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RÉSUMÉ

Au cours des dernières années, la hausse sans précédent du nombre d’ultrabooks et d’appareils

mobiles s’est accompagnée d’un besoin toujours croissant d’accès aux technologies permettant

des communications sans-fil fiables et à haut débit. Pour atténuer ou éliminer les erreurs

induites par les interférences et le bruit dans les canaux de communication, il est important

de développer des systèmes de codage efficaces pour la correction d’erreurs. En effet, lors de

communications de données numériques sur un canal ayant un faible rapport signal sur bruit,

ces codes permettent de conserver un taux d’erreur faible tout en augmentant le débit des

transmissions et/ou en diminuant la puissance d’émission requise. Ceci contribue grandement

à améliorer l’efficacité énergétique de ces dispositifs électroniques sans-fil et, ainsi, à prolonger

leur autonomie.

Dans cette thèse par articles, nous présentons un algorithme de recherche efficace pour

trouver deux types de codes correcteurs d’erreur : les codes convolutionnels doublement or-

thogonaux (CDO) et les codes convolutionnels doublement orthogonaux simplifiés (S-CDO).

En effet, ces codes sont utilisés dans un système de contrôle d’erreurs ayant un décodage

à seuil itératif différent de la procédure de décodage Turbo classique, puisqu’il ne nécessite

aucun entrelaceur, ni à l’encodage, ni aux étapes de décodage. Néanmoins, son processus de

décodage à seuil nécessite que ces codes convolutionnels systématiques satisfassent des pro-

priétés dites de « double orthogonalité », allant au-delà des conditions requises par les codes

« simplement orthogonaux », bien connus et habituellement utilisés lors d’un décodage à seuil

non-itératif. Afin de pouvoir construire des codecs à haute performance et à faible latence

avec ces codes, il est important de minimiser leur longueur de contrainte ou « span » pour

un nombre J de connexions donné. Bien que trouver des codes CDO et S-CDO ne soit pas

difficile, déterminer les codes ayant un span minimal (dit optimal) pour un ordre J donné est

mathématiquement très complexe. En effet, la construction directe de codes CDO / S-CDO

à span court/optimal reste un problème ouvert et qui est soupçonné d’être NP-complet.

Cette thèse présente un total de trois articles : deux articles publiés dans IEEE Transac-
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tions on Communications1,2 et un article soumis au journal IEEE Transactions on Parallel

and Distributed Systems3. Dans ces articles, nous décrivons un nouvel algorithme de recherche

parallèle, efficace et implicitement-exhaustif pour trouver des codes CDO et S-CDO systéma-

tiques, à taux R = 1
2
et ayant un span plus court, voire minimal, c.à.d. optimal. Comparé

à l’algorithme de recherche implicitement-exhaustif de référence, l’algorithme de recherche

à haute performance proposé reste exhaustif mais fournit un facteur d’accélération très im-

portant, supérieur à 16300 pour les codes CDO (J = 7) et supérieur à 6300 pour les codes

S-CDO (J = 8).

Ces accélérations sont atteintes grâce à des améliorations algorithmiques permettant la

réduction déterministe de l’espace de recherche, ainsi qu’à une fonction de validation gran-

dement améliorée et utilisant une structure de données nouvelle lui permettant de faire un

calcul incrémental et une réutilisation des données. Comparée à la fonction de validation de

référence, cette nouvelle fonction de validation offre un facteur d’accélération très substantiel,

supérieur à 190000 pour les codes CDO (J = 17) et supérieur à 60000 pour les codes S-CDO

(J = 17). De plus, comparée à la fonction de validation de codes CDO la plus rapide et

qui est utilisée dans les algorithmes de recherche pseudo-aléatoires de haute performance, la

fonction de validation proposée offre un facteur d’accélération supérieur à 2000 pour les codes

CDO (J = 17). La combinaison d’optimisations et de techniques d’équilibrage de charge pro-

posée nous a permis d’exploiter plusieurs centaines de coeurs de calcul afin d’effectuer une

recherche exhaustive sur un espace de recherche environ 1014 fois plus grand qu’auparavant,

nous donnant ainsi le moyen de trouver, dans un délai de temps de calcul raisonnable, de

nouveaux codes CDO et S-CDO plus courts voire optimaux.

Nous fournissons les codes CDO et S-CDO à span optimal obtenus, ayant respectivement

un ordre J ∈ {6, ..., 9} et J ∈ {9, ..., 12}. Nous fournissons aussi les codes CDO / S-CDO ayant

les spans les plus courts publiés à date pour J ∈ {10, ..., 17} et J ∈ {13, ..., 20} respectivement.

Grâce à cet algorithme, nous avons pu réduire la longueur du span de 14% en moyenne pour

les codes CDO et de 26% en moyenne pour les codes S-CDO, permettant ainsi une réduction

de latence de la même ampleur dans les systèmes correcteurs d’erreurs qui leur sont destinés.

1IEEE Transactions on Communications, Transactions Letters, vol. 60, no. 1, January 2012, pp. 3-8.
2IEEE Transactions on Communications, vol. 61, no. 3, March 2013, pp. 865-876.
3IEEE Transactions on Parallel and Distributed Systems - submitted August 18, 2013.
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Nous comparons le span de ces nouveaux codes aux bornes inférieures théoriques connues

et présentons les performances de correction d’erreur de certains de ces codes, ainsi que

l’amélioration en longueur de span obtenue lorsque l’on utilise un code S-CDO au lieu d’un

code CDO ayant le même ordre J . Nous montrons que, bien que les codes CDO offrent

une performance d’erreur légèrement supérieure, d’un point de vue technique, les codes S-

CDO offrent clairement des avantages : une latence de décodage beaucoup plus faible pour

une performance d’erreur semblable. Nous confirmons également que, pour des valeurs de

Eb/N0 modérées (soit Eb/N0 > 3dB), les codes CDO / S-CDO offrent une performance

d’erreur concurrentielle aux codes Turbo et par conséquent une alternative convaincante :

leurs courbes de performance d’erreur ont une région « plancher4 » plus basse que celle des

codes Turbo, fournissant ainsi une meilleure performance d’erreur tout en ayant une latence

de décodage inférieure et permettant une mise en oeuvre moins complexe.

Enfin, nous présentons l’évolution de la performance d’erreur des codes CDO / S-CDO

en fonction de leur ordre J . Nous montrons que, bien qu’une augmentation de la valeur

de J conduise à une amélioration de la performance d’erreur, cela est réussi au prix d’un

déplacement de la zone « cascade5 » des performances d’erreur à une région où Eb/N0 a une

valeur plus élevée.

4En anglais : « floor » region.
5En anglais : « waterfall » region.
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ABSTRACT

In recent years, the rise of ultrabooks and mobile devices has been accompanied by an ever in-

creasing need for reliable high-bandwidth wireless communications. To mitigate or eliminate

the errors that are invariably introduced due to noise and interference in the communication

channels, it is important to develop efficient error-correcting coding schemes. Indeed, these

codes may be used to preserve the error performance while allowing the data-rate of digital

communications to be increased and the transmission power at lower signal-to-noise ratios to

be reduced, thereby improving the overall power efficiency of these devices.

In this manuscript-based thesis, we present an efficient search algorithm for finding

optimal/short-span Convolutional Self-Doubly Orthogonal (CDO) codes and Simplified Con-

volutional Self-Doubly Orthogonal (S-CDO) codes. These error-correcting codes are employed

in an iterative error-control coding scheme that differs from the classical Turbo code proce-

dure, as it does not require any interleaver, neither at the encoding nor at the decoding

stages. However, its iterative threshold decoding procedure requires that these systematic

convolutional codes satisfy some “double orthogonality properties”, beyond those of the well-

known orthogonal codes used in the usual non-iterative threshold decoding. In order to build

high-performance, low-latency codecs with these codes, it is important to minimize the con-

straint length, also called “span”, for a given number J of generator connections. Although

finding CDO/S-CDO codes is not difficult, determining the optimal/short-span codes for a

given order J is computationally very challenging. The direct construction of optimal or

shortest-span CDO and S-CDO codes has so far eluded analysis, and the search for these

codes is believed to be an NP-complete problem.

The thesis presents a total of three articles: two articles that were published in IEEE

Transactions on Communications6,7, and one article that was submitted for publication to

IEEE Transactions on Parallel and Distributed Systems8. In these articles, we describe a

novel efficient and parallel implicitly-exhaustive search algorithm for finding rate R = 1
2
sys-

6IEEE Transactions on Communications, Transactions Letters, vol. 60, no. 1, January 2012, pp. 3-8.
7IEEE Transactions on Communications, vol. 61, no. 3, March 2013, pp. 865-876.
8IEEE Transactions on Parallel and Distributed Systems - submitted August 18, 2013.
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tematic optimal/short-span CDO and S-CDO codes. The high-performance search algorithm

is still exhaustive in nature, yet it provides an impressive speedup that is larger than 16300

(CDO, J=7) and 6300 (S-CDO, J=8) over the reference implicitly-exhaustive search algo-

rithm, and larger than 2000 (CDO, J=17) over the fastest known CDO validation function

used in high-performance pseudo-random search algorithms.

These speedups are achieved through algorithmic enhancements in the deterministic

search-space reduction, and a vastly improved validation function that makes use of a novel

data structure for enabling data-reuse and incremental computations. The resulting val-

idation function speedup is larger than 60000 (S-CDO, J=17) and 190000 (CDO, J=17)

when compared to its reference implementation. The combination of optimizations and load-

balancing techniques allowed us to leverage hundreds of processor cores in order to perform an

exhaustive search over a search space that is some 1014 times larger than what was previously

possible, yielding new and improved codes in a reasonable computation time.

We provide optimal-span CDO/S-CDO codes having orders J ∈ {6, ..., 9} and

J ∈ {9, ..., 12} respectively, as well as CDO/S-CDO codes having the shortest spans pub-

lished to date for J ∈ {10, ..., 17} and for J ∈ {13, ..., 20} respectively. Using this algorithm,

we were able to reduce the spans of these codes by an average of 14% for CDO codes and by

an average of 26% for S-CDO codes, resulting in a latency reduction of the same magnitude

in the error-correcting systems for which they are intended.

We compare the spans of our new codes to known theoretical lower-bounds, and provide

the error-correction performance for some of these codes, along with the span improvements

obtained when using S-CDO codes instead of CDO codes of the same order. We show that

although CDO codes perform slightly better than S-CDO codes, from an engineering point of

view, S-CDO codes clearly offer a much lower decoding latency for a similar error performance.

We also confirm that for moderate Eb/N0 values (i.e. Eb/N0 > 3dB), CDO/S-CDO codes

do offer a competitive error performance and a compelling alternative to Turbo codes, since

their error performance curves yield a lower “floor” region than that of Turbo codes, thus

providing a better error performance along with a lower latency and reduced implementation

complexity.

Finally, we present the evolution of the error performance of CDO/S-CDO codes as a
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function of their order J . We show that although the greater the value of J , the better the

error performance, this is achieved at the cost of having the “waterfall” region of the error

performance move to higher values of Eb/N0.
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CONDENSÉ EN FRANÇAIS

Introduction

La théorie de l’information trouve son origine scientifique dans l’article révolutionnaire publié

en 1948 par l’ingénieur électricien et mathématicien américain Claude E. Shannon [1]. Ce

domaine s’intéresse, entre autres, au transfert fiable d’informations sur un canal de communi-

cation bruité. En effet, un média de transmission d’information (ou canal de communication)

présente certaines propriétés physiques qui vont introduire des erreurs dans les messages

transmis entre un émetteur et un récepteur.

Afin d’augmenter l’efficacité et la fiabilité des transmissions de données numériques, il est

possible d’utiliser des codes correcteurs d’erreur [2, 3]. Cette technique de codage, basée sur

la redondance, consiste à « encoder » les messages en ajoutant des symboles de parité aux

bits d’information transmis. Les symboles de parité sont générés par un codeur de canal à

partir des bits d’information et de certaines règles précises préétablies. À la réception, ces

symboles de parité seront utilisés par un décodeur pour détecter et éventuellement corriger un

certain nombre d’erreurs se produisant dans la transmission. De plus, lors de la transmission

de données numériques dans un canal très bruité, ces codes permettent de conserver un taux

d’erreur faible tout en augmentant le débit de transmission et/ou en diminuant la puissance

d’émission requise. Ainsi, ils contribuent à améliorer l’efficacité énergétique des dispositifs

électroniques et, par conséquent, à prolonger leur autonomie.

Un code est dit systématique lorsque la séquence d’information à l’entrée du codeur se

retrouve à l’une de ses sorties sans avoir été modifiée [1]. Le gain de codage d’un code est

défini, pour un même taux d’erreur (BER), comme la différence entre le rapport signal sur

bruit (SNR) d’une transmission non-codée et le SNR d’une transmission encodée avec ce

code [3]. De plus, le taux de codage d’un code est défini comme R = k
n
, où k est le nombre

de bits d’information à l’entrée du codeur de canal, et n est le nombre de bits transmis à la

sortie de cet encodeur [3]. Par conséquent, un codeur de canal systématique ajoutera n − k

bits redondants aux k bits d’information à son entrée. Enfin, un code est dit convolutionnel

lorsque les symboles de parité ajoutés dépendent non seulement des bits d’information à
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l’entrée, mais aussi des bits d’information précédemment émis [1].

Dans cette thèse par articles, nous présentons un algorithme de recherche efficace pour

trouver deux types de codes systématiques de taux de codage R = 1
2
: les codes convolu-

tionnels doublement orthogonaux (CDO) [4] et les codes convolutionnels doublement ortho-

gonaux simplifiés (S-CDO) [5]. En effet, ces codes sont utilisés dans un système de contrôle

d’erreurs [6, 7] ayant un décodage à seuil itératif différent de la procédure de décodage Turbo

classique [8, 9], puisqu’il ne nécessite aucun entrelaceur, ni à l’encodage, ni aux étapes de

décodage. Néanmoins, son processus de décodage à seuil nécessite que ces codes convolution-

nels systématiques satisfassent des propriétés dites de « double orthogonalité » [4, 5], allant

au-delà des conditions requises par les codes « simplement orthogonaux » [10], bien connus et

habituellement utilisés lors d’un décodage à seuil non-itératif [11]. Afin de pouvoir construire

des codecs à haute performance et à faible latence avec ces codes, il est important de mini-

miser leur longueur de contrainte ou « span » pour un nombre J de connexions donné [4].

Bien que trouver des codes CDO et S-CDO ne soit pas difficile, déterminer les codes ayant un

span minimal (dit optimal) pour un ordre J donné est mathématiquement très complexe. En

effet, la construction directe de codes CDO / S-CDO à span court/optimal reste un problème

ouvert et qui est soupçonné d’être NP-complet [12].

Objectifs de recherche

Nous nous concentrons sur le développement d’un algorithme pour la recherche de deux

types de codes systématiques à taux de codage R = 1
2
: les codes Convolutionels Doublement

Orthogonaux (CDO), et les codes CDO simplifiés (S-CDO). De part leur définition, ces codes

correcteurs d’erreur doivent satisfaire certaines conditions de « double orthogonalité » [4, 5].

Leur performance d’erreur dépend surtout de leur « ordre» J , le nombre de connexions reliant

l’additionneur modulo-2 au registre à décalage du codeur, et leur latence de décodage est

proportionnelle au « span » du code, c.à.d. à la longueur du registre à décalage du codeur [4].

Par conséquent, afin de pouvoir construire des codecs à haute performance et à faible latence

avec ces codes, il est important de minimiser leur span pour un ordre J donné, un problème

complexe qui est soupçonné d’être NP-complet [12], et qui est relié à la recherche de règles

de Golomb optimales [13].
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Les objectifs de recherche sont donc de :

1. développer et mettre en oeuvre un algorithme de recherche haute-performance et efficace

pour trouver de nouveaux codes CDO et S-CDO ayant un span optimal et/ou un span

plus court que tout autre code publié précédemment pour un même ordre J ;

2. trouver, pour J ≤ 20, de nouveaux codes CDO/S-CDO à span optimal, et de nouveaux

codes CDO/S-CDO ayant un span plus court que tout autre code publié auparavant ;

3. caractériser la performance de correction d’erreurs de ces nouveaux codes, ainsi que

l’évolution de leur performance d’erreur en fonction de l’augmentation de J .

Algorithme de recherche efficace, parallèle et implicitement-exhaustif

Nous présentons un nouvel algorithme de recherche haute-performance efficace, parallèle et

implicitement-exhaustif pour la recherche de nouveaux codes CDO et S-CDO systématiques à

tauxR = 1
2
, et ayant un span court, voire optimal. L’algorithme de recherche proposé est beau-

coup plus rapide que les meilleurs algorithmes de recherche exhaustifs et pseudo-aléatoires

existant auparavant, et il utilise des techniques analytiques et d’ingénierie informatique pour

offrir des améliorations synergiques importantes conduisant à trouver de nouveaux codes

ayant un span amélioré (c.à.d. plus court).

L’algorithme de recherche effectue, de façon plus efficace, un parcours implicitement-

exhaustif de l’arbre de recherche : il applique, de façon dynamique, des techniques d’élagage

identifiant et ciblant la recherche uniquement sur les codes potentiellement valides, permet-

tant ainsi de réduire la taille de l’espace de recherche. Afin de faciliter l’élagage, des bornes

inférieures, de point milieu et supérieures sont définies pour les noeuds de l’arbre de recherche,

diminuant ainsi de plusieurs ordres de grandeur la complexité de la recherche. L’algorithme

de recherche proposé est un type d’algorithme par séparation et évaluation9 : bien qu’il ne

teste pas toutes les branches de l’arbre de recherche, il réalise effectivement une recherche

exhaustive, assurant ainsi que le span des codes trouvés à la fin de la recherche soit optimal.

En effet, compléter une recherche exhaustive dans un temps de calcul raisonnable n’était

possible auparavant que pour des codes ayant une très faible valeur de J .

9En anglais : « branch and bound » algorithm.
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L’algorithme de recherche proposé utilise une fonction de validation de codes

CDO/S-CDO considérablement améliorée, et qui emploie une nouvelle structure de données

pour effectuer, de façon efficace, un calcul incrémental et une réutilisation des données déjà

calculées. En effet, cette structure de données permet de faire un suivi, avec une complexité

temporelle en O(1), des résultats de calcul partiels pertinents, facilitant ainsi la réutilisation

des données : pour chaque nouveau code à valider, la fonction de validation proposée ne

calcule que les résultats partiels qui sont nouveaux par rapport à la validation du code pré-

cédent, et réutilise les résultats partiels communs aux deux validations, déjà stockés dans la

structure de données. De ce fait, le degré de l’équation polynomiale décrivant le nombre de

calculs partiels à effectuer pour chaque validation est réduit de un, c.à.d. de J4 à J3.

La nouvelle fonction de validation met l’emphase sur une invalidation rapide de codes ne

satisfaisant pas les conditions requises, assurant ainsi que, lors du processus de validation, un

mauvais code puisse être éliminé aussitôt que possible. De plus, en utilisant des techniques de

méta-programmation lors de la compilation, nous éliminons les boucles et les branchements

dans la fonction de validation, éliminant ainsi aussi les pénalités associées à une mauvaise

prédiction des branchements dans les microprocesseurs modernes.

Afin de réduire encore plus le temps de calcul, l’algorithme effectue une recherche pa-

rallèle et coopérative, de sorte à calculer plus de branches d’arbre de recherche en même

temps et ainsi pouvoir converger plus rapidement vers un arbre de recherche réduit. En effet,

l’algorithme de recherche a une très bonne capacité de monter en charge : en utilisant une

technique d’équilibrage de charge efficace, il est capable de profiter de la puissance offerte par

plusieurs centaines de coeurs de calcul. En outre, pour compenser le faible temps moyen entre

pannes10 des ordinateurs effectuant la recherche, l’algorithme de recherche proposé met en

oeuvre des mesures basiques de tolérance aux pannes : des instantanés de l’état actuel de la

recherche sont stockés régulièrement, permettant ainsi que celle-ci soit arrêtée et redémarrée

sans perte significative de progrès. Les instantanés sont enregistrés dans un format XML

vérifiable, garantissant ainsi la possibilité d’une récupération en cas de corruption de fichiers,

et permettant la reprise de la recherche après un plantage ou un redémarrage du système.

Nous caractérisons, par rapport aux algorithmes publiés antérieurement, l’accélération

10En anglais : MTBF, or « Mean Time Between Failures ».
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spectaculaire obtenue avec le nouvel algorithme de recherche. En utilisant la combinaison

d’optimisations algorithmiques et les techniques d’équilibrage de charge décrites dans cette

thèse, nous avons été en mesure de compléter une recherche exhaustive sur un espace de

recherche environ 1014 fois plus grand qu’auparavant. En effet, comparé à l’algorithme de re-

cherche implicitement-exhaustif de référence, l’algorithme de recherche à haute performance

proposé reste exhaustif mais fournit un facteur d’accélération très important, supérieur à

16300 pour les codes CDO d’ordre J = 7, et supérieur à 6300 pour les codes S-CDO d’ordre

J = 8. En outre, comparé à la fonction de validation de codes CDO et S-CDO de référence

et qui est utilisée dans les algorithmes de recherche exhaustifs, cette nouvelle fonction de

validation offre un facteur d’accélération très substantiel, supérieur à 190000 pour les codes

CDO d’ordre J = 17, et supérieur à 60000 pour les codes S-CDO d’ordre J = 17. Enfin, com-

parativement à la fonction de validation de codes CDO la plus rapide et qui est utilisée dans

les algorithmes de recherche pseudo-aléatoires à haute performance, la fonction de validation

proposée offre un facteur d’accélération supérieur à 2000 pour les codes CDO d’ordre J = 17.

Nouveaux codes CDO et S-CDO obtenus

Nous fournissons de nouveaux codes CDO et S-CDO systématiques à taux R = 1
2
et ayant

un span plus court que tout autre code du même ordre J publié auparavant. En utilisant le

nouvel algorithme de recherche efficace, parallèle et implicitement-exhaustif, nous avons pu

déterminer de nouveaux codes CDO à span optimal d’ordre J ∈ {6, 7, 8, 9}, et de nouveaux

codes S-CDO à span optimal d’ordre J ∈ {9, 10, 11, 12}. De plus, nous avons pu trouver

plusieurs nouveaux codes CDO et S-CDO ayant les spans les plus courts publiés à ce jour pour

J ∈ [10; 17] et J ∈ [13; 20] respectivement. Grâce à cet algorithme, la réduction maximale de

la longueur de span obtenue fut de 32% pour les codes CDO, et de 34% pour les codes S-CDO.

Par ailleurs, nous avons obtenu une réduction de la longueur de span de 14% en moyenne

pour les codes CDO, et de 26% en moyenne pour les codes S-CDO. Bien entendu, dans les

systèmes de contrôle d’erreurs utilisant ce type de codes, ces améliorations en longueur de

span obtenues se traduiront par une réduction de la même ampleur en latence de décodage.

Nous décrivons aussi certaines des caractéristiques des codes CDO et S-CDO obtenus.

Nous comparons le span de ces nouveaux codes aux bornes inférieures théoriques connues,
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et présentons les performances de correction d’erreur de certains de ces codes, ainsi que

l’amélioration en longueur de span obtenue lorsque l’on utilise un code S-CDO au lieu d’un

code CDO ayant le même ordre. Nous montrons que, bien que les codes CDO offrent une

performance d’erreur légèrement supérieure, d’un point de vue strictement technique, les

codes S-CDO offrent clairement des avantages : une latence de décodage beaucoup plus faible

pour une performance d’erreur semblable. Nous confirmons également que, pour des valeurs

de Eb/N0 modérées (c.à.d. Eb/N0 > 3 dB), les codes CDO et S-CDO offrent une performance

d’erreur concurrentielle aux codes Turbo et par conséquent une alternative convaincante :

leurs courbes de performance d’erreur ont une région « plancher11 » plus basse que celle des

codes Turbo, fournissant ainsi une meilleure performance d’erreur tout en ayant une latence

de décodage inférieure, et permettant une mise en oeuvre moins complexe.

Evolution de la performance d’erreur des codes CDO/S-CDO

Nous présentons l’évolution de la performance d’erreur des codes CDO et S-CDO en fonction

de leur ordre J . Nous montrons que bien qu’une augmentation de la valeur de J conduise à

une amélioration de la performance d’erreur, cela est réussi au prix d’un déplacement de la

zone « cascade12 » des performances d’erreur à une région où Eb/N0 a une valeur plus élevée,

ce qui devra être pris en considération selon l’application concernée. En effet, il est possible

que, pour un ordre J > 20, il ne soit pas avantageux d’utiliser des codes CDO ou S-CDO

puisque la région « cascade » se retrouverait dans une région où Eb/N0 a une valeur trop

élevée pour l’usage prévu.

Conclusions et Recommandations

Dans cette thèse par articles, nous présentons deux articles publiés dans IEEE Transactions

on Communications [14, 15], et un article soumis pour publication à IEEE Transactions on

Parallel and Distributed Systems [16].

L’algorithme de recherche haute performance que nous avons développé et présenté offre

un très grand facteur d’accélération comparé à l’algorithme de référence, et nous a permis

11En anglais : « floor » region.
12En anglais : « waterfall » region.



xvii

de trouver de nouveaux codes CDO / S-CDO systématiques à taux de codage R = 1
2
ayant

un span plus court que tout autre code du même ordre J ≤ 20 publié auparavant. Nous

avons aussi trouvé plusieurs nouveaux codes à span optimal, ayant pu traverser un espace de

recherche 1014 fois plus grand que ce qui était possible auparavant. Nous avons caractérisé

la performance de correction d’erreur de ces nouveaux codes, ainsi que l’évolution de leur

performance d’erreur en fonction de l’augmentation de leur ordre J . Notre analyse révèle la

complexité et les enjeux de ce sujet et suggère que des conclusions importantes peuvent être

attendues suite à une enquête plus approfondie.

En effet, nous estimons que de nombreuses améliorations peuvent être apportées à l’al-

gorithme de recherche présenté, et que plusieurs outils peuvent être développés pour aider à

mieux comprendre les codes CDO et leurs variantes.

Par exemple, des résultats préliminaires ont montré qu’une réduction du temps de calcul

d’environ 18% peut être obtenue en réarrangeant l’ordre des calculs partiels générés dans

la fonction de validation. De plus, le développement d’un algorithme de recherche de codes

CDO/S-CDO basé sur le Shift Algorithm [17] permettrait d’obtenir un facteur d’accélération

encore plus important.

Nous recommandons le développement d’un nouveau simulateur de performance de cor-

rection d’erreurs pour les codes CDO et S-CDO. En effet, le simulateur actuel est très lent

et limite notre capacité à simuler la performance d’erreur des codes CDO/S-CDO pour des

valeurs de SNR supérieures à Eb

N0
> 4.0 dB.

Enfin, nous recommandons d’adapter autant l’algorithme de recherche comme le simula-

teur pour pouvoir supporter les codes Convolutionnels Doublement Orthogonaux Récursifs

(RCDO) [18]. En effet, à faible SNR, ces codes et leurs variantes offrent une bien meilleure

performance d’erreur comparativement aux codes CDO/S-CDO traditionnels [4].

Ces codes RCDO haute performance seront utilisés dans le développement de systèmes

de correction d’erreurs encore plus puissants et efficaces.
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CONDENSÉ EN FRANÇAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Channel Coding Theory - A Quick Overview . . . . . . . . . . . . . . . . . . . 2

1.2.1 Some Forward Error Correction Terms . . . . . . . . . . . . . . . . . . 3

1.2.2 Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2 DEFINITIONS AND LITERATURE REVIEW . . . . . . . . . . . . . 11

2.1 Definitions for some codes of interest . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Convolutional Self-Orthogonal (CSO) codes . . . . . . . . . . . . . . . 11



xix

2.1.2 Turbo codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Convolutional Self-Doubly Orthogonal (CDO) codes and Simplified

CDO (S-CDO) codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3.1 Convolutional Self-Doubly Orthogonal (CDO) codes . . . . . 16

2.1.3.2 Simplified Convolutional Self-Doubly Orthogonal (S-CDO)

codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Overview of Golomb ruler search algorithms . . . . . . . . . . . . . . . . . . . 20

2.3 Reference (S-)CDO code searching algorithms . . . . . . . . . . . . . . . . . . 22

2.3.1 (S-)CDO Code Search Space . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 (S-)CDO code searching algorithms - pseudo-random vs. exhaustive . . 24

2.3.2.1 Pseudo-Random search algorithms . . . . . . . . . . . . . . . 25

2.3.2.1.1 The state of pseudo-random search algorithms . . . . 25

2.3.2.1.2 A high-performance CDO code validation function . 26

2.3.2.2 Fully-Exhaustive Search Algorithm . . . . . . . . . . . . . . . 27

2.3.2.3 Improved Reference Exhaustive-Search for (S-)CDO codes . . 27

2.3.2.3.1 Reference tree traversal . . . . . . . . . . . . . . . . 28

2.3.2.3.2 Reference Algorithm - Validation Function . . . . . . 31

CHAPTER 3 IMPROVING THE TREE-TRAVERSAL OF THE IMPLICITLY-

EXHAUSTIVE SEARCH ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Article #1: Efficient Search Algorithm for Determining Optimal R = 1/2

Systematic Convolutional Self-Doubly Orthogonal Codes . . . . . . . . . . . . 36

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2.1 Convolutional Self-Doubly Orthogonal (CDO) codes . . . . . 39

3.2.2.2 Simplified Convolutional Self-Doubly Orthogonal (S-CDO)

codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Novel Efficient Implicitly-Exhaustive Search Algorithm . . . . . . . . . 42

3.2.3.1 Overview of previous search algorithms . . . . . . . . . . . . . 42



xx

3.2.3.2 An “implicitly-exhaustive” search algorithm . . . . . . . . . . 43

3.2.3.3 Dynamic reduction of the number of branches explored - an

implicitly-exhaustive search . . . . . . . . . . . . . . . . . . . 44

3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4.1 New rate R = 1
2
systematic (S-)CDO codes . . . . . . . . . . 46

3.2.4.2 Error correction performance for the R = 1
2
systematic codes . 47

3.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

CHAPTER 4 AN EFFICIENT PARALLEL AND IMPLICITLY-EXHAUSTIVE

SEARCH ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Overview and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Article #2: Efficient Parallel Search Algorithm for Determining Optimal R =

1/2 Systematic Convolutional Self-Doubly Orthogonal Codes . . . . . . . . . . 55

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2.1 Convolutional Self-Doubly Orthogonal (CDO) codes . . . . . 58

4.2.2.2 Simplified Convolutional Self-Doubly Orthogonal (S-CDO)

codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Novel Efficient Parallel Implicitly-Exhaustive Search Algorithm . . . . 61

4.2.3.1 Overview of previous search algorithms . . . . . . . . . . . . . 61

4.2.3.2 An implicitly-exhaustive search . . . . . . . . . . . . . . . . . 62

4.2.3.3 Improving the implicitly-exhaustive search: a more aggressive

dynamic search-space reduction . . . . . . . . . . . . . . . . . 64

4.2.3.4 Data reuse and parallel computation . . . . . . . . . . . . . . 67

4.2.4 New CDO and S-CDO Code Results . . . . . . . . . . . . . . . . . . . 70

4.2.4.1 New rate R = 1
2
systematic (S-)CDO codes . . . . . . . . . . 71

4.2.4.2 Error performance simulation results for (S-)CDO codes . . . 76

4.2.4.3 Error performance evolution as J increases . . . . . . . . . . . 79

4.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



xxi

4.3 Further S-CDO code tree-traversal improvements over theorems presented in

Chapters 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

CHAPTER 5 A HIGH-PERFORMANCE PARALLEL TREE-SEARCH FOR FIND-

ING SHORTEST-SPAN ERROR-CORRECTING CDO CODES . . . . . . . . . . . 86

5.1 Overview and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Article #3: Optimizing the Parallel Tree-Search for Finding Shortest-Span

Error-Correcting CDO Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.2 Definitions: CDO and S-CDO Codes . . . . . . . . . . . . . . . . . . . 91

5.2.3 Problem Size and Tree Traversal . . . . . . . . . . . . . . . . . . . . . . 93

5.2.4 An Efficient Parallel Implicitly-Exhaustive Search – Implementation . . 96

5.2.4.1 A Validation Function Leveraging Data Reuse . . . . . . . . . 96

5.2.4.1.1 Data Access Time / Sort-Compare Improvements . . 97

5.2.4.1.2 Support for Data Reuse and Incremental Computa-

tion of Differences . . . . . . . . . . . . . . . . . . . 98

5.2.4.1.3 Testing the Validity Conditions . . . . . . . . . . . . 102

5.2.4.1.4 Efficient Incremental Computation of Differences

and Data Reuse . . . . . . . . . . . . . . . . . . . . . 107

5.2.4.2 Parallel Dynamic Search-space Reduction - an Implicitly-

exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.4.2.1 Tree-Traversal Improvements . . . . . . . . . . . . . 109

5.2.4.2.2 Parallel Search and Load-Balancing . . . . . . . . . . 111

5.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.5.1 (S-)CDO Code Validation Speed . . . . . . . . . . . . . . . . 114

5.2.5.2 Multi-core / Multithreaded Scaling . . . . . . . . . . . . . . . 116

5.2.5.3 Overall speedup . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.5.4 (S-)CDO Code Span Improvements Obtained . . . . . . . . . 118

5.2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Notes on the novel data structure . . . . . . . . . . . . . . . . . . . . . . . . . 120



xxii

5.4 Notes on the proposed first and second order difference generation . . . . . . . 121

5.4.1 Reducing the overhead due to branch tests . . . . . . . . . . . . . . . . 121

5.4.2 Postponing the computation of δ during the search for S-CDO codes . 121

5.4.3 Eliminating one element in the second-order difference pair . . . . . . . 122

5.5 (S-)CDO Computational Improvement Rate . . . . . . . . . . . . . . . . . . . 124

5.6 Dealing with the Mean Time Before Failures (MTBF) . . . . . . . . . . . . . . 126

CHAPTER 6 GENERAL DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . 128

CHAPTER 7 GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER

RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Suggestions for further research . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 Improving current-generation (S-)CDO code searching algorithms . . . 132

7.2.2 A next-generation error-correction performance simulator . . . . . . . . 134

7.2.3 RCDO codes and next-generation search and error-performance simu-

lation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

APPENDIX A ERROR-CORRECTING PERFORMANCE FOR SOME CDO/S-

CDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

APPENDIX B DENSITY MAPS FOR SOME CDO/S-CDO CODES . . . . . . . . . . 156

APPENDIX C SOME SHORT-SPAN CDO AND S-CDO CODES OF ORDER J ≤ 20 164

APPENDIX D SAMPLE XML STATE-FILE . . . . . . . . . . . . . . . . . . . . . . . 173



xxiii

LIST OF FIGURES

Figure 1.1 Simplified diagram depicting a communication over a noisy channel. . . 1

Figure 1.2 Simplified diagram depicting a communication using forward error cor-

rection over a noisy channel. . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.1 Example of a CSO code encoder: R = 1
2
, J = 4, M = 6, Ω = {0, 1, 4, 6}. 11

Figure 2.2 Simplified diagram of a systematic Turbo Encoder. . . . . . . . . . . . 14

Figure 2.3 Iteratively decoding - one bit at a time. . . . . . . . . . . . . . . . . . . 14

Figure 2.4 Error-correction performance after one and after eight decoding iter-

ations for three rate R = 1
2
systematic codes having a similar span

value M , and Eb

N0
∈ [2.0; 4.8] (dB): a CSO code (J = 24), a CDO code

(J = 8) and an S-CDO code (J = 11). CDO and S-CDO codes can

benefit from iterative decoding, thus offering a significant coding gain

over the CSO code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.5 Example of a CDO code encoder: R = 1
2
, J = 4, M = 15, Ω =

{0, 3, 13, 15}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.6 Golomb ruler symmetry: CDO code #1 and CDO code #2 are sym-

metrical (mirror) equivalents. . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.7 Approximate decoding latency of CDO and S-CDO codes after 14 de-

coding iterations (assuming one decoded bit per clock cycle). . . . . . . 19

Figure 2.8 (S-)CDO search-tree - searching for a CDO with J = 3 . . . . . . . . . 23

Figure 2.9 Pseudo-code for the reference tree-traversal algorithm. . . . . . . . . . 29

Figure 2.10 Simplified diagram of the reference validation function’s algorithm. . . 30

Figure 2.11 Pseudo-code of the reference exhaustive-search algorithm’s generation

of first and second order differences. . . . . . . . . . . . . . . . . . . . 34

Figure 3.1 Speedup observed with parallel version [19] of the algorithm in Sec-

tion 2.3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.2 Example of a CDO code encoder: R = 1
2
, J = 4, M = 15, Ω =

{0, 3, 13, 15} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



xxiv

Figure 3.3 (S-)CDO search-tree - searching for a CDO with J = 3 . . . . . . . . . 43

Figure 3.4 Rate 1
2
systematic CDO and S-CDO code error correction performance

for J ∈ {6, 10}, Eb

N0
∈ [2.0; 4.0] (dB) and J = 14, Eb

N0
∈ [2.0; 3.6] (dB),

after 10, 13 and 14 iterations respectively. . . . . . . . . . . . . . . . . 48

Figure 3.5 Rate 1
2
systematic CDO code error correction performance for Eb

N0
∈

[2.0; 4.0] (dB) after the 12th (J = 8) and the 14th (J = 11) decoding

iteration. Novel codes presented are marked with a single asterisk (’*’):

the codes of order J = 8 have an optimal span. Codes presented in

[20] are marked with a double asterisk (’**’). . . . . . . . . . . . . . . . 49

Figure 3.6 Rate 1
2
systematic CDO and S-CDO code error correction performance

for J ∈ {7, 9}, Eb

N0
∈ [2.0; 4.0] (dB) and J = 15, Eb

N0
∈ [2.0; 3.6] (dB), af-

ter 13 and 16 iterations respectively. Novel codes presented are marked

with a single asterisk (’*’): the S-CDO codes of order J = 9 and the

CDO code of order J = 7 have an optimal span. The S-CDO code

presented in [21] is marked with a double asterisk (’**’). . . . . . . . . 50

Figure 4.1 Number of first and second order differences required to validate a

(S-)CDO code - traditional vs. incremental computation. . . . . . . . . 53

Figure 4.2 Span Improvement in percentage [14] for (S-)CDO codes and J ∈ [9; 20].

