of animat problem and the role of each component are 

introduced. The concept of Reinforcement learning animat and Wilson’s animat are introduced 

and used as the basis of animat problem in this thesis. 

1.1 Structure of the animat problem 

Animat problem is a problem that is expressed based the formal basis of animals’ life in which an 

agent interacts adaptively with an unknown environment to survive. Formal basis of animals’ life 

differs for different animals. However, there are basic rules that are common between all of them, 

from the simplest one to human intelligence and are considered as the basic rules of intelligence 

in animals. These basic rules are categorized into two groups: 1) having sensory-motor system 

and 2) having needs. These two properties construct the common basis of animat problem. 

Sensory and motor systems are connected by a control architecture that in its simplest form is a 

reflex, but can perform a more complex functionality such as learning or evolution. Control 

architecture connects sensing and action by a mapping for the purpose of surviving (e.g. food 

seeking). Interaction of animat and environment for survival has its root in satisfaction of needs. 

Depending on the needs that have been considered in an animat problem, environment can be 

different and the corresponding surviving task to satisfy these needs is different. For example 

finding food, avoiding obstacles, and wall tracking are various kinds of surviving tasks that are 

different for different environments. Animat interacts with the environment through sensing and 

action to satisfy its needs. Adaptive behavior is the result of interaction between animat and 

environment. An abstract diagram representing the basic architecture of animat problem is 

shown in Figure  1-1. 

Long term goal of the animat approach is bottom-up understanding of intelligence that is starting 

from primary levels of intelligence (simple animals with minimal architecture in simple 

environments) and increasing complexity of problem until reaching to human intelligence. So, 

more components can be added to the basic architecture of the animat problem to make it 

appropriate for more complex environments.  
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Figure  1-1: Basic block diagram of an animat problem. Animat interacts with the environment to 

satisfy its needs. 

1.1.1  Components of an animat problem 

Based on the definition of the animat problem the basic components of an animat problem are as 

follows: 

- Formal basis of animals’ life 

- Environment 

- Adaptive behavior 

 

Formal basis of animals’ life are the bio-inspired rules based on real rules of the life of animals 

and describing the life of an animat and its interaction with the environment. Formal basis of 

animals’ life are usually general rules that are common between all types of animals from the 

simplest one such as fruit fly to the most complex one such as human. These bases are classified 

into two main groups that are common among every kind of animals: i) having sensory-motor 

system and ii) having needs. Sensory-motor system consists of sensors to sense the environment 

and actuators to do action and change sensory signals. Control architecture maps sensory 

information to the action. This mapping can be a simple reflex or a more complex mapping such 

as learning. The animat interacts with the environment to satisfy its needs (present or future). 

This interaction is via the sensory-motor system and the objects that satisfy its needs and are 

available in the environment. The Animat can be a physical robot or simulated animal in the 

environment. The body, number and position and type of sensors, number and position and type 
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of actuators, and the way of connection of these components to the control architecture are 

significant for the adaptive process. In addition the constraints that are regarded on the animat’s 

body such as the type of legs or the shape of body can affect the adaptive behavior. So, the word 

of “embodied” is applied when role of the body is considered important for the adaptive 

behavior.  

 

Environment is a physical or simulated world containing food or other objects necessary for the 

need satisfaction (survival). The environment mainly is the simulation of animals’ ecosystem and 

is created by inspiration from real ecosystem. Based on the animat’s needs that are regarded for a 

specific problem an environment is designed and the surviving tasks are assigned. Examples of 

surviving tasks in various animat problems are acquiring maximum resources of food, reaching to 

a particular cell, reaching to the first food, maintaining minimum level of energy, living as long 

as possible, foraging (food seeking), prey hunting, and obstacle avoidance.  

Complexity of the environment can be characterized by setting of tasks and its pattern of objects. 

For example distribution of food (in foraging task) and obstacles determines the complexity of 

surviving task for some kind of animat problems. So, a formal theory of environment can be used 

to give a better insight into the complexity of environment. A formal theory of environment can 

be expressed by a finite state machine (FSM) model [6]. In this model actions are input to the 

environment and sensory stimuli are output. For a given input the number of possible outputs is 

finite. The model is expressed by: 

                    

                                                                                                                                                                                       

Where   is the action,   is the sensory stimulus,   is the current state of the perceived 

environment, and   is discrete time.   is a function that represents the change of state of the 

environment to the next state (transition function) for action at time-step   and   is a function that 

represents the sensory stimulus at state      for action at time-step  . The model says that the 

action in an environment results a new sensory stimuli. It also can be concluded that the same 

action inputs to different situations of the environment result in different sensory stimuli. This 

model is also used to provide a measure for the level of complexity [6]. If the animat is equipped 



9 

 

with more sensors in a certain environment, it can see more details of the environment and may 

adapt easier. 

Two classes of environments based on the state transition of an agent (that is situated in the 

environment) are definable: Markovian environments and non-Markovian environments. 

Markovian environments are those environments that the best action in a state can be determined 

by having the sensory information in current state. Non-Markovian environments are 

environments that the best action in a state is not determinable only from the sensation vector in 

current state. In other words, for non-Markovian decision process information from the states that 

it has passed before, or may be all of them are needed. 

Adaptive behavior is the result of internal cognitive process of animat and its interaction with 

the environment [8]. It is a behavior for need satisfaction (surviving) in an unknown 

environment. The surviving of animat depends on the ability of animat to cope with the 

environment through experience. This ability is different depends on the complexity of 

environment, the surviving task that is based on the regarded needs, the control architecture, 

number, position, and type of sensors and actuators. Control architecture has a central role in the 

adaptive behavior. It maps sensory information to the action and the sequence of actions 

constructs the adaptive behavior of animat. Based on [3] and [9], [10], and [11] different kinds of 

control architectures (adaptive behaviors) are as follows: 

1. Programmed behavior :  

Programmed behavior is the result of a control architecture that is designed for a certain purpose. 

For example, in a population of animats all of them can have the same architecture and the 

architecture has been constructed from several layers each composed of networks of finite state 

machine. This kind of architecture is designed to decompose complicated architectures into 

simple modules each perform a simple behavior. The modules are organized in different layers 

that each layer implements a certain goal of agent. Higher layers are more abstract and work to 

reach to the overall goal. This approach is a bottom-up approach. The programmed behavior can 

be used for blind robots that operate without sensory information from the environment.  
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2. Learning:  

Learning is the process of building a general model based on a set of seen examples and using 

that model for prediction in new unseen situations. Importance of learning is in its application to 

noisy, changing, and unknown environments where animat has to decide what to do in new 

situations in the environment. In learning animat obtains knowledge by direct interaction to the 

environment via sensors [12]. Based on the literature three important learning techniques for 

animat are as follows:  

 

- Unsupervised Learning: is a kind of learning that agent (or animat) learns and 

reconstruct patterns by associating different parts of the pattern with the other parts. 

For example using Kohonen neural network, a robot would be able to recognize 

different structures of the environments by finding the similarities that it uses to 

cluster. So, in this way the robot can move in the environment and categorize it. 

- Reinforcement Learning: learning to behave by receiving payoff from the 

environment and trying to maximize the total amount of expected payoff. An 

environment for animat problem can be accounted as a reinforcement learning 

problem which animat tries to learn. For example, Markovian environments are 

formulated as a Markov Decision Process (see  2.1.2.3) that is in fact a reinforcement 

learning problem. To solve a reinforcement learning problem several techniques such 

as dynamic programming, temporal difference, Q-learning, bucket brigade algorithm, 

and as we will see learning classifier systems can be applied. 

- Associative Learning: in associative learning animat makes a cognitive map of the 

environment. Cognitive map is a map that animat memorizes. This map associates the 

sensory information to actions for the navigation task. For animals the cognitive maps 

contain topological and metric information about the environment that they have 

learned to determine. The spatial representation of the environment is encoded in their 

hippocampus which is part of the animals’ brain to help them survive in the 

environment.  

- Conditioning: a number of learning processes that improve perception or motor skills 

in animals by perception without need for higher cognitive processes. 
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3. Evolution: 

Evolution is the process of improving behavior of individuals in a population. The improvement 

performs by selecting the individuals that have been adapted and removing individuals that have 

not been adapted well. With a simple evolutionary rule it can generate an unpredictable or very 

complex behaviour that is not planned [13]. The evolution often is based on natural selection 

models. For animat problem evolutionary strategies that are usually applied are genetic 

algorithm, genetic programming, evolving control parameters of neural networks with GA or GP, 

evolution of control program, evolutionary programming, and evolution strategies.    

4. Development:  

In artificial evolution the genotype of an individual is decoded and transformed into a phenotype. 

In nature, interaction of genetic information and environment builds the phenotype of an animal. 

This process is called development and here a bio-inspired developmental architecture can be 

considered for animat. In development architectures connections between sensory and motors 

neurons is possible. The structure and function of these neurons are designed by human. 

Geometrical nature of the developmental system and the animat’s body is important to build and 

connect neural modules. The development architecture has been used to evolve a neural network 

to control the locomotion of a 6-legged animat[14].  

 

5. Combination of different forms of control architectures is possible. Examples are as follows: 

- Evolution based learning techniques 

- Evolution of neural controller 

- Neural controllers that are built incrementally at run time using RL techniques 

- Recurrent neural networks learning using back-propagation 

- Self-organizing neural networks. 

 

1.2 Choice of the animat problem 

Research in the animat context can be performed on problem as a whole with consideration of all 

details or can be focused more on one specific component. Subject of different researches in 

animat context based on [15] are: Adaptive behavior, Perception and motor control, Architecture, 
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Action selection and behavioral sequences, Internal world model for navigation, Learning, 

Evolution, External environment, Collective and social behaviors, and Applied adaptive 

behavior. Depending on the considered details in each subject a variety of tasks and problems are 

available. So, it is clear that the animat problem can be represented in different ways.  

One of way for representation of animat problem is reinforcement learning approach. 

Reinforcement learning (RL) is a form of machine learning, in which an agent operates in the 

environment by receiving reward. The final goal of agent is maximization of the total rewards. 

The animat problem in this way can be expressed in the RL framework: action, sensing the 

environment, state, and reward (such as obtaining a food or reaching to an obstacle).  

In RL context, environment can be Markovian, non-Markovian, or any combination of them. The 

definition of environment in reinforcement learning depends on the important features that are 

considered in a certain problem. In the case of Markovian environments RL problem is expressed 

as a Markov decision process. For Markovian environments Q-learning (see  2.1.3.1), learning 

classifier systems, and dynamic programming methods can be used in different ways for an 

animat to survive. For non-Markovian problems there is no exact method to solve. We call the 

animat problem that is represented in the reinforcement learning framework “RL animat”. The 

block diagram of a typical RL animat is shown in Figure  1-2. 

 

 

Figure  1-2: Block diagram of RL animat problem learns by means of payoff from environment. 

Learning classifier systems (LCS) have generalization capability and are applicable for large and 

complex problems where Q-learning alone cannot be used because it needs a high amount of 
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memory and doesn’t have generalization ability. For this reason, in this project LCS is applied to 

deal with the animat problem. We call “LCS animat” or “Wilson’s animat” to refer to a RL 

animat problem that LCS is used as its control architecture.  

1.3 Wilson’s animat 

Wilson studied learning of animat in the environment using learning classifier systems that is a 

specific type of RL animat problem [2]. The block diagram of Wilson’s animat is illustrated in 

Figure  1-3. It is specific type of RL animat that the control architecture is a learning classifier 

systems algorithm. The environment that he considered for the animat was a rectangle with 18 

rows and 58 columns that was continued toroidally at the edges and was called woods7 [2] (see 

Appendix-1). In woods7 at various positions there exist objects which are represented by   and   

and   in which  s are obstacles,  s are foods, and  s are empty places. At each position animat 

senses 8 cells around it and stores them in a sense vector which is clockwise representation of 

these positions starting from the top. This vector is composed of  s,  s, and  s. For each of these 

objects an internal two bits representation is considered, 11 for F, 01 for T, and 00 for b. So, a 16 

bit sense vector represents the animat’s sensory information at each time step. This 16 bits sense 

vector is called the detector vector. For example                          . Detector 

vector will be used as the input for the process of LCS control architecture in animat. A number 

between 0-7 which represents one step movement to one of the 8 available directions is 

considered as an action. The action numbers are constructed clockwise starting from the top (see 

Figure  1-4). The movement is toward a position which may contain an object. If the movement is 

toward 00, the animat will receive no signal. If the movement is toward 01, the step won’t be 

allowed because it’s an obstacle. If the movement is toward 11, the animat will receive a reward 

signal. The goal of Wilson’s animat is learning to find a food, i.e. after finding a food the process 

starts again from a random blank point in the environment and after a lot of iterations from 

different starting points, the number of steps to food reduces to a stable value. Wilson made a 

reinforcement learning model of animat problem and solved it using learning classifier systems 

(LCS). The LCS mechanism uses the reward from the environment. So, at each step that the 

animat eats a food; a reward is given to him that is used in the LCS mechanism.  
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Figure  1-3: Block diagram of Wilson’s animat learns by means of payoff from environment 

 

 

Figure  1-4: Directions defined for the sensation and the movement of the Wilson’s animat. * is 

the animat and 0-7 shows the consequence of the sensory vector and also the codes of directions 

that the animat can move. 

 

In learning classifier systems the association between sensing and action is represented by 

condition-action rules. The condition matches the aspects of local environment and the internal 

state and action determine the internal state. This association are learned by the animat. The basic 

problem of LCS animat is the generation of the rules to take an appropriate action to optimize the 

rate of occurrence of certain signals. So, the first step is rule discovery, second step is keeping the 

rules that work and get rid the rules that don’t work, and third step is generalization of the kept 

rules [2]. 
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1.4 Conclusion 

In this chapter the concept of animat problem and its components were introduced. It was shown 

that animat should perform adaptive behavior to survive and the control architecture has a central 

role toward this purpose. Different approaches to animat problem also were described and it was 

shown that one of the main approaches is the RL animat that the architecture of animat problem 

is matched with a reinforcement learning problem. For this project Wilson’s animat that is a 

specific kind of RL animat is studied. The basis of Wilson’s animat are similar to the original 

animat in [2] but the choice of environments and the algorithms of learning are more precise. 

There are many different LCS algorithms, but the most well-known and popular one is XCS 

classifier systems that is chosen and is studied in detail in Chapter 3. So, the purpose of this thesis 

is to solve and learn Wilson’s animat problem to survive in different 2-D environments with 

several kinds of XCS classifier systems in different situations and scenarios. In the next chapter 

reinforcement learning and learning classifier systems are introduced. 
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CHAPITRE 2 REINFORCEMENT LEARNING AND LEARNING 

CLASSIFIER SYSTEMS 

In the previous chapter the definition of animat problem and its structure were presented. It was 

stated that the adaptive behavior is essential for survival task. The adaptive behavior can be 

modeled by a reinforcement learning model that animat learns to survive by receiving payoff 

from the environment. The focus of this thesis is on Wilson’s animat that is a specific class of 

reinforcement learning animat problems. To make a mathematical expression for the Wilson’s 

animat problem in this section Reinforcement Learning (RL) and Learning Classifier Systems 

(LCS) frameworks are introduced. 

2.1 Reinforcement learning 

2.1.1 Markov chain 

A Markov process is a stochastic process in which each state depends only on the previous state. 

Markov chain is a Markov process which has discrete and countable number of states and 

operates in discrete time. Suppose that   is a random variable and    is the value of random 

variable at time  .                  is a state space which is the values that   can take at 

discrete times. The random variable    is a Markov chain if: 

                                                                                                 

It shows that the next state of random variable (Markov chain)      only depends on the current 

state    . Markov chain is a chain starting with    which is:             . A probability        

is the probability of going from    to    by one step and called transition probability. A Markov 

chain can be expressed based on transition probabilities. The mathematical expression of 

transition probabilities is: 

                                                                                                                                  

Let’s denote                  as the probability that the chain is in state   at time   and 

denote                                            . The dimension of       is the 

same as dimension  . The chain will start with     . All of the elements of       are 0 except 
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one of them which the random variable is in that state. From Chapman-Kolmogrov equation we 

can write: 

                                       
 

         

             
 

                                                                                                    

The probability transition matrix is denoted by   that        elements are       . On the other 

hand sum of the rows elements of   are one (          ). Hence,               and so  

           . 

 -step transition probability    
    is the probability of starting from state   and after   steps 

reaching to state   after   states. 

   
                                                                                                                                

Where    
    is the       element of   . 

A Markov chain           may reach a stationary distribution   , where the state and after that 

next states are independent of initial condition. So, we will have: 

                                                                                                                                                          

   is left eigenvector associated with the eigenvalue      of    [16]. 

2.1.2 Definition and basic architecture of reinforcement learning 

Reinforcement learning is learning based on maximization of reward for agent that performs in 

an environment. The idea of reinforcement learning is inspired from study of the behaviour of 

animals from psychological point of view. Animals or human many times do a lot of works 

without receiving any reward to reach to a later reward at the end. So, reinforcement learning is 

based on this idea [17]. For example in foraging, an animal does a lot of actions in search for 

food and the obtained food is a reward, actually this is a distant reward. In reinforcement learning 

finding food has a positive reward and motions that consume energy have negative reward or 

punishment. Reinforcement learning builds a computational model of this type for complex 

behaviour of animals. In reinforcement learning the role of environment is important because the 

agent can’t act only based on some pre-defined rules in a changing environment and it should 
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change its action adaptively. Applications of reinforcement learning are in robotics, animals’ 

behaviour, games, control theory and finance. 

2.1.2.1 Architecture of reinforcement learning 

Figure  1-1simply shows the architecture of reinforcement learning: 

 

 

Figure  2-1: block diagram of a reinforcement learning problem. 

