

UNIVERSITÉ DE MONTRÉAL

EFFICIENT IMPLEMENTATION OF PARTICLE FILTERS IN APPLICATION-

SPECIFIC INSTRUCTION-SET PROCESSOR

QIFENG GAN

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)

JUIN 2013

© Qifeng Gan, 2013.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

EFFICIENT IMPLEMENTATION OF PARTICLE FILTERS IN APPLICATION-

SPECIFIC INSTRUCTION-SET PROCESSOR

présentée par : GAN Qifeng

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

M. BOYER François-Raymond, Ph.D., président

M. LANGLOIS J.M. Pierre, Ph.D., membre et directeur de recherche

M. SAVARIA Yvon, Ph.D., membre et codirecteur de recherche

M. BELTRAME Giovanni, Ph.D., membre

M. MANJIKIAN Naraig, Ph.D., membre

III

DEDICATION

Dedicated to my family

IV

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to Dr. J.M. Pierre Langlois for his supervision

during my Ph.D. study and research. Without his foresight and encouragement, this thesis could

not be completed. What I have learned from Dr. Langlois is not only the abilities to research and

investigate important problems, but also the techniques and attitude of being a researcher and

engineer. I am also very grateful to my co-supervisor, Dr, Yvon Savaria. His broad knowledge

and excellent insight and ideas always inspire me to pursue high standard research. His continu-

ous help is one of the most important supports to me towards graduation with Ph.D. degree.

 I would like to thank my colleagues at Polytechnique Montreal with whom I have had the pleas-

ure of working over the years. These include Rana Farah, with whom I worked closely on the

project, Shervin Vakili, Frédéric Blouin, Mohamed Taboubi, Diana Carolina Gil and all other

members of the Digital Systems Laboratory.

I want to thank my parents (Jianmin Gan and Fuzhen Jin) for their unconditional love, support

and encouragements every step of the way. They are the reason why I am always looking forward

and moving forward.

Last, but not the least, to my family, my two daughters (Fiona Gan and Peggy Gan) are the great-

est motivation and happiness during all the time of my Ph.D. life. I’m truly grateful to my wife,

Jingyun Yang, for all your sacrifice, patience, support, understanding and most of all, for your

love.

V

RÉSUMÉ

Cette thèse considère le problème de l’implémentation de filtres particulaires (particle filters

PFs) dans des processeurs à jeu d’instructions spécialisé (Application-Specific Instruction-set

Processors ASIPs). Considérant la diversité et la complexité des PFs, leur implémentation re-

quiert une grande efficacité dans les calculs et de la flexibilité dans leur conception. La concep-

tion de ASIPs peut se faire avec un niveau intéressant de flexibilité. Notre recherche se concentre

donc sur l’amélioration du débit des PFs dans un environnement de conception de ASIP.

Une approche générale est tout d’abord proposée pour caractériser la complexité computa-

tionnelle des PFs. Puisque les PFs peuvent être utilisés dans une vaste gamme d’applications,

nous utilisons deux types de blocs afin de distinguer les propriétés des PFs. Le premier type est

spécifique à l’application et le deuxième type est spécifique à l’algorithme. Selon les résultats de

profilage, nous avons identifié que les blocs du calcul de la probabilité et du rééchantillonnage

sont les goulots d’étranglement principaux des blocs spécifiques à l’algorithme. Nous explorons

l’optimisation de ces deux blocs aux niveaux algorithmique et architectural.

Le niveau algorithmique offre un grand potentiel d’accélération et d’amélioration du débit.

Notre travail débute donc à ce niveau par l’analyse de la complexité des blocs du calcul de la

probabilité et du rééchantillonnage, puis continue avec leur simplification et modification. Nous

avons simplifié le bloc du calcul de la probabilité en proposant un mécanisme de quantification

uniforme, l’algorithme UQLE. Les résultats démontrent une amélioration significative d’une im-

plémentation logicielle, sans perte de précision. Le pire cas de l’algorithme UQLE implémenté en

logiciel à virgule fixe avec 32 niveaux de quantification atteint une accélération moyenne de

23.7 par rapport à l’implémentation logicielle de l’algorithme ELE. Nous proposons aussi deux

nouveaux algorithmes de rééchantillonnage pour remplacer l’algorithme séquentiel de rééchantil-

lonnage systématique (SR) dans les PFs. Ce sont l’algorithme SR reformulé et l’algorithme SR

parallèle (PSR). L’algorithme SR reformulé combine un groupe de boucles en une boucle unique

afin de faciliter sa parallélisation dans un ASIP. L’algorithme PSR rend les itérations indépen-

VI

dantes, permettant ainsi à l’algorithme de rééchantillonnage de s’exécuter en parallèle. De plus,

l’algorithme PSR a une complexité computationnelle plus faible que l’algorithme SR.

Du point de vue architectural, les ASIPs offrent un grand potentiel pour l’implémentation de

PFs parce qu’ils présentent un bon équilibre entre l’efficacité computationnelle et la flexibilité de

conception. Ils permettent des améliorations considérables en débit par l’inclusion d’instructions

spécialisées, tout en conservant la facilité relative de programmation de processeurs à usage gé-

néral. Après avoir identifié les goulots d’étranglement de PFs dans les blocs spécifiques à

l’algorithme, nous avons généré des instructions spécialisées pour les algorithmes UQLE, SR

reformulé et PSR. Le débit a été significativement amélioré par rapport à une implémentation

purement logicielle tournant sur un processeur à usage général. L’implémentation de l’algorithme

UQLE avec instruction spécialisée avec 32 intervalles atteint une accélération de 34 par rapport

au pire cas de son implémentation logicielle, avec 3.75 K portes logiques additionnelles. Nous

avons produit une implémentation de l’algorithme SR reformulé, avec quatre poids calculés en

parallèle et huit catégories définies par des bornes uniformément distribuées qui sont comparées

simultanément. Elle atteint une accélération de 23.9 par rapport à l’algorithme SR séquentiel

dans un processeur à usage général. Le surcoût est limité à 54 K portes logiques additionnelles.

Pour l’algorithme PSR, nous avons conçu quatre instructions spécialisées configurées pour sup-

porter quatre poids entrés en parallèle. Elles mènent à une accélération de 53.4 par rapport à

une implémentation de l’algorithme SR en virgule flottante sur un processeur à usage général,

avec un surcoût de 47.3 K portes logiques additionnelles.

Finalement, nous avons considéré une application du suivi vidéo et implémenté dans un ASIP

un algorithme de FP basé sur un histogramme. Nous avons identifié le calcul de l’histogramme

comme étant le goulot principal des blocs spécifiques à l’application. Nous avons donc proposé

une architecture de calcul d’histogramme à réseau parallèle (PAHA) pour ASIPs. Les résultats

d’implémentation démontrent qu’un PAHA à 16 voies atteint une accélération de 43.75 par

rapport à une implémentation logicielle sur un processeur à usage général.

VII

ABSTRACT

This thesis considers the problem of the implementation of particle filters (PFs) in Applica-

tion-Specific Instruction-set Processors (ASIPs). Due to the diversity and complexity of PFs, im-

plementing them requires both computational efficiency and design flexibility. ASIP design can

offer an interesting degree of design flexibility. Hence, our research focuses on improving the

throughput of PFs in this flexible ASIP design environment.

A general approach is first proposed to characterize the computational complexity of PFs.

Since PFs can be used for a wide variety of applications, we employ two types of blocks, which

are application-specific and algorithm-specific, to distinguish the properties of PFs. In accordance

with profiling results, we identify likelihood processing and resampling processing blocks as the

main bottlenecks in the algorithm-specific blocks. We explore the optimization of these two

blocks at the algorithmic and architectural levels.

The algorithmic level is at a high level and therefore has a high potential to offer speed and

throughput improvements. Hence, in this work we begin at the algorithm level by analyzing the

complexity of the likelihood processing and resampling processing blocks, then proceed with

their simplification and modification. We simplify the likelihood processing block by proposing a

uniform quantization scheme, the Uniform Quantization Likelihood Evaluation (UQLE). The

results show a significant improvement in performance without losing accuracy. The worst case

of UQLE software implementation in fixed-point arithmetic with 32 quantized intervals achieves

23.7 average speedup over the software implementation of ELE. We also propose two novel

resampling algorithms instead of the sequential Systematic Resampling (SR) algorithm in PFs.

They are the reformulated SR and Parallel Systematic Resampling (PSR) algorithms. The refor-

mulated SR algorithm combines a group of loops into a parallel loop to facilitate parallel imple-

mentation in an ASIP. The PSR algorithm makes the iterations independent, thus allowing the

resampling algorithms to perform loop iterations in parallel. In addition, our proposed PSR algo-

rithm has lower computational complexity than the SR algorithm.

VIII

At the architecture level, ASIPs are appealing for the implementation of PFs because they

strike a good balance between computational efficiency and design flexibility. They can provide

considerable throughput improvement by the inclusion of custom instructions, while retaining the

ease of programming of general-purpose processors. Hence, after identifying the bottlenecks of

PFs in the algorithm-specific blocks, we describe customized instructions for the UQLE, refor-

mulated SR, and PSR algorithms in an ASIP. These instructions provide significantly higher

throughput when compared to a pure software implementation running on a general-purpose pro-

cessor. The custom instruction implementation of UQLE with 32 intervals achieves 34 speedup

over the worst case of its software implementation with 3.75 K additional gates. An implementa-

tion of the reformulated SR algorithm is evaluated with four weights calculated in parallel and

eight categories defined by uniformly distributed numbers that are compared simultaneously. It

achieves a 23.9× speedup over the sequential SR algorithm in a general-purpose processor. This

comes at a cost of only 54 K additional gates. For the PSR algorithm, four custom instructions,

when configured to support four weights input in parallel, lead to a 53.4× speedup over the float-

ing-point SR implementation on a general-purpose processor at a cost of 47.3 K additional gates.

Finally, we consider the specific application of video tracking, and an implementation of a

histogram-based PF in an ASIP. We identify that the histogram calculation is the main bottleneck

in the application-specific blocks. We therefore propose a Parallel Array Histogram Architecture

(PAHA) engine for accelerating the histogram calculation in ASIPs. Implementation results show

that a 16-way PAHA can achieve a speedup of 43.75× when compared to its software implemen-

tation in a general-purpose processor.

IX

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENTS .. IV

RÉSUMÉ .. V

ABSTRACT ...VII

TABLE OF CONTENTS .. IX

LIST OF TABLES ...XII

LIST OF FIGURES .. XIV

LIST OF ABBREVIATIONS .. XVI

Chapter 1 INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Motivation and Challenges ... 1

1.3 Research Objectives ... 3

1.4 Contributions and Published Work .. 4

1.5 Organization of the Thesis ... 5

Chapter 2 LITERATURE REVIEW .. 7

2.1 Particle Filters .. 7

2.2 Applications of Particle Filters ... 15

2.2.1 Target Tracking .. 16

2.2.2 Video Tracking ... 17

2.3 PF Implementation in Embedded Systems ... 19

2.3.1 Implementation Methods in Embedded Systems ... 19

2.3.2 Examples of PF Implementations .. 21

2.4 Application-Specific Instruction-set Processors .. 23

X

2.4.1 Overview .. 23

2.4.2 Processor Generation .. 24

2.4.3 Automatic Generation of Custom Instructions ... 26

Chapter 3 EFFICIENT UNIFORM QUANTIZATION LIKELIHOOD EVALUATION

FOR PARTICLE FILTERS IN EMBEDDED IMPLEMENTATIONS 28

3.1 Introduction .. 28

3.2 Computational Characteristics of PFs .. 31

3.2.1 Description of DSS Examples .. 31

3.2.2 Computational Complexity of SIR PFs .. 33

3.3 Proposed UQLE Algorithm .. 36

3.4 UQLE Accuracy Evaluation ... 39

3.4.1 Implementation Environment and Accuracy Metrics .. 39

3.4.2 Accuracy for the LG Model ... 40

3.4.3 Accuracy for the UNG Model .. 41

3.4.4 Accuracy for the BOT Model ... 43

3.5 UQLE Throughput Evaluations ... 45

3.5.1 UQLE Software Implementation and its Performance .. 45

3.5.2 UQLE ASIP Implementation and its Performance .. 47

3.6 Conclusion .. 50

Chapter 4 NOVEL SYSTEMATIC RESAMPLING ALGORITHMS AND THEIR

IMPLEMENTATION IN ASIPS .. 51

4.1 Introduction .. 51

4.2 Reformulated SR Algorithm and its ASIP Implementation ... 53

4.2.1 The Reformulated SR Algorithm ... 53

4.2.2 ASIP Implementation ... 55

XI

4.2.3 Performance ... 57

4.3 Parallel Systematic Resampling Algorithm and its ASIP Implementation 59

4.3.1 Parallel Systematic Resampling Algorithm ... 59

4.3.2 Fixed-point Implementation of the PSR Algorithm ... 60

4.3.3 ASIP Implementation of the Fixed-Point PSR Algorithm ... 61

4.3.4 Implementation Results .. 63

4.4 Conclusion .. 65

Chapter 5 PARALLEL ARRAY HISTOGRAM ARCHITECTURE FOR EMBEDDED

IMPLEMENTATIONS ... 66

5.1 Introduction .. 66

5.2 Bottleneck in Histogram-based PFs for Video Tracking ... 67

5.3 Parallel Array Histogram Architecture .. 69

5.4 Flexible Parallel Array Histogram Architecture .. 70

5.5 Architecture Comparisons .. 71

5.6 Implementation Results .. 72

5.7 Conclusion .. 73

Chapter 6 CONCLUSIONS AND FUTURE WORK ... 74

6.1 Thesis Conclusions ... 74

6.2 Future Work ... 75

REFERENCES .. 77

XII

LIST OF TABLES

Table 3.1 Average clock cycles of LG, UNG, and BOT models using SIR PFs with 512 particles

in the Xtensa LX2 processor without FPU ... 35

Table 3.2 Average cycles of LG, UNG, and BOT models using SIR PFs with 512 particles in the

Xtensa LX2 processor with FPU .. 35

Table 3.3 RMSE of the SIR PF using ELE for the LG model ... 40

Table 3.4 RMSE of SIR PFs with ELE for the UNG model. ... 42

Table 3.5 Combined MSE and Lost track of SIR PFs with ELE for the BOT model 43

Table 3.6 Execution time and speedup of UQLE for the worst and best case in the Xtensa LX2

processor ... 46

Table 3.7 Average execution time and speedup of UQLE for the LG, UNG and BOT models in

the Xtensa LX2 processor .. 47

Table 3.8 Execution time and additional area of UQLE using its custom instruction in PFs in the

Xtensa LX2 processor .. 49

Table 3.9 Speedup between running in GPP and in GPP with UQLE instruction for the LG,

UNG, and BOT models .. 50

Table 4.1 Custom instructions for the reformulated SR algorithm .. 56

Table 4.2 Performance and resource requirements for the reformulated SR algorithm in ASIP

implementation ... 58

Table 4.3 Custom instructions for the proposed PSR algorithm .. 62

Table 4.4 Number of times that incorrect RFs were generated by fixed-point PSR algorithm for

10000 simulations. ... 63

Table 4.5 Performance and resource requirements of various implementation methods 64

Table 5.1 Profiling results of histogram-based PF with 256 particles tracking an object (120 by

140 pixels) in the Xtensa LX2 processor ... 68

XIII

Table 5.2 Comparison of PAHA and FPAHA against previous work for the case of (M, N, P) =

(8, 8, 20) ... 72

Table 5.3 Performance and resource requirements of various M-way PAHAs on the Xtensa LX2

processor ... 73

XIV

LIST OF FIGURES

Figure 2-1 Functional view of the resampling processing step .. 10

Figure 2-2 Data flow graph for the SR algorithm .. 11

Figure 2-3 Data flow graph for the RSR algorithm ... 13

Figure 2-4 Pseudo-code of SIR particle filter .. 15

Figure 2-5 Comparing GPPs, DSPs, ASIPs and CPs ... 20

Figure 3-1 Functional view of the SIR PF ... 33

Figure 3-2 Likelihood evaluation curve for the proposed UQLE with M+1= 5 intervals............. 38

Figure 3-3 Pseudo-code of the proposed UQLE algorithm .. 39

Figure 3-4 Maximum, average and minimum RMSE results of SIR PFs using UQLE for the LG

model .. 41

Figure 3-5 Maximum, average, and minimum RMSE results of SIR PFs using UQLE for the

UNG model .. 42

Figure 3-6 Maximum, average and minimum combined MSE and lost track for SIR PFs using

UQLE ... 44

Figure 3-7 Tracking of a moving target in two dimensions with SIR PFs using ELE and SIR PFs

using UQLE with 2 intervals and high value. .. 45

Figure 3-8 Custom UQLE logic organization with 4 intervals .. 48

Figure 4-1 PF steps ... 52

Figure 4-2 Data flow graph of the reformulated SR algorithm .. 54

Figure 4-3 Pseudo-code of the parallel while loops ... 55

Figure 4-4 Pseudo-code of the reformulated SR algorithm ... 57

Figure 4-5 Speedup vs additional gates for various solutions .. 58

Figure 4-6 Data flow graph of the proposed Parallel Systematic Resampling algorithm 60

Figure 4-7 Pseudo-code of the PSR algorithm in ASIP implementations 62

XV

Figure 5-1 Parallel Array Histogram Architecture ... 69

Figure 5-2 M-bit Accumulator ... 70

Figure 5-3 Flexible Parallel Array Histogram Architecture ... 70

XVI

LIST OF ABBREVIATIONS

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

ASIR Auxiliary Sample-Importance-Resampling

BOT Bearing-Only Tracking

CP Custom Processor

CW Cumulative Weight

DC Distance Calculation

DSP Digital Signal Processor

DSS Dynamic State Space

EKF Extended Kalman Filter

ELE Exact Likelihood Evaluation

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

GPP General Purpose Processor

GPU Graphics Processing Unit

GPGPU General-Purpose computing on Graphics Processing Unit

IG Index Generation

KF Kalman Filter

LE Likelihood Evaluation

LG Linear Gaussian

MAP Maximum A Posteriori

MMSE Minimum Mean-Square Error

PA Particle Allocation

XVII

PAHA Parallel Array Histogram Architecture

PDF Probability Distribution Function

PF Particle Filter

PG Prediction Generation

PMP Particle Measurement Processing

PSR Parallel Systematic Resampling

RA Resampling Algorithm

RF Replication Factor

RFG Replication Factor Generation

RMSE Root-Mean-Square Error

RNA Random Number Addition

ROI Region Of Interest

RP Resampling Processing

RR Residual Resampling

RSR Residual Systematic Resampling

SIS Sequential Importance Sampling

SIR Sample Importance Resampling

SR Systematic Resampling

TP Transition Processing

UDN Uniformly Distributed Number

UNG Uni-variate Non-stationary Growth

UQLE Uniform Quantization Likelihood Evaluation

WC Weight Calculation

1

Chapter 1 INTRODUCTION

1.1 Overview

Particle Filters (PFs) [1] are statistical signal processing methods that perform sequential

Monte Carlo estimation based on a particle representation of probability densities. Over the past

decade, they have gained in popularity to address various applications with nonlinear models

and/or non-Gaussian noise due to their competitive accuracy in comparison with the Extended

Kalman Filter (EKF). PFs use the concept of importance sampling to recursively compute the

relevant probability distributions conditioned on the observations. In comparison with the EKF,

PFs do not rely on linearization techniques and can robustly approximate the true system state

with an appropriate number of particles. In contrast, the EKF sometimes has poor performance,

lacks robustness, and may introduce large biases [2].

In practice, PFs have shown great promise as a powerful framework in addressing a wide

range of complex applications that include target tracking, navigation, robotics and computer

vision. Fox example, in target tracking, the Bearings-Only Tracking (BOT) application [1] [2]

only employs noisy measurement of angular positions to estimate the object position and veloci-

ty. In computer vision, color-based PFs for video tracking [3] estimate the object position by cal-

culating the distance between the reference color histogram and the current color histograms. In

these applications, PFs achieve higher accuracy than other filters [2] [3] .

1.2 Motivation and Challenges

Because PFs are effective and popular filters for applications with nonlinear models and/or

non-Gaussian noise, a vast amount of literature can be found on their theory, applications and

implementations. To our knowledge, when implementing PFs in embedded systems, most works

only focus on how to improve their throughput and thus implement them on dedicated hardware

due to their high computational complexity. However, PFs still require design flexibility to favor

a large range of various applications. There has been no effort to consider the important factor of

design flexibility. Hence, we aim to fill that gap and demonstrate flexible approaches to PFs im-

plementation. These alternatives to dedicated hardware design should achieve the same through-

2

put requirements of target applications. In this thesis, we specifically consider tracking applica-

tions. These applications are characterized by complex target models. Meanwhile, in order to

achieve a high level of accuracy, the number of particles should be as large as possible. In such a

context, PFs must achieve high throughput and have low latency. In the context of an embedded

system, the implementation should occupy a small area and consume as little power as possible.