Note that for J = 9 (CDO codes) and J ∈ {10, 11} (S-CDO codes) the

codes obtained have the shortest possible spans for those orders (i.e.

optimal-span codes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.3 Example of systematic CDO code encoder: R = 1
2
, J = 4, M = 15,

Ω = {0, 3, 13, 15}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.4 (S-)CDO search-tree: searching for a CDO with order J = 3. . . . . . . 63

Figure 4.5 The parallel implicitly-exhaustive search algorithm divides the search-

tree into a set of sub-trees (or “jobs”) that are searched in parallel by

the scout ants (here for a code of order J = 3). . . . . . . . . . . . . . 66



xxv

Figure 4.6 Ant colony with four ants: each scout ant has its own private workspace

for keeping track of data pertaining to the current job, and all ants have

access to a shared workspace for storing results and for communicating

with each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.7 The ant colony executes a cooperative search: upon discovering a valid

code with a shorter span than the shortest currently known, the im-

proved span value is shared with all ants such as to collectively apply

tree-pruning techniques to the jobs being processed. . . . . . . . . . . . 70

Figure 4.8 Rate R = 1
2
systematic (S-)CDO code error-correction performance at

Eb

N0
∈ [2.0; 4.0] (dB) for J = 14, after 12 iterations. . . . . . . . . . . . . 77

Figure 4.9 Rate R = 1
2
systematic (S-)CDO code error-correction performance at

Eb

N0
∈ [2.0; 4.0] (dB) for J = 17. Included are performances of two CDO

codes after 20 decoding iterations, together with those of two S-CDO

codes after 4 decoding iterations (approximately matching the decoding

latency of the included Turbo codes), K = 7 and K = 9 Viterbi codes

(MFD, nonsystematic - Odenwalder, 1970 ), and the simulated floor re-

gions of two modern punctured rate-1/2 Turbo codes [22] employing

an interleaver size of 1000 bits, after 8 decoding iterations (specifically,

we used a pseudo-randomly punctured Turbo code (PRP-PCCC) and

a punctured systematic Turbo code (S-PCCC), both having a rate-1/3

PCCC(1,5/7,5/7) parent code). For the two Turbo codes, the con-

tinuous line segments illustrate their simulated error performance as

per [22], whereas the shorter dashed-line segments represent a reason-

able extrapolation of their respective error floor tendencies. . . . . . . . 78

Figure 4.10 Evolution of CDO code error-correction performance as a function of

J , for J ∈ {9, 10, [12; 17]}, at Eb

N0
∈ [2.0; 4.0] (dB), and after 15 iterations. 80

Figure 4.11 Evolution of S-CDO code error-correction performance as a function of

J , for J ∈ [10; 20], at Eb

N0
∈ [2.0; 4.0] (dB), and after 15 iterations. . . . . 81

Figure 5.1 Scaling of (S-)CDO code validation speedup as a function of J , for

J ∈ [8; 16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



xxvi

Figure 5.2 Example of systematic (S-)CDO code encoder: R = 1
2
, J = 4, M = 15,

Ω = {0, 3, 13, 15}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 5.3 (S-)CDO search-tree: searching for a J=3 CDO. . . . . . . . . . . . . . 95

Figure 5.4 Proposed data structure for storing differences (simplified). . . . . . . . 97

Figure 5.5 Node addition and incremental computation of differences (only first-

order differences are shown). . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.6 Example illustrating how to store the positive differences and detect

collisions during a tree-traversal. . . . . . . . . . . . . . . . . . . . . . . 100

Figure 5.7 Using the difference store array and the active ids array to per-

form incremental computation of differences (only first-order differ-

ences shown). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.8 Pseudo-code of the collision-detection algorithm. . . . . . . . . . . . . . 102

Figure 5.9 Flowchart for validating a CDO code. . . . . . . . . . . . . . . . . . . . 103

Figure 5.10 Pseudo-code of novel incremental first-order and second-order differ-

ence generation, CDO code collision test, and tagging of values in the

difference store array. Returns True if code is valid, False otherwise. . 105

Figure 5.11 Flowchart for validating a S-CDO code. . . . . . . . . . . . . . . . . . . 106

Figure 5.12 Pseudo-code of modified collision-detection algorithm for S-CDO code

first-order differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.13 First and second order differences computed when validating the CDO

code Ω = {0, 1, 5}: (*) denotes the differences added to the set by

α2 = 1, and (**) denotes the differences added by α3 = 5. . . . . . . . . 108

Figure 5.14 Summary of the most important tree-pruning techniques used: Theo-

rems 1, 2 and 3 allow for a considerable reduction in the size of the

search space [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 5.15 Task partitioning and load-balancing. . . . . . . . . . . . . . . . . . . . 112

Figure 5.16 Computation time for each sub-tree with and without load-balancing

(J = 9, S-CDO codes). . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.17 Scaling of the novel algorithm as a function of the number of threads

used (S-CDO codes, J = 9). . . . . . . . . . . . . . . . . . . . . . . . . 117



xxvii

Figure 5.18 Total number of leaf-nodes in the search-tree as a function of the best

known (S-)CDO code spans and their order J . . . . . . . . . . . . . . . 119

Figure 5.19 First and second order differences exist in pairs of equal magnitude but

opposite sign: computing only one of the difference pairs eliminates the

ambiguity that would otherwise delay the detection of a collision. . . . 123

Figure A.1 Rate R = 1
2
systematic (S-)CDO code error-correction performance for

Eb

N0
∈ [2.0; 4.0] (dB), after 12 decoding iterations for two S-CDO codes

of order J = 10, and after 13 decoding iterations for two CDO codes

of order J = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure A.2 Rate R = 1
2
systematic (S-)CDO code error-correction performance for

Eb

N0
∈ [2.0; 4.0] (dB), after 14 decoding iterations for two S-CDO codes

of order J = 11, and after 13 decoding iterations for two CDO codes

of order J = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure A.3 Rate R = 1
2
systematic (S-)CDO code error-correction performance for

Eb

N0
∈ [2.0; 4.0] (dB), after 14 decoding iterations for two S-CDO codes

of order J = 12, and after 18 decoding iterations for two CDO codes

of order J = 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure A.4 Rate R = 1
2
systematic (S-)CDO code error-correction performance for

Eb

N0
∈ [2.0; 4.0] (dB), after 15 decoding iterations for two S-CDO codes

of order J = 13, and after 20 decoding iterations for two CDO codes

of order J = 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure A.5 Rate R = 1
2
systematic (S-)CDO code error-correction performance for

Eb

N0
∈ [2.0; 4.0] (dB), after 12 decoding iterations for two S-CDO codes

and two CDO codes of order J = 14. . . . . . . . . . . . . . . . . . . . 151

Figure A.6 Rate R = 1
2
systematic (S-)CDO code error-correction performance

after 17 decoding iterations for two S-CDO codes of order J = 15

(Eb

N0
∈ [2.0; 3.8] dB), and after 9 decoding iterations for two CDO codes

of order J = 15 (Eb

N0
∈ [2.0; 4.0] dB). . . . . . . . . . . . . . . . . . . . . 152



xxviii

Figure A.7 Rate R = 1
2
systematic (S-)CDO code error-correction performance for

Eb

N0
∈ [2.0; 3.6] (dB), after 19 decoding iterations for two S-CDO codes

of order J = 16, and after 15 decoding iterations for two CDO codes

of order J = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure A.8 Rate R = 1
2
systematic (S-)CDO code error-correction performance for

Eb

N0
∈ [2.0; 4.0] (dB), after 20 decoding iterations for two CDO codes

and two S-CDO codes of order J = 17. . . . . . . . . . . . . . . . . . . 154

Figure A.9 Rate R = 1
2
systematic S-CDO code error-correction performance for

Eb

N0
∈ [2.0; 3.6] (dB) after 20 decoding iterations, for two codes of orders

J = 18, J = 19 and J = 20 respectively. . . . . . . . . . . . . . . . . . 155

Figure B.1 Density map for two optimal-span CDO codes (J ∈ {6, 7}) and two

optimal-span S-CDO codes (J = 9). . . . . . . . . . . . . . . . . . . . . 157

Figure B.2 Density map for two J = 8 optimal-span CDO codes (id ∈ {1, 2}) and

one J = 8 short-span CDO code (id = 3). . . . . . . . . . . . . . . . . 157

Figure B.3 Density map for a short-span CDO code (J = 10) and a short-span

S-CDO code (J = 14). . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure B.4 Density map for a short-span CDO code (J = 11) and two short-span

S-CDO codes (J = 15). . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure B.5 Density map for two J ∈ {10, 11} optimal-span S-CDO codes (id ∈

{1, 3}) and two J ∈ {10, 11} short-span S-CDO codes (id ∈ {2, 4}). . . 158

Figure B.6 Density map for one J = 9 optimal-span CDO code (id = 1), one

J = 9 short-span CDO code (id = 2), and two J = 12 short-span

S-CDO codes (id ∈ {3, 4}). . . . . . . . . . . . . . . . . . . . . . . . . . 159

Figure B.7 Density map for two short-span CDO codes (J = 10) and two short-

span S-CDO codes (J = 13). . . . . . . . . . . . . . . . . . . . . . . . . 159

Figure B.8 Density map for four short-span CDO codes (J ∈ {12, 13}). . . . . . . 159

Figure B.9 Density map for two short-span CDO codes (J = 14) and two short-

span S-CDO codes (J = 14). . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure B.10 Density map for two short-span CDO codes (J = 15) and two short-

span S-CDO codes (J = 15). . . . . . . . . . . . . . . . . . . . . . . . . 160



xxix

Figure B.11 Density map for two short-span CDO codes (J = 16) and two short-

span S-CDO codes (J = 16). . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure B.12 Density map for two short-span CDO codes (J = 17) and two short-

span S-CDO codes (J = 17). . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure B.13 Density map for four short-span S-CDO codes (J ∈ {18, 19, 20}). . . . . 163

Figure D.1 Sample XML state-file generated during the search for optimal-span

J = 10 CDO codes by a binary configured to use two worker threads. . 174



xxx

LIST OF TABLES

Table 2.1 Number of leaf-nodes as a function of J and Mcurr . . . . . . . . . . . . 24

Table 3.1 Summary of new rate R = 1
2
systematic (S-)CDO codes obtained with

the novel technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 4.1 Summary of new rate R = 1
2
systematic (S-)CDO codes obtained with

the novel technique for J ∈ {9, 10, 11, 12, 13} . . . . . . . . . . . . . . 73

Table 4.2 Summary of new rate R = 1
2
systematic (S-)CDO codes obtained with

the novel technique for J ∈ {14, 15, 16} . . . . . . . . . . . . . . . . . . 74

Table 4.3 Summary of new rate R = 1
2
systematic (S-)CDO codes obtained with

the novel technique for J ∈ {17, 18, 19, 20} . . . . . . . . . . . . . . . . 75

Table 5.1 CDO validation function comparison - ie validate() [5] . . . . . . . . . 115

Table 5.2 CDO validation function comparison - prs validate() [20] . . . . . . . . 115

Table 5.3 S-CDO validation function comparison - ie validate() [5] . . . . . . . . 116

Table 5.4 CDO Code Exhaustive Search Overall Speedup . . . . . . . . . . . . . . 118

Table 5.5 S-CDO Code Exhaustive Search Overall Speedup . . . . . . . . . . . . 118

Table 5.6 Comparison of the total number of differences computed for a CDO

code search and J ∈ {5, 6, 7, 8} . . . . . . . . . . . . . . . . . . . . . . 124

Table 5.7 Comparison of the total number of differences computed for a S-CDO

code search and J ∈ {6, 7, 8, 9} . . . . . . . . . . . . . . . . . . . . . . 125

Table B.1 Code to Density Map Mapping (1 of 2) . . . . . . . . . . . . . . . . . . 161

Table B.2 Code to Density Map Mapping (2 of 2) . . . . . . . . . . . . . . . . . . 162

Table C.1 Short-span CDO codes of order J ∈ {7, 10, 11, 12, 13} . . . . . . . . . . 165

Table C.2 Short-span CDO codes of order J ∈ {13, 14, 15} . . . . . . . . . . . . . 166

Table C.3 Short-span CDO codes of order J ∈ {15, 16, 17} . . . . . . . . . . . . . 167

Table C.4 Short-span S-CDO codes of order J ∈ {9, 10, 11, 12, 13, 14} . . . . . . . 168

Table C.5 Short-span S-CDO codes of order J ∈ {14, 15, 16, 17} . . . . . . . . . . 169

Table C.6 Short-span S-CDO codes of order J ∈ {17, 18, 19} . . . . . . . . . . . . 170

Table C.7 Short-span S-CDO codes of order J ∈ {19, 20} . . . . . . . . . . . . . . 171



xxxi

Table C.8 Short-span S-CDO codes of order J ∈ {20} . . . . . . . . . . . . . . . . 172



xxxii

LIST OF ABBREVIATIONS

Forward Error Correction FEC

Signal-to-Noise Ratio SNR

Bit Error Rate BER

Convolutional Self-Doubly Orthogonal CDO

Simplified Convolutional Self-Doubly Orthogonal S-CDO

CDO and/or S-CDO (S-)CDO

Central Processing Unit CPU

Graphics Processing Unit GPU

Field-Programmable Gate Array FPGA

Garry/Vanderschel ANTenna GVANT

Garry’s Adaptation of Rado’s Searching Principles GARSP

Feiri/Levet Enhanced Garsp Engine FLEGE

Lookup Table LUT

Unique Identifier UID

Identification ID

Computational Improvement Rate CIR

Mean Time Before Failures MTBF

General-Purpose computing on GPUs GPGPU

Recursive Convolutional Self-Doubly Orthogonal RCDO

Simplified Recursive Convolutional Self-Doubly Orthogonal S-RCDO

RCDO and/or S-RCDO (S-)RCDO



1

CHAPTER 1

INTRODUCTION

1.1 Background

In 1948, the groundbreaking paper presented by Claude E. Shannon, an American mathe-

matician and electronics engineer, gave birth to the field of Information Theory [1]. A central

paradigm in this field is the engineering problem of the reliable transmission of information

over a noisy channel. Indeed, a transmission medium (or communication channel), has cer-

tain physical characteristics that will introduce errors into the information flow as it travels

from the transmitter to the receiver. For example, in Fig. 1.1, the information (yi) obtained

at the Receiver, is the data (ui) sent by the Transmitter, but corrupted by the errors (ei)

induced by the Noisy Communication Channel.

In order to increase the reliability of data transmissions, forward error correction (FEC,

or channel coding) may be used [2]. In this scheme, the sender “encodes” the information

by adding systematically generated redundant parity check symbols to its messages. These

additional symbols are then used at the receiving end to detect and/or correct a limited

number of channel errors occurring in the transmission. For example, in Fig. 1.2, the Encoder

adds redundant symbols (vi) to the data stream (ui) sent by the Transmitter. The Noisy

Communication Channel adds errors to the original data stream {ui, vi}, resulting in a data

stream {ũi, ṽi} containing errors. The redundant symbols are then used by the Decoder to

detect and/or correct up to a certain limited number of errors within a given interval of the

data stream. Following the error-correction scheme at the Decoder, the decoded sequence

Figure 1.1 Simplified diagram depicting a communication over a noisy channel.
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Figure 1.2 Simplified diagram depicting a communication using forward error correction over
a noisy channel.

and “most likely value of ui”, ûi, is then delivered to the Receiver.

In his paper [23], Shannon presents the noisy-channel coding theorem, which states that

as long as the transmission rate is kept below some computable maximum rate, it is possible

to use a sophisticated coding technique to communicate discrete data (or digital information)

nearly error-free through a noisy channel [3]. The theorem describes the maximum infor-

mation transfer rate of a channel for a given noise level, and thus the maximum possible

efficiency of error-correcting methods for that given noise level: this theoretical threshold is

known as the Shannon limit (or channel capacity) [3]. The channel capacity, expressed in

bits/s, can be calculated from the physical properties of a transmission medium.

Unfortunately, Shannon’s work does not provide a description on how to construct error-

correcting codes and systems reaching this efficiency, a problem which gave rise to the field of

Coding Theory, and more particularly Channel Coding Theory (a sub-field of Coding Theory).

1.2 Channel Coding Theory - A Quick Overview

The main goal of Channel Coding Theory is to find codes and encoding/decoding methods

that allow reliable and efficient data transmissions over different types of communication

channels, that is, finding codes that minimize the effect of the channel noise and allow the

transmission of data with an arbitrarily small coding error at a rate near the channel capac-

ity [24].

Indeed, depending on the transmission channel, the codes will require different proper-

ties. For example, deep space communications are affected by thermal noise, which is of a

continuous nature; DVDs on the other hand will encounter bursts of errors wherever dust or

scratches are present; and the high frequencies used by cell phones can cause rapid fading of
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the signal [3, 25]. As long as the transmission rate is below the Shannon capacity, the maxi-

mum ratio of the number of errors that can be corrected over the total number of transmitted

symbols is determined by the design of the FEC code [26]. Therefore, based on the type of

application that is of interest, different codes and/or code combinations may be suitable.

In addition to offering more reliable data transmissions, the use of FEC also provides

other significant advantages: for example, it opens the door to higher data-rate communi-

cations that would otherwise be impossible with uncoded transmissions; it also allows for

communications over very long distances to take place, which is useful for space exploration

and high-speed transcontinental data links; finally, mobile devices (such as smartphones and

tablets) can use FEC to reduce their transmission power in wireless communications, and thus

extend their battery life. Therefore, finding new and better codes is of critical importance,

especially given that mobile devices requiring high data-rate communications are becoming

mainstream.

A very brief overview of some forward error correction terms and two common types of

codes, block codes and convolutional codes, is now presented.

1.2.1 Some Forward Error Correction Terms

Forward Error Correction (FEC) follows a predetermined algorithm to add just the right kind

of redundancy needed to efficiently and reliably transmit data across a noisy communication

channel [3]. Indeed, these redundant bits can be used to reconstruct the original data, were

it to contain errors.

A code is said to be systematic if the original information sequence can be found in the

encoded output. Otherwise, it is said to be non-systematic [1]. The coding gain of a code

is defined as the measure in the difference between the signal-to-noise ratio (SNR) level of

an uncoded transmission, and the SNR level of the coded transmission at the same bit error

rate (BER) [3]. Furthermore, the coding rate is defined as R = k
n
, where k is the number of

information bits at the input of the encoder, and n is the number of transmitted bits at the

output of the encoder [3]. Thus, a systematic encoder will add n− k redundancy bits to the

k information bits at its input.

In this thesis, we will mainly be dealing with rate R = 1
2
systematic codes.



4

1.2.2 Block Codes

As their name implies, block codes work on fixed-size blocks of data of predetermined size [1].

During the encoding, a message is divided into a set of fixed-length sequences called infor-

mation blocks. Each block is encoded separately, and with the added redundancy bits, it

will form a larger fixed-length block that will be transmitted over the noisy channel. Since

blocks are independent of each other, practical implementations of these codes are able to

make heavy use of parallel processing techniques [27].

1.2.3 Convolutional Codes

Convolutional codes work on bit streams of arbitrary length: the added redundancy bits are

computed as a function of the last k input bits in the stream [1]. Their main advantage

is that they tend to offer a greater simplicity of implementation than block codes of equal

power [3]. A more in-depth description of a few types of convolutional codes is presented in

Chapter 2.

1.3 Research Objectives

We focus on developing a search algorithm for finding optimal/short-span rate R = 1
2
system-

atic Convolutional Self-Doubly Orthogonal (CDO) codes and Simplified Convolutional Self-

Doubly Orthogonal (S-CDO) codes. These convolutional error-correcting codes, described

in Chapter 2, must satisfy some “double orthogonality properties”, beyond those of the well-

known orthogonal codes [10]. The error-correcting performance of these codes depends mostly

on J , the number of generator connections (also known as the “order” of the code), and their

decoding latency is proportional to their memory length (also known as the “span” of the

code) [4]. Therefore, in order to build high-performance/low-latency codecs with these codes,

it is important to minimize their span for a given order J . While finding CDO/S-CDO codes

is relatively easy, determining shortest-span codes for a given order J is computationally

very challenging. In fact, the direct construction of optimal-span (or shortest-span) CDO

and S-CDO codes has so far eluded analysis and the search for these codes is believed to be

an NP-complete problem (see Chapter 2).
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The research objectives for this thesis will thusly involve:

1. Developing and implementing an efficient high-performance search algorithm for finding

new optimal-span CDO and S-CDO codes, and new CDO/S-CDO codes having shorter

spans than any previously published codes for the same order J .

2. Finding, for J ≤ 20, novel optimal-span codes and new codes with spans that are

shorter than previously published codes.

3. Characterizing the error-correcting performance of these novel codes, as well as the

evolution of their error performance as J increases.

1.4 Research Contributions

In this thesis, three articles are presented:

1. G. Kowarzyk, N. Bélanger, D. Haccoun, and Y. Savaria, “Efficient Search Algorithm for

Determining Optimal R=1/2 Systematic Convolutional Self-Doubly Orthogonal Codes,”

IEEE Transactions on Communications, vol. 60, no. 1, pp. 3-8, 2012.

2. G. Kowarzyk, N. Bélanger, D. Haccoun, and Y. Savaria, “Efficient Parallel Search

Algorithm for Determining Optimal R=1/2 Systematic Convolutional Self-Doubly Or-

thogonal Codes,” IEEE Transactions on Communications, vol. 61, no. 3, pp. 865-876,

2013.

3. G. Kowarzyk, N. Bélanger, D. Haccoun, and Y. Savaria, “Optimizing the Parallel Tree-

Search for Finding Shortest-Span CDO Codes of Order J,” IEEE Transactions on Par-

allel and Distributed Systems - submitted August 18, 2013.

The first article [15] proposes an efficient implicitly-exhaustive search algorithm that applies

dynamic search-space reduction techniques to yield new optimal-span CDO and S-CDO codes

(J ∈ {6, 8, 9} and J ∈ {9} respectively), and new codes having shorter spans than any pub-

lished codes of this class with the same order (J ∈ {10, 11} and J ∈ {14, 15} respectively).

The error-correction performance of some of these codes is shown and their spans are com-

pared to known bounds.
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In the second article [14], we present a high-level overview of the high-performance par-

allel and efficient implicitly-exhaustive search algorithm that we have developed. The novel

search algorithm provides a very significant speedup over previous search algorithms. This

is achieved through the use of a stricter set of constraints to identify and concentrate the

search on only potentially valid codes, and by performing a parallel search using incremen-

tal computation with data-reuse. The novel algorithm was able to yield new optimal-span

CDO/S-CDO codes having order J ∈ {9} and J ∈ {10, 11} respectively, and new codes with

the shortest published spans having order J ∈ [10; 20]. Their span is compared to known

bounds, and the error-correction performance for some of these codes is presented. Finally,

the evolution of the error performance for CDO/S-CDO codes as a function of J , J ≤ 20, is

shown.

In the third article [16], we focus on describing the optimization techniques that were

applied to the search algorithm in [14] to reduce the time required for finding optimal-span

CDO/S-CDO codes. We characterize the speedup obtained and show that using the novel

algorithm and its efficient implementation, a very substantial speedup of more than four orders

of magnitude is achieved. We explain the method by which the codes are validated using

a novel data structure to enable incremental computation and data-reuse. The combination

of optimizations and load-balancing techniques allowed us to complete the search over a

search-space that is some 1014 times larger than what was previously possible.

The list of research contributions presented in thismanuscript-based thesis can be grouped

into the following three categories:

1. The development of a novel parallel and implicitly-exhaustive search algorithm for deter-

mining optimal/short-span rate R = 1
2
systematic CDO/S-CDO codes. The algorithm

described in [14, 15, 16] features the following synergistic improvements that led to

finding new and improved codes:

(a) An improved search-tree traversal:

• uses an implicitly-exhaustive tree traversal [14, 15];

• executes a parallel search to further reduce the computation time [14, 16];
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• uses an effective load-balancing technique to scale efficiently over hundreds of

processing cores [14, 16].

(b) A drastically improved (S-)CDO code validation function [14, 16]:

• uses compile-time meta-programming techniques to remove the branches and

loops in the validation function, thus eliminating the associated branch-

misprediction penalty on modern microprocessors;

• computes only one element of the second-order difference pairs, thereby re-

ducing the number of computed second-order differences by half;

• focuses on invalidating a code rather than validating a code, thus ensuring

that a code is discarded as early as possible during the validation process;

• performs an incremental computation with data-reuse.

(c) Basic fault-tolerance measures to counteract the low mean time between failures

of computers running the search:

• performs regular snapshots of the current state of the search, which are effi-

ciently saved in a verifiable XML format;

• uses the XML state-files to allow for the search to be stopped and resumed

without a significant loss of progress.

(d) Offers a very significant speedup [16] over previously published algorithms [5, 20,

21]:

• overall speedup factor for J = 7 CDO codes: > 16300;

• overall speedup factor for J = 8 S-CDO codes: > 6300;

• validation function speedup factor compared to reference algorithm:

– CDO codes, J = 17: > 190000;

– S-CDO codes, J = 17: > 60000;

• validation function speedup factor compared to fastest published CDO code-

only validation function used in high-performance pseudo-random search al-

gorithms, for CDO codes, J = 17: > 2000;
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• size of largest search space exhaustively searched : completed the search over

a search space that is some 1014 times larger than previously possible.

2. In [14, 15], we provide new optimal and short-span (S-)CDO codes that have a shorter

span than previously published codes having the same order [20, 21, 28]:

(a) CDO codes:

• novel optimal-span CDO codes for J ∈ {6, 7, 8, 9};

• new short-span CDO codes for J ∈ [10; 17];

• maximal span reduction for CDO codes: 32%;

• average span reduction for CDO codes: 14%.

(b) S-CDO codes:

• novel optimal-span S-CDO codes for J ∈ {9, 10, 11, 12};

• new short-span S-CDO codes for J ∈ [13; 20];

• maximal span reduction for S-CDO codes: 34%;

• average span reduction for S-CDO codes: 26%.

3. In [14, 15], we describe some of the characteristics of these (S-)CDO codes:

• their spans are compared to known theoretical lower-bounds ;

• the bit error-correction performance for some of these codes is presented, confirm-

ing that they offer an interesting alternative at medium SNR values (Eb

N0
≥ 3 dB);

• the evolution of their error-performance as J increases is presented: although

the error floor seems to be lowered as J becomes larger, the “waterfall” region

progressively moves to higher Eb

N0
values, a fact that will need to be considered

when selecting one of these codes for use in a given application of interest.

1.5 Thesis Layout

This manuscript-based thesis is composed of seven chapters. Chapters 3, 4, and 5 introduce

articles [15], [14] and [16] respectively. Following this introductory chapter, the document is

subdivided as follows:
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• In Chapter 2, we briefly define Turbo codes, Convolutional Self-Orthogonal codes (also

known as Golomb rulers), Convolutional Self-Doubly Orthogonal (CDO) codes and

Simplified Convolutional Self-Doubly Orthogonal (S-CDO) codes. A short literature

review on search algorithms for finding optimal-span Golomb rulers is provided. We

describe the reference CDO code pseudo-random search algorithm and the reference

(S-)CDO code exhaustive search algorithm: their tree-traversal and validation function

are briefly explained in order to position our work. Then, we introduce Chapters 3, 4,

and 5, which correspond to the three papers for this manuscript-based thesis.

• In Chapter 3, we present a novel implicitly-exhaustive search algorithm for finding

rate R = 1
2
optimal-span CDO and S-CDO codes. The algorithm defines a set of

tree-pruning techniques to reduce the size of the (S-)CDO code search space, thus

yielding new optimal-span CDO and S-CDO codes for J ∈ {6, 7, 8} and J = 9 re-

spectively. Furthermore, we were able to find CDO codes (J ∈ {10, 11}) and S-CDO

codes (J ∈ {14, 15}) having spans that are shorter than any previously published codes.

The spans of these codes are compared to known theoretical bounds, and their error-

correction performance is shown.

• In Chapter 4, we present an efficient and parallel implicitly-exhaustive search algo-

rithm for determining rate R = 1
2
optimal-span CDO and S-CDO codes. This novel

algorithm uses a stricter set of tree-pruning techniques, and a parallel execution with

incremental computation and data reuse to speed up the search and yield new codes.

We provide a very high-level overview of the algorithm, and mainly focus on the codes

that were obtained: new optimal-span CDO/S-CDO codes (having order J = 9 and

J ∈ {10, 11} respectively), as well as new codes having the shortest published spans

for J ∈ {10, 12, ...17} and J ∈ {12, ..., 20} respectively. The new codes and their error-

performance are provided, and an evolution of the CDO/S-CDO code error performance

as J increases is presented.

• In Chapter 5, we describe the optimizations and enhancements used for the algorithm

presented in Chapter 4, which led to a drastic reduction in the time required for find-

ing optimal/short span CDO/S-CDO codes. The resulting high-performance parallel
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implementation provides a speedup over the reference implicitly-exhaustive search al-

gorithm that is greater than 16300 for J = 7 CDO codes, and greater than 6300 for

J = 8 S-CDO codes. We focus on the vastly improved validation function, which makes

use of a novel data structure for enabling data-reuse and incremental computations,

thus achieving a speedup greater than 190000 and 60000 for J = 17 CDO and S-CDO

codes respectively. We also describe improvements made on the tree-traversal and load-

balancing of computations, and show that the algorithm scales well with the number

of processor cores used: the combination of techniques allowed us to leverage hundreds

of processor cores in order to complete an exhaustive search over a search-space that is

some 1014 times larger than what was previously possible.

• Chapter 6 presents a general discussion1 of the thesis: it provides a brief overview of

the overall objectives achieved, without going into the details discussed in previous

chapters.

• Chapter 7 presents the concluding remarks of this thesis and discusses several sugges-

tions for future work.

1As per the guidelines of the Département de génie électrique, École Polytechnique de Montréal.
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CHAPTER 2

DEFINITIONS AND LITERATURE REVIEW

In this chapter, we first define a few types of codes that are of interest in the discussion: Con-

volutional Self-Orthogonal (CSO) codes, Turbo codes, Convolutional Self-Doubly Orthogonal

(CDO) codes, and Simplified CDO (S-CDO) codes. Then, we provide an overview of search

algorithms for finding optimal-span Golomb rulers, also known as optimal-span CSO codes.

Finally, the reference CDO code pseudo-random search algorithm and the reference (S-)CDO

code exhaustive search algorithm are described: their tree-traversal and validation function

are briefly explained in order to position our work.

2.1 Definitions for some codes of interest

2.1.1 Convolutional Self-Orthogonal (CSO) codes

Systematic Convolutional Self-Orthogonal (CSO) codes were first introduced by J. L.

Massey [11] in 1963. These codes have the advantage of offering a simple decoding scheme.

A systematic Convolutional Self-Orthogonal (CSO) code of coding rate R = 1
2
, order J ,

and span αJ is defined as the set Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive

integers (α1 < α2 < ... < αJ) such that the elements in S, the set of first-order differences

Figure 2.1 Example of a CSO code encoder: R = 1
2
, J = 4, M = 6, Ω = {0, 1, 4, 6}.
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between these integers, are all distinct:

S = {sk,l = (αk − αl) : k ̸= l}. (2.1)

As with other systematic rate R = 1
2
convolutional codes, the encoding can be done with

a simple shift register (see Fig. 2.1): a parity check bit pt is generated for every information

input bit ut by modulo-2 adding ut to J − 1 register outputs within the shift register. The

locations of these shift register“taps”are specified by the CSO code itself: each αi = k element

of the code represents the i-th connection going from the k-th register to the modulo-2 adder.

The first element, α1, has always the value zero and represents the connection between input

bit ut and the modulo-2 adder. The value of αJ represents the memory window, i.e. the

number of information bits currently stored in the shift register. The information bit ut and

the redundant bit pt are then multiplexed to form the encoded data stream.

Massey’s decoder design focuses on simplicity [11]. Nevertheless, it is important to note

that the error-correction power of the code is a function of dmin, the minimum distance of

the code, where dmin = J + 1, and that the decoding latency is proportional to αJ , the span

of the code [5]. Thus, in order to have a good error-correction performance and a low latency,

one has to maximize J and minimize αJ , a problem related to the search of optimal Golomb

rulers.

Golomb rulers are named after Solomon W. Golomb [13], an American mathematician

and engineer, but they were also discovered independently by Simon Szidon (1932) [29]

and Wallace C. Babcock (1953). Aside from being employed as CSO codes, they are of

mathematical interest [30] and have found a surprising number of other uses: from rope

cutting [31], to gaining insight into diffraction patterns that arise in x-ray crystallography [30]

and the construction of spectrometers [32, 33], to being used in the fields of graceful graph

labeling [30, 34] and numbered undirected graphs [35], and even for the development of

optimal recovery schemes in fault-tolerant distributed computing [36, 37]. They are also

used for reducing intermodulation distortion [38, 39], implementing carrier spacing in fiber

optic systems [40], developing radars/sonars, generating Costas arrays [30, 41], and in radio

astronomy and signal processing [42].
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A Golomb ruler is defined as a set of marks at integer positions along an imaginary ruler,

such that no two pairs of marks are the same distance apart [43]. By convention, the first

mark is at position zero on the ruler. A Golomb ruler’s order, J , is defined as the number

of marks on the ruler, and its length (or span) is the largest distance between two of its

marks. A Golomb ruler of order J is said to be optimal when no other ruler with a shorter

length exists for that order. One can easily see that a Golomb ruler is in fact a convolutional

self-orthogonal code of coding rate R = 1
2
. Thus, finding optimal length Golomb rulers of

order J is equivalent to the problem of minimizing the span of a convolutional code of coding

rate R = 1
2
and order J .

Although creating a Golomb ruler is easy, finding optimal Golomb rulers is computation-

ally very challenging and believed1 to be NP-complete [46, 47]. Since this problem is also of

interest to the fields of Applied Physics and Mathematics, massively parallel searches have

been undertaken by the Distributed.net OGR project [13], and optimal Golomb rulers of

orders up to 26 have been found. Distributed.net is currently searching for optimal golomb

rulers of order 27, a computation that is expected to take 7 years to complete [13].

2.1.2 Turbo codes

C. Berrou, A. Glavieux, and P. Thitimajshima introduced Turbo codes in 1993. This novel

class of high-performance FEC codes is able to approach the Shannon limit within a fraction

of a decibel [8, 48]. The breakthrough BER performance was achieved through the use

of two or more convolutional encoders and an interleaver, which is designed to make the

encoder output sequences be statistically independent from each other [3]. Fig. 2.2 depicts

a simplified diagram of a systematic Turbo encoder: note that the Interleaver ensures that

the inputs at Encoder #1 and Encoder #2 are statistically independent from each other. A

detailed description of its iterative soft-decision decoding algorithm is beyond the scope of

this document [8]. Nevertheless it is important to understand that it comprises two decoders

that will exchange information iteratively until a given number of iterations is reached. With

each iteration, the estimate of the message bits improves, and usually it converges after some

1Although papers from the heuristics community [44, 45] claim that the Golomb Ruler problem is NP-
complete or NP-hard [12], a mathematical proof of this is still an open problem.
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Figure 2.2 Simplified diagram of a systematic Turbo Encoder.

Figure 2.3 Iteratively decoding - one bit at a time.

number of iterations to the correct original information bits [3].

Although these codes offer an excellent error-correcting performance in low SNR environ-

ments, they suffer from three main drawbacks. First, their implementation complexity is

relatively high. Second, because in order to obtain a good error performance they require

a large interleaver (of several thousands of bits), as well as many iterations, these systems

are plagued by a high decoding latency. Finally, their error-correcting performance hits an

“error floor” at larger SNR values, where it is not possible to improve the BER even with

more iterations: this may be unacceptable for data transmissions requiring very low bit error

rates [5].

2.1.3 Convolutional Self-Doubly Orthogonal (CDO) codes and Simplified CDO

(S-CDO) codes

The novel iterative error-control coding scheme presented in [4, 6, 7] differs from the classical

Turbo code procedure invented in 1993 [8, 9], as it does not use any interleaver, neither at

the encoding nor at the decoding process. The iterative threshold decoding algorithm it uses

employs a new class of systematic convolutional codes that must satisfy double orthogonality

properties, beyond those of the well-known orthogonal codes used in the usual non-iterative

threshold decoding [10].
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Figure 2.4 Error-correction performance after one and after eight decoding iterations for
three rate R = 1

2
systematic codes having a similar span value M , and Eb

N0
∈ [2.0; 4.8] (dB): a

CSO code (J = 24), a CDO code (J = 8) and an S-CDO code (J = 11). CDO and S-CDO
codes can benefit from iterative decoding, thus offering a significant coding gain over the
CSO code.

The added so-called double orthogonality properties required from the codes ensure a

quasi-independence of the observables over the first two decoding iterations, thereby allow-

ing the use of an iterative decoding procedure (see Fig. 2.3), and hence attractive trade-

offs between complexity, latency, and a good error performance [6]. Figure 2.4 shows, for

Eb

N0
∈ [2.0; 4.8] (dB), the error-correction performance after one and after eight decoding

iterations for three rate R = 1
2
systematic codes having a similar span value M : a CSO

code (J = 24, M = 425), a CDO code (J = 8, M = 423) and an S-CDO code (J = 11,

M = 445). One can clearly see that iterative decoding does not significantly improve the

error performance of the CSO code. However, for CDO and S-CDO codes, it allows for a

considerable error-performance improvement, thus resulting in a coding gain of about 1.75 dB

when compared to the CSO code.

As the error-correcting capability of CDO and S-CDO codes depends essentially on the
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Figure 2.5 Example of a CDO code encoder: R = 1
2
, J = 4, M = 15, Ω = {0, 3, 13, 15}.

number J , the dimension of the vector generator of the R = 1
2
code [20], and because

the code constraint length (or span of the code) has a direct impact on the latency of the

system, it is of great interest to search for rate R = 1
2
systematic CDO and S-CDO codes

having the shortest possible span for any given J number of connections. Since no systematic

deterministic method for solving this problem is currently known, the code searching must

be conducted using heuristic search algorithms [20, 28]. Although finding a CDO code is

relatively easy, determining the shortest span codes for a given J has eluded analysis and is

still an open problem. In fact, the search for optimal CDO codes (and their variants) is far

more computationally challenging than the problem of finding “optimal” simply orthogonal

codes (a.k.a. the Golomb ruler problem), which is believed2 to be NP-complete [44, 45] or

NP-hard [12]. Indeed, CDO codes may be viewed as second-order Golomb rulers.

Please note that since this is a manuscript-based thesis, articles are required3 to be pre-

sented without modifications. Therefore, CDO and S-CDO code definitions will be provided

several times: in this chapter (below), and then again in Chapters 3, 4, and 5.

2.1.3.1 Convolutional Self-Doubly Orthogonal (CDO) codes

A systematic Convolutional Self-Doubly Orthogonal (CDO) code of coding rate R = 1
2
and

order J is defined as the set Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive integers

(α1 < α2 < ... < αJ) such that the following conditions are satisfied [6, 20, 21, 49]:

1. The elements in S, the set of first-order differences between these integers, are all

distinct:

S = {sk,l = (αk − αl) : k ̸= l}; (2.2)

2Please recall that a mathematical proof of this is still an open problem [46, 47].
3As per the guidelines of the Département de génie électrique, École Polytechnique de Montréal.
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2. The elements in D, the set of second-order differences (the differences between the

differences), are all distinct from one another, with the exception of the unavoidable

differences caused by the permutations of indices (l,m) or (k, n):

D = {dk,lm,n = (αk − αl)− (αm − αn) :

k ̸= l,m ̸= n, k ̸= m, l ̸= n};
(2.3)

3. The elements in sets S and D are distinct from one another (D ∩ S = ∅).

The αi elements (i ∈ [1; J ]) represent the connections between the encoder shift register and

the modulo-2 adder, i.e. the generator connections. By convention α1, the first integer in our

set, is always equal to zero (α1 = 0). The span M of a CDO code is equal to αJ , the largest

integer in Ω, and corresponds to the length of the encoder shift register (see Fig. 2.5), that is,

αJ is the code memory length [20]. The number J of elements in Ω is equal to the number

of generator connections of the code and is called the order of the CDO code.

An optimal CDO code of a given order J is defined as a CDO code whose span Mopt is

the smallest span that exists for that order. However, an optimal CDO code may not be

unique, and hence there may be more than one optimal CDO code of a given order J .

By definition, since the validity of a CDO code depends only on the relationship between

the J successive elements composing it, any subset of L consecutive elements from the set

defining a CDO code also forms a valid CDO code, albeit one of smaller order L, L < J . For

example:

CDOJ=5 = {0, 1, 24, 37, 53}

CDOJ=4 = {0, 1, 24, 37} (2.4)

CDOJ=3 = {0, 1, 24}

are all valid, although not optimal, CDO codes. This property will be leveraged to speed-up

the algorithms presented in this thesis.

When calculated directly as per the definition, first-order and second-order differences

come in pairs of equal magnitude but opposite sign. The number of positive first-order differ-
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Figure 2.6 Golomb ruler symmetry: CDO code #1 and CDO code #2 are symmetrical
(mirror) equivalents.

ences (NS) and second-order differences (ND) that exist for a code are a function of J , given

by [20]:

NJ
S =

J(J − 1)

2
(2.5)

NJ
D =

J(J3 − 2J2 + 3J − 2)

8
. (2.6)

For simplicity, assuming that the cost of computing a first and a second order difference is

the same, the total number of positive differences as a function of J is given by the sum of

(2.5) and (2.6):

NJ
S+D = NJ

S +NJ
D =

J4 − 2J3 + 7J2 − 6J

8
. (2.7)

Recall that directly computing the exact span of optimal codes, whether simply or doubly

orthogonal, is still an unsolved problem [13, 46]. However, a loose lower bound for the span

of a CDO code has been developed in in [20, 50] and can be expressed as a function of J , the

order of the code, using (2.7) as follows:

αJ ≥ α∗
J =

⌈
NJ

S+D

2

⌉
. (2.8)

Furthermore, any CDO code has a symmetrical (mirror) equivalent composed of integers

with the same differences but in the reverse order, a property shared with the so-called

Golomb ruler problem they are related to [20]: the symmetrical equivalent of {0, 2, 12, 15}

would therefore be {0, 3, 13, 15} (see Fig. 2.6). This property will also be used to speed-up
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Figure 2.7 Approximate decoding latency of CDO and S-CDO codes after 14 decoding itera-
tions (assuming one decoded bit per clock cycle).

the novel search algorithms presented in this thesis.

