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ÉCOLE POLYTECHNIQUE DE MONTRÉAL
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RÉSUMÉ

Les protocoles sécurité RFID sont des sous-ensembles des protocoles cryptographiques

mais avec des fonctions cryptographiques légères. Leur objectif principal est l’identification

à l’égard de certaines propriétés de intimité comme la non-traçabilité et la confidentialité de

l’avant. La intimité est un point essentielle de la société d’aujourd’hui. Un protocole d’iden-

tification RFID devrait non seulement permettre à un lecteur légitime d’authentifier un tag,

mais il faut aussi protéger la intimité du tag. Des failles de sécurité ont été découvertes dans

la plupart de ces protocoles, en dépit de la quantité considérable de temps et d’efforts requis

pour la conception et la mise en œuvre de protocoles cryptographiques. La responsabilité de

la vérification adéquate devient cruciale.

Les méthodes formelles peuvent jouer un rôle essentiel dans le développement de proto-

coles de sécurité fiables. Les systèmes critiques qui nécessitent une haute fiabilité tels que les

protocoles de sécurité sont difficiles à évaluer en utilisant les tests conventionnels et les tech-

niques de simulation. Cela a eu comme effet de concentrer les recherches sur les techniques de

vérification formelle de tels systèmes pour assurer un degré élevé de fiabilité. Par conséquent,

certaines recherches ont été faites dans ce domaine, mais une définition explicite de certaines

de ces propriétés de sécurité n’ont pas encore été donnée.

L’objectif principal de cette thèse est de démontrer l’utilisation de méthodes formelles

pour analyser les propriétés de intimité du protocole RFID. Plusieurs définitions sont don-

nées dans la littérature pour les propriétés non-traçabilité, mais il n’y a pas d’accord sur

sa définition exacte. Nous avons introduit trois niveaux différents pour cette propriété en ce

qui concerne les expériences de intimité existantes. Nous avons également classé toutes les

définitions existantes avec différents points forts de la propriété non-traçabilité dans la litté-

rature. De plus, notre approche utilise spécifiquement les techniques de calculs de processus

pi calcul appliqués pour créer un modèle pour un protocole. Nous démontrons les définitions

formelles de nos niveaux de non-traçabilité proposées et l’applique à des études de cas sur les

protocoles existants.
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ABSTRACT

Radio Frequency IDentification (RFID) is the wireless non-contact use of radio-frequency

electromagnetic fields to transfer data, for the purposes of automatically identifying and

tracking tags attached to objects. Since RFID tags can be attached to clothing, possessions,

or even implanted within people, the possibility of reading personally-linked information

without consent has raised privacy concerns. Privacy is the essential part of today’s society.

RFID protocols are subsets of cryptographic protocols but with lightweight cryptographic

functions. Their main objective is identification with respect to some privacy properties, like

untraceability. An RFID identification protocol should not only allow a legitimate reader to

authenticate a tag but also it should protect the privacy of the tag. Although design and

implementation of cryptographic protocols are tedious and time consuming, security flaws

have been discovered in most of these protocols. Therefore the responsibility for reliable and

proper verification becomes crucial.

Formal methods can play an essential role in the development of reliable security proto-

cols. Critical systems which requires high reliability such as security protocols are difficult

to be evaluated using conventional tests and simulation techniques. This has encouraged the

researchers to focus on the formal verification techniques to ensure a high degree of reliability

in such systems. In spite of the studies which have been carried out in this field, an explicit

definition for some of these security properties is still missing.

The main goal of this work is to demonstrate the use of formal methods to analyse RFID

protocol’s untraceability. Untraceability generally defined as ensuring that an attacker can

not get any information to be used to trace an object in time and space. Several definitions

are discussed in the literature for untraceability property, however, there is no compromise on

its exact definition. We have introduced three different levels for this property. We also have

classified all former definitions of untraceability property in the literature. In order to create

a model for a protocol and define privacy properties, our approach employs process calculi

technique, applied pi calculus. We have demonstrated the formal definitions of suggested

untraceability levels, extending them to some case studies on the existing protocols.

Keywords: RFID security protocol, privacy, untraceability, formal method, process alge-

bra, applied pi.
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CHAPTER 1

INTRODUCTION

As we advance through the 21st century, it has been demonstrated that, RFID technology

will continue to grow and expand beyond our dreams. RFID systems are expected to become

more common and useful tools in most of the remote object identification systems. Because of

their low production costs and tiny size, they are currently deployed in many fields. Sensitive

informations, such as credit card numbers, passport informations, social security, medical in-

formation, pass everyday through the insecure wireless channel. Unfortunately, there is some

concerns within the use of RFID in view of the minimal privacy and security held. Privacy

and security have been defined in (Marcella et Stucki, 2003) as, “when and with whom you

share your personal information,” and “how well information is protected from unauthorized

access, alteration, or destruction.”

The security and privacy objectives of so many systems have not been met. The compu-

tational limitations of RFID tags impose significant restrictions on the number and type of

cryptographic primitives that can be implemented on them. Nonetheless, widespread deploy-

ment of these tags and also the contactlessness of communication bring up new threats to the

user privacy. As an example, a tag can be embedded in a credit card or a passport which is

linked to the person’s identity,. In this case, the tracking of a tag turns into the tracking of a

person. Chotia and Smirnov studied on privacy attacks on e-passports (Chothia et Smirnov,

2010), illustrating that, it is possible to trace the displacement of particular passport, without

breaking the cryptographic functions.

This thesis will help the private design of RFID protocols and facilitate the analysis of

existing schemes through the particular focus on untraceability property. Untraceability is

one of the most important privacy properties which must be respected by an RFID system.

We would consider the protocols private, if privacy requirement could not be violated by any

adversary. Although, these properties are mostly used in the context of RFID systems, they

are issues for any protocol, which is applied by a mobile device.

The remainder of this chapter is structured as follows: RFID systems will be introduced

(Section 1.1). A brief description of cryptographic protocols will be revealed (Section 1.2)

and their security properties will be discussed (Section 1.3). Formal approaches for protocol
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verification techniques will be investigated in (Section 1.4). The Problem statement will be

notified (Section 1.5). The objectives of this thesis and the description of the contribution

will be presented (Section 1.6). Finally, an overview of the structure will be summarised

(Section 1.7).

1.1 RFID Systems

RFID is a system that transmits the identity (in the form of a unique serial number) of

an object wirelessly, using radio waves. It’s grouped under the broad category of automatic

identification technologies. Auto-ID technologies include bar codes, optical character read-

ers and some biometric technologies, such as retinal scans. The auto-ID technologies have

been used to reduce the amount of time and labour needed to input data manually, like bar

code systems, and to improve data accuracy. Some auto-ID technologies, such as bar code

systems, often require a person to manually scan a label or tag to capture the data. RFID

is designed to enable readers to capture data on tags and transmit it to a computer system

without needing a person to be involved.

The beginnings of RFID technology can be traced back to work carried out during World

War II on radar technology. In particular, an ancestor of modern RFID is the so-called

Identify Friend or Foe (IFF) system, first introduced in second world war and still in use to-

day to identify friendly or enemy aircraft. IFF, as used by the British Air Force at that time,

was what we would describe today as a programmable tag that upon interrogation would

return a code that identified the aircraft that carried it as friendly. Early IFF systems were

further developed in the 1950s and nowadays are in common use in civil as well as military

aviation.

Figure 1.1 Overview of an RFID system

An RFID system, as shown in Figure 1.1 is composed of three main components, a tag
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(transponder), a reader (transceiver) and the reader’s back-end database. A tag typically

has a microchip to store basic information (ID, manufacturer’s info) and an antenna for

transmitting signals to RFID reader. A reader can interrogate a tag by sending a signal

via electro-magnetic fields. The tag receives the signal through its antenna and responds

with information stored on its microchip, which is verified by the reader against its back-end

database. Although RFID systems are used as one of the most pervasive computing technolo-

gies, there are still so many security issues that need to be solved before their vast deployment.

This technology poses critical privacy and security concerns (Chothia et Smirnov, 2010). In

an RFID system, it is mostly supposed that the communication channel between a reader and

its back-end database is via secured wired channel while the channel between a reader and

a tag is wireless and insecure. Therefore studying the communication between the database

and the readers is not relevant. Hence, readers and database are often considered as a single

and unique entity in the security analysis.

Figure 1.2 Two samples of RFID Applications: Access Control & Supply chain

The use of RFID in society attracts lots of attention in the past few years because of its

beneficial features. The most well known application of the RFID tag is the supply chain and

logistics. RFID tags can be attached to the objects in a supply chain to track, secure and

manage goods throughout the entire production cycle. The overall cost of the supply chain

could be reduced by using low cost tags and also adopting high-efficiency bulk-processing and

non-human-intervention method. (Sarac et al., 2010; Khashkhashi Moghaddam et al., 2012).

RFID chips can also be embedded into passports to record the holder’s biometric information

such as fingerprint and iris data (Kumar et Srinivasan, 2012). Some 95 countries, including

the Canada and the United States have been using e-passports for several years (Passport

Canada). RFID tags also can be a key and used in access control systems. They can store

personal information for security check-ins. For example, an employee carries an ID card,

embedded with a RFID chip, could authenticate his or her identity at the security entry in

a facility very fast (Xiang, 2012). RFID system also has been used in a other industries like

http://www.ppt.gc.ca/eppt/index.aspx?lang=eng
http://www.ppt.gc.ca/eppt/index.aspx?lang=eng
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automatic payment systems, medical systems, animal tracking, libraries and smart appliances

(Fosso, 2012; Wamba, 2012; Kushal et al., 2012).

Different kind of tags are used in different places. Tags can be divided into three main

types. Passive tags, which do not require batteries, can be much smaller, and have an

unlimited life span. They are currently being developed by several companies globally. These

tags are much less expensive than other types. Passive tags receive all power from the reader

and necessarily cannot initiate any communications. Semi-passive tags are very similar to

passive tags except for the addition of a small battery. This battery allows the tag to be

constantly powered. Therefore, semi-passive tags are faster in response than passive, though

less reliable and powerful than active tags. Active tags have their own internal power source,

which is used to power tag to generate the outgoing signal. They are typically much more

reliable (e.g. fewer errors) than passive tags due to the ability for active tags to conduct a

”session”with a reader. Due to their on-board power supply, also transmitting at higher power

levels than passive tags, allows them to be more effective in ”RF challenged” environments

like water, heavy metal (shipping containers, vehicles), or at longer distances. Any active

tags have practical ranges of hundreds of meters. Table 1.1 depicts the main characteristic

of each group.

Table 1.1 Tag Classification

Property
Type

Passive Semi-Passive Active

Frequency(MHz) 860-960 868-915 and 2.4GHz 860-960 and 2.4GHz
Internal Power No Yes Yes
Bit Rate(kbps) 246 16 20/40/250
Read Range(m) 10 30 100
Cost(cents) 10-150 500-2000 1250-2500

1.2 Cryptographic Protocols

A security protocol also called a cryptographic protocol is a communication protocol

that performs security functions while applying cryptographic methods. Participants to a

protocol, called agents, have to follow some steps, known in advance, to communicate with

each other.

Cryptographic techniques are used for the protocols with a security objective. The security

objective might be confidentiality or might involve authentication, generation of random

sequences, or partial sharing of a secret. Since the communication medium in RFID systems
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is public, the messages in the wireless channels can be eavesdropped by any adversary with

the receiver equipment. An adversary may interface and even intercept, insert, block, modify

the messages in the wireless channel. This has made the design of secure protocols difficult.

Using cryptographic protocols is one of the solutions to overcome security threats in RFID

systems. Because of the resource limitation of RFID tags, it requires lots of efforts to find

a light weight and secure protocol. Therefore simple and light weight cryptographic oper-

ations like logical operations(e.g. XOR, AND, OR) mostly used in these protocols. Many

researchers have looked into the problem in order to design protocols which allow authorised

persons to identify the tags without an adversary being able to trace them. Numerous papers

addressing RFID cryptographic protocols have been published recently such as (Wang et al.,

2012; Bassil et al., 2012; Qi et al., 2012; Sun et Zhong, 2012; Lee, 2012; Jia et Wen, 2012).

Many works have used cryptographic primitives to encrypt the secrets like tag identifier.

Hash function-based protocols like (Lee et al., 2006; Henrici et Müller, 2004; Ohkubo et al.,

2003) are taking the advantage of one-way function to prevent direct exposure of secret. For

example authors in (Ohkubo et al., 2003) used two different hash functions, one for sending

tag’s internal state to the reader and the other for updating the tag’s secret. In addition,

Henrici in (Henrici et Müller, 2004) proposed a scheme that all the data management is done

in back-end and the tag only requires a hash function. Therefore the communication channel

does not need to be reliable and the reader need not be trusted and also no long-term secrets

stored in tags. Later Dimitriou in (Dimitriou, 2006) presented an optimized scheme using

hash functions, which do not require exhaustive search in the back-end database. Pseudonym

Random Function (PRF) has also been used in the design of RFID protocols. For exapmle in

(Tsudik, 2006), author presented an algorithm called YATRAP which needs only the secret

ID and a Pseudo Random Number Generator (PRNG). Later Chatmon et al. (Chatmon

et al., 2006) presented YA-TRAP+ and OTRAP.

Most of these schemes are 3-round identification protocols as depicted in Figure 1.3. The

first message is the starting request or may contain data such as a nonce. Nonce is an arbitrary

number used only once in a cryptographic communication. The main part of the protocol lies

on the information in the second message which changes at each new identification. It could

be either the tag’s identifier, or an encrypted version of its identifier. The third message is

not used for the identification of the tag but it may be used by the tag to update its identifier.

Within this thesis we will represent protocols graphically using message sequence charts.

Every message sequence chart shows a reader role R and a tag role T with the role names

framed, on the top of the chart. Above the role names, the role’s secret terms are shown.
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Figure 1.3 3-Round Identification Protocol

Events, such as nonce generation, computation, and assignments are shown in boxes. Mes-

sages to be sent and expected to be received are specified above arrows connecting the roles.

It is assumed that an agent continues the execution of its run only if it receives a message

conforming to the specification.

1.3 Security Properties

Cryptographic protocols are required to satisfy some security requirements also called

security properties. Depending on the protocol’s purpose, failure to preserve security prop-

erties may result in unveiling confidential information to an intruder and consequently, may

lead to protocol failure. These includes classical properties like secrecy and authentication or

privacy properties like anonymity or untraceability. These requirements must be overcome

to consider a protocol secure against the threats.

Secrecy and authentication are the two basic standard requirements of any authenti-

cation protocol. To define secrecy informally, we could say that a protocol P preserves the

secrecy of data M if P never publishes M , or anything that would permit the computation of

M , even in interaction with an adversary. In addition to the secrecy, an authentication pro-

tocol should also enable an agent to prove her identity. Recalling the client-server handshake

protocol, authentication ensures that the client C is only willing to share her secret with the

server S; it follows that, if she completes the protocol, then she believes she has done so with

S and hence authentication of S to C should hold. In contrast, server S is willing to run the

protocol with the client C who he is willing to, and hence at the end of the protocol he only

expects authentication of C to S to hold, if he believes C was indeed his interlocutor.

In addition to secrecy and authentication, there are other properties which could be
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conisdered as the main issue in RFID systems rather than other communication systems.

An RFID authentication protocol should not only allow a legitimate reader to authenticate

a tag but it should also protect the privacy of the tag. Here, we present the main privacy

properties which are generally required for RFID protocols.

Anonymity allows an entity to make transactions that cannot be known by others. If

the tag ID can be kept anonymous, the problem of leaking information pertaining to the

user belongings would be solved. Anonymity is the topic of most researches. This property

is highly important for tag owner privacy in the environment. It is informally defined by

the ISO/IEC standard 15408 as ensuring that a user may use a service or resource without

disclosing the user’s identity.

