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RÉSUMÉ 

Lorsque les fonctions de stockage et de miction de la vessie échouent à la suite de traumatismes 

médullaires, ou en raison d'autres maladies neurologiques, de conditions de santé ou au 

vieillissement, des complications graves pour la santé du patient se produisent. Actuellement, il 

est possible de restaurer partiellement les fonctions de la vessie chez les patients réfractaires aux 

médicaments à l'aide des neurostimulateurs implantables. Pour améliorer l'efficacité et la sécurité 

de ces neuroprothèses, il faut un capteur de la vessie capable de détecter l’urine stockée afin de 

mettre en place un système en boucle fermée qui applique la stimulation électrique uniquement 

lorsque nécessaire. Le capteur peut également servir à aviser les patients ayant des sensations 

affaiblies pour les aviser en temps opportun le moment où la vessie doit être vidée ou quand un 

volume résiduel postmictionnel anormalement élevé reste après une miction incomplète. Dans 

cette thèse, on présente de nouvelles méthodes de mesure, ainsi qu’un processeur de signal 

numérique dédié pour décoder en temps réel le volume de la vessie à partir des enregistrements 

neuronaux afférents provenant des récepteurs naturels présents dans la paroi de la vessie. Nos 

principales contributions sont rapportées dans trois articles de journaux avec comité de lecture. 

On présente d'abord une revue exhaustive de la littérature comprenant des articles de journaux, 

des brevets et les livres les plus réputés portant sur l'anatomie, la physiologie et la 

physiopathologie du tractus urinaire inférieur ainsi que sur la mesure du volume ou la pression de 

la vessie. Cette étude nous a permis d'identifier les besoins qu'un capteur de la vessie doit 

satisfaire pour être utilisé dans des applications chroniques telles que celles proposées dans cette 

thèse. On présente aussi le résultat d’une analyse exhaustive des caractéristiques anatomiques et 

physiologiques de la vessie que nous avons identifiées d’avoir exercé une influence, ou même 

d’avoir empêché, la réalisation d'un tel capteur dans des études faites au cours des dernières 

années. Sur la base de cette étude et de l'évaluation systématique des méthodes de mesure pour la 

vessie, on a conclu que le principe de mesure le mieux adapté pour la surveillance chronique du 

volume de la vessie était la détection, la discrimination et le décodage de l'activité neuronale 

afférente découlant des récepteurs spécialisés du volume (mécanorécepteurs), au sujet desquels 

certains auteurs ont émis l'hypothèse de leur existence dans la muqueuse interne de la vessie. 

Ensuite, on présente la méthode de mesure qui permet d'estimer en temps réel le volume de la 

vessie à partir de l'activité afférente des mécanorécepteurs. Notre méthode a été validée avec les 
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données acquises à partir de rats anesthésiés dans des expériences aiguës. Il a été possible 

d'estimer qualitativement trois états de remplissage de la vessie dans 100 % des essais où 

l'activité afférente enregistrée présentait un coefficient de corrélation de Spearman supérieur ou 

égal à 0,6. Par ailleurs, on a pu estimer quantitativement le volume de la vessie, et aussi sa 

pression, en utilisant des fenêtres de temps convenablement choisies. L'erreur moyenne 

d'estimation du volume fut de 5,8 ± 3,1 %. Nos résultats nous ont également permis de faire la 

lumière sur un sujet controversé concernant le type de réponses détectables à partir 

d'enregistrements afférents de la vessie. Nous avons démontré qu'il était possible de quantifier 

autant les réponses phasiques que les réponses toniques de la vessie lors de son remplissage lent 

et lors des mesures isovolumétriques, respectivement. 

Enfin, on présente un processeur de signal numérique dédié (DSP, sigle en anglais) capable de 

surveiller le volume de la vessie en exécutant les méthodes de mesure qualitative et quantitative 

proposées. Le DSP exécute en temps réel la détection et la discrimination (classification) des 

potentiels d'action extracellulaires (PAEs) suivies par le décodage neuronal pour estimer soit trois 

niveaux qualitatifs de remplissage ou la valeur du volume de la vessie, en fonction du mode de 

sortie sélectionné. Le DSP proposé a été testé en utilisant des signaux synthétiques réalistes et des 

signaux réels de nerfs afférents de la vessie enregistrés au cours des expériences aiguës avec des 

modèles animaux. Le circuit de traitement pour faire la détection et discrimination des PAEs a 

donné une exactitude moyenne de 92% en utilisant des signaux contenant des PAEs avec formes 

d'onde fortement corrélées et avec un faible rapport signal sur bruit. Les circuits d'estimation du 

volume, qui ont été testés avec des signaux réels, ont reproduit les valeurs d’exactitude obtenues 

lors des simulations faites hors ligne en utilisant Matlab, c’est-à-dire, 94 % et 97 % pour les 

estimations quantitatives et qualitatives, respectivement. Pour évaluer la faisabilité, le DSP a été 

déployé dans le FPGA Actel Igloo AGL1000V2, qui a montré une consommation de puissance 

de 0,5 mW et une latence de 2,1 ms à une fréquence d’opération de 333 kHz. Ces performances 

démontrent qu'un capteur de la vessie implantable qui réalise la détection, la discrimination et le 

décodage de l'activité neuronale afférente est faisable. 
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ABSTRACT 

Failure of the storage and voiding functions of the urinary bladder due to spinal cord injury 

(SCI), neural diseases, health conditions, or aging, causes serious complications in a patient's 

health. Currently, it is possible to partially restore bladder functions in drug-refractory patients 

using implantable neurostimulators. Improving the efficacy and safety of these neuroprostheses 

used for bladder functions restoration requires a bladder sensor (BS) capable of detecting urine 

volume in real-time to implement a closed-loop system that applies electrical stimulation only 

when required. The BS can also trigger an early warning to advise patients with impaired 

sensations when the bladder should be voided or when an abnormally high post-voiding residual 

volume remains after an incomplete voiding. In this thesis, we present new measurement 

methods and a dedicated digital signal processor for real-time decoding of the bladder volume 

through afferent neural signals arising from natural receptors present in the bladder wall. The 

main contributions of this thesis have been reported in three peer-reviewed journal papers.  

We first present a comprehensive literature review, including papers, patents and mainstay books 

of bladder anatomy, physiology, and pathophysiology. This review allowed us to identify the 

requirements (user needs) that a BS must meet for chronic applications, such as those proposed in 

this thesis. An exhaustive analysis of the particular anatomical and physiological characteristics 

of the bladder, which we realized had influenced or prevented the achievement of a BS for 

monitoring the bladder volume or pressure in past studies, are also presented. Based on this study 

and on a systematic assessment of the measurement methods published in past years, we 

determined the best measurement principle for chronic bladder volume monitoring: the detection, 

discrimination and decoding of the afferent neural activity stemming from specialized volume 

receptors (mechanoreceptors), on which some authors had hypothesized about its existence in the 

bladder inner mucosa. 

Next, we present methods that allows for a real-time estimation of bladder volume through the 

afferent activity of the bladder mechanoreceptors. Our method was validated with data acquired 

from anesthetized rats in acute experiments. It was possible to qualitatively estimate three states 

of bladder fullness in 100% of trials when the recorded afferent activity exhibited a Spearman’s 

correlation coefficient of 0.6 or better. Furthermore, we could quantitatively estimate the bladder 

volume, and also its pressure, using time-windows of properly chosen duration. The mean 
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volume estimation error was 5.8 ± 3.1%. Our results also allowed us to shed light on the 

controversial subject of the type of responses that are detectable from bladder afferent recordings. 

We demonstrated that it is possible to quantify not only phasic but also tonic bladder responses 

during slow filling and isovolumetric measurements, respectively. 

Finally, we present a dedicated digital signal processor (DSP) capable of monitoring the bladder 

volume running the proposed qualitative and quantitative measurement methods. The DSP 

performs real-time detection and discrimination of extracellular action potentials (on-the-fly 

spike sorting) followed by neural decoding to estimate either three qualitative levels of fullness or 

the bladder volume value, depending on the selected output mode. The proposed DSP was tested 

using both realistic synthetic signals with a known ground-truth and real signals from bladder 

afferent nerves recorded during acute experiments with animal models. The spike-sorting 

processing circuit yielded an average accuracy of 92% using signals with highly correlated spike 

waveforms and low signal-to-noise ratios. The volume estimation circuits, which were tested 

with real signals, reproduced the accuracies achieved by offline simulations in Matlab, i.e., 94% 

and 97% for quantitative and qualitative estimations, respectively. To assess feasibility, the DSP 

was deployed in the Actel FPGA Igloo AGL1000V2, which showed a power consumption of 

0.5 mW and a latency of 2.1 ms at a 333 kHz core frequency. These performance results 

demonstrate that an implantable bladder sensor that detects, discriminates and decodes afferent 

neural activity is feasible. 
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INTRODUCTION 

 

Nowadays there is an ongoing revolution in the field of neuroprosthetics devices that extend to 

different applications, allowing a total or partial rehabilitation of patients suffering from different 

neural diseases as consequence of spinal cord injury, stroke, traumatic brain injury, cerebral 

palsy, deafness, blindness, paralysis, movement disorders, and some mental illness and seizure 

disorders, among other diseases or non pathologic conditions as aging.  

As consequence of the vertiginous development over the last decades, a new field of engineering 

known as neuroengineering or neural engineering emerged. This new field make use of all 

knowledge and cumulated experience of different fields of engineering and medicine with the 

aim of learn, understand, restore or augment functions and treat neural system diseases which 

includes both motor and sensory prostheses.  

The introduction of new neuroprosthetic devices to the current clinical practice has been slower 

than other biomedical technology because of the high degree of complexity of the neural system 

and current technology limitations. One of the reasons of the restricted extension of recent 

neuroprosthetics devices is the limited efficacy controlling muscles, or organs like the urinary 

bladder, through open-loop systems due to the lack of a signal to feed back the neuroprosthetic 

device with the ongoing sensory information about the state, position or speed during muscles 

contraction and relaxation. Therefore, it can easily be deduced that the sensory feedback is 

crucial to effectively mimic the natural control of the targeted muscles or organs. 

It has been show that the extraction of useful information from muscles (Electromyogram - 

EMG), nerves (Electroneurogram - ENG) and brain (Electroencephalogram - EEG) to feed back 

or command neurostimulator devices is an effective way to improve the Functional Electrical 

Stimulation (FES) efficacy restoring the lost or reduced capacity in handicapped patients [1]. 

These signals coming from natural receptors found in the skin, muscles, tendons, and joints are 

still present in many patients suffering from the diseases or conditions mentioned above. 

Capturing and interpreting reliably these signals by means of implanted interfaces in chronic 

applications is a great challenge due to the limited knowledge of the neural system and 

technological issues not solved yet. 
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The EEG, EMG and ENG signal can be used as source to command or feedback implanted 

neurostimulators depending on where the signal extraction is made and which the intended use of 

the FES device is.  In clinical experiences with neuroprosthesis the EEG and EMG have been 

commonly considered as command signal, whereas ENG have been mainly used as feedback [1]. 

To achieve this goal real-time signal recording and sensory decoding is required. 

The intelligent or smart neuroprosthesis with feedback capabilities are composed by two basic 

parts: the implanted unit (IU) and the external unit (EU).  Usually both units are connected 

through a wireless link. The UI comprises mainly the recording subsystem that performs the 

front-end signal processing of the signals conveying sensory information, the neurostimulation 

subsystem implementing the FES approach, and a control logic driving both subsystems and the 

communication circuits with the EU. The IU sends the full recorded signal, or properly selected 

snips, to the EU unit that performs the back-end processing of the recorded signals and sends 

back the commands. The EU may also implement the implant-user interface and the implant-

computer interface.  The amount of information to exchange between the implanted and the 

external unit is limited by the wireless-link bandwidth and the maximum dissipated power 

allowable for a safe implant operation. The required power to the implanted device is typically 

supplied by the external unit by employing the same wireless-link with the data encoded 

properly. 

The research conducted in this thesis is part of a larger project of the Polystim Neurotechnologies 

research group at the École Polytechnique de Montreal that for several years have been working 

under the direction of Prof. Mohamad Sawan in the search for solutions to restore urinary 

functions of paraplegic patients who underwent an spinal cord injury. Particularly, this thesis was 

focused on the research of an effective sensory feedback from the urinary bladder able to be used 

either as an embedded bladder sensor in a closed-loop system neuroprosthesis or as a standalone 

sensor able to advise patients with impaired sensations when the bladder need to be emptied. It is 

worth noting that in spite of the attempts done in past years, chronic bladder monitoring by an 

implantable device was not achieved due to limited knowledge and technological challenges that 

were undertaken in this work. 
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Motivation 

FES has been studied over the last two decades to treat neurogenic bladder dysfunction [2-16]. 

Implantable FES devices were able to partially restore the bladder functions in patients who were 

considered refractory to more conservative treatments or those who could not tolerate the side-

effects of prescription drugs [17],[18].  

FES therapy can improve the patients’ quality of life by preventing overactive bladder symptoms, 

non-obstructive urinary retention and bladder-sphincter dyssynergia [10],[17],[19]. This therapy 

can also reduce the frequency of urethral catheterization performed several times a day to empty 

the bladder, which causes much suffering to patients, recurrent urinary tract infections, and 

economical and physiological troubles. However, important side-effects of bladder FES therapy 

have been reported, such as an irreversible sacral deafferentation (dorsal rhizotomy), nerve-tissue 

injury produced by the continuous electrical stimulation, uncomfortable or painful sensations, 

infections, and changes in bowel function, among others [17],[19].  

The restoring electrical neurostimulation performed by devices researched in past and those 

currently used in clinical practice is applied continuously without any sensory feedback (‘blind 

stimulation’). Nevertheless, sensory feedback can improve the neuroprostheses effectiveness with 

the implementation of a conditional neurostimulation approach based on the ongoing bladder 

volume or pressure. This approach in turns provides the intrinsic self-regulation advantages of the 

closed-loop control systems [1],[8]. An FES device implementing a conditional neurostimulation 

approach applies the electrical stimuli as and when needed, thus favoring energy saving and 

minimizing the deleterious effects on the neural tissue caused by continuous electrical stimulation 

[20]. Thereby, chronic monitoring of the bladder volume is required to improve the effectiveness, 

tolerability and safety of the neuroprosthetic devices used for restoring bladder functions. 

Attempts over the past few years, which are comprehensively reviewed in Chapter 2, have been 

made to find a suitable method for continuous bladder monitoring. However, a reliable, precise 

and robust device for providing feedback with sensory information from the bladder had not yet 

been identified. 

Moreover, a sensor for chronic monitoring of bladder volume can also be useful as a standalone 

device able to provide early warnings to patients with impaired sensations when the bladder is 

approaching its capacity or when abnormally high post-voiding residual volume remains after an 
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incomplete voiding. Such a sensor may also be helpful in bladder differential diagnosis, bladder 

disease research and in the choice of best suited clinical therapy approaches.  

 

Objectives 

Our main objective was to find an effective method for chronic bladder volume monitoring with 

the aim of supplying an FES device with the feedback information required to restore bladder 

functions in a safe and effective manner. To accomplish the general objective, the following 

specific objectives were developed:  

1. Identify user needs that a sensor for chronic bladder volume monitoring must fulfill for 

the intended application.  

2. Determine whether a measurement principle based on artificial sensors or on natural 

receptors is best suited to satisfy the user needs. 

3. Propose a bladder volume measurement method based on the selected measurement 

principle.  

4. Validate the proposed measurement method for bladder volume monitoring using in vivo 

recordings from rats. 

5. Assess the feasibility of an electronic device deploying the proposed bladder 

measurement method. 

Thesis works 

To clarify the problem, it was necessary to identify the main issues of chronic bladder volume 

monitoring while considering the anatomical and physiological characteristics of the lower 

urinary tract (LUT) and its innervation. Thus, an exhaustive review was conducted of updated 

literature from the different sources indexed in the PubMed, Compendex, Inspec and Derwent 

Innovation Index on-line databases and the recent editions of well-known reference books on 

clinical urology practice and neurophysiology [21-26]. The most relevant achievements and 

pitfalls in the bladder monitoring studies performed in the past years were identified from this 

analysis.  

Once the problem was clarified and the challenges were recognized, the user needs were 

identified. These are the medical, technical, and ergonomics needs that should be satisfied by a 
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bladder volume monitoring device to provide the information about bladder volume or pressure. 

This identification was a crucial step toward the proposition of the measurement method to be 

used in the implementation of such a device.  

The identified needs were translated into technical specifications, also known as target 

specifications, using the quality function deployment (QFD) methodology [27]. Some published 

studies and the standards defined by the International Continence Society (ICS) [28],[29], were 

used as references during this process.  

Next, a functional decomposition of the measurement system was performed to identify the 

critical sub-functions and to focus the search for their solutions. A comprehensive literature 

review was performed with this goal, and all measurement principles and methods for volume 

measurement in medical and non-medical applications, particularly the methods used in past 

research for monitoring bladder volume or pressure, were compiled.  

Subsequently, the compiled volume measurements methods were evaluated to identify those that 

better satisfied the needs and specifications defined in the preceding analyses. The evaluation 

criteria were obtained from the most important user needs and carefully matched with relative 

importance weights. An initial screening was performed to keep the most promising methods for 

the next analysis. These methods were chosen based on the expected feasibility, the technological 

availability and the go/no-go test that used the most relevant user needs as a threshold. A much 

more refined selection process was completed using evaluation matrices with the selection 

criteria and the corresponding weights. To ensure that the method selection was robust enough, 

i.e., less dependent on the variation of the assigned weights, various sets of weights were used, 

and the final score was calculated by averaging the resultant score for each set, while keeping the 

rating given to each method. To rate each measurement method, a qualitative scale was 

employed. This methodology allowed best methods to be chosen more objectively, overcoming 

the most evident bias that is often present in any researcher analysis. 

From the results of the comprehensive literature review, user needs identification and an 

exhaustive analysis of all possible measurement methods, we concluded that the bladder 

mechanoreceptors were the best choice for the primary transducer for chronic monitoring. 

The hypothesis and research questions were defined based on the published experimental results 

about the afferent activity of bladder mechanoreceptors in validated animal models (rats, cats, 
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dogs, and pigs). These types of studies have not been done in humans due to the highly invasive 

nature of the experiments needed to draw conclusions about the functioning of the 

mechanoreceptors. The conclusions from some of these studies suggested that volume-specific 

mechanoreceptors should exist in the bladder wall for properly controlling the bladder [30] and 

that the activity of these receptors increases with different response patterns during the bladder 

filling [31-34].   

The initial evidence for the power feasibility of implantable circuits for real-time neural source 

discrimination was obtained from a theoretical study based on simulations [35]. Nevertheless, we 

did not find any study demonstrating the feasibility of real-time neural source discrimination 

together with sensory information decoding, both of which are required for the standalone 

(autonomous) operation of implantable neural sensors. 

Consequently, we defined the two main thesis hypotheses as follows: 

H1. When the local nervous system is intact, the bladder volume monitoring can be 

performed by decoding the afferent mechanoreceptors activity using an implantable 

device. 

H2. The measurement method is deployed in a standalone, implantable system that 

estimates the ongoing bladder fullness state with an accuracy of 75% or better. 

We chose 75% as an acceptable value of accuracy for a difficult measurement to be performed by 

an implantable device monitoring a physiologic variable in real-time.  

The respective research questions underlying these hypotheses were as follows: 

1. Can the afferent activity of bladder mechanoreceptors be detected and decoded in real-

time to monitor the volume or pressure? 

2. Is the measurement method electronically feasible and effective for a standalone 

implantable device considering power and real-time constraints? 

 

As is customary in the research process, we performed an iterative search of the proper method 

for sensory decoding of bladder volume or pressure from neural afferent activity. We started with 

a preliminary method proposition, and we performed experiments using animal models. 



  7 

 

Subsequently, the estimation methods were improved gradually to achieve the targeted 

objectives. Finally, the measurement methods and the thesis hypothesis H1 were validated.  

Acute experiments with rats were carried out to record bladder mechanoreceptor afferent activity 

along with the pressure and the known volume of the infused saline. Three types of experiments 

were performed with particular objectives. The first type of experiment allowed us not only 

validation of the proposed measurement methods but also to research the afferent activity during 

the resting, filling and voiding phase using a saline infusion pump with a physiologic filling rate 

and the instruments required for pressure and neural signal recordings. The second type of 

experiments was performed to research the reversibility of the mechanoreceptor afferent response 

by passively withdrawing the infused saline using a second infusion pump. The last experiment 

type allowed us to research whether the bladder showed phasic and tonic responses during the 

slow filling and during the isovolumetric measurement phase when the bladder was filled to 

different level of fullness. Important conclusions were drawn from the experimental results, 

which demonstrated the feasibility of bladder volume and pressure estimation from the 

mechanoreceptor afferent activity, the hysteretic mechanoreceptor response and the presence of 

both phasic and tonic responses. The latter response is a controversial subject we noticed during 

the literature review.    

Two decoding methods were proposed to estimate the bladder volume in real-time. The first 

method allowed qualitative volume estimations, i.e., three levels of fullness defined as low-

volume, comfortable level; medium level, the need-to-void within a proper timeframe; and high 

level, the urge-to-void because there is a risk of an imminent leaking. The second, a quantitative 

method, allowed the real-time estimation of the bladder volume or pressure value.  

The qualitative method required low-computational cost and only a few hardware resources for 

its electronic implementation and yielded a high accuracy estimation of the bladder volume. The 

three qualitative levels defined appear to be sufficient for proper feedback of an FES device for 

restoring bladder functions and for advising patients with impaired sensations. On the other hand, 

the quantitative method can accurately compute the bladder volume for future applications, such 

as patient warning, differential diagnosis, and clinical research. The quantitative method was 

implemented by a regression model optimized to run in real-time with much lower computational 
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cost than those found in published works for decoding sensory information from neural 

recordings.  

Both methods required neural source detection and discrimination in real-time, also known as on-

the-fly spike sorting. This is a high demanding task even for a powerful personal computer and 

commonly requires human supervision, which are huge limitations that prevented the use of such 

algorithms in our intended application. Therefore, new algorithms were proposed and optimized 

to run unsupervised in real-time with low-computational cost to detect extracellular action 

potentials (spikes) immersed in noisy signals and to perform the on-the-fly spike sorting process.  

The estimation methods were designed to run in two phases to reduce the system complexity and 

the amount of hardware resources required by the implantable device for real-time bladder 

volume monitoring. The first is a training phase that is executed offline, and the second is the 

monitoring phase in which the unsupervised real-time volume estimation is performed. The 

training phase is used to determine the parameters required for the real-time monitoring phase. 

During the training phase, the most suitable algorithms were executed, regardless of their 

complexity, to compute the optimal parameters; whereas the monitoring phase, which is to be 

implemented in an electronic system, used lower complexity and much faster algorithms. Using 

this approach, some of the complexity from the monitoring phase could be transferred to the 

training phase without affecting the estimation accuracy. 

The simulation and validation tests of the methods were realized in Matlab/Simulink with a real-

time-like signal processing approach using realistic synthetic signals with known ground-truth to 

test the spike sorting process and real recordings from the in vivo experiments to test and validate 

the measurement methods.  

To deploy the method in a standalone electronic system that could be implanted in the lower 

abdomen or near the targeted spinal root, several algorithms for the detection, classification and 

decoding of neural signals were designed and optimized to run unsupervised in real-time using 

few hardware resources and low-power consumption. An improved digital circuit was designed 

for detecting the spikes in signals with high background noise by estimating the instantaneous 

energy and comparing it with a self-tuned detection threshold. Furthermore, a digital circuit was 

designed for the spike classification using the template matching technique with a new metric 
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that allowed unsupervised on-the-fly spike sorting with high classification accuracies, even for 

highly correlated spike waveforms.  

The new algorithms implemented by the real-time signal processing circuits were previously 

tested in Matlab/Simulink using custom-written software. Fixed-point arithmetic was chosen to 

reduce the signal processing retrieval times (latency) as much as possible and also the hardware 

burden compared with those required for floating-point arithmetic implementation. The number 

of bits for number representation was carefully determined using simulations performed with the 

Fixed-point toolbox of Matlab/Simulink to account for the trade-off between the amount of 

hardware required and the computation accuracy.    

The electronic system was implemented in a dedicated digital signal processor (DSP) using a 

low-power field-programmable gate array (FPGA) to account for the trade-off between a fast and 

cost-effective R&D process for the bladder sensor and the overall performance required for future 

tests in chronic experiments. Finally, the results of the validation tests, which were also 

performed using the realistic synthetic signals and the signals from animal recordings, allowed us 

to validate the research hypothesis H2 by showing that an implantable low-power bladder sensor 

is feasible and accurate for the intended application. 

 

Note: Throughout the document, the International System of Units was used for all measurements 

except for pressure. We used centimeters of water (cmH20) instead of Pascal (Pa) because cmH20 

is the standard unit for research on this subject and for urodynamic clinical diagnostic tests. For 

references purposes, 1 cmH20 (4°C) = 98.0638 Pa. 

 

Contributions 

The thesis contributions were reported in three peer-reviewed journal papers. The two major 

contributions of our research works were as follows: 

1. New measurement methods for decoding the bladder volume and pressure from the neural 

afferent activity arising from the bladder mechanoreceptors. The achievement of this 

contribution required original research based on the data gathered from experimentation 
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with animal models. No previous study has demonstrated the feasibility of volume 

estimation using the afferent activity of the bladder mechanoreceptors.   

2. On-chip implementation of a dedicated DSP capable of performing in real-time the spike 

sorting process and the neural decoding with low-power consumption. To the best of our 

knowledge, this is the first time that such a DSP performing all these complex tasks, 

usually run on a personal computer, is reported. 

 

Other important contributions that allowed the achievement of these two major contributions are 

summarized below: 

 Identification of the user needs that a bladder sensor must meet to be effective, safe and 

tolerable. This comprehensive list of needs was obtained from a thorough study of the 

specialized medical literature and was crucial for achieving our objectives. This user 

needs list may also help in future related research. 

 Selection of the bladder volume measurement method best suited for neuroprosthetic 

implants. This selection was not evident from the commonly used pros and cons analyses 

found in past studies focused on this subject. Some of these studies showed some issues in 

their methodological approaches and misunderstanding of the bladder neurophysiology. 

The review, assessment and selection of the measuring method for bladder monitoring 

were reported in [36]. 

 Based on the results of specially designed in vivo experiments and the subsequent signal 

processing and statistical analyses, we showed that it is possible to measure accurately the 

tonic and phasic responses of the bladder detrusor muscle using the proposed method. The 

experiments with animal models and the neural signal processing used for the real-time 

decoding of the sensory information arising from the bladder were reported in [37]. 

 To demonstrate the feasibility of an implantable bladder sensor that deploys the proposed 

decoding methods, several interesting solutions were found to meet the real-time and low-

power consumption constraints imposed on the implantable sensors. The main 

contributions reported in [38] on this subject were as follows: 
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o Accurate detection of action potentials (spikes) immersed in signals with a low 

signal-to-noise ratio using a self-adjusted threshold circuit. 

o Accurate spike discrimination using a method that does not require the customary 

processing sequence comprising spike feature extraction, dimensional reduction, 

and clustering, thus allowing for a frugal deployment of a digital circuit with low-

power consumption.  

o Digital implementation of the decoding method with fixed-point arithmetic that 

was accurate enough using a readily accessible input parameter, such as the spike-

rate count, within a time-window of optimally chosen duration. 

 

Social and economic impact 

Patients suffering from urinary dysfunction are a topic of high interest because it affects millions 

of people all over the world [39]. The huge number of patients living with this problem and the 

economic impact is overwhelming. In just the United States, an estimated 34 million community-

dwelling men and women have an overactive bladder. Managing urinary incontinence and 

overactive bladder costs $19.5 billion a year [40],[41].  