2.1.3.2 Simplified Convolutional Self-Doubly Orthogonal (S-CDO) codes

Simplified Convolutional Self-Doubly Orthogonal (S-CDO) codes are obtained by relaxing

the second CDO condition, yielding codes with shorter spans than regular CDO codes. The

latency of the decoding process is in direct proportion to the span of the code and the number

of iterations used for reaching a given error performance. Therefore, using S-CDO instead of

CDO codes, with the same number of iterations, leads to a substantially reduced decoding

latency (see Fig. 2.7) at the cost of only a very small degradation of the error-correction

performance [5, 21, 51].

A systematic S-CDO code of coding rate R = 1
2
and order J is thus defined as the set

Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive integers such that it satisfies the first

and third CDO conditions, and a modified version of the second condition, as follows [5, 51]:
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2b) The set D of second-order differences between the integers in Ω, defined as:

D = {dk,lm,n = (αk − αl)− (αm − αn) :

k ̸= l,m ̸= n, k ̸= m, l ̸= n}
(2.9)

is composed of 2ND second-order differences (of which 2N e
D have an equal value in the set D),

computed by excluding the unavoidable second-order differences caused by the permutations

of indices (l,m) or (k, n). We define δ, the simplification coefficient, as:

δ =
N e

D

ND

(2.10)

where N e
D is the number of second-order differences having an equal value in the set D,

N e
D < ND and 0 ≤ δ ≤ 1− NS

ND
[5].

Clearly, a CDO code may be viewed as an S-CDO code for which δ = 0, and thus S-CDO

and CDO codes share most of their properties. A loose lower bound on the span of an

S-CDO code has been derived as a function of J and δ, and is expressed, using (2.5) and

(2.6), as [5, 21]:

α∗
J =

⌈
NS + (1− δ) ·ND

2

⌉
. (2.11)

An optimal S-CDO code of order J and simplification coefficient δ is thus an S-CDO code

having the smallest span, Mopt, which exists for that order and δ. Again, there may be more

than one optimal S-CDO code for a given order J and simplification coefficient δ.

In this document, the notation “(S-)CDO” will be used when referring to both CDO and

S-CDO codes. We now present a brief literature review on search algorithms for finding

optimal-span Golomb rulers, followed by a short description of the tree traversal and valida-

tion function of the reference CDO code pseudo-random search algorithm and the reference

(S-)CDO code exhaustive search algorithm.

2.2 Overview of Golomb ruler search algorithms

We recall that finding optimal length Golomb rulers of order J is equivalent to the problem

of minimizing the span of a convolutional self-orthogonal code of coding rate R = 1
2
and
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order J . Although several Golomb ruler construction methods are readily available [52],

finding optimal span Golomb rulers (or near-optimal Golomb rulers) is computationally very

challenging [12, 44, 45]. For example, the search for an optimal J = 19 Golomb ruler

required approximately 36200 computing hours on a Sun Sparc Classic workstation using a

very specialized algorithm [17], and the distributed and massively-parallel search for optimal

span J = 27 Golomb rulers organized by Distributed.net is expected to necessitate several

years of computing time [13].

Several heuristics however, stochastic and deterministic, have been developed in an at-

tempt to improve Golomb ruler search algorithms:

• stochastic search algorithms, such as tabu search [53], evolutionary algorithms [44, 45,

54, 55, 56, 57], and hybrid techniques [58, 59, 60, 61, 62] have been used to find near-

optimal (albeit not optimal) span Golomb rulers;

• deterministic (or exhaustive) search algorithms, based on constraint programming [63,

64], linear programming [65], or improved versions of the Shift Algorithm [66], have

been able to either find or prove the optimality of the best Golomb rulers known to

date (J ≤ 27).

In this thesis, one of our objectives is finding new optimal-span (S-)CDO codes. Therefore,

exhaustive search algorithms that have led to proving the optimality of Golomb rulers with

the largest values of J currently known are of particular interest, since they would be the

fastest exhaustive search algorithms.

The Shift Algorithm, which was invented by D. McCracken for his thesis, is derived from

an algorithm that was first published in the december 1985 issue of the Scientific American

magazine. In 1995, A. Dollas, W. T. Rankin and D. McCracken of Duke University employed

an improved parallel version of the Shift Algorithm exploiting a reduced search space to prove

the optimality of the shortest known J = 19 Golomb ruler [12, 17, 67]. In 1996, M. Garry

and D. Vanderschel enhanced the Shift Algorithm, thus creating the GVANT algorithm,

which was used to prove the optimality for the shortest known J ∈ {20, 21, 22, 23} Golomb

rulers. This algorithm was then significantly improved by M. Garry and R. Adorni, leading to

the development of the GARSP algorithm, used by Distributed.net to prove the optimality
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of the shortest known J ∈ {24, 25} Golomb rulers. Finally, in 2007/2008, M. Feiri and

D. Levet developed the FLEGE algorithm [66], which brought significant enhancements to

the GARSP algorithm by reducing the search space even further. The FLEGE algorithm

was used to prove the optimality of the J = 26 Golomb ruler in 2009, and is currently

being used for the optimality proof of the J = 27 Golomb ruler. These Shift Algorithm

based algorithms are in fact quite clever and efficient: for example, for the GARSP and

FLEGE algorithms, the distances, marks, and next-mark locations are represented as three

bitmaps on which basic operations such as SHIFTs and bitwise ORs are performed [66].

The simplicity of these algorithms has led to the development of parallel hardware-software

implementations [68, 69, 70], which have provided significant speedups for J ≤ 25 compared

to the software-only algorithms, but have been of limited use due to the cost and availability

of large Field-Programmable Gate Array (FPGA) boards.

Although using a simple and efficient FLEGE -like algorithm for finding new optimal-

span (S-)CDO codes would clearly allow for a high-performance implementation, correctly

expressing and computing the first and second order differences with bitmaps and SHIFT/OR

operations has proven to be very difficult. Unfortunately, this has led us to dropping the

bitmap-shift based component of these algorithms in favor of the algorithms presented in

this thesis.

2.3 Reference (S-)CDO code searching algorithms

Before presenting the novel tree-pruning and search-time reducing techniques that allowed

us to find new optimal-span (S-)CDO codes, we describe the (S-)CDO code search space and

briefly introduce some previous significant search algorithms applicable to this problem.

2.3.1 (S-)CDO Code Search Space

The algorithm described in this thesis performs the search for (S-)CDO codes using a tree-like

structure (see Fig. 2.8 for J = 3). The root node4 of the tree has always value 0 and is located

at depth 0 of the tree. The rest of the tree is composed of nodes which must have a value

4The root node represents the first integer in our set Ω, i.e. α1, which by convention has a value of zero.
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Figure 2.8 (S-)CDO search-tree - searching for a CDO with J = 3

larger than their parent node and their sibling5 nodes to the left. The tree depth ranges from

0 to J − 1, and represents the total number of connections J : all nodes at depth J − 1 are

leaf-nodes. The values of the nodes on a path from the root node to a leaf-node represent the

elements of Ω = {α1, α2, . . . , αJ}, the set of positive integers defining the code. A valid path

in this search-tree starts at the root node and ends at a leaf-node that has a value not larger

than Mcurr, the current and smallest known span value.

The total search-tree size depends on the current span, Mcurr, and on J . There is only

one path leading from the root node to a leaf-node. Thus, the number of leaf-nodes in the

search-tree, NL, represents the total number of possible paths (or (S-)CDO code candidates).

Since the set Ω defining a code always starts with zero (the root node), the number of

possible combinations of J − 1 nodes with integer values smaller than or equal to Mcurr may

be expressed as “Mcurr choose J − 1”. Hence, we can write:

NL =

 Mcurr

J − 1

 =
(Mcurr)!

(J − 1)! (Mcurr − J + 1)!
(2.12)

Table 2.1 illustrates the number of leaf-nodes (and thus possible paths) on the (S-)CDO

search-tree for different values of J and Mcurr. It can be seen that the number of leaves

quickly explodes as Mcurr and J increase, thus making the search for optimal-span codes of

order J + 1 exponentially more complex. Clearly, tree-pruning techniques must be used as

much as possible.

5Sibling nodes are nodes with the same parent node.
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Table 2.1 Number of leaf-nodes as a function of J and Mcurr

J Example Mcurr † Number of leaf-nodes (or possible
paths) ‡

3 5 10

4 15 455

5 41 101,270

6 100 75,287,520

7 222 155,308,696,543

8 459 813,381,183,503,226

9 912 11,509,802,721,558,333,270

10 1698 316,557,845,045,813,572,898,840

11 3467 68,254,814,954,346,235,795,154,297,723

† shortest known CDO code spans as per [5, 21]
‡ computed as per (2.1)

2.3.2 (S-)CDO code searching algorithms - pseudo-random vs. exhaustive

The first technique for finding CDO codes used a projective geometry approach to determine

valid codes [50, 71]. However, this approach yielded codes with excessively large spans, thus

requiring the development of new code-searching methods [20, 50].

Recent code-searching algorithms can be divided into two categories, exhaustive and

pseudo-random, as discussed below:

• exhaustive search algorithms: this type of search guarantees, if a sufficiently large initial

span Mcurr is used, that the optimal span for a given J number of connections is found.

This is done by testing all of the root-to-leaf node paths on the search-tree (see Fig. 2.8).

However, for values of J larger than 7, the very rapidly increasing computational effort

required to obtain optimal (S-)CDO codes led to dropping this type of algorithm in

favor of more practical pseudo-random search algorithms [5, 50];

• pseudo-random search algorithms: these searching techniques are based on the use of

a pseudo-random rejection criterion that can easily be modified and tuned in order

to shorten the spans of the codes obtained [20]. Note that this type of algorithm
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cannot guarantee that minimal-span codes have been found. With the use of a span

reduction method based on modulo operations [50] and a carefully chosen lower bound,

the technique has provided codes with some of the shortest known spans, albeit possibly

not optimal codes [5, 20]. The highest order for which an exhaustive search has been

completed is J = 5 for CDO codes [50] and J = 8 for S-CDO codes [5].

Since one of our research objectives is to find new optimal-span (S-)CDO codes, or at least

new codes with shorter span values than previously reported codes for a same order J , we

focus on developing methods for further improving the computational performance of the

exhaustive search algorithms. A short overview of the reference algorithms follows.

2.3.2.1 Pseudo-Random search algorithms

2.3.2.1.1 The state of pseudo-random search algorithms A first algorithm was

proposed by B. Baechler in 2000 [50, 71]. It uses a pseudo-random construction method for

determining valid CDO codes of order J : starting from a set Ω = {α1, α2, . . . , αN} of N < J

integers forming a valid CDO code, an element taken among the natural integers arranged

in ascending order is appended. Should the new set {α1, α2, . . . , αN , αN+1} of N +1 integers

form a valid CDO code, a test is performed to determine whether this additional integer is

retained or not: the test consists in comparing a pseudo-randomly generated number to an

arbitrary threshold value. If, on the other hand, the new set is not a valid CDO code, the

integer is discarded. The procedure is repeated until all J elements are obtained.

Various improvements have been made on the choice of the discarding threshold value,

each one yielding CDO codes of shorter span. A first version used a fixed-value threshold [50],

later improving on the algorithm by using a threshold that linearly increases with N . Then,

[20] further increased the efficiency of the algorithm by using a nonlinear (polynomial) dis-

carding threshold that rejects αN integers having smaller values of N with a much higher

probability than αN elements having larger values of N . This ensures that the search is

spread-out over the search space, thus increasing the chances of finding new and improved

codes, while also considering the fact that the time required for finding valid CDO codes

greatly increases as N grows larger.

In [5], a pseudo-random search algorithm for determining valid S-CDO codes is presented.
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Instead of using a discarding threshold, it uses a set of heuristics to generate, for each element

αi, a list of integers Γi: these integers are chosen such that, when added to αi to compute

αi+1, the likelihood of forming a valid code is maximized. Then, using a pseudo-random

selection process, an integer from Γi is chosen and αi+1 is computed. If the resulting code is

valid, the αi+1 element is kept; otherwise, a new αi+1 value is computed by pseudo-randomly

selecting the next integer from Γi prior to adding its value to αi. The process is repeated

until all J elements are obtained.

In essence, these pseudo-random search algorithms explicitly skip areas of the search space

under the assumption that the search space will never be fully explored due to its considerable

size. Instead, they attempt to be more effective at finding new codes with improved spans

by spreading-out the search efforts over pseudo-randomly chosen search-space areas.

2.3.2.1.2 A high-performance CDO code validation function The fastest CDO

code validation function published prior to this work is described in [20]. It provides a large

performance advantage over the reference CDO code validation function, which is based on

a set of nested for-loops that sequentially test all three CDO code conditions.

The significant performance improvement offered by this validation function is achieved by

means of two algorithmic enhancements. First, only the second CDO code condition is tested,

as ensuring that it is met also ensures that the first and third CDO conditions are met [4, 50].

This reduces from three to one the number of conditions to test. Then, it generates and

classifies the first-order differences into a matrix that is partitioned into regions, such that

regions that do not need to be verified are identified and implicitly discarded. First-order

differences are only computed once for each code validation. Subsequently, they are read

from memory to generate the second-order differences. The computational time is reduced

by using this classification system to restrict the computations performed to only the regions

of the matrix that need to be verified. This effectively reduces the number of second-order

differences that are computed and compared from 2NJ
D to NJ

D (see (2.6)), thus substantially

improving the validation function’s performance. Nevertheless, a new classification matrix

has to be created for each code validation, and all resulting second-order differences have to

to be compared with each other to ensure that no two equal values exist, both operations
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resulting in a considerable computing overhead.

Since this validation function only tests the second condition of the CDO code definition,

it cannot be used for validating S-CDO codes. However, due to its speed for validating CDO

codes, its performance is compared to the novel (S-)CDO code validation functions presented

in Chapter 5.

2.3.2.2 Fully-Exhaustive Search Algorithm

The most basic way of performing an exhaustive search is to choose an arbitrary initial

maximal span value Mcurr for the (S-)CDO code order J that is being searched for, and then

to test all the combinations of potential (S-)CDO codes that have a smaller or equal span

value. The value of Mcurr may either be chosen by means of an educated guess, or by using

a known valid span value, for example the span of a valid (S-)CDO code obtained through

projective geometry or by using a pseudo-random search algorithm. Potential (S-)CDO code

candidates are then tested for validity by checking that all the conditions defining them are

met.

The most sensitive aspect of this algorithm is the choice of the initial span value, Mcurr,

as the number of codes that have to be tested is equal to NL (see (2.12)): if the chosen

Mcurr value is too small, no valid codes with that number of elements will be found; if the

chosen value is too large, the number of codes that need to be tested quickly explodes, thus

exponentially increasing the time required for a fully-exhaustive search-tree exploration.

Since all of the root-to-leaf node paths on the search-tree are tested (see Fig. 2.8), we can

be certain that if the initial value Mcurr is chosen large enough, the optimal-span (S-)CDO

codes for that order J are found. However in practice, because of its brute-force approach

and extreme inefficiency, this algorithm is not used.

2.3.2.3 Improved Reference Exhaustive-Search for (S-)CDO codes

The main goal of the exhaustive-search algorithm presented in [5] is to find the (S-)CDO

codes with the shortest possible spans for a specific set of J connections. While the search is

in progress, codes with a span shorter than or equal to the current best span are gradually

obtained. Upon completion of the search (i.e. when all the potential code candidates have
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been evaluated), the algorithm guarantees that the optimal span (S-)CDO codes for that J

have been found. In order to reduce the computational overhead, the δ value is not evaluated

during the search for (S-)CDO codes. Instead, it is simply computed once the code has been

found.

Since to our knowledge this is the fastest published (S-)CDO code exhaustive-search

algorithm, it will be used as a reference for comparison with the algorithm presented in this

thesis.

2.3.2.3.1 Reference tree traversal The improved reference exhaustive-search algo-

rithm’s tree-traversal [5] uses a depth-first search algorithm [72], as shown in Figures 2.8

and 2.9, to progressively assemble a valid (S-)CDO code. Indeed, the algorithm leverages

the relationship between consecutive elements in a code (see (2.4) and Section 2.3.1): a code

with N + 1 connections is created by using a valid (S-)CDO code with N connections and

appending an αN+1 element, such that the newly formed code is both valid (see Section 2.1.3)

and has a span with smaller or equal value than Mcurr, the shortest known span for that order

J .

The reference exhaustive-search algorithm’s pseudo-code shown in Fig. 2.9 is now briefly

described for a code with J = 3 connections (see Fig. 2.8). The value of Mcurr is initialized at

some given large value6, since we assume that no J = 3 (S-)CDO codes are currently known.

Naturally, any prior knowledge of a valid J = 3 code can accelerate the search, but this fact

is not exploited to avoid biasing reported results with an unfair advantage. Starting at the

root node α1 = 0, the first available child node α2 = 1 is appended. The validation routine

is executed on the {0, 1} code, and because it satisfies the double orthogonality conditions as

per the validation process, the node is kept (see Fig. 2.8). The current number of connections

being smaller than J , the next available node α3 = α2+1 = 2 is appended. Since {0, 1, 2} fails

the validation test, the node is therefore discarded. Nodes can be discarded either because the

validation test fails or because their span is larger than Mcurr. The process of adding, testing

for validity, and discarding a node is repeated for all sibling nodes on a path until either the

6As with the fully-exhaustive search algorithm, the value of Mcurr may either be chosen by means of an
educated guess, or by using a known valid span value, for example the span of a valid (S-)CDO code obtained
through projective geometry or by using a pseudo-random search algorithm.
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1: procedure reference tree traversal( InitShortestKnownSpan )
2: ShortestKnownSpan← InitShortestKnownSpan
3: CurrentNode← RootNode
4: → Move down one level in the tree ▷ (CurrentNode← FirstChildNode)
5:
6: while True do
7: if CurrentNode.getV alue() > ShortestKnownSpan then
8: → Discard node
9: → Move up one level in the tree ▷ (CurrentNode← ParentNode)
10: if CurrentNode == RootNode then
11: → Terminate search
12: else
13: → Discard node
14: → Move to next sibling node ▷ (CurrentNode← NextSiblingNode)
15: end if
16: end if
17:
18: if Code.isV alid() then
19: if CurrentNode.isLeafNode() then
20: if Code.getSpan() ≤ ShortestKnownSpan then
21: ShortestKnownSpan← Code.getSpan()
22: → Add current code to list of codes found
23: → Discard node
24: → Move to next sibling node ▷ (CurrentNode← NextSiblingNode)
25: end if
26: else
27: → Move down one level in the tree ▷ (CurrentNode← FirstChildNode)
28: end if
29: else
30: → Discard node
31: → Move to next sibling node ▷ (CurrentNode← NextSiblingNode)
32: end if
33: end while
34: end procedure

Figure 2.9 Pseudo-code for the reference tree-traversal algorithm.

added node forms a valid (S-)CDO code, in which case the node is kept and its children are

evaluated, or no more such siblings exist, in which case the next parent is evaluated. If the

current valid code has J connections and its span value is smaller than the best known span,

Mcurr is updated, leading to a very substantial tree pruning for all paths evaluated from that

point on. A path through the next parent is evaluated until no more paths exist, at which

point we know there is no (S-)CDO code for that J with a span shorter than Mcurr. The list

of optimal (S-)CDO codes will be the codes with a span equal to Mcurr.

Although it is not defined as such in [5], this search algorithm is implicitly-exhaustive

because it is among the “branch and bound” class of algorithms [73]. It does not need to test
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Figure 2.10 Simplified diagram of the reference validation function’s algorithm.

all the nodes and paths, but still performs an exhaustive search while reducing the search

complexity by several orders of magnitude: if a node addition fails the validation test, the

validation routine is not applied to any children nodes on the sub-branches starting at that

node since their inclusion cannot lead to a valid (S-)CDO code (see (2.4)), and thus the node

and its children can safely be discarded. Indeed, invalidating nodes close to the root node first

is very advantageous: since the number of differences that have to be computed is a function

of J (see (2.7)), the time required to validate a (S-)CDO code increases with J . Furthermore,

updating Mcurr when a shorter span is found is also highly beneficial, as the number of paths

sharply increases as J and Mcurr increase7: the effective result is a substantial reduction in

the number of computations performed. Finally, given the fact that implicitly-exhaustive

search algorithms still perform an exhaustive search, we can be certain that when the process

completes, the codes that are obtained are proven to be optimal.

7Recall that the total size of the search-space is determined by (2.12). Therefore, the exhaustive-search
for optimal-span (S-)CDO codes having order J +1 is exponentially more complex than it is for codes having
order J .



31

2.3.2.3.2 Reference Algorithm - Validation Function A detailed analysis of the

reference validation algorithm in [5] is beyond the scope of this document. Nevertheless, in

order to better understand and position our work, it is briefly described below.

The validation is performed in three consecutive steps, each corresponding to one of the

(S-)CDO code orthogonality conditions (see Fig. 2.10). As first and second order differences

are generated (see Fig. 2.11), they are stored into their respective arrays: fo array and

so array. These arrays are initialized and cleared only once, at the beginning of the search,

since all relevant data is overwritten with each validation: relevant data resides at indices

having value smaller than fo count and so count respectively. For every new code, the

reference algorithm computes two new sets of differences: positive first-order differences, S+
ref ,

and positive and negative second-order differences, Dref . However, only positive second-order

difference values are stored into so array.

In order to validate the first condition, the positive first-order differences are generated and

stored into fo array (see Fig. 2.10). Each first-order difference in fo array is then compared

to all other differences, to ensure that no two equal elements exist. If two elements were found

to be equal to one another, a flag is raised, but the test proceeds until all comparisons for

that element are completed. Then, the flag is checked: if raised, the condition’s test fails

and False is returned; otherwise, the next first-order difference is compared to the rest, until

all elements have been compared to each other. The number of comparisons required is a

function of NS (see (2.5)), and thus the complexity of the comparison as a function of J is

quadratic in its best case (the first element having an equal) or polynomial in its worst case

(the last two elements being equal). If the condition is verified, the array is sorted using a

variant of the Bubble Sort algorithm8, which also has a quadratic complexity as a function

of NS and thus a polynomial complexity as a function of J .

Next, the third condition is tested (see Fig. 2.10). The reference second-order difference

generation requires four for-loops and five if-statement tests. Even though all 2ND second-

order differences are computed, only half are stored into so array, i.e. only D+
ref , the set

of positive second-order differences. In order to reduce the number of arithmetic operations,

8Bubble Sort is a simple but inefficient sorting algorithm that has worst-case and average complexity both
O(n2), where n is the number of items being sorted [74]. Therefore its use is not recommended for practical
applications.
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one of the second-order difference terms is kept in memory while the other term is updated,

thus avoiding the computation of both terms at each iteration of the inner loop. The array

is sorted using a variant of the Bubble Sort algorithm, and then each second-order difference

is compared to each first-order difference to ensure that no element in D+
ref has an equal in

S+
ref . If two equal values are found, a flag is raised, but the validation function proceeds until

all elements in D+
ref have been compared to all elements in S+

ref , at which point False will be

returned.

Finally the second condition is tested (see Fig. 2.10). Having sorted so array, it is scanned

to count the number of differences having an equal value in the array (i.e. N e
D, see (2.3)).

The condition is verified differently depending on whether a S-CDO or a CDO code is to be

validated: for S-CDO codes, the validation function will always return True and the number

of equal second-order difference values will be made available so that δ, the simplification

coefficient, can be computed; for CDO codes, the validation function returns True only if the

number of equal second-order differences is zero, otherwise False is returned.

There are several factors greatly limiting the performance of the reference exhaustive-

search (S-)CDO code validation function. First, sorting the second-order differences is done

with an O(J8) time complexity, and comparing second-order differences with first-order differ-

ences is done with an O(J6) time complexity. Then, since the function focuses on validating

a code, a significant computational overhead is incurred while processing invalid codes (i.e.

clearly most codes). For example, the third condition test will fail only after all the com-

parisons have been made, even if two equal differences are found early-on in the comparison

process. Furthermore, although the reference validation function generates both positive and

negative second-order differences (for a total of 2ND differences), only the positive second-

order differences (i.e. ND differences) are stored and used for the validation process, thus

implying unnecessary computations. Finally, as shown in Fig. 2.11, the reference algorithm

for generating first and second order differences consist of a set of nested for-loops and in-

cludes several if-statements. These hinder the execution speed of the difference generation:

on the one hand, the nested for-loops are difficult for compilers to fully unroll, thus limiting

their ability to reschedule instructions to reduce memory access latencies and eliminate the

overhead caused by instructions controlling the loop; on the other hand, each branch test may
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result in a branch mispredictions on modern microprocessors, further limiting the maximum

performance that would otherwise be achievable.

The limitations of the reference exhaustive-search algorithm are all addressed and circum-

vented in the novel parallel and efficient implicitly-exhaustive search algorithm presented in

Chapters 3, 4, and 5.
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1: function ref fo diff gen(code)
2: fo count← 0
3: for (i = 0; i < code.length()− 1; i++) do
4: for (j = i+ 1; j < code.length(); j++) do
5: fo array[fo count] = code[j]− code[i]
6: fo count← fo count+ 1
7: end for
8: end for
9: return (fo array, fo count)
10: end function
11:
12: function ref so diff gen(code)
13: so count← 0
14: t1← 0
15: t2← 0
16: for (i = 0; i < code.length(); i++) do
17: for (j = 0; j < code.length(); j++) do
18: if i ̸= j then
19: t1← code[i]− code[j]
20: for (k = 0; k ≤ j; k++) do
21: if k ̸= i then
22: for (n = 0; n ≤ i; n++) do
23: if (n ̸= j) then
24: if (n ̸= k) then
25: t2← code[k]− code[n]
26: if t1 ≥ t2 then
27: so array[so count]← t1− t2
28: so count← so count+ 1
29: end if
30: end if
31: end if
32: end for
33: end if
34: end for
35: end if
36: end for
37: end for
38: return (so array,so count)
39: end function

Figure 2.11 Pseudo-code of the reference exhaustive-search algorithm’s generation of first and
second order differences.
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CHAPTER 3

IMPROVING THE TREE-TRAVERSAL OF THE

IMPLICITLY-EXHAUSTIVE SEARCH ALGORITHM

3.1 Overview

In order to speed up the search for new optimal-span (S-)CDO codes, a parallel version of the

algorithm described in Section 2.3.2.3 was developed. In this algorithm [19], the computation

time is reduced by means of a very basic simultaneous exploration of independent regions

in the search-tree. Indeed, this preliminary brute-force parallel approach showed that the

problem lends itself well to parallel computing, as it exhibited a linear and at times super-

linear speedup [75] with respect to the number of computing threads used (see Fig. 3.1).

Nevertheless, given the speed of the reference algorithm, it quickly became clear that linear

speed improvements would not be able to address the very rapidly increasing size1 of the

search space, and that in order to obtain new optimal-span codes, a more capable algorithm

would have to be devised.

To that end, we developed the algorithm described in the first article of this thesis [15],

presented and included verbatim in Section 3.2: it uses a more effective implicitly-exhaustive

searching technique for efficiently reducing the size of the search space without compromis-

ing the exhaustive nature of the search. Indeed, when used with an initial span value of

Mcurr = 100 during the search for optimal-span CDO codes of order J = 6, compared to the

fully-exhaustive search algorithm, more than a 150-fold reduction in the number of leaves

explored was achieved.

The combination of tree-pruning techniques that were applied allowed the algorithm to

prove the optimality of the rate R = 1
2
systematic optimal-span J ∈ {6, 7, 8} CDO codes

and J = 9 S-CDO codes that were found. Furthermore, the algorithm was also able to

yield J ∈ {10, 11} CDO codes and J ∈ {14, 15} S-CDO codes with shorter spans than

1We recall that the size of the search space associated with the search for optimal-span (S-)CDO codes of

order J is defined by NL =

(
Mcurr

J − 1

)
, where Mcurr is the shortest span currently known.
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Figure 3.1 Speedup observed with parallel version [19] of the algorithm in Section 2.3.2.3

previously published, resulting in a span reduction, and thus a decoding latency reduction,

of up to 26%. In order to reduce the computation time required for simulating the error-

correction performance of these codes, several instances of the (S-)CDO code simulator were

run concurrently and on different computers: due to inefficiencies in our (S-)CDO code

simulation software, each error-performance curve required several weeks of computation

time to deliver the Eb

N0
∈ [2.0; 4.0] (dB) bit error rates obtained.

We now present verbatim the article published in [15]: the more efficient search algorithm

yielding novel (S-)CDO codes is described, and the codes obtained and their error-correction

performance are provided.

3.2 Article #1: Efficient Search Algorithm for Determining Optimal R = 1/2

Systematic Convolutional Self-Doubly Orthogonal Codes

G. Kowarzyk, N. Bélanger, D. Haccoun, Y. Savaria

École Polytechnique de Montréal

{gilbert.kowarzyk, normand.belanger, david.haccoun, yvon.savaria}@polymtl.ca

Publication source: IEEE Transactions on Communications, Transactions Letters, vol. 60,

no. 1, January 2012, pp. 3-8.
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Abstract

A novel implicitly-exhaustive search algorithm for finding, in systematic form, rate R = 1
2

optimal-span Convolutional Self-Doubly Orthogonal (CDO) codes and Simplified Convo-

lutional Self-Doubly Orthogonal (S-CDO) codes is presented. In order to build high-

performance low-latency codecs with these codes, it is important to minimize their constraint

length (or “span”) for a given J number of generator connections. The proposed algorithm is

exhaustive in nature and its improvements over the best previously published searching tech-

niques allowed it to yield new optimal-span CDO/S-CDO codes (having order J∈{6,7,8} and

J∈{9} respectively), as well as a span reduction for codes with a higher J value (J∈{10,11}

and J∈{14,15} for CDO and S-CDO respectively).

Index Terms: Convolutional codes, self-doubly orthogonal codes, systematic codes,

threshold decoding.

3.2.1 Introduction

The novel iterative error-control coding scheme presented in [4, 6, 7] differs from the classical

Turbo code procedure invented in 1993 [8, 9], as it does not use any interleaver, neither

at the encoding nor at the decoding process. The iterative threshold decoding algorithm

it uses employs a new class of convolutional codes in systematic form that must satisfy

double orthogonality properties, beyond those of the well-known orthogonal codes used in

the conventional non-iterative threshold decoding [10]. Throughout this paper, the widely

used terminology systematic codes is used to represent convolutional codes in systematic form,

that is, codes whose encoders are systematic. Since we only consider rate R = 1
2
codes, only

one generator vector is provided. The additional so-called double orthogonality properties

required from the codes ensure a quasi-independence of the observables over the first two

decoding iterations, thereby allowing the use of an iterative decoding procedure and hence a

good error performance while allowing attractive trade-offs between complexity, latency, and

error performance [6].

As the error-correcting capability of the new codes depends essentially on the dimension

J of the vector generator of the R = 1
2
code [20], and because the code constraint length (or

span of the code) has a direct impact on the latency of the system, it is of great importance
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to search for rate R = 1
2
systematic Convolutional Self-Doubly Orthogonal (CDO) codes

(and their variants) having the shortest possible span for any given J number of connections.

Since no systematic deterministic method for solving this problem is currently known, the

code searching is usually conducted using heuristic search algorithms [20, 28]. Although

finding a CDO code is relatively easy, determining the shortest span codes for a given J has

eluded analysis and is still an open problem. In fact, the search for optimal CDO codes (and

their variants) is far more computationally challenging than the problem of finding “optimal”

simply orthogonal codes, a.k.a. the Golomb ruler problem, which has an NP-hard complexity

[13, 46]. Indeed, CDO codes may be viewed as second-order Golomb rulers.

Pseudo-random and exhaustive search algorithms have been developed to obtain good, i.e.

short span, CDO codes [5, 20, 28]. However, using these algorithms to find even shorter span

or eventually optimal span (i.e. shortest span) codes requires a computational time that

becomes rapidly excessive, especially as the number J of generator connections increases

beyond J = 5.

This paper presents a novel and efficient implicitly-exhaustive search algorithm that

greatly reduces the computational time required for finding optimal-span CDO codes and

their variants. To increase the speed and efficiency of the search process, the algorithm

exploits significant algorithmic improvements such as an enhanced dynamic search-space re-

duction technique and a stricter set of constraints to identify and concentrate the search on

only potentially valid codes.

This faster technique allowed finding new optimal-span codes. Moreover, short of obtain-

ing optimal codes for some higher J values, we have also been able to obtain, within an

acceptable amount of computation time, new codes with significantly shorter spans than the

ones previously published.

The paper is organized as follows: in Section 3.2.2, CDO and S-CDO codes (a CDO

code variant) are defined to establish the notation used in this paper. A novel and more

efficient implicitly-exhaustive search algorithm is described in Section 3.2.3. In Section 3.2.4,

new optimal-span codes, as well as novel codes with a shorter span than previously obtained

[20, 21, 28] are presented.
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Figure 3.2 Example of a CDO code encoder: R = 1
2
, J = 4, M = 15, Ω = {0, 3, 13, 15}

3.2.2 Definitions

In this section, we provide the necessary definitions on the vector generator of the systematic

CDO and S-CDO codes of coding rate R = 1
2
[4, 49], which, as previously stated, may be

viewed as second-order Golomb rulers [43].

3.2.2.1 Convolutional Self-Doubly Orthogonal (CDO) codes

A systematic Convolutional Self-Doubly Orthogonal (CDO) code of coding rate R = 1
2
and

order J is defined as the set Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive integers

(α1 < α2 < ... < αJ) such that the following conditions are satisfied [6, 20, 21, 49]:

1. The elements in S, the set of first-order differences between these integers, are all

distinct:

S = {sk,l = (αk − αl) : k ̸= l}

2. The elements in D, the set of second-order differences (the differences between the

differences), are all distinct from one another, with the exception of the unavoidable

differences caused by the permutations of indices (l,m) or (k, n):

D = {dk,lm,n = (αk − αl)− (αm − αn) : k ̸= l,m ̸= n, k ̸= m, l ̸= n}

3. The elements in sets S and D are distinct from one another (D ∩ S = ∅).

The αi elements (i ∈ [1; J ]) represent the connections between the encoder shift register and

the modulo-2 adder, i.e. the generator connections. By convention α1, the first integer in
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our set, is always equal to zero (α1 = 0). The span M of a CDO code is equal to αJ , the

largest integer in Ω. It corresponds to the length of the encoder shift register (see Fig. 3.2),

that is, the code memory length [20]. The number J of elements in Ω is equal to the number

of generator connections of the code and is called the order of the CDO code. An optimal

CDO code of a given order J is defined as a CDO code whose span Mopt is the smallest span

that exists for that order; an optimal CDO may not be unique and hence there may be more

than one optimal CDO code for any given order J .

Since the validity of a code as a CDO code depends only on the relationship between the

J elements composing it, any subset of L consecutive elements from the set defining a CDO

code also forms a valid CDO code, albeit one of smaller order L, L < J . For example:

CDOJ=5 = {0, 1, 24, 37, 53} CDOJ=4 = {0, 1, 24, 37} CDOJ=3 = {0, 1, 24} (3.1)

are all valid, although not optimal, CDO codes. This property will be leveraged to speed-up

the proposed algorithm.

The number of positive first-order differences (NS) and second-order differences (ND) that

exist for a code are a function of J , given by [20]:

NJ
S =

J(J − 1)

2
(3.2)

NJ
D =

J(J3 − 2J2 + 3J − 2)

8
(3.3)

Directly computing the exact span of optimal codes, whether simply or doubly orthogonal,

is still an unsolved problem [13, 46]. However, a loose lower bound for the span of a CDO

code has been developed in [20, 50] and can be expressed as a function of J , the order of the

code, using (3.2) and (3.3) as follows:

α∗
J =

⌈
NJ

S +NJ
D

2

⌉
(3.4)

Furthermore, any CDO code has always a symmetrical (mirror) equivalent composed

of integers with the same differences but in the reverse order, a property shared with the

so-called Golomb ruler problem they are related to [20].
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3.2.2.2 Simplified Convolutional Self-Doubly Orthogonal (S-CDO) codes

Simplified Convolutional Self-Doubly Orthogonal (S-CDO) codes are obtained by relaxing

the second CDO condition, yielding codes with shorter spans than regular CDO codes. The

latency of the decoding process is in direct proportion to the span of the code and the number

of iterations used. Thus, using S-CDO instead of CDO codes reduces the decoding latency

at the cost of only a very small degradation of the error-correction performance [5, 21, 51].

A systematic S-CDO code of coding rate R = 1
2
and order J is thus defined as the set

Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive integers such that it satisfies the first

and third CDO conditions, and a modified version of the second condition, as follows [5, 51]:

2b) The set D of second-order differences between the integers in Ω, defined as:

D = {dk,lm,n = (αk − αl)− (αm − αn) : k ̸= l,m ̸= n, k ̸= m, l ̸= n}

is composed of 2ND second-order differences (of which 2N e
D have an equal value in the set D),

computed by excluding the unavoidable second-order differences caused by the permutations

of indices (l,m) or (k, n). We define δ, the simplification coefficient, as δ =
Ne

D

ND
, where

N e
D < ND and 0 ≤ δ ≤ 1− NS

ND
[5].

A CDO code may be viewed as a S-CDO code for which δ = 0. Thus, they share most of

their properties. Furthermore, a loose lower bound on the span of a S-CDO code has been

derived as a function of J and δ, and is expressed, using (3.2) and (3.3), as [5, 21]:

α∗
J =

⌈
NS + (1− δ) ·ND

2

⌉
(3.5)

An optimal S-CDO code of order J and simplification coefficient δ is thus a S-CDO code

having the smallest span, Mopt, which exists for that order and δ. Again, there may be more

than one optimal S-CDO code for a given order J and simplification coefficient δ.

In this paper, the notation “(S-)CDO” will be used when referring to both CDO and

S-CDO codes. We now present an efficient search procedure for obtaining R = 1
2
systematic

(S-)CDO codes with a span shorter than codes previously published.
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3.2.3 Novel Efficient Implicitly-Exhaustive Search Algorithm

3.2.3.1 Overview of previous search algorithms

The first technique for finding CDO codes used a projective geometry approach to yield valid

codes [50, 71]. However, this approach yielded codes with excessively large spans, and thus

new code-searching methods were devised [20, 50].

Recent code-searching algorithms can be divided into two categories, exhaustive and

pseudo-random. Exhaustive search algorithms guarantee, if a sufficiently large initial Mcurr

is used, that the optimal span for a given J number of connections is found by testing all the

potentially valid codes in the search space. However, as J becomes larger, the very rapidly

increasing computational effort required to obtain optimal (S-)CDO codes led to dropping

this type of algorithm in favor of more practical pseudo-random search algorithms [5, 50].

Pseudo-random search algorithms are based on the use of a pseudo-random rejection crite-

rion that can be modified in order to shorten the spans of the codes obtained [20]. Note that

this type of algorithm cannot guarantee that minimal-span codes have been found. With the

use of a span reduction method based on modulo operations [50] and a carefully chosen lower

bound, the technique has provided codes with the shortest known spans, albeit possibly not

optimal codes [5, 20].