 

In this diagram the agent first observes the environment that is the current state of the 

environment and then chooses an action and applies it to the environment. In the next step he 

receives an immediate reward from the environment for his action. The goal of agent is to 

maximize sum of the rewards. Agent should learn how to choose actions to obtain maximum sum 

of the rewards. It tries various actions in some states and after several times, learns which action 

is the best for which state. So, the agent in fact finds a policy (the rule of choosing an action at 

each state of the environment). There are methods in reinforcement learning which agent without 

predicting the effect of its action on the future rewards can learn optimal policy. 

2.1.2.2 Problem statement 

An agent in the environment, moves in discrete time steps denoted by  :           and at each 

time step the agent observes the state of environment (that can be considered as the state of agent 

too)      where   is the set of possible states. According to the observed state, the agent 
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chooses an action          where       is the set of possible actions that can be chosen at state 

  . In the next step     the agent will receive reward        when it is in state     .  

At each time step in each state, the agent chooses an action    from      . It is a type of 

probabilistic mapping that is called policy and is denoted by        . It represents the probability 

that      if      . An agent tries to change the policy for the purpose of maximum return 

(total rewards) in long sense. The agent selects actions    to maximize the function: 

            

 

   

                                                                                                                       

  is time step and the factor           is discount factor which determines the importance of 

later and sooner rewards. For     it is called episodic task. 

2.1.2.3 Reinforcement learning in Markovian environments 

The environment in which reinforcement learning tries to learn can be a Markovian environment 

or a non-Markovian environment with different levels of complexity for each one. For example, 

woods1 is a Markovian environment with eight obstacles and one food, woods101 is a non-

Markovian maze environment with closed walls and low level of complexity and woods7 is a 

non-Markovian environment with a high variety of sensory patterns and high level of complexity 

(see Appendix 1). The number of similar cells in a non-Markovian environment determines its 

complexity. Actually, the environment is a problem that agent tries to solve. A Markovian 

environment in the architecture of reinforcement learning leads to a Markov decision process. 

This kind of reinforcement learning is called reinforcement learning in Markovian environments. 

A Markov decision process (MDP) satisfies: 

                                                                                 

In fact, Markov decision process is the extension of Markov chain when action and rewards are 

considered. The probability space is the set of different states of the environment (e.g. sensory 

states). 

To make a mathematical expression of a reinforcement learning problem in Markovian 

environments transition probability   
    and expected value of the next reward     

  are defined 

as follows: 
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Transition probability   
    is the probability that the state changes from   to    given action  . 

The expected value of the next reward     
  is the average of receiving reward      in changing 

from state   to    with action  .    
   ,     

  specify the dynamic of a finite MDP (MDP with 

finite number of states and actions). 

(Note that the definitions of conditional probability and conditional expectation value are 

        
       

     
 and                          .) 

2.1.2.4 Policy 

Policy is a mapping from state to action at each time step and is denoted by         that is 

probability of      when       . The agent changes the policy to maximize the return in long 

sense. To represent change of the policy for the maximum return two functions can be used: 

state-value function and action-value function. 

a) State-value function 

State-value function       is the value of state   under policy  : 

                               

 

   

                                                                          

      can be written in a recursive form: 

             

 

     
      

          

  

                                                                   

This equation is called Bellman equation and    is a unique solution for its Bellman equation 

[18]. 

To reach to the purpose of reinforcement learning (maximization of the return function) one 

should find a policy that maximizes the value function. In MDP, this policy is called optimal 

policy and is denoted by   . The optimal policy is not unique. The maximum state-value function 

is called optimal state-value function   . 
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b) Action-value function 

Another useful function is         which is the value of taking action   in state   under policy 

 : 

                                      

 

   

                                               

This optimal policy gives an optimal action-value function   : 

           
 

                                                                                                               

        can be written in terms of       : 

                                                                                                                      

The Bellman equation for       is called Bellman optimality equation and can be written as: 

         
      

     
      

          

  

                                                                                                 

So, the Bellman optimality equation for    is: 

             
      

      
  

          

  

                                                                                      

For finite MDP, Bellman optimality equation has a unique solution that is independent of policy. 

This solution is composed of   solutions according to   unknown states. If      
 ,     

  are 

available, the Bellman optimality equation can be solved for   ,   . The purpose in 

reinforcement learning is to find    to maximize    or    [18]. 

There are at least two methods to solve this optimization problem: Dynamic programming and 

temporal difference learning. Dynamic programming is used for conditions when we know the 

model of environment i.e. the transition matrices and expected rewards. But temporal difference 

is used when we don’t know transition matrices and expected rewards. So, temporal difference 

learning methods are more general and useful for higher variety of problems. In the next section 

we introduce temporal difference methods. 
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2.1.3 Temporal differences 

In the situations that the transition matrices and expected rewards are not available, the agent can 

learn by interaction with the environment. At this situation temporal difference methods are used. 

The most well-known method in temporal differences is Q-learning. 

Temporal differences follows a policy   to predict and update estimate of   . If state    at time   

is observed, it updates the estimation of      . Temporal differences method at time     makes 

a target and updates according to the observed reward      and estimate      : 

                                                                                                                     

              is called the target. The algorithm for temporal differences based on [18] is as 

follows: 

- Initialize      

- Repeat: 

o Initialize   

o Repeat for each step : 

   action that is given by   for   

 The next state   , reward  ,and action   are taken 

                            

      

o End for the final state   

- End after enough iterations 

2.1.3.1 Q-learning 

Q-learning [19] is one of the most important developments in reinforcement learning. In its 

simplest form it is mentioned as: 

                             
 

                                                          



23 

 

It directly approximates    and always converges to the optimal value [20]. The optimal value in 

Q-learning is    that remains unchanged (or with very small changes) after several iterations of 

the algorithm. The key to proof the convergence of the Q-learning is a Markovian process called 

the action replay process (ARP) [20]. For more details about the proof of convergence see [20]. 

The algorithm for Q-learning based on [18] is as follows: 

- Initialize        

- Repeat: 

o Initialize   

o Repeat for each step : 

 choose action   from   using a policy obtained from   

 The next state   , reward  ,and action   are taken 

                                          

      

o End for the final state   

- End after enough iterations 

 

2.2 Learning Classifier Systems 

2.2.1 Definition and Introduction 

The world and the systems that it encompasses are composed of interconnected parts that as a 

whole function in a way different from the function of the individual parts. These complex 

systems are composed of interacting components. Complex adaptive systems (CAS) are complex 

systems with the capacity to learn from experience. CAS might be represented by a group of rule-

based agents. Rules are in the form of “IF condition THEN action”. These rules use the 

information from the environment to make decisions. The idea of LCS is evolving a population 

of rules that can collectively model a complex system. The system uses evolution to create new 

adaptable rules for the better operation of the system. The LCS algorithm outputs classifiers to 



24 

 

collectively model an intelligent decision maker. LCS employs learning to guide the evolution 

toward a better set of rules. Environment is the source of input data. LCS receives payoff by 

interaction with the environment. A learning classifier system learns to classify input messages 

from the environment and put them into general sets. Genetic algorithm is used in classifier 

systems to evolve rules and create new rules (evolution). Learning classifier system starts from 

random rules and learns and improves new rules. Learning classifier systems can solve 

reinforcement learning problems, classification problems, and function approximation problems. 

In LCS population of classifiers contains knowledge of the system [21]. 

2.2.2 How does LCS work? 

The function of learning classifier system is to provide a set of condition-action rules that at each 

situation the agent can make its best decision for choosing action to obtain maximum total 

reward. It tries to achieve this goal by combining reinforcement learning techniques and genetic 

algorithm evolutionary approach. At the heart of the system is a set of rules that each rule has a 

parameter that can be increased when that rule receives reward from the environment. The 

environment at each state is represented in the form of a string for the system that can be matched 

by some rules in the population of rules. An auction among the matched classifiers determines 

the winner classifiers that their action can affect the environment. The reinforcement that is given 

by the environment updates the system for the next cycle. In this way the knowledge of system 

increases about the environment and the system is learned to operate in the environment. The 

genetic algorithm performs on the population of classifiers to generate new useful rules and 

increase the performance and generality of the system. The block diagram of a learning classifier 

system and its interaction with the environment is represented in Figure  2-2. A learning classifier 

system is composed of three components: rule and message subsystem, credit assignment 

subsystem, and classifiers discovery mechanism. Sensors, actuators, classifier population (   ), 

and matching blocks are components of the rule and message subsystem, Auction, Payoff, and 

Taxes blocks are components of the credit assignment subsystem, and classifier discovery (GA) 

block is the main component of the classifier discovery mechanism [22]. 
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Figure  2-2: interaction of LCS with the environment [23]. 

2.2.2.1 Rule and Message subsystem 

Each rule that is called “classifier” consists of a “condition” that is a word composed of ternary 

alphabet (     ) and an “action” that is a string of ( s and  s). The classifier is in this template: 

                          

# is called don’t care which can be 0 or 1. This allows rules to be more general, i.e. the more #, 

the more general rule. This property can be measured by defining “specificity” of a classifier 

which is the number of non # symbols in the condition. For a rule with all # characters, the 

specificity is zero, and for a rule without # characters the specificity is equal to the length of the 

string. Rate    which is user dependent identifies the number of # in a classifier. 

The set of actions depends on the type of the problem. For example in robotic, action can be “go 

left” or “go right”, etc. In Wilson’s animat problem, action can be one of 8 possible movements 

to different directions.  



26 

 

Classifiers compare with the messages from the environment and are tested to match or not. In 

the matching between condition and a message, every part of them should be matched. For 

example environmental message 011001 match with classifiers 0110#1, 01100#, ##100#, and 

######. The classifier is matched with the message from the environment if the condition of 

classifier is matched with the condition of the message and the action of classifier is matched 

with the action of the message. 

Each classifier has a portion which gives a measure for the rules’ past performance in the 

environment. This portion is called the strength (fitness). A better performance of a classifier 

gives a higher strength. A classifier with higher strength when the condition matches an 

environmental message is more probable to reproduce when GA is applied because GA selects 

classifiers based on a probability proportional to their strength in the population. 

The messages from the environment first enter to the sensor part of the classifier. Sensor block 

filters the message by selecting certain aspect of environment and then translates it to binary form 

to be processed by the classifier system. The actions of classifiers can perform on the 

environment by the actuators. 

2.2.2.2 Credit assignment subsystem 

In credit assignment subsystem, the classifier system learns by modification of the strength 

(fitness) according to the received reward from the environment. This modification process is 

composed of the three mechanisms: Auction, Payoff, and Taxes. A competition is held between 

classifiers that are matched with the environmental message in Auction block. In competition a 

bid is submitted in the auction. In the bid a winner classifier is selected to affect the environment. 

The reward or punishment (payoff) that environment gives, enters to the Payoff block to increase 

or decrease the strength of the winner classifier. At the end taxation performs on each classifier 

which submits a bid during the auction [22]. 

1. Auction 

The classifiers that are matched with the environmental messages will be chosen and put in 

“match set”    . These classifiers go to the auction and each one submits a bid       to compete. 

The classifiers that have the highest bid will be copied in     (set of winner classifiers) and are 

called winner classifiers. The total collective bids of     are placed in       . Note that many 
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times     has just one member because only one classifier can obtain the highest bid. It is the 

winner classifier. But it is possible to have two classifiers that both of them have the highest bid. 

In that case     has more than one member. The classifiers in     all have the same action. This 

action is sent to the actuators to perform on the environment. Based on that action, the 

environment gives a payoff in the next iteration. 

The bid of classifier   at iteration  , is: 

                
                                                                                                                  

  : Classifier bid coefficient. It is positive, constant and less than one. It acts as an overall risk 

factor. 

  : Bid coefficient 1. It is constant and less than one.  

  : Bid coefficient 2. It is constant and less than one.  

     : Strength of classifier    at iteration  . 

  : Measure of normalized specificity of classifier.      if only one possible message 

matches each condition.      if the condition consists of all # characters and classifier is 

matched by any message. 

   : determines the importance of   . Default value for BRP is 1. 

2. Payoff: A well-known reinforcement algorithm is Bucket Brigade algorithm in which the 

strength is updated iteratively. In Bucket Brigade algorithm the environmental modification is 

beneficial or detrimental. For a beneficial modification the winner classifiers of auction receive 

a positive feedback and their strength increase and for a detrimental modification, they receive a 

punishment and their strength decrease. For each winner classifier   in     a Payoff process is 

expressed as:  

                                                                                                                  

Where       is the strength of the classifier   at the beginning of iteration  .       is the reward 

from environment during iteration  .       is the classifier’s bid during iteration  .       is the 

total payments made to this classifier by    .         for a winner classifier in auction on the 

previous iteration. Negative       means the punishment and positive       means the reward. 

The reward of action at iteration   will be applied at iteration    .  
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3. Taxes 

Taxes are used to limit the strength of the classifier to be high or little strength. There are two 

types of taxes: life tax and bid tax. 

Life tax: It is a type of tax with fixed rate that is applied to every classifier. Its aim is to reduce 

the strength of classifiers that rarely or never are matched and are not being used. Life tax 

decreases the strength of these classifiers and makes them candidate for replacement. 

Bid tax: It is a type of tax with a fixed rate that is applied to each classifier which bids during an 

iteration. It penalizes general classifiers. General classifiers are the classifiers that bid on every 

step but never win because they have a low specificity which yields to low bid and makes a low 

chance for winning the auction. 

Half-life that is the magnitude of the life tax is defined as 

 

  
     

 
  

               
                                                                                                                  

Where         is called tax rate. 

After     iterations of inactivity (non-matching), the strength of an inactive (not matched) 

classifier would be 

                      
 
                                                                                                              

 

So, the complete strength equation for the apportionment of credit mechanism will be 

 

                                                                                             

2.2.2.3 Classifier discovery mechanism 

Rule discovery is the process of introducing better rules (higher payoff) that doesn’t exist in the 

population. A well-known mechanism for classifier discovery is genetic algorithm. It performs on 
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the population of classifiers by selecting one or two classifiers and evolving them by crossover 

and mutation.  

2.2.2.3.1 Genetic algorithm 

The genetic algorithm is a robust search algorithm based on the natural selection mechanism that 

adapts a population to the environment. In genetic algorithm, the genetic operators recombine the 

selected string (e.g. a bit string or condition part of a classifier) to make a new string for the next 

steps. The basic operators of genetic algorithm are selection, crossover, and mutation that 

perform consequently. The general algorithmic description of genetic algorithm based on [23] is 

as follows: 

- Initialize parameters 

- Make the initial population with initial fitness 

- Repeat: 

o Selection of parents to produce offspring 

o Crossover 

o Mutation 

o Update population and the fitness of individuals 

- End after enough iterations 

Selection depends on the individual’s fitness (strength). It uses the selection probability that is 

proportional to individual’s strength. The higher strength has higher probability of being 

offspring. The probability that individual    is selected for mating is: 

   
  

   
 
   

                                                                                                                                             

   is the strength of member  , and   is the total number of members. This probability is assigned 

to each individual of the population based on its fitness value. 

Crossover takes a part of each parent’s string and combines them to make two offspring. If length 

of each string is  , a random number   is selected in the interval        . Then the place of 
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first   character of pairs is replaced with each other. For example, suppose that two parent strings 

(condition)   and   with length 7 are chosen from the population:  

                                                                                                                                         

                                                                                                                                           

For    , the resulting strings are two offspring      : 

                                                                                                                                        

                                                                                                                                          

Mutation: mutation is used to make random changes into the population with low probability. In 

mutation one bit of string (condition) changes based on the following rules: 

              

              

              

‘#’ symbol is the “don’t care” symbol which can be 0 or 1. In learning classifier systems the 

genetic algorithm performs on the population of classifiers. Two classifiers are selected and 

copied from the population (action set in XCS) with a probability proportional to their fitness. 

The crossover operator performs on the copied classifiers from a randomly selected point. Then 

the mutation performs on the resulting classifiers. The average fitness of the selected classifiers is 

considered for the resulting classifiers and they will be copied into the population. The genetic 

algorithm in learning classifier systems produces classifiers with new conditions and new fitness 

values to be used for new sensory information and make general rules.   

2.2.2.4 What is the difference between classifier in machine learning and classifier in 

learning classifier systems? 

Classifier in machine learning and classifier in learning classifier systems in their nature do the 

same task based on generalization using some examples. In machine learning classification task 

performs by assigning a criterion to a set of data. The criterion must be general enough to be used 

for any unseen data to be predicted in true class. Classifier in learning classifier systems is a set 

of rules that in condition has some # symbols in the condition part. The set should be general 
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enough to predict the best action for any new state in the environment according to the data about 

the state, action, and payoff that has acquired from the environment. 

2.3 Conclusion 

In this chapter reinforcement learning (RL) and learning classifier systems (LCS) were 

introduced and it was mentioned that LCS can be used to solve a reinforcement learning problem. 

The Wilson’s animat problem is a LCS-based animat problem and can be solved using the 

algorithm that was introduced in this chapter. Among classifier systems methods, XCS is the 

most well-known and the most popular one and is very general. It has the property of 

generalization and uses Q-learning for credit assignment problem [21]. The description of XCS 

will be presented in the next chapter (Chapter 3) and will be used for learning of animat in some 

Markovian environment. 
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CHAPITRE 3 XCS AND THE ANIMAT PROBLEM 

3.1 XCS :eXtended Classifier Systems 

3.1.1 Introduction 

 

XCS was introduced to overcome unsatisfactory behavior and performance of classical LCS. In 

classical learning classifier systems (LCS) the strength is used both as the fitness in genetic 

algorithm selection and as the prediction of payoff in the system. The prediction of payoff that 

shows how much reward may be achieved from a certain action is used to represent the 

performance of the system. The fitness is used to represent the strength of a classifier to be 

selected for reproduction. However, the prediction of payoff is insufficient to be used as fitness 

for genetic algorithm because the GA removes classifiers with less reward than others that in turn 

removes low-predicting classifiers but well situated for its environmental niche [21]. XCS is a 

class of classifier systems that the prediction of payoff for each classifier is separated from the 

fitness. XCS has a prediction of payoff that is a different value from fitness for each classifier. 