The urinary incontinency (UI) prevalence in the Canadian population is estimated to be 3.3 

million (10%) [42]. UI is a common condition in the elderly, affects 30% to 60% of patients over 

65 years of age, and increases exponentially with age [43]. The projections of Statistics Canada 

estimate that the number of seniors will double by 2031. There are nearly 4 million of people 

aged 65 or older in Canada today, but in 30 years there will be 8.7 million, with 2.3 million who 

are at least of 80 years old. Age is strongly associated with the onset of chronic bladder 

conditions, which can lead to activity limitations, disabilities, and institutionalization. Therefore, 

it is expected that this growth in the elderly population will exert increasing pressure on the 

health care system [42]. Furthermore, there are 85,556 patients in Canada living with spinal cord 

injury (SCI) [44], which is a major cause of bladder dysfunction [40],[41].  

These are, indeed, staggering economical and epidemiological statistics, but it also important to 

consider the social impact of disease and the patients’ impairment. Stigmatization, isolation, loss 

of self esteem, depression, and risk of institutionalization are present in many patients suffering 
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from bladder dysfunction. A study with data from the Canadian Community Health Survey 

shows that urinary incontinence is a major cause of depression in Canadian women with an 

average prevalence of 15.5%, which increases to 30% in women with ages between 18 and 44 

years [45]. Moreover, a recent study demonstrated that the UI has a negative impact on the 

psychological burden of family caregivers [46]. 

With this thesis research, we aimed to improve the quality of life and life expectancy and to 

reduce the high cost of patient care for those suffering from urinary dysfunction due to different 

diseases, neurological disorders, and other non-pathologic conditions such as aging. We intended 

to achieve these goals by providing new knowledge and solutions for an unsolved problem, such 

as the chronic monitoring of bladder volume and pressure. We hope that the result presented in 

this thesis can help in bladder dysfunction treatment and diagnosis. 
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Thesis organization 

The thesis comprises this Introduction, four chapters, and a final chapter with a general 

discussion and conclusions. We present the following work: a careful study of the targeted 

biological system (lower urinary tract), a literature review, an assessment of the measurement 

methods used in past studies, the proposal of new measurement methods based on recorded 

afferent neural activity, and the deployment of the proposed dedicated electronic system 

deploying the measurement method researched.  

The first chapter of the thesis introduces the reader to the fundamentals of the anatomy, 

physiology and physiopathology of the urinary bladder that are necessary for a better 

understanding of the thesis work, the scope, objectives, impact and contributions. Particular 

emphasis is given to the neural control of the urinary bladder due to its relevance for the approach 

adopted in our research.  

The second chapter presents three important subjects related to bladder volume monitoring: 1) a 

comprehensive review of the previous measurement method for monitoring the bladder volume 

and pressure; 2) the anatomical and physiological characteristics that we found to have the 

greatest impact in past studies that failed to find a solution for the bladder monitoring problem; 

and 3) an assessment of all of the measurement methods used in past studies, which allowed us to 

determine the method that was most suitable for our research objectives. 

The third chapter first describes the acute experiments we performed in anesthetized rats and then 

proposes two measurement methods. These methods, one qualitative and another quantitative, 

estimated the bladder volume or pressure from the afferent neural activity arising from bladder 

mechanoreceptors. Finally, the result of the validation tests of these estimation methods and other 

test runs are presented.  

The fourth chapter explains the design of the electronic system for the proposed measurement 

method to estimate in real-time the bladder volume or pressure from the recorded neural activity 

using an on-chip dedicated digital signal processor implemented in a low-power FPGA. Each 

processing block and the whole system is described and validated using both realistic synthetic 

signal and real signal recordings, thus showing the feasibility of such a system intended to be 

used in intelligent neuroprosthetic devices. 
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The fifth and last chapter discusses the thesis results. Finally, conclusions and recommendations 

for future work are presented.  

Four Appendices are presented at the end of this thesis. Appendix 1 presents the list and the 

weightings of all of the identified user needs; Appendix 2 lists of all of the targets specification 

obtained using the QFD method; Appendix 3 presents the values of the weights and rates used in 

the assessment of the measurement methods; and finally, Appendix 4 shows the result of the 

analyses performed to choose the correlation coefficient better suited to identify the best unit for 

bladder volume decoding.  
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CHAPTER 1 OVERVIEW OF THE URINARY BLADDER  

 

The urinary bladder presents challenging characteristics that have greatly hampered the 

achievement of a sensory device capable of monitoring urine volume and vesical pressure. 

Understanding the anatomy, physiology and physiopathology of the urinary bladder is crucial for 

accomplishing any successful work concerning sensory recovery and restoration of the storing 

and voiding functions.  

An overview of these subjects, with a particular emphasis on the neural control involved in 

bladder functions, is provided to facilitate the understanding of the thesis works. Finally, the 

clinical practice standards for evaluating the bladder urine volume are introduced to show their 

particularities and limitations for chronic bladder monitoring.  

  

1.1 Bladder anatomy and physiology 

The urinary bladder is part of the urinary system, which is also composed of the kidneys, the 

ureters, and the urethra (Figure 1-1). The function of urinary systems is to regulate the water and 

ionic composition of the body, to excrete waste and potentially toxic products of metabolism, to 

remove foreign chemicals and to produce several hormones.  

The bladder functions are the storing and voiding of urine in a coordinated and controlled 

manner. The bladder must store a socially adequate volume of urine until voiding is voluntarily 

elicited. To store urine, the bladder smooth muscle (detrusor) must be relaxed, and the sphincter 

must be contracted (closed). In contrast, emptying the bladder requires synchronous activation of 

all detrusor muscles because contracting only one part would stretch the uncontracted compliant 

(flexible) areas, thus preventing the increase in pressure necessary for urine to be expelled 

through the urethra. At the same time, these contractions must be followed by sphincter 

relaxation and opening to discharge the urine.  

The bladder detrusor is a smooth muscle that is more adaptable than skeletal muscle and is able to 

adjust its length over a much wider range. For instance, if the bladder is filled to 400 mL with a 

diameter of 30 cm and is then emptied to a residual volume of 10 mL with a diameter of 8 cm, 
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the diameter would have decreased ~75%; thus, the detrusor would have a change in muscle 

length of same magnitude [47].  

 

Figure 1-1 Components of the urinary system, from [48]. 

The bladder can be divided into two parts: a body lying above the ureteral openings and a base 

consisting of the trigone and bladder neck. The bladder outlet is composed of the bladder base, 

the urethra, and the internal and external urethral sphincter (rhabdosphincter), as shown in Figure 

1-2. 

The urethra and the sphincter system (Figure 1-2) play an important role in the two principal 

bladder functions of storing and voiding. These components not only provide controlled urine 

conduction way but also play an important role in the guarding and micturition reflexes.  

There are anatomical and functional differences between the male and female urethral sphincter 

systems. Males have an internal sphincter composed of smooth muscle at the level of the bladder 

neck that is innervated by the sympathetic nervous system to prevent retrograde ejaculation. The 

female urethra is much shorter than that of the male. This is one factor which accounts for the 

higher prevalence of incontinence in females. 
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Figure 1-2 Anatomy of the urinary bladder, from [48] 

 

Both the external urethral sphincter (EUS) and the internal urethral sphincter (IUS) allow the 

control of the opening for urine discharge. The EUS is composed of striated muscles that allow 

voluntary control of micturition by somatic innervation. In contrast, the IUS, which is composed 

of smooth muscle, is controlled by autonomic innervation. 

The bladder has a storage capacity of approximately 400 – 600 mL, which can accommodate the 

production of 1 – 2 L of urine per day, in an average adult. The bladder is typically emptied 5 – 7 

times a day, often at much smaller volumes. The average urine flow time is less than 30 seconds; 

thus, the bladder is actively emptying less than 1% of the time. Therefore, the predominant 

function of the bladder is storing urine [49].  

 

1.2 Bladder biomechanics 

The fundamental mechanical properties of the bladder include the stress-strain relationship, 

viscoelasticity, and deformation of bladder tissue. Whole-bladder properties include bladder 

shape, mass, and distention. 
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Basic bladder hydrodynamics and biomechanical properties depend on the relationship between 

bladder shape, size, pressure, and tension, as expressed by Laplace's law, which is shown in 

equation (1-1). There is a direct relationship between the wall tension and the intravesical 

pressure and bladder size. In this equation, T is the bladder wall tension, Pves is the intravesical 

pressure, R is the bladder radius, and d is the wall thickness. During normal bladder filling, Pves 

increases very slowly. When the bladder is completely distended, the wall thickness d decreases 

significantly relative to the other parameters unless a hypertrophied wall exists. At this point, a 

further increase in Pves will produce high wall tension and strong afferent activity.    

 

      
 

  
      (1-1)  

 

The bladder compliance (C) is defined as the ratio between the variations in the bladder volume 

and detrusor pressure (Pdet) as shown in equation (1-2).  

  
  

     
      (1-2) 

The viscoelastic behavior of the bladder and urethra depends on both neuromuscular and 

mechanical properties. The mechanical properties rely on the magnitude of the wall stretch 

(distention) and the tissue structure and composition. The bladder is mainly composed of smooth 

muscle, 50% collagen and 2% elastin [47]. The collagen content increases with injury, 

obstruction, and denervation, leading to decreased bladder compliance. Conversely, the 

compliance will be higher when the elastin content exceeds the collagen content. A decrease in 

compliance or in the efferent neural input modifies the wall tension, causing an abnormal 

increase in the afferent activity, which may disturb normal bladder sensations and the threshold 

volume for micturition. 

The bladder is typically modeled as a spheroid; however, this organ exhibits one of the most 

irregular anatomic shapes, especially when it is full, due to the contact with surrounding pelvic 

structures. Estimating the volume by instrumentation principles based on bladder geometry 

becomes more difficult because of this shape irregularity. 
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The bladder intravesical pressure depends on both the abdominal (Pabd) and detrusor (Pdet) 

pressures, as shown in equation 1-3. Bladder emptying depends on the detrusor contraction for 

increasing Pdet without a significant increase in Pabd.  

Pves = Pdet + Pabd         (1-3) 

Pves measurement during bladder filling shows low and relatively constant bladder pressures (6 to 

10 cm H2O in humans) when the bladder volume is below the threshold for inducing voiding. 

The accommodation of the bladder to increasing volumes of urine is primarily a passive 

phenomenon that depends on the viscoelastic intrinsic properties of the vesical smooth muscle 

and the quietness of the parasympathetic efferent pathway. 

 

1.3 Bladder innervation 

Bladder innervation involves both the autonomic (involuntary) and the somatic (voluntary) 

nervous system. Pelvic parasympathetic nerves, which are located at the sacral level of the spinal 

cord, drive micturition reflexes by contracting the detrusor muscle and relaxing the urethra. The 

sympathetic nerves, which are located in the lumbar zone, have an opposite action: they promote 

the storing reflex by relaxing the detrusor muscle and contracting the bladder base and the 

urethra. The pudendal somatic nerve, which contains afferent sensory axons and efferent motor 

axons, excites the EUS.  

In humans, the afferent axons in the pelvic, hypogastric, and pudendal nerves transmit 

information from the lower urinary tract to the lumbosacral spinal cord from L1 to S4 roots. The 

location of these nerves varies from one experimental model to another. The protocols for 

studying bladder innervation are consequently adjusted. 

The bladder wall contains sensory receptors that work as physiological transducers, transforming 

natural energy into a train of all similar action potentials where sensory information is encoded in 

the time interval between them. Most of these receptors respond only to one type of energy 

(mechanical, thermal, or chemical), but others can respond to a combination of different types of 

energy. Mechanoreceptors respond to bladder wall distension and contraction by increasing or 

decreasing their firing frequency. Trough the afferents pelvic, hypogastric and pudendal nerves, 
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these action potentials are reaching the spinal cord at L1 to S4 levels and are relayed to the 

pontine storage and micturition centers, as shown in Figure 1-3.  

 

 

Figure 1-3: Neural circuits controlling the storage and voiding reflexes. A) Storage reflexes pathways. B) 

Voiding reflexes pathways.  PAG: Periaqueductal grey, R: receptors on afferent nerve terminals [50]. 

 

The mechanoreceptors can be slow- or fast-adapting receptors. The slow-adapting 

mechanoreceptors detect changes in pressure, while the fast-adapting mechanoreceptors respond 

to rapid changes and vibration. The frequency of action potential discharge is proportional to the 

intensity of the stimulus. The sensitiveness threshold (minimum pressure required to excite the 

mechanoreceptor) of the physiological pressure in humans is between 5 and 40 cmH2O. This 

pressure is in the range of the compliant part of the pressure-volume curve (25 - 75%). This 

threshold is well correlated with the point where the first sensation of filling is normally detected, 

although the threshold can be higher, for example, 95 cmH2O after a spinal cord injury [22].  
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In the pelvic and hypogastric nerves of rats and cats have been found axons of mechanoreceptors 

that respond to bladder contraction and distention, known as in-series tension mechanoreceptors 

[25],[47]. Furthermore, afferent nerves that respond only to bladder distention during filling but 

not to detrusor contractions have been identified in the rat bladder and appear to be volume 

receptors that are possibly sensitive to the inner mucosa stretching [30].  

The pelvic nerve, which conveys information about bladder volume, is composed of myelinated 

A fibers and unmyelinated C fibers. The latter are silent fibers that show no activity in a normal 

individual during the bladder filling but become active during neuropathic and inflammatory 

conditions. In contrast, C fibers are normally active in animal models such as rats but not in 

humans [32],[33].  

The storing and voiding reflex pathways controlling the bladder are depicted in Figure 1-3 [50]. 

These pathways, comprising superior brain centers and the spinal cord, ensure a reciprocal 

relationship between the bladder and the urethra. During the urine storage phase, Figure 1-3a, 

bladder distention produces low-level bladder afferent activity that stimulates both the 

sympathetic discharge to the bladder outlet (base and urethra) and the pudendal nerve discharge; 

these discharges keep both urethral sphincters closed. Both responses are driven by spinal-reflex 

pathways and represent the guarding reflexes that maintain continence. The sympathetic activity 

also inhibits the detrusor muscle and neural transmission in bladder ganglia.  

The voiding reflex mechanism is shown in Figure 1-3b. Voluntary micturition is initiated by 

somatic (voluntary) relaxation of the EUS. At the beginning of micturition, intense vesical 

afferent activity turns on the pontine micturition center (PMC) in the brainstem. The PMC 

inhibits the spinal guarding reflexes mediated by the sympathetic and pudendal outflow to the 

bladder base and both urethral sphincters. The PMC activation stimulates parasympathetic 

outflow to contract the bladder detrusor and to relax the smooth muscle of the IUS internal 

urethral sphincter. The voiding reflex is maintained by the ascending afferent input from the 

spinal cord that passes through the periaqueductal gray matter (PAG) before reaching the PMC 

[50]. 
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1.4 Bladder dysfunction 

There are several causes of storage and voiding dysfunction, which is often multifactorial [25]. 

Both the bladder and the urethra are involved in the failure to store and void urine. We introduce 

an overview of some bladder dysfunctions that can be treated using FES devices [24]. 

Injuries or diseases affecting the nervous system can disrupt the voluntary micturition control, 

causing the re-emergence of the infant micturition reflex (uncontrollable emptying of the 

bladder). This reflex leads to detrusor overactivity and incontinence of a different nature; for 

instance, stress, urge, mixed, false or overflow incontinence [22],[51]. Bladder-sphincter 

dyssynergia may also occur, producing a urine reflux to the kidneys, which leads to dilation, 

overpressure, infections and eventual renal failure [49].  

Failure of the storing function produces incontinence as result of a variety of diseases or 

neurologic disorders that lead to a condition known as neurogenic bladder overactivity (NBO) 

[42]. NBO is a common condition affecting the storing function with or without incontinence, 

which is usually associated with increased daytime frequency and nocturia (the need to get up in 

the night to urinate). Factors leading to NBO include the following: birth defects, interruption of 

cortical inhibitory circuits, disruption of basal ganglia function during Parkinson's disease, 

damage to the pathways from the brain to the spinal cord, multiple sclerosis, spinal cord injury, 

benign prostatic hyperplasia, and sensitization of bladder afferent nerves [25]. 

NBO is one of the conditions that can be treated by sacral neuromodulation using FES devices to 

suppress detrusor overactivity. Sacral electrical stimulation can be used to inhibit the somatic and 

the autonomic afferent activity of the bladder reflexes by suppressing the interneuronal relay in 

the spinal cord. This suppression blocks the transmission of the information between the bladder 

and the PMC, thus preventing the incontinence but retaining control of voluntary voiding. 

Another approach is electrical stimulation of the pudendal nerve to inhibit preganglionic neurons 

in the bladder. The inhibition is achieved by turning off the bladder reflexes by directly 

suppressing the somatic activity arising from the spinal cord. 

Immediately following an SCI, there is a period known as spinal cord shock. This period is 

characterized by muscular flaccidity and total loss of the spinal reflexes. Following this period of 

approximately three weeks in humans, recovery of the reflexes below the level of the lesion 
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depends on the location and degree of cord damage. For instance, detrusor-sphincter dyssynergia 

(DSD) was found in 70% to 96% of patients who underwent an SCI [52]. DSD produces high 

intravesical pressure, incomplete bladder emptying, urinary tract infections (UTI), and kidney 

function deterioration. Other after-effects follow SCI and cause bladder spasticity and the loss of 

voluntary control [22].  

Voiding failure results from reduced bladder contractility, an anatomical obstruction of the outlet 

(e.g., enlarged prostate), external sphincter dyssynergia, or an alteration in one of the reflex 

mechanisms presented in Figure 1-3b; these reflexes are required for initiating and maintaining 

normal detrusor contraction. Failure to properly empty the bladder can also lead to high residual 

volume, thus lowering functional capacity and consequently augmenting voiding frequency and 

the risk of incontinence [25]. 

Failure of the bladder functions invariably lead to severe deterioration of the health and quality of 

life [42]. 

 

1.5   Bladder volume assessment in clinical practice 

Traditional techniques for bladder volume evaluation in clinical practice are abdominal palpation, 

bimanual digital vaginal examination, contrast radiology, radionuclide scans, and bladder 

catheterization. These techniques can be inaccurate, impractical or expensive [53]. 

Transurethral catheterization is a simple and low-cost method that is considered the gold 

standard when other bladder measurement techniques are assessed. It is employed in patients 

with voiding dysfunction using a catheter that is introduced through the urethra into the bladder 

to relieve the obstruction of the urine outflow. Catheters can also be passed above the pubis 

through the abdominal wall (suprapubic catheterization) directly into an enlarged bladder if 

urethral catheterization is not possible. The urine is drained and measured employing direct or 

indirect accurate methods, such as the volumetric method using calibrated containers or the 

gravimetric method using accurate scales. However, some complications, such as physical 

discomfort, infringement of urethral trauma, and urinary tract infections, could arise and worsen 

with repetitive long-term catheterization [54].   
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Over the past two decades, ultrasound has been developed as a convenient non-invasive method 

of measuring bladder volume, primarily for measuring post-void residual (PVR) urine as an 

alternative to catheterization. Ultrasound is a well-studied technique worldwide with mixed 

results. Although a standard ultrasound machine with the appropriate software can be used to 

assess bladder volume, a specialized portable (non-wearable) machine is commonly used in 

current clinical surveillance of patients suffering from urinary retention.   

The BladderScanner
® 

series manufactured by Verathon Medical Inc., Bothell, Washington, is the 

more extensively used machine. Several clinical studies have shown that this machine is 

sufficiently accurate for evaluating PVR in adult patients when the machine is used by well-

trained personnel [55]. However, the effectiveness in children and other patients, for instance, 

patients with a prostatectomy or hysterectomy, has not been conclusively shown [56]. Thus, 

urethral catheterization is still recognized as the most accurate and reliable technique. 
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CHAPTER 2 CHRONIC MONITORING OF BLADDER 

VOLUME: A CRITICAL REVIEW AND ASSESSMENT OF 

MEASUREMENT METHODS 

 

In this chapter, we present the published paper that first introduces the problem of chronic 

monitoring of bladder activity and its possible applications. Afterward, the paper describes the 

experimental setup and protocol commonly used for studying the bladder and summarizes the 

most important anatomical and physiological characteristics of the bladder that we identified as 

causes that hampered the achievement of a suitable device to chronically monitor the urine 

volume stored in the bladder. Afterward, the methods proposed in past studies for measuring the 

bladder volume or pressure are reviewed. The achievements, drawbacks, methodological 

problems, and controversy among authors regarding important subjects, relevant information for 

development of a bladder sensor, and experimental methods that are useful for our research 

objectives are introduced. Finally, a summary of the assessment results of the possible methods to 

monitor the bladder volume or pressure using wearable or implantable devices, are presented and 

discussed. Based on the assessment results and discussion, we indicate the method that we 

consider most suitable for use in continuous bladder monitoring but acknowledge the current 

limitations that must be overcome to use the method in subsequent research. 

The information gathered and summarized in this chapter was essential to propose a method for 

monitoring bladder volume with the required efficacy and safety. This review included mainstay 

books in urologic physiology and clinical medicine; core journals in biomedical sciences, 

electrical and biomedical engineering; and patents.  

The review was particularly focused on the methods that have been researched in past studies for 

bladder monitoring using wearable or implantable devices. Other methods, which have been used 

to measure volume in other biomedical applications, were also analyzed to avoid skipping over 

some possible or interesting measurement principles. These other methods included volume 

displacement plethysmography, indirect volume measurement from flow integration, and 

indicator dilution methods (e.g., marker concentration, thermodilution, radionuclide imaging, 

first pass, dynamic recording and gas dilution) [57],[58]. However, after a careful analysis of new 
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measurement concepts that we identified based on the combination of some of them, these 

methods did not pass the first screening stage of the go/no-go test, which used the most important 

user needs to assess feasibility. Therefore, those methods were not considered in subsequent 

analysis. 

Due to space limitations, the published paper did not include the entire exhaustive and systematic 

analysis we performed to draw the conclusions about the best method to monitor bladder volume. 

In fact, the user needs identification, evaluation, and weighting was an important stage to clarify 

the problem and to focus the research on the most important issues. The medical, technical and 

ergonomic needs identified during this analysis, which are required to the design of an 

implantable bladder sensor, are presented in Appendix 1.  

The users were considered not only patients with bladder dysfunction (primary users) but also 

other stakeholders such as physician, nurses, and caregivers. The user needs just describe ‘what’ 

is necessary to be performed in order to achieve the main goal but without specifying how to 

achieve them. The ‘how’ was reserved for the next stages of the research process, thus 

preventing, as far as possible, any bias in the proposed solution. All technical specifications and 

methods to be developed in later stages should satisfy, as close as possible, the identified needs 

but also consider current medical and technological limitations. A proper weighting of the 

identified needs was required to keep the focus on the most important aspects while considering 

the goals, limitations, trade-offs, and feasibility. The selection criteria for choosing the 

measurement method that was best suited for implementing implantable bladder sensor were 

drawn from the most important user needs. 

We determined that the bladder sensor, like other sensors used in biomedical or industrial 

applications, should comprise two transduction stages: the primary and secondary transduction 

stages, as shown in Figure 2-1. The primary stage transduces the mechanical stretching of the 

bladder into a change in energy or in a physical property depending on the principle of the 

measurement, whereas the second transduction stage converts this intermediate output into 

electrical energy output. The reviewing process presented in this chapter was also focused on 

finding the principles for both stages. Figure 2-1 also summarizes the possible principles that can 

be used to realize each transduction stage. 
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The technical specifications are the translation of the user needs into metrics that we used to 

assess the artificial sensors. As artificial sensors we considered all volume sensors that are 

different from the natural receptors in the bladder wall. The technical specifications for the 

bladder sensor were obtained using the quality function deployment (QFD) method and the 

worksheet known as House of Quality (HoQ). Both the technical specifications and the HoQ are 

presented in the Appendix 2.  

The evaluation matrix with the rates and the sets of weights used to assess the measurement 

principles assessed in section 2.4 are presented in Appendix 3. 

Both the user needs and the technical specifications can be useful in future studies of bladder 

dysfunction and the research for possible therapies, regardless the chosen approach. 
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Figure 2-1: Primary and secondary transduction stages of the bladder sensor. A summary of the potential 

measurement principles that may be used in implementing each stage is also shown. 
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Abstract  

Chronic monitoring of bladder volume can improve the clinical diagnosis and the choice of 

therapeutic approach for patients suffering from urinary dysfunction. It can also be employed to 

notify patients or healthcare personnel when the bladder should be emptied. An early warning can 

be triggered either when functional bladder capacity is reached or when an abnormally high post-

voiding residual volume remains in the bladder after an unfinished voiding. Currently, 

neuroprosthetic implants are used in the treatment of refractory patients with overactive bladder, 

with urgency-frequency or with voiding complications. These implants can further enhance their 

performance, and also reduce their adverse-effects, by implementing a conditional stimulation 

based on the ongoing information of bladder volume. In this paper, we review the measurement 

methods used in past studies, we analyze and assess them, and lastly we pinpoint the one that we 

consider the optimal one for chronic monitoring of bladder volume. 

Key words: bladder volume, chronic monitoring, conditional stimulation, neuroprosthetic 

implants, overactive bladder, urgency-frequency, voiding dysfunction.  
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2.1 Background  

The bladder functions of storing and voiding urine can fail as a consequence of several causes, 

ranging from a simple and reversible urinary tract infection to more severe diseases or conditions. 

Without pretending to write an exhaustive list, we can mention the following [25],[40],[41],[49]: 

prostatic hypertrophy or bladder cancer, Spinal Cord Injury (SCI), strokes and other Cerebral 

Vascular Incidents (CVIs), neurological diseases (e.g., Parkinson’s, multiple sclerosis, 

Alzheimer’s, etc.), arthritis, iatrogenic incontinence (e.g. following radical prostatectomy or 

hysterectomy), nocturnal enuresis, fistula, neuropathic bladder and  nonorganic causes, urethral 

hypermobility with or without associated pelvic organ prolapse, prostatitis, pharmacologic side-

effects, weak or damaged pelvic floor muscles or nerves, and neurologic dysfunctions anywhere 

along the neuraxis from the brain to the spinal cord, or in the peripheral nerves or ganglia. As a 

result of bladder malfunction owing to any of the above mentioned causes, serious complications 

in a patient’s health and a continuous deterioration in their quality of life will occur.  

Chronic monitoring of bladder volume will allow a more suitable clinical diagnosis and a better 

choice of therapeutic approach. It can also be employed to notify the patients or the healthcare 

personnel when the bladder should be emptied. This situation can arise either when functional 

bladder capacity is reached or when an abnormally high post-voiding residual volume remains 

after an incomplete micturition. 

Nowadays, there are alternative therapeutic approaches that are being used in patients who do not 

respond to, or could not tolerate conservative treatments. These approaches are based on 

implanted neuroprosthesis that perform electrical stimulation of the Lower Urinary Tract (LUT) 

nerves.  The electrical stimulation of these nerves helps the patients with urge incontinence or 

abnormal urgency-frequency due to an Overactive Bladder (OAB), and it can also assist patients 

with urinary retention owing to non-mechanical obstructions [17]. Some studies published in 

recent years have proposed different approaches based on the permanent stimulation of LUT 

nerves [13],[15],[16],[59-61]. 

