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RÉSUMÉ 

 

Cette thèse considère le problème de l’implémentation de filtres particulaires (particle filters 

PFs) dans des processeurs à jeu d’instructions spécialisé (Application-Specific Instruction-set 

Processors ASIPs). Considérant la diversité et la complexité des PFs, leur implémentation re-

quiert une grande efficacité dans les calculs et de la flexibilité dans leur conception. La concep-

tion de ASIPs peut se faire avec un niveau intéressant de flexibilité. Notre recherche se concentre 

donc sur l’amélioration du débit des PFs dans un environnement de conception de ASIP. 

Une approche générale est tout d’abord proposée pour caractériser la complexité computa-

tionnelle des PFs. Puisque les PFs peuvent être utilisés dans une vaste gamme d’applications, 

nous utilisons deux types de blocs afin de distinguer les propriétés des PFs. Le premier type est 

spécifique à l’application et le deuxième type est spécifique à l’algorithme. Selon les résultats de 

profilage, nous avons identifié que les blocs du calcul de la probabilité et du rééchantillonnage 

sont les goulots d’étranglement principaux des blocs spécifiques à l’algorithme. Nous explorons 

l’optimisation de ces deux blocs aux niveaux algorithmique et architectural. 

Le niveau algorithmique offre un grand potentiel d’accélération et d’amélioration du débit. 

Notre travail débute donc à ce niveau par l’analyse de la complexité des blocs du calcul de la 

probabilité et du rééchantillonnage, puis continue avec leur simplification et modification. Nous 

avons simplifié le bloc du calcul de la probabilité en proposant un mécanisme de quantification 

uniforme, l’algorithme UQLE. Les résultats démontrent une amélioration significative d’une im-

plémentation logicielle, sans perte de précision. Le pire cas de l’algorithme UQLE implémenté en 

logiciel à virgule fixe avec 32 niveaux de quantification atteint une accélération moyenne de 

23.7   par rapport à l’implémentation logicielle de l’algorithme ELE. Nous proposons aussi deux 

nouveaux algorithmes de rééchantillonnage pour remplacer l’algorithme séquentiel de rééchantil-

lonnage systématique (SR) dans les PFs. Ce sont l’algorithme SR reformulé et l’algorithme SR 

parallèle (PSR). L’algorithme SR reformulé combine un groupe de boucles en une boucle unique 

afin de faciliter sa parallélisation dans un ASIP. L’algorithme PSR rend les itérations indépen-



VI 

 

dantes, permettant ainsi à l’algorithme de rééchantillonnage de s’exécuter en parallèle. De plus, 

l’algorithme PSR a une complexité computationnelle plus faible que l’algorithme SR. 

Du point de vue architectural, les ASIPs offrent un grand potentiel pour l’implémentation de 

PFs parce qu’ils présentent un bon équilibre entre l’efficacité computationnelle et la flexibilité de 

conception. Ils permettent des améliorations considérables en débit par l’inclusion d’instructions 

spécialisées, tout en conservant la facilité relative de programmation de processeurs à usage gé-

néral. Après avoir identifié les goulots d’étranglement de PFs dans les blocs spécifiques à 

l’algorithme, nous avons généré des instructions spécialisées pour les algorithmes UQLE, SR 

reformulé et PSR. Le débit a été significativement amélioré par rapport à une implémentation 

purement logicielle tournant sur un processeur à usage général. L’implémentation de l’algorithme 

UQLE avec instruction spécialisée avec 32 intervalles atteint une accélération de 34  par rapport 

au pire cas de son implémentation logicielle, avec 3.75 K portes logiques additionnelles. Nous 

avons produit une implémentation de l’algorithme SR reformulé, avec quatre poids calculés en 

parallèle et huit catégories définies par des bornes uniformément distribuées qui sont comparées 

simultanément. Elle atteint une accélération de 23.9  par rapport à l’algorithme SR séquentiel 

dans un processeur à usage général. Le surcoût est limité à 54 K portes logiques additionnelles. 

Pour l’algorithme PSR, nous avons conçu quatre instructions spécialisées configurées pour sup-

porter quatre poids entrés en parallèle. Elles mènent à une accélération de 53.4  par rapport à 

une implémentation de l’algorithme SR en virgule flottante sur un processeur à usage général, 

avec un surcoût de 47.3 K portes logiques additionnelles. 

Finalement, nous avons considéré une application du suivi vidéo et implémenté dans un ASIP 

un algorithme de FP basé sur un histogramme. Nous avons identifié le calcul de l’histogramme 

comme étant le goulot principal des blocs spécifiques à l’application. Nous avons donc proposé 

une architecture de calcul d’histogramme à réseau parallèle (PAHA) pour ASIPs. Les résultats 

d’implémentation démontrent qu’un PAHA à 16 voies atteint une accélération de 43.75  par 

rapport à une implémentation logicielle sur un processeur à usage général. 
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ABSTRACT 

 

This thesis considers the problem of the implementation of particle filters (PFs) in Applica-

tion-Specific Instruction-set Processors (ASIPs). Due to the diversity and complexity of PFs, im-

plementing them requires both computational efficiency and design flexibility. ASIP design can 

offer an interesting degree of design flexibility. Hence, our research focuses on improving the 

throughput of PFs in this flexible ASIP design environment.  

A general approach is first proposed to characterize the computational complexity of PFs. 

Since PFs can be used for a wide variety of applications, we employ two types of blocks, which 

are application-specific and algorithm-specific, to distinguish the properties of PFs. In accordance 

with profiling results, we identify likelihood processing and resampling processing blocks as the 

main bottlenecks in the algorithm-specific blocks. We explore the optimization of these two 

blocks at the algorithmic and architectural levels. 

The algorithmic level is at a high level and therefore has a high potential to offer speed and 

throughput improvements. Hence, in this work we begin at the algorithm level by analyzing the 

complexity of the likelihood processing and resampling processing blocks, then proceed with 

their simplification and modification. We simplify the likelihood processing block by proposing a 

uniform quantization scheme, the Uniform Quantization Likelihood Evaluation (UQLE). The 

results show a significant improvement in performance without losing accuracy. The worst case 

of UQLE software implementation in fixed-point arithmetic with 32 quantized intervals achieves 

23.7  average speedup over the software implementation of ELE. We also propose two novel 

resampling algorithms instead of the sequential Systematic Resampling (SR) algorithm in PFs. 

They are the reformulated SR and Parallel Systematic Resampling (PSR) algorithms. The refor-

mulated SR algorithm combines a group of loops into a parallel loop to facilitate parallel imple-

mentation in an ASIP. The PSR algorithm makes the iterations independent, thus allowing the 

resampling algorithms to perform loop iterations in parallel. In addition, our proposed PSR algo-

rithm has lower computational complexity than the SR algorithm.  
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At the architecture level, ASIPs are appealing for the implementation of PFs because they 

strike a good balance between computational efficiency and design flexibility. They can provide 

considerable throughput improvement by the inclusion of custom instructions, while retaining the 

ease of programming of general-purpose processors. Hence, after identifying the bottlenecks of 

PFs in the algorithm-specific blocks, we describe customized instructions for the UQLE, refor-

mulated SR, and PSR algorithms in an ASIP. These instructions provide significantly higher 

throughput when compared to a pure software implementation running on a general-purpose pro-

cessor. The custom instruction implementation of UQLE with 32 intervals achieves 34  speedup 

over the worst case of its software implementation with 3.75 K additional gates. An implementa-

tion of the reformulated SR algorithm is evaluated with four weights calculated in parallel and 

eight categories defined by uniformly distributed numbers that are compared simultaneously. It 

achieves a 23.9× speedup over the sequential SR algorithm in a general-purpose processor. This 

comes at a cost of only 54 K additional gates. For the PSR algorithm, four custom instructions, 

when configured to support four weights input in parallel, lead to a 53.4× speedup over the float-

ing-point SR implementation on a general-purpose processor at a cost of 47.3 K additional gates.  

Finally, we consider the specific application of video tracking, and an implementation of a 

histogram-based PF in an ASIP. We identify that the histogram calculation is the main bottleneck 

in the application-specific blocks. We therefore propose a Parallel Array Histogram Architecture 

(PAHA) engine for accelerating the histogram calculation in ASIPs. Implementation results show 

that a 16-way PAHA can achieve a speedup of 43.75× when compared to its software implemen-

tation in a general-purpose processor. 
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Chapter 1 INTRODUCTION 

1.1 Overview 

Particle Filters (PFs) [1] are statistical signal processing methods that perform sequential 

Monte Carlo estimation based on a particle representation of probability densities. Over the past 

decade, they have gained in popularity to address various applications with nonlinear models 

and/or non-Gaussian noise due to their competitive accuracy in comparison with the Extended 

Kalman Filter (EKF). PFs use the concept of importance sampling to recursively compute the 

relevant probability distributions conditioned on the observations. In comparison with the EKF, 

PFs do not rely on linearization techniques and can robustly approximate the true system state 

with an appropriate number of particles. In contrast, the EKF sometimes has poor performance, 

lacks robustness, and may introduce large biases [2]. 

In practice, PFs have shown great promise as a powerful framework in addressing a wide 

range of complex applications that include target tracking, navigation, robotics and computer 

vision. Fox example, in target tracking, the Bearings-Only Tracking (BOT) application [1] [2] 

only employs noisy measurement of angular positions to estimate the object position and veloci-

ty. In computer vision, color-based PFs for video tracking [3] estimate the object position by cal-

culating the distance between the reference color histogram and the current color histograms. In 

these applications, PFs achieve higher accuracy than other filters [2] [3] .  

1.2 Motivation and Challenges 

Because PFs are effective and popular filters for applications with nonlinear models and/or 

non-Gaussian noise, a vast amount of literature can be found on their theory, applications and 

implementations. To our knowledge, when implementing PFs in embedded systems, most works 

only focus on how to improve their throughput and thus implement them on dedicated hardware 

due to their high computational complexity. However, PFs still require design flexibility to favor 

a large range of various applications. There has been no effort to consider the important factor of 

design flexibility. Hence, we aim to fill that gap and demonstrate flexible approaches to PFs im-

plementation. These alternatives to dedicated hardware design should achieve the same through-
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put requirements of target applications. In this thesis, we specifically consider tracking applica-

tions. These applications are characterized by complex target models. Meanwhile, in order to 

achieve a high level of accuracy, the number of particles should be as large as possible. In such a 

context, PFs must achieve high throughput and have low latency. In the context of an embedded 

system, the implementation should occupy a small area and consume as little power as possible. 

A final but important requirement, which we consider in this thesis, is that the system should be 

as flexible as possible to accommodate changes and support updates. 

An appealing method is using Application-Specific Instruction-set Processors (ASIPs). ASIPs 

strike a good balance between efficient custom processor design and low-cost flexible general-

purpose processor design. They maintain the flexibility of a programmable solution while im-

proving the throughput with the instantiation of dedicated customized instructions and/or special 

purpose registers. Hence, the main objective of our research is to develop and implement PFs in 

ASIPs to achieve the desired requirements of tracking applications in the throughput and silicon 

area.  

There are two main reasons for the heavy computational requirements in PFs. The first reason 

is that a large number of particles are often required to achieve the desired accuracy. As the num-

ber of particles increases, the processing speed of the particle filters tends to be seriously degrad-

ed. The second reason arises from the type of operations involved in the PFs. PFs may require 

nonlinear operations such as division and exponentiation. These expensive and complex opera-

tions are often important bottlenecks in the embedded implementation of PFs.  

In order to meet the throughput requirements of tracking applications, we identify the bottle-

necks at the algorithm and architecture levels. In accordance with the need for a large amount of 

particles in PFs, a parallel implementation is an appealing method to improve PF throughput. In 

ASIP design, parallelism can be exploited at the instruction level. However, standard resampling 

algorithms such as the Systematic Resampling (SR) algorithm [4]  are sequential in nature. It may 

become the most time consuming portion when parallelism is employed in implementing the PFs.  

Making resampling algorithms feasible for further parallel PF implementation becomes a difficult 

challenge in order to improve PF throughput. Concerning the problem on nonlinear complex op-

erations involved in PFs, it is necessary to simplify or avoid using such operations. However, 
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simplification in PFs may affect the accuracy for tracking applications. Hence, this problem mo-

tivates us to find how to simplify the complex operations in PFs without losing accuracy.  

At the architecture level, hardware unit design for the relevant bottlenecks in PFs is required 

in order to further improve the throughput of tracking applications in ASIPs. However, the design 

of ASIPs is constrained by the number of input and output operands for custom instructions and 

by the memory bandwidth. Under these restrictions, exploiting the data parallelism and/or fusing 

atomic operations at the heart of execution bottlenecks become the main challenges in designing 

specific hardware units in ASIPs.  

1.3 Research Objectives 

The main goal of this research is to design and implement PFs in ASIPs to achieve high 

throughput with a certain level of flexibility. In order to reach this goal, the following specific 

objectives are identified:  

 Analyze and characterize PFs in the context of their implementation in ASIPs in order to identi-

fy opportunities for acceleration and implementation efficiency.  

 In accordance with PF characteristics, propose new and efficient PF algorithms to reduce the 

impact of complex operations that exist in conventional PF algorithms.  

 Propose new formulations of resampling algorithms for PFs in order to accelerate their execu-

tion.  

 Identify bottlenecks for histogram-based PFs for video tracking and propose relevant hardware 

architectures for them in ASIPs.   

 Simulate, implement, test and evaluate several ASIP designs of PFs to assess the performance 

of the proposed algorithms and architectures.      
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1.4 Contributions and Published Work 

This thesis presents six main contributions that have been presented in papers published in or 

submitted to scientific journals and international conferences.  

 

I. A novel characterization of PFs  

Our proposed characterization of PFs, unlike previous work [5] [6], focuses on distinguishing 

the application-specific blocks and the algorithm-specific blocks. This contribution was presented 

in: 

Qifeng Gan, J.M.P. Langlois, Y. Savaria, "Efficient Uniform Quantization Likelihood Evaluation 

for Particle Filters in Embedded Implementations," accepted by Journal of Signal Processing 

Systems on 29
th

 May 2013, [7].  

II. Simplified likelihood evaluation algorithm and its implementation in ASIPs 

We proposed an efficient Uniform Quantization Likelihood Evaluation (UQLE) algorithm to 

replace the Exact Likelihood Evaluation (ELE) algorithm in PFs. Simulation results indicate that 

PFs using UQLE can achieve comparable or better accuracy than the PFs using ELE. We also 

implemented UQLE in an ASIP to achieve higher throughput. This contribution was presented in 

the same paper [7] as Contribution I.  

III. Reformulated systematic resampling algorithm and its implementation in ASIPs 

We proposed a reformulated systematic resampling algorithm instead of the Sequential SR 

algorithm. Our proposed reformulated systematic resampling is suitable for parallel implementa-

tion in ASIPs. The idea and results are presented in:   

Qifeng Gan, J.M.P. Langlois, Y. Savaria, "A Reformulated Systematic Resampling and its Paral-

lel Implementation on Application-Specific Instruction-set Processors," accepted by MWSCAS 

2013 on 10
th

 May 2013, [8].   
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IV. Parallel systematic resampling algorithm and its implementation in ASIPs 

We proposed a Parallel Systematic Resampling (PSR) algorithm for PFs. This algorithm 

makes iterations independent, thus allowing the resampling algorithm to perform its iterations in 

parallel. The idea and results are presented in:  

Qifeng Gan, J.M.P. Langlois, Y. Savaria, "Parallel Systematic Resampling Algorithm for Particle 

Filters," submitted to Journal of Circuits, Systems and Signal Processing on 10
th

 Apr. 2013, [9].   

V. Parallel array histogram architecture engine design for histogram-based particle filtering video 

tracking systems. 

We designed a Parallel Array Histogram Architecture (PAHA) engine, where multiple ele-

ments can be processed in parallel to update the histogram bins, to accelerate the histogram cal-

culation for further use in histogram-based particle filters for video tracking. The idea and results 

were published in:    

Qifeng Gan, J.M.P. Langlois, Y. Savaria, "Parallel Array Histogram Architecture for Embedded 

Implementations," Electronics Letters, vol.49, issue 2, January 2013, [10]. 

VI. Histogram-based PFs for video tracking implementation 

In collaboration with Ms. R. Farah, we explored the simplification of PFs for video tracking 

and made them better suitable for embedded implementation.  

R. Farah, Q. Gan, J.M.P Langlois, G.-A. Bilodeau, Y. Savaria, "A tracking algorithm suitable for 

embedded systems implementation," Electronics, Circuits and Systems (ICECS), 2011 18th IEEE 

International Conference on, pp.256-259, 11-14 Dec. 2011, [11]. 