The fitness is equal to a prediction of accuracy that is defined as an inverse function of the 

classifier’s average prediction error. In addition to accuracy-based fitness, XCS uses niches 

genetic algorithm in which niches are defined as the match sets. Niches are a set of states of 

environment that each one is matched with nearly the same set of classifiers. Each niche (set of 

states) of environment results in different values for the expected payoff. Another important 

specification of XCS is standard tabular Q-learning that is used to tackle with the credit 

assignment problem. In fact, the credit assignment part and GA part are separated based on 

accuracy.  

The above specifications of XCS lead to two important properties: first, the population of 

classifiers build an accurate and complete mapping       from state and actions to 

predictions of payoff that can’t be found in classical learning classifier systems. And second, 

XCS evolves maximally general classifiers (classifiers general enough that changing a 1 or 0 in 

the bits of their condition makes them inaccurate) that lead the system to reach to optimal 

performance. In fact, in XCS learning guides the evolution to create best set of rules that map 
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state-action values to the prediction of payoff and thus introduces an intelligent decision making 

system. For reinforcement learning problems that generalization is important XCS can be used 

because it has generalization property over states. By the above descriptions XCS is superior to 

the classical learning classifier systems.  

Panmictic GA and Niche GA: In panmictic GA the probability of individuals in population 

have equal chance to be selected for generation of offspring. The panmictic GA is used in 

function optimization. In learning classifier systems GA should solve a multiple optimization 

problem; this is why niche GA is applied to XCS. In classical learning classifier systems as 

described in the previous chapter the GA was panmictic and therefore it was performed on the 

population of classifiers. So, the new classifiers were discovered based on the selected classifiers 

in the population set. Niche genetic algorithm is the extension of panmictic genetic algorithm to 

work for problems dealing with finding multiple and diverse solutions. A population of diverse 

individuals can be obtained by using niche GA. In XCS niches are a set of states of environment 

that each one is matched by nearly the same set of classifiers and are defined by the match sets. 

Niche GA in XCS is the performing of the genetic algorithm on the match set instead of the 

population set. Niche GA in XCS converges to a population of niches that covers a set of payoffs. 

In [24] the idea of executing GA on action set instead of match set was presented that yields 

improvement in the generalization capability of system. So, in this project the niche GA performs 

on action set. 

The description of XCS is presented based on [1]. 

3.1.2 Description of XCS 

A general description of XCS is presented in a structural form in Figure  3-1 that many details 

have been removed to show the basic operation better. The basic blocks are similar to the 

classical LCS in which matching between sensory information and the condition of classifiers in 

the population determines a smaller set of rules and an action is selected based on a particular 

strategy from the matched classifiers to affect the environment. The effect of action is turned 

back to the system by a payoff from the environment that updates the population of classifiers 

and increases the knowledge of system about its environment. 
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Figure  3-1: A general description of XCS. 

 

Operation of XCS is illustrated in Figure  3-2 based on [24]. XCS interacts with the environment 

via sensors to receive sensory information, via actuators to perform action in the environment, 

and at each time step via a scalar delayed reinforcement (payoff) from the environment. In Figure 

 3-2     is the population set that contains the population of classifiers. Each classifier has two 

parts which are separated by “:”, the left side is condition and the right side is action. Three 

values are associated with each classifier:   as the prediction,   as the prediction error, and   as 

the fitness parameter.     has a maximum size that is denoted by  .     must be initialized at the 

start e.g.   classifiers that are generated randomly, or     can be initialized empty. Initialization 

of  ,  ,   can be arbitrary but usually are chosen around zero. 
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Figure  3-2: Detailed block diagram of XCS; inspired from [24]. 

3.1.2.1 Performance component 

In this cycle each classifier in     that its condition part matches with the sensory string, becomes 

a member of the match set    . Then a prediction array is constructed from match set by making 

system predictions       for each action    in    .       is equal to the weighted average of the 

predictions of classifiers that advocate    while weights are their corresponding fitnesses. So, the 

number of members in the prediction array is equal to the number of possible actions for the 

corresponding problem. If there is no classifier in match set for a possible action, the 

corresponding member of prediction array will receive NaN that means “no value”. The 

classifiers advocating action with maximum       are transferred into action set     

(deterministic action selection) or the action is chosen completely random and the classifiers 

advocating that action are transferred into action set     (random action selection). Then this 

action is sent to the actuators to perform action in the environment and an immediate reward 

     is returned by the environment.  
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3.1.2.2 Reinforcement component 

It deals with updating       of classifiers in       that is the action set of the previous time step. 

To update        standard Q-learning is used. This update is implemented by adding the 

discounted maximum of       of the prediction array (by multiplying discount factor        

   to         ) and the previous time step external reward. Actually, it is             

      
.   is used to adjust the          of the classifiers in       with learning parameter 

         ; updating process for classifiers in       is as follows:  

1.    is adjusted as                         

2.    is adjusted using   and the value   :                   , and finally, 

3. Calculating    using the value of    according to the method described later in section 

3.1.2.4. 

The Widrow-Hoff procedure (              and                    and the 

similar adjustment of  ) is used after passing     times update for a classifier. (note that   

represents the involving classifier). Before     times, updating procedure for each case is 

average of the previous values and the current one. To implement it, an “experience (   )” 

parameter should be considered for each classifier showing number of updates (it is incremented 

every time the classifier enrolls in    ). Using this kind of updating mechanism is called MAM 

technique. In a multistep problems that more than one step is needed to reach to a reward if at the 

start only one step is needed to finish the problem (the food is found within one step in animat 

case), the updates occur in     and   is just current reward       . 

3.1.2.3 Discovery component 

The GA acts on the action set     and      . The GA chooses two classifiers from     (or      ) 

with probability proportional to their fitness. Then, it copies these two and performs crossover 

with probability   on the copies, and performs mutation with probability   per allele on them. 

Then if     contains   classifiers (sum of numerosities of macroclassifiers. See  3.1.2.5) or more, 

two of them will be deleted stochastically from     to make room. If     has less than   

classifiers, the copies are inserted into     without deletion from    . 
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The deletion procedure is used to remove the low fitness classifiers from the population and keep 

approximately equal number of classifiers in each action set or environmental niche. The method 

used for selecting the classifiers that should be deleted is as follows: 

A classifier is selected to be deleted by roulette-wheel selection. The deletion probability of each 

classifier is proportional to the action set size estimate of that classifier (  ). The action set size 

estimate of each classifier is updated when that classifier enrolls in     (or      ). To implement 

the deletion procedure a value “vote” is defined based on the action set size estimate. The 

algorithm for deletion is as follows: 

     denotes one of the attributes of a classifier    such as “condition”, “action”, etc. 

Deletion (   ): 

  If “sum of fitness of classifiers in    ”   

          “sum of fitness of classifiers in    ”  “sum of 

numerosities of classifiers in    ” 

      Sumofvotes    

      for each classifier    in     

          vote              

          if                
    

     
        

              then vote   vote*
   

 
    

     
  
 

          endif 

          Sumofvotes   Sumofvotes + vote 

      endfor 

      point   rand (1) * Sumofvotes 

      Sumofvotes   0 

      for each classifier    in     

           vote              

           if                
    

     
        

                vote   vote*
   

 
    

     
  
 

           endif 

           Sumofvotes   Sumofvotes + vote 
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           if (Sumofvotes   point) 

               if        

                             

               else 

                 remove    from     

               endif 

           endif 

      endfor 

The rate of executing of genetic algorithm should be controlled. The reason is to assign the same 

number of classifiers to different match sets (niches) and make a complete mapping. Depending 

on the environment some match sets (niches) may occur more than others. The genetic algorithm 

performs in an action set if number of time steps starting from the last genetic algorithm in that 

action set becomes more than a threshold. To implement it, a counter is considered for each 

classifier when it is created. When action set is created, the average number of time steps is 

compared with the current counter (actual time (  )) and if their difference exceeds a threshold 

   , the GA performs on     (or      ). 

The discovery component includes also a covering mechanism. It is used when:  

1. If there is no classifier to match with the environmental input. In this situation a classifier 

that its condition is matched with the input from environment and with the randomly 

chosen action is created to be inserted in     and a classifier is deleted from     using GA 

deletion method. After this process     is formed.  

2. System uses covering mechanism as an escaping method such as when it has stuck in a 

loop and go back and forward between two positions of the environment. In this situation 

creation of new classifiers that are matched can break the loop and if not, another 

covering will perform, and so on. Covering is needed at the starting of a run.               

The execution of GA on action set lead to generation of a population with high fitness classifiers. 

These high fitness classifiers build a complete mapping of     space. In XCS defining fitness 

based on accuracy makes a better performance and yields the generalization ability. Niche GA 

leads to accurate and maximally general classifiers (classifiers with low error and general enough 

that changing one bit of 1 or 0 to # makes it inaccurate). Note that if a classifier with action   has 
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an accurate and maximally general condition, another classifier with the same condition but with 

different action is not in general accurate and maximally general. 

3.1.2.4 The fitness calculation 

A fitness is updated when it enrolls in      . It is updated by a value which depends on the 

accuracy of classifier. This accuracy is relative to the other accuracies of classifiers in the set. 

This calculation has three steps: 

1. Calculate classifier’s accuracy    which is function of current value of   :  

      
  

  
 
  

                     

                                    

                                                                                               

            Note that      . So,    is decreasing function for      .  

2. Calculating relative accuracy   
 : for each classifier,   

  is obtained by dividing its 

accuracy by the total of the accuracies in the set. 

3. Adjusting the fitness of classifier   : before 
 

 
 times adjusting of   ,    is set to the average 

of the current   
  and previous values of   

 . But after 
 

 
 times adjusting of   ,  

            
                                                                                                            

3.1.2.5 Macroclassifiers 

For each classifier in the population a numerosity ( ) component is considered. When XCS 

generates a new classifier population of classifiers is checked out to see if any classifier with the 

same condition and action of the new generated classifier is available. If no, the new classifier is 

added to the population with its own numerosity that is set to one. But if yes, the classifier is not 

added to the population and one is added to the numerosity of classifier. These classifiers are 

called macroclassifiers. One macroclassifier with numerosity  , is equivalent to   classifiers. All 

the functions of XCS work sensitive to numerosity. For example in calculating   
 , a 

macroclassifier with numerosity   behaves such as   separate classifiers. 
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3.1.2.6 List of parameters 

 

   the maximum size of the Population (sum of the numerosities of classifiers).  

          the initial prediction, prediction error, and fitness of each classifier in the population. 

They should be initialized to a positive value around zero. 

   the learning rate of      . It is usually set to beta=0.1-0.2. 

   discount factor  

     parameters of the accuracy function.   is usually set to 0.1 and    is usually set to 10 for 

animat problem in some 2-D environments. 

  is used in calculation of fitness and is usually set to 5. 

     GA threshold which determines whether performing GA on     (or      ) or not. When the 

average time since the last GA in the last action set is greater than    , GA happens in a set 

(   =25-50)   

   probability of applying crossover in the GA. (  =0.5-1) 

   probability of mutating an allele in the offspring. (  0.01-0.05)  

    is the probability of one # in a place in the condition of a classifier. It is usually set to 0.33. 

    deletion threshold. The fitness of a classifier is considered in deletion probability, if the 

experience of a classifier (exp) is greater than     . It is set around 20. 

  the fitness of a classifier is considered in deletion probability if the fraction of the average 

fitness of [P] is less than  . It is set to 0.1. 

     subsumption thresold. If experience of a classifier is larger than      it can subsume with 

another classifier. It is set to around 20. 

        probability of using random action selection. It is set around 0.5. 

      represents the minimum number of actions that have to be available in a match set [M]. If 

less minimum number of actions in a match set is than     , covering occurs. It is set to 8. 
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doGASubSumption;  This parameter can be 0 or 1. If it is 1, GA subsumption occurs, and if it is 

0, the GA subsumption doesn’t occur. 

doActionSetSubsumption;  This parameter can be 0 or 1. If it is 1, action set subsumption 

occurs, and if it is 0, the action set subsumption doesn’t occur. 

3.1.3 Generalization 

Generalization: Generalization is a property that different situations in the environment with 

equal consequences are recognized with lower complexity than the raw environmental data. In 

LCS generalization means that a classifier can match more than one input vector of the 

environment. 

XCS forms a complete mapping       from state and action to the payoff prediction which 

tells that if at state   the action   is performed what would be the payoff. In XCS combination of 

accuracy-based fitness and niche GA leads to accurate and maximally general classifiers. 

Accurate classifier is a classifier with error less than   . Maximally general classifier is a 

classifier that changing any 1 or 0 in its condition to # makes it inaccurate. The niches of the 

environment that have the same payoff but have different sensory inputs -that have been obtained 

by the evolution of generalized classifiers- merge to the same niche. In fact, this is the goal of 

XCS to put same payoff niches in one class (one niche). So, the resulting population will contain 

minimum number of separate conditions. 

To describe the mechanism of the above hypothesis consider two classifiers   ,    where they 

have the same action and the condition of    is more general than    which means that condition 

of    can be obtained by changing one or more of 0 or 1s of condition of    to #. Suppose that 

   and    have the same  . When    and    are in an action set, their adjusted fitness value is 

the same for both of them. However, since    is more general than   , the probability that    

occurs in more match sets is higher. In addition, since GA performs on the action set, the 

probability that    reproduces is higher. In the case that   ,    occur in the same action set, the 

exemplars of    will receive more fitness adjusted value. As the result more general classifiers 

will appear.  

Subsumption: Subsumption is a technique that classifiers subsume with an existing accurate 

classifier and a group of subsuming classifiers replace the subsumed ones. So, the number of 
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classifiers is reduced. Actually, in subsumption we try to omit accurate but unnecessarily 

specialized classifiers. As an example suppose two accurate classifiers           and 

         .    is more general than    and so, subsumption should omit    from the 

population [24]. For XCS two kinds of subsumption procedure often are used exist that 

introduced: action set subsumption and GA subsumption. 

Action set subsumption: This procedure searches action set to find the most general classifier 

(accurate and sufficiently experienced) and the other classifiers subsume with it. The failed 

classifiers are removed and the winners (subsummers) are kept. The winner classifier and the 

failed classifiers must have the same action but the winner has to be more general than.     

GA subsumption: When GA generates offspring, parents are examined to see if one or both of 

them are accurate and more general than offspring (parent subsume offsprig). If it occurs, the 

offspring is not added to the population and the numerosity of parent is incremented by one. 

3.1.4 What are the applications of XCS? 

XCS is a learning algorithm that can tackle to large variety of problems. It can solve the animat 

problem that is an environment navigation problem and is our goal in this thesis. However, it also 

can solve other problems [21] that have been listed below:  

- Multiplexer function  

- Real-valued Multiplexer problem 

- Integer-valued data mining 

- Function approximation 

- Blocks world problem 

- Rule-set reduction 

- Distributed data mining 

- Epidemic data mining 

As an example XCS has the priority to the Q-learning method in solving animat problem (see 

 4.5). 

 



43 

 

3.2 Animat problem and 2-D environments 

3.2.1 Multi-step problems 

Reinforcement learning is problem of exploration and exploitation in the environment with 

distributed reward, and learning by performing one or more types of action selection strategies to 

maximize the total reward. Multistep problem is a reinforcement learning problem that the 

current sensory input depends at least to the previous time step action and the previous sensory 

input and at each time step the system may receive a reward. Wilson’s animat is a multi-step 

problem. 

3.2.2 Wilson’s animat problem and 2-D environments 

The animat problem that has been considered in this thesis is the Wilson’s animat problem in 2-D 

environments. Wilson’s animat is a multi-step problem in which an agent in a two dimensional 

rectangular maze environment continued toroidally at the edges learns to find a food. Some 

examples of maze environments in the literature of Wilson’s animat are woods1, woods2, 

woods7, maze4, maze5, maze6, woods14, woods101, woods101 ½, and woods102. Woods1, 

woods2, maze4, maze5, maze6, and woods14 are Markovian environments with delayed reward 

i.e. the next input   (and the reward) only depends on the current input   and the current action  . 

Woods7, woods101, woods101 ½, and woods102 are non-Markovian environments that animat 

needs more history (memory) to decide about the next step. In Markovian environments with 

delayed reward, it is possible to use Q-learning for learning an optimal policy. Q-learning 

procedure for Markovian environments after enough iteration for every input, converges to a 

function       . However, Q-learning doesn’t have the generalization ability and is not 

appropriate for big and complex problems. This is why XCS combines the generalization ability 

of LCS with convergence ability of Q-learning and introduces a learning algorithm that can work 

for Markovian environments.  

Each environment contains foods and obstacles. For each position in the environment a payoff is 

considered for example food has a positive reward. The animat is equipped with eight sensors 

around it and has actuators to move toward eight different directions by one step at each move. 

Each object in the environment has a sensory code. Animat senses the eight surrounding cells and 

builds a detector vector composed of consequence of sensory codes starting from north cell and 
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in clockwise direction. The action is a one step move toward a neighboring cells numbering from 

0 to 7 and starting from north cell in clockwise direction. For a blank cell animat can simply 

move toward it. If there is a rock in the cell that animat decides to move, the move is not 

permitted to take place but one time-step passes. If the cell is food, the animat moves to the cell 

and receives a reward (usually 1000 but can be any positive value without any difference in 

performance). There are several environments that are used to test the animat problem. Woods1, 

woods2, maze5, and also S2DM (see Chapter 5) and Complex environments (see Chapter 5) are 

used in this thesis to test the assumed animat problem. In woods1, maze5, and also S2DM and 

Complex environments the sensory code for foods (“F”) are 11, for rocks (“O”) are 10, and for 

blank cells (“.”) are 00. The sensory string is a 16 bits string. Woods2 is a more challenging 

version of woods1 environment. The environment has two types of objects each with two 

different kinds: “F” and “J” are two kinds of food with sensory codes 110 and 111 and “O” and 

“K” are two kinds of rock with sensory codes 010 and 011. Blanks “.” have sensory code 000.  

