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ÉCOLE POLYTECHNIQUE DE MONTRÉAL
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RÉSUMÉ

Les Nanocomposites Polymères-Argiles (NPA) sont reconnus pour leur capacité à amélio-

rer les propriétés mécaniques de polymères bruts, et ce, même dans le cas de faibles fractions

volumiques de nano-argiles. Cette amélioration est attribuable aux rapports de forme élevés

ainsi qu’aux propriétés mécaniques des nano-argiles. En outre, la zone d’interphase résul-

tant d’une modification des châınes de polymère à proximité des nano-argiles joue un rôle

important dans la rigidité de NPA.

Plusieurs approches analytiques existent pour la prédiction des propriétés élastiques de

NPA, allant des modèles simplifiés en deux étapes aux modèles plus sophistiqués. Il n’existe

toutefois aucune étude ayant déjà vérifié l’exactitude de ces modèles. Par ailleurs, les modèles

numériques servant à évaluer leurs homologues analytiques sont encore loin de pouvoir mo-

déliser la microstructure réelle de NPA. Par exemple, la majorité des modèles n’ont pas tenu

compte de la microstructure tridimensionnelle de particules aléatoirement réparties, du rap-

port de forme élevé des nano-argiles, ou de l’intégration explicite de phases constitutives. Plus

important encore, la plupart des études numériques ont été développées sans tenir compte du

Volume Élémentaire Représentatif (VER) en raison du coût énorme de calculs imposé par ce

dernier. Par conséquent, l’exactitude des résultats de référence ainsi obtenus est contestable.

Le but principal de cette thèse était d’évaluer l’exactitude des modèles d’homogénéisa-

tion pour la prédiction de comportement mécanique de NPA. Dans un premier temps, la

validité des modèles micromécaniques analytiques couramment utilisés pour la prédiction de

propriétés élastiques de NPA exfoliés a été évaluée à l’aide de simulations Éléments Finis

(EF) tridimensionnelles. Une attention particulière a été accordée à l’interphase autour des

nano-argiles. La stratégie de modélisation était une procédure en deux étapes se basant sur

la notion de Particule Effective (PE). Dans cette approche de modélisation, les renforts mul-

ticouches ont été remplacés par des particules homogènes à effets équivalents. L’exactitude

des modèles numériques dans des limites de tolérances prédéfinies était garantie grâce à la

détermination rigoureuse du VER. Cette étude a révélé que la méthode de Mori-Tanaka est

la plus fiable à utiliser parmi les modèles en deux étapes pour les valeurs typiques de para-

mètres de NPA exfoliés (contraste de module, rapport de forme et la fraction volumique). Les

propriétés mécaniques de l’interphase ainsi que son épaisseur ont été estimées à partir d’une

comparaison entre une étude paramétrique numérique et des résultats expérimentaux. Ceci a

souligné l’importance de l’incorporation de l’interphase afin de prédire le module de Young.

Deuxièmement, les évaluations ont été étendues à une gamme plus large de modèles ap-

plicables à la fois aux morphologies intercalées et exfoliées. Des modèles analytiques ont été
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adoptés afin d’explicitement modéliser l’interphase de nano-composites exfoliés ainsi que la

structure stratifiée de la morphologie intercalée. Les résultats de simulations EF tridimen-

sionnelles tenant compte de la microstructure stratifiée de PCN ont été obtenus et utilisés

comme référence pour la comparaison de prédictions analytiques. Ces dernières ont été éga-

lement comparées avec des données expérimentales tirées de la littérature. Il s’est avéré que

les modèles basés sur l’hypothèse PE qui ne considèrent pas explicitement toutes les phases

constitutives pourraient s’écarter de façon significative des résultats EF de référence. Ce ré-

sultat démontre la nécessité d’utiliser de modèles EF à microstructure stratifiée, malgré leurs

coûts élevés de calculs en fonction de la microstructure et de l’exactitude recherchée.

Finalement, le modèle analytique basé sur l’hypothèse d’inclusions à revêtements multiples

a été jugé plus fiable que les méthodes en deux étapes.

La principale contribution de cette thèse était d’évaluer les meilleurs modèles d’homogé-

néisation pour la prédiction de comportements mécaniques de NPA. En outre, des modèles

analytiques ont été adoptés pour la modélisation explicite de phases constitutives dans les

NPA. L’originalité de cette étude réside dans le fait que le VER a été établi et que ni les

modèles analytiques ni numériques n’étaient limités par des hypothèses simplificatrices fré-

quemment utilisées dans plusieurs approches, dont la notion de PE.
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ABSTRACT

Polymer-Clay Nanocomposites (PCN) are known to improve the mechanical properties

of bulk polymers, even for modest clay loadings. This enhancement is due to the high

aspect ratio and mechanical properties of the nanoclay platelets. Additionally, the interphase

zone created by altered polymer chains in the vicinity of the nanoclays plays an important

reinforcing role.

Several analytical approaches exist for predicting the elastic properties of PCN, ranging

from simplified two-step models to more complex one-step methods. However, no thorough

study has yet rigorously verified the accuracy of these models. On the other hand, the

numerical models that are commonly used to evaluate the analytical models are still far from

modeling the real PCN microstructure reported in the literature. For example, most of the

models have failed to model the detailed 3D microstructure considering randomly positioned

reinforcing particles, the large nanoclay aspect ratio and the explicit incorporation of the

constituent phases. More significantly, most of numerical studies have been reported without

a thorough determination of the appropriate Representative Volume Element (RVE) due its

computational burden, resulting in benchmark results of questionable accuracy.

The main purpose of this thesis was to evaluate the accuracy of homogenization models

for predicting the mechanical behavior of nanoclay nanocomposites.

First, the validity of commonly used analytical micromechanical models for the prediction

of exfoliated PCN elastic properties was evaluated with the help of 3D Finite Element (FE)

simulations. In particular, special attention was devoted to the interphase around the nan-

oclays. The modeling strategy was a two-step procedure relying on the Effective Particle (EP)

concept, in which the multi-layer reinforcing stacks were replaced by homogenized particles.

The accuracy of the numerical models was guaranteed, within a given tolerance, by rigorous

determination of the RVE. It was found that the Mori-Tanaka model was the most reliable

method to be used in two-step models for the possible ranges of modulus contrasts, aspect

ratios and volume fractions typical of exfoliated PCN. The properties and the thickness of

the interphase were estimated from comparison between a numerical parametric study and

experimental results. The importance of incorporating the interphase for predicting the axial

Young’s modulus was highlighted.

Second, the evaluation was extended to a wider class of models applicable to both in-

tercalated and exfoliated morphologies. Analytical models were adopted to explicitly model

the interphase in exfoliated nanocomposites, as well as the layered structure of intercalated

morphology. 3D FE simulations of PCN layered microstructures were performed to produce
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benchmark results. The theoretical predictions were also compared to experimental data

extracted from the literature. It was found that the EP-based models not explicitly con-

sidering all constituent phases may significantly diverge from the layered microstructure FE

results. This observation makes use of the layered FE models inevitable, despite their high

computational cost, depending on the PCN microstructure and desired accuracy. Finally,

the analytical multi-coated inclusions model was found to deliver more reliable results than

two-step methods.

The main contribution of this thesis was to assess the best homogenization models for

predicting PCN mechanical behavior based on their evaluated accuracy. In addition, analyt-

ical models were adopted to explicitly model the constituent phases in PCN. The originality

of the present work lies in the fact that the RVE was established and that neither analytical

nor numerical models were limited by simplifying assumptions common in most of modeling

approaches such as EP concept.
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INTRODUCTION

Polymer-Clay Nanocomposites (PCN) are known to improve the properties of bulk poly-

mers. The property improvement can be achieved with modest amounts of clay (usually less

than 5 wt % (Alexandre and Dubois, 2000)) for different properties: mechanical, barrier, ther-

mal, optical, electrical and biodegradability (Chen et al., 2008; Alexandre and Dubois, 2000;

Ray and Okamoto, 2003). Significant increases in moduli (Kojima et al., 1993; Messersmith

and Giannelis, 1994; Giannelis, 1996), strength, heat resistance (Okada and Usuki, 1995),

biodegradability (Schmidt et al., 2002; Chen et al., 2008), decrease in gas permeability (Yano

et al., 1997; Giannelis, 1996; Bharadwaj, 2001; Ray and Okamoto, 2003) and flammability

(Giannelis, 1996; Gilman, 1999; Ray and Okamoto, 2003; Powell and Beall, 2006; Schmidt

et al., 2002) have triggered applications in three important industrial sectors: transportation,

construction and packaging (Morgan, 2007).

Clay minerals have a layered structure constituted of silicate platelets of nanometric

thickness, referred herein as nanoclays. Generally, the clay filler and the polymer matrix

are not compatible with each other and the clay surface must be modified with surfactant

molecules (modifiers). PCN can be classified into two morphologies, depending on the degree

of separation between the silicate layers and the polymer penetration, namely, intercalated

nanocomposites and exfoliated nanocomposites (Figure 0.1). Exfoliated morphology occurs

when separated single nanoclays are dispersed in the polymer matrix. The intercalated

morphology results from the penetration of polymer chains between parallel nanoclays lying

in stacks. Interactions at the interface between the nanoclay and polymer matrix result in

the formation of a modified polymer, called interphase, that has a thickness of a few nm.

Characterization and fabrication of PCN from the experimental point of view is not a

straightforward task. The fabrication of PCN is still empirical and controlling their properties

is complex, time consuming and costly. Therefore, computer modeling can play a helpful role

in predicting and tailoring the desired properties.

There exists different analytical, as well as numerical, methods for predicting the me-

chanical behavior of PCN. Analytical homogenization models, generally based on ideal rep-

resentations, produce quick estimations (or rigorous bounds) for the effective properties of

composites. However, unless for very specific microstructures (e.g., Ghossein and Lévesque

(2012)), the accuracy of their estimates has not been thoroughly evaluated. In addition, very

few works have addressed to the interphase effects.

Analytical models are usually evaluated using numerical homogenization. Numerical ho-

mogenization is accomplished by simulating artificial loadings on three-dimensional (3D) or
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Intercalated Exfoliated (a)Intercalated Exfoliated (b)

Figure 0.1 Schematic representation of two different morphologies for PCN. a) Intercalated
and b) exfoliated clay stacks in PCN. The gray platelets are the nanoclays and the red lines
are the polymer chains.

two-dimentional (2D) representations of the material. The behavior of the volume under the

applied force is computed by numerical techniques such as the Finite Element (FE). The

accuracy of numerical homogenization relies on the fundamental notion of the Representa-

tive Volume Element (RVE). The determination of the RVE is not trivial and convergence

studies are required for defining a RVE that has the same effective properties as the bulk

material and, concurrently, is small enough to avoid high computational costs. Most of the

numerical studies did not perform a thorough determination of the appropriate RVE due

its computational burden, resulting in benchmark results of questionable exactitude. In ad-

dition, numerical models are still far from modeling the real PCN microstructure reported

in the literature. For example, most of the studies have failed to model the detailed 3D

microstructure considering the randomly positioned reinforcing particles, the nanoclays with

large aspect ratios, incorporating explicitly all the constituent phases and applying appropri-

ate boundary conditions.

The general objective of this research was to study the homogenization models for the

mechanical behavior of PCN. The study had two main themes:

– To evaluate the accuracy of different analytical homogenization models taking into

account the morphology of PCN;

– To improve the numerical homogenization models, as evaluation tools, in terms of both

microstucture modeling and RVE determination accuracy.

This thesis is organized as follows. Chapter 1 presents a literature review on analyti-

cal and numerical homogenization methods applicable to PCN. In Chapter 2, the research

objectives are introduced along with the publication strategy of the scientific articles. The
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two articles resulting from this work are presented in Chapters 3 and 4. In Chapter 3, the

predictions of the effective properties using different analytical methods are compared to that

of numerical modeling using well established RVEs. The evaluation is extended in Chapter

4 to a wider class of models applicable to both intercalated and exfoliated morphologies.

Chapter 5 discusses the connection between the articles and the reviewed literature, as well

as complementary work performed during this project. The contributions of this thesis are

finally summarized and topics for future studies are recommended.
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CHAPTER 1

Literature review

1.1 Analytical homogenization

The focus of this section is on the analytical homogenization models applicable to PCN.

For a more thorough theoretical study on micromechanics and analytical homogenization

models, one can refer to the works of (Mura, 1987; Nemat-Nasser and Hori, 1993; Suquet,

1997; Bornert et al., 2001; Torquato, 2002; Milton, 2002; Böhm, 2013).

Composites are inhomogeneous materials, i.e. they consist of dissimilar phases. Microme-

chanics bridges the microscopic structure of the heterogeneous media, the material behavior

of its constituting phases and their geometrical arrangements, to its macroscopic (effective)

behavior. The basic idea in micromechanics, also referred to as homogenization herein, is to

find the homogeneous equivalent of a micro-inhomogeneous solid sample.

1.1.1 Two-phase models studied in this work

The studied two-phase composites consisted of a matrix and embedded inhomogeneities.

Homogenization computes the composite’s effective stiffness tensor Ceff such that:

Σ = Ceff : e, (1.1)

where Σ and e are the macroscopic stress and strain responses of the composite. Bridging

between the micro and macroscopic scales is performed by relating the microscopic fields to

the macroscopic responses, such as:

<ε(x)> = e, (1.2a)

<σ(x)> = Σ, (1.2b)

where σ and ε are the local strain and stress fields, respectively, and <.> denotes the volume

averaging operation:

<f(x)> =
1

V

∫
V

f(x)dV , (1.3)

where V is the volume of the composite sample that is being homogenized.

The microscopic fields can be calculated by the localization relation using the mechanical
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strain concentration tensor A(x) such that:

ε(x) = A(x) : <ε>. (1.4)

Consequently, one can obtain:

<σ> = <C(x) : A(x)> : <ε>. (1.5)

The knowledge of A(x) provides the solution for the homogenization problem. However, in

general, the exact expressions for A(x) cannot be given analytically. Different assumptions

and approximations are introduced in analytical homogenization models to obtain analytical

expressions for A(x). The phase averaged strains can be related to the overall strain by the

phase averaged strain localization tensors (Hill, 1965):

<ε>m = Am : <ε>, (1.6a)

<ε>p = Ap : <ε>, (1.6b)

where subscripts m and p denote the matrix and the particle phases, respectively, < · >i is

the volume average in phase i and Ai is the average concentration tensor within the phase.

The strain concentration tensors can be shown to fulfill the relation (Hill, 1965):

fmAm + fpA
p = I, (1.7)

where f denotes the volume fraction and I is the fourth order identity tensor.

Under uniform displacement and traction boundary conditions on the boundaries of V , one

obtains:

<ε> = fm〈ε〉m + fp〈ε〉p, (1.8a)

<σ> = fm〈σ〉m + fp〈σ〉p. (1.8b)

Use of Equations (1.6a) to (1.8b) leads to:

Ceff = Cm + fp(Cp −Cm) : Ap. (1.9)

Equation (1.9) provides direct estimations for the effective stiffness tensor of two-phase com-

posites based on the knowledge of Ap (hereinafter cited as A).

Mean field homogenization methods approximate the microfields within each phase by

their phase averages so as to provide estimations for A. Most mean field homogenization

methods are based on the work of Eshelby (1957). His study dealt with the strain field of
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a homogeneous ellipsoidal inclusion (i.e., inclusion with the same material as the matrix)

surrounded by an infinite matrix and subjected to a uniform stress-free strain. He showed

that the resulting strain field in the constrained inclusion is uniform and is given by:

εi = S : εt, (1.10)

where S is Eshelby’s tensor, εi is the uniform strain in the constrained inclusion and εt is

a uniform stress-free strain. Eshelby’s tensor depends on the reinforcement shape as well as

the matrix properties. Expressions for S can be found in (Mura, 1987) for several inclusion

shapes and material symmetries. For complex shapes and material symmetries, Eshelby’s

tensor can be calculated numerically following the methodology of Gavazzi and Lagoudas

(1990).

For dilute matrix-inhomogeneity composites, it can be assumed that the inhomogeneities

do not have any interaction between each other. Such cases can be handled based on the

Eshelby’s theory for homogeneous inclusions, as per Equation (1.10), by replacing the het-

erogeneities by equivalent homogeneous inclusions subjected to a stress-free strain (Withers

et al., 1989). As a result, for the dilute (dil) composite, A can be given by:

Adil = [I + S : (Cm)−1 : (Cp −Cm)]−1. (1.11)

The assumption of dilutely dispersed particles in the matrix ignores any interactions between

neighboring particles, leading the properties predicted by Eshelby model to be accurate only

at very low volume fractions (typically up to 1%) (Tucker and Liang, 1999; Böhm, 2013).

Mori-Tanaka model

In the model of Mori and Tanaka (1973) (MT), the inclusion phase average is expressed

as a function of the matrix average as:

<ε>p = Adil : <ε>m. (1.12)

An original application of MT model was performed by Benveniste (1987) for a two-phase

composite material, which estimated the strain concentration tensor for MT approach as:

AMT = Adil : [(1− cp)I + cpA
dil]−1. (1.13)
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Self-consistent scheme

In the Self-Consistent (SC) scheme (Hill, 1965; Budiansky, 1965), the inclusion is as-

sumed to be embedded in the effective material whose properties are yet unknown. The

corresponding strain concentration tensor is expressed as:

ASC = [I + Seff : (Ceff)−1 : (Cp −Ceff)]−1, (1.14)

and Seff is Eshelby’s tensor that depends on the composite effective elastic properties (Ceff)

as the infinite medium and the aspect ratio of the particle. The SC model is an implicit ap-

proach and must be solved iteratively. This model is mostly suitable for modeling materials

whose phases are indistinguishable, e.g., polycrystals, interwoven composites, and function-

ally graded materials (Zaoui, 2002; Böhm, 2008).

Lielens’s model

Lielens et al. (1997) proposed a model that interpolates between the upper and lower

Hashin-Shtrikman bounds for aligned reinforcements and reads as:

ALi = Â
Li

: [(1− fp)I + fpÂ
Li

]−1, (1.15)

where

Â
Li

= {(1− f ∗)[Â
lower

]−1 + f ∗[Â
upper

]−1}−1, (1.16)

and c∗ is related to the particle volume fraction as:

f ∗ =
fp + f 2

p

2
. (1.17)

Â
lower

and Â
upper

are expressed as:

Â
lower

= [I + Sm : (Cm)−1 : (Cp −Cm)]−1, (1.18a)

Â
upper

= [I + Sp : (Cp)−1 : (Cm −Cp)]−1, (1.18b)

where Sp is Eshelby’s tensor where the infinite medium has the properties of the particles.
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Validity of two-phase models

Tucker and Liang (1999) conducted a validation study on micromechanical models appli-

cable for short fiber composites. In their work, they assessed analytical models by comparing

their estimations to 3D FE calculations of periodic arrays of fibers and also to the Ingber

and Papathanasiou’s boundary element predictions for randomly positioned aligned fibers

(Ingber and Papathanasiou, 1997). They reported that the MT model delivers the most

accurate predictions for large aspect ratio fibers (Figure 1.1(a)). The SC model was found to

overestimate the axial modulus at high volume fractions (Figure 1.1(b)) but performed quite

well for other elastic constants. They also pointed out that Lielens’s model may improve on

the MT model for higher fiber volume fractions or rigidity contrasts (Figure 1.1(b)). How-

ever, their validations were mostly performed against estimations of models with regularly

arranged fibers. Furthermore, their conclusions are valid for a limited range of aspect ratios

(lenght/diameter ≈ 1− 50). In addition, Berryman and Berge (1996); Zaoui (2002); Böhm

(2008) do not recommend MT model for high volume fractions of inclusions (i.e., more than

20-30% (Berryman and Berge, 1996)).

Pierard et al. (2004) studied Eshelby-based homogenization techniques. They reported

that for two-phase composites (when all inclusions have the same material properties, aspect

ratio and orientation) the model of Lielens (Lielens, 1999) delivers perhaps the best predic-

tions for a wide range of aspect ratios (Figure 1.2), volume fractions and stiffness contrasts.

They have also mentioned that for low volume fraction of inclusions, the difference between

MT and Lielens’s models remains small with slightly better results obtained by the latter

model.

1.1.2 Multi-phase methods

In this section, the focus is on composites made with coated or multi-coated inclusions.

Various techniques have been adopted to predict the effective properties of linearly elastic

composites in the presence of interphase layer, e.g., Christensen and Lo (1979); Hori and

Nemat-Nasser (1993); Hervé and Zaoui (1993); Dunn and Ledbetter (1995); Sarvestani (2003);

Lipinski et al. (2006).