Figure 1.4 Anonymity

Intuitively, it says that an attacker cannot discern the tag from any information that the

owner necessarily reveals during the identification. This might include nonces or keys which

the tag owner is given during the protocol. Figure 1.4 shows the RFID tag anonymity.

Untraceability says that an attacker cannot trace the movement of a tag. RFID readers

in strategic locations can record sightings of unique tag identifiers, which are then associated

with personal identities. Passive tags respond to readers without alerting their owners when

they powered by electromagnetic waves from a reader. The threat comes out when a tag

identifier linked to personal information. For example, by using a credit card or an e-passport,

if an attacker can establish a link between a person’s identity and the tags he is carrying, at

any such point the tracing of objects can become the tracing of a person.

Let’s Consider set of messages sent by different agents, for example in a communication

system, all messages sent by the same sender are related to each other for him but should not

for an attacker. Untraceability as first defined by Avoine (Avoine et Oechslin, 2005) means

that an attacker can not get any information to be used to trace an object in time and space.

Figure 1.5 shows the concept of untraceability in a simple manner.
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Figure 1.5 Untraceability

Comparing with anonymity, in analysing untraceability the identity of the tag is not im-

portant, the point is that the link between different sessions of the tags cannot be established

by an attacker. In this sense, untraceability is not intended to protect the link between a tag

participated in the protocol and the identity of the user, but rather the link between different

sessions of the tags.

Forward Secrecy ensures that even by compromising a tag at some later time, an adver-

sary can not link the tag to its previous sessions. In other word she cannot trace the data

back through past events in which the tag was involved. For example once the secret in the

tag is stolen, all past activities can be traced by searching past logs. So the past activities

should be protected from tampering. For forward privacy, the attacker is allowed to tamper

with a tag and retrieve the data stored in it. We call a protocol forward secure if the attacker

cannot use the obtained data to link the tag to past sessions. It requires that the adversary

who only eavesdrops on the tag output, cannot associate the current output with past output.

In other words given set of observations between tags and readers and given the fact that

all information stored in the involved tags has been revealed at time t, the adversary must

not be able to find any relation between any observations of the same tag or a set of tags

that occurred at time t́ < t. It is depicted in Figure 1.6.

Figure 1.6 Forward Secrecy
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1.4 Formal Verification of Security Protocols

Critical systems which require high reliability such as aircraft navigation systems, banking

transactions, security protocols and other similar systems are difficult to be evaluated using

conventional test and simulation techniques. Unlike testing that does not provide exhaustive

coverage, verification using model checking gives a more thorough analysis of the system by

checking satisfiability of the requirement through every branch of the model representing the

system. It covers all possible scenarios of the behavior of the system. Formal verification

techniques used in such systems to ensure a high degree of reliability. (Siminiceanu et Ciardo,

2012; Ahamad et al., 2012; Souyris et al., 2009)

Formal methods have proven to be a promising technique toward developing automated

and generic protocol verification and testing methods. The main benefits of formal verification

comparing to testing, is its soundness and exhaustiveness.

1.4.1 Formal Methods

Formal methods, as defined by Meadows (see Meadows, 2003), combine a language which

can be used to model a cryptographic protocol and its security properties. It means the

use of mathematical and logical techniques to express the system and its properties. By

building a mathematically rigorous model of such a system and a mathematical definition of

the properties, it is possible to verify the system’s properties in a more thorough fashion than

empirical testing. With these techniques, we can develop specifications and models, which

describe all or part of a system’s behavior at various levels of abstraction, and use them as

input to an automated model checker. Formal methods in context of cryptographic protocols

generally divided into two parts: Formal modelling of the protocol specification and Formal

verification which refers to analysis of the security properties.

Although cryptographic protocols design is improving day by the day but there are still

some security issues that are discovered mostly as the result of an informal approach. For-

mal methods successfully applied to find such problems. Many formal techniques and tools

have been developed to reason about security and protocols. Probably the first mention of

formal methods as a possible tool for cryptographic protocol analysis came in Needham and

Schroeder (see Needham et Schroeder, 1978). However, the first work that was actually done

in this area was done by Dolev and Yao (Dolev et Yao, 1983).

Modelling a cryptographic protocol begins with specification of the protocol and its

requirements. Specification language could be a formal language or calculi. Milner’s Pi-

calculus(Milner, 1991) is a general-purpose calculus that has been successfully used to demon-

strate security properties for some protocols. By extending it with specialized cryptographic
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primitives, Abadi obtained what he called the SPI calculus (Abadi et Gordon, 1997), a pro-

cess algebra specifically designed for modelling cryptographic protocols (Abadi et Gordon,

1997), which allows verification of a broader spectrum of security protocols, as the encryp-

tion and decryption can now be checked. Since we used applied pi calculus as our modelling

language, we will present the preliminaries of this language in chapter 2.

1.4.2 Verification Techniques for Cryptographic protocols

Generally formal verification techniques in context of cryptographic protocols divided into

three main categories: Logic oriented methods, Model checking and Theorem proving.

Logic oriented methods

This method uses the modal logics to specify and analyse cryptographic protocols. Modal

logic is a type of formal logic primarily developed in the 1960s that extends classical propo-

sitional and predicate logic to include operators expressing modality. They reason about

the evolution of knowledge and beliefs within a system to show that certain conditions are

satisfied. The basic idea of these approaches is the analysis of knowledge or belief during the

protocol run. Inference rules are used to describe how beliefs or knowledge can be derived

from other beliefs or knowledges.

The most famous in the class of logics is the Burrows–Abadi–Needham (BAN) logic (see

Burrows et al., 1989). It models messages and the beliefs of an agent. BAN logic is a set of

rules for defining and analysing information exchange protocols. It is an example of a logic of

belief, which consists of a set of modal operators describing the relationship of principals to

data, a set of possible beliefs that can be held by principals (such as a belief that a message

was sent by a certain other principal), and a set of inference rules for deriving new beliefs

from old ones. Specifically, it helps its users determine whether exchanged information is

trustworthy, secured against eavesdropping, or both. Note that belief logics such as BAN

are generally weaker than state exploration tools since they operate at a much higher level

of abstraction.

There are a numbers of others including Bieber’s CKT5 (Bieber, 1990), Syverson’s KPL

(Syverson, 1990) and Protocol Composition Logic (PCL) (Datta et al., 2005).

Model checking

Model checking (Clarke, 1997) is one of the most common formal verification techniques.

Model refers to the mathematical representation of the system and using model checking

technique a temporal logic formula besides the model of your system can determine whether
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the model satisfies the property or not. The basic idea is an automated method to determine

the correctness property holds by exploring the state space of a model. If the property does

not hold in each state, the model checking algorithm produces a counterexample and an

execution trace leads to a state in which the property is violated. For models with a small

state space this search can be exhaustive and the results are then equivalent to a formal

proof. Since the state space might be too large to be examined directly, model checking is

typically combined with abstraction techniques.

The inputs to the model checker are, a finite-state model M , a model that represents all

possible scenarios of the behaviour of a system S, and a property P to be checked in every

state of M . The model checker exhaustively explores all the paths through M while checking

that P is true at each reachable state. If no branch in the model violates this property then

the system is said to satisfy the property. Otherwise, the verifier outputs the branch that

has violated the property, known as the counterexample.

Two general approaches to model checking are used: Explicit state enumeration and

Symbolic model checking. In the first, the states of the system under verification are basically

encoded and stored in a table and then checked against the desired properties. Many state

reduction techniques have been developed to help reduce the state space without affecting

the ability of the tool to discover insecure states. Other techniques are also used in order

to optimize both the search and storage procedures. The second approach, symbolic model

checking (Meadows et Meadows, 1995) brought some remedy to the state space explosion

problem of model checking and is based on the use of Ordered Binary Decision Diagram

(OBDD)s. Using OBDDs allows for an efficient representation of system state transition,

thereby increasing the size of the system that could be verified. By using symbolic model

checking, it is possible to verify extremely large reactive systems. This is possible because the

number of nodes in the OBDDs that must be constructed no longer depends on the actual

number of states or the size of the transition relation. Because of this breakthrough it is now

possible to verify reactive systems with realistic complexity.

The most works on state machine approaches goes back to Dolev and Yao (Dolev et Yao,

1983). A Finite State Machine (FSM) includes a finite number of states and produces output

on state transitions after receiving an input symbol. It is often used to model control portion

of a protocol. In these models a state space is defined and then explored by the tool to

determine if there are any paths through the space corresponding to a successful attack by

the intruder. Much of this work was successful in finding flaws in protocols that had been

previously undetected by human analysts. One of the first systems that used Dolev-Yao

approach is Interrogator developed by Millen (Millen et al., 1987). The tool attempts to

locate protocol security flaws by an exhaustive search of the state space. In this class we
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can also mention NRL that is proposed by Meadows (Meadows, 1996). It is also based on

the Dolev-Yao approach and use the similar strategy as Interrogator. Other researches has

also focused on state exploration such as MurΦ (Mitchell et al., 1997), Maude (Denker et al.,

1998), SATMC (SAT-based Model-Checker) (Armando et al., 2003) or FDR (Lowe, 1996).

The most significant problem of this kind of methods is that the search space of the paths to

find the insecure state can be infinite which leads to a termination problem.

Theorem proving

This techniques model the computations performed in a protocol and define security

properties as theorem, automated theorem checkers are then used to verify these theorems

and thus prove properties of the model. Automated theorem proving is the oldest technique

of formal verification, and it has been studied and practised since the 1960s. The logic is

given by a formal system based on a set of axioms and inference rules. Theorem proving is

the process of finding proofs using axioms of the system. The idea is to represent two models

or properties as two formulas f and g in a reasonably expressive logic, consequently prove

that f ⇒ g (Pradhan et Harris, 2009).

Theorem provers are being used more and more in the mechanical verification of safety

critical properties of hardware and software designs. Logic based proofs for security protocols

build on traditional mathematical reasoning, using models extended for representing security

concepts. Logical notations typically offer a wide range of data structures and operators

which makes them capable of accurately representing the messages transmitted in security

protocols. Unfortunately, a particular weakness of logic-based models is that they have no

in-built notions of communication concepts such as message sequencing and these must be

explicitly expressed in the model. Paulson in (Paulson, 1994) used the theorem prover Isabelle

to analyze protocols.

In contrast to model checking, theorem proving can be applied to systems with infinite

state spaces because it doesn’t have the state space exploration problem. It also relies on

techniques such as structural induction to prove over infinite domains. As a disadvantage to

this technique, we can point that interactive theorem provers, require human interaction, so

the theorem proving process is slow and sometimes error prone.

1.4.3 Adversary Model

In security scenarios typically we assume that cryptographic protocols should achieve their

objectives in the presence of a malicious entity that seeks to break the security of the system,

called adversary. The characterization of the adversary is essentially done by specifying the
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actions that she is allowed to perform (i.e. the oracles she can query), the goal of her attack

(i.e. the game she plays) and the way in which she can interact with the system (i.e. the

rules of the game).

Consider a public-key cryptosystem including a plaintext x underlying a challenge ci-

phertext y. The classic attacks in order of increasing strength are chosen-plaintext attacks

(CPA), non-adaptive chosen-ciphertext attacks (CCA1), and adaptive chosen-ciphertext at-

tacks (CCA2) (Naor et Yung, 1990). Under CPA, the adversary has the capability to choose

arbitrary plaintexts to be encrypted and obtain the corresponding ciphertexts. For example,

in the public-key setting, giving the adversary the public key suffices to capture these attacks.

Under CCA1, the adversary gets, in addition to the public key, access to an oracle for the

decryption function. The adversary may use this decryption function only for the period

of time preceding her being given the challenge ciphertext y. Under CCA2, the adversary

again gets (in addition to the public key) access to an oracle for the decryption function, but

this time she may use this decryption function even on ciphertexts chosen after obtaining

the challenge ciphertext y, the only restriction being that the adversary may not ask for the

decryption of y itself (Rackoff et Simon, 1992).

For RFID systems, no universal adversary model has been defined yet, up until now

designs and attacks have been made in an ad hoc way. Even though there are concepts

like CPA, CCA1 and CCA2 for confidentiality, in RFID systems the adversaries resources

are defined in an ad hoc manner and vary depending on the publication. They can be

passive, active but limited in the number of queries on the tag, active but cannot modify

exchange between the legitimate tag and a reader or active but cannot tamper with the tags.

For example Avoine defined the adversary as a Probabilistic Polynomially-bounded Turing

Machine(PPTM) (Avoine, 2005), which interacts with RFID tags and readers through some

oracles. Vaudenay (Vaudenay, 2007) also proposed a hierarchical model for adversary. His

model captures eight classes of adversary capabilities ranging over four different types of

tag corruption and two modes of observation. There are also other works in modelling the

adversary in RFID systems like (Canard et al., 2010; Cai et al., 2012)

In this dissertation we consider the adversary model described by Dolev and Yao (Dolev et

Yao, 1983). It is based on its initial knowledge which is extended by observing the communi-

cations. Since the adversary has complete control of the network in this model, it is assumed

that the adversary has unlimited inference capabilities and messages may be read, modified,

deleted or injected. It means that she has the ability to influence all communications between

a tag and the reader, she can change the order of messages, combine the information in his

knowledge to construct or interpret new terms and can therefore perform man-in-the-middle

attacks on any tag that is within its range. In brief Dolev-Yao adversary is as follows:
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• Eavesdrop all messages transmitted on the network

• Replay to captured messages

• Inject new messages deduced from captured messages

• Intercept messages

However, these capabilities are restricted due to the assumption of perfect cryptography.

This means that the adversary cannot reverse hash functions and that she is not able to learn

the contents of an encrypted term, unless she knows the decryption key.

1.5 Problem Statement

The contactlessness of communication and the expected ubiquity of RFID systems en-

courage nefarious entities to track and analyze tags in time and space. If at any such point

a tag is linked to an individual, the tracking of a tag becomes the tracking of a person. The

need for RFID protocols to be secured against these threats has been realized early on (Juels,

2006; Breu, 2011). A number of papers discussed about the untraceability problems, raised

by RFID technologies and its importance, however, very few defined a formal model and the

untraceability property precisely.

In the literature, there are several definitions of untraceability, while there is no agree-

ment on its comprehensive definition. Generally two type of models have been considered

in order to formalize untraceability; The Symbolic model and Computational model. Most

of the definitions have been accomplished in computational settings. These experiments are

poorly supported by automatic tools. In the symbolic world, in one hand Arapinis defined

the notions of weak and strong untraceability in the process algebra (Arapinis et al., 2009),

on the other hand, Bruso defined a single definition for untraceability (Brusó et al., 2010). By

investigating the existing models we found that, there are some cases that make it impossible

to satisfy the defined properties, or the definitions are not complied properly with some type

of protocols. All the above models will be fully presented in the related works. Therefore,

the need to sum up and classify all these definitions is essential.

These problems made us to think of studying the former definitions, providing more clear

and explicit definitions for untraceability with different strength levels. Finally a solution is

proposed for the automatic analysis of untraceaility of protocols.
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1.6 Research Objectives

1.6.1 Research Question

• How to formalize and automatically verify untraceability of RFID protocols?

1.6.2 General Objective

The main idea of this thesis is to provide the design of private cryptographic protocols

and facilitate the privacy evaluation of existing schemes, using formal verification techniques.

This thesis presents an approach for modelling and verifying privacy property, particularly

in RFID identification protocols. Our work is an attempt to the formal analysis of a more

challenging privacy property in RFID protocols, so-called untraceability. Thus, by proving

untraceability in an RFID protocol, it prevents a real world attacker to invalidate the protocol,

making it impossible to trace a tag, and hence its owner as well.