A final but important requirement, which we consider in this thesis, is that the system should be

as flexible as possible to accommodate changes and support updates.

An appealing method is using Application-Specific Instruction-set Processors (ASIPs). ASIPs

strike a good balance between efficient custom processor design and low-cost flexible general-

purpose processor design. They maintain the flexibility of a programmable solution while im-

proving the throughput with the instantiation of dedicated customized instructions and/or special

purpose registers. Hence, the main objective of our research is to develop and implement PFs in

ASIPs to achieve the desired requirements of tracking applications in the throughput and silicon

area.

There are two main reasons for the heavy computational requirements in PFs. The first reason

is that a large number of particles are often required to achieve the desired accuracy. As the num-

ber of particles increases, the processing speed of the particle filters tends to be seriously degrad-

ed. The second reason arises from the type of operations involved in the PFs. PFs may require

nonlinear operations such as division and exponentiation. These expensive and complex opera-

tions are often important bottlenecks in the embedded implementation of PFs.

In order to meet the throughput requirements of tracking applications, we identify the bottle-

necks at the algorithm and architecture levels. In accordance with the need for a large amount of

particles in PFs, a parallel implementation is an appealing method to improve PF throughput. In

ASIP design, parallelism can be exploited at the instruction level. However, standard resampling

algorithms such as the Systematic Resampling (SR) algorithm [4] are sequential in nature. It may

become the most time consuming portion when parallelism is employed in implementing the PFs.

Making resampling algorithms feasible for further parallel PF implementation becomes a difficult

challenge in order to improve PF throughput. Concerning the problem on nonlinear complex op-

erations involved in PFs, it is necessary to simplify or avoid using such operations. However,

3

simplification in PFs may affect the accuracy for tracking applications. Hence, this problem mo-

tivates us to find how to simplify the complex operations in PFs without losing accuracy.

At the architecture level, hardware unit design for the relevant bottlenecks in PFs is required

in order to further improve the throughput of tracking applications in ASIPs. However, the design

of ASIPs is constrained by the number of input and output operands for custom instructions and

by the memory bandwidth. Under these restrictions, exploiting the data parallelism and/or fusing

atomic operations at the heart of execution bottlenecks become the main challenges in designing

specific hardware units in ASIPs.

1.3 Research Objectives

The main goal of this research is to design and implement PFs in ASIPs to achieve high

throughput with a certain level of flexibility. In order to reach this goal, the following specific

objectives are identified:

 Analyze and characterize PFs in the context of their implementation in ASIPs in order to identi-

fy opportunities for acceleration and implementation efficiency.

 In accordance with PF characteristics, propose new and efficient PF algorithms to reduce the

impact of complex operations that exist in conventional PF algorithms.

 Propose new formulations of resampling algorithms for PFs in order to accelerate their execu-

tion.

 Identify bottlenecks for histogram-based PFs for video tracking and propose relevant hardware

architectures for them in ASIPs.

 Simulate, implement, test and evaluate several ASIP designs of PFs to assess the performance

of the proposed algorithms and architectures.

4

1.4 Contributions and Published Work

This thesis presents six main contributions that have been presented in papers published in or

submitted to scientific journals and international conferences.

I. A novel characterization of PFs

Our proposed characterization of PFs, unlike previous work [5] [6], focuses on distinguishing

the application-specific blocks and the algorithm-specific blocks. This contribution was presented

in:

Qifeng Gan, J.M.P. Langlois, Y. Savaria, "Efficient Uniform Quantization Likelihood Evaluation

for Particle Filters in Embedded Implementations," accepted by Journal of Signal Processing

Systems on 29
th

 May 2013, [7].

II. Simplified likelihood evaluation algorithm and its implementation in ASIPs

We proposed an efficient Uniform Quantization Likelihood Evaluation (UQLE) algorithm to

replace the Exact Likelihood Evaluation (ELE) algorithm in PFs. Simulation results indicate that

PFs using UQLE can achieve comparable or better accuracy than the PFs using ELE. We also

implemented UQLE in an ASIP to achieve higher throughput. This contribution was presented in

the same paper [7] as Contribution I.

III. Reformulated systematic resampling algorithm and its implementation in ASIPs

We proposed a reformulated systematic resampling algorithm instead of the Sequential SR

algorithm. Our proposed reformulated systematic resampling is suitable for parallel implementa-

tion in ASIPs. The idea and results are presented in:

Qifeng Gan, J.M.P. Langlois, Y. Savaria, "A Reformulated Systematic Resampling and its Paral-

lel Implementation on Application-Specific Instruction-set Processors," accepted by MWSCAS

2013 on 10
th

 May 2013, [8].

5

IV. Parallel systematic resampling algorithm and its implementation in ASIPs

We proposed a Parallel Systematic Resampling (PSR) algorithm for PFs. This algorithm

makes iterations independent, thus allowing the resampling algorithm to perform its iterations in

parallel. The idea and results are presented in:

Qifeng Gan, J.M.P. Langlois, Y. Savaria, "Parallel Systematic Resampling Algorithm for Particle

Filters," submitted to Journal of Circuits, Systems and Signal Processing on 10
th

 Apr. 2013, [9].

V. Parallel array histogram architecture engine design for histogram-based particle filtering video

tracking systems.

We designed a Parallel Array Histogram Architecture (PAHA) engine, where multiple ele-

ments can be processed in parallel to update the histogram bins, to accelerate the histogram cal-

culation for further use in histogram-based particle filters for video tracking. The idea and results

were published in:

Qifeng Gan, J.M.P. Langlois, Y. Savaria, "Parallel Array Histogram Architecture for Embedded

Implementations," Electronics Letters, vol.49, issue 2, January 2013, [10].

VI. Histogram-based PFs for video tracking implementation

In collaboration with Ms. R. Farah, we explored the simplification of PFs for video tracking

and made them better suitable for embedded implementation.

R. Farah, Q. Gan, J.M.P Langlois, G.-A. Bilodeau, Y. Savaria, "A tracking algorithm suitable for

embedded systems implementation," Electronics, Circuits and Systems (ICECS), 2011 18th IEEE

International Conference on, pp.256-259, 11-14 Dec. 2011, [11].

1.5 Organization of the Thesis

This thesis is organized in six chapters including this introduction. In Chapter 2, an overview

of related works is presented. These works are separated into four main parts: theory of PFs, ap-

plications of PFs, PFs embedded implementation, and ASIPs.

6

In Chapter 3, we present a novel characterization of PFs which focuses on distinguishing the

application-specific blocks and the algorithm-defined blocks. After profiling three applications,

the likelihood processing block is identified as the most time consuming block in the algorithm-

defined blocks. We also present a simplified likelihood evaluation algorithm based on a uniform

quantization scheme to reduce its complexity. Moreover, this simplified likelihood evaluation

algorithm was implemented in the Xtensa LX2 processor with a customized instruction.

In Chapter 4, we focus on modifying the sequential resampling algorithm in PFs and make it

feasible for executing in parallel in ASIPs. Two novel resampling algorithms, reformulated SR

and PSR algorithms, are proposed in accordance with the sequential SR algorithm. The reformu-

lated SR algorithm is still a sequential algorithm but it can be executed in parallel in ASIPs with

custom instructions. The PSR algorithm is a parallel algorithm because it makes the iterations in

the sequential SR algorithm independent, thus allowing the iterations to be performed in parallel.

We implement these two resampling algorithms in the Xtensa LX2 processor with several rele-

vant customized instructions to show their significant speedup over the sequential SR algorithm.

In Chapter 5, we identify that histogram calculation is major bottleneck in histogram-based

PFs for video tracking and present a PAHA engine to accelerate histogram calculation. It can

process multiple elements to update the histogram bins. We also introduce a second version of

PAHA with a flexible number of inputs, potentially avoiding the need for multiple PAHAs in a

single application. The PAHA engine can significantly accelerate histogram calculation and thus

improve the throughput of histogram-based particle filters for video tracking.

Chapter 6 concludes the thesis and discusses potential future work.

7

Chapter 2 LITERATURE REVIEW

In this chapter, we examine the relevant background in the areas of theory of Particle Filters

(PFs), applications of PFs, implementation of PFs, and Application-Specific Instruction-set Pro-

cessor (ASIP) design.

2.1 Particle Filters

PFs are sequential Monte Carlo methods [12] in which the a posteriori probability distribution

function (PDF) is approximated by the importance weights of samples. Since the demonstration

of their accuracy in comparison with other filters and their flexibility in addressing a vast amount

of problems [2], PFs have gained in popularity to address applications with non-linear models

and/or non-Gaussian noise. PFs were initially introduced as the bootstrap filter by Gordon et al.

[2] [13]. They showed that PFs outperform the Extended Kalman Filter (EKF) in a Bearing-Only

Tracking (BOT) application. Kitagawa [14] studied PFs as Monte Carlo Filter for prediction, fil-

tering, and smoothing. Carpenter et al. [15] improved the quality of PFs by solving the sample

impoverishment problem [13]. Many tutorials and books [1] [4] [16] [17] [18] [19] [20] have

been published to review PFs and their applications. Aydogums et al. [21] used the EKF and PFs

to perform sensorless speed control. They showed again that the estimation performance of PFs is

more accurate than the EKF in applications with nonlinear models and/or non-Gaussian noise.

PFs are often applied to problems that can be written in the form of Dynamic State Space

(DSS) models. Consider the general form of a DSS model expressed by Equations (2.1) and

(2.2):

 (), (2.1)

 (), (2.2)

where is the time index, is the target state vector, and is the observation vector.

and are possibly nonlinear prediction functions of the state and observation functions of

the state , respectively. is the process noise sequence and is the observation noise se-

quence. Equation (2.1) describes how the state vector evolves with time. Equation (2.2) devel-

8

ops the noisy observation vector as a function of the state vector . In PFs, the aim is to learn

about the unobserved state based on a set of noisy observations as time evolves.

PFs base their operations on approximating the a posteriori PDF using a set of N weighted

samples

 , called particles. These particles are drawn independently from an im-

portance density (|) . Accordingly, if the observation { } is

available and the weights are normalized such that ∑

 , the a posteriori PDF at time can

be approximated as

 (|) ∑
 (

) (2.3)

where { } is the set of all states up to time .

After determining the a posteriori PDF (|), the state estimate can be computed us-

ing either the minimum mean-square error (MMSE), the maximum a posteriori probability

(MAP), or other methods. The MMSE estimate is the conditional mean of :

 ̂ |
 ∫ (|) , (2.4)

while the MAP estimate is the maximum of (|):

 ̂ |

 (|). (2.5)

In the implementation of PFs, the a posteriori PDF (|) may be obtained recursively

through the three basic steps described below:

1) Prediction Generation: The particle
 is drawn by the importance density (|).

The choice of the importance density plays a fundamental role in the design of PFs because gen-

erating the particles and the relevant weights is related to this importance density [16] . If the

drawn particles are in regions of the space where the density has negligible values, the estimation

obtained from the particles with their associated weights would be poor and it would easily lead

to a failure in the estimation. A standard scheme is to choose the state transition prior (|)

defined by equation (2.1) as the importance density. PFs using this scheme are known as the

9

bootstrap filter [2]. The advantage of this scheme is that it is efficient to implement. However,

this transition prior does not take the current observation into account. When the likelihood dis-

tribution (|) is narrow with respect to the transition prior distribution (|), many

particles will receive negligible weights. This situation can easily lead to the degeneracy problem.

2) Weight Calculation: When the likelihood distribution (|) is obtained upon the arrival of

the observation , the particle weights can be computed via the weight update equation as fol-

lows:

 (|
) (

 |
)

 (
 |

)
. (2.6)

Normalization is carried out as follows:

 ̃

∑

. (2.7)

3) Resampling Processing: The degeneracy problem, where after a few iterations most weights

have a value of zero and only a few weights retain a substantial value, often occurs in PFs, espe-

cially when the importance density is the state transition prior (|). This problem can

strongly affect the overall application accuracy [1]. The resampling processing step is a critical

process in PFs because it can overcome the degeneracy of particles. It replicates the particles in

proportion to their weights, which allows the particles to be concentrated more in domains of

higher posterior probability. More specifically, new particles ̃
 are drawn from the set of parti-

cles
 based on the particle weights

 through a resampling scheme. The resampled set of new

particles and their weights is denoted by ̂
 ̂

 .

The resampling processing step can be decomposed into three blocks, shown Fig. 2-1. They

are Replication Factors Generation (RFG), Index Generation (IG), and Particle Allocation (PA).

The RFG block calculates the Replication Factors (RFs) for the particles according to their

weights. The RFs show how many times each particle is replicated as a result of resampling. The

IG block is optional. The IG algorithm [5] can be used to replace the need to temporarily store

replicated particle states with the array indexes. Particle states can occupy a significant amount of

10

memory, which is proportional to the number of particles and to the number of dimensions in the

particle states, while the memory for the array indexes only is proportional to the number of par-

ticles. The IG block may prevent parallel execution of the resampling processing step due to non-

predetermined memory accesses for allocating particles. In the PA block, the memory space oc-

cupied by the discarded particles can be re-allocated to the replicated particles if the IG block is

used. If not, particles can be replicated into the new memory according to their RFs. The parallel

implementation of the PA block depends on the implementation technology. Bolic et al. [22] in-

troduced particle proportional allocation and particle non-proportional allocation algorithms for

implementing the PA block in parallel on a distributed architecture. Hwang et al. [23] used a load

balanced particle replication algorithm for parallelizing the PA block on Graphics Processing

Units (GPUs).

Figure 2-1 Functional view of the resampling processing step

Two main types of resampling algorithms (RAs) are used in the RFG block to calculate the

RFs: threshold-based and standard RAs. Threshold-based RAs include the partial resampling [5]

and compact resampling [24] [25] algorithms. Their accuracy is strongly dependent on proper

threshold selection. Although they can have lower computational complexity than standard RAs

and can potentially be implemented in a parallel architecture, their overall accuracy tends to be

degraded [5] [25]. Standard RAs are derived from the stratified resampling [15] algorithm. They

do not require the adjustment of thresholds or other parameters. The Systematic Resampling (SR)

[4], Residual Resampling (RR) [26] and Residual Systematic Resampling (RSR) [5] [27] algo-

rithms are the three most common standard RAs in use.

The SR algorithm calculates the RFs by comparing the Cumulative Weights (CWs)

with a set of corresponding Uniformly Distributed Numbers (UDNs) , for . Here

Resampling Processing

Resampling

Algorithm

(RA)

Index

Generation

(IG)

Particle

Allocation

(PA)

11

 is number of input particles and is the number of resampled particles. is given by equa-

tion (2.8).

 {
 [)

 ()
 (2.8)

where is a random number distributed uniformly in the specified interval, and is the

interval size defined by equation (2.9).

 (2.9)

Fig. 2-2 shows the data flow graph of the SR algorithm. The CWs

 are calculated in

a cascade of adders. and are generated according to equations (2.8) and (2.9). The RFs

 are determined as the number of times the CWs are greater than the corresponding UDNs.

For each RF, this is implemented using a while loop with a non-predetermined number of itera-

tions. In software, these while loops would be placed inside a for loop of iterations. In Fig. 2-2,

this outer for loop is shown unrolled. Each while loop produces two results: a RF and an index m

used by the following while loop.

Figure 2-2 Data flow graph for the SR algorithm

.

.

While
Loop

While loop

+ + +

While loop:

While
Loop

While
Loop

While
Loop

.

.

0 m m

Cumulative
weights

calculation

12

Because the SR algorithm only involves operations such as addition and comparison, it is the

fastest algorithm among these standard RAs when implemented in General Purpose Processors

(GPPs) without Floating-Point Unit (FPU). However, the SR algorithm includes a while loop that

has a non-predetermined number of iterations inside a for loop. Thus, it is not a priori possible to

unfold the loops in the SR algorithm for parallel execution.

The RR algorithm is by far the most complex among these three standard RAs. It is composed

of two steps. In the first step, the principal RFs are calculated by truncating the product of the

normalized weights and the number of resampled particles. Due to the truncation, the sum of

principal RFs may not be equal to the number of resampled particles. In the second step, it is nec-

essary to calculate the residual RFs to compensate the principal RFs and then to guarantee the

number of resampled particles. The SR algorithm is often applied in this step [5]. In terms of

throughput, the best case for the RR algorithm occurs when all the products of the normalized

weights and the number of resampled particles are integers. There is then no need to calculate the

residual RFs. However, such case rarely happens. Hong et al. [28] [29] have proposed an efficient

fixed-point RR algorithm. They simplified the complex residual RFs calculation using a particle-

tagging method to compensate for the number of resampled particles. However, their results are

not identical to the results of the original RR algorithm, since it uses a different algorithm in the

residual RFs calculation. Also, these authors did not show the effects on the accuracy of the tar-

get applications when using this fixed-point RR algorithm. Furthermore, the weight normaliza-

tion step cannot be merged with the RP step and it is necessary to calculate the normalized

weights before using this fixed-point RR algorithm. Finally, their proposed method still requires

a step for the selection, replication or removal of particles. This step involves dependencies be-

tween iterations. These features limit the speed at which this fixed-point RR algorithm can be

computed.

Similarly to the RR algorithm, the RSR algorithm calculates the RFs by truncating the prod-

uct of the weights and the number of particles. However, in order to eliminate the complex resid-

ual processing in the RR algorithm, the RSR algorithm uses a different approach to correct the

RFs. From the data flow graph in Fig. 2-3, the RSR algorithm consists of only allowing for a loop

with a known number of iterations. Each result of the iteration is used as the starting point for

13

the next iteration. The RSR algorithm is the least complex among these three standard RAs [5].

Its loop can be unfolded in a hardware implementation. However, the RSR algorithm requires the

multiplication and ceiling functions, and there remains a dependency between successive loop

iterations. These make the critical path extremely long when executing the loop in parallel. This

in turn implies a reduction of the processor clock frequency or the introduction of pipeline stages

to maintain throughput.

Figure 2-3 Data flow graph for the RSR algorithm

Another approach to implement the resampling processing step is to fuse the RFG, IG and PA

blocks to avoid computing the RFs. This is applicable to the SR and compact resampling algo-

rithms. The fusion can reduce the execution time in sequential software implementations, but it

further increases the difficulty of parallelizing the RA step because it involves non-predetermined

memory accesses in each iteration. Sankaranarayanan et al. [30] and Miao et al. [31] [32] used

this approach and the Metropolis-Hastings algorithm to resample the particles. They generate

resampled particles which only depend on the current and the previous resampled particles. Alt-

hough the software implementation is simpler than for other RAs mentioned previously, it is a

pipelined RA rather than a parallel RA. Moreover, due to the fact that resampled particles do not

.

operations

.

Operations:

.

operations operations operations

K K K K

14

correlate with all of the particles, the overall accuracy of this algorithm tends to be lower than

that of the SR algorithm [32].

In summary, no existing parallel RA provides a solution that matches the accuracy of the

standard RAs. When the resampling step becomes a key bottleneck in implementing PFs in high

throughput applications, a parallel RA may be necessary. Furthermore, it is highly desirable that

such an algorithm achieve the same accuracy as the standard RAs.

There are many variations of PFs. The Sequential Importance Sampling (SIS) PF proposed in

[16] forms the basis PF. It consists of the recursive of prediction generation and weight calcula-

tion stages when each measurement is received sequentially. The pseudo-code shown in Fig. 2-4

presents basic steps for the Sampling Importance Resampling (SIR) PF. After the initialization,

for each iteration, the algorithm includes five steps: prediction generation, weight calculation,

weight normalization, estimation calculation and resampling. Except for the SIS and SIR PFs,

many different versions of the PFs have been developed so far. Pitt and Shephard introduced the

Auxiliary SIR (ASIR) PF [33]. The basic idea is to perform the resampling step at time

using the available measurements at time before the particles are propagated to time . This is

done by using an extra index for each particle, so the origin of the particle can be traced, while

the likelihood at the next time step is evaluated. In this way, the ASIR PF attempts to mimic the

sequence of steps carried out when the optimal importance density is available. Kotecha and

Djuric [34] proposed a Gaussian Particle Filtering algorithm that is suitable for hardware parallel

implementation because it does not require the resampling step. It operates by approximating

desired densities as Gaussian. Only the mean and variance of the densities are propagated recur-

sively in time. However, the applicability of the approach is restricted to the models with non-

Gaussian noise. Doucet et al. proposed [35] a Rao-Blackwellised particle filtering algorithm

which partitions the high-dimension mixture state model into linear and nonlinear models. The

Kalman Filters (KFs) and PFs are used for the linear and nonlinear partitions, respectively. This

procedure enables a significant decrease in the particle state dimension and reduces the energy

dissipation.

15

1) Initialization: Generate
 (|)

2) Prediction generation:
 (|

)

3) Weight calculation:
 (|

)

4) Weight normalization: ̃

∑

5) Estimation calculation: ∑ ̃

6) Resampling: { ̂
 ̂

 } {

 }.

7) Let and repeat from 2.