1.5 Organization of the Thesis 

This thesis is organized in six chapters including this introduction. In Chapter 2, an overview 

of related works is presented. These works are separated into four main parts: theory of PFs, ap-

plications of PFs, PFs embedded implementation, and ASIPs.  
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In Chapter 3, we present a novel characterization of PFs which focuses on distinguishing the 

application-specific blocks and the algorithm-defined blocks. After profiling three applications, 

the likelihood processing block is identified as the most time consuming block in the algorithm-

defined blocks. We also present a simplified likelihood evaluation algorithm based on a uniform 

quantization scheme to reduce its complexity. Moreover, this simplified likelihood evaluation 

algorithm was implemented in the Xtensa LX2 processor with a customized instruction. 

In Chapter 4, we focus on modifying the sequential resampling algorithm in PFs and make it 

feasible for executing in parallel in ASIPs. Two novel resampling algorithms, reformulated SR 

and PSR algorithms, are proposed in accordance with the sequential SR algorithm. The reformu-

lated SR algorithm is still a sequential algorithm but it can be executed in parallel in ASIPs with 

custom instructions. The PSR algorithm is a parallel algorithm because it makes the iterations in 

the sequential SR algorithm independent, thus allowing the iterations to be performed in parallel. 

We implement these two resampling algorithms in the Xtensa LX2 processor with several rele-

vant customized instructions to show their significant speedup over the sequential SR algorithm.          

In Chapter 5, we identify that histogram calculation is major bottleneck in histogram-based 

PFs for video tracking and present a PAHA engine to accelerate histogram calculation. It can 

process multiple elements to update the histogram bins. We also introduce a second version of 

PAHA with a flexible number of inputs, potentially avoiding the need for multiple PAHAs in a 

single application. The PAHA engine can significantly accelerate histogram calculation and thus 

improve the throughput of histogram-based particle filters for video tracking.  

Chapter 6 concludes the thesis and discusses potential future work. 

 

 

 

 

 

 



7 

 

 

Chapter 2 LITERATURE REVIEW 

In this chapter, we examine the relevant background in the areas of theory of Particle Filters 

(PFs), applications of PFs, implementation of PFs, and Application-Specific Instruction-set Pro-

cessor (ASIP) design.   

2.1 Particle Filters 

PFs are sequential Monte Carlo methods [12] in which the a posteriori probability distribution 

function (PDF) is approximated by the importance weights of samples. Since the demonstration 

of their accuracy in comparison with other filters and their flexibility in addressing a vast amount 

of problems [2], PFs have gained in popularity to address applications with non-linear models 

and/or non-Gaussian noise. PFs were initially introduced as the bootstrap filter by Gordon et al. 

[2] [13]. They showed that PFs outperform the Extended Kalman Filter (EKF) in a Bearing-Only 

Tracking (BOT) application. Kitagawa [14] studied PFs as Monte Carlo Filter for prediction, fil-

tering, and smoothing. Carpenter et al. [15] improved the quality of PFs by solving the sample 

impoverishment problem [13]. Many tutorials and books [1] [4] [16] [17] [18] [19] [20] have 

been published to review PFs and their applications. Aydogums et al. [21] used the EKF and PFs 

to perform sensorless speed control. They showed again that the estimation performance of PFs is 

more accurate than the EKF in applications with nonlinear models and/or non-Gaussian noise.  

PFs are often applied to problems that can be written in the form of Dynamic State Space 

(DSS) models. Consider the general form of a DSS model expressed by Equations (2.1) and 

(2.2): 

        (         ),                                                           (2.1) 

      (     ),                                                              (2.2) 

where      is the time index,    is the target state vector, and    is the observation vector.       

and    are possibly nonlinear prediction functions of the state     and observation functions of 

the state   , respectively.      is the process noise sequence and    is the observation noise se-

quence. Equation (2.1) describes how the state vector    evolves with time. Equation (2.2) devel-
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ops the noisy observation vector    as a function of the state vector   . In PFs, the aim is to learn 

about the unobserved state based on a set of noisy observations as time evolves. 

PFs base their operations on approximating the a posteriori PDF using a set of N weighted 

samples      
    

     
 , called particles. These particles are drawn independently from an im-

portance density  (  |         ) . Accordingly, if the observation       {          }  is 

available and the weights are normalized such that ∑   
 

   , the a posteriori PDF at time   can 

be approximated as 

 (    |    )  ∑   
  ( 

            
 )                                             (2.3) 

where      {          } is the set of all states up to time  .  

After determining the a posteriori PDF  (    |    ), the state estimate    can be computed us-

ing either the minimum mean-square error (MMSE), the maximum a posteriori probability 

(MAP), or other methods. The MMSE estimate is the conditional mean of   : 

 ̂ | 
     ∫   (    |    )   ,                                               (2.4) 

while the MAP estimate is the maximum of  (  |  ): 

 ̂ | 
            

 (    |    ).                                               (2.5) 

In the implementation of PFs, the a posteriori PDF  (    |    ) may be obtained recursively 

through the three basic steps described below: 

1) Prediction Generation: The particle   
  is drawn by the importance density  (  |         ). 

The choice of the importance density plays a fundamental role in the design of PFs because gen-

erating the particles and the relevant weights is related to this importance density [16] . If the 

drawn particles are in regions of the space where the density has negligible values, the estimation 

obtained from the particles with their associated weights would be poor and it would easily lead 

to a failure in the estimation. A standard scheme is to choose the state transition prior  (  |    ) 

defined by equation (2.1) as the importance density. PFs using this scheme are known as the 
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bootstrap filter [2]. The advantage of this scheme is that it is efficient to implement. However, 

this transition prior does not take the current observation into account. When the likelihood dis-

tribution  (  |  ) is narrow with respect to the transition prior distribution  (  |    ), many 

particles will receive negligible weights. This situation can easily lead to the degeneracy problem.  

2) Weight Calculation: When the likelihood distribution  (  |  ) is obtained upon the arrival of 

the observation   , the particle weights can be computed via the weight update equation as fol-

lows:  

  
      

  (  |  
 ) (  

 |    
 )

 (  
 |    

      )
.                                                   (2.6) 

Normalization is carried out as follows:  

 ̃ 
  

  
 

∑   
  

   

.                                                                  (2.7) 

3) Resampling Processing: The degeneracy problem, where after a few iterations most weights 

have a value of zero and only a few weights retain a substantial value, often occurs in PFs, espe-

cially when the importance density is the state transition prior  (  |    ). This problem can 

strongly affect the overall application accuracy [1]. The resampling processing step is a critical 

process in PFs because it can overcome the degeneracy of particles. It replicates the particles in 

proportion to their weights, which allows the particles to be concentrated more in domains of 

higher posterior probability. More specifically, new particles  ̃ 
  are drawn from the set of parti-

cles   
  based on the particle weights   

  through a resampling scheme. The resampled set of new 

particles and their weights is denoted by   ̂ 
   ̂ 

  .  

The resampling processing step can be decomposed into three blocks, shown Fig. 2-1. They 

are Replication Factors Generation (RFG), Index Generation (IG), and Particle Allocation (PA). 

The RFG block calculates the Replication Factors (RFs) for the particles according to their 

weights. The RFs show how many times each particle is replicated as a result of resampling. The 

IG block is optional. The IG algorithm [5] can be used to replace the need to temporarily store 

replicated particle states with the array indexes. Particle states can occupy a significant amount of 
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memory, which is proportional to the number of particles and to the number of dimensions in the 

particle states, while the memory for the array indexes only is proportional to the number of par-

ticles. The IG block may prevent parallel execution of the resampling processing step due to non-

predetermined memory accesses for allocating particles. In the PA block, the memory space oc-

cupied by the discarded particles can be re-allocated to the replicated particles if the IG block is 

used. If not, particles can be replicated into the new memory according to their RFs. The parallel 

implementation of the PA block depends on the implementation technology. Bolic et al. [22] in-

troduced particle proportional allocation and particle non-proportional allocation algorithms for 

implementing the PA block in parallel on a distributed architecture. Hwang et al. [23] used a load 

balanced particle replication algorithm for parallelizing the PA block on Graphics Processing 

Units (GPUs).     

 

Figure 2-1 Functional view of the resampling processing step 

Two main types of resampling algorithms (RAs) are used in the RFG block to calculate the 

RFs: threshold-based and standard RAs. Threshold-based RAs include the partial resampling [5]  

and compact resampling [24] [25] algorithms. Their accuracy is strongly dependent on proper 

threshold selection. Although they can have lower computational complexity than standard RAs 

and can potentially be implemented in a parallel architecture, their overall accuracy tends to be 

degraded [5] [25]. Standard RAs are derived from the stratified resampling [15] algorithm. They 

do not require the adjustment of thresholds or other parameters. The Systematic Resampling (SR) 

[4], Residual Resampling (RR) [26] and Residual Systematic Resampling (RSR) [5] [27] algo-

rithms are the three most common standard RAs in use.  

The SR algorithm calculates the RFs by comparing the Cumulative Weights (CWs)     
     

  

with a set of corresponding Uniformly Distributed Numbers (UDNs)   , for        . Here 

Resampling Processing 
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  is number of input particles and   is the number of resampled particles.    is given by equa-

tion (2.8). 

   {
 [       )                  

        (   )                   
                                     (2.8) 

where   is a random number distributed uniformly in the specified interval, and       is the 

interval size defined by equation (2.9).  

       
   

 

 
                                                                   (2.9) 

Fig. 2-2 shows the data flow graph of the SR algorithm. The CWs     
     

  are calculated in 

a cascade of adders.    and       are generated according to equations (2.8) and (2.9). The RFs 

   
     

  are determined as the number of times the CWs are greater than the corresponding UDNs. 

For each RF, this is implemented using a while loop with a non-predetermined number of itera-

tions. In software, these while loops would be placed inside a for loop of   iterations. In Fig. 2-2, 

this outer for loop is shown unrolled. Each while loop produces two results: a RF and an index m 

used by the following while loop. 

 

Figure 2-2 Data flow graph for the SR algorithm 
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Because the SR algorithm only involves operations such as addition and comparison, it is the 

fastest algorithm among these standard RAs when implemented in General Purpose Processors 

(GPPs) without Floating-Point Unit (FPU). However, the SR algorithm includes a while loop that 

has a non-predetermined number of iterations inside a for loop. Thus, it is not a priori possible to 

unfold the loops in the SR algorithm for parallel execution.  

The RR algorithm is by far the most complex among these three standard RAs. It is composed 

of two steps. In the first step, the principal RFs are calculated by truncating the product of the 

normalized weights and the number of resampled particles. Due to the truncation, the sum of 

principal RFs may not be equal to the number of resampled particles. In the second step, it is nec-

essary to calculate the residual RFs to compensate the principal RFs and then to guarantee the 

number of resampled particles. The SR algorithm is often applied in this step [5]. In terms of 

throughput, the best case for the RR algorithm occurs when all the products of the normalized 

weights and the number of resampled particles are integers. There is then no need to calculate the 

residual RFs. However, such case rarely happens. Hong et al. [28] [29] have proposed an efficient 

fixed-point RR algorithm. They simplified the complex residual RFs calculation using a particle-

tagging method to compensate for the number of resampled particles. However, their results are 

not identical to the results of the original RR algorithm, since it uses a different algorithm in the 

residual RFs calculation. Also, these authors did not show the effects on the accuracy of the tar-

get applications when using this fixed-point RR algorithm. Furthermore, the weight normaliza-

tion step cannot be merged with the RP step and it is necessary to calculate the normalized 

weights before using this fixed-point RR algorithm. Finally, their proposed method still requires 

a step for the selection, replication or removal of particles. This step involves dependencies be-

tween iterations. These features limit the speed at which this fixed-point RR algorithm can be 

computed.  

Similarly to the RR algorithm, the RSR algorithm calculates the RFs by truncating the prod-

uct of the weights and the number of particles. However, in order to eliminate the complex resid-

ual processing in the RR algorithm, the RSR algorithm uses a different approach to correct the 

RFs. From the data flow graph in Fig. 2-3, the RSR algorithm consists of only allowing for a loop 

with a known number of iterations. Each result of the iteration    is used as the starting point for 
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the next iteration. The RSR algorithm is the least complex among these three standard RAs [5]. 

Its loop can be unfolded in a hardware implementation. However, the RSR algorithm requires the 

multiplication and ceiling functions, and there remains a dependency between successive loop 

iterations. These make the critical path extremely long when executing the loop in parallel. This 

in turn implies a reduction of the processor clock frequency or the introduction of pipeline stages 

to maintain throughput. 

 

Figure 2-3 Data flow graph for the RSR algorithm 

Another approach to implement the resampling processing step is to fuse the RFG, IG and PA 

blocks to avoid computing the RFs. This is applicable to the SR and compact resampling algo-

rithms. The fusion can reduce the execution time in sequential software implementations, but it 

further increases the difficulty of parallelizing the RA step because it involves non-predetermined 

memory accesses in each iteration. Sankaranarayanan et al. [30] and Miao et al. [31] [32] used 

this approach and the Metropolis-Hastings algorithm to resample the particles. They generate 

resampled particles which only depend on the current and the previous resampled particles. Alt-

hough the software implementation is simpler than for other RAs mentioned previously, it is a 

pipelined RA rather than a parallel RA. Moreover, due to the fact that resampled particles do not 
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correlate with all of the particles, the overall accuracy of this algorithm tends to be lower than 

that of the SR algorithm [32].   

In summary, no existing parallel RA provides a solution that matches the accuracy of the 

standard RAs. When the resampling step becomes a key bottleneck in implementing PFs in high 

throughput applications, a parallel RA may be necessary. Furthermore, it is highly desirable that 

such an algorithm achieve the same accuracy as the standard RAs.   

There are many variations of PFs. The Sequential Importance Sampling (SIS) PF proposed in 

[16] forms the basis PF. It consists of the recursive of prediction generation and weight calcula-

tion stages when each measurement is received sequentially. The pseudo-code shown in Fig. 2-4 

presents basic steps for the Sampling Importance Resampling (SIR) PF. After the initialization, 

for each iteration, the algorithm includes five steps: prediction generation, weight calculation, 

weight normalization, estimation calculation and resampling. Except for the SIS and SIR PFs, 

many different versions of the PFs have been developed so far. Pitt and Shephard introduced the 

Auxiliary SIR (ASIR) PF [33]. The basic idea is to perform the resampling step at time     

using the available measurements at time   before the particles are propagated to time  . This is 

done by using an extra index for each particle, so the origin of the particle can be traced, while 

the likelihood at the next time step is evaluated. In this way, the ASIR PF attempts to mimic the 

sequence of steps carried out when the optimal importance density is available. Kotecha and 

Djuric [34] proposed a Gaussian Particle Filtering algorithm that is suitable for hardware parallel 

implementation because it does not require the resampling step. It operates by approximating 

desired densities as Gaussian. Only the mean and variance of the densities are propagated recur-

sively in time. However, the applicability of the approach is restricted to the models with non-

Gaussian noise. Doucet et al. proposed [35] a Rao-Blackwellised particle filtering algorithm 

which partitions the high-dimension mixture state model into linear and nonlinear models. The 

Kalman Filters (KFs) and PFs are used for the linear and nonlinear partitions, respectively. This 

procedure enables a significant decrease in the particle state dimension and reduces the energy 

dissipation.  
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1) Initialization: Generate   
     (  |  )        

2) Prediction generation:   
    (  |    

 ) 

3) Weight calculation:   
   (  |  

 )  

4) Weight normalization:  ̃ 
  

  
 

∑   
  

   

 

5) Estimation calculation:      ∑  ̃ 
   

  
     

6) Resampling: {  ̂ 
   ̂ 

     
 }            {   

    
     

 }. 

7) Let       and repeat from 2. 

Figure 2-4 Pseudo-code of SIR particle filter 

2.2 Applications of Particle Filters 

In many important applications of today’s high technology, e.g., computer vision, navigation, 

telecommunication, and the biomedical domain, many challenging problems consist of estimating 

unknown states from given noisy measurements. These applications are normally based on non-

linear and non-Gaussian models. Under these circumstances, PFs can be used in order to obtain 

robust results of high quality. Hence, PFs are used in many applications. For example, Xu and Li 

[36] proposed a tracking algorithm based on the Rao-Blackwellised PF and discussed how to use 

this algorithm in typical surveillance applications. Boucher and Noyer [37] introduced a hybrid 

PF, which fuses all available pseudo-range measures, applied in global navigation satellite sys-

tems applications when the Global Positioning System fails. Kim et al. [38] improved the particle 

filtering algorithm for the estimation of the number of competing stations in wireless networks. 