The sensory codes can be anything else but have to be different to identify a different object. A 

meaning also can be given to the codes but it makes no difference; for example the codes in 

woods2 can be thought like this: bit 0 for smell (1 tastes good and 0 doesn’t have taste), bit 1 for 

solidness (1 solid and 0 not solid), and bit 2 for color (1 red and 0 blue). The sensory string is a 

24 bits string. Maze5 is a more complex environment and learning in it is more difficult. It 

contains 36 blank cells, 44 obstacle cells and only one food cell. The environments woods1, 

woods2, and maze5, are illustrated in Figure  3-3 to Figure  3-5. The goal of Wilson’s animat is 

learning to find a food as fast as possible. The optimal performance that is the average of 

numbers of steps to food starting from any blank point of the environment is a constant value for 

each environment. For woods1 and woods2 it is around 1.7 steps to food, and for maze5 it is 

around 5 steps to food. 
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Figure  3-3: The environment Woods1; inspired from [25] 

 

 

Figure  3-4: The environment Woods2; inspired from [1] 
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Figure  3-5: maze5 environment; inspired from [26] 

3.3 XCS animat problem 

In LCS literature, XCS is the most well-known and has the superiority to other LCS methods and 

has the ability of generalization. This is the reason that Wilson solved the animat problem in non-

Markovian environments (woods2) using XCS. In this thesis this approach is considered to deal 

with the animat problem. So, control architecture of animat in this way is a XCS algorithm. 

Animat tries to find a food in a two dimensional Markovian 2-D environment with delayed 

reward that at each step takes the sensory information and based on XCS performs an action and 

based on that action and its current location in the environment receives a reward in the next step. 

The goal is to build a map       with a population of accurate and maximally general 

classifiers that help animat to find food easily. The block diagram of XCS animat is illustrated in 

Figure  3-6. 



47 

 

 

Figure  3-6: Block diagram of a XCS animat  

 

3.4 Experiment 

The Wilson’s animat is considered as the animat problem and the XCS algorithm is considered as 

the solution for this problem. The Wilson’s animat tries to search environment for food. Only 

moving random steps may reach the animat to food, but it is not an intelligent (!?) animat to 

move only randomly. The animat must learn to find food as fast as possible when it starts from a 

random point in the environment. For this purpose the animat should build a mapping of 

environment in its mind. XCS is the brain of the animat and the final population of classifiers is 

its learned mind that helps it to find food as fast as possible. The final population provides the 

animat mapping       in a compact (generalized) form. Animat obtains this population by 

searching in the environment and exploration of data that tells it the payoff available in each state 

and exploitation and generalization to tell it which action is the best at each state.    

3.4.1 Experimental setting 

The experiment that is living of animat in a two-dimensional environment is performing of 

several “problems” iteratively. Each problem is putting animat in a blank cell that is selected 

randomly and then moving under control of XCS system that has the role of brain for animat, 

until a food is reached. At that point, a new problem from a new random blank cell begins.  
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Action selection regime: At the start of each problem, XCS decides to use randomly action 

selection (explore) or deterministic action selection (exploit). Exploration is choosing action 

randomly and exploitation is choosing action that its prediction payoff is the highest 

(deterministic). In exploration mode GA operates in normal mode, covering and reinforcement 

components occur, and actions are selected randomly from actions that their prediction payoffs in 

the prediction array are non-zero. In exploit mode GA is turned off but covering mechanism 

works; updates for       works but not for    ; and in performance component the actions with 

maximum prediction in the prediction array are chosen.  

The initial population is initialized empty. The population of classifiers is updated from problem 

to problem and is not initialized when a problem starts. The performance is measured as the 

average steps to food for the last 50 exploitation problems.  

Although in the basic framework of XCS a classifier is defined by five components (condition, 

action, prediction, prediction error, and fitness), but in the experiment more components are 

needed to define a classifier. A classifier is implemented with nine parts in the experiment with 

XCS for animat problem. The components of a classifier are: condition, action, performance, 

performance error, fitness, experience, time stamp, action set size estimation, and numerosity. 

These nine parts are variables of a classifier that make a classifier as an object.  

“Condition” and “action” identify the essence of a classifier, i.e. if two classifiers have the same 

“condition” and “action” but with difference in the other components; they are assumed as one 

classifier in different time steps. “Condition” is used as a component of a classifier to 

communicate with the sensory information. On the other hand “action” is used to interact with 

the environment by doing modification in the environment. It is in fact the motor system of the 

animat. “Prediction ( )”, “prediction error ( )”, and “fitness ( )” are used to give a value to 

classifier for application in the reinforcement cycle of XCS. “Experience (   )” component 

identifies the number of times that a classifier is enrolled in the action set. Each time that a 

classifier enrolls in the action set the “experience” it increases by one. “Actual time (  )” is a 

number that identifies the last time that the genetic algorithm has occurred in the action set and 

contained this classifier. It is used in GA sub-cycle to introduce a condition for running of GA 

sub-cycle. “Action set size estimation (  )” is a value that represents the average size of action 
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sets that the corresponding classifier has enrolled. This value is used in the Deletion sub-cycle. 

“Numerosity ( )” indicates the number of microclassifiers that are represented by this classifier.  

In multi-step problems that a problem finishes in more than one step, updates of prediction, 

prediction error, and fitness perform on       using definition of   as:                 

where     is the previous step reward. But in single step problems that it is finished by moving 

one step, the update operates on     using definition of   as:     where   is the immediate 

reward. 

The consequence of updates that are considered in [27] are             . Update of   requires 

calculating accuracy that makes its calculation more complex than the others. The mathematical 

expression for calculating the accuracy is   
 

  
 
  

for      and 1 otherwise. Furthermore, the 

MAM technique is not used for updating of  . The GA also occurs in action set. In this algorithm 

the population of classifiers is a population of macroclassifiers that each one has a numerosity 

which represents the number of classifiers it contains. The covering mechanism assures the 

availability of certain number of actions in each match set. 

The parameters of the system can be classified into five groups: 

- Variables that have to be initialized:            

- Parameters of the reinforcement cycle and fitness calculation:            

- Parameters of the discovery component (GA and covering):                        

- Parameter of subsumption mechanism:      

- Parameters of the experiment:        

3.4.2 Results for XCS animat in various two-dimensional environments 

3.4.2.1 Developing XCS framework of animat problem in MATLAB 

In this thesis MATLAB is used to implement XCS for the animat problem and for 

implementation the algorithmic description of XCS is used based on [27]. The presented 

algorithmic description is close to the original work with some changes according to the papers 

that have been published after that. The action selection strategy is a combination of exploration 

and exploitation that they alternate from cycle to cycle. 
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The following sections represent the results of learning of animat in different environments. The 

results are divided into “with subsumption” and “without subsumption” that the application of 

sebsumption mechanism is implemented by                   and 

                        . Three environments woods1, woods2, and maze5 are selected 

to test the learning of XCS animat. The numbers of 10000 problems are run for animat problem 

in each run of experiment. 

The parameter setting for experiment with both XCS animat problem without subsumption and 

XCS animat problem with subsumption are represented in Table 3.1. The parameters are selected 

based on [27].  

 

Table  3.1: Parameter setting for XCS without subsumption and XCS with subsumption 

                                                          

Woods1 800 0.0001 0.00001 0.001 0.2 0.71 10 0.1 5 25 0.8 0.04 0.33 20 0.1 8 20 1 

Woods2 800 0.0001 0.00001 0.001 0.2 0.71 10 0.1 5 25 0.8 0.04 0.33 20 0.1 8 20 1 

Maze5 2500 0.0001 0.00001 0.001 0.2 0.71 5 0.1 5 25 0.8 0.01 0.3 20 0.1 8 20 1 

 

3.4.2.2 Without Subsumption 

Results of the XCS algorithm without subsumption in woods1, woods2, and maze5 are presented 

in Figure  3-7 to Figure  3-9. 
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Figure  3-7: XCS animat in woods1 without subsumption, see Figure  3-3. 

 

Figure  3-8: XCS animat in woods2 without subsumption, see Figure  3-4. 

 

Figure  3-9: XCS animat in maze5 without subsumption, see Figure  3-5. 
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3.4.2.3 With Subsumption 

Results of the XCS algorithm with subsumption in woods1, woods2, and maze5 are presented in 

Figure  3-10 to Figure  3-12. 

 

Figure  3-10: XCS animat in woods1 with subsumption. 

 

 

Figure  3-11: XCS animat in woods2 with subsumption. 



53 

 

 

Figure  3-12: XCS animat in maze5 with subsumption. 

The figures show the number of steps to food for animat at each problem. As it was discussed 

each problem is composed of a number of steps from a random blank point to reach to a food 

cell. The number of steps from a random blank cell to a food cell changes by learning of the 

animat through exploration and exploitation. At the first the number of steps is high because the 

animat doesn’t know anything about the environment and its steps to food is nearly random. But 

after a number of problems it can reach to food faster and the number of steps to food decreases. 

These results are shown in this section. Animat after some problems acquires a population of 

classifiers that truly map the sensory information to actions and allow it to reach to a food cell. 

Subsumption mechanism is a way to make a smaller population of classifiers that contains 

general and useful ones.  

At the first XCS algorithm without subsumption mechanism is considered. The effect of applying 

XCS algorithm for animat in woods1 environment leads to decrease the average number of steps 

to food to a value around 1.9 steps that is very close to the optimal performance. For woods2 also 

it is around 1.9 steps to food that decreases from a value near 27 (average number of random 

walk to reach to food in woods2). For maze5 that is a more complex environment because of the 

challenging distribution of foods and obstacles, the number of steps to food decreases to a value 

around 11 that is not near the optimal performance. So, we conclude that with using XCS 

algorithm without subsumption mechanism the animat can learn by creating an appropriate 

population of classifiers which directs it toward food by reaching close to the optimal 

performance or in some cases far from it.    
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The performance of learning of animat when the subsumption mechanism is turned on remains 

nearly the same for woods1 and woods2 and for both the number of steps to food reaches to a 

value close to average of 1.9 steps to food. For maze5, the number of steps to food in this case 

doesn’t converge and changes between 150 steps to around 700 steps to food. It is because of the 

creation of over-general classifiers. So, for maze5 using subsumption mechanism is not 

recommended. Over-general classifiers are too general classifiers that their actions are right in 

some situations and wrong in other situations [2]. They have additional # to stay accurate. In 

some situations generality overcomes accuracy and the population of classifiers becomes full of 

over-general classifiers which can decrease the performance. It is because the GA cannot 

distinguish between an accurate classifier and an over-general classifier with the same payoff and 

reproduce it. For more theoretical work on over-general classifiers refer to [28]. 

3.4.2.4 Bad choice of parameters (simplest case) 

The choice of parameters is based on the values presented in the literature. There are a lot of 

parameters but most of them are never changed and most articles use the same parameters. So, 

the parameters are hard-wired parameters, i.e. part of the architecture. In fact, it is the population 

and the number of classifiers that changes in different environment instead of parameters of the 

systems. As an example in multilayer artificial neural networks the values of the hyperparameters 

are set different in different problems to work in its best performance, but in XCS the parameters 

are nearly the same and instead the number of classifiers and the values of rules changes in 

different problems. The range of parameters setting is presented in [27]. However, if any 

parameter is chosen outside of appropriate range the XCS performance may be affected badly. 

For this reason woods1 is considered to show any bad choice of one parameter and its effect on 

the performance.    is set to 0.9 instead of 0.33. The result is presented in Figure  3-13.    
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Figure  3-13: XCS animat in woods2 without subsumption for        

Experiments show that the learning of animat in woods1 is very sensitive to parameter    but it is 

not very sensitive to the other parameters as well. This conclusion can be different for different 

environments. For environments such as maze5 that over-general classifiers are produced, and is 

very sensitive to the subsumption procedure, change in      can have a high effect on the 

performance.  

3.4.2.5 Why these performances occur? 

It occurs because the animat learns to find food by exploring the environment to obtain payoff 

data at each state.  The animat explores in odd problems and exploits in even problems. In other 

words the animat moves randomly in the environment to reach to a food. During this random 

search at each step it updates the performance, performance error, and fitness based on the 

achieved payoffs. However, the action is chosen randomly and not based on the maximum 

system prediction. In addition in the exploration problems the genetic algorithm is turned on and 

new classifiers are produced. So, in exploration problems the system is equipped with new rules 

and the weak classifiers are thrown away and the classifiers update their information about the 

payoff distribution in the environment.  

The exploitation cycle is like test cycle in machine learning methods. The knowledge that the 

system has obtained is tested and the performance is measured. In exploitation the genetic 

algorithm is turned off because the population of classifiers should be kept fix to be tested for the 

performance that is the number of steps to food. 
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In nearly all the curves it is clear that the number of steps to food at the first is high, and it 

reaches to a low value after several iterations. This fact, tell that the system is learned for the 

corresponding environment and the population of classifiers map the payoff environment based 

on the mapping      . The population of classifiers after much iteration can be used as a 

payoff classifier. The meaning of classifier systems is hidden in this task: the obtained population 

of classifiers classifies the environment based on the payoff. This kind of representation is a 

different representation than the usual classifiers that are used to classify data in a data mining 

task. 

As it is visible in the environments, woods1 and woods2 are simple environments for animat to 

solve, because the number of sensory vectors is not high and reaching to food for animat is 

simpler than reaching to food in maze5. In woods1 and woods2 animat learns easily and the 

number of steps to food even in exploration problems is not very high. In maze5 that is a more 

difficult environment, the number of sensory vectors is higher, and there is only one food in the 

environment. When at the first step of each problem the place of animat is initialized in a random 

blank point of the environment, reaching to food in some situations can be a very long task 

especially in exploration problems that the actions are chosen randomly. So, a limit is considered 

for the number of steps to food in maze5 that doesn’t allow the animat to try more than 1500 

steps in a problem. The number of steps to food in maze5 is more than woods1 and woods2 

because in average if a random blank point is chosen randomly in the environment as an initial 

point to start, reaching to food needs longer steps. So, the animat must learn a longer path to win 

a reward 1000. Using subsumption mechanism leads to producing over-general classifiers and 

when the number of over-general classifiers increases the performance decreases. So, using 

subsumption mechanism in environments such as maze5 decreases the performance and 

another mechanism is needed to remove over-general classifiers. 

For the performance that is the number of steps to food,   has an essential role because it 

determines the mutation operation in the genetic algorithm that has the main role to more general 

and less general classifiers. By running the algorithm, XCS shows sensitive to parameters  

  and    . Especially if the value of     increases the number of times that the genetic algorithm 

executes decreases and the change in the number of classifiers decreases. It leads to decreasing 

the effect of generalization in the population. This doesn’t have in general a good effect but in a 

case that over-general classifiers are produced in the population it is better to slow down the 
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effect of GA. The parameter    that is responsible for calculation of accuracy value has an 

important effect on producing classifiers that are more or less accurate.  

3.4.3 Analysis of generalization in XCS 

Why XCS doesn’t converge to optimal solution when an over-general classifier appears in the 

population and what happens to the performance? What’s the relation between environmental 

structure and the XCS performance? 

An over-general classifier is a classifier that matches with different environmental niches where 

their rewards are different and thus they become inaccurate. In XCS, the fitness is based on 

accuracy and so, it tends to evolve general and accurate classifiers more. An over-general 

classifier can be deleted if it is inaccurate. A classifier to be inaccurate needs to be applied in 

distinct environmental niches. XCS may perceive an over-general classifier as accurate, because 

for XCS different rewards make a classifier inaccurate. However, this occurs if classifier happens 

in different environmental niches. 

There are environments that animat doesn’t visit all the situations of environment with the same 

frequency. In addition, there are situations that animat stays for a while and then takes another 

direction. In this situation over-general classifiers occur that are accounted as accurate. So, XCS 

instead of deleting them reproduce them and as XCS is based on accuracy it affects the 

performance of the system. 

The animat doesn’t converge to optimal policy if it doesn’t see all the environmental niches 

frequently. In this way we observe that the exploration strategy is very important and should be 

chosen uniformly to explore the entire environment. In the original XCS in exploration cycle 

action selection is random. [24] has proposed a hypothesis related to the average random walk to 

food:  

“The smaller it is, the more likely the animat will be able to visit all positions in the environment 

frequently; The larger the average random walk is, the more likely the animat is to visit more 

frequently a certain area of the environment.” 

When the niches of the environment are distant such as maze5, the animat can’t change the 

niches as frequently as it is necessary to evolve an optimal policy. This is the reason that animat 
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works well for simple environments such as woods1 and woods2 and fails for more complex 

ones such as maze5. 

If XCS doesn’t explore all the niches of environment uniformly and the over-general classifiers 

that match to few niches of environment are very likely to be reproduced, then XCS fails to learn 

an optimal policy in the environment [29]. 

The reason that performance is poor for some environments is the problem in functioning of the 

generalization mechanism that leads to generation of over-general classifiers. In fact, the 

mechanism of XCS to delete over-general classifiers is very slow. 

In some environments generalization capability prevents XCS from converging to optimal 

solution [30]. Specify is the name of an operator that slows down the generalization process and 

is a solution for the problem of creation of over-general classifiers to improve the performance of 

the system. This operator will be introduced in the next chapter. 