Figure 2-4 Pseudo-code of SIR particle filter

2.2 Applications of Particle Filters

In many important applications of today’s high technology, e.g., computer vision, navigation,

telecommunication, and the biomedical domain, many challenging problems consist of estimating

unknown states from given noisy measurements. These applications are normally based on non-

linear and non-Gaussian models. Under these circumstances, PFs can be used in order to obtain

robust results of high quality. Hence, PFs are used in many applications. For example, Xu and Li

[36] proposed a tracking algorithm based on the Rao-Blackwellised PF and discussed how to use

this algorithm in typical surveillance applications. Boucher and Noyer [37] introduced a hybrid

PF, which fuses all available pseudo-range measures, applied in global navigation satellite sys-

tems applications when the Global Positioning System fails. Kim et al. [38] improved the particle

filtering algorithm for the estimation of the number of competing stations in wireless networks.

Furthermore, some challenging problems in medical applications such as tracking of protein mol-

ecules in the body [39], tracking of instruments for minimally invasive surgery [40] can be solved

by using PFs.

In summary, PFs see applications in many different areas. Because these real applications are

often related to nonlinear models with non-Gaussian noise, PFs can be used effectively and pro-

duce robust results. Due to the different characteristics of each application, in our research, we

16

mainly focus on two types of tracking applications: target tracking and video tracking. We de-

scribe these two types of tracking applications in the next two subsections.

2.2.1 Target Tracking

The target tracking problem consists of processing measurements obtained from a sensor in

order to maintain an estimate of the target’s state [41]. It can be described by state space models,

where the state vector of a system contains the position and derivatives of the position. For ex-

ample, the system state vector could be the kinematic characteristics of the target (i.e., position,

velocity, etc.). Several references, e.g. [1] [41] [42] [43] [44], describe the concepts of sensor

models, target models, and estimation theory.

In target tracking, common sensors are radar, sonar, and infrared sensors [45]. According to

the different characteristics of these sensors, target tracking can be divided into two categories

[1]: active target tracking and passive target tracking. Active target tracking exploits both range

and bearing measurements. This is the most common type of target tracking in real applications.

However, to avoid the risk of being detected by a hostile target, passive target tracking is often

used. In a passive tracking mode, only the bearing measurement from a target is available and no

explicit range information is measured. Hence, it may be troublesome to compute the position of

the target. This is often referred to as the BOT application [1]. The BOT application arises in a

variety of important practical applications in surveillance, guidance, or positioning systems [1]

[46].

Traditionally, the KF and its variations have been used for target tracking. However, when the

system tracks a maneuvering target [47], where the target may have abrupt changes of its state

(acceleration) by sudden operation of brake or steering, multiple dynamic models will be adopted

to describe this target. These models usually involve strong nonlinearities. In these cases, the KF-

based methods will not provide accurate estimations. Instead, the PF-based methods are used in

order to yield better performance than the KF-based methods [48].

Gordon et al. [2] simulated a basic nonmaneuvering BOT application by using the SIR PF.

The experiments showed that the performance of the SIR PF is greatly superior to the EKF. Kals-

17

son et al. [46] discussed several BOT applications such as air-to-air passive ranging, as well as an

air-to-sea application. They used various PFs and the EKF to implement these applications. Their

results showed that PFs outperform the EKF. The authors also observed that the EKF is much

faster than the PFs.

Gustafsson et al. [6] [49] proposed a framework for target tracking and navigation problems

using the PFs based on the motion model and different types of measurements in distance, angle,

or velocity. They introduced several applications in practice such as vehicle position, terrain ele-

vation matching, integrated navigation systems and BOT applications. These applications can be

easily deployed in the proposed framework. Evaluations of these applications also showed a clear

improvement in performance using PFs compared to the existing KF-based methods.

2.2.2 Video Tracking

Video tracking is a crucial component of several applications such as intelligent video sur-

veillance systems [50], animal tracking [51], human gesture recognition [52], human face recog-

nition [53], and tracking sport players on court [54]. The objective of video tracking is to locate

one or more objects in time and space in video sequences. Yilmaz et al. [55] presented a survey

on video tracking. They discuss the important issues related to video tracking including the selec-

tion of proper object models, selection of motion models, and tracking algorithms.

Tracking objects in video can be plagued by several problems, such as object occlusion, ir-

regular and fast object motion, illumination variation, and object deformation. A suitable object

model which is employed and integrated into video tracking, can solve the illumination variation

and object deformation problems. The object model can include points [56], color histograms

[57], edges [58], or histograms of edge-oriented gradients [59]. A robust tracking algorithm is

still required to overcome the challenges of object occlusion and irregular and fast object motion.

There are various tracking algorithms to perform video tracking, such as mean-shift tracking

[60], the KF [61], and PFs [62]. Mean-shift tracking [60] is a non-parametric density gradient

estimator that is iteratively executed within the local search kernels. It is computationally simple.

However, if the object relocation between successive frames is larger than the kernel size, the

18

algorithm fails to track the object. The KF is still not a robust tracking algorithm because it is

limited to Gaussian and linear models and object models of video tracking are highly nonlinear.

PFs have been popular in video tracking due to their competitive accuracy. Isard and Blake

[62] first used PFs for contour tracking, and named their algorithm the CONDENSATION filter.

In the CONDENSATION filter, the authors use the SIR PF coupled with an active contour model

as the measurement. The CONDENSATION filter performs well in challenging situations such

as cluttered backgrounds and in the presence of occlusion.

Several other works followed the CONDENSATION filter to perform video tracking. In or-

der to have a large coverage of the search space with a small number of particles, Isard and Black

proposed the ICONDENSATION filter [63]. This filter uses importance sampling [52] instead of

the transition prior function, which is used by the CONDENSATION filter. The intent is to

avoid, as much as possible, generating particles with low weights. Deutscher et al. [64] also pro-

posed another version of the PF that uses a simulated annealing step in order to propagate sam-

ples with the intention of producing particles that have a higher probability of representing the

target.

A proper selection of object model is important to achieve good tracking. The color histogram

is relatively insensitive to object deformation and it can robustly solve partial occlusion of the

object. Thus, the color histogram is widely used as an object model for video tracking in PFs.

This idea was initially proposed by Nummiaro et al. [3] and Perez et al. [65]. They both used the

Bhattacharyya distance between the current and reference color histograms to calculate the meas-

urement likelihood. Nummiaro et al. [57] extended their work by proposing an adaptive object

model where the color histogram of the reference can be updated as the object moves. Perez et al.

[66] also proposed another work to combine sound and motion cues into the color-based PFs to

increase the robustness of video tracking systems.

In order to simplify PFs for video tracking, P. Dunne and B. Matuszewski [67] examined the

dissimilarity distance measures and likelihood functions of PFs in the context of video tracking.

Their experimental results suggest that the forms of the likelihood function and distance measure

19

are not critical in video tracking. Their simpler formulation offers more potential computational

economy than the CONDENSATION filter.

2.3 PF Implementation in Embedded Systems

2.3.1 Implementation Methods in Embedded Systems

Selecting a suitable implementation method in real-time embedded systems for an algorithm

or an application is necessary to meet its requirements. Some of the main requirements are infor-

mation throughput, power dissipation, accuracy of the results, silicon area, cost, and time to mar-

ket involved in the embedded implementation. Choices of embedded implementation can be clas-

sified into four categories: General-purpose Processors (GPPs), Digital Signal Processors (DSPs),

ASIPs and Custom Processors (CPs). In this section, we briefly review these embedded imple-

mentation methods.

As their name indicates, GPPs are general in purpose. They are designed for accommodating

a wide variety of applications. It has been the mainstream of processor architecture for imple-

menting applications due to their high design flexibility. However, with increasing the complexi-

ty of the applications, implementing it in GPPs tends to be power-hungry and time consuming.

This situation limits some real-time applications from being efficiently implemented in this pro-

grammable solution [68].

DSPs are a special version of GPPs. The major improvement of DSPs over GPPs is that they

can accelerate various arithmetic operations such as multiply-and-accumulate. Their performance

can be significantly higher over GPPs when implementing applications where the relevant arith-

metic operations are the main bottlenecks. However, DSPs are ad-hoc processors optimized for

digital signal processing. When the bottlenecks of target applications exist in other domains ra-

ther than arithmetic operations such as data-intensive computing, DSPs may not improve their

performance when compared to GPPs.

20

DSPs CPsASIPs

performance

flexibility

GPPs

Figure 2-5 Comparing GPPs, DSPs, ASIPs and CPs

The design effort for CPs is normally much larger than for GPPs or DSPs. CPs are therefore

usually reserved for applications that require a specific type of calculation not efficiently support-

ed in a GPP or DSP. CPs are often implemented in Field Programmable Gate Array (FPGA)

technology where data and communication parallelism can be exploited. Implementing an appli-

cation in CPs can provides better performance and lower power dissipation when compared to

GPPs or DSPs. However, CPs are designed for a single application. They cannot be easily

adapted to different applications. For every change in the application specification, a redesign is

required [69].

ASIPs fill the gap between GPPs and CPs. They maintain the design flexibility of a pro-

grammable solution and overcome the performance limitations of GPPs by including a set of cus-

tom instructions optimized for the target applications. Indeed, ASIPs are extension of GPPs with

dedicated hardware units generated in accordance with custom instructions and special purpose

registers [70]. They can provide a good balance between computation efficiency and design flex-

ibility to meet application requirements such as throughput, time-to-market, design flexibility and

power consumption [71].

Fig. 2-5 compares GPPs, DSPs, ASIPs and CPs in terms of performance and flexibility. GPPs

or DSPs can provide design flexibility to accommodate any applications. But in order to achieve

high throughput for computationally intensive applications, GPPs or DSPs should improve their

clock rate. It tends to increase power consumption. On the other hand, the implementation of a

specific application in CPs benefits from high performance and energy efficiency but at the ex-

21

pense of design flexibility. When implementing computationally intensive applications for real-

time execution, both computational and energy efficiency and design flexibility are important

requirements. An alternative, the design of ASIPs for these applications can be considered as a

better choice than others.

2.3.2 Examples of PF Implementations

Because PFs are computationally intensive, implementing them in a GPP or DSP may not

meet the throughput requirements of tracking applications. For example, Bolic used a TI

TMS320C54x DSP to implement a BOT application with the SIR PF [5]. It provides a maximum

sampling frequency of 1.8 kHz for 1000 particles. However, most target tracking applications are

more complex than the BOT model. In addition, they require a large amount of particles rather

than 1000 particles to increase their accuracy. Under these circumstances, the sampling frequency

in 1.8 kHz is not high enough to accommodate for most target tracking applications.

In order to obtain high data rate and power efficiency, the dedicated hardware implementation

of PFs has been a focus of recent research activity. Several works have reported PF implementa-

tion based on this approach [5] [22] [27] [72] [73] [74] [75]. These studies focused on paralleliz-

ing the Resampling Processing stage, which is a sequential portion in PFs.

Several works by Bolic et al. [5] [22] [72] [73] [74] implemented the SIR PF [2] for a BOT

application in an FPGA prototype. The prediction generation and weight calculation stages in PFs

can be easily parallelized. Hence, the authors used several Processing Elements (PEs) and a cen-

tral unit to build a distributed architecture for the BOT application and then proposed several

resampling algorithms such as the RSR algorithm and the partial resampling algorithm to facili-

tate the resampling algorithm executing in this distributed architecture. Using a Xilinx Virtex II

Pro FPGA for implementation, the authors achieved a maximum sampling frequency of 50 kHz.

Sadasivam and Hong [76] designed an application specific reconfigurable architecture in an

FPGA for the prediction generation and weight calculation stages. This architecture is used in the

PE proposed by Bolic [5] to improve the throughput.

22

El-Halym et al. [27] [75] proposed three different architectures to implement the SIR PF in

FPGA: a two-step sequential machine, a pure parallel architecture, and a distributed architecture.

They used a piecewise linear function to simplify the exponential function. Their work, like the

work by Bolic [5], focused on executing the resampling algorithm in parallel.

Velmurugan et al. [77] [78] presented a mixed-mode implementation of the SIR PF for a

BOT application to reduce power dissipation in an Application-Specific Integrated Circuits

(ASIC) design. They used an analog Multiple-Input Translinear Element (MITE) network [79] to

implement the weight calculation stage. This mixed-mode implementation dissipates approxi-

mately 20× less power when compared to a digital implementation.

More recently, one popular way to reduce the computation time is to use a parallel implemen-

tation with multiple PEs. This implementation allows design flexibility while improving the

throughput. Maskell et al. [80] proposed a Single-Instruction Multiple-Data (SIMD) processor

that uses one PE per particle. They proved that the time complexity of the prediction generation

and weight calculation stages can be reduced from O(N) to O(1) but the time complexity of the

resampling stage is O(()). Hendeby et al. [81] implemented a range-only application with

the SIR PF using a General-Purpose computing on Graphics Processing Unit (GPGPU). The

speed increase was significant due to the nature of parallelization in GPGPU and the interpolation

method for the exponential operation. Medeiros et al. [82] [83] [84] implemented a color-based

PF for video tracking on a SIMD linear processor with 320 PEs. They focused on parallel compu-

tation of the particle weights and parallel construction of the intensity histogram because these

are the major bottlenecks in standard implementations of color-based PFs for video tracking. Li

et al. [85] implemented and optimized PFs for video tracking on a multi-DSP system. They com-

bined the mean shift tracking with PFs to reduce the number of particles.

Most works above can achieve high performance. However, in the context of an embedded

system, the implementation should occupy a small area and consume as little power as possible.

An architecture with a high volume of PEs can achieve high performance for PFs but at the ex-

pense of the silicon area and energy. Hence, it is not suitable in general for embedded applica-

tions.

23

2.4 Application-Specific Instruction-set Processors

Designing and deploying ASICs is becoming increasingly, even prohibitively, expensive with

each succeeding generation [69]. While there are several different possible silicon implementa-

tion alternatives such as FPGAs or DSPs that may replace ASICs, ASIPs have the potential to

provide a programmable solution with high performance. ASIPs aim to generate customizable

microprocessors specialized for a given set of applications to meet the desired requirements in

performance, cost, and power dissipation.

ASIP design has been studied for several years. In this section, we review the most important

works that have been published on the subject. The ASIP design methodologies are presented in

Section 2.4.1. We then introduce two basic approaches to automatically generate ASIPs in Sec-

tion 2.4.2. In Section 2.4.3, the techniques of automatic generation of ASIP specifications are

presented.

2.4.1 Overview

Increasing design time and manufacturing costs are constantly pushing the design from

ASICs to ASIPs in spite of power and execution time overheads. Keutzer et al. [69] predicted this

trend and described the benefits and challenges of ASIPs. The authors followed the MESCAL

methodology [86] to identify five key steps in ASIP development, which are disciplined bench-

marking, defining the architectural space, efficiently describing the space to be explored, explor-

ing the design space, and exporting the programming environment.

Hoffman and Nohl [71] analyzed wireless communication market trends and demonstrated

that ASICs are not the right choice in this market because re-designs in ASICs cause high devel-

opment costs. The authors pointed out that the ASIP design flow should be driven by a set of tar-

get applications. The design successively starts with a successive architecture exploration that

involves stepwise refinement of the architecture. The simulation and profiling results are used to

design the abstraction levels. The abstraction levels range from the instruction level down to the

register transfer level (RTL),

24

Jain et al. [87] surveyed the state of the art in ASIP design methodologies, and also identified

five key steps in ASIP design—application analysis, architectural design space exploration, in-

struction-set generation, code synthesis and hardware synthesis.

Pozzi and Paulin [88] discussed the challenges in ASIP design such as how to reuse custom

instructions and how to use multiple ASIPs on chip to achieve high performance, and lower pow-

er.

Ienne and Leupers [89] described three steps in the evolution of an ASIP methodology. The

first step is migrating from the concept of a general-purpose processor or ASIC to the concept of

an ASIP. Keutzer et al. [69], then Gries and Keutzer [86], summarized this concept. The second

step is to develop a highly automated, low-risk, and reliable ASIP generation process or method-

ology driven by a compact and efficient specification. This step will be explained in the next sec-

tion. The last step is automating the creation of the ASIP specification, based on an automated

analysis and abstraction of the underlying application source code. The work on this step will be

described in Section 2.4.3.

2.4.2 Processor Generation

 The design of ASIPs is a demanding process involving the design of the instruction set, mi-

cro-architecture, RTL description, and software tools such as compiler, simulator, assembler, and

linker. In the traditional approach, each step of this process requires its own design tools and is

often conducted by a separate team of designers. For instance, RTL description requires hardware

development tools such as Xlinx EDK used by hardware developers. Application software im-

plementation requires relevant software languages such as C or Matlab. These high-level lan-

guages are often used by software developers. Moreover, processor architecture exploration can-

not be accomplished without the assistance of all the hardware and software developers. Proces-

sor designers must interact with the developers in other departments to obtain an optimal solu-

tion. Under these circumstances, design engineers rarely have the time to explore architecture

alternatives for the applications. Hence, it is necessary to develop a well-integrated and unified

approach to efficiently build ASIPs.

25

The original approach to build ASIPs is based on Architecture Description Language (ADL)

such as LISA [90], EXPRESSION [91], and nML [92], which can model complex processors at a

high level of abstraction and automatically generate consistent software development tools and

synthesizable HDL code. Ienne and Leupers [89] show the ADL-driven design automation meth-

odology for ASIPs. Various execution tools including a simulator, a retargeted compiler and

hardware implementation are automatically generated from the ADL specification. This automa-

tion of design reduces the design effort and lets the designers focus on architecture exploration.

In this approach, the target processor can be freely defined through adding custom instructions or

subtracting unused instructions.

Even with the support of various design automation tools under the ADL model, synthesizing

and verifying an ASIP from scratch is difficult. Most researchers use templates or a library of

instruction sets to reduce the design space, such as PEAS-III [93] [94]. In PEAS-III, designers

only need to specify the architectural parameters, type of resource, instruction formats, and mi-

cro-operation descriptions of the target processor, and the datapath and control path are automati-

cally generated from the description as well as a set of application program development tools.

Another approach has emerged to build ASIPs. It is based on the concept of a configurable

and extensible processor. Building an ASIP is based on the configurable and extensible proces-

sor. The configurable and extensible processor approach covers a limited architectural design

space but enables high design efficiency. Designers only need to tune the existing carefully de-

signed architecture and add custom instructions for the specific applications to obtain the optimal

ASIP rather than design it from scratch. Consequently, the relative design time can be kept down.

Several commercial examples exist such as Tensilica Xtensa, ARCtangent, and Altera Nios II.

Leibson [95] shows an example of an architecture for configurable and extensible processor,

the Xtensa LX hardware architecture. The author clearly points out that a small portion of the

processor is fixed. Designers are free to select or change the parameters for many configurable

options. Designers also can write a large number of custom instructions for the specific applica-

tion, which are integrated in the pipeline stages of the processor.

26

2.4.3 Automatic Generation of Custom Instructions

Ienne and Leupers [89] state that the third step in ASIP development is to move from manual-

ly generated ASIP specifications to the automatic generation of ASIP specifications. This work

mainly involves automatic identification of custom instructions. The custom-instruction identifi-

cation problem can be divided into the following two phases: generation of a set of custom-

instruction templates and selection of the most profitable templates.

 Ienne et al. [96] studied the limits of custom instruction extensions on embedded systems.

They concluded that custom instructions may achieve reasonable speedups at low cost and write

port size from the function units to the register file appears very important. In addition, hardcod-

ing of constants achieves a minor performance gain at the cost of inflexibility. Memory interfaces

for custom instructions can be beneficial but not essential. Predication and loop unrolling are

fundamental for parallelism to achieve desired results. Bit-width analysis and arithmetic optimi-

zation can carry significant intrinsic advantages.

Yu and Mitra [97] also studied the impact of different architectural constraints on the effects

of custom instructions. They concluded that relaxing control flow constraints may achieve more

performance improvement and a reasonable limit on resources and the number of custom instruc-

tions may not affect speedup. Moreover, the pattern of multiple input and single output (MISO)

may limit the performance but the speedup achieved by four inputs and three outputs pattern is

acceptable. Those studies may provide some guidance for direction in custom instruction genera-

tion. However, these conclusions are based on the assumptions above, which may or may not be

suitable for a specific situation.

