
 

 

UNIVERSITÉ DE MONTRÉAL 

 

 

 

DYNAMIC MODELING OF TUBE-SUPPORT INTERACTION IN HEAT 

EXCHANGERS  

 

 

 

REZA AZIZIAN 

DEPARTEMENT DE GÉNIE MÉCANIQUE 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

 

 

THÈSE PRÉSENTÉE EN VUE DE L‟OBTENTION  

DU DIPLÔME DE PHILOSOPHIAE DOCTOR 

(GÉNIE MÉCANIQUE) 

DÉCEMBRE 2012 

 

 

© Reza Azizian, 2012.  



ii 

 

 

 

UNIVERSITÉ DE MONTRÉAL 

 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

 

 

 

Cette thèse intitulée: 

 

DYNAMIC MODELING OF TUBE-SUPPORT INTERACTION IN HEAT 

EXCHANGERS  

 

 

présentée par: AZIZIAN Reza 

en vue de l‟obtention du diplôme de : Philosophiae Doctor 

a été dûment acceptée par le jury d‟examen constitué de : 

 

M. BALAZINSKI  Marek, Ph.D., président 

M. MUREITHI  Njuki William, Ph.D., membre et directeur de recherche 

M. PETTIGREW  Michel, post grad.dipl., membre et codirecteur de recherche 

Mme ROSS  Annie, Ph.D., membre  

M. ALIGHANBARI  Hekmat, Ph.D., membre  

 



iii 

 

ACKNOWLEDGMENTS 

 

 

I would like to express my sincere thanks and deep appreciation to my Ph.D supervisor, 

Professor Njuki Mureithi and co-supervisor, Professor Michel Pettigrew. I am very appreciative 

of their thoughtful guidance, patience and constant support throughout my doctoral study. They 

have had a profound impact on the way that I approach scientific problems, find solutions and 

solve problems. I believe this will be very helpful for my future scientific work and also for real 

life problems.  

 

I have been privileged to collaborate with members of the chair of fluid-structure 

interaction during my Ph.D program. I would like to thank Mr. Thierry Lafrance for his technical 

support and guidance during experimental tests, and for the modifications to the experimental rig, 

and Mr. Bénedict Besner for his guidance regarding the work with laser displacement devices, 

force transducers and data accusation system. 

 

I would like to express thanks to Mr. Heung Seok Kang for his help and guidance with 

damping measurements, Ms. Isabelle Nowlan for sharing her experiences on tube-support 

experimental tests and finally Mr. Pierre Sawadogo for valuable scientific discussions. 

 

I would like to express my appreciation to Professor Stéphane Étienne for his support 

and help during writing of this thesis and particularly the translation process of the “Résumé”.   

 

I would like to thank all my colleagues and friends in the department of mechanical 

engineering at École Polytechnique de Montréal.  

 
Finally, I take this opportunity to convey my profound gratitude to my beloved father, 

Professor J.Azizian, my mother, Ms. K.Moshiri and my sister, Dr. H.Azizian, for their 

encouragements and supports throughout the several years of my doctoral work.   

 



iv 

 

RÉSUMÉ 

 

Les forces induites par écoulement dans les échangeurs de chaleur peuvent provoquer 

des vibrations excessives et des interactions avec les supports. Avec le temps, ces interactions 

peuvent entraîner de l‟usure par frottement et éventuellement mener au bris des tubes. La 

prédiction précise de l‟interaction tube-support est importante pour quantifier l‟usure par 

frottement. Ainsi, l‟étude détaillée du frottement et des forces d‟impact à l‟origine de ces effets 

est nécessaire à l‟établissement d‟un modèle d‟usure précis. Cette étude porte sur le 

développement d‟un modèle de frottement qui permet de reproduire fidèlement les différents  

états du phénomène de frottement, incluant les effets d‟élasticité, de plasticité et de frottement 

partiel. Le modèle d‟impact tube-support résultant est vérifié numériquement et 

expérimentalement. 

Un modèle de frottement fonction du taux d‟amortissement d‟un ressort hybride a été 

développé pour simuler précisément un phénomène de frottement d‟une vitesse nulle à une 

vitesse de glissement importante. Cela a été obtenu en considérant différents phénomènes 

pendant le phénomène de friction incluant l‟effet Stribeck, les forces variables de 

rupture, l‟élasticité des micro-protubérances de paroi ainsi que les comportements de glissement 

plastique et partiel. Le temps de glissement dans le modèle de friction à limitation de vitesse a été 

comparé à celui obtenu par le modèle de friction de Lugre.  L‟incapacité du modèle de frottement 

à limitation de vitesse à détecter la zone d‟adhérence a été expliquée par la dépendance du critère 

de limitation de la vitesse sur la force variable de rupture et l‟effet Stribeck. Ceci a confirmé 

l‟importance d‟avoir une limitation de vitesse adaptative pour le modèle de frottement à 

limitation de vitesse. De plus, la distribution des contraintes à l‟intérieur de la zone de contact a 

été étudiée en détails pour délimiter les différentes régions dans une zone de contact lors du 

frottement. Cette analyse a permis d‟associer une signification physique à chaque composante de 

ce nouveau modèle de frottement hybride. La capacité du modèle à reproduire précisément  le 

comportement adhérence-glissement a été évaluée à l‟aide du modèle de frottement d‟Ozaki et 

Hashigushi ainsi qu‟avec les tests expérimentaux de Baumberger et al. Les résultats montrent une 

meilleure estimation du comportement adhérence-glissement, qualitativement et 

quantitativement, en utilisant le nouveau modèle hybride. De plus, la capacité du modèle hybride 
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à reproduire les déplacements qui précèdent le glissement, a été examinée en utilisant le modèle 

de frottement de Lim et Chen et les diagrammes de phase de stabilité expérimentaux développés 

par Baumberger et al. Le modèle de frottement hybride reproduit les diagrammes de phase 

expérimentaux avec un bon accord qualitatif ce qui n‟est pas le cas avec  le modèle de frottement 

de Lin et Chen. Toutefois, le niveau de vitesse de stabilité obtenu avec le modèle hybride 

présente des différences avec les expériences. Cela est principalement attribué à l‟importance de 

la vitesse de Stribeck et aux coefficients d‟amortissement dans le modèle de frottement hybride. 

Dans la deuxiéme partie de cette recherche, une série de tests expérimentaux 

d‟interactions entre tube et support a été effectuée pour mesurer les forces d‟impact et les 

déplacements à mi-hauteur pour plusieurs amplitudes d‟excitations et espacements. Ce 

programme expérimental a été utilisé comme base de données de référence pour examiner avec 

attention le modèle d‟impact lors de l‟interaction tube-support. La théorie des poutres d‟Euler-

Bernoulli et la technique de superposition modale ont également été utilisées pour les calculs 

dynamiques d‟interaction tube-support. Les mesures d‟amortissement structurel varient en 

fonction du déplacement à mi-hauteur. De plus, les effets d‟élasticité et les forces d‟impact 

inélastiques sur la réponse du tube ont été étudiés à l‟aide de résultats expérimentaux ainsi que 

des simulations numériques. Cette étude a apporté d‟important éclaircissements sur la relation 

non-linéaire entre force et déplacement lors de l‟interaction tube-support. L‟estimation du 

paramètre optimal m, associé à cette relation, a significativement réduit les différences entre les 

résultats expérimentaux et les simulations numériques. De plus, un programme expérimental 

prenant en compte le déplacement initial du tube à l‟origine des excitations a été entrepris. Cela a 

permis d‟étudier avec attention les déplacements du tube lors de mouvements dissipatifs. Les 

comparaisons entre les résultats expérimentaux et les simulations numériques indiquent un effet 

mineur de l‟amortissement d‟impact sur la réponse du tube en utilisant le modèle de Hunt et 

Crossley. La différence de déplacement à mi-hauteur a été expliquée comme découlant de la 

dissipation ajoutée par l‟amortissement structurel. Cela a été modélisé par un coefficient qui 

correspond à l‟amortissement structurel lors du contact tube-support. L‟estimation de ce 

coefficient indique que le coefficient augmente lorsque l‟espacement entre le tube et le support 

croit. 
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ABSTRACT 

 

Flow-induced forces in heat exchangers can cause excessive tube vibration and 

interaction with their supports. Long term interaction may develop fretting-wear and 

consequently lead to tube failures.  An accurate prediction of the tube-support interaction 

behavior is important to quantify tube fretting-wear. Therefore, a detailed study of the related 

friction and impact forces is required for formulating a precise wear model. This study aimed to 

develop a friction model for accurate representations of various states of the friction process, 

including elastic, plastic and partial slipping states. In addition, the tube-support impact model is 

verified both numerically and experimentally. 

A hybrid spring-damper rate dependent friction model was developed to precisely 

simulate the friction process from zero velocity to the gross slip state. This was achieved by 

considering various physical phenomena during the friction process including the Stribeck effect, 

varying break-away force, bristle elastic, plastic and partial-slipping behaviors. The slipping time 

in the velocity-limited friction model was compared to the LuGre friction model. The inability of 

the velocity limited friction model to detect the sticking region was explained by the dependency 

of a limiting velocity criterion on the varying break-away force and the Stribeck effect. This 

confirmed the importance of having an adaptive limiting velocity for the velocity limited friction 

model. In addition, the stress distribution within the contact region was studied in detail to 

demarcate different regions within a contact area during the friction process. This analysis 

attributed a physical meaning to each component of the new hybrid friction model. The ability of 

the hybrid model to accurately reproduce stick-slip behavior was examined using the Ozaki and 

Hashiguchi friction model and the Baumberger et al. experimental tests. The result showed better 

estimation of the stick-slip behavior, both qualitatively and quantitatively, using the new hybrid 

friction model. In addition, the ability of the hybrid model, to reproduce pre-sliding 

displacements, was also examined using the Lim and Chen friction model and the experimental 

stability phase diagram, developed by Baumberger et al. The hybrid friction model reproduced 

the experimental phase diagram with qualitatively good agreement contrary to the Lim and Chen 

friction model. However, the magnitude of the stability velocity, in the hybrid model, had some 
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differences with the experimental result. This is mostly associated with the magnitude of the 

Stribeck velocity and damping coefficients in the hybrid friction model. 

In the second part of the research, a series of tube-support experimental tests was 

performed to measure the related impact forces and mid-span displacements for various 

excitation amplitudes and gap sizes. The experimental program results were used as a reference 

database to carefully examine the impact model during tube-support interaction. The Euler-

Bernoulli beam theory and modal superposition technique were also used to perform tube-support 

interaction dynamics computation. The structural damping measurements showed a varying 

magnitude depending on tube mid-span displacement. In addition, the effects of elastic and 

inelastic impact forces on the tube response were studied using the experimental results and 

numerical simulation comparisons. This study provided important insight into the elastic 

nonlinear force-displacement relationship during tube-support interaction. The estimation of the 

optimal parameter m, associated with this relationship, significantly reduced the difference 

between the experimental test results and the numerical simulations. In addition, an experimental 

program was undertaken considering the tube initial displacement as the origin of the excitation. 

This enabled a careful study of the tube displacement in a dissipative motion. The experimental 

tests and numerical simulation comparisons indicated the minor effect of the impact damping on 

the tube response, using the Hunt and Crossley model. The difference in the mid-span 

displacements was explained by increased energy dissipation through structural damping. This 

was modeled using a coefficient which represents a change in the structural damping from the 

onset of tube-support contact. The estimation of this coefficient indicated an increasing trend of 

the coefficient with increasing tube-support gap. 
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INTRODUCTION 

  

Fretting-wear is a challenging problem which is frequently encountered in different 

mechanical systems including steam generators. A steam generator is mainly comprised of a tube 

bundle which transfers heat from the primary loop coolant, within the tubes, to secondary loop 

water, external to the tubes. The tubes are then subjected to both parallel and cross-flow in 

different phases, including liquid, gas or two phase. This causes flow-induced forces on the tubes, 

including fluid elastic and turbulence forces. On the other hand, the concerns associated with 

thermal expansion, installation and manufacturing may lead to development of a more flexible 

tube-support structure. Tube-support interaction is therefore unavoidable as a result of flow-

induced vibration. The long term interaction may cause tube fretting-wear and subsequently tube 

rupture. This undesired fretting-wear may affect the safety and performance of a nuclear power 

station. Data provided by Electric Power Research Institute (EPRI) suggested that, in 1994, 49 

percent of all pressurized water reactor steam generators were overhauled as a result of the above 

mentioned tube-support fretting-wear (Dierecks et al., 1996). The report suggested an average 

cost of 100-200 million dollars per plant for steam generator tube replacements.   