It has been stated that conditional stimulation, i.e. depending on the ongoing bladder state, can 

improve overall performance and prevent or reduce adverse effects [62]. The conditional 

stimulation can also decrease the deleterious effects produced by a continuous electrostimulation, 

for instance, the noxious electrochemical reactions at the electrode-tissue interface and nerve 
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degeneration [20]. Moreover, it has been affirmed that supplying the neurostimulation device 

with sensory information could significantly improve the neuroprosthesis effectiveness [1]. In 

this way, a closed-loop control can be implemented, adding intrinsic auto-regulation advantages, 

which allows considering the differences of the physiological responses among patients or even 

in the same patient over time. 

Despite the few attempts carried out the last few years, which will be reviewed and analyzed in 

the next sections, to date, there is no device for a continuous and reliable monitoring of bladder 

volume [62].  

We found that some physiological and anatomical characteristics of the urinary bladder have 

been the principal causes that could account for the failure of past attempts. These characteristics 

will be summarized in the following section. Furthermore, the complexity of the bladder’s 

autonomic and somatic neural system as well as the technical limitations of today’s available 

technology for the chronic monitoring of biological variables, have greatly hindered the 

development of such a device.  

In this paper, we analyze the published studies related to bladder volume measurement, and also 

we assess several measurement methods, in order to pinpoint the most promising one for chronic 

monitoring of bladder volume.  The analysis was carried out by critically and exhaustively 

reviewing up-to-date literature from different sources indexed by Medline-PubMed, Compendex, 

Inspec and Derwent Innovation (patents), as well as the websites of companies that sell 

neuroprosthetic devices. To ensure, as far as possible, an unbiased analysis of the measuring 

methods, we used evaluation matrices with weighted criteria that will be briefly described below.  

 

2.2 The Anatomical and Physiological Characteristics of the 

Bladder that Challenge Chronic Monitoring 

In the past, many attempts to monitor bladder volume have failed or have not overcome the 

laboratory boundaries due to difficulties arising from the complexity of bladder anatomy and 

physiology and the proper decoding of its neural activity. The main difficulties that we found 

influencing failures in bladder volume monitoring were:  
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1) The low change in intravesical pressure during filling due to high bladder compliance 

(viscoelasticity) and wall accommodation (<10 cm H2O).  

2) The substantial changes in the size of the bladder during filling and voiding (~75% of 

surface variation).  

3) The irregular shape of the bladder when full due to the influence of the surrounding pelvic 

organs. 

4) The variations in bladder pressure depending on the patient’s posture and the influence of 

many stress conditions, e.g. coughing, sneezing, vomiting, etc.  

5) The chemical properties of urine, e.g. its high corrosiveness, variable conductivity, its 

high concentration of salts that can adhere to any sensor or device inserted into the vesical 

lumen, etc.  

6) Bladder smooth muscle is less electrically coupled than other smooth muscle.  

7) The high complexity of bladder control, partly because the bladder is the only smooth 

muscle organ driven by both the somatic and the autonomic neural system. 

 

2.3 An Exploration of Methods Used for Bladder Volume 

Monitoring 

The methods that could be used for chronic monitoring of bladder volume will be explored and 

analyzed in the following paragraphs in order to assess their efficacy in a subsequent analysis.  

Most of the in vivo studies that will be analyzed below used the typical setup depicted in Figure 

2-2, with roughly similar kind of equipment and accessories. This setup allows mimicking 

bladder filling and voiding (with known limitations), performing a similar procedure to that used 

in urodynamic studies.  

The procedure usually performed with the setup depicted in Figure 2-2 consists of injecting saline 

(NaCl 0.9% at 37 
o
C) into the bladder through one barrel of a double-lumen transurethral 

catheter. However, in small animal models like rats, a double lumen cannula is inserted through 
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the bladder dome. An infusion pump allows setting up different filling rates (physiological or fast 

filling) depending on the experiment goals and on the functional bladder capacity of the 

experimental model (relatively high filling rates generally elicit overactivity). The second barrel 

is connected to a pressure transducer to record simultaneously the intravesical pressure (Pves). In 

some studies the abdominal pressure (Pabd) can also be measured.  To perform this measurement a 

balloon is inserted into the rectum and connected to a second pressure transducer. This allows 

determining the pressure exerted by the detrusor (Pdet), because as known, Pves results from the 

addition of pressures produced by the contraction of the detrusor muscle and the abdominal 

musculature, i.e. Pves = Pabd + Pdet.  Thus, Pabd measurement allows detecting artifacts produced 

under several physiological circumstances. In more recent studies, Pves and Pabd data have been 

fed into a computer through a data acquisition system that amplify, filter and convert this data to 

digital values. Once inside the computer the signal is processed and the results are displayed 

conveniently.  

Depending on the goals of the experiment different types of transducers or electrodes can be used 

to measure variables such as pressure, displacement, elongation and also images can be obtained 

using ultrasound transducers. Electrodes, which essentially are ionic to electronic current 

transducers, are used to inject or to record electrical current, to or from the tissue (bladder wall or 

nerves). A generic representation of these transducers and electrodes placed on the bladder dome 

is shown in Figure 2-2 (A and B).  However, their specific location in the lower abdomen varies 

from study to study. As will be described below, the transducers or the electrodes can be sutured 

onto the bladder wall, inserted into the vesical lumen or embedded in the submucosal layer. A 

special type of electrode (cuff-electrode) can be wrapped around the bladder nerves or around the 

sacral roots to record neural signals produced by bladder distension and contraction. Typically, 

the ultrasound transducers are externally fixed to the lower abdomen using belts or elastic pants. 

Specialized electronic interfaces (Figure 2-2) are used to properly drive the transducers or the 

electrodes and connect them to the computer by means of the data acquisition system. All 

gathered signals from the transducers and the electrodes are stored in computer memory to be 

processed on-line and displayed in real-time, or to be further processed off-line using more 

complex algorithms. Generally, the researcher try to find out a relationship (correlation) between 

bladder activity and the signals recorded from the transducers.  
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2.3.1 Intravesical Pressure Measurement  

This method is based on the principle that if we know the value of Pves it could be used to 

indirectly assess bladder volume. For instance, if we determine in a previous cystometric study 

the value of Pves along with the volume that elicits a voiding sensation, then we could detect, by 

mean of an implanted pressure transducer, when the bladder has reached its functional capacity.    

Past studies have assessed the feasibility of this approach for monitoring the bladder pressure or 

volume. However, Westerhof et al. showed that bladder pressure variation does not correlate well 

with the urge sensation [63]. On the other hand, it is known that a detectable pressure increase 

arises only when a threshold value is reached [26].  

A model proposed by Korkmaz et al. [64] allowed describing the stress–strain behaviour of the 

bladder wall during the filling and voiding cycle. By means of this model, and using the data 

collected from real cystometry and uroflowmetry of different patients, the authors verified that 

the stress in the bladder wall during the filling and voiding cycle is characterized by a curve with 

hysteresis, which results from the viscoelastic properties of the bladder. Additionally, they 

showed that during the filling phase, stress relaxation is the most important issue that accounted 

for the small increase in the intravesical pressure.  

Some experiments performed on dogs in order to track bladder pressure, considering different 

physiological situations, were carried out by Takayama and coworkers [65]. Pressure transducers 

were embedded in the submucosal layer of the anterior bladder wall. The authors reported a small 

increase in intravesical pressure during the bladder filling phase, but they also mentioned that 

undesirable artifacts produced by animal’s movements hindered the extraction of reliable 

information, which is required to follow the bladder pressure with enough precision. 

It has been shown by Koldewijn et al. [66] that it is possible to use pressure transducers affixed 

with non-absorbable sutures in the peritoneal surface of the bladder’s dome. However, they 

reported that the transducers can erode into the vesical lumen or can detach from the wall. 

An autonomous monitoring system that measured the intravesical pressure using a capacitive 

pressure transducer inside the bladder was proposed by Coosemans et al. [67]  However, they did 

not make the packaging for the electronic system required to carry out in vivo experiments to 

evaluate the efficacy of this device in real conditions. 
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Figure 2-2: Typical setup used for studies of bladder activity. A and B are generic transducer or electrodes 

located on different parts of the lower abdomen depending on experiment goals.   

 

Results from these and other studies confirm that it is difficult to extract volume information 

from the intravesical pressure, but Jezernik et al. [20]  showed that it is possible to spot onset 

bladder contractions detecting a sudden increase in Pves. However, the Pves variation is also 

produced by stress conditions such as on voiding, coughing, defecating, vomiting and postural 

changes between the standing and sitting position, etc., [65]. These conditions can produce false 

positives if they are not detected.  

 

2.3.2 Electrical Impedance Plethysmography 

Plethysmography is a method for measuring volume changes in specific parts of the body or of 

the whole body. There are three types of plethysmographic techniques: 1) volume displacement 

using air or water outside the body; 2) measurement of the electrical impedance or admittance of 

a body part (bioimpedance); and 3) image plethysmography using X-rays, ultrasound or 
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Magnetic Resonance Imaging (MRI). The volume displacement technique seems to be 

impractical for bladder monitoring purposes. A type of image plethysmography, i.e. wearable 

Ultrasonography, will be described later. 

Electrical Impedance Plethysmography (EIP) is typically carried out by injecting a controlled AC 

current into the tissue. This current passing through the tissue produces a voltage drop between 

the electrodes (generally one or two pair) placed on the lower abdomen skin or directly on the 

organ. This voltage can be measured using a specialized amplifier. Then, it is possible to 

calculate the tissue bioimpedance, since the values of the injected AC current and the voltage 

drop are known [68].  

Over the last few decades, several studies used EIP for assessing bladder volume. Some of them 

were focused in whole body impedance measurement while others in bladder impedance 

measurement. The hypothesis underlying these studies states that there is a correlation between 

bladder bioimpedance and the volume of urine stored. Nevertheless, the published results are 

quite controversial, as will be shown below. 

The feasibility of the direct impedance measurement method to assess bladder volume was tested 

by Waltz et al. [69]. The authors found a linear relationship between bladder volume and the 

impedance recorded with an implanted device, using two electrodes attached to a dog’s bladder. 

The measured sensitivity was 7 Ohms per 100 ml. The reproducibility and the long-term stability 

of the method were not reported in this study. 

Other researchers have used EIP for measuring bladder volume in a non-invasive way. Denniston 

and Baker [70] also found a linear relationship between bladder volume and bioimpedance 

measurements, but using spot (snap) electrodes on the abdomen skin of anaesthetized dogs. They 

described the advantages of a new arrangement of the spot electrodes placed nearer to the bladder 

boundaries. These authors also reported a linear response but with a lower sensitivity (0.7 Ohms 

per 100 ml).  Similar results were reported by Doyle and Hill [71] but conducting experiments in 

humans, which showed a linear response but with even a lower sensitivity (0.1 Ohms per 100 

ml). 

A comprehensive research using this approach was carried out by Abbey and Close [72]. They 

conducted studies in men and women (two groups of 20 patients) for measuring several variables 

simultaneously, using four spot electrodes with the patients resting in the supine position. Their 
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results showed a weak relationship between the impedance and bladder volume during the 

bladder filling and voiding phases. However, the results were greatly influenced by some 

patients’ specific factors and their sex; in both men and women, the baseline impedance was 

influenced by the skin surface and by the skin fold thickness, but in women, this baseline also 

correlated with the time since the last menstrual period (oestrous cycle). Nevertheless, they did 

not report any results concerning the accuracy of the method used for bladder volume 

measurement. 

Other studies focused their efforts in the detection of bladder fullness. Yamada et al. [73]  worked 

on a device for detecting bladder fullness using a pair of spot electrodes placed on the surface of 

both femoral joints, and another pair near the bladder area. They concluded that a remarkable 

stability and reproducibility can be achieved using specially designed electrodes placed in those 

places to detect the urge threshold. However, in their experiments and subsequent analysis they 

did not consider known issues mentioned in other studies [72],[74], which could interfere with or 

modify the results. 

The Electrical Impedance Tomography (EIT) technique, which produces images from 

bioimpedance measurements, has also been used for measuring bladder volume. In a study 

conducted by Hua et al. [75] an array of 48 surface electrodes and a 2D-dimensional computer 

model was used to display a finite element image of the bladder. This study aimed to show the 

feasibility of this technique; however, no result was found concerning the effectiveness of the 

proposed method. 

A device based on bioimpedance measurement to estimate bladder volume was proposed by 

Provost et al. [76] This device was designed to provide feedback to an implantable electrical 

stimulator [77] intended to drive a neurogenic bladder. The device tried to detect when the urge 

volume threshold was attained. The authors showed interesting results from the analysis of their 

measurements using four pairs of electrodes placed on dog’s bladder. However, since then they 

foresaw difficulties in correctly assessing this threshold during the in vivo experiments, due to the 

changes in urine conductivity and the zeroing problems that arose from residual volume. In fact, 

those issues are still some of the hardest to be addressed by this technique.  On the other hand, it 

is known that bladder smooth muscle is less electrically coupled than other smooth muscles [25], 

which could hinder the accuracy of the bioimpedance measurements of the bladder.   
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In another study carried out by Kim et al. [78] in 13 patients with SCI, using surface electrodes 

placed on the lower abdomen, additional limitations of this method for detecting small changes in 

bladder volume in long-term measurements were shown. The major limitations found were the 

influence of body fat and the interference arising from fluid and fecal movements as well as fecal 

accumulation in the bowels. 

A more recent study executed by Keshtkar et al. [79] assessed the relationship between the 

measured bioimpedance and the bladder volume, in ex vivo and in vivo experiments, using urine-

like solutions with different conductivity that could affect the measurements. They concluded that 

the bladder tissue bioimpedance decreased when it was stretched and all mucosal folds became 

flattened. The authors also showed that at lower frequencies, the measured impedance increased 

with bladder volume, i.e. an opposite sign slope. Moreover, an insignificant, weak relationship 

was found.    

A comprehensive study conducted by Gill et al. [74] also assessed the feasibility of fluid 

conductance for measuring bladder volume. Several in vitro experiments were developed using 

four electrodes, latex vessels and bladders excised from pigs, filled with a urine-like saline 

solution at different temperatures and concentrations. The authors showed that the conductance 

increased with temperature and concentration but was different for each pair of these variables, 

except at low concentrations where this relationship was no longer valid. They also showed that 

the measured conductance was determined by the fluid conductivity, and lastly, that the 

conductance increased linearly at low volume but approached asymptotically to the high values. 

Therefore, in order to use this method in practical applications, the authors suggested that it 

required a real-time compensation of the fluid conductivity for the dynamically varying 

properties of urine and also an improvement in sensitivity.  

As seen above, the EIP has been one of the most used measurement method for monitoring 

bladder volume by means of electrodes placed on the lower abdomen skin or on the bladder wall, 

with a preference for the former. Some authors showed the feasibility of using the EIP method to 

estimate bladder volume, while others have shown that, despite the fact that it is barely possible 

to correlate bladder bioimpedance with volume, several issues must be addressed in order to use 

this method for reliably estimating bladder volume. Moreover, electrodes placed on the bladder, 

continuously exciting the tissue with a current (required for the bioimpedance measurement), can 
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lead to permanent damage and induce changes in the physiological behaviour of the bladder wall. 

Additionally, electrode migration toward the bladder lumen or electrode detachment is possible. 

Thus, we can state that none of the studies reviewed implementing EIP demonstrated any 

effective solution for the chronic monitoring of bladder volume.  

 

2.3.3 Strain-gauge plethysmography  

This method uses transducers that change their impedance or their electrical charge pursuant to 

the modification of the shape produced by external forces. The measuring principle of these 

transducers can either be resistive, capacitive, inductive or piezoelectric. Specifically, for this 

application, the elongation or the contraction of the transducer placed on the bladder will generate 

a variation in the impedance or in the charge (piezoelectric case). This variation can be measured 

by a proper electronic circuit (e.g. a bridge or a charge amplifier), then translated into distance, 

and lastly into volume units. 

Few studies using this approach have been published, even if this could be one of the most 

interesting principles for a reliable monitoring of bladder activity and volume. In fact, this 

principle is based on the direct measurement of a primary variable, i.e. the bladder 

distension/contraction. Therefore, these measurements should correlate well enough with bladder 

activity and volume and not be dependent on the patient’s health condition. 

We can speculate and say that the small number of studies with this approach might be related to 

unsuccessful attempts in the past, mainly as consequence of the low reproducibility and the low 

stability of measurement achieved using this approach, as will be shown below. 

An interesting measurement method using this approach was proposed by Rajagopalan et al. [80]. 

They measured the changes in electrical resistivity of a polypyrrole (a polymer) deposed on a 

highly elastic fabric used like a pouch covering the bladder. Their results showed that when the 

fabric with the impregnated polymer was stretched, it produced a linear resistivity change in a 

range of 20-40%. The in vitro experiments, carried out in a phantom bladder, showed the 

feasibility of using such a sensor to measure bladder volume, displaying some advantages 

inherent to the measurement method. However, some fabrication issues should be solved in order 

to use this sensor in long-term measurements, because after few days its sensitivity became null. 
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On the other hand, no in vivo experiment was performed with the goal of assessing the 

conductivity, the accuracy, the reproducibility, the stability and the biocompatibility under real 

conditions.  

A patented sensor for measuring changes in any anatomical part, but especially designed for the 

mammalian bladder, was proposed by Upfal et al. [81]. The transducers were made of a silicone 

elastomeric sheath containing a pair of helically coiled conductive wires. The limited results 

published in the patent application are not enough to assess the effectiveness of this device. 

Moreover, an analysis of the known issues affecting this method was omitted. We did not find 

any additional related studies, either from these authors or from the company that owns the 

patent.  

In order to meet the requirements of chronic monitoring, the materials used for covering and 

supporting the sensor on the bladder wall should be soft and elastic. These properties allow the 

transducer to follow the large changes of the bladder’s surface during its distension and 

contraction, but without overloading it. In fact, an increase in the effort required to stretch the 

bladder wall could substantially affect the measurements, and also overall bladder behaviour, 

particularly in overactive bladders. Additionally, the material should fit properly the irregular 

shape of the bladder, have high endurance and also be biocompatible. These material 

requirements, and the intrinsic invasiveness of this method, are identified as the major issues to 

be addressed in order to use this method in practical applications. 

 

2.3.4 Wearable ultrasonography 

Ultrasound or ultrasonography is a well known medical imaging technique that uses sound waves 

of high frequency and its echoes for determining tissue boundaries by means of image processing 

algorithms. This technique produces animated 2D or 3D, black and white or color images. 

Ultrasonography has become a useful non-invasive method for measuring bladder volume. 

Currently, it is a common method for measuring Post Void Residual urine (PVR). It is an 

alternative to indwelling catheterization, the most accurate and the gold standard technique but 

with known adverse effects.  
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Whereas a standard ultrasound machine with the appropriate software can be used to assess 

bladder volume, a new type of specialized portable machine today is widely used (e.g. Bladder 

Scanner series from Verathon Medical Inc., Washington, USA). This machine helps in the 

clinical surveillance of patients suffering from urinary dysfunctions.   

The above mentioned devices cannot be considered wearable, which is a must for chronic 

monitoring of the bladder. By definition, a wearable device should be very easy to wear, thus a 

wearable device for measuring bladder volume should be lightweight, smaller, and more 

ergonomic than a portable one.   

A few studies have used the ultrasound technique for continuously monitoring bladder volume by 

means of a wearable device. Petrican et al. [82] proposed a miniaturized ultrasonic bladder 

volume monitor for children with enuresis. The aim of this device was to alert the patient when 

the urge threshold was reached during the night. The device was affixed to a belt fastened around 

the patient’s lower abdomen. It was tested in 41 patients showing more than 70% accuracy in 

determining volume under well controlled conditions. However, a number of shortcomings were 

found during the testing phase in obese patients, in patients that had undergone abdominal 

surgery, or were sitting, constipated or had liquid stools. Improved solutions were suggested by 

the authors based on the use of an array of ultrasound cells affixed to elastic pants that fit the 

patient better. 

These suggestions were taken by Beauchamp et al. [83],  who reported that a clinical evaluation 

carried out in ambulatory patients showed only 40% success. They also mentioned measuring 

problems arising from even slight changes in probe orientation, which caused artifacts that 

incorrectly triggered the alert.  In a new study [83], the same authors were seeking a device for 

preventing bed-wetting, i.e. for alerting enuretic patients before and not after the micturition. The 

device showed good results in phantom bladder testing, but no clinical trial was carried out to test 

the measurement robustness. 

Kristiansen et al. [84] also proposed a similar solution with the same goal. They designed a 

wearable ultrasonic bladder volume monitor that used 7 phased-array ultrasonic transducers in a 

circular pattern device. The data collected was sent wirelessly (through a Bluetooth channel) to a 

portable computer for further processing. They reported good results with their in vitro test using 

a prototype apparatus and a phantom bladder. The measurements showed a mean absolute error 
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of 2.9%, good reproducibility; low drift over time and with temperature and a good correlation 

vs. a volume estimation obtained by MRI. Despite the good results shown under well controlled 

conditions, none of the intrinsic limitations of this method mentioned above [82], were analyzed.  

As has been seen so far, the results yielded by this method are greatly affected by the patient’s 

conditions and have only been shown to be effective under well controlled conditions. On the 

other hand, bladder activity monitoring is more complicated using this method, owing to the 

small, rapid variations that must be detected by the data processing algorithms. Moreover, the 

image processing requires a powerful computer for executing the complex algorithms in real-time 

and for displaying the measured volume. Therefore, for this method to have a practical 

application in chronic bladder monitoring, an improvement in measurement robustness as well as 

in the ergonomics issues is required. 

 

2.3.5 Electroneurographic signal recording and processing  

This method uses information gathered from the bladder’s natural sensors (mechanoreceptors) for 

monitoring its activity. Several studies have shown the presence of mechanoreceptors that 

respond to the bladder distension and contraction and others that respond, more specifically, to 

bladder volume [30],[32],[33]. The sensory information produced by these mechanoreceptors 

during the filling and voiding cycle, coded as action potential firing frequency, is carried by the 

bladder afferent nerves (i.e. the pelvic, hypogastric and pudendal nerves). These nerves are part 

of the complex organization of sympathetic, parasympathetic, and somatic pathways of the pelvis 

nerves shown in Figure 2-3. The recording of this neural activity is known as an 

Electroneurogram (ENG). The ENG signal arises from the superimposed or compounded action 

potentials (CAPs) of several firing units present in the nerve.  

The recorded ENG signal is processed using algorithms with different degrees of complexity 

depending on the application.  The most common ENG processing method is the signal averaging 

and low-pass filtering, which is technically known as Rectifying and Bin Integration (RBI). This 

method allows one to extract rough sensory information from the ENG amplitude envelope [85]. 

The sensing interface most commonly used in this type of recording has been tripolar cuff-
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electrodes. These electrodes are formed by three rings of metal (platinum or stainless steel) 

supported by a cylindrical cuff generally made of silicone or its derivatives [86].  

 

 

Figure 2-3: Neural pathways of the pelvis showing the afferent nerves commonly used the ENG 

recordings (see text). SPLN, splanchnic nerves; GR, gray rami; WR, white rami; BC, 

bulbocavernosus muscle; IC, ischiocavernosus muscle; SPH, sphincter. From [49], reproduced 

with permission from John Wiley and Sons. 

 

The RBI has shown to be a feasible and quite robust technique for detecting onset bladder 

contractions using tripolar cuff-electrodes wrapped around pelvic nerve and sacral roots [20],[87-

90], albeit it has been less effective at the pudendal nerve [90]. The application of different 

detection algorithms such as the constant threshold, the adaptable (variable) threshold and the 

cumulative sums (CUSUM) [90],[91], have allowed detecting the sudden increase of Pves due to a 

detrusor contraction. 

A few studies have been conducted with the main goal of establishing whether it is possible to 

extract volume information from the ENG recorded from the afferent bladder nerves. A 
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preliminary study performed by Harb et al. [92] recorded the ENG using tripolar cuff-electrodes 

on the sacral root S2 in dogs with the spinal cord transected at the supralumbar level. The 

authors, using the RBI technique, showed an increase in S2 neural activity in dogs during the 

bladder filling, with some lag explained either by a volume threshold required to trigger nerve 

activity or by a delayed bladder response to filling.  

The feasibility of bladder activity monitoring from ENG activity was assessed by Jezernik and 

coworkers in acute experiments performed in pigs [87]. They showed the possibility of recording 

bladder afferent activity by mean of tripolar cuff-electrodes placed on the pelvic nerve and on the 

sacral root S3. Their results revealed that bladder response was more phasic than tonic, since the 

recorded activity was higher during fast filling or during detrusor contraction than during 

isovolumetric volume measurements or slow filling. This behavior was considered good for 

detecting bladder contraction (e.g. overactivity) but it was considered bad for detecting bladder 

fullness.  

A study carried out by Sinkjaer et al. [89] in one human patient with a suprasacral SCI also 

showed that passive filling and bladder contraction activity can be detected from the ENG of the 

sacral dorsal root S3 using tripolar cuff-electrodes. 

A comprehensive study performed in cats by Jezernik et al. [20] stated that monitoring the 

bladder fullness (volume) directly from cuff recordings of the sacral root S1, using the RBI 

technique, was not feasible. However, the authors suggested that maybe it was possible by 

measuring the time elapsed between reflex contractions in overactive bladders. Nevertheless, the 

single result shown is not enough to confirm this. Moreover, they commented on the limitations 

of the cuff-electrode recordings in achieving higher signal levels, a better signal to noise ratio 

(SNR) and also the shortcomings due to the low selectiveness of sacral root recordings. As was 

mentioned above, these signals arise from the superposition of the efferent and afferent activity 

from the bladder, rectum and dermatomes. Therefore, they suggested that recording of the pelvic 

nerve activity could improve the selectiveness, eliminating some interference from visceral and 

dermatome activity. However, the long-term effects of placing cuff-electrodes on the pelvic nerve 

have not yet been assessed. 

Another important study carried out in human patients with SCI, was performed by Kurstjens et 

al. [88]. The authors investigated the afferent activity of the bladder, the rectum and the skin 
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(dermatomes), performing intraoperative recording of the ENG elicited by these sources in the 

extradural sacral root S3. They showed the feasibility of performing these recordings in humans 

using cuff-electrodes and confirmed or questioned some previous published results. For instance, 

the authors confirmed that the ENG signal recorded using tripolar cuff-electrodes was influenced 

by the number of fibers, by the diameter, and by the proximity of the firing axons to the electrode 

surface. They found that skin responses were larger than those from the bladder and the rectum, 

depending on the type of conducting fibers. The authors also showed that during bladder filling, 

both the phasic and the tonic responses were elicited. Conversely, Jezernik et al. [87] observed 

mainly phasic responses in animal models, as was mentioned above. In fact, Kurstjens and 

coworkers questioned the extension of this conclusion to humans, based on the tonic response 

that they recorded for Pves over 40 cm H2O. However, this is not sufficiently supported in their 

publication, and a final conclusion similar to that given by the Jezernik et al. [87] was stated, 

favoring the detection of bladder contraction based on the phasic nature of neural response. 

Lastly, they considered difficult to monitor bladder volume from the ENG recordings of the 

sacral roots S3 using tripolar cuff-electrodes. 

More recently Saleh et al. [93] published an interesting acute study performed in anesthetized 

dogs. They proposed a method that recorded the voltage drop (Vout) across a section of the 

extradural sacral root S2 when a sinusoidal constant low current (4 µA p-p, 30 Hz) was applied to 

it by means of a tripolar cuff-electrode. The authors reported a correlation between bladder 

volume and the Vout amplitude recorded, which can be roughly observed in some graphic results. 

However, no analysis of the specificity of the processed signal was presented. Lastly, the authors 

stated the feasibility of bladder volume measurement based on recorded nerve activity when a 

sinusoidal current was applied to the S2 sacral root. Even so, more exhaustive analysis and 

experiments should be done to test the robustness of the proposed method. 