A popular approach to generate custom instructions involves analyzing the data flow graphs

(DFGs) of target applications. Atasu et al. published a series of articles [98] [99] [100] [101]

[102] describing how to automatically generate custom instructions. The authors introduced con-

straints on the number of input and output operands for subgraphs and showed this constraint

could significantly reduce the search time. Additionally, the authors proposed a greedy algorithm,

which iteratively selects non-overlapping DFG subgraphs having maximal speedup potential

based on a high-level metric. However, DFGs are often limited to a few hundred nodes and the

27

input/output constraints must be tight enough to reduce the search time. Pozzi et al. [103] opti-

mized the greedy algorithm in Atasu’s work [98] and showed that enumerating connected sub-

graphs only can substantially reduce the speedup potential. Bonzini and Pozzi [104] derived a

polynomial bound on the number of feasible subgraphs if the number of inputs and outputs for

the subgraphs are fixed. However, the complexity grows exponentially as the input/output con-

straints are relaxed. CHIPS [101] combined the advantages of the work above and employed in-

teger-linear-programming proposed by Atasu et al. [99] to identify custom instructions. The au-

thors demonstrated that their algorithms are able to handle benchmarks with large basic blocks

consisting of more than 1000 instructions, with or without the input/output constraints. Further-

more, Atasu et al. [102] proposed a novel method to enumerate the instruction template that ena-

bles fast design space exploration. This simplified method is used to find the optimal instructions

via enumeration of maximal convex subgraphs of DFGs.

28

Chapter 3 EFFICIENT UNIFORM QUANTIZATION LIKELIHOOD

EVALUATION FOR PARTICLE FILTERS IN EMBEDDED IMPLE-

MENTATIONS

In this chapter, we propose a Uniform Quantization Likelihood Evaluation (UQLE) algorithm

for Particle Filters (PFs). This algorithm simplifies the Exact Likelihood Evaluation (ELE) algo-

rithm, the most computationally demanding function in PFs, by using a uniform quantization

scheme to generate approximated weights. Simulation results indicate that PFs using UQLE can

achieve comparable or better accuracy than PFs using ELE. The worst case of UQLE software

implementation in fixed-point arithmetic with 32 quantized intervals achieves 23.7 average

speedup over the software implementation of ELE. An Application-specific Instruction-set Pro-

cessor instruction was designed to accelerate the UQLE algorithm in a hardware implementation.

The custom instruction implementation of UQLE with 32 intervals achieves 34 average speed-

up over the worst case of its software implementation on a 79 K general-purpose processor with

5% additional gates.

The material of this chapter was presented in my contribution [7].

3.1 Introduction

PFs [1] [17] [4] [19] are statistical signal processing methods that perform sequential Monte

Carlo estimation based on a particle representation of probability densities. Since their introduc-

tion in 1993 [2] [13], PFs have gained in popularity to solve non-linear and/or non-Gaussian ap-

plications. They have shown great promise as a powerful methodology in addressing a wide

range of complex applications including video tracking [62] [11] and navigation [6] [49]. PFs use

the concept of importance sampling to recursively compute the relevant probability distributions

conditioned on the observations. In comparison with the Extended Kalman Filter (EKF) [61], PFs

do not rely on linearization techniques and can robustly approximate the true system state with an

appropriate number of particles. In contrast, the EKF sometimes has poor performance, lacks

robustness, and may introduce large biases [2].

29

One of the drawbacks of PFs comes from their significant computational requirements. This

feature tends to limit their use in some embedded applications requiring real-time, high-

throughput processing. There are two main reasons for the significant computational require-

ments in PFs. The first reason is that a large number of particles are often required in order to

achieve acceptable accuracy. As the number of particles increases, the computational complexity

of the PF increases, although this problem can be mitigated through the use of a distributed archi-

tecture [105]. The second reason is related to the type of operations involved. In addition to non-

linear operations in the DSS model defined by the target applications, traditional PFs, such as

Sample-Importance-Resampling (SIR) PFs, may require non-linear operations such as division

and exponentiation to calculate the particle weights in the likelihood evaluation step. These ex-

pensive and complex operations are often important bottlenecks in embedded implementations of

PFs. Simplifying such complex operations is therefore a promising first step in order to improve

the PF processing speed and energy efficiency.

PFs are commonly implemented in General-Purpose Processors (GPPs) or Digital Signal Pro-

cessors (DSPs). Bolic used a TI TMS320C54x DSP to implement SIR PFs as a reference [5]. In

that DSP, the exponential operation is approximated by a Taylor series. Implementation in GPPs

and DSPs is advantageous from a programmability point of view, but may not satisfy the perfor-

mance requirements of applications that demand high throughput. A hardware implementation is

an appealing solution to this problem. This can include custom processors in Field-Programmable

Gate Arrays (FPGAs) or Application-Specific Integrated Circuits (ASICs). Several works have

reported PF designs based on this approach [5] [22] [73] [25] [72]. These studies focused on par-

allelization of the resampling step, which is a sequential portion of the algorithm. Hendeby et al.

implemented SIR PFs in a Graphics Processing Unit (GPU) [81]. The speed increase was signifi-

cant due to the nature of parallelization in the GPU and the interpolation method for the exponen-

tial operation, but this solution is not suitable in general for embedded applications.

A hardware implementation can provide higher performance, but at the expense of making

the implementation less flexible. A modification to an application’s specifications may require

significant redesign effort. Consequently, the other class of hardware implementation considered

is the Application-Specific Instruction-set Processor (ASIP) [106]. ASIPs aim to strike a balance

30

between GPPs and custom processors by combining a programmable solution with customized

hardware units. With this approach, once the bottlenecks of the PFs are found, local acceleration

can be applied with customized hardware units to improve the application’s overall performance.

In this chapter, we target SIR PFs, where resampling is a necessary step. We analyze PF char-

acteristics and profile them to identify possible bottlenecks for three applications. We specifically

consider the likelihood evaluation. Previous work only focused on the exponential operation of

the likelihood evaluation step. We broaden the scope of simplification. We also present a custom-

ized hardware unit for the proposed simplified algorithm, which can be locally accelerated with

an ASIP. The main contributions of this chapter are:

1) A characterization of PFs, which, unlike previous work [5] [6], focuses on distinguishing the

application-specific blocks and the algorithm-defined blocks.

2) A demonstration that the likelihood evaluation is a significant and sometimes dominant step

affecting PF throughput, and that it is worth optimizing.

3) A novel efficient UQLE algorithm to replace the ELE algorithm.

4) An evaluation of the impact of the approximated weights generated by UQLE under various

options on the accuracy of the target applications.

5) An efficient customized instruction for UQLE that achieves significant local acceleration in an

ASIP.

The rest of this chapter is organized as follows. In Section 3.2, we analyze the computational

properties of the SIR PF and justify the need for UQLE. The proposed UQLE is presented in de-

tail in Section 3.3. In Section 3.4, we evaluate the accuracy of the proposed UQLE in comparison

with that of ELE and profile both approaches in a general-purpose processor. In Section 3.5, we

evaluate the throughput of UQLE in its software and customized ASIP versions. Section 3.6 con-

cludes this chapter.

31

3.2 Computational Characteristics of PFs

In this section, we analyze the computational complexity of the SIR PF to justify the need for

the simplification of the likelihood evaluation.

3.2.1 Description of DSS Examples

In this chapter, we apply Dynamic State Space (DSS) models to three concrete examples:

Linear Gaussian (LG), Uni-variate Non-stationary Growth (UNG), and Bearing-Only Tracking

(BOT) models.

Example 1: LG model

Consider the following LG model [19]:

 , (3.1)

 , (3.2)

where (
) and (

), and where
 and

 are considered fixed and known

with variance

 . The initial state distribution is (). This is the basic model

for estimating the problem.

Example 2: UNG model

We consider here a classical UNG model which has been used extensively in the literature for

benchmarking numerical filtering techniques [2] [4] [19]. The state space equations are as fol-

lows:

 () , (3.3)

 , (3.4)

where (
) and (

), with
 and

 . The initial state distribution

is ().

32

We choose this model because it is highly nonlinear and its observation equation (3.4) intro-

duces a bimodal problem to the estimation. This makes the estimation problem more difficult to

solve by traditional methods such as the Kalman filter.

Example 3: BOT model

This example is placed in the context of radar-based target tracking. The BOT model con-

cerns an object moving in the x-y plane (2-D space). The observations taken by the sensor to

track the object are in terms of the bearing or angle with respect to the sensor [2] [5].

 Let the sensor be stationary and located at the origin in the x-y plane. The object moves ac-

cording to the following state space model:

 [

] [

] [
] (3.5)

 (

) (3.6)

where [
] , and denote the coordinate position of the target and

 and

 denote the target velocities in the and directions, respectively. The vector [

] is

composed of white Gaussian noise with standard derivation . Parameter

 (
) is the observation noise with . The set of initial states is set to

 [] and and , which

are the standard derivations of the noise for the initial state.

From Equation (3.6), we see that no range information is available to the sensor. Thus, only

the angle of the object movement but not its distance from the point of sensor can be detected

with a series of observations. The observation consists of a modal ridge along the line

 () . Hence, the BOT model is the multimodal case. The estimate of the object trajec-

tory is difficult to solve because it only depends on this multimodal measurement and the prior

information, which is the position and the velocity of the object at the initial stage.

33

Figure 3-1 Functional view of the SIR PF

3.2.2 Computational Complexity of SIR PFs

3.2.2.1 Functional View of SIR PFs

The functional blocks of SIR PFs with merged steps (weight normalization, resampling, and

estimation) are shown in Fig. 3-1. For each observed input, the SIR PFs sequentially perform

three steps: Prediction Generation (PG), Weight Calculation (WC) and Resampling Processing

(RP). The PG step is decomposed into two blocks, and the WC step is decomposed into three

blocks. The RP step is made up of a single block. The three main steps, decomposed into a total

of six blocks, are in the critical path. Thus, all these blocks are potential optimization targets

when a high performance implementation is required. The complexity of SIR PFs can be parti-

tioned into the six considered blocks: Transition Processing (TP), Random Number Addition

(RNA), Particle Measurement Processing (PMP), Distance Calculation (DC), Likelihood Evalua-

tion (LE) and Resampling Algorithm (RA). The TP and PMP blocks are application-specific

blocks and their respective complexity depends on the application. The other blocks are algo-

rithm-defined. Their complexity is closely related to the selected algorithms. For example, the

normal or exponential likelihood evaluation can be used in the LE block. The choice of the algo-

Prediction Generation Weight Calculation

Transition

Processing

(TP)

Random

Number

Addition

(RNA)

Random

Number

Generation

Initial

Likelihood

Processing

(LP)

Distance

Calculation

(DC)

Particle

Measurement

Processing

(PMP)

Resampling Processing (RP)

Estimate

Calculation

Observation Input

Particle

Allocation

(PA)

34

rithms depends on the type of operations that must be used to obtain a suitable accuracy, a suita-

ble complexity, or an appropriate trade-off between them.

There are two additional significant blocks in Fig. 3-1. One calculates the estimates for the

filter output. The other generates random numbers used for updating the states in the prediction

generation step. Random number generation can consume a substantial part of the overall pro-

cessing time. But due to the fact that it is not in the critical path, a random number generator im-

plemented as a co-processor can be employed to operate in parallel and not affect the speed of

PFs. Similarly, the output block is not in the critical loop.

3.2.2.2 Computational Complexity

The computational complexity of SIR PFs depends on the complexity and dimensionality of

the underlying DSS model. Indeed, that model is updated in the TP and PMP blocks. Most of the

computational effort of the PFs may be spent in these two blocks if the DSS model is complex or

has a large number of dimensions. From Table 3.1, we can see that the TP block in the UNG

model and the PMP block in the BOT model require 51.5% and 45.4% of the overall execution

time in a GPP without FPU, respectively. It is in general not possible to analyze and determine

the computational property of a DSS model without knowing the specific application. In contrast,

with the LG model, the TP and PMP blocks require only about 0.1% of the whole execution time.

In this chapter, we focus on the analysis of the generic blocks that compose the particle filtering

algorithm. As the TP and PMP blocks are application-specific blocks, we therefore concentrate

on analyzing the other blocks that are in the critical path: RNA, DC, LE, and RA.

Table 3.1 and Table 3.2 present profiling results for an Xtensa LX2 processor [107] with and

without FPU, respectively. The tables include average cycle counts and percentage of total execu-

tion time consumed by each block for the LG, UNG, and BOT models, after 50 runs. The Xtensa

LX2 processor is a general-purpose processor with an optional FPU and it also supports optional

customizable instructions that can be added to improve performance.

From Table 3.1, we observe that the LE block always take a significant portion of the total

number of clock cycles (90%, 41%, and 47% for the LG, UNG, and BOT models, respectively).

35

Table 3.2 shows that when a FPU is employed, the LE block consumes a larger fraction of the

total execution time, and the proportions increase to 98%, 43%, and 49% for the LG, UNG, and

BOT models, respectively. This is remarkable and may appear to be somewhat counterintuitive.

Indeed, it was found that the FPU provided by the Xtensa LX2 processor does not support the

complex operations (exponentiation, division, conditional branch, and so on) that the LE block

often uses. The additional hardware complexity introduced by the FPU option is not very useful

for the LE block, which is either dominant or very significant, as it does not improve much its

performance. According to the results in Table 3.1 and 3.2, when a GPP is used, whether a FPU

is present or not, any attempt at optimizing SIR PFs must consider the LE block.

Table 3.1 Average clock cycles of LG, UNG, and BOT models using SIR PFs with 512 particles

in the Xtensa LX2 processor without FPU

LG Model UNG model BOT model

Cycles (K) % Cycles (K) % Cycles (K) %

Transition Processing (TP) 2.01 0.11 2045.86 51.53 34.98 0.90

Random Number Addition
(RNA)

18.38 1.04 18.18 0.46 63.96 1.64

Particle Measurement
Processing (PMP)

2.01 0.11 111.25 2.80 1769.81 45.41

Distance Calculation (DC) 56.40 3.19 66.38 1.67 112.04 2.88

Likelihood Evaluation (LE) 1593.61 90.01 1639.41 41.29 1827.19 46.88

Resampling Algorithm (RA) 98.17 5.54 89.45 2.25 89.27 2.29

Total 1770.56 100 3970.53 100 3897.25 100

Table 3.2 Average cycles of LG, UNG, and BOT models using SIR PFs with 512 particles in the

Xtensa LX2 processor with FPU

LG Model UNG model BOT model

Cycles (K) % Cycles (K) % Cycles (K) %

Transition Processing (TP) 2.01 0.13 1996.68 53.68 7.02 0.20

Random Number Addition
(RNA)

5.52 0.35 5.52 0.15 10.04 0.28

Particle Measurement
Processing (PMP)

2.01 0.13 83.24 2.24 1767.56 49.77

Distance Calculation (DC) 5.52 0.35 5.52 0.15 5.52 0.16

Likelihood Evaluation (LE) 1552.50 97.55 1604.82 43.14 1734.22 48.85

Resampling Algorithm (RA) 23.72 1.49 23.77 0.64 26.09 0.74

Total 1591.27 100 3719.55 100 3550.45 100

36

One popular way to reduce the computation time is to use a parallel implementation with

multiple processing elements (PEs) or multi-cores. The execution time of all PF blocks, except

the RA block, can be reduced significantly, because the computations are independent for each

particle. In principle, the execution time in the LE block can be reduced by a factor equal to the

number of PEs or cores. Due to its sequential nature, the RA block that performs systematic

resampling (SR) [2], may become the most time consuming block when many PEs are employed.

However, various efforts [5] [22] [73] were made to derive distributed resampling algo-

rithms/architectures that allow the RA block to exploit the parallelism. The execution time of the

RA block can also be reduced. When such distributed resampling algorithms/architectures are

used, the LE block becomes the most computationally expensive part again. This is a further mo-

tivation to focus on optimizing the LE block, irrespective of whether PFs are executed in a single

GPP or using a parallel implementation with multiple PEs.

3.3 Proposed UQLE Algorithm

Most likelihood evaluation algorithms used in PFs are based on the class of exponential fami-

ly of distributions, which includes the normal, exponential, and gamma distributions. These dis-

tributions require the calculation of the exponentiation, division, multiplication and other opera-

tions. These operations make the likelihood evaluation become the most computationally inten-

sive part in PFs. A simplified likelihood evaluation algorithm is one way to improve the particle

filtering speed.

The proposed UQLE algorithm is based on the assumption that approximated weight values

do not significantly affect the accuracy of the target application. Under this assumption, UQLE

can employ a uniform quantization method to enable the use of a simple approximate representa-

tion for some quantity of the output value, the particle weights.

In SIR PFs, the particle weights can be given by the likelihood evaluation:

 (

), (3.7)

where , the input to the likelihood evaluation, is the th particle distance between the observa-

tion and the th
 particle result in the PMP block, and is the variance of the observation. The

37

proposed UQLE takes advantage of the fact that the particle weights are in the range [0, 1]. This

range can be divided into intervals of length where is the quantization step-size:

. (3.8)

Based on this partition, the range of the weights consists of intervals: [)

[) [) [() ()) [()] . Inside each interval, we can

choose the high value, the middle value, or the low value to represent the quantized value as the

approximated weight . They are defined as:

 {

()

 , (3.9)

where , is the index for each of the intervals. With this approach, once the

index for each of the intervals is determined according to the particle distance , the approxi-

mated weights are given by equation (3.9).

In accordance with the intervals of the particle weights, the data range of the particle dis-

tance can also be divided into intervals: [) [) [) [)

[] , where is a boundary of each interval in the particle distance

direction. can be obtained through the inverse likelihood evaluation. The inverse normal dis-

tribution likelihood evaluation is given by:

 √ () . (3.10)

When the particle distance is available, the index of the interval can be determined from the

interval of the distance range in which this falls.

When there are significant deviations from the most recent estimate, the value of all the

weights can be small, and the distances can all fall in the [) range. This result is due to the

fact that all weights are equal to zero when we use the low value of the intervals as the approxi-

mated weight. In order to avoid this situation, we insert an additional interval [)

into [). The approximated weight at the index is then modified as follows:

38

{

 [)

, (3.11)

where is calculated by equation (3.10) with the input . There are therefore intevals.

Figure 3-2 Likelihood evaluation curve for the proposed UQLE with M+1= 5 intervals

Fig. 3-2 shows an example of the likelihood evaluation curve for the proposed UQLE. The

range of particle weights is divided into intervals: [) [) [) [)

[] . Because , we have

 . Then, can be calculated by the

inverse likelihood evaluation defined by equation (3.10). The index can be determined via the

comparison between the particle distance and . For instance, for a particle distance

 [), we can obtain its index , as shown in Fig. 3-2. The weight for this particle

distance can be approximated by equations (3.9) and (3.11), which in this case is equal to .

39

The pseudo-code for UQLE is given in Fig. 3-3. The whole algorithm is divided into two

parts: a pre-calculation part and an on-line execution part. After defining the number of intervals

and the weight value, which is a low, middle, or high value as the representation, the pre-

calculation part provides the boundary in the distance direction and the approximated weights

for each interval according to equations (3.9) and (3.11). These results are used for the on-line

execution part later. In the on-line execution part, the approximated weights can be obtained by

comparing the input, i.e. the particle distance, with the boundary in the distance direction .

Using the proposed procedure, the execution time is reduced significantly because we obtain the

weights from comparisons instead of complex arithmetic for exact likelihood evaluation.

Pre-calculation part

Define ,

 (())

 (())

On-line execution part

 (

)

If (
)

else

 Find using linear search, the index of the intervals, such that
 ,

end

end

Figure 3-3 Pseudo-code of the proposed UQLE algorithm

3.4 UQLE Accuracy Evaluation

3.4.1 Implementation Environment and Accuracy Metrics

In this section, we simulate SIR PFs using UQLE for the LG, UNG, and BOT models in the

MATLAB environment. According to the UQLE algorithm, the particle distance must be com-

pared with pre-calculation boundaries . We can then find the index of the intervals and ob-

tain the particle weight directly from the pre-calculation weight . The input and output do not

have any numerical calculation relationships. It is not necessary to set all the data in UQLE in

floating-point arithmetic. In order to be consistent with the implementation in the Xtensa proces-

sor, we implemented UQLE with floating-point arithmetic for the input, the particle distance, and

40

fixed-point arithmetic with 16-bit representation for the output, the particle weight. Thus, we set

the range [0, 65535] for the particle weight and equal to 1. Under this situation, we compare the

resultant accuracy to SIR PFs using ELE. For the LG and UNG models, the accuracy is measured

by the Root-Mean-Square Error (RMSE):

 √

∑ (̂)

 (3.12)

where is the true simulated state and ̂ is the estimated state. For the BOT model, in order to

obtain a better illustration for the performance, the accuracy is measured by the combined Mean-

Squared-Error (MSE) (where MSE = RMSE
2
) of the x and y positions:

 √() () (3.13)

where and are the MSE for the x and y positions, respectively. The smaller the value

of the combined MSE is, the better the performance obtained. Furthermore, simulation for a lost

track situation is conducted for the BOT model, as suggested in [5]. The track is considered lost

if all particles have zero weight in the ELE or if all the particle weights are equal to in the

UQLE.

In order to obtain stable performance results, 10000 simulations were performed with 50 ob-

servation inputs for the LG and UNG models and 25 observations for BOT model.

3.4.2 Accuracy for the LG Model

Table 3.3 shows maximum, average and minimum RMSE results for SIR PFs using ELE, for

512, 1024, 2048, and 4096 particles. We use these results as the reference to compare the results

generated by UQLE.