Hori and Nemat-Nasser (1993) proposed a model called double-inclusion that consists of

an ellipsoidal inclusion embedded in another ellipsoidal matrix, both embedded in an infinitely

extended homogeneous medium. The shape and the orientation of the inclusion and the

matrix, and the elastic properties of the three phases are arbitrary. By choosing the inclusion

and the matrix to be aligned and identically shaped, and by taking the elastic moduli of the

infinite medium to be the same as those of the matrix or the effective composite, the results
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guaranteed to be orthotropic. That is, calculations for
square packing will always give E22 � E33, but the
results will not necessarily obey Eq. (77) nor will the
transverse modulus necessarily be the same for other
loading directions in the 2±3 plane. Here we simply
report �23 and E22 for loading in the x2 direction, and
do not explore the other orthotropic constants for
square packing.

The material properties used in the ®nite element cal-
culations (Table 5) are typical of ®ber-reinforced engi-
neering thermoplastics. All of the moduli are scaled by
the matrix modulus.

4.2. Results and discussion

Fig. 7 compares the theoretical and ®nite element
results for longitudinal modulus E11. The strong in¯u-
ence of ®ber aspect ratio on E11 is apparent, and all of
the theories exhibit a similar S-shaped curve, asymptot-
ing to the same rule-of-mixtures value at high aspect
ratio. However, the various theories give quite di�erent
values for very short ®bers, and rise at di�erent rates.

The di�erent packing arrangements create some scat-
ter in the ®nite element results, but the scatter is small
for `=d58. For `=d44 the scatter is signi®cant. This is
not surprising, since the properties of particulate-rein-
forced composites are known to be very sensitive to the
packing arrangement. The high E11 values for the hex-
agonal staggered array probably occur because our
rules for forming this particular type of RVE tend to

create long `chains' of nearly-touching particles parallel
to the x1 axis, with a high degree of axial overlap. While
all of the ®nite element results are equally `true,' we
believe the lower ®nite element values are more repre-
sentative of the actual packing and the actual sti�ness of
composites with very short ®bers.

Comparing models to ®nite element data for E11, the
Halpin±Tsai equation is accurate for very short ®bers,
but falls below the data for longer ®bers. The Nielsen
model improves on the Halpin±Tsai predictions for the
very short ®bers, but is still below the data for longer
®bers. A better ®t in the higher aspect ratio range is
provided by the Mori±Tanaka and Lielens models,
which are only slightly di�erent from one another at
this volume fraction. These models are good over most
of the data range. The self-consistent results are usually
high, while the shear lag model is good for the longer
®bers but too low for very short ®bers. This latter
behavior is not surprising, since shear lag theory treats
the ®ber as a slender body. Using any of the other
values for R in the shear lag model shifts the curve to
the right, moving the predictions away from the data.

Results for transverse modulus E22 are shown in
Fig. 8. The ®nite element data again have moderate
scatter. Fiber aspect ratio has little e�ect on the trans-
verse modulus, though some of the packing geometries
show a slight dip at low aspect ratio. Interestingly, the
shape and location of this dip are matched by the mod-
els that use the Eshelby tensor. Note that the Halpin±
Tsai and Nielsen models contain no dependence on
aspect ratio for E22. Shear lag models do not predict
E22.

Most of the models do a good job of predicting E22,
with the Mori±Tanaka and Lielens models being the
most accurate. The Halpin±Tsai result is slightly higher
than most of the data, while the Nielsen model notice-
ably over-predicts this property. For comparison the
upper bound result falls well above the data, with an
asymptote of E22=Em � 3:59 at high aspect ratio.

Fig. 7. Theoretical predictions and ®nite element results for E11.

Table 5

Material properties used in ®nite element calculations

Property Fiber Matrix

E 30 1

� 0.20 0.38

vf 0.20

`=d 1, 2, 4, 8, 16, 24, 48

Fig. 8. Theoretical predictions and ®nite element results for E22.

C.L. Tucker III, E. Liang /Composites Science and Technology 59 (1999) 655±671 667

(a)

Data for the Poisson ratios �12 and �23 appear in
Figs. 9 and 10. The Nielsen and Halpin±Tsai results for
�12 are identical, so only the Halpin±Tsai curve is
shown. Both Poisson ratios show a moderate depen-
dence on aspect ratio and some sensitivity to packing
geometry. The shape of this dependence is similar for all
but the regular hexagon array and is matched qualita-
tively by several models, but the quantitative match is
not as good. For �12 the constant value provided by the
Halpin±Tsai equations is at least as good a match to the
data as the models that show some variation. However,
the Halpin±Tsai and Nielsen models substantially over-
predict �23, while the other models do very well on this
property, especially at the higher aspect ratios. The
error in the Halpin±Tsai value results from a combina-
tion of a slightly high prediction for E22 (Fig. 8) and a
slightly low prediction for G23 (not shown here), the
e�ects combining through Eq. (77).

One weakness of the ®nite element calculations is that
they require the assumption of a regular, periodic
packing arrangement of the ®bers. Calculations that do

not have this limitation have been recently reported by
Ingber and Papathanasiou [54]. These workers used the
boundary element method to calculate E11 for random
arrays of aligned ®bers. Each model typically contained
100 ®bers, and results from ten such models were aver-
aged to produce each data point. We tested their results
against the various theories, and also performed a lim-
ited number of ®nite element calculations for compar-
ison purposes. The boundary element results are for
rigid ®bers (Ef=Em � 1) and an incompressible matrix
(�m � 0:5), but our ®nite element calculations and the-
oretical results use Ef=Em � 106 and �m � 0:49 to avoid
numerical di�culties in some of the models.

Fig. 11 shows the results for E11 versus volume frac-
tion for `=d � 10. The boundary element data are most
accurately matched by the Lielens and Nielsen models,
though the Halpin±Tsai and Mori±Tanaka models are
not bad. The self-consistent model predicts much higher
sti�nesses than the other models and than the boundary
element data. So far these results are consistent with our
previous comparisons.

What is surprising about Fig. 11 is that the ®nite ele-
ment results fall so far above the boundary element
results, and above the theories that work so well in
other cases. Since the ®nite element data fall closer to
the self-consistent model, it is tempting to think that
they support the accuracy of this model. But we believe
it more likely that these results are revealing the sensitivity
of sti�ness to the packing arrangement of the ®bers.

Other researchers have noted that gathering short
®bers into bundles or clusters tends to reduce E11 com-
pared to evenly dispersed ®bers [42]. In the boundary
element calculations of Ingber and Papathanasiou the
inter-®ber spacing is random, and hence uneven, so
there is a modest clustering e�ect. In contrast, our ®nite
element models impose a uniform inter-®ber spacing,

Fig. 9. Theoretical predictions and ®nite element results for �12.

Fig. 10. Theoretical predictions and ®nite element results for �23.

Fig. 11. Models compared to boundary element predictions of E11 for

random arrays of rigid cylinders by Ingber and Papathanasiou [54],

and to ®nite element calculations with Ef=Em � 106, all for `=d � 10.

668 C.L. Tucker III, E. Liang /Composites Science and Technology 59 (1999) 655±671

(b)

Figure 1.1 a) Analytical predictions and FE results for axial Young’s modulus E11 for short-
fiber composites with Efiber/Em = 30 and fiber volume fraction of 20%.; b) Analytical models
compared to boundary element (BE) predictions for random arrays of rigid cylinders by
Ingber and Papathanasiou (1997) with Efiber/Em = 106, all for aspect ratio of 10 (Tucker and
Liang, 1999).

are identical to those of the MT or SC models, respectively Hu and Weng (2000). It was shown

by Ju and Chen (1994) that the model of Hori and Nemat-Nasser (1993) is a noninteracting

solution that does not take into account the interaction between particles. Ju and Chen
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In Table 3, we compare several homogenization

schemes. Three are based on our two-step procedure

with M–T for the first step. Another one uses the direct

S-C method (performed by Li) and the last one is Li�s
regularization method explained above. As expected,

only M–T/Voigt, M–T/Reuss and Li�s regularization

show the required symmetries (e.g., C1133 ¼ C3311).

However, it is difficult to compare quantitatively the

corresponding three sets of results since we have no FE

simulations or experimental data.

5.2.2. Second test

Consider again a three-phase composite reinforced

with two kinds of inclusions, but this time, they differ

only by their shape (Ar1 ¼ 50, Ar2 ¼ 1) and not by the

material (E1 ¼ E2 ¼ 50 GPa and m1 ¼ m2 ¼ 0:3).
Results with the direct M–T approach [22] are plotted

together with those of the two-step homogenization

scheme in Fig. 6. We can observe the equivalence be-

tween the direct M–T homogenization and the two-step

procedure using M–T at the two steps (a proof of the

equivalence is given by Friebel [12]). An advantage of

the two-step procedure is that in the second step we can

easily switch to other homogenization schemes which
lead to acceptable results. Once again it is seen that even

when considering the same material for the two kinds of

inclusions, the M–T/M–T prediction is out of the range

of M–T/Voigt and M–T/Reuss.

5.2.3. Third test

We now consider another kind of three-phase com-

posite where reinforcements have different Young�s
moduli (E1 ¼ 50 GPa and E2 ¼ 100 GPa), different

shapes (fibers or spheres) and are aligned with the di-

rection of traction.

Predictions of the two-step homogenization method

are compared to Taya and Chou [22] direct M–T ho-

mogenization results. As plotted in Fig. 7, we are not

surprised that the homogenized longitudinal elastic

modulus predicted by M–T/M–T (or equivalently Taya

Table 3

Components (in GPa) of the macro stiffness obtained with several homogenization methods for a three-phase composite reinforced by two kinds of

inclusions (different materials and shapes) with revolution axis along direction 3

Approach C1111 C1122 C1133 C3311 C3333 C1212 C3131

M–T/M–T 121.06 41.43 34.27 21.84 123.96 39.81 32.99

M–T/Voigt 136.19 49.96 45.77 45.77 162.47 43.14 41.98

M–T/Reuss 110.16 37.94 30.49 30.49 95.03 36.11 30.95

Li�s self-consistent [15] 124.0 44.25 36.22 22.34 124.26 32.69 39.86

Li�s regularization [15] 128.1 47.24 35.10 35.10 125.47 33.32 40.45
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Fig. 5. Influence of the shape of the reinforcements (platelets) on the macro elastic modulus in the direction of the revolution axis (Ek) and along the

radius (E?) of the spheroids. Comparison between the double inclusion model and FE results (Palmyra).

1596 O. Pierard et al. / Composites Science and Technology 64 (2004) 1587–1603

Figure 1.2 The macro elastic modulous in the direction of the revolution axis (E‖) and along
the radius (E⊥) of the spheroids as a function of the talc volume fraction. Comparison
between the double inclusion (Lielens’s) model and FE results of VanEs (2001)(Palmyra)
(Pierard et al., 2004). Subscripts 1 and 0 refer to the paltelets and matrix, respectively.

(1994) derived the general governing equations for composites containing unidirectionally

oriented particles by incorporating the effects of particle-particle interactions. Liu and Sun

(2005) found the effective stiffness tensor for three-phase composites containing randomly

distributed, yet aligned, spheroidal particles with interlayers (cited hereinafter as Interacting

Double-Inclusion (IDI) model).

Christensen and Lo (1979) solved the elementary problem of a coated spherical inclu-

sion in a three-phase model where the coating represents the real matrix with the thickness

adjusted in consideration of the inclusion volume fraction. The coated inclusion is then em-

bedded in the composite with yet unknown effective properties. This model is known as the

generalized self-consistent scheme. Hervé and Zaoui (1993) extended the three-phase model

to an n-layered spherical inclusion. Their method of resolution is based on the energy condi-

tion of Christensen and Lo (1979) for the three-phase model. More recently, Lipinski et al.

(2006) provided a general framework to deal with a heterogeneous problem, where the inho-

mogeneity consists of a n-layered inclusion composed of n concentric ellipsoids (Figure 1.3)

made of anisotropic elastic materials. The methodology is based on a combination of inter-

face operators with Green’s function techniques, capturing the stress and strain jumps at the

interfaces between two adjacent coatings, which are considered perfectly bonded. The model

of (Lipinski et al., 2006) can be applied, through a generalized self-consistent scheme, to
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describe the overall behavior of real composite materials with complex microstructures that

are significantly influenced by the presence of the interphase, in particular the composite

made with multi-coated ellipsoidal inclusions. This model is cited hereinafter as multi-coated

model. All the equations related to the IDI and the multi-coated models are reported at

Section 4.

2. General considerations

Consider a uniform infinite medium (matrix) containing a composite ellipsoidal

inclusion, I, shown in figure 1. The surrounding medium is recognized by the number

0 and its elastic properties are given by the tensor of elastic constants c0. The

composite inclusion is constituted by n different elastic and linear materials.

Its ellipsoidal kernel is identified by the index 1. The elastic properties of this kernel

are prescribed by the tensor c1. Coatings having ellipsoidal shapes are identified

by the index i going from 2 to n. The elastic properties of the coating i are specified

by the corresponding tensor ci. The aim of this section consists of finding the

concentration tensors in each phase of the multi-coated ellipsoidal inclusion problem

when the composite is submitted to homogeneous displacement boundary conditions

u(x)¼E 0
� x, where E 0 is a global constant strain tensor and x is an arbitrary point.

To solve this problem we consider a kinematical integral equation linking the

elastic local strain eðxÞ with the global uniform strain E 0 [2]:

eðxÞ ¼ E 0
�

ð
V

Cðx� x0Þ : dcðx0Þ : eðx0ÞdV 0
ð1Þ

where the column denotes the double contraction operation.
The following notations have been introduced to establish this equation:
. x, x0 – the position vectors,
. �ijkl ðx� xÞ ¼ �Gki, lj ðx� x0Þ – the modified Green tensor,

Matrix c0

Kernel c1 Coating c2 Coating ci Coating cn

Figure 1. An n-layered ellipsoidal inclusion.

1308 P. Lipinski et al.

D
ow

nl
oa

de
d 

by
 [

E
co

le
 P

ol
yt

ec
hn

iq
ue

 M
on

tr
ea

l]
 a

t 1
1:

10
 2

3 
D

ec
em

be
r 

20
12

 

Figure 1.3 The n-layered ellipsoidal inclusion composed of n concentric ellipsoids (Lipinski
et al., 2006).

1.2 Numerical homogenization

In contrast to analytical models, numerical methods compute accurate local stress and

strain fields for geometries where the matrix and heterogeneities are explicitly represented.

The effective properties are subsequently computed from the volume average of these fields.

Therefore, numerical homogenization is considered as an accurate homogenization method,

provided that the simulated volume is a RVE. However, due to computational constraints

in the numerical modeling, one is often limited to analyze volumes smaller than the RVE.

Following the terminology of Huet (1990), the properties of such volumes are referred to as

apparent properties, whereas that of the RVE are referred to as effective properties. When

the volume under study is large enough (mathematically infinite), the apparent properties of

random materials become equivalent to the effective properties under any set of boundary

conditions, as proved by Sab (1992).
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The simulation process of a single given volume is described in Section 1.2.1. The RVE

concept and determination methods are then reviewed in Section 1.2.2.

1.2.1 Numerical homogenization of an arbitrary material volume

Random microstructure generation methods

A 3D microstructure can be either generated by imagery of a real microstructure sample

or by a computer using random generation algorithms. Experimental image reconstruction

techniques (Huang and Li, 2013) require expensive specialized equipments and involves de-

structive imaging of experimental samples. The focus of this work is on computer random

generation methods.

The Random Sequential Adsorption (RSA) algorithm (Feder, 1980; Talbot et al., 1991)

has been the most commonly used method for random generation of microstructures, due to

its simplicity. In this algorithm, the position of the first particle is randomly generated. The

positions of the subsequent particles are also randomly generated with the condition that

they must not interfere with the existing particles. If a newly added particle interferes with

other particles, it is removed and then repositioned randomly. This operation is repeated

until the particle location is accepted. Non-overlapping particles are sequentially added until

the target volume fraction is reached. Achievable microstructures using RSA algorithm are

limited to low volume fractions, also known as jamming limit (Feder, 1980).

Lubachevsky and Stillinger (1990) proposed an algorithm based on Molecular Dynamics

(MD) and applied it for discs and spheres (Lubachevsky et al., 1991). In their algorithm, all

particles are all created at once in the volume, but with a null volume. They are then put in

motion and the volume of each particle progressively increases. The particles can collide with

each other or with the faces of the cell and the computations end when the target volume

fraction is reached. This method is able to generate very high volume fractions (74%) of

spherical particles in a volume (Ghossein and Lévesque, 2012).

There are also another method for generating random microstructure such as Monte-Carlo

simulations and the recent random-walk methods proposed by Altendorf and Jeulin (2011a).

Monte-Carlo methods have shown relatively low jamming limits (Lusti and Gusev, 2004).

The random-walk process has been developed for fiber composites and was able to achieve

high volume fractions (i.e., up to 65% for randomly oriented bent fibers having an aspect

ratio of 10 (Altendorf and Jeulin, 2011a). However, such high volume fractions is limited to

cases where fiber bending is permitted (Altendorf and Jeulin, 2011b).
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Numerical resolution methods

FE and Fast Fourier Transforms (Moulinec and Suquet, 1994, 1998; Ghossein and Lévesque,

2012) have been extensively used to compute the local stress and strain fields of a given 3D

microstructure. A list of some other numerical methods can be found in Böhm (2013) and

Pierard (2006). Most numerical methods require the discretization of the microstructure

geometry into smaller elements. The accuracy of the solution depends on the fineness de-

gree of the discretization and the discretized elements must be smaller than the intrinsic

microstructure length scales. Therefore, very fine discretization is required in the presence of

large length scale contrasts within the microstructure, as is the case for microstructures with

very thin discs. The solution of such microstructures necessitates long processing times and

large computational memory to perform and store all the computations over the numerical

system. The FFT solution scheme requires uniform discretization of a 3D microstructure

image into cubic volume elements of equal size called voxels. The number of voxels required

to adequately represent the geometry of high aspect ratio particles is generally high, lead-

ing to prohibitively large computational costs. In contrast, the FE method permits for a

non-uniform discretization of microstructure allowing different levels of mesh refinements in

different parts of the microstructure. Moreover, different shapes of elements (e.g., tetrahe-

drons) can be used, enabling the FE to discretize thin disc-shaped microstructures with fewer

elements, when compared to the FFT method. However, in opposition to the FFT based

methods, the FE method requires user interventions, which makes its automation challenging

(Ghossein and Lévesque, 2012).

Boundary conditions

Homogenization can be performed under any set of boundary conditions (BC). Enforcing

different BC on the same volume element smaller than the RVE yields different apparent

properties. Applying appropriate BC is one of the key issues in obtaining accurate estima-

tions.

Uniform traction boundary conditions underestimate the effective properties and more

precisely leads to a lower bound (Huet, 1990). These BC are given by:

σ(x) · n = Σ · n ∀ x ∈ V S, (1.19)

where V S is the surface of the volume element and n is the normal vector at position x on V S.
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Uniform displacement boundary conditions overestimate the effective properties, delivers

an upper bound and are expressed as:

u(x) = e · x ∀ x ∈ V S, (1.20)

where u is the displacement vector. For high contrasts of phases properties, the properties

computed using above BCs are very far apart and do not deliver accurate estimations of the

effective properties.

On the other hand, Periodic Boundary Conditions (PBC) were shown by (Gusev, 1997;

Kanit et al., 2003) to yield more accurate effective properties with a minimum computational

effort. PBC can be enforced on the volume element with the help of the following relation:

u(x = x0)− u(x = x∗0) = e : (x0 − x∗0), (1.21)

where x0 and x∗0 represent each two homologous points on opposite faces of the material

volume, and e is the applied infinitesimal macroscopic strain tensor that can be chosen

arbitrarily and is discussed in the following.

In contrast to the FFT formulation that is based on periodic fields, the implementation of

PBCs in the FE model requires L-periodic (L is the edge length of volume element V ) nodal

positions. It means exactly homologous nodes should be located at each two opposite faces.

This requirement makes the FE meshing procedure difficult and requires the volume element

to be also periodic. A periodic microstructure is such that a particle that intersects a surface

of volume continues from the opposite surface (see Figure 1.4).

