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RÉSUMÉ 

 

De nos jours, malgré les avancées remarquables de la microélectronique, les systèmes avioniques 

emploient essentiellement des technologies vieillissantes afin de répondre aux normes de sécurité 

exigeantes des systèmes avioniques. La nouvelle génération d'avionique modulaire intégrée 

(AMI)  des More Electric Aircrafts (MEA), nécessite des architectures de réseaux stables et 

fiables, employant des modules électroniques intégrables modernes qui restent à être conçus et 

développés. Suivant cette tendance, une interface générique intelligente pour capteurs (Smart 

Sensor Interface - SSI), dédiée aux capteurs de position avionique est proposée dans ce mémoire. 

Le circuit intégré SSI fera partie d'un réseau de capteurs AFDX amélioré et est composé de 

signaux d'excitation et de modules d'acquisition de données. Les efforts de conception sont 

concentrés sur l'unité de génération de signaux d'excitation (Excitation Signal Generation - ESG) 

de la SSI. 

En tant que lien entre le réseau AFDX et les capteurs de déplacement, l'unité ESG doit générer 

des signaux sinusoïdaux précis, d'une fréquence allant de 1.5 kHz à 10 kHz. En respectant la 

programmation de l'interface, nous démontrerons qu'une architecture de générateur de signaux 

basée sur la mémoire est la seule option qui réponde aux objectifs du design. 

Le design d'un convertisseur numérique-analogique (CNA) basé sur le principe du sur-

échantillonnage et faisant partie du chemin ESG est également présenté dans ce travail. Ce CNA 

est le noyau d'un générateur de signaux sinusoïdaux versatile conçu pour le système SSI proposé. 

Un taux d'échantillonnage élevé est utilisé dans ce CNA, de façon à obtenir un rapport signal sur 

bruit (Signal to Noise Ratio - SNR) élevé. Une analyse de l'impact d'une implémentation carrée et 

non-carrée de la matrice de sources de courant (Current Source Array - CSA) sur la performance 

de la séquence de commutation est présentée. Il sera démontré que la considération de tels 

impacts conduit à la conception de CNA plus précis. Une séquence de commutation optimale 

pour la taille du CSA conçu, sera introduite. Afin de réduire la taille des plots d'entrées et de 

sorties de la puce, un convertisseur de données série à parallèle haute-vitesse est inclu dans le 

CNA. Ainsi, les données d'entrée peuvent être envoyées de façon sérielle à un registre à décalage 

et appliquées de façon interne au noyau du CNA. Le CNA a été fabriqué sur une puce d'une 

dimension de 1.2 × 1.2 mm
2
 fabriqué avec la technologie IBM CMOS 0.13µm et est alimenté 
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avec une tension de 1.2 V.  Générant un courant d'onde sinusoïdale ayant une valeur crête de 

1023 µA, le CNA proposé permet d'obtenir un SNR plus élevé que 84 dB dans la bande passante 

Nyquist DC à 20 kHz. 
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ABSTRACT 

 

Today, despite the astonishing advances in the field of Microelectronics, avionics systems are 

mostly employing older technologies to guarantee the level of reliability required by stringent 

safety standards of avionic systems. Toward the new generation of Integrated Modular Avionics 

(IMA) in More Electric Aircrafts (MEA), reliable and stable network architecture which employs 

modern integrated electronic modules must be designed and developed. In this trend, a generic 

Smart Sensor Interface (SSI) for avionics displacement sensors will be proposed in this Master 

thesis. The integrated SSI circuit will be part of an improved AFDX sensor network and consists 

of signal excitation and data acquisition paths. The design efforts of this Master thesis will focus 

on the Excitation Signal Generation (ESG) unit of the SSI. 

As a link between AFDX network and displacement sensors, the ESG unit should generate pure 

and accurate sine-waveform with variable frequency between 1.5 kHz and 10 kHz. Respecting 

the programmability of the interface, it will be shown that a memory-based signal generator 

architecture is the only choice which supports the design objectives.  

As part of the ESG path, the detailed design of a 10-bit interpolating digital to analog converter 

(DAC) will also be presented in this work. The DAC is the core of a versatile sine-waveform 

generator unit designed for avionics SSI. High-speed sample rate will be used in this segmented 

current steering DAC in order to achieve a high Signal to Noise Ratio (SNR). In the module level 

design of the DAC, the impact of square and non-square implementation of the current source 

array (CSA) on the performance of the switching sequence is introduced. It will be shown that 

considering such impacts will lead to the design of more accurate DACs. An optimum switching 

sequence for the designed CSA size will be designed and introduced. In order to reduce the I/O 

pads of the chip, high-speed serial to parallel converter will be included in the DAC. Thus the 

input data can be serially sent to the input shift register and internally applied to the DAC core. 

The DAC was fabricated on 1.2 × 1.2 mm
2
 chip fabricated using IBM 0.13µm CMOS 

technology, operating with a supply voltage of 1.2 V. Sourcing a sine wave current with a peak of 

1023 µA, the proposed DAC is able to achieve a SNR better than 84 dB in the Nyquist bandwidth 

of DC to 20 kHz. 
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CHAPTER 1  

INTRODUCTION 

 

 

1.1 Project overview 

This research has been performed in the content of a three years collaborative research and 

development project (AVIO402) which includes analysis, design, and implementation of several 

solutions to improve the actual devices interconnection in aircrafts such as sensor and actuator 

interfaces to data buses. These subjects are key issues related to the technological development 

plan of industrial partners, Thales Canada Inc. and Bombardier Aerospace Inc., for next 

generation avionic systems. This topic also represents one of the main priorities of the 

Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ), which supports this 

project partially. The overall program objective consisted in 1) development of new 

sensor/network interface and new position sensors for avionic applications, 2) development of 

less-wired solutions for safety-critical data communications, and 3) study on frequency selection 

and EMC/EMI for civil airborne wireless communication systems [1]. 

High channel count sensor and actuator devices are needed to tackle a growing number of 

functions in aircrafts. With traditional avionics technology, connecting these devices results in 

bulky wiring bundles. The stringent safety standard of avionic systems requires redundant 

installation of all components on board, which further exacerbates the situation. Moreover, in 

new avionic systems, communications between devices across different application domains are 

also needed, which drastically increases information flow within the aircraft. Wiring bundles and 

demand for a much higher communication bandwidth raise serious challenges requiring the 

development of new avionic data buses [2,3]. 

The main project tackled solutions to build new avionic systems being able to meet stringent 

requirement in flight safety-critical operations, such as flight control. The research consisted of 
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three complementary parts: 1) autonomous sensor and actuator/network interfaces, 2) safety-

critical data buses, and 3) frequency selection for wireless communications on board aircraft. 

Each of these main subjects has been resulted in an appropriate architecture to facilitate reliable 

interconnection and interoperation [1].  

The operation of Fly-By-Wire (FWB) flight control systems relies heavily on position sensors for 

detecting pilot controls, actuators displacement, and control surfaces movement. The sensors 

currently used in most such systems are fully analog and passive based on electromagnetic 

principle or more specifically the Rotary/Linear Variable Differential Transducer (R/LVDT) 

technique [4,5,6,7]. It is therefore of great interest to connect sensors to high performance 

standard digital avionics data buses and to render them intelligent, autonomous, and situation-

aware. In responding to these technological challenges, this project aimed at developing a new 

avionics communication network allowing a reduction of the complexity of cabling by adopting a 

smaller wire-count solution, using data buses with higher overall throughput than current 

systems. Digital interfaces were also developed to connect legacy position sensors and actuators 

to data buses. Furthermore, MEMS (Micro-Electro-Mechanical Systems) and photonic 

technologies have been explored to develop new lightweight, contactless, and highly reliable 

position sensors for replacing the current state of the art in order to provide enhanced 

performance while reducing the cost of deployment and maintenance. Based on the research 

results, the Avionics Full Duplex Switched Ethernet (AFDX) has been proposed as a baseline 

network architecture. This would achieve a solution for avionics data networks combining 

throughput, architecture adaptability, and secure and safe digital data stream with reliable time 

determinism, bounded latency, guaranteed bandwidth, and fault tolerance suitable for safety-

critical applications. The adoption of this architecture facilitated the integration of low cost 

and/or legacy avionics data buses. The AFDX provided also means to connect avionics 

subsystems to other segments within an Aircraft Data Network (ADN) [1]. 

There are several standards such as [2] that outline the environmental constraints and test 

procedures of airborne equipments. The outcome of this project is being validated with a widely 

adopted standard in aerospace industry for new technology assessment, namely the Technology 

Readiness Levels (TRLs). More specifically, the development of sensor/network interfaces and 

safety-critical data buses should reach TRL4 (prototypes validation in the laboratory) [8]. This 

approach allows the project to be seamlessly integrated into engineering development processes 
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of the supporting industrial partners facilitating transfer to industry. The research work is split 

into the following three areas [1]. 

1.1.1  Sensor/network interfaces and new position sensors 

As shown in Figure 1.2, a sensing system is basically composed of one or more sensors and/or 

actuators, an interface block, and a data processor. A sensor network includes a group of sensing 

systems which are connected together through a communication infrastructure. If the sensor and 

the interface block are implemented in a single housing, the resulting module is called a smart 

sensor. This module usually includes an analog front-end, an analog to digital converter (ADC), 

and a bus interface. By integrating all these components in one chip, an ―integrated smart sensor‖ 

is obtained [9,10,11]. 

 

The objective of the research on this theme aims specifically at making autonomous smart 

sensors to replace existing position sensors in flight control systems. The proposed Smart-Sensor 

Interface (SSI) will be designed and implemented with state-of-the-art CMOS technologies. Also, 

special attention has to be paid to the reduced-interconnection complexity. It must fit all types of 

proposed position sensors in this project. For solutions capable of replacing existing position 

sensors, this project also aims at developing novel, cost effective, and reliable devices for 

absolute angular position measurement of rotational components based on photonics and MEMS 

technologies. The new sensors should be compatible with the digital interfaces and be 

interchangeable with other sensors relevant to this project [1,10]. 

1.1.2  Safety-critical avionics data network 

The project proposes a dual-protocol multi-rate avionics data bus with AFDX/ARINC 664 as the 

baseline network architecture and ARINC 825 as the framework for the field bus. The main 

objectives related to this theme include the establishment of system architecture, the development 

 

Figure 1.1: General diagram of a sensing system  
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of applications of AFDX switch and end systems (ES), interfacing to the main network and the 

field buses, the development of cross-domain communications mechanisms, and the integration 

of sensors/actuators with flight computational units via the new data network. Considering that 

AFDX standard tackles only few explicit reliability aspects, the integration of reliability features 

is studied elegantly to match the needs of flight safety-critical applications. In particular, to 

characterize, analyze, and evaluate the level of performance and criticality of various 

functionalities, fault models are built. Based on this characterization, issues like architecture and 

modes of operation including maintenance and fault containment will be addressed [1].  

1.1.3  Frequency selection for safety-critical wireless communication systems 

The objective of this theme is to propose a solution for the avionics wireless data bus. The radio-

frequency hardware implementation of such a system should maximize immunity to intentional 

and unintentional emitters present in the environment and at the same time, minimize 

disturbances to other aircraft systems, as well as ground equipments. As with the currently 

available technology, it is extremely difficult to build wireless avionics networks which can meet 

the stringent requirements for flight safety-critical systems alone, the emphasis is placed on the 

property of determinism with guaranteed bandwidth and bounded latency. Such a system offers a 

means for backing up wired data buses, constituting an emergency system in case the wired 

communications with critical terminals are totally lost, and hence, it further enhances the safety 

level of avionics data networks. To achieve the objective, research will be carried out on the 

identification of frequency bands of operation causing the least EMC/EMI issues [1]. 

1.1.4  Project organization 

The adopted architecture and communication standards are key points for the successful system 

development. Ultimately, the choice of communication standards may be driven more by factors 

such as life cycle costs, maintainability, upgradability, expandability, compatibility, and 

certification. They also determine the architecture with which sensors, actuators, and other 

electronic components interconnect and interoperate. To meet these criteria, the architecture in 

Figure 1.2 has been proposed for the new avionics data network addressed in this project [1].  
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As shown in Figure 1.2, the AFDX is the backbone of the network and all sub-systems are 

connected via AFDX End Systems. Sensors and actuators, as well as Transducer Interface 

Module (TIM), are geographically close to each other within each Remote Terminal Cluster 

(RTC). The components in a RTC are connected to a field bus, e.g. ARINC 825, and 

communicate with the AFDX network via a Network Capable Application Processor (NCAP), 

composed of a data concentrator and an AFDX ES, through which the data flow over the field-

bus. The Flight Critical Computer (FCC) can be a single computational component or a partition 

of a central computational unit in an Avionics Computer System (ACS) [1,12,13]. 

 

Due to its multidisciplinary nature, this project required a joint effort of the co-applicants having 

expertise in different areas and a close collaboration and coordination with the supporting 

organizations at every stage of the project. More specifically, this project consisted of eight tasks: 

Task 1: Smart sensors interface (SSI) which is the subject of this Master thesis 

Task 2: Generic network interface wrapper 

Task 3: Photonic position sensor 

Task 4: MEMS position sensor 

Task 5: Network architecture, cross-domain communications, adaptation to flight control 

applications, and QoS enhancement 

Task 6: Development of AFDX ES applications, integration of field-bus and RTOS, and system 

level testing 
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Figure 1.2: System architecture of avionics data network in AVIO402 project 
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Task 7: Reliability modeling, architecture for fault handling, and fault management at both 

hardware and software levels 

Task 8: Frequency selection for wireless communications on board aircraft, aspect EMC/EMI 

1.2 Motivation 

Employing high speed, high throughput data bus structures and new sensor technologies in 

avionics sensor networks forces using a universal, reliable, and flexible interface which should 

reduce the interconnection complexity of the network. The development of sensor technology has 

resulted in new types of sensors with increasing accuracy and reliability, smaller size and 

lightweight, contactless, less power consumption, and simplified integration possibility with 

electronic circuits. In order to use different sensor technologies at the same time, a SSI circuit 

with an adaptive front-end is essential. With regard to capabilities of state-of-the-art CMOS 

technologies, it is of great interest to construct a fully integrated sensor interface [1,11].  

It has been shown that IEEE-1451 (smart transducer interface standard [12,13]) can be used in 

aerospace field to reduce wiring and complexity [14,15]. The proposed architecture of the SSI in 

AVIO402 is shown in Figure 1.3 in which the SSI is part of a TIM introduced in IEEE-1451. The 

TIM is connected to a field bus such as the Controller Area Network (CAN) and communicates 

with the AFDX network via a Network Capable Application Processor (NCAP) [16]. The SSI is 

used for activating and signal conditioning of different position sensors. The proposed modular 

architecture can also handle a diversity of sensors and actuators, as well as the digital interfaces 

within an avionics system. In fact, the SSI module should be designed as a generic bridge that 

easily adapts to a wide range of sensors, actuators, and other modules and to a pair of field bus 

such as ARINC825 [17]. 
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The proposed architecture of the SSI is shown in Figure 1.4 which consists of different signal 

paths, from sensor to network and vice versa. The sensor output feeds forward throughout an 

analog signal processing scheme and then is digitized using a high precision analog to digital 

converter and a ratio-metric unit. Afterward, the sensor data is forwarded to TIM services 

through Transducer Measurement Interface (TMI). The feedback path generates the excitation 

signal for sensors based on the amplitude and frequency information provided by the incoming 

data from network and adapts its level to the operating range of the sensors [1,17,16].  

 

The Excitation Signal Generator (ESG) path links the avionics AFDX network and the position 

sensors. With reference to the specifications of legacy R/LVDT position sensors, it generates a 

sinusoidal signal with voltage levels adapted for actuating the sensors. 

Considering the circuit complexity of the SSI, in this Master thesis we have focused on the 

design, implementation, and characterization of the ESG unit. Although there are several 

solutions for low-frequency sinusoidal waveform generation, a new architecture for the ESG unit 

should be carefully designed in order to adhere to the requirements of the proposed SSI block 
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Figure 1.4: Architecture of the proposed SSI 
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Figure 1.3: Architecture of modified AFDX network along with the SSI 
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diagram. The new ESG should be programmable and can be integrated with other blocks within 

the SSI. Before proceeding to the literature review and design of the ESG, basic principles of 

displacement sensors and their interfacing requirements are described. 

1.3 Basic principles of displacement sensors 

The increasing applications of sensor networks and sensing devices have resulted in numerous 

implementation techniques. In aircrafts and avionics systems, various types of sensors and 

actuators are employed in order to prepare critical data for Flight Control Computers (FCC). 

Therefore, reliable, precise, accurate, and highly-sensitive sensors with a very long Mean-Time 

Between Failures (MTBF) are required to meet stringent safety standards for avionic 

applications. R/LVDT displacement sensors are based on Variable Differential Transformer 

technique and operate wear-free. They exhibit excellent linearity and resolution, possess long 

lifetime, and measure over a large spectrum. Hence, they perfectly comply with avionic safety 

standards and are widely used in flight data acquisition and servo control [2,4,11]. 

To clarify the terminology, position of an object is its linear or angular coordinate with respect to 

a selected reference. In contrast, displacement means the specific linear or circular movement of 

an object from one position to another. In other words, a displacement is measured by sensing the 

amount of motion of an object with reference to its own prior position rather than to another 

reference [11]. 

With respect to the quality and the performance of displacement sensors, they are employed to 

measure not only the displacement, but also some other stimuli such as force and pressure. In 

these cases, the stimulus should be first converted to displacement and then accurately measured 

by a variety of R/LVDT sensors. As an example of pressure sensing, the pressure variation could 

change the position of a diaphragm. Using an R/LVDT sensor, the displacement of the diaphragm 

can be then converted into an electrical signal representing pressure [11,18]. 

In order to benefit the level of performance of R/LVDTs, a highly accurate and precise sensor 

interface circuit is a vital requirement in the navigation of air vehicles. In this section, the 

physical structure and operation principles of R/LVDTs as well as the architecture of the 

interface circuit are briefly described.  
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1.3.1 LVDT and RVDT inductive sensors 

The Variable Differential Transformer (VDT) technique is based on the magnetic flux coupling 

between two or three coils which can be altered by a moving ferromagnetic core. The coils are 

arranged as one primary and two equally spaced, identical secondary ones. Upon exciting the 

primary coil with a sine waveform current and depending on the position of the core, an AC 

voltage is induced in the secondary coils. The core is connected to the object whose displacement 

is to be measured. The amount of core displacement can be extracted from the secondary signals. 