Furthermore, some challenging problems in medical applications such as tracking of protein mol-

ecules in the body [39], tracking of instruments for minimally invasive surgery [40] can be solved 

by using PFs.  

In summary, PFs see applications in many different areas. Because these real applications are 

often related to nonlinear models with non-Gaussian noise, PFs can be used effectively and pro-

duce robust results. Due to the different characteristics of each application, in our research, we 
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mainly focus on two types of tracking applications: target tracking and video tracking. We de-

scribe these two types of tracking applications in the next two subsections. 

2.2.1 Target Tracking  

The target tracking problem consists of processing measurements obtained from a sensor in 

order to maintain an estimate of the target’s state [41]. It can be described by state space models, 

where the state vector of a system contains the position and derivatives of the position. For ex-

ample, the system state vector could be the kinematic characteristics of the target (i.e., position, 

velocity, etc.). Several references, e.g. [1] [41] [42] [43] [44], describe the concepts of sensor 

models, target models, and estimation theory.  

In target tracking, common sensors are radar, sonar, and infrared sensors [45]. According to 

the different characteristics of these sensors, target tracking can be divided into two categories 

[1]: active target tracking and passive target tracking. Active target tracking exploits both range 

and bearing measurements. This is the most common type of target tracking in real applications. 

However, to avoid the risk of being detected by a hostile target, passive target tracking is often 

used. In a passive tracking mode, only the bearing measurement from a target is available and no 

explicit range information is measured. Hence, it may be troublesome to compute the position of 

the target. This is often referred to as the BOT application [1]. The BOT application arises in a 

variety of important practical applications in surveillance, guidance, or positioning systems [1] 

[46].   

Traditionally, the KF and its variations have been used for target tracking. However, when the 

system tracks a maneuvering target [47], where the target may have abrupt changes of its state 

(acceleration) by sudden operation of brake or steering, multiple dynamic models will be adopted 

to describe this target. These models usually involve strong nonlinearities. In these cases, the KF-

based methods will not provide accurate estimations. Instead, the PF-based methods are used in 

order to yield better performance than the KF-based methods [48].  

Gordon et al. [2] simulated a basic nonmaneuvering BOT application by using the SIR PF. 

The experiments showed that the performance of the SIR PF is greatly superior to the EKF. Kals-
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son et al. [46] discussed several BOT applications such as air-to-air passive ranging, as well as an 

air-to-sea application. They used various PFs and the EKF to implement these applications. Their 

results showed that PFs outperform the EKF. The authors also observed that the EKF is much 

faster than the PFs.  

Gustafsson et al. [6] [49] proposed a framework for target tracking and navigation problems 

using the PFs based on the motion model and different types of measurements in distance, angle, 

or velocity. They introduced several applications in practice such as vehicle position, terrain ele-

vation matching, integrated navigation systems and BOT applications. These applications can be 

easily deployed in the proposed framework. Evaluations of these applications also showed a clear 

improvement in performance using PFs compared to the existing KF-based methods. 

2.2.2 Video Tracking  

Video tracking is a crucial component of several applications such as intelligent video sur-

veillance systems [50], animal tracking [51], human gesture recognition [52], human face recog-

nition [53], and tracking sport players on court [54]. The objective of video tracking is to locate 

one or more objects in time and space in video sequences. Yilmaz et al. [55] presented a survey 

on video tracking. They discuss the important issues related to video tracking including the selec-

tion of proper object models, selection of motion models, and tracking algorithms.   

Tracking objects in video can be plagued by several problems, such as object occlusion, ir-

regular and fast object motion, illumination variation, and object deformation. A suitable object 

model which is employed and integrated into video tracking, can solve the illumination variation 

and object deformation problems. The object model can include points [56], color histograms 

[57], edges [58], or histograms of edge-oriented gradients [59]. A robust tracking algorithm is 

still required to overcome the challenges of object occlusion and irregular and fast object motion.  

There are various tracking algorithms to perform video tracking, such as mean-shift tracking 

[60], the KF [61], and PFs [62]. Mean-shift tracking [60] is a non-parametric density gradient 

estimator that is iteratively executed within the local search kernels. It is computationally simple. 

However, if the object relocation between successive frames is larger than the kernel size, the 
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algorithm fails to track the object. The KF is still not a robust tracking algorithm because it is 

limited to Gaussian and linear models and object models of video tracking are highly nonlinear.  

PFs have been popular in video tracking due to their competitive accuracy. Isard and Blake 

[62] first used PFs for contour tracking, and named their algorithm the CONDENSATION filter. 

In the CONDENSATION filter, the authors use the SIR PF coupled with an active contour model 

as the measurement. The CONDENSATION filter performs well in challenging situations such 

as cluttered backgrounds and in the presence of occlusion. 

Several other works followed the CONDENSATION filter to perform video tracking. In or-

der to have a large coverage of the search space with a small number of particles, Isard and Black 

proposed the ICONDENSATION filter [63]. This filter uses importance sampling [52] instead of 

the transition prior function, which is used by the CONDENSATION filter. The intent is to 

avoid, as much as possible, generating particles with low weights. Deutscher et al. [64] also pro-

posed another version of the PF that uses a simulated annealing step in order to propagate sam-

ples with the intention of producing particles that have a higher probability of representing the 

target. 

A proper selection of object model is important to achieve good tracking. The color histogram 

is relatively insensitive to object deformation and it can robustly solve partial occlusion of the 

object. Thus, the color histogram is widely used as an object model for video tracking in PFs. 

This idea was initially proposed by Nummiaro et al. [3] and Perez et al. [65]. They both used the 

Bhattacharyya distance between the current and reference color histograms to calculate the meas-

urement likelihood. Nummiaro et al. [57] extended their work by proposing an adaptive object 

model where the color histogram of the reference can be updated as the object moves. Perez et al. 

[66] also proposed another work to combine sound and motion cues into the color-based PFs to 

increase the robustness of video tracking systems. 

In order to simplify PFs for video tracking, P. Dunne and B. Matuszewski [67] examined the 

dissimilarity distance measures and likelihood functions of PFs in the context of video tracking. 

Their experimental results suggest that the forms of the likelihood function and distance measure 



19 

 

 

are not critical in video tracking. Their simpler formulation offers more potential computational 

economy than the CONDENSATION filter. 

2.3 PF Implementation in Embedded Systems 

2.3.1 Implementation Methods in Embedded Systems  

Selecting a suitable implementation method in real-time embedded systems for an algorithm 

or an application is necessary to meet its requirements. Some of the main requirements are infor-

mation throughput, power dissipation, accuracy of the results, silicon area, cost, and time to mar-

ket involved in the embedded implementation. Choices of embedded implementation can be clas-

sified into four categories: General-purpose Processors (GPPs), Digital Signal Processors (DSPs), 

ASIPs and Custom Processors (CPs). In this section, we briefly review these embedded imple-

mentation methods.  

As their name indicates, GPPs are general in purpose. They are designed for accommodating 

a wide variety of applications. It has been the mainstream of processor architecture for imple-

menting applications due to their high design flexibility. However, with increasing the complexi-

ty of the applications, implementing it in GPPs tends to be power-hungry and time consuming. 

This situation limits some real-time applications from being efficiently implemented in this pro-

grammable solution [68]. 

DSPs are a special version of GPPs. The major improvement of DSPs over GPPs is that they 

can accelerate various arithmetic operations such as multiply-and-accumulate. Their performance 

can be significantly higher over GPPs when implementing applications where the relevant arith-

metic operations are the main bottlenecks. However, DSPs are ad-hoc processors optimized for 

digital signal processing. When the bottlenecks of target applications exist in other domains ra-

ther than arithmetic operations such as data-intensive computing, DSPs may not improve their 

performance when compared to GPPs.  
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Figure 2-5 Comparing GPPs, DSPs, ASIPs and CPs 

The design effort for CPs is normally much larger than for GPPs or DSPs. CPs are therefore 

usually reserved for applications that require a specific type of calculation not efficiently support-

ed in a GPP or DSP. CPs are often implemented in Field Programmable Gate Array (FPGA) 

technology where data and communication parallelism can be exploited. Implementing an appli-

cation in CPs can provides better performance and lower power dissipation when compared to 

GPPs or DSPs. However, CPs are designed for a single application. They cannot be easily 

adapted to different applications. For every change in the application specification, a redesign is 

required [69]. 

ASIPs fill the gap between GPPs and CPs. They maintain the design flexibility of a pro-

grammable solution and overcome the performance limitations of GPPs by including a set of cus-

tom instructions optimized for the target applications. Indeed, ASIPs are extension of GPPs with 

dedicated hardware units generated in accordance with custom instructions and special purpose 

registers [70]. They can provide a good balance between computation efficiency and design flex-

ibility to meet application requirements such as throughput, time-to-market, design flexibility and 

power consumption [71].    

Fig. 2-5 compares GPPs, DSPs, ASIPs and CPs in terms of performance and flexibility. GPPs 

or DSPs can provide design flexibility to accommodate any applications. But in order to achieve 

high throughput for computationally intensive applications, GPPs or DSPs should improve their 

clock rate. It tends to increase power consumption. On the other hand, the implementation of a 

specific application in CPs benefits from high performance and energy efficiency but at the ex-
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pense of design flexibility. When implementing computationally intensive applications for real-

time execution, both computational and energy efficiency and design flexibility are important 

requirements. An alternative, the design of ASIPs for these applications can be considered as a 

better choice than others.    

2.3.2 Examples of PF Implementations 

Because PFs are computationally intensive, implementing them in a GPP or DSP may not 

meet the throughput requirements of tracking applications. For example, Bolic used a TI 

TMS320C54x DSP to implement a BOT application with the SIR PF [5]. It provides a maximum 

sampling frequency of 1.8 kHz for 1000 particles. However, most target tracking applications are 

more complex than the BOT model. In addition, they require a large amount of particles rather 

than 1000 particles to increase their accuracy. Under these circumstances, the sampling frequency 

in 1.8 kHz is not high enough to accommodate for most target tracking applications.    

In order to obtain high data rate and power efficiency, the dedicated hardware implementation 

of PFs has been a focus of recent research activity. Several works have reported PF implementa-

tion based on this approach [5] [22] [27] [72] [73] [74] [75]. These studies focused on paralleliz-

ing the Resampling Processing stage, which is a sequential portion in PFs.  

Several works by Bolic et al. [5] [22] [72] [73] [74] implemented the SIR PF [2] for a BOT 

application in an FPGA prototype. The prediction generation and weight calculation stages in PFs 

can be easily parallelized. Hence, the authors used several Processing Elements (PEs) and a cen-

tral unit to build a distributed architecture for the BOT application and then proposed several 

resampling algorithms such as the RSR algorithm and the partial resampling algorithm to facili-

tate the resampling algorithm executing in this distributed architecture. Using a Xilinx Virtex II 

Pro FPGA for implementation, the authors achieved a maximum sampling frequency of 50 kHz. 

Sadasivam and Hong [76] designed an application specific reconfigurable architecture in an 

FPGA for the prediction generation and weight calculation stages. This architecture is used in the 

PE proposed by Bolic [5] to improve the throughput.   
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El-Halym et al. [27] [75] proposed three different architectures to implement the SIR PF in 

FPGA: a two-step sequential machine, a pure parallel architecture, and a distributed architecture. 

They used a piecewise linear function to simplify the exponential function. Their work, like the 

work by Bolic [5], focused on executing the resampling algorithm in parallel.  

Velmurugan et al. [77] [78] presented a mixed-mode implementation of the SIR PF for a 

BOT application to reduce power dissipation in an Application-Specific Integrated Circuits 

(ASIC) design. They used an analog Multiple-Input Translinear Element (MITE) network [79] to 

implement the weight calculation stage. This mixed-mode implementation dissipates approxi-

mately 20× less power when compared to a digital implementation.  

More recently, one popular way to reduce the computation time is to use a parallel implemen-

tation with multiple PEs. This implementation allows design flexibility while improving the 

throughput. Maskell et al. [80] proposed a Single-Instruction Multiple-Data (SIMD) processor 

that uses one PE per particle. They proved that the time complexity of the prediction generation 

and weight calculation stages can be reduced from O(N) to O(1) but the time complexity of the 

resampling stage is O((    ) ). Hendeby et al. [81] implemented a range-only application with 

the SIR PF using a General-Purpose computing on Graphics Processing Unit (GPGPU). The 

speed increase was significant due to the nature of parallelization in GPGPU and the interpolation 

method for the exponential operation. Medeiros et al. [82] [83] [84] implemented a color-based 

PF for video tracking on a SIMD linear processor with 320 PEs. They focused on parallel compu-

tation of the particle weights and parallel construction of the intensity histogram because these 

are the major bottlenecks in standard implementations of color-based PFs for video tracking. Li 

et al. [85] implemented and optimized PFs for video tracking on a multi-DSP system. They com-

bined the mean shift tracking with PFs to reduce the number of particles. 

Most works above can achieve high performance. However, in the context of an embedded 

system, the implementation should occupy a small area and consume as little power as possible. 

An architecture with a high volume of PEs can achieve high performance for PFs but at the ex-

pense of the silicon area and energy. Hence, it is not suitable in general for embedded applica-

tions. 
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2.4 Application-Specific Instruction-set Processors  

Designing and deploying ASICs is becoming increasingly, even prohibitively, expensive with 

each succeeding generation [69]. While there are several different possible silicon implementa-

tion alternatives such as FPGAs or DSPs that may replace ASICs, ASIPs have the potential to 

provide a programmable solution with high performance. ASIPs aim to generate customizable 

microprocessors specialized for a given set of applications to meet the desired requirements in 

performance, cost, and power dissipation.  

ASIP design has been studied for several years. In this section, we review the most important 

works that have been published on the subject. The ASIP design methodologies are presented in 

Section 2.4.1. We then introduce two basic approaches to automatically generate ASIPs in Sec-

tion 2.4.2. In Section 2.4.3, the techniques of automatic generation of ASIP specifications are 

presented.  

2.4.1 Overview        

Increasing design time and manufacturing costs are constantly pushing the design from 

ASICs to ASIPs in spite of power and execution time overheads. Keutzer et al. [69] predicted this 

trend and described the benefits and challenges of ASIPs. The authors followed the MESCAL 

methodology [86] to identify five key steps in ASIP development, which are disciplined bench-

marking, defining the architectural space, efficiently describing the space to be explored, explor-

ing the design space, and exporting the programming environment.  

Hoffman and Nohl [71] analyzed wireless communication market trends and demonstrated 

that ASICs are not the right choice in this market because re-designs in ASICs cause high devel-

opment costs. The authors pointed out that the ASIP design flow should be driven by a set of tar-

get applications. The design successively starts with a successive architecture exploration that 

involves stepwise refinement of the architecture. The simulation and profiling results are used to 

design the abstraction levels. The abstraction levels range from the instruction level down to the 

register transfer level (RTL),  
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Jain et al. [87] surveyed the state of the art in ASIP design methodologies, and also identified 

five key steps in ASIP design—application analysis, architectural design space exploration, in-

struction-set generation, code synthesis and hardware synthesis.  

Pozzi and Paulin [88] discussed the challenges in ASIP design such as how to reuse custom 

instructions and how to use multiple ASIPs on chip to achieve high performance, and lower pow-

er.   

Ienne and Leupers [89] described three steps in the evolution of an ASIP methodology. The 

first step is migrating from the concept of a general-purpose processor or ASIC to the concept of 

an ASIP. Keutzer et al. [69], then Gries and Keutzer [86], summarized this concept. The second 

step is to develop a highly automated, low-risk, and reliable ASIP generation process or method-

ology driven by a compact and efficient specification. This step will be explained in the next sec-

tion. The last step is automating the creation of the ASIP specification, based on an automated 

analysis and abstraction of the underlying application source code. The work on this step will be 

described in Section 2.4.3. 