The importance of the tube-support fretting-wear problems has raised a lot of interest 

among researchers. Many studies have been conducted to investigate and estimate flow-induced 

forces (Pettigrew et al., 1978; Lever and Weaver, 1982; Pettigrew and Taylor, 1994; Pettigrew et 

al., 1998; Weaver et al., 2000; Païdoussis et al., 2010). On the other hand, many authors have 

studied tube-support interaction in terms of impact and friction (Rogers and Pick, 1977; Sauve 

and Teper, 1987; Fisher, 1989; Chen, 1991; Fisher et al., 1992; Tan and Rogers, 1996; Hassan et 

al., 2002). The ultimate goal of these studies is to quantify fretting-wear during tube-support 

interaction. Work-rate is a factor which quantifies wear-rate. This factor is strongly dependent 

upon sliding distance and normal contact force. It is therefore important to have precise friction 

and impact models to carefully quantify tube-support fretting-wear. 

The velocity-limited friction model (Rogers and Pick, 1977), force-balanced friction model 

(Karnopp, 1985) and spring-damper friction model (Antunes et al., 1990) are the three main 

friction models which have been widely used in the tube-support interaction simulation. The 

main differences between the friction models are the criteria employed to detect the stick-slip 
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regions and estimation of the sticking friction force. In the friction models above, the criteria to 

detect the stick-slip regions are not physics based and often lead to errors in the estimation of the 

sliding distance. Furthermore, in these models, the transition behavior from the stick to slip 

phases has not been considered. The study of the motion from zero velocity to the gross sliding 

phase is crucial to obtaining a physics based criterion for detection of the stick-slip regions.  

  The LuGre Friction model (Canudas de Wit et al., 1995), the Ozaki and Hashiguchi 

friction model (Ozaki and Hashiguchi, 2010) and the Lim and Chen friction model (Lim and 

Chen, 1998) are three examples of  rate dependent friction models. The friction models consider 

the transition behavior from the stick to slip phases. Furthermore, the models also take into 

account the nonlinearity in the vicinity of zero velocity. The precision of the friction models 

makes them good enough for use in robotic and control systems. However, no attempt has been 

made to correlate the friction models to the tangential stress distribution. 

The study of the tangential stress distribution within the contact region is a crucial step in 

investigating the bristle behavior during the friction process from the absolute zero velocity to the 

gross slip state. Cattaneo-Mindlin (Cattaneo, 1938; Mindlin, 1949), Mindlin and Deresiewicz 

(1953) and Odfalk and Vingsbo (1992) endeavored to correlate the physical phenomena in the 

friction process to the tangential stress distribution within the contact region. As the result of the 

studies, the friction process was divided into the three stages of elastic, plastic and partial-

slipping regions. From the fretting-wear point of view, the different stages may result in different 

wear coefficients. Therefore, developing a rate-dependent friction model which can demarcate 

the different regions of elastic, plastic and partial-slipping is expected to be particularly 

beneficial. 

The estimation of the impact force is a crucial step in the tube-support interaction analysis 

due to the subsequent effect on the friction force, stick-slip regime and work-rate calculation. 

Some efforts have been dedicated to modeling the impact force (Axisa et al., 1984; Sauve and 

Teper, 1987; Yetisir and Fisher 1997). However, the nonlinearity involved in the force-

indentation relation has not been studied. Furthermore, the study of the source of energy 

dissipation during the normal interaction should be a beneficial step. The evaluation of the 

incorporated impact model in the dynamic modeling of the tube-support interaction, for a real 

heat exchanger tube, is a challenging step due to the involvement of different factors such as the 
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fluid-induced forces, multiple supports, support types and friction force. Therefore, for the impact 

model validation, the replacement of the complicated factors by a simplified laboratory 

experimental rig may be valuable.   

The motivation of the present work may be summarized as follows: fretting wear of 

nuclear steam-generator tubes remains an important problem in industry both for safety and cost 

reasons. While significant work has been done too address this problem, and in particular to 

model tube-support interaction for wear estimation, important questions and challenges remain.  

 To better estimate the wear work-rate more accurate models for the friction and impact 

phenomena are needed. In order to develop this next generation of models previously unmodelled 

details of the tube-support interaction need to be taken into account. This includes consideration 

of the tangential stress distribution within the contact region as well as correctly modelling the 

various states or stages of the friction process (including sticking, partial slip and gross slip). In 

addition the nonlinear impact process needs improved modelling.  Finally, the new, inherently 

more complex models must be verified by incorporation into full multimode tube models. 

Dynamic analyses then need to be carried out and to the extent possible, comparison with 

experimental tests done. 
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CHAPTER 1  

LITERATURE REVIEW AND RESEARCH ORGANIZATION  

 

In this section a detailed review of previous work on tube-support interaction is presented. 

The literature review is followed by a summary of key research questions in Section 1.2. The 

objectives of the proposed research are presented in detail Section 1.3. The thesis organization is 

outlined in Section 1.4. 

 Review of Previous Studies 1.1

This section will review the state of the art on tube-support wear mechanisms, dynamic 

computation, impact and friction models. In the heat exchanger and steam generator tube 

bundles, contacts between the tube and support are unavoidable due to the flow-induced 

vibration. This interaction causes fretting-wear which may consequently lead to tube failure 

(Fisher et al., 1992; Hassan et al., 2002). Chen (1991) divided the causes of tube failure in heat 

exchangers into four different phenomena: interaction and wear between the tubes, interaction 

and wear between the tube and support, joint failure at the tube to tube-sheet interface and tube 

fatigue. The causes of the excessive vibration and subsequently fretting-wear are flow-induced 

forces. Flow-induced vibration mechanisms can be classified as fluid-elastic instability, vorticity 

shedding, turbulence buffeting and acoustic excitation (Pettigrew et al., 1978; Pettigrew et al., 

1998). These flow-induced mechanisms can lead to significant tube vibration and interaction with 

supports. The interaction may then cause tube fretting. The fretting may be classified as fatigue-

fretting, fretting-wear and fretting-corrosion (Magaziner et al., 2004). Several authors have 

studied different aspects of the tube and support dynamics, to come up with better fretting-wear 

estimation. It is an intricate process to develop a precise contact model due to the difficulties in 

simulating the fluid forces and unknown contact interface conditions (Popp, 2005). However, 

several codes have already been developed to simulate the tube-support interaction including 

VIBIC (Rogers and Pick, 1977), H3DMAP (Sauve and Teper, 1987), GERBOISE (Axisa et al., 

1986), INDAP (Hassan, 2000; Hassan et al., 2002; Hassan et al., 2003), VITRAN (Rubiolo, 

2006) and FIVDYNA (Toorani et al., 2009).  
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To have a better estimate of the tube-support interaction behavior during flow-induced 

vibration, a precise model is needed for each component of the tube-support system including: 

the fluid excitation forces, tube-support dynamics, tube-support impact, tube-support friction and 

effects of various system parameters (Chen, 1991).  

1.1.1 Tube-support wear mechanisms 

An oscillatory relative surface interaction between two objects may result in fretting-wear. 

Accurate wear-rate estimation is important for the prediction of the life time of the engaged 

components and their replacement time (Gessesse, 2000). During the interaction, different wear 

mechanisms may be activated. The type of mechanisms is dependent upon the relative motion of 

the components, interaction forces magnitude, geometry of the contact, type of materials and 

operating conditions of the system (Ko, 1986). Due to the flow excitation mechanisms in the 

steam generator tube bundle, contacts between the tubes and supports occur. These contacts may 

be categorized as normal, tangential or oblique impacts (Hofmann et al., 1992). The dominant 

wear mechanism for each type of interaction is different. Therefore, the incident impact angle, 

which quantifies the type of interaction, plays an important role in the tube-support dynamic 

computation. The angle may be defined by different system parameters such as: the tube pre-load 

conditions, flow excitation mechanisms and tube-support interaction forces (Haslinger and 

Steininger, 1995). To better understand the interaction, it is important to study the interaction 

forces and subsequently the mechanisms which may be involved in material removal during the 

wear process. 

Different wear processes may be involved during the tube-support interaction such as 

adhesive, abrasive, delamination, fatigue and corrosion wear (Gessesse, 2000). However, based 

upon the real working conditions of the heat exchangers, the most dominant wear mechanism in 

the tube-support interaction may be a combination of the abrasive, delamination and fatigue wear 

mechanisns (Suh, 1973; Lee et al., 2001; Gessesse and Attia, 2004). Based upon the delamination 

theory of wear, proposed by Suh (Suh, 1973), the causes of wear are the dislocations at the 

contact surface, sub-surface crack propagation and void formation (Suh, 1973), (Fleming and 

Suh, 1977). In an extension of the Suh study (Suh, 1973), different authors have tried to evaluate 

the wear process both experimentally and theoretically. Argon and Im (1975) proposed a crack 

propagation criterion to evaluate crack initiation and plastic region formation (Jahanmir and Suh, 
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1977). The experimental studies conducted by Suh (1973), Gauland and Duquette (1980) and 

Waterhouse (1981) indicated that cracks may be propagated  parallel to the contact surface in the 

material sub-layer. Furthermore, it was reported that the propagation may take place in an 

approximate depth of 0.8 to 1.8 times of the micro-contact radius from the contact surface and 

that due to the numerous cyclic loadings, the crack may grow until reaching the critical length of 

1 to 1.4 times of the micro-contact radius.  After the crack reaches the critical length, it may 

progressively change its direction toward the contact interface. The process may consequently 

form wear debris (Suh, 1973; Fleming and Suh, 1977).  

1.1.2 Tube-support interaction 

Since the most important causes of tube wear are friction and impact, many authors have 

tried to model and simulate these phenomena theoretically and experimentally. Different 

experimental tests have been carried out to establish the relations between the tube-support wear 

rate and different experimental parameters such as tube-support clearance, support type, friction 

coefficient and loading conditions.  

  Axisa et al. (1984) conducted experimental tests to measure the impact force and mid-

span displacement during the tube-support interaction for a tube with multiple supports. In the 

experimental rig, the supports had quatrefoil hole shapes. The tests were conducted for different 

gap sizes and excitation forces. The results indicated a reasonable trend agreement between the 

impact forces in the experimental tests and numerical simulations. However, the mid-span 

displacements indicated significant differences particularly with increasing tube-support gap size. 

Haslinger et al. (1990) characterized the squeeze film effect during tube-support 

interaction. The study investigated the effect of varying gap sizes on the fluid squeeze film 

phenomenon. The authors also obtained semi-empirical expressions for the effect. Subsequently, 

Haslinger et al. (1995) conducted experimental tests to estimate the coefficient of friction during 

tube-support interaction. The results justified the usage of the same friction coefficient for the 

tube-support oblique impact and gross sliding. Additionally, these results indicated that the 

friction coefficient is independent of the normal force.  

Chen et al. (1985) and Chen (1991) conducted experimental tests to understand the 

effectiveness of the support. The authors defined two different support modes support active and 
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support inactive modes. The support active mode may be activated due to relatively small 

clearance which causes the support to behave effectively. On the other hand, for relative large 

gaps, the support may not perform effectively which may activate the support inactive mode. The 

study indicated that during the tube-support interaction, the support mode was usually a 

combination of the two different modes. Furthermore, the study showed that the tube response 

may be different depending upon the activation of different modes. The phenomena were then 

explained based upon changes in the tube-support natural frequency for the different modes. In 

addition, the Moretti and Lowery (1973) study emphasized the change in the natural frequency 

depending on the support mode, excitation amplitude and clearance.  

Yetisir and Fisher (1997) studied the interaction between fuel channel and fuel elements 

subjected to a turbulence-induced force caused by an axial flow. For the numerical simulation, 

the VIBIC code (Rogers and Pick, 1977), based upon the modal superposition method, was used. 

In the study, different parameters were investigated such as contact stiffness, friction coefficient, 

damping, support length and gap sizes. 

Attia and Magel (1999) carried out experimental tests to investigate the long term fretting-

wear behavior in straight and U-bend tubes. The authors tried to study the effect of the tube-

support clearance on the wear-rate and subsequently find a relationship between the wear-rate 

and work-rate. The results indicated that the work-rate decreased with increasing gap-size. 

However, the trend had a non-monotonic behavior which suggested a self-limiting property for 

fretting-wear during tube-support interaction. 

 Lee et al. (2001) conducted experimental tests to evaluate the wear behavior during the 

tube-support interaction in steam generators. In the experimental tests the tube materials were 

chosen as Inconel 600MA and 690TT. The support materials were 405 and 409 ferritic stainless 

steels. The normal load and sliding amplitude were gradually increased and the worn contact 

interface was carefully observed with the help of a scanning electron microscope. Moreover, the 

wear coefficient was determined and the effect of the material compositions and surface 

hardening were investigated. The results indicated that different wear mechanisms may be 

involved during the tube-support interaction. These mechanisms may strongly depend upon the 

magnitude of the chromium content which may define the level of the work hardening during the 

interaction. The morphology investigation of the worn surface indicated that fine wear particles 
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were formed on the worn surface even after ultrasonic cleaning. The particles were formed due to 

the high shear plastic deformation on the contact interface and crack propagation in the material 

sub-layer. These particles became even finer due to the continuous wear process and normal 

compressive pressure. It was therefore suggested that a wear protective layer may be formed. It is 

pertinent to note that such a layer behaves differently for Inconel 600MA compared to Inconel 

690TT. For Inconel 600MA, the protective layer did not strongly stick to the contact interface. 