The sensors which use this technique are also called variable-reluctance transducers because the 

movable core alters the reluctance of the flux path [11]. 

The LVDT and RVDT electromechanical transducers use the VDT technique and are considered 

as magnetic or inductive type displacement sensors. When the primary coil is excited, the carrier 

signal is induced in the secondary coils with the same frequency contents as the excitation signal. 

Therefore, a pure sine wave excitation signal eliminates harmonics in the transformer and 

prevents errors. The movement of the ferromagnetic core within the flux path is modulated over 

the amplitude of the carrier signal of the secondary coils. As shown in Figure 1.5, the 

mechanically actuated core is coaxially inserted into a cylinder structure on which the coils are 

wound. The core does not physically touch the coils and thus there is no or very little friction. 

Being designed on the same principles as LVDT, the RVDT is capable of measuring angular 

displacement by using a rotary core [11,18]. 

 

In general, the two secondary coils are connected in opposite phase. So, the output of the sensor 

is the difference between the individual secondary voltages. Assuming fully symmetrical 

secondary coils, as long as the core is held in the magnetic center of the sensor, the summation of 
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Figure 1.5: (a) LVDT electrical diagram (b) LVDT physical cross section 
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the two output voltages remains zero. Any movement of the core toward the endings of the 

cylinder unbalances the secondary voltages which results in a non-zero output. In fact, the 

movement of the core alters the reluctance of the flux path that results in variation of the induced 

voltage. Hence, the amplitude and phase of the output signal represent the displacement and its 

direction, respectively. Obviously, the displacement information is valid in the linear operating 

range of the sensor [11].  

The following advantages discriminate the R/LVDTs from other types of displacement sensors: 

(1) the penetration of any nonmagnetic material in the magnetic field generated by the primary 

coil, results in no loss of accuracy; (2) to be used in harsh environments and corrosive situation, 

R/LVDTs can be coated with inert material. Such coating does not affect the measurement; (3) as 

a desirable mechanical feature, there is no or very little friction or wear resistance; (4) magnetic 

and mechanical hysteresis is negligible; (5) in theory, the sensitivity of the sensor is infinitesimal; 

(6) the output impedance is very low; (7) the mechanical structure is solid and robust and they 

can measure over a large spectrum of displacement; (8) these transducers are static sensors. This 

means that their response is not a function of time [2,11,18,19]. 

With respect to the above-mentioned advantages, there are a variety of applications for these 

rugged and versatile sensors. They are employed in jet engines and hot-slab mills in order to 

measure force and pressure [18]. In Idaho National Engineering Laboratory (INEL), the LVDT is 

used to measure the elongation of the nuclear fuel rod which is an indication of critical heat flux 

[20]. In medical applications, authors of [21] directly placed a LVDT over the hand vein to 

measure the variation of its diameter (ranging from 0.8 mm to 1.4 mm) due to norepinephrine 

infusion. An example of a different exploitation, LVDT is used in a horticultural study in order to 

measure the variation of the diameter of pepper plants [22]. In addition, these transducers are 

widely employed in aircrafts and avionics systems including flight controls, thrust reversers, 

steering feedback, and landing gear [3,18,23,24,25]. 

1.3.2 LVDT and RVDT interfacing 

Considering Figure 1.1, any interfacing circuit should be faithful to both the sensor and the data 

processing module. With regard to the infinitesimal sensitivity of R/LVDTs, the resolution of the 
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sensing system is determined by the specifications of the interfacing electronics. Thus, the design 

of an interface for R/LVDTs sensors is more challenging compared to other types of sensors [11]. 

R/LVDTs are classified as passive sensors. This means that an external source of energy is 

required for the operation of the sensor. Therefore, any R/LVDT interfacing circuit should 

include two major modules: (1) an Excitation Signal Generator (ESG); (2) a Data Acquisition 

Module (DAM). The ESG output should drive the sensor with a sine waveform of proper 

frequency and amplitude. On the other hand, the sensor output should be conditioned by front-

end circuit and the DAM in order to be compatible with data processing system [11,25].  

For proper excitation of primary coil, a stable sine wave generator is required in the ESG. The 

advantage of sinusoidal excitation signal is that proper filtering increases the achievable Signal to 

Noise Ratio (SNR). Nevertheless, generation of sine waveform needs more complex circuit and 

consumes higher power in comparison with square-wave or pulse signals. The frequency of the 

sine is determined by the movement speed. To accurately extract movement data, the sine 

frequency (the carrier frequency for amplitude modulated data) should be at least 10 times higher 

than the highest possible movement speed of the sensing stimulus [11]. Thus, different 

applications impose various sine frequencies. As a result, the adjustability of the excitation 

frequency is a preliminary consideration in the design of a generic SSI. According to the key 

features of most R/LVDT sensors and general specifications of commercially available R/LVDT 

signal conditioners, the sine wave output of the ESG should cover the frequency and amplitude 

range of 1 kHz to 20 kHz and 1 Vrms to 10 Vrms, respectively. The maximum required excitation 

current is 20mA [9,26,27,28,29]. 

In the data acquisition path of the interface, the sensor output might be too weak and noisy with 

undesirable interference signal components. Therefore, the analog front-end must have a very 

low noise figure and should be linear for the wide dynamic range of sensor output signal. High 

order low pass filter with a sharp cut-off knee is also needed to discriminate the data from the 

carrier signal. A high-resolution and high-accuracy ADC should then digitize the sensor output 

signals for further processing [1].  



12 

 

1.4 Research objectives and challenges 

Keeping the SSI architecture of Figure 1.4 in mind, the following goals have been considered in 

this work: 

- First and foremost, the frequency and amplitude of the excitation signal should be 

determined via the TMI. This feature guarantees the configurability of the SSI. The 

acceptable frequency and amplitude range for most of the Legacy R/LVDT sensors varies 

from 1 kHz to 10 kHz and from 1 Vrms to 7 Vrms. 

- The proposed ESG should be designed based on CMOS technologies in order to make the 

integration of the SSI possible. 

- To support one of the essential goals of the main project, the number of input/outputs 

between ESG and the TMI should be minimized. This feature not only decreases the 

required wiring connections, but also facilitates the integration of the SSI and the TMI. 

- In order to drive legacy R/LVDT position sensors, the final output of the ESG should 

provide sufficient drive capabilities. In addition, the acceptable range of excitation signal 

amplitude of most legacy sensors is not fully attainable in nanometer CMOS 

technologies. Thus, additional circuitry should be considered in the last stage of the ESG. 

- To minimize the power consumption, the designed ESG must maximize the power 

efficiency. Since the excitation signal is better to be of current type, this feature can be 

achieved by current-mode designing of main blocks. 

Established goals and objectives confront with various challenges in the design, implementation 

and integration procedures. Any ESG architecture and specification should comply with the SSI 

and support the required systematic specifications. Therefore, more parameters must be taken 

into account in the design of ESG. Moreover, with reference to the low frequency operation of 

the ESG, smoothing filters may need large capacitors and/or resistors which either are not 

available in CMOS technologies or may impose very large or unacceptable die area.   

Proper operation of data acquisition unit is tied to the accuracy and purity of the sine-wave 

excitation signal. Hence, the accuracy and precision of the ESG output along with the 
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programmability of the frequency and amplitude is yet another challenge which should be tackled 

in the systematic and circuit level designs.  

The last challenge that faces this design is the incorporation of low voltage circuits in nanometer 

CMOS technologies with the required high voltage amplifier blocks as the last stages of the ESG. 

Achieving this goal imposes the usage of some off-chip blocks in order to drive the sensors with 

appropriate signal level. 

1.5 Contributions 

In view of the objectives that are considered and the mentioned challenges, the following 

contributions have been made: 

- A new ESG unit has been designed which can be integrated along with a data acquisition 

unit in order to constitute a system-on-chip SSI module for the avionics applications. The 

proposed ESG architecture is fully compatible with the TIM services and configurable 

through the TMI block in the improved AFDX network. The whole SSI module is to be 

used as an important part in next generation avionics data networks which facilitate the 

transition of a Federated Avionic Architecture (FAA) to an Integrated Modular Avionics 

(IMA). 

- Moreover, in chapters 3 and 4, a new parameter in the design of Segmented Current-

Steering Digital to Analog Converters (SCSDAC) has been introduced. According to the 

simulations the performance of the switching sequence in SCSDACs depends on the 

physical realization of Current Source Array (CSA). To further investigate this effect, a 

new programmable CSA chip has been designed, laid out and submitted for fabrication. 

Provided that the measurement results confirm the simulation results, the choice of 

switching sequence should be based on the aspect ratio of the CSA. In this case, further 

investigation is needed to design a generic efficient sequence for specific ratios between 

the length and the width of the laid out CSA. 
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1.6 Thesis outline 

The development of a programmable excitation signal generator unit within a SSI module for 

avionics applications shall be the subject of this work. The Master thesis is organized in four 

chapters and a conclusion. Following this brief introduction, the specifications of the desired 

smart-sensor interface as well as literature review will be presented in chapter two. Chapter three 

discusses the ESG design procedure in system and circuit levels. Additional details along with 

simulation and measurement results have been provided in chapter four. The conclusions and 

outcome drawn from this research are explained in the final chapter which also includes some 

future directions for circuit designs and system-level integration.  
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CHAPTER 2  

BACKGROUND ON EXCITATION SIGNAL GENERATION AND R/LVDT 

INTERFACING 

 

 

2.1 Introduction 

The purpose of this chapter is to review the published articles and commercial interfacing 

solutions and excitation signal generation methods for R/LVDT displacement sensors. This brief 

survey as well as fundamentals of R/LVDTs presented in chapter one, help the readers to better 

understand the topic of this Master thesis.  

In the first step, the benefits and challenges of smart and integrated sensing systems will be 

discussed. To cover our application, we have then focused on commercially available solutions 

which can drive legacy displacement sensors and demodulate their outputs. Several papers with 

the same topic will also be presented. Afterwards, the published methods of excitation signal and 

sine waveform generation will be discussed. Finally, with reference to our selected architecture 

for realization of the ESG, the design of the Current-Steering Digital to Analog Converters 

(CSDAC) will be reviewed. 

2.2 Integrated sensing systems 

Since the late 1970s when the Fly-By-Wire (FBW) flight control systems came into use, the 

aerospace industry has evolved toward designing More Electric Aircrafts (MEA) instead of 

relying on conventional hydraulic, mechanical, and air/pneumatic avionics systems. The MEA 

approach has improved the efficiency, reliability, and maintainability of avionics systems. It has 

also resulted in lighter aircrafts which can lead to reduced fuel consumption in a highly 

competitive market [30,31]. 

In support of this trend, Integrated Sensing Systems (ISS) has been developed in order to 

miniaturize, reduce the cost, size, power consumption, and weight of the sensor systems. Sensing, 
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signal conditioning, analog to digital conversion, bus interfacing, and data processing are main 

functions of any ISS. Hence, the ISS may include the sensor, amplifier, Analog to Digital 

Converter (ADC), buffer, and bus interface. To further improve the quality of the system, built-in 

self-testing, auto-calibration, and data evaluation modules can be integrated in ISS. Depending on 

the integration compatibility of the sensor and the allowance of the technology, different levels of 

integration are expected which are shown in Figure 2.1 [9]. On the other hand, a set of smart 

transducer interface standards named IEEE-1451, have been developed to standardize different 

solutions for connecting sensors and actuators to instrumentation systems [12,13]. 

ISS is associated with numerous benefits and challenges. Sharing of multifunction modules, 

common module production, canceling the effects of cable and wire impedances, and employing 

mature technologies in robust and reliable designs are major strong points of this design 

methodology. Moreover, ISS facilitates the succession of integrated modular avionics and 

reduces the amount of equipment installed on the aircraft. At the same time, it increases the 

efficiency of communication between coupled functions. However, there are some challenges in 

the top-down and bottom-up ISS design approaches. The high cost of integration will be 

reasonable only in case of mass production. In other words, the size of the market determines the 

level of integration of sensing systems. Another negative aspect is that the integration must be 

consistent with the required level of redundancy in order to maintain the desired reliability. Also, 
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Figure 2.1: Several types of integrated sensing systems 
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the parasitic electrical effects on the sensing elements should be carefully taken into account 

[9,32,33,34].  

2.3 L/RVDT integrated interfacing 

Using discrete electronic components and designing Application Specific Integrated Circuit 

(ASIC) are two traditional solutions to interface L/RVDT sensors [35]. With respect to Figure 

2.2, the system and circuit level designs of the ESG and the DAM should be consistent and 

uniform in any integrated interface solution (will be referred as SSI in this Master thesis) for 

L/RVDT sensors. Besides, the specifications of each module should be determined with regard to 

those of the other module. In other word, the required performance of each module depends on 

the desired characteristics of the whole interface as well as the specifications of the other module. 

As an example, generation of a highly-precise, high-SNDR sine waveform in the ESG decreases 

the order of filter in the DAM.  

 

In a fully integrated SSI, the integrability of the ESG and the DAM is the most important 

requirement. Another obligation is that the frequency and amplitude of the excitation signal must 

be set by the TMI which is part of the TIM introduced in IEEE-1451 [16]. Since the TMI is a 

digital block, the proposed design of the ESG should be able to receive the sine waveform 

parameters through a digital signal. Considering the commercial displacement sensors and 

respecting the AVIO402 demands, the ESG must generate a sine waveform in the frequency 

range of 1 kHz and 10 kHz with an accuracy of 1%. Since the information bandwidth is rather 

small in L/RVDTs, multiple measurements can be performed in the desired frequency range. 

●

●

ESG 

Module

Data 

Acquisition 

Module

(DAM)

L/RVDT

Vexc

Va

Vb

 

Figure 2.2: L/RVDT interface modules 
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Thus, 30 different excitation frequency channels have to be covered by ESG. In the DAM, sensor 

output signals should be conditioned, filtered and averaged for further analog or digital signal 

processing. Moreover, each sensor channel should be filtered from the other channels to avoid 

cross talk between neighbor sensing systems [1,26,28,29].   

Interfaces designed by fully analog electronics, suffer poor long-term performance, comprise 

many components, and are hard to adjust. They also lack the communication with computers and 

microcontrollers. Programmable digital and mixed-signal circuits are used in newer interfaces. 

Drumea et al. [36] have used MSP430F149 microcontroller (MCU) produced by Texas 

Instruments, to bring together data conversion blocks, timer, digital memory, and PWM module. 

On-chip 12-bits ADC, comparator, timer, Universal Synchronous-Asynchronous Receiver-

Transmitter (USART), as well as ultralow-power consumption, and built-in memory make it a 

powerful target for this application. One of the timers can generate a pulse-width modulated 

(PWM) signal which is filtered to produce a sine waveform. This stable 5 kHz sine signal is then 

buffered by two external operational amplifiers to source the required excitation current to the 

primary coil of the sensor. A discrete differential amplifier is then used to apply the sensor output 

signals to the ADC of the MCU. Using external DAC and/or RS232 interface, the displacement 

value can be sent to other systems. This interface electronics has been fabricated on a two layer 

PCB with 50 x 40 x 20 mm dimensions. Although the interface precision is reported to be ±0.3% 

with a calibrated algorithm, it has been only connected to a special LVDT built by Research 

Institute for Hydraulics and Pneumatics. A fixed sine frequency and no measured data on the 

quality of the sine is another weak point of this report. On the other hand, this MCU cannot be 

integrated with the TMI and the TIM services which further limit our design strategy. 

STM32F103RC MCU from STMicroelectronics is used by Wang et al. in [35] in order to design 

an intelligent acquisition module for differential transformer position sensors. In this architecture, 

a sine-wave memory inside the MCU sequentially sends the sine samples to the on-chip 12-bits 

DAC. Two off-chip operational amplifiers filter and buffer DAC output and excite the sensor. 

Sensor output signals are then amplified or attenuated (depending on the signal level) and applied 

to the MCU through a matching circuit. In addition to the sine-wave generator and signal 

acquisition units, the MCU realizes signal processing, calculation, calibration, and 

communication modules. Although [35] is a complete L/RVDT interface and the authors have 

claimed that it generates pure sine-wave, no measurement result has been reported. Besides, it has 
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the same drawback as [36] in integrating MCU in the NCAP in order to centralize interface 

control module. Nevertheless, the idea of using a digital sine-sample memory has been used in 

our design which will be discussed in chapter 3. 

In another similar approach, PCI1716 card from Advantech is configured as a powerful data 

acquisition module for L/RVDT sensors in [37]. It can receive 16 single ended or 8 differential 

channels. The complete data acquisition system contains the PCI1716, the PCLD-8710 wiring 

terminal board, and an Industrial PC (IPC). The PCI card includes 16-bits ADC, 1024 samples 

FIFO, 32 digital inputs and outputs, and 2 analog output channels with 20mA driving capability. 

0.01 mm is the best achieved precision in this user-friendly and software programmable interface, 

however, it is not a proper solution for avionics application due to the cost, non-integrability, 

size, and required wiring connections.  

Canu et al. [38] have presented a versatile input interference for avionic computers. Their general 

interface solution fills the requirements of four types of most common input and outputs of 

avionic computers: (1) discrete Input Vdd/Open; (2) Discrete Ground/Open; (3) L/RVDT 

acquisition; (4) ARINC429 receiver. Drastically decreasing the complexity of I/O boards, it 

results in more flexible interface boards that occupy less physical area in avionic computers. 

Unfortunately, this generic solution only interfaces L/RVDTs to the computer and cannot 

generate the excitation signal or perform any data processing scheme.  

There are few commercially available signal conditioner subsystems for L/RVDTs. Analog 

Devices single chip solutions, AD598 and AD698, convert sensor signals to an accurate unipolar 

or bipolar DC voltage proportional to the physical displacement. Both chips need a few external 

passive components to set the signal conversion gain and excitation signal (Vexc) frequency and 

amplitude [39,40]. They can drive the sensor primary coil with an excitation sine in the frequency 

range of 20 Hz to 20 kHz and up to 24Vrms. Total harmonic distortion of the sine is claimed to be 

-50 dB. Being set by external resistors and capacitors, the amplitude and frequency of the 

excitation signal as well as the gain of the chip will be fixed and cannot be programmed. 