We have focused on developing methods for further improving the computational perfor-

mance of the exhaustive search algorithms in order to find new optimal codes or at least codes

with a shorter span than the ones that have been previously reported for the same order. The

(S-)CDO code exhaustive-search algorithm described in this paper uses a tree-like structure

to perform the search (see Fig. 3.3 for J = 3). The tree is composed of nodes which must

have a value larger than their parent node and their sibling nodes to the left. Sibling nodes

are nodes with the same parent. The tree depth represents the total number of connections

J , while the values of the nodes on a path from the root to a leaf represent the elements

of Ω = {α1, α2, . . . , αJ}, the set of positive integers defining the code. All nodes at depth

“J − 1” are leaf-nodes. A valid path in this search-tree starts at the root node and ends at a

leaf-node that has a value not larger than Mcurr, the currently smallest known span value.
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Figure 3.3 (S-)CDO search-tree - searching for a CDO with J = 3

3.2.3.2 An “implicitly-exhaustive” search algorithm

The (S-)CDO code search-tree size depends on the current span, Mcurr, and on J . Since

there is only one path leading from the root node to a leaf-node, the number of leaf-nodes

in the search-tree, NL, also represents the total number of possible paths (or (S-)CDO code

candidates). Since the set Ω defining a code always starts with zero (the root node), the

number of possible combinations of “J−1”nodes with integer values ranging from 1 to Mcurr

may be expressed as: NL =

 Mcurr

J − 1

 = (Mcurr)!
(J−1)!(Mcurr−J+1)!

. It can be seen that the number

of leaves quickly explodes as Mcurr and J increase. Clearly, to improve search efficiency,

tree-pruning techniques must be used as much as possible.

The novel algorithm described in this section proposes an exhaustive searching technique

that is faster at finding rate R = 1
2
systematic (S-)CDO codes with a shorter span than the

best pseudo-random and exhaustive search algorithms presently known, yielding optimal-span

codes for higher J order values than previously known (J ≤ 8 for CDO, J ≤ 9 for S-CDO).

For codes with a large order (J ≥ 9), where an exhaustive-search can be prohibitive, this new

search-method also allows to gradually obtain codes with significantly shorter spans than

previously known, thus allowing to find better codes within the same computation time.

The novel algorithm presented in this section is implicitly-exhaustive and among the

“branch and bound” class of algorithms [73]: it does not need to test all the nodes and paths,

but still performs an exhaustive search while reducing the search complexity by several orders

of magnitude. This class of algorithms has helped to improve the processing time required
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to obtain good practical solutions of important NP-complete problems by several orders of

magnitude in the field of circuit testing. For instance, the PODEM algorithm allowed a

breakthrough in the size of the circuits that could be tested within a reasonable amount of

computation time [76]. Since an implicitly-exhaustive algorithm still performs an exhaustive

search, the codes that are obtained are proven to be optimal.

3.2.3.3 Dynamic reduction of the number of branches explored - an implicitly-

exhaustive search

The novel algorithm presented in this section provides several search-tree pruning enhance-

ments over the reference exhaustive-search algorithm’s tree-traversal [5]. It reduces the com-

putational time required to search for optimal (S-)CDO codes by further reducing the number

of branches that are explored: the validation routine does not need to be applied to children

nodes of nodes that have been discarded. The substantial computational savings are obtained

by using the three search-tree pruning techniques described below.

A node whose value is larger than Mcurr minus the search-tree depth remaining from that

node to a leaf-node, must have descendants such that their leaf-nodes have a value larger

than Mcurr, the current best known span. Thus, these nodes can be safely discarded since

they cannot lead to codes with a shorter span than the shortest known span for that order

J . This is proven in the following theorem:

Theorem 3.1. Let V d
max be defined as: V d

max = Mcurr − ((J − 1) − d). Then, any node at

depth d > 1 with a value greater than V d
max will result in leaf-nodes with a value greater than

Mcurr, and hence these nodes can be discarded because they would result in codes with a larger

span than the best known span.

Proof. V d
max assumes that nodes at depth 2 ≤ d ≤ J − 1 have a node value increment of

one (i.e. the smallest possible increment) between each parent and child nodes and that the

leaf-node at depth d = J−1 has a node value Mcurr: only one such code exists but it does not

meet the criteria for being a valid (S-)CDO code. Any code with node values at depth d > 1

larger than V d
max must thus have a larger span than Mcurr, and therefore can be discarded

since they cannot be optimal-span codes. QED
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A second search-tree pruning technique consists in making use of the symmetry property

of the codes (see Section 3.2.2) in order to discard some codes whose symmetrical code has

already been encountered during the tree exploration, as stated in Theorem 3.2 below.

Theorem 3.2. Let V α2
max be defined as: V α2

max =
⌈
Mcurr

2

⌉
− 1. Then, any code with an α2 node

having a value larger than V α2
max would have a symmetrical equivalent within the codes in the

search-tree having α2 ≤ V α2
max.

Proof. Assuming that the tree is traversed in the same order as in the reference exhaustive

search algorithm, V α2
max can be seen as a symmetry center for all the possible connection

patterns to an encoder shift register with a span Mcurr (see Fig. 3.2). Thus, all search-tree

branches with an α2 node value larger than V α2
max may be safely skipped because if they were

to lead to an optimal-span code, that code’s symmetrical equivalent would have already been

encountered earlier in the tree exploration. QED

Theorem 3.3 below states that it is possible to reduce the search space by attempting

to choose a higher starting value than the current node value plus one when generating the

list of children nodes to be evaluated. Improvements on this starting value may be obtained

through the use of the lower bound as per (3.4) (for CDO codes only), or, if such a value is

known, by using the optimal span for a code of order equal to the depth of the child node

plus one.

Theorem 3.3. Let V d
min be a lower bound for node values having d < J − 1. Then, V d

min can

be defined as the largest of the following three values: the optimal-span corresponding to the

node’s depth, Md
opt, if it is known; the lower bound calculated as per (3.4) (for CDO codes

only); the node value of the parent node plus one.

Proof. By definition, the smallest value that a node at depth d = N can have while being

part of a valid (S-)CDO code is equal to Md
opt, the optimal-span for a (S-)CDO code of order

J = N + 1. Also, for CDO codes, the lower bound α∗
J (see (3.4)) has already been shown to

be a loose lower bound [20, 50]. Finally, during the search, the value of the parent node plus

one is obviously a lower bound as well. Thus, the largest of these three lower bounds is the

tightest lower bound among them. QED

The new codes obtained with this improved algorithm are presented in the next section.
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Table 3.1 Summary of new rate R = 1
2
systematic (S-)CDO codes obtained with the novel

technique

J
Code

Type

Optimal-

span?
New (S-)CDO codes

Lower
Bound

Prev. best span
(span reduction) δ

6 CDO YES {0, 1, 17, 70, 95, 100}* 68 † 100 (0.00%) 0

7 CDO YES {0, 4, 34, 81, 195, 206, 211} 126 † 222 (4.95%) 0

8 CDO YES {0, 3, 30, 98, 278, 394, 416, 423} 217 † 459 (7.84%) 0

8 CDO YES {0, 5, 53, 74, 300, 346, 414, 423} 217 † 459 (7.84%) 0

9 S-CDO YES {0, 15, 20, 46, 125, 132, 190, 207, 208} 183 ‡ 208 (0.00%) 0.5075

9 S-CDO YES {0, 1, 17, 26, 127, 138, 185, 204, 208}* 188 ‡ 208 (0.00%) 0.4895

10 CDO ?
{0, 1, 5, 33, 543, 913, 1216, 1354, 1398,

1477}
540 † 1698 (13.02%) 0

11 CDO ?
{0, 1, 5, 21, 72, 1388, 1569, 1809, 2109,

2423, 2559}
798 † 3467 (26.19%) 0

14 S-CDO ?
{0, 1, 4, 13, 32, 71, 156, 353, 827, 927,

1034, 1099, 1357, 1475}
1125 ‡ 1967 (25.01%) 0.4845

15 S-CDO ?
{0, 1, 4, 13, 32, 71, 124, 218, 642, 1025,

1178, 1349, 1652, 1739, 2001}
1469 ‡ 2653 (24.58%) 0.4911

* code first presented in [5] but was not known to be optimal

† lower bound calculated as per (3.4)

‡ lower bound calculated as per (3.5)

3.2.4 Results

In this section, new optimal span rate R = 1
2
systematic CDO and S-CDO codes are provided,

as well as codes with a shorter span than previously known. Their spans are compared to

known theoretical lower-bounds [5, 20, 50], and the error-correction performance for some of

these codes is presented.

3.2.4.1 New rate R = 1
2
systematic (S-)CDO codes

The novel algorithm allowed us to determine that the rate R = 1
2
systematic CDO code for

J = 6 published in [5, 21] is in fact optimal. Although the code was known, its optimality

was not. In addition, the proposed algorithm allowed finding the rate R = 1
2
systematic
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optimal-span CDO codes for J = 7 and J = 8 (see Table 3.1), which have a span of 211

and 423 respectively. Table 3.1 also includes the lower bound as per (3.4), as well as two

rate R = 1
2
systematic CDO codes with a shorter span than previously published codes in

[5, 20, 21] for J ∈ {10, 11}. These new shorter-span codes have a span of 1477 and 2559

respectively.

Furthermore, Table 3.1 presents the shortest span rate R = 1
2
systematic optimal-span

S-CDO codes for J = 9 (i.e. irrespective of δ), which have a span of 208, including the

first published rate R = 1
2
systematic S-CDO code with a simplification coefficient δ that is

greater than 1
2
. These new optimal-span codes have a span that is between 11% and 14%

greater than the calculated lower-bound for the given values of J and δ. Finally, Table 3.1

presents rate R = 1
2
systematic S-CDO codes for J = 14 and J = 15 with a span about

25% shorter than the shortest ones published in [5] and [21] for those orders, with spans of

1475 and 2001 (previous best spans of 1967 and 2653 respectively). They have a span that

is between 31% and 36% greater than the calculated lower-bound for that J and δ.

3.2.4.2 Error correction performance for the R = 1
2
systematic codes

The error correcting performance for the novel codes presented in this paper is shown in

Figs. 3.4, 3.5, and 3.6. The decoding was iterated until no significant performance improve-

ment was observed. Fig. 3.4 shows how the error performance improves as the order of the

code is increased from J = 6 to J = 14 for Eb

N0
≥ 3. The codes having order J = 10 (CDO) and

J = 14 (S-CDO) have a respective span that is 13.02% and 25.02% shorter than previously

known spans [20, 21].

Fig. 3.5 comprises two sets of curves. The first set is composed of three J = 8 CDO codes,

which can be seen to have a very similar performance, despite the novel codes having a span

that is 7.84% shorter than the code presented in [20]. The second set is composed of two

J = 11 CDO codes, also with similar error correction performance, despite the novel code

having a span that is 26.68% shorter than the one presented in [20]. As expected, the codes

with a larger J value have a better error performance.

In Fig. 3.6, two sets of curves can be observed. The first set is composed of the two novel

optimal-span J = 9 S-CDO codes, and the novel optimal-span J = 7 CDO code. The three
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Figure 3.4 Rate 1
2
systematic CDO and S-CDO code error correction performance for J ∈

{6, 10}, Eb

N0
∈ [2.0; 4.0] (dB) and J = 14, Eb

N0
∈ [2.0; 3.6] (dB), after 10, 13 and 14 iterations

respectively.

codes have similar spans of 208 and 211 respectively. As with the J = 10 (CDO) and J = 14

(S-CDO) codes in Fig. 3.4, it can be seen that for a similar given span, it is possible to use

a S-CDO code with a higher J value than with CDO codes, and that the former offers a

better error correction since their performance more heavily depends on the order J than on

the span of the code. The second set is composed of the two J = 15 S-CDO codes. It can

be seen that despite the novel code having a higher simplification coefficient δ and a span

that is shorter by 24.58% than the code in [21], their error correction performance is very

similar. For both, the J = 9 and the J = 15 S-CDO codes, it can be observed that their

error correction performance does not change very much for small differences in the value of

δ.
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Figure 3.5 Rate 1
2
systematic CDO code error correction performance for Eb

N0
∈ [2.0; 4.0] (dB)

after the 12th (J = 8) and the 14th (J = 11) decoding iteration. Novel codes presented are
marked with a single asterisk (’*’): the codes of order J = 8 have an optimal span. Codes
presented in [20] are marked with a double asterisk (’**’).



50

Figure 3.6 Rate 1
2
systematic CDO and S-CDO code error correction performance for J ∈

{7, 9}, Eb

N0
∈ [2.0; 4.0] (dB) and J = 15, Eb

N0
∈ [2.0; 3.6] (dB), after 13 and 16 iterations

respectively. Novel codes presented are marked with a single asterisk (’*’): the S-CDO codes
of order J = 9 and the CDO code of order J = 7 have an optimal span. The S-CDO code
presented in [21] is marked with a double asterisk (’**’).



51

3.2.5 Conclusions

This paper has presented an efficient implicitly-exhaustive search algorithm for finding rate

R = 1
2
systematic CDO and S-CDO codes with shortest possible spans. The drastic speedup

it offers over previous exhaustive-search and pseudo-random search algorithms is achieved

through a search-space reduction technique. The proposed method is a type of branch and

bound algorithm, thus performing an exhaustive search: as a consequence, we have been

able to prove the optimality of the optimal-span codes found, which was previously not

possible except for very small values of J (i.e. codes with a very small number of generator

connections).

In addition to being able to yield codes of shorter span than what was possible with

the best pseudo-random algorithms available, the proposed algorithm has allowed us to find

new rate R = 1
2
systematic codes that are optimal for J ∈ {6, 7, 8} (CDO codes) and

J ∈ {9} (S-CDO codes). The span improvement of 25% for S-CDO codes (J ∈ {14, 15})

and 13%− 26% for CDO codes (J ∈ {10, 11}) will directly translate into a latency reduction

of the same magnitude in the novel error-correcting encoding/iterative threshold decoding

systems for which they are intended. The obtained results pave the way for a new generation

of even faster Convolutional Self-Doubly Orthogonal code searching techniques, and hence

more powerful and optimal new codes.
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CHAPTER 4

AN EFFICIENT PARALLEL AND IMPLICITLY-EXHAUSTIVE SEARCH

ALGORITHM

4.1 Overview and discussion

In Chapter 3, we presented an improved implicitly-exhaustive search algorithm for finding

systematic rate R = 1
2
optimal-span (S-)CDO codes. The algorithm [15] uses three techniques,

defined in Theorems 3.1, 3.2 and 3.3 (see Section 3.2.3.3), to reduce the size of the (S-)CDO

code search space, thus yielding new optimal-span codes as well as codes with shorter spans.

Nevertheless, its operation being sequential in nature, the algorithm does not fully take

advantage of the performance offered by modern multi-core computer systems. Furthermore,

it is plagued by some of the limitations that are present in the reference exhaustive-search

algorithm [5].

In this chapter, the second article of this thesis [14] is included verbatim in Section 4.2:

it provides a high-level description of a completely novel efficient and parallel implicitly-

exhaustive search algorithm that greatly reduces the computational time required for finding

systematic rate R = 1
2
optimal-span (S-)CDO codes. In order to increase the speed and

efficiency of the search process, the algorithm exploits significant algorithmic improvements.

First, it uses a stricter set of constraints to identify and concentrate the search on only

potentially valid codes. Indeed, Theorems 4.1 and 4.2 presented in this chapter replace

Theorems 3.1 and 3.2 from [15], since they improve the efficiency of the tree-traversal by

further reducing the size of the search space. Next, the algorithm reduces the computation

time by performing a simultaneous exploration of independent regions in the search-tree:

this parallel search allows it to leverage the additional computing cores in modern multi-

core microprocessors [19]. Finally, the algorithm performs an incremental computation with

data-reuse, allowing it to reuse the results of previous computations to increase the efficiency

of the (S-)CDO code validation process. Using this technique, the validation function is

able to greatly reduce the number of computations that are necessary for validating a code:
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Figure 4.1 Number of first and second order differences required to validate a (S-)CDO code
- traditional vs. incremental computation.

although the number of differences required is still expressed by polynomial equations, their

degree has been effectively decreased by one when compared to (2.5), (2.6), and (2.7), thus

resulting in significant computational savings that become larger as J increases (see Fig. 4.1).

For example, when validating a code of order J = 17, the proposed method allows for a

reduction factor of 4.5 in the total number of computed first and second order differences.

We recall that this algorithm is implicitly-exhaustive, because no nodes that could potentially

yield valid codes with a span shorter than the shortest known span at the end of the process

are discarded, thereby ensuring that the search remains exhaustive in nature, in an implicit

manner, and that it yields optimal-span codes.

Using the efficient and parallel implicitly-exhaustive search algorithm presented in this

chapter, we were able to obtain optimal-span J = 9 CDO codes and J ∈ {10, 11} S-CDO

codes, offering a span reduction of 16%, 9% and 24% respectively. Furthermore, we were also

able to obtain, within an acceptable amount of computation time, new J ∈ {10, 12, ..., 17}

CDO codes and new J ∈ {12, ..., 20} S-CDO codes having the shortest spans published to

date for these higher values of J . Figure 4.2 shows, for J ∈ [9; 20], the (S-)CDO code span
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Figure 4.2 Span Improvement in percentage [14] for (S-)CDO codes and J ∈ [9; 20]. Note
that for J = 9 (CDO codes) and J ∈ {10, 11} (S-CDO codes) the codes obtained have the
shortest possible spans for those orders (i.e. optimal-span codes).

reduction achieved by using the novel algorithm presented in Section 4.2: it was possible

to reduce the span by an average of 14% for CDO codes and 26% for S-CDO codes, which

directly translates into a latency reduction of the same magnitude in the error-correcting

systems for which they are intended.

We have previously observed that the ease of implementation of high-performance

(S-)CDO code decoders may vary as a function of the encoder generator vector chosen [77].

Therefore, for each order J , a choice of two codes having the shortest spans obtained is pre-

sented in Section 4.2.4.1 of this chapter. Furthermore, their spans are compared to known

theoretical bounds and the error-correction performance for some of these codes is provided.

As noted in Chapter 3, the simulation of each error-performance curve required several weeks

of computation time to deliver the Eb

N0
∈ [2.0; 4.0] (dB) bit error rates obtained, and thus sev-

eral instances of the (S-)CDO code simulation software were run in parallel and on multiple

computers. The error-correction performance for all of the codes provided in Chapter 4 is

presented in Appendix A, and their density maps are presented in Appendix B. The com-

plete list of improved codes obtained through the use of this novel algorithm is presented in

Appendix C.

Finally, Section 4.2 presents the evolution of the error-correction performance for (S-)CDO
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codes as a function of the order J : we show that although the bit error rate is lowered as J

increases, the “waterfall” region of the error-performance curve migrates to higher values of

Eb/N0, a fact that may require consideration depending on the application of interest.

4.2 Article #2: Efficient Parallel Search Algorithm for Determining Optimal

R = 1/2 Systematic Convolutional Self-Doubly Orthogonal Codes

G. Kowarzyk, N. Bélanger, D. Haccoun, Y. Savaria

École Polytechnique de Montréal

{gilbert.kowarzyk, normand.belanger, david.haccoun, yvon.savaria}@polymtl.ca

Publication source: IEEE Transactions on Communications, vol. 61, no. 3, March 2013,

pp. 865-876.

Abstract

A novel parallel and implicitly-exhaustive search algorithm for finding, in systematic form,

rate R = 1
2
optimal-span Convolutional Self-Doubly Orthogonal (CDO) codes and Simplified

Convolutional Self-Doubly Orthogonal (S-CDO) codes is presented. In order to obtain high-

performance low-latency codecs with these codes, it is important to minimize their constraint

length (or “span”) for a given J number of generator connections. The proposed exhaus-

tive algorithm uses algorithmic enhancements over the best previously published searching

techniques, yielding new and improved codes: we were able to obtain new optimal-span

CDO/S-CDO codes (having order J ∈ {9} and J ∈ {10, 11} respectively), as well as new

codes having the shortest spans published to date for higher values of J (J ∈ {10, 12, ..., 17}

and J ∈ {12, ..., 20} for CDO and S-CDO codes respectively). The new codes and their

error performance are provided. An analysis of the evolution of the CDO/S-CDO code error

performance as J increases is presented, and the shortest CDO/S-CDO code span values for

each given J are compared.

Index Terms: Convolutional codes, self-doubly orthogonal codes, systematic codes,

threshold decoding.
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4.2.1 Introduction

An iterative error-control coding scheme presented in [4, 6, 7] differs from the classical Turbo

code procedure invented in 1993 [8, 9], as it uses no interleaver, neither at the encoding

nor at the decoding process. The iterative threshold decoding algorithm it uses [4, 9, 11]

employs a new class of convolutional codes expressed in systematic form and that must

satisfy double orthogonality properties, beyond those of the well-known orthogonal codes

used in the conventional non-iterative threshold decoding [10]. Throughout this paper, the

widely used terminology systematic codes is used to represent convolutional codes expressed

in systematic form, that is, codes whose encoders are systematic. We only consider rate

R = 1
2
codes, hence only one encoder generator vector is provided. The additional so-called

double orthogonality properties required from the codes ensure a quasi-independence of the

observables over the first two decoding iterations, thereby allowing the use of an iterative

decoding procedure and hence a good error performance while allowing attractive trade-offs

between complexity, latency, and error performance [6].

As the error-correcting capability of the new codes depends essentially on the dimension

J of the vector generator of the R = 1
2
code [20], and because the code constraint length (or

span of the code) has a direct impact on the latency of the system, it is of great importance

to search for rate R = 1
2
systematic Convolutional Self-Doubly Orthogonal (CDO) codes

(and their variants) having the shortest possible spans for any given J number of connections.

Since no systematic deterministic method for solving this problem is currently known, the

code searching is usually conducted using heuristic search algorithms [20, 28]. However,

although finding a CDO code is relatively easy, determining the shortest span codes for a

given J has eluded analysis and is still an open problem. In fact, the search for optimal

CDO codes (and their variants) is far more computationally challenging than the problem of

finding “optimal” simply orthogonal codes, also known as the Golomb ruler problem, which

has an NP-hard complexity [13, 46]. Indeed, CDO codes may be viewed as second-order

Golomb rulers.

Pseudo-random and exhaustive search algorithms have been previously developed to ob-

tain good, i.e. short span, CDO codes [5, 20, 28]. However, using these algorithms to find ever

shorter span or eventually optimal span (i.e. shortest span) codes requires a computational
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time that becomes rapidly excessive, especially as the number J of generator connections in-

creases beyond J = 5. Preliminary work on reducing the computational time required by the

reference exhaustive search algorithm [5] consisted in adapting it to perform a basic parallel

search [19]. Although the resulting technique showed that the search for optimal-span codes

lends itself well to parallel processing, it is also plagued by many of the inefficiencies that are

present in the reference algorithm. In fact, a more efficient technique for reducing the search

time through an improved implicitly-exhaustive search process was described in [15], but its

operation being sequential in nature, it does not fully take advantage of the performance

offered by modern multi-core computer systems.

In this paper, we present a completely novel parallel and implicitly-exhaustive search

algorithm that greatly reduces the computational time required for finding optimal-span

CDO codes and their variants. We show that the drastic increase in speed and efficiency

is achieved through very significant algorithmic improvements over the algorithm presented

in [15], in particular: a parallel search, an incremental computation with data-reuse, and an

enhanced dynamic search-space reduction based on a stricter set of constraints to identify

and concentrate the search on only potentially valid codes. This faster technique has allowed

finding several new optimal-span codes having larger J values. Moreover, short of obtaining

optimal codes for some yet higher J values, we have also been able to obtain, within an

acceptable amount of computation time, new codes with significantly shorter spans than the

ones previously published in [15, 20, 21, 28].

The paper is organized as follows: in Section 4.2.2, CDO and S-CDO codes (a CDO code

variant) are defined to establish the notation used in this paper. A novel and more efficient

parallel implicitly-exhaustive search algorithm is described in Section 4.2.3. In Section 4.2.4,

new optimal-span codes, as well as novel codes with a shorter span than previously obtained in

[15, 20, 21, 28] are presented. The shortest S-CDO code spans and their CDO counterparts

are compared. Finally, their error performance, and an analysis of the evolution of their

error-performance as J increases are provided.
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Figure 4.3 Example of systematic CDO code encoder: R = 1
2
, J = 4, M = 15, Ω =

{0, 3, 13, 15}.

4.2.2 Definitions

In this section, we provide the necessary definitions on the vector generator of the systematic

CDO and S-CDO codes of coding rate R = 1
2
[4, 49], which, as previously stated, may be

viewed as second-order Golomb rulers [43].

4.2.2.1 Convolutional Self-Doubly Orthogonal (CDO) codes

A systematic Convolutional Self-Doubly Orthogonal (CDO) code of coding rate R = 1
2
and

order J is defined as the set Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive integers

(α1 < α2 < ... < αJ) such that the following conditions are satisfied [6, 20, 21, 49]:

1. The elements in S, the set of first-order differences between these integers, are all

distinct:

S = {sk,l = (αk − αl) : k ̸= l};

2. The elements in D, the set of second-order differences (the differences between the

differences), are all distinct from one another, with the exception of the unavoidable

differences caused by the permutations of indices (l,m) or (k, n):

D = {dk,lm,n = (αk − αl)− (αm − αn) :

k ̸= l,m ̸= n, k ̸= m, l ̸= n};

3. The elements in sets S and D are distinct from one another (D ∩ S = ∅).

The αi elements (i ∈ [1; J ]) represent the connections between the encoder shift register and

the modulo-2 adder. By convention α1, the first integer in our set, is always equal to zero
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(α1 = 0). The span M of a CDO code is equal to αJ , the largest integer in Ω, and corresponds

to the length of the encoder shift register (see Fig. 4.3), that is, αJ is the encoder memory

length [20]. The number J of elements in Ω is equal to the number of generator connections

of the code and is called the order of the CDO code. An optimal CDO code of a given order

J is defined as a CDO code whose span Mopt is the smallest span that exists for that order.

However, an optimal CDO may not be unique and hence there may be more than one optimal

CDO code for any given order J .

Since the validity of a code as a CDO code depends only on the relationship between the

J elements composing it, any subset of L consecutive elements from the set defining a CDO

code also forms a valid CDO code, albeit one of smaller order L, L < J . For example:

CDOJ=5 = {0, 1, 24, 37, 53}

CDOJ=4 = {0, 1, 24, 37} (4.1)

CDOJ=3 = {0, 1, 24}

are all valid, although not optimal, CDO codes. This property will be leveraged to speed-up

the proposed algorithm.

When calculated directly as per the definition, first-order and second-order differences

come in pairs of equal magnitude but opposite sign. The number of positive first-order differ-

ences (NS) and second-order differences (ND) that exist for a code are a function of J , given

by [20]:

NJ
S =

J(J − 1)

2
(4.2)

NJ
D =

J(J3 − 2J2 + 3J − 2)

8
. (4.3)

Directly computing the exact span of optimal codes, whether simply or doubly orthogonal,

is still an unsolved problem [13, 46]. However, a loose lower bound for the span of a CDO

code has been developed in [20, 50] and can be expressed as a function of J , the order of the
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code, using (4.2) and (4.3) as follows:

αJ ≥ α∗
J =

⌈
NJ

S +NJ
D

2

⌉
. (4.4)

Furthermore, any CDO code has always a symmetrical (mirror) equivalent composed of

integers with the same differences but in the reverse order, a property shared with the so-

called Golomb ruler problem they are related to [20]: the symmetrical equivalent of {0, 2,

12, 15} would therefore be {0, 3, 13, 15}. This property will also be used to speed-up the

proposed search algorithm.

4.2.2.2 Simplified Convolutional Self-Doubly Orthogonal (S-CDO) codes

Simplified Convolutional Self-Doubly Orthogonal (S-CDO) codes are obtained by relaxing

the second CDO condition, yielding codes with shorter spans than regular CDO codes. The

latency of the decoding process is in direct proportion to the span of the code and the number

of iterations used for reaching a given error performance. Thus, using S-CDO instead of CDO

codes substantially reduces the decoding latency at the cost of only a very small degradation

of the error-correction performance [5, 21, 51].

A systematic S-CDO code of coding rate R = 1
2
and order J is thus defined as the set

Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive integers such that it satisfies the first

and third CDO conditions, and a modified version of the second condition, as follows [5, 51]:

2b) The set D of second-order differences between the integers in Ω, defined as:

D = {dk,lm,n = (αk − αl)− (αm − αn) :

k ̸= l,m ̸= n, k ̸= m, l ̸= n}

is composed of 2ND second-order differences (of which 2N e
D have an equal value in the set D),

computed by excluding the unavoidable second-order differences caused by the permutations

of indices (l,m) or (k, n). We define δ, the simplification coefficient, as δ =
Ne

D

ND
, where

N e
D < ND and 0 ≤ δ ≤ 1− NS

ND
[5].

Clearly, a CDO code may be viewed as a S-CDO code for which δ = 0, and thus S-CDO

and CDO codes share most of their properties. A loose lower bound on the span of a S-CDO
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code has been derived as a function of J and δ, and is expressed, using (4.2) and (4.3), as

[5, 21]:

α∗
J =

⌈
NS + (1− δ) ·ND

2

⌉
. (4.5)

An optimal S-CDO code of order J and simplification coefficient δ is thus a S-CDO code

having the smallest span, Mopt, which exists for that order and δ. Again, there may be more

than one optimal S-CDO code for a given order J and simplification coefficient δ. In this

paper, the notation “(S-)CDO” will be used when referring to both CDO and S-CDO codes.

We now present an efficient search procedure for obtaining R = 1
2
systematic (S-)CDO

codes with a span shorter than codes previously published.

4.2.3 Novel Efficient Parallel Implicitly-Exhaustive Search Algorithm

In this section, we present a brief overview of previous (S-)CDO code searching techniques

and the key concepts behind the implicitly-exhaustive search algorithm developed in [15].

Then, we describe a novel and efficient parallel implicitly-exhaustive search algorithm. The

several and significant enhancements it introduces to the search algorithm in [15] led to a

drastic increase in searching speed for finding new optimal-span codes and codes with shorter

spans than those previously published in [15, 20, 21, 28] for the same orders.

4.2.3.1 Overview of previous search algorithms

The first technique for finding CDO codes used a projective geometry approach to yield valid

codes [50, 71]. However, this approach yielded codes with excessively large spans, leading to

the development of new code-searching methods [20, 50].

Recent code-searching algorithms can be divided into two categories, exhaustive and

pseudo-random. Exhaustive search algorithms guarantee that the optimal span for a given

J number of connections is found, provided that a sufficiently large initial Mcurr, the small-

est known span, is used. This is achieved by testing all the potentially valid codes in the

search space. However, as J becomes larger, the very rapidly increasing computational effort

required to obtain optimal (S-)CDO codes led to dropping this type of algorithm in favor of

more practical pseudo-random search algorithms [5, 50]. Pseudo-random search algorithms
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are based on the use of a pseudo-random rejection criterion that can be adjusted in order to

shorten the spans of the codes obtained [20]. Note that this type of algorithm cannot guar-

antee that minimal-span codes have been found. However, with the use of a span reduction

method based on modulo operations [50] and a carefully chosen lower bound, the technique

did provide some of the codes with the shortest known spans, albeit possibly not optimal

codes [5, 20].

In order to find new optimal-span codes for larger values of J , an attempt at improving

the reference exhaustive-search algorithm [5] is described in [19]: the computation time is

reduced by means of a very basic simultaneous exploration of different regions of the search

space. Although this preliminary brute-force parallel approach showed that the problem lends

itself well to parallel computing, it quickly became clear that a more capable algorithm would

be required to address the exploding size of the search space as J and Mcurr increase. As a

consequence, the search algorithm in [15] was developed: it uses a more effective implicitly-

exhaustive searching technique for efficiently reducing the size of the search space while still

performing an exhaustive search, and thus, was able to yield new optimal-span codes having

larger values of J .

In this paper, we have focused on developing new methods to significantly improve the

computational performance of the search algorithm in [15] by further reducing the size of the

search space and by making a more efficient use of the resources offered by modern multi-core

computer systems.

4.2.3.2 An implicitly-exhaustive search

The (S-)CDO code exhaustive-search algorithm described below uses a tree-like structure to

perform the search (see Fig. 4.4 for J = 3). The tree is composed of nodes which must have

a value larger than their parent node and their sibling nodes to the left. Sibling nodes are

nodes with the same parent. The tree depth represents the total number of connections J ,

while the values of the nodes on a path from the root to a leaf represent the elements of

Ω = {α1, α2, . . . , αJ}, the set of positive integers defining the code. All nodes at depth J − 1

are leaf-nodes. A valid path in this search-tree starts at the root node and ends at a leaf-node

that has a value not larger than Mcurr, the currently smallest known span value.
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Figure 4.4 (S-)CDO search-tree: searching for a CDO with order J = 3.

The (S-)CDO code search-tree size depends on the current span, Mcurr, and on J . Since

there is only one path leading from the root node to a leaf-node, the number of leaf-nodes

in the search-tree, NL, also represents the total number of possible paths (or (S-)CDO code

candidates). Since the set Ω defining a code always starts with zero (the root node), the

number of possible combinations of J − 1 nodes with integer values ranging from 1 to Mcurr

may be expressed as:

NL =

 Mcurr

J − 1

 =
(Mcurr)!

(J − 1)! (Mcurr − J + 1)!
.

It can be seen that the number of leaves quickly explodes as Mcurr and J increase. Clearly,

tree-pruning techniques should be used as much as possible.

The novel algorithm presented in this section is implicitly-exhaustive and belongs to the

“branch and bound” class of algorithms [73]: it does not need to test all the nodes and paths,

but still performs an exhaustive search while reducing the search complexity by several orders

of magnitude. Since an implicitly-exhaustive algorithm still performs an exhaustive search,

the codes that are obtained are proven to be optimal [15].
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4.2.3.3 Improving the implicitly-exhaustive search: a more aggressive dynamic

search-space reduction

The novel algorithm described in this section proposes an exhaustive searching technique

that is faster at finding rate R = 1
2
systematic (S-)CDO codes with a shorter span than

the best pseudo-random and exhaustive search algorithms presently known, yielding optimal-

span codes for higher J order values than previously known (J ≤ 9 for CDO, J ≤ 11

for S-CDO). For codes with a large order (J ≥ 10), where an exhaustive-search can be

prohibitive, this new search-method also allows to gradually obtain codes with significantly

shorter spans than previously known, thus allowing to find “better” codes within the same

amount of computation time.

One way that the efficient parallel implicitly-exhaustive search algorithm reduces the

computational time required for searching for optimal (S-)CDO codes is by using more ag-

gressive search-tree pruning techniques to further reduce the number of branches that are

explored. Indeed, children nodes of nodes that have been discarded do not need to be tra-

versed or validated, thus allowing for substantial computational savings. To that effect, the

novel algorithm provides two significant search-tree pruning enhancements over the implicitly-

exhaustive search algorithm in [15]: Theorems 1 and 2 from [15] are replaced by Theorems 4.1

and 4.2 provided below.

The first search-tree pruning technique consists in realizing that Theorem 3 in [15] may

also be applied in the direction going from the leaf-nodes to the root node. From (4.1), any

subset of a (S-)CDO code must also be a valid (S-)CDO code, and thus it is possible to

establish a tighter upper bound when generating the list of children nodes to be evaluated.

Indeed, the theorem below states that it is possible to reduce the search space by choosing an

upper bound with a smaller value than the one used in Theorem 1 of [15], which stated that

V d
max = Mcurr− ((J−1)−d). Improvements on this upper bound value are obtained through

the use of the lower bound (4.4) (for CDO codes only), or, if such a value is known, by using

the optimal span value for a code of order J − d when generating the maximum value of

nodes at depth d. A separate list of known optimal spans is used for CDO and S-CDO codes

in order to generate the correct maximum value during the search.
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Theorem 4.1. Let V d
max be an upper bound for node values having d < J − 1. Then, V d

max

can be defined as the smallest of the following three values:

• Mcurr −MJ−d−1
opt , where Mcurr is the current shortest known span for a code of order J ,

and MJ−d−1
opt is the optimal-span of a code of order J − d, if it is known;

• Mcurr − α∗
J , where Mcurr is the current shortest known span and α∗

J is the lower bound

calculated as per (4.4) (for CDO codes only);

• V d+1
max − 1 for d < J − 1, where V d+1

max is the V d
max value for children nodes of the current

node, and the current node is not a leaf-node.

Proof. By definition, the minimum value of the difference between the current leaf-node value

Mcurr and the value of a node at depth d is equal to V J−d−1
min , as per Theorem 3 in [15]. This

is true because the difference would correspond to the lower bound of a symmetrical code

starting at the leaf-node and ending at the root node. QED

Theorem 4.1 above is equivalent to the Maximum Position Reduction technique used in the

search for optimal Golomb rulers [17].

The second search-tree pruning improvement complements Theorem 4.1 by limiting the

maximum value of the αmid nodes, where mid =
⌊
J−1
2

⌋
+ 1. Indeed, this theorem also

exploits the symmetry property of (S-)CDO codes mentioned above in Section 4.2.2 in order

to discard some additional codes whose symmetrical has already been encountered during

the tree exploration, as stated in Theorem 4.2 below.

Theorem 4.2. Let V αmid
max be defined as:

V αmid
max =

⌈
Mcurr + 1

2

⌉
− 1 (4.6)

where mid =
⌊
J−1
2

⌋
+ 1. Then, any code with an αmid node having a value larger than V αmid

max

would have a symmetrical equivalent within the codes in the search-tree having αmid ≤ V αmid
max .

Proof. Assuming that the tree is traversed in the same order as in the reference exhaustive

search algorithm, V αmid
max can be seen as a symmetry center for all the possible connection
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Figure 4.5 The parallel implicitly-exhaustive search algorithm divides the search-tree into a
set of sub-trees (or “jobs”) that are searched in parallel by the scout ants (here for a code of
order J = 3).

patterns to an encoder shift register with a span Mcurr (see Fig. 4.3). As soon as the middle

connection, αmid, crosses this symmetry center, all connection patterns thereafter will be

symmetrical to the patterns before this threshold is crossed. Thus, all search-tree branches

with an αmid node value larger than V αmid
max may be safely skipped because if they were to

lead to an optimal-span code, that code’s symmetrical equivalent would have already been

encountered earlier in the tree exploration. QED

Theorem 4.2 is equivalent to the Midpoint Reduction technique used in the search for

optimal Golomb rulers, and thus a search-space reduction of also approximately 50% can be

achieved [17].

We recall that the use of these theorems only allows to discard either the nodes that

cannot yield valid codes with a shorter span than the shortest span currently known, or one

of the two codes in the pair of symmetrical (mirror) equivalent codes in the search space (as

defined in Section 4.2.2). Therefore, no nodes that could potentially yield valid codes with a

span shorter than the shortest known span at the end of the process are discarded, thereby

ensuring that the search remains exhaustive in nature, in an implicit manner, and that it

yields optimal-span codes.
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4.2.3.4 Data reuse and parallel computation

Another way that the efficient parallel implicitly-exhaustive search algorithm reduces the

computational time required for searching for optimal (S-)CDO codes is through data reuse

and parallel computation. Previous (S-)CDO code searching algorithms [5, 15, 19, 20, 21]

would compute all the first and second order differences of a code candidate in order to

evaluate whether it is a valid (S-)CDO code or not. The novel algorithm presented in this

paper is more efficient at validating a code by only computing the first and second order

differences generated by the last node addition, and reusing the differences that were previously

computed for the parent nodes in the same branch. For example, when searching for a code

of order J = 4 and having computed the branch {0, 1, 5}, which is a valid CDO code, the

node α3 = 5 is kept and candidate nodes α4 are evaluated one after another. The positive

first-order differences that exist for {0, 1, 5} are“1”, “5”and“4”, and since they will not change

as we evaluate different α4 node values, they are kept in memory and reused for each code

validation (the same applies to second-order differences). Thus, for each different α4 node

value, only the differences contributed by this last node addition need to be computed for

evaluating the code candidate. It can be observed that the substantial computational savings

obtained when employing data reuse with incremental computation increase as the order of

the codes increases. Indeed, the number of first (NJ
S ) and second (NJ

D) order differences (see

(4.2) and (4.3)) that need to be computed for each code validation drop to NJ
S,incr and NJ

D,incr

respectively, as given below:

NJ
S,incr = NJ

S −NJ−1
S = J − 1 (4.7)

NJ
D,incr = NJ

D −NJ−1
D =

J3 − 3J2 + 4J − 2

2
. (4.8)

Comparing (4.2) and (4.3) with (4.7) and (4.8), we can see that the degrees of the polynomials

have all been reduced by one, and thus the algorithmic complexity of a validation goes from

O(J4) to O(J3).