Microstructure periodicity and matching nodes requirements for enforcing PBC were

stated in several works as complex processes, (Böhm, 2013; Hbaieb et al., 2007; Mortazavi

et al., 2013). To overcome the difficulties in applying PBC, Hbaieb et al. (2007) used symmet-

rical boundary conditions in their 3D FE modeling. Recently, Nguyen et al. (2012) suggested

adapting the PBC to non-matching meshes. They presented a new FE formulation to impose

PBC on arbitrary meshes using polynomial interpolation. However, finding the appropriate

polynomial parameters (e.g., order of Lagrange interpolation, number of segments in the

spline interpolation) to reach a given accuracy is not trivial.
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6 

edges, so we can enforce the same element number and sizes to
be generated along opposite edges. A further complication of
applying periodic boundary conditions is that ABAQUS code
orders the nodes according to the node numbers and not
according to the co-ordinations. The consequence of this
ordering is that the enforced kinematic constraint, whereby 2
nodes on two opposite edges will be forced to have same dis-
placement along certain direction, will be employed on nodes
having different mapping positions, that is, different relative
locations along their corresponding edges. To overcome this
problem, a separate simulation has to be carried out where
the outputs are the node numbers and co-ordinations. The
nodes are then ordered according to their locations e using a
FORTRAN program e along the edges and the periodic
boundary conditions are then applied at individual nodes
instead of using a whole node set. In general the application
of the periodic boundary condition is very involved. The
techniques described above to overcome difficulties in apply-
ing periodic boundary conditions in 2D cannot be used in
3D. Similarly to the 2D case, the finite element software,
ABAQUS, does not offer the option of specifying same num-
ber of nodes with one-to-one coordinate correspondence on
opposite faces in 3D. The only possibility for enforcing this
condition is to produce a thin partition at the vicinity of all
faces, which is a very tedious process. However, even if this
is accomplished the presence of particles randomly oriented
in the model makes the generation of a mesh using the sweep
technique impossible and instead a free mesh with tetrahedron
elements must be chosen. The latter option is, however, not
favourable as it is not possible to have same number of ele-
ments in two opposite faces with the nodes located in the
same equivalent positions when using tetrahedron elements.
Therefore, for 3D we have used symmetrical boundary
conditions.

2.3. Symmetrical boundary conditions

Simple symmetrical boundary conditions are used for a
RVE stressed only in an axial direction. Two edges (three
faces) intersecting at a point are chosen as the lines (planes)
of symmetry for the 2D case (3D case). Displacement bound-
ary constraints are applied to these edges/faces so that no dis-
placements occur normal to the edges/faces. Points on these
edges/faces are, however, free to slide along them. In the axial
direction the edge/face opposite the symmetrical edge/face is
given a constant displacement in the axial direction. The other
non-symmetrical edges/faces have zero stress. Except for the
edges/faces which are subjected to the displacement control
described above, all other edge/faces are free of any displace-
ment constraints. Thus the boundary conditions for the 2D
case with a normal strain applied in the x direction are

uðLEÞ ¼ 0;
vðBEÞ ¼ 0;
uðREÞ ¼ d:

ð3Þ

In addition, the top edge is free of any displacement con-
straint. All edges are free of shear traction and the top edge
is free of normal traction as well. In the 3D case, the boundary
conditions with a normal strain applied in the x direction are as
follows:

uðLFÞ ¼ 0;
vðBFÞ ¼ 0;
wðBKFÞ ¼ 0;
uðRFÞ ¼ d;

ð4Þ

where LF, BF, BKF and RF stand for left face, bottom face,
back face and right face. All other faces are free of any dis-
placement or traction constraints.

Fig. 4. (a) Three-dimensional representative volume element (RVE) including aligned clay platelets randomly distributed. The volume fraction of particles is 5%.
Particles that cut one or two boundary faces are split into two or four parts with those remaining (that would otherwise be outside the RVE) relocated to opposite faces.
(b) Three-dimensional representative volume element (RVE) including randomly oriented clay discs randomly distributed. The volume fraction of particles is 5%.

905K. Hbaieb et al. / Polymer 48 (2007) 901e909

Figure 1.4 A 3D periodic volume element including randomly oriented and distributed nan-
oclay discs. The volume fraction of particles is 5%. Particles that cut one or two boundary
faces are split into two or four parts with those remaining (that would otherwise be outside
of the volume) relocated to opposite faces (Hbaieb et al., 2007).

Computing apparent properties

Using the major and minor symmetries of the stiffness tensor, the macroscopic constitutive

behavior for a finite volume can be written in a matrix notation (modified Voigt notation)

as: 

Σ11

Σ22

Σ33

Σ23

Σ13

Σ12


=



C1111 C1122 C1133

√
2C1123

√
2C1131

√
2C1112

C2211 C2222 C2233

√
2C2223

√
2C2231

√
2C2212

C3311 C3322 C3333

√
2C3323

√
2C3331

√
2C3312√

2C2311

√
2C2322

√
2C2333 2C2323 2C2331 2C2312√

2C3111

√
2C3122

√
2C3133 2C3123 2C3131 2C3112√

2C1211

√
2C1222

√
2C1233 2C1223 2C1231 2C1212





e11

e22

e33

e23

e13

e12


. (1.22)

The six columns of the apparent elastic tensor can be calculated by independently applying

six orthogonal macroscopic deformation states e on V (e.g., three pure longitudinal and three

pure shear deformations). Thus, six independent simulations are required to find the complete

stiffness tensor. To compute straightforwardly one (or a set of) desired property(s), one

can choose fewer deformation states depending on the desired property(s) and macroscopic

symmetry of the composite (e.g. see Kanit et al. (2003)).
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1.2.2 RVE determination

Numerous studies were devoted to the definition of the RVE (Hill, 1963; Sab, 1992; Drugan

and Willis, 1996; Ostoja-Starzewski, 2006). The suggested definitions are generally based on

the representativeness of either the structure of the volume element or its physical behavior,

or both. Depending on the RVE application domain, the RVE definitions may be different. In

the framework of homogenization, the aim is to obtain accurate effective properties. Thus,

homogenization works as in those of Kanit et al. (2003); Kari et al. (2007); Barello and

Lévesque (2008); Ghossein and Lévesque (2012) have most often adopted the physical RVE

(Böhm, 2013) concept defined by a volume element that computes the same target property

as the bulk material (Gusev, 1997).

Theoretically, a Volume Element (VE) is exactly representative of a random media when

it contains an infinite number of heterogeneities (Ostoja-Starzewski, 2002). For finite vol-

umes, the RVE of a random medium cannot be reached exactly but with a predefined error

tolerance. In this regard, Kanit et al. (2003) defined quantitative RVE, which is not nec-

essarily characterized by a single finite volume but by an ensemble of NR realizations, each

containing NRV E heterogeneities. Realizations of a microstructure are randomly generated

VEs containing randomly distributed heterogeneities with the same microstructural proper-

ties (i.e. volume fraction, aspect ratio, phase properties and volume size). Ensembles smaller

than the RVE ensemble are characterized by nR realizations and nV E heterogeneities. The

volume size of a VE is also defined by the number of its heterogeneities nV E. Accurate

effective properties, within a tolerance, are obtained by averaging apparent properties over

all generated realizations. Kanit et al. (2003) observed a bias for results obtained with very

small size volume elements. Therefore, quantitative RVE acceptation criteria are needed to

determine the volume size and the number of realizations that define a RVE large enough to

compute accurate estimations of the effective properties within a tolerance.

To determine the number of required realizations NR, Kanit et al. (2003) proposed a

criterion based on the confidence interval of the apparent properties as:

Criterion forNR a):
εci

Z̃
≤ δ0, (1.23)

where Z̃ refers to the ensemble average of the desired physical property Z over all realiza-

tions, εci is the size of confidence interval of Z̃ and δ0 is a given tolerance.

Several criteria have been proposed to estimate NRV E based on the statistics of the appar-

ent properties computed under different sets of BC (Gusev, 1997; Ostoja-Starzewski, 1999;

Terada et al., 2000; Kanit et al., 2003; Ostoja-Starzewski, 2006; Stroeven et al., 2004; Trias
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et al., 2006; Ghossein and Lévesque, 2012; Moussaddy, 2013). One of the most commonly

used criteria (Gusev, 1997; Kanit et al., 2003; Ghossein and Lévesque, 2012) is stability cri-

terion, which is based on the stability of the ensemble average of the desired property over

increments of nV E (Gusev, 1997):

Criterion forNRV E a):
|Z̃(i) − Z̃(i−1)|

Z̃(i)
≤ δ1, (1.24)

where δ1 is a given tolerance and superscripts (i) and (i−1) refer to two successive ensembles

with different nVE. The suited BC set for the stability criteria is PBC. Figure 1.5 presents the

convergence of the bulk modulus of random realizations of a voronöı mosaic microstructure

under PBC, uniform displacement and traction BC (Kanit et al., 2003). It is observed that the

apparent properties have converged towards the effective properties for significantly smaller

volumes under PBC than uniform BC.

Moussaddy (2013) propsed an averaging variations criterion in which the arithmetic and

harmonic means of the stiffness tensor are used to set a criterion to determine NRV E:

C =
1

r

r∑
i=1

Ci, (1.25a)

C =

(
1

r

r∑
i=1

C−1
i

)−1

, (1.25b)

where Ci is the apparent elastic tensor of the ith realization. The focus of the study of

Moussaddy (2013) was on isotropic composites so they dealt with bulk modulus as:

k̄ =
Ciijj

9
, (1.26a)

¯̄k =
Ciijj

9
. (1.26b)

It is worth mentioning that the result of Equation (1.26a) is equivalent to the arithmetic mean

of k̃ evaluated by
[

1
r

∑r
i=1 k̃

i
]
. However, Equation (1.26b) is different than the harmonic mean

of k̃ evaluated by

[
rPr

i=1
1

k̃i

]
. The average properties is then estimated by the average of both

means:

k̂r =
k
r

+ k
r

2
, (1.27)

and ,

k
r
≤ k̂r ≤ k

r
. (1.28)
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Figure 1.5 Mean bulk modulus of a voronöı mosaic composite as a function of volume size V (=
the number of grains included). Three different types of boundary conditions were enforced:
Kinematic Uniform Boundary Conditions (KUBC), Static Uniform Boundary Conditions
(SUBC) and PERIODIC boundary conditions. For clarity, the errorbars were slightly shifted
around each studied volume size V (Kanit et al., 2003).

Equality in Equation (1.28) can only be obtained for ensemble of ideal RVEs. The difference

between the ensemble average properties k̂r and any of k
r

or k
r

was used to set a new criterion

as:

Criterion forNRV E b):

(
k̂r − k

r

k̂r

)
=

(
k̂r − kr

k̂r

)
≤ δ1. (1.29)

1.3 Works on homogenization of PCN

1.3.1 Analytical works

In PCN, the well-defined concepts of matrix and reinforcement in conventional two-phase

composites are no longer valid due to the multi-layered structure of the reinforcing particles

and/or the presence of other phases such as interphase. This phenomenon makes the analyt-

ical studies to be generally categorized in one- and two- step models. In two-step methods,
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two-phase conventional composite models are used after homogenizing the reinforcing parti-

cles through the effective particle (EP) concept (Sheng et al., 2004; Luo and Daniel, 2003).

The idea behind the effective particle concept is to have a single homogeneous phase as the

reinforcement, the same as in conventional composites.

Sheng et al. (2004) used EP concept combined with micromechanical models (MT, Halpin-

Tsai and FE) to predict the dependence of the PCN stiffness on the nanoclay and polymer

properties. Molecular dynamics results obtained by Manevitch and Rutledge (2004) were

used to find the nanoclay properties, i.e. thickness and modulus of nanoclay as a pair. The

EPs were assumed to be all aligned and isotropic.

Figiel and Buckley (Figiel and Buckley, 2009) investigated the influence of employing

isotropic EPs. They showed that the deviations obtained by the isotropic EPs are espe-

cially pronounced in the prediction of the transverse and shear moduli of PCN, even with

fully aligned effective particles. They also extended the methodology proposed by Sheng

et al. (2004) to misaligned cases by averaging the elasticity tensor over all possible orienta-

tions. Using the averaging method introduced by (Schjodt-Thomsen and Pyrz, 2001), their

composite elasticity tensor calculated by the MT model was diagonally symmetric.

Mesbah et al. (2009) also used the EP concept for intercalated PCN. They used a simplified

IDI model as the second homogenization step. The second step model had three phases: the

EP, interphase surrounding the EP, and the polymer matrix. They found that analytical

predictions considering aligned particles overestimate the experimental data and only the

predictions with randomly oriented particles provide reasonable estimates (Figure 1.6).

Due to their generally multi-phase microstructures, one-step models for PCN refer to

multi-phase models. These models have been mostly employed for exfoliated PCN in the

presence of interphase (Mesbah et al., 2009; Anoukou et al., 2011). However, no one-step

study has been performed so far for intercalated composites and, more importantly, no eval-

uation studies have been performed to assess the range of validity and time-efficiency of two-

and one- step models.

1.3.2 Numerical works and validation of analytical models

Gusev (2001) simulated 3D periodic FE models consisting of different particles includ-

ing nonoverlapping identical parallel discs. The models were generated by a Monte-Carlo

method. He also performed convergence studies to determine the physical RVEs. A range of

composite material properties including the dimensional stability of platelet-reinforced poly-

mers were modeled. They found that the Halpin-Tsai (Halpin and Kardos, 1969, 1976) model

considerably overestimated the dimensional stability.

VanEs (2001) validated the MT model with results of 3D periodic FE models generated by
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model predictions. The FE simulation results are
compared with the analytical predictions in Table II
in the case of exfoliated morphologies. The two
kinds of solutions provide similar results. Each FE
value is averaged over 10 random distributions of
particles in the RVE. The scatter of FE results is indi-
cated by the variation factor V defined as the ratio
of the standard deviation to the average value. The
variation factor increases with increasing volume
fraction when aligned particle nanocomposite is con-
cerned. This can be attributed to the effect of particle
interaction. For nanocomposites with randomly ori-
ented particles, FE results slightly overestimate the
analytical results with increasing volume fraction.
This can be explained by the averaging process.
Indeed, integration is taken for all orientations in the
analytical model, whereas in the FE simulation, the
result is obtained with a finite number of orienta-
tions. Moreover, the analytical model neglects the
particle–particle interaction. RVE with interphase
were also constructed. The interphase was assumed
to be homogeneous and isotropic. Because no me-
chanical data are available for the interphase, a
Young’s modulus of 5 � EM and a Poisson’s ratio of
0.4 were arbitrarily assigned. The volume fraction of
the interphase inside the entire inclusion medium
was fixed to 0.25. The FE simulation results and ana-
lytical predictions are shown in Table III. A good
agreement is pointed out between the two kinds of
solutions.

The analytical predictions are compared with the
experimental data reported in literature33,34 in Fig-
ure 8. These nanocomposites are made of MMT sili-
cate dispersed in different polymer matrices. They
are claimed to be fully exfoliated. The analytical
predictions considering unidirectionally oriented
particles in the composites overestimate the experi-
mental data. Only the predictions of composites
with randomly oriented particles provide reasonable
estimates. The predictions are in very good agree-
ment at low volume fractions but when the volume
fraction becomes larger, the predictions somewhat
underestimate the experimental data. Because uncer-
tainties exist in the aspect ratio and the Young’s
modulus of the silicate, the analytical predictions
may be considered as relatively good. However, this
comparison can also reinforce the idea of the exis-
tence of a significant interphase in which the poly-

mer stiffness has been altered by the interaction
with the clay platelets. It could further suggest that
the interphase has increased stiffness.

TABLE III
Comparison Between Analytical and FE Predictions of E11/EM Taking into Consideration the Interphase

Volume fraction Analyt. - UD FE - UD V - UD Analyt. - R FE - R V - R

0.02 1.2655 1.2503 0.0036 1.1505 1.1594 0.0229
0.05 1.6461 1.6238 0.0116 1.3655 1.3624 0.0393
0.10 2.2416 2.2443 0.0333 1.6999 1.7925 0.0385

UD, unidirectionally oriented particles; R, randomly oriented particles.

Figure 8 Comparison between analytical predictions and
experimental data of the overall Young’s modulus of (a)
polyimide/clay nanocomposites33 and (b) epoxy (in rub-
bery state)/clay nanocomposites34 (UD, unidirectionally
oriented particles; R, randomly oriented particles).

3284 MESBAH ET AL.
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Figure 1.6 Comparison between analytical predictions and experimental data (Tyan et al.,
2000) for the effective Young’s modulus of polyimide clay nanocomposite (Mesbah et al.,
2009).

a program called Palmyra for exfoliated Polypropylene talc composites. No study investigated

the representativeness of the VEs. The aspect ratio of the particles was limited to 50 to

reduce the computational time. An energy minimization approach was used to calculate

physical properties like Young’s modulus. They found that the MT model delivered reliable

predictions for the stiffness of PCN.

Sheng et al. (2004) used also FE to predict the stiffness of PCN and also to validate their

analytical model. A 2D plane strain model was developed for completely aligned effective

particles. The structure of PCNs was assumed to be periodic in the direction of particle

alignment. Three different models for the particles (Figure 1.7) in intercalated PCN were

applied to the same VE and, despite the differences, the predicted effective stiffness E11/Em

for these three cases were close.

Hbaieb et al. (2007) worked on both 2D and 3D FE models to account for random dis-

persion of aligned and randomly oriented nanoclay platelets. For the 3D modeling, they used

symmetrical boundary conditions to avoid the difficulties of periodic boundary conditions.

They found that the 2D FE results were consistently lower than those of 3D FE for both

aligned and randomly oriented platelets. The MT model was found to deliver reasonably

accurate predictions for the stiffness of PCN with aligned particles at volume fractions less

than 5%, while underestimating at higher volume fractions. For randomly oriented particles,

the MT model was found to overestimates the PCN stiffness at volume fractions higher than
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Figure 1.7 Structural models of the clay particle: (a) discrete stack; (b) anisotropic effective
particle; (c) isotropic effective particle (Sheng et al., 2004).

1%. For both 2D and 3D simulations, the results were insensitive to the VE size, provided

that more than 30 particles were represented.

Figiel and Buckley (2009) also used a 2D plane strain FE model for intercalated PCN.

They simulated both aligned and randomly oriented EPs in periodic models. Their models

with aligned particles were the unit cells with columnar arrangement of particles. Only 6

platelets were included in each model. They found that the MT model slightly overestimates

the FE results, where the difference were attributed to the differences in problem dimen-

sionalities (2D in the FE versus 3D in the analytical model). They showed that, provided

that the anisotropy of EPs was considered, close agreement could be found between results

obtained by modeling the separate platelets and those calculated using the EP concept. As

for the randomly oriented EPs, they used a Monte-Carlo methodology to generate the VEs.

They found that MT overestimates the FE results for randomly oriented particles.

Cricri et al. (2011) employed a 3D periodic FE model to study hybrid PCN with a mixed

intercalated-exfoliated nanostructure. An algorithm generated randomly positioned nan-

oclays, whereas their orientation was defined according to the distribution of the angles,

experimentally evaluated, and reasonably approximated by a standard Gaussian distribu-

tion. The criterion to find the RVE size was an isotropy criterion. No convergence study was

performed to determine the sufficient number of realizations to obtain statistically significant

properties. For their randomly oriented hybrids, they found that MT model slightly overesti-

mates FE results, in agreement with previous simulations reported in literature (Hbaieb et al.,

2007; Figiel and Buckley, 2009). They also found that the fraction of completely exfoliated

clay particles is the most effective parameter in enhancing the stiffness of the hybrids.

The ranges of microstructural properties for composites studied in the above-mentioned

works along with the RVE used to obtain their numerical results are listed in the Table 1.1.
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It is clear from analyzing the literature that most of numerical studies have been reported

without a thorough determination of the appropriate RVE due its computational burden,

which can raise questions about the accuracy of the reference data used for the comparisons.

In addition, very few works have addressed the interphase effects, especially in 3D. As for the

validation of analytical models against rigorous numerical results, no comprehensive evalua-

tion study has been performed, yet, to examine and compare the validity range of different

analytical models (one- and two- step models) for the microstructural features (i.e. modulus

contrast, aspect ratio of the reinforcing phase and its volume fraction) associated to PCN.

1.4 PCN in experimental works

Numerous experimental works on PCN with different type of polymers and clays have

been reported in the literature (Kojima et al., 1993; Messersmith and Giannelis, 1994; Okada

and Usuki, 1995; Giannelis, 1996; Fornes et al., 2001; Sheng et al., 2004). Fornes et al. (2001)

worked on Nylon6-Montmorillonite PCN and produced well exfoliated structures (Figure

1.8). Sheng et al. (2004) produced intercalated MXD6 Nylon-clay nanocomposites (Figure

1.9). Figures 1.8 and 1.9 show the good degree of alignment found between the reinforcing

stacks. The nanoclays, generally considered as straight platelets, are shown in the figures to

exhibit wavy shapes. Moreover, they are not perfectly uniformly distributed.
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Figure 1.8 TEM image of PCN containing 3 wt% montmorillonite based on high molecular
weight Nylon6 Fornes et al. (2001).