Therefore, it was worn away during the abrasive wear process. In contrast for Inconel 690TT, the 

protective layer strongly adhered to the worn surface due to the high chromium content. Thus, the 

wear coefficient may be lower for Inconel 690TT compared to Inconel 600MA. 

 Attia et al. (2007) elaborated the fretting-wear mechanisms during the tube-support 

interaction. To achieve this goal, the authors proposed a physical parameter based upon the worn 

surface morphology and fracture mechanics mechanisms. The new paramater corrolates the 

energy dissipation to the wear loss by demarcating the different types of the tube orbital motions. 

 Nowlan et al. (2009) studied the tube-support interaction via a series of sweep test 

excitations in the direction parallel to a support in contact with a two-span tube. In this study the 

tube natural frequency was carefully measured. Furthermore, the contact forces were measured 

for different preload, gap sizes and support orientation. It was concluded that the natural 

frequency was not changed by the interaction. On the other hand, the stick-slip behavior and 

normal tube-support interaction transferred energy to the higher tube modes. The results also 

underlined the sensitivity of the tube response to the tube-support clearance. 

 Many authors have developed models to simulate the tube response using numerical 

techniques. Rogers and Pick (1977) used a finite element method to study the tube-support 

interaction. The study considered the effect of damping, tube stiffness and gap size on the 

interaction forces.  Fisher et al. (1989) validated the work-rate estimation in the VIBIC code 

against experimental tests. Tan and  Rogers (1996) attempted an evaluation of the effect of the 

force-balanced friction model on the tube-support wear-rate estimation. In the study, the friction 

model was incorporated into the VIBIC code for different types of supports including circular, 

semi-circular and scallop-bar types. The work-rates for different gap sizes were also compared 

against the experimental tests conducted by Yetisir and Fisher (1997). 
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 Hassan et al. (2002) studied the tube-support interaction for a tube subjected to 

turbulence induced forces. In the study, a nonlinear dynamic analysis based upon a finite element 

method was used for the simulation. The normal impact model was chosen based upon the Sauve 

and Teper impact model (Sauve and Teper, 1987). The velocity-limited friction model was 

incorporated in the numerical simulation and the turbulence excitation modeling based upon the 

Oengoren and Ziada study (Oengoren and Ziada, 1995) was used. There were also comparisons 

made between  the impact forces among the three different dynamic computation codes including 

H3DMAP (Sauve and Teper, 1987), INDAP (Hassan, 2000; Hassan et al., 2002; Hassan et al., 

2003) and VIBIC (Rogers and Pick, 1977). The results indicated a significant increase in the 

work-rate estimation due to support offset. The complex behavior of the tube response was 

investigated by introducing a dimensionless clearance as the ratio of radial clearance to r.m.s 

support response. 

 Hassan et al. (2005) simulated the tube-support interaction by considering a new impact 

model. Due to the difficulties in accurately estimating the contact area and contact pressure 

distribution, the contact model is commonly simplified to a point contact in which the support is 

assumed to be a knife edge. However, in Hassan et al.‟s study, the real contact region was 

modeled as a segmental contact. Furthermore, the point and segmental contact stiffness was 

modeled with a single spring and distributed contact stiffness, respectively. The model indicated 

that the nature of the tube-support interaction is a combination of the edge and segmental 

contacts. Furthermore, the study specified a higher possibility of encountering a segmental 

contact by decreasing the tube-support gap sizes. Different factors such as the support preload, 

clearance and tube alignment may affect the type of contact during the interaction. For instance 

when the clearance is small in the presence of a large preload, the interaction may mostly occur 

in the sliding mode and the appropriate model is the segmental contact. On the contrary, for a 

large clearance with a small preload, intermittent contacts may mostly occur. In this case the 

appropriate model is the point contact. 

 Hassan and Rogers (2005) studied the impact and friction forces during tube-support 

interaction. In the study, different friction models including the velocity-limited friction model, 

force-balanced friction model and spring damper friction model were incorporated in the 

numerical simulations. Furthermore, the work-rate was calculated for the different friction 
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models and tube-support clearances. The results indicated a good agreement between 

experimental results and numerical simulations for the large preloads in contrast to the case of 

small preloads. 

1.1.3 Non-linear dynamic computations 

Sauvé and Teper (1987) developed an implicit numerical integration scheme for tube-

support vibro-impact interaction based upon a finite element method. The program has the 

flexibility of changing the time-step to minimize errors and obtain the optimum result. 

Furthermore, the lumped mass approach and Rayleigh proportional model were used to form the 

mass and damping matrices. The Newmark scheme (Bathe, 1982)  was used for integrating the 

nonlinear equations. As the result, a dynamic computation code, called H3DMAP, was developed 

to simulate the flow-induced tube-support interaction. 

Hassan et al. (2002) developed a computer code called INDAP to simulate the tube-

support interaction. The authors used a standard finite element procedure to solve the tube‟s 

equation of motion. Using the FEM procedure is extremely costly in terms of time, due to the 

incipient contact search algorithm. Therefore, the authors adapted a pseudo-force approach 

developed by Subbaraj and Dokainish (1989). The method simplified the nonlinearity of the 

system by introducing an external force into the equation of motion. 

Another code, developed at AECL, is VIBIC (vibration of beams with intermittent 

contact) (Fisher et al., 2001). VIBIC is designed for the structural dynamic analysis of tube-

support interaction. In the program, the tube dynamic response is determined by the modal 

superposition technique. Similarly to the Subbaraj and Dokainish (1989)  method, the tube-

support nonlinearity due to the clearance was modeled by introducing an equivalent external 

force to the system. The equations of motion are numerically solved using the fourth-order 

Runge-Kutta algorithm. 

VITRAN (vibration transient analysis–nonlinear) (Rubiolo, 2006) is another computer 

code used to simulate the dynamic response of fuel rods. This nonlinear dynamic analysis code 

was developed based upon the Euler-Bernoulli beam theory similarly to the study by Antunes et 

al. (1990). In the governing equations, the rotational inertia and shear deformation are neglected. 

Further, the unconstrained modal superposition is used to determine the dynamic behavior of the 
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system. Instead of using the constrained mode shapes the use of the unconstrained mode shapes 

was explained by the relatively small difference in the results and time consumption cost of using 

the constrained mode shapes. The numerical analysis by Davies and Rogers (1979) also 

suggested the admissibility of using unconstrained mode shapes for systems with very low 

structural damping coefficient.  

1.1.4  Impact models 

Goyal et al. (1994) divided the impact model into two parts: the first being the detection 

of the contact between the two bodies and the second the force calculation due to the interaction. 

An accurate estimation of the normal contact force is an essential part of the interaction modeling 

due to the subsequent effect on the friction force and stick-slip regime estimation.  One of the 

theories developed to analyze the contact behavior between two bodies is the Hertz‟s contact 

theory (Johnson, 1985).  In Hertz‟s theory, the contact region is assumed to be continuous and 

relatively small compared to the bodies‟ dimensions (Johnson, 1985). The bodies involved during 

the interaction are also considered as completely elastic (Johnson, 1985). The contact surfaces are 

assumed to be frictionless surfaces (Johnson, 1985) and the only force which may be transferred 

during the interaction is the normal force. Deformation boundary forces are not considered in the 

model (Johnson, 1985). To take into account the boundary deformation forces, Thornton and 

Randall (1988) proposed an impact model which considered neighboring deformation based upon 

a feedback finite element algorithm (Goldsmith, 1960; Johnson, 1985). However, in the case of 

the tube-support interaction, the thin circular cross-section may affect the contact stiffness by the 

ovalization phenomenon. Therefore, Morley (1960) studied the ovalization effect for a force 

couple acting on a thin cylinder. The study assumed that the acting forces are far from the 

cylinder edges. This enabled the researchers to arrive at an estimate of the stiffness coefficient for 

the ovalization effect. 

 During interaction between two bodies, three mechanisms of energy dissipation may be 

involved including: shear, normal damping and structural damping dissipations. These sources of 

energy dissipation may be in the form of the elastic waves, viscoelasticity and plastic deformation 

(Goyal et al., 1994; Stevens and Hrenya, 2005). The coefficient of restitution is the quantity 

characterizing the energy dissipation during interaction between compact bodies. Different 

definitions for the coefficient of restitution have been proposed including: the Newtonian 
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hypothesis based upon the velocity ratio, the Poisson‟s hypothesis based upon the impulse ratio 

for the two different impact phases; loading and unloading and the Stronge hypothesis based 

upon absorbed energy during the interaction (Goyal et al., 1994; Stronge, 2000). There are some 

difficulties associated with the estimation of the coefficient of restitution. For instance there is no 

perfect rough surface to prevent sliding and so some of the energy may be dissipated in the form 

of friction (Goldsmith, 1960). It is also pertinent to point out that due to plastic deformation, 

torsion and other impact boundary conditions, it is essential to evaluate a precise coefficient of 

restitution through a semi-empirical formula based upon material properties, impact velocity and 

impact interface geometry (Goldsmith, 1960). 

Hunt and Crossley (1975) developed a model for the normal interaction between two 

bodies considering energy dissipation. The bodies were assumed to be compact solid bodies and 

the effect of reflected elastic shock wave was not considered in the model. The three main factors 

of the model are elastic impact force, coefficient of restitution and impact velocity which may 

affect the normal damping force estimation. 

For a continuous system interaction such as the tube-support system, defining a 

coefficient of restitution is problematic. The Thomson et al. (1994) study on continuous system 

interaction indicated that the higher modes are excited. The authors suggested that the measured 

coefficient of restitution may underestimate the energy dissipation (Wagg and Bishop, 2000). 

Another study by de Weger et al. (1996) laid emphasis on the higher mode energy transfer 

(dissipation) during a continuous system interaction. However, the nature of chaotic multi-impact 

behavior of the tube-support interaction in a short interaction duration introduces uncertainties on 

the experimental measurements (Werner and Robert, 2008). Different authors have theoretically 

analyzed the multi-impact behavior and the coefficient of restitution value in continuous systems 

(Shaw, 1985; Stoianovici and Hurmuzlu, 1996; Bao et al., 2004; Wagg, 2005; Wagg, 2007). 

1.1.5 Friction models 

Different friction models have been developed for the evaluation of friction induced stick-

slip behavior. The incorporated friction model in the tube-support dynamic computation scheme 

is important particularly due to the nonlinear behavior of the friction force in the vicinity of zero 

sliding velocity. The main differences among different friction models are their approaches to the 

detection of the stick-slip regions, estimation of the friction force in the sticking phase and 
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transition modeling from the sticking to slip phases. In this section, the state of the art in the 

commonly used friction models in the tube-support interaction modeling is described. In addition 

the rate-dependent friction models and tangential stress distribution within the contact area are 

also reviewed.  

1.1.5.1 Tube-support friction models  

The velocity-limited friction model (VLFM) is one of the friction models which is widely 

used in tube-support dynamic simulation. In the model, a limiting velocity is defined to 

demarcate the stick-slip regions. The friction force in the sliding phase is determined similarly to 

the Coulomb friction model. On the other hand, the friction force in the sticking phase is 

proportional to the limiting velocity for sticking. The model was described by several authors 

such as Rogers and Pick (1977) and Tan and Rogers (1996). 

  Karnopp (1985) proposed a one-dimensional force-balanced friction model (FBFM) by 

demarcating the slip and sticking regions based upon defining a velocity window. The friction 

force during the sliding phase in the force-balanced friction model may be defined similarly to 

the Coulomb friction model. However, the friction force in the sticking region is calculated by 

balancing the net force to keep the velocity equal to zero in this region. 

 Antunes et al. (1990) proposed a spring-damper friction model (SDFM). The model was 

designed to precisely determine the sticking friction force and to take into account the 

nonlinearity in the vicinity of zero velocity. To achieve these goals, a parallel spring and damper 

system was implemented to estimate the sticking friction force. In the model, the stick and slip 

regions may be demarcated by the sign of the dot product of the instantaneous velocity in the 

current and previous time steps. Furthermore, the spring stiffness and damping coefficient were 

determined based upon the numerical stability of the model rather than physical quantities. 

  Tan and Rogers (1996) analyzed a two-dimensional system with two different friction 

models, including the spring-damper friction model based upon the Antunes et al. (1990) study 

and the force-balanced friction model based upon the Karnopp (1985) study. The results 

indicated a weakness of the velocity sign criterion used to detect the stick-slip regions for a two-

dimensional dynamic analysis. Comparisons of the models indicated that using the force-
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balanced friction model may lead to better numerical stability in the simulation response and 

more accurate detection of the stick-slip regions. 

  Tariku and Rogers  (2001) improved the force-balanced and spring-damper friction 

models to have a better estimation of the stick-slip regions. The Karnopp force-balanced friction 

model (Karnopp, 1985) uses a velocity window to define the sticking region. The boundary 

condition may result in an error associated with a large time-step since the algorithm may not 

detect the small velocity window. Therefore, the force-balanced friction model was improved by 

considering two criteria to precisely detect the sticking regions including, the velocity sign 

criterion and maximum friction force limitation. The results indicated that the implementation of 

these criteria rather than using the velocity window may lead to a lower sticking velocity error. 