2.4.2 Processor Generation  

 The design of ASIPs is a demanding process involving the design of the instruction set, mi-

cro-architecture, RTL description, and software tools such as compiler, simulator, assembler, and 

linker. In the traditional approach, each step of this process requires its own design tools and is 

often conducted by a separate team of designers. For instance, RTL description requires hardware 

development tools such as Xlinx EDK used by hardware developers. Application software im-

plementation requires relevant software languages such as C or Matlab. These high-level lan-

guages are often used by software developers. Moreover, processor architecture exploration can-

not be accomplished without the assistance of all the hardware and software developers. Proces-

sor designers must interact with the developers in other departments to obtain an optimal solu-

tion. Under these circumstances, design engineers rarely have the time to explore architecture 

alternatives for the applications. Hence, it is necessary to develop a well-integrated and unified 

approach to efficiently build ASIPs. 
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The original approach to build ASIPs is based on Architecture Description Language (ADL) 

such as LISA [90], EXPRESSION [91], and nML [92], which can model complex processors at a 

high level of abstraction and automatically generate consistent software development tools and 

synthesizable HDL code. Ienne and Leupers [89] show the ADL-driven design automation meth-

odology for ASIPs. Various execution tools including a simulator, a retargeted compiler and 

hardware implementation are automatically generated from the ADL specification. This automa-

tion of design reduces the design effort and lets the designers focus on architecture exploration. 

In this approach, the target processor can be freely defined through adding custom instructions or 

subtracting unused instructions. 

Even with the support of various design automation tools under the ADL model, synthesizing 

and verifying an ASIP from scratch is difficult. Most researchers use templates or a library of 

instruction sets to reduce the design space, such as PEAS-III [93] [94]. In PEAS-III, designers 

only need to specify the architectural parameters, type of resource, instruction formats, and mi-

cro-operation descriptions of the target processor, and the datapath and control path are automati-

cally generated from the description as well as a set of application program development tools.       

Another approach has emerged to build ASIPs. It is based on the concept of a configurable 

and extensible processor. Building an ASIP is based on the configurable and extensible proces-

sor. The configurable and extensible processor approach covers a limited architectural design 

space but enables high design efficiency. Designers only need to tune the existing carefully de-

signed architecture and add custom instructions for the specific applications to obtain the optimal 

ASIP rather than design it from scratch. Consequently, the relative design time can be kept down. 

Several commercial examples exist such as Tensilica Xtensa, ARCtangent, and Altera Nios II.  

Leibson [95] shows an example of an architecture for configurable and extensible processor, 

the Xtensa LX hardware architecture. The author clearly points out that a small portion of the 

processor is fixed. Designers are free to select or change the parameters for many configurable 

options. Designers also can write a large number of custom instructions for the specific applica-

tion, which are integrated in the pipeline stages of the processor. 
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2.4.3 Automatic Generation of Custom Instructions  

Ienne and Leupers [89] state that the third step in ASIP development is to move from manual-

ly generated ASIP specifications to the automatic generation of ASIP specifications. This work 

mainly involves automatic identification of custom instructions. The custom-instruction identifi-

cation problem can be divided into the following two phases: generation of a set of custom-

instruction templates and selection of the most profitable templates. 

 Ienne et al. [96] studied the limits of custom instruction extensions on embedded systems. 

They concluded that custom instructions may achieve reasonable speedups at low cost and write 

port size from the function units to the register file appears very important. In addition, hardcod-

ing of constants achieves a minor performance gain at the cost of inflexibility. Memory interfaces 

for custom instructions can be beneficial but not essential. Predication and loop unrolling are 

fundamental for parallelism to achieve desired results. Bit-width analysis and arithmetic optimi-

zation can carry significant intrinsic advantages.  

Yu and Mitra [97] also studied the impact of different architectural constraints on the effects 

of custom instructions. They concluded that relaxing control flow constraints may achieve more 

performance improvement and a reasonable limit on resources and the number of custom instruc-

tions may not affect speedup. Moreover, the pattern of multiple input and single output (MISO) 

may limit the performance but the speedup achieved by four inputs and three outputs pattern is 

acceptable. Those studies may provide some guidance for direction in custom instruction genera-

tion. However, these conclusions are based on the assumptions above, which may or may not be 

suitable for a specific situation. 

A popular approach to generate custom instructions involves analyzing the data flow graphs 

(DFGs) of target applications. Atasu et al. published a series of articles [98] [99] [100] [101] 

[102] describing how to automatically generate custom instructions. The authors introduced con-

straints on the number of input and output operands for subgraphs and showed this constraint 

could significantly reduce the search time. Additionally, the authors proposed a greedy algorithm, 

which iteratively selects non-overlapping DFG subgraphs having maximal speedup potential 

based on a high-level metric. However, DFGs are often limited to a few hundred nodes and the 
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input/output constraints must be tight enough to reduce the search time. Pozzi et al. [103] opti-

mized the greedy algorithm in Atasu’s work [98] and showed that enumerating connected sub-

graphs only can substantially reduce the speedup potential. Bonzini and Pozzi [104] derived a 

polynomial bound on the number of feasible subgraphs if the number of inputs and outputs for 

the subgraphs are fixed. However, the complexity grows exponentially as the input/output con-

straints are relaxed. CHIPS [101] combined the advantages of the work above and employed in-

teger-linear-programming proposed by Atasu et al. [99] to identify custom instructions. The au-

thors demonstrated that their algorithms are able to handle benchmarks with large basic blocks 

consisting of more than 1000 instructions, with or without the input/output constraints. Further-

more, Atasu et al. [102] proposed a novel method to enumerate the instruction template that ena-

bles fast design space exploration. This simplified method is used to find the optimal instructions 

via enumeration of maximal convex subgraphs of DFGs. 
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Chapter 3 EFFICIENT UNIFORM QUANTIZATION LIKELIHOOD 

EVALUATION FOR PARTICLE FILTERS IN EMBEDDED IMPLE-

MENTATIONS 

In this chapter, we propose a Uniform Quantization Likelihood Evaluation (UQLE) algorithm 

for Particle Filters (PFs). This algorithm simplifies the Exact Likelihood Evaluation (ELE) algo-

rithm, the most computationally demanding function in PFs, by using a uniform quantization 

scheme to generate approximated weights. Simulation results indicate that PFs using UQLE can 

achieve comparable or better accuracy than PFs using ELE. The worst case of UQLE software 

implementation in fixed-point arithmetic with 32 quantized intervals achieves 23.7  average 

speedup over the software implementation of ELE. An Application-specific Instruction-set Pro-

cessor instruction was designed to accelerate the UQLE algorithm in a hardware implementation. 

The custom instruction implementation of UQLE with 32 intervals achieves 34  average speed-

up over the worst case of its software implementation on a 79 K general-purpose processor with 

5% additional gates. 

The material of this chapter was presented in my contribution [7]. 

3.1 Introduction 

PFs [1] [17] [4] [19] are statistical signal processing methods that perform sequential Monte 

Carlo estimation based on a particle representation of probability densities. Since their introduc-

tion in 1993 [2] [13], PFs have gained in popularity to solve non-linear and/or non-Gaussian ap-

plications. They have shown great promise as a powerful methodology in addressing a wide 

range of complex applications including video tracking [62] [11] and navigation [6] [49]. PFs use 

the concept of importance sampling to recursively compute the relevant probability distributions 

conditioned on the observations. In comparison with the Extended Kalman Filter (EKF) [61], PFs 

do not rely on linearization techniques and can robustly approximate the true system state with an 

appropriate number of particles. In contrast, the EKF sometimes has poor performance, lacks 

robustness, and may introduce large biases [2]. 
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One of the drawbacks of PFs comes from their significant computational requirements. This 

feature tends to limit their use in some embedded applications requiring real-time, high-

throughput processing. There are two main reasons for the significant computational require-

ments in PFs. The first reason is that a large number of particles are often required in order to 

achieve acceptable accuracy. As the number of particles increases, the computational complexity 

of the PF increases, although this problem can be mitigated through the use of a distributed archi-

tecture [105]. The second reason is related to the type of operations involved. In addition to non-

linear operations in the DSS model defined by the target applications, traditional PFs, such as 

Sample-Importance-Resampling (SIR) PFs, may require non-linear operations such as division 

and exponentiation to calculate the particle weights in the likelihood evaluation step. These ex-

pensive and complex operations are often important bottlenecks in embedded implementations of 

PFs. Simplifying such complex operations is therefore a promising first step in order to improve 

the PF processing speed and energy efficiency. 

PFs are commonly implemented in General-Purpose Processors (GPPs) or Digital Signal Pro-

cessors (DSPs). Bolic used a TI TMS320C54x DSP to implement SIR PFs as a reference [5]. In 

that DSP, the exponential operation is approximated by a Taylor series. Implementation in GPPs 

and DSPs is advantageous from a programmability point of view, but may not satisfy the perfor-

mance requirements of applications that demand high throughput. A hardware implementation is 

an appealing solution to this problem. This can include custom processors in Field-Programmable 

Gate Arrays (FPGAs) or Application-Specific Integrated Circuits (ASICs). Several works have 

reported PF designs based on this approach [5] [22] [73] [25] [72]. These studies focused on par-

allelization of the resampling step, which is a sequential portion of the algorithm. Hendeby et al. 

implemented SIR PFs in a Graphics Processing Unit (GPU) [81]. The speed increase was signifi-

cant due to the nature of parallelization in the GPU and the interpolation method for the exponen-

tial operation, but this solution is not suitable in general for embedded applications. 

A hardware implementation can provide higher performance, but at the expense of making 

the implementation less flexible. A modification to an application’s specifications may require 

significant redesign effort. Consequently, the other class of hardware implementation considered 

is the Application-Specific Instruction-set Processor (ASIP) [106]. ASIPs aim to strike a balance 
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between GPPs and custom processors by combining a programmable solution with customized 

hardware units. With this approach, once the bottlenecks of the PFs are found, local acceleration 

can be applied with customized hardware units to improve the application’s overall performance.  

In this chapter, we target SIR PFs, where resampling is a necessary step. We analyze PF char-

acteristics and profile them to identify possible bottlenecks for three applications. We specifically 

consider the likelihood evaluation. Previous work only focused on the exponential operation of 

the likelihood evaluation step. We broaden the scope of simplification. We also present a custom-

ized hardware unit for the proposed simplified algorithm, which can be locally accelerated with 

an ASIP. The main contributions of this chapter are: 

1) A characterization of PFs, which, unlike previous work [5] [6], focuses on distinguishing the 

application-specific blocks and the algorithm-defined blocks. 

2) A demonstration that the likelihood evaluation is a significant and sometimes dominant step 

affecting PF throughput, and that it is worth optimizing. 

3) A novel efficient UQLE algorithm to replace the ELE algorithm. 

4) An evaluation of the impact of the approximated weights generated by UQLE under various 

options on the accuracy of the target applications. 

5) An efficient customized instruction for UQLE that achieves significant local acceleration in an 

ASIP. 

The rest of this chapter is organized as follows. In Section 3.2, we analyze the computational 

properties of the SIR PF and justify the need for UQLE. The proposed UQLE is presented in de-

tail in Section 3.3. In Section 3.4, we evaluate the accuracy of the proposed UQLE in comparison 

with that of ELE and profile both approaches in a general-purpose processor. In Section 3.5, we 

evaluate the throughput of UQLE in its software and customized ASIP versions. Section 3.6 con-

cludes this chapter. 
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3.2 Computational Characteristics of PFs 

In this section, we analyze the computational complexity of the SIR PF to justify the need for 

the simplification of the likelihood evaluation.  

3.2.1 Description of DSS Examples 

In this chapter, we apply Dynamic State Space (DSS) models to three concrete examples: 

Linear Gaussian (LG), Uni-variate Non-stationary Growth (UNG), and Bearing-Only Tracking 

(BOT) models. 

Example 1: LG model 

Consider the following LG model [19]:  

                                           ,                                                                  (3.1) 

                                           ,                                                                   (3.2) 

where     (    
 ) and     (    

 ), and where   
  and   

  are considered fixed and known 

with variance   
    

   . The initial state distribution is     (   ). This is the basic model 

for estimating the problem. 

Example 2: UNG model 

We consider here a classical UNG model which has been used extensively in the literature for 

benchmarking numerical filtering techniques [2] [4] [19]. The state space equations are as fol-

lows: 
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   ,                                                        (3.4) 

where     (    
 ) and     (    

 ), with   
     and   

   . The initial state distribution 

is     (     ).  
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We choose this model because it is highly nonlinear and its observation equation (3.4) intro-

duces a bimodal problem to the estimation. This makes the estimation problem more difficult to 

solve by traditional methods such as the Kalman filter. 

Example 3: BOT model 

This example is placed in the context of radar-based target tracking. The BOT model con-

cerns an object moving in the x-y plane (2-D space). The observations taken by the sensor to 

track the object are in terms of the bearing or angle with respect to the sensor [2] [5]. 

 Let the sensor be stationary and located at the origin in the x-y plane. The object moves ac-

cording to the following state space model:  

   [

  
  

  
  

  
  

  
  

]     [

    
  
 
 

   
 

] [   
   ]                             (3.5) 

        (
  

  
)                                                               (3.6) 

where    [     
     ] ,    and    denote the coordinate position of the target and    

 and 

   
 denote the target velocities in the   and   directions, respectively. The vector [   

   ]  is 

composed of white Gaussian noise with standard derivation         . Parameter 

    (    
 )  is the observation noise with         . The set of initial states is set to       

   [                      ]  and                         and        , which 

are the standard derivations of the noise for the initial state.  

From Equation (3.6), we see that no range information is available to the sensor. Thus, only 

the angle of the object movement but not its distance from the point of sensor can be detected 

with a series of observations. The observation consists of a modal ridge along the line            

       (  )  . Hence, the BOT model is the multimodal case. The estimate of the object trajec-

tory is difficult to solve because it only depends on this multimodal measurement and the prior 

information, which is the position and the velocity of the object at the initial stage.  
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Figure 3-1 Functional view of the SIR PF 

3.2.2 Computational Complexity of SIR PFs  

3.2.2.1 Functional View of SIR PFs  

The functional blocks of SIR PFs with merged steps (weight normalization, resampling, and 

estimation) are shown in Fig. 3-1. For each observed input, the SIR PFs sequentially perform 

three steps: Prediction Generation (PG), Weight Calculation (WC) and Resampling Processing 

(RP). The PG step is decomposed into two blocks, and the WC step is decomposed into three 

blocks. The RP step is made up of a single block. The three main steps, decomposed into a total 

of six blocks, are in the critical path. Thus, all these blocks are potential optimization targets 

when a high performance implementation is required. The complexity of SIR PFs can be parti-

tioned into the six considered blocks: Transition Processing (TP), Random Number Addition 

(RNA), Particle Measurement Processing (PMP), Distance Calculation (DC), Likelihood Evalua-

tion (LE) and Resampling Algorithm (RA). The TP and PMP blocks are application-specific 

blocks and their respective complexity depends on the application. The other blocks are algo-

rithm-defined. Their complexity is closely related to the selected algorithms. For example, the 

normal or exponential likelihood evaluation can be used in the LE block. The choice of the algo-
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rithms depends on the type of operations that must be used to obtain a suitable accuracy, a suita-

ble complexity, or an appropriate trade-off between them. 

There are two additional significant blocks in Fig. 3-1. One calculates the estimates for the 

filter output. The other generates random numbers used for updating the states in the prediction 

generation step. Random number generation can consume a substantial part of the overall pro-

cessing time. But due to the fact that it is not in the critical path, a random number generator im-

plemented as a co-processor can be employed to operate in parallel and not affect the speed of 

PFs. Similarly, the output block is not in the critical loop. 

3.2.2.2 Computational Complexity 

The computational complexity of SIR PFs depends on the complexity and dimensionality of 

the underlying DSS model. Indeed, that model is updated in the TP and PMP blocks. Most of the 

computational effort of the PFs may be spent in these two blocks if the DSS model is complex or 

has a large number of dimensions. From Table 3.1, we can see that the TP block in the UNG 

model and the PMP block in the BOT model require 51.5% and 45.4% of the overall execution 

time in a GPP without FPU, respectively. It is in general not possible to analyze and determine 

the computational property of a DSS model without knowing the specific application. In contrast, 

with the LG model, the TP and PMP blocks require only about 0.1% of the whole execution time. 

In this chapter, we focus on the analysis of the generic blocks that compose the particle filtering 

algorithm. As the TP and PMP blocks are application-specific blocks, we therefore concentrate 

on analyzing the other blocks that are in the critical path: RNA, DC, LE, and RA. 

Table 3.1 and Table 3.2 present profiling results for an Xtensa LX2 processor [107] with and 

without FPU, respectively. The tables include average cycle counts and percentage of total execu-

tion time consumed by each block for the LG, UNG, and BOT models, after 50 runs. The Xtensa 

LX2 processor is a general-purpose processor with an optional FPU and it also supports optional 

customizable instructions that can be added to improve performance. 