1.6.3 Specific Objectives

• Establish different strength levels for untraceability properties

• Formalize untraceability properties using applied pi calculus

• Classify all existing definitions of untraceability in the literature

• Automatic Verification of untraceability in RFID protocols

1.6.4 Original Scientific Hypothesis of our Contribution(OSHC)

Hypothesis:

• Verifying untraceability in each proposed levels for any RFID protocol, prevents an

adversary invalidate the untraceability of modelled protocol.

Justification of originality : Few researches have looked at formalizing untraceability in

symbolic settings. Providing explicit definitions for different levels of untraceability in pro-

cess algebra, considering the game based definitions in computational setting has not been

provided in any research.

Refutability : The hypothesis will be refuted if an adversary can interfere the privacy of

the protocol which satisfied our untraceability levels.
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1.7 Outline of the Thesis

The rest of the dissertation is organized as follows.

• Chapter 2 introduces the syntax and semantics of the language of our symbolic setting:

applied pi calculus.

• Chapter 3 surveys the related works in the application of formal methods to the analysis

of untraceability in RFID protocols. Discussion about symbolic and computational

settings will be presented in this chapter.

• Chapter 4 begins with classifying existing privacy games. Then we will propose our

levels of untraceability related to the former games. After that we will presents our

protocol model and formalization of proposed untraceability levels based on applied

pi calculus. Finally we will compare all existing definitions of untraceability in the

literature and provide a classification of this property.

• Chapter 5 includes some case studies which describe the results of verifying the RFID

identification protocols from the implementation using proposed framework. Three

existing RFID protocols will be modelled. Finally Verification results will be demon-

strated.

• Chapter 6 summarizes the work presented and underlines our original contributions.

We will also explain the limitations of the work and future improvements in this chapter.

Finally, the Bibliography section lists all the articles, reports, books and etc.
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CHAPTER 2

BACKGROUND: APPLIED PI CALCULUS

The applied pi calculus is a process calculi, a mathematical formalism for describing and

analysing concurrent systems and their interactions. It is an extension of the pi calculus

(Milner, 1999) with the addition of a rich term algebra, value-passing, primitive function

symbols and equational theory to enable modelling of the cryptographic operations used

by security protocols. It is specifically targeted at modelling security protocols by adding

the possibility to model wide variety of complex cryptographic primitives, including, non-

deterministic encryption, digital signatures, and proofs of knowledge, while the pi calculus

has a fixed set of primitives built-in like symmetric and public key encryption. Symbolic

model relies on Dolev-Yao model(Dolev et Yao, 1983) in which messages are modelled as

algebraic terms instead of computational model. The applied pi calculus permits formal

modelling of properties including: reachability, correspondence and observational equivalence.

In the context of cryptographic protocols, these properties are particularly useful, since they

allow the analysis of traditional security goals such as secrecy and authentication. Moreover,

emerging properties such as privacy and traceability can also be considered. Here we briefly

recall its basic notions, for an extended descriptions see (Abadi et Fournet, 2001).

2.1 Syntax and Informal Semantics

The calculus consists of terms including infinite set of names(a, b, c, . . .), variables(x, y, z)

and a signature Σ consisting of a finite set of function symbols each with an associated ar-

ity(e.g. one-way hash functions, encryption, digital signatures and data structures as pairing),

plain processes and extended processes.

Definition 2.1. (Algebraic Term) The set T (Σ) of algebraic terms is the smallest set defined

by the grammer of table 2.1

Table 2.1 Syntax for terms

L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s names
x, y, z variables
f(M1, . . . ,Mar) function application
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where f rages over the functions of Σ and ar matches the arity of f . A function symbol

with arity 0 is called constant, with arity 1 is called unary and with arity 2 is called binary.

Metavariables such as u, v, w are used to denote both names and variables. Tuples u1, . . . , uar

and M1, . . . ,Mar are abbreviated to ũ and M̃ respectively. We assume a type system for terms

generated by a set of base types such as Integer, Key, or simply a universal type, Data. In

addition if τ is a type, then Channel(τ) is a type too. Typically a,b, and c are used for

channel names, s and k as names of some base types, and m and n as names of any type. We

always assume that terms are well-typed and the substitutions preserves types.

Definition 2.2. (Ground Term) A term is called ground or closed if it contains no variables,

and it is denoted by TΣ.

Example 2.3. Let a be a constant, f be a unary function and g be a binary function. The

ground terms that could be built by above signature are like followings:

a f(a) g(a, a) g(f(a), f(a)) f(g(a, a)) . . .

In the applied pi calculus, one has plain processes and extended processes. The grammar

for processes is similar to the pi calculus, except that messages can contain terms (rather

than just names) and that names need not be just channel names. The syntax of process is

shown below:

Table 2.2 Syntax for processes

P,Q,R ::= processes (or plain processes)
0 null process
P |Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
u(x).P message input(also written as in(u, x).P )
ū〈M〉.P message output (also written as out(u, x).P )
let x = g(M1, . . . ,Mn) in P else Q destructor application
let x = M in P binding

The null process 0 does nothing; P |Q is the parallel composition of process P and Q

to represent the agents of the protocol running in parallel; the replication !P behaves as

an infinite composition of P running in parallel (P |P | . . .) which mostly used to show the

unbounded number of protocol sessions. The name restriction νn.P makes a new, private

name n inside P which is often used to represent nonces, keys, private channels and other

fresh random numbers. The conditional construct if M = N then P else Q is standard, but
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M = N represents equality rather than strict syntactic identity. If Q is a null process we can

abbreviate it to if M = N then P . Finally, the communication between agents is shown by

message input and message output. The process u(x).P is ready to input from channel u,

then to run P with the received message replaced with parameter x, while ū〈M〉.P is ready

to output M on channel u, then to run P . In both of these, the P is omitted when it is a

null process. The set of free names in P , denoted fn(P ), consists of those names n occurring

in P not in the scope of a restriction νx or input u(x). In opposite, The set of bound names

bn(P ) contains every name n which is not in free in P .

Further, the processes are extended with active substitutions:

Table 2.3 Syntax for extended processes

A,B,C ::= extended processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Processes are extended with active substitution to take into account the knowledge ex-

posed to the adversarial environment and reflect in its interaction with the protocol. The

active substitution {M/x} denotes the substitution that replaces the variable x with the

term M in every process. In other words M is available to the environment but the variable

x is just a way to refer to M . This allows access to terms which the environment cannot

construct. Although the substitution {M/x} concerns only one variable, large substitution

can be written as: {M1/x1, . . . ,Mar/xar} or {M̃/x̃}.
Contexts may be used to represent the adversarial environment in which a process is run;

that environment provides the data that the process inputs, and consumes the data that it

outputs. A context C [ ] is an expression (a process or extended process) with a hole. C [P ]

is obtained as the result of filling C [ ]’s hole with P . An evaluation context C [ ] is a context

whose hole is not under a replication, a conditional, an input, or an output.

Active substitutions are useful because they allow us to map an extended process A to

its frame ϕ(A) by replacing every plain process in A with 0. A frame, denoted ϕ or ψ, is

an extended process built from 0 and active substitution {M/x}; The frame ϕ(A) represents

the static knowledge exposed by a process A to its environment. The domain dom(ϕ) of a

frame ϕ is the set of the variables that ϕ exports.

Example 2.4. We are now able to model processes of the applied pi calculus. As an example
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consider the following processes:

P = c(x).if x = req then c̄〈hello〉 else 0

This process waits for a message on the public channel c. If the received message is req,

then the process sends hello on the public channel c.

2.2 Operational Semantics

Operational semantics of the applied pi calculus are defined by the means of two relations:

structural equivalence and internal reductions.

2.2.1 Structural Equivalence

Informally, two processes are structurally equivalent if they model the same thing, but

the grammar permits different encodings. For example, to describe a pair of processes A,B

running in parallel, the grammar forces us to put one on the left and one on the right; that

is, we have to write either A|B, or B|A. These two processes are said to be structurally

equivalent.

Definition 2.5. (α-Conversion) is renaming a bound name or variable without changing the

semantics.

Definition 2.6. (Structural equivalence ≡) is the smallest equivalence relation on extended

processes that is closed under α-conversion of both bound names and variables and application

of evaluation contexts which satisfies the rules in table 2.4.

Table 2.4 Semantics for processes (1)

A|0 ≡ A νn.0 ≡ 0
A|(B|C) ≡ (A|B)|C νu.νw.A ≡ νw.νu.A

A|B ≡ B|A A|νu.B ≡ νu.(A|B)
!P ≡ P |!P if u /∈ fn(A) ∪ fv(A)

νx.{M/x} ≡ 0 {M/x} ≡ {N/x}
{M/x}|A ≡ {M/x}|A{M/x} if M =E N

The parallel composition, replication and restriction rules are self-explanatory. We briefly

describe the substitution rules here. The rule νx.{M�x} ≡ 0 called ALIAS, enables us

to introduce active substitutions with restricted scopes. The second rule, {M/x}|A ≡
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{M/x}|A{M/x} called SUBST, describes the active substitution to a process. The final rule

called REWRITE, allows terms that are equal modulo the equational theory to be swapped.

Example 2.7. Consider the following process:

P ≡ νs.νk. (c̄1〈enc(s, k)〉|c1(y).c̄2〈dec(y, k)〉)

The first component publishes the message enc(s, k) on channel c1. The second receives

a message from channel c1, then using the secret key k decrypt it and sends the result on

channel c2. This process is structurally equivalent to the following extended process A:

A ≡ νs.νk.νx. (c̄1〈x〉|c1(y).c̄2〈dec(y, k)〉|{enc(s, k)/x})

Using structural equivalence, every closed extended process A can be rewritten to consist

of a substitution and a closed plain process with some restricted names: A ≡ ν.ñ.{M̃�x̃}|P ,

where fv(P ) = ∅ , fv(M̃) = ∅ and {ñ} ⊆ fn(M̃).

2.2.2 Internal Reduction

Internal reduction (→) is informally defined as the execution of a process with respect to

control flow and communication. It is formally defined as follows:

Definition 2.8. (Internal reduction→) is the smallest relation on extended processes that is

closed under structural equivalence and application of evaluation satisfying the rules of table

2.5.

Table 2.5 Semantics for processes (2)

COMM c̄〈x〉.P |c(x).Q→ P |Q
THEN if N = N then P else Q→ P
ELSE if L = M then P else Q→ Q

The reflexive and transitive closure of → is written as →∗. To better understand the

substitution and reduction, we provide some examples as follows:

Example 2.9. Consider the process P described in Example 2.7:

P ≡ νs.νk.(c̄1〈enc(s, k)〉)|c1(y).c̄2〈dec(y, k)〉

We have:
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P ≡ νs.νk.νx1. (c̄1〈x1〉)|c1(y).c̄2〈dec(y, k)〉|{enc(s, k)/x1}) (by ALIAS)
νx1.c̄1〈x1〉−−−−−−−→ νs.νk.(c1(y).c̄2〈dec(y, k)〉|{enc(s, k)/x1}) (by COMM)
c1(x1)−−−−→ νs.νk.(c̄2〈dec(x1, k)〉|{enc(s, k)/x1})
≡ νs.νk.νx2. (c̄2〈x2〉|{enc(s, k)/x1}|{dec(x1, k)/x2}) (by SUBST)
νx2.c̄1〈x2〉−−−−−−−→ νs.νk.({enc(s, k)/x1}|{dec(x1, k)/x2}) (by COMM)

Example 2.10.

c̄〈M〉.P |c(x).Q ≡ νx.(c̄〈x〉.P |c(x).Q|{M/x}) (by ALIAS)

→ νx.(P |Q|{M/x}) (by COMM)

≡ νx.(P |Q{M/x}|{M/x}) (by SUBST)

≡ P |Q{M/x}|νx.{M/x} (by restriction rules)

≡ P |Q{M/x} (by ALIAS)

2.3 Equivalences

In addition to secrecy and correspondence properties, there are more complex properties

which enables us to define privacy. Intuitively, two processes are said to be equivalent if

an observer has no way to tell them apart. In order to define observational equivalence, we

could say that processes P and Q are equivalent if they can output on the same channels, no

matter what the context they are placed inside.

2.3.1 Observational Equivalence

We write P ⇓c when P emits a message on the channel c, that is, when P →∗ C[out(c,M);Q]

for some evaluation context C that does not bind c and some process Q.

Definition 2.11. (Observational Equivalence ≈ ) is the largest symmetric relation R on

processes such that PRQ implies:

1. if P ⇓c then Q ⇓c;

2. if P →∗ P ′ then there exists Q′ such that Q→∗ Q′ and P ′RQ′ ;

3. C [P ] R C [Q] for all evaluation contexts C [ ].

⇓c is called a barb on c in the pi calculus, and ≈ is one of the two usual notions of barbed

bisimulation congruence. Intuitively, a context may represent an attacker, and two processes

are observationally equivalent if they cannot be distinguished by any attacker.

Two terms M and N are said to be equal in the frame ϕ, and written as (M = N)ϕ, if

and only if ϕ ≡ νñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅ for some names ñ and

substitution σ.
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2.3.2 Labelled Bisimilarity

The quantification over contexts makes the definition of observational equivalence hard

to use in practice. Therefore, labelled bisimilarity is introduced, which is more suitable for

both manual and automatic reasoning. Labelled bisimilarity relies on an equivalence relation

between frames, called static equivalence, which we define first. Two substitutions may be

seen as equivalent when they behave equivalently when applied to terms. This is shown by

≈S and called static equivalence.

Definition 2.12. (Static equivalence ≈S). Two closed frames ϕ and ψ are statically equiv-

alent, and is written ϕ ≈S ψ, when:

1. dom(ϕ) = dom(ψ)

2. For all terms M and N we have that (M = N)ϕ if and only if (M = N)ψ

We say that two closed extended process are statically equivalent, and denoted by A ≈S B,

when their frames are statically equivalent ϕ(A) ≈S ϕ(B).

This is called static because by using frames we are able to examine only the current state

of the processes and not their dynamic behaviour. Static equivalence captures the static part

of observational equivalence, more precisely they coincide on frames(Abadi et Fournet, 2001).

Example 2.13. Let’s assume the simple signature Σ = {hash, pair, fst, snd} and the equa-

tional theory satisfying fst(pair(x, y) = x and snd(pair(x, y) = y over variables x and y,

where hash, fst and snd are unary functions and pair is a binary function. We could have

the following statements:

• νm.{m/x} ≈S νn.{n/x}; Since they are structurally equivalent.

• νm.{m/x} ≈S νn.{hash(n)/x}
• {m/x} 6≈S {hash(n)/x}; Since the first one satisfies x = m but the second one does

not.

• νs.{pair(s, s)/x} 6≈S νs.{s/x}; Since the first one satisfies pair(fst(x), snd(x)) = x

but the second one does not.

The operational semantics is extended by a labelled operational semantics enabling us to

reason about processes that interact with their environment. Labelled operational semantics

depicted in table 2.6 defines the relation
α−→ where α is a label of the form c(M), c̄〈u〉 or

νu.c̄〈u〉 such that u is either a channel name or a variable of base type. It enables us to

capture the dynamic part of observational equivalence.

The transition A
c(M)−−−→ B means that the process A performs an input of the term M

from the environment on the channel c, and the resulting process is B. If the item is a free

variable x or a free channel d, then the label c̄〈x〉, respectively c̄〈d〉, is used. If the item being
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Table 2.6 Semantics for processes (3)

IN c(x).P
c(M)−−−→ P{M/x}

OUT-ATOM c̄〈u〉.P c̄〈u〉−−→ P

OPEN-ATOM
A

νu.c̄〈u〉−−−−→ A′ u 6= c

νu.A
νu.c̄〈u〉−−−−→ A′

SCOPE
A

α−→ A′

νu.A
α−→ νu.A′

u does not occur in α

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A|B → αA′|B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

output is a restricted channel d, then the label νd.c̄〈d〉 is used. Finally, if the item is a term

M , then the label νx.c̄〈x〉 is used, after replacing the occurrence of the term M by x and

wrapping the process in νx.({M/x}| ).