For the spring-damper friction model, the authors suggested using three criteria to confirm the 

occurrence of sticking including, the velocity sign change criterion, net external force limitation 

and spring-damper force limitation. As a result of the modification, the occurrence of a spike in 

the beginning of the sticking region was eliminated. The authors also analyzed the effect of 

different system parameters including the time-step, duration of simulation, initial conditions, 

spring stiffness and damping coefficient. 

1.1.5.2 Rate-dependent friction models 

  The modeling of the transition from the sticking to slip phases is a challenging problem 

due to the dependency of the model on elastic, plastic and partial slipping behavior of the bristles 

within the contact region. Rabinowicz (1951) experimentally studied the transition between the 

static and dynamic phases. In the study, the transition was explained based upon the breakage of 

the metallic junctions in the contact interface. Therefore, the transition function may strongly 

depend upon the relative velocity of the interfaces. Many authors have worked on the 

development of a mathematical function to precisely reproduce the stick-slip transition 

(Wojewoda et al., 2008), the Stribeck effect (Stribeck, 1902). The Exponential distribution 

(Tustin, 1947), Gaussian distribution (Armstrong-Helouvry, 1991) and Laurentzian distribution 

(Hess and Soom, 1990) have been considered in the modeling. 

  Dahl (1968) developed a friction model based upon the stress-strain curve of the bonds 

formed within the contact interface. The author adopted the concept of metallic junctions 

formation and subsequent yielding and breaking of the junctions in the friction process. In the 
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model, the bristle deflection was simulated by introducing an internal state variable. The friction 

force was then proportional to the magnitude of the state variable.  

  The LuGre friction model, developed by Canudas de Wit et al. (1995), was an upgrade 

of  the Dahl model considering the effect of varying break-away force, pre-sliding displacement, 

Stribeck effect and friction hysteretic behavior. The model was inspired by the idea of average 

bristle deflection. Therefore, the friction force in the model was decomposed into three terms 

depending upon the average bristle deflection, rate of change of the average bristle deflection and 

the relative velocity of the two interfaces. The Stribeck stick-slip transition function was 

incorporated in the LuGre model based upon the Gaussian function proposed by Armstrong and 

Helouvry (1991).  

  The presliding displacement in the LuGre friction model (Canudas de Wit et al., 1995) 

was considered to include the plasticity in the whole process of presliding. The assumption may 

cause an unbounded displacement when a small oscillatory force acts on the system. For this 

reason, Dupont et al. (2002) tried to eliminate this effect by demarcating the elastic and plastic 

presliding regions. However, the elastic to plastic demarcation criterion was a challenging step in 

the model.  

  Armstrong and Qunyi (2008) studied the presliding behavior in different friction models 

using internal state-variables. This work indicated that the presliding might be assumed to be 

elastic or plastic depending on the definition of the state-variable in the friction model. It 

emphasized the importance of choosing a proper friction model based upon the application and 

required sensitivity. Astrom and Canudas-de-Wit (2008) studied the LuGre friction stick-slip 

behavior by considering different system properties such as pre-sliding displacement, invariance 

and passivity.  

  Ozaki and Hashiguchi (2010) developed a friction model to study the intermittent stick-

slip behavior in an unstable friction-induced phenomenon. In the model, the rate of change in the 

instantaneous friction coefficient is dependent on the coefficient of friction and plastic sliding 

velocity. The model also considered the friction coefficient softening effect during the transition 

from the sticking to slip phases and the hardening effect during the transition from the slip to 

stick phases. 
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Baumberger et al. (1994) experimentally studied the motion of a mass-spring system 

subjected to a driving velocity. The authors investigated the effect of different system parameters 

including the slider mass, spring stiffness and driving velocity. The study consequently led to the 

construction of a dynamic phase diagram to demarcate the unstable stick-slip regions from the 

stable slip regions. 

   As an extension of  the Dieterich (1978) study, Ruina (1983) developed a friction model 

to represent the unstable stick-slip behavior due to the variation of friction resistance during a 

movement. The model considered the slip history by introducing a state-variable (Rice and 

Ruina, 1983). It yielded a critical spring stiffness to demarcate the steady slip from the unstable 

stick-slip regions. Lim and Chen (1998) developed a simple friction model based upon the 

conceptual description of the friction process based upon a study by Heslot et al. (1994).  The 

model has a good agreement with the Baumberger et al. experimental phase diagram 

(Baumberger et al., 1994) demarcating the creep and inertial dominated regions. However, the 

model cannot properly reproduce the slope of the dynamic phase diagram, particularly in the 

creep dominated regions. 

1.1.5.3 Tangential stress distribution within contact region 

  Cattaneo (1938) and Mindlin (1949) proposed a tangential stress distribution within the 

contact region between two elastic bodies subjected to a tangential force. Based upon the 

proposed distribution, the contact region was demarcated into two sub-regions, the sticking and 

partial-slipping regions. In the sticking region, the coincident points on the two bodies move 

together and have the same tangential elastic displacements which may produce the sticking 

region in the middle of the contact area (Johnson, 1985). In the partial-slipping region,  

coincident points have a relative tangential displacements which may subsequently develop a 

peripheral layer of the partial-slipping region in the outer layer of the contact area (Johnson, 

1985).  

  Mindlin and Deresiewicz (1953) investigated the effect of varying the oblique contact 

force during the interaction between two identical spheres. The study indicated that the force-

displacement relation may depend upon the entire history of the loading. Furthermore, the effects 

of the relative varying normal and tangential forces on the tangential stress distribution were 

studied. Based upon the history of tangential loading, the energy dissipation associated with the 
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partial slipping phase was obtained by considering an oscillatory tangential force and using the 

superposition method.  

  Johnson (1955) experimentally investigated the Mindlin elastic theory (Mindlin, 1949). 

In the experimental study, the micro-displacements between a hard steel ball and flat steel 

support were studied. The steel ball was subjected to a tangential force less than the limiting 

friction force. To carefully study the micro-slip behavior, the effects of the experimental 

parameters such as ball diameter, normal load, steady and oscillatory tangential forces were 

investigated. The results indicated a fairly good agreement between the experimental tests and the 

Mindlin theory particularly for small tangential forces.  

  Johnson (1961) conducted experimental tests to study the Mindlin and Deresiewicz 

(1953) theoretical study. The experimental rig consisted of a steel ball in contact with a flat 

support subjected to an oscillatory force with different obliquity angles. The experimental 

observation of the flat bar surface indicated a ring of damaged region on the edge of the circular 

contact area. The annular region was then extended towards the center of the contact area by 

increasing the obliquity angle. The measured energy dissipations were consistent with the 

theoretical analysis of the  Mindlin and Deresiewicz (1953) study particularly for small obliquity 

angles. 

  Ödfalk and Vingsbo (1992) studied the fretting-wear due to the micro-slip behavior 

within the contact region. They proposed an elastic-plastic fretting model based upon the 

Cattaneo-Mindlin theory (Cattaneo, 1938; Mindlin, 1949). The plastic part of the model was 

developed based on the material properties such as the fretting yield and fretting hardening 

coefficients. The study indicated that plastic deformation may have a significant effect on the 

micro-slip behavior and subsequently the amount of the fretting-wear.  Vingsbo and Schön 

(1993) experimentally studied the criteria for incipient gross slip.  The study evaluated the 

fretting scar morphology, displacement amplitude and fretting energy dissipation. Ödfalk and 

Vingsbo (1990) experimentally studied the fretting wear between spherical bodies. The study 

indicated that the differences between the pre-sliding displacements based upon the Mindlin and 

Deresiewicz partial-slipping theory (Mindlin and Deresiewicz, 1953)  and measured experimental 

tests increased with an increase in the forcing frequency. This was explained by the elastic 
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assumptions in the partial slipping theory whereas the nature of the interaction involves plastic 

deformation.   

 

 Research Questions  1.2

Work rate is a parameter which quantifies fretting-wear during tube-support interaction. 

This parameter is dependent upon two factors, sliding distance and normal impact force. Many 

theoretical models, including friction and impact models, have been developed and incorporated 

in tube-support dynamic computation codes for better work-rate estimation. Yetisir and Fisher 

(1997) performed a series of work-rate comparisons between experimental measurements and 

numerical simulations, using the VIBIC code. The results presented up to 50 percent error in the 

predicted work-rate comparisons. Hassan and Rogers (2005) also simulated the Yetisir and Fisher 

experimental measurements, using the INDAP code. These authors adopted different friction 

models, including the VLFM, FBFM and SDFM, in the simulations. The results indicated a 

significant difference of 50 percent, for 0 mm gap size, similarly to the VIBIC code simulation. 

However, the difference was reduced, adopting a larger tube-support preload. These work-rate 

differences, reported by different researchers, underline on a need for more precise study of 

friction and impact models. 

The velocity-limited (Rogers and Pick, 1977), force-balanced (Karnopp, 1985) and 

spring-damper friction models (Antunes et al., 1990) are the friction models which are commonly 

used for tube-support interaction modeling. Their simplicity is the key advantage of using these 

friction models. However, there are some weaknesses associated with them. The presliding 

displacement, varying break-away force and Stribeck effects are not considered, in the above 

mentioned friction models. On the other hand, these effects may influence a criterion to detect 

stick-slip regions. An accurate estimation of this criterion plays an important role to estimate 

sliding distance, particularly in a system with an intermittent stick-slip behavior. To define a 

physics based criterion to detect stick-slip region, the study of friction process from zero velocity 

to the gross-slip state is important.  

Hofmann et al. (1992) categorized the types of tube-support interaction into tangential 

sliding, oblique impacting and perpendicular impacting. The study suggested different wear 
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coefficients as resulting from different type of interaction. The differences in wear coefficients 

may be partially explained as a result of different types of displacements during the friction 

process, including elastic, plastic and partial slipping displacements. Some friction models, 

including the LuGre (Canudas de Wit et al., 1995) and Lim and Chen friction models (Lim and 

Chen, 1998) were developed to model pre-sliding displacement, using internal state variables. 

However, there are some difficulties to attribute their parameters to physical meaning.  

This study aims to carefully study tangential stress distribution within a contact area and 

develop a new hybrid elasto-plastic friction model to precisely consider different stages of 

friction process, including elastic, plastic, partial slipping and gross-slip regions. 

Normal impact force plays an important role in friction force calculation and work-rate 

estimation. Having a precise friction model may not be beneficial without considering an 

accurate normal impact model. Fisher et al. (1989) made normal impact force comparisons for 

tube-support interaction between experimental measurements and numerical simulations, using 

the VIBIC code. The predicted normal impact force significantly overestimated the experimental 

measurements by about a factor of 2. This difference is directly associated with the normal 

impact model incorporated in the numerical code. The normal impact model in most of tube-

support interaction dynamics computation codes, including VIBIC, H3DMAP, INDAP and 

VITRAN, simply consists of a parallel spring and damper. The spring stiffness is calculated, 

using the Morley technique (Morley, 1960), and the damping coefficient is determined, using the 

Hunt and Crossley model (Hunt and Crossley, 1975). It is important to investigate this impact 

model in greater detail to identify the source of the above mentioned differences. Therefore, this 

research aims to perform tube-support experimental tests, with various combinations of gap sizes 

and excitation forces. This will make it possible to accurately measure parameters which 

represent the dynamics of interaction, including normal impact force and tube mid-span 

displacement. In addition, this investigation includes the study of the nonlinear force-

displacement relationship and mechanisms of energy dissipation, to improve tube-support impact 

model. 
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 Objectives 1.3

  The general goal of the proposed thesis research is to precisely study the factors that 

play major roles in the tube-support fretting-wear estimation. The study focuses on the friction 

and impact models which may affect the stick-slip regime and normal interaction forces. For the 

friction model, the need for a physics based model which represents the real bristle behavior 

during the friction process has been clearly inferred from the state of the art review. This requires 

a comprehensive study of the stress distribution within the contact region. The ultimate goal of 

developing the friction model is to demarcate the elastic, plastic and partial slipping displacement 

during the friction process. For tube-support interaction, having a precise friction model may not 

be beneficial without developing an accurate impact model. Therefore, a comprehensive 

experimental study is needed to study the nonlinearity in the force-displacement relation during 

the tube-support interaction. A study of the source of energy dissipation during the normal impact 

may additionally be valuable. 

 

The detailed objectives of this study are the following: 

1.  Design and development a hybrid spring-damper rate dependent friction model based 

upon the elastic, plastic and partial-slipping phenomena which may occur during a 

friction process from the absolute zero velocity to the gross slip state. Furthermore, 

validating the friction model against an experimental instability phase diagram.  

2. Detailed study the effect of the varying break-away force and Stribeck effect on the 

stick-slip regime.  

3. Performance of a series of experimental tests to measure the tube-support normal 

impact force and mid-span displacement for different gap sizes and excitation forces 

as a reference for the impact model validation. 