With multi-core computer systems becoming a commodity, it is important to have an

algorithm that scales well and harnesses the computational power they offer by parallelizing

the processing of data. The search algorithm presented in [15] focused on serial performance
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Figure 4.6 Ant colony with four ants: each scout ant has its own private workspace for keeping
track of data pertaining to the current job, and all ants have access to a shared workspace
for storing results and for communicating with each other.

and thus did not take advantage of modern microprocessors. This observation led to the

development of the efficient parallel and implicitly-exhaustive search algorithm described in

this paper, where we define a “job” as a sub-tree exploration.

To improve the efficiency of the search, the novel algorithm bases its behavior on that

of an ant colony: conceptually, the search-tree is divided into a set of sub-trees that are

explored in parallel, each by a different scout ant. For example, in Fig. 4.5, three jobs are

depicted: the search-tree is thus divided into three independent sub-trees that have a fixed

trunk going from the root node, α1, to the sub-tree’s base-node, here at α2. The novel

algorithm improves on [19] by recognizing that if the tree is traversed in the same order as in

the reference exhaustive search algorithm, earlier branches in the tree will carry more nodes

than later branches. Therefore, instead of assigning the sub-tree’s base-nodes to α2 nodes,

it allows their depth to be configurable: by increasing the depth at which the base-nodes

are located, the size of their corresponding sub-trees can be reduced, thus improving the

algorithm’s load balancing. Note that there is a single node per search-tree depth between

the root node and the base-node of each sub-tree, and that their respective values do not

change during the processing of a job: in fact, this unique node-value sequence is used as

the job’s id, and is employed for tracking completed, active and pending jobs to be processed.

By dividing the search-tree into independent sub-trees, the scouts are able to work with very

little resource contention: each scout has its own private workspace for keeping track of data

pertaining to the current job, and all ants have access to a shared workspace for storing

results and for communicating with each other (see Fig. 4.6). By partitioning the search

space into independent sub-trees that are only accessed by one scout ant at a time, the ants
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can do most of the processing within their private workspace, foregoing the need of complex

resource sharing mechanisms and thus reducing the overall synchronization overhead. When

a scout has finished processing a job, another job is assigned to it until no more sub-trees are

available, at which point the exploration of the search-tree is completed.

Using the shared workspace, the ant colony executes a cooperative search: when a scout

discovers a valid code with a shorter span than the current shortest span known, its span

value is shared with all other ants to collectively apply all known tree-pruning techniques

to the current and future jobs being processed. This is another enhancement over the al-

gorithm in [19], which would only set the maximum value for the leaf nodes to be equal

to the new shortest recorded span and forego applying any other tree-pruning techniques.

Sharing this information instantly benefits all scout ants, thus significantly decreasing the

overall computation time by allowing the search space to converge to a smaller search-tree

in less time. For example, in Fig. 4.7, the first ant to find a shorter span is Ant #2, with

a span value of 55 during the processing of Job #2. Since this “best known span value” is

written to the shared workspace and thus available to all ants, its updated value allows for

immediately reducing the size of the search space for all scout ants, even if they had not

yet themselves found an improved span value. In this example, if the computation had been

executed with only one scout ant (i.e. serially), Job #1 would have had to be completed

before the first search space reduction could happen at Job #2, and thus, Job #1 would not

have been able to benefit from the search space reduction obtained during the processing of

Jobs #2 and #3. Figure 4.7 shows three ants working on different jobs and communicating

with each other through the shared workspace. Since Jobs #1, #2, and #3 are running in

parallel, they can all benefit from each other’s “best known span value” updates and thus

apply search-tree pruning techniques earlier and at a faster rate than it would be otherwise

possible with a non-collaborative approach. Through the collective span updates and the

more aggressive tree-pruning techniques, the overall search-tree size converges more quickly

to a smaller tree, potentially offering a better than linear performance with respect to the

parallelism employed [19].

The novel efficient parallel implicitly-exhaustive search algorithm allowed us to find many

new codes with shorter spans than the ones previously published for those orders [15, 20, 21,
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Figure 4.7 The ant colony executes a cooperative search: upon discovering a valid code with
a shorter span than the shortest currently known, the improved span value is shared with all
ants such as to collectively apply tree-pruning techniques to the jobs being processed.

28], and to find new optimal-span codes for J = 9 (CDO codes) and J ∈ {10, 11} (S-CDO

codes). Although the implementation details of this algorithm are beyond the scope of this

paper and will be published elsewhere, suffice it to say that it was written in C and uses POSIX

pthreads and mutex-protected shared variables to implement a cooperative multithreading

model, thereby achieving a speedup of more than two orders of magnitude compared to the

best algorithms in [5, 15, 19]. It is worth noting once again that although the algorithm

presented in this section is much faster than previous exhaustive and pseudo-random search

algorithms, its improvements and parallel execution do not compromise the exhaustive nature

of the search.

The new codes obtained with this much-improved algorithm are presented in the next

section.

4.2.4 New CDO and S-CDO Code Results

In this section, new optimal-span rate R = 1
2
systematic CDO and S-CDO codes are provided,

as well as codes with a span shorter than any comparable previously reported codes. Their

spans are compared to known theoretical lower-bounds [5, 20, 50], and the bit error-correction

performance for some of these codes is presented. The span reduction obtained when using

S-CDO codes instead of CDO codes is shown, and the evolution of their error performance

as a function of their order J is described.
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4.2.4.1 New rate R = 1
2
systematic (S-)CDO codes

The novel algorithm presented in this paper allowed us to determine new optimal-span rate

R = 1
2
systematic CDO and S-CDO codes, for orders J = 9 and J ∈ {10, 11} respectively.

Moreover, for J ∈ {9, 10, [12; 17]} (CDO codes) and J ∈ [10; 20] (S-CDO codes), we have been

able to obtain, within a reasonable amount of computation time, new codes with significantly

shorter spans than the ones previously published in [15, 20, 21, 28]. Note that the optimal-

span S-CDO code of order J = 9 and the shortest known CDO code of order J = 11 were

presented in [15], and as a consequence, they are not included in these results. Likewise, for

values of J ∈ [17; 20], span improvements were only attempted on S-CDO codes, and thus no

CDO codes are provided. Although many codes were found, we chose to only present the two

“best” codes for each order J : we have previously observed that the ease of implementation of

high-performance (S-)CDO code decoders may vary somewhat as a function of the encoder

generator vector chosen [77], and thus a choice of two codes is provided. It can be observed

that with this novel technique it was possible to reduce the span by an average of 14% for

CDO codes and by 26% for S-CDO codes. This span improvement directly translates into a

latency reduction of the same magnitude in the error-correcting encoding/iterative threshold

decoding systems for which they are intended. The codes obtained, along with their lower

bound and the span reduction achieved are shown in Tables 4.1, 4.2 and 4.3.

Table 4.1 presents rate R = 1
2
systematic (S-)CDO codes of order 9 ≤ J ≤ 13. The

optimal-span CDO code of order J = 9 has a span of MJ=9 = 766, that is 16% shorter than

912, the previous shortest span known for that order [21]. The optimal-span S-CDO codes of

order J ∈ {10, 11} have a span of MJ=10 = 309 and MJ=11 = 445 respectively, 9% and 24%

shorter than the previously shortest known spans. Their simplification coefficients δ have

values δ = 0.5256 and δ = 0.5279 respectively. When observing all the known optimal-span

S-CDO codes [15, 21], we can notice that the value of δ increases as J increases. This could

possibly be used, for larger values of J , as a very approximative way of gaining insight on

how close we are to finding the optimal span for those orders. The CDO codes of orders

J ∈ {10, 12, 13}, have spans 10% to 16% shorter, and the S-CDO codes of order J = 12

and J = 13 have respectively spans that are 29% and 19% shorter than previously known

codes [5, 20, 21]. Please note that CDO codes of order J = 11 were not included because no
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span improvements over [15] were obtained.

Table 4.2 presents rate R = 1
2
systematic (S-)CDO codes of orders J = 14, J = 15 and

J = 16. For CDO codes, the new shortest known spans have values of MJ=14 = 12416,

MJ=15 = 20219 and MJ=16 = 31120, with span improvements over the best known of 10%,

32% and 11% respectively. For S-CDO codes, the new shortest known spans have values of

MJ=14 = 1373, MJ=15 = 1890 and MJ=16 = 2571, with span improvements over the best

known of 30%, 29%, and 27%, and δ values of 0.4881, 0.4956 and 0.4793 respectively.
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Table 4.1 Summary of new rate R = 1
2
systematic (S-)CDO codes obtained with the novel

technique for J ∈ {9, 10, 11, 12, 13}

J
Code

Type

Optimal-

span?
New (S-)CDO codes

Lower
Bound

Prev. best span
(span reduction ††) δ

9 CDO NO {0, 2, 24, 100, 428, 585, 667, 777, 792} 351 † 912 (13.16%) 0

9* CDO YES {0, 2, 30, 108, 238, 537, 722, 763, 766} 351 † 912 (16.01%) 0

10 CDO NO {0, 1, 5, 96, 885, 1061, 1094, 1401, 1422, 1473} 540 † 1698 (13.25%) 0

10 CDO ? {0, 1, 5, 99, 388, 789, 1128, 1359, 1401, 1428} 540 † 1698 (15.90%) 0

10 S-CDO NO {0, 7, 9, 83, 86, 118, 260, 296, 309, 317} 279 ‡ 340 (6.76%) 0.5053

10* S-CDO YES {0, 6, 10, 34, 111, 130, 234, 267, 298, 309} 268 ‡ 340 (9.12%) 0.5256

11 S-CDO NO {0, 5, 8, 50, 123, 184, 303, 385, 399, 428, 448} 391 ‡ 588 (23.81%) 0.5286

11* S-CDO YES {0, 2, 10, 17, 52, 108, 187, 323, 398, 434, 445} △ 391 ‡ 588 (24.32%) 0.5279

12 CDO NO
{0, 2, 5, 19, 63, 161, 1637, 2659, 3550, 3936, 4489,

4737}
1139 † 5173 (8.43%) 0

12 CDO ?
{0, 2, 5, 19, 63, 161, 1641, 2646, 3454, 3889, 4376,

4668}
1139 † 5173 (9.76%) 0

12 S-CDO NO {0, 6, 7, 16, 144, 270, 361, 470, 553, 583, 610, 648} 553 ‡ 894 (27.52%) 0.5296

12 S-CDO ?
{0, 8, 9, 32, 160, 300, 438, 530, 551, 605, 633, 639}

▽
560 ‡ 894 (28.52%) 0.5237

13 CDO NO
{0, 2, 5, 19, 63, 161, 365, 1298, 4368, 4978, 5737,

7344, 7840}
1580 † 9252 (15.26%) 0

13 CDO ?
{0, 2, 5, 19, 63, 161, 365, 1553, 4016, 4553, 5658,

6789, 7785}
1580 † 9252 (15.86%) 0

13 S-CDO NO
{0, 1, 4, 13, 32, 168, 532, 584, 725, 795, 872, 926,

998}
816 ‡ 1217 (18.00%) 0.4963

13 S-CDO ?
{0, 12, 13, 16, 34, 83, 164, 374, 564, 685, 791, 949,

990}
792 ‡ 1217 (18.65%) 0.5112

* novel optimal-span codes of order J

△ completing the search for this optimal-span code required approximately 3 months of computation time

▽ the search was involuntarily interrupted after 7 months of computation time on a 12-core machine: the size

of the search space is approximately 5000 times larger than that for S-CDO codes of order J = 11

† lower bound calculated as per (4.4)

‡ lower bound calculated as per (4.5)

†† compared to the shortest span obtained in [21]
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Table 4.2 Summary of new rate R = 1
2
systematic (S-)CDO codes obtained with the novel

technique for J ∈ {14, 15, 16}

J
Code

Type

Optimal-

span?
New (S-)CDO codes

Lower
Bound

Prev. best span
(span reduction) δ

14 CDO NO
{0, 1, 5, 21, 55, 153, 368, 856, 2912, 7031, 8493,

10825, 11937, 12505}
2139 † 13774 (9.21%) †† 0

14 CDO ?
{0, 1, 5, 21, 55, 153, 368, 856, 2919, 6512, 7772,

10032, 11480, 12416}
2139 † 13774 (9.86%) †† 0

14 S-CDO NO
{0, 4, 5, 16, 30, 63, 172, 308, 746, 865, 952, 1212,

1312, 1377}
1096 ‡ 1967 (29.99%) †† 0.4986

14 S-CDO ?
{0, 8, 9, 14, 35, 59, 248, 756, 855, 967, 1137, 1218,

1310, 1373}
1117 ‡ 1967 (30.20%) †† 0.4881

15 CDO NO
{0, 4, 5, 21, 61, 165, 393, 871, 1605, 3857, 8784,

13537, 16082, 18927, 20241}
2835 † 29532 (31.46%) ‡‡ 0

15 CDO ?
{0, 6, 7, 23, 65, 151, 357, 805, 1729, 4346, 10689,

13652, 16851, 19098, 20219}
2835 † 29532 (31.54%) ‡‡ 0

15 S-CDO NO
{0, 3, 4, 13, 28, 64, 108, 235, 609, 782, 1142, 1430,

1635, 1785, 1942}
1461 ‡ 2653 (26.80%) †† 0.4940

15 S-CDO ?
{0, 10, 11, 14, 37, 69, 108, 254, 636, 1040, 1181,

1379, 1631, 1801, 1890}
1456 ‡ 2653 (28.76%) †† 0.4956

16 CDO NO
{0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 5566,

17437, 21413, 24642, 30654, 32618}
3690 † 34908 (6.56%) †† 0

16 CDO ?
{0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 5929,

13480, 20893, 22857, 29325, 31120}
3690 † 34908 (10.85%) †† 0

16 S-CDO NO
{0, 10, 11, 14, 37, 69, 108, 223, 481, 1078, 1256,

1659, 1866, 2247, 2409, 2580}
1909 ‡ 3532 (26.95%) †† 0.4908

16 S-CDO ?
{0, 11, 12, 15, 32, 71, 117, 228, 812, 1128, 1707,

1846, 2001, 2187, 2438, 2571}
1951 ‡ 3532 (27.21%) †† 0.4793

† lower bound calculated as per (4.4)

‡ lower bound calculated as per (4.5)

†† compared to the shortest span obtained in [21]

‡‡ compared to the shortest span obtained in [50]
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Table 4.3 Summary of new rate R = 1
2
systematic (S-)CDO codes obtained with the novel

technique for J ∈ {17, 18, 19, 20}

J
Code

Type

Optimal-

span?
New (S-)CDO codes

Lower
Bound

Prev. best span
(span reduction ††) δ

17 CDO NO
{0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715,

8306, 15910, 27374, 36920, 45696, 48361}
4726 † 50071 (3.42%) 0

17 CDO ?
{0, 17, 18, 22, 64, 177, 409, 739, 1605, 2597, 5277,

8375, 20438, 30617, 37767, 44012, 47231}
4726 † 50071 (5.67%) 0

17 S-CDO NO
{0, 1, 4, 13, 32, 71, 124, 218, 375, 671, 1294, 1563,

2290, 2497, 3022, 3281, 3452}
2479 ‡ 4978 (30.65%) 0.4824

17 S-CDO ?
{0, 1, 4, 13, 32, 71, 124, 218, 375, 862, 1584, 2162,

2311, 2763, 2935, 3347, 3447}
2520 ‡ 4978 (30.76%) 0.4737

18 S-CDO NO
{0, 5, 6, 14, 35, 67, 144, 228, 370, 629, 1033, 2444,

2759, 3084, 3589, 3902, 4462, 4589}
3244 ‡ 6905 (33.54%) 0.4624

18 S-CDO ?
{0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 1027, 1419,

2193, 3112, 3565, 3824, 4299, 4565}
3185 ‡ 6905 (33.89%) 0.4723

19 S-CDO NO
{0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171,

1763, 2429, 3620, 4137, 5419, 5690, 6390}
4036 ‡ 8748 (26.95%) 0.4627

19 S-CDO ?
{0, 4, 5, 16, 30, 63, 128, 206, 358, 542, 787, 1163,

1878, 3260, 3532, 4524, 4811, 5731, 6046}
4007 ‡ 8748 (30.89%) 0.4667

20 S-CDO NO
{0, 8, 9, 14, 35, 59, 122, 213, 337, 484, 743, 1032,

1519, 2786, 3654, 5263, 5818, 6942, 7465, 7609}
5040 ‡ 9749 (21.95%) 0.4549

20 S-CDO ?
{0, 2, 5, 14, 27, 60, 135, 211, 372, 486, 888, 1162,

1682, 3065, 3517, 5250, 5602, 6167, 6861, 7177}
4831 ‡ 9749 (26.38%) 0.4780

† lower bound calculated as per (4.4)

‡ lower bound calculated as per (4.5)

†† compared to the shortest span obtained in [21]
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Table 4.3 presents rate R = 1
2
systematic (S-)CDO codes of orders J = 17, J = 18, J = 19

and J = 20. For J = 17 CDO codes, the improved span is 6% shorter than the best known,

with a value of MJ=17 = 47231. For S-CDO codes, the new shortest known spans have values

of MJ=17 = 3447, MJ=18 = 4565, MJ=19 = 6046 and MJ=20 = 7177 with span improvements

over the best known of 31%, 34%, 31% and 26%, having δ values of 0.4737, 0.4723, 0.4667

and 0.4780 respectively.

Finally, we can observe that when using the shortest known spans, it is clearly more

advantageous, latency-wise, to use a S-CDO code over a CDO code as J increases. Therefore

a S-CDO code should be chosen over a CDO code of the same order as the span is substantially

reduced (from 55% for J = 6 to 93% for J = 17).

4.2.4.2 Error performance simulation results for (S-)CDO codes

The error-correcting performance for some of the novel codes presented in this paper are

shown in Figs. 4.8, 4.9, 4.10, and 4.11. These codes are meant to operate at moderate values

of Eb/N0 ≥ 3 dB as will be seen below. With the exception of Fig. 4.9, the decoding was

iterated until no significant performance improvement was observed.

Figure 4.8 shows the error performance for two CDO codes and two S-CDO codes of

order J = 14, after 12 decoding iterations. As was described before in [15, 21], the error

performance for these codes is more sensitive to the type of code (CDO vs. S-CDO) and its

order J , than to its span. It can be seen that these four codes experience a “waterfall” region

between 2.6 and 3.0 dB. This region starts earlier and is steeper for the CDO codes, since it

ends at 2.8 dB instead of 3.0 dB, thus offering a coding gain of about 0.2 dB. Nevertheless,

although the CDO codes offer a slightly better performance, starting at 3.0 dB, the error

performance of the S-CDO codes and the CDO codes is roughly equal. However, the CDO

codes have a span (and thus a decoding latency), that is approximatively nine times that

of the S-CDO codes: despite the fact that from a theoretical perspective the CDO codes

perform slightly better, from an engineering point of view the S-CDO codes offer a much

reduced latency, and thus can be far more advantageous.

Figure 4.9 consists of four sets of two curves. The first set comprises the two Maximum

Free Distance (MFD) nonsystematic Viterbi codes (K = 7 and K = 9). The second set
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Figure 4.8 Rate R = 1
2
systematic (S-)CDO code error-correction performance at Eb

N0
∈

[2.0; 4.0] (dB) for J = 14, after 12 iterations.

comprises the simulated floor regions of two modern punctured rate-1/2 Turbo codes [22]

employing an interleaver size of 1000 bits, and after 8 decoding iterations. The specific

codes used were a pseudo-randomly punctured Turbo code (PRP-PCCC) and a punctured

systematic Turbo code (S-PCCC), both having a rate-1/3 PCCC(1,5/7,5/7) parent code.

Whereas the continuous line segments illustrate their simulated error performance as per [22],

the shorter dashed-line segments represent a reasonable extrapolation of their respective

Turbo code error floor tendencies. The third set comprises two CDO codes of order J = 17,

after 20 decoding iterations: the number of iterations was increased until no significant

performance improvement was observed. The fourth set comprises two S-CDO codes of order

J = 17, after only 4 decoding iterations : the number of iterations was kept to 4 so that

their decoding latency of about 13800 clock cycles would approximate the depicted Turbo

codes’ decoding latency of around 16000 clock cycles. Just as on Fig. 4.8, the two CDO codes

have a roughly equal error performance, as do the two S-CDO codes. Please recall that for

a same number of decoding iterations, when CDO and S-CDO codes have the same order,
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Figure 4.9 Rate R = 1
2
systematic (S-)CDO code error-correction performance at Eb

N0
∈

[2.0; 4.0] (dB) for J = 17. Included are performances of two CDO codes after 20 decoding it-
erations, together with those of two S-CDO codes after 4 decoding iterations (approximately
matching the decoding latency of the included Turbo codes), K = 7 and K = 9 Viterbi codes
(MFD, nonsystematic - Odenwalder, 1970 ), and the simulated floor regions of two modern
punctured rate-1/2 Turbo codes [22] employing an interleaver size of 1000 bits, after 8 decod-
ing iterations (specifically, we used a pseudo-randomly punctured Turbo code (PRP-PCCC)
and a punctured systematic Turbo code (S-PCCC), both having a rate-1/3 PCCC(1,5/7,5/7)
parent code). For the two Turbo codes, the continuous line segments illustrate their sim-
ulated error performance as per [22], whereas the shorter dashed-line segments represent a
reasonable extrapolation of their respective error floor tendencies.

their error performance is very similar [21]. Nevertheless, since the S-CDO codes presented

in Fig. 4.9 only use 4 decoding iterations, their “waterfall” region appears at slightly higher

Eb/N0 values of 3.4 dB to 3.8 dB, versus 3.0 dB to 3.4 dB for CDO codes. For moderate values

of Eb/N0 ≥ 3.0 dB, and with this set of codes, we can conclude that if 20 decoding iterations

are used, the (S-)CDO codes outperform the Viterbi codes for Eb/N0 ≥ 3.1 dB, and that

they also outperform the Turbo codes for Eb/N0 ≥ 3.2 dB. Alternatively, if only 4 decoding

iterations are used, the (S-)CDO codes outperform the Viterbi codes for Eb/N0 ≥ 3.7 dB,

and the depicted Turbo codes for Eb/N0 ≥ 3.8 dB, despite having a 14% lower latency than
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the Turbo codes and a lower implementation complexity. For Eb/N0 values smaller than

3.0 dB, the (S-)CDO codes cannot provide an interesting error performance: below 3.2 dB,

Turbo decoding clearly outperforms both (S-)CDO and Viterbi decoding. However, beyond

Eb/N0 = 3.0 dB, Turbo decoding has already reached its error floor performance, and thus

can be outperformed by (S-)CDO codes after their “waterfall” region. Furthermore, one can

observe that the (S-)CDO code performance curves intersect the Turbo code curves at a

much lower Eb/N0 value than the Viterbi codes do. It should also be noted that for a same

number of decoding iterations, these CDO codes have a span (and thus a decoding latency)

that is almost over fourteen times that of the S-CDO codes, making the S-CDO codes, from

an engineering perspective, far more interesting than their CDO code counterparts.

We can conclude that from a practical point of view, S-CDO codes are more advantageous

than CDO codes, as they offer a lower decoding latency for a similar error-correcting perfor-

mance. For moderate to high Eb/N0 values (starting at 3.8 dB for the codes on Fig. 4.9), the

S-CDO codes offer a compelling alternative to Turbo codes, as they provide a better error

performance, at a lower latency and reduced implementation complexity.

4.2.4.3 Error performance evolution as J increases

Figures 4.10 and 4.11 describe the evolution of the bit error performance for CDO and S-CDO

codes respectively, as the order J increases.

Figure 4.10 illustrates the performance of CDO codes for J ∈ {9, 10, [12; 17]}, at

Eb

N0
∈ [2.0; 4.0] (dB), and after 15 iterations. All of our simulation results have shown that as

J grows, the slope of the “waterfall” region slightly increases, eventually stabilizing. Further-

more, they have shown that this slope starts at higher values of Eb/N0, but that the ensuing

error floor is also lowered. An analysis explaining this behavior is still an open problem

and beyond the scope of this paper. However, it can be observed that while in the iterative

decoding of (S-)CDO codes the reliability of information bits improves with each decoding

iteration, the reliability of parity symbols does not improve beyond the second decoding it-

eration, thus resulting in a performance degradation at lower Eb/N0 values. As the Eb/N0

values increase and the parity bits become less corrupted, the codes with larger values of J

are able to show their true potential, thus reaching lower bit error rates. In other words, the
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Figure 4.10 Evolution of CDO code error-correction performance as a function of J , for
J ∈ {9, 10, [12; 17]}, at Eb

N0
∈ [2.0; 4.0] (dB), and after 15 iterations.

higher the value of J , the better the bit error rate, but at the expense of having a “waterfall”

region that moves to higher values of Eb/N0.

Figure 4.11 illustrates the performance of S-CDO codes for J ∈ [10; 20], at Eb

N0
∈ [2.0; 4.0]

(dB), and after 15 iterations. It can be clearly seen that as the value of J increases, the slope

of the “waterfall” region slightly increases, eventually stabilizing, and that the bit error rate

is lowered, but at the expense of having a “waterfall” region that migrates to higher values of

Eb/N0. It can also be observed, although less evident, that the coding gain offered by CDO

codes over S-CDO codes in the “waterfall” region diminishes as J increases.

Finally, we can conclude that S-CDO codes are a more attractive alternative to CDO

codes, due to the much reduced latency they offer. We can also conclude that depending of

the application, it may not be of much use to employ S-CDO codes with higher values of

J than 20, since the “waterfall” region may occur at Eb/N0 values that are too high to be

acceptable for the application of interest.
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Figure 4.11 Evolution of S-CDO code error-correction performance as a function of J , for
J ∈ [10; 20], at Eb

N0
∈ [2.0; 4.0] (dB), and after 15 iterations.

4.2.5 Conclusion

We have presented a high-performance efficient and parallel implicitly-exhaustive search al-

gorithm for finding rate R = 1
2
systematic CDO and S-CDO codes with the shortest possible

spans. The algorithm is faster at finding codes with shorter spans than previous exhaustive-

search and pseudo-random search algorithms. The increase in speed and efficiency is achieved

through significant algorithmic improvements: an incremental computation with data-reuse

for validating codes in less time, an enhanced dynamic search-space reduction based on a

stricter set of constraints to identify and concentrate the search on only potentially valid

codes, and a parallel cooperative search in order to compute more search-tree branches at

the same time, and to converge to a smaller tree at a quicker rate than what would otherwise

be possible.

It is worth noting that although the algorithm presented in this section is much faster

than the best previous exhaustive and pseudo-random search algorithms, its algorithmic
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improvements and parallel execution do not compromise the exhaustive nature of the search.

We were thus able to prove the optimality of the optimal-span codes found, which was

previously not possible except for very small values of J (i.e. codes with a very small number

of generator connections). In addition to being able to yield codes of shorter span than

what was previously possible, the proposed algorithm has allowed us to find new rate R = 1
2

systematic codes that are optimal for J = 9 (CDO codes) and J ∈ {10, 11} (S-CDO codes),

and with spans that are respectively 16%, 9% and 24% shorter than the shortest previously

known. Although many codes with shorter spans were found, we provide the two best codes

for each order J , since we have observed in previous work that the ease of implementation

of high-performance CDO/S-CDO code decoders may vary somewhat as a function of the

encoder generator vector chosen. Through this technique, it was possible to reduce the

span by an average of 14% for CDO codes and 26% for S-CDO codes, resulting in a latency

reduction of the same magnitude in the error-correcting encoding/iterative threshold decoding

systems for which they are intended.

The span of the provided codes is compared to known theoretical lower-bounds, and

the error-correction performance for some of these codes is presented, along with the span

improvements obtained when using S-CDO codes instead of CDO codes of the same order.

Furthermore, the evolution of the error performance of CDO/S-CDO codes as a function of

their order J is shown. For medium Eb/N0 values (i.e.
Eb

N0
> 3 dB), CDO/S-CDO codes offer

a competitive error performance and a compelling alternative to Turbo codes, since their error

performance curves may go below the “floor” region of Turbo codes, thus providing a better

error performance along with a lower latency and reduced implementation complexity. The

J = 17 CDO/S-CDO code error performances presented in this paper intersect the rate-1/2

PRP-PCCC and S-PCCC Turbo code curves at much lower Eb/N0 values than the Viterbi

K = 9 MFD code.

We also show that the greater the value of J , the better the error performance, but this is

obtained at the expense of the “waterfall” region of the error performance moving to higher

values of Eb/N0. Thus, depending on the application, it may or not be advantageous to

employ S-CDO codes with an order J greater than J > 20, since the “waterfall” region may

occur at Eb/N0 values that are too high to be acceptable for the specific application. Even
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though CDO codes perform slightly better than S-CDO codes for medium Eb/N0 values, from

an engineering point of view, S-CDO codes clearly offer a much lower decoding latency for a

similar error performance, and thus may be better alternatives to CDO codes.

4.3 Further S-CDO code tree-traversal improvements over theorems presented

in Chapters 3 and 4

It is worth mentioning that for S-CDO codes, it is possible to obtain slightly improved lower

and upper bounds than the ones respectively provided by Theorem 3.3 in Section 3.2.3 and

Theorem 4.1 in Section 4.2.3.3. These improvements leverage the list of known optimal spans

to obtain tighter bounds, as we describe below.

LetG be the largest S-CDO code order for which an optimal span value is known, such that

all optimal-span codes having order J ∈ [1;G] are also known. For all d∗ ∈ {0, ..., G − 1},

let Md∗
opt represent the optimal span value of a code having order J∗ = (d∗ + 1), where

J∗ ≤ G. Therefore, Md∗
opt also represents the minimum possible value for an αd∗+1 element

in Ω = {α1, α2, ..., αG} where d∗ ∈ {0, ..., G − 1}. We recall that any subset of consecutive

elements in a valid S-CDO code must also form a valid S-CDO code (see (2.4) in Chapter 2).

Therefore, for any pair of elements (αi, αj) from Ω = {α1, α2, ..., αJ}, where j > i and

G > (j−i), the value of their difference must be such that (αj−αi) ≥Md∗=j−i
opt . This minimum

offset value between the (αi, αj) pair elements has to be respected past the last known optimal

span Md∗=G−1
opt , and therefore it is possible to compute a list M g

min of minimum span values for

nodes having depth g, where (G−1) < g < (2∗G−1), such that M g=G−1+d∗

min = MG−1
opt +Md∗

opt,

for 0 < d∗ < G. For S-CDO codes, Theorem 4.3 below improves Theorem 3.3 as follows:

Theorem 4.3. Let V d
min be a lower bound for S-CDO code node values having depth d ≤

(J − 1), and let G be the largest S-CDO code order for which an optimal span value is known,

such that all optimal spans having order J ∈ [1;G] are also known. Let Md∗
opt be the optimal

span corresponding to a code having order J = d∗+1 and leaf nodes at depth d∗ in the search-

tree, where 0 < d∗ < G. Let M g=G−1+d∗

min = MG−1
opt +Md∗

opt, such that (G− 1) < g < (2 ∗G− 1).

Then, V d
min can be defined as the largest of the following three values: the optimal span

corresponding to the node’s depth d, Md∗=d
opt , for 0 < d < G; the value M g=d

min for nodes having
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depth d, where (G− 1) < d < (2 ∗G− 1); the node value of the parent node plus one.

Proof. By definition, the smallest value that a node at depth d = N can have while being

part of a valid (S-)CDO code is equal to Md
opt, the optimal-span for a (S-)CDO code of

order J = N + 1. Furthermore, we recall that the validity of an S-CDO code depends

only on the relationship between the J elements composing it, and that any subset of L

consecutive elements from the code also forms a valid S-CDO code of order L, L < J .

Thus, if Ω∗ = {α1, α2, ..., αJ} is a valid S-CDO code and b is an integer value, then Ω∗∗ =

{α1+b, α2+b, ..., αJ+b} is a code that is equivalent to Ω∗, albeit starting at a non-conventional

root node value of b. Therefore, the minimum offset values between a node at depth d = G−1

and a node at depth g = d+ d∗ is equal to Md∗
opt, where d

∗ = g− d, and thus M g=d
min is a lower

bound for nodes at depth d, where (G− 1) < d < (2 ∗G− 1). Finally, during the search, the

value of the parent node plus one is obviously a lower bound as well. Thus, the largest of

these three lower bounds is the tightest lower bound among them. QED

Similarly, for S-CDO codes, Theorem 4.4 improves on Theorem 4.1 (see Section 4.2) as

follows:

Theorem 4.4. Let V d
max be an upper bound for node values having depth d < (J − 1), and

let G be the largest S-CDO code order for which an optimal span value is known, such that

all optimal spans having order J ∈ [1;G] are also known. Let Md∗
opt be the optimal span

corresponding to a code having order J = d∗ +1 and leaf nodes at depth d∗ in the search-tree,

where 0 < d∗ < G. Let M g=G−1+d∗

min = MG−1
opt +Md∗

opt, such that (G−1) < g < (2∗G−1). Then,

V d
max can be defined as the smallest of the following three values: Mcurr −Md∗=J−d−1

opt , where

Mcurr is the current shortest known span for a code of order J , and Md∗=J−d−1
opt is the optimal

span of a code of order J − d, and where depth d > (J −G− 1); the value Mcurr−M g=J−d−1
min ,

where (J − 2 ∗G) < d < (J −G); V d+1
max − 1 for d < (J − 1), where V d+1

max is the V d
max value for

children nodes of the current node, and the current node is not a leaf-node.

Proof. By definition, the minimum value of the difference between the current leaf-node value

Mcurr and the value of a node at depth d is equal to V J−d−1
min , as per Theorem 3 in [15]. This

is true because the difference would correspond to the lower bound of a symmetrical code

starting at the leaf-node and ending at the root node. QED
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Although these improvements were implemented in later versions of the algorithm, the

resulting reduction in the size of the search space has not been characterized. Nevertheless, we

expect them to provide a significant reduction in the size of the search space when searching

for optimal-span S-CDO codes having order J > G+1. Please note that the two improvements

for Theorems 4.3 and 4.4 described above only apply to S-CDO codes: for CDO codes, the

use of the mathematical lower bound1 α∗
J provides tighter upper and lower bounds than using

M g
min for that purpose, and thus Theorems 3.3 and 4.1 should be used instead.

1See (2.8) in Section 2.1.3.1.
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CHAPTER 5

A HIGH-PERFORMANCE PARALLEL TREE-SEARCH FOR FINDING

SHORTEST-SPAN ERROR-CORRECTING CDO CODES

5.1 Overview and discussion

In Chapter 4, we presented a high-level overview of the novel efficient and parallel implicitly-

exhaustive search algorithm [14] that we developed for determining new optimal/short-span

systematic rate R = 1
2
(S-)CDO codes. Indeed, finding these codes is computationally very

challenging (see Chapter 2), and is a problem that is exacerbated by the fact that finding

optimal-span codes having order J + 1 is exponentially more complex.

In this chapter, the third article of this thesis [16] is included verbatim in Section 5.2:

it focuses on describing the underlying techniques that were employed in the efficient and

parallel implicitly-exhaustive search algorithm for leveraging the high performance offered by

modern multi-core computer systems, thus achieving the speedup required for obtaining the

new and improved J ∈ [9; 20] (S-)CDO codes in [14]. Indeed, when compared to the reference

exhaustive search algorithm [5], the resulting optimizations provide an impressive speedup

factor that is greater than 16300 when searching for optimal-span CDO codes of order J = 7,

and greater than 6300 when searching for optimal-span S-CDO codes of order J = 8. More-

over, the novel validation function exhibits an even more remarkable speedup factor: when

compared to the reference (S-)CDO code validation function in [5], it is greater than 190000

for J = 17 CDO codes and greater than 60000 for J = 17 S-CDO codes, and when compared

to the fastest known CDO code validation function used in high-performance pseudo-random

search algorithms [20], it is greater than 2000 for J = 17 CDO codes. Figure 5.1 compares

these validation functions: the speedup obtained as a function of J approximates a polyno-

mial growth of order 5, for J ∈ [8; 16].

The speedup is achieved through the use of a vastly improved code validation function

that employs a novel data structure for enabling data reuse and incremental computations,

and a parallel dynamic search-space reduction technique that substantially reduces the size
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Figure 5.1 Scaling of (S-)CDO code validation speedup as a function of J , for J ∈ [8; 16].

of the search-space without compromising the exhaustive nature of the search. In particular,

Theorems 5.3, 5.2 and 5.1 are used in the search for optimal-span CDO codes, and Theo-

rems 4.4, 5.2 and 4.3 are used in the search for optimal-span S-CDO codes (see Chapter 4),

acting respectively as lower, midpoint and upper bound values for nodes in the search-tree.

We also describe the optimizations and load-balancing techniques that allowed us to leverage

hundreds of processor cores in order to complete an exhaustive search over a search-space

that is some 1014 times larger than what was previously possible.

We now present verbatim the article submitted to IEEE Transactions on Parallel and

Distributed Systems for review [16]: the various optimization techniques leading to the novel

high-performance efficient and parallel implicitly-exhaustive (S-)CDO search algorithm are

described, and the speedup achieved is provided.
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5.2 Article #3: Optimizing the Parallel Tree-Search for Finding Shortest-Span

Error-Correcting CDO Codes

G. Kowarzyk, N. Bélanger, D. Haccoun, Y. Savaria

École Polytechnique de Montréal

{gilbert.kowarzyk, normand.belanger, david.haccoun, yvon.savaria}@polymtl.ca

Publication source: IEEE Transactions on Parallel and Distributed Systems - submitted

August 18, 2013.

Abstract

Finding optimal/short-span Convolutional Self-Doubly Orthogonal (CDO) codes and

Simplified-CDO (S-CDO) codes for a specified order J is computationally very challeng-

ing. This paper describes several optimizations that were applied to an implicitly-exhaustive

search algorithm in order to reduce the time required for finding these types of codes. The

resulting high-performance parallel implementation provides an impressive speedup that

is greater than 16300 (CDO, J=7) and 6300 (S-CDO, J=8) over the reference implicitly-

exhaustive search algorithm, and greater than 2000 (J=17) over the fastest published CDO

validation function used in high-performance pseudo-random search algorithms. These

speedups are achieved through enhancements in the deterministic search-space reduction,

and a vastly improved validation function that makes use of a novel data structure for en-

abling data-reuse and incremental computations. The resulting validation function speedup is

greater than 60000 (S-CDO, J=17) and 190000 (CDO, J=17) when compared to its reference

implementation. The combination of optimizations and load-balancing techniques allowed

us to leverage hundreds of processor cores in order to complete an exhaustive search over a

search space that is some 1014 times larger than what was previously possible.

Index Terms: convolutional code, self-doubly orthogonal code, parallel tree-traversal,

data-reuse, systematic encoder, threshold decoder.
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5.2.1 Introduction

In recent years, the rise of mobile devices has been accompanied by an ever increasing need

for reliable high-bandwidth wireless communications. To mitigate or eliminate the errors that

are introduced due to noise and interference in the communication channels, error-correcting

coding schemes may be employed. These coding schemes are based on codes used to preserve

the error performance while allowing the data-rate of digital communications to be increased

and the transmission power at lower signal-to-noise ratios to be reduced, thus improving the

overall power efficiency of these devices.

The error-control coding system presented in [4, 6, 7] offers very interesting improvements

in latency and implementation complexity over the classical turbo code architecture used in

reliable digital communication systems [8, 9]. Its iterative threshold decoding algorithm uses

a new class of convolutional codes that must satisfy “double-orthogonality” properties, while

not requiring interleavers, neither at the encoding nor at the decoding.