Definition 2.14. (Labelled bisimilarity ≈L). Labelled bisimilarity is the largest symmetric

relation R on closed extended processes, such that ARB implies:

1. A ≈S B

2. if A→ A′, then B →∗ B′ and A′RB′ for some B′

3. if A
α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α−→→∗ B′ and

A′RB′ for some B′.

Clauses 2 and 3 of this definition correspond to classical notions of bisimilarity (Milner,

1999). Clause 1 asserts static equivalence at each step of the bisimulation.

Example 2.15. Consider a handshake protocol between a client C and server S as illustrated

below.

This protocol is started with the request from a client C, then the server S generates a

fresh session key k, and encrypts it using the client’s public key pkC . When C receives this

message he decrypts it using his private key and extracts the session key k. Finally C uses

this key to symmetrically encrypt the secret s and sends the encrypted message to S. Note

that the above notation is an incomplete description and does not cover all specific parts of

the protocol such as the creation of nonces or the various checks, made by participants.
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Figure 2.1 A Sample Protocol

This protocol is defined with respect to the signature Σ = {adec, aenc, sdec, senc}, where

all are binary functions representing the asymmetric and symmetric key encryption. We

define following equation over the variables x and y, in order to model the behaviour of

encryptions:

adec(x, aenc(pk(x), y)) = y

sdec(x, senc(x, y)) = y

The protocol can now be modelled in pi calculus as the process P, defined as follows:

P = ν skS. ν skC ν s.

let pkS = pk(skS) in let pkC = pk(skC) in

(c̄〈pkS〉|c̄〈pkC〉|!S|!C)

S = c(pk).νk.c̄〈aenc(pk, k)〉.
c(x). if sdec(k, x) = tag then Q

C = c(x). let k = adec(skC , x).

c̄〈senc(k, s)〉

In addition to the above used symmetric and asymmetric encryption, the theory allows

us to model different cryptographic primitives such as: pairing, digital signature schemes and

etc, which are briefly presented below.

Ordered Pairing Algebraic data structures such as ordered pairs, tuples, arrays, and lists

appear in several examples. It is not difficult to encode them in the Π-calculus. For example,

the signature Σ may contain the binary function symbol pair and an element can be extracted

using the unary functions fst and snd. pair(x, y) may abbreviated to (x, y) and the fst and

snd equations are as follows:
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fst(pair(x, y)) = x

snd(pair(x, y)) = y

One-way Hash function A one-way hash function is represented as a unary function

symbol h with no equation. The absence of any equational theory associated with it ensures

the one-wayness of h and its collision resistance by the fact that h(x) = h(y) only when

x = y.

Asymmetric encryption An alternative and equivalent formalism for asymmetric encryp-

tion considers two unary constructors pk and sk for generating public and secret keys from

an agent, to capture the notion of constructing a key pair from an agent:

adec(aenc(m, pk(ag)), sk(ag)) = m

Digital signature In a similar manner to asymmetric encryption, digital signatures rely

on a pair of signing keys. In each pair, the secret key serves for computing signatures and

the public key for verifying those signatures. In order to model digital signatures and their

checking, in addition to the unary function symbol pk from asymmetric encryption, the new

binary function symbol sign for constructing signatures, the unary function symbol getmass

that allows the adversary to get the message m from the signature even without having the

key and the binary function checksign to check the signature, and returning m only when the

signature is correct.

getmess(sign(m, k)) = m

checksign(sign(m, k), pk(k)) = m

It is also possible to model signatures that do not reveal the message m, in the Handbook

of Applied Cryptography four different classes of digital signature schemes are defined which

all can be modelled (Menezes et al., 1997).

Exclusive-Or Finally, the XOR function can be modelled by:

xor(xor(x, y), y) = x

xor(xor(x, y), x) = y
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CHAPTER 3

RELATED APPROACHES

In order to formally verify a protocol we first need to build a mathematical model of that

system. Generally two kind of models have been considered in the literature; The Symbolic

model and Computational model.

This chapter surveys the related works in the application of formal methods to the analysis

of untraceability in RFID protocols. We will present works based on the both symbolic and

computational model. We will also compare all definitions in this chapter with our proposed

definitions and will provide a classification for untraceability property in next chapter.

3.1 Works in Symbolic Settings

In symbolic settings, the most closest works to our approach are the models provided by

Arapinis (Arapinis et al., 2009) and Bruso (Brusó et al., 2010). They presented approaches for

verifying protocols based on process algebra, written in applied pi calculus. Their approach

models privacy properties as indistinguishability properties using the concept of observational

equivalence in applied pi. Moreover in the symbolic world, Deursen et al. proposed a formal

definition of untraceability in a particular trace model (Van Deursen et al., 2008).

We start with the works that used process algebra in order to model the RFID protocol

and the properties. An RFID protocol is modelled as some processes running concurrently

in parallel. As it is mentioned in the previous chapter, to describe processes in the applied pi

calculus, we define set of names presenting the communication channels and other constants.

A signature Σ which consists of the function symbols which will be used to define terms.

Generally in the symbolic settings the cryptographic primitives are represented by function

symbols and the messages are considered as the terms on these primitives. One can also

describe the equations which hold on terms constructed

3.1.1 Arapinis Model

Arapinis et al. (Arapinis et al., 2009) developed a definition of untraceability in the

applied pi calculus independent of the computational models. They defined two levels of un-

traceability. Strong untraceability that holds if an attacker cannot tell the difference between

an RFID system in which all tags are different and a system in which some tags appear twice.

The weak untraceability holds if an attacker cannot identify two particular runs of a protocol
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as having involved the same tag. An RFID protocol due to their framework is modelled as a

closed plain process P such that:

P = νn.(DB|!R|!T )

where DB is the database process, R is the reader and T is the process modelling a tag as:

T = νm.init.!main. init is the process of registering the tag to the database DB, and the

main models one session of the tag’s protocol.

They defined their strong untraceability as ensuring that an intruder thinks that each

tag session is initiated by the different tag. It is modelled as a observational equivalence

between process P and P ′ where the process P ′ defined as: P ′ = νn.(DB|!R|!T ′) where

T ′ = νm.init.main and P is said strong untraceable if: P ≈ P ′

In other words the intruder should not be able to tell the difference between the protocol P

and the ideal version of P ′ in which the the tags are allowed to execute themselves at most

once.

On the other hand, their weak untraceability definition ensures that a tag can execute its

protocol multiple times without an intruder being able to link these executions together. This

is modelled using the equivalence of two processes Q and Q′ which in the former T1 and T2

are modelling two different tags such that each one initiated a different session(session1 and

session2), and in the later T ′1 and T ′2 are modelling two tags such that both of the mentioned

sessions are initiated from T ′1.

Q = νn.(DB|!R|!T |T1|T2)

Q′ = νn.(DB|!R|!T |T ′1|T ′2)

where:

T1 = νm.init.(!main|mainsession1|mainsession3)

T2 = νm.init.(!main|mainsession2)

T ′1 = νm.init.(!main|mainsession1|mainsession2)

T ′2 = νm.init.(!main|mainsession3)

and Q is said weak untraceable if: Q ≈ Q′ .

3.1.2 Bruso Model

Bruso et al.(Brusó et al., 2010) defined untraceability property as equivalences in the

applied pi calculus. They expressed their definition based on unlinkability game presented

by Chatmon (Chatmon et al., 2006).
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In their model, the attacker communicates with a tag through a tag interface, modelled

as a channel. Tag(c) presents a complete tag with interface c. It can perform an unbounded

number of protocol executions. Then Tag(c1, c2) models a single tag (which contains same

id) but with two interfaces c1, c2. These processes are defined by:

Tag(c) = νw.νs.(!P (w, c)|InitSt(w, s)
Tag(c1, c2) = νw.νs.!P (w, c1)|!P (w, c2)|InitSt(w, s)

where: InitSt(w, s) is a process that initializes the tag’s state(Tag’s unique secret) and the

tag main session P (w, c) which is a single tag session that communicates with the rest of the

system using two channels. First a restricted channel w to update the tag’s state and second,

a public channel c used to communicate with the reader. Finally they modelled the complete

RFID system as:

(ReplTag|Reader|DB)

where ReplTag =!νc.Tag(c) models an unbounded number of tags, each with own interface.

They defined untraceability using the following scenario. An attacker communicates with

two interface which could be either the same tag or different ones. Then the attacker must

not be able to distinguish whether two interfaces correspond to the same tag or two different

tags. Regarding their model, a protocol satisfies untraceability iff:

C [Tag(c1, c2)] ≈ C [Tag(c1)|Tag(c2)]

where C is a system context defined as: C [ ] = (ReplTag|Reader|DB).

3.1.3 Deursen’s Trace-based Model

Rather than providing a full description of syntax and semantics of their framework,

we will only present the basic requirements needed for understanding their definition of

untraceability. A full semantics of this framework can be found in (Cremers et Mauw, 2005).

They defined the security protocol by defining the behaviour of the roles(e.g. initiator,

responder) that an agent (e.g. bob, alice) can execute. The agents execute the protocol to

achieve some security goal. While agents pursue their goals, an intruder may try to oppose

them. The adversary is assumed as a standard Dolev-Yao adversary, who may eavesdrop on

any message exchanged between tag and reader, modify or block any message sent from tag

to reader or vice versa, and may inject his own messages making them look like they were

sent by tag or reader.
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A protocol consists of some events. An event is an abstract description of internal events

and external events, executed by an agent. An internal event could be a value assignment, an

equivalent check, a decryption, a type check, etc. An external event is the action of sending

and receiving message.

A role in a security protocol is specified as a sequential list of events executed by an

agent. An agent executes its role description sequentially, waiting at receive events until an

expected input message becomes available which means that an agent ignores unanticipated

messages. For instance we have initiator(i) and responder(r) role in a protocol.

A role performed by an agent(e.g. Tag or Reader) is called a run. Run is an execution

of a role performed by an agent. Within this model a trace t is defined as a sequence of

events comes from numbers of interleaved or uncompleted runs. They defined tR, denoting

the subtraces of t, consisting of the events of the run R which are observable by the adversary.

The i-th such subtrace is denoted by tRi .

They defined untraceability as a trace property of a role in a protocol. Informally, a

protocol is called untraceable if for every trace of the protocol in which two sessions are

initiated from the same agent, there is a trace that is indistinguishable to the adversary,

in which that two sessions are not initiated from the same agent. They used the notion

of reinterpretation (Garcia et al., 2005) to discuss about similarity of message consequently

indistinguishability of traces.

By their definition two traces are indistinguishable to the adversary, if the adversary

cannot see any meaningful difference between the two traces. The trace t is indistinguishable

from a trace t′ if there is a reinterpretation π such that π(tRi = t́Ri ) for all subtraces. Finally

they proposed that untraceability is satisfied if:

∀t∈Traces
∀i 6=j L(tRi , t

R
j )⇒

∃t́∈Traces (t ∼ t′) ∧ ¬L(tRi , t
R
j )

where L(tRi , t
R
j ) denotes that two subtraces tRi andt

R
j are instantiated from the same agent,

and t ∼ t′ means that the trace t is indistinguishable from the trace t′.

We will transform this trace based definition into applied pi and will compare it with

other definitions of untraceability in next chapter.

3.2 Works in Computational Settings

Untraceability property is firstly defined in computational settings by means of privacy

experiment called games with players: the adversary, against the honest tag and reader in the

literature. Avoine in (Avoine, 2005) were the first to give a definition of untraceability in the
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computational model with a game played between an adversary and a collection of reader and

the tag instances. Some other similar attempts then followed like Juels-Weis model (Juels et

Weis, 2007) and Vaudenay (Vaudenay, 2007). Ouafi and Phan also proposed a privacy model

(Ouafi et Phan, 2008) to demonstrate the notion of untraceability in RFID protocols which

might be considered as an alternative definition of Juels-Weis model with some difference in

the adversary model. All these work are poorly supported by automatic tools.

Before presenting the works based on privacy experiment, we first introduce the RFID

framework used in these games, the adversary model and the concept of untraceability ex-

periment.

RFID System Model. The system is considered as comprising a set of n tags T1, . . . Tn,

and a single reader R. Each tag T is a passive transponder identified by a unique ID. It can

operate just when interrogated by a reader and only for a short time. It has limited memory

and limited computational abilities. The memory of the tags contains a state S, which may

change during the lifetime of the tag. The tag’s ID may or may not be stored in S. Each

tag can perform only basic cryptographic calculations: hash calculations, pseudo random

generation, logical operations and symmetric encryption. Tags can also be corrupted. The

adversary may have the capability to extract secrets and other parts of the internal state

from the tags it chooses. The reader R is a device composed by one or more transceivers

and a backend processing subsystem. The reader’s task is to identify legitimate tags and to

reject all other incoming communication. It is assumed that reader and backend database

are linked by a secure channel. Therefore there are two party protocols, one party a tag

T and the other a reader R with secure access to backend database system. Each party is

a probabilistic interactive Turing machine with an independent source of randomness and

unlimited internal storage.

Adversary. The adversary in computational setting is a probabilistic Turing machine which

controls the communications between all protocol parties (tag and reader) by interacting with

them as defined by the protocol. It is given access to all tags in the system. It can modify

the conversation between any pair, and also initiate and terminate a session as her choice. It

is also able to learn the outputs of the sessions. The characterization of the adversary is done

by specifying the actions that she is allowed to perform, the game she plays and the way she

interacts with the system. Different adversarial model have been proposed in the literature

such as (Avoine, 2005; Juels et Weis, 2007; Vaudenay, 2007; Ouafi et Phan, 2008; Chatmon

et al., 2006) which are different regarding treatment of the adversary’s ability.
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Untraceability Experiment. Untraceability is firstly defined using the game G played

between a malicious adversary A and a collection of tag and reader instances. The idea is that

an RFID protocol may be considered private for some parameter values if no adversary has

a significant advantage in this experiment. The goal of the adversary in these experiments is

to distinguish between two different tags within the limits of its computational power. The

success of A in winning game G and thus breaking the notion of Privacy Priv is quantified

in terms of A’s advantage in distinguishing two cases. This advantage is denoted by AdvAG.

A wins if her advantage is non-negligible and an RFID protocol may be considered private if

the adversary has a negligible advantage in this experiment. In other words if the adversary

cannot distinguish two cases with probability higher than random guessing. It is formally

written as:

AdvAG = P [Correct Guess] ≤ P [Random flip coin] = 1
2

In order to better understand the computational model, we provide a sample of such

game. Let’s consider the adversary as a Probabilistic Polynomially-bounded Turing Machine

(PPTM), which interacts with RFID tags and readers through following oracles:

• Execute: Models passive attacks. The adversary gets access to the messages exchanged

between honest agents in a protocol session by eavesdropping.

• Send: Models active attacks. The adversary impersonate a reader in a protocol session

and send message to an instance of a tag.

• Corrupt: This query allows the adversary to learn the stored secret of the tag.

• Test: This query does not correspond to any of adversary’s abilities. It allows to define

indistinguishability-based notion of untraceability.

Then the privacy game can be divided into three following phases:

• Learning phase: Adversary is given access to tags T0 and T1 randomly, then she is

able to send any Execute, Send, and Corrupt queries of its choice to T0, T1, and the

Reader.

• Challenge phase: Adversary chooses a fresh session to send a Test query. Depending

on a randomly chosen bit b ∈ {0, 1}, A is given a tag from the set {T0, T1}. Then it

continues to make any Execute, Send, and Corrupt queries.