4. Development of a numerical code based upon the Euler-Bernoulli beam theory to 

simulate the tube-support dynamics. The code will incorporate the friction and impact 

models.  
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5. Study of the nonlinear relation between the elastic impact force and normal 

displacement by validation of the code against the experimental tests and estimation of 

the empirical parameters associated with the nonlinearity. 

6. Conduct experimental tests to study the source of energy dissipation during the tube-

support interaction particularly the effect of the Hunt and Crossley model and 

nonlinearity in the structural damping. 

 

 Thesis Organization 1.4

  This thesis is divided into four chapters. The first chapter presents the purpose and 

inspiration behind the study, a full state of the art review of previous studies and the thesis 

objectives. The state of the art review includes works on tube-support wear mechanisms, 

nonlinear dynamic computation, friction and impact models. The second and third chapters are in 

the form of papers and are constructed to include an abstract, introduction, methodology, results 

and a conclusion. In the second chapter, the details of the development of a hybrid spring-damper 

friction model are presented. The third chapter provides details of the experimental tests for the 

impact model evaluation. The normal elastic and inelastic impact models are also discussed. 

Finally, the discussion and conclusions are addressed in the fourth chapter including a review of 

objectives, further discussion, contributions and recommendations for future work. 
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CHAPTER 2  

NUMERICAL ANALYSIS OF FRETTING-WEAR WITH A HYBRID 

ELASTO-PLASTIC FRICTION MODEL 

 

This chapter is presented in the form of a paper submitted to Journal of Pressure Vessel 

Technology on 28 May 2012. Authors: Reza Azizian and Njuki Mureithi. 

 

ABSTRACT 

Fretting wear is a common problem in different industries especially when it comes to 

interactions between metallic components. Flow induced excitation forces in heat exchangers for 

instance cause tube-support interactions. The long-term interaction is an important phenomenon 

which may cause fretting-wear of the tubes. Experimental tests of the interaction show the 

occurrence of stick-slip intermittent behaviour in the tube response. To precisely simulate the 

intermittent stick-slip behaviour, it is crucial to refine the conceptual model of the coefficient of 

friction for the entire motion form absolute zero velocity to gross slip phase. The incorporated 

friction model plays an important role in the determination of the level of fretting-wear in the 

system. The friction model should satisfy two important criteria: the first important aspect is the 

strategy of the friction model to detect the cessation of sticking, the beginning of partial slipping 

and the establishment of the sliding region. The second important aspect is defining a friction 

coefficient function for the entire system response to precisely represent the transient stick-slip 

regions. In the present work, the velocity limited friction model was compared with the LuGre 

model which is a rate dependent friction model. The effect of varying the break-away force and 

Stribeck effect on the stick-slip region were also investigated. Furthermore, the criteria to 

demarcate the stick-slip region in the LuGre model are discussed and a different method to 

incorporate the Stribeck effect and presliding damping in the Dahl friction model is proposed. 

Using the tangential stress distribution in the contact area, a new hybrid spring-damper friction 

model is developed. The model is able to estimate the elastic, plastic and partial slipping 

distances during relative motion. The ability of the model to reproduce experimental tests is 

investigated in the present work. 
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 Introduction 2.1

   During interaction between metallic components, friction and wear play important roles. 

These phenomena cause material to be removed at the points of the interaction which may lead to 

the component failure. Different wear processes may be involved during the interaction such as 

abrasion, delamination, fatigue, corrosion and fretting wear (Ko, 1986; Gessesse, 2000). Tube-

support interaction in heat exchanger tube bundles may cause the same problem. Different 

experimental tests have been carried out to determine the exact mechanism of the wear process 

and material removal (Suh, 1973; Gauland and Duquette, 1980). The results indicate that cracks 

propagate in the sub-layer parallel to the contact surface and gradually turn toward the contact 

surface due to the stress concentration (Suh, 1973; Fouvry et al., 1997). The process may cause 

wear debris which explains the main mechanism of material removal during the wear process 

(Suh, 1973; Fleming and Suh, 1977).  

  In heat exchangers, the fretting-wear process is associated with the long term tube-

support interaction (Pettigrew and Taylor, 2003b). In numerical simulations of the phenomenon 

the type of incorporated friction model plays an important role. Nonlinearities of the friction 

models in the vicinity of zero velocity pose serious difficulties when developing and 

incorporating these models in numerical simulations. Experimental studies of tube-support 

interaction show significant chattering between the stick-slip regions (Haslinger and Steininger, 

1995; Pettigrew and Taylor, 2003b). For the tube-support interaction simulation, especially in the 

presence of wear, it is vital to incorporate a proper friction model. The friction model should have 

certain capabilities to precisely reproduce the interaction behaviour. During the interaction, three 

phases of relative motion may be considered: sticking, partial-slip and gross-slip. It is important 

for the friction model to be able to demarcate the boundaries between the different phases of the 

relative motion and to quantify the magnitude of the relative motion in each phase. Switching 

between different phases of the relative motion has been observed in different experimental tests 

(Rabinowicz, 1951; Baumberger et al., 1994; Heslot et al., 1994). In the mathematical models, 

different functions have been incorporated to reproduce the intermittent stick-slip behavior 

especially in the vicinity of zero velocity where there is nonlinear transient behavior from the 

stick to slip phases (Baumberger et al., 1994; Canudas de Wit et al., 1995; Lim and Chen, 1998; 

Ozaki and Hashiguchi, 2010).  
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  For numerical simulation of the tube-support interaction, different numerical codes have 

been developed to reproduce the interaction behavior. Examples, include VIBIC (Rogers and 

Pick, 1977), H3DMAP (Sauve and Teper, 1987) and FIVDYNA (Toorani et al., 2009). As noted 

above, a proper friction model is vital to determine the amount of wear in the simulations. The 

Velocity Limited Friction Model (VLFM), Force-Balanced Friction Model (FBFM) and Spring-

Damper Friction Model (SDFM) are the three major friction models which have been commonly 

used in the simulations. 

  In the present work, the advantages and weaknesses of the velocity-limited friction 

model compare to a rate dependent friction model were investigated for a simple mass-spring 

system. The process of transition from absolute zero velocity to entirely gross slipping was 

conceptually refined by considering the tangential stress distribution within the contact region. 

The results indicate the three main regions of elastic, yielding (plastic) and partial slipping before 

incipient gross-slip. Each region of the motion is represented by a theoretical model. The elastic 

displacement is represented by the Cattaneo-Mindlin theory (Cattaneo, 1938; Mindlin, 1949). 

The plastic displacement and yielding are characterized with the Odfalk and Vingsbo method 

(Ödfalk and Vingsbo, 1992). The partial-slipping displacement is associated with a damping 

coefficient inspired by the Mindlin and Deresiewicz method (Mindlin and Deresiewicz, 1953). 

Moreover, the Stribeck effect is modeled with a transient function based on the LuGre model  

(Canudas de Wit et al., 1995).  

  Finally, to consider the different effects, a hybrid elasto-plastic spring damper friction 

model is designed. A simple mass-spring system is then chosen according to experimental tests 

by Baumberger et al. (1994) to test the new friction model.  

 Friction Models 2.2

The main purpose of developing different friction models is to have capabilities to 

reproduce the exact behaviour of the relative motion before the cession of sticking. Moreover, 

due to nonlinear friction behaviour in the vicinity of zero velocity, it is important for the friction 

model to have a realistic transient behaviour for this period in contrast with the simple Coulomb 

friction model.  
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   The Coulomb friction model is the fundamental basis of all friction models. The model 

gives the friction force in the gross slip state. The model, however, cannot predict incipient gross 

slip or estimate the friction force in the sticking region. All the different types of friction models 

use the Coulomb friction model to determine the friction forces during sliding. However, 

different methods are used for demarcating between the stick-slip regions. The latter play an 

important role in our research since more slipping regions may increase the work-rate and 

consequently increase the estimated fretting during the tube-support interaction. Different friction 

models have been developed to evaluate the stick-slip regions and estimate the sticking friction 

forces as follows (Hassan and Rogers, 2005): 

2.2.1  Velocity-limited friction model (VLFM) (Tan and Rogers, 1996) 

  In the velocity-limited friction model, the friction force during gross-slip phase may be 

determined based on Equation (2-1) similarly to the Coulomb friction model. Moreover, a 

limiting velocity, V0, is defined to demarcate stick-slip regions. The friction force, Ff , is given 

by, 

t 0             V >V     ,f nF F if  

t 0

0

       V V  ,
t

f n

V
F F if

V
   

where V0 , μ and Fn are the limiting velocity, friction coefficient and normal contact force, 

respectively. The choice of the limiting velocity is crucial in the VLFM to demarcate the stick-

slip regions. The magnitude of the limiting velocity was quantified as a ratio of the average 

sliding velocity. The ratio was reported in the literature in the range of 0.001-0.1 depending on 

the condition of the interaction (Tariku and Rogers, 2001). 

2.2.2  Force balanced friction model (FBFM) (Karnopp, 1985)
 
 

In the force-balanced friction model, the friction force during slipping is determined 

similarly to the Coulomb‟s friction model but the sticking friction force is determined as follows 

(Hassan and Rogers, 2005): 

 ,f eF Ku F   

(2-2) 

(2-1) 

(2-3) 
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where Ku and Fe are system internal resistance and applied external force, respectively. To have a 

sticking phase in the FBFM, similarly to the VLFM, a limiting velocity is defined. However, the 

friction force in the range of the limiting velocity must be less than the break-away force to 

maintain the sticking phase. 

2.2.3 Spring damper friction model (SDFM) (Hassan and Rogers, 2005) 

  In the spring-damper friction model, the friction force during sticking is composed of 

two terms: damping force and spring force terms. The model is formulated as, 

                               sliding ,f nF F  

0( )          sticking ,f a c a tF K u u C V    

where the parameters uc and u0 are, respectively,  the current and the zero velocity tangential 

displacement. Ka and Ca are the stiffness and damping coefficients. The coefficients were 

determined based on numerical consistency and stability rather than physical coherency (Antunes 

et al., 1990).  

  Rate Dependent Friction Models 2.3

A more precise friction model should be able to reproduce the process from an absolute 

zero velocity to the condition of incipient gross slip. The contact interaction process contains the 

different regimes of elastic, plastic and partial slipping before the complete cession of sticking 

(Johnson et al., 1971; Johnson, 1985; Ödfalk and Vingsbo, 1992). Much effort has been 

dedicated to precisely simulate the different parts of the process especially the creep dominated 

regime. Three rate dependent friction models are discussed below. 

2.3.1 Ozaki and Hashiguchi friction model (Ozaki and Hashiguchi, 2010) 

  Ozaki and Hashiguchi (2010) developed a rate-dependent friction model based on a 

conceptual definition of a friction coefficient for the entire motion. The model has the following 

mathematical form: 

( 1) (1 ) ,p

sk

k v
 


 

    

 

(2-4) 

(2-5) 

(2-6) 
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where k and ξ are the rate of decrease and recovery of the friction coefficient, respectively. The 

coefficients are material constants and the typical values which were used in the Ozaki and 

Hashiguchi (2010) simulation are 10mm
-1 

and 0.01s
-1

 for k and ξ, respectively. The quantities vp, 

µs, µk are the plastic sliding velocity, static coefficient of friction and kinetic coefficient of 

friction, respectively.   

In the model, the instantaneous friction coefficient depends not only on the plastic 

velocity, static and dynamic friction coefficients but also on the coefficient friction‟s rate of 

change. The model can simulate plastic-sliding and the Stribeck effect during motion. Creep 

deformation which plays an important role in estimating the pre-sliding displacement was also 

included in the model. However, experimental comparisons indicated the inabilities of the model 

to quantitatively reproduce the experimental test. 

2.3.2 Lim and Chen friction model (Lim and Chen, 1998) 

  As an extension of the Rice and Ruina (1983) friction model, Lim and Chen  (1998) 

developed a model considering a conceptual choice of the friction coefficient, µ, by taking into 

account the velocity weakening and creep before the cession of sticking as follows:

  

1 1
( , ) sgn( )sinh exp ,

2
x A x x

A


     

   
    

where, 

0

0 0

ln ln ,v v

xV
a b A

D D


   

 

and 

0

( ) 1 .
x

t
D


    

ϕ is a state variable which describes the slipping history. D0 is an empirical parameter 

associated with an average pre-sliding displacement. The quantity av and bv are experimental 

parameters which were chosen equal to 0.369 and 0.014, respectively. The model was 

characterized to simulate and demarcate the creep and inertia dominated slipping regions.  