3.5 A literature review on XCS animat approach 

This section reviews different approaches and developments in XCS classifier system that is used 

as the main algorithm to deal with the Wilson’s animat problem. The goal of the literature review 

on XCS animat here is to show that XCS algorithm is flexible enough for adding and changing 

many components and for creating variety of methods for different kinds of problems and 

situations. 

Neuro and fuzzy XCS: 

Neural XCS which is named X-NCS is presented in [31]. The idea is to provide a neural network 

(multi-layered) representation of the condition and action of XCS classifiers that GA is used to 

evolve the neural network. Fuzzy logic then is used through the radial basis function networks. 

The optimal performance of X-NCS is presented for single-step, multi-step, and function 

approximation tasks [32]. The use of back-propagation in conjunction with GA is then added in 

[33] and is tested for continuous and discrete action tasks. Building anticipations of the expected 

states by X-NCS is presented in [34]. Local search is a method used for difficult optimization 

problems that the algorithm moves among candidate solution by applying local changes to find 

an optimal solution. Combination of local search of back-propagation and global search of GA 

that creates a neural XCS is applied to X-NCS and is described in [35]. Fuzzy-XCS for single-
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step reinforcement learning problems is presented in [36] and [37]. Using a fuzzy logic method to 

control the balance between exploration and exploitation rates of XCS is proposed in [38] and its 

extension is presented in [39]. A Spiking neural network (a network with dynamic internal states) 

representation of the condition and action of XCSF [40] classifiers that an evolutionary process is 

used to exploit parameter self-adaptation (the adaptation process to changes that have been 

occurred to change the condition to a new one) is presented in [41]. Constructivism is a theory 

that discusses about the structure of knowledge in human being and the interaction between 

existing knowledge and new information. Using self-adaptive constructivism in neural XCS and 

XCSF that leads to adaptive behavior of agent which is representational flexibility (the ability of 

making an appropriate representational choice) guided by environment is the subject of [42]. 

Using self-adaptive parameters and neural constuctivism in neural XCSF in which a feed-forward 

multi-layered perceptron network is used to represent the classifier conditions is presented in 

[43]. It is used to solve a continuous maze environment with continuous-valued actions, discrete-

valued actions, and continuous-valued actions in continuous time and continuous space. A 

connectionist XCS that uses neural networks and classifier systems in combination and for 

controlling an autonomous agent is presented in [44].  

XCSF: 

After invention of XCS in 1995, XCSF was proposed by Wilson in 2001 and 2002 in [40] and 

[45]. In these papers the function approximation is learned using prediction estimation. 

Furthermore, weight vectors have been added to the classifiers which leads to piecewise linear 

approximation (a function approximation method with a function composed of straight lines). 

Three basic modifications of XCS to produce XCSF are: 1. changing binary string input to 

integer input, 2. considering a weight vector for classifiers to compute payoff prediction, and 3. 

modification in updating procedure of weights. Papers [46], [47], [48], [49], and [50] have 

applied XCSF for function approximation and single step-problems. The ‘Frog’ problem that has 

been introduced in [51] is used to illustrate three architectures for testing continuous action XCSF 

[52]. A new XCSF called XCSFCA is introduced in [53] to improve the performance of XCSF 

(that works with computed prediction for continuous payoff and numerical input) with computed 

continuous action that would be applicable for robotics which need numerical action. The 

continuous action classifier is desirable for applications such as robotics. Using XCSF for multi-

step problems with continuous inputs is investigated in [54]. In this paper it is shown that XCSF 
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can evolve a compact population of accurate and maximally general classifiers and that 

population provides optimal solution to the problem. Using XCSF for reinforcement learning 

problems involving delayed rewards is presented in [55]. XCSF is used as a method for 

generalized reinforcement learning. By this method XCSF can evolve optimal and near optimal 

solutions for linear reinforcement learning problems. Application of XCSF animat problem in 

woods environments is presented in [56].  

XCS-LP: 

Classifier system for environments with continuous reinforcement is called XCS-LP and was 

introduced in [51]. Examples of continuous payoff environments are in control, robotics, and 

financial time-series. In this system the classifier’s prediction is a continuous linear function of 

input  . The frog problem then was presented in this paper and was used to test XCS-LP. XCS-

LP has two differences from XCS: inputs are real and a linear polynomial is used which 

determines prediction from  . Frog problem is a problem that the classifier system acts as a frog 

that senses a fly and learns to jump to the distance that the fly is located in it. The sensory signal 

is decreased with the distance between them monotonically and the range of action (jump) is in a 

continuous range. 

SB-XCS: 

Tim Kovacs in his PhD thesis introduced SB-XCS (strength based XCS) to compare XCS which 

is based on accuracy and traditional LCS that is based on strength [57]. The results of SB-XCS 

on 6-Multiplexer and Woods2 are presented in [58]. Two views of LCS are presented in [59]: 

Genetic Algorithm-based systems and Reinforcement Learning-based systems. It discusses that 

Genetic algorithm-based systems are better for XCS and Reinforcement Learning-based systems 

are better for SB-XCS.   

The concepts of strong over general rules and fit over general rules have been introduced in [60]. 

This paper claims that strong over general rules are the main basis of SB-XCS. According to this 

paper, the strong over general rules depend on biases in the reward function that is introduced in 

the paper. Then design of fit over general rules for XCS is done by defining biases in the variance 

of the reward function.  
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Generalization in XCS: 

A theory of generalization and learning in XCS was presented in [61]. It was started from the 

generalization hypothesis of XCS in which mentions that XCS algorithm produces accurate and 

maximally general classifiers and then presents a simple equation for generalization hypothesis. 

The analysis of generalization in XCSF and methods to improve its generalization capability are 

presented in [46]. Analysis of generalization capabilities of XCS in animat problem for grid-

world environments have been presented in [62], [24], and [30]. In [30] the test is performed on 

Maze4 where XCS fails to reach to optimal performance and generalization capabilities prevent 

XCS to reach to the optimal solution. In [24] the test is performed on Maze6 and Woods14 and 

again it is shown that XCS fails to reach to optimal performance and generalization capabilities 

prevent XCS to reach to the optimal solution. A hypothesis then is presented to explain the 

results. In [62] the test is performed on Maze 5, Maze 6, and Woods14.  

Application of XCS for robotic and Alife: 

Extension of XCS named X-TCS for continuous environments for robotics without a priori 

discretization is presented in [63]. Using XCS for robot autonomous application is presented in 

[64]. It has presented two robotic tasks and tested XCS on them. These two tasks are reactive and 

non-reactive. The reactive task is a task that action depends only on the current sensory 

information. The non-reactive task is a task that involves some kind of memory to work in 

aliasing states. Using XCS with additional internal memory for a robotic task with a simulated 

Khepera in an aliasing environment and with noisy sensory data is tested for variety of problems 

[65]. A non-communicating predator/prey scenario using LCS is presented in [66]. A group of 

predators observe a prey collaboratively. Each predator is equipped with a single and independent 

XCS. In this paper a memory is considered for learners to store the history of the local actions 

and payoffs. Extending classifier systems to exchange information to improve the performance is 

developed in [67]. Two kinds of information are considered to be transferred: the information in 

signal pattern of collection of homogeneous classifiers and the information that is the result of 

given tasks to the agents to solve different parts of the original problem. The experiments are 

performed on 6-multiplexer and 11-multiplexer. Navigation of a robot with noisy sensors many 

times yields to perception aliasing problem that different situations in the environment are 

perceived identical for a robot. In [65] XCS is used with additional internal memory to overcome 



62 

 

this problem. The experiment is performed for four Woods-type problems on a Simulated 

Khepera.       

Extension of XCS for Multistep and Maze and Woods problems: 

Four modifications of XCS to improve performance in highly size-constrained populations have 

been presented in [63]. The tournament selection is applied to XCS in [68] and shows more 

parameter independent and more efficient in guidance of fitness exploiting. XCS with random 

and biased action-selection regimes is used in some multi-objective maze problems (a maze 

environment that the agent has more than one objective) in [69]. The rule linkage mechanisms are 

applied to XCS to solve non-Markov tasks [70]. The resulted XCS is called corporate XCS 

(CXCS). Lanzi defined stochastic environment as the environments that actions of agent are 

uncertain. In this type of environments he developed XCS for stochastic environments. Then an 

extension to XCS with a higher level of uncertainty was proposed that it can learn the optimal 

solution. This extension was named XCSμ [71]. It was then shown that XCSμ is a general version 

and it is the same as XCS when it is used for the deterministic environments. An extension for 

XCS that messy code is used instead of binary string condition is studied in [72]. 

XCSI: 

The modification of XCS for integer inputs is presented in [73]. The new XCS is called XCSI. 

XCSI has additional modifications in mutation operator, covering, and subsumption. XCSI is 

applied for data mining applications. 

XCSM: 

XCSM was introduced by Lanzi in [74] and [75] and is XCS with addition of internal memory to 

be used for animat problem dealing with non-Markovian environments (partially observable 

environments) with aliasing states. Perceptual aliasing problem is a problem that two different 

situations in the environment perceive as the same (aliasing states). It is shown that XCSM can 

converge to optimal solution in simple environments but may fail to evolve an optimal solution in 

more complex ones. This paper has been tested on woods101, woods102, Maze7 that are non-

Markovian environments. The analysis of XCSM to show why it fails to learn optimal solution in 

complex partially observable environments is described in [76]. It shows that memory 

management of XCSM doesn’t guarantee convergence to an optimal solution. An extension then 

is provided to XCSM and has been called XCSMH. XCSMH can learn optimal policy in all the 
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environments. In this paper the test environments are woods101, woods102, Maze7, and Maze10. 

In non-Markovian environments there are different cells that their sensory vectors are the same 

but two different actions should be performed to guide animat toward food (optimal action). The 

more advanced discussions about XCSM and XCSMH for more complex environments are 

discussed in [77]. To test for more complex environments, woods101
 

 
 is considered that includes 

four different states that animat perceives as the same but need four distinct optimal actions. 

Gradient-Based XCS (XCSG): 

The idea of updating the reward prediction using gradient descent method and its analysis on 

generalization is presented in [78], [26], and [79]. It shows more stable and reliable in multi-step 

environments. 

Summary of important events in XCS 

In summary the development of XCS and its further improvements were started at 1995 by first 

introduction of XCS by Wilson [1]. It then continued by introduction of XCSM and XCSMH for 

non-Markovian environments in 1998 and 2000 by Lanzi [74] and [77]. Then the idea of Integer-

valued XCS (XCSI) were presented by Wilson in 2000-2001 to solve multiplexer problems [73]. 

SB-XCS in 2002 were introduced by Tim Kovacs as a strength-based XCS [57]. In 2002 Wilson 

introduced XCSF to approximate functions with a XCS-based method [45]. Larry Bull in 2002 

presented X-NCS and X-NFCS as neuro- and neuro-fuzzy XCS algorithms to solve multiple 

problems such as function approximation [31]. 

 

3.6 Conclusion 

In this chapter, XCS classifier systems were introduced and it was shown that it can solve 

different RL animat problems. Some well-known environments that the Wilson’s animat problem 

can be applied for them were also introduced to be used in this project. The XCS animat that is a 

Wilson’s animat problem with XCS algorithm as its control architecture was tested on woods1, 

woods2, and maze5 and results were presented. It was shown that XCS cannot solve maze5 

environment because of production of over-general classifiers in the population of classifiers and 

this is because of the generalization ability of XCS. So, the generalization mechanism of XCS in 
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some situations should be slow down to overcome this problem by removing over-general 

classifiers. To this goal in the next chapter Specify operator will be introduced to deal with this 

problem. A gradient-based XCS also will be introduced as another method to improve 

performance of XCS by addition of gradient descent in the prediction updating mechanism that is 

a more general method than tabular Q-learning used in XCS to update prediction. At the end 

combination of XCS with specify operator and gradient-based XCS will be introduced. 
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CHAPITRE 4 DEVELOPMENTS IN XCS TO IMPROVE 

PERFORMANCE IN MARKOVIAN ENVIRONMENTS 

4.1 Introduction to XCSS 

XCS evolves accurate and maximally general classifiers with minimum population size for 

woods1 and woods2. However, in some environments only a few generalizations can be done. 

Actually, it fails to learn optimal solution in some situations and over-general classifiers are 

created. To deal with this problem Lanzi introduced a Specify operator [30] to make XCS adapt to 

Maze5, Maze6 and woods14 [30]. The generalization mechanism of XCS is studied in depth in 

[24] and a specific hypothesis is presented. The hypothesis says that XCS can’t learn an optimal 

policy if it doesn’t visit all the areas of the environment frequently. The Specify parameter is 

introduced for the situations that XCS can’t converge to optimal solution. 

4.1.1 Specify operator 

Generalization in learning classifier systems are introduced by use of # in the condition of the 

classifiers. In those environments that the generalization leads to creating over-general classifiers 

and thus to poor performance, generalization should be slowed. Don’t care symbols of # are used 

in three places: in initial population that alleles are set to # with probability   , in covering that # 

are set randomly, in mutation that alleles are randomly changed. The first two are accounted as 

the initialization of the system and so, mutation is the main component of generalization. So, to 

slow down generalization in certain situations a mechanism should contrast the mutation.   

Specify operator is introduced to help generalization mechanism of XCS in eliminating over-

general classifiers from the population. Specify acts on the action set when there are significant 

number of over-general classifiers in the action set; and leads to replacement of over-general 

classifiers with more specific offspring. Specify uses prediction error    to find classifiers that 

because of existence of some #s match with different conditions in the environment with different 

rewards (oscillating classifiers). Specify replaces don’t care symbols in the classifiers with a 

certain criterion. The initialization of new classifiers that are generated by Specify is similar to 

initialization of offspring in GA.  

The mechanism of Specify based on [30] is as follows: 
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‘At each cycle the average prediction error in action set     is denoted by      and the average 

prediction error in population set      is denoted by     . We also introduce parameter     of the 

Specify that set to a constant. If       is twice larger than      and the average number of updates 

of classifiers in     is at least     times, then a classifier is selected randomly from     with 

probability proportional to its prediction error. The selected classifier is used to create a new 

classifier (offspring) and the new one is inserted in the population and if it is necessary another is 

deleted. To create the new classifier (offspring) from the selected classifier, each # symbol in 

selected classifier is replaced with the corresponding digit of the input with probability    ’.   

The XCS algorithm with using of Specify mechanism is called XCSS. Using specify operator 

makes XCSS to learn in a greater number of environments. The diagram representing the 

operation of XCSS is illustrated in Figure  4-1. 

 

Figure  4-1: Block diagram of XCSS.  
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4.2 Using gradient descent in XCS to improve the performance in Markovian 

multi-step environments (XCSG) 

As we discussed in the previous section XCS in some environments such as maze5 is not able to 

solve robustly. Using gradient descent in prediction updating mechanism in XCS is presented in 

this section to improve the performance of XCS. XCS is tightly linked to reinforcement learning 

and therefore, gradient-based methods in reinforcement learning that have been used for function 

approximation, are applicable to XCS. In multi-step environments that are modeled as a Markov 

Decision Process, Q-learning can be used to learn state-value function        to predict the 

current reward. However, tabular Q-learning is infeasible for large problems. This is why 

function approximation methods based on gradient descent are used. XCSG in this part is 

presented based on [26]. 

4.2.1 Reinforcement learning and XCS 

As we described in Chapter 2, in reinforcement learning problem an agent’s goal is to maximize 

the long term cumulative reward that has achieved through interaction with the environment. In 

MDP environments with the finite state set  , finite action set  , at time   the agent senses the 

environment and perceives state    and based on this information the agent selects action    

which changes its state to      and then based on the selected action and its state it receives the 

reward      in its next state. The goal of agent is to maximize expected payoff value: 

           

 

   

                                                                                                                                      

     ; The reinforcement learning methods are used to teach agent to maximize the 

expected payoff value by defining an action-value function        which maps state-action pairs 

to the expected payoff value. 

As we discussed before Q-learning is a well-known algorithms for solving reinforcement learning 

problems.        is the predicted payoff when agent performs action   in state  . Q-learning 

iteratively approximates the optimal action-value function    that maps state-action pairs to the 

expected reward. In fact, Q-learning approximates the table of        values called Q-table. 
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Thus, this approximation is called tabular Q-learning. At the start for each state-action pair 

       is initialized randomly at    . The agent at time     in state      performs action 

     and at time   receives reward    and state   . At time   the              is updated as: 

                                                                                     

Learning rate   is      . It certainly, converges to the optimal value of    (for the proof of 

convergence see [20]).    

Now, we have to investigate how XCS approximates    values. As we discussed before, XCS is 

a RL method to solve RL problems. The generalization in XCS occurs because of the evolution 

of population of the classifiers that use # symbols. The population of classifiers in XCS 

represents the action-value function in RL. XCS contains a RL setting inside it and it makes 

population to approximate   . In XCS the system prediction         plays the role of 

             in reinforcement learning and is represented by classifiers exist in the       and 

the system prediction       plays the role of          and is represented by classifiers exist in 

the    : 

                     
              

            

                                                                                   

The reason for this equality is because of the definition of state-action value that predicts the 

future payoff values. Using this definition appears in XCS update equation for prediction of a 

classifier: 

                                                                                                                                        

Where                  . So, the prediction update for each classifier in the previous-

time action set can be given by: 

            
       

                                                                                                    

By comparison of updating procedure of XCS and Q-learning we see that the updating 

mechanism of XCS for prediction is inspired from tabular Q-learning. 
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4.2.2 XCS with gradient descent 

Tabular Q-learning for large problems is infeasible because the table that maps state-action 

values to   values grows exponentially by dimension and therefore, more experience is needed to 

converge to a good    and more memory is needed to store the table. Generalization is a way to 

cope with complexity of environment to produce a good approximation of the optimal Q-table 

using a small memory by limited number of experiences. In reinforcement learning literature the 

generalization is made possible using online function approximation (to approximate   ) 

methods such as gradient descent techniques. So, gradient descent function approximation 

methods are used to approximate   . Using gradient descent approximation methods are actually 

assigning a 3-D function that maps state-action pairs to payoff values. When the number of pairs 

increases the function tends to become similar to a surface. So, in function approximation a good 

estimation of such a payoff surface is developed [26].  