Moreover, any inaccuracy or temperature drifts of passive components cause amplitude and 

frequency distortion in Vexc and output voltage. The outputs of AD598 and AD698 are calculated 

based on Eqs. (2.1) and (2.2), respectively.  
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                                                                  (2.1) 

        

    
                                                                 (2.2) 

where      is the excitation voltage and    and    are secondary voltages of the L/RVDT, as 

shown in Figure 2.2.  

In Eq. (2.1), it is assumed that          is a fixed value which should be measured and used as a 

parameter in the design procedure. However, this term is proportional to the     . Thus, any 

variation of excitation voltage will cause nonlinearity in the displacement measurement. In the 

AD698, the direction of the displacement cannot be detected because of using the absolute 

difference value between sensor outputs in the numerator of Eq. (2.2). Consequently, AD598 and 

AD698 cannot be employed in our application due to their non-integrability and non-

programmability.  

Several manufacturers produce different models of L/RVDT signal conditioner units which 

perform excitation, amplification, demodulation, signal modification, and readout [27,41,42,43]. 

Table 2.1 summarizes the specifications of these models. They can be employed in many 

industrial instrumentation applications to excite various L/RVDTs and detect their output signals. 

However, there are many incompatibilities in using them within avionics systems. They are not 

compatible with IEEE-1451 since they cannot be configured by a centralized control block. The 

excitation signal frequencies are also limited and cannot be digitally controlled. Additionally, the 

outputs are in the form of analog voltage and/or current signals. No analog to digital convertor 

has been provided in these products. Non-integrability and large physical dimensions are other 

factors which makes them improper for our application. Nonetheless, the presented specifications 

clarifies and justifies our selected objectives and design parameters stated in chapter one.  

In summary, any solution for avionic sensing system and its building blocks should be integrable 

and programmable in order to be used in IMA systems. With respect to the development of 

sensor network architectures in MEAs, it must also be versatile and compatible with a centralized 

control system and/or network gateways. In the rest of this chapter, we will focus on the different 

methods used in design and realization of a sine waveform generator as the core of the ESG. 
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Table 2.1: Specifications of commercial L/RVDT signal conditioners 

Brand 

and 

Model 

Line power Detected Output 

Excitation Signal 

Waveform Frequency Amplitude Current 

M
ea

su
re

m
en

t 
S

p
ec

ia
lt

ie
s 

ATA 

2001 

115/220 VAC  

(50 ~ 400Hz) 

● Unipolar (0 ~ 10 VDC) 

● Bipolar (0 ~ ±10 VDC) 

● Current (4 ~ 20 mA) 

PWM 

shaped sine 

2.5, 5, 10 

kHz1 
0.5 or 3.5 

Vrms 

Up to 

45 mArms 

IEM 

422 
115/220 VAC Current (4 ~ 20 mA) Sine 

2.5, 5, 10 

kHz1 

0.5 or 3.5 

Vrms 

Up to 

25 mArms 

LDM 

1000 
10 ~ 30 VDC 

● Unipolar (0 ~ 10 VDC) 

● Bipolar (0 ~ ±5 VDC) 

● Current (4 ~ 20 mA) 

Sine 
2.5, 5, 10 

kHz1 

1 or 3 

Vrms 

Up to 

25 mArms 

LiM 

420 
18 ~ 30 VDC Current (4 ~ 20 mA) Sine 2.5 kHz 3.5 Vrms 

Up to 

20 mArms 

LVM 

110 
±12 or ±15 VDC 

● Unipolar (0 ~ 10VDC) 

● Bipolar (0 ~ ±10VDC) 
Sine 

2.5, 5, 8, 10 

kHz1 
3 Vrms  

Up to 

20 mArms 

MP 

2000 

100 ~ 240 VAC  

(47 ~ 63Hz) 

● Unipolar (0 ~ 10VDC) 

● Bipolar (0 ~ ±5VDC) 

● 5-digits digital display 

Not 

specified2  

2.5, 3.3, 5, 

10  

kHz1 

1 or 3 

Vrms 

Up to 

25 mArms 

PML 

1000 

90 ~ 265 VAC  

(50 ~ 60Hz) 

● Unipolar (0 ~ 10VDC) 

● Current (4 ~ 20 mA) 

● 5-digits digital display 

Not 

specified
2
  

2.5 or 5  

kHz
1
 

1 or 3  

Vrms 

Up to 

25 mArms 

A
A

-L
ab

 S
y

st
em

s 
 

A-308 ±7 ~ ±18 VDC 
● Unipolar  and Bipolar 

(0 ~ ±10VDC) 

Low-

distortion 

Sine 

20 Hz 

to 

20 kHz3 

3 ~ 20 

Vrms 
40 mArms 

A-308 

DIN 

+9/-14 VDC 

+16/-28 VDC 

● Unipolar  and Bipolar 

(0 ~ ±10VDC) 

● Current (4 ~ 20 mA) 

Low-

distortion 

Sine 

930 Hz 

to 

10 kHz3 

3 ~ 20 

Vrms 
40 mArms 

E
v

er
ig

h
t 

S
en

so
rs

 

S1A 
15 ~ 30 VDC 

±15 VDC 

● Unipolar (0 ~ 10 VDC) 

● Bipolar (0 ~ ±10 VDC) 

● Current (4 ~ 20 mA) 

● Current (0 ~ 20 mA) 

Low-

distortion 

Sine 

1, 3, 5, 10 

kHz1 

1.5, 3,  

or 4.5  

Vrms 

Not 

specified2 

M
ac

ro
 S

en
so

rs
 

LVC 

2500 
10 ~ 30 VDC 

● Unipolar (0 ~ 10 VDC) 

● Bipolar (0 ~ ±10 VDC) 

● Current (4 ~ 20 mA) 

Low-

distortion 

Sine 

3, 5, 10 

kHz1 
3 Vrms 

Not 

specified2 

MMX 

Series 
15 ~ 30 VDC 

● Unipolar (0 ~ 10 VDC) 

● Current (4 ~ 20 mA) 

Not 

specified2 
2.5 kHz 

1 ~ 3 

Vrms 

Not 

specified2 

1 Switch selectable 
2 In the online datasheet 
3 With component change 
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2.4 Sine wave generation methods 

Considering the overall performance of the SSI, sinusoidal signal is the most efficient waveform 

to excite an L/RVDT sensor. Contrary to square, periodic exponential and quasi-sine waveforms, 

a pure sine wave has only one dominant frequency component. Exciting the L/RVDT with a sine-

waveform induces the same frequency component in the signal spectrum of the sensor outputs. 

This characteristic decreases the order of the low pass filter in both ESG and DAM. The desired 

14-bits resolution in the DAM of our SSI necessitates the design of a high-accuracy sine-wave 

generator in the ESG. The generator block should cover 1 kHz to 10 kHz frequency range. 

According to the research papers and commercial products, sine-wave generators are based on 

three different techniques, namely: (1) Analog oscillator; (2) Non-linear circuits; (3) DSP
1
 and 

memory-based. The choice of the architecture depends on the desired signal quality. In 

oscillators, a tunable component sets the frequency. Covering a limited frequency-tuning range, 

they are highly affected by temperature variation and component tolerances. Non-linear circuits 

usually transform a triangular wave to a sine by utilizing a nonlinear-transfer function. They 

cover a wider frequency range but are perturbed by temperature changes. In integrated 

realizations, the process variations of semiconductor devices and mismatches further decrease the 

accuracy and precision of the oscillators and non-linear solutions [44]. Both techniques are not 

programmable and thus, cannot be involved in our application. 

DSP and memory-based architectures are mixed-signal circuits which employ DSP, digital 

memory, microcontroller, or digital logic circuitry along with a DAC to generate an arbitrary 

waveform. As depicted in Figure 2.3, the samples of the expected waveforms are stored in a 

digital or analog memory. Depending on the shape of the signal, an addressing algorithm reads 

out one stored sample in each clock cycle and applies it to the DAC for conversion to an analog 

equivalent. The clock rate and the number of retrieved samples in each cycle determine the 

frequency of the output signal. A filter, amplifier, and/or matching circuit follow the DAC to 

improve the quality of the signal. A DSP or MCU can be used to implement the clock module, 

the memory address controller, and the digital memory. This method is widely used in Arbitrary 

                                                 
1 Digital Signal Processor 
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Function Generators (AFG) and Arbitrary Waveform Generators (AWG) [45,46]. The large 

required physical size of the memory and other digital blocks is the drawback of this technique.  

 

In 2009, Yang et al. have designed a hybrid architecture to generate quadrature sine waveforms in 

seven orders of frequency range from 1 mHz up to 10 kHz [44]. To cover the range of 100 Hz to 

10 kHz which overlaps our application, they have used a resistor-chain DAC (RCDAC). It 

includes a resistor-chain followed by a track-and-hold circuit and a gm-C biquadratic low pass 

filter with selectable cutoff frequencies. The resistor-chain is a voltage divider with 33 different 

taps which are representing analog samples of a half-cycle sine waveform. Therefore, the chain 

could create a set of 64 samples of a complete cycle of a sine. An overall SFDR
2
 of -50dB is 

expected from the 64x OSR
3
. A clock divider divides the 10 MHz master clock (    ) frequency 

by an integer number, M, to control the DAC switches. Synchronously with the clock and 

consecutively, tap voltages are conducted to the DAC output in order to form the sine wave. The 

output frequency (    ) can be calculated using Eq. (2.3). 

     
    

   
                                                                 (2.3) 

The authors of [44] used the RCDAC as an analog memory to avoid the large physical area 

needed for a digital memory. The matching between resistors and the on resistance of the 

switches are the most important factors affecting the linearity and performance of this 

architecture. To achieve a high linearity, 1000 same-size resistors were utilized in the chain to 

form unequal resistances between taps. Simple NMOS transistors are used as switches which 

simplify the control logic.  Occupied 1 mm
2
, the design is fabricated in 0.5µm CMOS process. 

Contrary to the design objective (-50dB) a THD of less than -44dB (0.6 %) across the entire 

frequency range has been reported.  
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Figure 2.3: block diagram of mixed-signal waveform generators 
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The notable drawback of the analog memory is that upon fabrication of the chip, no calibration 

will be possible. Moreover, the large number of resistors results in higher power dissipation in 

the chip. Furthermore, to have higher SFDR, larger number of taps and thus, more resistors are 

required which increases the complexity of the design. Additionally, the on-resistance of the 

NMOS switches depends on the tap voltage and negatively affects the linearity of the RCDAC.  

In brief, the idea of saving the samples in a memory is a proven solution for generating a sine 

waveform, but an analog memory is not suitable for our application where the SSI is linked to a 

digital architecture including digital memories. As the most important block in memory-based 

sine wave generators, a review on DACs will be presented in the rest of this chapter. 

2.5 Digital to Analog converter architectures  

As shown in Figure 2.3, integrated DAC is the most important block in the memory-based sine 

waveform generators. On the other hand, a more accurate and precise DAC generates a purer sine 

wave with higher SNDR. The purity and perfection of the sine wave further results in higher 

SNDR of the sensor output signal and increases the accuracy of the sensing system.  

Baker, Razavi, and Kester discussed the fundamentals and popular architectures of integrated 

DACs. Differing in complexity level, DAC circuits are implemented in three different 

technologies; voltage-mode, current-mode, or charge redistribution mode. In terms of the 

architecture, resistor string, R-2R ladder, current steering, or switched capacitor could be used to 

convert binary-weighted digital data to an analog value [47,48,49]. D/A converters can also be 

divided in Nyquist-rate, interpolating, and oversampling categories. In narrower bandwidth and 

lower frequency applications, higher update rates can be used to increase the accuracy and relax 

the requirements of the anti-aliasing filter which follows the DAC. In wide band applications, 

Nyquist-rate conversion method is used to avoid the high clock frequency needed for 

oversampling [50]. 

Resistor strings architectures, depicted in Figure 2.4, are very simple and have a guaranteed 

monotonicity. But in N-bit DAC, the matching between 2
N
 resistors has a significant role in the 

linearity merit. Besides, the power dissipation and physical area required for the resistors must be 
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balanced. Assuming that the summation of the errors of all resistors is zero, the maximum 

Integral Non-Linearity (INL) of this DAC type is calculated using Eqs. (2.4) and (2.5) [47]. 

    
    

                                                                    (2.4) 

         
 

 
                                                          (2.5) 

where N is the number of digital input bits, and %matching is the maximum deviation of the 

resistances from the desired value. Therefore, achieving maximum INL of 0.5LSB in a 10-bit 

DAC needs a matching of better than 0.09% among 1024 integrated resistors! The output node is 

connected to 2
N
 switches in the simple resistor string type. Hence, a large parasitic capacitor is 

expected in this node which limits the frequency of the DAC output. The resistance of switches is 

another design challenge and should be minimized to achieve a high performance. The impact of 

this factor is more critical in binary switch array resistor string (Figure 2.4(b)).  

 

R-2R ladder, shown in Figure 2.5, is another common DAC type which uses only two different 

resistors, includes less number of resistors, and has lower noise level comparing to resistor string. 

Although R-2R ladder has slower conversion speed in comparison with resistor string, it can be 

used in current-mode configuration as well (inverted mode) [49]. However, in this architecture, 

all the resistors should be matched and the resistance of switches is a crucial design parameter 

which should be minimized or compensated [51]. 

 

 

Figure 2.4: (a) Simple resistor string DAC (b) Resistor string with binary switch array [47] 
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Figure 2.6 shows the circuit diagram of binary-weighted charge-scaling DAC. The capacitance, 

C, is the unit capacitor representing the LSB and is used in forming larger capacitors 

corresponding to other data bits. The output voltage is a function of VREF and the division 

between capacitors. The accuracy and precision of the DAC depends on the available capacitors 

in the targeted CMOS technology. Similar to resistor string architecture, there is a large parasitic 

capacitance at the non-inverting input of the buffer that limits the resolution of this DAC. Careful 

layout techniques and schemes must be employed to overcome process variations. Split arrays are 

also introduced to avoid very large non-integrable capacitors [47]. 

 

 

In the current-mode R-2R ladder DAC, a voltage is converted to current. But in Current-Steering 

DAC (CSDAC), current sources are the very basic stage of the conversion. In this architecture, 

precision current sources steer their currents to the load through the switches, controlled by input 

data bits. Two configuration of this type is shown in Figure 2.7 where (a) includes a set of similar 

current sources and in (b) binary-weighted values are used. Digital encoder or decoder blocks 

 

 

Figure 2.6: Binary-weighted charge-scaling DAC architecture [47] 

 

 

Figure 2.5: R-2R ladder DAC architecture [47] 
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might be used in order to convert input data to appropriate format. Switch control blocks and 

timings should be carefully designed to prevent conversion error [47].  

Comparing with 2
N
 sources in the thermometer coded CSDAC, the binary-weighted type contains 

N sources for an N-bit converter. The disadvantage of binary-weighted CSDAC is the large glitch 

at output in response to higher bit transitions. The worst glitch occurs when the MSB
4
 changes 

and causes the maximum DNL that is defined in the following Eq. (2.6) [47]: 

                                                                        (2.6) 

Formulated in Eq. (2.7), the INL in both architectures is a function of N and the maximum 

current error due to mismatch [47].  

                                                                         (2.7) 

 

To overcome drawbacks of both current steering DAC implementations, a combinational 

topology has been introduced that is called segmented CSDAC. In this solution, binary-weighted 

CSDAC is employed for implementing LSB part which results in less number of current sources. 

To benefit the advantage of lower DNL, the MSB part is designed using thermometer code 

structure. An example of this architecture for a 7-bits CSDAC is shown in Figure 2.8 [49].  

The transformer nature of the L/RVDTs demands for sine wave current instead of voltages for 

excitation. Hence, we focused on CSDACs which has an inherent high-current drive capability 

and thus, no output buffer is needed [47]. Furthermore, the compatibility of CSDACs with high 

speed applications facilitates the usage of the oversampling techniques. Additionally, low-cost 

                                                 
4 Most Significant Bit 

              

(a)                                                                               (b) 

Figure 2.7: Current steering DAC (a) Thermometer code, (b) Binary-weighted code [47] 
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and high performance 0.13µm CMOS technology enables the designer to achieve a high level of 

matching which is required among current source transistors in CSDAC architecture. 

 

2.5.1 State of the art of current-steering DACs 

Although CSDAC architecture is widely employed in the high-speed data converter applications, 

there is no limitation in using it for generating low frequency signals. In the binary-weighted 

CSDAC architecture, the arrangement of Current Source Array (CSA) results in high glitches, 

non-monotonic behavior, and differential nonlinearity (DNL). So, in high-accuracy applications, 

fully thermometer-decoded or segmented arrangement is often used to implement the whole or 

the most significant bits of the current-steering DAC. In this arrangement, increments of input 

code switch on the unary current sources one after another and steer their current into the output 

load. The above solution improves all such degrading factors but the drawback is increasing 

layout complexity, active area, and power consumption [52,53,54,55,56,57,58,59].  

As CSDACs rely on the generation of currents proportional to the binary/unary weights, large 

array of current sources are required in high resolutions. The implementation of such current 

sources on silicon with adequate accuracy is challenging due to the process variations and/or 

different interfacing conditions raised by various interconnections. Thus, random mismatch 

between the laid-out and fabricated current sources are expected that increases both DNL and INL 

in the DAC. Therefore, depending on the effective DAC resolution, the INL yield put a high 

bound on the mismatch among current sources in the array. Apart from the major considerations in 

the architectural level design, maximum tolerable mismatch error along with the process variation 

profile of the selected technology should be considered in the sizing of current source transistors. 

 

Figure 2.8: Segmented current steering DAC [49] 
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Reducing such an error which is often referred to as random error in the literature, implies using 

large-sized transistors that constrains the size of the CSA. In addition to the random error, there 

are other sources for errors such as temperature variation, power supply voltage drop along the 

array, limited output resistance of the sources, mechanical stress over the die, layout issues, and 

technology related imperfections. The generated errors due to these factors are known as 

systematic errors. The larger the dimensions of the CSA, the higher the impact of the systematic 

errors on the DAC performance. The accumulation of random and systematic errors forms the 

overall error which affects the static and dynamic performances of the DAC. In fact, for a DAC 

structure with minimized error in its CSA elements, as different number of current sources switch 

on in response to the DAC input, their global error may be accumulated. This results in increase of 

the INL. Authors have introduced distributed scheme to reduce such error while implementing 

current sources. In this scheme each source is mainly split to 4 or 16 parallel sources which are 

distributed in the CSA. Moreover, a variety of switching sequences have been developed in order 

to further reduce such an effect. Choice of efficient switching sequence implies known or 

predicted gradient of the systematic error [52,53,58,59]. 