Table 3.3 RMSE of the SIR PF using ELE for the LG model

of particles 512 1024 2048 4096
Maximum RMSE 1.030 1.053 1.037 1.052
Average RMSE 0.785 0.784 0.783 0.783

Minimum RMSE 0.559 0.545 0.567 0.472

41

In Fig. 3-4, maximum, average and minimum RMSE results of SIR PFs using UQLE are plot-

ted. The white bar gives RMSE results of SIR PFs using ELE as summarized in Table 3.3. From

Fig. 3-4, we can see that SIR PFs using UQLE can produce average RMSE performance close or

equivalent to SIR PFs using ELE when M, the number of intervals, exceeds 16. Hence, UQLE

can replace ELE in SIR PFs in the LG model. It can also be observed that with the number of

particles N increasing, UQLE with M = 8 can achieve equivalent accuracy to ELE. Decreasing

the number of intervals implies reducing the computation time. UQLE outperforms ELE in speed

without sacrificing the accuracy. Concerning the choice between the low, middle or high value,

UQLE with the low value is slightly better than other choices.

Figure 3-4 Maximum, average and minimum RMSE results of SIR PFs using UQLE for the LG

model

3.4.3 Accuracy for the UNG Model

Fig. 3-5 compares the maximum, average and minimum RMSE results for 512, 1024, 2048

and 4096 particles for the UNG model. The dashed line displays the reference accuracy of SIR

0

1

2

3

4

2 4 8 16 32 64

R
M

SE

Number of intervals

N=512

0

1

2

3

4

2 4 8 16 32 64

Number of intervals

N=1024

R
M

SE

0

0.5

1

1.5

2

2.5

2 4 8 16 32 64

Number of intervals

N=2048

R
M

SE

0

0.5

1

1.5

2

2.5

2 4 8 16 32 64

Number of intervals

N=4096

R
M

SE

42

PFs using ELE, with the values summarized in Table 3.4. Fig. 3-5 shows that UQLE achieves an

accuracy similar to ELE for a number of intervals (M = 16) when the low or middle values are

used. In addition, the accuracy of UQLE in the UNG model is similar to that in the LG model,

with UQLE using fewer intervals and achieving equivalent accuracy to ELE when the number of

particle increases.

Table 3.4 RMSE of SIR PFs with ELE for the UNG model.

of particles 512 1024 2048 4096

Maximum RMSE 5.098 5.471 5.139 5.100

Average RMSE 3.78 3.76 3.76 3.76

Minimum RMSE 2.528 2.516 2.554 2.549

Figure 3-5 Maximum, average, and minimum RMSE results of SIR PFs using UQLE for the

UNG model

2

4

6

2 4 8 16 32 64

R
M

SE

Number of intervals

N=512

2

3

4

5

6

2 4 8 16 32 64

R
M

SE

Number of intervals

N=1024

2

3

4

5

6

2 4 8 16 32 64

R
M

SE

Number of intervals

N=2048

2

3

4

5

6

2 4 8 16 32 64

R
M

SE

Number of intervals

N=4096

43

3.4.4 Accuracy for the BOT Model

In Table 3.5, we show the maximum, average, and minimum combined MSE and the number

of times when the track is lost versus the number of particles for SIR PFs using ELE. From Table

3.5, with the increase of the number of particles, the average combined MSE decreases from 0.21

for 512 particles to about 0.14 for 4096 particles. Meanwhile, the number of lost tracks drops

from about 8052 for 512 particles to below 2700 for 4096 particles. It should be noted that in

ELE we assume that the weights are clamped to when their value is smaller than ,

which is the same as for UQLE, because the lost track situation significantly depends on the

smallest weights considered.

Table 3.5 Combined MSE and Lost track of SIR PFs with ELE for the BOT model

of particles 512 1024 4096
Maximum Combined MSE 1.22 0.98 0.78
Average Combined MSE 0.21 0.17 0.14

Minimum Combined MSE 0.01 0.01 0.02
Lost track 8052 6824 2637

Fig. 3-6 shows the maximum, average, and minimum combined MSE and the lost track situa-

tion for SIR PFs using UQLE. The dashed lines are the corresponding results obtained by SIR

PFs using ELE. From Fig. 3-6, although UQLE employing the low value of the intervals has poor

performance in our experiments, UQLE with the high value or the middle value of intervals sig-

nificantly outperforms SIR PFs using ELE, even for the smallest number of intervals M = 2 in

our experiments. This means that the speed using the proposed UQLE can increase significantly

in the BOT model because each particle only needs to be compared with two boundaries in the

UQLE algorithm. Fig. 3-7 displays a representative trajectory and the tracking obtained by SIR

PFs using ELE and SIR PFs using UQLE with 2 intervals and high value. It shows again that

UQLE with few intervals can replace ELE in the BOT model.

44

Figure 3-6 Maximum, average and minimum combined MSE and lost track for SIR PFs using

UQLE

0

0.5

1

1.5

2

2 4 8 16 32 64

C
o

m
b

in
e

d
 M

SE

Number of intervals

N=512

5000

6000

7000

8000

9000

10000

2 4 8 16 32 64

Lo
st

 t
ra

ck

Number of intervals

N=512

0

0.5

1

1.5

2 4 8 16 32 64

C
o

m
b

in
e

d
 M

SE

Number of intervals

N=1024

5000

6000

7000

8000

9000

10000

2 4 8 16 32 64

Lo
st

 t
ra

ck

Number of intervals

N=1024

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32 64

C
o

m
b

in
e

d
 M

SE

Number of intervals

N=4096

0

2000

4000

6000

8000

10000

2 4 8 16 32 64

Lo
st

 t
ra

ck

Number of intervals

N=4096

45

In summary, simulation results show that UQLE can achieve equivalent or better accuracy

than ELE for SIR PFs when the number of intervals and the representation of the output value are

suitably chosen. In our experiments, in order to obtain comparable accuracy to ELE, the mini-

mum number of intervals is M = 16, 32 and 2 for the LG, UNG, and BOT models, respectively.

Figure 3-7 Tracking of a moving target in two dimensions with SIR PFs using ELE and SIR PFs

using UQLE with 2 intervals and high value.

3.5 UQLE Throughput Evaluations

3.5.1 UQLE Software Implementation and its Performance

We implemented the proposed UQLE in the Xtensa LX2 processor in order to compare its

performance to that of ELE. We used the same configuration simulated in the MATLAB envi-

ronment, with the particle distances expressed in floating point representation and the particle

weights expressed in fixed point with 16 bits. In order to further reduce the execution time, we

also evaluated the particle distance in fixed-point arithmetic.

46

Table 3.6 Execution time and speedup of UQLE for the worst and best case in the Xtensa LX2

processor

Likelihood Eval-

uation (LE)

Particle Distance

Representation
M Case

Execution time

(cycle counts)

Average

speedup

ELE Floating-point

3221 1×

UQLE

Floating-point

64

Worst

1112 2.9×

32 568 5.7×

16 296 10.9×

4 92 35.0×

2 58 55.5×

Any Best 40 80.5×

Fixed-point

64

Worst

274 11.8×

32 136 23.7×

16 38 84.8×

4 14 230.1×

2 11 292.8×

Any Best 9 357.9×

Table 3.6 shows the speedup for UQLE with the particle distance expressed with floating-

point and fixed-point accuracy when compared to ELE. The average execution time for the ELE

in Table 3.6 is chosen as a baseline based on 10000 simulations since the execution time of calcu-

lating ELE in the floating-point arithmetic on the Xtensa LX2 processor is not fixed. The best

case for UQLE using any number of intervals achieves 80.5 and 357.9 average speedup over

ELE when executed in floating-point and fixed-point arithmetic for the particle distance, respec-

tively. The worst case for floating-point UQLE using 64 intervals still achieves 2.9 average

speedup over ELE. The speedup is greater when the number of intervals for UQLE is smaller

than 64 or the weights are calculated by UQLE in the fixed-point arithmetic. UQLE with 2 inter-

vals in fixed-point arithmetic can achieve 292.8× average speedup over the software implementa-

tion of ELE on an Xtensa LX2 processor.

As shown in Fig. 3-4, 3-5 and 3-6, in order to achieve the same accuracy as ELE, the UQLE

requires at least 16, 32 and 2 intervals for the LG, UNG and BOT models, respectively. Table 3.7

shows the average execution time for ELE and UQLE in the LG, UNG and BOT models. UQLE

47

for the UNG model is therefore the most computationally demanding of the three. Still, its fixed

point implementation achieves 53.4× average speedup over the software implementation of ELE.

Table 3.7 Average execution time and speedup of UQLE for the LG, UNG and BOT models in

the Xtensa LX2 processor

Model
Likelihood

Evaluation (LE)

Particle Distance

Representation
M

Average execution

time (cycle counts)

Average

speedup

LG

Model

ELE Floating point - 3113 1.0×

UQLE

Floating point
32 327 9.5×

16 197 15.8×

Fixed point
32 91 34.2×

16 28 111.2×

UNG

Model

ELE Floating point - 3202 1.0×

UQLE

Floating point
64 314 10.2×

32 183 17.5×

Fixed point
64 111 28.8×

32 60 53.4×

BOT

Model

ELE Floating point - 3568 1.0×

UQLE

Floating point
4 60 59.5×

2 54 66.1×

Fixed point
4 11 324.4×

2 10 356.8×

3.5.2 UQLE ASIP Implementation and its Performance

We designed a custom instruction for UQLE to improve the speed of SIR PFs in ASIPs. As

shown in Fig. 3-8, the UQLE algorithm has one input
 and one output

 . This situation is fa-

vorable for the generation of a custom instruction because there are no additional input/output

data that could create a bottleneck preventing effective acceleration.

The proposed logic organization to support the custom instruction is shown in Fig. 3-8. In a

typical configuration of that instruction, 4 quantization intervals are supported and the output is

the high value of the intervals expressed with 8 bits. The critical path consists of a comparator, an

48

XOR gate, an encoder, and a multiplexer. When a particle distance is available, this value is

compared with distance boundaries }, which are stored in the state registers. For

example, if [], which means , and , the outputs of the

comparators are . Through the XOR gates, the encoder input is changed to . At

the output of the encoder, the interval index is equal to 01, which means is in the second inter-

val. The weight can be set to {01111111}, which corresponds to the high value of the second

interval. The number of intervals supported is a parameter of the architecture that can easily be

changed as a function of the specific requirements. We implemented the instruction for five num-

bers of intervals (4, 8, 16, 32 and 64) and three choices of (low, middle and high value of the

quantization intervals).

The custom instruction was described in the Tensilica Instruction Extension (TIE) language

[108] to generate a specific functional unit in the Xtensa LX2 processor. The special instruction

for UQLE is:

 (

). (3.14)

Particle
Distance

En
co

de
r

11
11

11
00

00
00

01

weight

Comp

Comp

Comp

Comp

1

T3

T1

T0

T2 01

M
U

X

State INPUT/OUTPUT

Figure 3-8 Custom UQLE logic organization with 4 intervals

49

Profiling results are shown in Table 3.8. With the custom instruction, the speedup for UQLE

using 64, 32, and 4 intervals can reach up to 278 , 142 , and 23 over their floating-point soft-

ware implementation in the worst case, respectively. In addition, the cycle count for UQLE is

independent of the number of intervals. Increasing the number of intervals only increases the pro-

cessor size. The additional size for UQLE with 4, 32, 64 intervals, respectively only occupies

0.7%, 4.7%, 8.4% of the reference processor that consumes 79K gates.

Table 3.8 Execution time and additional area of UQLE using its custom instruction in PFs in the

Xtensa LX2 processor

M
Implementation

method
Case

Particle

distance

representation

 Execution
time (clock

cycles)
Speedup

Additional
area (gates)

64
Software Worst

Floating-point 1112 1
-

Fixed-point 274 4.06

ASIP - Fixed-point 4 278 6.60 K

32
Software Worst

Floating-point 568 1
-

Fixed-point 136 4.18

ASIP - Fixed-point 4 142 3.75 K

4
Software Worst

Floating-point 92 1
-

Fixed-point 14 6.57

ASIP - Fixed-point 2 23 0.57 K

From Table 3.8, the UQLE instruction can significantly reduce the execution time to only 4

cycles. For the LG model, the likelihood evaluation dominates the execution time of the whole

application. It is significant that using only 3.75K additional gates for UQLE instruction with 32

quantization intervals can achieve almost 10 average speedup as shown in Table 3.9. These

additional gates only occupy 4.7% of the reference processor. If a processor with multiple PEs is

used to implement the LG model, at least 10 PEs are required to achieve 10 speedup. But the

number of additional gates to build 10 PEs is much larger than the number of gates that the

UQLE instruction uses. Hence, for those applications using PFs where the DSS model is not

complex, using UQLE is a powerful first step to reduce the execution time and energy consump-

tion.

50

For applications using PFs like the UNG and BOT models, where the DSS model is rather

complex, simplifying the algorithm or using hardware implementation must be shifted to the DSS

model. Finding the bottleneck in Fig. 3-1 requires a careful consideration of the PF application.

For instance, we know that the bottleneck of the UNG model is in the TP block. The BOT model

has a complex operation, the triangle function, in the PMP block. With this approach, we can

focus on optimizing the TP block in the UNG and the PMP block in BOT model. Regardless, the

likelihood evaluation is still a time consuming algorithm. For applications that require very high

throughput, the UQLE instruction is a promising step to improve the throughput and reduce the

energy consumption. From Table 3.9, using the UQLE instruction results in 1.7 and 1.9 aver-

age speedup over the software implementations of the UNG and BOT models, respectively.

Table 3.9 Speedup between running in GPP and in GPP with UQLE instruction for the LG,

UNG, and BOT models

Applications
Average execution

time (GPP)

Average execution time
(GPP with UQLE Instruc-

tion)

Average
Speedup

LG 1770.56 K 179.20 K 9.88

UNG 3970.53 K 2333.37 K 1.70

BOT 3897.25 K 2072.31 K 1.88

3.6 Conclusion

In this chapter, a novel PF functional view is constructed. It focuses on distinguishing the

blocks defined by the applications and algorithms. Under this characterization, we demonstrate

that the likelihood evaluation is a time-consuming block and is not affected by the target applica-

tions. In order to speed up the execution of the likelihood evaluation, we presented an efficient

uniform quantization likelihood evaluation algorithm. We then built an ASIP UQLE instruction

to improve its throughput in a custom processor. Simulation results demonstrate that PFs using

the proposed UQLE can achieve equal or better performance than particle filters using the exact

likelihood evaluation. We also demonstrate that the proposed ASIP UQLE instruction can

achieve an average speedup of 805× in comparison with ELE implemented in a GPP, while the

processor size only increases 4.7 % for UQLE with 32 intervals.

51

Chapter 4 NOVEL SYSTEMATIC RESAMPLING ALGORITHMS AND

THEIR IMPLEMENTATION IN ASIPS

In this chapter, we propose two novel resampling algorithms to replace the sequential Sys-

tematic Resampling (SR) algorithm in Particle Filters (PFs). There are the reformulated SR and

Parallel Systematic Resampling (PSR) algorithms.

The reformulated SR algorithm is a new form of the SR algorithm suitable for parallel im-

plementation in an Application-Specific Instruction-set Processor (ASIP). Experimental results

show that the ASIP implementation of the reformulated SR algorithm achieves a 23.9 speedup

over the sequential SR algorithm in a General-Purpose Processor (GPP). This is for the case of

four weights calculated in parallel, and eight categories defined by uniformly distributed numbers

that are compared simultaneously. This comes at a cost of only 54K additional gates, or 68%

overhead to be added to a base processor with 79K gates.

The reformulated SR algorithm was presented in my contribution [8].

 The PSR algorithm makes iterations independent, thus allowing the resampling algorithm to

perform loop iterations in parallel. A fixed-point version of the PSR algorithm is also proposed,

with a modification to ensure that a correct number of particles is generated. Experiments show

that the fixed-point implementation of the PSR algorithm can use as few as 22 bits for represent-

ing the weights, when processing 512 particles, while achieving results equivalent to a single-

precision floating-point SR implementation. Four customized instructions were designed to ac-

celerate the proposed PSR algorithm in ASIPs. These four custom instructions, when configured

to support four weight inputs in parallel, lead to a 53.4× speedup over a floating-point SR imple-

mentation on a general-purpose processor at a cost of 47.3 K additional gates.

The PSR algorithm was presented in my contribution [9].

4.1 Introduction

A PF is a sequential Monte Carlo estimation method, often used in signal processing applica-

tions [1] [17] [4] [19]. The operation of PFs is based on representing the a posteriori probability

52

density function of system state variables by a group of particles and corresponding weights.

Since their introduction in 1993, PFs have gained in popularity to solve non-linear and non-

Gaussian problems [2] [13]. It has also been shown that they outperform other filters, including

the Extended Kalman Filter [109], in many practical applications such as video tracking [11] [62]

and navigation [6] [49].

PFs have four major steps, shown in Fig. 4-1 [1]: Prediction Generation (PG), Weight Calcu-

lation (WC), Resampling Processing (RP), and Estimate Calculation (EC).

The PG step generates random samples, which can approximate the a priori probability densi-

ty function of some quantity or objects of interest. The weight of each particle is then calculated

in accordance with information derived from observations in the WC step. The RP step solves the

undesirable degeneracy problem, where after a few iterations, most weights tend to have a value

of zero and only a few weights retain a substantial value. Resampling consists of removing the

particles whose weights are negligible and generating a new group of particles from those with

substantial weights. In the EC step, the state estimate can be computed by the minimum mean-

square error, the maximum a posteriori probability, or other methods. A weight normalization

step, shown separately in previous work [5] [74], may be merged with the RP and EC steps. Such

merging can reduce the execution time of PFs. The critical path of PFs is thus composed of the

PG, WC, and RP steps. These steps are primary optimization targets in applications requiring

high throughput.

Prediction

Generation

(PG)

Weight

Calculation

(WC)

Initial

Resampling

Processing

(RP)

Observation
Input

Estimate

Calculation

(EC)

Figure 4-1 PF steps

53

A parallel architecture is an appealing option to improve the throughput of a PF. The execu-

tion time of the PG and WC steps can be reduced significantly by exploiting their inherent paral-

lelism. However, the RP step is sequential in nature, due to data dependencies between iterations.

Thus, it is a potential bottleneck when other steps are implemented in parallel. The main contri-

bution of this chapter is to propose two novel resampling algorithms. There are the reformulated

SR and PSR algorithms. The reformulation SR algorithm enables parallel execution in an ASIP

with six custom instructions. The PSR algorithm breaks dependencies between iterations. This is

accomplished through the introduction of the concept of Cumulative Replication Factors (CRFs).

We also propose a fixed-point version of the PSR algorithm that guarantees a correct number of

resampled particles even in the presence of finite precision effects.

In this work, to demonstrate the potential of the PSR algorithm in embedded systems, we tar-

geted ASIP [106] implementation. ASIPs aim to strike a balance between GPPs and Custom Pro-

cessors (CPs) by combining a programmable solution with customized hardware units. With this

approach, the design effort can be reduced significantly when compared to custom processor de-

sign. Once performance bottlenecks are found, hardware design can be applied with customized

hardware units addressing them to improve the application’s overall performance. The second

contribution of this chapter is an ASIP design with custom instructions supporting the reformu-

lated SR and PSR algorithms in an efficient and accelerated manner.

4.2 Reformulated SR Algorithm and its ASIP Implementation

4.2.1 The Reformulated SR Algorithm

The SR algorithm cannot be parallelized directly due to the data dependency on the index m

of Uniformly Distributed Numbers (UDNs) and the number of iterations that is unknown a priori

for the while loop in Fig. 2-2. The reformulated SR algorithm combines a group of these while

loops into a parallel while loop. A set of Cumulative Weights (CWs) can be processed in parallel

with custom instructions in the parallel while loop. The reformulated SR algorithm does not

change any properties of the SR algorithm. Its results are identical when the initial is the

same. Fig. 4-2 shows the data flow graph of the reformulated SR algorithm, and Fig. 4-3 shows

the pseudo-code of the parallel while loop. The reformulated SR algorithm described in Fig. 4-2

54

still exhibits inter loop dependencies, but the pseudo-code in the parallel while loop can be exe-

cuted in parallel with custom instructions generated from loop unrolling [110] in an ASIP.

Figure 4-2 Data flow graph of the reformulated SR algorithm

The reformulated SR algorithm functions as follows. The CWs and UDNs are separated into

 groups and groups, where and are the number of CWs and UDNs in a group, re-

spectively. Thus, CWs can be calculated in parallel. In the beginning, the product of the current

order of the group of UDNs and the number of UDNs in a group is loaded into the Replica-

tion Factors (RFs) as shown in lines 1-3 in Fig. 4-3. Each CW is compared with the th
 group of

independent UDNs simultaneously. When the CW is greater than the UNDs, the RF value is in-

cremented. The accumulation of the comparisons is added to the RFs as shown in line 7. Lines 9-

13 show whether the current executed group of CWs shifts to the next group or is compared with

the next group of UDNs. When shifting to the next group of CWs, the RFs in the current group

are calculated in accordance with the pseudo-code in lines 15-20. The variable lastRf carries the

value of the last accumulative comparison results from Line 7 in the previous group to calculate

the first RF in the current group. The variable temp temporarily reserves the value of the last cu-

mulative comparison results in the current group.