In gradient descent approximation in Q-learning, the goal is to minimize the error between 

desired payoff value of the current state-action pair and the current payoff estimate over a certain 

approximator   that         ’s are its functions: 

                                                                                                              

Depending on the definition of state-action values, weights   can be different. The change    

for each weight   at each time step   is: 

           
   

                     
             

  
                                                 

The weights are updated based on the equation above. Function approximation methods that use 

this equation are called direct gradient descent algorithms.  

Direct gradient descent algorithms are fast but sometimes unstable. So, residual gradient descent 

algorithms have been developed which are slower but more stable. The weight updates in Q-

learning with residual gradient descent based on [26] are as follows: 
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                estimates the effect of current modification of weight on the value of next 

state [26]. 

Based on the above explanations gradient descent can be added to the prediction update in XCS 

to improve learning capabilities of XCS. For each classifier     in the action set (or previous time 

step action set) the gradient component is computed as follows: 

             

  
 

 

   
 
              

            

  
  

            

                                                            

So, first the sum of classifiers fitness in the action set is computed                    
 and then 

the prediction of each classifier in       is updated as follows: 

              
       

        
  

      
                                                                             

The update of other parameters (prediction error and classifier fitness) remains without change. 

This type of XCS is named XCSG. The block diagram describing XCSG is illustrated in Figure 

 4-2. 
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Figure  4-2: Block diagram of XCSG.  

 

Term 
  

      

 adjusts the learning rate   adaptively for each classifier. For a classifier if 
  

      

 is 

small then the prediction update is based on small learning rate, and vice versa. It also has effect 

on accurate and over-general classifiers. For, over-general classifiers, 
  

      

 is small and the 

prediction is stable value. For, accurate classifiers (maximally general) the prediction converges 

to its actual value faster than inaccurate classifiers. So, inaccurate classifiers will have more 

reliable prediction by a small learning rate and accurate classifiers have a more reliable prediction 

because they are more accurate. Using gradient update the payoff surface would become more 

reliable and improve the generalization capability.  

For residual gradient also weight update works as follows: 
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To develop it for XCS         is corresponding to the system prediction of action   in XCS. 

                 is the action corresponding to the highest system prediction, the 

component 
 

  
                can be computed as 

 

  
    
   

         
 

   
    
   

      
 

   
      

 

   
 
               

            
                       

where        contains classifiers in     that advocate action   . To compute this value two cases 

should be considered:  

1. If           also appears in         then 
 

  
              

  

             
. 

2. If           doesn’t appear in        then 
 

  
               . 

So, at time step   for each          : 

 

  
                      

  

             
                     

                                       

                                         

Thus, to update the prediction of classifiers it can be represented as 

  

              
   

         
  

      
                                                                      

 

The procedure to update the prediction is as follows: 

First, the action    that is corresponding to the highest system prediction should be computed, 

then a set      is created containing all classifiers of     with action   . Then the parameters of 

classifiers of       are updated using the sum    of classifier fitnesses in       
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At the end the prediction of each classifier in       that also exists in      is updated: 

              
   

         
  

      
  

  
     

                                                                

 

Otherwise, if classifier is not in     , the classifier will be updated based on the gradient approach: 

              
   

         
  

      
                                                                               

 

4.3 XCSSG : combination of using Specify operator in gradient-based XCS 

As it was described in Chapter 3, XCS has problem in environments such as maze5 because of 

creation of over-general classifiers. To solve this problem Specify operator [30] was presented to 

remove over-general classifiers from the population. The gradient-based XCS [26] was also 

introduced to improve the performance of XCS in complex environments by improving the 

prediction adjustment mechanism of XCS. So, two improvements are considered to improve the 

performance of XCS, one is improvement in discovery mechanism and the other is in 

reinforcement mechanism. In other words the first improves the evolutionary mechanism of 

animat’s control architecture and the second one improves learning mechanism. 

XCSSG is a new algorithm that integrates these two mechanisms at the same time. It applies 

Specify operator and gradient-based mechanism at the same time to improve both the evolution 

and learning of the Wilson’s animat in various environments. So, in XCS the Specify operator 

works as described in  4.1.1 and the prediction mechanism applies prediction update of equation 

4.10 instead of 4.5. The block diagram for description of XCSSG is illustrated in Figure  4-3. 
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Figure  4-3: Block diagram of XCSSG.  

 

4.4 Results for XCSS, XCSG, and XCSSG in various two-dimensional 

environments and their comparison 

In this section the developed XCS animat problems have been tested in woods1, woods2, and 

maze5. The developed XCS algorithms that have been tested to result improvement in the 

performance are XCSS and XCSG. Two versions of gradient-based XCSG i.e. XCS with gradient 

descent and with residual gradient descent have been implemented and tested. At the end XCSG 

and XCSS are combined and resulted in a new XCS that we have called XCSSG in which both 

Specify and gradient mechanisms are applied to the corresponding animat problem in various 

environments. Performance is computed as the average number of steps to food for the last 50 
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exploitation cycles. If the food is not still achieved after execution of 1500 steps in one problem, 

the next problem starts. 

4.4.1 XCSS 

The list of parameters for experiment of animat problem with XCSS in each environment is 

presented in Table 4.1. 

 

Table  4.1: List of parameters for experiment of animat problem with XCSS in each environment 

                                                                  

Woods1 800 0.0001 0.00001 0.001 0.2 0.71 10 0.1 5 25 0.8 0.04 0.33 20 0.

1 

8 20 1 20 0.5 

Woods2 800 10 0.00001 10 0.2 0.71 10 0.1 5 25 0.8 0.01 0.33 20 0.

1 

8 20 1 20 0.5 

Maze5 2500 10 0.00001 10 0.2 0.71 5 0.1 5 25 0.8 0.01 0.3 20 0.

1 

8 20 1 20 0.5 

 

Results of the XCSS algorithm in woods1, woods2, and maze5 are presented in Figure  4-4 to 

Figure  4-6. 

 

Figure  4-4: XCSS animat in woods1. 
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Figure  4-5: XCSS animat in woods2. 

 

Figure  4-6: XCSS animat in maze5. 

 

The performance of XCSS in woods1 and woods2 is stable and fast and approaches to the 

optimal performance around 1.7 in woods1 and 1.9 in woods2. In maze5 XCSS reaches to the 

optimal performance that is around 5. In maze5 the performance is slow because the number of 

steps to food converges to the optimal performance after approximately 4500 problems. 

4.4.2 XCSG direct 

The list of parameters for experiment of animat problem with direct XCSG in each environment 

is presented in Table 4.2. 
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Table  4.2: List of parameters for experiment of animat problem direct XCSG in each 

environment 

                                                          

Woods

1 

800 0.000

1 

0.0000

1 

0.00

1 

0.

2 

0.7

1 

1

0 

0.

1 

5 25 0.

8 

0.0

4 

0.3

3 

20 0.

1 

8 20 1 

Woods

2 

800 0.000

1 

0.0000

1 

0.00

1 

0.

2 

0.7

1 

1

0 

0.

1 

5 25 0.

8 

0.0

4 

0.3

3 

20 0.

1 

8 20 1 

Maze5 300

0 

0.000

1 

0.0000

1 

0.00

1 

0.

2 

0.7

1 

5 0.

1 

5 30 0.

8 

0.0

2 

0.2 20 0.

1 

8 20 1 

 

Results of the direct XCSG algorithm in woods1, woods2, and maze5 are presented in Figure  4-7 

to Figure  4-9. 

 

Figure  4-7: XCSG animat in woods1. 
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Figure  4-8: XCSG animat in woods2. 

 

Figure  4-9: XCSG animat in maze5. 

The performance of direct XCSG in woods1 and woods2 approaches to value around 1.9. In 

maze5, the performance reaches to value around 15 that is bigger than what XCSS approaches. 

The speed is faster than XCSS. 

4.4.3 XCSG residual 

The list of parameters for experiment of animat problem with residual XCSG in each 

environment is presented in Table 4.3. 
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Table  4.3: List of parameters for experiment of animat problem with residual XCSG in each 

environment 

                                                          

Woods1 800 0.0001 0.00001 0.001 0.2 0.71 10 0.1 5 25 0.8 0.04 0.33 20 0.1 8 20 1 

Woods2 800 0.0001 0.00001 0.001 0.2 0.71 10 0.1 5 25 0.8 0.04 0.33 20 0.1 8 20 1 

Maze5 3000 0.0001 0.00001 0.001 0.2 0.71 5 0.1 5 30 0.8 0.02 0.2 20 0.1 8 20 1 

 

Results of the residual XCSG algorithm in woods1, woods2, and maze5 are presented in Figure 

 4-10 to Figure  4-12. 

 

Figure  4-10: Residual XCSG animat in woods1. 
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Figure  4-11: Residual XCSG animat in woods2. 

 

Figure  4-12: Residual XCSG animat in maze5. 

Residual XCSG in woods1 and woods2 reaches to value around 1.9 which shows that it works 

well in these two environments. However, in maze5 its performance reaches to a value around 20 

that in comparison works weaker than XCSS but is faster. 

4.4.4 XCSSG 

The list of parameters for experiment of animat problem with residual XCSSG in each 

environment is presented in Table 4.4.  
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Table  4.4: List of parameters for experiment of animat problem with residual XCSSG in each 

environment. 

                                                                  

Woods1 800 0.0001 0.00001 0.001 0.2 0.71 10 0.1 5 25 0.8 0.04 0.33 20 0.1 8 20 1 20 0.5 

Woods2 800 0.0001 0.00001 0.01 0.2 0.71 10 0.1 5 25 0.8 0.04 0.33 20 0.1 8 20 1 20 0.5 

Maze5 2750 10 0.00001 10 0.2 0.71 5 0.1 5 28 0.8 0.01

5 

0.25 20 0.1 8 20 1 20 0.5 

 

Results of the direct XCSG algorithm in woods1, woods2, and maze5 are presented in Figure 

 4-13 to Figure  4-15. 

 

 

Figure  4-13: XCSSG animat in woods1. 
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Figure  4-14: XCSSG animat in woods2. 

 

Figure  4-15: XCSSG animat in maze5. 

XCSSG as a combination of XCSS and XCSG in woods1 and woods2 approaches to the optimal 

performance to a value around 1.9. Its performance in maze5 approaches to the average of around 

7 steps to food that is close to what XCSS reaches but very faster. So, the speed of XCSSG is 

faster in comparison to XCSS and approaches near to the optimal value.   

4.5 Comparison of results 

To compare the results of different algorithms in each environment the performance curves are 

plotted in one figure to provide a criterion for comparison. The comparison results for each 

environment are illustrated in Figure  4-16 to Figure  4-24.   
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Figure  4-16: Comparison of XCS without subsumption, XCSS, direct XCSG, and XCSSG in 

woods1. 

 

Figure  4-17: Comparison of XCS with subsumption, XCSS, direct XCSG, and XCSSG in 

woods1. 
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Figure  4-18: Comparison of XCS without subsumption, XCSS, Residual XCSG, and XCSSG in 

woods1. 

 

 

Figure  4-19: Comparison of XCS without subsumption, XCSS, direct XCSG, and XCSSG in 

woods2. 
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Figure  4-20: Comparison of XCS with subsumption, XCSS, direct XCSG, and XCSSG in 

woods2. 

 

Figure  4-21: Comparison of XCS without subsumption, XCSS, Residual XCSG, and XCSSG in 

woods2. 
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Figure  4-22: Comparison of XCS without subsumption, XCSS, direct XCSG, and XCSSG in 

maze5. 

 

Figure  4-23: Comparison of XCS with subsumption, XCSS, direct XCSG, and XCSSG in maze5. 
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Figure  4-24: Comparison of XCS without subsumption, XCSS, Residual XCSG, and XCSSG in 

maze5. 

Results show that XCSSG converges very close to the optimal performance fast and stably in 

maze5. XCSS converges to the optimal performance but very slow, and XCS and XCSG 

converge to a value different from optimal performance but not very far. XCS with subsumption 

doesn’t converge even to a value close to the optimal performance. It is because of generation of 

over-general classifiers in the population set and the subsumption mechanism that removes 

classifiers without any look to the classifier if it is over-general or not. 

The performance of different algorithms in woods1 and woods2 are very close. 

Comparison with the Q-learning 

To compare the obtained results with a more well-known reinforcement learning method that is 

better known in artificial intelligence context, Q-learning is chosen to be used as a method 

dealing with the animat problem in woods1 and maze5. So, the results of applying XCS are 

compared with the results obtained by using Q-learning. 

In Q-learning a Q-table is assumed that contains          values for each couple of state and 

action. The   values update each time that agent situated in the corresponding state and performs 

that corresponding action. In other words, when agent is in state    and has received reward    for 

the action      in state     , the value              is updated as represented in Equation 4.2. At 

each step agent tries to choose that action with the highest          value. Using this method, the 

number of actions to food decreases that shows the animat has learned to reach the food and the 
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values of the Q-table are stable. The results of using Q-learning for woods1 and maze5 are 

represented in Figure  4-26 and Figure  4-28.   

 

Figure  4-25: Random moves of animat in woods1 toward a food. 

 

 

Figure  4-26: Applying Q-learning algorithm to solve the animat problem in woods1. 
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Figure  4-27: Random moves of animat in maze5 toward a food. 

 

 

Figure  4-28: Applying Q-learning algorithm to solve the animat problem in maze5. 

 

The results of using Q-learning in woods1 and maze5 show that the performance of XCS is 

higher than Q-learning. Figure  4-25 and Figure  4-27 represent the number of steps to food in 

woods1 and maze5 that are useful to compare when an adaptive learning algorithm is used to 

learn to find the food and when no algorithm is used and actions are random. The results show 

that the number of random steps to food in woods1 is around 30 steps and in maze5 are around 

240 steps. When Q-learning is used the number of steps to food for woods1 decreases to around 
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2.2 and in maze5 it decreases to around 20. Using XCSSG leads to average of around 1.8 steps to 

food in woods1 and average of around 7 steps to food in maze5. 

4.6 Conclusion 

In this chapter two main developments for XCS were introduced to improve the performance of 

XCS for more complex problems. In XCS generalization mechanism works on environmental 

niches. Specify operator recovers dangerous situations in these niches. The convergence of the 

above environments all depends on the generalization capability of the system. It can be 

concluded that generalization in maze5 needs larger number of classifiers to completely learn the 

environment and large population needs more time and larger number of problems before 

converging to a small set of maximally general classifiers. In maze5 XCSS converges to the 

optimal value but very slow. XCSG that is a gradient-based XCS results a performance no better 

than XCSS but faster. Performance of XCSSG that is a combination of XCSS and XCSG is fast 

and converges to the optimal performance. In chapter5 new environments and new animat 

scenarios are introduced to give insight into the ability of XCS-family algorithms in learning at 

different situations and for different problems beyond the traditional works on XCS animat.   
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CHAPITRE 5 BEYOND THE TRADITIONAL XCS ANIMAT 

 

5.1 Introduction 

 

In the previous chapters the XCS animat problem was studied in detail and it was shown that the 

XCS-family (XCS, XCS with subsumption, XCSS, XCSG, and XCSSG) animat can learn in 

woods1, woods2, and maze5. In the literature on learning of the XCS animat in Markovian 

environments also, many papers use these environments. In addition, the animat has only the 

ability to sense its one step surrounding environment and decide based on that. Therefore, the 

ability of XCS animat cannot be shown for higher range of Markovian environments. In this 

chapter several new maze environments with different size and distribution of objects are 

introduced to test the learning ability of XCS animat in finding food.  

The ability of XCS animat in changing environment gives a deeper insight into the adaptation 

ability of XCS algorithms. To experiment this ability, in this thesis a simple unstable resource 

problem is designed and different XCS-family algorithms are tested to present the adaptation 

ability of animat in an environment with a moving food. Competition between two XCS-family 

algorithms can give us better insight about the comparison of two algorithms. For this purpose a 

platform for competition of two XCS-family algorithms based on competitive Lotka-Volterra 

equation is designed and is tested. In addition to the previous experiments on Markovian 

environments, for an animat with higher vision ability a non-Markovian environment can be a 

Markovian environment because at each time it obtains more information. To test the learning 

ability of XCS (and XCSSG) animat in several non-Markovian environments that are Markovian 

when animat has higher vision ability, several non-Markovian environments are designed and the 

performances are compared. 

5.2 Environment generator and S2DM environments 

To show the learning ability of XCS in general, we should design new environments randomly, 

check if they are Markovian or non-Markovian, and test the ability of XCS algorithm in learning 

these new environments. To make our system automatic and provide a platform for the future 



92 

 

research, we have built an environment generator that creates random maze environments with 

the size of interest and checks out if the environment is Markovian or non-Markovian. The 

objects in the environments that are generated by this environment generator are food and 

obstacles. The generator checks the environment if there is some states with the same sensory 

information to predict how well XCS-family algorithms can learn in a random environment. By 

using this tool we have designed five maze environments 5MS2DM2 (5 by 5 Markovian square 

2-dimensional maze with 2 obstacles), 6MS2DM3 (6 by 6 Markovian square 2-dimensional maze 

with 3 obstacles), 7MS2DM6 (7 by 7 Markovian square 2 dimensional maze with 6 obstacles), 

7nMS2DM6 (7 by 7 non-Markovian square 2 dimensional maze with 6 obstacles), and 

7MS2DM8 (7 by 7 Markovian square 2 dimensional maze with 8 obstacles) environments.  