Their error-correcting capability depends essentially on the number J of generator vectors

in the code, whereas the constraint length (or “span” of the code) has a direct impact on the

latency of the system [20, 78]. As a consequence, it is important to use Convolutional Self-

Doubly Orthogonal (CDO) and Simplified-CDO (S-CDO) codes with the shortest possible

spans for a given J . Nevertheless, finding CDO/S-CDO codes having the shortest span has

eluded analysis and is still an open problem. In fact, the search for optimal CDO codes (and

their variants) is far more computationally challenging than the problem of finding optimal

simply orthogonal codes (a.k.a. the Golomb ruler problem), which is believed to have an

NP-hard complexity [13, 46]. Indeed, CDO codes may be viewed as second-order Golomb

rulers [43].

While pseudo-random [20] and exhaustive search [5] algorithms exist and have been used

to find codes of shorter spans than previously known (albeit not guaranteed to be optimal),

the computational time required to find new shorter-span codes is very high as J increases.

As high-performance computer systems are becoming a commodity, it is important to have

an algorithm that scales well and that harnesses their computing power by using smarter

data structures for the processing of data. This paper presents a series of optimizations

that result in a very efficient parallel and implicitly-exhaustive tree-search implementation
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that greatly reduces the time required for finding optimal-span or shorter-span CDO/S-CDO

codes by exploiting significant algorithmic improvements at all conceptual levels of the search.

At the application level, unnecessary computations are avoided in the most often executed

sections of the program. Focus is set on quickly invalidating rather than validating potentially

good code candidates, that is, code candidates that cannot be optimal are eliminated as

early as possible in the search. At the algorithmic level, a dynamic search-space reduction

and a stricter set of constraints identifying potential code candidates allow for a significant

decrease in the number of search-tree branches explored. Furthermore, an efficient validation

function generating only half of the second-order differences to determine whether the validity

conditions are met is employed. At the implementation level, a form of look-up table of

differences is used to allow for constant-time complexity data access, and to eliminate the need

for explicitly sorting and comparing all the differences with each other. This sophisticated

low-maintenance data structure does not need to be initialized or cleared for each code

validation, and is able to keep track of the relevant differences to facilitate data reuse: only

the new differences produced by the next potential code candidate need to be computed.

At the hardware level, redundant branch tests in the validation function are eliminated in

order to reduce the performance penalty associated with branch mispredictions on modern

microprocessors. The data structures and program are designed to be small enough to fit in

state-of-the-art microprocessor caches, and the algorithm takes advantage of the increased

parallelism offered by modern multi-core systems. Furthermore, implementing a dedicated

load-balancing algorithm enabled us to efficiently leverage hundreds of processor cores. These

techniques allowed us to obtain, within a reasonable amount of time, new optimal-span CDO

and S-CDO codes as well as codes with significantly shorter spans than previously possible

for a given number of J connections. The new (S-)CDO codes, their error-performance and a

high-level overview of the high-performance parallel and efficient implicitly-exhaustive search

algorithm that we have developed are presented in [14]. In this paper, we focus on describing

the optimization techniques that were applied to the search algorithm used in [14] to reduce

the time required for finding optimal-span CDO/S-CDO codes. We characterize the speedup

obtained and show that using the novel algorithm and its efficient implementation, a very

substantial speedup of more than four orders of magnitude is achieved.
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The paper is organized as follows: in Section 5.2.2, we recall the definitions of CDO and

S-CDO codes, and provide the notation used. Section 5.2.3 describes the CDO/S-CDO code

search space and a brief overview of the reference exhaustive search algorithm. The proposed

parallel implicitly-exhaustive tree-search optimizations are presented in Section 5.2.4, and

the resulting speedup and multi-core scaling are presented in Section 5.2.5.

5.2.2 Definitions: CDO and S-CDO Codes

In this section, we provide the definitions and notations that are useful for the remainder of

the paper. In order to keep this paper self-contained, these are repeated from [14].

A systematic Convolutional Self-Doubly Orthogonal (CDO) code of coding rate R = 1
2

and order J is defined as the set Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive

integers (α1 < α2 < ... < αJ) such that the following conditions are satisfied [6, 20, 21, 49]:

1. The elements in S, the set of first-order differences between these integers, are all

distinct:

S = {sk,l = (αk − αl) : k ̸= l} (5.1)

2. The elements in D, the set of second-order differences (the differences between the

differences) are all distinct from one another, with the exception of the unavoidable

differences caused by the permutations of indices (l,m) or (k, n):

D = {dk,lm,n = (αk − αl)− (αm − αn) :

k ̸= l,m ̸= n, k ̸= m, l ̸= n}
(5.2)

3. The elements in sets S and D are distinct from one another (D ∩ S = ∅).

Simplified-CDO (S-CDO) codes are obtained by relaxing the second CDO condition, yielding

codes with shorter spans than regular CDO codes. The latency of the decoding process is

in direct proportion to the span of the code and the number of iterations used for reaching

a given error performance. It has been shown that using S-CDO instead of CDO codes

substantially reduces the decoding latency at the cost of only a very small degradation of the

error-correction performance [5, 21, 51].
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Figure 5.2 Example of systematic (S-)CDO code encoder: R = 1
2
, J = 4, M = 15, Ω =

{0, 3, 13, 15}.

A systematic S-CDO code of coding rate R = 1
2
and order J is thus defined as the set

Ω = {α1, α2, . . . , αJ} of J ascendingly ordered positive integers such that it satisfies the first

and third CDO conditions, and a modified version of the second condition, as follows [5, 51]:

2b) The set D of second-order differences between the integers in Ω, defined as:

D = {dk,lm,n = (αk − αl)− (αm − αn) :

k ̸= l,m ̸= n, k ̸= m, l ̸= n}

is composed of 2ND second-order differences, computed by excluding the unavoidable second-

order differences caused by the permutations of indices (l,m) or (k, n), and of which 2N e
D

have a value that is not unique in D. Indeed, second-order difference values may repeat one

or more times.

The notation “(S-)CDO”will be used when referring to both CDO and S-CDO codes, and

hence clearly, a CDO code may be viewed as a S-CDO code for which N e
D = 0.

The αi elements (i ∈ [1; J ]) represent the connections between the encoder shift register

and the modulo-2 adder (see Fig. 5.2). By convention α1, the first integer in our set, is always

equal to zero (α1 = 0). The span M of a (S-)CDO code is equal to αJ , the largest integer

in Ω, and corresponds to the length of the encoder shift register, that is, αJ is the encoder

memory length [20]. The number J of elements in Ω is equal to the number of generator

connections of the code and is called the order of the (S-)CDO code. An optimal (S-)CDO

code of a given order J is defined as a (S-)CDO code whose span Mopt is the smallest span

that exists for that order. However, an optimal (S-)CDO may not be unique and hence there

may be more than one optimal (S-)CDO code for any given order J .
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The validity of a code as a S-CDO/CDO code depends only on the relationship between

the J elements composing it, thus any subset of L consecutive elements from the set defining

the (S-)CDO code also forms a valid (S-)CDO code, albeit one of smaller order L, L < J [14].

We recall that when calculated directly as per the definition, first-order and second-order

differences come in pairs of equal magnitude but opposite sign. The number of positive first

(NS) and second (ND) order differences are a function of J and can be expressed as follows

[20]:

NJ
S =

J(J − 1)

2
(5.3)

NJ
D =

J(J3 − 2J2 + 3J − 2)

8
. (5.4)

Directly computing the exact span of optimal codes, whether simply or doubly orthogonal,

is still an unsolved problem [13, 46]. However, a loose lower bound for the span of a CDO

code has been developed in [20, 50] and can be expressed as follows:

αJ ≥ α∗
J =

⌈
NJ

S +NJ
D

2

⌉
. (5.5)

Finally, any (S-)CDO code has always a symmetrical equivalent composed of integers with

the same differences but in the reverse order, a property shared with the so-called Golomb

ruler problem they are related to [20]: the symmetrical equivalent of {0, 2, 12, 15} would

therefore be {0, 3, 13, 15}.

We now describe the (S-)CDO code search-space and present a brief overview of the key

concepts behind the reference algorithm’s tree traversal.

5.2.3 Problem Size and Tree Traversal

The algorithm described in this section performs the search for (S-)CDO codes using a tree-

like structure (see Fig. 5.3 for J = 3). The tree is composed of nodes which must have a value

larger than their parent node and their sibling nodes to the left. The tree depth represents

the total number of connections J , and all nodes at depth J − 1 are leaf-nodes. The values
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of the nodes on a path from the root to a leaf represent the elements in Ω = {α1, α2, . . . , αJ}.

A valid path in this search-tree starts at the root node and ends at a leaf-node that has a

value not larger than Mcurr, the smallest known span value.

The search-tree size depends on the current span, Mcurr, and on J . The number of leaf-

nodes in the search-tree, NL, represents the total number of possible paths (or (S-)CDO code

candidates). Since the set Ω defining a code always starts with zero (the root node), the

number of possible combinations of J − 1 nodes with integer values ranging from 1 to Mcurr

may be expressed as:

NL =

 Mcurr

J − 1

 =
(Mcurr)!

(J − 1)! (Mcurr − J + 1)!
. (5.6)

Note that the number of leaves explodes as Mcurr and J increase, thus making the search for

optimal-span codes of order J + 1 exponentially more complex.

In order to find new optimal-span codes for larger values of J , an attempt at improving

the reference exhaustive-search algorithm [5] is described in [19]: the computation time is

reduced by means of a very basic simultaneous exploration of different regions of the search

space. Although this preliminary brute-force parallel approach showed that the problem

lends itself well to parallel computing, it quickly became clear that a more capable algorithm

would be required to address the exploding size of the search space as J and Mcurr increase.

Thus, the search algorithm in [15] was developed by the authors: it uses a more effective

implicitly-exhaustive searching technique for efficiently reducing the size of the search space

while still performing an exhaustive search. The proposed algorithm [14], whose very efficient

implementation is described in this paper, combines and further improves these techniques [15,

19], thus yielding new optimal-span codes having larger values of J than any of the ones

previously published in [20, 21, 28].

To our knowledge, the reference exhaustive-search algorithm [5] is the fastest algorithm

for finding optimal-span (S-)CDO codes prior to our work in [14, 15, 19]. Therefore, its imple-

mentation will be used for comparison with the proposed search algorithm’s implementation

presented in this paper.

Conceptually, in these algorithms an (S-)CDO code with N + 1 connections is built by
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Figure 5.3 (S-)CDO search-tree: searching for a J=3 CDO.

taking an (S-)CDO code with N connections and adding another element αN+1 at the end

of it, in such a way that the newly formed code is still valid and has a span that is no longer

than Mcurr, the best known span for that J . This tree traversal is performed in a depth-first

sequence in order to allow optimizations as described later.

Since the reference algorithm [5] is used as the basis for the algorithm described in this

paper, its pseudo-code for searching for J = 3 CDO codes is now briefly described. The

algorithm begins by initializing Mcurr to some high value, since no J = 3 CDO codes are

considered currently known. Starting at the root node α1 = 0, the first available child node

α2 = 1 is added (see Fig. 5.3). The validation routine is applied to the {0, 1} code, and because

it satisfies the CDO code conditions, the node is kept. The current number of connections is

smaller than J , so the next available node α3 = α2 + 1 = 2 is added. Since {0, 1, 2} fails the

validation test, the node is therefore discarded. Nodes can be discarded either because the

validation test fails or because their span is larger than Mcurr. The process of adding, testing

for validity, and discarding a node is repeated for all sibling nodes on a path until either

the added node forms a valid CDO code, in which case the node is kept and its children are

evaluated, or no more such siblings exist, in which case the next parent is evaluated. The

best known span is updated when the current valid code has J connections and its span value

is smaller than Mcurr, leading to a very substantial tree pruning from that point on. When

all valid paths of depth J with spans no larger than Mcurr have been explored, the list of all

optimal CDO codes will be all the codes with a span equal to Mcurr.

The proposed algorithm, whose implementation is presented in the next section, is im-
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plicitly-exhaustive and belongs to the “branch and bound” class of algorithms [73, 79]: using

tree-pruning techniques, it performs an exhaustive search while reducing the search complex-

ity by several orders of magnitude. Since this algorithm still performs an exhaustive search,

the codes that are obtained are proven to be optimal [15].

5.2.4 An Efficient Parallel Implicitly-Exhaustive Search – Implementation

The algorithmic improvements that led to finding the new (S-)CDO codes presented in [14]

are detailed in this section. The algorithm implements an exhaustive searching technique

that is faster at finding rate R = 1
2
systematic (S-)CDO codes with a span shorter than the

best previously published pseudo-random and exhaustive search algorithms [5, 20, 21].

Since the size of the search-space is a combination of “Mcurr choose J − 1” (see (5.6)),

linear improvements in performance are not sufficient to provide new results. Indeed, find-

ing optimal-span (S-)CDO codes of order J + 1 is exponentially more complex than finding

optimal-span (S-)CDO codes of order J . The following sections elaborate on the implemen-

tation techniques which have allowed us to greatly accelerate the search for (S-)CDO codes

with short spans.

5.2.4.1 A Validation Function Leveraging Data Reuse

The proposed validation function offers several key algorithmic enhancements resulting in

a validation speedup of several orders of magnitude. First, as mentioned earlier, rather

than attempting to validate a potential code candidate, it focuses on invalidating a code as

quickly as possible. The function will return false and abort as soon as a first or second order

difference breaks the validity conditions, thereby eliminating the need for generating the

remaining differences. Other improvements include the elimination of the need for explicitly

sorting and comparing all the differences with each other, and also a data structure allowing

for data reuse and incremental computation of differences. Furthermore, a reduction in the

number of differences computed is achieved through the use of improved loops requiring less

branching tests and generating directly only half of the second-order differences.
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Figure 5.4 Proposed data structure for storing differences (simplified).

5.2.4.1.1 Data Access Time / Sort-Compare Improvements In order to determine

whether or not an (S-)CDO condition has been met, it is important to be able to recognize

if a resulting first or second order difference has been encountered before. The term collision

will be used to describe the situation where one or more differences result in the same value.

Rather than storing the data by value in an array of integers [5, 15, 20, 21], a look-up

table using the size of the differences as its index is employed. The booleans in the table are

initialized to false. When a difference is computed, the boolean at the index given by this

difference is set to true to indicate that it was found. If the boolean was previously set to

true, then a collision is detected. This is illustrated in Fig. 5.4.

Storing difference values by tagging indexed array locations offers several advantages.

First, the dataset is implicitly sorted as it is being stored in the data structure, and only one

comparison per saved value is necessary to ensure that it is unique. This fine granularity

for detecting a collision means that the validation function can abort and return false as

soon as the first unwanted data repetition occurs: there is no need to evaluate the remaining

differences. Furthermore, since the data structure acts as a lookup table for the validation

function, access times are greatly reduced: saving a value or checking that it does not generate

a collision can be done with a constant time complexity as a function of J .
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5.2.4.1.2 Support for Data Reuse and Incremental Computation of Differences

A significant contribution in this paper is the method used to reduce the number of differences

required for validating a potential (S-)CDO code in order to speed up the search. This is

achieved by means of a deterministic tree-traversal, a reuse of previously computed data and

an incremental computation of only half of the first and second order differences for each

new code validation.

Indeed, rather than computing all of the differences for each code that is being tested as

in [5, 15, 20, 21], the proposed algorithm only computes the differences contributed by the

last node addition, reusing the rest of the previously generated differences that are stored in

memory. Figure 5.5 shows a valid J = 3 CDO code ΩJ = {0, 1, 5} to which an attempt is

made to append a node with the smallest possible value, such that the resulting J = 4 code

is also a valid CDO code. As each potential J = 4 CDO code is tested, the differences that

were computed to determine that ΩJ=3 is a valid CDO code are kept in memory, and only

the differences contributed by each appended node have to be generated, thus drastically

reducing the total number of differences required to validate each J = 4 code candidate. In

this example, appending a node α4 = 6 would generate two first-order difference collisions,

since values 5 and 1 are already in N3
S. However, neither node α4 = 7 nor node α4 = 8 would

generate first-order difference collisions.

In order to support data reuse and incremental computation of differences, it is necessary

to track which nodes are active, that is, which nodes are part of the current code candidate

being evaluated. Furthermore, it is also necessary to be able to determine which differences

were contributed by each node, such that they can be discarded when that particular node

becomes inactive. Therefore, the data structure presented in the previous section was ex-

tended to associate each saved difference with the specific node that generated it: instead of

using an array of booleans, an array of tuples is used to associate a tuple tag to an index rep-

resenting the values of the positive difference results (see Fig. 5.6). Each tuple (D, I) in this

difference store array is composed of an integer D indicating the depth of the node having

generated that difference, and an integer I indicating the id of the node having generated

that difference. There is an independent set of ids for each node depth, and these increase

from left to right on the search-tree. Each tuple in the difference store array is initialized
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Figure 5.5 Node addition and incremental computation of differences (only first-order differ-
ences are shown).

to (0, 0), which signifies that it is not associated with any node of the search-tree. Indeed,

the combination of a node’s depth and its id allows it to be uniquely identified within the

search-tree.

To track which nodes are currently active, active ids, an array of integers of size J is

used as a supporting data structure: it is essentially an array of counters, one per search-tree

node depth. Each array element holds the id of the last added node at that depth, and

thus represents the active id at that depth. In other words, active ids represents the per-

level ids that are currently in use. For example, Fig. 5.6 shows that the active first-order

differences for the current tree path Ω = {0, 2, 5} are 2, 3 and 5: for each of these differences,

the corresponding tuple (D, I) in the difference store array has an id I that is equal to

the value stored in active ids for that depth D. In particular, the difference value 2 in the

difference store array was produced by a node at depth D=1 with an id I=2, and the

active ids array indicates that a node with id I=2 at depth D=1 is part of the current path

being evaluated (i.e. an active node).

The active ids array counters are all initialized with a value of 1, corresponding to the

ids of the leftmost nodes at each depth (because the value zero is used to indicate a differ-

ence that has not yet been encountered). Both arrays, active ids and difference store are

created once and reused throughout the search. The search-tree is traversed as described

in Section 5.2.3. For each new node addition test, the counter value in the active ids array

corresponding to that node’s depth is incremented by 1, in such a way that it matches the
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Figure 5.6 Example illustrating how to store the positive differences and detect collisions
during a tree-traversal.

node’s id. This causes all differences stored in the difference store array and tagged with

an equal depth to expire implicitly (i.e. they cease to be considered active and are effectively

ignored).

Figure 5.7 shows the contents of the difference store and active ids arrays for each step

in the following example. In Fig. 5.6, after the first valid CDOJ=3 code Ω = {0, 1, 5} is

found, the node value 2 (with id I=2) in the next branch at depth D=1 is explored, and

the corresponding id in active ids is incremented from I=1 to I=2 (STEP #1 in Fig. 5.7).

The code {0, 2} is validated and generates the first-order difference value 2. Next, active ids

is incremented at depth D=2 from I=4 to I=5, and a node with value 3 is appended to

form {0, 2, 3}. As this code undergoes validation, it generates first-order differences 3 and 1,

which do not generate a collision (STEP #2 in Fig. 5.7), but the node is discarded because

of second-order difference collisions (not shown in Figs. 5.6 and 5.7). The next sibling is

appended and the corresponding active ids value at depth D=2 is incremented from I=5

to I=6: this expires the differences 3 and 1, which are owned by node value 3 (D=2, I=5)

such that they can safely be ignored. The next sibling with value 4 (D=2, I=6) is appended,
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Figure 5.7 Using the difference store array and the active ids array to perform incremental
computation of differences (only first-order differences shown).

forming {0, 2, 4}, and generating differences 4 and 2 (STEP #3 in Fig. 5.7).

These create a collision, since 2 in difference store is currently owned by the active

node (D=1, I=2). The node 4 is thus discarded, active ids at depth D=2 is incremented

from I=6 to I=7, and {0, 2, 5} is tested, generating first-order differences 5 and 3 (STEP #4

in Fig. 5.7). Note that the tuple at index 3 in difference store can safely be overwritten (i.e.

no collision is encountered), as the corresponding array element is owned by the inactive node

(D=2, I=5): since this code does not generate any first or second order difference collisions,

Ω = {0, 2, 5} is the second valid CDOJ=3 code in the search.

The more sophisticated collision detection algorithm with data reuse support is shown

in Fig. 5.8. For each difference value checked, detecting if a collision occurred requires at

most three comparisons, and is independent of J : no collision is encountered if either the

difference store array location representing the generated positive difference value has just

been reset (i.e. condition temp 1), or, if the location is not owned by any active node in the

current path being validated. In particular, condition temp 2 indicates that the difference
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Require: node diff , node depth are positive integers.
1: function collision(node diff , node depth)
2: global difference store, active ids
3: depth← difference store[node diff ].depth
4: id← difference store[node diff ].id
5: temp 1← (depth <= 0)
6: temp 2← (depth > node depth)
7: temp 3← (id ̸= active ids[abs(depth)])
8: if (temp 1 or temp 2 or temp 3) then
9: return False
10: else
11: return True
12: end if
13: end function

Figure 5.8 Pseudo-code of the collision-detection algorithm.

was generated by a node located at a greater depth in the tree, thus, given our deterministic

tree-traversal, a past node that is not in the current path. Similarly, condition temp 3 states

that the difference was produced by a node with a different id than the active id for this

depth, and thus it is not an active node on the current path. As a consequence, the collision

test is done with a constant time complexity as a function of J . Note that for first-order

S-CDO code differences, a variation of this algorithm must be used, as is described in the

next section.

The combination of techniques described above allows us to quickly distinguish the stored

differences that are relevant to the code being validated from the ones that are not relevant

anymore. Before a new validation, the differences contributed by the previous node can

be efficiently discarded by means of a single counter increment and without the need of

iterating through the large array. The process is efficient because differences are reused when

appropriate, thus allowing for a drastic reduction in the number of differences computed for

a node-addition validation.

5.2.4.1.3 Testing the Validity Conditions The data structure presented in Sec-

tion 5.2.4.1.2 is used for efficiently detecting collisions between differences generated by a

sequence of integers. The proposed routine for validation uses a single difference store and
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Figure 5.9 Flowchart for validating a CDO code.

active ids array combination for both, first and second order differences to further reduce

the time required for rejecting an invalid code, as is described below. Please note that we

will assume, for this section, that only positive first and second-order differences are tracked

and that differences resulting in negative values are automatically discarded.

For CDO codes, all three CDO conditions require that the computed differences be unique

in value. The required size for the difference store array is SCDO = 2 ∗ Mcurr + 1: it

depends on the largest value a second-order difference can have, which itself is dependent

on the shortest known span. The validation function starts by testing the first condition,

which consists in computing the first-order differences generated by the last node addition

and checking if each difference would result in a collision (see Fig. 5.9). If no collision is

encountered, the difference is stored in our data structure and the next difference is computed.

If a collision is detected, the current node and the differences it produced are immediately

discarded and the next node addition is validated. Once all first-order differences have been

generated and added to the difference store array, the same process is repeated for second-

order differences: this tests the second and third conditions at the same time since, for each

value, collisions will be checked against the first and second order differences already stored

in our array. A code candidate is considered a valid CDO code if none of its first and second

order differences generates a collision.

For S-CDO codes, the validation function starts off in the same manner, by computing

the first-order differences generated by the last node addition (see Fig. 5.11). However, for
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each difference, it uses a variation of the collision-detection algorithm shown in Fig. 5.8 to

determine whether the difference would result in a collision or not (see Fig. 5.12): instead of

using the raw depth value D stored in the difference store array, it uses its absolute value.

This is done to detect collisions with second-order differences, since, for reasons explained

below, their depths are stored in the data structure as negative values. If no collision is

encountered, the first-order difference is stored in the difference store array and the next

difference is computed. If a collision is detected, the current node and the differences it pro-

duced are immediately discarded and the next node addition is validated. Once all first-order

differences have been generated and added to the data structure, second-order differences are

computed.

Since the second S-CDO code condition allows for second-order difference repetitions

to occur, collisions between these do not need to be verified or tracked. Nevertheless, the

third condition requires that second-order differences be distinct from first-order differences.

Therefore, it is necessary to verify that none of the computed second-order differences gen-

erates a collision with the first-order differences already stored in our data structure and

vice-versa. The regular collision detection algorithm in Fig. 5.8 is used to determine whether

or not a second-order difference would result in a collision. If a collision is encountered, the

node and the differences it produced are discarded. Otherwise, the second-order difference

is stored in the difference store array, but with a negative depth value (as opposed to the

positive depth values used for first-order differences), and the next difference computation

and collision-testing can proceed. By encoding the second-order difference depths as negative

values and using slightly different collision-detection algorithms for testing first and second

order differences, we are able to efficiently ensure that all three S-CDO code conditions are

properly verified: the collision-detection algorithm in Fig. 5.12 ensures that tested first-order

differences are distinct from active first and second order differences that were previously

stored; the collision-detection algorithm in Fig. 5.8 ensures that tested second-order differ-

ences are distinct from active first-order differences that were previously stored, but ignores

previously computed second-order differences because the sign of the recorded depth causes

the collision detection to fail, thus effectively allowing for second-order difference repetitions

to occur.
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Ensure: node’s depth and id are positive integers.
1: function gen differences incr(depth, id)
2: global code
3: ▷ Generate contributed first-order differences:
4: for (i = 0; i < depth; i++) do
5: d← code[depth]− code[i]
6: if collision(d, depth) then
7: return False
8: else
9: tag difference store(depth, id)
10: end if
11: end for
12: ▷ Generate contributed second-order differences:
13: for (j = 0; j < depth; j++) do ▷ main loop
14: term 1← code[depth]− code[j]
15: for (k = 0; k < j; k++) do ▷ first k loop
16: for (n = 0; n < k; n++) do ▷ first n loop
17: d← term 1 + (code[k]− code[n])
18: if collision(d, depth) then
19: return False
20: else if validating CDO codes then
21: tag difference store(depth, id)
22: end if
23: end for
24: ▷ second n loop
25: for (n = k + 1; n ≤ j; n++) do
26: d← term 1 + (code[k]− code[n])
27: if collision(d, depth) then
28: return False
29: else if validating CDO codes then
30: tag difference store(depth, id)
31: end if
32: end for
33: end for ▷ end first k loop
34: ▷ second k loop
35: for (k = j + 1; k ≤ depth; k++) do
36: for (n = 0; n ≤ j; n++) do
37: d← term 1 + (code[k]− code[n])
38: if collision(d, depth) then
39: return False
40: else if validating CDO codes then
41: tag difference store(depth, id)
42: end if
43: end for
44: end for ▷ end second k loop
45: end for ▷ end main loop
46: return True
47: end function

Figure 5.10 Pseudo-code of novel incremental first-order and second-order difference gener-
ation, CDO code collision test, and tagging of values in the difference store array. Returns
True if code is valid, False otherwise.
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Figure 5.11 Flowchart for validating a S-CDO code.

Finally, for S-CDO codes, only second-order differences that have a value equal to or

lower than the maximum possible first-order difference value can generate a collision with

first-order differences: second-order differences greater than this value do not need to be

tested, since the third S-CDO code condition does not apply to them. Therefore, we can

define SS−CDO, the size of the difference store array, as SS−CDO = Mcurr + 1, since Mcurr,

the shortest known span, is the largest value a positive first-order difference can have. A

code candidate is considered a valid S-CDO code if no collision is encountered during the

difference generation. Note that for S-CDO codes, if a maximum for an active ids counter is

reached, it is reset to 1, and all tuples in the difference store array with an absolute value

of D equal to that counter’s depth are reset to (0, 0).

We have assumed that a known span exists for the code order being searched for. However,

if such a value were not known or available, a very large value may be temporarily used: a

first run of the search would allow us to find a few codes whose span may then be used in

later runs. Alternatively, another search algorithm may be used to obtain this initial span

value.
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Require: node diff and node depth are positive integers.
1: function fo collision(node diff , node depth)
2: global difference store, active ids
3: depth← abs(difference store[node diff ].depth)
4: id← difference store[node diff ].id
5: temp 1← (depth == 0)
6: temp 2← (depth > node depth)
7: temp 3← (id ̸= active ids[depth])
8: if (temp 1 or temp 2 or temp 3) then
9: return False
10: else
11: return True
12: end if
13: end function

Figure 5.12 Pseudo-code of modified collision-detection algorithm for S-CDO code first-order
differences.

5.2.4.1.4 Efficient Incremental Computation of Differences and Data Reuse

The proposed validation algorithm will only represent and save positive first and second

order differences in the data structure: this decreases the array size by half and improves

the data structure’s spatial locality, thus also reducing the cache miss-rate [80]. Furthermore,

since first and second order differences exist in pairs of equal magnitude but opposite sign,

considering only one of the difference pair elements eliminates the ambiguity that may result

if two equal pairs are generated with their pair elements interleaved in sign and order.

Rather than generating all of the second-order differences and discarding the negative

ones [5, 20], only one of the difference pair elements (irrespective of its sign) is computed,

and then its absolute value is evaluated. This results in a simpler second-order difference

generation routine than generating positive second-order differences.

The novel first and second order difference generation algorithm is shown in Fig. 5.10: it

is based on a simple set of smaller for-loops and improves on previous techniques by directly

computing only half of the total first and second order differences, and only those contributed

by the last node addition (see Section 5.2.4.1.2).

Figure 5.13 shows the differences computed when validating a sample CDO code: differ-

ences highlighted in grey are not computed by the more efficient proposed difference genera-

tion. Since only differences contributed by the last added node are generated, for Ω = {0, 1, 5},
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the generation routine is called once for α2 = 1 and once for α3 = 5. Finally, since the new

for-loops only depend on the depth of the node that is producing the contributed differences,

they were fully unrolled prior to compile time.

The number of positive first (NJ
S,incr) and second (NJ

D,incr) order differences generated by

the proposed incremental difference computation are expressed by [14]:

NJ
S,incr = J − 1 (5.7)

NJ
D,incr =

J3 − 3J2 + 4J − 2

2
(5.8)

Although still represented by polynomial equations, their degree has been effectively de-

creased by 1 when compared to the earlier expressions (5.3) and (5.4), thus allowing for

significant computational savings, which become even larger as J increases. For example,

when validating a code of order J = 17, the proposed incremental computation with data

reuse method allows for a 4.5x reduction in the total number of computed first and second

order differences that are required to validate each code.

We now describe the parallel tree-traversal improvements and load balancing.
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and 3 allow for a considerable reduction in the size of the search space [14].

5.2.4.2 Parallel Dynamic Search-space Reduction - an Implicitly-exhaustive

Search

The following sections briefly explain the proposed algorithm’s tree-traversal improvements

and the parallel searching techniques developed to efficiently use the performance offered by

modern multi-core systems.

5.2.4.2.1 Tree-Traversal Improvements The efficient parallel implicitly-exhaustive

search algorithm reduces the computational time required for searching for optimal-span

(S-)CDO codes by using more aggressive search-tree pruning techniques in order to further

reduce the number of branches that are explored.

Three significant search-tree pruning enhancements over the reference exhaustive-search

algorithm [5] are presented in [14, 15] and are employed to obtain a considerable reduction

in the size of the search space (see Fig. 5.14). In order to keep this paper self-contained,

and since the three theorems are used to speed up the proposed implementation, they are

repeated below. The proofs for these theorems are available in [14, 15].

Theorem 5.1 defines a higher lower-bound node value for each search-tree depth, as ex-
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plained below.

Theorem 5.1. Let V d
min be a lower bound for node values having d < J − 1. Then, V d

min can

be defined as the largest of the following three values: the optimal-span corresponding to the

node’s depth, Md
opt, if it is known; the lower bound calculated as per (5.5) (for CDO codes

only); the node value of the parent node plus one.

For example, in Fig. 5.14, the nodes at depth d = 4 have a lower bound of α5 = 41.

Theorem 5.2 exploits the symmetry property of (S-)CDO codes mentioned in Section 5.2.2

to discard some additional codes whose symmetrical has already been encountered during the

tree exploration. Indeed, as stated below, it complements Theorem 5.3 by further limiting

the maximum value of the αmid nodes, where mid =
⌊
J−1
2

⌋
+ 1.

Theorem 5.2. Let V αmid
max be defined as:

V αmid
max =

⌈
Mcurr + 1

2

⌉
− 1 (5.9)

where mid =
⌊
J−1
2

⌋
+ 1. Then, any code with an αmid node having a value larger than V αmid

max

would have a symmetrical equivalent within the codes in the search-tree having αmid ≤ V αmid
max .

For example, in Fig. 5.14, mid = 3 and thus nodes at depth d = 2 have an upper

bound value of V α3
max = 50. Therefore, any code with an α3 node value larger than V α3

max

is a symmetrical of a code encountered earlier in the search and can be discarded. Note

that having this upper-bound value for α3 nodes also implies having a lower upper-bound

value for nodes that are closer to the root node, since these must have a smaller value than

α3. Theorem 5.2 is equivalent to the Midpoint Reduction technique used in the search for

optimal Golomb rulers, and thus a search-space reduction of approximately 50% can also be

achieved [17].

Theorem 5.3 defines a lower upper-bound node value for each search-tree depth, as ex-

plained below.

Theorem 5.3. Let V d
max be an upper bound for node values having d < J − 1. Then, V d

max

can be defined as the smallest of the following four values:
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• Mcurr −MJ−d−1
opt , where Mcurr is the current shortest known span for a code of order J ,

and MJ−d−1
opt is the optimal-span of a code of order J − d, if it is known;

• V αmid
max as per Theorem 5.2 (for nodes at d = mid− 1 only);

• Mcurr − α∗
J , where Mcurr is the current shortest known span and α∗

J is the lower bound

calculated as per (5.5) (for CDO codes only);

• V d+1
max − 1 for d < J − 1, where V d+1

max is the V d
max value for children nodes of the current

node, and the current node is not a leaf-node.

For example, in Fig. 5.14, nodes at depth d = 3 have an upper bound of α4 = Mcurr−Md=2
opt =

95.

5.2.4.2.2 Parallel Search and Load-Balancing With multi-core computer systems

becoming a commodity, it is important to have an algorithm that scales well and harnesses

the computational power they offer by parallelizing the processing of data. This observation

led to the development of the efficient parallel and implicitly-exhaustive search algorithm

used for finding the new (S-)CDO codes presented in [14], and whose high-performance

implementation and algorithmic improvements are detailed in this paper.

Conceptually, the search-tree is divided into a set of sub-trees that are explored in parallel.

Each sub-tree exploration corresponds to a task that needs to be completed. The proposed

implicitly-exhaustive search algorithm’s implementation instantiates a pool of Linux POSIX

Threads (or pthreads) to perform a deterministic parallel search-tree traversal that fully ex-

ploits the available computing cores. Indeed, each thread is assigned an independent sub-tree

to work on (see Fig. 5.15). By partitioning the search space into independent sub-trees that

are only accessed by one thread at a time, threads can do most of the processing within

their private workspace, foregoing the need of complex resource-sharing mechanisms and

thus reducing the overall synchronization overhead.

The pool of threads executes a cooperative search by using a mutex-protected [81] shared

workspace: when a thread discovers a valid code with a shorter span than the current shortest

span known, its span value is shared with all other threads to collectively apply all known tree-

pruning techniques to the current and future jobs being processed. Sharing this information
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Figure 5.15 Task partitioning and load-balancing.

instantly benefits all threads, thus significantly decreasing the overall computation time by

allowing the search space to converge to a smaller search-tree in less time, potentially even

offering a better-than-linear performance with respect to the parallelism employed [19]. When

a thread has finished processing a job, another job is assigned to it until no more sub-trees

are available, at which point the exploration of the search-tree is complete.

Because earlier branches in the search-tree will carry more nodes than later branches

(see (5.6)), having a static mapping of sub-tree base-nodes to α2 nodes [19] would result in

the first tasks taking exponentially longer to complete, thus becoming the bottleneck of the

parallel search (Amdahl’s law [82]). Instead, we employ a load-balancing technique consisting

in varying the depth to which sub-tree base-nodes are mapped to. In fact, sub-tree base-nodes

may be mapped to any node having depth d ∈ [1; J−2]: an increase in this depth reduces the

size of their corresponding sub-tree, at the expense of increasing the total number of tasks

to compute. For example, in Fig. 5.15, one can easily see that mapping sub-tree base-nodes

to α3 nodes reduces the size of each sub-tree but increases the number of sub-trees that need

to be explored. Since the gap between the longest running task and the shorter running

tasks is reduced, threads can operate concurrently for a longer period of time, thus enabling

load-balancing of work. The depth to which sub-tree base-nodes are mapped to is chosen
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by profiling the average time required for completing a sub-tree traversal and ensuring that

it remains small, in the order of a few minutes. Empirical tests show that best results are

obtained with an average task-completion time of less than 10 minutes. Figure 5.16 shows

the computation time required for each sub-tree (J = 9, S-CDO codes) when using a pool

of 24 threads and a pool of 40 threads. As can be seen, without load-balancing, i.e. with

a static mapping of sub-tree base-nodes to α2 nodes, the first sub-tree computation time is

almost entirely responsible for the total computation time of the search, which is thus not

significantly reduced when the number of threads is increased from 24 to 40. On the other

hand, with load-balancing enabled, the gap between the longest and shortest running task is

much smaller: not only is the total computation time improved when using 24 threads, but

increasing the number of threads to 40 further reduces the total computation time as the

algorithm is able to better exploit the additional parallelism offered by the system. Finally,

note that there is a single node per search-tree depth between the root node and the base-

node of each sub-tree, and that their respective values do not change during the processing
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of a job: in fact, this unique node-value sequence is used as the job’s id, and is employed for

tracking completed, active and pending jobs to be processed.

The speedup achieved with the proposed algorithm and its implementation is presented

in the next section.

5.2.5 Results

The test systems employed to produce the reported results were configured to use a Scientific

Linux 6.2 distribution, running on a 64-bit GNU/Linux 2.6.32 kernel. All source code was

compiled using GCC-4.4.6 with the -O3 flag enabled. Since the original C/C++ source

code for the previous algorithms was available, it was used with little-to-no modification for

comparison with the novel algorithm’s implementation.

In this section, we will show the drastic performance improvements achieved through the

use of the proposed algorithm and its implementation. The breakthrough in code validation

speed, multi-core/multithreaded scaling, search-space/complexity reduction and overall speedup

will be shown for CDO and S-CDO codes.

5.2.5.1 (S-)CDO Code Validation Speed

The proposed validation function eie validate() is compared with ie validate(), the (S-)CDO

code validation function used in the reference exhaustive-search algorithm [5], as well as

with prs validate(), the higher-performance CDO-code-only validation function used in the

pseudo-random search algorithm presented in [20].

In order to measure the speed of the three validation functions, a supporting framework

for exploring the search-tree in a similar way as the reference exhaustive-search algorithm

was devised. This ensured that the three validation functions were provided with the same

realistic set of codes, with an order varying from 2 to J , as they would have had to validate

in the exhaustive-search tree-traversal described above.

Twenty samples of five hundred thousand validations were taken, and the cumulative

average number of validations per second was recorded. For a J = 6 S-CDO code search,

there weren’t enough codes to sample twenty times / five hundred thousand codes, so sampling

was done for fifty thousand codes instead. The performance of the validation functions was



115

Table 5.1 CDO validation function comparison - ie validate() [5]

J
ie validate()

(validations/sec)
eie validate()

(validations/sec)
Speedup
Factor

6 53856.00 2.78721E+07 518

8 6286.36 2.18509E+07 3476

10 1233.19 1.37055E+07 11114

12 254.68 9.49252E+06 37272

14 66.73 6.05981E+06 90809

16 21.90 3.87740E+06 177055

17 13.30 2.57027E+06 193261

Table 5.2 CDO validation function comparison - prs validate() [20]

J
prs validate()

(validations/sec)
eie validate()

(validations/sec)
Speedup
Factor

6 803523.00 2.78721E+07 35

8 241968.00 2.18509E+07 90

10 69677.90 1.37055E+07 197

12 21203.20 9.49252E+06 448

14 7110.04 6.05981E+06 852

16 2542.93 3.87740E+06 1525

17 1243.60 2.57027E+06 2067

measured for CDO and S-CDO codes, with orders J ∈ [6; 17]. The test system used was

equipped with an Intel Core i7-960 Central Processing Unit (CPU) clocked at 3.2GHz, with

8MB of cache and 12GB of RAM. The reported values are all single-threaded validation speeds

(i.e. using a single CPU core), thus ensuring a fair comparison between validation functions.