. . .

. . .

Parallel
while
loop

+ +

Parallel
while
loop

Parallel
while
loop

. . .

. . .

Cumulative
weights

calculation

j=0 j jj

lastRf lastRf lastRf

55

Although the parallel while loops in the reformulated SR algorithm still depend on the order

of the group of UDNs, calculating the RFs from the CWs can be executed in parallel with custom

instructions as explained in the next section.

{

 } {

 }

1 for k

2

3 end

4

5 while ()
6 for

7

 (
) (

)

8 end

9 if (
)

10

11 else

12

13 end

14 end

15

16 for k

17

18 end

19

20

Figure 4-3 Pseudo-code of the parallel while loops

4.2.2 ASIP Implementation

The generation of custom instructions is a popular method to accelerate algorithmic bottle-

necks with ASIPs. It involves combining several basic operations into one, often avoiding costly

loads and stores. It also facilitates the parallel execution of groups of instructions. Table 4.1 lists

and describes the six custom instructions we designed for the reformulated SR algorithm, and

Fig. 4-4 shows the resulting pseudo-code.

We do not describe the parallel load and store instructions because they are automatically

generated by the implementation tool from the description of the specialized storage. The cwcal-

culation instruction performs the parallel calculation of the CWs from a set of weight inputs. It

56

requires a state register to store the value of the last CW in the current group for further iteration.

The execution time to calculate the CWs is reduced when using the cwcalculation instruction by

a factor equal to the number of weights in a set. The paradef instruction is a fusion instruction. It

combines a set of instructions to calculate and defined in equation (2.8) and (2.9) into

one. Due to the need for and as inputs in the crfcounter and nextiterationdef instruc-

tions, the paradef instruction uses two state registers to store the value of and to avoid

extra inputs for these two instructions. Since the codes of lines 3 and 7 in Fig. 4-3 are not de-

pendent on the iterations, the baseadder and crfcounter instructions perform instructions of

lines 3 and 7 per call, respectively. The nextiterationdef instruction fuses lines 9-13 into one in-

struction. The order of the group of UDNs is stored in a state register to avoid extra load and

store instructions. The rfcalculation instruction executes the instructions of Line 17. It uses two

temporary state registers to fuse the instructions of lines 15, 19, and 20 with line 17.

Table 4.1 Custom instructions for the reformulated SR algorithm

Name Description

cwcalculation
Calculate cumulative weights. The delay of its critical path depends on the
number of data inputs.

paradef Calculate and .

baseadder
Calculate the product of the current order of the group of UDNs and the
number of UDNs in a group to store in the RFs in parallel (lines 1-3 in
Fig. 4-3).

crfcounter
Accumulate the results of the comparison between CWs and UDNs in
parallel (lines 6-8 in Fig. 4-3).

nextiterationdef
Determine whether to process the next group of the CWs or the next group
of UDNs (lines 9-13 in Fig. 4-3).

rfcalculation
Calculate the RFs via obtaining the difference between two successive
accumulative comparison results in parallel (lines 15-20 in Fig. 4-3).

According to the pseudo-code in Fig. 4-3, the three for loops (lines 2-4, 6-8, and 16-18) are

major bottlenecks in the parallel while loop. We use the baseadder, crfcounter, and rfcalculation

instructions to execute these three loops in parallel and thus significantly reduce the execution

time.

57

{

 } {

 }
Cumulative Weights Calculation:

for

 {

 } cwcalculation(

)
end

 and definition:

 (
)

RFs calculation:

for

 {

 } ()

 while ()

{

 } ({

 } {

 })

 (
)

 end

 {

 } ({

 })
end

Figure 4-4 Pseudo-code of the reformulated SR algorithm

4.2.3 Performance

The Xtensa LX2 processor [107] was used to implement the reformulated SR algorithm with

512 particles. The Xtensa LX2 is a GPP to which custom instructions can be added to improve

performance. Table 4.2 compares the speedup and additional resource requirements of the serial

and reformulated SR algorithms. For the basic SR algorithm, we consider the cases without and

with a FPU. The PA process is not considered in this experiment. The performance of the refor-

mulated SR algorithm depends on the number of CWs and UDNs calculated in parallel. The

speedup is 10.2 when inputting two CWs in parallel and comparing one UDN in each iteration,

with a cost of 28.9 K additional gates. When inputting four CWs in parallel and comparing eight

UDNs simultaneously, the speedup reaches 23.9 at a cost of an additional 54.0 K gates. Fig. 4-5

plots the various solutions. The ASIP implementation of the proposed reformulated SR algorithm

is significantly superior to a GPP implementation with FPU in terms of speedup and extra re-

sources. Further performance improvements can be achieved at the expense of the extra resources

when increasing the number of CWs and/or UDNs as inputs in the custom instructions.

58

Table 4.2 Performance and resource requirements for the reformulated SR algorithm in ASIP

implementation

Implementation
method

of CWs # of UDNs Clock cycles Speedup
Additional area

(gates)

SR without FPU - - 64.1 K 1 0

SR with FPU - - 12.7 K 5.05 77.0 K

Reformulated SR
in ASIP

2 1 6.26 K 10.24 28.9 K

2 2 5.46 K 11.74 30.4 K

2 4 4.99 K 12.85 35.5 K

2 8 4.73 K 13.55 45.6 K

4 1 4.10 K 15.63 35.6 K

4 2 3.32 K 19.31 37.6 K

4 4 2.93 K 21.88 42.8 K

4 8 2.68 K 23.92 54.0 K

Figure 4-5 Speedup vs additional gates for various solutions

0

5

10

15

20

25

30

0 50 100

Sp
ee

d
u

p

Additional area (gates)

Reformulated SR
with four CWs

Reformulated SR
with two CWs

SR with FPU

SR without FPU

59

4.3 Parallel Systematic Resampling Algorithm and its ASIP

Implementation

4.3.1 Parallel Systematic Resampling Algorithm

In order to parallelize the SR algorithm’s loop, the proposed PSR algorithm introduces Cu-

mulative Replication Factors (CRFs)

 to avoid calculating the RFs directly. The RFs can

be recovered by calculating the difference between two successive CRFs.

In the SR algorithm, and as shown by equation (2.8), the UDNs can be considered as inter-

vals of length in the range []. The resultant CRF of the target CW is equiv-

alent to the index of the interval in which the CW falls. Once the interval index is calculated by

knowing the interval where the CW is located, the CRFs can be obtained. Equation (4.1) shows

the relationship between the CWs and the CRFs.

 (

)

 (4.1)

Once the CWs are available, their CRFs can be obtained independently by equation (4.2).

 ⌈(

) ⌉ (4.2)

Fig. 4-6 shows the data flow graph of the proposed PSR algorithm. Similarly to the SR algo-

rithm, the PSR algorithm first calculates the CWs

 . The sequential computation of the

CWs is straightforward and it can be supported by specialized instructions in ASIPs or parallel

prefix-sum algorithms for GPUs [111]. The quantities and are calculated with equations

(2.8) and (2.9). The CRFs can then be calculated by equation (4.2). The loop iterations for the

CRF calculations are independent from each other, and can thus be unfolded and executed in par-

allel. This is shown in Fig. 4-6, where the operations to calculate the CRFs are shown as inde-

pendent processes. Next, the RFs are calculated as the difference between two successive CRFs,

with a dependency that is limited to a single vertical branch.

60

Figure 4-6 Data flow graph of the proposed Parallel Systematic Resampling algorithm

4.3.2 Fixed-point Implementation of the PSR Algorithm

Fixed-point processing can significantly improve the throughput while reducing the amount

of necessary hardware resources. However, finite-precision effects may result in errors in the RFs

when compared with calculations done with floating-point precision. Moreover, when the calcu-

lations are done in fixed-point arithmetic, the division in equation (2.9) requires a floor function.

This may result in being smaller than its value in floating-point arithmetic. When calculat-

ing the last CRF in equation (4.2), is used as the divisor. Due to being small, the re-

sultant last CRF may be larger than the number of resampled particles, . This potentially results

in an incorrect number of resampled particles.

For example, consider the case of 1024 particles, a value of 10000 for
 , and a value of 2

for . According to equation (2.9), is equal to 9 in fixed-point arithmetic, from its value of

9.77 in floating-point precision. The last CRF calculated according to equation (4.2) would thus

be equal to 1111, while the correct number of resampled particles should be 1024.

In order to mitigate the problems due to the quantization of , we propose to merge equa-

tions (2.9) and (4.2) to calculate the CRFs instead of calculating as the divisor in equation

(4.2). Its calculation is given by equation (4.3):

.

.

Opera
tions

+ + +

Opera
tions

Opera
tions

Opera
tions

.

.

Cumulative
weights

calculation

Operations:

- - -

CRFs
calculation

RFs
calculation

.

61

 ⌈ (

)
 ⌉ (4.3)

When calculating the last CRF, equation (4.3) can be transformed into equation (4.4):

 ⌈ (

)
 ⌉ ⌈

 ⌉ (4.4)

In order for the number of resampled particles to be equal to M, the last CRF should be equal

to M. According to equation (4.4), the last CRF being equal to M can be ensured when the condi-

tion expressed in equation (4.5) is satisfied.

 (4.5)

Due to the fact that is in the range of [) and
 is equal to , equation

(4.5) can always be satisfied, whether calculations are done in fixed or floating-point precision.

Using equation (4.3) to calculate the CRFs instead of equation (4.2) guarantees correct results in

the estimated number of resampled particles in fixed-point arithmetic at the expense of an addi-

tional multiplication and the relevant additional bits to represent the product of the multiplication.

Fixed-point implementations normally imply that a custom processor is being designed. Spe-

cial attention must thus be paid to the nature of the computations. The PSR algorithm requires the

division and ceiling functions, but these more complex operations can be implemented efficiently

in hardware. The CRFs can be calculated by an integer division with a conditional statement: if

the remainder is not equal to zero, the quotient, which is equivalent to the CRF, is incremented.

4.3.3 ASIP Implementation of the Fixed-Point PSR Algorithm

A hardware implementation is an appealing method to meet high throughput requirement for

PFs. The ASIP approach can be a good choice since it balances the trade-offs between GPPs and

custom processors. ASIPs allow a programmable solution with customized hardware units to ac-

celerate application bottlenecks and improve throughput. They can significantly reduce the de-

sign effort when compared to fully custom processors. Custom instruction generation is the most

popular method to accelerate the algorithmic bottlenecks in ASIPs. Custom instructions can

combine several basic operations into a single one, and multiple instructions can be executed in

parallel.

62

Based on the data flow graph of Fig. 4-6, we designed four custom instructions to accelerate

the implementation of the PSR algorithm. They are described in Table 4.3.

Table 4.3 Custom instructions for the proposed PSR algorithm

Name Description

cwcalculation
Calculate the CWs in parallel. The delay of its critical path depends
on the number of data inputs.

paradef
Calculate defined. The value is stored in a state register in order
to avoid memory accesses for further instructions.

Integerdivisionforcrf

Calculate CRFs in parallel using equation (4.3). Because the quo-
tient should be smaller than or equal to the number of particles, we
use a subtraction/shift integer division with a known number of bits
for the quotient [112].

rfcalculation
Calculate the RFs as the differences between two adjoining CRFs in
parallel.

Fig.4-7 gives the PSR algorithm pseudo-code after inclusion of these four custom instruc-

tions. Parameter is the number of data calculated in parallel. The operations inside each step

can be executed in parallel, except for the definition of , which is merged into the instruction

paradef.

Input:

 Output:

Cumulative Weights Calculation

for

 {

 } ({

 })
end

 definition

 (
)

CRFs calculation

for

 {

 } ({

 })
end
RFs Calculation

for

 {

 } ({

 })
end

Figure 4-7 Pseudo-code of the PSR algorithm in ASIP implementations

63

4.3.4 Implementation Results

4.3.4.1 Accuracy for Fixed-Point Processing

When implemented with floating-point precision, the PSR algorithm produces exactly the

same results as the SR algorithm, with the same accuracy. However, in a fixed-point implementa-

tion, the accuracy varies with the number of bits used to represent the weights. Due to the sto-

chastic nature of the algorithm, we counted the number of times that the set of RFs was different

between the fixed-point PSR and single-precision floating-point SR algorithms for 10000 simula-

tions with 128, 256, 512 or 1024 particles. Results are shown in Table 4.4. The weights in the

fixed-point PSR implementation are represented with a varying number of bits. For each experi-

ment, we used a single value for for the two algorithms. It is important to note that the number

of resampled particles was always the same in both algorithms as discussed in Section 4.3.2.

Table 4.4 Number of times that incorrect RFs were generated by fixed-point PSR algorithm for

10000 simulations.

M
Number of bits to represent the weights
2 8 16 20 22 24 28 32

128 9996 2024 9 1 0 0 0 0

256 10000 4484 22 2 0 0 0 0

512 10000 7857 62 3 0 0 0 0

1024 10000 9739 90 17 2 1 0 0

From Table 4.4, we observe that increasing the number of bits to represent the weights reduc-

es the frequency of observed errors in the calculation of the RFs. For 128, 256, and 512 particles,

using 22 bits resulted in no observed error for 10000 simulations. This represents a reduction in

data path width of 31% over the 32-bit case. With 1024 particles, using only 16 bits for the

weights would result in an error in the number of RFs in less than 1% of cases. For 128 particles,

it would be in less than 0.1% of cases. Due to the stochastic nature of PFs, we believe that these

levels of accuracy would be acceptable for most applications.

4.3.4.2 Performance of Fixed-Point Processing and ASIP Implementation

The proposed PSR algorithm was implemented in an Xtensa LX2 processor which runs at

300MHz with 512 particles. The weights were represented with 32 bits because it is not possible

64

to change the Xtensa’s basic datapath. The Xtensa LX2 is a general-purpose processor to which

custom instructions can be added to improve its performance. In its basic form it occupies 79 K

gates. It can include a FPU when necessary, at a cost of an additional 77 K gates. We implement-

ed the floating-point SR algorithm in this processor without and with FPU as references. For

comparison purposes, we used the RSR algorithm sequentially implemented on a TI

TMS320C54x DSP [5] as reference to evaluate our fixed-point PSR algorithm. This DSP sup-

ports floating-point operations, including the multiplication and ceiling functions. The maximum

clock rate for this DSP C54 is 160MHz. Table 4.5 compares the speedup and additional resource

requirements for different scenarios.

Table 4.5 Performance and resource requirements of various implementation methods

Implementation method
Parallelism

for the
weights

Clock
cycles

Clock
Frequency

(Hz)
Speedup

Additional
area (gates)

Floating-point SR on
Xtensa LX2

- 64.1K 300M 1.0 0

Floating-point SR on
Xtensa LX2 with FPU

- 12.7K 300M 5.05 77.0 K

Floating point RSR on
DSP [5]

- 9.2 K 160M 3.71 N/A

Fixed-point PSR ASIP
with Integerdivisionforcrf
instruction

- 5.1 K 300M 12.57 15.5 K

Fixed-point PSR ASIP
2 2.2 K 300M 29.14 27.5 K

4 1.2 K 300M 53.42 47.7 K

The fixed-point PSR implementation requires the fixed-point division operation, which the

Xtensa LX2 processor does not support. Its performance is thus inferior to that of the floating-

point SR implementation, because executing fixed-point division with a software library requires

a large number of clock cycles. When using the specific Integerdivisionforcrf instruction without

any parallelism, the fixed-point PSR implementation can achieve 12.57 speedup over the float-

ing-point SR implementation on the unmodified Xtensa LX2 with a resource overhead of 15.5 K

gates. We observe in Table 4.5 that this sequential implementation has better performance than

the RSR algorithm sequentially implemented on a DSP. This indicates that the PSR algorithm has

less complexity than the RSR algorithm, which is the least complex of the three standard RAs

mentioned in Section 2.1. When compared to the floating-point SR implementation executed over

65

an Xtensa with a FPU, the fixed-point PSR implementation is still better in terms of throughput

and extra resources. This experiment shows that fixed-point processing can be valid for software

PSR implementation when the target processor supports fixed-point division.

In addition, the fixed-point PSR algorithm can be easily implemented in parallel. In its ASIP

implementation, its performance can be significantly improved with our proposed four special

custom instructions. From Table 4.5, with two parallel paths and all four custom instructions, the

speedup is 29.1×. This is achieved at a cost of 27.5 K additional gates, or 35% of the basic pro-

cessor. With four parallel paths, the speedup is 53.4× and the cost is 47.3 K additional gates, or

60% of the basic processor.

This speedup can be further improved when calculating more than four particles in parallel.

However, this would require that the memory bandwidth support the data throughput and that

silicon area be available.

4.4 Conclusion

In this chapter, we proposed two new resampling algorithms to replace the sequential SR al-

gorithm in PFs. The reformulated SR algorithm makes the sequential SR algorithm feasible for

ASIP parallel implementation. The PSR algorithm makes the iterations in the SR algorithm inde-

pendent, and thus allowing the resampling algorithm to perform the iterations in parallel. The

reformulated SR algorithm is faster than the PSR algorithm when implemented in a GPP. This is

because the former has relatively simple operations such as comparator and addition, and the lat-

ter has division and ceiling functions. The advantage of the PSR algorithm is that it is a pure par-

allel resampling algorithm and thus it can be used in any parallel implementation technology. The

reformulated SR algorithm is only suitable for ASIP parallel implementation. Furthermore, the

PSR algorithm has the least complexity among the standard RAs. When they are implemented in

a processor supporting for the integer division, the PSR algorithm outperforms all of the other

standard RAs including the reformulated SR algorithm.

66

Chapter 5 PARALLEL ARRAY HISTOGRAM ARCHITECTURE FOR

EMBEDDED IMPLEMENTATIONS

In histogram-based Particle Filters (PFs) for video tracking, the bottleneck is often in the Par-

ticle Measurement Processing (PMP) block, shown in Fig. 3-1. It is therefore critical to accelerate

the execution of this block. To that effect, this chapter proposes a parallel array histogram archi-

tecture (PAHA) suitable for embedded implementations. PAHA uses a register array instead of a

memory block to store the histogram bins. In each step, M inputs can be processed in parallel to

update the histogram bins without any additional latency. This chapter also describes a second

version of PAHA with a flexible number of inputs, potentially avoiding the need for multiple

PAHAs in a single application. Implementation results show that the architecture can achieve a

super-linear speed-up of 43.75× for a 16-way PAHA when compared to a software implementa-

tion in a general-purpose processor.

The material of this chapter was published in my paper [10].

5.1 Introduction

Histograms or binning functions are representations of frequency distributions. Their calcula-

tion is a relatively simple operation and it is often performed by GPPs. Nonetheless, hardware

acceleration may be necessary to satisfy high throughput requirements for some real-time appli-

cations, such as histogram-based particle filters for video object tracking [11] [84].

Shahbahrami et al. [113] have discussed possible software implementations for calculating

histograms. The Scalar Histogram Algorithm (SHA) is the fastest reported algorithm when com-

pared to the privatization or merge-sort algorithms. It is described as follows:

For i=1…K

 Histogram [data[i]] +=1;

The SHA is the basis for the histogram implementation described in this chapter. Concerning

hardware implementation of SHA, Muller [114] showed that two basic architectures can be used.

The first one addresses the memory array with a read-modify-write architecture. Due to its effi-

67

cient resource usage, most techniques [115] [116] have investigated such a read-modify-write

architecture. However, its performance depends on the number of access ports of the memory

array. In practice, a dual-port memory array is often used to implement the SHA but the maxi-

mum speed-up is 2× when compared to its implementation using a single port memory array.

The second basic architecture uses an array of counters, with one counter for each histogram bin.

However, this architecture is costly in resources for the register array and that is why it is seldom

used. In order to overcome the limitation of 2× speed-up for the first architecture, Cadenas et al.

[117] [118] employed the second architecture, the array of counters, in a fully pipelined manner

to process the inputs in parallel. However, their pipelined histogram array (PHA) has a large la-

tency when using only one or two histogram bins per cell. It occupies a large amount of resource

due to the pipeline technique. When using a single cell for all the bins with multiple inputs, their

architecture becomes complex and its delay is increased.

This chapter firstly presents that histogram calculation is a major bottleneck in histogram-

based PFs for video tracking and then introduces a parallel array histogram architecture (PAHA)

that does not involve the use of pipelining techniques. It has better resource efficiency when

compared to the recent work by Cadenas et al. [117] [118]. The chapter also introduces a version

of PAHA with a flexible number of inputs, called Flexible PAHA (FPAHA), for applications

where the number of items is not known in advance or can take several known values.