None of the above reviewed studies have shown robust results demonstrating the feasibility of 

bladder volume monitoring from ENG recordings. In fact, there are few published studies whose 

principal goal was the detection of bladder volume from the ENG recording, while in other 

related studies this feasibility was marginally analyzed. Some possible shortcomings could be 

identified, e.g. inaccuracies in the methodology used and in the analysis of the results. For 

instance, in some acute experiments performed with anaesthetized animals the spinal cord was 
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transected at a supralumbar level to produce a SCI, and immediately the researchers started the 

recordings of the ENG activity in the targeted nerve.  

It is known that after a spinal cord trauma (i.e. SCI) a spinal shock period will arise. This period 

is characterized by motor paralysis, by a loss of sensation and the by the abrupt disruption of the 

reflex pathways, which lead to a condition of hyporeflexia or areflexia [22]. It might take three to 

four weeks on average to recover some reflexes, depending on the SCI site and its extension. 

Thus, the information recorded during the spinal shock period could yield misleading results. 

Moreover, some studies reviewed did not establish either the specificity of the measured signal or 

the identification of animal’s physiological conditions (e.g. bladder compliance), which could 

greatly influence the results. 

Furthermore, very low levels of ENG signals (under 10 µV) should be detected to measure the 

amplitude variation in the processed signal. However, it was shown that recordings performed 

using tripolar cuff-electrodes feature a low Signal-to-Noise Ratio (SNR). The measurements are 

also affected by the low selectiveness of sacral root recordings using tripolar cuff-electrodes, 

because they result from superimposed action potentials of efferent and afferent nerves from 

different viscera and dermatomes. This hinders the extraction of bladder information because the 

signal produced by the bladder afferents is the weakest. Consequently, the low selectiveness of 

the recording could lead to erroneous signal interpretation.  

Recent studies have shown that it is possible to improve the quality and the selectiveness of the 

ENG recording of the peripheral neural system using different types of multicontact electrodes 

[94] and more complex processing algorithms [95-97]. Therefore, the ENG recording method 

requires more in depth research to determine whether it is suitable for bladder volume monitoring 

using other electrodes and processing techniques. 

 

2.3.6 Electromagnetic Plethysmography 

The measurement of the distance between points by means of Hall Effect crystals sutured onto 

the bladder wall was used to estimate topographical bladder movement during isovolumetric 

reflex activity. The approach correlated the distance with changes in magnetic flux emanated 

from a permanent magnet also affixed in the bladder wall and then sensed by nearby Hall Effect 
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transducers. This setup was used by Woltjen et al. [98] for monitoring bladder activity during 

isovolumetric reflexive contraction in cats and dogs. They measured a displacement between the 

Hall Effect transducer and the permanent magnet with a precision error in a range of 0.5 to 3 mm 

and the speed of contractions was estimated in a range of 2 to 4 cm/s. These results could be 

useful for bladder volume monitoring, if it is possible to establish a correlation between the 

measured distances and bladder volume. However, the authors did not report any results 

concerning bladder volume measurement.  

A more recent implementation of this measurement principle was carried out in dogs by Wang et 

al. [99]. A permanent magnet sutured onto the anterior bladder wall was magnetically coupled to 

an external warning unit sutured onto the inferior abdominal wall. The external unit contained a 

compass-like switch that triggered a buzzer when the magnet movement showed that the volume 

had reached the programmed threshold. This method has been reported by the authors to be 

effective under very well controlled lab conditions, but no test in humans has been published to 

prove its efficacy, or patient’s tolerance or comfort. Moreover, robustness is a pending issue 

because the positioning of the magnet on the bladder wall and the sensor in the reading unit is 

critical. Thus, any relative displacement between them will yield wrong results.  

In general, this measurement method, as well as others mentioned above, still has major issues to 

be addressed; i.e. the long-term stability of fixing the sensor to the bladder wall. As was shown 

[66], any sensor or electrode affixed to bladder wall can detach or migrate toward the bladder 

lumen. Therefore, for long-term or chronic monitoring, an improvement in the method for 

fixation to the bladder wall is required.  

Once this issue is resolved (a hard task), another interesting and potentially effective method 

could be applied to monitoring bladder volume; i.e. sonomicrometry. This technique uses several 

tiny piezoelectric crystal sensors attached or embedded in an organ (e.g. the cardiac muscle) 

forming a network. One crystal sends an ultrasound wave that is detected later by another crystal. 

The time elapsed between the emission and the reception of the ultrasound wave can be related to 

the distances between the crystals. By properly calibrating the system and using the information 

from all of the crystals in the network, it is possible to measure several mechanical variables such 

as the volume, the pressure, and the speed of the distension or contraction, etc. Currently, this 

method is considered the gold standard for the measurement of mechanical cardiac variables in 
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acute studies [100] because of its accuracy and reproducibility. It has been proposed for use in 

Medtronic pacemakers to improve their performance, according to a patent owned by the 

company [101]. 

 

2.4 Assessment of the Measurement Methods 

In order to assess the methods described above and to pinpoint the one with the greatest promise 

to succeed in chronic monitoring of bladder volume it is necessary to define some evaluation 

criteria, then assign a weight to them, and lastly to evaluate each measurement method 

accordingly. This evaluation methodology allows quantitative analysis to select the optimum 

method more objectively than, for instance, pros vs. cons, thereby overcoming the most evident 

bias always present in the researcher, his analysis and his preferences.  

The International Continence Society (ICS) has published some standards [28],[29] for the 

measurement of volume and pressure of the bladder, which could be used as references during 

this evaluation process. However, it must be taken into account that these standards have been 

suggested for urodynamic equipment used in the diagnostic of LUT diseases, for non-chronic 

applications under very well controlled conditions.  Consequently, the ICS standards could hardly 

be met by such a type of chronic monitoring device, considering the limitations of both medical 

knowledge and technological feasibility. On the other hand, it is known that monitoring devices 

do not always have to meet the same specifications that diagnostic devices do (commonly less 

demanding), because the clinical purpose and the operating conditions are often quite different.  

The following evaluation criteria have been established from the analysis of the measurement 

methods for chronic monitoring of bladder volume: 

 Effectiveness in chronic use;  

 Ease of implantation (minimally invasive); 

 Reproducibility of volume measurements;  

 Immunity to postural changes, urge stress, urine conductivity, temperature, and other 

artifacts; 

 Detection of bladder overactivity; 
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 Safety in use with minimal deleterious effects;  

 Accuracy of volume measurements (more important for diagnostic than for monitoring);  

 Ease of set-up, calibration, and adjustment to the patient's particularities;  

 Low power consumption (from a battery);   

 Availability and cost of materials and components required for its implementation. 

 

An analysis based on an evaluation matrix was carried out to pinpoint the monitoring method that 

best meets the criteria mentioned above. The results of this analysis are shown in Table 2-1 and 

the computation of the scores was performed as described below.  

To rate each method, we employed a qualitative scale ranging from 1 to 5 (very poor, poor, 

passable, good and very good). Consequently, the final score is given on this scale as well as a 

total percentage. The methods were rated from 1 to 5 for each individual criterion. Then, each 

method’s rate was multiplied by the weight assigned to the criterion. To ensure that the selection 

of the optimum method was robust enough, i.e. less dependent on small weighting variations, five 

sets of appropriate weights were used. The final score, which appears in the cells of Table 2-1, 

was calculated averaging the score for each set while keeping the rate given to each method.  

Lastly, the total score for the measurement method is the sum of each rate (column sum). Note 

that for the sake of simplicity only the final score obtained using this procedure is shown in Table 

2-1. 

Considering its consistency throughout the analysis, the recording of the ENG afferent activity of 

the bladder mechanoreceptors has been identified as the chronic bladder volume monitoring 

method that best satisfies the evaluation criteria defined in this paper.  
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Table 2-1 Methods Assessment results 

 
Measurement method 

Selection criteria IVP EIP SGP WUS EMP ENG 

Effectiveness in chronic use 0.2 0.2 0.3 0.3 0.4 0.5 

Immunity to postural changes, urge stress, urine 

conductivity and temperature  and other artifacts 
0.1 0.1 0.4 0.2 0.2 0.4 

Ease of calibration and adjustment to the 

patient's particularities 
0.2 0.2 0.1 0.2 0.1 0.2 

Ease of implantation (minimally invasive) 0.4 0.4 0.2 0.6 0.4 0.5 

Safety in use with minimal deleterious effects 0.4 0.1 0.4 0.6 0.5 0.5 

Efficacy of volume measurement (accuracy) 0.1 0.2 0.4 0.3 0.3 0.2 

Precision of volume measurement 

(reproducibility) 
0.1 0.2 0.6 0.5 0.5 0.4 

Detection of bladder overactivity 0.5 0.3 0.5 0.4 0.3 0.4 

Low power consumption 0.3 0.2 0.1 0.2 0.5 0.5 

Availability and cost of materials and 

components 
0.4 0.5 0.1 0.4 0.4 0.4 

Total Score (over 5) 2.7 2.4 3.1 3.7 3.5 3.9 

Score percentage 53% 49% 62% 75% 70% 77% 

Rank 5 6 4 2 3 1 

(IVP: Indirect volume measurement from intravesical pressure; EIP: Electrical Impedance 

Plethysmography; SGP: Strain-gauge Plethysmography; WUS: Wearable Ultrasonography; EMP: 

Electromagnetic Plethysmography; ENG:  Electroneurographics recordings) 
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2.5 Discussion 

Knowing and understanding the anatomy, the physiology and the neural control of LUT is 

essential to accomplishing any successful work in bladder monitoring. We found that some 

studies overlooked very important elements of bladder physiology, which either were ignored at 

the time of publication or perhaps were considered irrelevant. It might happen that the eagerness 

to quickly get results sometimes leads the researchers to skip over essential steps. 

For monitoring bladder volume, two types of sensing options have been used; those based on 

artificial sensors (pressure, displacement, ultrasound, etc.) or those that use the natural sensors 

present in the bladder wall (mechanoreceptors). The information gathered from the artificial 

bladder sensors is more independent of the patient’s condition, so it can be more reproducible 

over time in the same patient and among different patients. Furthermore, accuracy could 

potentially be higher than that provided by natural receptors. Major drawbacks are the decreasing 

reliability over a long period of time, a higher degree of invasiveness, the problems arising from 

their location within the lower abdomen on or near a moving organ, and the biocompatibility of 

the materials employed. On the other hand, the information gathered from natural 

mechanoreceptors is more reliable, the implantation procedure of the neuroprosthesis is less 

invasive and the cuff-electrodes used as interfaces for ENG recordings are well tolerated in 

chronic applications [1]. However, in the pathologic bladders of patients with SCI and other 

neural conditions, bladder cancer, cystitis, etc., the information collected from mechanoreceptors 

could be misleading. Additionally, the selectiveness and the signal to noise ratio of recorded 

ENG signal using tripolar cuff-electrodes are still pending issues.  

Analyzing the results of the studies reviewed concerning bladder volume monitoring, it can be 

stated that the sensory information produced by the bladder mechanoreceptors is rather more 

related to the detection of bladder fullness and pain than of a specific volume, particularly when 

Pves is below the threshold value.  

The firing frequency of the tension mechanoreceptors increases during bladder distension, but a 

relatively rapid adaptation of these receptors along with the viscoelastic accommodation of the 

bladder, have prevented the extraction of volume information from the measurement of Pves. This 

is in accordance with the finding of the prevalence of phasic over tonic response of the bladder 
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mechanoreceptors. Thus, the mechanoreceptors that specifically respond to bladder volume 

should be a better target to relate their outflow activity with bladder volume.  

It was not evident to pinpoint the optimum method for monitoring bladder volume, considering 

the anatomical and physiological particularities of the bladder, as well as the discussed 

limitations of the methods based on natural or artificial sensors, and bearing in mind the 

technological constraints.  As could be seen in Table 2-1, none of the measurement methods 

proposed in past years completely met the evaluation criteria. The ENG recording of bladder 

afferent activity, which could reflect the bladder distension and contraction as well as the volume 

information, appears to be the most suitable method for this biomedical engineering challenge. 

Nevertheless, more studies are required to demonstrate its feasibility. An improvement in 

selectiveness and in the signal to noise ratio seems to be mandatory for success in a new 

endeavour.  

The choice in no way means that this is the only valid method but that it is the most suitable 

candidate to be studied in future research. Thus, this result should not discourage future works 

that may use the other methods that have not been favoured in the present analysis, provided that 

the mentioned limitations could be addressed.  

Considering the enormous economic and social impact of urinary bladder dysfunctions, which 

affect millions of people around the world and cost several billion dollars each year 

[40],[41],[102] future research should be carried out to find out new therapeutic methods and to 

improve the currently available ones.   

 

2.6 Conclusion 

We can confirm that there is currently no available method having the effectiveness required for 

use in current clinical practice for chronic monitoring of bladder volume. This is a critical 

requirement for more successful application of the neuroprosthetic implants in patients with 

bladder dysfunctions.  

ENG recording was found to be the method that best met the user’s needs. However, more 

studies are required to determine whether this method can be used for bladder volume 

monitoring. 
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It is expected that the present study can facilitate the development of a safe and effective method 

and apparatus for the chronic measurement of bladder volume, clinically useful for patient 

monitoring or as part of a neuroprosthetic device. 
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CHAPTER 3 ESTIMATION OF BLADDER VOLUME FROM 

AFFERENT NEURAL ACTIVITY 

 

From the literature review and the assessment of measurement methods, we concluded that 

recording the neural activity (ENG) of the bladder was the most suitable approach for chronically 

estimating the bladder volume. However, the few studies that targeted the bladder volume 

estimation from ENG recordings were not able to ascertain the feasibility of this approach due to 

several drawbacks that were presented and discussed in the preceding chapter. 

In this chapter, we present the published paper of the study that we performed to assess the 

feasibility of estimating bladder volume from the neural activity produced by specialized 

receptors that respond to bladder stretching during filling. We describe the setup and protocol of 

the acute experiments performed in anesthetized rats, an accessible and well-documented animal 

model for this type of study.  

To perform these difficult in vivo experiments collaboration from other research groups with the 

required expertise was needed. Due to the specificity of this type of experiments, we could not 

find locally the research group with the lab facilities and the particular skills to conduct the 

experiments in rats. The Urology Department of the Faculty of Medicine in University of 

Antwerp, Belgium, which has been working over several years on studies that required this type 

of experiments, accepted to collaborate with us.  The acute experiments with rats were performed 

by Dr. Tomonori Minagawa under direction of Prof. Jean-Jacques Wyndaele. They provided us 

with the recordings of the neural activity and the bladder pressure during the different types of 

experiments that we designed at the École Polytechnique de Montréal. 

Two measurement methods for decoding sensory information from the afferent activity 

recordings are explained, illustrated and validated throughout the chapter. Both methods are 

based on neural source detection and discrimination (classification) of the recorded activity. One 

method was proposed for qualitatively detecting three level of bladder fullness. This method 

requires a minimum of operations and can be implemented using few hardware resources. The 

second method quantitatively estimates the bladder volume using a regression model of 

programmable order. We also show that it is also possible to estimate the bladder pressure using 
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appropriate parameters in the regression model that was implemented in the method. The 

quantitative estimation method can also be used to deploy a closed-loop system by providing 

continuous feedback about the bladder state to the FES control unit and to provide timely 

warnings to patients with sensory impairments, among other possible applications.  

Additional test runs were performed to study the mechanoreceptor behavior under special 

conditions. The results from these test runs allowed us to clarify the contradictions found in the 

literature concerning both the existence of specialized bladder receptors and the detection of 

bladder tonic and phasic responses. 

The proposed methods are executed in two phases: an offline training phase and a second phase 

that is executed in real-time to estimate both the qualitative and quantitative values of the bladder 

volume. The training phase was used to learn or identify the parameters required for real-time 

volume monitoring. During the training phase, the most suitable algorithms can be executed 

regardless of their complexity and execution time. Hence, in the real-time monitoring phase, we 

can use algorithms of lower complexity that are still effective thanks to the previously executed 

phase. The algorithms of lower complexity that are used in the real-time monitoring phase allow 

for subsequent electronic implementation with fewer hardware resources and less operation 

cycles, thus favoring the reduction of the power consumption, which is a major constraint for any 

implantable device. 

The accuracy and reproducibility of the estimation results obtained from the validation tests using 

the in vivo recorded signals allowed us to demonstrate the feasibility of both methods. Therefore, 

our hypothesis H1 was validated. 

In Appendix 4, we present an interesting analysis we performed to choose the most suitable 

correlation coefficient for detecting the afferent nerve that conveys sensory information about 

bladder volume or pressure. This analysis was not included in the paper due to space limitations.  

Three different correlation coefficients were computed and analyzed to find the most suitable one 

for nerve selection: the Pearson’s, Spearman’s and Kendall’s correlation coefficients. The 

Pearson’s correlation coefficient assesses a linear relationship between variables, while the 

Spearman’s and Kendall’s rank correlation coefficients rather assess a monotonic dependence. 

The results of the Multiple Comparison test among the groups of coefficients using a one-way 

ANOVA are shown in the Appendix 4. The results of this analysis show that the Spearman’s rank 
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correlation coefficient is a good choice for this type of correlation analysis when a non-linear 

relationship between the variables is expected. 
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Estimation of Bladder Volume from Afferent Neural Activity 
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Abstract— Refractive urinary dysfunction in individuals suffering from neurogenic bladder 

syndrome can be treated with implanted neurostimulators that restore, to some degree, the control 

of the urinary bladder. A sensor capable of relaying feedback from bladder activity to the 

implanted neurostimulator is required to implement a closed-loop system to improve overall 

implant efficacy and minimize deleterious effects to neural tissue caused by continuous electrical 

stimulation. In this paper, we present a method that allows real-time estimation of bladder 

volume from the primary afferent activity of bladder mechanoreceptors. Our method was 

validated with data acquired from anesthetized rats in acute experiments. It was possible to 

qualitatively estimate three states of bladder fullness in 100% of trials when the recorded afferent 

activity exhibited a Spearman’s correlation coefficient of 0.6 or better. Furthermore, we could 

quantitatively estimate bladder volume, and also its pressure, using timeframes of properly 

chosen duration. The mean volume estimation error was 5.8 ± 3.1%. Our results also demonstrate 

that it is possible to quantify both phasic and tonic bladder responses during slow filling and 

isovolumetric measurements, respectively.  

Index Terms— Bladder volume, Bladder pressure, Neural prosthesis, Biomedical signal 

processing, Biomedical monitoring 
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3.1 Introduction 

Urinary dysfunction can result from injuries or pathologies that affect the local or central neural 

system (e.g., spinal cord injury) or from nonpathologic conditions such as aging [25]. Any major 

disruption in the autonomic reflex pathways that drive urinary bladder storage and voiding 

functions, leads to loss of bladder control, resulting in severe deterioration in patient health and 

quality of life. 

For over a decade, implanted neuroprostheses have been used in refractive patients who do not 

respond to or cannot tolerate conservative treatments for urinary dysfunction. These implants can 

restore bladder control to some degree, although they have known side-effects [19]. To the best 

of our knowledge, none of the implants currently used in clinical practice are capable of 

performing conditional neurostimulation. However, stimulation based on ongoing bladder 

activity can improve the overall performance of neuroprostheses by providing feedback for a 

closed-loop system [8]. Adding intrinsic auto-regulation advantages can also reduce power 

consumption and prevent deleterious effects caused by continuous electrical stimulation [103]. 

Studies published over the past years have attempted to identify a suitable method for chronic 

monitoring of bladder activity, i.e. the volume or pressure variation over time. Challenging 

characteristics arising from the bladder’s anatomy and physiology, among other factors, have 

hampered the achievement of such a goal [36].  

The most common methods used in past to monitor bladder have been the followings:  indirect 

volume estimation from intravesical pressure, electrical impedance plethysmography, strain-

gauge plethysmography either resistive or capacitive, imaging plethysmography using ultrasound 

sensors, electromagnetic plethysmography, and electroneurographic recordings (ENG) form 

peripheral nerves. The choice of whether to use artificial sensors or natural sensors (bladder 

mechanoreceptors) for chronic monitoring of bladder volume or pressure was not immediately 

evident by simple pros and cons analyses. Therefore, to choose an optimal method that balanced 

considerations for dealing with the challenging natural characteristics of the bladder with the 

patients’ needs, we performed an exhaustive analysis of the published literature [36]. We 

concluded that the recording from bladder afferent nerves was the most suitable method for 

chronic monitoring of the bladder volume.  
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The ENG recordings have been used in rehabilitation applications as command and feedback 

signals for Functional Electrical Stimulation (FES) devices, for instance to correct foot-drop in 

hemiplegic individuals and to control hand grasp in tetraplegic individuals [1]. Past studies have 

also shown that ENG recordings using tripolar cuff-electrodes from pelvic nerves and sacral 

roots, with subsequent signal processing using the rectification and bin integration (RBI) or 

cumulative sums (CUSUMs) techniques, can detect sudden changes in pressure produced by 

overactive bladder contractions [20],[87-90]. 

The whole-nerve ENG recorded using cuff-electrodes is a composite signal formed from 

superimposed action potentials arising from several firing units in the nerve that also carries 

information from other sources (e.g. rectum and dermatomes), where the contribution of the 

bladder afferents is the weakest [88]. Moreover, signal processing of ENG recorded from cuff-

electrodes has to deal with extremely low signal-to-noise ratios, which hampers the detection of 

the very small increase in the composite ENG signal level produced during the bladder filling 

[20].  Therefore, from this compounded and noisy signal it is not possible to identify reliably the 

source and to quantify accurately the afferent activity, which is essential to extract sensory 

information of the bladder volume.  

In contrast, by measuring activity recorded with penetrating electrodes in the appropriate dorsal 

root, S3 in humans [88], it is possible to record and discriminate extracellular activity stemming 

specifically from the bladder mechanoreceptors [104] and not from activity of other afferents 

projecting into the same dorsal root ganglia (DRG). Recent studies have demonstrated that the 

Utah Slanted Electrode Array (USEA) can properly record the afferent activity in peripheral 

nerves during chronic experiments [105],[106]. Moreover, the thin-film longitudinal intra-

fascicular electrode (tfLIFE) has also shown to be capable of recording selectively afferent 

activity from specific aferent nerves [95],[107]. 

It is known that in the bladder wall there are specialized receptors (mechanoreceptors) that 

produce afferent activity upon stretching and contraction [34]. Afferents nerves that respond 

specifically to bladder filling have also been identified in animal models. These appear to be 

volume receptors that are sensitive to the stretching of the inner mucosa [30]. The afferent 

activity we are interested in travels through the pelvic nerves and the DRG to a specialized 

reflexive center in the spinal cord. Moreover, studies performed with animal models (rats) have 
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demonstrated that the firing rate (FR) of a single afferent fiber conveying sensory information 

from the bladder mechanoreceptors increases with the volume [30],[32],[33].   

Relatively few studies have targeted chronic bladder monitoring based on artificial or natural 

sensors. Most of them focused on detecting pressure changes. Those that have sought to estimate 

bladder volume are even fewer, and their results have not conclusively demonstrated that 

monitoring bladder volume from afferent neural activity is feasible. Therefore, we have 

performed a study to assess the feasibility of monitoring bladder volume from the primary 

afferent activity of bladder mechanoreceptors. 

To validate our bladder monitoring method, we used Sprague-Dawley rats, a practical and 

accessible animal model for studying the lower urinary tract (LUT) [108]. Although the urinary 

system is quite similar among mammals, there are always differences with humans that must be 

considered to conduct well-controlled experiments and properly analyze the results [32],[33].   

 

3.2 Experimental Methods 

3.2.1 Experimental setup 

A total of 40 intact female Sprague-Dawley rats (203 – 287 g) were used. Immediately before the 

experiments, animals were anesthetized with urethane (1.5 g/kg IP), an anesthetic known to spare 

the bladder afferent activity [109]. After the experiments, animals were euthanized by overdose 

with urethane. The protocol for the experiments was approved by the Animal Ethics Committee 

of the University of Antwerp, Faculty of Medicine (No. 2012-05).  
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Figure 3-1: Experimental setup used for identification of bladder afferent nerves projecting into the L6 

root and for recording the afferent activity during a filling cystometry. (MPG: Major Pelvic Ganglion). 

 

The setup used throughout our experiments is depicted in Figure 3-1. Because it is not possible to 

place penetrating microelectrode arrays in rat spinal roots, mechanoreceptor afferent activity was 

recorded following the technique described in [108]. Briefly, we describe this technique as 

follows. The pelvic structures were exposed, the ureters were ligated and the urethra was 

clamped. The left pelvic nerve was then isolated, and a pair of Teflon-coated silver electrodes 

with bared tips forming a hook were placed around it and sealed with Wacker Silgel (Wacker 

Chemie, Munich, Germany). A catheter (Clay-Adams PE-50, NJ) was inserted into the bladder 

through the dome and secured by silk suture. The catheter was attached to a stopcock connected 

to a pressure transducer (DX-100, Nihon Kohden, Tokyo, Japan) and an infusion pump (NE-

1000, ProSense, Netherlands) for recording the intravesical bladder pressure and infusing saline 

into the bladder, respectively. Next, the lumbosacral spinal cord was exposed by laminectomy 

and the dura mater was opened. The dorsal skin was sutured to form a pool that was filled with 

body temperature (38C) paraffin oil (Fisher Scientific, Loughborough, UK). Finally, both L6 

dorsal roots were cut. Fine filaments dissected from the left L6 dorsal root were placed across 

shielded silver bipolar electrodes. 
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The recorded afferent activity was pre-amplified with a low noise AC differential amplifier (10x), 

filtered (60–5,000 Hz), further amplified (10,000x) and digitally converted (Micro-Plus CED, 

Cambridge, UK). The neural signal was sampled at 24 kHz and the pressure at 100 Hz. Afferent 

fibers originating from the bladder were identified by electrical stimulation of the pelvic nerve 

(0.5-msec square wave pulses, SEN-3301, Nihon Kohden). The nerve filaments were teased until 

a maximum of three clearly distinct unitary action potentials were evoked by the electrical 

stimulation. The extracellular action potentials, known as spikes, were recorded along with the 

intravesical pressure using Spike2 software (CED, Cambridge, UK), which can also be used for 

online spike discrimination.  

 

3.2.2 Acute experiments 

The afferent activity, hereafter referred to as ENG (Electroneurogram), and the vesical pressure 

(Pves), were recorded throughout a measurement cycle. Different bladder volume curves were 

used depending on the specific goals of the experiments, as shown in Figure 3-2.  

Profile (A) was used in all the trials for determining the feasibility of volume estimation from 

ENG signals. Profile (B) was used to assess the reversibility of mechanoreceptor responses when 

the bladder was passively voided by withdrawing saline with an additional infusion pump. Profile 

(C) was used to assess the tonic responses of mechanoreceptors by recording the ENG during an 

extended isovolumetric measurement phase. The first phase for each profile was always a resting 

phase (empty bladder). Within the first half of this phase, electrical stimulation was applied, as 

described above, to identify the bladder afferent fibers. The spikes generated by this stimulation 

were treated as artifacts. These types of artifacts are normally present during neuroprosthetic 

device stimulation, thus the system must be able to address them. The other half of the resting 

phase was used for detecting the ongoing resting activity (i.e., the baseline). In contrast to 

humans, rats exhibit bladder afferent activity when empty that must be considered [32].  
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Figure 3-2 :  Filling profiles used in three types of experiments. A) Standard filling-voiding cycle. B) 

Standard filling and passive withdrawing. C) Filling to different levels followed by an isovolumetric 

phase. 