An accurate switching strategy may also be developed based on the measurements of a test chip. 

Although it is costly and depends on the size of CSA, applying such technique can practically 

minimize the accumulation of gradient errors in the DAC [53]. Another approach is to accurately 

tune the current sources after fabrication, [60], which is not feasible for all technologies and 

requires extensive efforts at layout stage. Authors have also introduced DAC designs consisting 

of extra circuitry capable of measuring the error of each source locally and post-fabrication 

programming of the efficient switching sequence based on the outcomes [61]. Growth of active 

area and complicated routing are the major drawbacks of this method. Nevertheless, in DAC 

circuits using conventional methods, switching sequence is designed based on linear and 

quadratic components of the gradient error. Among other approaches, the symmetrical, 

hierarchical symmetrical, INL bounded, and Q
N
 rotated walk sequences are often used 

[53,58,62,63,64]. 

Authors in [62], whom are followed by other successors such as in [63], have assumed a 

physically square-pattern of      (rows by columns) for distribution of the current sources. 

They have compared several different switching sequences with reference to their impact on the 

INL and have proposed an optimized sequence. With this assumption, the size of the current 
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source transistors added to the empty space between them in x and y directions should be equal 

while laying out the CSA. This means that, both the width and length of the transistor should be 

the same (that causes a limitation in the circuit level design) or large distances should be 

considered between transistors with unequal length and width (results in larger die area) [58].  

In implementation of thermometer-decoded current steering DACs, large number of current 

sources, configured by large transistors, is often used. This is to reduce the mismatch between 

sources [57,65]. Besides, the binary-weighted current sources of segmented DACs are mainly 

distributed throughout the unary source array. This results in modifying the uniformity of the 

CSA in the DAC architecture [53]. These will further exacerbate the impact of gradient errors on 

the performance of the DAC. Hence, the efficiency of the switching sequence must be 

characterized in accordance with the dimensions of the laid-out CSA. To the best of our 

knowledge, this effect was not ever considered in the researches. 

From this review we can conclude that a correlation is expected between the physical 

implementation of the CSA and the proper switching sequence. Choice of distribution pattern for 

current sources and switching sequence may play significant role in drawing the design strategy 

for the targeted DAC structures. In the context of this Master thesis, we will design a 10-bit 

CSDAC as the core of the ESG. During the design procedure, the impacts of the physical size of 

the CSA will be considered, simulated, and measured as a new parameter in the realization of the 

CSDAC. 

2.6 Conclusion 

In this chapter, an overview of the integrated sensing systems is presented. The application of this 

concept for interfacing R/LVDT displacement sensors, the requirements of such an interface, and 

the commercially available solutions were also discussed. As one of the two main modules of 

R/LVDT sensor interface, sine waveform generation methods compared. With reference to our 

application, the memory-based sine wave generation technique is selected for implementation. 

Finally, the state of the art of the CSDAC which can be used in this application was introduced. 

The next chapter is dedicated to the design procedure in the system and circuit level. We will first 

review the block diagram of the ESG, clarify the design parameters, and determine the I/O 

requirements. Then, the CSDAC circuit structure will be presented.   
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CHAPTER 3  

THE ESG ARCHITECTURE AND DAC DESIGN 

 

 

3.1 Introduction 

In order to validate the fully integrated design of the SSI in AVIO402, it is required to 

individually design, implement, verify, and validate the main modules and building blocks of the 

SSI. Referring to Figure 1.4, we will focus on the design of the integrated ESG in this work. 

Upon individual design and validation of the SSI modules, the integrable parts of the ESG and 

the DAM will be integrated in one single chip [1].  

Obviously, the specification of the ESG contributes in the overall performance of the SSI. Thus, 

system level analysis of the SSI should be also considered in setting the requirements of the ESG 

module. With respect to the whole SSI architecture presented in chapter one and according to the 

outcomes of the reviewed literature, the memory-based sine waveform generation method has 

been approved for implementing the ESG. This method meets all the desired specification and 

characteristics. As shown in Figure 2.3, a DAC has been employed at the heart of this 

architecture. With regard to the impacts of the static and dynamic performance of the DAC on the 

overall specification of the ESG module, a 10-bit DAC was designed. In this chapter, the design 

procedure of the suitable DAC architecture is presented.  

In Section 3.2, the system level structure of the ESG and the required specifications are 

described. CSDAC specification and its design procedure are explained in Sections 3.3. Then, in 

Section 3.4, the design of the DAC will be discussed in circuit and layout level. Section 3.4.2 

presents the main contribution of this work which is the impact of physical implementation of the 

current source array (CSA) on the performance of the switching scheme in CSDAC architecture. 
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Finally, layout design challenges of CSDACs will be explained which will be followed by the 

conclusion. 

3.2 The ESG requirements and block diagram 

 

3.2.1 ESG design requirements 

Low-count of I/O connections, integrability with DAM, programmability of the frequency and 

amplitude of the excitation signal, and supporting the required accuracy and resolution of the SSI 

are design requirements of the ESG module [1]. Design specifications of the ESG module and its 

internal stages should be concluded from the SSI design parameters and system level analysis. 

Figure 3.1 indicates the system level diagram of the SSI and its connection to the sensor and 

digital interface controller. 

 

According to the SSI design requirements in [1,66], displacement of the core of the sensor must 

be converted to a 14-bit digital value and be available at the output of the DAM with a maximum 

latency of 2 mSec. As stated in chapter 1, Vexe provides the carrier signal for the L/RVDT and the 

displacement of the core is modulated over the amplitude of Va and Vb. In order to detect the 

displacement, sensor output signals are then demodulated and digitized in the DAM. The 

maximum bandwidth of Vout is assumed to be 500 Hz which impose a Nyquist frequency of 1 
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Figure 3.1: System level diagram of the SSI [1] 



33 

 

kHz. With reference to the theory of sampled data systems, Signal to Noise (quantization noise of 

the converter) Ratio (SNR) of Vout can be calculated using Eq. (3.1) [49]. 

                                                                   (3.1) 

where N is the number of bits of Analog to Digital Converter (ADC) embedded within DAM. 

Given the Nyquist sampling frequency of fs, the SNR is measured over the Nyquist bandwidth 

(DC to fs/2). Thus, Vout must meet the SNR of 86.04 dB in the bandwidth of 500 Hz. If higher 

sampling frequency than Nyquist is used in the ADC, a process gain will be added to Eq. (3.1) 

which is formulated in Eq. (3.2) and improves the SNR in the desired bandwidth.  

                         
  

    
                               (3.2) 

where fs is the oversampling frequency, BW represent the maximum bandwidth of the signal, and 

the SNR is calculated over the signal bandwidth (DC to BW) [49].  

On the other hand, the noise level of Va and Vb contributes in the final SNR of Vout. This 

contribution depends on the architecture of the DAM. Hence, accurate model of the DAM is 

needed to analyze this contribution. Given an ideal sensor model, system level analysis of the 

DAM shows minimum required SNR of 84 dB for Vexe over the bandwidth of 10 kHz [1].  Based 

on Eq. (3.2), using oversampling ADC and digital filtering in the DAM relaxes the required SNR 

of the excitation signal. 

System level considerations and requirements impose several design obligations on the ESG that 

are listed in Table 3.1. Moreover, the I/O connections of the ESG should be minimized in order 

to be proper for avionic applications. 

Table 3.1: ESG design objectives 

Design objectives Required range Details 

Excitation frequency 1 ~ 10 kHz1 

 Frequency accuracy: 1% 

 Number of channels: 302 

 Programmable by digital interface controller 

Excitation amplitude 1 ~ 7 Vrms
1  ESG output should be matched with sensor input 

Output SNR 84 dB  Measured over DC to 10 kHz 

1 Based on Honeywell L/RVDT used in avionics applications [26]. 

2 This implies maximum displacement data bandwidth of 80 Hz [1]. 
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3.2.2 Proposed ESG block diagram 

With reference to the reviewed literature, the memory-based sine-wave generator is the only 

method which supports the frequency and amplitude programmability of the sine-wave. Figure 

3.2 shows the proposed detailed block diagram of the ESG which is based on this method. 

 

In Figure 3.2, TMI is part of digital interface and provides digital signals, commands, and clocks 

needed by ESG. Introduced in IEEE-1451, Transducer Analog Interface (TAI) is the physical 

interface between the transducer and the signal conditioning functions [12]. TMI and TAI are 

beyond the scope of this work.  

In order to reduce the I/O connections between TMI and the ESG, a serial data line has been 

considered for transferring the data to the ESG. Thus, a Deserializer is used that includes a shift 

register and a latch. Deserializer is responsible for serial reception, preserving, and parallel 

transmission of the digital sine samples to the DAC. These processes are in synchronization with 

a clock signal generated in digital interface. In fact, data are serially entered in a shift register 

with a higher clock frequency than sample rate. The contents of the shift register should be then 

loaded into a latch which keeps the data for the digital to analog conversion. The clock frequency 

of the latch is equal to the update rate of the input data. Required resolution and SNR of the sine 

waveform determine the size and contents of the digital lookup table memory (located within 

TMI) which keeps sine samples as well as the length of the shift register and latch. 

High speed DAC converts the digital latched samples to its analog equivalent and generates an 

accurate analog sine waveform. It is designed based on current steering architecture to support 

higher update rates which improves the SNR of the excitation signal. Depending on the sample 

rate (update rate) of the digital data at the input of the DAC and the number of digital sine 

samples in one complete cycle, different sine frequencies will be generated at the output of the 
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Figure 3.2: Proposed ESG architecture 
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DAC. It goes without saying that resolution, accuracy, precision, linearity, and speed of the DAC 

considerably affect the ESG performance in this architecture. The parameters of the DAC will be 

discussed in later sections. 

The DAC output is pulse amplitude modulated with a modulation frequency equal to sample rate. 

Consequently, the spectrum of the DAC output signal is repeated at multiples of the sample 

frequency. Depending on the desired signal bandwidth and the sample rate, an appropriate analog 

anti-aliasing Low Pass Filter (LPF) should be used after the DAC. Rejection of the repeated 

spectra and sufficient attenuation of the harmonics of the fundamental frequency are the main 

responsibilities of this LPF. With regard to the adjustable excitation signal frequency (1 kHz to 

10 kHz), the cut-off frequency of this filter must be separately tuned for any sine wave frequency. 

However, the design of the LPF can be simplified by selecting few switch-selectable cut-off 

frequencies based on the frequency distance between the fundamental frequency and the first 

harmonic. The TMI provides the control command for selecting the cut-off frequency of the LPF. 

The filtered signal should be amplified or buffered in order to be matched with the primary coil 

of the sensor. Adjustability of the amplitude of excitation signal is one of the objectives of this 

project. Therefore, variable gain amplifier must be used whose gain can be adjusted by the digital 

interface via TMI. Linearity of the amplifier plays a significant role in the overall SSI 

performance. Generation of large amplitude excitation signal requires high power supply voltages 

which cause serious restriction on integration of all blocks. Hybrid technologies might be needed 

to integrate the ESG into one chip. 

In the block diagram of Figure 3.2, achieving SNR of 84 dB for the excitation signal is the 

responsibility of the DAC and anti-aliasing filter. Eq. (3.1) formulates the effect of quantization 

noise and implies a minimum resolution of 14 bits on the DAC in favor of providing such a high 

SNR. However, higher update rate than Nyquist as well as using appropriate LPF could result in 

the same SNR with lower DAC resolution.  

In theory, the filter has a roll off of 6 dB per octave for each pole. Although the design of high 

order integrable LPF in the targeted frequency range is very challenging (due to the large size of 

capacitors and inductors), lower order active filters with switch-selectable cutoff frequencies and 

few off-chip components can be integrated in the full-custom SSI chip. Additionally, the LPF 

should attenuate the level of harmonic components of the fundamental sine frequency and reject 
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the repeated spectra of the excitation signal at multiples of the sample rate frequency. The power 

of harmonics of the fundamental frequency reduces the SNDR of the excitation signal. Eq. (3.3) 

formulates the SNDR.  

           
  

      
                                                  (3.3) 

where PS is the fundamental signal power, PN is the in-band noise power, and PD is the sum of the 

power of first five harmonics [49]. 

In the semi-custom stage of the AVIO402, the most challenging internal block must be designed, 

fabricated and validated. This validated block should then be integrated with other blocks as the 

full-custom SSI. Regarding the impacts of DAC parameters on the ESG and SSI performance, we 

will focus on the design of DAC and deserializer in this work. Since the design of the filter is 

beyond the scope of this work, in-band SNR improvement of the LPF is not discussed in this 

Master thesis. We have selected high speed CSDAC architecture based on the reviewed literature.   

According to Eq. (3.2), the process gain of oversampling increases the expected SNR, however, 

the drawback of high sample rate is the size of lookup table which keeps the ideal sine samples. It 

has been assumed that sufficient memory space is available in digital interface. On the other 

hand, quantization uncertainty defines a maximum limit for the sample rate. This parameter is 

shown in Figure 3.3 for an ideal 3-bit DAC. To calculate this limit, the DAC resolution and Full 

Scale (FS) must be known.  

 

 

Figure 3.3: Transfer function of an ideal 3-bits DAC [49] 
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The quantization uncertainty of an ideal N-bit DAC can be calculated: 

                         
  

  
                                    (3.4) 

where N is the number of bits, FS is the output full scale, and LSB is the weight of the least 

significant bit of the DAC. Considering the LSB of the DAC, the sample period ( 
 

  
 ) must be 

long enough that one LSB variation happens in the ideal sine waveform. This concept is 

visualized in Figure 3.4 where the ideal 1 kHz sine wave with full scale amplitude of FS is 

depicted along with the reconstructed wave form. As can be seen in Figure 3.4, two successive 

steps have the maximum voltage difference (step voltage) at the mid-scale of the reconstructed 

sine signal. We use this fact to calculate the maximum sample rate of the DAC as a function of its 

LSB.  

 

For sample rate of fs and sine frequency of fsine, minimum step voltage can be calculated using 

Eqs. (3.5) and (3.6).  

  
  

 
                 

 

  
       

  

 
                              (3.5) 

  
  

 
                 

 

  
       

  

 
                   

  

  
            (3.6) 

Given the maximum step voltage at the mid-scale (t = 0) which is shown in Figure 3.4, it is 

needed that: 

 

Figure 3.4: Ideal 1 kHz sine wave versus reconstructed output signal of DAC 
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                                        (3.7) 

     
       

     
 

     
                                                        (3.8) 

where asin is the inverse sine function. The number of samples needed for reconstructing sine 

signal is therefore: 

                                  
  

     
                          (3.9) 

Adopting maximum sample rate to generate 1 kHz sine signal, we will need 32170 bits of 

memory to keep the sine samples. To generate higher sine frequencies with the same number of 

sine samples per cycle, higher sample rates can be adopted. According to Eqs. (3.2), (3.8), and 

(3.9), Nyquist sampling and oversampling parameters are listed in Table 3.2 for 10-bit DAC. 

These parameters are calculated at the beginning, middle, and end of the targeted frequency 

range. It is also possible to use a constant oversampling frequency and reconstruct different 

number of sine samples in order to cover the whole frequency range. The choice between fixed fs 

or constant number of sine samples depends on the design strategy of the digital interface. 

Table 3.2: Sampling parameters for 10-bit DAC 

Excitation signal 

frequency 

Nyquist sampling Oversampling 

fs 

(kHz) 

No. of 

samples1 

SNR2 

(dB) 

fs
3 

(MHz) 

No. of 

samples1 

SNR2 

(dB) 

1 kHz 20 20 61.96 3.217 3217 84.02 

5 kHz 20 4 61.96 16.085 3217 91.01 

10 kHz 20 2 61.96 32.17 3217 94.02 

1 Per one sine cycle 

2 Calculated from DC to 10 kHz using Eq. (3.2) 
3 Maximum sample rate for the resolution of 10-bits 

Using steep roll off LPF with high stop band rejection relaxes the sample rate of the DAC. 

Therefore, there is a tradeoff between the order of the LPF on one hand and the sample rate and 

resolution of the DAC on the other hand. 

Considering the above mentioned facts and figures, a 10-bit CSDAC is proposed and destined for 

fabricating in the semi-custom stage of ESG design. Measurement learning and achievements 
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determine the final design architecture of the ESG for the full-custom stage. In the rest of this 

chapter, the design flow, schematic capture, and layout implementation of the 10-bit CSDAC 

with very high oversampling capability are discussed. 

3.3 The CSDAC architecture, specifications, and design procedure 

Digital to analog converters reconstruct an analog signal from N-bit digital samples. Therefore, 

DAC output signal is quantized and can only represent 2
N
 voltage or current values (assuming a 

fixed reference). N is the resolution of the DAC and the N-bit digital input may be expressed in 

different formats among which binary is the most popular. The reconstructed signal in time and 

frequency domain is shown in Figure 3.5 where fc is the sample rate. As a matter of fact, output 

signal of the DAC is a pulse-modulated signal and has a Sinc function equivalent in frequency 

domain. Images of the fundamental frequency of the output are also repeated at multiples of the 

sample frequency. According to the sampling theorem, the sample rate should not be less than 

Nyquist frequency which is twice the maximum expected frequency component in the 

reconstructed signal [49].  

 

DACs can be divided into three categories: (1) Nyquist rate DACs in which sample rate is equal 

to Nyquist rate; (2) Interpolating DACs that use a higher sample rate than Nyquist; (3) 

Oversampling DACs which use higher sample rate than Nyquist along with a noise shaping 

modulator. We have aimed to a high sampling rate, interpolating CSDAC in this work [49].  

 

Figure 3.5: DAC sinc(x) roll off [49] 
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As discussed in chapter 2, CSDAC architecture is used in high-accurate and high-speed data 

converter systems. Additionally, submicron CMOS technologies offer fast and low power 

solution with the possibility of System on Chip (SoC) design. In fact, CMOS technologies not 

only provide the required infrastructure to achieve expected performance of the CSDAC, but also 

facilitate the implementation of some of other blocks in the ESG (low pass filter in Figure 3.2) 

and the SSI in order to integrate the whole system within one chip [59].  