Fig. 8. Schematic of hierarchical morphology and characteristic parameters (adapted from Ref. [13]).

Fig. 9. TEMs of MXD6 nylon/clay nanocomposite with various clay contents: (a) 1.1 wt%, (b) 3.67 wt%, (c) 4.17 wt%, (d) 5.27 wt%.

Table 1

Characteristic values for hierarchical structure-describing parameters for 4-wt% PPCN, [13] (see also Fig. 8)

Symbol Characteristic parameter Typical value (nm)

Lp Length of the dispersed clay particles 130–180

jp Correlation between particles (inter-particle spacing) 40–60

tp Thickness of the clay particles 7–9

dð001Þ Inter-layer spacing of the (001) plane in intercalated clay 3

dlamellae Average lamellae thickness of polymer matrix crystallite 7

Llamellae Long-period lamellae thickness of polymer crystallite 15

N. Sheng et al. / Polymer 45 (2004) 487–506494

Figure 1.9 TEMs of MXD6 nylon/clay nanocomposite with various clay contents: a) 1.1 wt%,
b) 3.67 wt%, c) 4.17 wt% and d) 5.27 wt% Sheng et al. (2004).
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CHAPTER 2

OBJECTIVES AND SCIENTIFIC APPROACH

2.1 Rationale of the thesis

Based on the literature survey, the rationale of the project can be explained as follow:

1. Several analytical models exist for predicting the elastic properties of PCN, ranging

from simplified two-step models to more complex one-step methods. However, no thor-

ough study has yet evaluated the influence of simplifying assumptions such as use of

EP concept, limitations on the aspect ratio and isotropic particles. In addition, the

estimates of none of the models have been rigorously verified, especially for the range

of microstructural properties typical of PCN. Thorough assessment of analytical mod-

els is required for quick and accurate predictions of PCN properties. Assessment of

analytical models is usually performed by comparison with numerical homogenization

of the RVE.

2. Very few one-step analytical models taking explicitly into account all the constituent

phases encountered in PNC have been reported.

3. Numerical models are still far from modeling the real PCN microstructure reported in

the literature. For example, most of the models have failed to model the detailed 3D

microstructure considering the randomly positioned reinforcing particles, the nanoclays

with large aspect ratios, the explicit incorporation of the constituent phases and apply-

ing appropriate boundary conditions. Moreover, the influence of the EP concept that

has been used to perform FE modeling more efficiently has not been rigorously verified,

yet.

4. Most of numerical studies have been reported without a thorough determination of

the appropriate RVE due its computational burden, resulting in benchmark results of

questionable exactitude.

5. No comparative study has been performed to assess the range of accuracy and time-

efficiency of two- and one- step models.

2.2 Objectives

The general objective of this research was to model the elastic behavior, particularly the

stiffness, of nanoclay nanocomposites using analytical and numerical tools. This work was
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divided into two specific objectives:

1. Assessment of analytical homogenization methods against a 3D FE model

The first specific objective of this thesis aimed at validating commonly used analytical

micromechanical models for the prediction of PCN elastic properties with the help of

3D FE simulations based on the following sub-objectives:

- To incorporate the interphase effect in a two-step homogenization procedure;

- To validate different micromechanical models commonly used in two-step approaches

against results of 3D FE simulations;

- To determine the RVEs in numerical models.

2. Assessment of two- and one- step homogenization methods, analytical as

well numerical

The second objective of this thesis was to study the estimates of two- and one- step

models based on the following sub-objectives:

- To adopt and employ one-step analytical models for predicting the elastic properties

of PCN, especially for intercalated morphologies with multi-layer microstructure;

- To compare the predictions of one- and two- step analytical homogenization models

to the results of 3D FE simulations of PCN layered microstructures;

- To assess the influence of the EP concept on the accuracy of numerical homogenization

models;

- To determine the RVEs.

In the all studied models, the polymer matrix and particles were assumed to be linearly

elastic. Particles were assumed to have identical shapes, perfectly bonded to the matrix,

aligned and randomly distributed.

2.3 Scientific approach

Two research papers were prepared in order to achieve the above-mentioned objectives.

The following describes each article as well as its context with respect to the two specific

objectives.

2.3.1 Article 1: Prediction of Elastic Properties in Polymer-Clay Nanocompos-

ites: Analytical Homogenization Methods and 3D Finite Element Model-

ing

The first paper presents a rigorous evaluation of the performance of commonly used an-

alytical models that predict stiffness of exfoliated PCN with aligned particles. The influence
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of the interphase on the effective properties was taken into account by a two-step homoge-

nization procedure relying on the EP concept. The validity of different analytical microme-

chanical models, used as the second step of homogenization, was studied with the help of

3D FE simulations. An elaborate series of FE simulations was performed to determine the

RVE. A simplified procedure to guide the determination of the RVE based on statistical and

material symmetry criteria on the desired property was developed. Numerical results were

also compared to the experimental data extracted from the literature. This study covered

rigidity contrasts of 10 to 64 between the Young’ modulus of polymer and that of reinforcing

particles. The volume fraction of effective particles varied in the range of 1-44%.

The main findings of this paper are:

1. It was found that the MT model was the most reliable method to be used for the possible

ranges of modulus contrasts, aspect ratios and volume fractions typical of exfoliated

PCN. Lielens’s model may improve on the MT model at high volume fractions when

the rigidity contrast between reinforcing particle and polymer is also high. The SC

scheme overstimates the axial Young’s modulus for all studied cases of PCN.

2. The properties and the thickness of the interphase were estimated from comparison

between the numerical parametric study and experimental results.

3. The importance of incorporating the interphase was highlighted, which can lead to 13%

of increase in axial Young’s modulus.

The manuscript of this article was accepted in“Computational Materials Science”on June

10th, 2013. This journal publishes original contributions on the computational modelling of

materials properties. This article was written almost entirely by the author of this thesis.

2.3.2 Article 2: Numerical and Analytical Modeling of the Stiffness of Polymer-

Caly Nanocomposites: One- and Two-Step Methods

This paper extends the evaluation study to a wider class of homogenization methods. In

particular, it examines the influence of the EP concept on numerical as well as analytical mod-

eling and seeks other modeling alternatives. Analytical one-step models have been adopted

and employed for intercalated composites as well as exfoliated morphologies in the presence

of interphase. The predictions of analytical and simplified numerical homogenization models

were compared against detailed 3D FE simulations where the PCN layered microstructure

was explicitly simulated. The theoretical predictions were also compared to experimental

data extracted from the literature. By comparison to existing works, the originality of this

work lies in the fact that the RVE was established following the methodology presented in

Article 1. Both analytical and numerical models did not rely on simplifying assumptions like
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the EP concept or isotropic particle.

The main findings of this paper are:

1. Although both numerical and analytical two-step methods can deliver accurate predic-

tions in some cases, they can significantly diverge from FE results of layered-microstructure

models taking into account the details of the morphology.

2. Analytical multi-coated inclusions model require more efforts for its numerical imple-

mentation, but once implemented, can be run in a negligible time and deliver more

reliable resutls than two-step methods.

3. The more the EP is different from the nanoclay, in terms of rigidity and aspect ratio, or

the higher the volume fraction is, the more the accuracy of two-step numerical models

is deteriorated.

4. Despite their higher computational costs, one-step FE models are necessary, depending

on the PCN microstructure and desired accuracy.

5. Employing the transversely isotropic EP delivers more precise numerical results than

the isotropic EP.

This article was submitted to“Computational Materials Science”on June 26th, 2013. This

article was written entirely by the author of this thesis.
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CHAPTER 3

ARTICLE 1: Prediction of Elastic Properties in Polymer-Clay Nanocomposites:

Analytical Homogenization Methods and 3D Finite Element Modeling

M. Pahlavan Pour, H. Moussaddy, E. Ghossein, P. Hubert, M. Lévesque (2013). Accepted

in: “Computational Materials Science”.

3.1 Abstract

Accurate predictive models can support the exploitation of Polymer-Clay Nanocomposites

(PCN) in their evergrowing applications. The purpose of this paper is to validate commonly

used analytical micromechanical models for the prediction of PCN elastic properties with

the help of 3D periodic Finite Element (FE) simulations of the same microstructures, con-

sidered as reference data. The effect of the interphase was taken into account in a two-step

homogenization procedure that exploits the effective particle concept. The predictions of a

range of procedures relying on the different micromechanical models (i.e. Mori-Tanaka, self-

consistent and Lielens’s) were tested. Elaborate series of FE simulations were performed to

determine Representative Volume Elements (RVEs). In addition, a simplified procedure to

guide the definition of the RVE based on statistical and transverse isotropy symmetry criteria

was developed. The predicted elastic properties of PCN were studied as a function of the

thickness and the elastic properties of the formed interphase around the nanoclay platelets.

It was found that the Mori-Tanaka model was the most reliable method for the simulated

cases. Furthermore, numerical model predictions were compared with experimental results

extracted from the literature for aligned exfoliated Nylon-6 Montmorillonite nanocomposites.

Finally, a comparison between the parametric study results and the experimental data was

used to estimate the properties and the thickness of the interphase.

3.2 Introduction

Polymer-Clay Nanocomposites (PCN) offer interesting opportunities to important indus-

trial sectors (e.g. transportation, construction, packaging), even with modest amount of clay

(Chen et al., 2008). Establishing accurate predictive models for the physical properties of

PCN is of considerable interest since such models can guide the elaboration of future materials

and estimate the potential gains in terms of performance.
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Clay minerals have a layered structure constituted of silicate platelets of nano thickness,

referred herein as nanoclays. Three types of morphologies exist for polymer-clay systems:

exfoliated, intercalated, and agglomerated (non-intercalated), depending on the degree of

separation and polymer penetration between silicate layers. Exfoliated morphology occurs

when separated single nanolayers of silicate are dispersed in a polymer matrix. The inter-

calated morphology is resulted from the penetration of polymer chains between the silicate

nanolayers that remain in parallel stacks. Interactions at the interface between the nan-

oclay and polymer matrix result in the formation of a modified polymer, called interphase

hereinafter, that has a thickness of a few nm.

Finite Element (FE) methods have been used by several researchers (Hbaieb et al., 2007;

Sheng et al., 2004; Figiel and Buckley, 2009; Mesbah et al., 2009; Cricri et al., 2011) to predict

the elastic properties of PCN. Hbaieb et al. (2007) worked on both two-dimensional (2D) and

three-dimensional (3D) FE models to account for random dispersion of aligned and randomly

oriented clay platelets. One of their findings is that 2D models cannot predict accurately the

effective properties of such materials. Cricri et al. (2011) used a 3D periodic FE model to

study the elastic properties of PCN. Mesbah et al. (2009) considered the interphase effect but

in a 2D plane strain simulation. Although studies have shown the existence and importance of

interphase effect (Chen et al., 2008; Kojima et al., 1993; Shelley et al., 2001; Xu et al., 2012),

none of the mentioned works took into account the interphase effect in 3D. Moreover, none of

the previous FE studies on PCN calculated the overall properties from rigorously determined

Representative Volume Elements (RVEs), resulting in benchmark results of questionable

exactitude.

A number of research works have also been devoted to the analytical modeling of PCN.

Models like the rule of mixtures (Kojima et al., 1993), Mori-Tanaka (Luo and Daniel, 2003;

Sheng et al., 2004; Wang and Pyrz, 2004) and the self-consistent schemes (Mesbah et al., 2009;

Anoukou et al., 2011) have been used. A comparative study on the performance and validity

ranges of these analytical models may avoid their inappropriate use. For example, Tucker

and Liang (1999) conducted a validation study for short-fiber composite micromechanical

models. In their work, they assessed analytical models by comparing their results to 3D FE

calculations of periodic arrays of fibers and also to the Ingber and Papathanasiou’s boundary

element results for randomly positioned aligned fibers (Ingber and Papathanasiou, 1997).

However, the validations were mostly performed against results of models with regularly

arranged fibers. Furthermore, their conclusions are valid for a limited range of aspect ratios

(lenght/diameter ≈ 1− 50) and fiber/matrix rigidity contrasts (≈ 30). Thus, their findings

cannot be extended to PCN where the reinforcements have typically very high aspect ratios

(diameter/length ≈ 100), as well as high rigidity contrasts (Young’s modulus of nanoclay
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/ Young’s modulus of matrix ≈ 50 − 90 for typical PCN). Ghossein and Lévesque (2012)

performed a thorough validation of analytical homogenization models for composites with

spherical particles, for a broad range of phases mechanical properties contrasts and volume

fractions. However, no comprehensive evaluations have been performed, yet, to examine and

compare the validity range of analytical models for the microstructural features associated to

PCN (i.e. modulus contrast, aspect ratio of the reinforcing phase and its volume fraction).

The principal objective of this work was to evaluate the performance of commonly used

analytical models that predict the elastic properties of exfoliated PCN with aligned parti-

cles. The influence of the interphase on the effective properties was taken into account by a

two-step homogenization procedure relying on the effective particle concept. The validity of

different analytical micromechanical models, to be used as the second step of homogenization,

was studied with the help of 3D FE simulations of detailed microstructures. An elaborate

series of FE simulations was performed to determine the RVE based on statistical and trans-

verse isotropy symmetry criteria. A parametric study was performed on the influence of the

thickness and the elastic properties of the interphase on the PCN effective properties. Com-

parisons between the numerical results and experimental data extracted from the literature

for Nylon-6 Montmorillonite nanocomposite was used to estimate the elastic property and

thickness of interphase, as well as validating the overall numerical modeling method.

3.3 Background

3.3.1 PCN: Properties and Challenges

Nanoclay platelets have a thickness of about 1 nm and their lateral dimensions may

vary from 30 nm to several microns (Ray and Okamoto, 2003). In exfoliated morphology,

an interphase region forms around each nanoclay platelet (Figure 3.1). When compared to

intercalated PCN, the volume of the interphase is larger in exfoliated PCN since each layer

of nanoclay has two layers of interphase. Thus, the exfoliated morphology may show more

pronounced dependence on interphase property and structure. In addition, for the same clay

loading, an exfoliated PCN is usually preferred since it exhibits a higher tensile strength and

elastic modulus (Chen et al., 2008; Pinnavaia and Beall, 2000).

The interphase has the same length-scale as that of the nanoclay and its properties were

reported to be different (mostly higher) from those of the bulk polymer matrix (Chen et al.,

2008; Shelley et al., 2001; Sheng et al., 2004; Xu et al., 2012; Kojima et al., 1993; Sikdar

et al., 2008). The increase in stiffness was found to be due to changes in the mobility of

polymer chains adjacent to nanoclays, and also to changes in crystallinity in semicrystalline

polymers like Nylon-6 (Chen et al., 2008). A variety of methods has been used to measure
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Figure 3.1 Three-layer reinforcing stacks in exfoliated composites.

the interphase properties for Nylon-6/Montmorillonite (MMT) PCN. The results of some of

these studies are summarized in Table 3.1.

3.3.2 Modeling of PCN

Luo and Daniel (2003) considered intercalated composites as two-phase composites by

replacing the intercalated stacks of nanoclays by an equivalent homogenized particle. Equiv-

alent homogenized particles were also used by Sheng et al. (2004) and were named “effective

particles”. This concept was then used by other researchers for intercalated nanocomposites

(Mesbah et al., 2009; Figiel and Buckley, 2009) where the homogenized anisotropic properties

of the layered particles were computed from the rule of mixtures. Both analytical and numer-

ical micromechanical models were subsequently used to calculate the mechanical properties

of the nanocomposite (Sheng et al., 2004; Mesbah et al., 2009; Figiel and Buckley, 2009; Luo

and Daniel, 2003).

Analytical homogenization models, like Mori-Tanaka (MT) model (Mori and Tanaka,

1973; Benveniste, 1987), the Self-Consistent (SC) scheme (Hill, 1965; Budiansky, 1965) and

Lielens’s model (Lielens, 1999) have been used for predicting the response of short fiber

composites. Tucker and Liang (1999) reported that SC model overestimates the axial modulus

at high volume fractions but the MT model delivers the best results for large aspect ratio

fillers for short-fiber composites. These two modes were also used widely for PCN. Lielens’s

model may improve on the MT model for higher fiber volume fractions or rigidity contrasts

(Tucker and Liang, 1999).

3.3.3 Numerical micromechanical models

Homogenization problems can also be addressed by numerical methods such as FE (Gu-

sev, 1997; Segurado and LLorca, 2002; Barello and Lévesque, 2008). Let’s define a Volume

Element (VE) as a volume containing a certain number of heterogeneities (reinforcements,
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Table 3.1 Summary of previous works on the interphase properties and thickness for Nylon-6/
MMT PCN. E, ν, d and f denote Young’s modulus, Poisson’s ratio, thickness and volume
fraction, respectively. Subscripts i, m and p refer to interphase, matrix/bulk polymer and
effective particle, respectively.

Cited work Young’s modulus Interphase thickness
Method Method

Shelley et al. (2001) Ei = 10Em di ≈ 8.5 nm, equivalent to the
reported fi = 30%

Power law mixing rule, Loss and storage moduli data
fitting experimental data

Sikdar et al. (2008) Ei = (4 ∼ 5)Em di = 2.5 nm
Nano-indentation tests Atomic force microscopy

Xu et al. (2012) Ep = 36.8 GPa di = 3 nm
Molecular Dynamics Molecular Dynamics

Mesbah et al. (2009) Em < Ei < 5Em di = 2 ∼ 3 nm
Fitting experimental data Dynamic mechanical analyses,
to analytical model results differential scanning calorimetry

Tzika et al. (2000) ∗ Ei = 1.25Em, νi = 0.53 NA
& Sheng et al. (2004) Orthotropic single crystal

* The interphase in that study was transversely isotropic.

grains, etc.). One of the key issues in numerical homogenization problems is to find a Rep-

resentative Volume Element (RVE) among a number of VEs. The size of a VE is typically

characterized by the number of represented heterogeneities. The RVE is typically defined as

a VE for which increasing the number of represented heterogeneities does not alter the com-

puted effective properties. Moreover, the smallest RVE is usually sought in order to limit the

computational costs of numerical simulations. Numerical homogenization therefore requires

a procedure for establishing the RVE, means to generate VEs and methods for computing

the overall properties.

Generation of Volume Elements

Molecular Dynamics (MD) approaches (Lubachevsky et al., 1991; Ghossein and Lévesque,

2012) can deliver high volume fractions, for a large number of represented heterogeneities in

a very short computational time. In MD simulations, the reinforcements are all created at

once in the VE, but with a null volume. They are then put in motion and the volume of each

reinforcement progressively increases. Collision detection and post-collision algorithms must



34

be developed and the computations end when the target volume fraction is reached.

Determination of the RVE

One approach to identify the size of RVE is the concept of “physical RVE” (Böhm, 2008)

where the statistical variability of a physical property is used as criterion. For example, Kanit

et al. (2003) used the statistical dispersion of the predicted overall modulus to define their

RVEs for two-phase 3D Voronöı mosaics. Their approach consisted in generating a family

of different realizations of VE, called ensemble of VEs herein. Realizations in the ensemble

consisted of randomly distributed constituents with the same microstructural properties (i.e.

volume fraction, aspect ratio, phase properties and VE size). The number of realizations in

an ensemble was increased so that the desired confidence interval width was achieved on the

ensemble average for the desired property. They observed a bias for very small size VEs and

they assumed that all VEs larger size than the smallest size VE for which the bias could be

neglected was a RVE, provided that sufficient number of realizations were simulated to reach

the desired accuracy on the average of the ensemble (Kanit et al., 2003).

Boundary conditions on Volume Elements

Different types of boundary conditions (uniform displacements, uniform tractions, etc.)

lead to different effective properties for the same VE (Kanit et al., 2003). Moreover, it has

been exemplified by Kanit et al. (2003) that uniform boundary conditions tend to converge

much slower to the RVE than Periodic Boundary Conditions (PBC). PBC can be enforced

following the method explained by Barello and Lévesque (2008). If FE is used to compute the

local fields, the nodal positions also should be periodic, i.e. exactly homologous nodes should

be located at each two opposite faces. This requirement makes the FE meshing procedure

difficult and requires the VE to also be periodic.