 

The second phase in each cycle consisted of a constant filling cystometry using a low filling-rate 

of 0.08 mL/min of saline at room temperature. This slow filling rate is used to mimic, as far as 

possible, a physiological filling rate and prevent undesirable changes in bladder natural responses 

[110]. In the experiments with profiles (A) and (B), infusion continued until the Pves reached 

30 cm H2O (2.94 kPa). In the experiments with profile C, the bladder was filled to four different 

degrees of fullness: 25%, 50%, 75% and 100% of the maximum volume reached at 

Pves = 30 cmH20. The third phase was profile specific. For profile A, the volume was voided by 

opening the stopcock. For profiles B and C the volume was held for 60 s and 180 s, respectively. 

During the fourth phase in profile (B), a passive voiding (withdrawing) at -0.8 mL/min was 

performed using an additional infusion pump. In all of the experiments, the filling-voiding cycle 

was repeated three or more times, when possible, on the same fiber. At the end of each cycle a 

final electrical stimulation confirmed that the signal source was intact. 

Conduction velocity (CV) was calculated from the latency of the response to electrical 

stimulation and the distance between the stimulation and recording sites. Fibers with a 
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CV < 2.5 m/s were classified as unmyelinated C-fibers. Fibers with a CV ≥ 2.5 m/s were 

classified as myelinated Aδ-fibers. 

Offline signal processing and statistical analysis were executed using custom-written software in 

MATLAB, Mathwork Inc., MA.  

 

3.3 Bladder volume estimation method 

To reduce the system complexity and the amount of hardware resources required by the 

implantable device for real-time monitoring of the bladder volume, we developed a method 

which requires two phases: 1) an offline training phase; and 2) an unsupervised real-time volume 

estimation (monitoring) phase. The training phase is used for identification of the parameters 

required for real-time monitoring.  

 

3.3.1 The training phase 

1) Digital data conditioning. The ENG data were band-pass filtered between 300 Hz and 3 kHz 

using a non-causal linear phase finite input response (FIR) filter. This finite response filter, unlike 

the infinite response (IIR) filter, prevents spike shape distortion. Additionally, FIR filters are 

more suitable for electronic implementation using fixed-point arithmetic because they avoid error 

accumulation over successive arithmetic operations without retroaction. 

2) Identifying the afferent unit exhibiting the best correlation with bladder volume. Identification 

of the optimal afferent unit was performed only during the training phase. This identification was 

designed to spot the unit (afferent neuron) that exhibited the best correlation between ENG and 

bladder volume. As described in section 4.2.1, a preliminary selection was performed by isolating 

the filament connected with the bladder pelvic nerve. However, this fine filament typically 

contains more than one active unit (up to three were detected) as shown in Figure 3-3, which may 

or may not show good correlation. Multiunit activity is always present in recordings acquired 

from microelectrode arrays such as the USEA and tfLIFE. These electrodes arrays seem to be the 

best available options for this kind of recordings in future experiments. Consequently, detection, 

alignment and classification of the spikes, known as spike sorting or discrimination, were 
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performed using software custom-written in Matlab. This software used the superparamagnetic 

clustering function provided by Waveclus software [111].  
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Figure 3-3:  Bladder afferent activity recordings (ENG) using filling profile A (from animal No. 15, A-

fiber). The arrows point to the artifacts elicited by electrical stimulation. The spike raster of the three units 

identified is shown.   

Next, we computed the number of spikes detected within a time window of one second for each 

detected unit throughout the measurement cycle.  

To identify the unit that exhibited the best correlation with volume, we used the Spearman’s rank 

correlation coefficient (). Unlike the more commonly used Pearson’s correlation coefficient (r), 

which measures a linear dependence between two variables, the Spearman’s rank coefficient 

rather assesses a monotonic dependence that is not necessarily linear. Taking bladder physiology 

into consideration, this coefficient is better suited for the relationship between ENG and volume, 
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providing more robustness for our estimation method. Lastly, the unit class displaying the FR vs. 

volume with the highest  was chosen for subsequent processing.  

The Spearman’s rank correlation coefficient was computed by using (3-1), where ρk is the 

Spearman’s coefficient of the unit of class k; k is the number of classes detected; n is the number 

of timeframes used through the recorded signals, hereafter referred to as bins; FRi,k stand for the 

ranked values of the units’ firing-rate per second; Vi,k is the mean value of the volume within the 

same bin; and       
          are the mean values of all firing rates and volume bins for the class k, 

respectively.  

 

   
                           

   

                 
 
           

  
   

 
   

                 (3-1) 

 

3) Estimating the ongoing resting activity. As mentioned above, rats exhibit resting activity that 

must be considered during the estimation process. Thus, a baseline was calculated by averaging 

the FR during at least 60 s before starting bladder infusion with saline. Any FR activity below 

this base line was assumed to be resting activity corresponding to an empty bladder. Baseline 

calculation was also helpful for suppressing the evoked spike activity produced during electrical 

stimulation,  

4) Conversion of the volume curve into bins. In this stage, the volume and FR data were prepared 

for the subsequent procedure. The continuous volume curve was quantized into a finite number of 

bins of the same length, herein referred to as the bin-width (BW). The volume within each bin 

was set to the mean volume between its edges.  

5) Discrete integration of the firing rate within each bin. The discrete integration of the FR within 

the bin edges (i.e. the spikes count within the bin) was also performed for the selected unit, herein 

referred to as the bin-integrated-rate (BIR). The BIR is computed in real-time using a timer 

with the time base fixed to the best BW and a counter of the number of spikes detected 

during the BW. 
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To find the proper timeframe duration that minimizes the estimation error, the stages 4 and 5 

were performed using different BWs, ranging from 1 to 60 s using 1 s steps. The computations 

for a BW of 1 s were previously executed during the best correlated unit selection, thus 

subsequent processing started at 2 s. 

6) Volume estimation. Two methods for volume estimation were developed: one for qualitatively 

estimation of different degrees of the bladder fullness and another for its quantification. One or 

both methods could be implemented in an implantable sensor depending on the intended 

application. The qualitative method will require fewer hardware resources than the quantitative 

method. Nevertheless, the latter is more suitable for monitoring applications where an accurate 

value is required, such as long-term follow-ups for clinical purposes and research studies. 

 

3.3.1.1 Qualitative volume estimation 

Three states representing a fraction of the full bladder were defined as low-volume (comfortable 

level), need-to-void (within some predefined time) and urge-to-void (risk of an imminent 

leaking). Correspondingly, three different thresholds for estimation of bladder fullness were set 

as 0.25, 0.5 and 1.0 times the maximum bladder functional capacity, which can be determined by 

cystometric measurements. The definition of the states and the fractions were set inspired by the 

actual sensations arising from the lower urinary tract in humans [32],[112]; i.e. undetectable 

bladder sensation due to a low-urine volume stocked, the filling sensation threshold, typically at 

250−300 mL, and the detection of urinary urgency, discomfort or pain on average at 

500−600 mL. 

 Next, using linear regression during the training phase, we found the BIR for the selected unit 

that best matched each of the fullness states to properly set the corresponding threshold. As 

result, we obtained three BIR values that were related to each fullness state, i.e. BIR0.25, BIR0.5, 

and BIR1.0.  

Qualitative volume estimation was performed by finding the minimal distance among the real-

time computed BIR and the stored values (BIR0.25, BIR0.5, and BIR1.0). This way each bin was 

assigned to one of the three bladder states defined above. The BW was swept using the intervals 

mentioned, and finally the length yielding the lowest qualitative estimation error (EQual) was 

chosen.  
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To compute EQual in (3-2) we used the Overall Success Rate (OSR) [113], which is the ratio of all 

correct classifications of the states over all classifications performed. The OSR is calculated by 

adding the number of bins (Bi) for which the estimated state matched the actual state and dividing 

by the total number of bins (n).  

 

              
   

 
   

 
         (3-2) 

  

3.3.1.2 Quantitative bladder volume estimation 

Several models were analyzed for quantitative volume estimation. The main constraint on model 

choice was suitability for implementation with an electronic system using a reasonable amount of 

hardware resources. We selected a regression model based on a polynomial of order N, as defined 

by the following equation,  

 

              
            (3-3) 

 

where    is the estimated volume, BIR is the bin-integrated rate defined early, and ci are the 

coefficients for the regression model. To compute the coefficients, we used the bisquare robust 

fitting method, which assigns lower weights to the outlier values during the fitting process as 

described in [114]. 

We found the optimal model order (N) by performing several simulation trials using real ENG 

recordings. A trade-off was present among the values of N, which could influence the amount of 

hardware resources to be eventually used in an electronic system, the estimation accuracy and the 

BW. To account for this trade-off we found the minimal N and the shortest BW that yielded the 

lowest estimation error.  

To that end, we defined some error metrics. Ranked in the order of relevance these metric were: 

1) the Root Mean Square Error (RMSE), also known as the standard error, during the filling 

phase (RMSEFill); 2) the RMSE during all cycle phases shown in Figure 3-2A (RMSEAll); and 3) 

the Quantization Error (RMSEQty), i.e., the systematic error resulting from the conversion of the 

continuous volume curve into bins. Both, RMSEFill and RMSEAll assess the accuracy of the 
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estimation, whereas RMSEQty also accounts for the total error. RMSEQty depends on the BW by 

which the minimal RMSEFill error is determined. The larger the BW is, the higher the RMSEQty.  

All mentioned error metrics were used for validating the proposed method for bladder monitoring 

during the real-time volume estimation phase. The RMSE in all cases was calculated by (3-4), 

where    is the actual volume of the bin i,     is the estimated bin volume value computed using 

(3) for the same bin i, and n is the total number of bins.  

 

      
         

  
   

 
       (3-4) 

 

For both, the qualitative and the quantitative volume estimation, we computed the template of the 

spike corresponding to the best-correlated class by averaging the detected spikes from the same 

class. 

All the parameters found during the training phase; i.e., the best correlated unit class along with 

its averaged waveform, the optimal BW, the resting activity threshold (baseline), the thresholds 

needed for qualitative fullness detection, the optimal polynomial order and its fitting coefficients; 

were stored to be used during the real-time monitoring phase.  

 

3.3.2 Real-time volume estimation (monitoring) 

During the real-time monitoring phase, the ENG signal was processed as follow: 1) digital 

filtering; 2) on-the-fly spike sorting, i.e., real-time detection, alignment and classification of the 

spikes; 3) computing of the BIR for the unit selected and using the optimal BW, both parameters 

found during the training phase; 4) comparing the BIR to the resting activity threshold baseline 

and if lower, setting the volume of the bin to zero; or otherwise, 5) computing of the online 

volume estimation using equation (3-3). 
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3.4 Results 

Considering the characteristics of highly invasive method used to record afferent activity from 

rats, and the relatively long duration of the filling and voiding cycles required for the training and 

testing phases, we carried out just one experiment type with the same animal to favor 

reproducibility throughout successive trials. We performed 164 recordings with 45 fibers from 40 

different animals. Out of 45 fibers, 25 were used for experiments of type A (nA = 25, 107 trials), 

seven fibers were used for experiment type B (nB = 7, 21 trials), and three fibers were used for 

experiment type C (nC = 3, 15 trials). Ten out of 45 fibers were not useful for the experiments 

because they ceased to respond few minutes after they were dissected or showed negligible or no 

correlation with volume or pressure. The mean and standard deviation of the maximal volume 

from all trials were 438 ± 159 L. 

 

3.4.1 Bladder afferent activity detection and classification 

Most of the fiber recordings exhibited one to three distinct units, but only three cases showed 

more than one unit with good correlation with the instilled volume ( > 0.6 for a BW of 1 s).  

Pressure and volume, which exhibited high non-linear correlation between them throughout the 

experiments    = 0.98, showed quite similar  values. However, the bladder volume was more 

consistently correlated with BIR than pressure when longer BWs were used (30 s and over). 

Based on conduction velocities, we inferred that out of the 25 fibers in the trials for profile (A), 

seven were classified as A-fibers (CV = 9.86 ± 1.98 m/s) and 18 were classified as C-fibers 

(CV = 1.33 ± 0.15 m/s). The average correlation coefficient () computed using a BW of 1 s for 

all A-fibers was 0.88 ± 0.1, and 0.89 ± 0.08 for all C-fibers. The one-way ANOVA test showed 

that there were no significant differences between the two groups (p > 0.05).  

 

3.4.2 Qualitative bladder volume estimation 

Examples of qualitative volume estimation and the effect of optimal binning on reducing the 

estimation error are illustrated in Figure 3-4. Figure 3-4B and Figure 3-4C depict the volume 
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quantized into bins of 1 s and 30 s, respectively. The BIR for each BW was computed as 

described in section 3.3, and the reference volume curve used for comparison was obtained by 

quantizing the actual volume infused into the three states defined earlier. These states were 

denoted, for a shorter representation, by L, M and H (Low, Medium, and High volume). As can 

be seen in Figure 3-4B, for a BW of 1 s, there are many undesirable transitions between the 

states. This was a criterion for exclusion. The BW of 1 s (Figure 3-4B) produced an estimation 

error (EQual) of 13.7%, whereas the BW of 30 s (Figure 3-4C) produced an EQual of 0%. Similar 

error-free qualitative estimations were achieved in 50% of all trials.  

The confusion matrices depicted in Figure 3-5 show the average results of the state detection 

from all measurement cycles performed for the experiments type A during the training (Figure 

3-5A) and testing phases (Figure 3-5B). The columns (estimated states) were normalized using 

the actual number of positive predictions for each state. Thus, the diagonal values show the 

sensitivity for each estimated state (            ); i.e. the True Positives Rate (TPR) [113]. The 

values outside the diagonal show the corresponding percentage of the states misclassification.  

The EQual computed for A-fibers was 2.6 ± 3.9 % and 1.8 ± 3.1 % for C-fibers. There was no 

statistically significant difference between the two groups (p > 0.05). The combined EQual 

regardless of the fiber type was 2.2 ± 3.5 % (n = 107) and the average of the optimal BW was 

37.4 ± 11.8 s. 

For validating our method during the monitoring phase, simulations of qualitative volume 

estimation were performed by emulating real-time reading and processing of the input data. To 

this end, three consecutive cycles of bladder filling and emptying were carried out with a resting 

interval among cycles. Figure 3-6 shows the real-time-like qualitative estimation. The first cycle 

(not shown in the figure) was used for training and the following two cycles were used for 

emulation of real-time monitoring using the parameters determined during the training cycle. 

Depending on the bladder compliance, which determines the maximum volume capacity, the total 

recording time, including the training cycle, could last 40−50 min. Despite the difficult 

conditions for the dissected filaments over the long course of the experiments, which hampered 

reproducibility over time, the EQual was still only 9.5 ± 4.2% (n = 67). 
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Figure 3-4 : Qualitative estimation of bladder volume (Ex. from animal No. 21, C-fiber). A) Pressure, 

volume and ENG recorded during a filling cystometry. The effect of the optimal BW selection is shown 

by a comparison of the estimation errors achieved in B) 13.7% for 1 s and C) 0% for 30 s. (Volume*: 

quantized volume; L: Low, M: Medium, H: High, represent the bladder fullness states, see text). 
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Figure 3-5: Confusion matrices with average results in percentage from all trials of the experiments type A 

during the training phase (A) and during the real-time-like monitoring phase (B). 
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Figure 3-6: Qualitative volume estimation for simulated real-time data processing (Ex. from animal No. 

25, C-fiber). The second and third measurement cycles are depicted. The first cycle was used in the 

learning phase. The qualitative estimation error for depicted cycles was 10.3%. 
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3.4.3 Quantitative bladder volume estimation 

Using the ENG from the training phase, a fitting process was executed to determine the 

coefficients needed for the regression model implemented by (3), as well as the best BWs for 

polynomial orders ranging from 2 to 6. We employed data from every fiber that exhibited an 

acceptable correlation coefficient ( > 0.6, nA = 25, 107 trials), regardless of its classification as 

an A or C fiber. The value of  > 0.6 was set so that the mean of the estimation RMSEall error 

was under 10% (9.2 ± 5.5%). 

An optimal binning process, i.e. proper timeframe selection, allowed us to find the BW yielding 

the minimal estimation error during the filling phase (RMSEFill). We chose this error as a 

reference because it had the greatest impact on the estimation error for all phases (RMSEAll), in 

turn accounting for all errors. Figure 3-7 shows an example of quantitative volume estimation 

using two different BWs. In Figure 3-7A, a BW of 1 s produced an RMSEAll of 13%. This error 

was reduced to 4.2% by using a BW of 35 s, as shown in Figure 3-7B. This result demonstrates 

that at any moment it is possible to estimate the quantized volume with enough accuracy within a 

timeframe of 35 s.  

Estimation with the minimal BW of 1 s (Figure 3-7A) allowed us to determine the time at which 

afferent activity started to increase once the sensitivity threshold was reached (tthr). The volume at 

this point (Vthr) is the minimum detectable volume for the minimum BW employed (1 s). The 

value Vthr affects the accuracy of estimation during the filling phase. A higher sensitivity 

threshold means that volumes lower than Vthr will be estimated as zero for a longer period during 

the beginning of the filling phase. We computed Vthr as the percentage of the maximum volume 

reached for all recorded fibers. The A-fibers yielded a Vthr of 14.2 ± 11%, and the C-fibers 

yielded a Vthr of 13.3 ± 10.2%. There was no statistically significant difference between the two 

fiber types. As shown in Figure 3-7B, the estimation after the optimal binning process reduced 

the error, despite the high sensitivity thresholds displayed by some fibers. 
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Figure 3-7: Quantitative volume estimation by the proposed method (Ex. from animal No. 18, A-fiber). 

Comparative results for BW selection are shown. A) Estimation using a BW of 1 s yields an RMSEall of 

50.2 L (13%) and an RMSEFill (t > tthr) of 58 L (15%). B) Estimation using the optimal BW of 35 s 

produced an RMSEall of 16.2 L (4.2%) and an RMSEFill (t > tthr) of 5.2 µL (1.4%). 

In most of the trials, the estimation was better above the sensitivity threshold point (tthr, Vthr). The 

RMSEFill_(t>tthr) was 2.2 ± 1.1% for the A-fibers and 3.5 ± 2.2% for the C-fibers. These 
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differences were statistically significant (p = 0.049) for the RMSEFill computed for t>tthr. 

However, the significant difference between the two types of fibers tested for RMSEAll vanished 

after the optimal binning process was performed; for A-fibers the RMSEall was 3.6 ± 1.2 % and 

for C-fibers was 4.0 ± 1.8 % (p > 0.05). 

An example of simulation of real-time-like volume estimation is shown in  

Figure 3-8. The first measurement cycle was used as a training phase, followed by two 

consecutive cycles where the volume was computed from the parameters found previously. The 

optimal BW for this fiber was 47 s, using a regression model of order 6. These estimation results 

correspond to an A-fiber recording, which exhibit a low sensitivity threshold (Vthr = 37 L, 3.7% 

of Vmax). The fitting error of the first cycle and the estimation errors of the following two cycles 

were very low, as shown by the RMSEall of each cycle: 2%, 3.9% and 4.1%, respectively. 

The coefficient of determination R
2
 was computed to assess the overall goodness-of-fit of each 

model order. In Figure 3-9A the averaged value and the standard deviation from all fiber 

recordings are shown. The Akaike’s Information Criterion (AIC) [115], shown in Figure 3-9B, 

was used to measure the relative goodness of fit considering the number of parameters in the 

model. In both cases the model of order 6 yielded the best result maximizing R
2
 and minimizing 

AIC. Higher orders (N > 6) produced over-fitting errors and were discarded for subsequent tests.  

The RMSEall computed for all fibers during each optimal binning process decreased exponentially 

with the BW, as shown in Figure 3-10. For values above a given BW (~16 s), the RMSEall 

decreased very slowly, but not monotonically, regardless of the regression model order. If 

considered acceptable, BWs lower than the length yielding the minimum error can be selected.  

The oscillations in plotted errors are mainly due to the time within the bin at which the volume is 

voided.  
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Figure 3-8: Quantitative volume estimation in a simulated real-time data processing experiments (Ex. 

form animal No. 31, A fiber). The first cycle was used as a training period to estimate the bladder 

volume in two consecutives filling and voiding cycles. The resting activity threshold, the optimal BW 

(47 s) and a polynomial order (N = 6) were determined. The RMSEall was 2%, 3.9% and 4.1% for each of 

the three cycles, respectively. 

 

Compilations of the fitting and estimation error means and standard deviations for all fibers are 

shown in Table 3-1 using the regression models for N = 6. 

 

Table 3-1: RMS Errors (%) from experiments Type A with model order N of 6 

 

Best  

Bin-width 

Filling  

phase 

Filling phase 

(t > tthr) 

All  

phases 

Quantization  

error 

Fitting 36.3 ± 10.1 4.4 ± 2.0 3.1 ± 2.0 3.9 ± 1.6 9.1 ± 3.0 

Estimation 36.8 ± 7.9 6.6 ± 4.7 5.8 ± 5.1 5.8 ± 3.1 10.0 ± 2.7 
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Figure 3-9: Assessment of the model goodness of fit. A) Average coefficient of determination (R
2
), and B) 

Average Akaike’s Information Criterion (AIC) for all fibers, both computed using the best BW for each 

model order. 
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Figure 3-10: Effect of bin-width and polynomial order on the values of RMSEall.  Both parameters were 

swept from 1 s to 60 s and from N = 2 to 6, respectively. The averaged values (solid lines) ± standard 

deviation (dashed lines) computed from all fibers are shown. 
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In Figure 3-11A it is shown how the estimation errors decrease as the polynomial order increases 

to N = 5. For a higher order (N = 6), the estimation errors decrease slightly, except for the 

RMSEFill(t>tthr). On the other hand, Figure 3-11B shows that the averaged values for the best BW 

for each order drop linearly with a steep slope.  
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Figure 3-11 Results for volume estimation from all ENG recordings using profile A depicted in Figure 3-2 

(nA = 25, 107 trials). A) Estimation RMSEs for different model order.  B) The mean and standard 

deviation of the best BW showing a steep linear drop with increasing polynomial order. 
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Considering all the above compilations, we chose an order 6 as the optimal value for real-time 

volume monitoring. This offered a reasonable trade-off between accuracy and BW for both fiber 

types. 

 

3.4.4 Results from other test runs  

In the exploratory experiments performed with profile (B), shown in Figure 3-2, the parameters 

gathered during the filling phase were used to estimate the volume during passive withdrawing 

performed using a second infusion pump. Figure 3-12 depicts an example of this type of 

experiment. In this example, we observed a similar behavior during the filling and withdrawing 

phases, which agrees with the low computed errors: RMSEFill = 2.1% (fitting error) and 

RMSEwithdraw = 3.1% (estimation error). However, in other trials, the estimation during the 

withdrawing phase was most of the time below the expected value, this way showing a hysteretic 

response of the bladder mechanoreceptors. Compilation of the means and the standard deviations 

of all the fibers (nB = 7) yielded the following estimation errors: RMSEFill  = 10.3 ± 6.9% and 

RMSEwithdrawn  = 14.0± 6.3%. 

The last type of exploratory experiments was performed with profile (C), as shown in Figure 3-2. 

These experiments allowed us to assess the tonic response of the bladder mechanoreceptors 

during the extended isovolumetric phase at different tonicity levels for the detrusor muscle. An 

example is shown in Figure 3-13. First, we performed a training cycle that filled the bladder to 

the maximum volume, which was the value reached at Pves = 30 cm H2O (A). Next, we executed 

four estimation cycles filling to 25%, 50%, 75% and 100% of the maximum volume (Figure 

3-13B). At the end of each filling phase, the infused saline was kept for 3 min. The estimation 

errors during the isovolumetric phase (RMSEiso) in this example were 12.8%, 4.0%, 0.1% and 

3.1% for the various infused volumes, respectively.  

It is worth nothing that estimations for 25% fullness were not always possible because some C-

fibers exhibited a sensitivity threshold (Vthr) higher than this value. The estimation errors from 

fibers with lower sensitivity thresholds were low at all fullness levels during the isovolumetric 

phase: 4.6 ± 3.7%, nC = 3, 15 trials. 
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Figure 3-12: Volume estimation during passive saline withdrawing using profile B shown in Figure 3-2 

(Ex. from animal No. 35, C-fiber). The resting and filling phase were used as learning periods to estimate 

volume in the withdrawing phase. The RMSEs were 2.1%, 4.1% and 3.1% for the filling, holding and 

withdrawing phases, respectively. 
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Figure 3-13: Volume estimation during the tonic response of the bladder afferent activity performed 

during five filling–holding–voiding cycles using profile C (Ex. from animal No. 40, C-fiber). A) The first 

cycle was used to compute the optimal bin-width (53 s), the polynomial order (N = 6) and the resting 

activity threshold. B) The isovolumetric measurements performed during the 4 holding phases yielded 

RMSEiso values of 12.8%, 4.0%, 0.1% and 3.1%, respectively. 
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3.4.5 Bladder pressure estimation 

Considering that the pressure and the volume exhibited a high nonlinear correlation between 

them, as evidenced by the average Spearman’s rank coefficient (       ), our method was also 

tested for estimating bladder pressure. To this end it was important to consider that the dynamic 

responses of the bladder are different for volume and pressure. For instance, in regards to the 

time-constant, the values for volume are always much higher than for pressure. Therefore, shorter 

BWs were required for a suitable tracking of rapid changes in bladder pressure.  

Most of the pressure measurements exhibited small periodic oscillations during the filling phase 

produced by spontaneous contractions, despite the low filling rate (0.08 mL/min) used to avoid 

induced overactivity. We exploited these oscillations to test Pves estimation for rapid pressure 

changes. For example, Figure 3-14 shows that for a BW of 3 s, the Pves estimation tracks the 

small contractions with an RMSEFill of 7% and an RMSEAll of 6.9%. These values decreased to 

5.1% (1.7 cmH20) when the Pves was above 10 cmH2O. Furthermore, it was possible to detect 

local peaks for each of the contractions.  

For longer BWs, the error decreased exponentially, similar to Figure 3-10. However, for BWs 

greater than half of the oscillation’s period (i.e., the corresponding Nyquist frequency), it is no 

longer possible to track the relatively rapid Pves changes. In the example shown in Figure 3-14, 

the maximum allowable BW for following the small Pves changes is 3 s. However, if small 

variations are not relevant for the intended application, one can improve the estimation error by 

finding an optimal BW that properly tracks the pressure changes of interest. In Figure 3-14, the 

lowest estimation errors were achieved for a BW of 47 s (RMSEFill  = 5%, RMSEAll  = 5.2%). 

Table 3-2 shows the results for Pves estimation with the optimal BW using a regression model 

with an order of N = 6 computed from all the fiber recordings (nA = 25, 107 trials). The RMSEAll 

for A-fibers was 6.2 ± 1.6 % and for C-fibers was 6.0 ± 2.5 %. Similar to volume estimation, no 

significant difference was found (p > 0.05). 
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Figure 3-14: Intravesical pressure (Pves) estimation during passive saline filling using profile (A) (Ex. from 

animal No. 31, A- fiber). This estimation tracks small spontaneous bladder contractions with low errors; 

RMSEFill = 7%, RMSEAll = 6.9% and RMSE for Pves>10cmH2O of 5% (1.7cmH20). 