5MS2DM2 is a small     Markovian environment containing food and obstacles (Figure  5-1). 

The optimal performance that is the average of minimum number of steps to food is calculated as 

the average of minimum steps that animat starts from any random blank point in the environment 

and reaches to food. For 5MS2DM2 environment the optimal performance is calculated as:  

           

 
     . 

 

 

Figure  5-1: 5MS2DM2 environment. 

 

6MS2DM3 is a     Markovian environment containing food and obstacles (Figure  5-2). For 

6MS2DM3 environment the optimal performance is calculated as: 
                      

  
 

    . 
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Figure  5-2: 6MS2DM3 environment 

 

7MS2DM6 is a     Markovian environment containing food and obstacles (Figure  5-3). For 

7MS2DM6 environment the optimal performance is calculated as: 

                                   

  
     . 

 

Figure  5-3: 7MS2DM6 environment 

7nMS2DM6 is a     simple non-Markovian environment containing food and obstacles 

(Figure  5-4). In 7nMS2DM6 there are two positions with the same sensory string but their 

optimal action can be different. The positions 8 and 13 have the same sensory string, and also, 

positions 5 and 11 have the same sensory string too, see Figure  5-5. This similarity in the sensory 

information shows that the environment is non-Markovian. For 7nMS2DM6 environment the 

optimal performance is calculated as: 
                                   

  
     . 
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Figure  5-4: 7nMS2DM6 environment 

 

 

 

Figure  5-5: numbered 7nMS2DM6 environment 

7MS2DM8 is a     Markovian environment containing food and obstacles that is illustrated in 

Figure  5-6. This environment has the optimal number of steps to food equal to 

                               

  
       and thus the optimal performance is equal to this 

value.  

 

Figure  5-6: 7MS2DM8 environment 
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5.2.1 Learning results of XCS-family animat in environments 5MS2DM2, 

6MS2DM3, 7MS2DM6, 7nMS2DM6, and 7MS2DM8 

As before the animat is equipped with eight sensors around it to detect the sensory information at 

each step and also, actuators to move it toward one of the possible eight directions. The brain of 

animat is one of the XCS-family algorithms to give it the ability of adaptive behavior. We have 

also tried to test the performance of three new XCS algorithms: XCSG with subsumption, XCSS 

with subsumption, and XCSSG with subsumption. At this time the test environments are 

5MS2DM2, 6MS2DM3, 7MS2DM6, 7nMS2DM6, and 7MS2DM8. To provide a way to 

understand the generalization ability of XCS-family algorithms better, the average population (of 

classifiers) sizes of XCS-family are shown for various algorithms in each environment. The 

comparisons of different XCS-family algorithms in different S2DM environments are presented 

in Figure  5-7 to Figure  5-36. For the S2DM environments the same set of parameters as maze5 as 

a maze environment have been used (see Table 4.1 to Table 4.4).  

 

 

Figure  5-7: Comparison of performance of different XCS algorithms in 5MS2DM2. 
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Figure  5-8: Comparison of performance of XCS and XCS with subsumption in 5MS2DM2. 

 

Figure  5-9: Comparison of different XCS algorithms in 5MS2DM2 when the subsumption 

mechanism is activated. 
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Figure  5-10: Comparison of population of classifiers in XCS, XCSG, XCSS, and XCSSG 

algorithms in 5MS2DM2. 

  

Figure  5-11: Comparison of population of classifiers in XCS, and XCS with subsumption in 

5MS2DM2. 
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Figure  5-12: Comparison of population of classifiers in XCS-family algorithms with subsumption 

in 5MS2DM2. 

 

 

 

 

Figure  5-13: Comparison of performance of different XCS algorithms in 6MS2DM3. 
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Figure  5-14: Comparison of performance of XCS and XCS with subsumption in 6MS2DM3. 

 

Figure  5-15: Comparison of different XCS algorithms in 6MS2DM3 when the subsumption 

mechanism is activated. 
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Figure  5-16: Comparison of population of classifiers in XCS, XCSG, XCSS, and XCSSG 

algorithms in 6MS2DM3. 

 

Figure  5-17: Comparison of population of classifiers in XCS, and XCS with subsumption in 

6MS2DM3. 
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Figure  5-18: Comparison of population of classifiers in XCS-family algorithms with subsumption 

in 6MS2DM3. 

 

 

Figure  5-19: Comparison of performance of different XCS algorithms in 7MS2DM6. 
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Figure  5-20: Comparison of performance of XCS and XCS with subsumption in 7MS2DM6. 

 

Figure  5-21: Comparison of different XCS algorithms in 7MS2DM6 when the subsumption 

mechanism is activated. 
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Figure  5-22: Comparison of population of classifiers in XCS, XCSG, XCSS, and XCSSG 

algorithms in 7MS2DM6. 

 

Figure  5-23: Comparison of population of classifiers in XCS, and XCS with subsumption in 

7MS2DM6. 
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Figure  5-24: Comparison of population of classifiers in XCS-family algorithms with subsumption 

in 7MS2DM6. 

 

 

Figure  5-25: Comparison of performance of different XCS algorithms in 7nMS2DM6. 
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Figure  5-26: Comparison of performance of XCS and XCS with subsumption in 7nMS2DM6. 

 

Figure  5-27: Comparison of different XCS algorithm in 7nMS2DM6 when the subsumption 

mechanism is activated. 
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Figure  5-28: Comparison of population of classifiers in XCS, XCSG, XCSS, and XCSSG 

algorithms in 7nMS2DM6. 

 

Figure  5-29: Comparison of population of classifiers in XCS, and XCS with subsumption in 

7nMS2DM6. 
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Figure  5-30: Comparison of population of classifiers in XCS-family algorithms with subsumption 

in 7nMS2DM6. 

 

Figure  5-31: Performances of XCS-family algorithms in 7MS2DM8. 
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Figure  5-32: Comparison of XCS and XCS with subsumption algorithms 7MS2DM8. 

 

Figure  5-33: Comparison of different XCS algorithm in 7MS2DM8 when the subsumption 

mechanism is activated.  
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Figure  5-34: Comparison of population of classifiers in XCS, XCSG, XCSS, and XCSSG 

algorithms in 7MS2DM8. 

 

Figure  5-35: Comparison of population of classifiers in XCS, and XCS with subsumption in 

7MS2DM8. 
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Figure  5-36: Comparison of population of classifiers in XCS-family algorithms with subsumption 

in 7MS2DM8. 

As the results show, in 5MS2DM2, all the XCS-family algorithms learn to reach to the optimal 

performance that is around 1.66. The variation in the performance curve is because of the short 

path that animat passes to reach to the food and the average from the starting point is nearly the 

same. The variation is not also a lot, because the values are magnified. 

In 6MS2DM3, and 7MS2DM6 all the XCS-family algorithms can learn to approach to the 

optimal performance stably and fast except XCSS and XCSSG with subsumption in 7MS2DM6 

that are somehow slower than the other methods and at some situations may fail to reach to food 

as fast as the optimal number of steps to food. It is obvious from the curves that the optimal 

performance for 6MS2DM3 is around 1.58 and for 7MS2DM6 it is around 2.05. These values are 

the optimal performances which were proven theoretically before. So, it shows that the animat 

completely learns to reach to the average optimal number of steps to food. 

In non-Markovian environment 7nMS2DM6, the XCS classifier system can learn but as it is 

obvious from the curve the variation in performance is not very stable as the other three 

environments. It is because of similar sensory information that the system receives from the 

environment and may make mistake in choosing the best action for that situation. However, since 

the environment is not big and also, the distance between the similar cells with the same sensory 

information is not a lot, the number of step to food is near to stable value in comparison to the 

other Markovian environments that the performances reach to stable value. The optimal 

performance for 7nMS2DM6 environment is around 2.22 and the system approaches to a value 
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close to 2.22. For 7nMS2DM6, using XCSSG with subsumption is not suggested because it is 

somehow slow and at the first starts with higher values of steps to food. 

In 7MS2DM8 the results show that XCS algorithm can easily learn to approach to the optimal 

performance in this random environment. Comparison of various XCS algorithms show that 

XCS, XCS with subsumption, and XCSG are very close and all approach to the optimal 

performance that is 2.125. The results of XCSS, XCSSG, XCSS with subsumption, and XCSG 

with subsumption also approaches to the optimal performance but in some points there are some 

abnormal values that are created because of the existence of Specify operator in environments that 

no over-general classifier is produced or use the subsumption mechanisms that removes some 

important classifiers from the population.  

According to the obtained results, we can conclude that in environments where over-general 

classifiers are not generated, it is better to use simple XCS or XCS with subsumption but in 

environments such as maze5 that over-general classifiers are created using XCSS and XCSSG 

(specify operator) improves the performance. Thus:  

- As a way to start learning (a recipe), it is better to first start learning by simple XCS, if 

it approaches to the optimal performance there is no need to use other methods, but if 

it doesn’t approach to the optimal performance we can continue learning by the other 

XCS-family algorithms.  

- Using subsumption with XCSS or XCSG with and also XCSSG can be removed from 

the check list to be tested as a XCS-family algorithm on any kind of environment. 

The analysis of generalization in XCS-family algorithms using the number of classifiers in 

the population set: The results of change in the average number of the classifiers in the 

population for each environment are presented and are compared for various XCS-family 

algorithms. By the analysis we can achieve the following conclusions about the operation of each 

XCS-family algorithm: 

- After several problems the number of classifiers reaches to nearly a fixed value that 

shows the generalization ability of XCS-family algorithms. For environments such as 

7MS2DM6 the generalization ability is more clear: the number of classifiers first 

increases because at the first the system needs to generate classifiers that are matched 
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with the sensory input from the environment and after a number of steps the number 

of classifiers decreases because the system tries to remove the classifiers that are less 

general and only keep ones that are useful and prepares the minimal population of 

accurate classifiers. So, only the classifiers that are general enough and accurate are 

kept in the system. It shows the generalization ability of the system.  

- The subsumption mechanism often decreases the number of classifiers to give the 

system higher degree of generalization ability. However, this mechanism sometimes 

removes classifiers that are important for the system and fails in some situation, and 

yields decrease in the performance of the system. 

- XCS and XCSG are close in generalization ability (XCSG is a little bit more 

powerful), but XCSS generates the higher number of classifiers in comparison to the 

other methods, and this is the mechanism that XCSS tries to overcome the complexity 

of the environment by generating higher number of classifiers and to create a more 

detailed mapping. The oscillation in the number of classifiers in XCSS and XCSSG 

are very clear that is because of the Specify operator which is used in these kinds of 

classifier systems. 

- XCSSG has a better ability of generalization than XCSS. So, in generalization it is the 

improved version of XCSS.  

5.3 Unstable resource problem with XCS-animat 

To study the ability of XCS animat to tackle with the problems in which the environment is 

changing, an unstable resource problem is designed. Unstable resource problem is the problem of 

an animat that tries to reach to a moving food. According to definition of Wilson’s animat we can 

adopt unstable resource problem by trying to investigate the learning ability of animat when the 

place of food changes to one of the neighbouring cells. For this experiment, 7MS2DM6 is 

considered as the test environment. The animat learns in 7MS2DM6 in 7500 problems and 

suddenly the food moves to direction 1 (among 0-7). At this situation the animat experiences a 

new environment which we call it 7MS2DM6-B (see Figure  5-56 and Figure  5-38) with the 

average number of steps to food equal to 2.94   3. Based on the classifiers that the animat has 

obtained during learning 7500 problems, in problem 7501, the animat expect to reach to food at 
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the previous place of food, but when the animat arrives at that cell, it finds no food and also no 

reward. Therefore, the animat again tries to explore the environment and obtain new sensory 

information about the environment and change some of classifiers in the population set and 

creates new ones. So, after 7500 steps the animat adapts to the new situation.  

This problem is tested on 7MS2DM6 and the results are presented in Figure  5-39 to Figure  5-42. 

 

Figure  5-37: 7MS2DM6-B environment 

 

Figure  5-38: Learning in 7MS2DM6-B environment and the optimal performance. 
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Figure  5-39: Unstable resource problem in 7MS2DM6 with different XCS-family algorithms 

when the food moves toward direction 1. 

 

Figure  5-40: Unstable resource problem in 7MS2DM6. Comparison between XCS and XCS with 

subsumption when the food moves toward direction 1. 
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Figure  5-41: Unstable resource problem in 7MS2DM6. Comparison of population sizes. 

 

Figure  5-42: Unstable resource problem in 7MS2DM6. Comparison of population size between 

XCS and XCS with subsumption. 

 

The results of learning show that the best algorithm to tackle with the XCS unstable resource 

problem is XCSG. XCSG animat at the first reaches to the optimal performance of 7MS2DM6, 

and after change in the place of food adapts to the new situation and approaches to the optimal 

performance of 7MS2DM6-B rapidly. XCS and XCS with subsumption at the first approach to 

the optimal performance but after change in the place of food, they cannot reach to the optimal 

value of 7MS2DM6-B that is around 3, instead they approach to a value around 5. XCSS and 
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XCSSG at the first approach to the optimal performance of 7MS2DM6 but with some picks 

during learning, and although after change in the place of food they approach to a value around 3, 

they again have picks during learning which is because of the Specify operator. 

The analysis show that at point 7500 the number of steps to food and also the number of 

classifiers in the population increases and this is exactly what we had expected before, because 

the situation of food has changed and the animat produces new classifiers to adapt with the new 

situation and get rid of some of the previous classifiers that are not useful for the current 

situation. This procedure leads to increase in the number of steps to food after around 7500 

problems; because time is needed for animat to explore and exploit the new situation and to be 

adapted to the new place of food. 

5.4 Interspecific competition problem and XCS animat 

In this section a scenario is designed to study the competitive behavior of an ecosystem of XCS-

family animats for resources that is called interspecific competition. In this scenario, two kinds of 

animats are considered: XCS animats and XCSSG animats. At each step only one animat exists 

in the environment but that animat type is chosen based on a competition that holds among XCS 

animats and XCSSG animats. The competition between two population types is based on 

competitive Lotka-Volterra equations. An animat type is chosen according to a probability which 

is proportional to the size of each population. 

5.4.1 Competitive Lotka-Volterra equation 

Competitive Lotka-Volterra equation is a non-linear differential equation that describes the 

population dynamics in an environment when two species are in competition for a common 

resource (Interspecific competition) [80]. The structure of a community of species is determined 

by the dynamics of interaction between the species. In addition to the interaction between 

individuals of different species, the interaction between different individuals in one species can 

affect the population dynamics of the community. The equation for dynamics of the population 

growth of species 1 ( ) and species 2 ( ) are as follows: 
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  and   are the population size of species 1 and species 2. 

   and    are the intrinsic growth rate of species 1 and species 2. 

   and   are the carrying capacities of species 1 and species 2 when the other species is absent. 

    and     are the effect of one species on the growth of the other species. They represent for 

example how many individual of species 1 equal to species 2.       and       shows the 

competition between the species.  

For Compettitive Lotka-Volterra equation the equilibrium points where the change in the 

population is zero are as followed: 

  

  
   and 

  

  
  : four equilibrium points are obtained. For three of them one or both the 

species are absent. Only for one of these equilibrium points both the species are available which 

is   
        

        
 and   

        

        
. 

5.4.2 XCS-XCSSG competition 

According to the definition of Wilson’s animat problem, at each step only one animat exists in 

the environment that tries to explore and exploit the environment for food. To use competitive 

Lotka-Volterra equation in the context of Wilson’s animat problem, a pool is considered which 

contains population of two types of animats: XCS animats and XCSSG animats. The population 

compete based on the competitive Lotka-Volterra equation and the winner species at each time-

step is selected to perform on the environment. The number of steps to food for the selected 

animat is used as a feedback for the system to update parameters of the competitive equation. 

Probability of choosing a species (XCS or XCSSG) is proportional to the percentage of its 

population in the pool (see Figure  5-43). Intrinsic growth rate and the carrying capacities are kept 

constant and the parameters of competition are affected by the number of steps to food. 
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Figure  5-43: Competition of XCS and XCSSG animats for learning to find food in the 

environment.  

As it was presented the competitive Lotka-Volterra equation is as follows 

  

  
     

         

  
                                                                                                                         

  

  
     

         

  
                                                                                                                       

The discrete form for this equation to update the population is 

             
           

  
                                                                                                  

             
           

  
                                                                                                   

To update the parameters     and     at each step by inspiration from standard Widrow-Hoff 

delta rule [1] with learning parameter   the following equations will be obtained, 

when XCS is chosen 
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When XCSSG is chosen: 

   
     

    
   

         
                                                                                                       

   
     

    
   

         
                                                                                                       

Where    and    are defined as: 

   
             

           
 

 
  

   

       

    
                                                                               

   
             

           
 

 
  

   

       
    

                                                                               

Lower     increases the population of   and lower    increases the population of   that are 

desirable for each population (to increase its probability of selection). So, Equations (5.8) and 

(5.9) are added to punish in the sense that one of the species are not chosen (note that the desire 

value for               is negative or equal to zero and the negative sign behind   makes an 

undesirable value which can be considered as a punishment).     is the abbreviation for the 

“number of steps to food”. 

At each step one of two species of XCS or XCSSG are chosen proportional to their percentage in 

the population which is: 

        
  

     
                                                                                                                        

        
  

     
                                                                                                                        

The probability will be updated when the population of species in the pool changes. 