From Table 3.1, we observe that the LE block always take a significant portion of the total 

number of clock cycles (90%, 41%, and 47% for the LG, UNG, and BOT models, respectively). 
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Table 3.2 shows that when a FPU is employed, the LE block consumes a larger fraction of the 

total execution time, and the proportions increase to 98%, 43%, and 49% for the LG, UNG, and 

BOT models, respectively. This is remarkable and may appear to be somewhat counterintuitive. 

Indeed, it was found that the FPU provided by the Xtensa LX2 processor does not support the 

complex operations (exponentiation, division, conditional branch, and so on) that the LE block 

often uses. The additional hardware complexity introduced by the FPU option is not very useful 

for the LE block, which is either dominant or very significant, as it does not improve much its 

performance. According to the results in Table 3.1 and 3.2, when a GPP is used, whether a FPU 

is present or not, any attempt at optimizing SIR PFs must consider the LE block.  

Table 3.1 Average clock cycles of LG, UNG, and BOT models using SIR PFs with 512 particles 

in the Xtensa LX2 processor without FPU 

 
LG Model UNG model BOT model 

Cycles (K) % Cycles (K) % Cycles (K) % 

Transition Processing (TP) 2.01  0.11  2045.86  51.53  34.98  0.90  

Random Number Addition 
(RNA) 

18.38  1.04  18.18  0.46  63.96  1.64  

Particle Measurement  
Processing (PMP) 

2.01  0.11  111.25  2.80  1769.81 45.41  

Distance Calculation (DC) 56.40  3.19  66.38  1.67  112.04  2.88  

Likelihood Evaluation (LE) 1593.61 90.01  1639.41  41.29  1827.19  46.88  

Resampling Algorithm (RA) 98.17  5.54  89.45  2.25 89.27  2.29  

Total 1770.56  100  3970.53  100  3897.25  100  

Table 3.2 Average cycles of LG, UNG, and BOT models using SIR PFs with 512 particles in the 

Xtensa LX2 processor with FPU 

 
LG Model UNG model BOT model 

Cycles (K) % Cycles (K) % Cycles (K) % 

Transition Processing (TP) 2.01  0.13  1996.68  53.68  7.02  0.20  

Random Number Addition 
(RNA) 

5.52  0.35  5.52  0.15  10.04  0.28  

Particle Measurement  
Processing (PMP) 

2.01  0.13 83.24  2.24  1767.56  49.77  

Distance Calculation (DC) 5.52  0.35  5.52  0.15  5.52   0.16  

Likelihood Evaluation (LE) 1552.50  97.55  1604.82  43.14  1734.22   48.85  

Resampling Algorithm (RA) 23.72  1.49  23.77  0.64  26.09   0.74  

Total 1591.27  100  3719.55  100  3550.45  100 
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One popular way to reduce the computation time is to use a parallel implementation with 

multiple processing elements (PEs) or multi-cores. The execution time of all PF blocks, except 

the RA block, can be reduced significantly, because the computations are independent for each 

particle. In principle, the execution time in the LE block can be reduced by a factor equal to the 

number of PEs or cores. Due to its sequential nature, the RA block that performs systematic 

resampling (SR) [2], may become the most time consuming block when many PEs are employed. 

However, various efforts [5] [22] [73] were made to derive distributed resampling algo-

rithms/architectures that allow the RA block to exploit the parallelism. The execution time of the 

RA block can also be reduced. When such distributed resampling algorithms/architectures are 

used, the LE block becomes the most computationally expensive part again. This is a further mo-

tivation to focus on optimizing the LE block, irrespective of whether PFs are executed in a single 

GPP or using a parallel implementation with multiple PEs. 

3.3 Proposed UQLE Algorithm 

Most likelihood evaluation algorithms used in PFs are based on the class of exponential fami-

ly of distributions, which includes the normal, exponential, and gamma distributions. These dis-

tributions require the calculation of the exponentiation, division, multiplication and other opera-

tions. These operations make the likelihood evaluation become the most computationally inten-

sive part in PFs. A simplified likelihood evaluation algorithm is one way to improve the particle 

filtering speed. 

The proposed UQLE algorithm is based on the assumption that approximated weight values 

do not significantly affect the accuracy of the target application. Under this assumption, UQLE 

can employ a uniform quantization method to enable the use of a simple approximate representa-

tion for some quantity of the output value, the particle weights. 

In SIR PFs, the particle weights can be given by the likelihood evaluation: 

  
      (

   
 

   
),                                                                  (3.7) 

where   , the input to the likelihood evaluation, is the  th particle distance between the observa-

tion and the  th
 particle result in the PMP block, and    is the variance of the observation. The 
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proposed UQLE takes advantage of the fact that the particle weights are in the range [0, 1]. This 

range can be divided into   intervals of length    where   is the quantization step-size: 

  
 

 
.                                                                   (3.8) 

Based on this partition, the range of the weights consists of   intervals:  [   ) 

[    ) [     )   [(   )  (   ) ) [(   )   ] . Inside each interval, we can 

choose the high value, the middle value, or the low value to represent the quantized value as the 

approximated weight   . They are defined as: 

   {

                          

    
 

 
                   

(   )                

 ,                                        (3.9) 

where            , is the index for each of the intervals. With this approach, once the 

index for each of the intervals is determined according to the particle distance   , the approxi-

mated weights    are given by equation (3.9). 

In accordance with the   intervals of the particle weights, the data range of the particle dis-

tance can also be divided into   intervals:  [     ) [     ) [     )   [         )  

[      ] , where                is a boundary of each interval in the particle distance 

direction.    can be obtained through the inverse likelihood evaluation. The inverse normal dis-

tribution likelihood evaluation is given by: 

   √    (  )  .                                               (3.10) 

When the particle distance    is available, the index of the interval   can be determined from the 

interval of the distance range in which this    falls. 

When there are significant deviations from the most recent estimate, the value of all the 

weights can be small, and the distances can all fall in the [     ) range. This result is due to the 

fact that all weights are equal to zero when we use the low value of the intervals as the approxi-

mated weight. In order to avoid this situation, we insert an additional interval [   )       

into [   ). The approximated weight at the index     is then modified as follows: 
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,                                             (3.11) 

where    is calculated by equation (3.10) with the input   . There are therefore     intevals. 

 

Figure 3-2 Likelihood evaluation curve for the proposed UQLE with M+1= 5 intervals 

Fig. 3-2 shows an example of the likelihood evaluation curve for the proposed UQLE. The 

range of particle weights is divided into       intervals:  [   ) [   ) [    ) [     ) 

[    ] . Because    , we have   
 

 
     . Then,             can be calculated by the 

inverse likelihood evaluation defined by equation (3.10). The index   can be determined via the 

comparison between the particle distance and            . For instance, for a particle distance 

   [     ), we can obtain its index    , as shown in Fig. 3-2. The weight for this particle 

distance can be approximated by equations (3.9) and (3.11), which in this case is equal to   . 
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The pseudo-code for UQLE is given in Fig. 3-3. The whole algorithm is divided into two 

parts: a pre-calculation part and an on-line execution part. After defining the number of intervals 

and the weight value, which is a low, middle, or high value as the representation, the pre-

calculation part provides the boundary in the distance direction    and the approximated weights 

for each interval according to equations (3.9) and (3.11). These results are used for the on-line 

execution part later. In the on-line execution part, the approximated weights can be obtained by 

comparing the input, i.e. the particle distance, with the boundary in the distance direction   . 

Using the proposed procedure, the execution time is reduced significantly because we obtain the 

weights from comparisons instead of complex arithmetic for exact likelihood evaluation. 

Pre-calculation part 

Define  ,       

             (    ( )  ) 

       (    (  )  )                

On-line execution part 

  
            (  

 ) 

If (  
    ) 

            
      

else 

          Find   using linear search, the index of the intervals, such that      
      ,  

            
     

end 

end 

Figure 3-3 Pseudo-code of the proposed UQLE algorithm 

3.4 UQLE Accuracy Evaluation 

3.4.1 Implementation Environment and Accuracy Metrics 

In this section, we simulate SIR PFs using UQLE for the LG, UNG, and BOT models in the 

MATLAB environment. According to the UQLE algorithm, the particle distance must be com-

pared with pre-calculation boundaries   . We can then find the index of the intervals   and ob-

tain the particle weight directly from the pre-calculation weight   . The input and output do not 

have any numerical calculation relationships. It is not necessary to set all the data in UQLE in 

floating-point arithmetic. In order to be consistent with the implementation in the Xtensa proces-

sor, we implemented UQLE with floating-point arithmetic for the input, the particle distance, and 
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fixed-point arithmetic with 16-bit representation for the output, the particle weight. Thus, we set 

the range [0, 65535] for the particle weight and   equal to 1. Under this situation, we compare the 

resultant accuracy to SIR PFs using ELE. For the LG and UNG models, the accuracy is measured 

by the Root-Mean-Square Error (RMSE): 

      √
 

 
∑ (    ̂ ) 

 
                                                     (3.12) 

where    is the true simulated state and  ̂  is the estimated state. For the BOT model, in order to 

obtain a better illustration for the performance, the accuracy is measured by the combined Mean-

Squared-Error (MSE) (where MSE = RMSE
2
) of the x and y positions: 

      √(    )   (    )                                                 (3.13) 

where      and      are the MSE for the x and y positions, respectively. The smaller the value 

of the combined MSE is, the better the performance obtained. Furthermore, simulation for a lost 

track situation is conducted for the BOT model, as suggested in [5]. The track is considered lost 

if all particles have zero weight in the ELE or if all the particle weights are equal to   in the 

UQLE.  

In order to obtain stable performance results, 10000 simulations were performed with 50 ob-

servation inputs for the LG and UNG models and 25 observations for BOT model. 

3.4.2 Accuracy for the LG Model 

Table 3.3 shows maximum, average and minimum RMSE results for SIR PFs using ELE, for 

512, 1024, 2048, and 4096 particles. We use these results as the reference to compare the results 

generated by UQLE. 

Table 3.3 RMSE of the SIR PF using ELE for the LG model 

# of particles 512 1024 2048 4096 
Maximum RMSE 1.030 1.053 1.037 1.052 
Average RMSE 0.785 0.784 0.783 0.783 

Minimum RMSE 0.559 0.545 0.567 0.472 
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In Fig. 3-4, maximum, average and minimum RMSE results of SIR PFs using UQLE are plot-

ted. The white bar gives RMSE results of SIR PFs using ELE as summarized in Table 3.3. From 

Fig. 3-4, we can see that SIR PFs using UQLE can produce average RMSE performance close or 

equivalent to SIR PFs using ELE when M, the number of intervals, exceeds 16. Hence, UQLE 

can replace ELE in SIR PFs in the LG model. It can also be observed that with the number of 

particles N increasing, UQLE with M = 8 can achieve equivalent accuracy to ELE. Decreasing 

the number of intervals implies reducing the computation time. UQLE outperforms ELE in speed 

without sacrificing the accuracy. Concerning the choice between the low, middle or high value, 

UQLE with the low value is slightly better than other choices. 

  

  

 

Figure 3-4 Maximum, average and minimum RMSE results of SIR PFs using UQLE for the LG 

model  

3.4.3 Accuracy for the UNG Model 

Fig. 3-5 compares the maximum, average and minimum RMSE results for 512, 1024, 2048 

and 4096 particles for the UNG model. The dashed line displays the reference accuracy of SIR 
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PFs using ELE, with the values summarized in Table 3.4. Fig. 3-5 shows that UQLE achieves an 

accuracy similar to ELE for a number of intervals (M = 16) when the low or middle values are 

used. In addition, the accuracy of UQLE in the UNG model is similar to that in the LG model, 

with UQLE using fewer intervals and achieving equivalent accuracy to ELE when the number of 

particle increases. 

Table 3.4 RMSE of SIR PFs with ELE for the UNG model. 

# of particles 512 1024 2048 4096 

Maximum RMSE 5.098 5.471 5.139 5.100 

Average RMSE 3.78 3.76 3.76 3.76 

Minimum RMSE 2.528 2.516 2.554 2.549 

 

  

  

 

Figure 3-5 Maximum, average, and minimum RMSE results of SIR PFs using UQLE for the 

UNG model 
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3.4.4 Accuracy for the BOT Model 

In Table 3.5, we show the maximum, average, and minimum combined MSE and the number 

of times when the track is lost versus the number of particles for SIR PFs using ELE. From Table 

3.5, with the increase of the number of particles, the average combined MSE decreases from 0.21 

for 512 particles to about 0.14 for 4096 particles. Meanwhile, the number of lost tracks drops 

from about 8052 for 512 particles to below 2700 for 4096 particles. It should be noted that in 

ELE we assume that the weights are clamped to        when their value is smaller than     , 

which is the same as for UQLE, because the lost track situation significantly depends on the 

smallest weights considered. 

Table 3.5 Combined MSE and Lost track of SIR PFs with ELE for the BOT model 

# of particles 512 1024 4096 
Maximum Combined MSE 1.22 0.98 0.78 
Average Combined MSE 0.21 0.17 0.14 

Minimum Combined MSE 0.01 0.01 0.02 
Lost track 8052 6824 2637 

Fig. 3-6 shows the maximum, average, and minimum combined MSE and the lost track situa-

tion for SIR PFs using UQLE. The dashed lines are the corresponding results obtained by SIR 

PFs using ELE. From Fig. 3-6, although UQLE employing the low value of the intervals has poor 

performance in our experiments, UQLE with the high value or the middle value of intervals sig-

nificantly outperforms SIR PFs using ELE, even for the smallest number of intervals M = 2 in 

our experiments. This means that the speed using the proposed UQLE can increase significantly 

in the BOT model because each particle only needs to be compared with two boundaries in the 

UQLE algorithm. Fig. 3-7 displays a representative trajectory and the tracking obtained by SIR 

PFs using ELE and SIR PFs using UQLE with 2 intervals and high value. It shows again that 

UQLE with few intervals can replace ELE in the BOT model. 
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Figure 3-6 Maximum, average and minimum combined MSE and lost track for SIR PFs using 

UQLE 
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In summary, simulation results show that UQLE can achieve equivalent or better accuracy 

than ELE for SIR PFs when the number of intervals and the representation of the output value are 

suitably chosen. In our experiments, in order to obtain comparable accuracy to ELE, the mini-

mum number of intervals is M = 16, 32 and 2 for the LG, UNG, and BOT models, respectively.  

 

Figure 3-7 Tracking of a moving target in two dimensions with SIR PFs using ELE and SIR PFs 

using UQLE with 2 intervals and high value. 

3.5 UQLE Throughput Evaluations  

3.5.1 UQLE Software Implementation and its Performance    

We implemented the proposed UQLE in the Xtensa LX2 processor in order to compare its 

performance to that of ELE. We used the same configuration simulated in the MATLAB envi-

ronment, with the particle distances expressed in floating point representation and the particle 

weights expressed in fixed point with 16 bits. In order to further reduce the execution time, we 

also evaluated the particle distance in fixed-point arithmetic.  
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Table 3.6 Execution time and speedup of UQLE for the worst and best case in the Xtensa LX2 

processor 

Likelihood Eval-

uation (LE) 

Particle Distance 

Representation 
M Case 

Execution time 

(cycle counts) 

Average 

speedup 

ELE Floating-point 
  

3221 1× 

UQLE 

Floating-point 

64 

Worst 

1112 2.9× 

32 568 5.7× 

16 296 10.9× 

4 92 35.0× 

2 58 55.5× 

Any Best 40 80.5× 

Fixed-point 

64 

Worst 

274 11.8× 

32 136 23.7× 

16 38 84.8× 

4 14 230.1× 

2 11 292.8× 

Any Best 9 357.9× 

Table 3.6 shows the speedup for UQLE with the particle distance expressed with floating-

point and fixed-point accuracy when compared to ELE. The average execution time for the ELE 

in Table 3.6 is chosen as a baseline based on 10000 simulations since the execution time of calcu-

lating ELE in the floating-point arithmetic on the Xtensa LX2 processor is not fixed. The best 

case for UQLE using any number of intervals achieves 80.5  and 357.9  average speedup over 

ELE when executed in floating-point and fixed-point arithmetic for the particle distance, respec-

tively. The worst case for floating-point UQLE using 64 intervals still achieves 2.9  average 

speedup over ELE. The speedup is greater when the number of intervals for UQLE is smaller 

than 64 or the weights are calculated by UQLE in the fixed-point arithmetic. UQLE with 2 inter-

vals in fixed-point arithmetic can achieve 292.8× average speedup over the software implementa-

tion of ELE on an Xtensa LX2 processor.        