Conceptual, block, and circuit diagram of a general N-bit, binary-weighted, CSDAC is shown in 

Figure 3.6. Weighted current sources are transistors (MCS) which mirror multiples of the 

reference current and steer their currents to the load via switch transistors (MSW). Sources with 

higher currents are built by using a number of unit current sources in parallel. To achieve the best 

matching among current mirrors, the mirroring transistors must be designed as a Current Source 

Array (CSA). The output resistance of an ideal current source is infinite. Depending on the 

desired performance, cascode transistors (MCasc) might also be used in series with MCS to increase 

output resistance of each source. MCasc and MCS are biased by stable bias circuit. High speed 

switches are controlled by the input data through switch driver circuit. Any logical ―one‖ at the 

N-bit binary input word adds the current of its corresponding current source to the load [48,49].  
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Figure 3.6: Binary-weighted CSDAC; (a) Conceptual diagram, (b) General block diagram,  

(c) Circuit diagram 
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In order to decrease DNL of binary-weighted current sources, CSDAC can be segmented into 

binary-weighted and thermometer-decoded sections. This architecture is shown in Figure 3.7. 

In this architecture k-bit of LSB and m-bit of MSB are designed using binary-weighted and 

unary-weighted implementations, respectively. A decoder is needed to convert m-bits binary 

MSB to the equivalent thermometer code. Increasing the number of unary current sources (m) 

improves the DNL of the DAC; however, more die area is needed. Hence, there is a tradeoff 

between DNL and the area which will be discussed later in this chapter [59,67].  

 

Mismatch among current sources can be reduced by sizing the transistors [65]. Splitting unary 

transistors (MCSu) and spreading them across the CSA further reduce the error of each source. 

Moreover, the sequence of switching on current sources of the CSA contributes in the 

accumulation of the mismatch errors. Switching scheme, splitting transistors and using a 

switching sequence, is another design parameter of segmented CSDACs [53,59,62]. 

There are many DAC specifications that defined in [49] and can be grouped as static, dynamic, 

environmental, and optimization parameters [59]. The most important specifications of each 

group are listed in Table 3.3. Specified parameters of this work are shown as desired value. 
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Figure 3.7: Segmented CSDAC architecture; (a) Conceptual diagram, (b) General block diagram 
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Table 3.3: Most important specifications of CSDACs with desired values in this work 

Group Specification Desired value Unit 

Static 

Resolution 10 bits 

Full Scale Range (FSR) ─ V or A 

INL 0.5 LSB 

DNL 0.5 LSB 

INL yield ─ % 

Accuracy ─ %, ppm, dB, or LSB 

Monotonicity monotonic ─ 

Dynamic 

Sample rate Variable Hz 

Output frequency range 1 ~ 10 kHz 

SNR 84 dB 

SNDR ─ dB 

THD ─ dB 

Glitch impulse ─ pV-Sec or mV-nSec 

SFDR ─ dB 

Settling time ─ nSec 

Noise ─ Vrms, Vp-p, or dB 

Input feedthrough ─ ─ 

Slew rate ─ V/µSec 

Environmental 

Power supply1 1.2 V 

Load resistance ─ Ω 

Digital input level 1.2 V 

Technology2 0.13 µm CMOS  ─ 

Optimization 
Power consumption ─ mW 

Chip area ─ mm2 

1 Limited by the technology 
2 Being Supported by CMC Microsystems, lower fabrication price, multiple run per year, and accurate transistor 

models are the features of standard CMOS 0.13 µm technology that makes it well-suited to our work [68,69,70]. 

Due to the importance of INL and DNL in this work, their definitions are stated below: 

―Integral nonlinearity is the maximum deviation, at any point in the transfer function, of 

the output voltage level from its ideal value—which is a straight line drawn through the 

actual zero and full scale of the DAC‖ [49].  
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―Differential nonlinearity is the maximum deviation of an actual analog output step, 

between adjacent input codes, from the ideal step value of +1 LSB, calibrated based on 

the gain of the particular DAC. If the differential nonlinearity is more negative than –1 

LSB, the DACs transfer function is non-monotonic‖ [49]. 

Despite the discrimination made in Table 3.3 among static and dynamic performance of a DAC, 

the static linearity of the DAC (INL and DNL) is reflected in the dynamic specifications. For 

example large INL and DNL result in higher noise and distortion in the output signal and 

tremendously decrease the SNR and SNDR of the DAC. Consequently, we will more focus on 

the improvement of the linearity of the CSDAC in this work. 

In terms of circuit realization, the CSDAC includes both analog and digital blocks. Thus, analog 

and mixed-signal design flow should be followed in system and block level [68]. The design 

phase of CSDAC should be completed in the following three levels [49,59]: 

1. Architectural level to determine segmentation and required matching among current sources 

2. Module level to choose appropriate switching scheme 

3. Circuit level to design digital blocks and determine the size of all transistors 

Upon design completion of the functional circuits, a floorplan is needed to generate the layout of 

each block. All verified layouts will be then put together in the system level. Verification of the 

completed CSDAC layout in different design corners is the last step in the design procedure. 

3.4 CSDAC design phase 

With reference to the discussions of Section 3.3 and to achieve higher linearity, segmented 

CSDAC (SCSDAC) was selected in this work. In this Section, the circuit and layout design 

procedure will be stated. This SCSDAC is designed based on the requirements which are stated 

in Section 3.2 and listed in Table 3.3, separately.  

The decoder in Figure 3.7 has an important role in generating synchronous unary and binary 

outputs. In fact, it must insert a latency equalizer between the k-bit LSB of the input word and the 

output binary counterpart. The equalizer should have the same delay as the decoder and 

synchronizes all output bits                     . Moreover, the decoder needs a significant 
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physical area which increases by the increase of unary bits (m). On the other hand, the TMI, 

Figure 3.2, contains the lookup table of the sine samples. Since in the final stage of our project all 

the SSI sub-modules should be integrated together and in order to avoid the complications of the 

decoder in the circuit and layout level, the decoder block is eliminated in this work. Therefore, 

the binary and unary input bits of the SCSDAC are serially received by the Deserializer. 

Depending on the segmentation, each input data sample is composed of        bits. 

Based on the above discussion, Figure 3.8 shows the general block diagram of the proposed 

SCSDAC. CLKp is the sample rate of the SCSDAC and CLKs is the bit rate of serial input data. 

Before loading data into the latch, all serial bits must be pushed into the shift register and settled. 

Eq. (3.10) states the relation between the frequencies of CLKp and CLKs: 

                         
                                      (3.10) 

where k and m are the number of binary and unary-weighted input bits, respectively. Depending 

on the segmentation, the shift register should support high bit-rate (      ) corresponding to the 

maximum sample rate of 32.17 MHz in Table 3.2.  
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Figure 3.8: General block diagram of the proposed segmented CSDAC 
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3.4.1 Architectural design 

More detailed view of the proposed SCSDAC is depicted in Figure 3.9 where M1 and Mk are the 

LSB and MSB current sources of the binary segment, respectively. The other      transistors 

belong to the unary segment and each of them provides the same amount of current. Assuming    

is the unit current in M1 (LSB current) and considering the sizing relation among all MCS, the 

current of the MSB binary branch and each unary branch are         and      , respectively.  

 

To improve matching among all transistors and to simplify the circuit layout, multiple numbers 

of paralleled unit transistors (M1) are used in implementing each MCS. Consequently,        

unit transistors are needed to implement SCSDAC. As an example, the proposed 10-bit CSDAC 

in this work requires 1023 very well matched unit transistors. Such a large number of matched 

transistors needs a large die area which is one of the major drawbacks of this DAC architecture. 

Interestingly, total number of MCS is constant for binary-weighted, thermometer-decoded, and 

segmented CSDAC architectures. Nevertheless, thermometer-decoded CSDAC occupies more 

area comparing to its binary-weighted counterpart. This is due to employing the decoder and 

switching scheme techniques which will be discussed later in Section 3.4.2. So, the higher the m, 

the lower the DNL and the larger the die area.  

In the first step of the design procedure, the number of binary and unary bits (segmentation) as 

well as the maximum tolerable mismatch between MCS transistors will be determined. The former 
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Figure 3.9: Architectural diagram of the SCSDAC 
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is a matter of tradeoff between die area and linearity (INL and DNL) while the latter depends on 

the required INL and accuracy of the SCSDAC. Hence, the specific objectives of architectural 

design phase are the selection of k, m, and relative Standard Deviation (SD) of unit current 

matching  
     

  
  [59]. Discussed in [58], random and systematic errors contribute in the current 

mismatch among MCS transistors and thereupon the INL and DNL. First, the random mismatch 

effects and consideration will be explained and formulated. The impacts of systematic errors and 

mismatch compensation methods will be discussed in Sections 3.4.2 and 3.4.3.  

In [47], the DNL and INL are related to the maximum mismatch error of the unit current source. 

Mathematical illustration is as follow: 

                                                                         (3.11) 

where    is the current of the j
th

 source,    is the unit current,    is the mismatch error, and N is the 

total number of bits. If the DAC has to be designed for maximum INL of       , then: 

           
      

    
                                                       (3.12) 

where            is the maximum tolerable mismatch error of all sources which results in       . 

This maximum error is independent of the implementation type of the CSDAC. However, the 

maximum tolerable error to achieve        depends on the implementation type. For binary-

weighted CSDAC: 

           
      

    
                                                    (3.13) 

While for the fully thermometer-decoded CSDAC: 

                                                                 (3.14) 

In Eqs. (3.12-14), the worst case INL and DNL are calculated for      current sources.  

Similarly, if Gaussian mismatch error distribution is assumed among      current sources, the 

maximum SD of the INL will be the same for both binary-weighted and thermometer-decoded 

CSDACs. It can be formulated as a function of the SD of unit sources [71]. 

         
 

 
            

 

 
                                       (3.15) 
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where          is the maximum SD of the INL, and    is the SD of the unit current source. As an 

example,    must be 
 

  
 LSB to have an      of 0.5 LSB in the targeted 10-bit DAC. The 

maximum SD of DNL for binary-weighted              and thermometer decoded 

             CSDAC can also be calculated: 

            
 

                                                         (3.16) 

                                                                    (3.17) 

In [65], the relation of the transistor size and the accuracy of the current is illustrated. 

    
 

    
 
                                                           (3.18) 

where    is the unit transistor area and    is the SD of unit current. Eqs. (3.15-18) provide the 

segmentation basis of CSDAC. Based on these relations, authors in [67] listed the SD of INL and 

DNL as well as area requirements for different INL values in 10-bit binary-weighted and 

thermometer-decoded CSDACs. The requirements are summarized in Table 3.4 in which σ and 

      are the SD of unit current and the minimum needed area for obtaining             in a 

thermometer-decoded CSDAC. Since we replaced the decoder of Figure 3.7 with a deserializer, 

    is reported in this table as the physical area of the 10-bit shift register and latch. 

Table 3.4: Binary and unary-weighted 10-bit CSDAC requirements [67] 

Specification Binary weighted Unary-weighted
1 

INL 16σ 16σ 

DNL 32σ σ 

Area (INL=0.5 LSB) 256Aunit 256Aunit 

Area (DNL=0.5 LSB) 1024Aunit Aunit 

Deserializer area ADES 29ADES 

1 Unary-weighted and thermometer-decoded are equivalent terms 

Eq. (3.18) implies the use of larger unit transistors for getting lower variance of unit current and 

higher DAC accuracy. Therefore, the chip area is mostly dominated by the size of the CSA. 

Acquiring high-speed performance results in small size switch transistors, but the chip area is 

significantly increased as a result of large number of MCasc, MSW, and switch driver in unary 
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implementation as well as the area overhead due to the interconnect lines. As listed in Table 3.4, 

the area of the digital deserializer should be taken into account in segmentation of a CSDAC.  

Along with increasing DAC linearity, the THD of the DAC output is decreasing for unary-

weighted DAC realization. This fact is due to the reduction of glitch energy for smaller step sizes 

in unary-weighted comparing with binary-weighted CSDAC type [67]. Hence, the main 

challenge in the design of SCSDAC is the tradeoff between the chip area on one hand and the 

THD and linearity on the other hand. 

Despite the fact that the chip area does not impose any limitation on this work, die area is tried to 

be optimized. Using the methodologies presented in [59,67], we determined maximum number of 

4-bits in the binary-weighted segment. Thus, 6-bits will be implemented as unary-weighted in the 

proposed SCSDAC. Obviously, assigning more bits to the unary segment improves the DNL, 

however, the area will be tremendously increased. 

Relative SD of the unit current source is the other specification which should be determined in 

this phase of the design. Based on the assumption of Gaussian random mismatch distribution, the 

percentage of DACs falling within certain bounds around a mean value can be found by using 

Eqs. (3.15-17). The major DAC parameter to be calculated in this way is the INL yield which is 

the ratio of the number of DACs with smaller INL than        to the total number of DACs 

[52,71]. Depending on the design technology, Monte Carlo simulation must be performed to 

accurately calculate INL yield. To avoid long simulation time, Bosch et al developed a formula in 

[52,72] in order to estimate relative SD as a function of INL yield and DAC resolution. 

    

 
   

 

    
                              

     

 
                 (3.19) 

where 
    

 
 is the relative SD of the unit current source, inv_norm is the inverse cumulative normal 

distribution, and N is the DAC resolution. Using Eq. (3.19), achieving INL yield of 99.7%, 50%, 

and 10% needs relative SD of 0.5%, 1.3%, and 1.9%, respectively [72]. Regarding to the high 

accuracy level of the SCSDAC, high INL yield of 99.7% is selected in this work. This implies a 

relative SD of 0.5% for each unit current source.  

In [65], it is expressed that 
    

 
 is inversely proportional to the gate overdrive voltage      

      and gate area (W × L) of MCS. Exact illustration is unique for each technology. Respecting 
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this relation, large gate area compensates random mismatch caused by process variations. 

Furthermore, the gate overdrive voltage should be kept as high as possible to ensure that 

threshold voltage does not dominate the relative SD. Otherwise, larger gate area will be needed to 

achieve desired matching [52,53,54,57,59].  

3.4.2 Module design 

Switching scheme is another design parameter of unary-weighted CSDAC in which large number 

of similar current sources is distributed in CSA. In order to compensate the systematic mismatch 

errors among these sources, careful switching scheme must be designed at the module level 

design phase. There are two components related to switching scheme: (1) Splitting current source 

transistors (MCS) and spreading them across the CSA; (2) Developing an appropriate switching 

sequence for switching on/off different current sources in the CSA according to the digital input 

data. Although the relative SD of random mismatch error is minimized in architectural design of 

the CSDAC, accumulation of the cell errors degrades the INL [58,59]. 

First of all, the systematic mismatch error distribution and the impact of error accumulation on 

the INL should be illustrated. As a matter of fact, INL and DNL are used to define the deviation 

of data converter’s real transfer function from the ideal one. Eq. (3.11) expresses the current of 

the j
th

 current source of a CSA in the unary-weighted CSDAC with 2
N
 -1 elements. The INL and 

DNL of a CSDAC implemented by the fully unary CSA, can then be derived as follows: 

                                 
 
                                   (3.20) 

                                                                   (3.21) 

where k determines the number of switched on sources for a given input code and equals to the N-

bit digital input code           . INL(k) and DNL(k) represent the resulted nonlinearities 

for that input. Thus, in addition to individual error of each source (ɛ), the total number (k) and the 

accumulated error of the switched-on sources affect the INL. Considering that ―ɛ‖ can be of a 

negative or a positive value, appropriate switching sequence can prevent the accumulation of 

errors and may improve the INL. In contrast, the DNL does not depend on the number of activated 

current sources and therefore, it is not affected by the switching sequence of the CSA [58]. 
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The systematic errors in a CSA can be approximated using first and second order of a Taylor 

series expansion around the center of the array. This expansion represents linear, quadratic, and 

joint gradients over the CSA that can be expressed by Eqs. (3.22), (3.23), and (3.24), respectively. 

                                                                (3.22) 

                                                                  (3.23) 

                                                                   (3.24) 

where x and y are the coordinates of each source in the CSA. θ and    are the angle and the slope 

of the linear gradient component of the error, while    and    are technology dependent 

parameters. The θ may vary randomly, but the maximum linear error occurs when θ is equal to 45º 

or 135º. ―w” specifies the ratio of the linear to the quadratic gradient error in the joint error and for 

simplicity has been set to 1 in this paper [53,58,62]. 

Considering Eqs. (3.22-24), both components of a switching scheme tend to average the 

systematic and graded errors. While splitting unary transistors averages the systematic mismatch 

errors, proper switching sequence reduces the accumulation of averaged error. Based on Eqs. 

(3.20,21), splitting MCS units improves both INL and DNL, however, switching sequence can only 

ameliorate the INL. Figure 3.10(a) shows an example of an     unary CSA where each MCS is 

implemented as 1 unit. This unit has been split into 4 and 16 parallel units in Figure 3.10(b) and 

(c), respectively. Parallel units are symmetrically laid out across the CSA. Although this technique 

averages the error of each unit, the making interconnections needs large area and complicated 

layout. Due to these complications, each MCS is divided into 4 parallel elements in this work. 

 

 

(a)                                                  (b)                                                  (c) 

Figure 3.10: Splitting unary MCS in an     CSA; (a) No split; (b) Split by 4; (c) Split by 16 
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As can be inferred from Figure 3.10, the physical size of the CSA is determined by the size of MCS 

transistors and the choice of switching scheme. Nevertheless, the CSA has been analyzed as an 

square in the literature. In general, the array is distributed in physical dimensions of       such 

that: 

                                                                      (3.25) 

where    and    are the length and width of the laid-out CSA and r is the ratio between them. 

Clearly, a CSA with square distribution pattern is an especial case of Eq. (3.25) in which    . 

For an     (rows by columns) array of current sources, the geometric positions (x and y) of 

each MCS in the array are listed as below: 

          
 

   
       

 

   
       

 

   
                           (3.26) 

          
  

   
       

  

   
       

  

   
                           (3.27) 

Thus, to validate the performance of each sequence, a more accurate model of the gradient errors 

for the targeted CSA should be developed [58]. 

A variety of switching sequences have been designed and developed for SCSDACs 

[53,58,62,63,64]. Simulations by MATLAB were performed to show the dependency of switching 

sequence performance to the dimensions of the CSA. To highlight this relation, the effects of other 

factors in the design of switching protocol such as higher order gradient errors, different ratios of 

linear to quadratic errors, splitting current sources, and non-zero-average error profiles have not 

been discussed in this paper. Moreover, in order to evaluate the performance of each sequence, the 

maximum accumulated error is considered as a representation for the INL of the DAC. 