(2-7) 

(2-8) 

(2-9) 
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2.3.3 LuGre friction model (Astrom and Canudas de Wit, 2008) 

  The LuGre friction model is an elastic rate-dependent friction model. The model is 

competitive due to incorporating different friction features such as varying break-away force, 

friction hysteretic behavior and presliding displacement (Canudas de Wit et al., 1995). The 

different effects make the LuGre model capable of precisely estimating the frictional system 

response especially when it comes to measure the exact stick-slip regions during frictional 

contact. In the model, the friction force is expressed mathematically as follows: 

0 1 2  ,f

dz
F z x

dt
    

 

where, 

0  
( )

xdz
x z

dt g x
 

 

and 

( ) ( )exp( ( )),c s c sg x F F F x v   

 

The parameters ζ0, ζ1 and ζ2 are the stiffness, presliding damping and viscous damping 

coefficient, respectively. Fs , Fc and vs are the static friction force, Coulomb friction force and 

Stribeck velocity, respectively. The friction force as formulated in equation (10) is composed of 

three terms. The first term is the force associated with the elastic bristle deflection, z. The second 

term considers the effect of the rate of the average bristle deflection, 
  

  
, which is determined by 

equation (2-11). The third term is the viscous friction force. Moreover, in the LuGre model the 

Stribeck effect is considered  based on the Armstrong-Helouvry (1991) Gaussian distribution. 

The Stribeck effect as formulated in equation (2-12) is incorporated in equation (2-11) which 

formulates the rate of average bristle deflection. Typical values of the LuGre friction model 

parameters which were determined based on the Armstrong experimental test (Armstrong, 1990) 

are (Canudas de Wit et al., 1995), 

 

 

(2-10) 

(2-11) 

(2-12) 
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Table 2.1 The LuGre model parameters (Canudas de Wit et al., 1995) 

ζ0 (N/m) ζ1 (Ns/m) ζ2 (Ns/m) Fs (N) Fc (N) vs (m/s) 

10
5 

10
2.5 

0.4
 

1.5 1 0.001 

  

In the LuGre model, the Stribeck effect is considered by introducing an exponential 

function as shown in equation (2-12). The Stribeck velocity, vs, determines the rate of change 

from the sticking phase to the gross slipping phase.   

 

Figure 2-1 The Stribeck velocity effect on switching from stick state to slip states. 

Figure 2-1 shows the transient function modeling the switching between the sticking state 

and slip state in the LuGre model. The effect of varying the Stribeck velocity, vs, is also shown. 

The Stribeck velocity is the parameter which defines how fast switching takes place in the 

friction model. For the Stribeck velocity, magnitudes smaller than 0.001(m/s) are reported in the 

literature (Rabinowicz, 1951; Armstrong, 1990; Armstrong and Canudas, 1994; Canudas de Wit 

et al., 1995). 

 

 Comparison of the LuGre and VLFM Models 2.4

   In this section, the velocity limited friction model is compared with a rate dependent 

friction model. The purpose of the comparison is to clarify the weaknesses and advantages of the 
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models to precisely simulate the stick-slip regions. To make a comparison between the VLFM 

and LuGre models, the mass-spring system in Figure 2-2 was chosen. The system allows us to 

precisely study the effect of the friction model parameters on the predicted friction force and 

slick-slip regions. In this study, different types of pulling velocities are chosen to examine 

friction model behavior under various conditions. The first applied excitation consisted of a 

constant pulling velocity, vp, applied to the spring free end. The constant excitation velocity in the 

presence of the spring may excite the mass with a periodic excitation. At the same time, due to 

the motion in one direction, the expected differences between the mass displacements in the two 

friction models may accumulate during the process and can thus be clearly observed.                    

                                                             

Figure 2-2 Mass-spring system. 

 

For the mass-spring system the equation of the motion is, 

.p fmx kx kv t F  
 

 In Equation (2-13), the mass, m, and stiffness, k, are chosen respectively equal to 1 kg 

and 20 N/m. vp and Ff are the pulling velocity and friction force, respectively. In Figure 2-3, the 

friction force histories obtained using the velocity-limited friction model and LuGre model are 

shown. For the pulling velocities of 0.1, 0.2 and 0.3 m/s, the break-away forces of 1.39, 1.34 and 

1.26 N were, respectively, obtained for the LuGre model.  

 

 

 

vp 

k 

m 

(2-13) 
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Figure 2-3 Break-away forces comparison for the Velocity Limited Friction Model and the LuGre 

model with different pulling velocity (a) vp = 0.1 (m/s), (b) vp = 0.2(m/s), (c) vp = 0.4 (m/s). 
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The results show that the break-away force in the LuGre model decreases with 

increasing excitation force in contrast with the velocity-limited friction model which gives a 

constant break-away force of 1.5 N. The LuGre break-away friction behavior is consistent with 

the Johannes et al. (1973) and Rabinowicz (1951) experimental tests which demonstrate the 

dependency of the magnitude of the break-away force on the rate of increase of the friction force 

during the transient stick-slip state (Wojewoda et al., 2008). The LuGre and VLFM comparison 

shows not only the importance of the varying break-away force but also the change in the stick-

slip regions due to the differences. In other words, the LuGre model switches to the gross-slip 

regime sooner than the velocity-limited friction model due to the varying break-away force in the 

study.  

  The differences between the percent duration of slip for different simulation times for 

both models are presented in Figure 2-4. The results show an increase in the slipping time 

percentage with increase in simulation time for both models which eventually attains a steady 

state after passing a certain time.  The results indicate approximately a 4% difference in the 

slipping duration between the LuGre and VLFM models. 

 

Figure 2-4 Slipping time for the LuGre Model and Velocity-Limited Friction model                   

(a) The LuGre slipping time (b) The VLFM slipping time (c) Difference between the LuGre and 

VLFM. 

To more carefully investigate the ability of the friction models to capture the stick-slip 
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increasing instantaneous frequency with time. As shown in Figure 2-5, four different chirp 

excitation functions are applied to the pulling velocity. The chirp functions with 0.2 m/s 

amplitude have target frequencies increasing from 5 Hz to 30 Hz for cases 1 to 4, respectively, in 

a 10 second simulation duration. The results indicate a decrease in the slipping time for the 

LuGre model in contrast with the VLFM. The constant velocity limited magnitude may restrict 

the VLFM from capturing the entire sticking region. The inability of the VLFM to detect the 

sticking region may be explained based on the essence of having an adaptive velocity limited 

magnitude for the VLFM.  

 

Figure 2-5 Slipping time comparison the VLFM and LuGre (1) chirp [1,5] (2) chirp [1,10] (3) 

chirp [1,20] (4) chirp [1,30]. 

The slipping time durations for the LuGre and the VLFM models shows that it is vital to 

choose a proper criterion to demarcate the stick-slip regions. In the LuGre model, the rate of 

average bristle deflection is chosen as the criterion for detection of incipient gross-slip 

displacement. From the mathematical formulation of the LuGre model, the parameter, dz/dt, 

needs to be chosen small enough to capture all sticking regions. In Figure 2-6, the effect of 

decreasing the rate of the average bristle deflection is investigated. Decreasing the parameter 

from 1e-9 m/s to 1e-12 m/s shows only a slight difference in the slipping time until the critical 

point of 1e-12 m/s. The results indicate that by choosing an average bristle deflection smaller 

than 1e-11 m/s, the LuGre model assumes a big portion of the movement to fall in the sticking 

region. Therefore, a steep decrease from 62.37% to 3% of the slipping time is observed. The 
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change is due to the sensitivity of the model to choice of the time step. However, the choice of 

dz/dt equal to 1e-10 m/s is in a reasonable range for the time-step equal to 1e-6s. 

.  

Figure 2-6 Slipping time percentage versus logarithmic average bristle deflection. 

 Equivalent Spring-Damper Friction Model 2.5

  Some advantages of the rate-dependent friction model compared to the VLFM were 

discussed in the previous section. However, to use the LuGre model, it is important to understand 

the relation between the empirical parameters and the mathematical formulation. The LuGre 

model is a friction model which was developed based on the Dahl friction model (Dahl, 1968) by 

considering the hysteretic behavior and presliding displacement (Armstrong, 1990; Canudas de 

Wit et al., 1995). To achieve these goals, the Dahl friction model (Dahl, 1968) was upgraded to 

the LuGre model by incorporating the Stribeck function (Armstrong-Helouvry, 1991) ,Equation 

(2-12), into Equation (2-11). Moreover, two additional damping terms were introduced (Equation 

(2-10)) which represent the damping associated with the rate of the average bristle deflection and 

viscous damping. However, the approach to correlate the empirical parameters to the 

mathematical formulation may not represent the physical response of the system. Therefore, in 

this section the LuGre model is reorganized in the form of an equivalent physical nonlinear 

spring-damper model with the same constant parameters.  

-12-11.5-11-10.5-10-9.5-9
0

10

20

30

40

50

60

70

Log (dz/dt)

S
lip

p
in

g
 t

im
e
 p

e
rc

e
n
ta

g
e
 (

%
)

63.78%65.23%

3%

62.37%



35 

 

                                                                                                      

Figure 2-7 Spring-damper model equivalent to the Lugre Model. 

As shown in Figure 2-7, it is proposed to represent the Stribeck function and damping 

terms in the LuGre model by a physical hybrid spring-damper model. The spring with the 

constant ζ0 and dampers with the constant ζ1 and ζ2 are configured in parallel to reproduce 

Equation (2-10). Moreover, the Stribeck effect in Equation (2-12) is transformed to an equivalent 

Stribeck damping, Cz. The damping element is configured in series with the rest of the system to 

be able to shift the system from the sticking state to the slip state depending on the velocity of the 

mass. As shown in Figure 2-8, the simulation results show 5-9% difference for the slipping time 

between the LuGre model and the physical equivalent spring-damper friction model. The 

advantage of the latter model is that it gives an intuitive physical meaning to the mathematical 

functions in the LuGre model. 

 

Figure 2-8 Slipping time comparison between the LuGre and Revised SDFM for different 

logarithmic rate of average bristle deflection. 
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  Stress Distribution within the Contact Area 2.6

  The equivalent spring damper friction model which was proposed in previous section 

contains physical parameters. The role of the parameters is to articulate the exact behaviour in the 

different phases of the motion from absolute zero velocity to the gross-slip phase. To upgrade the 

equivalent spring-damper friction model with a more physical model capable of demarcating 

different regions in the contact area, it is necessary to consider the tangential stress distribution in 

the interface between two objects. For contact between spherical objects, Cattaeno (1938) and 

Mindlin (1949) developed a mathematical formula to describe the tangential stress distribution 

within the contact area as follows: 

1/2 1/2
2 2

0 2 2

1/2
2

0 2

1 1   0

( )  ,

1                           

r r
p r c

a c
q r
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

               
       
  

    
  

 

where μ is the coefficient of friction, P0  the normal stress and a the contact radius. 

Based on equation (2-14), the contact area is divided into two regions: a sticking region 

with elastic displacement and a partial slip region. Figure 2-9 shows the differences in the stress 

distribution in the two regions which are demarcated by the parameter „c‟ 

                                                  

Figure 2-9 Cattaneo-Mindlin tangential stress distribution (Johnson, 1955). 
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In the region 0 ≤ | r | ≤ c, the coincident contact points on the interface move together 

which represents the sticking region as shown in Figure 2-10 by the point „A‟ (Mindlin, 1949; 

Johnson, 1985). However, for the region c ≤ | r | ≤ a, the contact points on the two bodies have a 

relative tangential movement which represents the slipping region as shown in Figure 2-10 by the 

points „B‟ and „C‟ (Mindlin, 1949; Johnson, 1985).  

 

Figure 2-10 Stick and slip point in contact region (Johnson, 1985). 

 

Consequently, the relative tangential displacement in the contact region is determined as 

follows (Johnson, 1985): 

2/33(2 )
1 (1 ) ,

8

N T
x

N

v F F

Ga F






 
   

   

where FN is the normal contact force, v the Poisson‟s ratio µ the coefficient of friction and G the 

shear modulus. 

In later development of the Cattaneo-Mindlin theory (Cattaneo, 1938; Mindlin, 1949), 

Mindlin and Deresiewicz  (1953) studied the effect of varying tangential force on the stress 

distribution within the contact area. Consequently, the study determined the energy dissipation 

per cycle during the oscillatory tangential displacement as in equation (2-16) by integrating the 

force-displacement history for a cycle. 

(2-15) 
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where T
*
 is the amplitude of the tangential oscillatory force and a  the contact radius. 

In other work, Ödfalk and Vingsbo (1990) measured the presliding displacement, δ,  

dependence on the excitation frequency. The results indicated underestimation of presliding 

displacement by the Cattaneo-Mindlin elastic theory. To correct for this, Ödfalk and Vingsbo  

(1992) developed a plastic model to consider yielding in the contact region based upon equations 

(2-17)-(2-20). 
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where FT, kp, FTy are the tangential force, work hardening coefficient and fretting yield point, 

respectively. δp is the presliding displacement associated to yielding. In equation (2-17), the three 

constant parameters α, β and γ may be determined as follows (Ödfalk and Vingsbo, 1992):

 

 

1          0

1        0

d

dt

d

dt









 
 


 
1           

0          

Ty

Ty

T F

T F



 



 

1           and 0

0          else

T
T Ty T

dF
F F F

dt


 

 

  

where δ is the total presliding displacement. 

(2-16) 

(2-17) 

(2-20) 

(2-19) 

(2-18) 
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Figure 2-11 Two flat surfaces in contact. 