As shown in Fig. 3-4, 3-5 and 3-6, in order to achieve the same accuracy as ELE, the UQLE 

requires at least 16, 32 and 2 intervals for the LG, UNG and BOT models, respectively. Table 3.7 

shows the average execution time for ELE and UQLE in the LG, UNG and BOT models. UQLE 
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for the UNG model is therefore the most computationally demanding of the three. Still, its fixed 

point implementation achieves 53.4× average speedup over the software implementation of ELE. 

Table 3.7 Average execution time and speedup of UQLE for the LG, UNG and BOT models in 

the Xtensa LX2 processor 

Model 
Likelihood 

Evaluation (LE) 

Particle Distance 

Representation 
M 

Average execution 

time (cycle counts) 

Average 

speedup 

LG 

Model 

ELE Floating point - 3113 1.0× 

UQLE 

Floating point 
32 327 9.5× 

16 197 15.8× 

Fixed point 
32 91 34.2× 

16 28 111.2× 

UNG 

Model 

ELE Floating point - 3202 1.0× 

UQLE 

Floating point 
64 314 10.2× 

32 183 17.5× 

Fixed point 
64 111 28.8× 

32 60 53.4× 

BOT 

Model 

ELE Floating point - 3568 1.0× 

UQLE 

Floating point 
4 60 59.5× 

2 54 66.1× 

Fixed point 
4 11 324.4× 

2 10 356.8× 

 

3.5.2  UQLE ASIP Implementation and its Performance 

We designed a custom instruction for UQLE to improve the speed of SIR PFs in ASIPs. As 

shown in Fig. 3-8, the UQLE algorithm has one input   
  and one output   

 . This situation is fa-

vorable for the generation of a custom instruction because there are no additional input/output 

data that could create a bottleneck preventing effective acceleration.  

The proposed logic organization to support the custom instruction is shown in Fig. 3-8. In a 

typical configuration of that instruction, 4 quantization intervals are supported and the output is 

the high value of the intervals expressed with 8 bits. The critical path consists of a comparator, an 
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XOR gate, an encoder, and a multiplexer. When a particle distance is available, this value is 

compared with distance boundaries             }, which are stored in the state registers. For 

example, if   [     ], which means          ,      and     , the outputs of the 

comparators are          . Through the XOR gates, the encoder input is changed to          . At 

the output of the encoder, the interval index is equal to 01, which means   is in the second inter-

val. The weight can be set to {01111111}, which corresponds to the high value of the second 

interval. The number of intervals supported is a parameter of the architecture that can easily be 

changed as a function of the specific requirements. We implemented the instruction for five num-

bers of intervals (4, 8, 16, 32 and 64) and three choices of    (low, middle and high value of the 

quantization intervals). 

The custom instruction was described in the Tensilica Instruction Extension (TIE) language 

[108] to generate a specific functional unit in the Xtensa LX2 processor. The special instruction 

for UQLE is: 

  
            (  

 ).                                                       (3.14) 
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Figure 3-8 Custom UQLE logic organization with 4 intervals 
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Profiling results are shown in Table 3.8. With the custom instruction, the speedup for UQLE 

using 64, 32, and 4 intervals can reach up to 278 , 142 , and 23  over their floating-point soft-

ware implementation in the worst case, respectively. In addition, the cycle count for UQLE is 

independent of the number of intervals. Increasing the number of intervals only increases the pro-

cessor size. The additional size for UQLE with 4, 32, 64 intervals, respectively only occupies 

0.7%, 4.7%, 8.4% of the reference processor that consumes 79K gates. 

Table 3.8 Execution time and additional area of UQLE using its custom instruction in PFs in the 

Xtensa LX2 processor 

M 
Implementation 

method 
Case 

Particle 

distance 

representation 

 Execution 
time (clock 

cycles) 
Speedup 

Additional 
area (gates) 

64 
Software Worst 

Floating-point 1112 1  
- 

Fixed-point 274 4.06  

ASIP - Fixed-point 4 278  6.60 K 

32 
Software Worst 

Floating-point 568 1  
- 

Fixed-point 136 4.18  

ASIP - Fixed-point 4 142  3.75 K 

4 
Software Worst 

Floating-point 92 1  
- 

Fixed-point 14 6.57  

ASIP - Fixed-point 2 23  0.57 K 

 

From Table 3.8, the UQLE instruction can significantly reduce the execution time to only 4 

cycles. For the LG model, the likelihood evaluation dominates the execution time of the whole 

application. It is significant that using only 3.75K additional gates for UQLE instruction with 32 

quantization intervals can achieve almost 10  average speedup as shown in Table 3.9. These 

additional gates only occupy 4.7% of the reference processor. If a processor with multiple PEs is 

used to implement the LG model, at least 10 PEs are required to achieve 10  speedup. But the 

number of additional gates to build 10 PEs is much larger than the number of gates that the 

UQLE instruction uses. Hence, for those applications using PFs where the DSS model is not 

complex, using UQLE is a powerful first step to reduce the execution time and energy consump-

tion. 
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For applications using PFs like the UNG and BOT models, where the DSS model is rather 

complex, simplifying the algorithm or using hardware implementation must be shifted to the DSS 

model. Finding the bottleneck in Fig. 3-1 requires a careful consideration of the PF application. 

For instance, we know that the bottleneck of the UNG model is in the TP block. The BOT model 

has a complex operation, the triangle function, in the PMP block. With this approach, we can 

focus on optimizing the TP block in the UNG and the PMP block in BOT model. Regardless, the 

likelihood evaluation is still a time consuming algorithm. For applications that require very high 

throughput, the UQLE instruction is a promising step to improve the throughput and reduce the 

energy consumption. From Table 3.9, using the UQLE instruction results in 1.7  and 1.9  aver-

age speedup over the software implementations of the UNG and BOT models, respectively. 

Table 3.9 Speedup between running in GPP and in GPP with UQLE instruction for the LG, 

UNG, and BOT models 

Applications 
Average execution 

time (GPP) 

Average execution time 
(GPP with UQLE Instruc-

tion) 

Average 
Speedup 

LG 1770.56 K 179.20 K 9.88  

UNG 3970.53 K 2333.37 K 1.70  

BOT 3897.25 K 2072.31 K 1.88  

3.6 Conclusion  

In this chapter, a novel PF functional view is constructed. It focuses on distinguishing the 

blocks defined by the applications and algorithms. Under this characterization, we demonstrate 

that the likelihood evaluation is a time-consuming block and is not affected by the target applica-

tions. In order to speed up the execution of the likelihood evaluation, we presented an efficient 

uniform quantization likelihood evaluation algorithm. We then built an ASIP UQLE instruction 

to improve its throughput in a custom processor. Simulation results demonstrate that PFs using 

the proposed UQLE can achieve equal or better performance than particle filters using the exact 

likelihood evaluation. We also demonstrate that the proposed ASIP UQLE instruction can 

achieve an average speedup of 805× in comparison with ELE implemented in a GPP, while the 

processor size only increases 4.7 % for UQLE with 32 intervals.   
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Chapter 4 NOVEL SYSTEMATIC RESAMPLING ALGORITHMS AND 

THEIR IMPLEMENTATION IN ASIPS  

In this chapter, we propose two novel resampling algorithms to replace the sequential Sys-

tematic Resampling (SR) algorithm in Particle Filters (PFs). There are the reformulated SR and 

Parallel Systematic Resampling (PSR) algorithms.  

The reformulated SR algorithm is a new form of the SR algorithm suitable for parallel im-

plementation in an Application-Specific Instruction-set Processor (ASIP). Experimental results 

show that the ASIP implementation of the reformulated SR algorithm achieves a 23.9  speedup 

over the sequential SR algorithm in a General-Purpose Processor (GPP). This is for the case of 

four weights calculated in parallel, and eight categories defined by uniformly distributed numbers 

that are compared simultaneously. This comes at a cost of only 54K additional gates, or 68% 

overhead to be added to a base processor with 79K gates. 

The reformulated SR algorithm was presented in my contribution [8]. 

 The PSR algorithm makes iterations independent, thus allowing the resampling algorithm to 

perform loop iterations in parallel. A fixed-point version of the PSR algorithm is also proposed, 

with a modification to ensure that a correct number of particles is generated. Experiments show 

that the fixed-point implementation of the PSR algorithm can use as few as 22 bits for represent-

ing the weights, when processing 512 particles, while achieving results equivalent to a single-

precision floating-point SR implementation. Four customized instructions were designed to ac-

celerate the proposed PSR algorithm in ASIPs. These four custom instructions, when configured 

to support four weight inputs in parallel, lead to a 53.4× speedup over a floating-point SR imple-

mentation on a general-purpose processor at a cost of 47.3 K additional gates. 

The PSR algorithm was presented in my contribution [9]. 

4.1 Introduction 

A PF is a sequential Monte Carlo estimation method, often used in signal processing applica-

tions [1] [17] [4] [19]. The operation of PFs is based on representing the a posteriori probability 
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density function of system state variables by a group of particles and corresponding weights. 

Since their introduction in 1993, PFs have gained in popularity to solve non-linear and non-

Gaussian problems [2] [13]. It has also been shown that they outperform other filters, including 

the Extended Kalman Filter [109], in many practical applications such as video tracking [11] [62] 

and navigation [6] [49].  

PFs have four major steps, shown in Fig. 4-1 [1]: Prediction Generation (PG), Weight Calcu-

lation (WC), Resampling Processing (RP), and Estimate Calculation (EC). 

The PG step generates random samples, which can approximate the a priori probability densi-

ty function of some quantity or objects of interest. The weight of each particle is then calculated 

in accordance with information derived from observations in the WC step. The RP step solves the 

undesirable degeneracy problem, where after a few iterations, most weights tend to have a value 

of zero and only a few weights retain a substantial value. Resampling consists of removing the 

particles whose weights are negligible and generating a new group of particles from those with 

substantial weights. In the EC step, the state estimate can be computed by the minimum mean-

square error, the maximum a posteriori probability, or other methods. A weight normalization 

step, shown separately in previous work [5] [74], may be merged with the RP and EC steps. Such 

merging can reduce the execution time of PFs. The critical path of PFs is thus composed of the 

PG, WC, and RP steps. These steps are primary optimization targets in applications requiring 

high throughput. 

Prediction 

Generation 

(PG)

Weight 

Calculation 

(WC)

Initial 

Resampling 

Processing 

(RP)

Observation 
Input

Estimate 

Calculation 

(EC)

  

Figure 4-1 PF steps 



53 

 

 

A parallel architecture is an appealing option to improve the throughput of a PF. The execu-

tion time of the PG and WC steps can be reduced significantly by exploiting their inherent paral-

lelism. However, the RP step is sequential in nature, due to data dependencies between iterations. 

Thus, it is a potential bottleneck when other steps are implemented in parallel. The main contri-

bution of this chapter is to propose two novel resampling algorithms. There are the reformulated 

SR and PSR algorithms. The reformulation SR algorithm enables parallel execution in an ASIP 

with six custom instructions. The PSR algorithm breaks dependencies between iterations. This is 

accomplished through the introduction of the concept of Cumulative Replication Factors (CRFs). 

We also propose a fixed-point version of the PSR algorithm that guarantees a correct number of 

resampled particles even in the presence of finite precision effects.  

In this work, to demonstrate the potential of the PSR algorithm in embedded systems, we tar-

geted ASIP [106] implementation. ASIPs aim to strike a balance between GPPs and Custom Pro-

cessors (CPs) by combining a programmable solution with customized hardware units. With this 

approach, the design effort can be reduced significantly when compared to custom processor de-

sign. Once performance bottlenecks are found, hardware design can be applied with customized 

hardware units addressing them to improve the application’s overall performance. The second 

contribution of this chapter is an ASIP design with custom instructions supporting the reformu-

lated SR and PSR algorithms in an efficient and accelerated manner. 

4.2 Reformulated SR Algorithm and its ASIP Implementation 

4.2.1 The Reformulated SR Algorithm  

The SR algorithm cannot be parallelized directly due to the data dependency on the index m 

of Uniformly Distributed Numbers (UDNs) and the number of iterations that is unknown a priori 

for the while loop in Fig. 2-2. The reformulated SR algorithm combines a group of these while 

loops into a parallel while loop. A set of Cumulative Weights (CWs) can be processed in parallel 

with custom instructions in the parallel while loop. The reformulated SR algorithm does not 

change any properties of the SR algorithm. Its results are identical when the initial    is the 

same. Fig. 4-2 shows the data flow graph of the reformulated SR algorithm, and Fig. 4-3 shows 

the pseudo-code of the parallel while loop. The reformulated SR algorithm described in Fig. 4-2 
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still exhibits inter loop dependencies, but the pseudo-code in the parallel while loop can be exe-

cuted in parallel with custom instructions generated from loop unrolling [110] in an ASIP.    

 

Figure 4-2 Data flow graph of the reformulated SR algorithm 

The reformulated SR algorithm functions as follows. The CWs and UDNs are separated into 

    groups and     groups, where   and   are the number of CWs and UDNs in a group, re-

spectively. Thus,   CWs can be calculated in parallel. In the beginning, the product of the current 

order of the group of UDNs   and the number of UDNs in a group   is loaded into the Replica-

tion Factors (RFs) as shown in lines 1-3 in Fig. 4-3. Each CW is compared with the  th
 group of   

independent UDNs simultaneously. When the CW is greater than the UNDs, the RF value is in-

cremented. The accumulation of the comparisons is added to the RFs as shown in line 7. Lines 9-

13 show whether the current executed group of CWs shifts to the next group or is compared with 

the next group of UDNs. When shifting to the next group of CWs, the RFs in the current group 

are calculated in accordance with the pseudo-code in lines 15-20. The variable lastRf carries the 

value of the last accumulative comparison results from Line 7 in the previous group to calculate 

the first RF in the current group. The variable temp temporarily reserves the value of the last cu-

mulative comparison results in the current group. 
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Although the parallel while loops in the reformulated SR algorithm still depend on the order 

of the group of UDNs, calculating the RFs from the CWs can be executed in parallel with custom 

instructions as explained in the next section. 

{   
       

         
            }       {    

        
          

            } 

1      for k     

2                 
        

3       end 

4                          

5      while (                    ) 
6                 for       

7                       
       

      (   
          )     (   

          )                   

8                 end 

9                 if (   
            ) 

10                            

11                else  

12                                                                 

13                end 

14       end 

15              
    

 

16      for k     

17                  
       

       
      

  

18      end 

19        
        

            

20                  

Figure 4-3 Pseudo-code of the parallel while loops 

4.2.2 ASIP Implementation  

The generation of custom instructions is a popular method to accelerate algorithmic bottle-

necks with ASIPs. It involves combining several basic operations into one, often avoiding costly 

loads and stores. It also facilitates the parallel execution of groups of instructions. Table 4.1 lists 

and describes the six custom instructions we designed for the reformulated SR algorithm, and 

Fig. 4-4 shows the resulting pseudo-code. 

We do not describe the parallel load and store instructions because they are automatically 

generated by the implementation tool from the description of the specialized storage. The cwcal-

culation instruction performs the parallel calculation of the CWs from a set of weight inputs. It 
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requires a state register to store the value of the last CW in the current group for further iteration. 

The execution time to calculate the CWs is reduced when using the cwcalculation instruction by 

a factor equal to the number of weights in a set. The paradef instruction is a fusion instruction. It 

combines a set of instructions to calculate    and       defined in equation (2.8) and (2.9) into 

one. Due to the need for    and       as inputs in the crfcounter and nextiterationdef instruc-

tions, the paradef instruction uses two state registers to store the value of    and       to avoid 

extra inputs for these two instructions. Since the codes of lines 3 and 7 in Fig. 4-3 are not de-

pendent on the iterations, the baseadder and crfcounter instructions perform   instructions of 

lines 3 and 7 per call, respectively. The nextiterationdef instruction fuses lines 9-13 into one in-

struction. The order of the group of UDNs   is stored in a state register to avoid extra load and 

store instructions. The rfcalculation instruction executes the   instructions of Line 17. It uses two 

temporary state registers to fuse the instructions of lines 15, 19, and 20 with line 17. 

Table 4.1 Custom instructions for the reformulated SR algorithm 

Name Description 

cwcalculation 
Calculate cumulative weights. The delay of its critical path depends on the 
number of data inputs.   

paradef Calculate    and      .  

baseadder 
Calculate the product of the current order of the group of UDNs   and the 
number of UDNs in a group   to store in the RFs in parallel (lines 1-3 in 
Fig. 4-3). 

crfcounter 
Accumulate the results of the comparison between CWs and UDNs in 
parallel (lines 6-8 in Fig. 4-3). 

nextiterationdef 
Determine whether to process the next group of the CWs or the next group 
of UDNs (lines 9-13 in Fig. 4-3). 

rfcalculation 
Calculate the RFs via obtaining the difference between two successive 
accumulative comparison results in parallel (lines 15-20 in Fig. 4-3). 