3.4 The proposed multiscale modeling strategy

The multiscale modeling strategy used herein consisted of a two-step homogenization

(Figure 3.2). Step I aimed at computing the effective properties of the stack of nanoclay

platelet surrounded by its interface. This allowed computing the effective particle properties.

The effective particles were then considered as inclusions in Step II where different analytical

and numerical homogenization models were used to obtain the overall properties.
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Effective particle
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Effective particles in the matrix

Analytical:
Mori-Tanaka, 

Self-consistent, 
Lielens’

Composite

Numerical:

3D FE

Step II

Figure 3.2 Two-step modeling strategy. Modeling inputs were obtained from the literature.
In the first step, the properties of effective particles were calculated from a modified rule
of mixtures. In the second homogenization step, the overall properties for the PCN were
calculated using both numerical and analytical models.

3.4.1 Step I : Effective particle for exfoliated PCN

As a first approximation, the reinforcing particle in an exfoliated PCN was considered as

a stack containing a nanoclay platelet surrounded by two layers of interphase (Figure 3.1).

Since the thickness of each platelet is small, it was assumed that the interphase lied only

on the nanoclay platelet top and bottom surfaces. Therefore, the thickness of the effective

particle was obtained from:

dp = ds + 2di, (3.1)

where d refers to the thickness and subscripts s, p and i refer to the silicate layer, the

effective particle and the interphase, respectively. The elastic properties of the effective

particle (Young’s modulus (E), Poisson’s ratio (ν) and shear modulus (G)) were computed
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as per the modified rule of mixtures by Tsai and Hahn (1980) as:

Ep,11 = Ep,33 = χEs + (1− χ)Ei, (3.2)

νp,12 = νp,32 = χνi + (1− χ)νs, (3.3)

Ep,22 =
EsEi

χEi + (1− χ)Es − χ(1− χ)βEiEs

, (3.4)

νp,13 =
χνsEs(1− ν2

i ) + (1− χ)νiEi(1− ν2
s )

χEs(1− ν2
i ) + (1− χ)νiEi(1− ν2

s )
, (3.5)

Gp,12 = Gp,32 =
GsGi

χGi + (1− χ)Gs − χ(1− χ)ηGiGs

, (3.6)

Gp,13 =
Ep,11

2(1 + νp,13)
, (3.7)

where subscripts 1, 2 and 3 correspond to the principal axes shown in Figure 3.3. χ is the

silicate volume fraction in the effective particle, defined as:

χ =
Vs

Vp

=
ds

dp

, (3.8)

in which Vs is the volume of the silicate in the effective particle and Vp is the volume of the

effective particle. β and η are defined as:

β =
ν2

sEi/Es + ν2
i Es/Ei − 2νsνi

χEs + (1− χ)Ei

,

η =
ν2

sGi/Gs + ν2
i Gs/Gi − 2νsνi

χGs + (1− χ)Gi

. (3.9)

For an exfoliated PCN the relationship between the total volume of interphase, Vi(tot), and

total volume of the silicate in the whole composite, Vs(tot), is:

Vi(tot)

Vs(tot)

=
2di

ds

. (3.10)

The volume fraction of the silicate phase in the composite, fs, is then expressed as:

fs =
Vs(tot)

Vc
, (3.11)
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where Vc is the whole volume of the composite. Therefore, the volume fraction of the effective

particle, fp, is given by:

fp = fs

(
1 +

2di

ds

)
. (3.12)

In this study, the particles were assumed to be aligned and had their thickness axis parallel

to axis 2, as shown in Figure 3.3. The focus of the present work is on loadings along direction

1. Consequently, the effect of particle anisotropy was neglected (Sheng et al., 2004). However,

one should expect a slightly stiffer response when compared to the case where the particle

anisotropy is considered (Figiel and Buckley, 2009). The two required independent constants,

Ep and νp, were approximated by Ep,11 and νp,12 (Equations (3.2) and (3.3), respectively).

3.4.2 Step II: Micro-scale models

In the second homogenization step, the effective particle properties, as well as those of the

polymer matrix, were used as input parameters in three analytical homogenization models:

the MT model, the SC scheme and that of Lielens. The effective particle properties were also

used for the reinforcements of the numerical models.

The assumption in both numerical and analytical models is that the distributed effective

particles and the matrix are isotropic, linearly elastic and perfectly bonded at their interface.

Although this assumption is not fully realistic, it shall not affect the validity of the results

since the main objective of the present work was to assess the validity of analytical models

against numerical simulations based on the same assumptions.

4 5 Particules 10 Particules 20 Particules 

5 Particules 10 Particules 20 Particules 

5 Particles 10 Particles 20 Particles 

1

3

2

Figure 3.3 Periodic volume element with disc-shaped particles aligned perpendicular to the
axis 2.
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3.5 Numerical model

3.5.1 Generation of volume elements and retrieving desired properties

Randomly distributed aligned disc-shaped effective particles were generated in periodic

VEs, Figure 3.3, with an algorithm implemented in MATLAB software. The algorithm is

based on MD simulations and is elaborated in (Ghossein and Lévesque, 2012) for the case of

microstructures with spherical particles. The algorithm was adapted to disc shaped particles

and the modifications to the original algorithm are listed in Appendix A (Section 3.10). In

order to avoid meshing problems, criteria were defined to accept or reject a generated VE

based on the minimum distance between particles, as well as the minimum size of divided

particles at the periodic boundaries.

The geometries were then exactly replicated in ANSYS FE package. Particular attention

was paid to the generation of identical geometries at opposite faces, especially, where particles

intersected with the cube faces. In this regard, only one of the particles in each pair was

transfered in ANSYS and was then copied to its analogous position on the opposite cube face

to generate its twin. Copying periodic particles and applying the divide command in ANSYS

solved the problem of having identical surfaces on opposite faces. Moreover, identical meshes

on opposite faces were obtained with the MSHCOPY command and MESH200 elements on

the opposite faces of the cubic volume. MESH200 is a “mesh-only” element and does not

contribute to the solution. Element SOLID92 was chosen for meshing of the cubic volume

and particles. Meshing was completely performed in ANSYS package.

PBC were applied. Six sets of displacement boundary conditions were applied separately

on a single volume, leading to six different analyses. Specifically, three uniaxial tensile dis-

placements in the direction of the normal axes, 1, 2 and 3, and three shear displacements

in the three orthogonal planes, 23, 13 and 12, were applied to obtain columns 1- 6 of the

stiffness tensor C, respectively. Components of C, for each realization, were calculated from

the following relation:

Cijkl =
< σij >

< εkl >
=
< σij >

ekl
, (3.13)

where σ and ε are the stress and strain tensors, respectively, and < . > denotes volume

averaging over all elements within the volume. Calculations on 4th order tensors were per-

formed according to the modified Voigt notation. Young’s modulus, E11, was calculated from

the compliance tensor, S, as:

E11 =
1

S11

. (3.14)



39

3.5.2 Procedure for determining the ensemble of RVEs

For given constituent properties and volume fraction, an ensemble of VEs is characterized

by two quantities: the VE size, nVE, and the number of realizations per ensemble, nR,

referred to as the ensemble size. A first study was performed to study the convergence of

the desired property as a function of nR (Figure 3.4). This convergence study was based

on the statistical methodology of Kanit et al. (2003). Furthermore, an a priori formula was

proposed to estimate the converged NR, hence reducing the number of numerical evaluations

in the overall process. Another convergence study was also performed with respect to nVE

(Figure 3.4). The RVE was reached when the effective properties converged with respect to

both nVE and nR.
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Figure 3.4 Illustration of two-fold convergence study to characterize the ensemble of RVEs in
numerical simulations.
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Convergence study on nR

Let Z be the effective property of a given realization and Z̃ the average of that property

over all the VEs of the ensemble. For each ensemble, the converged size NR was found so

that the normalized width of the confidence interval on Z̃, for a confidence level of 95%, was

smaller than a given threshold δ0, such that:

CR. I: εrel =
εci

Z̃
≤ δ0, (3.15)

where

εci =
PnR

s
√
nR

, (3.16)

is the size of the confidence interval, s is the standard deviation of the nR desired moduli and

PnR
denotes the 97.5th percentile of Z probability distribution. Z was assumed to have the

student’s t-distribution. In this study, E11 was the sought property.

The simulated microstructures herein contained parallel reinforcing platelets and the stiff-

ness tensor was expected to be transversely isotropic. After a sufficient number of realizations,

one should have:

Ẽ11 ≈ Ẽ33, (3.17)

(see Figure 3.3). Although the effective moduli Ẽ11 and Ẽ33 were calculated from the same

ensemble, they can be seen as two evaluations of Ẽ11 from two different ensembles. Therefore,

it follows from Equations (3.15) and (3.17) that:

CR. II:
|Ẽ33 − Ẽ11|

Ẽ11

≤ δ0. (3.18)

The value δ0 = 0.01 was used in this study.

An initial estimate of ensemble size could largely accelerate the convergence analysis.

Consider two ensembles of VEs with the same volume fraction and constituent properties,

but with different VE sizes. Let ensemble 1 be the ensemble with smaller VE size, i.e.

n
(2)
VE > n

(1)
VE. If the same confidence interval width is sought, then

ε
(1)
ci = ε

(2)
ci , (3.19)

which is expanded to the following relation using Equation (3.16) and supposing there is no
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bias for neither of the ensembles, i.e. Z̃(1) ≈ Z̃(2):

p
(1)
NR
s(1)√
N

(1)
R

=
p

(2)
NR
s(2)√
N

(2)
R

, (3.20)

in which the superscript parentheses (1) and (2) refer to ensemble labels.

Using the power law proposed by Kanit et al. (2003) and Cailletaud et al. (1994), for a

given volume fraction and constituent properties, the standard deviation could be related to

the VE size by the following relation:

s2 = B

(
1

nVE

)α
, (3.21)

where α is an empirical parameter that depends only on the geometry of the reinforcements.

B is a constant for a fixed volume fraction and constituent properties. Thus, Equation (3.20)

can be recast as:
p

(1)
NR

)(n
(2)
VE)α/2√
N

(1)
R

=
p

(2)
NR

)(n
(1)
VE)α/2√
N

(2)
R

, (3.22)

from which the initial estimate of the required size of ensemble (2) can be obtained as:

N
(2)
R = N

(1)
R

(
p

(2)
NR

p
(1)
NR

)2(
n

(1)
VE

n
(2)
VE

)α

. (3.23)

In this paper, the value of α = 1 was used (see also Section 3.7).

Convergence study on nVE

The averaged property Ẽ11 for each ensemble of VEs varies with nVE and converges to

an asymptote for fixed volume fraction and aspect ratio. The value of nVE at which the

asymptote is approximately reached is called the RVE size and is denoted by NRVE.

The criterion to determine the RVE size was defined as:

CR. III: εREL =
|Ẽ(i)

11 − Ẽ
(i−1)
11 |

Ẽ
(i)
11

≤ δ1, (3.24)

where superscripts (i) and (i− 1) refer to two successive ensembles with different nVE. CR.

III imposes the stability of Ẽ11 over the increase of nVE. The value δ1 = 0.01 was used in

this work. It can be seen in the literature that higher contrast of properties or increase in

volume fraction leads to both higher NR and NRVE (Kanit et al., 2003, 2006). It was therefore
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assumed that, if the RVE is already reached for a higher volume fraction of effective particles

(a denser PCN), it can also be used for PCN with lower volume fractions, provided that all

other parameters remained constant. Similarly, if the RVE is reached for a PCN with higher

contrast of rigidity between its phases, it can also be used as representative ensemble for

composites containing phases with lower rigidity contrast and where all other parameters are

kept constant. Both of these two conditions are combined as:
(NR, NRVE)← (NR, NRVE)denser

or

(NR, NRVE)← (NR, NRVE)higher contrast
(3.25)

Finally, the whole process of characterizing the ensemble of RVEs was implemented ac-

cording to Algorithm 1 in Appendix B (Section 3.11).

3.6 Methodology for quantitative analyses and experimental validation

Properties from the literature (Xu et al., 2012; Shelley et al., 2001; Sheng et al., 2004;

Tzika et al., 2000; Mesbah et al., 2009; Kojima et al., 1993; Sikdar et al., 2008; Ji et al., 2002;

Chen et al., 2008) were assigned to the studied PCN constituting phases. Three different

thicknesses, namely 0, 3 (Xu et al., 2012; Mesbah et al., 2009; Sikdar et al., 2008) and 5 nm

were assigned to the interphase (Case I). Since the morphology was exfoliated, the distance

between separated platelets was assumed to be 10 nm. It was also assumed that all the inter-

layer space between these separated platelets was filled with interphase. Hence, a maximum

interphase thickness of 5 nm was considered for each platelet. For Case II, three different

rough elastic moduli, 0.5Em, Em, 5Em (Kojima et al., 1993; Sikdar et al., 2008; Mesbah

et al., 2009) were assigned for the interphase (Table 3.2). The thickness of interphase was

considered to be 3 nm in this case. Case III (a) was inspired by work of Tzika et al. (2000) (see

Table 3.1) and was also used by Sheng et al. (2004), although their interphase was transversely

isotropic. The properties of the silicate layers were taken from the results of computational

chemistry simulations available in the literature (Chen et al., 2008). The properties for the

matrix and nanoclay are also given in Table 3.2.

Last part of Table 3.2 presents the properties of the effective particle after the first step of

homogenization (the values were obtained with Equations (3.1 - 3.3, 3.8) and the properties

listed on the top of the Table). For all listed configurations in Case I and Case II, the

numerical results of FE were compared with analytical predictions. In both numerical and
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Table 3.2 Property of phases in the exfoliated PCN. Property of the effective particle is found
after first step of homogenization.

Young’s modulus Poisson’s ratio Thickness
E (GPa) ν d (nm)

Matrix (Nylon-6) (Sheng et al., 2004) 2.8 0.35 NA

Nanoclay (MMT) (Chen et al., 2008) 178 0.28 1∗

(a) - - 0
Case I (b) 13 0.35 3

(c) 13 0.35 5

(a) 1.3 0.35 3
Interphase Case II (b) 2.8 0.35 3

(c) 13 0.35 3

Case III (a) 2.8 0.5 3

(a) 178 0.28 1
Case I (b) 36.6 0.34 7

(c) 28 0.34 11

(a) 26.5 0.34 7
Effective Particle Case II (b) 27.82 0.34 7

(c) 36.6 0.34 7

Case III (a) 27.82 0.47 7
* Nanoclay lateral dimension was considered as 100 nm in all configurations.

analytical models, the aspect ratio of the effective particle ap was defined as

ap =
dp

`
, (3.26)

where ` is the length of the nanoclay platelet.

The predictions obtained with the different interphases listed in Table 3.2 were compared

against the Young’s moduli obtained from experiments on Nylon-6/MMT nanocomposites by

Fornes et al. (2001). They claimed nearly complete exfoliation and good particle alignment

with clay contents varying from 1.6 to 7.2 wt % (Fornes et al., 2001). The relation to convert

the nanoclay weight fraction, ws, to its volume fraction, fs, is linearized as Sheng et al. (2004)

fs ≈
ρm

ρs

ws, (3.27)

where ρ is the density of each phase and subscript m refers to the matrix. A density value of

ρm = 1080 kgm−3 was assigned to the matrix (Chen et al., 2008; Fornes et al., 2002). The

density of clay platelets, according to Chen et al. (2008) was considered as 3067 kgm−3.
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3.7 Results and discussion

3.7.1 Convergence studies on ensemble of VEs

For illustration purposes, Figure 3.5 shows the convergence of nVE for Case II (a) of Table

3.2. It also shows that generally the converged ensemble size, NR, decreases with increasing

nVE. Figure 3.6 shows the converged values of nR for different nVE, target accuracy of εrel and
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Figure 3.5 Convergence of the number of realizations for a target precision of εrel, δ0 = 0.01
and different volume sizes (nVE) to find the ensemble sizes. Case II (a), effective particle
volume fraction fp = 28%.

the cases listed in Table 3.2. It also shows the estimations of Equation (3.23) for α = 1 and

where the base ensemble, labeled as (1) in Equation (3.23), is that containing the smallest

VE size (VE sizes of 10 and 15). This value is different from that obtained by Cailletaud

et al. (1994) (α = 0.7) for Boolean cylinder microstructures. Figure 3.7 shows the evolution

of E11 as a function of nVE. It reveals that E11 exhibits higher variations as a function of nVE

at higher volume fractions. This could be attributed to the effect of particle interactions.

The effect of modulus contrast on the required size of RVE is shown in Figures 3.8(a)

and 3.8(b). It is shown that larger RVEs are required for higher contrast of rigidity. These

observations in Figures 3.7 and 3.8(a) provide confirmations to relations in Equation (3.25).

The reached ensembles of RVEs for each of the studied cases, following the process ex-

plained in Algorithm 1, are listed in Table 3.3. According to Equation (3.25) the ensembles

reached for stiffer or denser material systems were used also for softer or lower volume fraction

PCN, respectively.
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3.7.2 Parametric study

Effect of interphase thickness

Predictions of the analytical and numerical models for Case I are shown in (Figure 3.9).

In the absence of interphase, where the contrast of rigidity is high, at all tested volume

fractions (=< 4%), the differences between predictions of MT and Lielens’s model are very

small (Figure 3.9, Case I(a)). With 3 nm of interphase, both MT and Lielens’s models provide

acceptable results, but MT model delivers the most accurate predictions (Figure 3.9 - Case

I (b)). It is interesting to note that for Case I (b) at high volume fractions (≈ 4%), Lielens’s

model also delivers accurate predictions. For Case I (c) with an interphase thickness of 5

nm, the best model is again the MT model. For this case where the rigidity contrast is not

so high (= 10) and even for very high volume fractions (e.g. 44%), the MT model is more

accurate than Lielens’s model. On the other hand, the results show that Lielens’s model

may improve on the MT model at high volume fractions (≈> 30%) only when the rigidity

contrast is also high (=> 13) (e.g., Case Ib, refer to Table 3.3 for rigidity contrasts and

volume fractions). These conclusions are somewhat different from those obtained by Tucker

and Liang (1999) for short fiber composites. In all studied cases, the SC approach tends

to generally overestimate the axial Young’s modulus, not only at high volume fractions, as

reported by Tucker and Liang (1999), but also at low volume fractions (e.g. Figure 3.9, Case

I (a)). Divergence between MT and SC models results in case I (c) above 2% clay loading
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Table 3.3 Reached ensemble of RVEs, (NR and NRVE), for different material cases.

volume fraction Rigidity contrast NR NRVE

highest (fp) Ep/Em

Case I (a) 4% 63.6 7 35
Case I (b) 28% 13 13 50
Case I (c) 44% 10 5 50

Case II (a) 28% 9.5 same as Case I (b)
Case II (b) 28% 9.9 same as Case I (b)
Case II (c) 28% 13 same as Case I (b)

Case III (a) 28% 9.9 9 50
νp/νm = 1.35

(Figure 3.9) might be due to the high volume fraction of the effective particle (22% for a

clay volume fraction of 2%). In the case of short fiber composites with very high contrast of

rigidity (= 106), this divergence happens at almost 5% of fiber loading (Tucker and Liang,

1999).

According to Figure 3.9, the effect of the interphase is quite pronounced, especially for

high volume fractions of nanoclay. This effect can increase E11 by 13% when 2 nm is added

to the thickness of the interphase (when comparing Case I (b) to Case I (c) at 4% of nanoclay

loading).

For more clarifications on numerical homogenization calculations, two examples of cal-

culated stiffness tensors for Case I (b) are presented in the Appendix II at the end of this

thesis.

Effect of interphase properties

For Case II, the parametric study was conducted on interphase elastic moduli (Figures

3.10(a) and 3.10(b)). At 4% of nanoclay loading, a 10 times stiffer interphase leads to an

increase of 14% for the stiffness (Figure 3.10(a)). MT model reproduces very well the FE

results for all the three cases. For case II (c) at 4% of nanoclay loading, MT and Lielens’s

models deliver predictions of similar accuracy. For volume fractions higher than 3.5%, the

FE results diverge from the MT results and converge toward Lielens’s predictions. Although

more extended study is required, one may expect that Lielens’s model improves on MT model

at higher volume fraction (> 28% of effective particle for a 4% of nanoclay) while the contrast

of rigidity is also high.
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Figure 3.10 Effect of interphase elastic modulus on the predictions of PCN axial Young’s
modulus, E11. a) Case II (a) and Case II (c); b) Case II (b). The bars correspond to
confidence intervals on the average level of 95%.
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3.7.3 Comparison with experimental results from the literature

Case I (b) is the case whose numerical results best fit the experimental results (Figure

3.11). This suggests that an interphase of 3 nm with a modulus about 5 times stiffer than that

of the matrix provides good description of the interphase in Nylon-6/MMT nanocomposites.