5.2 Bottleneck in Histogram-based PFs for Video Tracking

As we described in subsection 2.2.2, in the field of computer vision systems, video tracking is

an important issue in many applications. It can provide spatial information of target objects for

further analysis. Consequently, many approaches have been developed for video tracking.

Among these methods, PFs for video tracking employing the color models is one such successful

approach [3] [65] [119]. It performs sequential Monte Carlo method [17] based on particle repre-

sentation of probability density to search the region of interest (ROI) whose color content ex-

pressed in histogram matches the color content of the reference target. The results reported in [3]

[65] show that it is independent of the object deformation and robust to occlusion and to varia-

tions in the color of the background. This makes it suitable for general visual tracking systems.

68

Histogram-based PFs have shown great promise as a powerful method for video tracking.

However, they suffer from a vital drawback: heavy computation. With the increase of the ROI

size, the number of particles required, and the dimensions of color channels as the measurement,

the phenomenon for heavy computation becomes even worse. Table 5.1 shows the profiling re-

sults in an Xtensa LX2 processor for an object (120 by 140 pixels) being tracked by using a gen-

eral histogram-based PF with 256 particles. Under these circumstances, more than 50 million

clock cycles are required to complete the tracking in a frame. Assuming that the Xtensa LX2 pro-

cessor runs at 300MHz clock frequency, the resulting 6 frames per second for this case are not

sufficient for most of real-time video tracking systems. We also observe from Table 5.1 that the

PMP block takes a significant portion of the total number of clock cycles (97.6%). Obviously, it

is necessary to accelerate the PMP block in order to achieve the throughput requirement of real-

time video tracking. The only calculations performed in the PMP block are for the histogram. As

discussed in Section 5.1, the SHA is the fastest reported histogram calculation algorithm. It is

difficult to be optimized in the algorithm level. This motivates us to accelerate the SHA in the

architectural level.

Table 5.1 Profiling results of histogram-based PF with 256 particles tracking an object (120 by

140 pixels) in the Xtensa LX2 processor

Clock cycles per frame %

Transition Processing (TP) 0.00 M 0%

Random Number Addition (RNA) 0.01 M 0.02%

Particle Measurement Processing (PMP) 52.19 M 97.61%

Distance Calculation (DC) 0.36 M 0.67%

Likelihood Evaluation (LE) 0.86 M 1.61%

Resampling Algorithm (RA) 0.05 M 0.09%

Total 53.47 M 100%

69

5.3 Parallel Array Histogram Architecture

Fig. 5-1 shows the PAHA. It has M N-bit parallel inputs. Each input is fed to a N:2
N
 decoder.

The decoders’ 2
N
 1-bit outputs are each fed to one of 2

N
 accumulators. The Accumulators are

each associated with one register bin. The role of the Accumulators is to accumulate the M 1-bit

signals coming from the decoders, to add them to the register bin contents, and then to update the

register bins. The width P of the register bins is selected to avoid overflow and depends on the

maximum number of inputs that can be presented to the PAHA. In each clock cycle, PAHA thus

processes M inputs in parallel and updates the register bins accordingly.

The architecture of one of the M-bit accumulators is shown in Fig. 5-2. It consists of a Com-

pressor Tree (CT) [120] and a two-operand adder. The CT counts the numbers of 1’s in the M 1-

bit signals and generates a R-bit operand. The relation between R and M is given by equation

(5.1):

 ⌈ ()⌉ (5.1)

Decoder

Decoder

Accumulators

2
N Registers

.

.

.

.

.

.

.

.

.

.

.

.

N-Bit input

2N

signals

M Inputs

.

2N

signals

.

M
signals

.

P Bits

P Bits

2N

components

P Bits

P Bits

1 Bit

N-Bit input M
signals Accumulators

Figure 5-1 Parallel Array Histogram Architecture

The CT’s area and delay increase linearly with M. The two-operand adder’s area and delay

depends on P and M. When P is fixed, its area and delay increase logarithmically with M.

70

Compressor
Tree

Two-operand
Adder

M
signals

. . . .
. .

R-bit

P-bit

P-bit

Figure 5-2 M-bit Accumulator

5.4 Flexible Parallel Array Histogram Architecture

Fig. 5-3 shows a modified version of PAHA with a flexible number of active inputs up to M.

The number of inputs can vary in applications where the data set size is not an integer multiple of

M, such as when the data is not aligned with the cache size. In such a case, the first or last group

of data or the misaligned data presented to the PAHA will consist of m < M inputs. It is then nec-

essary to disregard the M–m least or most significant items in the list. The FPAHA can accom-

modate such a situation.

1 Bit

P Bits

P Bits

P Bits

P Bits

Decoder

Decoder

2
N R

egisters

.

.

.

.

.

.

.

.

.

.

.

.

N-Bit input . . . 2N signals

M Inputs

.

M
signals

M
signals

.

2N

components

1 Bit

Validation
Logic

 log2M-Bit

.

2N Bits

2N Bits

. . . 2N signals

1 Bit

.

.

.

.

.

.

M AND
gates

N-Bit input

M
signals

Accumulators

Accumulators

Most/least

Figure 5-3 Flexible Parallel Array Histogram Architecture

71

Compared to the PAHA, the FPAHA requires an additional validation logic block and M×2N

AND gates. The validation logic determines which inputs must be considered to update the regis-

ter bins. Its inputs are the number of inputs that must be used and a 1-bit most/least signal to de-

termine whether the most or least significant items are to be used. For each unused input, the val-

idation logic generates a ‘0’ on its corresponding control signal. In conjunction with the AND

gates, this nullifies the corresponding input to the accumulators.

5.5 Architecture Comparisons

Table 5.1 compares delay, latency, parallelism and resource requirements for the array of

counters [114], the parallel histogram with dual-ported memory [115], the PHA [117], the PA-

HA, and the FPAHA for the specific case of (M, N, P) = (8, 8, 20). I only use 1-bin PHA to rep-

resent the PHA as reference because it is difficult to design multiple-bin PHA with large number

of parallel inputs. In Table 5.2, τ is the basic unit delay and the evaluation of the resources is

based on NAND gates. The delay for the array of counters consists of a N:2
N
 decoder and a P-bit

counter. The parallel histogram’s delay consists of a two-operand P-bit adder. The delay for the

1-bin PHA consists of an N-bit comparator, logic to determine the count for the one bin and a

two-operand adder with N-bit and R-bit operands. The logic for count determination in the 1-bin

PHA can be considered as an M-bit CT. However, with the increase of the number of bins per

cell for the PHA, the logic for count determination becomes complex. Consequently, its delay is

longer than the delay of the CT. The delay for the PAHA consists of an N:2
N
 decoder and an M-

input accumulator which includes an M-bit CT and a two-operand adder with P-bit and R-bit op-

erands. As shown in Table 5.2, the PAHA and PHA are the only architectures which can execute

multiple inputs in parallel. In addition, the PAHA has lower delay and latency than the PHA. The

throughput is used to combine the delay and input parallelism information of each architecture to

show the performance, which is given by equation (5.2).

 (5.2)

Table 5.2 also presents resource usage based on NAND gates for the considered architectures

when (M, N, P) = (8, 8, 20) except for the parallel histogram because it depends on its memory

72

architecture. The array of counters only requires a N:2
N
 decoder and 2

N
 P-bit counters. Hence, it

only spends 74.9 K NAND gates in our case. Due to the use of pipelining, the PHA uses addi-

tional registers to store the register bin indices and the value of inputs. It thus requires 2
N
×M N-

bit comparators, 2
N
 logic for count determination, 2

N
 Two-operand adder, 2

N
 P-bit registers, 2

N

N-bit registers and 2
N
 N-bit counters. The PAHA uses M N:2

N
 decoders, 2

N
 accumulators and 2

N

P-bit registers. From Table 5.2, we see that the PHA uses more resources than the PAHA because

the PAHA does not use pipeline registers. Also, the M decoders in PAHA are smaller than 2
N
×M

N-bit comparators in the PHA. Furthermore, the resources of the PHA increase with the number

of bins due to the complexity of the logic for count determination. The penalty for using the

FPAHA is the additional delay of an AND gate, the resources for the validation logic and M × 2
N

AND gates. This may be acceptable in order to gain more flexibility.

Table 5.2 Comparison of PAHA and FPAHA against previous work for the case of (M, N, P) =

(8, 8, 20)

Architecture Delay Latency Parallelism Throughput Resources

Array of counters [114] 72τ 1 1 0.0139 74.9 K

Parallel histogram [115] 120τ 258 2 0.0167 ―

1-bin PHA [117] 103τ 256 8 0.0777 234.2 K

 PAHA 99τ 1 8 0.0808 109.3 K

 FPAHA 101τ 1 8 0.0792 115.6 K

5.6 Implementation Results

The Xtensa LX2 processor [107], an ASIP, was used to implement the SHA for an image of

size 640×480. The Xtensa LX2 is a general-purpose processor to which customizable instructions

can be added to improve performance. Custom instructions were generated for the PAHA and

FPAHA. Table 5.3 shows the speedup and additional resource requirements for M-way PAHAs

when compared to the software implementation of SHA. We observe that the 1-way PAHA can

achieve 3.23× speedup with a resource overhead of 329.9 K gates. The speedup is due to the re-

73

duction in memory access instructions since state registers are used to store the histogram. When

the number of inputs M is increased to 4 and 16, the speedup attains 13.13× and 43.75×, respec-

tively. The 16-way FPAHA requires only 0.7 K more gates than the 16-way PAHA.

Table 5.3 Performance and resource requirements of various M-way PAHAs on the Xtensa LX2

processor

 Performance Resource requirement (Number of gates)

number of

clock cycle (M)
Speedup Base processor Overhead Total

SHA 2.15 1× 79 K 0 K 79 K

1-way PAHA 0.65 3.23× 79 K 329.9 K 408.9 K

4-way PAHA 0.16 13.13× 79 K 356.1 K 435.1 K

16-way PAHA 0.048 43.75× 79 K 468.4 K 547.4 K

16-way FPAHA 0.048 43.75× 79 K 469.1 K 548.1 K

5.7 Conclusion

This chapter has presented a parallel array histogram architecture for embedded implementa-

tions. A register array is used to overcome the limited speed-up due to memory access. The pro-

posed architecture achieves better performance in terms of throughput when compared to previ-

ous work. Implementation results show the speed-up can attain 3.2 , 13.1× and 43.7× for 1-way,

4-way and 16-way PAHAs, respectively, when compared to a traditional software implementa-

tion.

74

Chapter 6 CONCLUSIONS AND FUTURE WORK

6.1 Thesis Conclusions

PFs, which are computationally very intensive, are popular in addressing a wide range of

complex applications due to the fact that they outperform most of the traditional filters in prac-

tice. It remains a challenge to simultaneously achieve high throughput and energy efficiency in

most of these applications.

In this thesis, we investigated a promising and popular design platform, ASIPs, to implement

PFs in embedded systems. We analyzed the characteristics of PFs and then identified the Likeli-

hood Evaluation (LE) and Resampling Processing (RP) as the major bottlenecks in the algorithm-

specific blocks. The optimization of these two blocks was explored at the algorithm and architec-

ture level.

We proposed UQLE instead of ELE in PFs and then designed its custom instruction and rele-

vant hardware unit to further accelerate the LE block. Experiments showed that the proposed

ASIP UQLE instruction can achieve an average speedup of 805× in comparison with ELE im-

plemented in a GPP. This comes at a cost of only 3.8K additional gates for UQLE with 32 inter-

vals, or 4.7 % overhead to be added to a base processor with 79K gates.

Concerning the RP block, we proposed two resampling algorithm instead of the sequential SR

algorithm in PFs. They are the reformulated SR and the PSR algorithms. The former is a new

form of the SR algorithm to facilitate its parallel ASIP implementation. We designed six custom

instructions for the reformulated SR algorithm. Experimental results showed that ASIP imple-

mentation of the reformulated SR algorithm achieves a 23.9 speedup over the sequential SR

algorithm in a GPP. This is for the case of four weights calculated in parallel and eight categories

defined by uniformly distributed numbers that are compared simultaneously. The additional size

for these six instructions occupies 68% of a base processor.

The PSR algorithm makes iterations independent through the introduction of the concept of

Cumulative Replication Factors. In addition, a fixed-point version of the PSR algorithm was pro-

posed to ensure that the correct number of particles is generated. Four customized instructions

 75

were designed to accelerate the proposed PSR algorithm in ASIPs. When supporting four weights

inputting in parallel, its ASIP implementation with four relevant custom instructions lead to a

53.4× speedup over a floating-point SR implementation in a GPP at a cost of 47.3 K additional

gates.

In order to accelerate histogram-based PFs for video tracking, we proposed a Parallel Array

Histogram Architecture (PAHA) for embedded implementations. M inputs can be processed in

parallel to update the histogram bins without any additional latency. Implementation results show

that 16-way PAHA can achieve a 43.75× over a software histogram implementation in a GPP.

6.2 Future Work

There are several topics that could be interesting to investigate in future research.

 UQLE can achieve a significant speedup for PFs by replacing ELE in the LE block and rele-

vant custom hardware architecture. However, in order to achieve the equivalent accuracy to ELE,

UQLE needs an appropriate number of intervals. Due to the stochastic nature of PFs, finding this

number requires a large amount of experiments. A possible future work would be to automatical-

ly identify the number of intervals in UQLE for a given application.

 The UQLE calculation is independent for each particle. Therefore, it could be implemented in

parallel to achieve higher throughput than our sequential implementation.

 Our two novel algorithms make the resampling algorithm feasible for parallel implementation.

They can calculate the RFs in a parallel manner. However, after calculating the RFs, we did not

do the parallel implementation for the PA step since such a parallel implementation depends on

the implementation technology. A possible future work would be to exploit the parallel imple-

mentation of the PA step in accordance with the target implementation technology.

 The PAHA can achieve a significant speedup when compared to a software histogram calcula-

tion executed in a GPP. However, special registers must be instantiated for the histogram bins,

and they must be wide enough to store the largest possible value that a bin can take. Their large

size makes them important contributions to overall processor power consumption. Therefore, it

would be interesting to apply low power technique to their design.

 76

 In this thesis, the research mainly focuses on PF algorithms. Their bottlenecks at the algorithm-

specific blocks are the LE and RP blocks. However, we mentioned in Section 2.1 and Section 2.2

that there are various types of PFs commonly used and there are various applications using PFs.

Depending on the application and target model, the bottlenecks may be shifted to other blocks. A

possible future work would involve the analysis of different types of PFs from the point of view

of the computational complexity of the target model and its impact on the various PF steps. The

main emphasis, then, should be in identifying and resolving these bottlenecks at the algorithm

and architecture levels. For example, for histogram-based PFs for video tracking, only optimizing

histogram calculation in the PMP block may not satisfy real-time constraints. Other potential

bottlenecks in other blocks would be evaluated and optimized in ASIPs to improve the perfor-

mance of video tracking.

 77

REFERENCES

[1] B. Ristic, S. Arulampalam and N. Gordon, Beyond the Kalman filter: particle filters for

tracking applications, Boston, MA, USA: Artech House, 2004.

[2] N. J. Gordon, D. J. Salmond and . A. F. M. Smith, “Novel-Approach to Nonlinear Non-

Gaussian Bayesian State Estimation,” IEEE Proceedings-F Radar and Signal Processing,

vol. 140, no. 2, pp. 107-113, 1993.

[3] K. Nummiaro, E. Koller-Meier and L. Van Gool, "A Color-based Particle Filter," in First

International Workshop on Generative-Model-Based Vision, vol. 1, pp. 53-60, 2002.

[4] A. Doucet, N. De Freitas and N. Gordon, Sequential Monte Carlo methods in practice,

New York, NY, USA: Springer, 2001.

[5] M. Bolic, Architectures for efficient implementation of particle filters, New York, USA:

State University of New York at Stony Brook, 2004.

[6] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson and P.

Nordlund, “Particle filters for positioning, navigation, and tracking,” IEEE Transactions on

Signal Processing, vol. 50, no. 2, pp. 425-437, 2002.

[7] Q. Gan, J. P. Langlois and Y. Savaria, "Efficient Uniform Quantization Likelihood

Evaluation for Particle Filters in Embedded Implementations," accepted by Journal of

Signal Processing Systems, 29
th

 Oct. 2013.

[8] Q. Gan, J. P. Langlois and Y. Savaria, "A reformulated systematic resampling and its

parallel implementation on Application-Specific Instruction-set Processors," accepted by

MWSCAS, 2013.

[9] Q. Gan, J. P. Langlois and Y. Savaria, "Parallel Systematic Resampling algorithm for

particle filters," submitted to Journal of Circuits, Systems and Signal Processing, 10
th

 Apr.

2013.

[10] Q. Gan, L. P. Langlois and Y. Savaria, "Parallel Array Histogram Architecture for

 78

Embedded Implementations," Electronics Letters, vol. 49, no. 2, pp. 99-101, 2013.

[11] R. Farah, Q. Gan, J. M. P. Langlois, G. A. Bilodeau and Y. Savaria, “A tracking algorithm

suitable for embedded systems implementation,” 18th IEEE International Conference on

Electronics, Circuits and Systems, pp. 256-259, 2011.

[12] N. Metropolis and S. Ulam, "The Monte Carlo Method," Journal of the American

Statistical Association, vol. 44, no. 247, pp. 335-341, 1949.

[13] N. Gordon, D. Salmond and C. Ewing, “Bayesian State Estimation for Tracking and

Guidance Using the Bootstrap Filter,” Journal of Guidance Control and Dynamics, vol. 18,

no. 6, pp. 1434-1443, 1995.

[14] G. Kitagawa, "Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space

Models," Journal of Computational and Graphical Statistics, vol. 5, pp. 1-25, 1996.

[15] J. Carpenter, P. Clifford and P. Fearnhead, "Improved particle filter for nonlinear

problems," IEE Proceedings Radar, Sonar and Navigation, vol. 146, no. 1, pp. 2-7, 1999.

[16] M. S. Arulampalam, S. Naskell, N. Gordon and T. Clapp, "A Tutorial on Particle Filters for

Online Nonlinear/Non-Gaussian Bayesian Tracking," IEEE Transactions on Signal

Processing, vol. 50, no. 2, pp. 174-188, 2002.

[17] O. Cappe, S. J. Godsill and E. Moulines, “An overview of existing methods and recent

advances in sequential Monte Carlo,” Proceedings of the IEEE, vol. 95, no. 5, pp. 899-924,

2007.

[18] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Gbirmai, M. F. Bugallo and J. Miguez,

"Particle filtering," IEEE Signal Processing Magazine, vol. 20, no. 5, pp. 19-38, 2003.

[19] A. Doucet, S. Godsill and C. Andrieu, “On sequential Monte Carlo sampling methods for

Bayesian filtering,” Statistics and computing, vol. 10, no. 3, pp. 197-208, 2000.

[20] J. V. Candy, "Bootstrap particle filtering," IEEE Signal Processing Magazine, vol. 24, no.

4, pp. 73-85, 2007.

[21] O. Aydogmus and M. Talu, “Comparison of Extended-Kalman- and Particle-Filter-Based

 79

Sensorless Speed Control,” IEEE Transactions on Instrumentation and Measurement, vol.

61, no. 2, pp. 402-410, 2012.

[22] M. Bolic, P. Djuric and S. Hong, “Resampling algorithms and architectures for distributed

particle filters,” IEEE Transactions on Signal Processing, vol. 53, no. 7, pp. 2442-2450,

2005.

[23] K. Hwang and W. Sung, "Load Balanced Resampling for Real-Time Particle Filtering on

Graphics Processing Units," IEEE Transactions on Signal Processing, vol. 61, no. 2, pp.

411-419, 2013.

[24] S. Hong, Z. Shi, J. Chen and K. Chen, "Compact resampling algorithm and hardware

architecture for particle filters," in IEEE International Conference Communications

Circuits and Systems, vol. 2, pp. 886-890, 2008.

[25] S. Hong, Z. Shi, J. Chen and K. Chen, “A Low-Power Memory-Efficient Resampling

Architecture for Particle Filters,” Journal of Circuits Systems and Signal Processing, vol.

29, no. 1, pp. 155-167, 2010.

[26] J. S. Liu and R. Chen, “Sequential Monte Carlo Methods for Dynamic Systems,” Journal

of the American Statistical Association,vol. 93, pp. 1032-1044, 1998.

[27] H. A. A. El-Halym, I. I. Mahmoud and S. E.-D. Habib, "Proposed hardware architectures

of particle filter for object tracking," EURASIP Journal on Advances in Signal Processing,

vol. 2012, no. 1, pp. 1-19, 2012.

[28] S. Hong, M. Bolic and P. M. Djuric, "An Efficient Fixed-Point Implementation of Residual

Resampling Scheme for High-Speed Particle Filters," IEEE Signal Processing Letters, vol.

11, no. 5, pp. 482-485, 2004.

[29] S. Hong and P. M. Djuric, "High-Throughput Scalable Parallel Resampling Mechanism for

Effective Redistribution of Particles," IEEE Transactions on Signal Processing, vol. 54, no.