Here, square and non-square distribution patterns for implementing a given CSA structure are 

considered. Different normalized distributions of simulated joint gradient error for a       array 

of current sources are depicted in Figure 3.11. The distribution in a square-implemented CSA is 

shown in Figure 3.11(a), while Figure 3.11(b) and (c) show the distribution for the same CSA, 

implemented using non-square patterns. These two values are selected as an example. The array 

dimensions are also normalized in the x and y directions in Figure 3.11. The linear and quadratic 

components of joint error are calculated such that to result in a zero-mean normalized joint 

gradient error [62]. Figure 3.11 reveal that different accumulated errors can be expected from the 
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given array with a unique switching strategy, depending on the implied distribution array whether 

to be square or non-square.  

 

Optimized switching sequences are mainly selected in a symmetrical manner or based on 

experimental measurements of test chips implemented with the same process. The evaluation 

criteria of the different switching sequences are the minimization of the accumulated gradient 

error in the applied distribution pattern for the current sources. Various sequences of the well-

known symmetrically-designed row-column switching scheme for a single row of the array is 

shown in Figure 3.12(a, b, c) in which the numbers show the order of both row and column 

activation. To deliver its current to the DAC output, each element of the CSA is switched on 

according to its row-column addresses in the       matrix [62]. On the other hand, in the Q
2
 

random walk sequence [53], the CSA is divided into 16 regions, whereas each region contains 16 

elements. In this sequence, current sources are switched on sequentially as per the order shown in 

Figure 3.12(d). These sequences are used to show the impact of the CSA dimension and related 

gradient error distribution on the performance of the DAC. 

                                            

   (a)                                                                                    (b) 

 
                                                            (c) 

Figure 3.11: Normalized distribution of joint gradient error for a       CSA;  

(a) Square CSA (   ); (b) Non-square CSA (   ); (c) Non-square CSA (     ) [58] 
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The results of MATLAB simulations for different sequences have been tabulated in Table 3.5. 

The presented data are the maximum accumulated error achieved by simulating the activation 

order of 0 to 256 current source units simultaneously based on different sequences. Being 

corresponded to the INL, these data are the summation of normalized errors presented in Figure 

3.11. 

Table 3.5: Maximum Accumulated Error in       CSA 

1. Hierarchical Symmetrical 

According to the results in Table 3.5, the performance of each sequence is a function of physical 

realization of the CSA. E.g. when Q
2
 random walk sequence is used, the accumulated error is 

increased by almost 20% in non-square patterns. While in symmetrical sequences, the error is 

significantly reduced when the CSA is implemented using the pattern of Figure 3.11(c) and is 

increased when implementation as of Figure 3.11(b) is considered. There is no properly related 

Simulated sequences 

Accumulated normalized error
 

Squared CSA 

Figure 3.11(a) 

Non-Squared CSA 

Figure 3.11(b) 

Non-Squared CSA 

Figure 3.11(a) 

Symmetrical 17.54 26.84 8.63 

H. S.1 (Type A) 9.48 13.70 5.29 

H. S. (Type B) 9.50 13.80 5.20 

Q2 random walk 1.59 1.61 1.91 

15  13  11  9  7  5  3  1  2  4  6  8  10  12  14  16   

(a) 

14  10  6  2  1  5  9  13  15  11  7  3  4  8  12  16 

(b) 

15  11  7  3  1  5  9  13  14  10  6  2  4  8  12  16 

(c) 

 

(d) 

Figure 3.12: Switching sequences for a       CSA; (a) Symmetrical sequence (b) Hierarchical-

symmetrical sequence (Type A) (c) Hierarchical-symmetrical sequence (Type B) (d) Q
2
 random 

walk sequence [58] 

O B F J

D M H L

K I A N

G C P E

13 11 7 3
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6 16 1 10
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discussion provided in literature to be used for the justification of the outcomes. It should be noted 

that inaccurate gradient error interpretations may lead to unexpected test results [58]. 

Figure 3.13 compare accumulated error for different number of switched-on current sources in the 

      CSA. Here, the same gradient error distributions and switching sequences as tabulated in 

Table 3.5 are considered. These graphs further reveal that the accumulation of the gradient error 

corresponds to the dimensions and the geometry of the CSA, as well as the physical position of 

every element in the array. Therefore, this effect should be considered as an integrated part of the 

strategy for implementing a current steering DAC with a given INL. As seen in Figure 3.13, the 

Q
2
 random walk shows the best performance among the basic sequences which were considered in 

our simulations. However, erroneous gradient error interpretation may unlikely lead to the 

selection of inappropriate sequence when well-optimized sequences are being compared [58].  

 

In brief, in absence of reliable data on the behavior of the CSA against the random and systematic 

error patterns, the switching sequence efficiency may be somehow estimated using the learning 

obtained from the distribution of the laid-out CSA. Otherwise, test results may not be satisfactory 

as they unexpectedly lack accuracy. Thus, adequate sequence for each DAC should be 

exclusively designed based on the size of the transistors, process characteristics, and the 

arrangement of the CSA. This implies a recursive approach for the optimum sequence with the 

consideration of physical arrangements of the current source transistors [58].  

In addition to the switching scheme, layout design techniques can also be employed to reduce 

systematic mismatch errors. In this regard, adding dummy devices to avoid edge effects, 

   

               (a)                                                                            (b)  

Figure 3.13: Accumulated normalized error in       CSA;  

(a) Square CSA; (b) Non-square CSA         
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providing wide power/ground lines to eliminate voltage drop across chip, and using cascode 

transistor (MCasc) to increase output resistance of the unit source are adopted in this work. 

One of the advantages of using deserializer instead of decoder is that the switching sequence can 

be changed after fabrication of SCSDAC. As part of the proposed block diagram in Figure 3.8, 

the position of input data in the shift register is shown in Figure 3.14. At any cell of this register, 

a logical high switches on corresponding current source in the unary or binary-weighted 

segments.    and    notations represent binary-coded and thermometer-coded input data. The 

SCDAC is segmented into 4-bits of binary and 6-bits of unary format. In this case, the CSA 

includes 63 unary sources each of which are split into 4 parallel units and results in       array 

of similar transistors. In fact, the order of serial data bits determines the unary sources that will be 

switched on. Hence, the switching sequence might be further optimized based on the test results. 

 

Nevertheless, MATLAB simulations were done to find optimized symmetrical switching 

sequence after sizing unit transistor in unary segment of proposed SCSDAC. In these 

simulations, normalized linear and quadratic gradient mismatch error with an average of zero was 

taken into consideration. The accumulated error for different symmetrical sequences of 63 unary 

sources were simulated and compared. Table 3.6 illustrates the selected sequence which resulted 

in the lowest accumulated error. Highlighted cell is used for the bias transistor.  

Table 3.6: Selected switching sequence in this work 

38 22 26 41 b 25 21 37 

6 53 57 10 9 56 52 5 

14 61 49 2 1 48 60 13 

45 30 18 34 33 17 29 44 

47 32 20 36 35 19 31 46 

16 63 51 4 3 50 62 15 

8 55 59 12 11 58 54 7 

40 24 28 43 42 27 23 39 

u63 u62 ….. u3 u2 u1 b4 b3 b2 b1Serial input

CLKs

 

Figure 3.14: The position of input data in the shift register 
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3.4.3 Circuit design 

In this phase, the circuit of the SCSDAC will be designed. It includes: (1) Bias and unit current 

values; (2) The size of MCS, MCasc, MSW, and transistors in digital blocks; (3) Output resistance of 

each unit source; (4) Proper switch driver circuit. Both static and dynamic performance should be 

taken into account in design procedure [59]. With regard to the specific application of this work, 

the main concern is the accuracy and linearity in low frequency signal generation. However, 

dynamic performance should be optimized for the maximum sample rate mentioned in Table 3.2.  

In terms of static performance, the SCSDAC must be designed for optimized behavior against 

random and systematic mismatch errors. At first, unit current, INL yield, gate overdrive voltage 

of MCS, and size of transistors are determined to minimize the effects of random errors. To reduce 

the impacts of systematic errors, increasing output resistance of each source, setting the poles of 

the frequency response, and using layout design techniques have to be considered [59,73]. 

Figure 3.15 depicts details of the SCSDAC. Four LSBs and six MSBs are implemented in binary 

and unary segments, respectively.  
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Figure 3.15: Detailed diagram of the proposed SCSDAC;  

(a) DAC core; (b) Bias circuit; (c) Cascode and switch cell; (d) Deserializer and switch driver; 
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In Figure 3.15(a), the current in M1 branch represents the unit current (ILSB). Other current source 

branches are composed of several unit sources in parallel. The number of paralleled elements is 

shown in angle brackets. One MCasc and two MSW form a cascode-switch cell in the M1 branch, 

shown in Figure 3.15(c). This cell is also repeated in higher order branches. Bias voltages of all 

MCS and MCasc transistors are provided by bias circuit in Figure 3.15(b) which is a stable β-

multiplier reference circuit. Switch driver has to generate two on/off commands for MSW-a and 

MSW-b. In order to prevent glitches at the drain node of MCS and MCasc, at least one of the two 

switches should be on at any time. The synchronization between on/off commands of each branch 

is the major challenge in the design of switch driver shown in Figure 3.15(d) [47,59]. 

Using large MCS, the unit current source is forced to meet the criteria in Eq. (3.19). That is: 

       

    
                                                            (3.28) 

Additionally, unit current is related to the Full-Scale current (IFS) or swing voltage (Vswing) [59]. 

      
      

      
                                                       (3.29) 

      
   

  
                                                           (3.30) 

where RL is the load resistor. Considering, the cascode and switch transistors in M1 branch: 

                                                                 (3.31) 

where                        are the source-drain voltages of current source, cascode, and switch 

transistors, respectively. Eq. (3.31) reveals that higher Vswing restricts the headroom of the bias 

voltage of MCS and MCasc (VGS – Vth). Higher gate overdrive voltage is preferred to reduce the 

mismatch effects due to threshold voltage variations. Thus, lower Vswing should be selected or the 

DAC output must be virtually connected to ground by using a current buffer shown in Figure 

3.16. Moreover, switch transistors should remain in saturation for the maximum output voltage. 

 

Rf
CSDAC

+

_

RL Vout

+

-
 

Figure 3.16: Current buffer  
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Finite output impedance of current sources is an important source of systematic and graded 

errors. In [48,59,73], analyses have been performed to characterize this phenomenon. Assuming 

ideal current sources in the SCSDAC of Figure 3.15(a): 

                 
                    

  
                    (3.32) 

where X is the digital input code,      is the unit current value. However, output impedance is a 

finite value which is reducing as output signal frequency increases. Ideal and non-ideal circuit 

models are shown in Figure 3.17, where         is the input-dependent equivalent impedance of 

the switched-on current sources,         and          are ideal and non-ideal load currents. 

 

In [48], the impact of non-ideal current sources on the INL is formulated: 

     
     

    

          
                                                           (3.33) 

where N is the number of bits and          is the finite output impedance of LSB current source. 

Two poles are formed by the capacitors at drain nodes of MCS and MCasc. In lower output 

frequencies series combination of MCasc and MSW results in a very high         . As frequency 

increases, the effects of these two poles appear as decrease of         . To overcome this 

problem, the poles must be moved toward higher frequencies. This can be done by using layout 

techniques and smaller size transistors. However, MCS has to be a large transistor to reduce 

mismatch and displacement of its pole which is dominant, is not possible. Hence, careful 

attention should be paid in designing the layout of MCasc drain node.  

There is also another tradeoff between          and     . While higher      improves SNR [73], 

increasing      degrades         ; since it is inversely proportional to the       
 and         

.  In 

Iout(X)=X × ILSB

RL

Vss

Vdd

RL

Vss

Vdd

Rout (X)

Iload,niIload,i

(a) (b)

Iout(X)=X × ILSB

 
Figure 3.17: CSDAC model: (a) Ideal current sources; (b) Non-ideal current sources  
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addition, larger channel length (L) of MCS results in higher       
 and higher         . In terms 

of dynamic performance, limited          affects dynamic performance. According to [73]: 

            
        

     
                                           (3.34) 

In the applications that SFDR matters, Eq.(3.34) can be used in adjusting         .  

In the design of the latch and switch driver, perfect synchronization required between 

complementary switch commands (  /     and   /    ) for ameliorating dynamic performance. 

Such synchronization reduces digital input signal and clock feedthrough to the output node [59].  

Considering all the constraints and tradeoffs, the designed parameters are tabulated in Table 3.7. 

Monte-Carlo simulations were also performed to ensure the relative SD of the ILSB and INL yield. 

Table 3.7: Designed parameters of the proposed SCSDAC  

Parameter 
Designed specification Unit

 

Definition Symbol 

Output frequency range fout 1 ~ 10 kHz 

Sample rate fs < 3.2 MHz 

Technology ─ CMOS 0.13µm ─ 

Power supply Vdd 1.2 V 

Resolution N 10 bit 

Unary-segment ─ 6 bit 

Binary segment ─ 4 bit 

Unit current ILSB 1 µA 

Full scale current IFS 1023 µA 

Output resistance RL 100 Ω 

Full scale swing Vswing 102.3 mV 

Switching scheme 
─ Splitting MCS by 4 ─ 

─ Sequence of Table 3.6 ─ 

Switch driver structure ─ Non-overlapping clock generator  

MCS 
Width WCS 16 µm 

Length LCS 18 µm 

MCasc 
Width WCasc 1.2 µm 

Length LCasc 0.5 µm 

MSW 
Width WSW 0.2 µm 

Length LCasc 0.2 µm 
1 Based on Monte-Carlo simulations 
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3.4.4 Layout design 

Although smaller blocks must be designed first in hierarchical design methodology, both top-

down and bottom-up design strategies are necessary in schematic and layout design of the 

targeted SCSDAC. After generation of sized circuits, schematic simulations, and design 

optimization, layout of all blocks are individually generated using Cadence Virtuoso Layout XL. 

The floorplan is outlined with reference to the estimated area for main building blocks. Shown in 

Figure 3.18, the CSA is tried to be laid out at the center of the die. To be far from digital blocks, 

the bias circuit is placed at the top of the chip. Separate power supply pads are considered for 

different blocks. The switch driver is placed very close to cascode and switch array to improve 

the synchronization of switch commands [59]. Since the parasitic capacitor at drain node of 

MCasc, tremendously degrades output resistance of the current source, MCasc and MSW should be 

very close to reduce metal connection between them. Wide power and ground lines and dummy 

elements in the CSA have to be used to ameliorate the linearity. On-chip decoupling capacitors 

are also used to get more stability [69,70,74]. Layout view of SCSDAC is shown in Figure 3.19. 
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Figure 3.18: SCSDAC floorplan  
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3.5 Conclusion 

In this chapter, complete design procedure of a 10-bit SCSDAC dedicated to excitation signal 

generator path of a smart sensor interface was presented. This DAC is part of the ESG which was 

systematically designed. The design specifications were extracted from the system level 

architecture and requirements of the ESG. Based on the desired parameters, the SCSDAC was 

hierarchically designed in four individual stages: (1) in architectural level, DAC was segmented 

into binary-weighted and thermometer-decoded sections; (2) in module level, proper switching 

scheme was discussed and the impacts of CSA size on the performance of switching sequences 

were introduced; (3) in the circuit level, the transistors are sized based on the required static and 

dynamic performance; (4) layout floorplan and challenges is explained as the last stage of the 

design. In the next chapter, the testing and measurement techniques for digital to analog 

converter will be described which will be followed by simulation and measured results of the 

fabricated chip. 

 
Figure 3.19: Designed layout of the SCSDAC  
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CHAPTER 4  

SIMULATION AND MEASUREMENT RESULTS 

 

 

4.1 Introduction 

The proposed SCSDAC was designed, simulated, and fabricated in IBM-PDK CMOS 0.13µm 

technology. The complete schematic and layout design procedure and considerations were 

presented in chapter 3. In addition to the design steps which are defined in the literature, the 

impact of physical implementation of the CSA on the linearity of the CSDAC is also introduced 

as a new design consideration. 

In this chapter, detailed simulation and measurement results of the individual building blocks and 

the whole chip are presented. General basis and techniques of testing DACs are reviewed in 

Section 4.2. Then, schematic and post-layout simulation results are discussed in Section 4.3 

which is followed by measurement achievements in Section 4.4.  

4.2 DAC testing techniques 

Considering the specifications of the DAC, listed in Table 3.3, two test setups are required for 

measuring static and dynamic parameters. Precision multimeter with current and voltage 

measurement capability is the most important equipment in the static DAC testing while a high-

speed oscilloscope and a spectrum analyzer are needed in dynamic testing of DAC performance. 

Figure 4.1 illustrates the static and dynamic test bench setup in this work. In static testing, after 

latching any input code (67-bit of data corresponding to a 10-bit binary word) in the deserializer 

block of the proposed SCSDAC, the differential output current should be precisely measured. 

The output current can be converted to voltage by using two high-precision load resistors. Proper 

input codes must be sequentially and periodically applied to the deserializer in order to measure 
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the dynamic specifications of the generated analog signal by the SCSDAC. Shown in Figure 

4.1(b), high-speed oscilloscope and spectrum analyzer are used to measure time and frequency 

domain specifications. Here, level shifter block is required to convert the digital high voltage 

level of the FPGA platform into 1.2 V which is the standard supply voltage in IBM 0.13µm 

CMOS process. 

 

4.2.1 Static specification measurement 

Monotonicity, offset error, gain error, and INL are the most important specifications which 

represent the static accuracy of DAC [49]. If DAC output increases or hold its value for an 

increasing digital input data, the DAC will be monotonic. The DNL can be used as an indication 

of monotonicity. In CSDACs, offset error is the output voltage corresponding to all ―0‖s code.  

                                                                      (4.1) 

where     is the offset voltage and           is the DAC output for all ―0‖s code. 

In an ideal CSDAC, the outputs for all ―0‖s code and all ―1‖s code are zero and         , 

respectively. The line which connects these two end-points is the ideal transfer function and its 

slope is the ideal gain of the DAC. The slope of the measured transfer function indicates the real 
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Figure 4.1: Test bench setup for DAC measurement; (a) Static testing; (b) Dynamic testing 
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gain. Deviation of real gain from ideal expected gain is the gain error.     must be cancelled in 

calculating gain error. 

                     
             

          
                                      (4.2) 

where          is the DAC output for all ―1‖s code, and     is the full scale output current which 

is equal to         . The offset and gain errors are shown in Figure 4.2 [49]. 