This finding is in good concordance with results obtained by Xu et al. (2012), Mesbah et al.

(2009) and Sikdar et al. (2008) (refer to Table 3.1 for reported values and employed methods).

The Ep = 36.8 GPa obtained by Xu et al. Xu et al. (2012) for Young’s modulus of effective

particle is in good agreement with assigned Ep = 36.6 GPa in Table 3.2. As mentioned in

Section 3.6, Case III (a) was inspired by studies of Tzika et al. Tzika et al. (2000) and Sheng

et al. (2004) (see Table 3.1). As it is shown in Figure 3.11, the interphase described by Case

I (b) delivers closer results to those of experiments than Case III (a).
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Figure 3.11 Comparison between numerical predictions and experimental data (Fornes et al.,
2001) of the overall Young’s modulus of Nylon-6/MMT nanocomposites. The bars correspond
to confidence intervals on the average level of 95%.

3.8 Conclusions

Three analytical micromechanical models, namely, Mori-Tanaka, self-consistent and Lie-

lens’s model were evaluated by 3D FE simulations. All analytical and numerical models were

developed using the effective particle concept. A parametric study on elastic properties and

thickness of interphase was conducted to find the range of validity and exactitude of analyt-

ical models. This study covered rigidity contrasts of 10 to 64 between the Young’s modulus
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of polymer and that of effective particles. The volume fraction of effective particles varied

in the range of 1− 44%. Results of comparisons between analytical and 3D FE simulations

revealed that the MT model is the most reliable method to be used for the possible ranges

of modulus contrast, aspect ratio and volume fraction that may happen in exfoliated PCN.

Lielens’s model may improve on the MT model at high volume fractions when the rigidity

contrast between effective particle and polymer is also high. The SC scheme overstimates

the axial Young’s modulus for all studied cases of PCN.

Experimental verification with data extracted from the literature for Nylon-6/MMT

nanocomposite was then used to estimate the elastic property and thickness of the inter-

phase. It was found that the thickness of the interphase for Nylon-6/MMT nanocomposites

is about 3 nm with Young’s modulus of about 13 GPa (≈ 5Em). Considering these properties

for the interphase for Nylon-6/MMT nanocomposites, the numerical results, as well as those

of Mori-Tanaka model, very well reproduce the experimental data.

The importance of incorporating the interphase was once more highlighted considering

the effect of the evaluated interphase that may be up to 13% of increase in axial Young’s

modulus, when compared to the case without interphase.
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3.10 Appendix A

The algorithm for generating parallel disc-shaped particles based on molecular dynamics

is a multiple-step procedure. At each step of the simulation, two types of events must be

checked: binary collision between two discs and collision between a disc and a cube face. If

a binary collision occurs, the velocity vector of each disc must be updated according to the

kinetic energy principle. The discs are generated in a cube of side L oriented along the axes 1,

2 and 3. It is assumed that the discs remain parallel during the simulation and their normal

axis is oriented along the 2-axis. At each step of the simulation, each disc k has the following

parameters: a position vector (rk), a velocity vector (vk), a radius (Rk) and its growth rate

(ak), and finally a thickness (dk) and its growth rate (bk). t also denotes time.
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Computation of binary collisions

Let k and l be two discs in space. Two types of binary collision can occur: an out-of-plane

collision, i.e. along the 2-axis (see Figure 3.3), and an in-plane collision, i.e. in the 13-plane.

Two parameters must be computed. The first, δ2 is the distance between the two discs in

the 13-plane and is calculated as follows:

Dr = rk − rl, (3.28a)

Dv = vk − vl,

δ2(t) =

√(
Dr

1 + tDv
1

)2

+
(
Dr

3 + tDv
3

)2

−
(
Rk +Rl +

(
ak + al

)
t
)
. (3.28b)

δ3 represents the distance between the two discs along axis 2 and is given by:

δ3(t) =
∣∣∣Dr

2 + tDv
2

∣∣∣−(dk + dl +
(
bk + bl

)
t

2

)
(3.28c)

The next collision time between the discs k and l is the smallest positive value tc such

that δ2(tc) ≤ 0 and δ3(tc) ≤ 0. To find the time tc, the roots of δ2(t) and δ3(t) should be

computed first, i.e. find t1 and t2 such that δ2(t1) = 0 and δ3(t2) = 0. If the quadratic

equation δ2(t1) = 0 has no solution, there will never be a collision between the two discs.

Otherwise, if t1 exists, three cases must be considered. If t1 > t2 and δ3(t1) ≤ 0, an in-plane

collision occurs at time tc = t1. If t1 ≤ t2 and δ2(t2) ≤ 0, an out-of-plane collision occurs at

time tc = t2. In all other cases, there is no collision between the discs.

The procedure is repeated for each pair of discs and the next binary collision time is the

smallest time obtained among all pairs of discs.
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Computation of collisions with the cube cell faces

For each disc k, a collision time with each cube face should be calculated. The collision

time were obtained as follows:

Tkm =



(
rk(2m−1) −Rk

)(
ak − vk(2m−1)

)−1

for m = {1, 2} @x = 0 & z = 0

(
L− rk(2m−5) −Rk

)(
ak + vk(2m−5)

)−1

for m = {3, 4} @x = L & z = L

(
rk2 − dk/2

)(
bk/2− vk2

)−1

for m = 5 @y = 0

(
L− rk2 − dk/2

)(
bk/2 + vk2

)−1

for m = 6 @y = L

(3.29)

Tkm is a n × 6 matrix, where n is the number of discs. The next collision time with a cube

face is obtained by finding the minimum of Tkm.

Velocities update after binary collisions

The update of velocities depends on the type of collision. If an in-plane collision occurs,

the velocities update procedure is the same as for a collision between two circles or spheres (see

Algorithm 4 in (Ghossein and Lévesque, 2012) for more details). If an out-of-plane collision

occurs, only the y-component of the velocities is affected. The respective y-components of

the two discs are exchanged while considering the thickness growth rate. The computation

of the post-collision velocities is performed as follows:

(vk2)+ = (vl2)− +

(
bk + bl

2

)
u, (3.30a)

(vl2)+ = (vk2)− −
(
bk + bl

2

)
u, (3.30b)

where

u =
rk2 − rl2∣∣∣rk2 − rl2∣∣∣ = 1 or − 1. (3.31)



53

It should be noted that (v)− and (v)+ denote respectively the velocities before and after

the binary collision.

3.11 Appendix B

Following algorithm was used to characterize the ensemble of RVEs:

Algorithm 1 Characterize ensemble of RVEs, (NR, NRVE)

Input: volume fraction, aspect ratio, elastic properties
Output: size of RVE (NRVE), size of ensemble (NR)

1: Initialize VE size, nVE

2: Assign ensemble lable i← 1
3: while CR. III is not met do
4: if i > 1 then
5: Estimate size of ensemble, NR, from Equation (3.23), nR ← NR

6: else
7: Initialize size of ensemble, nR

8: end if
9: while CR. I and CR. II are not met do

10: Total of nR generated realizations needed
11: Retrieve desired property, Z, from FE analyses
12: nR ← nR + 1
13: end while
14: NR ← nR

15: Calculate ensemble average of Z, Z̃ ←
P
Z

NR

16: i← i+ 1
17: NRVE ← nVE

18: increase nVE

19: end while
20: return (NR, NRVE)
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CHAPTER 4

ARTICLE 2: Numerical and Analytical Modeling of the Stiffness of

Polymer-Clay Nanocomposites: One- and Two-Step Methods

M. Pahlavan Pour, P. Hubert, M. Lévesque (2013). Submitted to: “Computational Materials

Science”.

4.1 abstract

This paper studies one- and two- step homogenization models for predicting the stiffness

of Polymer-Clay Nanocomposites (PCN). In particular, the influence of the Effective Particle

(EP) concept central to two-step models is assessed for numerical as well as analytical mod-

eling. This study covers intercalated PCN, as well as exfoliated morphologies in the presence

of interphase. The predictions of analytical and simplified numerical homogenization models

were compared against detailed 3D Finite Element (FE) simulations where the PCN layered

microstructure is explicitly simulated. The Representative Volume Element (RVE) was rig-

orously determined. The theoretical predictions were also compared against experimental

data extracted from the literature. It was found that both numerical and analytical two-step

methods may significantly diverge from the FE simulations of the detailed microstructures.

In general, the analytical multi-coated inclusions model delivers more reliable results than

two-step methods. Despite their higher computational costs, one-step FE models are nec-

essary, depending on the PCN microstructure and the desired accuracy. It was also found

that the more the EP is different from the nanoclay, in terms of rigidity and aspect ratio,

or the higher the volume fraction is, the more the accuracy of two-step numerical models is

deteriorated.

4.2 Introduction

Polymer-Clay Nanocomposites (PCN) are used in various sectors like packaging, trans-

portation and construction. Clays, in their natural form, are stacks of parallel nanoclay

platelets. Depending on the degree of separation and polymer penetration between the nan-

oclays, three different morphologies for clay-polymer systems can be found: intercalated,

exfoliated and aggregates. Exfoliated morphology occurs when completely separated single

nanoclays are dispersed in the polymer matrix. The intercalated morphology results from the
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penetration of polymer chains between parallel nanoclays. At the molecular level, the inter-

actions at the interface between the nanoclay and the polymer matrix result in the formation

of an interphase with a thickness of a few nm.

Numerous studies have been devoted to the mechanical behavior prediction of interca-

lated and exfoliated PCN (Luo and Daniel, 2003; Sheng et al., 2004; Figiel and Buckley,

2009; Mesbah et al., 2009; Anoukou et al., 2011; Hbaieb et al., 2007; Cricri et al., 2011).

However, only a limited number of such studies have taken into account the interphase ef-

fects (Sheng et al., 2004; Mesbah et al., 2009; Anoukou et al., 2011). Analytical studies can

be generally categorized in one- and two-step homogenization models. Two-step models rely

on the Effective Particle concept (Sheng et al., 2004; Luo and Daniel, 2003) as a first ho-

mogenization step. This concept homogenizes the multiphase layered particle (the exfoliated

nanoclay surrounded by the interphase or the intercalated stacks) into a single phase, the

Effective Particle (EP). The second step then computes the overall properties of the simpli-

fied two-phase composite (i.e. distributed EPs in a uniform matrix). The EP concept has

simplified the homogenization problem but its accuracy has not been rigorously evaluated,

yet. One-step models have been mostly applied to exfoliated PCN, with or without incorpo-

rating the interphase (Mesbah et al., 2009; Anoukou et al., 2011). However, to the authors’

best knowledge, no one-step study has been performed for intercalated composites. More

importantly, no comparative studies have been performed to assess the range of validity and

time-efficiency of two- and one-step models.

The numerical modeling of PCN has also been the subject of numerous works. The devel-

oped models range from simplified 2D (Hbaieb et al., 2007; Sheng et al., 2004; Mesbah et al.,

2009; Figiel and Buckley, 2009) to more complex 3D Finite Element (FE) models (Hbaieb

et al., 2007; Cricri et al., 2011). In most of the numerical works, the representativeness of

the analyzed models was not verified, which can raise questions about the accuracy of the

reference data used for the comparisons. The EP concept has been also used in numerical

models (Sheng et al., 2004; Figiel and Buckley, 2009; Mesbah et al., 2009; Pahlavanpour et al.,

2013). Figiel and Buckley (2009) examined the EP concept in a 2D FE study by comparing

the predictions of their model constituted of EPs against those of detailed layered microstruc-

tures. They have shown that the concept could lead to accurate predictions, provided that

the anisotropy of the EPs was taken into account. However, no accurate numerical study has

yet dealt with the 3D explicit representation of the different phases.

The purpose of this work was to study further the relevance and accuracy of the EP con-

cept in two-step numerical, as well as analytical, modeling. Two analytical one-step models

have been adopted to predict elastic properties of PCN. The predictions of analytical homog-

enization models were compared to 3D FE simulations of PCN detailed microstructures for
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intercalated and exfoliated microstructures. The effect of the interphase was explicitly incor-

porated in numerical as well as in analytical modeling. The originality of the present work

lies in the fact that the Representative Volume Element (RVE) was rigorously established

and that neither analytical nor numerical models were limited by simplifying assumptions

such as isotropic particles and the EP concept. To the best of the authors’ knowledge,

their 3D FE models in which the interface is explicitly represented are the most represen-

tative FE model published so far for the studied microstructures. Furthermore, numerical

results were compared to experimental data extracted from the literature for exfoliated Nylon-

6/Montmorillonite (MMT) and intercalated MXD6 Nylon/MMT nanocomposites.

The paper is organized as follows: Section 4.3 presents a brief background on PCN and the

modeling methods. Section 4.4 discusses the proposed modeling strategy. The properties of

the constituent phases for the studied PCN are presented in Section 4.5. Section 4.6 presents

the performance evaluation of the various models by comparing their predictions against

benchmark numerical and experimental data published in the literature. Finally, Section 6

concludes this work.

4.3 Background

4.3.1 Polymer-Clay Nanocomposites

Nanoclay platelets have a thickness of about 1 nm and their lateral dimensions may vary

from 30 nm to several microns (Ray and Okamoto, 2003). In an exfoliated morphology,

an interphase region forms around each nanoclay platelet (Figure 4.1(a)). The thickness

of the interface in intercalated morphologies can be negligible, when compared to that of

the intercalated stack (Chen et al., 2008; Mesbah et al., 2009). Therefore, the properties

of the intercalated PCN are not affected in the presence of interphase as much as those of

exfoliated case (Mesbah et al., 2009). In an intercalated morphology, an interlayer space,

called gallery, separates the nanoclays. The distance between the central planes of two

consecutive nanoclays is denoted by d(001) (Figure 4.1(b)).

4.3.2 Two-step homogenization models

Two-step models based on the EP concept were initially developed for intercalated PCN

(Luo and Daniel, 2003; Sheng et al., 2004). They were later used for exfoliated nanoclays

with interphase (Pahlavanpour et al., 2013). For the intercalated morphology, the EPs were

mechanically equivalent to layered reinforcing stacks consisting of nanoclays and galleries

(Figure 4.1(b)). For exfoliated morphologies, given the small nanoclay thickness, it was
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Figure 4.1 Layered structure of reinforcing stacks in a) exfoliated PCN b) intercalated PCN.
The interphase is not considered for the intercalated morphology.

assumed that the interphase lied only on the top and bottom faces of the nanoclay, leading

to a three-layer reinforcing stack (Figure 4.1(a)).

First step

In the works of Mesbah et al. (2009) and Pahlavanpour et al. (2013), the properties of

the EPs were computed as per the modified rule of mixtures (Tsai and Hahn, 1980) as:

Ep,11 = Ep,33 = χEs + (1− χ)Et, (4.1)

νp,12 = νp,32 = χνt + (1− χ)νs, (4.2)

Ep,22 =
EsEt

χEt + (1− χ)Es − χ(1− χ)βEtEs

, (4.3)

νp,13 =
χνsEs(1− ν2

t ) + (1− χ)νtEt(1− ν2
s )

χEs(1− ν2
t ) + (1− χ)νtEt(1− ν2

s )
, (4.4)
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Gp,12 = Gp,32 =
GsGt

χGt + (1− χ)Gs − χ(1− χ)ηGtGs

, (4.5)

Gp,13 =
Ep,11

2(1 + νp,13)
, (4.6)

where E, ν and G denote the Young’s modulus, the Poisson’s ratio and the shear modulus,

respectively. Subscripts 1, 2 and 3 correspond to the principal axes shown in Figure 4.1

(i.e. the platelets have their thickness along axis 2). Subscripts s, p and t refer to the nan-

oclay, the EP and the third phase (interphase in the exfoliated or gallery in the intercalated

morphology), respectively. β and η were defined as:

β =
ν2

sEt/Es + ν2
tEs/Et − 2νsνt

χEs + (1− χ)Et

,

η =
ν2

sGt/Gs + ν2
tGs/Gt − 2νsνt

χGs + (1− χ)Gt

, (4.7)

where χ denotes the nanoclay volume fraction in the EP and was computed from:

χ =
N ds

dp

, (4.8)

where d refers to the thickness. N denotes the number of nanoclays in each stack. In the

above equations, the nanoclay was assumed to be isotropic and the material symmetry of

the third phase was either isotropic or cubic. Equations (4.1-4.6) deliver the properties of

a Transversely Isotropic (TIso) EP. Also, the volume fraction of the EPs fp was obtained

knowing the nanoclay volume fraction fs in the composite and by the following relation:

fp =
fs
χ
. (4.9)

The aspect ratio of the EP, ap, was defined as

ap =
dp

`
, (4.10)

where ` denotes the length of the nanoclay platelet. Finally, the thickness of the EP can be

obtained from:

dp = ds + 2di + (N − 1)d(001), (4.11)

where subscript i refers to the interphase.
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Second step

Both analytical (e.g., Mori-Tanaka (MT) model (Mori and Tanaka, 1973; Benveniste,

1987), Self-Consistent (SC) scheme Hill (1965); Budiansky (1965) and Lielens’s model (Lie-

lens, 1999)) and numerical micromechanical models can be subsequently used in a second step

to calculate the effective mechanical properties of the nanocomposite (Sheng et al., 2004; Mes-

bah et al., 2009; Figiel and Buckley, 2009; Luo and Daniel, 2003; Pahlavanpour et al., 2013).

Pahlavanpour et al. (2013) evaluated the performance of commonly used homogenization

models for the stiffness prediction of exfoliated PCN by comparing their predictions to those

of 3D FE simulations relying on the EP concept. They found that the MT model was the

most reliable method for the range of property contrasts and morphologies encountered in

exfoliated PCN. They also reported that the SC scheme generally overestimates the axial

Young’s modulus of exfoliated PCN.

4.3.3 One-step analytical homogenization models

The one-step analytical models used in this paper are the models developed for predicting

the properties of composites reinforced by coated particles. The double-inclusion model of

Hori and Nemat-Nasser (1993) was developped for an ellipsoidal inclusion surrounded by

single ellipsoidal coating layer. The coated inclusion is further embedded in an infinitely

extended homogeneous medium (Figure 4.2(a)). The shape and orientation of the inclusion

and the coating, as well as the elastic properties of the three phases can be set arbitrarily.

Ju and Chen (1994) reported that the model of Hori and Nemat-Nasser is a noninteracting

solution that does not take into account the interactions between particles. In the same work

(Ju and Chen, 1994), they derived the general governing equations for composites containing

aligned particles by incorporating the effects of particle-particle interactions. More recently,

Liu and Sun (2005) derived the effective stiffness tensor equations for three-phase composites

containing randomly distributed, yet aligned, spheroidal particles with interphase. This

model is referred herein as Interacting Double-Inclusion (IDI) approach. The formulation for

the IDI model is presented in Appendix A (Section 4.9).

Lipinski et al. (2006) developed a one-step model for linearly elastic ellipsoids coated by n

concentric layers (Figure 4.2(b)), called multi-coated model hereinafter. The model relies on

a combination of Green’s function techniques with interface operators, capturing the stress

and strain jump conditions at the interfaces between two adjacent coatings. The derivation

of the stiffness tensor for the multi-coated model is presented in Appendix B (Section 4.10).
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Figure 4.2 a) Double Inclusion (Hori and Nemat-Nasser, 1993) and b) n-layer inclusion com-
posed of n concentric ellipsoids, embedded in Matrix (Lipinski et al., 2006). C is the stiffness
tensor and the superscript (i) refers to the phase i.

4.3.4 Numerical model and RVE determination

In numerical modeling, the Volume Element (VE) is a volume containing a certain number

of heterogeneities distributed in the uniform matrix. Herein, the size of a VE is characterized

by the number of represented heterogeneities. The RVE is typically defined as a VE for

which increasing number of represented heterogeneities does not alter the computed effective

properties. Moreover, the smallest RVE is usually sought in order to limit the computational

costs. Numerical homogenization therefore requires means to generate VEs and a procedure

for establishing the RVE. In this study, FE was used as the numerical homogenization tool.

Molecular Dynamics (MD) approaches can be used to generated randomly positioned

particles in a VE (Lubachevsky et al., 1991; Ghossein and Lévesque, 2012; Pahlavanpour et al.,

2013). MD delivers high volume fractions, for a large number of represented heterogeneities

in a very short computational time. In MD simulations, the particles are all created at once

in the VE, but with a null volume. They are then put in motion and the volume of each

particle progressively increases. Collisions are checked after each step of volume increase until

the desired volume fraction is reached.