• Guess phase: Adversary outputs a bit b′ ∈ {0, 1} and terminates the game G which

is the guess of b′s value.

The success of A in winning game G and thus breaking the notion of privacy denoted by

AdvPrivA (k) is quantified in terms of A′s advantage in distinguishing whether she receives T0
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or T1 where k is the security parameter. Now we say that a protocol satisfies untraceability

if the advantage in privacy game is negligible:

AdvAG ≤ 1
2

+ ε

Now we presents some related works which defined untraceability property like the above

notion.

3.2.1 Avoine Model

In their model the adversary is a PPTM, which interacts with RFID tags and readers

through following oracles. Assume a tag T , and a reader R which participating in the proto-

col P . They denoted tag instances by πiT , and likely reader by πjR. The oracles are:

• Query(πiT ,m1,m3): Models adversary sending a request m1 to tag, subsequently send-

ing it the message m3 after having received its answer.

• Send(πjR,m2): Models adversary sending the message m2 to reader and receiving its

answer.

• Execute(∗)(πiT , pi
j
R): Models adversary executing an instance of the protocol, obtaining

the messages from both sides.

• Reveal(πiT ): Models adversary obtaining the contents of the memory of the tag which

can be used only once and after that no other queries can not be used.

Within the above adversary model, the authors define two types of untraceability, Exis-

tential and Universal. An existentially untraceable protocol allows the adversary to trace a

tag for a restricted period of time, while a universally untraceable protocol does not. The

difference between existential and universal comes from the manner of the interactions of the

adversary with the tag. Here is a brief scenario of their definition:

• Adversary request for target tag T .

• Adversary interacts with the received tag.

• Adversary request for challenge tags, T1 and T2.

• Adversary interacts with both of the tags.

• Adversary decides which of T1 or T2 is T , then output the guess.

If the adversary’s advantage in guessing the answer is negligible the protocol is said to be

Untraceable.

3.2.2 Vaudenay Model

Vaudenay proposed a more flexible, hierarchical model for untraceability. His model cap-

tures eight classes of adversary capabilities, ranging over four different types of tag corruption
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and two modes of observation. The adversary of his model has the ability to influence all

communications between a tag and the reader, and therefore perform a man-in-the-middle

attack on any tag that is within its range. The above framework takes place over following

eight oracles that the adversary may invoke:

• CreateTag(ID): Create a free tag with unique identifier

• DrawTag(distr) → (vtag): Moves from the set of free tags to drawn tags with the

probability distribution distr. Which vtag denotes a virtual tag reference.

• Free(vtag): Moves the virtual tag back to the set of free tags.

• Launch → π: Makes the reader launch a new protocol instance.

• SendReader(m,π) → m′: Sends a message m to a protocol instance π for the reader

and receive the answer m′ (resp. SendTag(m, vtag) → ḿ)

• Result(π) → x: When π is complete returns 1 and 0 otherwise.

• Corrupt(vtag)→ S: Returns the current state of tag S.

Due to this model, privacy game has two phases. An attack phase that the adversary

start with issuing oracle queries. Then an analysis phase that the adversary receives the table

T that maps every vtag to a real tag ID. Then it outputs either true or false. The adversary

wins if the output is true. For the complete definition of the oracles and the system (see

Vaudenay, 2007).

The adversaries have been divided into different classes, depending on restrictions regard-

ing their use of the above oracles. A weak adversary is never allowed to corrupt a tag, that

is, he may never query the corrupt oracle. A forward private adversary may corrupt a tag

at the end of the attack, a destructive adversary may corrupt a tag at any time, which leads

to the destruction of the tag, that is, the adversary may no longer interact with the tag. A

strong adversary may corrupt a tag at any time without destroying it.

Orthogonal to these four attacker classes there is a notion of wide and narrow adver-

sary corresponded to the two modes of observation. An adversary is called wide if he may

observe whether the protocol ended successfully, and narrow else. Since the four types of

corruption are orthogonal to the narrow/wide separation, eight different adversarial classes

are considered.

3.2.3 Juels-Weis Model

The Juels-Weis model (Juels et Weis, 2007) is based on the notion of indistinguishability.

They provide a slightly stronger definition of untraceability. Untraceability which is called

RFID privacy in their model is defined through a privacy experiment. The adversary selects
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two tags as candidates. After the challenge, one of the candidates is chosen by the adversary.

The simplified version of their defined privacy experiment phases are briefly described below:

1. Setup Phase:

• Generate random keys (key0, . . . , keyn)

• Initialize the reader R with keys

• Create tags and set keys

2. Learning Phase:

• Adversary A communicate with the system

3. Challenge Phase:

• Adversary A select two tags

• Adversary communicate with the system

• Adversary outputs a guess bit

The protocol is said to be private if no adversary has non negligible advantage in success-

fully guessing the tag in the experiment.

Comparing with Vaudenays model it does not have a DrawTag query and instead of

Corrupt query it has a SetKey which returns the current secret of the tag and allows the

adversary to set a new secret. Moreover, in terms of Vaudenay’s model it would considered

as a weak adversary. It is worth mentioning that Vaudenay’s wide-strong adversary is the

strongest of all the adversaries.
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CHAPTER 4

FORMALIZATION AND CLASSIFICATION

In formalizing untraceability, most of the attempts have been relied on computational

models, typically in term of games. These models are poorly supported by automatic tools.

There are also a few definitions of untraceability in symbolic setting, however there is still no

agreement on the exact definition and the strength levels.

Therefore we decided to work in symbolic setting, using process algebra. The main idea of

these approaches are analysis of the similarity of system’s behaviour based on the viewpoint

of an external viewer. Employing a symbolic model helps the explicitness of models and

provides automatic verification, using tools like ProVerif. Nonetheless, in symbolic analysis

we assume perfect cryptography functions which might result in missing attacks, exploiting

weaknesses of the cryptographic primitives.

The goal of this chapter is to collect all definitions of untraceability, introducing a classi-

fication for this property and providing a symbolic model of the privacy games in applied pi

calculus. It also facilitate the process of automatic verification of such protocols.

In section 1, we will classify former privacy games into three different levels and provide

their relations. In section 2, we will propose a general model for RFID identification protocols

in the applied pi calculus. In section 3, three untraceability levels with respect to the men-

tioned privacy game types will be offered. In addition, we will show, formalization of these

levels in the applied pi calculus. Finally, in section 4, we will categorize all the introduced

notions of untraceability.

4.1 Classifying Privacy Games

In this section we would like to classify privacy games in the literature, into three different

types. These games have different steps modelling interaction between the adversary and the

tag. Let’s divide a privacy game into two steps. The first step is the interaction of the

adversary with the tags and the readers. Then the adversary’s knowledge is tested in the

second step. Now, we describe the second steps of the three games in more details, since the

first step of the attacker abilities, is almost the same for all.
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4.1.1 Game Type I

The game scenario is defined as the adversary is given access to two tags T1 and T2,

which could be either same tag or a different one. She can eavesdrop on communications and

query the tags and the readers in the system. Finally, the game ends up, with the adversary,

announcing her guess of whether these tags are the same or not. Untraceability is satisfied

if the adversary cannot distinguish the two cases with the probability higher than a random

guess. Following scenario describes the above model briefly:

• Adversary is given two tags T1 and T2.

• Adversary interacts with both of the tags.

• Adversary decides whether T1 and T2 are equal or not, giving out the guess.

According to the 1st game type, The protocol is untraceable, if AdvATypeI is negligible.

Similar games can be found in the works of (Juels et Weis, 2007; Vaudenay, 2007).

4.1.2 Game Type II

The second game is slightly different compared to the previous one. Such that, the

adversary A must trace some tag T , therefore she is given a tag instead of two, unlike the

previous type. Then the adversary interacts with all tags. Finally, she is given access to a

challenge tag T ′ which must tell whether T ′ is T or not, better than random guessing to win.

It is summarized as following scenario:

• Adversary is given a target tag T .

• Adversary interacts with the received tag.

• Adversary is given a challenge tags, T ′.

• Adversary interacts with all tags.

• Adversary decides whether T ′ is T or not.

The protocol is untraceable according to game type II, if AdvATypeII is negligible. Followed a

similar game of the Chatmon’s work (Chatmon et al., 2006).

4.1.3 Game Type III

This game is the strongest concept, among all untraceability models in the literature.

Chatmon, in (Chatmon et al., 2006), named this game as unlinkability. It is quite the same

as second game type, except that in that one, the adversary already knows T but in this

game, both T and T ′ are challenge tags. Therefore in this scenario the adversary could have

access to any two challenge tags T and T ′, then through interacting with T and T ′, as well as
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all other normal tags and readers, adversary must figure whether it is interacting with same

tags or not. Adversary wins if his score is non negligible. Adversary game can be summarized

as following scenario:

• Adversary A communicate with the system

• Adversary A is given access to two challenge tags T and T ′

• Adversary interacts with the system.

• Adversary outputs a guess bit

Due to game type III, the protocol is said to be untraceable, if AdvATypeIII is negligible. Similar

game can be found in the work of (Chatmon et al., 2006).

4.1.4 Comparison

In this section we compare the aforementioned games with respect to the indistinguisha-

bility experiment, showing that the first type is the weakest and the last is the strongest

among all.

Theorem 4.1. If a protocol respect type III untraceability it will respect type II untraceability.

Proof. Let’s assume protocol P satisfies third type untraceability, therefore we have:

For any two challenge tags T1 and T2, P respects untraceablity thus, the adversary can not

distinguish whether it is interacting with same tags.

We want to prove that P satisfies the second type untraceability. Let T ′ be a given tag, we

should prove that the adversary could not tell whether T ′ is T or not, better than random.

We know that this property is admitted for any T1 and T2, then it is true for T and T ′.

Theorem 4.2. If a protocol respect type II untraceability it will respect type I untraceability.

Proof. Let’s assume protocol P satisfies the second type untraceability, therefore we have:

To trace a tag T , the adversary is given access to a challenge tag T ′ and she is not able to

tell whether T ′ is T or not, better than random guessing.

We want to prove that P satisfies untraceability of the first game. Let T1 and T2 be two

given tags, we should proof that the adversary could not tell whether T1 is T2 or not, better

than random. We know that this property is true for T and any given tag T ′, then it is true

for T1 and T2.

Generally, we can conclude that the third type untraceability is the strongest among the

others, and also the second type implies the first type untraceability, then in brief we have:
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3rd game ⇒ 2nd game ⇒ 1st game

We also comp up with counter examples to show, the above relations can not be true

from the other side. We want to demonstrate 1st game ; 2nd game and 2nd game ; 3rd

game.

Let’s assume a trace of a protocol as depicted in figure 4.1. The shapes are sessions of

different or same tags participating in the protocol run. Each color represents a specific tag.

Therefore, where two shapes have the same color, it means, those two sessions are initiated

by the same tag.

Figure 4.1 A protocol trace

Now consider the traces in figure 4.2. In the right box, you see that if the observer points

at any two given sessions, it could not tell weather they are initiated from the same tag or

not, therefore it can be said, it satisfies 1st type untraceability. But if the observer sees the

output as in the left box, it could see that the first session is initiated from same tag as

the third one, so it can not be true for any session, therefore it does not satisfy 2nd type

untraceability.

Figure 4.2 1st type Untraceability Vs. 2nd type Untraceability

Now Consider the traces in figure 4.3. This example satisfies 2nd type untraceability. By

the definition of the 2nd type game, for the given purple tag, the observer could not find any

other session initiated from the same tag in any other traces. But it does not respect the
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requirement of 3rd type which says that the observer must not link any two session in the

traces of the protocol. In this circumstance, the observer is able to find two sessions which

are initiated from the gray tag in other traces. Therefore it does not respect the third type

game.

Figure 4.3 2nd type Untraceability Vs. 3rd type Untraceability

4.2 Modelling RFID Protocols

Before formalising security properties, we need to show how we model an RFID protocol

in applied pi calculus. Applied pi calculus provides a framework to model security protocols.

It allows us to model the interaction between the agents using communication primitives, as

well as the cryptographic functions using equational theory. Different protocols often have

differences. However, we believe that a large class of RFID protocols can be represented by

processes corresponding to the following structure.

An RFID protocol is a closed plain process

P ≡ νñ. (Tagσ1| . . . |Tagσn|Reader1| . . . |Readern|A1| . . . |Ak)

An RFID system commonly consist of tags and readers. The Tagσi are the tag processes

which model an unbounded number of tags. Since the link between the reader and the back-

end database is secured and also to simplify the model, we assume that back-end database

is included in the reader. So, we let Readerj be the process modelling the reader and the

back-end database. The Aks are the protocol other authorities such as key distributor and

the ñ are channel names. We also define an evaluation context C [ ] which is same as P , but

has two holes instead of two of the Tagσis.

The tag model depends on the protocol that is modelled. Typically in an RFID system any

tag has a unique secret idT which differentiates it from other tags and makes it distinguishable

for the reader(back-end database). This secret might be a nonce, or an ID or any other secrets.
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The secret never transmitted in plain text and depending on each protocol it is transmitted

using a hash function, key encryption or logical operations. The tag should be initialised to

the back-end database, since this procedure is done before using tag in any environment, we

consider it as a null process and do not include it our model. We suppose that l ∈ dom(σi)

is a variables which refers to the idT . Since each tag can perform an unbounded number of

protocol execution, we need to consider different tag sessions. So we use si to identify a tag

session.

The adversary is considered as a Dolev-Yao attacker in our model, therefore we do not

need to explicitly define the adversary and we only give the equational theory describing the

intruder. Generally the adversary in our setting has access to any message sent on public

channel. These public channels model the network. Cryptographic primitives modelled by

means of the equational theory.

4.3 Formalizing Untraceability

In this section we will define three levels of untraceability according to three game sce-

narios described above. We will show how the untraceability properties described above in

term of games, can be formalised in our setting. First we illustrate the informal definition of

each property with a simple example then we formally define these concepts in the applied

pi calculus, which makes it possible to automatically check if an RFID protocol respect these

properties.

4.3.1 Low Untraceable

Low untraceability concept is taken from first game type which ensures that the adversary

is not able to infer whether two given sessions s and s′ initiated from the same tag in any

trace. In this case if an intruder point to any two specific sessions in any trace, she cannot

tell whether they have same identities.

Example 4.3. Assume the process P with an unbounded number of tags modelled as P =!T .

Each tag, identified by a distinct identity id, can run unbounded number of sessions, modelled

as T = νid.!(νs.main) where main models single session of a tag. Every session is associated

with a session identifier νs. Now consider two possible branches trA and trB of the process

P which is an equivalent of a trace in trace-based model:



42

trA ≡ νid1.νid2.νs1.νs2.νs3.

(mains1id1|main
s2
id1
|!(νs.mainid1)|

mains3id2|!(νs.mainid2)|!T )

trB ≡ νid1.νid2.νs1.νs2.νs3.

(mains1id1|main
s3
id1
|!(νs.mainid1)|

mains2id2|!(νs.mainid2)|!T )

where main
sj
idi

denotes the single session sj of tag idi.

In these traces, there are two different tags with identities id1,id2 and three sessions of

the protocol are executed. To satisfy low untraceability, the adversary must not be able to

distinguish whether two given session s1 and s2 are executed by the same tag (in trA sessions

s1 and s2 are initiated by the tag id1), or by two different tags (in trB sessions s1 and s2 are

initiated by the tags id1 and id2 respectively). It is worth mentioning here that in this level,

the adversary does not see all the outputs of the protocol. If it sees all the outputs may find

other two sessions which may initiated from the same tag, like s1 and s2 in trA and s1 and

s3 in trB which both initiated from tag id1.