Using the Cattaneo-Mindlin theory for flat surfaces without losing its cogency needs to 

be explained and justified. As shown in Figure 2-11, considering two flat surfaces in contact, 

with the condition of neither gross-slip nor partial-slip, the system is similar to a flat punch with 

the same displacement in the loading direction all over the contact region. The tangential stress 

distribution is (Johnson, 1985),  

2 2 1 2
( )  ,

( )

xQ
Q x

w x



 

  

where x is the position of the coincident points within the contact width and w is the contact 

width. As shown in Figure 2-12, the tangential stress increases to infinity on the border line |x|=w 

which brings into question the condition of no-slip. In other words, the coefficient of friction 

needs to be infinite to sustain the condition of no-slip on the border of the contact area. This leads 

us to infer the presence of the partial-slipping region for two-flat surfaces similarly to the circular 

contact case (Johnson, 1985). 

                                                                                                                                    

Figure 2-12 Tangential stress distribution for a flat punch (Johnson, 1985). 
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Ödfalk and Vingsbo (1990) have attempted to justify the use of the Cattaneo-Mindlin 

theory for flat surfaces in contact by considering the micro structure of the bristles in the contact 

interface. Since the Cattaneo-Mindlin theory is valid for a circular contact, certain assumptions 

needed to be considered to be able to use the theory for flat surfaces including (Ödfalk and 

Vingsbo, 1990): (1) two smooth flat surfaces in contact with each other and one of them includes 

certain waviness, (2) the surfaces are in contact at least in three contact points, (3) considering a 

spherical shape for the contact tip between flat surfaces. Based upon these assumptions, 

conceptual incorporation of the Cattaneo-Mindlin theory in a friction model for flat surfaces is 

admissible.  The experimental test conducted by Ödfalk and Vingsbo (1990) confirmed that the 

presliding displacement is proportional to the 2/3 power of the normal force which supports the 

validity of the Cattaneo-Mindlin theory for flat surfaces. 

 

  New Hybrid Spring-Damper Friction Model   2.7

In the preceding sections, different weaknesses and advantages of the LuGre model were 

investigated. In the development of the new model, two important aspects of the friction model 

are considered. The first aspect is the criterion to demarcate the stick-slip regions. The second 

aspect is incorporation of different friction phenomena such as the Stribeck effect and presliding 

displacement based on a physical hybrid spring-damper model.  The issues are vital due to the 

sensitivity of fretting-wear to slipping distance. For the LuGre model, the demarcating parameter 

was chosen as the rate of the average bristle deflection. However, as shown in Figure 2-6, the 

slipping time may depend on the magnitude of the limiting parameter.  Researchers have 

investigated the micro-behaviour in the contact area during the stick-slip states. As mentioned 

earlier, Cattaneo-Mindlin developed a model for the tangential stress distribution in the contact 

area. The model suggests two regions within the contact area. A sticking region in the center of 

the contact area and a partial slipping region in the peripheral region outside of the contact area 

which progressively develops towards the contact center with increase in the friction force 

(Johnson, 1985). Johnson  (1961) experimentally proved the theory. The Cattaneo-Mindlin theory 

was further developed to consider the effect of plastic deformation and yielding in the border 

between the sticking and slip regions (Ödfalk and Vingsbo, 1992).  Based upon the stress 

distribution in the contact region, different phases of displacement may be identified in the 
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contact area (Johnson, 1985; Ödfalk and Vingsbo, 1992). The three main regions of elastic 

displacement, plastic displacement and slipping are shown in Figure 2-13. In addition, to have a 

precise friction model, two transient regions of elastic-to-plastic and plastic-to-slipping transition 

are considered.                                                      

 

 

 

Figure 2-13 Displacement field in the contact area and hybrid spring-damper model. 

2.7.1 Model formulation 

  A hybrid spring-damper friction model is formulated based upon consideration of the 

different regions in the contact area. From Figure 2-13, the friction force and relative 

displacement are given by: 

 ,f e e p p s sF k z c z c z    

 ,e p sz z z z    

where ze , zp and zs are the elastic, plastic and partial slipping displacements, respectively.
 
ke , cs , 

cp are the stiffness, plastic-damping and slip-damping coefficients, respectively. 
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Figure 2-14 New hybrid spring-damper friction model. 

The proposed hybrid friction model is shown schematically in Figure 2-14. The model 

considers four important effects: The first effect considered is the average elastic bristle 

displacement inspired by the Cattaneo-Mindlin theory based on equation (2-15) by introducing 

the parameter ke. The second effect considered is the plastic displacement inspired by the Odfalk-

Vignsbo method (Ödfalk and Vingsbo, 1992) based on integrating the force-displacement 

relation (equation (2-17)) and introducing the parameters cp and kep for the resulting equivalent 

damping and stiffness, respectively. The third effect considered is the partial-slipping 

displacement inspired by the Mindlin-deresiewicz method (Mindlin and Deresiewicz, 1953) 

based on equation (2-16) by introducing the parameters cs and kps. Finally, the Stribeck 

phenomenon is introduced based on the LuGre model (Astrom and Canudas de Wit, 2008) 

according to equation (2-12). The Friction model can be expressed in the form of equations (2-

24)-(2-26) which include the four different effects as follows: 
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 where cz in equation (2-26) is the Stribeck damping which is given by: 
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( )
,z

g x
c

x
  

where  (  ) may be determined based on equation (2-12). Considering these effects, the pre-

sliding displacement may be more accurately modeled. The new model consists of two damping 

coefficients for the plastic and partial slipping. Moreover, three stiffness coefficients for the 

elastic, elasto-plastic and elasto-slipping displacements are incorporated in the model.  

2.7.2 Verification of model capabilities 

One of the important properties of the new hybrid friction model is the capability to 

explicitly determine the elastic displacement (ze), plastic displacement (zp) and partial slipping 

displacement (zs). To demonstrate this, the system of Figure 2-14 is excited below the break-

away force with the following excitation function: 

0.1cos(10 ) 0.1.ex t 
 

To show a comparison between the hybrid spring-damper friction model and the LuGre 

model, the system parameters for the hybrid model are defined equal to the equivalent parameters 

for the LuGre model as shown in Table 2.1 based on the following: 

1 2  ,s pc c  
 

03  ,e ep psk k k     

Using a precise physics based relation between the damping and stiffness coefficient 

strongly depends on the contact condition and the object material properties. Therefore, the 

relations (2-29) and (2-30) are assumed in order to demonstrate the capability of the model to 

demarcate different regions of elastic, plastic and partial slipping regions.  

 

(2-27) 

(2-28) 

(2-29) 

(2-30) 
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Figure 2-15 Displacement comparison between the LuGre and the new friction models using 

Equation (2-28) as the excitation. 

In Figure 2-15, the displacements of the mass-spring system obtained using the LuGre 

and the new friction model are presented. Both models behave similarly with slight differences in 

the displacements. However, as shown in Figure 2-16 the new friction model has the capability to 

demarcate elastic, plastic and partial slipping displacements during the motion. 

 

Figure 2-16 Elastic, plastic, partial slipping displacement. 

In the numerical simulation of the stick-slip motions, it is important to precisely estimate 

the pre-sliding displacement. The LuGre model is an elastic model with the weakness of inability 

to demarcate between the elastic, plastic and partial slipping regions within the presliding 

displacement. As shown in Figure 2-16, the new hybrid model overcomes this difficulty. 

Furthermore, the demarcating capability makes the new hybrid friction model more flexible in 

terms of reproducing the pre-sliding displacement. To examine the flexibility, another 
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comparison between the LuGre model and the new friction model is made by implementing the 

following excitation displacement: 

 0.050.05 cos2 .t

ex e t   

 

Figure 2-17 Displacement comparison the LuGre and new friction models. 

 

The displacements of the mass-spring system are compared in Figure 2-17 for the two 

friction models. The results indicate the same general motion of the two models with a difference 

in the pre-sliding displacement.  

 

Figure 2-18 Presliding displacement in the LuGre model and new hybrid friction model. 

In Figure 2-18, the presliding displacement in the LuGre model and new hybrid friction 

model are presented in greater detail. The points „A‟ and „B‟ represent the beginning of the 
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presliding displacement in the new hybrid friction model and LuGre model, respectively. The 

results emphasize the flexibility of the new hybrid friction model to reproduce a bigger presliding 

displacement while maintaining the general trend of the motion.This suggests a more flexible 

friction model able to reproduce the experimental measurements.  In contrast with the LuGre 

model, the new friction model is an elasto-plastic model. The elasto-plasticity property enables 

the new friction model to not only reproduce a more precise presliding displacement by including 

elastic and plastic deformations but also to reproduce the nonlinear behaviour in the vicinity of 

zero velocity by demarcating different regions as shown in Figure 2-16. 

 

 Model Verification 2.8

  The accuracy of the friction model is important especially when it is used in a practical 

application such as the tube-support interaction and its fretting-wear evaluation. The presliding 

displacement and its effect on the fretting-wear estimation make the friction model even more 

crucial in representing the true physics of the phenomena. To achieve a precise friction model, 

identification of the model parameters is important. This leads us to consider a semi-empirical 

approach. 

  To compare the new friction model against experimental test, it is crucial to come up 

with a correct set of model parameters. Defining a set of physics based parameters for the friction 

model is challenging due to the dependency of these parameters on the contact geometry, 

material and contact conditions. Therefore, for model verification, an inverse numerical method 

is adopted.  The verification is conducted in two stages. The first stage is to train the model 

against one set of experimental test data and optimize the model capability to reproduce the 

experimental results. The second stage is using the first stage parameters to reproduce 

experimental test results for different test conditions. 

  The hybrid friction model is evaluated by comparing it with the experimental test results 

by Baumberger et al. (1994). The latter was the only fully documented test program the authors 

could find in the open literature. As shown in Figure 2-1, the experimental rig consists of a mass 

attached to a spring subjected to a constant pulling velocity, Vp. The set-up makes it possible to 

produce periodic stick-slip motion due to the spring force and friction resistance to the motion. 
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Table 2.2 shows parameters for the mass-spring system. In the numerical simulation, the 

parameters were chosen to be consistent with the experimental test for the model verification. 

Table 2.2  Mass-spring model parameters. 

M (kg) K (Nm
-1

) Vp (μms
-1

) 

0.8 58000 1 

 

 

To estimate the parameters, the nonlinear least-squares method was used. Four 

parameters ke , Fs , Fc ,vs  affect the general stick-slip behavior. On the other hand, four other 

parameters kep , kps , cs , cp mostly affect the presliding distance.  

  The optimization was conducted in two steps. The first step involved defining the 

general motion behavior by optimizing the first set of parameters. In this step the objective 

function is the quadratic difference between the displacement time-history in the experiment and 

numerical simulation for the entire stick-slip motion. In Table 2.3, the first set of the optimized 

parameters is presented.  

Table 2.3 New friction model parameters. 

ke (N/m) Fs (N) Fc (N) vs (m/s) 

5.2e+7 1.07 0.707 1e- 6 

 

   

The second optimization step contains the estimation of the second set of parameters which is 

more sensitive in terms of defining the presliding displacement. In this step the objective function 

is the quadratic difference for the time-history of the presliding displacement. In Table 2.4, the 

second set of the optimized parameters is presented. 

Table 2.4 New friction model parameters. 

kep (N/m) kps (N/m) cs (N.s/m) cp (N.s/m) 

1.9e+7 8.5e+7 2.3e+3 6.3e+2 

 

The first-step of the optimization is more costly since the objective function is highly 

sensitive to these parameters. On the other hand, the second step of the optimization captured the 
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presliding displacement which required a more refined time step to more accurately run the 

simulation and capture the entire process. The time step is chosen equal to 1e-6 sec. 

 Figure 2-19 shows a comparison of the Baumberger et al. experimental test data 

(Baumberger et al., 1994) with the new hybrid friction model as well as the Ozaki and 

Hashiguchi model (Equation (6)) (Ozaki and Hashiguchi, 2010). Clearly, the new friction model 

can reproduce the same number of sticking regions as reported in the experiment contrary to the 

Ozaki and Hashiguchi (Ozaki and Hashiguchi, 2010) model which detects only five out of eight 

sticking phases. Furthermore, the duration of the sticking region in the new friction model shows 

reasonable agreement with the experimental test. 

 

Figure 2-19 New hybrid friction model, Ozaki and Hashiguchi friction model (Ozaki and 

Hashiguchi, 2010) and Baumberger et al. experiment (Baumberger et al., 1994) comparisons. 

After identifying the system parameters with the optimization method, the friction model 

is evaluated with different inputs for the spring stiffness and pulling velocity. The K-V stability 

diagram based upon Baumberger et al. experimental test data (Baumberger et al., 1994) is used to 

compare the stability velocities. The velocity may be determined for each spring stiffness 

coefficient by subjecting the mass-spring model to a linearly increasing velocity. For low velocity 

the motion begins with the stick-slip behavior until it reaches the stability velocity which 

transfers the motion to a more stable mode of gross-slip.  