3, pp. 1144-1155, 2006.

[30] A. C. Sankaranarayanan, A. Srivastava and R. Chellappa, "Algorithmic and Architectural

Optimizations for Computationally Efficient Particle Filtering," IEEE Transaction on

 80

Image Processing, vol. 17, no. 5, pp. 737-748, 2008.

[31] L. Miao, J. J. Zhang, C. Chakrabarti and A. Papandreou-Suppappola, "A new parallel

implementation for particle filters and its application to adaptive waveform design," IEEE

Workshop on Signal Processing Systems, pp. 19-24, 2010.

[32] L. Miao, J. J. Zhang, C. Chakrabarti and A. Papandreou-Suppappola, "Algorithm and

Parallel Implementation of Particle Filtering and its Use in Waveform-Agile Sensing,"

Journal of Signal Process Systems, vol. 65, no. 2, pp. 211-227, 2011.

[33] M. K. Pitt and N. Shephard, "Filtering via Simulation: Auxiliary Particle Filters," Journal

of the American Statistical Association, vol. 94, no. 446, pp. 590-599, 1999.

[34] J. Kotecha and P. Djuric, "Gaussian particle filtering," IEEE Transactions on Signal

Processing, vol. 51, no. 10, pp. 2592-2601, 2003.

[35] A. Doucet, N. de Freitas, K. Murphy and S. Russell, "Rao-blackwellised particle filtering

for dynamic Bayesian networks," Proceedings of the Sixteenth conference on Uncertainty

in artificial intelligence, pp. 176-183, 2000.

[36] X. Xu and B. Li, "Rao-Blackwellised particle filter for tracking with application in visual

surveillance," 2nd Joint IEEE International Workshop on Visual Surveillance and

Performance Evaluation of Tracking and Surveillance, pp. 17-24, 2005.

[37] C. Boucher and J.-C. Noyer, "A Hybrid Particle Approach for GNSS Applications with,"

IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 3, pp. 498-505,

2010.

[38] J.-S. Kim, E. Serpedin and D.-R. Shin, "Improved Particle Filtering-Based Estimation of

the Number of Competing Stations in IEEE 802.11 Networks," IEEE Signal Processing

Letters, vol. 15, pp. 87-90, 2008.

[39] Q. Wen, J. Gao, A. Kosaka, H. Iwaki, K. Luby-Phelps and D. Mundy, "A particle filter

framework using optimal importance function for protein molecules tracking," IEEE

International Conference on Image Processing, pp.1161-1164, 2005.

 81

[40] F. Benboujja, "Suivi automatique d'instruments dans les sequences d'images

thoracoscopiques," M.Sc.A. Dissertation, Polytechnique Montreal, Canada, 2010.

[41] Y. Bar-Shalom, X. Li and T. Kirubarajan, Estimation with Applications to Tracking and

Navigation, John Wiley, 2001.

[42] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association, New York: Academic

Press, 1988.

[43] Y. Bar-Shalom, Multitarget-Multisensor Tracking: Applications and Advances, Artech

House, 1991.

[44] Y. Bar-Shalom and X. Li, Estimation and Tracking: Principles, Techniques, and Software,

Artech House, 1993.

[45] X. Li and V. Jilkov, "A survey of maneuvering target tracking-part III: measurement

models," Proceedings of SPIE Conference on signal and data processing of small targets,

vol. 4473, pp. 423-446, 2001.

[46] R. Karlsson and F. Gustafsson, "Recursive Bayesian estimation: bearings-only

applications," IEEE Proceedings of Radar, Sonar and Navigation, vol. 29, no. 1, pp. 305-

313, 2005.

[47] M. S. Arulampalam, R. Ristic, N. Gordon and T. Mansell, "Bearings-only tracking of

manoeuvring targets using particle filters," Journal of Applied Signal processing, vol. 15,

pp. 2351-2365, 2004.

[48] M. S. Arulampalam and B. Ristic, "Comparison of the particle fillter with range-

parameterized and modified polar EKFs for angle-only tracking," Proceedings of SPIE,

Signal and Data Processing of Small Target, 2000.

[49] F. Gustafsson, “Particle Filter Theory and Practice with Positioning Applications,” IEEE

Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 53-81, 2010.

[50] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, S. Pankanti, A.

Senior, C. Shu and Y. Tian, "Smart video surveillance: exploring the concept of multiscale

 82

spatiotemporal tracking," IEEE Signal Processing Magazine, vol. 22, no. 2, pp. 38-51,

2005.

[51] R. Yogesh, N. Vaswani, A. Tannenbaum and A. Yezzi, "Particle filtering for geometric

active contours with application to tracking moving and deforming objects," Computer

Vision and Pattern Recognition, vol. 2, pp. 2-9, 2005.

[52] M. Black and A. Jepson, "A Probabilistic Framework for Matching Temporal Trajectories:

CONDENSATION-Based Recognition of Gestures and Expressions," in Proceedings of

the 5th European Conference on Computer Vision, 1998.

[53] R. Chellappa and S. Zhou, "Face Tracking and Recognition from Video," Handbook of

Face Recognition, New York, Springer, 2005.

[54] K. Okuma, A. Taleghani, N. Freitas, J. Little and D. Lowe, "A Boosted Particle Filter:

Multitarget Detection and Tracking," European Conference on Computer Vision, vol. 3021,

pp. 28-39, 2004.

[55] A. Yilmaz, O. Javed and M. Shah, “Object Tracking: A Survey,” Journal ACM Computing

Surveys, vol. 38, no. 4, 2006.

[56] Z. Zivkovic and F. van der Heijden, "Improving the selection of feature points for

tracking," Pattern Analysis and Applications, vol. 7, no. 2, pp. 144-150, 2004.

[57] K. Nummiaro, E. Koller-Meier and L. J. Van Gool, "Object Tracking with an Adaptive

Color-Based Particle Filter," in Proceedings of the 24th DAGM Symposium on Pattern

Recognition, 2002.

[58] P. Smith, T. Drummond and R. Cipolla, "Motion segmentation by tracking edge

information over multiple frames," in European Conference on Computer Vision, pp. 396-

410, 2000.

[59] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, pp886-

893, 2005.

 83

[60] D. Comanuciu, V. Ramesh and P. Meer, "Mean shift: A robust approach toward feature

space analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,

no. 5, pp. 564-577, 2003.

[61] R. E. Kalman, “A new approach to linear filtering and prediction problem,” Journal of

Basic Engineering Transactions, vol. 82, pp. 34-45, 1960.

[62] M. Isard and A. Blake, “CONDENSATION—Conditional Density Propagation for Visual

Tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp. 5-28, 1998.

[63] M. Isard and A. Blake, "Icondensation: Unifying low-level and high-level tracking in a

stochastic framework," European Conference on Computer Vision, pp.893-908, 1998.

[64] J. Deutscher, A. Blake and I. Reid, "Articulated body motion capture by annealed particle

filtering," Computer Vision and Pattern Recognition, vol. 2, pp. 126-133, 2000.

[65] P. Pérez, C. Hue, J. Vermaak and M. Gangnet, "Color-based probabilistic tracking,"

Proceedings of the 7th European Conference on Computer Vision-Part I, pp. 661-675,

2002.

[66] P. Perez, J. Vermaak and A. Blake, "Data fusion for visual tracking with particles,"

Proceedings of the IEEE, vol. 92, no. 3, pp. 495-513, 2004.

[67] P. Dunne and B. Matuszewski, "Choice of similarity measure, likelihood function and

parameters for histogram based particle filter tracking in CCTV grey scale video," Image

and Vision Computing, vol. 29, pp. 178-189, 2011.

[68] G. De Micheli, R. Ernst and W. Wolf, Readings in Hardware/Software Codesign, San

Mateo, CA: Morgan Kaufmann, 2001.

[69] K. Keutzer, S. Malik and A. Newton, "From ASIC to ASIP: the next design discontinuity,"

IEEE International Conference on Computer Design: VLSI in Computers and Processors,

pp. 84-90, 2002.

[70] M. Imai, Y. Takeuchi, K. Sakanushi and N. Ishiura, "Advantage and Possibility of

Application-domain Specific Instruction-set Processor (ASIP)," IPSJ Transactions on

 84

System LSI Design Methodology, vol. 3, pp. 161-178, 2010.

[71] A. Hoffman and A. Nohl, "The Dusk of ASIC, the Dawn of ASIP," Coware company white

paper, 2006.

[72] M. Bolic, A. Athalye, P. Djuric and S. Hong, “Algorithmic modification of particle filters

for hardware implementation,” in Proceedings of the European Signal Processing

Conference, Vienna, Austria, pp. 1641-1644, 2004.

[73] S. Hong, S. Chin, P. Djuric and M. Bolic, “Design and implementation of flexible

resampling mechanism for high-speed parallel particle filters,” Journal of VLSI Signal

Processing, vol. 44, no. 1-2, pp. 47-62, 2006.

[74] A. Athalye, M. Bolic, S. Hong and P. Djuric, “Generic Hardware Architectures for

Sampling and Resampling in Particle Filters,” EURASIP Journal on Applied Signal

Processing, vol. 17, pp. 2888-2902, 2005.

[75] H. A. A. El-Halym, I. I. Mahmoud and S. E.-D. Habib, "Efficient hardware architecture for

particle filter based object tracking," Proceedings of 2010 IEEE 17th International

Conference on Image Processing, Hong Kong, pp. 4497-4500, 2010.

[76] M. Sadasivam and S. Hong, "Application specific coarse-grained FPGA for processing

element in real time parallel particle filters," Proceedings of 3rd IEEE International

Workshop on System-on-Chip for Real-Time Applications, pp.116-119, 2003.

[77] R. Velmurugan, V. Cevher and J. McClellan, "Implementation of Batch-Based Particle

Filters for Multi-Sensor Tracking," 2nd IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing, pp. 257-260, 2007.

[78] R. Velmurugan, S. Subramanian, V. Cevher, J. McClellan and D. Anderson, "Mixed-mode

Implementation of Particle Filters," IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing, pp. 617-620, 2007.

[79] B. Minch, "Construction and transformation of multiple-input translinear element

networks," IEEE Transaction Circuits Systems I, vol. 50, pp. 1530-1537, 2003.

 85

[80] S. Maskell, B. Alun-Jones and M. Macleod, "A Single Instruction Multiple Data Particle

Filter," IEEE Workshop on Nonlinear Statistical Signal Processing, pp. 51-54, 2006.

[81] G. Hendeby, R. Karlsson and F. Gustafsson, “Particle Filtering: The Need for Speed,”

Eurasip Journal on Advances in Signal Processing, vol. 2010, No. 22, 2010.

[82] H. Medeiros, X. Gao, J. Park, R. Kleihorst and A. Kak, "A parallel implementation of the

color-based particle filter for object tracking," Proceedings of the ACM Sensys Workshop

on Applications, Systems and Algorithms for Image Sensing, 2008.

[83] H. Medeiros, J. Park and A. Kak, "A parallel color-based particle filter for object tracking,"

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops, pp.1-8 2009.

[84] H. Medeiros, G. Holguin, P. Shin and J. Park, "A parallel histogram-based particle filter for

object tracking on SIMD-based smart cameras," Journal of Computer Vision and Image,

vol. 114, no. 11, pp. 1264-1272, 2010.

[85] G. Li, B. Li, Z. Liu and X. Chen, "Implementation and optimization of Particle

Filtertracking algorithm on Multi-DSPs system," IEEE Conference on Cybernetics and

Intelligent Systems, pp.152-157, 2008.

[86] M. Gries and K. Keutzer, Building ASIPs: The MESCAL Methodology, Springer, 2005.

[87] M. Jain, M. Balakrishnan and A. Kumar, "ASIP design methodologies: survey and issues,"

Fourteenth International Conference on VLSI Design, pp.76-81, 2001.

[88] L. Pozzi and P. Paulin, "A Future of Customizable Processors: Are We There Yet?,"

Design, Automation & Test in Europe Conference, pp.1-2, 2007.

[89] P. Ienne and R. Leupers, Customizable Embedded Processors: Design Technologies and

Applications, Morgan Kaufmann, 2006.

[90] A. Hoffmann, H. Meyr and R. Leupers, Architecture Exploration for Embedded Processors

With LISA, Springer, 2002.

[91] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt and A. Nicolau, "EXPRESSION: a

 86

language for architecture exploration through compiler/simulator retargetability," Design,

Automation and Test in Europe Conference and Exhibition, pp. 31-45, 1999.

[92] A. Fauth, J. Van Praet and M. Freericks, "Describing instruction set processors using

nML," European Design and Test Conference, pp. 503-507, 1995.

[93] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takenchi, A. Kitajima and M. Imai, "PEAS-III:

an ASIP design environment," Proceeding of International Conference Computer Design,

pp. 430-436, 2000.

[94] A. Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takenchi and M. Imai, "Effectiveness of the

ASIP design system PEAS-III in design of pipelined processors," in Proceeding of Asia

South Pacific Design Automation Conference, pp.649-654, 2001.

[95] S. Leibson, Designing SOCs with Configured Cores: Unleashing the Tensilica Xtensa and

Diamond Cores, San Francisco: Elsevier Morgan-Kaufmann, 2006.

[96] P. Ienne, L. Pozzi and M. Vuletic, "On the limits of automatic processor specialisation by

mapping dataflow sections on ad-hoc functional units," Technical Report 01/376, Swiss

Federal Institute of Technology Processor Architecture Lab, Lausanne, 2001.

[97] P. Yu and T. Mitra, "Characterizing embedded applications for instruction-set extensible

processors," Proceeding of Design Automation Conference, pp. 723-728, 2004.

[98] K. Atasu, L. Pozzi and P. Ienne, "Automatic application-specific instruction-set extensions

under microarchitectural constraints," Proceedings of the 40th Design Automation

Conference, pp. 411-428, 2003.

[99] K. Atasu, G. Dündar and C. Ozturan, "An integer linear programming approach for

identifying instruction-set extensions," Proceedings of the International Conference on

Hardware - Software Codesign and System Synthesis, pp. 172-177, 2005.

[100] K. Atasu, R. Dimond, O. Mencer, W. Luk, C. Ozturan and G. Dundar, "Optimizing

instruction-set extensible processors under data bandwidth constraints," Proceedings of

Design,Automation and Test in Europe Conference, pp.1-6, 2007.

 87

[101] K. Atasu, C. Ozturan, G. Dundar, O. Mencer and W. Luk, "CHIPS: Custom Hardware

Instruction Processor Synthesis," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 27, no. 3, pp. 528-541, 2008.

[102] K. Atasu, O. Mencer, W. Luk, C. Ozturan and G. Dundar, "Fast Custom Instruction

Identification by Convex Subgraph Enumeration," Proceedings of the 19th International

Conference on Application-specific Systems, Architectures and Processors (ASAP), pp.1-6,

2008.

[103] L. Pozzi, K. Atasu and P. Ienne, "Exact and approximate algorithms for the extension of

embedded processor instruction sets," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, no. 7, pp. 1209-1229, 2006.

[104] P. Bonzini and L. Pozzi, "Polynomial-time subgraph enumeration for automated instruction

set extension," Proceedings of DATE, pp. 1331-1336, 2007.

[105] D. E. Culler, J. P. Singh and A. Gupta, Parallel Computer Architecture: A

Hardware/Software Approach, Morgan Kaufmann Publishers Inc., 1999.

[106] H. Noori, F. Mehdipour, K. Murakami, K. Inoue and M. Zamani, “An architecture

framework for an adaptive extensible processor,” Journal of Supercomputing, vol. 45, no.

3, pp. 313-340, 2008.

[107] Tensilica Inc., “Xtensa LX microprocessor data book for Xtensa LX2 processor cores,”

2007.

[108] Tensilica Inc., “Tensilica Instruction Extension (TIE) Language User’s Guide,” 2002.

[109] B. Anderson and J. Moore, Optimal Filtering, New Jersey, USA: Prentice-Hall Englewood

Cliffs, 1979.

[110] M. M. Mbaye, N. Belanger, Y. Savaria and P. Samuel, "Loop Acceleration Exploration for

ASIP Architecture," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 20, no. 4, pp. 684-696, 2012.

[111] M. Harris, S. Sengupta and J. Owens, "Parallel prefix sum (scan) with CUDA," GPU

 88

Gems, vol. 3, no. 39, pp. 851-876, 2007.

[112] B. Parhami, Computer arithmetic: Algorithms and hardware designs, Oxford University

Press, 2000.

[113] A. Shahbahrami,, B. Juurlink and S. Vassiliadis, “SIMD vectorization of histogram

functions,” Proceedings of ASAP, pp. 174-179, 2007.

[114] S. Muller, “A new programmable VLSI architecture for histogram and statistics

computation in different windows,” Proceedings of ICIP, vol.1, pp. 73-76, 1995.

[115] A. Shahbahrami, J. Hur, B. Juulink and S. Wong, "FPGA implementation of parallel

histogram computation," 2nd HiPEAC Workshop on Reconfigurable Computing, pp. 63-72,

2008.

[116] E. Jamro, M. Wielgosz and K. Wiatr, "FPGA implementation of the strongly parallel

histogram equalization," Proceedings of IEEE Workshop on DDECS, pp.1-6, 2007.

[117] J. Cadenas, R. Sherratt and P. Huerta, "Parallel pipelined histogram architectures,"

Electronics Letters, vol. 47, no. 20, pp. 1118-1120, 2011.

[118] J. Cadenas, R. Sherratt, P. Huerta and W. Kao, "Parallel pipelined array architectures for

real-time histogram computation in consumer devices," IEEE Transactions on Consumer

Electronics, vol. 57, no. 4, pp. 1460-1464, 2011.

[119] J. Czyz, B. Ristic and B. Macq, "A particle filter for joint detection and tracking of color

objects," Image and Vision Computing, vol. 25, no. 8, p. 1271–1281, 2006.

[120] A. Verma and P. Ienne, "Automatic synthesis of compressor trees: re-evaluating large

counters," Proceedings of DATE, pp. 443-448, 2007.

	DEDICATION
	ACKNOWLEDGEMENTs
	RÉsumÉ
	Abstract
	Table of contents
	List of tables
	List of figures
	LIST OF ABBREVIATIONS
	Chapter 1 Introduction
	1.1 Overview
	1.2 Motivation and Challenges
	1.3 Research Objectives
	1.4 Contributions and Published Work
	1.5 Organization of the Thesis

	Chapter 2 Literature review
	2.1 Particle Filters
	2.2 Applications of Particle Filters
	2.2.1 Target Tracking
	2.2.2 Video Tracking

	2.3 PF Implementation in Embedded Systems
	2.3.1 Implementation Methods in Embedded Systems
	2.3.2 Examples of PF Implementations

	2.4 Application-Specific Instruction-set Processors
	2.4.1 Overview
	2.4.2 Processor Generation
	2.4.3 Automatic Generation of Custom Instructions

	Chapter 3 Efficient Uniform Quantization Likelihood Evaluation for particle filters in embedded implementations
	3.1 Introduction
	3.2 Computational Characteristics of PFs
	3.2.1 Description of DSS Examples
	3.2.2 Computational Complexity of SIR PFs
	3.2.2.1 Functional View of SIR PFs
	3.2.2.2 Computational Complexity

	3.3 Proposed UQLE Algorithm
	3.4 UQLE Accuracy Evaluation
	3.4.1 Implementation Environment and Accuracy Metrics
	3.4.2 Accuracy for the LG Model
	3.4.3 Accuracy for the UNG Model
	3.4.4 Accuracy for the BOT Model

	3.5 UQLE Throughput Evaluations
	3.5.1 UQLE Software Implementation and its Performance
	3.5.2 UQLE ASIP Implementation and its Performance

	3.6 Conclusion

	Chapter 4 Novel Systematic resampling algorithms and their implementation in ASIPs
	4.1 Introduction
	4.2 Reformulated SR Algorithm and its ASIP Implementation
	4.2.1 The Reformulated SR Algorithm
	4.2.2 ASIP Implementation
	4.2.3 Performance

	4.3 Parallel Systematic Resampling Algorithm and its ASIP Implementation
	4.3.1 Parallel Systematic Resampling Algorithm
	4.3.2 Fixed-point Implementation of the PSR Algorithm
	4.3.3 ASIP Implementation of the Fixed-Point PSR Algorithm
	4.3.4 Implementation Results
	4.3.4.1 Accuracy for Fixed-Point Processing
	4.3.4.2 Performance of Fixed-Point Processing and ASIP Implementation

	4.4 Conclusion

	Chapter 5 Parallel array Histogram Architecture for Embedded Implementations
	5.1 Introduction
	5.2 Bottleneck in Histogram-based PFs for Video Tracking
	5.3 Parallel Array Histogram Architecture
	5.4 Flexible Parallel Array Histogram Architecture
	5.5 Architecture Comparisons
	5.6 Implementation Results
	5.7 Conclusion

	Chapter 6 Conclusions and future work
	6.1 Thesis Conclusions
	6.2 Future Work

	REFERENCEs