5.4.3 Experimental results 

To perform experiment in the proposed platform the carrying capacities of both species for each 

environment are assumed fixed and equal to the number of blank points in the environment 

because carrying capacity is equal to the maximum number of a species in the environment. The 

intrinsic growth rates for both species are set to 0.2. The initial values for   and   are supposed 
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to be 10 and initial values for     and     equal to 0.1. The value of   is set to 0.001 to keep 

    and     positive and lead to a competitive behavior. The experiments perform on 

5MS2DM2, 6MS2DM3, 7MS2DM6, and 7nMS2DM6. The results are presented in Figure  5-44 

to Figure  5-55. 

 

Figure  5-44: Change in the population size of two species in 5MS2DM2. 

 

 

Figure  5-45: Probability of selecting a XCS animat from the pool in 5MS2DM2. 
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Figure  5-46: Performance of a competitive behavior of XCS-XCSSG classifier systems in 

5MS2DM2 environment. 

 

Figure  5-47: Change in the population size of two species in 6MS2DM3. 
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Figure  5-48: Probability of selecting a XCS animat from the pool in 6MS2DM3. 

 

Figure  5-49: Performance of a competitive behavior of XCS-XCSSG classifier systems in 

6MS2DM3 environment. 
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Figure  5-50: Change in the population size of two species in 7MS2DM6. 

 

Figure  5-51: Probability of selecting a XCS animat from the pool in 7MS2DM6. 
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Figure  5-52: Performance of a competitive behavior of XCS-XCSSG classifier systems in 

7MS2DM6 environment. 

 

Figure  5-53: Change in the population size of two species in 7nMS2DM6. 
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Figure  5-54: Probability of selecting a XCS animat from the pool in 7nMS2DM6. 

 

Figure  5-55: Performance of a competitive behavior of XCS-XCSSG classifier systems in 

7nMS2DM6 environment. 

The results show that the population size of XCS and XCSSG animats reach to approximately the 

same values as we expected before because the performance of XCS and XCSSG are close for 

the assumed environments. The probability doesn’t have high change because the values of    

and    change in approximately the same manner and also there is not high difference in the 

performance of XCS and XCSSG in the considered environments. The number of steps to food 

works like the previous experiments and reach to the optimal value by using a probabilistic 

combination of XCS and XCSSG.   
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5.5 An animat with higher vision abilities 

An environment can be Markovian for an animat and be non-Markovian for the other one 

depending on the sensory information that the animat receives at each step. In the traditional 

definition of Wilson’s animat, the visual abilities are defined in a way that animat only sees eight 

surrounding cells. This level of visual ability makes many patterns of situating food and obstacles 

non-Markovian environments. To give animat the ability of making better decision in more 

complex and higher range of environments, we define the sensory ability of animat in a way that 

it sees more than eight surrounding cells. So, by this kind of definition many environments that 

were non-Markovian before will be Markovian environments for this animat. In fact, the animat 

will have the information of more cells and can recognize its place better and distinguish among 

cells with the same one-steps sensory information (eight surrounding cells) but with different 

two-steps sensory information (in addition to the eight surrounding cells, some cells with two 

steps distance from the position of animat are considered).  

To implement this kind of animat, the environment generator is developed to create an 

environment with several cells of the same one-step sensory information but without any same 

cells with two-steps sensory information. An additional layer of obstacles are added to the outer 

layer of maze to provide animat the two-step sensory information at situations where the animat 

is close to the environment boundary. Two types of two-steps sensory information are assumed: 

24 cells and 10 cells (see Figure  5-56 and Figure  5-57). The classifiers in the classifier system in 

this kind of animat problem are strings of 48 bits and 20 bits instead of 16 bits and also the 

matrices of sensory information are composed of 10 and 24 objects instead of 8 objects. The 

actions of animat are kept the same as before which are one step-move toward one of the possible 

directions into one of the surrounding cells. 

 

 

Figure  5-56: 24 cells sensory information. 
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Figure  5-57: 10 cells sensory information. 

 

The environments that are considered for the XCS (and XCSSG) animat with higher vision 

abilities are named Complex-family environments that are generated by the environment 

generator. In addition the environment woods101 is also used for the experiment. The 

environments Complex1, Complex2, Complex3, and Complex4, and also the environment 

woods101 are presented in Figure  5-58 to Figure  5-62. The same cells in one-step sensory 

information for Complex-family environments are as follows: 

Complex1: 9-31, 25-33, 15-39, 10-24-27-28-32-35-36-42-43, 11-17-14-38-44, 26-34-41, 49-50-

51. 

Complex2: 13-39, 23-34, 24-35, 26-33, 27-38, 41-45. 

Complex3: 25-26. 

Complex4: 2-9, 6-21, 7-22. 

 

              

Figure  5-58: The left hand is Complex1 environment. The right hand is Complex1 environment 

that the blank points are numbered. 
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Figure  5-59: The left hand is Complex2 environment. The right hand is Complex2 environment 

that the blank points are numbered. 

 

              

Figure  5-60: The left hand is Complex3 environment. The right hand is Complex3 environment 

that the blank points are numbered. 

 

              

Figure  5-61: The left hand is Complex4 environment. The right hand is Complex4 environment 

that the blank points are numbered. 
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Figure  5-62: The left hand is woods101 environment. The right hand is woods101 environment 

that the blank points are numbered. 

 

The experiments with the higher vision abilities at Complex1 environment is performed with 24 

cells, for Complex2 with 24 cells, for Complex3 with 24 cells, for Complex4 with 10 cells, and 

for the woods101 with 10 cells of sensory information. The results of learning with simple XCS 

algorithm and also with XCSSG in each of the Complex-family environments and woods101 

with normal sensory abilities and higher vision abilities (24 cells or 10 cells) are presented in 

Figure  5-63 to Figure  5-82. 

                

Figure  5-63: The results of learning of XCS animat with normal vision and higher vision abilities 

in Complex1 environment. 
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Figure  5-64: The population size of classifiers with normal vision and higher vision abilities in 

Complex1 environment (XCS). 

              

Figure  5-65: The results of learning of XCSSG animat with normal vision and higher vision 

abilities in Complex1 environment. 
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Figure  5-66: The population size of classifiers with normal vision and higher vision abilities in 

Complex1 environment (XCSSG). 

 

              

Figure  5-67: The results of learning of XCS animat with normal vision and higher vision abilities 

in Complex2 environment. 
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Figure  5-68: The population size of classifiers with normal vision and higher vision abilities in 

Complex2 environment (XCS). 

              

Figure  5-69: The results of learning of XCSSG animat with normal vision and higher vision 

abilities in Complex2 environment. 
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Figure  5-70: The population size of classifiers with normal vision and higher vision abilities in 

Complex2 environment (XCSSG). 

 

 

              

Figure  5-71: The results of learning of XCS animat with normal vision and higher vision abilities 

in Complex3 environment. 
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Figure  5-72: The population size of classifiers with normal vision and higher vision abilities in 

Complex3 environment (XCS). 

              

Figure  5-73: The results of learning of XCSSG animat with normal vision and higher vision 

abilities in Complex3 environment. 
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Figure  5-74: The population size of classifiers with normal vision and higher vision abilities in 

Complex3 environment (XCSSG). 

 

              

Figure  5-75: The results of learning of XCS animat with normal vision and higher vision abilities 

in Complex4 environment. 
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Figure  5-76: The population size of classifiers with normal vision and higher vision abilities in 

Complex4 environment (XCS). 

              

Figure  5-77: The results of learning of XCSSG animat with normal vision and higher vision 

abilities in Complex4 environment. 
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Figure  5-78: The population size of classifiers with normal vision and higher vision abilities in 

Complex4 environment (XCSSG). 

 

              

Figure  5-79: The results of learning of XCS animat with normal vision and higher vision abilities 

in woods101 environment. 
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Figure  5-80: The population size of classifiers with normal vision and higher vision abilities in 

woods101 environment (XCS). 

              

Figure  5-81: The results of learning of XCSSG animat with normal vision and higher vision 

abilities in woods101 environment. 
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Figure  5-82: The population size of classifiers with normal vision and higher vision abilities in 

woods101 environment (XCSSG). 

 

The results show that although we expect that adding more sensory information at each step 

improves the performance of XCS in non-Markovian environments but the results show another 

thing. Using information of the farther environment at each step makes a non-Markovian 

environment a Markovian environment but this doesn’t help animat to improve its performance 

and choose the optimal action at each step. The results for XCS and XCSSG at this case are 

nearly the same. The reason for this behavior is an open problem for this thesis and is work of the 

future researches. So, we can conclude that for a non-Markovian environment we need a more 

powerful approach.  

5.6 Comparison of mean and variance in different environments 

To compare the performances of XCS-family algorithms in different environments the values of 

means and variances of different learning algorithms (XCS-family) have been calculated and 

presented in the tables 5.1 to 5.3. 
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Table 5.1:Comparison of Means and Variances in different generated environments. 

 Mean Variance 

5MS2DM2:XCS 1.6714 0.0047 

5MS2DM2:XCS with subsumption 1.6643 0.0049 

5MS2DM2: XCSG 1.6576 0.0045 

5MS2DM2:XCSS 1.6780 0.0039 

5MS2DM2:XCSSG 1.6698 0.0050 

6MS2DM3:XCS 1.5894 0.0103 

6MS2DM3:XCS with subsumption 1.7027 0.0167 

6MS2DM3:XCSG 1.5888 0.0084 

6MS2DM3:XCSS 1.5863 0.0077 

6MS2DM3:XCSSG 1.5986 0.0070 

7MS2DM6:XCS 2.2333 0.0342 

7MS2DM6:XCS with subsumption 2.0549 0.0147 

7MS2DM6:XCSG 2.6241 0.0508 

7MS2DM6:XCSS 3.1365 30.3620 

7MS2DM6:XCSSG 2.0649 0.0180 

7nMS2DM6:XCS 2.4014 0.0403 

7nMS2DM6:XCS with subsumption 2.2624 0.0225 

7nMS2DM6:XCSG 2.1927 0.0252 

7nMS2DM6:XCSS 2.2512 0.0431 

7nMS2DM6:XCSSG 2.3804 0.6363 

7MS2DM8:XCS 2.4194 0.0362 

7MS2DM8:XCS subsumption 2.2653 0.0313 

7MS2DM8:XCSG 2.6378 0.5881 

7MS2DM8:XCSS 2.3671 1.7141 

7MS2DM8:XCSSG 2.5610 5.3820 
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Table 5.2: Comparison of Means and Variances in different traditional environments. 

 Mean Variance 

Woods1:XCS 1.8900 0.0018 

Woods1:XCS with subsumption 1.8174 0.0013 

Woods1: XCSG 1.9240 0.0146 

Woods1:XCSS 1.6801 0.0020 

Woods1:XCSSG 1.8270 0.0079 

Woods2:XCS 1.831 0.0015 

Woods2:XCS with subsumption 1.8943 0.0024 

Woods2:XCSG 1.8285 0.0100 

Woods2:XCSS 1.8537 0.0139 

Woods2:XCSSG 1.7731 0.0230 

Maze5:XCS 10.2880 1.1788 

Maze5:XCS with subsumption 415.6876 12817 

Maze5:XCSG 16.0424 5.3469 

Maze5:XCSS 15.4997 297.8519 

Maze5:XCSSG 7.3294 0.8639 
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Table 5.3: Comparison of Means and Variances in different Complex-family environments. 

 Mean Variance 

Complex1:XCS normal sensing 47.3918 462.7 

Complex1:XCS higher sensing 101.5514 2769.8 

Complex1:XCSSG normal sensing 18.9802 364.3 

Complex1:XCSSG higher sensing 121.3204 2858.7 

Complex2:XCS normal sensing 15.6622 20.6 

Complex2:XCS higher sensing 14.6033 133.5 

Complex2:XCSSG normal sensing 16.7339 818.8 

Complex2:XCSSG higher sensing 17.0504 213.2 

Complex3:XCS normal sensing 3.2443 0.2 

Complex3:XCS higher sensing 2.6112 1.0 

Complex3:XCSSG normal sensing 4.7343 37.9 

Complex3:XCSSG higher sensing 2.5931 0.1 

Woods101:XCS normal sensing 6.4555 1.3 

Woods101:XCS higher sensing 9.8324 4.1 

Woods101:XCSSG normal sensing 14.5557 181.4 

Woods101:XCSSG higher sensing 63.2855 2918.9 

 

5.7 Conclusion 

In this chapter several environments were introduced and for each one the XCS-family 

algorithms were tested to show the ability of XCS in learning different Markovian and also 

simple non-Markovian environments. An analysis of generalization was performed based on the 

change in the number of classifiers in the population set. A comparison is made between the 

generalization abilities of different algorithms in several environments. To study the ability of 

animat in changing environment an unstable resource scenario was made in 7MS2DM6 

environment to show the change in performance and number of classifiers of each algorithm and 

their sensitivity to the changes. Problem of interspecific competition were studied based on the 

competitive Lotka-Volterra equation for competition between XCS and XCSSG. It was shown 

that in competition XCS and XCSSG are approximately the same and there is no significant 
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difference in their performance. At the end of the chapter the ability of animat to tackle with 

some complex non-Markovian environment was tested by observing farther distance cells to give 

it the ability of converting a non-Markovian environment to Markovian environments. Using 

XCS and XCSSG to learn this kind of problems didn’t achieve an acceptable performance, didn’t 

approach to the optimal performance, and opened a question for explaining the reason for this 

kind of behavior of XCS.   
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CONCLUSION AND FUTURE WORKS 

In Chapter 1 the animat problem, definition, its components, reinforcement learning animat, and 

Wilson’s animat were introduced. It was shown that in RL animat the environment contains 

objects that each has a reward and animat learns based on the distributed reward. In Chapter 2 the 

concept of reinforcement learning problem and the methods to solve a reinforcement learning 

problem were introduced and it was noted that Q-learning is one of the well-known methods to 

solve a reinforcement learning problem. Learning classifier systems and genetic algorithm that 

are the main building blocks of solutions for Wilson’s animat problem were presented in Chapter 

2. In Chapter 3 XCS classifier systems were presented as the main algorithm in this thesis to be 

used for Wilson’s animat problem. XCS is chosen because of its generalization ability (traditional 

RL algorithms such as Q-learning don’t have this ability) and also its performance that is superior 

to other learning classifier systems. At the end of Chapter 3 different approaches of XCS 

classifier systems were introduced to show their flexibility to be used in various situations. In 

Chapter 4 developments to XCS were introduced to remove over-general classifiers and increase 

the performance of XCS. In Chapter 5 several new environments and scenarios were presented to 

investigate the ability of XCS-family algorithms for new problems beyond the traditional works.    

In this thesis the animat problem was discussed, in different forms, and a specific kind of animat 

problem studied in different environments. The considered animat problem is called XCS animat 

problem which is a specific kind of reinforcement learning problem. The XCS animat problem 

was tested in different environments and the results then were compared to show the strength 

points and weaknesses of different XCS algorithms. XCS may fail in some environments to 

converge to optimal solution. Based on the previous works on XCS animat, two improvements on 

XCS were introduced and based on their combination a new XCS was proposed called XCSSG. 

The performance of XCSSG was compared with the previous methods in different environments 

and showed that specify operator and gradient descent together can improve the learning of 

animat. To present the ability of XCS beyond the traditional works based on the literature, 

several Markovian environments were introduced and XCS-family environments were tested on 

them and the results of performance and generalization ability were compared. It was shown that 

XCS can learn simply in a high range of Markovian environments. To give a better insight into 

the operation of XCS in changing environments, an unstable resource scenario was introduced 
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and XCS-family algorithms were tested. It was shown that XCSG is the best algorithm to tackle 

to this kind of problem. A competition platform was developed based on competitive Lotka-

Volterra equation to compare the performance of XCS and XCSSG in competition. The results 

showed that their performances in competition are close and the probability of selecting one of 

the algorithms remains around 0.5. The ability of animat to observe not only one-step cells but 

also farther cells may convert a non-Markovian environment to a Markovian environment. This 

property was used as a basis to test XCS for non-Markovian environments for animats with 

higher vision abilities. The learning behavior was shown that the performance doesn’t converge 

to the optimal value and using this idea doesn’t improve the learning of animat. So, it opened a 

question for this kind of behavior for future studies. At the end we can conclude that for 

Markovian environments such as woods1, woods2, 5MS2DM2, 6MS2DM3, 7MS2DM6, and 

7MS2DM8 XCS alone can give a good learning performance and animat can learn simply. For 

Markovian environments such as maze5 that generalization mechanism produces over-general 

classifiers and decreases the performance, XCSSG should be used instead. For the kind of 

unstable resource scenario that was introduced in this thesis XCSG is the best algorithm. In 

addition note that using subsumption mechanism for XCSG, XCSS, and XCSSG doesn’t improve 

the performance and is not recommended. It is useful only for the problems that generalization 

ability is very important. 

From this thesis we learn that there is no algorithm that can solve and work for every kind of 

problems and for each environment one type of XCS-family algorithm can achieve better 

performance. So, it proves the expression for the “No Free Lunch Theorem” that there is no 

learning algorithm that can learn every kind of data sets. From this thesis one can learn about the 

learning and generalization ability of XCS classifier systems in several 2-D Markovian 

environments and its weakness in learning 2-D non-Markovian environments. The ability of 

XCSG in adaptating to a changing environment is another important conclusion of this thesis. 

For the future works, finding the reason for this kind of learning behavior for XCS animat with 

higher vision abilities can open doors to new abilities and behaviors of XCS. Possible changes in 

the coding of the objects can solve this problem (as a hypothesis). Addition of memory to 

XCSSG is another development for XCS that can be applied to non-Markovian environments 

such as woods101, woods 101 
 

 
, and woods102. Modeling of the environments with cellular 
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automata may lead to the development of XCS-cellular automata for Markovian environments. 

For example, a three dimensional maze environment where the number of surrounding cells and 

the number of actions are 26 (cube maze), or a two dimensional polygonal environment can be 

considered.  
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Appendix 1 – Well-known 2-D Environments 
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