Tables 5.1 and 5.2 show that for CDO codes, the novel validation function offers an impres-

sive speedup factor ranging from 518 to 193261 when compared to the reference exhaustive

search validation function [5], and from 35 to 2067 when compared to the fastest known CDO

validation function [20]. Likewise, Table 5.3 (S-CDO codes) shows that the novel validation

function offers a very significant speedup factor over the validation function in [5], ranging
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Table 5.3 S-CDO validation function comparison - ie validate() [5]

J
ie validate()

(validations/sec)
eie validate()

(validations/sec)
Speedup
Factor

6 ∗ 66071.50 1.75168E+07 265

8 8432.96 1.22286E+07 1450

10 1808.25 7.36185E+06 4071

12 487.17 4.52461E+06 9288

14 111.32 2.61650E+06 23504

16 29.04 1.35555E+06 46673

17 16.50 1.00354E+06 60832

∗ average over 20 samples of 5 ∗ 104 validated codes only

from 265 to 60832. Note that due to space constraints, results for most odd values of J are

not included.

For CDO and S-CDO validations, the speedup also becomes greater as J (and thus the

complexity) increases, since the novel validation function has fewer differences to compute

and comparisons to make in order to apply the validation test to a potential (S-)CDO code.

5.2.5.2 Multi-core / Multithreaded Scaling

In order to test the scalability of the proposed parallel algorithm, a system consisting of two

Intel QuickPath Interconnect enabled server blades was used. Each blade is equipped with

40 Hyper-Threading Technology enabled CPU cores (4x 10-core Intel Xeon E7-8870 CPUs

clocked at 2.4GHz, with 30MB of cache) and 512GB of RAM.

The amount of parallelism used was gradually increased from 1 thread to 160 threads

(since the system has 80 real cores and 80 virtual cores), and the speedup compared to a

single-threaded operation was recorded.

Figure 5.17 compares the overall speedup obtained when increasing the number of scouting

threads from 1 to 160. Two curves can be observed: the solid line represents an ideal (linear)

scaling with the number of threads; the dashed line represents the actual scaling obtained,

with the circles illustrating our actual sample points. As can be seen, when increasing the
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Figure 5.17 Scaling of the novel algorithm as a function of the number of threads used (S-CDO
codes, J = 9).

number of threads from 1 to 40 (Zone A), the scaling is very close to being ideal. As the

second blade starts being used (Zone B - number of threads ranging from 40 to 80), due to the

communication overhead between blades, the distance between the obtained and the ideal

scaling becomes wider. Finally, as the number of threads increases from 80 to 160 (Zone

C), virtual cores are used, further distancing the obtained speedup from the ideal scaling.

Nevertheless, employing virtual cores on this system is still advantageous as it allows us to

improve the speedup factor from 65 (for 80 real cores) to 91 (for 80 real + 80 virtual cores).

5.2.5.3 Overall speedup

The overall speedup, when using the proposed algorithm instead of the reference algorithm,

was recorded on a test system with an Intel Core i7-2600 CPU clocked at 3.4GHz, with

8MB of cache and 16GB of RAM. Whereas the reference algorithm executed a serial (single-

threaded) search [5], the novel algorithm performed a parallel search using 8 threads (for 4

real cores, and 4 virtual cores).

The search was conducted for (S-)CDO codes and J ∈ {6, 7, 8}. The CPU Time (CT )
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Table 5.4 CDO Code Exhaustive Search Overall Speedup

J
CPU Time

Reference Algo.
(in seconds)

CPU Time
Proposed Algo.
(in seconds)

Overall
Speedup
Factor

6 102.05 0.02 6280

7 73596.20 4.49 16377

8 *** ‡ 6848.34 N/A

‡ computation time took too long to complete (over 2 weeks)

Table 5.5 S-CDO Code Exhaustive Search Overall Speedup

J
CPU Time

Reference Algo.
(in seconds)

CPU Time
Proposed Algo.
(in seconds)

Overall
Speedup
Factor

6 1.02 *** † N/A

7 205.55 0.04 5873

8 23358.62 3.70 6322

† the value was below our measurement resolution

was measured for each implementation and J value. The Overall Speedup was calculated as

the ratio of the CPU Time required for the reference implementation to complete the search,

over the one required for the proposed algorithm to complete the same task.

Tables 5.4 and 5.5, for CDO codes and S-CDO codes respectively, show that the proposed

algorithm offers a dramatic speedup over the previous reference algorithm, ranging from three

to four orders of magnitude. It can also be observed that this speedup increases as J increases.

5.2.5.4 (S-)CDO Code Span Improvements Obtained

Figure 5.18 shows the total number of leaf-nodes in the search-tree as a function of the

shortest known (S-)CDO code spans and their order J . When searching for optimal-span

(S-)CDO codes, the number of leaf-nodes is indicative of the problem size. The highlighted

shaded area in Fig. 5.18 represents the search-space that was conquered using the novel search

algorithm and its very efficient implementation. Using these techniques, it was possible to
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Figure 5.18 Total number of leaf-nodes in the search-tree as a function of the best known
(S-)CDO code spans and their order J .

complete an exhaustive search over a search space that is 1014 time larger than what was

previously possible.

We were able to find and/or verify optimal-span codes for J∈{7, 8, 9} (CDO codes) and

J∈{9, 10, 11, 12} (S-CDO codes) [14], and for larger values of J , to obtain codes with spans

that are between 9.12% and 33.89% shorter than the ones published in [15, 20, 21, 28], with

an average span improvements of 14.43% for CDO codes and 26.25% for S-CDO codes.

5.2.6 Conclusions

This paper presented a parallel, high-performance, efficient and implicitly-exhaustive search

algorithm implementation for finding CDO and S-CDO codes with short spans, offering a

drastic speedup over previous exhaustive-search and pseudo-random search algorithms. The

speedup is achieved through the use of a vastly improved code validation function that em-

ploys a novel data structure for enabling data-reuse and incremental computation of differ-

ences, and a parallel dynamic search-space reduction technique that substantially reduces the

size of the search-space without compromising the exhaustive nature of the search.

When searching for optimal (shortest span) J=7 CDO codes and J=8 S-CDO codes, a
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remarkable speedup factor over the reference algorithm was observed (>16300 and >6300

respectively). Furthermore, the algorithm scales well as the number of microprocessors used

increases. The proposed validation function exhibits an impressive speedup factor of >190000

(CDO code, J=17) and >60000 (S-CDO code, J=17) over the reference implicitly-exhaustive

search algorithm, and >2000 (J=17) over the fastest published CDO code validation function

used in high-performance pseudo-random search algorithms. In addition to being able to

yield codes with shorter spans than previously possible with the best pseudo-random search

algorithms then available, the proposed algorithm remains exhaustive in nature and is able

to process a search space that is some 1014 times larger than the largest search space that

could be viably explored by earlier exhaustive algorithms. As a result, we were able to find

and/or verify optimal-span codes for J∈{7, 8, 9} (CDO codes) and J∈{9, 10, 11, 12} (S-CDO

codes). Finally, for code orders of J∈[9; 20], we have been able to obtain an average span

reduction of 14.43% for CDO codes, and 26.25% for S-CDO codes.

5.3 Notes on the novel data structure

As described in Section 5.2.4, the novel validation function uses a form of Look-Up Table

(LUT) to store the difference values along with a Unique Identifier (UID) that associates

them with the particular node addition that generated them. The UID, (d, id), is a tuple

composed of the node’s depth and an identifier integer value: it is used to differentiate the

relevant differences from the differences that can be ignored, thus enabling data-reuse and

incremental computations. A set of simple counters act as per-depth identifier generators:

there is one counter for each node depth in the search-tree, and each counter is initialized

to a value of 1. The number of nodes in the search-tree is very large, and as a consequence,

the identifier generator counters may overflow after reaching the maximal value represented

by their data type. To preserve the “uniqueness” of the UIDs, they are checked after each

increment: if a maximum value for the identifier generator associated to a particular node

depth d is reached, it is reset to 1, and all tuples in the LUT corresponding to that depth are

reset to (0, 0). Subsequent differences contributed by a node at depth d will use the updated

identifier value, now equal to 1, and the corresponding tuple will then be stored in the data

structure as per Section 5.2.4.



121

The use of a separate counter for each search-tree depth greatly reduces the total num-

ber of reset operations that occur, thereby ensuring a low-latency and implicit difference-

discarding operation for most cases: the array is only scanned when a counter reaches its

maximal value, thus triggering a selective clearing of the array for tuples marked with that

specific depth. Furthermore, the amount of memory required for storing this data structure

is small, when compared to today’s microprocessor cache sizes, and its use is well worth the

advantages offered during the proposed deterministic search-tree traversal: first, a latency

reduction for invalidating non-qualifying codes, and second, by reusing the differences that

do not change when going from one search-tree branch to the next, a drastic reduction in the

number of differences that need to be computed for a node-addition validation.

5.4 Notes on the proposed first and second order difference generation

5.4.1 Reducing the overhead due to branch tests

The novel second-order difference generation described in Section 5.2.4 eliminates the five

if-statements found in the traditional embedded for-loops [4, 20]. Furthermore, in order to

eliminate most of the branch tests present in the proposed validation function, a compile-time

pre-processing script is used to generate a set of depth-specific functions for generating first

and second order differences: for each, the depth is constant and known, therefore allowing

for the their embedded for-loops to be fully unrolled (see Fig. 5.10).

The resulting loop-free and depth-specific functions are accessed at runtime using function

pointers, and can more easily be optimized by modern compilers. Furthermore, by decreas-

ing the number of branching statements, the performance penalty associated with branch

mispredictions on modern microprocessors is also reduced: preliminary results show that the

depth-specific difference generation using fully unrolled loops offers a total computation time

reduction of approximately 53%.

5.4.2 Postponing the computation of δ during the search for S-CDO codes

When searching for optimal-span S-CDO codes, several approaches for dealing with the sim-

plification coefficient δ are available: one could search for the shortest-span codes for a specific
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δ value; or one could use a “binning” technique, and store the K shortest-span codes for each

of the one or more “bins” representing a δ interval of values; or, one could search for the K

shortest-span codes, irrespective of their δ value.

The main advantage of using S-CDO codes instead of CDO codes is that the former offer

a substantially reduced span (and thus much shorter latency in the decoding system). There-

fore, we focus on obtaining the S-CDO codes with the shortest possible spans by allowing any

repetition within the set of second-order differences to occur. As a side-effect, the computa-

tional overhead is reduced, since δ does not need to be evaluated for each valid code. The δ

values are thus independently computed at a later time for the resulting codes of interest.

Note that although the value of the simplification coefficient δ is not taken into consid-

eration during the S-CDO code search, the algorithm will store the last K obtained codes

in memory: this allows for a later comparison of the error-correcting performance of codes

having a similar span but different δ value.

5.4.3 Eliminating one element in the second-order difference pair

In this chapter, we define a “collision” as a difference value repetition. For a non-qualifying

code, we are especially interested in identifying collisions as early as possible during the

validation process to reduce the number of wasteful computations.

The novel validation function described in Section 5.2.4 improves on previous techniques

by directly computing only half of the total first and second order differences. This leads

to a significant computational speedup: during a code validation, rather than generating all

second-order differences and discarding the negative ones [5], the proposed algorithm only

computes one of the difference pair elements (irrespective of its sign), and then takes its

absolute value (see Fig. 5.10). This results in a simpler second-order difference generation

routine than what would otherwise be possible by directly generating the positive second-

order differences, and reduces the number of difference elements that need to be computed

before a collision is detected. Furthermore, computing only one element of the first and

second order difference pairs also eliminates a possible delay in detecting a collision: indeed,

as differences are produced, pair-elements of opposite sign but pertaining to two identical

difference pairs may appear as a difference pair of their own, thus delaying the collision
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Figure 5.19 First and second order differences exist in pairs of equal magnitude but opposite
sign: computing only one of the difference pairs eliminates the ambiguity that would otherwise
delay the detection of a collision.

detection until a third element from the difference pairs is encountered.

Figure 5.19 depicts such a situation, when generating a stream of differences that includes

two equal pairs of {−2, 2} difference values. In the first stream of computed differences, both

positive and negative differences are generated and stored. The first value is ’−2’, followed

by ’4’ and then ’9’. When the value ’2’ is generated, it is not possible to determine whether

it completes a pair with the previously computed ’−2’ value (i.e. “pair A?”), or if it is part

of a new {−2, 2} pair (i.e. “pair B”), which would result in a collision. In this example, it is

part of a new pair, but since the ambiguity exists, the collision detection has to be delayed,

and “wasteful” differences have to be computed and stored. Only when the next ’−2’ value

is generated can the existence of the two equal pairs be confirmed. In the second stream

of computed differences, only half of the difference pairs are computed, and their absolute

value is considered: the ambiguity is eliminated and a collision can be detected at the first

and only instance of the second difference pair. The proposed validation algorithm will thus

only represent and save positive first and second order differences in the data structure: this

decreases the size of the LUT by half and improves the data structure’s spatial locality, thus

also reducing the cache miss-rate [80].
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Table 5.6 Comparison of the total number of differences computed for a CDO code search
and J ∈ {5, 6, 7, 8}

J
Nb. of differences
(Ref. Algorithm)

Nb. of differences
(Novel Algorithm)

Computational
Improvement Rate

5 4,194,900 365,173 11.49

6 1,930,920,996 99,818,539 19.34

7 897,371,638,134 43,859,726,611 20.46

8 798,134,489,599,614 74,487,064,702,488 10.72

5.5 (S-)CDO Computational Improvement Rate

As described in Chapter 4 and Section 5.2.4 below, the proposed search algorithm uses tree-

pruning techniques to discard nodes whose addition cannot yield a valid code having an

improved span. Indeed, children nodes of nodes that have been discarded do not need to

be traversed or validated, thus resulting in a significant decrease in the number of examined

nodes, especially leaf-nodes, that will have to be added and then validated for (S-)CDO

code compliance. Since these leaf-node additions/validations have the highest computational

cost, the total search time will be substantially reduced. Furthermore, reducing the num-

ber of search-tree branches explored allows for a faster tree-traversal, thus increasing the

likelihood of finding new valid codes with shorter spans, and eventually optimal-span codes.

As improved spans are found, the bounds used for the tree-pruning are updated (see Sec-

tion 5.2.4.2.1), thereby allowing for a faster convergence to a search-tree of smaller size.

In order to obtain an estimate of the reduction in the number of search-tree branches

explored, and thus an estimate of the reduction in the number of differences computed,

counters were placed at each search-tree depth and were incremented whenever a node at

that depth underwent a validation. The test system used was equipped with an Intel Core

i7-2600 CPU clocked at 3.4GHz, with 8MB of cache and 16GB of RAM.

The search was performed with the reference [5] and the proposed exhaustive-search tree-

traversal algorithms using small values of J for which the optimal span MJ
opt is known. An

initial span value of MJ
curr = 150%∗MJ

opt was chosen as the“shortest known span”. Whereas a

single thread was used for the reference tree-traversal, four threads were used for the proposed
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Table 5.7 Comparison of the total number of differences computed for a S-CDO code search
and J ∈ {6, 7, 8, 9}

J
Nb. of differences
(Ref. Algorithm)

Nb. of differences
(Novel Algorithm)

Computational
Improvement Rate

6 32,067,849 2,867,122 11.18

7 3,706,653,015 227,635,876 16.28

8 294,664,053,120 28,254,421,251 10.43

9 58,393,631,548,884 2,848,228,256,221 20.50

tree-traversal, such as to simulate a parallel search. Indeed, by executing a cooperative search,

each thread in the novel algorithm may benefit from the span improvements achieved by the

other threads (see Chapter 4). Since we only needed the resulting counter values, the fastest

validation routine was used for both algorithms, as it offered the best performance and thus

allowed us to complete the tree-traversals in less time. Then, using equations (5.3), (5.4), (5.7)

and (5.8), an estimate of the total number of differences for each algorithm was computed by

considering one second-order difference to be equivalent to three first-order differences.

Tables 5.6 and 5.7 compare the total number of differences computed for the reference

and the proposed algorithms. The Computational Improvement Rate (CIR) is defined in this

chapter as the ratio of the number of differences computed with the reference algorithm over

the number of differences computed with the novel algorithm. Although it is an interesting

metric, it is only an approximation: it does not take into account the fact that the novel

validation function may not need to generate all differences (if a collision is encountered

early-on during the validation process), nor does it account for the overhead in computing

the next tree-traversal path or the algorithm’s ability to be optimized by the compiler.

One can observe that the CIR values vary from one search-tree to another. This could be

explained by the fact that some search-trees may have, on average, more valid branches that

reach to greater depths but that do not lead to valid leaf-node additions: since the algorithm

is not able to predict that they will lead to“dead ends”, more nodes are invalidated at a greater

depth, thus resulting in an increased computational cost. Indeed, the presence of more valid

branches reaching to greater depths may explain why, despite an apparent similar search-
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space size, the search for optimal-span J = 10 CDO codes has resulted in being considerably

more challenging than the search for optimal-span J = 12 S-CDO codes, and hence has not

as of yet been completed (see Fig. 5.18 in Section 5.2.5.4). Nevertheless, these results show

that compared to the reference tree-traversal, the proposed algorithm converges more quickly

to a smaller tree, therefore further reducing the computational cost of the exhaustive search.

5.6 Dealing with the Mean Time Before Failures (MTBF)

Although the proposed search algorithm offers a drastic performance improvement over the

reference algorithm, due to the sheer size of the search space (see Section 2.3.1), the search

for optimal-span codes having order J ≥ 10 still requires several months of computation

time to complete. Indeed, earlier versions of the novel algorithm were bound in execution

time by the low Mean Time Before Failure (MTBF) of computers running the search: power

outages, network failures, system crashes, or computer reboots following security updates

would all result in a significant data loss that would require the search to be restarted from

the beginning.

In order to overcome the computers’ low MTBF, basic fault-tolerance was included in the

design: regular snapshots of the current state of the search are performed at configurable

intervals of time. Furthermore, the algorithm has to comply with several additional require-

ments. First, snapshots have to scale over thousands of computing cores, and thus proper

locking of the resources must be used to ensure that the written state-files are always coher-

ent. Nevertheless, excessive locking may also aversely affect the performance of the search,

and thus must only be applied when strictly essential. Then, to ensure that the work can be

migrated from one computer to another, it must be possible to stop and resume the search

without a significant loss in progress. Finally, it is important to ensure that state-files are

written to disk as fast as possible: during a system shutdown or restart, the operating system

only grants the program a few seconds to terminate gracefully, after which its main process

is killed. Therefore, to avoid corrupted or incomplete files, the writing of state-files must

complete before the end of the graceful termination period.

In order to satisfy the above requirements, the current state of the search is efficiently

saved into a verifiable, serialized and compressed XML file (see Appendix D). Furthermore,
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to provide file redundancy, a set of N state-files are kept and written to in a round-robin

fashion: these files correspond to the N most recent snapshots, taken at a configurable time

interval. Using multiple state-files greatly increases the probability of being able to recover

a valid file when the program is terminated unexpectedly, such as during a power outage or

a system crash. Upon resuming the search, all N XML state-files undergo basic validation:

the most recent and valid state-file is automatically selected and its contents are used to

reinstate the previous state of the search, thus minimizing the loss of search progress.

The novel algorithm makes extensive use of POSIX signals : they are employed to trigger

the writing of state-files, to display a status update on the search, to detect a system shutdown

or restart, and to detect a request for stopping the search. Indeed, two threads are used

to enable this functionality: one thread handles the signals and cancels the worker threads

accordingly; a second thread is used for writing the state-files at specified time intervals. If the

program receives a POSIX signal signifying that the program should gracefully terminate, all

worker threads are cancelled and then one last state-file is written to disk. Then, all memory

allocations are freed and general cleanup is performed prior to the main thread’s termination.

To ensure that the content of state-files is always coherent, worker thread canceling is

inhibited during critical sections of the code: instead, their cancelation is postponed until

they reach specific “cancellation points”. Critical sections of the code are kept as small as

possible to ensure that the last state-file can be written to disk before the operating system

forces the program’s termination (i.e. a SIGKILL).

Since state-files are written in XML format and are easy to parse, they may also be

used for sharing span updates across different computers. Furthermore, they provide an

alternate method of remotely obtaining search-progress updates: a Python script is used to

parse the files and provide an easy-to-read summary of the state of the search across different

computers on the network. For example, 488 worker threads across 22 networked computers

are currently in use for the search of optimal-span J = 10 CDO codes.
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CHAPTER 6

GENERAL DISCUSSION

We have presented a novel high-performance efficient and parallel implicitly exhaustive search

algorithm for determining optimal/short-span rate R = 1
2
systematic CDO and S-CDO codes.

Using analytical and computer engineering techniques, the proposed search algorithm is much

faster than previous exhaustive-search and pseudo-random search algorithms, and features

several significant synergistic improvements that led to finding many new and improved codes.

The search algorithm performs a more efficient implicitly-exhaustive search-tree traversal

that dynamically applies tree-pruning techniques to identify and focus the search on only

potentially valid codes. Indeed, in order to facilitate tree pruning, we provided lower,midpoint

and upper bound values for nodes in the search-tree, thereby reducing the search complexity

by several orders of magnitude. The proposed search algorithm is a type of branch and bound

algorithm: although it does not test all the branches on the search-tree, it effectively performs

an exhaustive search and thus ensures that optimal-span codes are found at the end of the

search, and within a reasonable amount of time. This was previously not possible, except

for codes having a very small value of J . Moreover, to further reduce the computation time,

the algorithm performs a parallel cooperative search that can leverage hundreds of processing

cores to compute more search-tree branches at the same time and hence converge to a smaller

tree at a much faster rate than would otherwise be possible.

The novel validation function focuses on quickly invalidating codes rather than validat-

ing codes, thus ensuring that a code is discarded as early as possible during the validation

process. Furthermore, by using compile-time meta-programming techniques to remove the

branches and loops in the validation function, we eliminate many of the associated branch-

misprediction penalties that would incur on modern microprocessors.

Finally, the novel search algorithm also implements basic fault-tolerance measures to coun-

teract the low mean time between failures of the computers running the search.
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CHAPTER 7

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER

RESEARCH

This chapter presents the general conclusions of this thesis and several recommendations for

future work.

7.1 General conclusions

In this manuscript-based thesis, we have presented two articles that were published in IEEE

Transactions on Communications [14, 15], and one article that was submitted for publication

in the IEEE Transactions on Parallel and Distributed Systems [16].

We have presented a novel high-performance efficient and parallel implicitly exhaustive

search algorithm for determining optimal/short-span rate R = 1
2
systematic CDO and S-CDO

codes. The search algorithm we have developed performs a more efficient implicitly-exhaustive

search-tree traversal that dynamically applies tree-pruning techniques to reduce the size of

the search space. Indeed, using lower, midpoint and upper bound values for nodes in the

search-tree, the algorithm is able to identify and focus the search on only potentially valid

codes.

The proposed search algorithm uses a drastically improved (S-)CDO code validation func-

tion that employs a novel low-maintenance data structure to perform an incremental compu-

tation with data-reuse. Indeed, the data structure allows for tracking the relevant differences

with O(1) time-complexity, thus facilitating data-reuse. The novel validation function only

computes the new differences generated by the next code candidate, and reuses the differ-

ences that were already computed for the previous code validation. Hence, the degree of

the polynomial equation describing the total number of differences to compute for each code

validation is effectively reduced by one (from J4 to J3). Moreover, it only computes one ele-

ment of the second-order difference pairs, thereby further reducing the number of computed

second-order differences by one half.
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In order to further reduce the computation time, the algorithm performs a parallel coop-

erative search to compute more search-tree branches at the same time and hence converge to

a smaller tree at a faster rate than would otherwise be possible. Indeed, the search algorithm

is able to scale efficiently by using an effective load-balancing technique to leverage hundreds

of processing cores. Furthermore, to compensate for the low mean time between failures

of the computers running the search, the proposed search algorithm implements basic fault-

tolerance measures : regular snapshots of the current state of the search are performed, thus

allowing the search to be stopped and resumed without a significant loss of progress. The

snapshots are saved in a verifiable XML format, thereby ensuring the possibility of recovery

in the case of a file corruption and allowing the search to be resumed after a system crash or

a system restart.

We have characterized the dramatic speedup achieved with the novel search algorithm

over previously published algorithms. Compared to the reference implicitly-exhaustive search

algorithm, the resulting high-performance parallel implementation provides an impressive

speedup that is larger than 16300 when searching for optimal-span J = 7 CDO codes, and

larger than 6300 when searching for optimal-span J = 8 S-CDO codes. When compared

to the reference exhaustive-search (S-)CDO code validation function, the novel validation

function offers a speedup that is larger than 190000 when validating J = 17 CDO codes,

and larger than 60000 when validating J = 17 S-CDO codes. Moreover, when compared to

the fastest CDO code validation function used in high-performance pseudo-random search

algorithms, the novel validation function achieves a speedup that is larger than 2000 for

J = 17 CDO code validations.

Most of the speedup is achieved by means of a two-pronged approach. On the one hand,

the time required to process each node on the search-tree is very significantly reduced through

the use of the novel validation function: by themselves, the novel data structure (allowing

efficient tracking of relevant differences) and the data-reuse (with incremental computation

of differences) provide a speedup of two-to-three orders of magnitude. On the other hand, the

amount of work to be processed is significantly reduced by means of a more efficient parallel

tree-traversal: the total number of nodes to process is considerably decreased through the

use of the above-mentioned tree-pruning techniques, allowing for the computational cost of
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the search to be reduced by a factor of around ten. In addition, by performing a simulta-

neous exploration of different branches on the search-tree, the overall computation time for

completing the tree-traversal is almost linearly decreased with the number of processing cores

used. These two search-tree traversal enhancements provide an additional speedup of one-

to-two orders of magnitude. We observe a resulting total speedup of three-to-four orders of

magnitude with respect to the reference algorithm, which suggests that the various optimiza-

tion techniques employed are independent in nature, and that they synergistically combine

such that their respective speedups are multiplied. Finally, the total allowed runtime for

the search has also been appreciably increased with the addition fault-tolerance techniques,

thus allowing the search to operate without significant down-time for much longer periods

of time than previously possible. Indeed, despite the speedup obtained, the computation

time required for completing the search for optimal-span codes having order J ≥ 9 far ex-

ceeds the typical uptime of the systems employed (hardware and operating system). As a

consequence, to make certain that these codes are found, fault-tolerance techniques must be

used in conjunction with an algorithm providing a drastic speedup, such as to ensure a high

probability of completing the search. Using the combination of algorithmic optimizations

and load-balancing techniques described in the thesis, we were able to complete the search

over a search space that is some 1014 times larger than previously possible, thus leading to

finding new and improved codes.

We have provided new optimal and short-span rate R = 1
2
systematic (S-)CDO codes

with shorter spans than any previously published codes of the same order. Using the

novel efficient and parallel implicitly exhaustive search algorithm, we were able to determine

new optimal-span CDO codes for J ∈ {6, 7, 8, 9}, and new optimal-span S-CDO codes for

J ∈ {9, 10, 11, 12}. Moreover, the proposed algorithm has also allowed us to find several

new short-span CDO codes for J ∈ [10; 17] and several new short-span S-CDO codes for

J ∈ [13; 20]. A maximal span reduction of 32% for CDO codes and 34% for S-CDO codes

was achieved, and we were able to obtain an average span reduction of 14% for CDO codes

and 26% for S-CDO codes. Naturally, these span improvements directly translate into a

latency reduction of the same magnitude in the error-correcting iterative threshold decoding

systems for which they are intended.
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We have described some of the characteristics of the (S-)CDO codes obtained. The

spans of the provided codes are compared to known theoretical lower-bounds, and the error-

correction performance for some of these codes is presented. We also present the span im-

provements obtained when using S-CDO codes instead of CDO codes of the same order. For

moderate Eb/N0 values (i.e. Eb

N0
> 3 dB), we show that S-CDO codes offer a competitive

error performance and a compelling alternative to Turbo codes, since their error performance

curves may go below the “floor” region of Turbo codes, thus providing for these values of

Eb/N0 a better error performance along with a lower latency and reduced implementation

complexity.

We have presented the evolution of the (S-)CDO code error-performance as their order J

increases: although the error floor seems to be lowered as J becomes larger, the “waterfall”

region progressively moves to higher values of Eb/N0, a fact that will need to be considered

when selecting one of these codes for a given application of interest. Indeed, depending on

the application, it may or may not be advantageous to employ S-CDO codes with an order J

larger than J > 20, since the “waterfall” region may occur at Eb/N0 values that are too high

to be acceptable for the intended use. Finally, we also conclude that even though CDO codes

perform slightly better than S-CDO codes at moderate Eb/N0 values, from an engineering

point of view, S-CDO codes clearly offer a much lower decoding latency for a similar error

performance, and hence may be a better alternative to CDO codes.

Our analysis reveals the complexity and challenges of this topic and suggests that signifi-

cant findings could be expected through further investigation.

7.2 Suggestions for further research

We believe that numerous enhancements to the proposed algorithm are possible, and that

several tools may be developed to aid in better understanding CDO codes and their variants.

7.2.1 Improving current-generation (S-)CDO code searching algorithms

Preliminary results have shown that when using the proposed algorithm, a modest gain in

CDO code searching performance may be achieved by only computing second-order differ-

ence collisions. Indeed, satisfying the second CDO code condition also satisfies the first and
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the third CDO code conditions: this technique is currently used in the CDO code valida-

tion function described in [20]. Nevertheless, the potential speedup has not been properly

characterized and requires a further analysis.

Preliminary results have also shown that a reduction in computation time of around 18%

may be achieved by reordering the difference generation such that the first and second order

differences having the smallest values are generated first. Indeed, as is shown in Appendix B,

most of the first and second order (S-)CDO code differences tend to be small in value. There-

fore, by computing smaller difference values first, the validation function is more likely to

generate differences that will result in a collision at an earlier stage of the validation process,

thereby reducing the time required for detecting an invalid node addition. However, the po-

tential speedup obtained with this technique has not been properly characterized, requiring

further analysis.

Another technique that may reduce the time required for finding optimal-span (S-)CDO

codes is to use the LUT of differences as a means for determining the difference values that

are currently not in use. Indeed, these difference values may be used as offsets between the

children node values being tested and their parent node value, thus allowing for some nodes

values that cannot yield valid codes to be efficiently skipped.

A very significant speedup may be achieved by developing a (S-)CDO code searching

algorithm based on the Shift Algorithm [17]. Indeed, using a simple and efficient FLEGE -

like algorithm [66] for finding new optimal-span (S-)CDO codes would clearly allow for a

high-performance implementation to be devised. Nevertheless, correctly expressing and com-

puting the first and second order differences with bitmaps and SHIFT/OR operations has

so far eluded analysis. Exploring the various possible representations for (S-)CDO codes

and their difference values may give some insight into the development of such an algorithm.

Alternatively, a Golomb-ruler pre-selection filter based on the Shift Algorithm may be used

for validating potential code candidates as CSO codes first, prior to applying the more com-

putationally expensive (S-)CDO code validation function. Although this technique is less

efficient than using bitmaps for all computations, preliminary results have shown that using

a Golomb ruler pre-selection filter significantly reduces the number of branches that need to

undergo (S-)CDO code validation: a very efficient pre-selection filter implementation would



134

thus reduce the total time required for determining new optimal-span (S-)CDO codes.

7.2.2 A next-generation error-correction performance simulator

Simulating the error-correction performance of (S-)CDO codes using the current error-

performance simulator is a very time-consuming task. Indeed, its very slow operation limits

our ability to determine the error performance of (S-)CDO codes for SNR values larger than

Eb

N0
> 4.0 dB.

Based on a very old 32-bit design, the inefficiencies and serial operation of the simulator

do not leverage the performance offered by current multi-core microprocessors. Indeed, to

deliver each Eb

N0
∈ [2.0; 4.0] (dB) bit error rate curve presented in this thesis, several weeks

of computation time were required. Furthermore, its current pseudo-random information bit

generation and channel noise induced error generation do not support the fast and accurate

error-performance simulation that is required for low bit error rates at higher SNR values.

We propose the development of a next-generation error-correction performance simulator

that is based on a modern 64-bit multi-threaded design, leveraging the parallelism offered

by modern multi-core microprocessors and employing General-Purpose computing on Graph-

ics Processing Units (GPGPU) to accelerate the simulation time. Indeed, modern graphics

processing units (GPUs) have an architecture that is designed for parallel data-processing, of-

fering hundreds or even thousands of parallel streams of computation. Since their architecture

is less efficient at decision-making, they are generally used to assist generic microprocessors

(CPUs) in completing the work: whereas CPUs handle the overall task management and

workflow, GPUs are used as accelerators to perform the complex computations.

Using such a much faster error-correction performance simulator, we would be able to gain

insight into the error-performance of (S-)CDO codes at SNR values larger than Eb

N0
> 4.0 dB.

Furthermore, we would be able to observe where the error-performance floor lies for different

values of J . Finally, by performing an automated error-correction simulation for all known

short-span (S-)CDO codes and storing the results in a database, we would be able to improve

our understanding of the error-correcting performance characteristics of these codes. This

information will be useful when designing and implementing high-performance hardware-

based error-correcting systems using these codes.
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7.2.3 RCDO codes and next-generation search and error-performance simula-

tion algorithms

In 2001, C. Cardinal defined Recursive Convolutional Self-Doubly Orthogonal (RCDO)

codes [4], a more powerful variant of CDO codes. Later, in 2010, E. Roy introduced Simpli-

fied RCDO (S-RCDO) codes [18], which relax some of the RCDO code double-orthogonality

conditions, thus potentially offering a reduced decoding latency and encoder/decoder imple-

mentation flexibility. In fact, these channel capacity approaching codes were shown to be

a special case of Low-Density Parity-Check (LDPC) codes [18, 83]. However, compared to

LDPC codes, the double orthogonality conditions defining these codes allow for a simpli-

fied RCDO/S-RCDO code determination process and the development of error-correcting

encoding/decoding systems having a reduced latency and implementation complexity [83].

At low SNR values, RCDO and S-RCDO codes offer a significantly much better error-

correction performance than regular (S-)CDO codes [4]. Indeed, whereas (S-)CDO codes

only correct information bits during the iterative threshold decoding, RCDO and S-RCDO

codes are able to correct both, the information bits and the redundant parity check symbols

obtained from the noisy communication channel [4, 83]. We will henceforth refer to RCDO

and S-RCDO codes as (S-)RCDO codes.

The error-correcting performance of (S-)RCDO codes is controlled by the position and

the number of forward and feedback connections that constitute the encoder [83]. However,

the precise set of parameters required to extract the best compromise between the error-

correcting performance and the implementation flexibility of these novel codes is still to be

defined, and is considered an active topic of research [83]. Therefore, in order to fine-tune

the set of parameters resulting in powerful (S-)RCDO codes, an efficient (S-)RCDO code

searching algorithm and a very fast (S-)RCDO code error performance simulator need to be

devised.

To this end, the (S-)CDO code searching algorithm developed in this thesis may be

adapted such as to find (S-)RCDO codes with a specific set of characteristics. Furthermore,

the next-generation (S-)CDO code error-correction performance simulator may be modified

to provide a GPGPU-accelerated error-performance simulation for (S-)RCDO codes. Indeed,

by using the information obtained from the fast error-performance simulator, we will be able
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to acquire a better understanding of (S-)RCDO codes and their characteristics, and thus

define the set of (S-)RCDO code parameters allowing us to determine the most powerful and

efficient (S-)RCDO codes.

These high-performance (S-)RCDO codes will be used in the design and development of

more powerful and efficient error-correcting systems.
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[59] I. Dotú and P. Van Hentenryck, “A simple hybrid evolutionary algorithm for finding

golomb rulers,” in IEEE Congress on Evolutionary Computation, CEC 2005. IEEE,

2005, pp. 2018–2023 Vol. 3.



143

[60] C. Cotta, I. Dotu, A. J. Fernández, and P. Van Hentenryck, “A memetic approach to

Golomb rulers,” in Proceedings of the Parallel Problem Solving From Nature, PPSN IX.

Univ Malaga, Dpto Lenguajes & Ciencias Computac, E-29071 Malaga, Spain, 2006, pp.

252–261.

[61] C. Cotta, I. Dotu, A. Fernández, and P. Van Hentenryck, “Local Search-based Hybrid

Algorithms for Finding Golomb Rulers,”Constraints, vol. 12, no. 3, pp. 263–291, 2007.

[62] N. Ayari, T. V. Luong, and A. Jemai, “A hybrid genetic algorithm for Golomb ruler

problem,” in 2010 IEEE/ACS International Conference on Computer Systems and Ap-

plications (AICCSA). IEEE, 2010, pp. 1–4.
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APPENDIX A

ERROR-CORRECTING PERFORMANCE FOR SOME CDO/S-CDO CODES

In this appendix, we present the error-correcting performance of several R = 1
2
systematic

(S-)CDO codes for orders J ∈ [9; 20].

For each code of span M, the number of decoding iterations, iter, was increased until no

appreciable improvement in error-performance was observed: the total decoding latency for

each code is proportional to “M x iter”.

The following figures show that for medium signal-to-noise ratios of Eb

N0
≥ 3 (dB), S-CDO

codes offer a much lower decoding latency than CDO codes of the same order J , but at the

cost of a small degradation in error-correcting performance. Nevertheless, the error-correcting

capability of these codes depends essentially on the dimension J of the vector generator [20].

Therefore, the small degradation in error-performance can potentially be compensated for

by selecting, within a given “latency budget”, an S-CDO code having a larger J value than

the order of a CDO code of equivalent latency. Finally, we can also observe that CDO codes

exhibit their “waterfall” region at lower Eb

N0
values than their S-CDO code counterparts.
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Figure A.1 Rate R = 1
2
systematic (S-)CDO code error-correction performance for Eb

N0
∈

[2.0; 4.0] (dB), after 12 decoding iterations for two S-CDO codes of order J = 10, and after
13 decoding iterations for two CDO codes of order J = 9.
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Figure A.2 Rate R = 1
2
systematic (S-)CDO code error-correction performance for Eb

N0
∈

[2.0; 4.0] (dB), after 14 decoding iterations for two S-CDO codes of order J = 11, and after
13 decoding iterations for two CDO codes of order J = 10.
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Figure A.3 Rate R = 1
2
systematic (S-)CDO code error-correction performance for Eb

N0
∈

[2.0; 4.0] (dB), after 14 decoding iterations for two S-CDO codes of order J = 12, and after
18 decoding iterations for two CDO codes of order J = 12.
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Figure A.4 Rate R = 1
2
systematic (S-)CDO code error-correction performance for Eb

N0
∈

[2.0; 4.0] (dB), after 15 decoding iterations for two S-CDO codes of order J = 13, and after
20 decoding iterations for two CDO codes of order J = 13.
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Figure A.5 Rate R = 1
2
systematic (S-)CDO code error-correction performance for Eb

N0
∈

[2.0; 4.0] (dB), after 12 decoding iterations for two S-CDO codes and two CDO codes of order
J = 14.
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Figure A.6 Rate R = 1
2
systematic (S-)CDO code error-correction performance after 17

decoding iterations for two S-CDO codes of order J = 15 (Eb

N0
∈ [2.0; 3.8] dB), and after 9

decoding iterations for two CDO codes of order J = 15 (Eb

N0
∈ [2.0; 4.0] dB).
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Figure A.7 Rate R = 1
2
systematic (S-)CDO code error-correction performance for Eb

N0
∈

[2.0; 3.6] (dB), after 19 decoding iterations for two S-CDO codes of order J = 16, and after
15 decoding iterations for two CDO codes of order J = 16.
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Figure A.8 Rate R = 1
2
systematic (S-)CDO code error-correction performance for Eb

N0
∈

[2.0; 4.0] (dB), after 20 decoding iterations for two CDO codes and two S-CDO codes of order
J = 17.
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Figure A.9 Rate R = 1
2
systematic S-CDO code error-correction performance for Eb

N0
∈

[2.0; 3.6] (dB) after 20 decoding iterations, for two codes of orders J = 18, J = 19 and
J = 20 respectively.