 

Table 3-2: RMS Errors (%) for bladder Pressure estimation by the best BW 

 

Best  

Bin-width 

Filling  

phase 

Filling phase 

(t > tthr) 

All  

phases 

Quantization  

error 

Fitting 36.9 ± 10.9 6.7 ± 2.8 4.1 ± 2.7 6.1 ± 2.3 9.8 ± 3.4 

Estimation 36.7 ± 7.1 9.2 ± 4.4 9.7 ± 4.0 9.3 ± 2.6 9.6 ± 2.4 

 

 

3.5 Discussion 

In this study, we demonstrated the feasibility of real-time bladder volume monitoring from 

afferent activity steaming from bladder mechanoreceptors.  
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To propose our approach we considered past studies suggesting the presence of volume specific 

mechanoreceptors in the bladder inner mucosa [30] and the relatively slow dynamic response of 

the bladder to filling [64]. Our choice of using the bladder mechanoreceptors as primary sensors 

agrees with a previous study that favored the use of biopotentials from natural sensors as sensory 

feedback for neuroprosthetic devices [1]. 

We did not find a statistically significant difference between the computed correlation 

coefficients for myelinated A-fibers and unmyelinated C-fibers, which agrees with conclusions 

reported in [110].  

The high Spearman’s coefficient values obtained after executing the binning process to find the 

optimal BW, which in several trials yielded the maximum value ( = 1) for relatively small BWs, 

may suggest that we recorded afferent activity from units that specifically responded to bladder 

volume. It is possible that the volume information is encoded as an average sustained activity 

over a given timeframe.  

Some of the dissected fibers identified by electrical stimulation as bladder afferent units did not 

display a correlation with bladder volume. Recordings from other fibers displayed high 

sensitivity thresholds during the filling phase, which reduced the estimation accuracy. Such 

behavior agrees with the results of published studies that show that afferent activity patterns and 

sensitivity thresholds depend on a variety of factors; e.g., the site where axons arise from the 

bladder, the female estrous cycle, the chemical properties of the infused liquid [32],[33] and the 

presence of a spinal cord injury [110], among other factors.  

The three qualitative states defined regarding the urgency level allow proper urinary urgency 

warnings to be issued for emptying the bladder. These states will be sufficient to feed back 

applications that do not require accurate or closely approximated values for bladder volume. Our 

approach was inspired by the actual sensations emanated from the lower urinary tract. We are not 

aware of the amount of volume stocked in the bladder up to the moment it approaches the filling 

sensation threshold, typically 250−300 mL in humans. However, once this point is reached, it is 

possible to detect different urinary urgency degrees and also discomfort or pain (on average at 

500−600 mL), allowing us to adequately determine when it is time to pass urine [32],[112].  

Using qualitative estimation, we could detect these three states of bladder fullness in 100% of 

cases in which an afferent nerve fiber exhibiting an acceptable value for Spearman’s correlation 
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coefficient ( > 0.6) was identified. As shown in the confusion matrix, the average classification 

accuracy of the low state (L) during the training and estimation phases was very accurate and the 

high volume state (H) was predicted in all the experiments with a sensitivity of 100%. The 

accuracy classification for the in-between state (M) was considered good taking into account the 

difficulties to ensure reproducibility of the dissected fibers throughout long experiments.  In most 

of the trials, the errors appeared as estimated state-transitions leading into or lagging the actual 

transition time for a BW period, eventually reaching the actual state. This estimation method 

advantageously requires minimal resources for its electronic implementation. 

The volume estimation results achieved with the quantitative method were accurate and 

reproducible enough for chronic monitoring purposes. The errors achieved for estimating the 

volume during resting, filling and voiding phases surpassed our most optimistic expectations. The 

mean and standard deviation value achieved with the regression model of RMSEall was 5.8 ± 

3.1%, which is equivalent to as much as 25.4 ± 13.5 L (            ). This is difficult to 

attain even with standard instrumentation other than precision weighing balances used for 

calculating volume gravimetrically. If the quantization error (10.0 ± 2.7%) is added to account for 

a special case where the instantaneous volume is required rather than the mean value during the 

last seconds, the estimation is still considered fairly good, in view of the inherent difficulties of 

such measurements. 

The estimation methods proposed do not require a specific fiber type, but rather a fiber displaying 

good correlation with bladder volume and preferably low sensitivity threshold.  

Several studies have discussed whether it is possible to detect bladder tonic responses related to 

fullness. For instance, in [88], the authors conclude that for high values of Pves it is possible, 

whereas in [87], the authors favor detection of phasic responses. The isovolumetric measurement 

trials performed using profile (C), show that we can accurately quantify different levels of tonic 

responses produced by the bladder mechanoreceptors, especially for volumes beyond the 

sensitivity threshold. Therefore, our method is able to detect both the phasic responses during 

gradual filling and tonic responses during the isovolumetric phase.  

The volume estimation performed in the passive withdrawing phase in the experiments 

performed using profile (B) shown that bladder mechanoreceptors are capable of measuring 

volume during slow filling and slow voiding phases. On the other hand, comparison of the errors 
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for volume and pressure compiled in Table 3-1 and Table 3-2, respectively, show that estimation 

was more accurate for volume than for pressure, which once more suggest the existence of 

mechanoreceptors that specifically respond to changes in bladder volume. Further experiments, 

which are beyond the scope of this study, should be performed to ascertain, conclusively, this 

possibility. 

We are presently working toward the electronic implementation of the method presented in this 

paper. A challenging task is the unsupervised real-time detection, classification and decoding of 

spikes produced by the afferent units identified during the training phase. We are optimizing new 

detection and discrimination approaches to perform these tasks in an implantable electronic 

system. Such a system should show a low-power consumption to be feasible [116],[117]. 

Previous studies have suggested that electronic implementation of the spike sorting process will 

be feasible [35]. It is worth noting that most of the existing methods are not well adapted to run 

unsupervised in real-time. Those that are rely on complex algorithms that represent a heavy 

burden even for powerful personal computers [111]. Once the electronic device is ready, chronic 

experiments will be carried out in larger animal models.  

 

3.6 Conclusion 

We have demonstrated that it is possible to estimate bladder volume from mechanoreceptor 

activity recorded at specific spinal roots that convey signals from bladder afferent nerves. The 

proposed method is reproducible and accurate for qualitative and quantitative determination of 

bladder volume when the recorded afferent activity exhibits an acceptable Spearman’s correlation 

coefficient. We have also shown that both phasic and tonic responses related to bladder activity 

can be detected.  
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CHAPTER 4 DEDICATED ON-CHIP PROCESSOR FOR 

SENSING THE BLADDER VOLUME THROUGH AFFERENT 

NEURAL PATHWAYS   

 

In this chapter, the paper that describes the design and validation tests of a dedicated digital 

signal processor (DSP) that execute on a single chip the bladder volume decoding method 

described and validated in the preceding chapter is presented. To perform the decoding method, 

the DSP detects and discriminates the action potentials of the recorded signal in real-time. This 

process is also known as on-the-fly spike sorting. Once the neural source is identified, the DSP 

runs the decoding method depending on the output mode. It is shown, for the first time, that is 

possible to perform both the on-the-fly spike sorting and the neural decoding task entirely on-

chip without any external support.      

The general architecture and workflow showing the operation mode of the DSP is presented first 

for a global understanding of the system function. Afterward, the architecture and operation of 

each of the processing blocks are described in separate sections. At the beginning of each of these 

sections, the problems and challenges to be overcome, as well as the alternatives that can meet 

the system requirements, are discussed, and the most suitable solution for implementing the 

digital electronic circuits is chosen. The following signal processing blocks are described: the 

spike detector block that detects a spike over the background noise using a non-linear energy 

estimator and an adaptable threshold circuits; the spike classification block that determines the 

class of each detected spike; the spike-rate integrator that integrates the spike-event frequency 

over a given time-window; and finally, the volume decoding block that implements both volume 

estimation methods with optimally designed circuits. The validation tests for each of these 

modules are presented along with illustrations of the representative results for the spike detection, 

classification and volume estimation. These tests used realistic synthetic signals and real signals 

from neural recordings during the acute experiments with animal models presented in Chapter 3. 

The good performance results for each of the circuits and the whole DSP system during these 

validation tests confirmed the electronic feasibility of the implantable bladder sensor that deploys 

the proposed method. Therefore, our hypothesis H2 was validated.  
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The DSP of the bladder sensor presented in this chapter will be a part of a neuroprosthetic device 

researched in the Polystim Neurotechnologies Laboratory. As shown in Figure 4-1, the bladder 

sensor provides the feedback required to implement a closed-loop system that can perform 

conditional neurostimulation depending on the bladder volume or pressure. 

The DSP will be integrated later with a custom hybrid circuit that performs the analog signal 

conditioning (amplification, filtering and analog-to-digital conversion) and then packaged in an 

implantable device together with the neurostimulator control unit, the stimulator driver that runs 

the neurostimulation approach chosen, and the wireless data/power interface, which recovers 

energy and exchanges data in both directions with the external unit. This latter is intended for the 

following uses: user interface during the normal operation of the neuroprosthesis, wireless 

interface during the settings loading in the implanted device, and the interface with an external 

PC during the training phase. 
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Figure 4-1: Schematic of the general architecture of the Polystim neuroprosthetic device intended to 

restore the storing and voiding functions of the urinary bladder in paraplegic patients.  
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Abstract— In this paper, we present a dedicated digital signal processor (DSP) capable of 

monitoring the urinary bladder volume through afferent neural pathways. The DSP carries out 

real-time detection and can discriminate extracellular action potentials, also known as on-the-fly 

spike sorting. Next, the DSP performs a decoding method to estimate either three qualitative 

levels of fullness or the bladder volume value, depending on the selected output mode. The 

proposed DSP was tested using both realistic synthetic signals with a known ground-truth, and 

real signals from bladder afferent nerves recorded during acute experiments with animal models. 

The spike sorting processing circuit yielded an average accuracy of 92% using signals with 

highly correlated spike waveforms and low signal-to-noise ratios. The volume estimation circuits, 

tested with real signals, reproduced accuracies achieved by offline simulations in Matlab, i.e., 

94% and 97% for quantitative and qualitative estimations, respectively. To assess feasibility, the 

DSP was deployed in the Actel FPGA Igloo AGL1000V2, which showed a power consumption 

of 0.5 mW and a latency of 2.1 ms at a 333 kHz core frequency. These performance results 

demonstrate that an implantable bladder sensor that perform the detection, discrimination and 

decoding of afferent neural activity is feasible. 

 

Index Terms—Biomedical transducers, Biomedical monitoring, Neural prosthesis, Biomedical 

signal processing, Bladder volume. 
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4.1 Introduction 

Neuroprosthetic implants can be used to restore urinary functions in patients who suffer from 

spinal cord injury (SCI) or neurological conditions that affect sensations and the voluntary 

control of the bladder necessary to store and void urine properly. Millions of people around the 

world suffer from bladder dysfunction [118]. Untreated urinary dysfunctions can lead to serious 

health deterioration. For instance, urinary retention can result in renal failure, and incontinence 

can severely affect the quality of life [25].  

The overall effectiveness and safety of an implantable neuroprosthesis can be improved by 

sensing the bladder volume and pressure to adapt the functional electrical stimulation (FES) to 

the ongoing bladder state [1]. This approach, known as conditional stimulation, requires feedback 

to create a closed-loop system [8]. To the best of our knowledge, none of the implants currently 

used in clinical practice to treat urinary dysfunction are capable of performing conditional 

stimulation. 

After a comprehensive study to choose the best method for monitoring the bladder activity, we 

concluded that natural sensors, rather than artificial sensors, are best suited for chronic 

applications [36]. We have proposed a new method to sense the bladder volume and pressure by 

using the afferent neural activity stemming from bladder mechanoreceptors that respond to 

stretching  during bladder filling and voiding [37]. In this paper, we show only the results for the 

bladder volume. The bladder pressure estimation uses the same method and hardware 

implementation but with different parameters.  The measurement method was specially designed 

to be deployed in an electronic sensor that provides feedback to an implantable neuroprosthetic 

device that is intended to restore autonomously the bladder functions.  Such a sensor should be 

able to record, detect and decode sensory neural activity in real-time, with low-power 

consumption. 

Neural signal processing begins with a front-end recording stage that amplifies microvolt level 

signals and filters out undesired background noise and local field potentials (LFP). The signal 

contains extracellular action potentials, known as spikes, from different neurons. Subsequently, 

the spikes should be detected and classified into different classes, a process known as spike 

sorting, to identify the activity source.  
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Several authors have previously published results showing continuous improvement on the 

performance of the front-end processing stage using Application Specific Integrated Circuits 

(ASICs) [119-123]. These ASICs envisaged different applications requiring Brain-Computer 

Interfaces (BCIs), and other interfaces with the peripheral neural system, that can record signals 

using different types of Multi-Electrodes Arrays (MEAs) [124],[94].  

Lately, an increasing number of authors have incorporated on-chip preprocessing, which was 

usually performed at the back-end stage [116],[125-134].  The primary modifications introduced 

were that the front-end preprocessing was extended to include the on-chip spike detection, 

features extraction, and wireless transmission of the isolated spike, the spike features, or both. 

However, we found few works that tackled the on-chip classification of the detected spikes in 

real-time [96],[135],[136]. It is worth mentioning that in some of the works that reported spike 

sorting capability, only spike features extraction with off-chip classification using a personal 

computer (PC) were realized. We did not find any work reporting on-chip, real-time neural signal 

decoding. However, both system capabilities, i.e., the spike sorting and sensory decoding, are 

essential for the standalone operation we are looking for a bladder neuroprosthetic implant that 

do not require the transmission of any data to an external unit nor the reception of corresponding 

commands to function properly.  

This may be because most of the existing methods for full spike-sorting and sensory activity 

decoding are not well adapted to run unsupervised in real-time [137]. Those that are rely on 

complex algorithms, which represent a heavy burden, even for powerful PCs. In addition, devices 

implanted on the cortex must comply with a maximum allowed power density to avoid tissue 

damage. The upper limit assumed for some authors was 80 mW/cm
2
, initially reported in [138]. 

However, there is not enough research to accurately establish that this is the upper limit in the 

Central Neural System (CNS) [139]. Most of the long-term studies have shown that a 2°C 

temperature increase of 40 mW/cm
2
 heat flux, with 1.6 mW/g of the specific absorption rate 

(SAR, a measure of heating produced by the electromagnetic field in tissue), is suitable for most 

tissues in the body. 

 We envisage a standalone bladder sensor that also includes a full back-end stage. The sensor will 

receive the initial settings and send back to the external unit only the signal conveying 

information about bladder fullness state (low, medium, or high volume/pressure) and, if required, 
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the volume and pressure values. To this end, both the front- and back-end stages need to be fully 

deployed in a device that can be conveniently implanted in the trunk near the bladder.   

The feasibility of the analog front-end stage has been well demonstrated, including research 

performed by members of our research group [123]. We have performed this research toward the 

implementation of a standalone bladder sensor (BS) to assess the feasibility of an implantable 

back-end system performing the full spike-sorting process and the sensory signal decoding in 

real-time with low-power consumption. To the best of our knowledge, this will be the first on-

chip system performing all these tasks autonomously. 

 

4.2 Bladder sensor deployment 

Bladder sensor deployment using an analog back-end processing stage would be highly complex 

with very limited functional capabilities; therefore, we have chosen a digital signal processing 

(DSP) approach. The available choices to implement our measurement method are DSP 

processors, microcontrollers (MCUs), programmable logic, and ASICs.   

We have to meet real-time and power consumption constraints and, when needed, improve the 

system in a fast and cost-effective way. General purpose DSPs and MCUs provide great 

flexibility but require the large hardware architectures typical of these programmable devices. In 

contrast, ASICs offer the lowest power consumption due to an optimal use of resources but do 

not allow fast and cost-effective changes.  To account for this trade-off, we chose to deploy our 

system in a low-power Field Programmable Gate Array (FPGA). This technology enables a more 

frugal deployment of our custom-logic system, but, unlike ASICs, FPGA balances flexibility and 

the ability to accommodate design changes during the ongoing R&D process. In addition, the 

custom-logic approach ensures high reliability and fast response times [140].  

The back-end DSP proposed for the BS uses the modular architecture depicted in Figure 4-2A, 

which allows for optimal maintenance times and the possible reuse of some of the inner modules 

in other applications. The flowchart in Figure 4-2B shows the main functions performed by the 

DSP in real-time, which are described in the following sections. 
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4.2.1 Overall system description 

The volume measurement method deployed by the DSP need an input signal from one recording 

channel that contains at least one neural unit with action potentials from bladder 

mechanoreceptors exhibiting a Spearman’s rank correlation coefficient of 0.6 or better [37]. All 

of the required parameters for real-time operation of the DSP are determined in an offline training 

phase using custom-written software in Matlab, Mathwork Inc., MA, USA.  During the training 

phase, a spike sorting process is performed to identify all of the units present on the recorded 

channel and subsequently spikes waveform templates are computed. The sorted unit exhibiting 

the best neural activity correlation with the bladder volume is selected for subsequent processing. 

Next, the baseline of the mechanoreceptors resting activity is determined and an optimal binning 

process allows finding the binwidth (tbw) that yields the lowest volume estimation error. Finally, 

the parameters needed for quantitative and qualitative volume estimations are computed and 

transferred to the DSP. The DSP can detect in real-time performance deterioration to request 

recalculation of the parameters when needed. 

The DSP can operate in two modes: a spike-capture mode used during the training phase, and a 

processing mode for real-time estimation of the bladder volume or pressure.  The whole DSP is 

driven by the implanted Neurostimulator Control Unit (NCU) and uses the same power supply as 

the implanted device. The NCU starts the DSP and sends all of the initialization settings required 

for real-time standalone operation. It is also accountable for relaying data, such as the captured 

action potentials from the DSP during the training phase, the performance warnings, and the 

output signals, to the external unit. This latter is intended for the following uses: user interface 

during the normal operation of the neuroprosthesis, wireless interface during the settings loading 

in the DSP through the NCU, and the interface with an external PC during the training phase. 

The amplified, band-pass filtered and digitized neural signal is continuously fed to the Spike 

Detector Block (SDB).  This signal contains the action potentials (spikes) from all of the neurons 

close to the selected microelectrode tip (channel). To avoid the need for an input buffer and to 

provide fast response times, the input signal should be processed within the detected spike time-

window of 2.5 ms. Therefore, we have chosen 2.5 ms as the system response-time constraint. 
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Figure 4-2: Bladder volume sensor. A) DSP system architecture. B) Flowchart of the DSP main functions. 
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The SDB improves the signal-to-noise ratio (SNR) and adaptively adjusts the detection threshold 

for a robust detection of the spike over the remaining background noise using a non-linear energy 

estimator and a moving averaging filter, both described in section 4.2.2.B. The spike is then 

isolated and aligned using its maximum absolute value within a window of fixed duration. The 

aligned spike is fed to the next processing block or relayed through the NCU to the external unit 

during the training phase. 

The Spike Classifier Block (SCB) can discriminate up to seven different spike classes (C1  C7) 

by computing the weighted distance to the stored templates of each class. The number of spikes 

classes was chosen considering the foreseen number of neural units that can be recorded in the 

experiments of our ongoing research and also the reusability of this block in other applications 

that implement multivariate (multiunit) estimators. One of the eight SCB binary outputs is set to 

signal the detection of the corresponding spike class. Class 1 (C1) is reserved for the spikes 

stemming from the neuron that was identified during the training phase as the unit conveying 

suitable sensory information from the bladder.  

The SCB can detect an eventual deterioration in classification quality due to changes in the 

recorded neural signal over time. To this end, class 0 (C0) is reserved for pre-classified spikes 

with a distance exceeding the minimal quality criteria set for each class. If the number of spikes 

reclassified as C0 during a given period (e.g., 60 s) is greater than an established limit, then the 

flag ‘Spike Detection Failed’ is set and the NCU relays the warning to the external unit. 

Subsequent signal processing would be aborted until the problem is addressed. The solution 

could be as simple as changing one parameter, e.g., varying the step size used by the adaptive 

threshold detector; otherwise, a new training process should provide adjusted settings to match 

the new conditions. 

The bladder volume (or pressure) measurement method deployed by this DSP is based on 

processing neural information using time-windows, hereafter referred to as bins, of a 

programmable duration (bin-width).  

The Spike Rate Integrator Block (SRI) integrates (counts) the number of the spikes of the 

selected class (C1) during the programmed bin-width. In the current application, only one SRI for 

class C1 is required to feed the next block with the Bin Integrated Rate (BIRC1). Up to six 
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additional counters could eventually be implemented in applications with a decoding method that 

requires information from more than one neuron. 

The last signal processing stage is performed by the Bladder Volume Decoder Block (BVD). 

This block can operate in three modes: a qualitative volume estimation output (Mode-1), a 

quantitative volume estimation output (Mode-2), and a combined mode, in which both estimated 

volume outputs are computed (Mode-3). The qualitative and quantitative methods were fully 

described and demonstrated in a previous study conducted by our group [37]. 

In Mode-1 the BVD outputs three qualitative values of bladder fullness that can be used to trigger 

the neurostimulation or to warn the patient. These binary outputs can indicate low-volume 

(comfortable level), medium-level (need- to-void within some predefined time), and a full-level 

(urge to void or a risk of imminent leaking). Correspondingly, three different thresholds can be 

set as needed. We set the thresholds to a quarter, a half and full bladder capacity, as previously 

determined by cystometric measurements. The definition of the states and the corresponding 

fractions were set based on the sensations arising from the lower urinary tract in humans 

[37],[112], i.e., an undetectable bladder sensation due to a low-urine volume stocked, the filling 

sensation threshold typically at 250−300 mL, and the detection of urinary urgency, discomfort or 

pain, which occurs, on average, at 500−600 mL. 

In Mode-2, the BVD computes the bladder volume using a regression model of programmable 

order, with coefficients computed offline during the training phase. Mode-2 is also suitable for 

feedback purposes and for monitoring applications where an accurate value is required, such as 

long-term follow-ups for clinical purposes and research studies. 

The Control Logic Block (CLB), implemented by a Finite State Machine (FSM), drives the signal 

processing workflow and receives the settings through the NCU.  

The NCU sends the initial Reset and can set the DSP in an Idle state for maximum power 

savings. The design and implementation of the NCU, which will control the entire 

neuroprosthetic implant (including the BS and stimulator), wireless data transmission and power 

supply recovery from an external source, are beyond the scope of this research. 

The optimal number of bits required for accurate fixed-point arithmetic operations was chosen as 

32 bits based on simulations performed in Matlab/Simulink using the fixed-point toolbox. 
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4.2.2 Spike Detector Block 

Several spike detection methods used in previous studies were analyzed for use in the SDB. The 

considerations included the effectiveness, the operational performance in real-time, and the 

complexity of the custom-logic required to deploy each method. Two methods stood out with the 

given design criteria: Absolute Thresholding Detection (ATD) [111],[141], which is applied 

directly on the raw but filtered signal, and the Teager (Nonlinear) Energy Operator (indistinctly 

termed TEO or NEO) [127],[142-147], which preprocesses the signal before the spike detection 

by using simple thresholding.  

Based on published results and considering our own tests outcomes, we chose NEO signal 

preprocessing to improve the robustness of the spike detection in a non-stationary, noisy 

environment, such as those which this application should withstand. NEO is a simple but 

effective operator introduced for digital signal processing by Kaiser et al. [148] that estimates the 

instantaneous energy of the signal. NEO emphasizes the spike over the background noise, thereby 

significantly increasing the SNR.  

In SDB deployment we used a modified equation (4-1) of the original NEO that we termed 

kNEO, where the constant k was chosen as 2.0. In (4-1),         is the estimated instantaneous 

energy and      is the input neural signal at the n-sample. This modification further improves the 

SNR of the spikes in the lower frequencies and consequently the probability of their detection is 

increased. 

 

                               (4-1) 

 

The background noise level of the recorded signal can vary due to interference from other signal 

sources in the body, external sources, or other factors [111]. Therefore, a robust spike detector 

should be able to adapt the detection threshold depending on the ongoing signal noise. 

 One approach to set the threshold to detect the spikes over the background noise is to use a 

scaled value of the signal standard deviation [149]. This approach may lead to threshold values 

that increase with the spike rate and the spike amplitude. An improved version that uses the 

median for estimating the noise significantly reduced this problem under the assumption that the 

spikes amount to small fraction of all samples [111].  However, the median filtering is not well 
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adapted to run in real-time and needs large buffers to store the signal over a given period of time. 

The estimation of the noise level and finding the adaptive threshold by computing the RMS of the 

NEO signal has been reported to yield good results [147]. Nevertheless, the RMS calculation also 

needs an input buffer and several operations for each incoming sample. 

After running simulation tests using signals with different SNR and giving consideration to the 

number of operations and the memory size required, we chose a first-order exponential average 

filter defined by equation (4-2) to extract the estimated noise level y(n). This filter only requires 

storing the last output and a few mathematical operations. The coefficient (a) was computed 

using a time-window (t) of 100 ms with a sampling frequency (fS) of 24 kHz. 

 

                                    (4-2) 

   
  

    
 

          

 

The detection threshold (Thr) was set to a scaled filter output using a scaling factor (C) as shown 

in (4-3). This factor is determined experimentally by finding the value with the highest 

probability of detection (PD) and the lowest probability of false alarms (PFA) while C is swept 

from 1 to 100 with steps of 0.5. The C factor is computed offline and stored in DSP registers with 

the other parameters. 

                    (4-3)  

 

In Figure 4-3A we depict the SDB architecture using the kNEO pre-processor with adaptive 

thresholding that depends on the ongoing background noise, whereas the main functions 

workflow driven by the FSM is shown in Figure 4-3B. The input signal of M bits (M = 32) is fed 

to both the Delay-(D)-states shift register bank (D = 26) and the kNEO processor module 

(kNEOP) that improves the SNR and sets the ‘Spike Detected’ flag (SDF) when a spike surpasses 

the threshold, as computed by the Adaptive Threshold Block. The shift-register bank delays the 

signal to keep it synchronized with the kNEOP output. This shift-register also stores the samples 

before the spike amplitude goes above the detection threshold to avoid missing the initial part of 
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the spike and allow for kNEO computation using future samples. The activation of the SDF starts 

the FSM process for transferring T samples (T = 72) to the Captured Spike FIFO. Next, the 

captured spike is fed to the Peak Detector Block to find the absolute peak and its corresponding 

offset within the T-samples window. This block outputs the Spike Peak Offset (SPO) and sets the 

‘Peak Detected’ flag (PDF). Using the SPO, the Align Spike Block transfers the samples 

preceding (Np = 20) and following the absolute peak (Nf = 44) to the next block input-FIFO. In 

this way, the aligned spike is fitted to a window of N samples (N = Np + Nf  = 64).  

Once the alignment process has been completed, the ‘Spike Ready’ flag (SRF) is set, which in 

turn reset the SDF and PDF flags. The SRF is reset when the aligned spike is transferred, clearing 

the block for the processing of the next spike. Finally, a watchdog timer is used to monitor spike 

detection. If no spike is detected during a given period of time, e.g., due to signal recording 

problems or a threshold set too high, a warning is issued to the NCU to signal the problem. 

Subsequently, the NCU will acknowledge the problem and run a subroutine to address it, for 

example, by changing the step used in the threshold self-adjusting circuit. If the problem persists, 

the NCU can send a code error to the external unit that will properly advise the patient or the 

physician about the recording problem that must be addressed. 
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Figure 4-3:  Spike detector block (SDB). A) Circuit architecture. B) Flowchart of the SDB main functions. 

4.2.3 Spike classification block 

We performed an exhaustive literature review to identify algorithms best able to be implemented 

with custom DSPs that met our constraints on low-power consumption and real-time processing. 

As in [135], we also found that on-chip spike classification had not been addressed in previously 

published works, most likely due to the complexity of the algorithms required for deployment 

with a power consumption/power density within allowable limits.  