 

The linearity of the DAC is measured based on the real transfer function. In general, calculation 

of DNL and INL is a time consuming procedure since all combinations of the input code must be 

applied to the DAC and the corresponding output is measured. In binary segment of the SCSDAC 

where the error of each bit does not affect the error of other bits, superposition can be used in 

order to reduce the number of test cases for measuring linearity. In contrast, superposition cannot 

be applied to the unary-weighted segment. Therefore, all of the MSB input code combinations 

must be generated by the FPGA platform in Figure 4.1 [49]. The DNL and INL at any input code 

can be calculated using Eqs. (4.3-4). 

                                                                       (4.3) 

           
 
                                                        (4.4) 
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Figure 4.2: Offset and gain errors in CSDAC 
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4.2.2 Dynamic specification measurement 

Settling time and glitch impulse area are the most important time-domain dynamic specifications 

of the DACs. Maximum sample rate of the DAC should be considered in dynamic testing. 

Settling time is defined as the transition time from the output of all ―0‖s code to the output of all 

―1‖s code. The error band can be defined in terms of LSB or a percentage of the full scale. Glitch 

impulse area is defined as the sum of the area of four glitches happened in the worst case 

transition of the DAC output. The above-mentioned parameters are shown in Figure 4.3. 

Wideband high-speed oscilloscope must be used in measuring glitch area and settling time [49].  

 

 
(a) 

 
(b) 

Figure 4.3: Time-domain dynamic specifications; (a) Settling time; (b) Glitch impulse area [49] 
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In the frequency domain, SNR, THD, SFDR, and SNDR are the most important specifications 

which characterize the distortion of the output signal of a DAC. Here, periodic samples of single 

tone sine wave signal are needed to be consecutively applied to the DAC. Thus, a word generator 

or arbitrary digital waveform generator can be employed. The generated analog output is then 

analyzed using a spectrum analyzer whose input dynamic range is higher than the full scale range 

of the DAC. The resolution bandwidth (RBW) of the spectrum analyzer should be set to 

minimum in order to resolve the fundamental frequency and harmonics. In this case, the process 

gain of the analyzer should be calculated in the characterization of the DAC. Depending on the 

sample rate, several harmonics may fall back inside the Nyquist bandwidth due to aliasing. Being 

defined in the literature, the SNR, THD, SFDR, and SNDR are described in Figure 4.4 and 

Eqs.(4.5-7) [49].  

 

                          
  

    
                              (4.5) 

where S/Noise floor is the noise floor level comparing with signal level and is expressed in dBc, 

   is the sample rate, and    is the resolution bandwidth of the spectrum analyzer. 

                                                           (4.6) 

where V2 to V6 are the power level of the first 6
th

 harmonics with respect to the signal level and 

expressed in dBc. THD can also be defined for different number of harmonics and is measured 

for the full scale output signal.  

                                                            (4.7) 

 
Figure 4.4: Frequency spectrum of DAC output [49] 
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In order to eliminate the correlation between the output frequency and the quantization noise, it is 

crucial that the sample rate be a non-integer multiple of the output frequency. With this 

assumption, the SFDR is the power of the worst spurious component with reference to the power 

of fundamental frequency component and expressed in dBc. If the spur level is compared with 

the full scale fundamental power, SFDR will be shown in dBFS (dB Full Scale) [49]. 

4.2.3 Simulation result characterization 

While the specifications of measurement equipments have significant role in characterization of 

the fabricated SCSDAC, precise test bench setup as well as accurate Discrete Fourier Transform 

(DFT) algorithm is essential measurement solution in analyzing schematic and post-layout 

simulation results. Considering the hierarchical architecture of the design, each building block 

and the complete SCSDAC chip must be simulated and verified in circuit and layout levels. In 

the Analog Design Environment (ADE) in Cadence simulator, ideal sources are available to 

power up the chip and generate the input/output signals for the DAC. Using these sources, the 

schematic and layout of major building blocks of the SCSDAC can be verified. However, serial 

input data and the two clock signals (refer to Figure 3.15) should be generated using VerilogA 

coding in the chip level simulations.  

In addition, DFT analysis is needed for extracting the power spectrum of the DAC output signal 

and measuring dynamic performance in circuit and layout level. Although DFT and other 

mathematical functions are available in the Cadence Calculator, the generated signal can be better 

analyzed using MATLAB functions. Therefore, the output signal must be sampled in Cadence 

environment and sent to MATLAB for further verification. Figure 4.5 depicts the simulation test 

setup. To avoid very long simulation time of the whole SCSDAC, the data should be captured 

from the minimum length of transient analysis in Cadence and then processed in MATLAB. 
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Figure 4.5: Test bench setup for DAC simulation 
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To accelerate calculation of the DFT in MATLAB, Fast Fourier Transform (FFT) algorithm 

might be employed. However, FFT prerequisites impose several limitations on the choice of the 

output frequency and the number of sampled data captured in Cadence. For an N-point DFT: 

     
 

 
       

      

    
                                      (4.8) 

where      is the time domain sampled signal,   is the number of DFT points, and      is the 

DFT of the     . DFT values for     
 

 
 are corresponding to the frequency range from zero 

to 
  

 
 , where    is the sample rate. Thus, the width of each frequency bin is 

  

 
 and therefore, larger 

  results in higher resolution in frequency domain. On the other hand,   must be a power of two 

in FFT routines and the number of samples in time domain should be equal to the number of FFT 

points. Furthermore, sampled signal must be periodic. This means that if two set of samples are 

repeated one after another, there should be no phase discontinuity in the signal. Otherwise, 

spectral leakage aberrations will appear in the FFT output. Hence, the signal must be windowed 

before being applied to the FFT calculator, if the samples are unknown or non-periodic. 

Additionally, fundamental frequency component of the signal must be a prime number multiple 

of the width of each frequency bin. 

      
  

 
                                                          (4.9) 

where   is a prime number. A non-prime value of   concentrates the noise at the harmonics of 

   . Thereupon, lower SFDR is resulted [49]. 

4.3 Simulation results 

In this section, the schematic and post-layout simulation results of the main building blocks of the 

proposed SCSDAC will be presented. Considering the design phases which were explained in 

Chapter 3, the LSB current source and the whole DAC circuit were simulated in order to verify 

and validate the design. 

Based on the designed transistor sizes reported in Table 3.7 the complete circuit diagram of the 

LSB current source is shown in Figure 4.6. In this circuit, each of the ten nodes plays a 

significant role in the overall performance of the SCSDAC. Referring to Figure 3.15, using 
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parallel unit transistors in higher order current sources will result in 1023 LSB sources. 

Therefore, both system and circuit level design criteria should be taken into account in evaluating 

the performance of the LSB source. 

 

Driven by VG,CS and VG,Casc, nodes 1 and 2 are the common gate nodes for all of the MCS and 

MCasc transistors, respectively. Nodes 3 and 4 provide on/off commands for the switch transistors 

and are driven by Vb1 and its complementary voltages. Nodes 5 and 6 are the differential outputs 

which are common for all sources and are connected to the load resistor and capacitor (RL and 

CL). 7 and 8 are the most critical nodes in this circuit in terms of dynamic performance. The 

parasitic capacitors should be minimized at these nodes. Power supply and ground connections 

are provided through 9 and 10 nodes. While 10 is an off-chip node, very low resistance path 

should be designed in the layout in order to guarantee uniform distribution of Vdd. 

According to design aspects presented in Chapter 3, the main objectives of the LSB current 

source is to generate an accurate LSB current of 1 µA with: (1) guaranteed operating point in the 

saturation region for all transistors; (2) minimized random and systematic error; (3) high output 

resistance; (4) minimized glitch impulse area and input feedthrough; (5) high switching speed.  
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Figure 4.6: LSB current source 
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4.3.1 Transistor operating regions 

Although higher Vswing is desired, increasing Vout pushes the MSW and MCasc toward the triode 

region. Referring to Figure 4.6, increasing Vout (V5 or V6)  reduces VSD of MSW and slightly 

decreases ILSB. Then the current mirror functionality of the circuit tries to keep ILSB constant by 

increasing V7. Thus, the VSG,SW slightly increases. Further increasing Vout more reduces VSD,SW 

and changes the operating region of MSW (depending on Vth,SW). If Vout is increased more, the 

same situation will happen for the MCasc that should be prevented in the design. Considering the 

supply voltage of 1.2 V and simulation results in IBM 0.13 µm CMOS technology, the maximum 

Vout for which all the transistors are in the saturation region is almost 410 mV. It should be noted 

that the body of PMOS transistors in Figure 4.6 is connected to Vdd in order to use the same 

NWELL for the MSW and MCasc and reduce the parasitic capacitors at node 7. This imposes 

variability of Vth due to the body effect in MSW and MCasc.  

Additionally, Eq. (3.28) defines another constraint on the ILSB which is slightly varying with the 

variations of Vout. Moreover, it must be noticed that pushing transistors more into the saturation 

region results in higher bandwidth which is desired in dynamic performance of the SCSDAC. On 

the other hand, maximum Vout is equal to RL multiply by IFS. This implies that RL and/or IFS must 

be increased to increase Vout. While increasing RL degrades the linearity based on Eq. (3.33), 

augmenting IFS needs larger MCS. In Figure 4.7, the variations of ILSB, VSG,SW, VSD,SW, VSG,Casc, 

and VSD,Casc are depicted versus Vout.  

 

While the results in Figure 4.7 are obtained using an ideal reference current, Figure 4.8 shows the 

same results with the designed bias circuit. Figure 4.9 indicates these curves for MCS. 

 
(a)                                                (b)                                              (c) 

Figure 4.7: Vout effects (ideal bias) (a) ILSB; (b) VSG and VSD of MSW; (c) VSG and VSD of MCasc; 
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As discussed above, there is a tradeoff between Vswing, linearity, bandwidth, and the size of 

current source transistors. With reference to the full scale current of 1023 µA, we have used load 

resistor of 100 Ω to achieve 102.3 mV full scale output voltages. The results in Figure 4.7 and 

Figure 4.8 guarantee the saturation of transistors. Variations of Vth of all transistors in different 

corners are tabulated in Table 4.1. 

Table 4.1: Threshold voltage of transistors in LSB current source 

Voltages Transistors 
Simulated corners

 

tt ss sf fs ff 

Vth0 (mV) 

MCS 229.6 250.7 207 247.5 201.3 

MCasc 279 296.3 262 292 256 

MSW 352 356.7 350.6 350.4 344 

Vth
1 (mV) 

MCasc 341 361.6 321 355.7 313 

MSW 435 434.5 438.3 428 432 
1. Threshold voltages are calculated for Vout = 102.3 mV 

                                  

(a)                                                                                (b) 

Figure 4.9: VSG,CS and VSD,CS versus Vout (a) ideal bias; (b) designed bias; 

 

(a)                                                (b)                                              (c) 

Figure 4.8: Vout effects (designed bias) (a) ILSB; (b) VSG and VSD of MSW; (c) VSG and VSD of MCasc; 
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4.3.2 Output current precision  

Monte Carlo simulation and intentional alteration of circuit parameters were used to evaluate the 

robustness of the design and the precision of the output current in LSB and full scale levels. 

Simulating random and systematic error among CSA was the specific objective of this analysis. 

In this regard, the impacts of any change in Vdd, size of all transistors, and the resistance of the 

Vdd distribution path were studied. This investigation is done for both cases of using an ideal 

reference current or the designed bias circuit. 

In the previous section it was shown that by changing Vout from 0 to 102.3 mV, the precision of 

ILSB is              and              for ideal and design bias circuits, respectively. 

The aberration of ILSB as a result of       variation in Vdd is shown in Figure 4.10. In the worst 

case, ILSB is reduced by       and      using ideal or designed bias circuit, respectively. In 

order to keep the ILSB variations below       using biased circuit, the Vdd should be maintained 

between 1.15 V and 1.25 V. 

 

An important challenge in the layout design of the SCSDAC is the resistance of Vdd distribution 

path. A variable resistor is placed in series with MCS, in order to simulate this phenomenon. As 

depicted in Figure 4.11, larger Vdd path resistance reduces the ILSB and increases the power 

dissipation of the chip. It is shown that a 100 Ω resistance reduces the ILSB by         or 

        depending on the type of bias circuit. Accordingly, the metal path resistance should be 

less than 12 Ω in order to keep the ILSB variations below       . The resistance of the Vdd path 

              

(a)                                                                    (b) 

Figure 4.10: ILSB aberrations due to Vdd (a) ideal bias; (b) designed bias; 
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depends on the type, length, and width of the metal layer and can be calculated using technology 

parameters [69]. 

 

Monte Carlo simulations were done on the LSB current source and the results are shown in 

Figure 4.12 for 500 iterations. Using an ideal reference current, the relative SD of the ILSB is 

almost       which is better than requirements in Eq. (3.28). This metric is       when designed 

bias circuit is employed. In fact, the reason for such a difference is that the process and mismatch 

variations are also applied to the bias circuit in Monte Carlo simulations. Thus, the reference 

current is changing which exacerbates the SD of the ILSB. Nevertheless, since the INL is 

measured with reference to a straight line drawn through the actual zero and full scale of the 

DAC [49], Figure 4.12(a) represents the behavior of the LSB current source against process 

variations. On the other hand, Although selecting large gate area of MCS results in higher 

precision in ILSB, it will impose large CSA area and more layout limitations in meeting the design 

rules of the technology [69]. 

 

              
(a)                                                                    (b) 

Figure 4.12: ILSB reduction due to resistance of Vdd path (a) ideal bias; (b) designed bias; 

 

              
(a)                                                                    (b) 

Figure 4.11: ILSB reduction due to resistance of Vdd path (a) ideal bias; (b) designed bias; 
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In the next step, degradations of ILSB with       change in width and length of MCS, MCasc, and 

MSW are simulated and the results are shown in Figure 4.13 to Figure 4.16. These impacts on the 

precision of ILSB are summarized in Table 4.2. 

 

 

 

 
(a)                                                (b)                                              (c) 

Figure 4.15: ILSB variations with the size of MCasc and MSW using ideal bias circuit 

(a) WCasc; (b) LCasc; (c) WSW and LSW; 

 

              
(a)                                                                    (b) 

Figure 4.14: ILSB aberrations due to size of MCS with designed bias circuit (a) WCS; (b) LCS; 

 

              
(a)                                                                    (b) 

Figure 4.13: ILSB aberrations due to size of MCS with ideal bias circuit (a) WCS; (b) LCS;  
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Table 4.2: Simulation results of impacts of circuit parameters on precision of ILSB 

Parameter Precision of ILSB (%) 

Description 
Typical 

value 

Maximum variation 

[69] 

Simulated 

variation range 
Ideal bias 

Designed 

bias 

Power supply (Vdd) 1.2 V N/A 1.08 ~ 1.32 V 0.1 1.4 

Output voltage (Vout) ─ N/A 0 ~ 102.3 mV                      

Resistance of Vdd path ─ N/A 0 ~ 100 Ω                 

Width of MCS 16 µm ± 0.047 µm 14.4 ~ 17.6 µm                     

Length of MCS 18 µm ± 0.022 µm 16.2 ~ 19.8 µm                     

Width of MCasc 1.2 µm ± 0.047 µm 1.08 ~ 1.32 µm                     

Length of MCasc 0.5 µm ± 0.022 µm 0.45 ~ 0.55 µm                     

Width and length of MSW 0.2 µm ± 0.022 µm 0.18 ~ 0.22 µm                   

 

In order to evaluate the precision of ILSB, the width and length of transistors are changed by 

      in this work. Based on the facts and figures of Table 4.2, LCasc variation results in the 

worst degradation in ILSB. However, not only the simulated range is more than twice the predicted 

variation during fabrication, but also the contribution of this error in the whole mismatch among 

LSB sources is very low.  

 
(a)                                                (b)                                              (c) 

Figure 4.16: ILSB variations with the size of MCasc and MSW using designed bias circuit 

(a) WCasc; (b) LCasc; (c) WSW and LSW; 

 



76 

 

4.3.3 Output resistance of current sources 

The output impedance of the LSB current source is also simulated and studied in this work. 

Theoretically, larger channel length, shorter channel width, smaller IDC, and lower gate overdrive 

voltage increase the output resistance of a MOS transistor [47]. Larger Rout improves the INL and 

the SNDR of the DAC but decreases the bandwidth if large channel length is used. Considering 

the LSB current source shown in Figure 4.6, the equivalent capacitors at nodes 7 and 8 determine 

the poles of the frequency response of Rout. The equivalent circuit is shown in Figure 4.17. CCS 

and CCSW indicate the equivalent capacitors at nodes 7 and 8. 

 

Considering the size of MCS and the layout connections from CSA to switch-cascode array in the 

floorplan shown in Figure 3.18, CCS is expected to be much larger than CCSW and create the 

dominant pole in the Rout frequency response [57]. Figure 4.18(a) and (b) show the plot of Rout in 

frequency domain in linear and logarithmic scales up to 1 GHz. Since these curves are acquired 

from schematic view, the impacts of layout connections are not simulated. Therefore, the effects 

of CCS and CCSW are not discriminated. In Figure 4.18(c) an intentional 1 nF capacitor is added in 

parallel with CCS in order to highlight the position of the poles. In order to simulate the effect of 

different number of parallel current sources, parametric simulation were performed using 

different values of CCS and CCSW. The results are shown in Figure 4.19. 
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Figure 4.17: Equivalent circuit of LSB current source 
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Figure 4.19(b) confirms the importance of reducing CCSW in obtaining high Rout. The output 

resistance of the proposed SCSDAC is the lowest when all of the 1023 LSB sources switch their 

current into the output node. The overall Rout of this condition is depicted in Figure 4.20 where 

the resistance at 1 kHz and 10 kHz are shown for CCSW values of 0, 10 fF, and 100 fF.  

 

                     
(a)                                                                         (b) 

Figure 4.20: Rout of full scale output for various CCSW (a) linear scale; (b) logarithmic scale; 

                  
(a)                                                                        (b) 

Figure 4.19: Rout of LSB source for various (a) CCS; (b) CCSW; 

 
(a)                                                (b)                                              (c) 

Figure 4.18: Rout of LSB source (a) linear scale; (b) logarithmic scale; (c) CCS = 1nF 
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Careful layout considerations were taken into account to minimize the parasitic capacitors which 

are in parallel with CCSW and CCS. The layout view of the MSW and MCasc are shown in Figure 

4.21 [57]. In this solution, there is no metal connection between the drain of MCasc and the source 

of MSW. Nonetheless, using the parasitic extracted view of this layout cell in the simulations 

slightly increase CCSW and CCS. The resulted deflection on Rout is shown in Figure 4.22. 