156

APPENDIX B

DENSITY MAPS FOR SOME CDO/S-CDO CODES

In this appendix, we present density maps for the rate R = 1
2
systematic (S-)CDO codes

provided in [14, 15]. Density maps depict, along an axis of natural numbers N used as indices,

the “density” of difference values generated during a (S-)CDO code validation. Indeed, for

each figure, these natural numbers are spaced evenly and increase monotonically in value

from left to right: each index (or “slot”) holds a colored thin vertical bar that indicates the

presence or absence of a given difference value, its type, and for S-CDO code second-order

differences, the number of times the difference was generated.

For each figure below, a set of codes from [14, 15] were chosen: the density maps were

scaled such that the distance between “index value zero” and the index representing the

“largest possible difference value in that set” occupies the available width. First-order differ-

ence values are represented by a red vertical bar. Second-order difference values are repre-

sented by a blue vertical bar. Since second-order difference values may repeat for S-CDO

codes, the shade of the blue bar was used to indicate the number of times a same difference

value was generated: up to six repetitions or shades of blue, from lighter to darker blue, were

accounted for. Second-order differences that repeat more than six times were capped to a

value of six repetitions. Index values not tagged with a first or second order difference value

hold a white vertical bar: they represent “empty slots” (i.e. the difference value is absent

for that code). The codes employed for generating the density maps in this appendix are

provided in Table B.1 below. We will define the density of a code as the ratio of the red and

blue areas over the white area comprised between index zero (leftmost vertical bar) and the

rightmost blue bar (maximal second-order difference value) on their density map.

Figure B.1 shows the density map for two optimal-span CDO codes (J ∈ {6, 7}) and two

optimal-span S-CDO codes (J = 9). One can observe that there are many more second-order

differences than first-order differences, and that S-CDO codes seem to be denser than CDO

codes (this will be easier to see in the following figures). One can also see that although
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Figure B.1 Density map for two optimal-span CDO codes (J ∈ {6, 7}) and two optimal-span
S-CDO codes (J = 9).

Figure B.2 Density map for two J = 8 optimal-span CDO codes (id ∈ {1, 2}) and one J = 8
short-span CDO code (id = 3).

both J = 9 S-CDO codes have an equal span, the code with id = 3 has darker blue areas

and more white space than the code with id = 4: this is due to the fact that this code has

a larger δ value, which signifies that a higher percentage of second-order difference values

are repetitions of previously computed second-order differences. Note that the total number

of differences generated for these two codes is equal, as it just depends on J (see (3.2) and

(3.3)).

Figure B.2 shows the density map for two J = 8 optimal-span CDO codes (id ∈ {1, 2})

and one J = 8 short-span CDO code (id = 3). One can observe that, for the two optimal-

span codes, the generated set of difference values is very different, and that therefore these

kinds of patterns could be used as a type of “fingerprint” for each code. One can also see

that the optimal span codes are denser than the short-span code, as the same number of

differences is represented in a smaller horizontal distance.

Figure B.3 clearly shows that for a similar span, an S-CDO code is much denser than a

CDO code, as the S-CDO code is able to “pack”many more differences in the same horizontal

distance (J = 14 for the S-CDO code vs. J = 10 for the CDO code).

Figure B.4 also clearly shows how S-CDO codes are denser than a CDO code of similar
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Figure B.3 Density map for a short-span CDO code (J = 10) and a short-span S-CDO code
(J = 14).

Figure B.4 Density map for a short-span CDO code (J = 11) and two short-span S-CDO
codes (J = 15).

span, but also how as the span for an S-CDO code is reduced (id = 3 vs. id = 4), the density

of the S-CDO codes is increased.

Figure B.5 illustrates the density maps for two J ∈ {10, 11} optimal-span S-CDO codes

(id ∈ {1, 3}) and two J ∈ {10, 11} short-span S-CDO codes (id ∈ {2, 4}). Note how the

location of the second-order difference value repetitions is different for each code.

Figure B.6 shows how even the density map of an optimal-span J = 9 CDO code is less

dense than the ones for the short-span J = 12 S-CDO codes. Figure B.7 also shows how the

short-span J = 10 CDO codes have a density map that is less dense than the density-map of

the short-span J = 12 S-CDO codes.

Figure B.8 shows how as J increases, the density map for CDO codes becomes less dense.

Figures B.9, B.10, B.11 and B.12 illustrate again the difference in density for S-CDO codes

Figure B.5 Density map for two J ∈ {10, 11} optimal-span S-CDO codes (id ∈ {1, 3}) and
two J ∈ {10, 11} short-span S-CDO codes (id ∈ {2, 4}).
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Figure B.6 Density map for one J = 9 optimal-span CDO code (id = 1), one J = 9 short-span
CDO code (id = 2), and two J = 12 short-span S-CDO codes (id ∈ {3, 4}).

Figure B.7 Density map for two short-span CDO codes (J = 10) and two short-span S-CDO
codes (J = 13).

and CDO codes for orders J ∈ {14, 15, 16, 17} respectively. One can see that as J increases,

the density is reduced more rapidly for CDO codes than for S-CDO codes, as the span of

CDO codes increases more rapidly with J than for S-CDO codes. One can also observe that

for both, S-CDO and CDO codes, the tendency is for most generated differences values to be

smaller than half the maximal second-order difference value.

Finally, Figure B.13 shows the density map for six short-span S-CDO codes (J ∈

{18, 19, 20}). One can clearly see that most of the generated difference values are smaller

than half of the maximal second-order difference value.

Figure B.8 Density map for four short-span CDO codes (J ∈ {12, 13}).
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Figure B.9 Density map for two short-span CDO codes (J = 14) and two short-span S-CDO
codes (J = 14).

Figure B.10 Density map for two short-span CDO codes (J = 15) and two short-span S-CDO
codes (J = 15).

Figure B.11 Density map for two short-span CDO codes (J = 16) and two short-span S-CDO
codes (J = 16).

Figure B.12 Density map for two short-span CDO codes (J = 17) and two short-span S-CDO
codes (J = 17).
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Table B.1 Code to Density Map Mapping (1 of 2)

Figure Code Type J id (S-)CDO Code

B.1 CDO 6 1 {0, 1, 17, 70, 95, 100} [15]

B.1 CDO 7 2 {0, 4, 34, 81, 195, 206, 211} [15]

B.1 S-CDO 9 3 {0, 15, 20, 46, 125, 132, 190, 207, 208} [15]

B.1 S-CDO 9 4 {0, 1, 17, 26, 127, 138, 185, 204, 208} [15]

B.2 CDO 8 1 {0, 3, 30, 98, 278, 394, 416, 423} [15]

B.2 CDO 8 2 {0, 5, 53, 74, 300, 346, 414, 423} [15]

B.2 CDO 8 3 {0, 43, 139, 322, 422, 430, 441, 459} [5]

B.3 CDO 10 1 {0, 1, 5, 33, 543, 913, 1216, 1354, 1398, 1477} [15]

B.3 S-CDO 14 2 {0, 1, 4, 13, 32, 71, 156, 353, 827, 927, 1034, 1099, 1357, 1475} [15]

B.4 CDO 11 1 {0, 1, 5, 21, 72, 1388, 1569, 1809, 2109, 2423, 2559} [15]

B.4 S-CDO 15 2 {0, 1, 4, 13, 32, 71, 124, 218, 642, 1025, 1178, 1349, 1652, 1739, 2001} [15]

B.4 S-CDO 15 3 {0, 1, 5, 12, 32, 61, 107, 230, 355, 514, 824, 1424, 1726, 2384, 2653} [5]

B.5 S-CDO 10 1 {0, 6, 10, 34, 111, 130, 234, 267, 298, 309} [14]

B.5 S-CDO 10 2 {0, 7, 9, 83, 86, 118, 260, 296, 309, 317} [14]

B.5 S-CDO 11 3 {0, 2, 10, 17, 52, 108, 187, 323, 398, 434, 445} [14]

B.5 S-CDO 11 4 {0, 5, 8, 50, 123, 184, 303, 385, 399, 428, 448} [14]

B.6 CDO 9 1 {0, 2, 30, 108, 238, 537, 722, 763, 766} [14]

B.6 CDO 9 2 {0, 2, 24, 100, 428, 585, 667, 777, 792} [14]

B.6 S-CDO 12 3 {0, 8, 9, 32, 160, 300, 438, 530, 551, 605, 633, 639} [14]

B.6 S-CDO 12 4 {0, 6, 7, 16, 144, 270, 361, 470, 553, 583, 610, 648} [14]

B.7 CDO 10 1 {0, 1, 5, 99, 388, 789, 1128, 1359, 1401, 1428} [14]

B.7 CDO 10 2 {0, 1, 5, 96, 885, 1061, 1094, 1401, 1422, 1473} [14]

B.7 S-CDO 13 3 {0, 12, 13, 16, 34, 83, 164, 374, 564, 685, 791, 949, 990} [14]

B.7 S-CDO 13 4 {0, 1, 4, 13, 32, 168, 532, 584, 725, 795, 872, 926, 998} [14]

B.8 CDO 12 1 {0, 2, 5, 19, 63, 161, 1641, 2646, 3454, 3889, 4376, 4668} [14]

B.8 CDO 12 2 {0, 2, 5, 19, 63, 161, 1637, 2659, 3550, 3936, 4489, 4737} [14]

B.8 CDO 13 3 {0, 2, 5, 19, 63, 161, 365, 1553, 4016, 4553, 5658, 6789, 7785} [14]

B.8 CDO 13 4 {0, 2, 5, 19, 63, 161, 365, 1298, 4368, 4978, 5737, 7344, 7840} [14]
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Table B.2 Code to Density Map Mapping (2 of 2)

Figure Code Type J id (S-)CDO Code

B.9 CDO 14 1 {0, 1, 5, 21, 55, 153, 368, 856, 2919, 6512, 7772, 10032, 11480, 12416} [14]

B.9 CDO 14 2 {0, 1, 5, 21, 55, 153, 368, 856, 2912, 7031, 8493, 10825, 11937, 12505} [14]

B.9 S-CDO 14 3 {0, 8, 9, 14, 35, 59, 248, 756, 855, 967, 1137, 1218, 1310, 1373} [14]

B.9 S-CDO 14 4 {0, 4, 5, 16, 30, 63, 172, 308, 746, 865, 952, 1212, 1312, 1377} [14]

B.10 CDO 15 1 {0, 6, 7, 23, 65, 151, 357, 805, 1729, 4346, 10689, 13652, 16851, 19098, 20219} [14]

B.10 CDO 15 2 {0, 4, 5, 21, 61, 165, 393, 871, 1605, 3857, 8784, 13537, 16082, 18927, 20241} [14]

B.10 S-CDO 15 3 {0, 10, 11, 14, 37, 69, 108, 254, 636, 1040, 1181, 1379, 1631, 1801, 1890} [14]

B.10 S-CDO 15 4 {0, 3, 4, 13, 28, 64, 108, 235, 609, 782, 1142, 1430, 1635, 1785, 1942} [14]

B.11 CDO 16 1 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 5929, 13480, 20893, 22857, 29325, 31120} [14]

B.11 CDO 16 2 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 5566, 17437, 21413, 24642, 30654, 32618} [14]

B.11 S-CDO 16 3 {0, 11, 12, 15, 32, 71, 117, 228, 812, 1128, 1707, 1846, 2001, 2187, 2438, 2571} [14]

B.11 S-CDO 16 4 {0, 10, 11, 14, 37, 69, 108, 223, 481, 1078, 1256, 1659, 1866, 2247, 2409, 2580} [14]

B.12 CDO 17 1 {0, 17, 18, 22, 64, 177, 409, 739, 1605, 2597, 5277, 8375, 20438, 30617, 37767, 44012,

47231} [14]

B.12 CDO 17 2 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 8306, 15910, 27374, 36920, 45696,

48361} [14]

B.12 S-CDO 17 3 {0, 1, 4, 13, 32, 71, 124, 218, 375, 862, 1584, 2162, 2311, 2763, 2935, 3347, 3447} [14]

B.12 S-CDO 17 4 {0, 1, 4, 13, 32, 71, 124, 218, 375, 671, 1294, 1563, 2290, 2497, 3022, 3281, 3452} [14]

B.13 S-CDO 18 1 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 1027, 1419, 2193, 3112, 3565, 3824, 4299, 4565}

[14]

B.13 S-CDO 18 2 {0, 5, 6, 14, 35, 67, 144, 228, 370, 629, 1033, 2444, 2759, 3084, 3589, 3902, 4462, 4589}

[14]

B.13 S-CDO 19 3 {0, 4, 5, 16, 30, 63, 128, 206, 358, 542, 787, 1163, 1878, 3260, 3532, 4524, 4811, 5731,

6046} [14]

B.13 S-CDO 19 4 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1763, 2429, 3620, 4137, 5419, 5690,

6390} [14]

B.13 S-CDO 20 5 {0, 2, 5, 14, 27, 60, 135, 211, 372, 486, 888, 1162, 1682, 3065, 3517, 5250, 5602, 6167,

6861, 7177} [14]

B.13 S-CDO 20 6 {0, 8, 9, 14, 35, 59, 122, 213, 337, 484, 743, 1032, 1519, 2786, 3654, 5263, 5818, 6942,

7465, 7609} [14]
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Figure B.13 Density map for four short-span S-CDO codes (J ∈ {18, 19, 20}).
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APPENDIX C

SOME SHORT-SPAN CDO AND S-CDO CODES OF ORDER J ≤ 20

In this appendix, we present novel short-span rate R = 1
2
systematic (S-)CDO codes of order

J ∈ [7; 20]. These codes were obtained while using the high-performance parallel algorithm

described in this thesis to search for optimal-span (S-)CDO codes of corresponding order

J . Therefore, their span is larger than the span of the codes of the same order published

in [14, 15].

Tables C.1, C.2 and C.3 provide new short-span rate R = 1
2
systematic CDO codes.

Tables C.4, C.5, C.6, C.7 and C.8 provide new short-span rate R = 1
2
systematic S-CDO

codes, as well as their respective simplification coefficient δ.
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Table C.1 Short-span CDO codes of order J ∈ {7, 10, 11, 12, 13}

J CDO codes

7 {0, 2, 22, 87, 188, 193, 221}

10 {0, 8, 9, 21, 124, 325, 929, 1297, 1444, 1492}

10 {0, 2, 5, 23, 207, 877, 976, 1328, 1458, 1490}

10 {0, 2, 5, 36, 152, 247, 782, 1105, 1455, 1475}

11 {0, 3, 5, 19, 58, 262, 1491, 1905, 2045, 2485, 2674}

11 {0, 2, 5, 19, 65, 894, 1580, 2035, 2322, 2562, 2662}

11 {0, 5, 6, 25, 91, 570, 1438, 1908, 2289, 2505, 2647}

11 {0, 5, 6, 25, 102, 1020, 1875, 2220, 2358, 2616, 2644}

11 {0, 6, 7, 23, 107, 542, 1556, 1803, 2392, 2472, 2614}

12 {0, 1, 5, 21, 55, 153, 391, 1766, 2889, 4236, 4917, 5132}

12 {0, 2, 5, 19, 63, 161, 414, 1936, 2846, 3642, 4420, 5107}

12 {0, 2, 5, 19, 63, 161, 463, 2026, 3209, 3822, 4673, 5023}

12 {0, 2, 5, 19, 63, 161, 526, 1773, 2613, 3945, 4650, 4882}

12 {0, 1, 5, 21, 55, 153, 624, 2054, 3072, 3574, 4433, 4839}

12 {0, 1, 5, 21, 55, 153, 631, 2209, 3142, 3573, 4578, 4816}

12 {0, 1, 5, 21, 55, 153, 853, 2676, 3186, 3859, 4452, 4797}

12 {0, 2, 5, 19, 63, 161, 1043, 2817, 3289, 4126, 4524, 4770}

12 {0, 1, 5, 21, 55, 153, 1266, 1985, 3313, 3710, 4284, 4762}

13 {0, 1, 5, 21, 55, 153, 368, 856, 1952, 5204, 5827, 8214, 9249}

13 {0, 1, 5, 21, 55, 153, 368, 856, 2192, 5381, 6855, 8651, 9231}

13 {0, 2, 5, 19, 63, 161, 365, 801, 2278, 5207, 6116, 7791, 9217}

13 {0, 1, 5, 21, 55, 153, 368, 856, 2555, 5700, 7080, 8016, 9128}

13 {0, 1, 5, 21, 55, 153, 368, 856, 2747, 5191, 7162, 8530, 9110}

13 {0, 1, 5, 21, 55, 153, 368, 856, 2767, 5138, 6074, 7387, 9020}

13 {0, 1, 5, 21, 55, 153, 368, 856, 2775, 4269, 6541, 7576, 8726}

13 {0, 2, 5, 19, 63, 161, 365, 801, 3709, 6008, 6898, 8169, 8723}

13 {0, 2, 5, 19, 63, 161, 365, 801, 3836, 5649, 6784, 8112, 8666}
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Table C.2 Short-span CDO codes of order J ∈ {13, 14, 15}

J CDO codes

13 {0, 2, 5, 19, 63, 161, 365, 815, 3427, 4802, 6159, 7999, 8640}

13 {0, 1, 5, 21, 55, 153, 368, 857, 4209, 5492, 6566, 7880, 8504}

13 {0, 1, 5, 21, 55, 153, 368, 898, 4558, 5173, 6902, 7404, 8472}

13 {0, 1, 5, 21, 55, 153, 368, 915, 2207, 4983, 6430, 7694, 8364}

13 {0, 2, 5, 19, 63, 161, 365, 991, 3671, 5824, 6523, 7725, 8259}

13 {0, 1, 5, 21, 55, 153, 368, 1038, 3651, 5435, 5965, 7558, 8149}

14 {0, 2, 5, 19, 63, 161, 365, 801, 1732, 5609, 8696, 10086, 12284, 13486}

14 {0, 1, 5, 21, 55, 153, 368, 856, 1935, 3248, 5883, 10655, 12055, 13483}

14 {0, 2, 5, 19, 63, 161, 365, 801, 1985, 7498, 8625, 10820, 11895, 13206}

14 {0, 1, 5, 21, 55, 153, 368, 856, 2035, 4484, 8218, 10008, 12484, 13107}

14 {0, 2, 5, 19, 63, 161, 365, 801, 2156, 6888, 8072, 9610, 12040, 13086}

14 {0, 1, 5, 21, 55, 153, 368, 856, 2382, 5910, 8898, 10377, 12041, 13026}

14 {0, 1, 5, 21, 55, 153, 368, 856, 2696, 6329, 8197, 10265, 11647, 12743}

15 {0, 1, 5, 21, 55, 153, 368, 856, 1424, 2603, 4967, 8194, 13663, 22432, 28169}

15 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 7925, 13034, 18620, 27850}

15 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 7925, 13416, 22252, 27506}

15 {0, 1, 5, 21, 55, 153, 368, 856, 1424, 2603, 4967, 8194, 15070, 22504, 26453}

15 {0, 1, 5, 21, 55, 153, 368, 856, 1424, 2603, 4967, 8194, 15773, 21891, 25840}

15 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 8306, 14827, 22587, 25797}

15 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 8306, 15529, 21546, 24756}

15 {0, 4, 5, 21, 61, 165, 393, 871, 1605, 3014, 4504, 9555, 15061, 22039, 24381}

15 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 11168, 16961, 21130, 24340}

15 {0, 3, 5, 19, 58, 142, 364, 840, 1378, 3008, 5080, 9653, 17419, 19911, 23940}

15 {0, 4, 5, 21, 61, 165, 393, 871, 1605, 3014, 5255, 12744, 17078, 21031, 23533}
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Table C.3 Short-span CDO codes of order J ∈ {15, 16, 17}

J CDO codes

15 {0, 4, 5, 21, 61, 165, 393, 871, 1605, 3014, 5777, 12690, 16275, 20967, 23469}

15 {0, 3, 5, 19, 58, 142, 364, 840, 1378, 3008, 5637, 12212, 15861, 21297, 23195}

15 {0, 1, 5, 21, 55, 153, 368, 856, 1424, 2603, 5780, 10451, 15835, 18943, 22701}

15 {0, 1, 5, 21, 55, 153, 368, 856, 1424, 2603, 5830, 12718, 15082, 19265, 22407}

15 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 6514, 11178, 14659, 19454, 21826}

15 {0, 4, 5, 21, 61, 165, 393, 871, 1605, 3014, 7898, 12691, 15144, 19424, 21388}

15 {0, 6, 7, 23, 65, 151, 357, 805, 1729, 3489, 9167, 13630, 16652, 18936, 21223}

15 {0, 8, 9, 21, 61, 160, 383, 860, 1787, 2944, 10140, 13251, 15468, 19874, 21081}

15 {0, 6, 7, 23, 65, 151, 357, 805, 1729, 3765, 10039, 13046, 15809, 18749, 21030}

15 {0, 6, 7, 23, 65, 151, 357, 805, 1729, 3885, 10403, 13112, 17316, 19793, 20977}

15 {0, 8, 9, 21, 61, 160, 383, 860, 1787, 3832, 11286, 13572, 16580, 19685, 20842}

15 {0, 1, 5, 21, 55, 153, 368, 856, 1424, 3252, 8937, 12628, 14429, 18837, 20805}

15 {0, 8, 9, 21, 61, 160, 383, 860, 1787, 4136, 10964, 13469, 16208, 19629, 20776}

15 {0, 6, 7, 23, 65, 151, 357, 805, 1729, 4281, 11520, 14596, 17343, 19468, 20573}

16 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 9824, 17604, 27296, 30506, 34675}

16 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 10039, 17107, 24858, 31699, 34364}

16 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 10902, 17518, 21186, 27355, 32935}

16 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 11273, 18260, 23646, 29663, 32873}

16 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 5566, 17024, 20384, 23613, 30818, 32782}

17 {0, 2, 5, 19, 63, 161, 365, 801, 1355, 2920, 4715, 7925, 22812, 31827, 37279, 42533, 49071}
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Table C.4 Short-span S-CDO codes of order J ∈ {9, 10, 11, 12, 13, 14}

J δ S-CDO codes

9 0.4880 {0, 2, 5, 43, 94, 160, 182, 194, 212}

10 0.4957 {0, 16, 17, 22, 80, 200, 243, 278, 309, 333}

10 0.5014 {0, 12, 13, 20, 94, 153, 217, 272, 322, 325}

10 0.4908 {0, 8, 9, 30, 67, 99, 186, 300, 319, 325}

10 0.5063 {0, 1, 4, 30, 44, 94, 176, 253, 315, 324}

10 0.4986 {0, 5, 6, 45, 143, 208, 260, 290, 308, 322}

10 0.5043 {0, 3, 5, 16, 106, 137, 239, 262, 303, 320}

10 0.4928 {0, 2, 7, 41, 96, 200, 242, 293, 313, 319}

11 0.5195 {0, 4, 9, 37, 73, 252, 314, 365, 400, 448, 454}

12 0.4971 {0, 4, 5, 16, 123, 270, 423, 561, 594, 636, 650, 686}

12 0.5007 {0, 2, 5, 14, 172, 220, 386, 537, 574, 645, 665, 678}

12 0.5075 {0, 2, 5, 14, 191, 303, 407, 518, 577, 640, 653, 673}

12 0.5246 {0, 23, 24, 30, 110, 121, 228, 366, 521, 603, 647, 673}

12 0.5179 {0, 9, 10, 13, 114, 207, 363, 500, 546, 585, 619, 672}

12 0.5206 {0, 56, 57, 89, 99, 288, 292, 545, 593, 652, 664, 671}

12 0.5179 {0, 6, 7, 16, 120, 277, 423, 487, 523, 604, 625, 666}

12 0.5237 {0, 15, 16, 19, 136, 207, 365, 475, 533, 616, 625, 661}

13 0.4421 {0, 1, 4, 13, 32, 71, 163, 228, 336, 584, 697, 1126, 1428}

13 0.4979 {0, 1, 4, 13, 32, 104, 233, 407, 521, 717, 875, 964, 1012}

13 0.5024 {0, 1, 4, 13, 32, 150, 220, 316, 550, 733, 905, 960, 1009}

14 0.4343 {0, 1, 4, 13, 32, 71, 124, 224, 342, 510, 707, 1034, 1507, 2145}

14 0.4376 {0, 1, 4, 13, 32, 71, 124, 416, 503, 652, 929, 1228, 1547, 2035}

14 0.4362 {0, 1, 4, 13, 32, 71, 124, 363, 450, 617, 802, 1021, 1722, 1936}

14 0.4866 {0, 2, 5, 14, 27, 60, 146, 286, 395, 824, 1032, 1257, 1347, 1472}

14 0.4706 {0, 2, 5, 14, 27, 60, 146, 468, 825, 1039, 1129, 1225, 1395, 1470}

14 0.4796 {0, 9, 10, 13, 34, 66, 105, 509, 669, 883, 1038, 1245, 1419, 1470}

14 0.4747 {0, 8, 9, 14, 35, 59, 140, 612, 834, 978, 1081, 1286, 1374, 1466}
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Table C.5 Short-span S-CDO codes of order J ∈ {14, 15, 16, 17}

J δ S-CDO codes

14 0.4804 {0, 10, 11, 14, 37, 69, 146, 521, 782, 958, 1139, 1241, 1371, 1460}

14 0.4861 {0, 3, 4, 13, 28, 64, 144, 486, 802, 896, 1069, 1183, 1362, 1444}

14 0.4838 {0, 7, 8, 18, 31, 58, 142, 367, 791, 863, 1105, 1259, 1315, 1435}

14 0.4900 {0, 10, 11, 14, 37, 69, 157, 456, 597, 976, 1083, 1246, 1322, 1434}

14 0.4902 {0, 3, 4, 13, 28, 64, 158, 400, 663, 893, 1118, 1162, 1355, 1433}

14 0.4833 {0, 1, 4, 13, 32, 71, 164, 549, 747, 927, 1127, 1215, 1368, 1421}

14 0.4897 {0, 3, 4, 13, 28, 64, 168, 514, 640, 966, 1059, 1197, 1330, 1411}

14 0.5069 {0, 9, 10, 13, 34, 66, 171, 482, 625, 893, 1014, 1149, 1221, 1410}

14 0.4974 {0, 10, 11, 14, 37, 69, 206, 381, 673, 877, 1088, 1182, 1301, 1408}

14 0.5026 {0, 5, 6, 14, 35, 67, 151, 542, 642, 935, 1053, 1130, 1303, 1406}

14 0.4945 {0, 2, 5, 14, 27, 60, 159, 424, 724, 805, 1081, 1209, 1309, 1398}

15 0.4433 {0, 1, 4, 13, 32, 71, 124, 304, 391, 561, 767, 1183, 1636, 2148, 2746}

15 0.4401 {0, 1, 4, 13, 32, 71, 124, 237, 324, 575, 834, 1201, 1586, 2205, 2686}

15 0.4451 {0, 1, 4, 13, 32, 71, 124, 349, 436, 549, 920, 1248, 1718, 2006, 2661}

15 0.4500 {0, 1, 4, 13, 32, 71, 124, 484, 571, 684, 833, 1469, 1686, 1892, 2627}

15 0.4816 {0, 6, 7, 16, 37, 70, 120, 222, 664, 835, 1197, 1510, 1659, 1920, 1998}

15 0.4863 {0, 5, 6, 14, 35, 67, 144, 249, 744, 833, 1180, 1525, 1700, 1787, 1989}

15 0.4744 {0, 11, 12, 15, 32, 71, 117, 228, 823, 1218, 1373, 1556, 1689, 1836, 1975}

15 0.4898 {0, 2, 5, 14, 27, 60, 135, 363, 563, 835, 1216, 1345, 1737, 1813, 1972}

16 0.4500 {0, 1, 4, 13, 32, 71, 124, 218, 425, 525, 872, 1100, 1569, 2111, 2781, 3638}

16 0.4421 {0, 1, 4, 13, 32, 71, 124, 218, 390, 477, 889, 1163, 1526, 2218, 2807, 3635}

16 0.4472 {0, 1, 4, 13, 32, 71, 124, 218, 398, 516, 688, 1263, 1517, 2256, 2683, 3603}

16 0.4727 {0, 1, 4, 13, 32, 71, 124, 218, 375, 770, 1249, 1704, 2055, 2262, 2548, 2719}

16 0.4691 {0, 1, 4, 13, 32, 71, 124, 218, 470, 1020, 1504, 1766, 1994, 2311, 2613, 2700}

16 0.5004 {0, 1, 4, 13, 32, 71, 124, 218, 486, 855, 1314, 1628, 1931, 2080, 2308, 2582}

17 0.4432 {0, 1, 4, 13, 32, 71, 124, 218, 386, 473, 881, 1220, 1741, 2278, 2892, 3612, 4715}

17 0.4502 {0, 1, 4, 13, 32, 71, 124, 218, 398, 516, 688, 1263, 1517, 2256, 2683, 3603, 4700}
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Table C.6 Short-span S-CDO codes of order J ∈ {17, 18, 19}

J δ S-CDO codes

17 0.4526 {0, 1, 4, 13, 32, 71, 124, 218, 456, 605, 777, 864, 1738, 2077, 3101, 3781, 4365}

17 0.4587 {0, 1, 4, 13, 32, 71, 124, 218, 913, 1000, 1168, 1321, 1491, 1836, 3344, 3750, 4151}

17 0.4567 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 1333, 1939, 2442, 2965, 3226, 3495, 3666}

17 0.4758 {0, 3, 4, 13, 28, 64, 108, 234, 312, 589, 1271, 1715, 2429, 2576, 2855, 3264, 3625}

17 0.4734 {0, 12, 13, 16, 34, 61, 120, 198, 282, 511, 1311, 1733, 2221, 2629, 2974, 3282, 3621}

17 0.4675 {0, 3, 4, 13, 28, 64, 108, 234, 312, 589, 1454, 1859, 2208, 2636, 3047, 3444, 3591}

17 0.4705 {0, 7, 8, 18, 31, 58, 114, 206, 332, 585, 999, 1442, 2324, 2779, 3038, 3400, 3528}

18 0.4163 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3097, 4047, 5297, 6703}

18 0.4396 {0, 1, 4, 13, 32, 71, 124, 218, 375, 634, 805, 1159, 1461, 2201, 2753, 3793, 4774, 6469}

18 0.4439 {0, 1, 4, 13, 32, 71, 124, 218, 375, 694, 862, 1164, 1491, 2143, 2851, 4063, 4516, 6228}

18 0.4345 {0, 2, 5, 14, 27, 60, 135, 211, 372, 486, 888, 1162, 1478, 2030, 2683, 3660, 5435, 6140}

18 0.4461 {0, 3, 4, 13, 28, 64, 108, 234, 312, 565, 916, 1281, 1560, 2031, 2878, 3773, 4958, 5920}

18 0.4492 {0, 1, 4, 13, 32, 71, 124, 218, 375, 1027, 1127, 1396, 1657, 1854, 3362, 3826, 4897, 5765}

18 0.4446 {0, 1, 4, 13, 32, 71, 124, 218, 375, 744, 912, 1208, 1556, 2285, 2899, 3883, 5280, 5729}

18 0.4307 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3097, 4690, 5214, 5640}

18 0.4279 {0, 8, 9, 14, 35, 59, 122, 213, 337, 484, 743, 1032, 1461, 2302, 3660, 4205, 5465, 5609}

18 0.4678 {0, 4, 5, 16, 30, 63, 128, 206, 358, 542, 787, 1163, 1781, 2656, 2971, 4000, 4287, 5207}

18 0.4725 {0, 3, 4, 13, 28, 64, 108, 234, 312, 565, 916, 1281, 1705, 2475, 3199, 3897, 4327, 5077}

18 0.4753 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1897, 2250, 2904, 3746, 4449, 5029}

18 0.4534 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1278, 2693, 3046, 3401, 4335, 4606, 4946}

18 0.4626 {0, 2, 5, 14, 27, 60, 135, 211, 372, 486, 888, 1343, 1671, 2753, 3510, 4274, 4626, 4871}

18 0.4540 {0, 2, 5, 14, 27, 60, 135, 211, 372, 486, 888, 1494, 2521, 3209, 3628, 4193, 4545, 4846}

18 0.4663 {0, 3, 4, 13, 28, 64, 108, 234, 312, 565, 916, 1705, 2110, 2754, 3620, 4005, 4383, 4802}

18 0.4650 {0, 2, 5, 14, 27, 60, 135, 211, 372, 486, 888, 1631, 2269, 3032, 3451, 4113, 4429, 4703}

18 0.4789 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 899, 1630, 2088, 2480, 3492, 3663, 4309, 4657}

18 0.4584 {0, 5, 6, 14, 35, 67, 144, 228, 370, 629, 947, 2225, 2759, 3087, 3661, 4184, 4500, 4627}

19 0.4336 {0, 1, 4, 13, 32, 71, 124, 218, 375, 634, 805, 1159, 1461, 2201, 2753, 3793, 4774, 6469, 8197}
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Table C.7 Short-span S-CDO codes of order J ∈ {19, 20}

J δ S-CDO codes

19 0.4293 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3097, 4047, 5297, 6703, 7928}

19 0.4487 {0, 1, 4, 13, 32, 71, 124, 218, 375, 1027, 1127, 1396, 1657, 1854, 3362, 3826, 4897, 5765, 7904}

19 0.4289 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3097, 4047, 5297, 6703, 7838}

19 0.4455 {0, 1, 4, 13, 32, 71, 124, 218, 375, 694, 862, 1164, 1491, 2143, 2851, 4063, 4516, 6228, 7825}

19 0.4202 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3097, 4047, 5297, 7355, 7781}

19 0.4314 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1442, 2142, 3039, 4035, 5322, 6911, 7625}

19 0.4362 {0, 1, 4, 13, 32, 71, 124, 218, 375, 661, 832, 1344, 1739, 2041, 2969, 4130, 5306, 6802, 7584}

19 0.4321 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1442, 2142, 3039, 4035, 5612, 6695, 7409}

19 0.4369 {0, 5, 6, 14, 35, 67, 144, 228, 370, 629, 809, 1134, 1524, 2391, 3031, 4342, 5513, 6479, 7201}

19 0.4561 {0, 3, 4, 13, 28, 64, 108, 234, 312, 565, 916, 1281, 1560, 2031, 2878, 4258, 4951, 5939, 7101}

19 0.4331 {0, 5, 6, 14, 35, 67, 144, 228, 370, 629, 809, 1134, 1524, 2391, 3113, 4939, 5980, 6668, 6983}

19 0.4451 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3349, 4197, 5332, 6371, 6846}

19 0.4704 {0, 2, 5, 14, 27, 60, 135, 211, 372, 486, 888, 1162, 1478, 2030, 3083, 3736, 5034, 5858, 6601}

19 0.4616 {0, 2, 5, 14, 27, 60, 135, 211, 372, 486, 888, 1162, 1478, 2486, 3145, 4404, 5001, 6056, 6408}

20 0.4224 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3097, 4047, 5297, 6703, 7838, 10986}

20 0.4506 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 1580, 1751, 2044, 2436, 3059, 4597, 5271, 6032, 6663, 10030}

20 0.4409 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 833, 1102, 1722, 1981, 2919, 3781, 5074, 5558, 8404, 9718}

20 0.4242 {0, 5, 6, 14, 35, 67, 144, 228, 370, 629, 809, 1134, 1524, 2391, 3031, 4255, 5304, 6369, 9131, 9705}

20 0.4480 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 1088, 1188, 1614, 2290, 2904, 3607, 4983, 6121, 7687, 9686}

20 0.4266 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1442, 2142, 3039, 4035, 5322, 6405, 8917, 9631}

20 0.4371 {0, 3, 4, 13, 28, 64, 108, 234, 312, 565, 916, 1281, 1560, 2031, 2878, 3773, 4958, 6831, 8544, 9532}

20 0.4414 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 846, 1272, 1736, 2128, 2927, 4016, 4968, 6781, 8117, 9374}

20 0.4348 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1442, 2142, 3039, 4035, 5322, 6676, 8680, 9346}

20 0.4440 {0, 3, 4, 13, 28, 64, 108, 234, 312, 565, 916, 1281, 1560, 2031, 2878, 3773, 4958, 7113, 8275, 8973}

20 0.4400 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1442, 2142, 3039, 4035, 5805, 6519, 8302, 8968}

20 0.4371 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3097, 4472, 6307, 6634, 8365, 8791}

20 0.4297 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2441, 3097, 4499, 6116, 7709, 8233, 8659}
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Table C.8 Short-span S-CDO codes of order J ∈ {20}

J δ S-CDO codes

20 0.4398 {0, 3, 4, 13, 28, 64, 108, 234, 312, 565, 916, 1281, 1560, 2031, 2878, 4834, 5557, 7314, 8315, 8452}

20 0.4457 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1442, 2142, 3052, 4603, 5610, 6850, 8095, 8448}

20 0.4505 {0, 3, 4, 13, 28, 64, 108, 234, 312, 565, 916, 1281, 1560, 2031, 3349, 4749, 6114, 7115, 7252, 8293}

20 0.4483 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1442, 2142, 3382, 4614, 5690, 7241, 7854, 8207}

20 0.4504 {0, 1, 4, 13, 32, 71, 124, 218, 375, 572, 744, 1208, 1556, 2445, 3446, 4924, 5963, 6577, 7748, 8174}

20 0.4534 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1442, 2178, 3746, 4742, 5714, 6797, 7473, 8127}

20 0.4577 {0, 5, 6, 14, 35, 67, 144, 228, 370, 629, 809, 1134, 1524, 2501, 4175, 4892, 5975, 6530, 7447, 7762}

20 0.4689 {0, 4, 5, 16, 30, 63, 128, 206, 358, 542, 787, 1163, 1805, 2423, 3373, 4255, 5611, 6238, 7330, 7757}

20 0.4601 {0, 6, 7, 16, 37, 70, 120, 222, 300, 519, 831, 1171, 1751, 3108, 3379, 4910, 5759, 6485, 7382, 7735}

20 0.4650 {0, 8, 9, 14, 35, 59, 122, 213, 337, 484, 743, 1032, 1519, 2121, 3287, 4868, 5297, 7033, 7177, 7700}
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APPENDIX D

SAMPLE XML STATE-FILE

In this appendix, we present a sample XML state-file that was generated during the search

for optimal-span J = 10 CDO codes by a binary that was configured to use two worker

threads. The decompressed, deserialized and indented file contents are shown in Fig. D.1:

• Lines 3 to 8 hold information on the binary having created the state-file.

• Lines 10 to 14 hold information pertaining to the current configuration of the search.

• Lines 16 to 22 show the current root stub being used. The root stub is used to generate

tasks for the worker threads.

• Lines 24 to 41 hold the current tasks being worked on by the two worker threads.
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1: <?xml version=”1.0” encoding=”UTF-8”?>
2: <cpu scdo>
3: <version>1.0</version>
4: <binary date>Jun 24 2013</binary date>
5: <binary time>21:33:47</binary time>
6: <binary compiler>4.4.7 20120313 (Red Hat 4.4.7-3)</binary compiler>
7: <epoch>1372549478</epoch>
8: <date time>Sat Jun 29 19:44:38 2013</date time>
9:
10: <type of code>cdo</type of code>
11: <order of code>10</order of code>
12: <main rs size>4</main rs size>
13: <gen rs size>10</gen rs size>
14: <best span>1383</best span>
15:
16: <main rs has finished>0</main rs has finished>
17: <main root stub>
18: <a0>0</a0>
19: <a1>280</a1>
20: <a2>430</a2>
21: <a3>546</a3>
22: </main root stub>
23:
24: <generators numb gen=”2”>
25: <gen id=”0” gen finished=”0”>
26: <gen curr mrs>
27: <a0>0</a0>
28: <a1>280</a1>
29: <a2>430</a2>
30: <a3>545</a3>
31: </gen curr mrs>
32: </gen>
33: <gen id=”1” gen finished=”0”>
34: <gen curr mrs>
35: <a0>0</a0>
36: <a1>280</a1>
37: <a2>430</a2>
38: <a3>543</a3>
39: </gen curr mrs>
40: </gen>
41: </generators>
42: </cpu scdo>

Figure D.1 Sample XML state-file generated during the search for optimal-span J = 10 CDO
codes by a binary configured to use two worker threads.
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