Periodic Boundary Conditions (PBC) were shown by (Gusev, 1997; Kanit et al., 2003) to

yield smaller RVEs when compared to the cases where uniform boundary conditions are ap-

plied. PBC can be enforced through Multiple Point Constraints (MPC) following the method

explained by Barello and Lévesque (2008). In FE modeling, applying PBC necessitates a pe-

riodic geometry, as well as a periodic mesh (Pahlavanpour et al., 2013).
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Kanit et al. (2003) and Pahlavanpour et al. (2013) (among many others) used the sta-

tistical dispersion of the predicted overall modulus to define their RVEs. Their approach

consisted in generating a family of different VE realizations, called ensemble of VEs herein.

Each realization in the ensemble was a VE constituted of a randomly distributed constituents

with the same microstructural properties (i.e. volume fraction, aspect ratio, phase properties

and VE size). The number of realizations in an ensemble (nVE) was increased so that the de-

sired confidence interval width was achieved on the average property of the ensemble (Kanit

et al., 2003). Pahlavanpour et al. (2013) added an additional tolerance on the material sym-

metry that led to the following criteria for establishing the converged number of realizations

NR :

Criteria for NR :


εci

Ẽ11

≤ δ0 and

|Ẽ33 − Ẽ11|
Ẽ11

≤ δ0,

(4.12)

where E11 refers to the axial Young’s modulus (the desired property in this study) of a

given realization (please refer to Figure 4.1 for the coordinate system), the tilde symbol in

Ẽ11 denotes the ensemble average of that property and δ0 is a given threshold. εci is the

half-width of a two-tailed 95% confidence interval. The second constraint of Equation 4.12

enforces the transverse isotropy symmetry of the obtained results for PCN reinforced with

aligned particles. One of the most commonly used criteria (Gusev, 1997; Kanit et al., 2003;

Ghossein and Lévesque, 2012; Pahlavanpour et al., 2013) to determine the size of RVE NRV E

is the stability criterion, which is based on the stability of the ensemble average of the desired

property over VE size (nVE) increments:

Criterion forNRV E :
|Ẽ(i)

11 − Ẽ
(i−1)
11 |

Ẽ
(i)
11

≤ δ1, (4.13)

where superscripts (i) and (i − 1) refer to two successive ensembles, for which NR has con-

verged, with different VE sizes and δ1 is a given threshold. Figure 4.3 schematically depicts

the determination procedure of the converged values for NR and NRVE.

4.4 The modeling strategy

The modeling strategy consisted of both two-step and one-step homogenizations (Figure

4.4). In two-step models, Step I computed the EP properties for both exfoliated and inter-

calated morphologies. The EPs were then considered as inclusions in Step II where different
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Figure 4.3 Illustration of two-fold convergence study to determine the ensemble of RVEs in
numerical simulations (Pahlavanpour et al., 2013).

analytical models (i.e. MT and Lielens’s model) 1 and numerical homogenization models

were used to obtain the overall properties of PCN. In the sequel, the two-step homogeniza-

tion procedures are referred to as Step II/Step I (e.g. MT/EP, Lielens/EP), where the EP

concept was employed as Step I. For the simplified Isotropic (Iso) EP, only two independent

constants, Ep and νp, were required, which were approximated by Ep,11 and νp,12 (Equations

(4.1) and (4.2), respectively).

Both IDI and multi-coated models were used for exfoliated morphologies. For the in-

tercalated morphology, the multi-layer disc-shaped stack (Figure 4.5(a)) was modeled as a

multi-coated ellipsoid (Figure 4.5(b)) having the same volume and aspect ratio as the disc-

shaped stacks. This approximation (Figure 4.5(c)) was deemed reasonable, considering the

1. The SC model was not considered since it has been shown to overestimate the axial Young’s modulus
(Pahlavanpour et al., 2013).
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Figure 4.4 One and two- step modeling strategies. Modeling inputs were obtained from the
literature. In two-step strategy, Step I computed the properties of effective particles by a
modified rule of mixtures. In Step II, the overall properties for the PCN were calculated
using both numerical and analytical models. In one-step models, the overall properties for
the PCN were calculated directly from the microstructures reinforced by layered particles.
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high aspect ratio of the stacks.

Layered Particles (LPs), as well as the EPs (Figures 4.6(a) and 4.6(b)) were simulated

in the detailed microstructure FE models following the methodology explained in (Pahla-

vanpour et al., 2013). Randomly positioned aligned disc-shaped particles were generated

in 3D periodic VEs using MD simulations. The RVE was determined through the two-fold

convergence procedure depicted in Figure 4.3. Thresholds of δ0 = δ1 = 0.01 were considered.

All the constituent phases were assumed to be linearly elastic and perfectly bonded to

their neighbors.

4.5 Studied morphologies: properties of the constituent phases

The properties of the nanoclay layers were taken from the results of computational chem-

istry simulations available in the literature (Chen et al., 2008). The relation to convert the

nanoclay weight fraction ws to its volume fraction fs was linearized as (Sheng et al., 2004):

fs ≈
ρm

ρs

1

ψ
ws, (4.14)

where ρ denotes the density of each phase, subscript m refers to the matrix and

ψ =
1(

1− 1
N

) (d(001)
ds

)
+ 1

N

. (4.15)

A density value of ρm = 1000 kgm−3 was assigned to the matrix (Sheng et al., 2004). The

density of nanoclay platelets was set to 3067 kgm−3 (Chen et al., 2008).

4.5.1 Exfoliated morphology

The constituent phase properties and material symmetries for the studied exfoliated

Nylon-6/MMT nanocomposite are listed in Table 4.1. The properties of the interphase,

Case I, were obtained from (Xu et al., 2012; Pahlavanpour et al., 2013). For comparison pur-

poses, another case with an imaginary interphase, Case II, was also introduced in Table 4.1.

Table 4.1 also lists the EP properties obtained for both Cases I and II.

Experimental data on Nylon-6/MMT nanocomposites by Fornes et al. (2001) was used as

a comparison basis. They claimed nearly complete exfoliation and good particle alignment

with clay content varying from 1.6 to 7.2 wt% (Fornes et al., 2001).
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Figure 4.5 Schematic cross-section of the reinforcing stack in a) an idealized intercalated mor-
phology reinforced with multi-layer discs b) the analytical modeling for composites reinforced
by multi-coated ellipsoids. c) Approximating the multi-layer disc by a multi-coated ellipsoid
of identical volume and aspect ratio.
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Figure 4.6 Randomly positioned aligned disc-shaped particles in 3D periodic volume elements.
a) Effective particles in a two-step FE model b) Layered particles in a one-step FE model.
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4.5.2 Intercalated morphology

The constituent phases of the studied intercalated PCN were those of the MXD6 Ny-

lon/MMT nanocomposite, presented in Table 4.2 along with those of the EPs. The cubic

symmetry of the gallery was taken into account in the TIso EP by using three independent

E, ν and G for the galley in Equations (4.1-4.6). The interphase was not assumed for the

intercalated morphology since the experimental data was for an amorphous polymer (Nylon

MXD6) in which there is no possibility of change in crystallinity (Sheng et al., 2004; Chen

et al., 2008).

Experimental data on MXD6 Nylon/MMT nanocomposites by Sheng et al. (2004), with

clay content varying from 1.1 to 5.27 wt%, was used for comparison purposes. Intercalated

multi-layered stacks were observed to be well aligned and the structure of intercalated clay

stacks was seen to be independent of clay content. The number of nanoclays in each stack

N was 3 and the average interlayer space d(001) was 4.1 nm (Sheng et al., 2004).

Table 4.1 Property of phases in the exfoliated PCN.

Material Young’s modulus Poisson ratio Thickness
symmetry E (GPa) ν d (nm)

Matrix (Nylon-6) (Fornes et al., 2001) Isotropic 2.8 0.35 NA

Nanoclay (MMT) (Chen et al., 2008) Isotropic 178 0.28 1∗

Interphase Case I Isotropic 13 0.35 3
Case II Isotropic 2.8 0.35 3

Case I Isotropic 36.6 0.34 7

Effective Particle Transversely E11 = E33 = 36.6 ν12 = ν32 = 0.34 7
isotropic E22 = 16.2 ν13 = 0.38

(G12 = G32 = 6.01, G13 = 13.25)

Case II Isotropic 27.82 0.34 7

Transversely E11 = E33 = 27.82 ν12 = ν32 = 0.34 7
isotropic E22 = 3.65 ν13 = 0.3

(G12 = G32 = 1.35, G13 = 10.66 )

* Nanoclay aspect ratio was reported to be 0.01 for the exfoliated morphology (Fornes et al., 2001; Sheng
et al., 2004).
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Table 4.2 Property of phases in the intercalated PCN.

Material Young’s modulus Poisson’s ratio Thickness
symmetry E (GPa) ν d (nm)

Matrix (MXD6 Nylon) (Sheng et al., 2004) Isotropic 4.14 0.35 NA
Nanoclay (MMT) (Chen et al., 2008) Isotropic 178 0.28 1∗

Gallery (Sheng et al., 2004) Cubic 4.14 0.35 3.1
(G = 0.015 GPa)

Effective Particle Isotropic 60.83 0.33 9.2

Transversely E11 = E33 = 60.83 ν12 = ν32 = 0.33 9.2
isotropic E22 = 6.83 ν13 = 0.3

(G12 = G32 = 0.025, G13 = 23.53)

* Nanoclay aspect ratio was reported to be 0.005 for the intercalated morphology (Sheng et al., 2004).

4.6 Results and discussion

All the presented results were normalized with respect to the Young’s modulus of the

matrix Em for the sake of clarity.

4.6.1 Numerical models : Bias induced by two-step models

A simple case that may clearly reveal the possible biases induced by two-step models is

the case of exfoliated morphology with imaginary interphase having the same properties as

the bulk polymer (Case II in Table 1). Figure 4.7 shows the numerical results for Case II with

both two-step and one-step methods. Although the results of these two methods should be

theoretically identical, Iso EP for a nanoclay volume fraction of 4% leads to an E11 13% stiffer

than that predicted from the one-step model. The figure reveals that, even when considering

transverse isotropy effects, the fact of assuming an EP can induce discrepancies in the order

of 10%. The representativeness of the EP concept for the exfoliated PCN with real interphase

is investigated in Figure 4.8. The figure shows that Iso EP and TIso EP overestimate E11

by 5% and 3.5%, respectively. The representativeness of the EP concept was also studied for

intercalated morphologies and the results are shown in Figure 4.9. It can be seen that Iso

EP overstimates E11 by 3% where TIso EP agrees very well with the one-step (LP) results.

The analysis of Figures 4.7-4.9 reveals that the volume fraction of nanoclay (fs), the rigidity

contrast between the nanoclay and the EP (Es/Ep) and the inverse of their aspect ratios 2

(ap/as) have direct impacts on the error induced by the EP concept. In other words, the

more the EP differs from the nanoclay, in terms of rigidity and aspect ratio, the more the

2. The aspect ratio of the nanoclay in the studied intercalated and exfoliated morphologies was reported
to be different. In addition, the thickness of the reinforcing stacks in these two morphologies is different,
leading to different aspect ratios. Please refer to Tables 4.1, 4.2 and 4.3 for more details.
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Figure 4.7 Axial Young’s modulus predictions of one-step (LP) and two-step (Iso EP and
TIso EP) FE models for the exfoliated morphology with the imaginary interphase. Results
obtained from 4-10 realizations, each containing 50 reinforcing stacks. The bars correspond
to confidence intervals on the average level of 95%.

1 2 3 4

1.5

2

2.5

3

Nanoclay volume fraction (%) 

E
1

1/E
m

 

 

Iso EP

TIso EP

LP

7 14 21
Volume fraction of reinforcing stacks (%)

28

Figure 4.8 Axial Young’s modulus predictions of one-step (LP) and two-step (Iso EP and TIso
EP) FE models for the exfoliated morphology with the real interphase. Results obtained from
5-14 realizations, each containing 50 reinforcing stacks. The bars correspond to confidence
intervals on the average level of 95%.
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Figure 4.9 Axial Young’s modulus predictions of one-step (LP) and two-step (Iso EP and TIso
EP) FE models for the intercalated morphology. Results obtained from 4-12 realizations, each
containing 10 reinforcing stacks. The bars correspond to confidence intervals on the average
level of 95%.

accuracy of two-step models is deteriorated. Table 4.3 lists the influence of rigidity contrast

and aspect ratio for the three studied cases for a constant volume fraction.

The computational burden associated with one-step numerical models is much more im-

portant than that of two-step models due to the fine mesh required to adequately represent

each layer of the reinforcing stacks. For the studied cases, fully detailed models required at

least 5 times more elements that those relying on the EP concept. Considering the much

lower computational cost associated with the solution of the two-step numerical models, one

may conclude that the error induced by EP concept can be acceptable (at least for the range

of parameters tested in this study), depending on the application of the results. However,

when it comes to set the numerical results as benchmark to validate the analytical models,

any initial error reduces the accuracy of the evaluation.

4.6.2 Comparison with experimental databases

Figures 4.10 and 4.11 compare the numerical predictions to experimental results obtained

from the literature, for both morphologies. The figures reveal that the numerical models

reproduce well the experimental results, especially for the exfoliated morphology.
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Figure 4.10 Experimental validation of one-step FE (LP) model for the exfoliated morphology,
Case I. Results obtained from 5-10 realizations, each containing 50 reinforcing stacks. The
bars correspond to confidence intervals on the average level of 95%.
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Figure 4.11 Experimental validation of one-step FE (LP) model for the intercalated morphol-
ogy. Results obtained from 4-10 realizations, each containing 10 reinforcing stacks. The bars
correspond to confidence intervals on the average level of 95%.
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Table 4.3 The influence of rigidity contrast and aspect ratio on the bias induced by two-step
numerical models.

Es/Ep ap/as Error∗

Intercalated PCN 2.93 9.2 2.18%
Exfoliated (Case I) 4.86 7 2.82%
Exfoliated (Case II) 6.4 7 6.47%

* The error is calculated between the Iso EP and LP models.
fs = 2% for all the three cases.

4.6.3 Analytical models

The predictions of the analytical models were compared to those of the numerical simula-

tions in Figure 4.12. Simplified IDI is the less accurate of all models, inducing discrepancies

as high as 15%. All the other models delivered similarly accurate predictions, the one-step

IDI model being slightly more accurate than the others (for the cases studied in this work).

Figure 4.13 shows the analytical and numerical predictions for the intercalated case. It

can be seen that the most accurate predictions were delivered by the one-step multi-coated

model and they lied within 1% of the numerical simulations. All the other analytical models

overestimate the axial Young’s modulus, inducing discrepancies as high as 5%. These results

show the superiority of the multi-coated approach and, although it required a more delicate

numerical implementation and more computational time, it should be the model to be used

to represent such multilayer microstructures.

4.7 Conclusions

Although both numerical and analytical two-step methods can deliver accurate predictions

in some cases, it was shown that they can significantly diverge from detailed microstructures

taking into account the details of the morphology. The analytical multi-coated inclusions

model requires more efforts for its numerical implementation, but once implemented, can be

run in a negligible time and deliver more reliable resutls than two-step methods. Also, IDI

model is recommended for PCN containing three-layer reinforcing stacks.

In the numerical modeling, it was found that the more the EP is different from the

nanoclay, in terms of rigidity and aspect ratio, or the higher the volume fraction is, the more

the accuracy of two-step numerical models is deteriorated. Considering the much lower

computational cost of two-step numerical models, the error induced by EP concept can

be acceptable depending on the application of the results. However, when the numerical
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Figure 4.12 Evaluation of one-step (Multi-coated, IDI, simplified IDI) and two-step (MT/TIso
EP) analytical models against one-step FE (LP) model. Exfoliated morphology, Case I.
Results obtained from 5-10 realizations, each containing 50 reinforcing stacks. The bars
correspond to confidence intervals on the average level of 95%.
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Figure 4.13 Evaluation of one-step (Multi-coated) and two-step (MT/TIso EP, Lielens’s/TIso
EP) analytical models against one-step (LP) and two-step (TIso EP) numerical models. Inter-
calated morphology. Results obtained from 4-10 realizations, each containing 10 reinforcing
stacks. The bars correspond to confidence intervals on the average level of 95%.



73

simulations are to be used as validation means, whose accuracy should be unquestionable,

the use of one-step FE models is highly recommended. Although the TIso EP reduces the

discrepancies induced by two-step numerical models when compared to the Iso EP, it has a

negligible effect on the analytical predictions for the axial Young’s modulus.
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4.9 Appendix A

The effective stiffness tensor Ceff equation for IDI approach is (Liu and Sun, 2005; Ju and

Chen, 1994) :

Ceff = C(0) : [I− Φ(Ω)T
(Ω) : (Φ(Ω)S

(Ω) + I)−1], (4.16)

where C(0) denotes the matrix stiffness tensor, I refers to the fourth-order identity tensor, Φ(Ω)

is the volume fraction of the coated inclusion Ω (i.e. ellipsoidal core particle + interphase) in

the composite and T(Ω) is a fourth-order tensor given by:

T(Ω) = φ(1)T
(1) + φ(2)T

(2), (4.17)

where scripts (1) and (2) refer to the core particle and interphase, respectively (Figure 4.2(a)).

T(1) and T(2) are two fourth-order tensors defined by

T(1) = −
[
(S(1) + A(1)) + ∆S :

(
S(1) − φ(1)/φ(2)∆S + A(2)

)−1

:
(
S(1) − φ(1)/φ(2)∆S + A(1)

) ]−1
, (4.18a)

T(2) = −
[
∆S + (S(1) + A(1)) :

(
S(1) − φ(1)/φ(2)∆S + A(1)

)−1

:
(
S(1) − φ(1)/φ(2)∆S + A(2)

) ]−1
, (4.18b)

where φ(1) and φ(2) refer to the particle and interphase volume fraction inside the coated

inclusion Ω, respectively. ∆S = S(Ω)−S(1) where S(Ω) and S(1) are Eshelby’s tensors (Eshelby,

1957) when the infinite media is the matrix and the inclusion is the coated particle and the

ellipsoidal core, respectively. A(1) and A(2) are two mismatch material property fourth-order
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tensors for domain (1) and (2) expressed by

A(1) = (C(1) −C(0))−1 : C(0), A(2) = (C(2) −C(0))−1 : C(0). (4.19)

In a simplified version of this model (e.g., in (Mesbah et al., 2009)), called simplified IDI

hereinafter, it was assumed that the interphase around the particle had the same aspect ratio

as that of the particle, which leads to S(Ω) = S(1) and ∆S = 0. Consequently, Equations

(4.18a) and (4.18b) become much simpler.

4.10 Appendix B

The stiffness tensor of the composite reinforced with aligned n-layer inclusions Ω(n), was

calculated as (Lipinski et al., 2006):

Ceff = C(0) +
n∑
j=1

Φ(j)(C
(j) −C(0)) : A(j), (4.20)

where j denotes the different phases (i.e., j = 0, j = 1 and j > 1 represent the matrix, the

core particle and coating layers, respectively (Figure 4.2(b)) and Φ(j) refers to the volume

fraction of the phase j in the whole composite. The fourth-order strain concentration tensors

A(j), determinated by the generalized self-consistent scheme, take the form A(j) = α(j) : A

where

A =

[
I + TΩ(n)(Ceff) :

(
n∑
j=0

Φ(j)∆C(j/eff) : α(j)

)]−1

, (4.21)

and ∆C(j/eff) = C(j) −Ceff. The fourth-order TΩn(Ceff) is such that

TΩ(n)(Ceff) = SΩ(n)(Ceff) : (Ceff)−1, (4.22)

in which SΩ(n)(Ceff) is the well-known Eshelby tensor depending on the matrix Ceff elastic

properties and aspect ratio of the Ω(n). The fourth-order concentration operators α(j) are

α(1) =

(
n∑
j=0

Φ(j)w
(j)

)−1

, (4.23a)

α(j+1) = w(j+1) : α(1), (4.23b)

α(0) = α(n+1) = w(n) : α(1), (4.23c)
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where the tensors wj are defined such that

w(1) = I, w(2) = ω(2/1), (4.24a)

w(j+1) =

j∑
k=1

(
Φ(k)ω

(j+1/k) : w(k)
)

j∑
k=1

Φ(k)

. (4.24b)

ω(j+1/k) is the concentration tensor describing the jump of average strains between the layer

j + 1 and layer k. The expressions below define the general form of this tensor

ω(j+1/k) = I−

[
TΩ(j)(C(j+1))−

j∑
l=1

Φ(l)

Φ(j+1)

(TΩ(j+1)(C(j+1))−

TΩ(j)(C(j+1)))

]
: ∆C(j+1/k)

for k = 1, .., j (4.25)

where ∆C(j+1/k) = C(j+1) −C(k) and the composite inclusion Ω(j+1) consists of phases from

1 to j + 1. Because of the numerical calculations of the Eshelby’s tensor and required

calculations for every coating layer at each iteration, the computational time of this model

is higher than the other analytical models explained in this paper.
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CHAPTER 5

GENERAL DISCUSSION

5.1 General remarks

This study presented a comprehensive evaluation on the performance of analytical models,

with special focus on the microstructural features associated to PCN. For example, for low

volume fractions and very low aspect ratios (typical of PCN), the axial Young’s modulus is

slightly overestimated by Lielens’s model (Figure 1.2, curve of E⊥ at volume fraction of 5%).