Many approaches have been proposed for spike classification with different degrees of accuracy, 

speed and complexity. A useful review of the advantages and limitations of the most common 

spike classification algorithms used in the past can be found in [150] and [137].  Most of them 

require spike feature extraction and subsequent dimensionality reduction before the clustering 

process. Such is the case of the most popular approach used for spike sorting, Principal 

Component Analysis (PCA) for feature extraction and K-Means for clustering. This was the 

method used by the only study we found implementing the full spike sorting process on-chip, 

which employed the off-the-shelf embedded system Smartdust iMote2 [135]. However, several 
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authors have demonstrated that the PCA and K-Means spike-sorting method required significant 

resources and time [146]. Additionally, its classification accuracy has been shown to be lower 

than other methods [111],[128],[146],[151],[152]. In particular, the power consumption and the 

latency achieved by a spike sorter module for one channel are still relatively high in the iMote2 

spike-sorting implementation [135]: 87 mW and 9.2 ms, respectively. There are no results 

regarding the classification accuracy achieved. 

Neurons from the same class generate the same waveforms [46]. Although the recorded spikes 

are not identical due to background noise, tissue homogeneity, and electrode properties, among 

other factors [46],  the recorded spikes exhibit waveforms that tend to match patterns in different 

degrees [152]. Therefore, the algorithms based on template-matching analysis can yield good 

classification accuracies when the proper spike features or patterns (templates) are chosen 

[150],[152]. With this method, spike classification is achieved by finding the minimal distance 

between the features of the unclassified spike and each of the stored templates (the nearest-

neighbor clustering method) or by using more complex and robust methods to address bursting 

neurons, electrode drift, overlapping spikes, and so on, such as Bayesian clustering [150] and 

superparamagnetic clustering (SPC) [111].  

The Euclidean Distance (ED) is the simplest metric that can be used in template matching, but the 

classification performance decreases when the clusters are elongated and close to each other 

[152]. In contrast, the Mahalanobis Distance [153] is a metric that takes into account the shape, 

size, and orientation of the clustered data, thus yielding a better classification accuracy. However, 

this metric requires the computation of covariance matrices and other mathematical operations, 

which implies a heavy computational burden and requires significant processing time.  

Considering the above arguments, we chose to deploy a spike sorting method comprised of two 

phases: 1) an offline training phase to be executed in an external computer with the spikes 

recorded using the implanted system and 2) a real-time unsupervised classification phase to be 

deployed in the DSP (SCB). During the training phase, the most suitable algorithms can be 

executed regardless of their complexity to obtain the best templates and parameters.  

For the training phase, we used software that was custom-written in Matlab to perform signal 

filtering followed by spike detection and alignment. For clustering, we used the 

superparamagnetic function provided by Waveclus [111].  The training phase outputs are the 
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number of classes and the spike templates, which were computed by averaging all of the spikes 

from the same class.  

For the real-time spike sorting phase, we used lower complexity and a much faster approach, the 

template-matching method with the Weighted Euclidian Distance (WED) metric shown in 

equation (4-4). This method does not require an online computation of the covariance matrices 

and addresses the above mentioned drawbacks of the ED.  

In (4-4)    is the N-dimensional vector of the spike to be classified (j = 1,...,N),      is the 

template matrix (i = 1,...,p, p: number of templates/patterns),    is the vector of weights, and    
  

is the squared WED computed between the spike S and the template P of class i.  

 

    
                

  
         (4-4) 

 

We faced the problem of whether it was advantageous to perform the spike features extraction 

followed by a dimensional reduction or to exploit all available dimensions, i.e., the spike samples 

(N = 64). After analyzing the various advantages and the results of simulations in Matlab, we 

decided to use all of the spike samples without feature extraction, which also favors classification 

accuracy [150]. Because we used custom logic to implement the SCB, both the amount of 

resources needed for SCB implementation and the processing time were lower in our approach 

without feature extraction compared to those needing it. 

We sought to set the weights so that they emphasized the dimensions where the template 

differences were significant (usually in the vicinity of the main peak) and in turn minimized the 

contribution of the dimensions where the differences tended to be non-significant and 

contaminated to a greater degree by background noise (usually towards both ends of the spike).  

To find the vector of weights (    that meet our requirements, we compute the vector of the 

variance in each dimension of the spike templates (  
 ) and next we normalize   

   by the 

maximum value for all dimensions, i.e., max (  
 ). 

The spike class (i) is determined by finding the minimal distance (   
 ) between the spike S and 

the template P of class i. Subsequently, the spike class is validated by comparing it with the 

maximum value admitted for each class. If the distance is over this value, then the spike is 
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reclassified as Class-0 (C0), i.e., the undefined class. The distance allowable values are 

determined experimentally. 

In Figure 4-4A we show the architecture of the SCB implementing the real-time spike 

classification method described above, whereas in Figure 4-4B, the main functions workflow 

driven by the FSM is shown. During the block initialization, the templates of all possible spike 

classes to be identified and the vector of weights are stored in the corresponding FIFO memories. 

The WED validation limits are also loaded in the Class Validation block. The input to the block 

is the aligned spike stored by the preceding block (SDB) in the input FIFO. The FSM runs all of 

the states required to compute the WED, finds the minimal value and sets the preliminary spike 

class, all of which is performed by the Class Detection block. Next, the FSM executes the class 

validation in the Class Validation block. This latter check whether, over a given time period, the 

number of spikes classified as Class-0 is greater than the allowable limits. In such a case, the 

warning flag ‘Spike Classification Warning’ is set as a notification that corrective actions are 

required. The last block, the DEC, generates a short pulse in the corresponding output for each 

spike class when the FSM activates the signal Output_Class, so that a spike raster is generated for 

each channel. 

 

4.2.4 The Spike Rate Integrator Block  

The SRI block integrates (counts) the number of spike events occurring within a time-window 

(bin) of a given duration (bin-width, tbw). The optimal tbw is found during the training phase, 

stored as parameter and transferred to a timer during the system initialization. Therefore, only a 

counter (14 bits) and the timer for fixing tbw (1–60 s) are required for each decoding channel. To 

estimate the bladder volume in this application, only one SRI output is needed (BIRC1). 



  103 

 

Aligned Spike 

FIFO (N*M)

Spike

WED
Class 

Detec
DEC

Class 0

Class 1

Class 2

Class 3

Class 4

Class 5
Class 6

Class 7

Class 

Valid.

Spike 

classif.

warning

Weights 

Vector

FIFO (N*M)

Spike 

Ready 

Flag Templates 

FIFO 

(7N*M)

Transfer 

N-samples 

(FSM)

WE

Class 

Counter

Sample

Counter

Read

Class 

detection 

(FSM)

RST RD_ptr

Transfer 

Finished

Next_Class

Data Out (DO)Data In

RD

3

M

RST 

WED

Find_Class

Validate_Class

Output_Class

M

3 3

 RST 

Spike 

Ready 

Flag 

RD

RD

DO

RST RD_ptr

DO

M

M

M

M

A)

 

B) 2

Read: 

Spike_FIFO

Template_FIFO

Weights_FIFO

Compute WEDi 

for N samples

Class = 7?

Class = 1

Class=Class+1;

RST RD_ptr: 

Spike_FIFO 

Weights_FIFO Update: 

minWED;

Class_detected

= class

minWED<

Valid. limit?

DEC 

ClassN =1

Spike classif. 

warning=1 

Classif.

failed?

DEC  

Class0 = 1

No

No

No

Yes

Yes

Yes

3
NCU in 

control
 

Figure 4-4:  Spike classification block (SCB). A) Circuit architecture. B) Flowchart of the SCB main 

functions. 
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4.2.5 Bladder Volume Decoder Block  

The BVD block is composed of two circuits deploying the decoding methods introduced in 

section 4.2.1; one for the qualitative volume estimation depicted in Figure 4-5A and another for 

quantitative volume estimation depicted in Figure 4-5B. Figure 4-5C shows the workflow of both 

circuits driven by the FSM.  

 

4.2.5.1 Qualitative volume decoding 

To implement the qualitative method (Figure 4-5A), three reference fractions of bladder fullness 

are set as 0.25, 0.5 and 1.0 times the maximum bladder functional capacity. Each fraction 

corresponds to one of the states defined earlier in section 4.2.1 as low-volume (L), need-to-void 

(medium, M), and full level (high, H). The three BIR reference values (BIRref) corresponding to 

each fullness state (i.e., BIR0, BIR1, and BIR2) are computed during the training phase, and 

transferred to the BIRref registers (Figure 4-5A) during system initialization.  

The circuit of Figure 4-5A implements the qualitative volume estimation by finding the arg min 

of the absolute difference among the BIRC1 and each BIRref, as shown in (4-5). To reduce the 

amount of hardware and better meet the real-time latency constraint, only one adder, which was 

configured to perform subtraction, is used. The FSM feeds the BIRref input one value at a time 

and the arg min block outputs the offset (0, 1, or 2), which corresponds to the minimal absolute 

difference. Finally, the Decoder (DEC) activates the binary output corresponding to the bladder 

fullness state estimated at tbw-intervals. 

 

                                   (4-5) 

 

The output validation logic monitors the three states of bladder filling following the expected 

order during a filling-voiding cycle, i.e., low, medium and high. If the expected order is not 

followed, an event counter is updated. When 10 events have been counted, the signal 

‘Validation_warning_1’ is issued. 
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Figure 4-5: Bladder volume decoding (BVD). A) Qualitative estimation circuit. B) Quantitative estimation 

circuit. C) Flowchart of the BVD main functions. 
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4.2.5.2 Quantitative volume decoding 

The quantitative volume estimation is achieved by a regression model based on a polynomial of 

order n shown in (4-6). We applied Horner’s method to reduce the number of operations, the 

hardware burden, and the errors arising from fixed-point arithmetic with numbers that differ in 

magnitude [154]. Therefore, only n additions and n multiplications without exponentiation are 

required, as shown in (4-7).  

 

        
  

         (4-6) 

 

                                       (4-7) 

 

The model input ( ) is the BIRC1 value computed by the SRI block using the optimal tbw. The 

BIRC1 is compared with the resting activity threshold baseline (BIRbase), which is found during 

the training phase and saved in an internal register. If BIRC1 is lower than BIRbase, the estimated 

volume output is set to zero; otherwise the volume is computed using (4-7). 

The output variable (  ) is the estimated bladder volume of the processed bin. The optimal model 

order (n) is determined using real signal recordings and considering the trade-off among the 

allowable latency (2.5 ms) and power density (40 mW/cm
2
), the bin-width (a tbw between 1 s and 

60 s), and the volume estimation accuracy (>75%). To account for this trade-off, we determine 

the minimal model order with the shortest tbw that yield the lowest estimation error. The model 

coefficients (  ) are computed during the training phase using a bisquare robust fitting method, 

which assigns lower weights to the outlier values during the fitting process. 

The circuit depicted in Figure 4-5B implements (4-7) by using an adder, a multiplier, a temporal 

register and an accumulator (Acc). The FIFO stores n coefficients (            ). The FSM 

initializes the Acc with (  ) and loads the adder with the appropriate coefficient stored in the 

FIFO. The FSM performs n multiply-add-accumulate operations starting from the innermost 

brackets in (4-7). The output volume is computed and updated at regular intervals determined by 

tbw. 
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The output validation logic monitors that the output is within the validation limits. If the model 

output (  ) is negative, the volume is bound to 0. If it is greater than the upper validation limit, the 

volume is bound to this limit and an event counter is updated. The signal ‘Validation_warning_2’ 

is issued when 10 consecutive events have been counted. 

The NCU will relay the warnings issued from both circuits in Figure 4-5 to the external unit, 

which in turn will activate an alarm to signal the patient that corrective actions must be taken to 

address the problem.  

 

4.3 Results of the validation tests  

The DSP depicted in Figure 4-2 was deployed using a low-power FPGA (Igloo AGL1000V2) 

from Microsemi Co. (Actel), CA, USA. The FPGA was programmed with VHDL using the tools 

of the development environment Libero SoC.   

The FPGA was operated with a core power supply of 1.2 V. Test runs were performed with the 

clock frequency (fclk) of 333 kHz, which was the fclk value best able to meet the real-time 

constraint for spike processing within the refractory period, including a security margin.  

Two types of signals were used to validate the DSP, realistic synthetic signals and real signals 

from bladder afferent nerves recorded during acute experiments performed with Sprague-Dawley 

rats, as described in [37]. 

To properly assess the spike detection and classification, a signal with a known ground truth is 

required; i.e., the spike insertion time and its class. A set of 60-s synthetic signals was 

constructed from an online database of real spike recordings [155]. The synthetic signals 

constructed from real spikes provide similar features than the real signals recorded during 

the acute experiments with animal models: similar frequency response (300 - 3000 Hz), 

spike length (2.5 ms), and the characteristic waveform produced by neuron action-

potentials during the resting, depolarization, repolarization and hyperpolarization phases.  

However, as described below, some sets of the synthetic signals used to assess the spike-

sorting circuits displayed more challenging characteristics than those of the real signals 

recorded, which allowed us to test the circuits under the worst case scenario; i.e. signals 
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with low SNR and highly correlate spike waveforms. More than 3000 spikes were inserted 

using a Poisson distribution with the desired firing rate (20 – 100 Hz) and background noise 

level. Unlike other synthetic signals using non-correlated white-noise, the background noise 

added to these test signals was generated from a combination of attenuated synthetic signals 

containing similar spike shapes. Therefore, these synthetic signals more realistically mimicked 

real signals in which the background noise is dominated by the interference produced by any 

firing neurons close to the recording microelectrode. Signals with SNRs varying from 1 to 8 were 

used in our validation tests. The SNR was calculated as in [128]. These signals were used to 

validate both the Spike Detection and Classification Blocks (SDB and SCB). The outputs of these 

blocks were compared with the results obtained from Matlab/Simulink simulations using the 

signals with known ground truths. 

Acute experiments carried out on 40 animals to study the measurement method that we proposed 

in [37] also provided us with real signals for testing the volume estimation in real-time. In these 

experiments, the rats' bladders were filled to capacity and subsequently voided, while 

simultaneous recordings from the bladder afferent nerves, intravesical pressure and volume, were 

performed. The real neural signals were fed to the DSP depicted in Figure 4-2 to test the 

estimation of the bladder volume in real-time. The DSP outputs were finally compared with the 

results from the Matlab/Simulink simulations. 

Both the synthetic and the real signals used for testing the DSP were bandpass filtered in the 

range of 300 – 3,000 Hz and discretized with a resolution of 8 bits at 24 kS/s. 

 

4.3.1 Spike Detector Block results 

Spike detection is illustrated in Figure 4-6. As input data, we used the synthetic signal with an 

SNR of 1 dB, which is depicted in Figure 4-6A, along with the absolute threshold (ATD) 

computed from the median of the entire signal recording (60 s). The pre-processed signal and the 

detection threshold, computed using (4-1) and (4-3), respectively, is shown in Figure 4-6B. The 

zoomed-in windows from both signals, depicted in Figure 4-6C and Figure 4-6D, show that the 

ATD applied on the neural signal is unable to detect the five spikes of the known classes (classes 
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depicted to the right) within this time-window. In contrast, detection using the preprocessed 

signal and the adaptive threshold easily detects all the spikes. 

To assess the spike detection performance, we used the following metrics: 1) the probability of 

detection (PD) computed as the number of the true spikes detected, i.e., the true positives (TP) 

divided by the actual number of spikes (S) in the signal or        ; and 2) the probability of 

false alarms (PFA) computed as the number of false detections, i.e., the false positives (FP) 

divided by TP or          .  Additionally, we computed the accuracy index, Fscore [113], by 

using (4-8) to assess the overall detection performance by considering both the false detections 

(FP) and the missed spikes (False negatives, FN). 

       
   

         
      (4-8) 

The Fscore index yields zero when no spike is detected (TP = 0) and unity when all the spikes are 

properly detected (FP = 0 and FN = 0). 

To compare our results with other detection methods, we first determined the optimal scaling 

factor (C) to be used in (4-3) for each method evaluated: absolute threshold detection with the 

signal median (ATD_median), as in [111]; simple detection with kNEO preprocessing and its 

RMS computation (kNEO_RMS), as in [147]; and the simple detection with kNEO preprocessing 

and its moving average computation (kNEO_MOVAVG), as realized in this work. To this end, 

we computed the Thr by sweeping C in the interval [1,100] with steps of 0.5. In Figure 4-7A we 

plotted the averaged Fscore of each method using signals with SNRs ranging from 1 to 8. The 

value of C, yielding the highest Fscore, was chosen as the optimal scaling factor for subsequent 

calculations.  

The Fscore was also computed using the optimal scaling factor, while the noise level was 

decreased (SNR ranged from 8 to 1). The Fscore curves plotted in Figure 4-7B show that for high 

values of SNR (from 8 to 6), all of the methods performs similarly. However, when the SNR is 

further decreased, our detection method clearly outperforms the others. Figure 4-7C shows the 

ROC curves for each method. The area under each ROC curve, also known as the choice 

probability, was computed using the averaged values obtained from all SNRs. The ATD_median 

detection method yielded a probability choice of 0.853, the NEO_RMS of 0.972, and NEO_AVG 

of 0.989. 
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Figure 4-6: Spike detection performance comparison. A) Input neural signal (synthetic) with SNR of 1dB; 

B) kNEO preprocessor output; C) and D) Zoomed-in signal from A) and B), respectively. 
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Figure 4-7: Results of the spike detection performed using different methods. A) Detection accuracy (F-

score) achieved while the scaling factor C was swept; B) Detection accuracy achieved for signal with 

different SNR; and C) ROC curves for each method. 

 

4.3.2 Spike Classifier Block results 

Classification accuracy is significantly influenced by the degrees of resemblance among the 

spikes to be classified. Therefore, to assess accuracy, we used two sets of synthetic signals with 

the specifications mentioned above but also displaying a low and a high degree of resemblance. 

The top and bottom rows of Figure 4-8 show the classification results for these sets of signals. 

The degree of resemblance was estimated by computing the averaged value of the Pearson’s 

correlation coefficient (Ravg) among all of the templates by pairs (i.e., R12, R13, and R23). Figure 
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4-8A and Figure 4-8E depict the templates with low and high Ravg, respectively, along with the 

vector of normalized weights emphasizing the dimensions with higher differences among the 

templates. In Figure 4-8B to 7D (left) and Figure 4-8E to 7H (right), we plotted the Probability 

Density Function (PDF) corresponding to the WED of all of the classified spikes computed using 

each template class. It can be observed that the highest densities are achieved for the spikes 

corresponding to the matching template class. As expected, the PDF of the spikes from classes 

with a high R are closer. However, the highest probabilities densities are still achieved for the 

spikes of the matching template class. 

Table 4-1 shows the average classification accuracy for both sets of signals with low and high 

resemblance. The accuracy of the spike classification method proposed in this work compares 

favorably with PCA/K-Means, which is the method used by the Smartdust iMote2 

implementation of the spike sorter [135], and the SPC clustering of wavelets coefficients, which 

in turn compares favorably with other methods [111]. All methods were tested using the same 

signals and validated with the known ground truth. 

 

Table 4-1: Classification Accuracy comparison (%) 

 

PCA/  

K-Means 
DWT/SPC This work 

Spikes - low Ravg 94.3 94.1 96.2 

Spikes - high Ravg 71.3 84.9 87.7 

Average 82.8 89.5 92.0 

 

 



  113 

 

P
D

F

0

40

20

C)

0 0.5 1

vs.Template 2

P
D

F

0

40

20

0 0.5 1

B)

vs.Template 1

Normalized WED

P
D

F

F)

0 0.5 1

vs.Template 1

0

30

60

Ravg = 0.92

Samples (N)

E)

20 40 601

A
m

p
lit

u
d

e
 (

V
)

-1

0

1

1
2

3

P
D

F

0

40

20

D)

0 0.5 1

vs.Template 3

Ravg = 0.47
A)

A
m

p
lit

u
d

e
 (

V
)

20 40 601
-1

0

1

123

Weigths
Templates

Samples (N)

Normalized WED

Normalized WED

Normalized WED

P
D

F

0

30

60
H)

0 0.5 1

Normalized WED

vs.Template 3

P
D

F

0

30

60
G)

0 0.5 1

Normalized WED

vs.Template 2

 

Figure 4-8: Results of the spike classification using the WED method. A) and E) Templates with low and 

high degree of resemblance, respectively, along with the curve of weights to compute the WED. B) to D) 

and F) to H) The probability density functions (PDF) corresponding to the WED of all the classified 

spikes computed with each template class of low and high resemblance, respectively. 
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4.3.3 Spike Rate Integrator results 

This block was tested using both synthetic and real signals. The output of this block using a real 

signal is illustrated in Figure 4-9. The input real signal used was previously amplified (x10
5
), 

filtered (300 – 3000 Hz), and digitized at 24 kS/s. The spikes in the digital neural signal (Figure 

4-9A) are detected and sorted (Figure 4-9B) by the SDB and SCB blocks, respectively. The SRI 

block computes the BIRC1 (Figure 4-9C) the optimal tbw (39 s in this example) that is fed to both 

volume decoding circuits of Figure 4-5. 

 

4.3.4 Bladder Volume Decoder results  

Both the quantitative and qualitative volume estimations are illustrated in Figure 4-9 using a real 

signal. The quantitative volume estimation output is plotted in Figure 4-9D (solid line), along 

with the expected value of the discretized volume (dashed line). The accuracy of the quantitative 

estimation, Ac, was computed using the root mean square error (RMSE), as shown in (4-9) and 

(4-10), where      is the maximum measured volume of the bladder,    is the actual volume 

(discretized) of the bin i,     is the estimated bin volume computed using (4-7) and subsequently 

validated, and b is the total number of bins. Figure 4-9D shows the quantitative volume 

estimation using a tbw of 39 s that was found during the optimal binning process executed during 

the training phase, which yielded an Ac of 98.4%. 
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Figure 4-9:  Processing stage outputs for the quantitative and qualitative volume estimation. A) Input 

neural signal previously amplified, filtered, and digitized. B) Spike raster obtained after signal processing 

performed by the SDB and SCB circuits. C) Output of the SRI circuit using a tbw of 39 s. D) The 

quantitative volume estimation is compared with the expected output (volume discretized). E) The 

qualitative degree of fullness computed is compared with the expected output.   

                           (4-9) 

      
         

  
   

 
     (4-10) 
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Figure 4-9E shows the binary outputs corresponding to the estimation of the three qualitative 

states defined previously (L, M, and H) as solid lines. The value of the three binary outputs 

determines the qualitative state of the bin. The dashed lines are the expected binary value of the 

qualitative estimation circuit outputs (Figure 4-5A) for each bin according to the actual bladder 

volume.  

The overall success rate (OSR) was used to assess the estimation accuracy of this multiclass 

classification application, as described in [113]. The OSR is the ratio of all the correct 

classifications of the states compared to all of the classifications performed, as shown in (4-11). It 

is calculated by adding the number of bins (Bi), for which the estimated state of the bin matched 

the actual state, and dividing by the total number of bins (b). Figure 4-9E shows the qualitative 

volume estimation using 15 bins (b) with length (tbw) of 39 s, where 14 bins were correctly 

classified (Bi), yielding an OSR of 93.3%. 

 

    
   

 
   

 
      (4-11) 

 

The overall quantitative estimation accuracy from all of the measurement cycles (n = 107) with 

40 animals, using the decoding methods employed by the circuits in Figure 4-5, was 94.2 ± 3.1% 

(mean ± standard deviation). The overall qualitative estimation accuracy was 97.8 ± 3.5%.  More 

details about other experimental results can be found in [37]. 

To analyze the finite-precision effects arising from the fixed-point arithmetic outputs of the 

decoding model deployed by the circuit in Figure 4-5A, we compared fixed-point results versus 

double-precision arithmetic results obtained in Matlab/Simulink. The percentage average error 

was in the order of 10
-8

, which is negligible for this application. 

 

4.3.5 FPGA resources, power consumption and latency results 

Table 4-2 shows the percentage of cells and the RAM blocks used and the power consumption 

and latencies achieved. The measured power consumption during the DSP operation was 

485 W. The static power consumed during the Igloo-FPGA Flash-Freeze mode (Idle) was 55.6 
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W. The power density achieved, when considering single-side area of the package (1.3 x 1.3 cm 

= 1.69 cm
2
) and the measured power density, was 287 W/cm

2
.  

Table 4-3 contains the performance results of this study and the only study that was found that 

employed an on-chip, full spike-sorting process [135]. The consolidated results from SDB and 

SCB are compared with the on-the-fly spike sorting block realized in [135] using the Smartdust 

iMote2 (Intel processor PXA271), with the minimal core voltage and the minimal core frequency 

that met system specifications for both cases. 

Table 4-2: FPGA Resources usage and Power consumption 

 

Cells/ 

(%) 

RAM 

Blocks/(%) 

Power 

(W) 

Latency 

(s) 

SDB 6069(25) 2(6) 189 1079 

SCB 8036(32) 6(19) 34 953 

SRI 401(2) 0 1 3 

BVD 2070(8) 2(6) 91 32 

FSM 224(1) 1 3 0.01 

Total 16800(68) 10(32) 318 2067 

 

Table 4-3: Performance comparison of the on-the-fly spike sorting process 

 

iMote2  

PCA/K-Means 
This work 

Core voltage (V) 0.85 1.2 

Allowed core frequency (MHz) 13 0.333 

Latency (ms) 9.2 2.0 

Power consumption  (mW) 87 0.5 

Power density  (mW/cm
2
) 56.5 0.3 
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4.4 Discussion 

The design, prototyping, and testing of a DSP system that deploy the method for real-time 

volume monitoring from bladder afferent activity that we proposed in [37], allowed us to 

demonstrate the feasibility of a feedback sensor to be used in a neuroprosthetic implant capable 

of restoring bladder functions with a conditional stimulation approach. 

Our design was driven by power consumption and real-time constraints. Due to the intrinsic 

features of recorded neural signals as well as the detected spikes' event frequency (< 100 

spikes/s), the real-time constraint was achieved using a low system-clock frequency (333 kHz), 

which favored a reduction in power consumption. Furthermore, the sequential processing 

approach adopted for the system architecture was easily able to meet the time constraints, 

allowing for a further reduction of the average power dissipated over time.   

Although this sensor is not intended to be used on the cortex but in the lower abdomen or near 

the targeted spinal root, the 0.3 mW/cm
2 

power density showed by this single-channel DSP, 

which used an off-the-shelf component (Igloo FPGA), was far under the most conservative upper 

limits reported in literature (40 mW/cm
2
) [139]. This may suggest the possible reuse of some of 

the DSP modules in BCIs.  As mentioned earlier, FPGAs provide flexibility and cost advantages 

that are essential during the research and development process. However, power consumption can 

be improved by up to an order of magnitude [140] by the eventual deployment of the DSP in 

ASICs for the neuroprosthetic implant.  

The approaches for designing each processing block were chosen by taking into account the 

results reported in the literature, our own test results using realistic synthetic signals with a 

known ground truth, and real signals recorded from animal models during the acute experiments 

reported in [37]. To meet our DSP design requirements, the approach used to deploy each 

processing stage was improved by proposing solutions capable of running in real-time, without 

external supervision, and by optimizing the amount of hardware resources required for their 

implementation.  

The DSP presented in this study allowed the reliable detection of spikes immersed in noisy 

signals with low SNR by emphasizing them over the background noise using a non-linear energy 
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estimator and a self-adjusting detection threshold circuits. The method and circuits proposed to 

classify each spike by a weighted Euclidean distance, with coefficients that emphasized the 

difference among the spike templates, allowed us to achieve an average accuracy of 92% while 

using a reasonable amount of resources and displaying a processing time fast enough to meet 

real-time constraints. This spike classification performance compared favorably with studies cited 

previously that used methods with a much higher computational cost that are currently deployed 

in general purpose personal computers and, in one particular case, using an embedded system 

[135]. 