According to the pseudo-code in Fig. 4-3, the three for loops (lines 2-4, 6-8, and 16-18) are 

major bottlenecks in the parallel while loop. We use the baseadder, crfcounter, and rfcalculation 

instructions to execute these three loops in parallel and thus significantly reduce the execution 

time. 
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{   
     

 }                 {   
     

 } 
Cumulative Weights Calculation: 

for         

        {   
       

   }   cwcalculation(   
      

     ) 
end 

   and       definition: 

       (   
 ) 

RFs calculation: 

for         

       {  
      

   }           () 

                           

       while (                     ) 

{  
      

   }            ( {  
      

   } {   
       

   })                                                 

                                                   (   
   ) 

        end 

       {  
      

   }                ({  
      

   }) 
end 

Figure 4-4 Pseudo-code of the reformulated SR algorithm 

4.2.3 Performance 

The Xtensa LX2 processor [107] was used to implement the reformulated SR algorithm with 

512 particles. The Xtensa LX2 is a GPP to which custom instructions can be added to improve 

performance. Table 4.2 compares the speedup and additional resource requirements of the serial 

and reformulated SR algorithms. For the basic SR algorithm, we consider the cases without and 

with a FPU. The PA process is not considered in this experiment. The performance of the refor-

mulated SR algorithm depends on the number of CWs and UDNs calculated in parallel. The 

speedup is 10.2  when inputting two CWs in parallel and comparing one UDN in each iteration, 

with a cost of 28.9 K additional gates. When inputting four CWs in parallel and comparing eight 

UDNs simultaneously, the speedup reaches 23.9  at a cost of an additional 54.0 K gates. Fig. 4-5 

plots the various solutions. The ASIP implementation of the proposed reformulated SR algorithm 

is significantly superior to a GPP implementation with FPU in terms of speedup and extra re-

sources. Further performance improvements can be achieved at the expense of the extra resources 

when increasing the number of CWs and/or UDNs as inputs in the custom instructions.  
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Table 4.2 Performance and resource requirements for the reformulated SR algorithm in ASIP 

implementation 

Implementation 
method 

# of CWs # of UDNs  Clock cycles  Speedup 
Additional area 

(gates) 

SR without FPU - - 64.1 K 1  0 

SR with FPU - - 12.7 K  5.05  77.0 K 

Reformulated SR 
in ASIP  

2 1 6.26 K 10.24  28.9 K 

2 2 5.46 K 11.74  30.4 K 

2 4 4.99 K 12.85  35.5 K 

2 8 4.73 K 13.55  45.6 K 

4 1 4.10 K 15.63  35.6 K 

4 2 3.32 K 19.31  37.6 K 

4 4 2.93 K 21.88  42.8 K 

4 8 2.68 K  23.92  54.0 K 

  

 

 

Figure 4-5 Speedup vs additional gates for various solutions 
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4.3 Parallel Systematic Resampling Algorithm and its ASIP 

Implementation 

4.3.1 Parallel Systematic Resampling Algorithm 

In order to parallelize the SR algorithm’s loop, the proposed PSR algorithm introduces Cu-

mulative Replication Factors (CRFs)     
     

  to avoid calculating the RFs directly. The RFs can 

be recovered by calculating the difference between two successive CRFs.  

In the SR algorithm, and as shown by equation (2.8), the UDNs can be considered as   inter-

vals of length       in the range [            ]. The resultant CRF of the target CW is equiv-

alent to the index of the interval in which the CW falls. Once the interval index is calculated by 

knowing the interval where the CW is located, the CRFs can be obtained. Equation (4.1) shows 

the relationship between the CWs and the CRFs.  

     
           (   

   )     
             

                          (4.1) 

Once the CWs are available, their CRFs can be obtained independently by equation (4.2). 

   
  ⌈(   

    )      ⌉                                                           (4.2) 

Fig. 4-6 shows the data flow graph of the proposed PSR algorithm. Similarly to the SR algo-

rithm, the PSR algorithm first calculates the CWs     
     

 . The sequential computation of the 

CWs is straightforward and it can be supported by specialized instructions in ASIPs or parallel 

prefix-sum algorithms for GPUs [111]. The quantities       and    are calculated with equations 

(2.8) and (2.9). The CRFs can then be calculated by equation (4.2). The loop iterations for the 

CRF calculations are independent from each other, and can thus be unfolded and executed in par-

allel. This is shown in Fig. 4-6, where the operations to calculate the CRFs are shown as inde-

pendent processes. Next, the RFs are calculated as the difference between two successive CRFs, 

with a dependency that is limited to a single vertical branch. 
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Figure 4-6 Data flow graph of the proposed Parallel Systematic Resampling algorithm 

4.3.2 Fixed-point Implementation of the PSR Algorithm 

Fixed-point processing can significantly improve the throughput while reducing the amount 

of necessary hardware resources. However, finite-precision effects may result in errors in the RFs 

when compared with calculations done with floating-point precision. Moreover, when the calcu-

lations are done in fixed-point arithmetic, the division in equation (2.9) requires a floor function. 

This may result in       being smaller than its value in floating-point arithmetic. When calculat-

ing the last CRF in equation (4.2),       is used as the divisor. Due to       being small, the re-

sultant last CRF may be larger than the number of resampled particles,  . This potentially results 

in an incorrect number of resampled particles. 

For example, consider the case of 1024 particles, a value of 10000 for    
  , and a value of 2 

for   . According to equation (2.9),       is equal to 9 in fixed-point arithmetic, from its value of 

9.77 in floating-point precision. The last CRF calculated according to equation (4.2) would thus 

be equal to 1111, while the correct number of resampled particles should be 1024. 

In order to mitigate the problems due to the quantization of      , we propose to merge equa-

tions (2.9) and (4.2) to calculate the CRFs instead of calculating       as the divisor in equation 

(4.2). Its calculation is given by equation (4.3):       

. . . . . .

. . . . . .
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+ + +
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. . . . . .
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  ⌈ (   

    )    
 ⌉                                            (4.3) 

When calculating the last CRF, equation (4.3) can be transformed into equation (4.4): 

   
  ⌈ (   

    )    
 ⌉  ⌈         

 ⌉                         (4.4) 

In order for the number of resampled particles to be equal to M, the last CRF should be equal 

to M. According to equation (4.4), the last CRF being equal to M can be ensured when the condi-

tion expressed in equation (4.5) is satisfied.     

       
                                                              (4.5) 

Due to the fact that    is in the range of [       ) and    
  is equal to       , equation 

(4.5) can always be satisfied, whether calculations are done in fixed or floating-point precision. 

Using equation (4.3) to calculate the CRFs instead of equation (4.2) guarantees correct results in 

the estimated number of resampled particles in fixed-point arithmetic at the expense of an addi-

tional multiplication and the relevant additional bits to represent the product of the multiplication.   

Fixed-point implementations normally imply that a custom processor is being designed. Spe-

cial attention must thus be paid to the nature of the computations. The PSR algorithm requires the 

division and ceiling functions, but these more complex operations can be implemented efficiently 

in hardware. The CRFs can be calculated by an integer division with a conditional statement: if 

the remainder is not equal to zero, the quotient, which is equivalent to the CRF, is incremented.         

4.3.3 ASIP Implementation of the Fixed-Point PSR Algorithm 

A hardware implementation is an appealing method to meet high throughput requirement for 

PFs. The ASIP approach can be a good choice since it balances the trade-offs between GPPs and 

custom processors. ASIPs allow a programmable solution with customized hardware units to ac-

celerate application bottlenecks and improve throughput. They can significantly reduce the de-

sign effort when compared to fully custom processors. Custom instruction generation is the most 

popular method to accelerate the algorithmic bottlenecks in ASIPs. Custom instructions can 

combine several basic operations into a single one, and multiple instructions can be executed in 

parallel. 
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Based on the data flow graph of Fig. 4-6, we designed four custom instructions to accelerate 

the implementation of the PSR algorithm. They are described in Table 4.3.  

Table 4.3 Custom instructions for the proposed PSR algorithm 

Name Description 

cwcalculation 
Calculate the CWs in parallel. The delay of its critical path depends 
on the number of data inputs.   

paradef 
Calculate    defined. The value is stored in a state register in order 
to avoid memory accesses for further instructions. 

Integerdivisionforcrf 

Calculate CRFs in parallel using equation (4.3). Because the quo-
tient should be smaller than or equal to the number of particles, we 
use a subtraction/shift integer division with a known number of bits 
for the quotient [112].  

rfcalculation 
Calculate the RFs as the differences between two adjoining CRFs in 
parallel.  

 

Fig.4-7 gives the PSR algorithm pseudo-code after inclusion of these four custom instruc-

tions. Parameter   is the number of data calculated in parallel. The operations inside each step 

can be executed in parallel, except for the definition of   , which is merged into the instruction 

paradef. 

Input:    
     

                   Output:    
     

  

Cumulative Weights Calculation 

for         

      {   
     

         
   }               ({  

    
        

   }) 
end 

   definition 

       (   
 ) 

CRFs calculation 

for         

       {   
     

         
   }                       ({   

     
         

   }) 
end 
RFs Calculation 

for         

       {  
    

        
   }               ({   

     
         

   }) 
end 

Figure 4-7 Pseudo-code of the PSR algorithm in ASIP implementations 
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4.3.4  Implementation Results 

4.3.4.1 Accuracy for Fixed-Point Processing 

When implemented with floating-point precision, the PSR algorithm produces exactly the 

same results as the SR algorithm, with the same accuracy. However, in a fixed-point implementa-

tion, the accuracy varies with the number of bits used to represent the weights. Due to the sto-

chastic nature of the algorithm, we counted the number of times that the set of RFs was different 

between the fixed-point PSR and single-precision floating-point SR algorithms for 10000 simula-

tions with 128, 256, 512 or 1024 particles. Results are shown in Table 4.4. The weights in the 

fixed-point PSR implementation are represented with a varying number of bits. For each experi-

ment, we used a single value for    for the two algorithms. It is important to note that the number 

of resampled particles was always the same in both algorithms as discussed in Section 4.3.2. 

Table 4.4 Number of times that incorrect RFs were generated by fixed-point PSR algorithm for 

10000 simulations. 

M 
Number of bits to represent the weights 
2 8 16 20 22 24 28 32 

128 9996 2024 9 1 0 0 0 0 

256 10000 4484 22 2 0 0 0 0 

512 10000 7857 62 3 0 0 0 0 

1024 10000 9739 90 17 2 1 0 0 
 

From Table 4.4, we observe that increasing the number of bits to represent the weights reduc-

es the frequency of observed errors in the calculation of the RFs. For 128, 256, and 512 particles, 

using 22 bits resulted in no observed error for 10000 simulations. This represents a reduction in 

data path width of 31% over the 32-bit case. With 1024 particles, using only 16 bits for the 

weights would result in an error in the number of RFs in less than 1% of cases. For 128 particles, 

it would be in less than 0.1% of cases. Due to the stochastic nature of PFs, we believe that these 

levels of accuracy would be acceptable for most applications. 

4.3.4.2 Performance of Fixed-Point Processing and ASIP Implementation  

The proposed PSR algorithm was implemented in an Xtensa LX2 processor which runs at 

300MHz with 512 particles. The weights were represented with 32 bits because it is not possible 
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to change the Xtensa’s basic datapath. The Xtensa LX2 is a general-purpose processor to which 

custom instructions can be added to improve its performance. In its basic form it occupies 79 K 

gates. It can include a FPU when necessary, at a cost of an additional 77 K gates. We implement-

ed the floating-point SR algorithm in this processor without and with FPU as references. For 

comparison purposes, we used the RSR algorithm sequentially implemented on a TI 

TMS320C54x DSP [5] as reference to evaluate our fixed-point PSR algorithm. This DSP sup-

ports floating-point operations, including the multiplication and ceiling functions. The maximum 

clock rate for this DSP C54 is 160MHz. Table 4.5 compares the speedup and additional resource 

requirements for different scenarios.  

Table 4.5 Performance and resource requirements of various implementation methods 

Implementation method 
Parallelism 

for the 
weights 

Clock 
cycles 

Clock 
Frequency 

(Hz) 
Speedup 

Additional 
area (gates) 

Floating-point SR on 
Xtensa LX2 

- 64.1K 300M 1.0  0 

Floating-point SR on 
Xtensa LX2 with FPU 

- 12.7K  300M 5.05  77.0 K 

Floating point RSR on 
DSP [5]  

- 9.2 K 160M 3.71  N/A 

Fixed-point PSR ASIP 
with Integerdivisionforcrf  
instruction 

- 5.1 K 300M 12.57  15.5 K 

Fixed-point PSR ASIP 
2 2.2 K 300M 29.14  27.5 K 

4 1.2 K 300M 53.42  47.7 K 
 

The fixed-point PSR implementation requires the fixed-point division operation, which the 

Xtensa LX2 processor does not support. Its performance is thus inferior to that of the floating-

point SR implementation, because executing fixed-point division with a software library requires 

a large number of clock cycles. When using the specific Integerdivisionforcrf instruction without 

any parallelism, the fixed-point PSR implementation can achieve 12.57  speedup over the float-

ing-point SR implementation on the unmodified Xtensa LX2 with a resource overhead of 15.5 K 

gates. We observe in Table 4.5 that this sequential implementation has better performance than 

the RSR algorithm sequentially implemented on a DSP. This indicates that the PSR algorithm has 

less complexity than the RSR algorithm, which is the least complex of the three standard RAs 

mentioned in Section 2.1. When compared to the floating-point SR implementation executed over 
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an Xtensa with a FPU, the fixed-point PSR implementation is still better in terms of throughput 

and extra resources. This experiment shows that fixed-point processing can be valid for software 

PSR implementation when the target processor supports fixed-point division.  

In addition, the fixed-point PSR algorithm can be easily implemented in parallel. In its ASIP 

implementation, its performance can be significantly improved with our proposed four special 

custom instructions. From Table 4.5, with two parallel paths and all four custom instructions, the 

speedup is 29.1×. This is achieved at a cost of 27.5 K additional gates, or 35% of the basic pro-

cessor. With four parallel paths, the speedup is 53.4× and the cost is 47.3 K additional gates, or 

60% of the basic processor. 

This speedup can be further improved when calculating more than four particles in parallel. 

However, this would require that the memory bandwidth support the data throughput and that 

silicon area be available.  

4.4 Conclusion 

In this chapter, we proposed two new resampling algorithms to replace the sequential SR al-

gorithm in PFs. The reformulated SR algorithm makes the sequential SR algorithm feasible for 

ASIP parallel implementation. The PSR algorithm makes the iterations in the SR algorithm inde-

pendent, and thus allowing the resampling algorithm to perform the iterations in parallel. The 

reformulated SR algorithm is faster than the PSR algorithm when implemented in a GPP. This is 

because the former has relatively simple operations such as comparator and addition, and the lat-

ter has division and ceiling functions. The advantage of the PSR algorithm is that it is a pure par-

allel resampling algorithm and thus it can be used in any parallel implementation technology. The 

reformulated SR algorithm is only suitable for ASIP parallel implementation. Furthermore, the 

PSR algorithm has the least complexity among the standard RAs. When they are implemented in 

a processor supporting for the integer division, the PSR algorithm outperforms all of the other 

standard RAs including the reformulated SR algorithm.        
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Chapter 5 PARALLEL ARRAY HISTOGRAM ARCHITECTURE FOR 

EMBEDDED IMPLEMENTATIONS 

In histogram-based Particle Filters (PFs) for video tracking, the bottleneck is often in the Par-

ticle Measurement Processing (PMP) block, shown in Fig. 3-1. It is therefore critical to accelerate 

the execution of this block. To that effect, this chapter proposes a parallel array histogram archi-

tecture (PAHA) suitable for embedded implementations. PAHA uses a register array instead of a 

memory block to store the histogram bins. In each step, M inputs can be processed in parallel to 

update the histogram bins without any additional latency. This chapter also describes a second 

version of PAHA with a flexible number of inputs, potentially avoiding the need for multiple 

PAHAs in a single application. Implementation results show that the architecture can achieve a 

super-linear speed-up of 43.75× for a 16-way PAHA when compared to a software implementa-

tion in a general-purpose processor.   

The material of this chapter was published in my paper [10]. 