Now we say that an RFID protocol respects low untraceability whenever a process where

session s1 initiated from TagA and s2 initiated from TagB, is observationally equivalent to

a process where TagA initiates both s1 and s2. In order to give a reasonable definition of

untraceability, we consider two distinct tag sessions s1 and s2. Formally it is defined as

follows:

Definition 4.4. (Low Untraceability) An RFID protocol respects low untraceability if

C [TagA{s1/s}|TagA{s2/s}] ≈ C [TagA{s1/s}|TagB{s2/s}]

where TagA = Tag{idA/id} and TagB = Tag{idB/id} in which idA and idB denote two

honest tags. Note that we do not consider a separate id for the tags when it is not necessary,

instead we use the tag’s secret keys in order to identify tag’s identity.

The intuition is that if an intruder cannot detect if two given single sessions are initiated

by the same tag or by two different tags, then in general she cannot link between the two

tags which results in tag’s untraceability.

It is classical to formalise untraceability property through some kind of observational

equivalence in a process calculus. This method relies on the two notions introduced in chapter

2, static equivalence ≈S, and labelled bisimilarity ≈L. Static equivalence captures the static

part of observational equivalence and labelled bisimilarity captures the dynamic part. Abadi
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and Fournet in (Abadi et Fournet, 2001) stated that observational equivalence and labelled

bisimilarity coincide: ≈ = ≈L. They also proved that given closed extended processes A,

B and a closed evaluation context C[ ], we have A ≈L B implies C[A] ≈L C[B]. It is very

important, because labelled bisimilarity can be proved instead of observational equivalence

avoiding to have to deal with the universal quantification over evaluation contexts, required

by the observational equivalence.

Furthermore, since the only difference between two processes P and P ′ lies in the tag

processes, It is only required to verify that:

(Tag{idA/id, s1/s}|Tag{idA/id, s2/s}) ≈ (Tag{idA/id, s1/s}|Tag{idB/id, s2/s})

The tool ProVerif enables us to prove such equivalence in presence of an adversary. Note

that the adversary is not modelled explicitly, she is considered as a part of the environment

and the observational equivalence guarantees that no environment will be able to distinguish

the two cases. In our research we benefit from this tool to demonstrate automatic verification

of the proposed properties for some case study protocols. Following two properties also could

be verified in the same way.

4.3.2 Mid Untraceable

This definition is inspired from the game type II. The adversary wants to trace a tag T

with chosen session s, then she is given access to any session s′. In this case the adversary

must not be able to infer whether s′ is initiated from the same tag as s is initiated from.

Example 4.5. Let’s consider the same process in example 4.3, the branches trA, trB and

trC are defined as follows:

trA ≡ νid1.νid2.νs1.νs2.νs3.

(mains1id1|main
s2
id1
|!(νs.mainid1)|

mains3id2|!(νs.mainid2)|!T )

trB ≡ νid1.νid2.νs1.νs2.νs3.

(mains1id2|main
s3
id2
|!(νs.mainid2)|

mains2id1|!(νs.mainid1)|!T )

trC ≡ νid1.νid2.νs1.νs2.νs3.

(mains1id2|main
s2
id2
|!(νs.mainid2)|

mains3id1|!(νs.mainid1)|!T )
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In trA there are two sessions s1 and s2 which instantiated by the tag id1, but in other two

branches trB and trC , you could see that there is only one instantiation of tag id1. Therefore

it satisfies the mid untraceability which requires that for the given session s initiated from

the tag id1 there is no s′ in other traces which initiated from the tag id1.

Notice that in the above branches of the protocol run, there might be other sessions than

the given session which initiated from the same tag, like s1 and s3 in trB and s1 and s2 in

trC which instantiated from the same tag id2. This shows the reason why we have middle

level of untraceability and it is not the strongest.

To formalize this property, we consider a given session s1 initiated from TagA. We say

that RFID protocol respects mid untraceability whenever a process including s1 and s2 which

is initiated from the same tag as s1 be observationally equivalent with a process including s1

and s′2 which is initiated from a different tag from which s1 is initiated from. Formally it is

defined as follows.

Definition 4.6. (Mid Untraceability) An RFID protocol respects mid untraceability if

C [TagA{s1/s}|TagA] ≈ C [TagA{s1/s}|TagB]

where TagA and TagB defined in the same way as in low untraceability as Tag{idx/id}. The

intuition is that with a given session s1 if an adversary cannot detect that for any second

session, it is executed by the same tag or by different tag, then it can not link between two

execution of tags and results in tag’s untraceability.

4.3.3 High Untraceable

This level of untraceability is a strong notion of untraceability. It is inspired from the

game type III, that the adversary must not be able to infer whether there exist two sessions

in any trace that initiated from the same tag.

The difference between high and mid untraceability comes from the challenge session

that in mid untraceability adversary already knows the challenge session s, but in high

untraceability both s and s′ are challenge sessions.

Example 4.7. Let’s consider the same process in example 4.3, the branches trA and trB are

defined as follows:
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trA ≡ νid1.νid2.νs1.νs2.νs3.

(mains1id1 |main
s2
id1
|!(νs.mainid1 |

mains3id2|!(νs.mainid2 |!T )

trB ≡ νid1.νid2.νid3.νs1.νs2.νs3.

(mains1id1|!(νs.mainid1|
mains2id2|!(νs.mainid2|
mains3id3|!(νs.mainid3|!T )

In the above example, you could find no session s′ in trB that initiated from the same tag

as session s in trA is initiated from. As you can see in the above traces there must not be

any link between any two sessions to fulfil the high untraceability.

High untraceability is formally defined in the similar way as low untraceability with a

slight difference. In low untraceability, sessions are given as inputs to the model, which

in high untraceability modelled using new operators ν that means that for any sessions

it should be true. We say that an RFID protocol respects high untraceability whenever a

process including two different tags with an unbounded number of sessions, is observationally

equivalent to a process where sessions are initiated from one tag. Formally it is defined as

follows.

Definition 4.8. (High Untraceability) An RFID protocol respects high untraceability if

C [Tag{idA/id}|Tag{idA/id}] ≈ C
[
Tag{idA/id}|Tag{idB/id}

]
The intuition behind the definition is that any sessions of protocol P should look to the

adversary as if it was initiated by a different tag. In other words the adversary can not be

able to infer whether there exist two sessions initiated by the same tag in any trace.

4.4 Classification of Untraceability Definitions

Now we are able to compare between all untraceability notions such as Arapinis, Bruso,

and our proposed properties. In addition to the presented definitions based on process equiv-

alence in applied pi, Deursen in (Van Deursen et al., 2008) defined a model based on trace

equivalence. We briefly present their framework to be able to also relate their notion of

untraceability with ours. In this section we provide the relation between all formal untrace-

ability definitions in the literature. Before comparing the models, since the model proposed

by Deursen is based on traces, we need a transformation from trace-based model to process

algebra. We first provide this transformation using some examples.
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As we presented in related works, Deursen et al. defined their definition in terms of

traces(Van Deursen et al., 2008). In order to compare these two models we need to transform

the trace based model into process algebra. Therefore we start with modelling a protocol.

They defined the security protocol by defining the behaviour of the roles, therefore we

assume a closed plain process P including l roles, defined as follows:

P = νñ.(R1| . . . |Rl)

where Ri models the ith role of the protocol. Moreover, we consider P such that all channels

occurring in it are ground, and private channels are never sent on any channel.

A role consists of a sequence of events that an agent can execute, So the agents are

instances of the roles. To consider an unbounded number of agents, we put the Ris under

replication, so we will have:

P = νñ.(!R1| . . . |!Rl)

Now we should consider an unbounded number of sessions for each role. Each role also

should have a session identifier. In addition we consider a distinct identity for each user so

that we would be able to find out whether two sessions are instantiated by same or different

agents. Therefore we could define a role Ri as follows:

Ri = νid.νm̃.!(νs.maini)

where id is user identity, s is session identifier and main is the process models one session of

a role.

Example 4.9. Consider an RFID toy protocol including two roles: Reader R and tag T .

The protocol starts with sending a request from the reader to the tag. Then the tag responds

hello to the reader. The adversary is assumed as a standard Dolev-Yao adversary that has

the full control over the network. This protocol can be modelled by the following closed plain

process:

P = (!R|!T )

R = νid.(νs.c̄〈req〉.c(x))

T = νid.(νs.c(x).c̄〈hello〉)

Within this model, a trace t is defined as a sequence of events coming from numbers of

interleaved or uncompleted runs. They defined tR, denoting the subtraces of t, consisting of

the events of the run R, which are observable by the adversary. The i-th such subtrace is

denoted by tRi . By knowing that the only observable parts by the adversary in a protocol
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run, are the messages sent and received through public channel, we could say that a subtrace

tR represents all the communications that a specific tag does within a protocol run. Then

the subtrace tRi corresponds to a specific session of tR. Moreover, the notion of linkability of

subtraces in their model, denoted by L(tRi , t
R
j ), represents the concept that two sessions are

initiated from the same agent.

To better understand the above trace based model, we illustrate an example of equivalent

of a trace in terms of applied pi calculus.

Example 4.10. Consider the following processes:

P = !T T = νid.!(νs.c̄〈hello〉)

where, P denotes a protocol with an unbounded number of tags and the process T , models

a tag that has a distinct id, indicated by νid. Each tag executes an unbounded number of

sessions, indicated by the bang operator !, and each session involves outputting the message

“hello” on the public channel c. Every session is also associated with a distinct session

identifier, indicated by νs. A possible branch of the process P could be:

P ≡ (!T |νid1.!(νs.c̄〈hello〉)|νid2.!(νs.c̄〈hello〉)|
νs1.c̄〈hello〉|νs2.c̄〈hello〉)

≡ νid1.νid2.νs1.νs2.

(!T |!(νs.c̄〈hello〉)|!(νs.c̄〈hello〉)|
c̄〈hello〉|c̄〈hello〉); Using the rule: A|νu.B ≡ νu.(A|B)

νx.c̄〈x〉−−−−→ νid1.νid2.νs1.νs2.

(!T |!(νs.c̄〈hello〉|!(νs.c̄〈hello〉)|
(c̄〈hello〉|{hello/x})

νy.c̄〈y〉−−−−→ νid1.νid2.νs1.νs2.

(!T |!(νs.c̄〈hello〉|!(νs.c̄〈hello〉)|
({hello/y})

which represents two agents with the identities id1 and id2 executing two sessions. The

sessions may executed by the same agent, or different agents.

Proposition 4.11. If a protocol is low untraceable, it will satisfy untraceability proposed

by Deursen.
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Proof. To compare the definitions of untraceability we have to understand the definition of

untraceability in terms of our language. Deursen defined untraceability as follows:

∀t∈Traces
∀i 6=j L(tRi , t

R
j )⇒

∃t′∈Traces (t ∼ t′) ∧ ¬L(tRi , t
R
j )

It is inferred from the above definition that, untraceability is satisfied if for every trace of

the protocol in which, two subtraces are instantiated by the same agent ∀i 6=j L(tRi , t
R
j ), there

exists another indistinguishable trace (t ∼ t′), in which two subtraces are not instantiated

from the same agent ¬L(tRi , t
R
j ).

This is similar to our definition of low untraceability with a slight different, both definitions

requires that the observer cannot distinguish whether two given single sessions are initiated

by the same tag or by two different tags. But their definition only requires to exist only one

indistinguishable trace. This makes their definition weaker than ours and we could conclude

that our low untraceability implies Deursen’s untraceability.

Proposition 4.12. A protocol is low untraceable if and only if it is weak untraceable.

Proof. Let’s assume protocol P satisfies low untraceability, therefore by hypothesis we have

the following:

P ≡ Tag{idA/id, s1/s}|Tag{idA/id, s2/s}|A1| . . . |An
≈

P ′ ≡ Tag{idA/id, s1/s}|Tag{idB/id, s2/s}|A1| . . . |An

where P represents the system in which two sessions s1 and s2 are executed by the same tag

(id1); and P ′ represents the system in which session s1 is initiated by the tag id1, respectively

s2 is initiated by tag id2. According to Arapinis’s weak definition, an RFID protocol Q,

modelled as:

Q = νn.(DB|!R|!T |T1|T2)

T1 = νm.init.(!main|mainsession1|mainsession2)

T2 = νm.init.(!main|mainsession3)

must be equivalent to Q′ modelled as:

Q′ = νn.(DB|!R|!T |T ′1|T ′2)

T ′1 = νm.init.(!main|mainsession1|mainsession3)

T ′2 = νm.init.(!main|mainsession2)
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Considering that a session s1 in Tag{s1/s} is modelled using mainsi in Arapinis frame-

work, Tag{idA/id} in our model corresponds to T1 and respectively Tag{idB/id} corresponds

to T2 in Arapinis model. So processes P and Q represent two protocols, both including two

tag processes that refers to the same tag, modelling two distinct sessions initiated by the

same tag. Therefore we have:

P ≡ Q

and respectively for process P ′ and Q′ we could show that P ′ ≡ Q′.

Proposition 4.13. If a protocol is untraceable due to Bruso’s definition, it will satisfy low

untraceability.

Proof. Let’s assume protocol P satisfies Bruso’s untraceability, we have the following equiv-

alence:

P ≡ (R|DB|Tag(c1, c2)) ≈ (R|DB|Tag(c1)|Tag(c2)) ≡ P ′

(R|DB|!mains(c1)|!mains(c2)) (R|DB|!mains1(c1)|!mains2(c2))

where P represents two execution of a same tag, but on a different interfaces where each one

can executes infinitely many sessions; and P ′ represents a system in which two independent

tags executes infinitely many sessions. Note that since processes R and DB models the same

process on both definitions and the only difference is in tag process, they could be considered

as null. Now we have to prove that protocol P satisfies following equivalence relation:

νn.(DB|!R|!T |T1|T2) ≈ νn.(DB|!R|!T |T ′1|T ′2)

T1 ≡ (νs1.mainid1) &T1 ≡ νs2.mainid1) T ′1 ≡ (νs1.mainid1) & T ′2 ≡ (νs2.mainid2)

The main difference between two above models is that, Bruso’s model requires a system

with a tag executing infinitely many sessions in contrast with our model which considers only

single session in the indistinguishability game. Therefore it is trivial that Bruso’s definition

is stronger and implies our definition.

Proposition 4.14. If a protocol is strong untraceable due to Arapinis, it will satisfy our

High untraceability.

Proof. Let’s assume protocol P satisfies Arapinis’s strong untraceability, we have the follow-

ing equivalence:

νn.(DB|!R|!T ) ≈ νn.(DB|!R|!T ′)
νn.(DB|!R|!(!main) νn.(DB|!R|!(main))
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This equivalence requires that the RFID system with unbounded number of tags where each

can execute multiple sessions, be equivalent to one where each tag executes only one session

since the macro presenting tag’s session in process T ′ is not under replication. But our

definition only consider two tags in the indistinguishability game. Therefore it is obvious

that Arapinis definition is stronger. It is worth mentioning that, although their definition

is the strongest notion of the untraceability, real-life protocols can not satisfy this property

since it requires a tag only execute one session.

4.5 Results and Discussions

In this chapter we discussed about all the definitions of the untraceability in the literature

and suggest a new classification for this property in RFID protocols.

In Arapinis model, the strong property requires that the RFID system with unbounded

number of tags where each can execute multiple sessions, be equivalent to one where each

tag executes only one session since the macro presenting tag’s session in process T ′ is not

under replication.

This model suffers from an attack in which the attacker is in the proximity of the tag

and queries the same tag multiple time in a short period, knowing that, it is the same tag.

Assume that T and T ′, pointing the same tag and each has a single session. Within this

model, since a tag interface always corresponds to the same tag, the adversary is not able

to choose the tag which communicating with. The adversary has also the ability to query a

tag several times and might get response from any tag. Regarding their strong property, She

must not be able to distinguish these two tags but their proposed model makes it impossible

to satisfy the definition that has only a single session unless a different definition is given to

the single tag session. This could be a main blind spot of such definition.