The MT model delivers slightly lower predictions for this range of properties. Therefore,

similarly to what was concluded in the first article (Section 3), for this particular range of

aspect ratios, rigidity contrasts and volume fractions the general conclusion of Pierard et al.

(2004) is not applicable and it is the MT model that delivers the most accurate results.

The results obtained in this thesis highlighted the fact that analytical models are fast

predictive tools, but are not accurate for all ranges of aspect ratios, rigidity contrasts and

volume fractions. For example, it was shown in Section 4 that the simplified IDI model

overestimates the stiffness of exfoliated PCN in the presence of interphase. This model was

employed as the analytical model by Mesbah et al. (2009) (Figure 1.6). The overestimation of

this analytical model thus casts doubts on the accuracy of the concluded interphase properties

or particle orientation in (Mesbah et al., 2009).

This thesis is also the first to systematically reveal the bias induced by two-step models,

which is discussed more in the following.

5.2 Complementary works

The underlying reason for the observed bias in the results of two-step models may be

explored by comparing the general equations given by the multi-coated model, as the most

accurate analytical model, and the two-step MT/EP model. To this end one may write the

composite stiffness tensor by the MT/EP model in the following form (see the Appendix):

CMT/EP = C(0) +

[
n∑
j=1

Φ(j)(C
(j) −C(0))

]
: AMT. (5.1)
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Composite stiffness tensor by the multi-coated model as presented in Section 4 is:

Cmulti-coated = C(0) +
n∑
j=1

Φ(j)(C
(j) −C(0)) : A(j). (5.2)

The comparison of Equations (5.1) and (5.2) reveals that the induced error is mainly due

to the assumptions regarding the strain concentration tensors at each layer of the coated

inclusion. The two-setp model uses a single strain concentration tensor whose properties

were calculated from the EP homogenized properties. On the other hand, the multi-coated

model is able to capture the strain and stress jumps at each layer. Equation (5.2) also

shows that the effect of these jumps on the final stiffness tensor depends not only on the

phase stiffness tensor but also on its volume fraction. It is also worth mentioning that the

calculations of the A tensors in these two models are based on two different concepts. The

MT model considers the EPs embedded in the matrix, whereas in the multi-coated model the

coated particles are first assumed to be surrounded by a layer of matrix and then embedded

in the composite whose effective properties are yet unknown .

To demonstrate the EP effect on numerical models, a simple case with an imaginary

interphase was simulated with both layered and isotropic effective particles (Figure 5.1). An

axial displacement was applied to the periodic models and the results for axial stress (along

the direction x) are shown in Figures 5.1 and 5.2. For the EP model, the axial stresses in the

EPs are quite lower than those in the nanoclays for the LP model. The EP model clearly

dose not capture the stress jumps in the reinforcing stacks (Figure 5.1). Larger fraction of

the matrix is affected in the presence of EPs but with lower stresses, when compared with

the LP model (Figure 5.2). In summary, the EP concept clearly disturbs the real stress and

strain fields in the composite.

Furthermore, the influence of the EP material symmetry on the obtained results was

investigated for different analytical models. It was shown in Section 4 that the TIso EP can

reduce the induced bias in numerical results. Here, the results of different analytical models

with Iso and TIso EPs are listed in Table 5.1. It was found that the EP anisotropy had

a very insignificant effect on analytical results for axial Young’s modulus, when compared

with its effect on numerical results (the numerical results were presented in Section 4). The

SC scheme and the Lielens’s model are relatively more sensitive to the anisotropy of the

reinforcement than the MT model since they can take into account the Eshelby’s tensor of

the composite and the reinforcement, respectively.
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33
model predictions. The FE simulation results are
compared with the analytical predictions in Table II
in the case of exfoliated morphologies. The two
kinds of solutions provide similar results. Each FE
value is averaged over 10 random distributions of
particles in the RVE. The scatter of FE results is indi-
cated by the variation factor V defined as the ratio
of the standard deviation to the average value. The
variation factor increases with increasing volume
fraction when aligned particle nanocomposite is con-
cerned. This can be attributed to the effect of particle
interaction. For nanocomposites with randomly ori-
ented particles, FE results slightly overestimate the
analytical results with increasing volume fraction.
This can be explained by the averaging process.
Indeed, integration is taken for all orientations in the
analytical model, whereas in the FE simulation, the
result is obtained with a finite number of orienta-
tions. Moreover, the analytical model neglects the
particle–particle interaction. RVE with interphase
were also constructed. The interphase was assumed
to be homogeneous and isotropic. Because no me-
chanical data are available for the interphase, a
Young’s modulus of 5 ! EM and a Poisson’s ratio of
0.4 were arbitrarily assigned. The volume fraction of
the interphase inside the entire inclusion medium
was fixed to 0.25. The FE simulation results and ana-
lytical predictions are shown in Table III. A good
agreement is pointed out between the two kinds of
solutions.

The analytical predictions are compared with the
experimental data reported in literature33,34 in Fig-
ure 8. These nanocomposites are made of MMT sili-
cate dispersed in different polymer matrices. They
are claimed to be fully exfoliated. The analytical
predictions considering unidirectionally oriented
particles in the composites overestimate the experi-
mental data. Only the predictions of composites
with randomly oriented particles provide reasonable
estimates. The predictions are in very good agree-
ment at low volume fractions but when the volume
fraction becomes larger, the predictions somewhat
underestimate the experimental data. Because uncer-
tainties exist in the aspect ratio and the Young’s
modulus of the silicate, the analytical predictions
may be considered as relatively good. However, this
comparison can also reinforce the idea of the exis-
tence of a significant interphase in which the poly-

mer stiffness has been altered by the interaction
with the clay platelets. It could further suggest that
the interphase has increased stiffness.

TABLE III
Comparison Between Analytical and FE Predictions of E11/EM Taking into Consideration the Interphase

Volume fraction Analyt. - UD FE - UD V - UD Analyt. - R FE - R V - R

0.02 1.2655 1.2503 0.0036 1.1505 1.1594 0.0229
0.05 1.6461 1.6238 0.0116 1.3655 1.3624 0.0393
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Figure 5.1 Numerical models with a) Effective particles (EPs) and b) Layered particles (LPs)
consisting of nanoclays coated by imaginary interphase. Results are for the axial stress
calculated under axial displacement.



79

34

X

Y

Z

                                
.026314

.039672
.053031

.066389
.079748

.093106
.106464

.119823
.133181

.14654

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.011113
SMN =.026314
SMX =.14654

X

Y

Z

 
.019327

.080622
.141917

.203212
.264507

.325803
.387098

.448393
.509688

.570983

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.010867
SMN =.019327
SMX =.570983

X

Y

Z

 
.026314

.039672
.053031

.066389
.079748

.093106
.106464

.119823
.133181

.14654

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.011113
SMN =.026314
SMX =.14654

X

Y

Z

 
.019327

.080622
.141917

.203212
.264507

.325803
.387098

.448393
.509688

.570983

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.010867
SMN =.019327
SMX =.570983

X

Y

Z

 
.026314

.039672
.053031

.066389
.079748

.093106
.106464

.119823
.133181

.14654

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX      (AVG)
RSYS=0
DMX =.011113
SMN =.026314
SMX =.14654

(e)

X

Y

Z

 
.019327

.080622
.141917

.203212
.264507

.325803
.387098

.448393
.509688

.570983

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.010867
SMN =.019327
SMX =.570983

(f)

Figure 5.4 .

(a)

34

X

Y

Z

                                
.026314

.039672
.053031

.066389
.079748

.093106
.106464

.119823
.133181

.14654

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.011113
SMN =.026314
SMX =.14654

X

Y

Z

 
.019327

.080622
.141917

.203212
.264507

.325803
.387098

.448393
.509688

.570983

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.010867
SMN =.019327
SMX =.570983

X

Y

Z

 
.026314

.039672
.053031

.066389
.079748

.093106
.106464

.119823
.133181

.14654

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.011113
SMN =.026314
SMX =.14654

X

Y

Z

 
.019327

.080622
.141917

.203212
.264507

.325803
.387098

.448393
.509688

.570983

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.010867
SMN =.019327
SMX =.570983

X

Y

Z

 
.026314

.039672
.053031

.066389
.079748

.093106
.106464

.119823
.133181

.14654

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX      (AVG)
RSYS=0
DMX =.011113
SMN =.026314
SMX =.14654

(e)

X

Y

Z

 
.019327

.080622
.141917

.203212
.264507

.325803
.387098

.448393
.509688

.570983

NODAL SOLUTION
STEP=1
SUB =1
TIME=1
SX     (AVG)
RSYS=0
DMX =.010867
SMN =.019327
SMX =.570983

(f)

Figure 5.4 .

(b)

Figure 5.2 FE results for models with a) Effective particles (EPs) and b) Layered particles
(LPs) consisting of nanoclays coated by imaginary interphase. Results are for the axial stress
calculated under axial displacement.
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Table 5.1 Estimations of axial Young’s modulus (E/Em) by different analytical models based
on Iso and TIso EP concept. The volume fraction of reinforcing stack is 28% and 6% for
exfoliated and intercalated cases, respectively.

MT SC Lielens

Exfoliated PCN Iso EP 2.869 3.392 2.907
(Case I) TIso EP 2.867 3.387 2.877

Intercalated PCN Iso EP 1.454 1.495 1.454
TIso EP 1.455 1.450 1.449
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CONCLUSION

In this thesis, a thorough evaluation study was performed to examine the performance

of different homogenization methods for predicting the mechanical behavior of nanoclay

nanocomposites using analytical and numerical approaches.

The evaluations was first performed on two-step procedures based on the EP concept. The

validity of commonly used analytical micromechanical models, as the second homogenization

step, for the prediction of exfoliated PCN elastic properties was examined with the help of

3D FE simulations. In particular, special attention was devoted to the interphase around the

nanoclays. To obtain accurate FE results, the RVE was determined. In addition, a simplified

procedure to guide the determination of the RVE based on statistical and material symmetry

criteria on the desired property was developed. The theoretical results were validated further

against experimental data extracted from the literature. It was found that the MT model was

the most reliable method to be used in two-step models for the possible ranges of modulus

contrast, aspect ratio and volume fraction that may occur in exfoliated PCN. Lielens’s model

may improve on the MT model at high volume fractions when the rigidity contrast between

the EP and the polymer is also high. In addition, the SC scheme was shown to overestimate

the axial Young’s modulus for all studied cases. The properties and the thickness of the

interphase were also estimated from comparison between the numerical parametric study

and experimental results. The incorporation of the interphase was shown to increase the

estimated axial Young’s modulus by up to 13%.

The evaluation was then extended to a wider class of models, two- and one -step methods.

Analytical models were adopted to explicitly model the interphase in exfoliated nanocompos-

ites, as well as the layered structure of intercalated morphology. Detailed 3D FE simulations

of PCN layered microstructures were performed to provide benchmark results using well

established RVEs. The theoretical predictions were also compared to experimental data

extracted from the literature. It was found that the results of EP-based models not explic-

itly considering all constituent phases may significantly diverge from those of FE layered-

microstructure models. However, despite some lack of rigor and accuracy, there are circum-

stances in which two-step models such as explicit MT/EP model or efficient EP-based FE

models are useful. The maximum bias of two-step methods found in this study was less than

15%, which can be regarded as acceptable for certain applications. On the other hand, the

use of detailed layered FE models may be inevitable, despite their high computational cost,

depending on the desired accuracy and the PCN morphology. The more the EP is different

from the nanoclay, in terms of rigidity and aspect ratio, or the higher the volume fraction is,
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the more the bias of two-step numerical models is pronounced. Employing the transversely

isotropic EP can reduce the bias in numerical modeling. As far as analytical modeling is

concerned, the one-step multi-coated inclusions model requires more efforts for its numerical

implementation, but once implemented, can be run in a negligible time and deliver more reli-

able resutls than two-step methods. Introducing multi-coated inclusions model for predicting

PCN properties offers a new class of analytical models to the exploration of these materials.

High accuracy along with the vast number of modeling parameters make this model a perfect

and rigorous tool for predicting a wide range of PCN in terms of morphology and mechanical

properties. However, the accuracy of this model is only verified for a small range of properties

in this thesis, which was very promising, and it needs to be evaluated more for wider ranges

of geometrical and mechanical properties of constituent phases.

The main contribution of this thesis was in exploring the better suited models for pre-

dicting the mechanical behavior of PCN based on the performed evaluations on the accuracy

of different homogenization models. The evaluations were performed using 3D FE simula-

tions of detailed RVEs. The originality of the present work lies in the fact that the RVE

was established and that neither analytical nor numerical models were limited by simplifying

assumptions common in most of modeling approaches such as ignoring constituent phases,

EP concept, isotropic particles or limitations on aspect ratio.

Recommendations for future studies

• Extension to other morphologies: The presented modeling strategy was developed

for PCN with aligned reinforcing stacks. However, the analytical model can be simply

extended to the randomly (or partially randomly) oriented particles by averaging the

effective stiffness tensor over all possible orientations using distribution orientation func-

tions (Schjodt-Thomsen and Pyrz, 2001; Figiel and Buckley, 2009; Pierard et al., 2004).

On the other hand, the generation of numerical models consisting of randomly oriented

particles requires new codes able to deal with particles with high aspect ratio and to

efficiently generate high number of realizations required to perform the RVE studies.

In addition, the PCN have been found to be mostly partially intercalated-exfoliated,

especially at high nanoclay loadings. Moreover, experimental literature also reports

the presence of agglomerates and large particles in PCN. The presented methodology

needs to be extended to be able to predict the behavior of composites with such hybrid

morphologies. The generation of numerical models for such morphologies requires the

statistical distribution functions. The analytical modeling for multi-phase composites

with different aspect ratios and mechanical properties can be easily performed by two-
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or multi -step models, but a rigorous evaluation of their accuracy will be essential.

• Optimized implementation of numerical homogenization: Lower cost alterna-

tive methods are highly desired for different steps of the numerical homogenization

process. For example:

1. Numerical resolution techniques: FE is the most popular numerical method for

computing accurate local stress and strain fields within heterogeneous materials.

However, the discretization of microstructures with heterogeneities of high aspect

ratios largely increases the computation time and memory. Mesh-free methods

(Belytschko et al., 1996; Li and Liu, 2002), as alternatives to the FE method, have

shown a promising potential and have consequently found applications in various

numerical problems including homogenization of composite materials (Li et al.,

2011). Basically, such methods include shape functions describing the microstruc-

ture in the original analytical formulation. Efforts needs to be devoted in exploring

the efficiency and applicability of mesh-free techniques to nanocomposites such as

PCN.

2. Boundary conditions: Interpolated PBC proposed by Nguyen et al. (2012) does

not require periodic meshing and periodic geometries. It thus can simplify the

microstructure generation and meshing procedures. The implementation of such

PBC needs to be studied for modeling of PCN.

3. Assessment of new RVE quantitative definitions: Employing the methodologies

developed by Moussaddy (2013) may accelerate the RVE determination process.

In their work, it was demonstrated that new quantitative definitions can deter-

mine accurate effective properties for smaller material volumes. Particularly, the

arithmetic and harmonic means of apparent elasticity tensors have collectively de-

livered a good estimate of the effective properties. Their definition of RVE for

volumes containing aligned high aspect ratio discs needs to be assessed.

• Extension to other elastic properties: Given the interest of experimental works,

the focus of the present study was mainly on the axial Young’s modulus. The same

methodology can be employed to study other elastic properties. For all the studied

cases, the whole stiffness tensor were found and saved in a database and can be thus

used for any future studies. Homogenization models may behave quite differently in

predicting different elastic properties (Tucker and Liang, 1999). In addition, effect of

different modeling parameters, such as the anisotropy of particles, on different desired

properties may be very dissimilar (Figiel and Buckley, 2009).

• Exploitation of the multi-coated model: The multi-coated model offers a fast

and reliable predictive tool applicable to a vast PCN morphologies from the exfoliated
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nanocomposites to intercalated morphologies in the presence of interphase. The inter-

phase was not considered for the intercalated morphology in the present study but it

can be easily incorporated by the multi-coated model. Moreover, morphologies with

higher number of layers in each stack, with different mechanical properties and mate-

rial symmetries can also be predicted by this rigor model. However, this work only

evaluated the validity of this model for a limited range of material properties and more

assessments are required for other morphologies. Furthermore, efforts should be made

to find the range of aspect ratios for which the assumption of modeling the multi-layer

disc-shaped particles as multi-layer coated inclusions is reasonable. There should be no

problem in terms of the aspect ratio and the volume fraction of each phase, since they

have been entered correctly in the analytical model, but in terms of the arrangement

of the phases. For very thick particles, difference in the phase arrangements of numer-

ical and multi-coated models may lead to different local stress and strain fields, and

consequently to different effective properties.

• Extension to thermal and barrier properties: PCN have found numerous appli-

cations in industrial sectors requiring high thermal and barrier properties. There have

been numerous work devoted to these studies (Osman et al., 2004; Sheng, 2006; Minelli

et al., 2009; Xiao et al., 2010) but the evaluation of different models by a rigorous

detailed numerical model is still missing.
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APPENDIX I: FORMULATION OF THE TWO-STEP MT/EP MODEL

The stiffness tensor of a composites containing aligned EPs as reinforcements is calculated

by the MT model (see Section 1 for details) as:

CMT/EP = C(0) + Φ(EP)(C
(EP) −C(0)) : AMT. (1)

The following relationship holds between the volume fraction of the phase j in the compos-

ite Φ(j), its volume fraction in the coated particle φ(j) and the EP volume fraction in the

composite Φ(EP) as:

Φ(j) = φ(j)Φ(EP), (2)

where Φ(EP) can be calculated from

Φ(EP) =
n∑
j=1

Φ(j). (3)

In addition, the EP stiffness tensor C(EP) under isotopic condition is calculated as:

C(EP) =
n∑
j=1

φ(j)C
(j). (4)

Therefore, by simple substitution of Equations (2) to (4) into Equation (1) the composite

stiffness tensor by the MT/EP model can be rewritten as:

CMT/EP = C(0) +

[
n∑
j=1

Φ(j)(C
(j) −C(0))

]
: AMT. (5)
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APPENDIX II: EXAMPLES OF CALCULATED STIFFNESS TENSORS

Calculated stiffness tensors for the exfoliated PCN with Case I (b) phase properties are

presented for two RVEs in the ensemble. The RVEs contained 50 effective particles each and

the effective particle volume fraction was 28%.

C1 =



10.7977 3.3110 4.4060 0.0078 0.0090 0.0078

3.3107 6.3123 3.3177 −0.0048 0.0106 −0.0048

4.4060 3.3178 10.5964 0.0024 0.0043 0.0024

0.0031 0.0034 0.0316 1.5348 0.0024 0.0037

0.0089 0.0107 0.0042 0.0079 3.1658 0.0079

0.0078 −0.0048 0.0023 0.0037 0.0078 1.5348


, (6)

C2 =



10.7635 3.3109 4.4101 −0.0086 −0.0461 −0.0196

3.3109 6.3221 3.3032 0.0112 −0.0067 0.0018

4.4101 3.3034 10.6875 0.0038 −0.0442 −0.0052

−0.0087 0.0112 0.0038 1.5349 −0.0075 −0.0026

−0.0460 −0.0067 −0.0442 −0.0075 3.1460 0.0031

−0.0196 0.0017 −0.0052 −0.0026 0.0032 1.5380


.

It is worth reminding that the desired E11 was calculated for each of the RVEs and the

ensemble average of E11 was then calculated form the averaging over all RVEs of the ensemble.

Stiffness tensor of each realization is not perfectly transversely isotropic but the transverse

isotropy criterion should be met for the average of ensemble (please refer to Section 3.5.2,

criterion CR. II).
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