5.1 Introduction    

Histograms or binning functions are representations of frequency distributions. Their calcula-

tion is a relatively simple operation and it is often performed by GPPs. Nonetheless, hardware 

acceleration may be necessary to satisfy high throughput requirements for some real-time appli-

cations, such as histogram-based particle filters for video object tracking [11] [84].  

Shahbahrami et al. [113] have discussed possible software implementations for calculating 

histograms. The Scalar Histogram Algorithm (SHA) is the fastest reported algorithm when com-

pared to the privatization or merge-sort algorithms. It is described as follows: 

For i=1…K 

           Histogram [data[i]] +=1;  

The SHA is the basis for the histogram implementation described in this chapter. Concerning 

hardware implementation of SHA, Muller [114] showed that two basic architectures can be used. 

The first one addresses the memory array with a read-modify-write architecture. Due to its effi-
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cient resource usage, most techniques [115] [116] have investigated such a read-modify-write 

architecture. However, its performance depends on the number of access ports of the memory 

array. In practice, a dual-port memory array is often used to implement the SHA but the maxi-

mum speed-up is 2× when compared to its implementation using a single port memory array.  

The second basic architecture uses an array of counters, with one counter for each histogram bin. 

However, this architecture is costly in resources for the register array and that is why it is seldom 

used. In order to overcome the limitation of 2× speed-up for the first architecture, Cadenas et al. 

[117] [118] employed the second architecture, the array of counters, in a fully pipelined manner 

to process the inputs in parallel. However, their pipelined histogram array (PHA) has a large la-

tency when using only one or two histogram bins per cell. It occupies a large amount of resource 

due to the pipeline technique. When using a single cell for all the bins with multiple inputs, their 

architecture becomes complex and its delay is increased. 

This chapter firstly presents that histogram calculation is a major bottleneck in histogram-

based PFs for video tracking and then introduces a parallel array histogram architecture (PAHA) 

that does not involve the use of pipelining techniques. It has better resource efficiency when 

compared to the recent work by Cadenas et al. [117] [118]. The chapter also introduces a version 

of PAHA with a flexible number of inputs, called Flexible PAHA (FPAHA), for applications 

where the number of items is not known in advance or can take several known values. 

5.2 Bottleneck in Histogram-based PFs for Video Tracking 

As we described in subsection 2.2.2, in the field of computer vision systems, video tracking is 

an important issue in many applications. It can provide spatial information of target objects for 

further analysis. Consequently, many approaches have been developed for video tracking. 

Among these methods, PFs for video tracking employing the color models is one such successful 

approach [3] [65] [119]. It performs sequential Monte Carlo method [17] based on particle repre-

sentation of probability density to search the region of interest (ROI) whose color content ex-

pressed in histogram matches the color content of the reference target. The results reported in [3] 

[65] show that it is independent of the object deformation and robust to occlusion and to varia-

tions in the color of the background. This makes it suitable for general visual tracking systems. 
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Histogram-based PFs have shown great promise as a powerful method for video tracking. 

However, they suffer from a vital drawback: heavy computation. With the increase of the ROI 

size, the number of particles required, and the dimensions of color channels as the measurement, 

the phenomenon for heavy computation becomes even worse. Table 5.1 shows the profiling re-

sults in an Xtensa LX2 processor for an object (120 by 140 pixels) being tracked by using a gen-

eral histogram-based PF with 256 particles. Under these circumstances, more than 50 million 

clock cycles are required to complete the tracking in a frame. Assuming that the Xtensa LX2 pro-

cessor runs at 300MHz clock frequency, the resulting 6 frames per second for this case are not 

sufficient for most of real-time video tracking systems. We also observe from Table 5.1 that the 

PMP block takes a significant portion of the total number of clock cycles (97.6%). Obviously, it 

is necessary to accelerate the PMP block in order to achieve the throughput requirement of real-

time video tracking. The only calculations performed in the PMP block are for the histogram. As 

discussed in Section 5.1, the SHA is the fastest reported histogram calculation algorithm. It is 

difficult to be optimized in the algorithm level. This motivates us to accelerate the SHA in the 

architectural level.      

 

Table 5.1 Profiling results of histogram-based PF with 256 particles tracking an object (120 by 

140 pixels) in the Xtensa LX2 processor  

 
Clock cycles per frame % 

Transition Processing (TP) 0.00 M 0% 

Random Number Addition (RNA) 0.01 M 0.02% 

Particle Measurement Processing (PMP) 52.19 M 97.61% 

Distance Calculation (DC) 0.36 M 0.67% 

Likelihood Evaluation (LE) 0.86 M 1.61% 

Resampling Algorithm (RA) 0.05 M 0.09% 

Total 53.47 M 100% 
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5.3 Parallel Array Histogram Architecture  

Fig. 5-1 shows the PAHA. It has M N-bit parallel inputs. Each input is fed to a N:2
N
 decoder. 

The decoders’ 2
N
 1-bit outputs are each fed to one of 2

N
 accumulators. The Accumulators are 

each associated with one register bin. The role of the Accumulators is to accumulate the M 1-bit 

signals coming from the decoders, to add them to the register bin contents, and then to update the 

register bins. The width P of the register bins is selected to avoid overflow and depends on the 

maximum number of inputs that can be presented to the PAHA. In each clock cycle, PAHA thus 

processes M inputs in parallel and updates the register bins accordingly.  

The architecture of one of the M-bit accumulators is shown in Fig. 5-2. It consists of a Com-

pressor Tree (CT) [120] and a two-operand adder. The CT counts the numbers of 1’s in the M 1-

bit signals and generates a R-bit operand. The relation between R and M is given by equation 

(5.1): 

  ⌈    (   )⌉                                                               (5.1) 
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Figure 5-1 Parallel Array Histogram Architecture 

The CT’s area and delay increase linearly with M. The two-operand adder’s area and delay 

depends on P and M. When P is fixed, its area and delay increase logarithmically with M.  
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Figure 5-2 M-bit Accumulator 

5.4 Flexible Parallel Array Histogram Architecture  

Fig. 5-3 shows a modified version of PAHA with a flexible number of active inputs up to M. 

The number of inputs can vary in applications where the data set size is not an integer multiple of 

M, such as when the data is not aligned with the cache size. In such a case, the first or last group 

of data or the misaligned data presented to the PAHA will consist of m < M inputs. It is then nec-

essary to disregard the M–m least or most significant items in the list. The FPAHA can accom-

modate such a situation. 
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Figure 5-3 Flexible Parallel Array Histogram Architecture 
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Compared to the PAHA, the FPAHA requires an additional validation logic block and M×2N 

AND gates. The validation logic determines which inputs must be considered to update the regis-

ter bins. Its inputs are the number of inputs that must be used and a 1-bit most/least signal to de-

termine whether the most or least significant items are to be used. For each unused input, the val-

idation logic generates a ‘0’ on its corresponding control signal. In conjunction with the AND 

gates, this nullifies the corresponding input to the accumulators.  

5.5 Architecture Comparisons 

Table 5.1 compares delay, latency, parallelism and resource requirements for the array of 

counters [114], the parallel histogram with dual-ported memory [115], the PHA [117], the PA-

HA, and the FPAHA for the specific case of (M, N, P) = (8, 8, 20).  I only use 1-bin PHA to rep-

resent the PHA as reference because it is difficult to design multiple-bin PHA with large number 

of parallel inputs. In Table 5.2, τ is the basic unit delay and the evaluation of the resources is 

based on NAND gates. The delay for the array of counters consists of a N:2
N
 decoder and a P-bit 

counter. The parallel histogram’s delay consists of a two-operand P-bit adder. The delay for the 

1-bin PHA consists of an N-bit comparator, logic to determine the count for the one bin and a 

two-operand adder with N-bit and R-bit operands. The logic for count determination in the 1-bin 

PHA can be considered as an M-bit CT. However, with the increase of the number of bins per 

cell for the PHA, the logic for count determination becomes complex. Consequently, its delay is 

longer than the delay of the CT. The delay for the PAHA consists of an N:2
N
 decoder and an M-

input accumulator which includes an M-bit CT and a two-operand adder with P-bit and R-bit op-

erands. As shown in Table 5.2, the PAHA and PHA are the only architectures which can execute 

multiple inputs in parallel. In addition, the PAHA has lower delay and latency than the PHA. The 

throughput is used to combine the delay and input parallelism information of each architecture to 

show the performance, which is given by equation (5.2).  

             
           

      
                                                     (5.2) 

   

Table 5.2 also presents resource usage based on NAND gates for the considered architectures 

when (M, N, P) = (8, 8, 20) except for the parallel histogram because it depends on its memory 
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architecture. The array of counters only requires a N:2
N
 decoder and 2

N
 P-bit counters. Hence, it 

only spends 74.9 K NAND gates in our case. Due to the use of pipelining, the PHA uses addi-

tional registers to store the register bin indices and the value of inputs. It thus requires 2
N
×M N-

bit comparators, 2
N
 logic for count determination, 2

N
 Two-operand adder, 2

N
 P-bit registers, 2

N
 

N-bit registers and 2
N
 N-bit counters. The PAHA uses M N:2

N
 decoders, 2

N
 accumulators and 2

N
 

P-bit registers. From Table 5.2, we see that the PHA uses more resources than the PAHA because 

the PAHA does not use pipeline registers. Also, the M decoders in PAHA are smaller than 2
N
×M 

N-bit comparators in the PHA. Furthermore, the resources of the PHA increase with the number 

of bins due to the complexity of the logic for count determination. The penalty for using the 

FPAHA is the additional delay of an AND gate, the resources for the validation logic and M × 2
N
 

AND gates. This may be acceptable in order to gain more flexibility.    

Table 5.2 Comparison of PAHA and FPAHA against previous work for the case of (M, N, P) = 

(8, 8, 20) 

Architecture Delay  Latency Parallelism Throughput Resources  

Array of counters [114] 72τ 1 1 0.0139 74.9 K 

Parallel histogram [115] 120τ 258 2 0.0167 ― 

1-bin PHA [117] 103τ 256 8 0.0777 234.2 K 

 PAHA 99τ 1 8 0.0808 109.3 K 

 FPAHA  101τ 1 8 0.0792 115.6 K 

5.6 Implementation Results  

The Xtensa LX2 processor [107], an ASIP, was used to implement the SHA for an image of 

size 640×480. The Xtensa LX2 is a general-purpose processor to which customizable instructions 

can be added to improve performance. Custom instructions were generated for the PAHA and 

FPAHA. Table 5.3 shows the speedup and additional resource requirements for M-way PAHAs 

when compared to the software implementation of SHA. We observe that the 1-way PAHA can 

achieve 3.23× speedup with a resource overhead of 329.9 K gates. The speedup is due to the re-
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duction in memory access instructions since state registers are used to store the histogram. When 

the number of inputs M is increased to 4 and 16, the speedup attains 13.13× and 43.75×, respec-

tively. The 16-way FPAHA requires only 0.7 K more gates than the 16-way PAHA. 

Table 5.3 Performance and resource requirements of various M-way PAHAs on the Xtensa LX2 

processor 

 Performance Resource requirement (Number of gates) 

 
number of  

clock cycle (M) 
Speedup Base processor Overhead Total 

SHA 2.15 1× 79 K 0 K 79 K 

1-way PAHA 0.65 3.23× 79 K 329.9 K 408.9 K 

4-way PAHA 0.16 13.13× 79 K 356.1 K 435.1 K 

16-way PAHA 0.048 43.75× 79 K 468.4 K 547.4 K 

16-way FPAHA 0.048 43.75× 79 K 469.1 K  548.1 K 

5.7 Conclusion 

This chapter has presented a parallel array histogram architecture for embedded implementa-

tions. A register array is used to overcome the limited speed-up due to memory access. The pro-

posed architecture achieves better performance in terms of throughput when compared to previ-

ous work. Implementation results show the speed-up can attain 3.2 , 13.1× and 43.7× for 1-way, 

4-way and 16-way PAHAs, respectively, when compared to a traditional software implementa-

tion. 
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Chapter 6 CONCLUSIONS AND FUTURE WORK 

6.1 Thesis Conclusions 

PFs, which are computationally very intensive, are popular in addressing a wide range of 

complex applications due to the fact that they outperform most of the traditional filters in prac-

tice. It remains a challenge to simultaneously achieve high throughput and energy efficiency in 

most of these applications.  

In this thesis, we investigated a promising and popular design platform, ASIPs, to implement 

PFs in embedded systems. We analyzed the characteristics of PFs and then identified the Likeli-

hood Evaluation (LE) and Resampling Processing (RP) as the major bottlenecks in the algorithm-

specific blocks. The optimization of these two blocks was explored at the algorithm and architec-

ture level.  

We proposed UQLE instead of ELE in PFs and then designed its custom instruction and rele-

vant hardware unit to further accelerate the LE block. Experiments showed that the proposed 

ASIP UQLE instruction can achieve an average speedup of 805× in comparison with ELE im-

plemented in a GPP. This comes at a cost of only 3.8K additional gates for UQLE with 32 inter-

vals, or 4.7 % overhead to be added to a base processor with 79K gates.                

Concerning the RP block, we proposed two resampling algorithm instead of the sequential SR 

algorithm in PFs. They are the reformulated SR and the PSR algorithms. The former is a new 

form of the SR algorithm to facilitate its parallel ASIP implementation. We designed six custom 

instructions for the reformulated SR algorithm. Experimental results showed that ASIP imple-

mentation of the reformulated SR algorithm achieves a 23.9  speedup over the sequential SR 

algorithm in a GPP. This is for the case of four weights calculated in parallel and eight categories 

defined by uniformly distributed numbers that are compared simultaneously. The additional size 

for these six instructions occupies 68% of a base processor.  

The PSR algorithm makes iterations independent through the introduction of the concept of 

Cumulative Replication Factors. In addition, a fixed-point version of the PSR algorithm was pro-

posed to ensure that the correct number of particles is generated. Four customized instructions 
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were designed to accelerate the proposed PSR algorithm in ASIPs. When supporting four weights 

inputting in parallel, its ASIP implementation with four relevant custom instructions lead to a 

53.4× speedup over a floating-point SR implementation in a GPP at a cost of 47.3 K additional 

gates. 

In order to accelerate histogram-based PFs for video tracking, we proposed a Parallel Array 

Histogram Architecture (PAHA) for embedded implementations. M inputs can be processed in 

parallel to update the histogram bins without any additional latency. Implementation results show 

that 16-way PAHA can achieve a 43.75× over a software histogram implementation in a GPP.     

6.2 Future Work 

There are several topics that could be interesting to investigate in future research. 

  UQLE can achieve a significant speedup for PFs by replacing ELE in the LE block and rele-

vant custom hardware architecture. However, in order to achieve the equivalent accuracy to ELE, 

UQLE needs an appropriate number of intervals. Due to the stochastic nature of PFs, finding this 

number requires a large amount of experiments. A possible future work would be to automatical-

ly identify the number of intervals in UQLE for a given application.  

 The UQLE calculation is independent for each particle. Therefore, it could be implemented in 

parallel to achieve higher throughput than our sequential implementation.  

 Our two novel algorithms make the resampling algorithm feasible for parallel implementation. 

They can calculate the RFs in a parallel manner. However, after calculating the RFs, we did not 

do the parallel implementation for the PA step since such a parallel implementation depends on 

the implementation technology. A possible future work would be to exploit the parallel imple-

mentation of the PA step in accordance with the target implementation technology. 

 The PAHA can achieve a significant speedup when compared to a software histogram calcula-

tion executed in a GPP. However, special registers must be instantiated for the histogram bins, 

and they must be wide enough to store the largest possible value that a bin can take. Their large 

size makes them important contributions to overall processor power consumption. Therefore, it 

would be interesting to apply low power technique to their design.   



  76 

 

 In this thesis, the research mainly focuses on PF algorithms. Their bottlenecks at the algorithm-

specific blocks are the LE and RP blocks. However, we mentioned in Section 2.1 and Section 2.2 

that there are various types of PFs commonly used and there are various applications using PFs. 

Depending on the application and target model, the bottlenecks may be shifted to other blocks. A 

possible future work would involve the analysis of different types of PFs from the point of view 

of the computational complexity of the target model and its impact on the various PF steps. The 

main emphasis, then, should be in identifying and resolving these bottlenecks at the algorithm 

and architecture levels. For example, for histogram-based PFs for video tracking, only optimizing 

histogram calculation in the PMP block may not satisfy real-time constraints. Other potential 

bottlenecks in other blocks would be evaluated and optimized in ASIPs to improve the perfor-

mance of video tracking.      
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