The appropriate selection of the number of bits used in fixed-point arithmetic operations and a 

circuit design, which optimized the amount of hardware required for a real-time estimation of the 

bladder volume, allowed us to match the accuracies achieved during simulations in 

Matlab/Simulink using double-precision arithmetic with short latencies. 

Although it was not imperative to prove the feasibility of sensory decoding in real-time using an 

standalone system, we included circuits in the DSP that are capable of self-detecting errors to 

allow for online corrections assisted by the external unit. This will adds more reliability and 

safety to the neuroprosthetic implant. 

Several research studies cited in the introduction have shown that neural recording can be 

achieved using front-end circuits with a power consumption of a few W. In forthcoming 

research, the DSP presented in this paper will be integrated with a front-end recording-stage, and 

an implantable device will be built to conduct acute and chronic experiments in animal models 

with induced spinal cord injury.   

 

4.5 Conclusion 

Our results demonstrate that it is possible to accurately monitor the bladder volume using a 

standalone DSP. The proposed DSP is capable of carrying out, in real-time and with low-power 

consumption, the entire signal processing required for detecting and discriminating the afferent 

neural activity stemming from a specific source as well as the sensory decoding of the bladder 

fullness using both qualitative and quantitative methods. 
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CHAPTER 5 GENERAL DISCUSSION 

Sensory feedback to be used with an electronic prosthesis is of great interest due to the multiple 

potential applications in the medical field in which these devices can be used. However, sensory 

feedback is still a major challenge due to both technological limitations and the lack of a clear 

understanding of all relevant physiological processes. 

In this thesis, we tackled the problem of finding a suitable method of providing sensory feedback 

to an intelligent neuroprosthesis. This neuroprosthesis was meant to restore the urinary bladder 

functions of storing and voiding urine in paraplegic patients or other patients with impaired 

sensations and lack of voluntary control of the bladder. The adopted methodological approaches 

allowed us to successfully circumvent each of the problems we faced during the research and to 

validate the thesis hypotheses H1 and H2. We had to perform both basic biomedical research and 

applied research to solve problems without known effective solutions. 

From the beginning, we realized that some studies that tried to find a solution for chronic bladder 

monitoring did not consider important anatomical and physiological characteristics that certainly 

influenced or even prevented the achievement of the expected results. We identified these 

characteristics and subsequently identified the user needs that a bladder sensor had to meet to be 

useful in real applications beyond the laboratory boundaries.  

Two main choices of measurement principles were carefully studied. One was based on artificial 

sensors, such as pressure, displacement, ultrasound, and other detection principles reviewed in 

Chapter 2. The other was based on the natural receptors in the bladder wall, especially those that 

had been reported to respond specifically to the bladder stretching during filling. Each method 

reviewed showed advantages and drawbacks that prevented a clear and judicious choice from the 

common pros and cons analyses that can be found in the introductory section of several of these 

studies. For instance, the information gathered from artificial sensors tends to be independent of 

the patient’s condition and thus more reproducible among patients and over time; however, these 

sensors are more invasive, show biocompatibility problems and decreasing reliability over a long 

period of time. In contrast, the approaches based on natural sensors are less invasive, show fewer 

biocompatibility issues, and are more reliable in chronic applications; nevertheless, their 

responses can change for patients with different pathological conditions (e.g., cancer and cystitis) 

of the patients.  
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Finally, we considered all of the above mentioned analyses and the results of the systematic 

assessment of the measurement methods, in which we used the most important user needs as 

selection criteria. Consequently, we concluded that the natural receptors in the bladder wall were 

the best choice as the primary measurement principle. Our choice agreed with other renowned 

authors on this subject who favored the use of biopotentials for neuroprostheses feedback [1]. 

However, known important issues needed to be addressed: the low signal-to-noise ratio of the 

recorded signals and the proper identification of the neural source; i.e., the afferent neural activity 

arising from the bladder mechanoreceptors that were reported to be volume receptors, but there 

was no proof of their existence at the time. Therefore, a study of the feasibility of this approach 

was necessary. 

In our study using a practical and accessible animal model (Sprague-Dawley rats), we assessed 

the feasibility of real-time bladder volume monitoring from the afferent activity of bladder 

mechanoreceptors. We considered important clues from our previous studies on bladder 

neurophysiology and biomechanics. These clues suggested the presence of volume-specific 

mechanoreceptors in the bladder inner mucosa [30] and showed the slow dynamic response of the 

bladder to filling [64].  

This study proposed two methods for measuring bladder volume. For a primary transduction 

principle, these methods used the afferent neural activity produced by mechanoreceptors during 

slow bladder filling. The proposed measurement methods required identification of the signal 

source. This included the spike sorting process followed by the selection of the neural unit (axon) 

that showed a good, but not necessarily linear, correlation with the volume, and subsequent 

neural activity decoding using the qualitative and quantitative approaches. The former allowed 

qualitative volume estimations, i.e. three levels of fullness defined as low-volume, a comfortable 

level; medium level, need-to-void within a proper timeframe; high level, urge-to-void because 

there is a risk of an imminent leaking. The qualitative method was designed to reduce the 

computational cost as much as possible; thus, the hardware resources required for its electronic 

implementation were minimized. This method achieved a high accuracy estimation of the bladder 

volume (97%) and was able to detect the bladder fullness with a sensitivity of 100%. The 

qualitative levels were defined based on actual sensations that emanate from the lower urinary 

tract in humans. These levels appear to be sufficient for proper feedback to an FES device for 
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restoring bladder function and for providing timely advice to impaired patients about when to 

urinate.  

The quantitative approach was implemented using a regression model that was optimized to run 

in real-time with much lower computational cost than those found in published studies for 

decoding sensory information from neural recordings. Our approach allowed the real-time 

estimation of the volume or pressure value with an accuracy of 94%. The quantitative approach 

can also be used for accurate FES feedback or in other applications, such as patient warning, 

differential diagnosis of urinary dysfunction, and clinical research.  

During the design of both measurement methods, we considered the physiological characteristics 

and the previously identified user needs. An important issue that was considered throughout the 

design was the fact that the firing frequency of the mechanoreceptors increased during bladder 

distension; however, this increase was not monotonic due to the relatively rapid adaptation of 

these receptors along with the viscoelastic accommodation of the bladder wall, among other 

factors discussed in Chapter 3. This behavior of the mechanoreceptors response made it difficult 

to instantaneously detect the bladder volume or pressure. Therefore, we decided to extract 

parameters and runs algorithms that addressed this behavior, which was not suitable for our 

purposes. For instance, the signal was processed using time-windows (bins) of optimally chosen 

durations (bin-width), and the input parameter for estimating volume was conveniently defined as 

the bin integrated rate (BIR), which was computed as the number of actions potentials (spikes) 

produced by a particular neural unit within the time-window. Moreover, we utilized a regression 

model that estimated volume using the BIR as the input and that considered the non-linear 

response of the mechanoreceptors. The high accuracy of the obtained estimation results not only 

demonstrated the efficacy of the measurement method but also suggested that the volume sensory 

information might be encoded as an average of the sustained activity over a given time-window.  

In addition to the experiments that were performed to demonstrate the feasibility of the proposed 

measurement methods, we carried out other experiments to explore the bladder mechanoreceptor 

behavior in other situations besides the slow (‘physiological’) filling. Several of the reviewed 

studies discussed whether it was possible to detect the tonic and phasic responses of the bladder. 

Most stated that only rapid pressure changes, i.e., phasic responses, could be detected from 

recordings of the afferent neural activity of the bladder. The isovolumetric measurement trials 
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that we performed showed that we can accurately quantify the different levels of tonic responses 

produced by the bladder mechanoreceptors, especially for volumes beyond the sensitivity 

threshold. These results demonstrated that our method was able to detect not only the phasic 

responses during gradual filling but also the tonic responses during isovolumetric measurements. 

The experimental results of other measurement trials, in which the bladder was passively 

withdrawn using an additional infusion pump, showed the reversibility of the mechanoreceptors 

response, i.e., a decrease in the firing frequency during the receptor downloading phase. During 

the passive withdrawing, the bladder was voided without detrusor contraction; thus, the recorded 

activity might have arisen from mechanoreceptors that responded specifically to the bladder 

volume. Although the mechanoreceptors displayed a hysteretic response, the bladder volume 

could be estimated using our method. These results may contribute to confirming the predicted 

existence of volume-specific receptors in the bladder wall, which are considered necessary for the 

voluntary control of the bladder through the storing and voiding pathways [30]. However, further 

studies with the specific objective of proving the existence of these receptors, which is beyond 

the scope of the thesis, should be performed to conclusively confirm this finding. 

In the last study of this thesis research, we assessed the feasibility of the measurement method 

implementation using a low-power electronic system capable of performing all of the tasks 

required for the bladder volume or pressure decoding from afferent neural activity in real-time. 

Most of the existing methods that we reviewed to detect, discriminate and decode sensory 

information from afferent neural activity are not well adapted for unsupervised real-time 

performance. Those that are rely on complex algorithms that represent a heavy burden even for 

powerful personal computers. 

To demonstrate the bladder sensor feasibility, we designed, prototyped, and tested a dedicated 

DSP system that deployed the methods discussed above using a low-power FPGA (Actel Igloo). 

The design was driven by real-time and power consumption constraints, which led us to adopt 

approaches that met these constraints without deterioration of the required accuracy. For instance, 

the power consumption constraint was satisfied by designing algorithms that are best suited for 

real-time processing using circuits of low-power consumption and low system-clock frequency 

and by adopting a sequential processing approach for the global system architecture. The 

estimated power-density dissipation achieved by our design (0.3 mW/cm
2
) was far below the 
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most conservative upper limits reported in literature for neuroprosthetic implants of 40 mW/cm
2
 

[139]. This result may suggest the possible reuse of some of the DSP modules in brain-computer 

interfaces.   

To achieve our goal of implementing the bladder sensor using the method proposed in the 

preceding study, we faced the problem of implementing the spike sorting process in real-time 

using a standalone electronic system capable of performing all of the required tasks. The 

approaches for designing each processing block were chosen by taking into account the results 

reported in the literature, our own test results using realistic synthetic signals with a known 

ground truth, and real signals recorded from the animal models during our previous acute 

experiments. We were able to detect spikes immersed in noisy signals with low SNR by 

emphasizing the spikes over the background noise using a non-linear energy estimator and a 

spike detection circuit with self-adjusting threshold capability. Moreover, the proposed method 

and circuits for classifying each spike involved a weighted Euclidean distance approach using 

coefficients that emphasized the difference among the spike templates. This process allowed us to 

achieve an average accuracy of 92%, while using a reasonable amount of resources with a 

processing time fast enough to meet the real-time and power constraints. Our spike-sorting 

method compared favorably with other high computational-cost approaches that usually are 

executed offline.    

We found only one study [135] that used a system (iMote2) with a general purpose Intel 

processor, which was programmed in C, to implement the full on-chip spike sorting process. This 

chip used a well-known spike sorting method (PCA/K-Means) that has shown poor classification 

accuracy in comparative analyses. Due to the approaches we used in the implementation, we 

achieved higher classification accuracies and greatly improved the latency and power 

consumption performance showed in this single study. We did not find any study that 

implemented both the spike sorting and the sensory decoding that we achieved in our DSP. 

The results of the three major studies in our thesis research have allowed us to demonstrate not 

only the feasibility of an implantable bladder sensor based on the sensory decoding of neural 

afferent signals but also the advantages of following a systematic methodology which considered 

the user needs throughout our research process.   
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CONCLUSION 

The recording and decoding of sensory information form afferent neural activity is the 

measurement principle that best meets the user needs for a neuroprosthetic device for chronic 

monitoring of the bladder volume or pressure. 

Accurate bladder volume and pressure estimates are possible using the measurement methods 

proposed in this thesis that are based on the neural decoding of the afferent activity of bladder 

mechanoreceptors recorded at specific spinal roots containing nerves with bladder sensory 

information.  

Both phasic and tonic responses related to bladder activity can be detected using the presented 

measurement methods. 

A standalone bladder sensor running the measurement methods proposed in this thesis can be 

implemented using a low-power integrated circuit capable of providing feedback to intelligent 

neurostimulators and timely warns patients with impaired bladder sensations or urinary 

dysfunctions about when the bladder need to be voided.   

The sensory decoding of the bladder volume and pressure can be implemented in a single chip 

that also runs the spike sorting process satisfying real-time latency and density-power dissipation 

constraints.  

The spikes immersed in a noisy signal can be accurately detected and classified using the 

optimized algorithms and circuits that we proposed and validated in this thesis. This process can 

run unsupervised in real-time with low-computational cost and low-power consumption. 
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Recommendations for future work 

This thesis opens the door to future research toward the achievement of an implantable device 

that can be used in current clinical practice to warn patients or to restore bladder function through 

conditional functional electrical stimulation. 

 The DSP circuit designed in this thesis can be further optimized using MAC units that are 

more efficient than those provided by the Actel FPGA library.  

 The back-end function performed by the DSP should be integrated in a mixed-signal 

system that also includes the front-end signal conditioning stage (amplifiers and linear-

phase filters to avoid spike distortion) and the other internal unit components presented in 

Chapter 4. 

 The system should then be encapsulated in an implantable device to perform chronic 

experiments in larger animal models (e.g., pigs) before acute and chronic experimentation 

in paraplegic patients.   

 To use the spike sorting module in BCI applications where a high number of channels 

must be processed simultaneously, the architecture presented in Chapter 4 can be 

modified to implement pipeline architecture to further reduce the signal processing 

latencies. 
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APPENDICES 

 

APPENDIX 1 – BLADDER SENSOR: USER NEEDS 

 

Medical Needs 

1. The bladder sensor (BS) is able to measure properly the volume of urine inside the 

bladder: 

- Continuously in chronic basis 

- Placed in the patient during a single minimally invasive procedure 

- With side-effects acceptable for chronic use, including pain and discomfort and 

considering the benefits vs. risks ratio 

- Avoiding biocompatibility problems 

- Regardless of patient sex 

- Regardless of neurological and others patient health problems including the urinary 

tract organs, the genital organs and other related organs (i.e. kidneys, ureters, bladder, 

urethra, pelvic floor, prostate) 

- Regardless of bladder anatomical or physiological problems (e.g. inflammation, 

overactivity) 

- Regardless patient postural position and during and after postural changes 

- During and after urge stress condition (e.g. coughing, sneezing, vomiting) 

- At any bladder volume and intravesical pressure (Pves = Pdetrusor + Pabdom.)  

- At any bladder wall compliance including spastic and flaccid bladder  

- At any urine chemical composition and conductivity  

- At any bladder size and shape 

2. The sensor inform appropriately in advance when the real functional bladder capacity 

(determined in a previous urometric evaluation) is reached. 

3. The sensor alert when the intravesical pressure or volume are beyond safe values during 

the storing and voiding phases. 

4. The sensor detects overactivity (onset detrusor contractions) during the storing phase. 
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5. The sensor do not produce unacceptable overload to the bladder during the measurement.   

6. The sensor is easily calibrated and adjusted to patient particular conditions (obtained from 

urodynamic evaluation). 

 

Technical Needs 

1. The sensor is able to provide feedback signals to other systems that need it, i.e. to the 

implanted neurostimulator or the external unit. 

2. The sensor is autonomous (standalone operation). 

3. The volume and shape of the system package and transducers allow an uncomplicated and 

safe implantation procedure. 

4. The power consumption allows the sensor operation for long-time periods (months). 

5. The electromagnetic and radiofrequency radiations of the implant, if any, are harmless. 

6. The sensor temperature rising does not affect the surrounding medium and the 

measurement accuracy. 

7. The deleterious effects over the tissue produced by the sensor, if any, are clinically 

acceptable. 

8. The sensor is maintenance-free. 

9. Discarding the sensor is uncomplicated and safe to the environment.  

 

Ergonomic Needs 

1. The sensor is easy, comfortable and safe to wear. 

2. The sensor calibration and setting up can be readily made by trained medical personnel.  

3. The sensor communication with the patient (alerts) is easily detectable regardless patient’s 

impairment.  
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EVALUATION OF USER NEEDS 

The medical and technical needs are regrouped in order to facilitate the evaluation. The group 

label can be used as primary need instead of the separate needs which will be considered as 

second level needs. However, this do not necessarily means less important but regrouped needs.  

The relative importance has been set carefully considering trade-offs among the needs, 

technological limitations and real expectations for a first version of an effective but non ideal 

sensor.  

The Table A1-1 shows the scale and criteria considered in the needs evaluation. The scale ranges 

from 5 to 0, being 5 the most important. 

 

Table A1-1: Scale and criteria to evaluate system needs 

Value Meaning 

5 It is essential, the sensor will not works properly 

without 100% satisfaction of this need 

4 It is important, the sensor will perform properly with 

partially satisfaction of this need ( >80% )  

3 It is desirable, but the system can achieve the main 

goal without total or partial satisfaction of this need 

2 It is optional, it would enhance the sensor functions 

1 It is less important, and should be implemented only 

if no additional cost or R&D effort is required 

0 It is not important at all and should not be 

considered 

  

The relative importance system needs for the bladder sensor (BS) implementation were assessed 

and regrouped are presented in the Table A1-2.  
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Table A1-2: Assessment of system needs 

No. Need 
Relative  

Importance 

1 The BS measure the volume of urine inside the bladder effectively  5 

   Continuously in permanent or chronic basis  5 

   Regardless of patient sex 5 

   Regardless of neurological and others patient health problems 

including the urinary tract organs, the genital organs and other 

related organs (e.g. kidneys, ureters, bladder, urethra, pelvic floor, 

prostate) 

4 

   Regardless of bladder anatomical or physiological problems (e.g. 

inflammation, overactivity) 

4 

   Regardless patient postural position and during and after postural 

changes 

5 

   During and after urge stress condition (e.g. coughing, sneezing, 

vomiting) 

4 

   At any bladder volume and intravesical pressure  5 

   At any bladder wall compliance including spastic and flaccid 

bladder 

4 

   At any urine chemical composition and conductivity  5 

   At any bladder size and shape 5 

2 The BS measure the volume of urine inside the bladder efficiently 4 

   The power requirement is such that allow the system operate for 

long-time periods (months) 

4 

   The deleterious effects over the tissue, if any, caused by the sensor  

and the transducers are clinically acceptable 

5 

   The BS temperature rising does not has an effect on the 

surrounding medium or on the measurement accuracy 

4 

   The BS do not produce overload to the bladder during the 

measuring 

4 

3 The BS measure the volume of urine inside the bladder safely  5 

   It can be placed in patient  during a single minimally invasive 

procedure 

3 

   The volume and shape of the system package and transducers 

allow an uncomplicated and safe implantation procedure 

4 

   The side-effects are acceptable in chronic use including pain and 

discomfort and considering the benefits vs. risks ratio 

5 

   Avoiding biocompatibility problems 5 
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No. Need 
Relative  

Importance 

4 The BS  is easy to use 4 

   The system is easy, comfortable and safe to wear 4 

   The system calibration and setup can be readily made by trained 

medical personnel 

4 

   The system communication with the patient (alerts) is easily 

detectable regardless patient's impairment 

5 

5 
The BS inform appropriately in advance when the real functional 

bladder capacity  is reached (determined in a previous cystometric 

evaluation) 

5 

6 
The BS alert when the intravesical pressure or volume are beyond 

safe values  
3 

7 
The BS is easily calibrated and adjusted to patient particular 

parameters (obtained from urodynamic evaluation). 
5 

8 
The BS detects overactivity (onset detrusor contractions) during the 

storing phase 
5 

9 
The BS is able to provide feedback signals to other systems that need 

it, i.e. to the neurostimulator or the external unit 
4 

10 The BS is autonomous (standalone operation) 3 

11 The BS is maintenance-free 4 

12 Discarding the BS is uncomplicated and safe to the environment 3 
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APPENDIX 2 – TARGET TECHNICAL SPECIFICATIONS  

 

Technical specifications are the translation of needs into metrics and values that are used to 

establish system attributes. Target values are set initially to guide the measurement method 

research. To accomplish this translation the House of Quality (HoQ) shown in Figure A2-1 was 

developed following the proposed methodology for the Quality Function Deployment method 

[27].  

The specifications were obtained considering a comprehensive literature review and the 

application of QFD method. The proposed targets specifications shown in Table A2-1 are the 

result of HoQ analysis. The evaluation of correlation degree among needs and metrics, among the 

metrics themselves and the setting of the needs weighting, allow identifying the most relevant 

specifications and the trade-offs to consider in subsequent research stages.  

The results are shown in Table A2-1 with some comments, when needed, for better 

understanding of the targeted value.  We also included the International Continent Society (ICS) 

standards for urodynamic instrumentation used in clinical diagnosis [28],[29]. However, it is 

worth noting that these standards have been established for urodynamic instruments used for 

diagnosis in clinical labs facilities for non-wearable and non-chronic applications, as it is the case 

of the device researched.  Hence, it would be unreal to expect that these standards can be 

completely fulfilled by implantable devices, considering the present limitations in both medical 

knowledge and technological feasibility. However, when possible, some ICS standards were 

considered as references in order to improve the design as much as possible. 
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 Table A2-1: BS target technical specifications 

Metrics Units Target 

Value 

Reference

(ICSS) 

Comments 

Volume  monitoring      

    Range mL 0 - 650 0 - 1000 Lower value for monitoring purpose  but with safety factor over 

maximum physiological limit 

    Accuracy mL ≤ ±10 ±10 Volume values are recommended to be rounded to nearest multiple of 

10 mL. 

    Precision (or repeatability) % ≤ ±5 N/A To ensure resolution in the worst case 

    Resolution mL ≤ 10 10 Volume values are recommended to be rounded to nearest multiple of 
10 mL. The resolution can be inferred as 10 mL 

Pressure monitoring      

    Range cmH2O 0  - 250 0 - 250 Physiological intravesical pressure (including stress conditions as 

coughing) 

    Accuracy cmH2O ≤ ±5 ±1 Lower for monitoring purpose: for  physiological intravesical pressure 

(including stress conditions as coughing) 

    Precision (or repeatability) % ≤ 1 N/A   

    Resolution cmH2O ≤ 1 1  Minimum value required to detect onset contractions 

    Frequency response Hz 0 - 10 0-10  Meet bladder pressure frequency of changes  

Power consumption mW ≤ 10    

Alerts      
    Detection of bladder overactivity    Yes   Filling pressure rising slope > value determined in cystometric study 

    Detection of fullness    Yes   Adjustable percentage of volume max. 

    Detection of volume max.   Yes   Maximum cystometric capacity 

    Detection of pressure max.   Yes   Cystometric Leakage Pressure Point  

    Alerting signals  3   Visual, audible and mechanical (vibration) alerts 

Programmable   Yes   Easy to program 

Biocompatible  Yes    

Autonomous  Yes   Standalone operation 

Communication with neurostimulator system  Yes    

Safety   Yes   Meet IEC 60101 standards, Health Canada standard, CSE, and CE 

Usability  very good   Easy to use, straight forward and intuitive handling 

Easy Calibration  very good    

Maintenance-free  Yes    

Safe to discard after life-cycle or damage  Yes    
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Figure A2-1: House of Quality (HoQ) 
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APPENDIX 3 – ADDITIONAL INFORMATION ON THE ASSESSMENT 

OF THE MEASUREMENT METHODS  

 

Results shown in Table 2-1 were obtained using the set weights of shown in Table A3-1 and the 

Rates shown in Table A3-2. 

 

Table A3-1: Set of weights used for the selection criteria used to assess the measurement methods.  

Selection Criteria Set 1 Set 2 Set 3 Set 4 Set 5 

Effectiveness in chronic use 10 10 10 10 10 

Immunity to postural changes, urge stress, urine 

conductivity and temperature  and other artifacts 
10 10 10 10 10 

Easy to calibrate and adjust to patient's particularities 5 5 5 5 10 

Easiness of implantation (minimally invasive) 10 20 10 10 10 

Safe to use with minimal deleterious effects 10 10 20 10 10 

Efficacy of volume measurement (accuracy) 5 5 5 5 10 

Precision of volume measurement (reproducibility) 20 10 10 10 10 

Detection of bladder overactivity 10 10 10 10 10 

Low power consumption 10 10 10 10 10 

Availability and cost  of materials and components 10 10 10 20 10 
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Table A3-2: Rates given to the measurement methods for each evaluation criterion.  

Selection criteria IVP EIP SGP WUS EMP ENG 

Effectiveness in chronic use 2 2 3 3 4 5 

Immunity to postural changes, urge stress, urine 

conductivity and temperature  and other artifacts 
1 1 4 2 2 4 

Easy to calibrate and adjust to patient's 

particularities 
4 4 2 4 2 3 

Easiness of implantation (minimally invasive) 3 3 2 5 3 4 

Safe to use with minimal deleterious effects 3 1 3 5 4 4 

Efficacy of volume measurement (accuracy) 1 2 5 4 3 2 

Precision of volume measurement 

(reproducibility) 
1 2 5 4 4 3 

Detection of bladder overactivity 5 3 5 4 3 4 

Low power consumption 3 2 1 2 5 5 

Availability and cost  of materials and 

components 
4 5 1 4 4 4 
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APPENDIX 4 – CORRELATION COEFFICIENT COMPARISON 

 

The Pearson’s (PCC), Spearman’s (SCC) and Kendall’s (KCC) correlation coefficient means 

among the recorded ENG signals and the infused volume were computed and analyzed to find the 

most suitable one for unit class selection; that is, the nerve that conveys the most reliable source 

of sensory information of the bladder volume. Figures A3-1 to A3-4 depict the results of a 

Multiple Comparison test among the groups of coefficients using a one-way ANOVA with 

bin-widths of 1 s, 10 s, 30 s, and 60 s, respectively (n = 107).   

We found a significant difference among these three coefficients for a bin-width (BW) of 1 s, 

which is the timeframe used to select the best unit (worst case scenario). For a BW ≥ 30s 

the SCC and KCC did not show significant difference between them but both were 

significant different from PCC. The SCC displayed always the best values of correlation even 

for the shortest BW. 

In all fiber recordings where more than one unit exhibited good Pearson’s and Spearman’s 

correlation coefficients, using the minimal BW of 1 s, the best unit chosen when using PCC 

instead of SCC was not the unit that yielded the lowest estimation error. On the other hand, 

SCC peaked before KCC while BW was swept from 1 s to 60 s, which matched roughly the 

bin-width mean yielding the lowest estimation error RMSE throughout the experiments.   

Based on these result the Spearman’s rank correlation coefficient was chosen as the most 

suitable to select the neural unit for decoding the bladder volume. 
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Figure A4-1: Multiple Comparison test among the groups of coefficients using a one-way ANOVA 

with a bin-width of 1 s. Pearson’s, Spearman’s and Kendall’s correlation coefficient means showed a 

statistically significant difference among them (p < 0.05). 
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Figure A4-2: Multiple Comparison test among the groups of coefficients using a one-way ANOVA 

with a bin-width of 10 s. Pearson’s and Spearman’s correlation coefficient means showed a 

statistically significant difference with Kendall’s (p < 0.05). 
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Figure A4-3: Multiple Comparison test among the groups of coefficients using a one-way ANOVA 

with a bin-width of 30 s. Spearman’s and Pearson’s correlation coefficient means were statistically 

significant different (p < 0.05). 
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Figure A4-4: Multiple Comparison test among the groups of coefficients using a one-way ANOVA 

with a bin-width of 60 s. Spearman’s and Kendall’s correlation coefficient means showed a 

statistically significant difference with Pearson’s coefficient (p < 0.05). 