On the other hand, Arapinis’s weak untraceability, requires a system in which two ses-

sions are executed by a particular tag, to be equivalent to a system where one of these two

sessions is executed by a different tag. This model is somehow similar to Bruso’s model. In

both models the adversary must not be able to distinguish between a system including two

executions of the same tag and a system including the execution of two independent tags.

But there is a difference in these two model. Bruso’s model requires a system with a tag

executing infinitely many sessions, while Arapanis model, considers only a single session in

the indistinguishability game. This model also does not work properly in state based proto-

cols like the protocol proposed by Ha et al. (Ha et al., 2007), ProVerif verifies the protocol

untraceablility, which could not be true due to the following simple scenario.
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Consider a tag communicating with a reader. Depending on the tag’s current session, two

scenarios could occur on reader side: the reader might complete the run by responding the

tag or it terminates the execution of the protocol by rejecting the tag in the case of getting

an incorrect respond from tag. Assuming that the tag is in its first session(initial state) the

reader cannot verify whether the message sent by the tag has changed during transmission.

Thus, malicious modification of this message does not result in rejection of the tag by the

reader. So the adversary performs a man-in-the-middle attack. She gets a challenge from the

reader and sends it to the tag to obtain a response. Then, she replaces the message, provided

by the tag, with a different value and submit the response to the reader. If the reader rejects

the response, the tag was in the middle of its session and if the reader accepts the response,

the tag was in the initial state. Therefore the adversary gets some information about the tag

which could result in tracing the tag.

In view of aforementioned reasons, we propose definitions for three levels of untraceability.

So we reviewed untraceability definitions based on privacy games and divided them into three

types. Then we proposed three untraceability levels corresponding to each game type with

some examples, to clarify the difference between these levels. In brief we divide untraceability

into the following levels:

• Low Untraceability, as ensuring that the adversary can not be able to distinguish whether

two given sessions in any trace initiated from the same tag or two different tags.

• Mid Untraceability, as ensuring that for a given session, the adversary must not be

able to infer that there exist another session, initiated from the same tag, as the given

session is initiated from.

• High Untraceability, as ensuring that the adversary must not be able to infer whether

there exist two sessions in any trace that initiated from the same tag.

We define these properties using observational equivalence in applied pi calculus, so that

Proverif gives us the ability to verify them. We also present the relationship between our

definitions and the definitions in the literature. Table 4.1 depicts the results of comparison

between the proposed untraceability levels as met by different definitions in the literature.

We will also illustrate some case studies on different RFID protocols from the literature in

the following chapter.
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Table 4.1 Comparison of Untraceability properties

Bruso Unt.
⇓

High untraceability ⇒ Mid untraceability ⇒ Low untraceability
⇑ m

Arapinis Strong Unt. Arapinis weak Unt.
⇓

Deursen Untraceability
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CHAPTER 5

CASE STUDIES

This chapter illustrates how to automatically verify the proposed untraceability property

in RFID protocols. As mentioned by Deursen, it was a problem in such protocols (van

Deursen et Radomirovic, 2009). Many protocols like (Sun et Zhong, 2012; Kim et al., 2007;

Qi et al., 2012; Bassil et al., 2012) have been proposed and has not been automatically verified

yet. In this chapter we cover the protocol proposed by Kim et al (Kim et al., 2007) along

with the protocol presented by Feldhofer (Feldhofer et al., 2004). Our third case study is the

sample protocol used by Arapinis (Arapinis et al., 2009), and the last one which belongs to

the group of hash-based, single step protocols is proposed by Ohkubo et al. (Ohkubo et al.,

2003).

In this chapter, we employ the tool ProVerif(Blanchet et al., 2001) to model our case study

protocols and verify the properties. Before going through the case studies, we briefly introduce

the tool and present how to verify secrecy, correspondence and equivalence properties.

5.1 ProVerif

ProVerif is a fully automatic tool for analysing the security of cryptographic protocols.

It can handle many different cryptographic primitives including symmetric and asymmetric

encryption, digital signature and hash functions. ProVerif is capable of proving reachability

properties, correspondence assertions, and observational equivalence which can be useful

to analysis of secrecy, authentication, privacy and traceability properties. Its architecture

is depicted in Figure 5.1. ProVerif accepts two kinds of input files: Horn clauses and the

Applied Pi calculus. It gives us the ability to automatically prove following properties in order

to analyse security protocols. Recently R. Kuster and T. Truderung (Küsters et Truderung,

2011) proposed a new tool XOR-ProVerif which is a small program, transforms a protocol

using Exclusive-Or mechanism into a protocol in Horn clauses compatible with ProVerif.

Secrecy Intuitively, the secrecy of the term M is preserved in a protocol if it is only known

to participants which are entitled to access it and no adversary can obtain M by substitution

and deduction from output of the protocol. The adversary is formalized as a process running

in parallel with the protocol which outputs M on a public channel after constructing it. If

she cannot construct M , the secrecy is preserved. In ProVerif to test secrecy of the term M
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Figure 5.1 ProVerif Architecture

in the model, the following query is included in the input file before the main process: query

attacker(M). where M is a ground term.

Authentication (Correspondence properties) To reason with correspondence proper-

ties processes are annotated with events, marking important stages reached by the protocol

which do not otherwise affect behaviour. Events are analogous to breakpoints used in soft-

ware development. Correspondence properties are used to represent the relationships between

events that can be expressed in the form ”if an event e has been executed then event e′ has

been previously executed.” Authentication can be captured using correspondence assertions.

For example, recall the handshake protocol authentication property that the client is only

willing to share her secret with the server S; it follows that, if she completes the protocol,

then she believes she has done so with S and hence authentication of S to C should hold. In

contrast, server S is willing to run the protocol with the client who he is willing to, and hence

at the end of the protocol he only expects authentication of C to S to hold, if he believes

C was indeed his interlocutor. Accordingly, the grammar for processes including events are

extended with event e(M1, . . . ,Mn);. The syntax to query a basic correspondence assertion

in ProVerif is:

query x1 : t1, . . . , xn : tn; event(e(M1, . . . ,Mj))→ event (e′(N1, . . . , Nk)).

Observational Equivalence The notion of indistinguishability is a powerful concept which

allows us to reason about complex properties that cannot be expressed as reachability or cor-

respondence properties. Indistinguishability is generally named observational equivalence in



55

the formal model. If an agent receives a message or an adversary eavesdrop a message for

which it does not have the decryption key, this message looks just like a random bit string.

Intuitively, two sequences of messages look the same to an agent and the agent understands

the same form both of the messages, these messages are called observational equivalence. In

other words if a message looks like a random bit string to an agent, then the corresponding

message also looks like a random bit string.

Strong secrecy A first class of equivalences that ProVerif can prove is strong secrecy.

Strong secrecy means that the attacker is unable to distinguish a session of the protocol

where a data m has been used from a session where m has been replaced by m′. In other

words, the value of the secret should not affect the observable behavior of the protocol.

Equivalences between processes that differ only by terms ProVerif includes some

queries that enable us to prove the most general class of equivalences where the processes

P and Q have the same structure and differ only in the choice of terms. Intuitively, two

processes P and Q are observationally equivalent, written P ≈ Q, if they can output on

the same channels, no matter what the context they are placed inside. Roughly speaking,

processes P and Q are said to be observationally equivalent when an active adversary cannot

distinguish P from Q where the processes P and Q have the same structure and differ only

in the choice of terms. This is written in ProVerif by a single biprocess that encodes both P

and Q. Such a biprocess uses the construct ”choice[M,M ′]“ to represent the terms that differ

between P and Q. P uses the first component of the choice, M , while Q uses the second one,

M ′.

The most general class of equivalences that ProVerif can prove are equivalences P ≈ Q

In other words if they can output on the same channels, no matter what the context they are

placed inside. Roughly speaking, processes P and Q are said to be observationally equivalent

when an active adversary cannot distinguish P from Q where the processes P and Q have

the same structure and differ only in the choice of terms. These equivalences are written

in ProVerif by a single biprocess that encodes both P and Q. Such a biprocess uses the

construct ”choice[M,M ′]“ to represent the terms that differ between P and Q. P uses the

first component of the choice, M , while Q uses the second one, M ′.

5.2 Feldhofer Protocol

In this section, we study a mutual authentication protocol proposed by Feldhofer et al.

in (Feldhofer et al., 2004). We first present an informal definition of the protocol. Then, we

model it in the applied pi calculus. Deursen in (Van Deursen et al., 2008) proposed that, it
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is untraceable regarding their definition of untraceability. Here we show that, the protocol

neither satisfies Mid and Hight untraceability, nor Bruso’s untraceability. It only satisfies the

Low untraceability property. The protocol is depicted in figure 5.2 using a message sequence

chart.

Figure 5.2 The Feldhofer Mutual Authentication Protocol

5.2.1 Description

The protocol includes a reader, a tag and a key distributor. During the first phase, every

pair of reader, Reader and tag, Tag receives a unique key k. These shared keys are initially

not part of the adversary’s knowledge. The reader initiates the protocol by sending a freshly

generated nonce nr to the tag. The tag generates a nonce nt encrypts the pair (nr, nt) under

the shared key k, and sends it to the reader. The reader decrypts the message using the same

shared key, reverses the order of the two nonces, encrypts the message under the shared key,

and sends it to the tag.

5.2.2 The Model In Applied Pi

The protocol is defined with respect to the signature Σ = {senc, sdec}. Cryptogra-

phy is modelled in a Dolev-Yao style as being perfect. So the cryptographic primitives are

modelled as an equational theory. The encryption function is modelled by the equation:

sdec(senc(m, k), k) = m; where both senc and sdec are binary functions, representing sym-

metric key encryption and decryption. The ProVerif code used to model the protocol is

shown in table 5.4.
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Table 5.1 Feldhofer protocol ProVerif code

(* a generic symmetric encryption function *)
fun senc/2.
reduc sdec(k, senc(k, m)) = m.

(* Key Distributor Process *)
let Key =
new sk;
out(privcR,sk);
out(sk1Ch,sk).

(* Tag Process *)
let Tag =
in(privcT,sk);
in(c,nr);
out(c,senc((nt,nr),sk));
in(c,msg1);
let (ntt,nrr)=sdec(msg1,sk) in
if (ntt=nt) then
if (nrr=nr) then 0.

(* Reader Process *)
let Reader =
in(privcR,sk);
new nr;
out(c,nr)
in(c,msg2)
let(nt,nrr)=sdec(msg2,sk) in
if (nrr=nr) then
out(c,senc((nr,nt),sk)).

(* Main process *)

process new nt; ( Key | Reader |
(let privcT = sk1Ch in let nt = nt2 in Tag) )

In the proposed protocol model, defined processes are, the tag, the reader, the key dis-

tributor and the main process.

Main Process. The main process specifies the parallel combination of the processes and

sets up the private channels that mainly used for key distributions. We model the above

protocol for only one tags and launch a copy of the reader for the tag. To model the untrace-

abilities two tags are needed to be run in parallel, then we launch two copies of the readers,

one for each tag.
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Key Process. Our model includes a dedicated process for generating and distributing

keying material for shared key encryption.

Tag Process. Within this process, first, each tag obtains its secret key from the key process.

The remainder of the specification follows directly the informal description given above. The

statement “let(nt, nrr) = sdec(msg2, sk) in” in this process uses destructor and pattern

matching with type checking to verify that if the first and the second element are the readers’s

and respectively its own nonce.

Reader Process. The reader process also follows the informal description of the reader

mentioned above, after getting its shared key from the key process.

We simulated the secret key sharing through sending message via secret channels. We did

not model tag identities, instead we considered the shared key as tag identifier. In this thesis

the aim of our work is to investigate the untraceability achieved by our modelled protocols.

According to our proposed definition high untraceability holds when it is impossible for an

attacker to distinguish between a system in which two sessions s1 and s2 are initiated from

tagA and a system where s1 is initiated from tagA and s2 is initiated from tagB. In formal

terms, this means proving the equivalence (≈) of the following processes:

P ≡ Key|Reader|Reader|TagA|TagB ≈ Key|Reader|Reader|TagA|Tag′B ≡ P ′

TagA = νsk1.νsk2.Tag{sk1/sk}
TagB = νsk1.νsk2.Tag{sk1/sk}
Tag′B = νsk1.νsk2.Tag{sk2/sk}

Tag = privcT (sk).c(nr).c〈senc((nt, nr), sk)〉.c(msg1)

where P represents the system in which two single sessions are initiated by two different tags

and P’ represents the system in which two single sessions are initiated by the same tag. The

session identifiers coincide with the nonces in our model and the ids represented by the se-

cret keys. The notation Tag{ski/id} indicates the execution of the protocol using the tag idA.

5.2.3 Automatic Verification Results

We first used ProVerif to verify the confidentiality of the secret values, sent through the

protocol. Then we checked the authentication properties by adding required events to the

both beginning and end of the tag and the reader processes as follows:
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Table 5.2 Feldhofer protocol - Correspondence properties

(* Tag Process *)
let Tag =
event beginRparam(tag); in(privcT,sk);
in(c,nr);
out(c,senc((nt,nr),sk));
in(c,msg1);
let (ntt,nrr)=sdec(msg1,sk) in
event beginRfull(tag, nr, nt, sk);
if (ntt=nt) then
if (nrr=nr) then 0;
event endTparam(tag);
event endTfull(tag, nr, nt, sk).

(* Reader Process *)
let Reader =
event beginTparam(reader);
in(privcR,sk);
new nr;
out(c,nr)
in(c,msg2)
let(nt,nrr)=sdec(msg2,sk) in
event beginTfull(reader, nr, nt, sk);
if (nrr=nr) then
event endRparam(reader);
event endRfull(tag, nr, nt, sk);
out(c,senc((nr,nt),sk)).

Table 5.3 Feldhofer protocol - secrecy and correspondence queries

query attacker:nt;

attacker:sk.

query evinj:endTparam(x) ==> evinj:beginTparam(x).

query evinj:endTfull(x1,x2,x3,x4) ==> evinj:beginTfull(x1,x2,x3,x4).

query evinj:endRparam(x) ==> evinj:beginRparam(x).

query evinj:endRfull(x1,x2,x3,x4) ==> evinj:beginRfull(x1,x2,x3,x4).

Then by adding the following queries to the protocol model the ProVerif will check for the

results, to see if they are true or false.

After getting the true results for the above queries, we can say that the secrecy and

mutual authentication properties are satisfied by Feldhofer Protocol. Now in order to check

our untraceability we use choice query to make sure that an adversary cannot distinguish P

from Q where the processes P and Q both have the same structure and differ only in the

second tag’s id.
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The verification results by ProVerif also shows that this protocol which is said to be

untraceable by Deursen, only satisfies our low untraceability definition. This is due to the fact

that in low untraceability the attacker should distinguish the two given session of the protocol

which does not include the complete outputs of the protocol. Because in low untraceability

we only investigate two specified sessions of tags which provided by the main process.

Now, in order to check whether it satisfies Arapinis strong definition we should model the

equivalence between a system in which the protocol executed by each tag at most once, and

a system in which tags can execute the protocol more than once, modelled as follows:

Q = !R|!T ≈ !R|!T = Q′

T = νid.!(νnt.in(c, nr).

out(c, senc((nt, nr), sk)).in(c,msg))

T ′ = νid.νnt.in(c, nr).

out(c, senc((nt, nr), sk)).in(c,msg)

where T and T ′ are tag processes and nt is the random nonce and id is the tag identity which

is modelled by the tag’s secret key. The process T represents a tag with identity id which can

execute the protocol an unbounded number of times, while the process T ′ can execute the

protocol at most once. We modelled the above equivalence using ProVerif. As we expected

the strong untraceability could not be satisfied for this protocol.