 

 

Although Rout of LSB cell is still very high in Figure 4.22, paralleling the sources and chip level 

parasitic capacitors will further reduce the overall Rout of the proposed SCSDAC. In the next step, 

1023 parallel LSB sources were simulated using the layout cell of Figure 4.21. As can be seen in 

Figure 4.23, Rout is almost twice smaller than parallel equivalent of 1023 sources at 10 kHz. 

According to Eq. (3.33), output resistance of LSB cell must be less than 51 kΩ to guarantee an 

INL of 0.5 LSB. Based on the results of Figure 4.23, the contribution of Rout in the INL of the 

                  

(a)                                                                       (b) 

Figure 4.22: Rout of LSB source in layout and schematic (a) linear scale; (b) logarithmic scale; 

    
Figure 4.21: Layout of the LSB switch and cascode transistors 
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proposed DAC can be neglected. Moreover, no significant reduction of Rout is observed with 

changing Vout, WCS, and WCasc.  

 

4.3.4 Transient analysis 

The main role of using two switch transistors is to avoid switching of currents in each source. 

Referring to Figure 4.6, proper nonoverlapping switch control commands (nodes 3 and 4) are 

required to prevent charging and discharging of equivalent capacitors at nodes 7 and 8. Ideal 

switch commands are used to simulate the resulted transient response imperfection which is 

shown in Figure 4.24. In low frequency applications, appropriate load capacitor (CL) eliminates 

the generated glitch. Depicted in Figure 4.24(c), the drawback of using CL is longer settling time. 

 

 

(a)                                                (b)                                              (c) 

Figure 4.24: Effect of switch commands on ILSB; toverlap = (a) 10 nSec; (b) 0 Sec; (c) -20 nSec; 

                  

(a)                                                                       (b) 

Figure 4.23: Rout of SCSDAC for full scale output using layout cell 

 (a) linear scale; (b) logarithmic scale; 
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Simulation results of the designed nonoverlapping switch driver circuit is shown in Figure 4.25 

for CL = 0 and CL = 2 pF. Considering the design specifications in Table 3.2, maximum update 

period is almost 311 nSec. In the worst case, the settling time should be shorter than 5% of the 

update period (15.55 nSec) [49]. Furthermore, the maximum sine wave current step at the output 

of the DAC is almost 10 µA (        ) for the maximum update rate, based on Eqs. (3.5) and 

(3.6). The simulation results of Figure 4.26 shows that the settling time of this DAC is less than 1 

nSec in making a smooth transition (CL = 2 pF) from zero to 9.08 µA. This settling time is 

referenced to the 5   of the switch command. Using CL = 6 pF, the settling time is 2.9 nSec for 

full scale transition.  The results in Figure 4.26 reveal that adopting higher load capacitors will 

further reduce the glitch impulse without affecting the switching speed required in this work. 

 

 

                    

(a)                                                                          (b) 

Figure 4.26: Effect of designed switch driver circuit on output step of (a) 10µA; (b) IFS; 

                    

(a)                                                                      (b) 

Figure 4.25: Effect of designed switch driver circuit on output step of ILSB; (a) CL=0 ; (b) CL=2 pF; 
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4.3.5 Overall post-layout simulation results 

As the last step in post-layout simulations, a test bench was provided to generate appropriate 

digital data corresponding to 128 different samples in a complete sine waveform. The digital data 

was then serially sent to the input shift register of the SCSDAC synchronous with a serial clock. 

After sending each digital input word (Figure 3.14) to the SCSDAC, update clock loads it to the 

input latch and consequently the DAC output alters. The update clock frequency is set to 1.28 

MHz in order to generate 10 kHz sine wave. Lower update rates results in lower sine frequencies. 

To minimize the time of transient post-layout simulation, highest update rate is selected to 

achieve Figure 4.27. The update rate and sufficient number of samples per each sine cycle should 

be selected with regard to the specifications of the measured output signal of the DAC. Although 

higher number of samples per sine cycle generates a very smooth analog sine, larger memory is 

needed to save the digital words and higher serial and update clock frequencies will be inevitable. 

 

In order to extract the transfer function of the designed SCSDAC, all of the 1024 possible inputs 

are generated and applied to the extracted view of the layout. As a result the differential outputs 

of the DAC traversed the full scale output range which is shown in Figure 4.28. Careful 

examination of these curves indicates the monotonicity and accuracy of the analog output signal 

of the DAC. An update rate of 4 MHz is applied to the DAC in this simulation which is 

significantly higher than the desired oversampling rate mentioned in Table 3.2.  

      
Figure 4.27: Sine wave of 10 kHz generated in post-layout simulation (update rate = 1.28 MHz) 
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4.3.6 General discussion on simulation results 

With regard to the presented simulation results, there are several tradeoffs that should be 

carefully considered in the circuit-level design stage of the SCSDAC: 

1- Although PMOS transistors are slower than NMOS, they are more robust against noise. 

Thus, better SFDR and higher Rout is expected when PMOS is used in the CSDAC. 

Besides, the output node can be referred to the ground by using PMOS transistors. 

2- Higher ILSB is desired to increase the output voltage swing, but it results in lower Rout. 

3- Using switches with larger channel length significantly increases Rout. However, it 

decreases the switching speed and the bandwidth of the DAC. Smaller LSW reduces the 

input signal feedthrough and the power consumption and also needs smaller size 

transistors in the switch driver circuit. 

4- Glitch impulse area can be reduced by using smaller size transistors; however, large 

transistors are essential in reducing the effect of process variation.  

5- Although higher overdrive voltage of the MCS and MCasc minimizes the random error 

caused by the variations of Vth, it is limited by the voltage headroom of the technology. 

6- Synchronization of switch commands is very important with respect to dynamic 

performance, but it imposes high level of layout completion.  

      
Figure 4.28: DAC transfer function captured in post-layout simulation (update rate = 4 MHz) 
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4.4 Measurement results 

The designed SCSDAC is fabricated in a total die area of              using the IBM 130nm 

CMOS technology provided by CMC Microsystems [68]. Photomicrograph of the fabricated chip 

is shown in Figure 4.29. NCAP capacitors and wide metal wiring are used at different segments 

of the Vdd and bias voltage distribution paths. At the output and Vdd nodes of the DAC, wide 

thick metal connections are used in order to minimize the power dissipation. Beta-multiplier bias 

circuit with on-chip resistor is included in the design to generate reference voltages for the MCS 

and MCasc transistors. The choice of on-chip resistor prevents possible oscillation. A fast start-up 

circuit is also implemented in the bias circuit to avoid unwanted operating points. Fast edge-

triggered flip flops are employed in designing the deserializer.  

 

Despite the careful design strategy in system and circuit level, the chip could not be successfully 

tested. Nonetheless, detailed test and measurement were done over the chip in order to locate the 

problem. In the rest of this chapter, a discussion is provided to justify the malfunction and 

compare measurement results and post-layout simulation results of the chip. 

    

Figure 4.29: Photomicrograph of the designed SCSDAC 
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4.4.1 Verification and validation of the chip  

Verification and validation plan of the fabricated SCSDAC included the following steps: 

1- Visual and ohmic tests in order to check the internal connections through I/O pads.  

2- DC performance evaluation by applying the supply voltage to the chip in order to measure 

the supply current of the chip, DC voltages of I/O pads, and the output current 

corresponding to all ―1‖s and all ―0‖s input codes. 

3- Full static characterization of the SCSDAC by individually applying all input data 

combinations to the serial input synchronous with clock signals. 

4- Full dynamic characterization of the SCSDAC by applying various test patterns to the 

serial input synchronous with clock signals. 

5- Yield measurement and analysis by following the previous steps for all packaged chips 

and fabricated dice.  

The resistance and p-n junctions between various pads were measured and compared with the 

expected values based on the detailed schematic analysis of the chip. Upon completion of this 

step, different blocks of the SCSDAC are powered up by different power supplies via separate 

pads. After inspecting the DC voltages of all I/O pads, all ―1‖s and all ―0‖s input combinations 

are entered in the chip by applying sufficient number of clock pulses to CLKS and CLKP pads 

while the input serial data pad was connected to Vdd and ground, respectively. The results are 

summarized in Table 4.3. 

Table 4.3: Results of DC performance verification of the fabricated chip 

Test condition 

Post-layout simulation results Measurement results 

Ioutp 

(µA) 

Ioutn 

(µA) 

ISS
1
 

(µA) 

Ioutp 

(µA) 

Ioutn 

(µA) 

ISS
1
 

(µA) 

All ―0‖s input           1023.5 

1210 

        1023.2 

≈ 1400 

All ―1‖s input 1023.5           1023.2         

1 Average DC supply current of the chip. 



85 

 

4.4.2 Problem location and justification 

In spite of successful results in the ohmic and DC tests, the output current was not proportional to 

the input bit stream generated by the FPGA platform during static characterization. Further 

investigation and testing revealed that the input data is not correctly pushed into the input shift 

register. Functional block diagram of the SCSDAC is depicted in Figure 4.30 which includes the 

circuit diagram of the shift register. In order to obtain high speed serial input data transfer, 

minimum sized, edge-triggered, D-type flip flops are used in designing this shift register. All of 

the flip flops are triggered by the rising edge of the CLKS signal. For the testability purposes, the 

output of the last flip flop is set as an output signal in the designed chip.   

 

Assuming proper timing and synchronization between serial data input and the CLKS, one bit of 

the input stream will be shifted from D67 toward D1 position at each rising edge of the CLKS. 

Therefore, 67 rising edge of clock are needed to completely load one input word to the shift 

register. This word should then be loaded to the 67-bit latch by applying a rising edge to the 

CLKP. To verify this function, a repeating input data stream is applied to Din. In this stream, D1 

bit is high-level and the other bits are low-level. While it was expected to receive the ―1‖ at Dout 

after 67 rising edge of CLKS, the output appeared sooner than expected. By using a function 

generator as the source of the CLKS signal and reducing the rise time, the number of required 

MCS

MSW

MCasc

MSW

Vdd

Bias

Circuit

Vdd

Vss

Vss

ZL ZL

+

Vout

-

Ioutp Ioutn

Switch driver <1:67>

Current sources cells 

<1:67>

Latch (67-bits)

CLKS

D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q

Shift register (67-bits)

CLKP

D67
Serial data

Input

(Din)

D66 D65 D3 D2 D1D4

Serial data

output

(Dout)

   

Figure 4.30: Functional block diagram of the designed SCSDAC 
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clock edges to forward Din to Dout are listed in Table 4.4. Different number of pulses for each rise 

time shows the instability of the performance of the shift register. Even the fastest rising edge of 

the clock did not result in a correct functionality. 

Table 4.4: Measured test results of the input shift register 

tr (nSec) 
No. of rising clock edges for 

reaching Din to Dout 

100 18 ~ 20 

50 35 ~ 37 

20 59 ~ 62 

10 65 ~ 66 

5 66 ~ 67 

The same test pattern was also used in post-layout simulation of the chip with variable rise and 

fall time of the CLKS. Post-layout simulation results are presented in Figure 4.31 where the 

output of D62 flip flop is shown for two different clock rise and fall times of 6 nSec and 125 

nSec. D62 is selected to reduce the time required for post-layout transient analysis. Although the 

data is correctly reached to D62 after 6 rising edge of CLKS in Figure 4.31(a), it is corrupted in 

Figure 4.31(b). This problem could be due to the speed of the flip flops and the effects of 

parasitic capacitors in the clock distribution path. As a matter of fact, during long rise time of the 

clock several bits of the register are shifted. Moreover, the data is shifted in the falling edge of 

the clock. Further analysis and simulations on a single flip flop confirmed the detected problem. 

 

      
(a)                                                             (b) 

Figure 4.31: Post-layout simulations showing data shift from Din to D62  

(a) tr = 6nSec; (b) tr = 125nSec; 
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According to [75], this problem can also be caused by clock skew which is the time difference in 

the arrival of the clock at different flip-flops. In fact, a racing happens between the data and the 

clock. This racing depends on the architecture of the clock distribution path and the delay of the 

logic gates (used in the implementation of each flip flop in the shift register). As a consequence, 

the serial data can pass the shift register during a shorter time than expected. With reference to 

the guidelines given in [75] and our observation during the test of this chip, an appropriate clock 

distribution network should be designed in order to overcome this problem. In this network, 

proper clock skew should be guaranteed among the 67-bit input shift register of the deserializer. 

In addition, the delay of the digital gates and the clock path should be carefully analyzed to 

prevent unwanted racing between data and the clock.  

4.5 Conclusion 

In this chapter, the verification and validation strategy of the proposed SCSDAC were presented 

in simulation and measurement level. The testing methods and important static and dynamic 

specifications of a DAC were also discussed and explained. Lack of appropriate clock 

distribution network and the complexity of the input shift register disturbed accurate functionality 

of the input shift register and prevented correct data conversion process. However, consistent 

schematic and post-layout simulation results approve the design and confirm the required level of 

accuracy. 
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CHAPTER 5  

GENERAL CONCLUSIONS AND FUTURE WORK 

 

 

This Master thesis was concerned with conceptual design and partial implementation of a generic 

smart sensor interface for avionics applications. In this chapter, the contributions of this work 

will be reviewed and several directions will be suggested for future research work. 

5.1 Summary and discussion 

In the first part of this Master thesis, the system level block diagram of the ESG module was 

proposed in accordance with the overall SSI structure and the L/RVDT sensor requirements. We 

argued that the memory-based signal generator architecture supports the desired system level 

specifications. This means that the digital samples of a sine-waveform which are stored in a 

digital memory should be popped sequentially and sent to a DAC synchronous with a variable 

clock frequency. It was shown that the output signal of the DAC must be filtered and amplified in 

order to be applied to the sensor as excitation signal. In fact, this ESG architecture is used in 

modern arbitrary signal generators; however, we adopted the block diagram to be compatible 

with the SSI and the improved AFDX sensor network architecture. 

To extract the ESG design requirements, detailed system-level analysis of the SSI were presented 

in Section 3.2. With reference to the displacement sensor specifications and the model of the data 

acquisition unit of the SSI, we concluded the basic necessities of the proposed ESG block 

diagram. As the main building block of the ESG module, the requirements of the DAC were 

extracted in Section 3.2. We showed that high-speed 10-bit DAC is needed to convert the digital 

samples of a sine-wave to equivalent analog value. Based on demonstrated theoretical analysis, a 

SNR of 84 dB is achievable when an update rate of almost 3.2 MHz is used to generate the sine-

waveform in the desired frequency range of 1 kHz to 10 kHz. We also stated that the high update 

rate of the DAC relaxes the design of the anti-aliasing low pass filter which is used after the 

DAC. To meet the desired DAC specifications and supported by the outcomes of the literature 
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survey (Section 2.5), we selected segmented current-steering DAC (SCSDAC) architecture. We 

argued the choice of segmented type of CSDACs which significantly improves the linearity of 

the DAC.  

As the heart of this Master thesis, we explained and discussed the design procedure of the 

SCSDAC in Sections 3.3 and 3.4. Based on the most important specifications of the CSDAC 

which were summarized in Table 3.3, we discussed the three phases (architectural, module, and 

circuit level) of the SCSDAC design. While we determined the segment sizes and the required 

matching between current sources, the switching scheme was introduced in the module level 

phase. Many solutions have been proposed to increase the linearity and accuracy of this DAC 

type. Nonetheless, we found no published work in which the impacts of the size of Current 

Source Array (CSA) on the efficiency of the switching sequence have been considered. Hence, 

we analyzed and simulated such impacts in Section 3.4.2 as the main contribution of this work. 

We argued that the size of the CSA and the arrangement of the current source transistors in the 

layout-level must be considered in designing the most efficient switching sequence. In fact, it was 

shown that there is a significant correlation between the physical implementation of the CSA and 

the proper switching sequence. Choice of distribution pattern for current sources and switching 

sequence may play significant role in drawing the design strategy for the targeted DAC 

structures. Therefore, we followed a recursive approach corresponding to the laid out CSA in 

order to design the optimum sequence in this work. The derived sequence was introduced in 

Table 3.6. Some of the results of this work have been published in [58]. In the last phase of the 

design procedure, the transistor-level circuit and layout design challenges were explained in 

Sections 3.4.3 and 3.4.4. 

In Chapter 4, schematic and post-layout simulations were presented. It was shown that post-

layout simulations validate the design. Thus, an excellent accuracy and linearity were expected 

from the design. However, as a result of a problem in clock distribution path of the input shift 

register, we were not able to fully test the fabricated chip and characterize its performance. The 

details of locating this problem and its reason were discussed in Section 4.4.2. We also showed 

that same problem can be seen in the post-layout simulation if the rise and fall edges of the serial 

clock prolonged enough. However, the measurement results of the fabricated chip for all ―0‖s and 

all ―1‖s input combinations are within acceptable vicinity of the simulation results.  
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5.2 Directions for future work 

As discussed in Chapter 4, we faced a problem in clock distribution path of the input shift 

register. The main possible future work is a thorough survey on the architectures and solutions 

for clock distribution in high density integrated digital circuits. A new shift register can be 

designed and laid out along with the designed SCSDAC.  

In Section 3.2, we presented the architecture of a memory-based ESG which includes DAC, low 

pass filter, amplifier, and line driver. As a result of importance and complexity of the DAC, the 

rest the thesis was dedicated to the SCSDAC design. Based on the achievements of this work, an 

integrated low pass filter and amplifier can be designed and tested with the DAC. This is an 

interesting system on chip design which can be used in the SSI. 

As we explained in Chapter 1, the SSI includes a data acquisition module and an ESG. With 

reference to the achievements in the design and implementation of the data acquisition unit, 

integration of complete SSI will be a challenging work that improves the overall performance. 

The results of such work will comply with the main objective of the AVIO402 project. 

In Chapter 3, we introduced the impacts of the square and non-square CSA implementation on 

the efficiency of the switching sequence in CSDACs. Respecting this design criterion, we 

designed a non-square CSA with the possibility of employing various switching sequences. In 

order to further study this phenomenon, it is desirable to design a programmable integrated CSA 

which can be formed in square or non-square patterns. No major work has been done on this 

issue and it can boost our understanding of the above-mentioned impacts. 
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