Protocol
Untraceability level

Deursen Bruso Weak Low Mid High Strong

Feldhofer 3 3 3 3 7 7 7

Figure 5.3 Arapinis’s Sample Protocol
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5.3 Arapinis Toy Protocol

In this section we model the toy protocol used by Arapinis in (Arapinis et al., 2009) in

order to analyse its untraceability property. The protocol is depicted as a message sequence

chart in Figure 5.3.

5.3.1 Description

Within this sample protocol the reader sends a welcome message to the tag. The tag

responds to reader with its identity Tid paired with a nonce nt, asymmetrically encrypted

with public key k. It is worth mentioning here that this sample protocol does not satisfy

authentication, since it is a sample program.

5.3.2 The Model in Applied Pi

The protocol is defined with respect to the signature Σ = {aenc, adec, pk}. The crypto-

graphic primitives are modelled as an equational theory. The encryption function is modelled

by the equation: adec(aenc(m, pk(skey)), skey) = m; where the unary constructor pk con-

structs a key pair, it takes a private key and returns a public key. aenc and adec are binary

functions representing asymmetric key encryption and decryption. Encryption and decryp-

tion are in a similar manner to symmetric cryptography with a public/private key pair used

instead of a symmetric key. The ProVerif code used to model the protocol is shown in table

5.4

5.3.3 Automatic Verification Results

We modelled different properties of untraceability. We verified all the untraceability

definitions but the strong one.

Protocol
Untraceability level

Deursen Bruso Weak Low Mid High Strong

Arapinis toy prot. 3 3 3 3 3 3 7

5.4 KIM Secure and Private Protocol

In this section we study a protocol proposed by Kim et al. (Kim et al., 2007). This

protocol aims to protect personal privacy and keep the tag untraceable. First we give an

informal definition. The protocol is depicted as a message sequence chart in Figure 5.4.

Then, we model the protocol in the applied pi calculus. Lastly, we show that this protocol is

not private due to our untraceability definitions.
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Table 5.4 Arapinis’s sample protocol

(* a generic asymmetric encryption function *)
fun pk/1.
fun adec/2.
fun aenc/2.
reduc adec(aenc(m, pk(prk)),prk) = m.

(* Key Distributor Process *)
let Key =
new prk;
out(privcR,prk);
out(pubch,pk(prk)).

(* Tag Process *)
let Tag =
in(pubcT,pbk);
in(c,x);
out(c,aenc((nt,id),pbk)).

(* Reader Process *)
let Reader =
in(privcR,sk);
new x;
out(c,x)
in(c,msg).

(* Main process *)

process new id; ( Key | Reader |
(let pubch = pubcR in let id = id in Tag) )

We also demonstrate the man-in-the-middle attack which gives the adversary the knowl-

edge to distinguish between tags. Then we propose a correction on the protocol and show

that the new fixed model satisfies upto high untraceability and not Arapinis’s, strong un-

traceability.

5.4.1 Description

This protocol consists of three phases, identification, initial setup and privacy protection

phase. In the initial phase both the mobile reader and the tag receive a key k from the server.

The protocol starts with the reader challenging the tag with a freshly generated nonce nr.

Upon receiving the request, the tag generates a nonce nt. Then it computes hk(nr) and

responds with ID ⊕ nt and hk(nr)⊕ nt.
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Figure 5.4 The Kim Secure and Private Protocol

5.4.2 The Model in Applied Pi

The algebraic properties of the xor function are not supported by ProVerif. Hence, we

modelled a simplified version as: xor(xor(x, y), y) = x. However, this abstraction gives less

deduction power to the attacker and thus could result in the loss of possible attacks. We use

a signature in which xor(x, y) denotes the simplified xor function and h denotes the keyed

hash function. The keyed hash function is modelled using a binary function without any

equation that represent the one-wayness of the hash function. The ProVerif code used to

model the protocol is shown in table 5.5.

Main Process. The main process generates a new session identifier represented by tag’s

nonce and a tag identifier represented by hash function’s key, to instantiate a copy of a tag

process executing in parallel with the reader process.

Tag Process. In the tag process, first it obtains its secret key. Then as it is mentioned in

the informal description, after receiving the nonce generated by the reader, it sends a message

to the reader.

Reader Process. The reader is willing to run the protocol with any other principal. On

request from a tag, the reader starts the protocol by selecting a fresh nonce nr and outputting

it on the public channel.
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Table 5.5 Kim Protocol ProVerif Code

(* a one-way keyed hash function *)
fun h/2.

(* simplified xor function *)
fun xor/2.
equation xor(xor(x,y),y)=x.

(* Tag Process *)
let Tag =
in(privch,k);
in(c,nr);
out(c,(xor(id,nt),xor(h(nr,k),nt))).

(* Reader Process *)
let Reader =
new nr;
out(c,nr)
in(c,msg).

(* Main process *)

process new sk; new nt1; ( Reader |
(let k = sk in let nt = nt1 in Tag) )

5.4.3 Attack on untraceability

The authors claimed that their protocol provides untraceability, because the tag never

sends the same response twice and it is refreshed by both sides on each session. ProVerif

could not prove the untraceability property of this protocol. We show that the protocol is not

untraceable by providing an algorithm that gives the adversary a non-negligible advantage

of guessing the selected tag.

To attack untraceability, the adversary challenges the tag twice with the same nonce. He

can then calculate the xor of the two parts ID ⊕ nt and hk(nr) ⊕ nt of the responses. This

equation does not depend on nt and it always gives the result of ID ⊕ h(nr, k). Therefore

the adversary twice obtains ID ⊕ h(nr, k), if and only if it was twice the same tag that he

challenged. The attack is depicted in Figure 5.5.
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Figure 5.5 Man-in-the-middle Attack on Kim et al. Protocol

5.4.4 Fixing the Protocol

The previously described protocol problem is based on the fact that the adversary can

guess if she is communicating with the same tag or not, by receiving the same messages

after sending the same nonce twice. The solution for this problems should not require heavy

additional overload for the tag.

Therefore it is feasible to change the message hk(nr)⊕nt to hk(nr)⊕hk(nt). As you could

see, we did not add additional cryptographic capabilities in the tag, but rather use what

already is available.

5.4.5 Automatic Verification Results

We modelled the fixed system in applied pi calculus, first we verified the confidentiality

of the secret values like ID, k and nt. After that we went through the mutual authentication

properties. ProVerif verified both secrecy and authentication properties. This part is done in

the similar was as the first case study by adding begin and end events, in both tag and reader

processes. Then by querying the correspondence property mutual authentication property

could be concluded.

After satisfying the correctness of the protocol, we analysed the untraceability properties.

Finally, it is observed that, all untraceability properties, but the strong, are successfully

verified on fixed model of this protocol.
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Protocol
Untraceability level

Deursen Bruso Weak Low Mid High Strong

Kim 7 7 7 7 7 7 7

Kim modified 3 3 3 3 3 3 7

5.5 OSK protocol

OSK, the protocol presented by Ohkubo et al. (Ohkubo et al., 2003), belongs to the

class of single step protocols. In this class of protocols the tag is activated by the reader

without receiving any message. Then the tag generate the message due to its current state,

which mostly contains a fresh nonce and sends it to the reader. This is the only message sent

within this protocol. After that the tag updates its current state and the session ends. This

class of protocols mostly used in the supply chain systems. As it is mentioned in the chapter

three, there is a security scheme for tags based on one-way hash functions. It only requires

implementing a hash function on the tag and the key management is done on the back-end.

This makes the tags light and cheap for mass production.

The problem here, is raised because the tags may still function as object identifiers while

in the locked state by using the ID for database lookups. Since the ID acts as identifier, it

allows the adversary to take advantage of the tag functionality and track individuals. This

shows the importance of verifying the untraceability for this kind of protocols.

5.5.1 Description

This protocol is defined with respect to the signature Σ = {f, g} where both f and g are

unary one-way hash functions. It is depicted in Figure 5.6.

Figure 5.6 The OSK protocol

It assumes that a tag can compute two distinct one-way hash functions f and g. Each tag

initially stores a secret id s which is shared with the backend database. The hash function h
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is used to update the secret at each run of the protocol while g is used to encrypt the output;

the tag sends g(si), where si is its current identifier and then updates its secret si+1 = h(si).

5.5.2 The model in Applied Pi

In this protocol, similar to all other single step protocols, the readers are completely

passive, in contrast with above presented protocols. So, in this protocol for an RFID system

we could set Reader as a null process. The tag also does not need any interaction with other

participants to update its secret, and it is modelled with a simple hash function. Therefore

we have the following simple RFID system:

Table 5.6 OSK Protocol ProVerif Code

(* two one-way hash functions *)
fun h/1.
fun g/1.

(* Tag Process *)
let Tag =
out(c,g(s));
let s = h(s) in 0.

(* Reader Process *)
let Reader =
in(c,msg).

(* Main process *)
process ( Reader | Tag )

5.5.3 Automatic Verification Result

ProVerif proved that all untraceability properties are satisfied by OSK protocol. Actually

we modelled different single step protocols and we could not find any that does not satisfy

untraceability properties. We find single step protocols the only group which could achieve

Arapinis Strong untraceability, and this is due to the fact that these protocols only send one

message by the public channel and each time the secret changes, which makes it impossible

for the attacker to get any knowledge of messages or agents secrets.

Protocol
Untraceability level

Deursen Bruso Weak Low Mid High Strong

OSK 3 3 3 3 3 3 3
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5.6 Results and Discussions

Table 5.7 depicts the results of our case studies in brief.

Table 5.7 Untraceability results of case studies

Protocol
Untraceability level

Deursen Bruso Weak Low Mid High Strong

Feldhofer 3 3 3 3 7 7 7

Arapinis toy prot. 3 3 3 3 3 3 7

Kim 7 7 7 7 7 7 7

Kim modified 3 3 3 3 3 3 7

OSK 3 3 3 3 3 3 3

• As shown in the table 5.7, weak and low untraceability indicate the same outputs for

all studied protocols, corresponding to the discussion held in section 4.4.

• Although we showed the difference between mid and high untraceability in an exam-

ple, we could not find any protocol, among the existing protocols, which satisfies mid

untraceability but not high untraceability. Consequently in the above results, it is seen

that any protocol, satisfies mid untraceability, also satisfies high untraceability.

• The result reveals that, the OSK is the only protocol which satisfies strong untrace-

ability. Not satisfying the strong untraceability by other protocols than OSK, is due to

the fact that, the adversary observes that there are two tags which executed multiple

sessions each. Since it violates the case that each tag executes itself at most once the

actual protocols can be distinguished from the ideal version. This does not let the

ProVerif to satisfy strong untraceability, however, this information does not allow the

tag to be really traced.

• ProVerif showed that, the untraceability property is not satisfied by the Kim’s protocol,

and the attack algorithm is provided. We modified the protocol and demonstrated that

the modified version meets all our untraceability levels.

Table 5.8 Comparing time to verify high untraceability

Protocol
Time (ms)

Bruso UNT High UNT

OSK 4 4
Kim modified version 15476 7867

ProVerif also enables us to measure the time that takes to get the results. The results

showed that our definition works even more efficient in the manner of time among others.
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Although the time is not an important factor comparing to the properties. As we measured,

in simple protocols the difference is not too much, but in more complicated protocols you

could see an impressive difference. The table 5.8 depicts a comparison between our high

untraceability with a weaker model proposed by Bruso, which you could see it works faster.

We could not compare our high definition with Arapinis strong definition since we could not

find a suitable protocol which verifies both properties.
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CHAPTER 6

CONCLUSION

Technically, in this thesis, we improved the capabilities of the formal verification of RFID

identification protocols, by defining explicit definition of security properties, presenting a pro-

cedure for the evaluation of security properties. This final chapter presents a brief conclusion

of our work and the possibilities for the future work.

6.1 Review of the Research

This work provided the design of a secure and a private identification protocols, improv-

ing the evaluation of existing schemes by using proper verification. We classified different

strengths of untraceability, based on three presented game types. Subsequently, a formal

methodology is suggested to verify such property.

After collecting all the privacy games in the literature, it is concluded that the difference

between definitions, is derived from the indistinguishability games used in the definition of

untraceability. Then we divided this property into three levels related to the type of games. It

is assumed as the first classification of untraceability, where it covers all previous definitions.

In brief we divided untraceability into following levels:

• Low Untraceability as ensuring that the adversary can not be able to distinguish whether

two given sessions in any trace initiated from the same tag or two different tags.

• Mid Untraceability as ensuring that for a given session the adversary must not be able

to infer that there exist another session initiated from the same tag as the given session

is initiated from.

• High Untraceability as ensuring that the adversary must not be able to infer whether

there exist two sessions in any trace that initiated from the same tag.

We compared our levels of untraceability with Arapinis’s weak and strong definition. We

depicted that the weak untraceability and our low untraceability are coincides. We also

showed that the strong definition can only be used for a small group of protocols, and be-

cause of some assumptions it is impossible to satisfy this property for most protocols. We

also transformed the trace-based model of untraceability, presented by Deursen, into pro-

cesses and demonstrated that it is weaker than our notion of low untraceability. Finally we

proved that Bruso’s definition of untraceability implies our low untraceability.
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In order to specification and verification, we have formalized an RFID protocol model and

three untraceability levels, using applied pi calculus. It is a process calculus which is able

to model security protocols by having a rich term algebra, value passing, function symbols

and a equational theory to model the cryptographic operations. Applied pi calculus enables

us to model both reachability, correspondence and observational equivalence properties. We

formalized untraceability as some kind of observational equivalence.

We have demonstrated our results in some case study protocols. We modelled four differ-

ent protocols in the literature, where three of them was chosen among the previously analysed

protocols and one of them has not been automatically analysed before. We demonstrated

that, the protocol proposed by Feldhofer, which is assumed to be untraceable can only satisfy

our notion of low untraceability. We modelled another protocol which as authors claimed, it

supposed to be secure and private. After analysing this protocol, we got a trace which resulted

in tracing a tag by the adversary. Then by providing the attack algorithm on untraceability

property, we proposed a fix for this protocol. We have used the existing cryptographic ca-

pabilities of the tag in order to not any additional overhead to the tag. We showed that the

modified protocol satisfies all our notions of untraceability. Finally we modelled a protocol

belonging to the group of single step protocols, where we found the only group that satisfies

all of the mentioned untraceability levels including Arapinis strong definition.

Extensive case studies show the effectiveness and efficiency of our taxonomy in verifying

untraceability of RFID protocols. The results also showed that our definitions works more

efficient in the manner of time, among the others. Moreover, our approach and framework

are generic and could be adapted into different systems.

The principle limitation of our approach is derived from the algebraic properties of logical

operations used in some RFID protocols, which do not allow the verifier tools to model such

systems. There are some investigation to illustrate how to convert these sort of operators in a

language, processed by some tools. However, they can solely verify authentication properties

and can not be used in analysis of the observational equivalence.

6.2 Possible Improvements and Future Work

Concerning future possible research related to verification of security properties, it seems

promising to model other privacy properties like forward or backward security using the same

model presented for untraceability.
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Another potential area for future work is enriching ProVerif to consider logical operators

such as Exclusive-Or, or to develop an interface to convert the protocol including logical

operators into applied pi. It is worth mentioning that there is an add-on for proverif which

enables us to verify secrecy and correspondence properties of protocols with logical operators

but it is not able to analyse the observational equivalence. Therefore since logical operators

acts the main role in light identification protocols, it will be very useful to automatize the

verification procedure.

Although untraceability properties are mostly used in the context of RFID systems, they

are issues for any protocol, which can be used with a mobile device, so it is possible to

extend it to other protocols like VANET and etc. So there is also a possibility of study of

untraceability in these environments.
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