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-4

Time (sec)

D
is

p
la

c
e
m

e
n
t 

(m
)

 

 

Baumberger Experiment 1994

New Friction model

Ozaki Friction model



49 

 

As shown in Figure 2-20, the stability velocities, for different spring stiffness 

coefficients, are compared between the hybrid spring damper and Lim-Chen friction model (Lim 

and Chen, 1998). For each set of data, transient stick-slip behavior may occur below the curve 

whereas more stable motion occurs for velocities above the curve. 

 

Figure 2-20 K-V dynamic phase diagram for the stick-slip stability for the Baumberger et al. 

experimental tests (Baumberger et al., 1994) , Lim and Chen model (Lim and Chen, 1998) and 

Hybrid spring-damper model. 

As reported by Lim and Chen (1998), their friction model has a good agreement with the 

theoretical friction model developed by Rice and Ruina (1983). However, the models have the 

limitation that they cannot correctly reproduce the slope of the dynamic stability diagram. As 

shown in Figure 2-20, the Lim and Chen model produced approximately a constant line for the 

stability curve with highly sensitive stability velocity to the stiffness in contrast to the 

experimental results. The new hybrid spring damper friction model with the optimized 

parameters may be able to reproduce the experimental result with a qualitatively good agreement. 

Quantitatively, the dynamic stability diagram is divided into three regions based on the 

agreement between the experimental test and hybrid friction model. The first region of the 

stability velocity of 0 ≤ vc ≤ 10 (µms
-1

) shows differences in instability velocity between the 

model and experimental test. The differences may be explained based upon the nature of the 

creep dominated region which may need a higher Stribeck velocity as the motion changes slowly 
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from the static to the dynamic regime. However, the trends of the experimental test and numerical 

simulation are in good agreement showing vc tends to zero for high spring stiffness. The second 

region of 10 ≤ vc ≤ 50 (µms
-1

) has a fairly good agreement with the experimental test. 

Furthermore, in the third stability region of 50 ≤ vc ≤ 350 (µms
-1

) the numerical simulation is able 

to reproduce the general experimental trends. However, the simulations overestimate the stability 

velocity. This is likely due to overestimation of the damping coefficients in the friction model. 

   Conclusions 2.9

  In this study, commonly used friction models for tube-support interaction simulation 

were discussed. The weaknesses and advantages of the models are compared with a rate 

dependent friction model. For comparison a simple mass-spring system was used. The Stribeck 

effect and effect of changing the break-away force on the stick-slip regions were investigated. To 

have better comparison between the models, different excitation forces were applied to the mass-

spring system and the capabilities of the models to capture all the sticking regions were 

examined.  

 Two features of the LuGre model were investigated. The first is the criterion for 

demarcating the stick-slip regions and the second the incorporation of the Stribeck effect and 

presliding damping in the Dahl friction model (Dahl, 1968). A modified and extended LuGre 

model based on an equivalent spring-damper was then proposed. The slipping time comparison 

was made for the two models which indicated 5-9% difference. 

To have a precise estimation of the slipping distance, it is important for the friction 

model to be able to detect different regions during the motion especially before incipient gross 

slip. To achieve this, a new hybrid spring-damper friction model was conceptually designed 

incorporating different phenomena which have a role in establishing the stick-slip regions. 

Simulation results confirm the capability of the new friction model to accurately demarcate the 

different regions of elastic, plastic and partial-slipping within the presliding displacement. 

Moreover, the hybrid spring-damper friction model was compared to experimental tests and 

shown to correctly predict not only the number of the stick-slip events but also the correct 

duration of the sticking phase. The model is therefore a significant improvement over the Ozaki 

and Hashiguchi model. Other comparisons were made against a series of experimental tests 
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conducted by Baumberger et al. The numerical simulation results indicated a qualitatively good 

agreement with the measured stability velocity. However, differences in the stability velocity 

magnitude were reported. The differences were attributed, in part, to underestimation of the 

Stribeck velocity and overestimation of the damping coefficients in the hybrid friction model 

parameters. 
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CHAPTER 3  

EXPERIMENTAL INVESTIGATION OF TUBE-SUPPORT NORMAL 

INTERACTION WITH A NONLINEAR IMPACT MODEL 

 

This chapter is presented in the form of a paper submitted to Journal of Pressure Vessel 

Technology on 11 November 2012. Authors: Reza Azizian and Njuki Mureithi. 

ABSTRACT 

Flow-induced vibration in a steam generator may cause tube-support interaction. This long 

term interaction is a challenging problem as it may cause fretting-wear of the tube. An estimation 

of the normal impact force during tube-support interaction is important to precisely quantify 

material removal. Several authors have tried to model the normal interaction, using a linear 

spring-damper model. However, the inability of the model to correctly quantify fretting-wear 

raises interests to carefully investigate the force-displacement relation during tube-support 

interaction. A precise study of the interaction presents several challenges as a result of the many 

parameters involved during the interaction, including fluid forces, number and type of supports 

and geometry of contact.  

This study investigates tube-support interaction using a simple experimental rig, consisting 

of a tube with a flat support which is positioned at the tube mid-span. This enables the 

investigation of normal impact forces in greater detail, using experimental tests and numerical 

simulation comparisons. The present work studies normal force-displacement relationship which 

leads to the estimation of an empirical parameter, associated with the nonlinearity in the 

relationship. In addition, the relationship is used to simulate tube-support interaction for various 

gap sizes and excitation forces. The comparisons indicate that using the nonlinear spring-damper 

model significantly reduces the predicted impact force error, to less than 20 percent, when 

compared to experimental tests. Additionally, this research investigates various energy 

dissipation mechanisms during tube-support interaction, including impact and structural 

damping. The effect of impact damping on the tube response is investigated, using the Hunt and 

Crossley model. The sensitivity of tube response to structural damping is also studied. The 

investigations suggest that using a higher structural damping during tube-support contact, 
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depending upon tube-support gap size, may improve the accuracy of the estimation of the tube 

response. 

 Introduction 3.1

   In steam generator tube bundles, flow-induced vibration causes tube-support interaction. 

The long term interaction may lead to fretting-wear in the tube bundle which may consequently 

cause tube failure. Dynamic modeling of tube-support interaction is important due to a need to 

estimate the tube wear-rate at the support locations. Since the most important causes of wear are 

impact and friction between the tube and support, many authors have proposed models and 

developed numerical simulations for this interaction. Various developments have resulted from 

the continued works by, among others,  Rogers and Pick (1977), Sauve and Teper (1987), Tan 

and Roger (1996), Hassan et al. (2000; 2002; 2003; 2005; 2008) and Tariku and Roger (2001). 

The model developers have mostly focused on developing proper models for friction force and 

computing tube-support interaction dynamics response. Several codes have been developed to 

provide a better estimation of the interaction response. These codes can be categorized into two 

main groups, based upon the approach used to solve the equation of motion. The first group was 

developed using the finite element method, including H3DMAP (Sauve and Teper, 1987), 

INDAP (Hassan, 2000; Hassan et al., 2002; Hassan et al., 2003) and FIVDYNA (Toorani et al., 

2009). The most important challenge with the finite element codes is cost in terms of 

computation time. This is associated with the nonlinearity in the equation as a result of tube-

support clearance. The second group was developed using the modal superposition method, 

including VIBIC (Rogers and Pick, 1977), GERBOISE (Axisa et al., 1986; Hassan et al., 2005) 

and VITRAN (Rubiolo, 2006). The modal superposition codes are competitive in terms of their 

computation time. However, the simplifications in the model, such as neglecting constrained 

modes, may reduce the modal precision compared to the FEM method. 

Dynamic computation of tube-support interaction is a challenging task aimed at acquiring 

accurate results and optimum computation cost. Sauve and Teper (1987) developed a numerical 

integration code using the finite element method. The numerical integration was computed based 

upon the Newmark approach (Bathe, 1982). Furthermore, to form mass and damping matrices, 

the Lumped mass and Rayleigh approaches were adopted. However, it is vital to obtain an 

optimum time-step due to the cost of computation. This computation cost problem is associated 
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with the nonlinearity in the equations imposed by the tube-support clearance. Subbaraj and 

Dokainish (1989) adopted a pseudo force approach to model the tube-support gap using an 

external force in the equation of motion. This approach has been widely used to simulate the 

tube-support impact phenomenon (Hassan et al., 2002; Rubiolo, 2006).  

  As mentioned earlier, besides the finite element method for tube-support dynamic 

computation, another method is the modal superposition approach. Antunes et al. (1990) used the 

Euler-Bernoulli beam theory and the modal superposition technique for a nonlinear dynamic 

analysis of  tube-support interaction. Later on, the modal superposition approach was adopted by 

Rubiolo (2006) in the VITRAN code to simulate the dynamic response of fuel rods. The modal 

superposition approach has some advantages to use due to its simplicity and lower computational 

cost. However, using the unconstrained mode shape may be problematic. Davies and Rogers 

(1979) investigated the effect of constrained versus unconstrained mode shape in the dynamic 

computations (Rubiolo, 2006). The study confirmed the feasibility of using unconstrained mode 

shapes for a tube with a very small structural damping coefficient.  

Determining an accurate normal impact force is important due to its role when 

determining the friction force and wear work-rate. The normal impact model consists of two 

components (Goyal et al., 1994): the first component is the contact detection between two bodies 

and the second the relationship between impact force and normal displacement. This relationship 

is mainly dependent upon contact material and geometry. Accurately detecting the instance of 

contact and adopting a proper impact force function constitute a complete normal impact model 

(Goyal et al., 1994).  

As described earlier, the nonlinearity of the force-displacement relationship during tube-

support normal interaction grants an important role to the assumed form of the normal impact 

force. The form may be defined based upon contact conditions, geometry and level of accuracy 

needed for the analysis. The Hertz‟s contact theory is commonly used to estimate the normal 

impact force. However, there are some difficulties associated with the theory (Goldsmith, 1960; 

Johnson, 1985). In the Hertz theory, contact surfaces are assumed to be continuous and 

frictionless therefore the only force which can be transferred within the contact area is the normal 

force (Johnson, 1985). In most practical cases, however, the impact phenomenon includes energy 

dissipation while the Hertz‟s contact theory is formulated based upon an elastic impact process 
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(Goldsmith, 1960). In addition, the theory does not consider the boundary force originated as a 

result of impact deformation (Johnson, 1985). The geometry of contact may play an important 

role in an estimation of the normal impact force. In the present work, the two bodies under 

consideration are a thin-wall tube in contact with a flat support. The study conducted by Axisa et 

al. (1984) indicated that the ovalization stiffness may be the dominant stiffness during tube-

support interaction as a result of the small thickness of tube.  

The Hunt & Crossley (1975) damping model is commonly used to represent the energy 

dissipation as a result of impact. In this model, the coefficient of restitution is an important factor 

used to present the amount of dissipated energy. The coefficient generally depends on material, 

contact geometry and initial incident velocity (Werner and Robert, 2008). Based upon the nature 

of impact, different definitions for the coefficient of restitution may be used, including the 

Newtonian, Poisson and Stronge definitions (Stronge, 2000). Choosing a proper value for the 

coefficient of restitution is a challenging step as a result of the multi-modal behaviour of tube-

support interaction. The experimental study by Thomson et al. (1994) suggested using a smaller 

coefficient of restitution for interaction involving a continuous system. This was attributed to the 

distribution of impact energy to the higher vibration modes. This transferred energy may then be 

easily dissipated in the form of sound, which may establish an inelastic impact process (de Weger 

et al., 1996; Wagg and Bishop, 2000). Another study by Werner and Robert (2008) also indicated 

that measuring the coefficient of restitution in a continuous system is problematic due to the 

multiple micro-impact behavior which may lead to a chaotic response. There have, however, 

been some attempts to measure the coefficient of restitution for continuous systems (Bao et al., 

2004; Werner and Robert, 2008). The experimental study by Stoianovici and Hurmuzlu (1996) 

laid an emphasis on the sensitivity of the coefficient of restitution to internal elastic motion and 

micro-multiple impact phenomena.  

In the development of numerical models, comprehensive efforts have been made to 

perform accurate experimental tests for model verifications. Weaver and Schneider (1983) 

performed experimental tests on U-bend tubes with flat supports; Chen et al. (1985) to 

understand support effectiveness; while Yetisir and Fisher‟s (1997) aimed to estimate wear rates. 

These experimental tests were continued by Axisa et al. (1984), Haslinger and Steininger (1995), 

Pettigrew et al. (1998; 2003a; 2003b), Azizian et al. (2009) and Nowlan et al. (2009). 
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In the tube-support interaction dynamic computation codes, including VIBIC, H3DMAP, 

INDAP and VITRAN, the normal impact forces are modeled, with a similar method, using a 

parallel spring and damper. Fisher et al. (1989) compared tube-support impact forces in 

numerical simulations with experimental tests, using the VIBIC code. The results indicated the 

overestimation of impact forces by approximately a factor of 2 which indicated a significant 

difference. Hassan and Rogers (2005) predicted tube-support wear-rate, using the INDAP code. 

Their result comparisons with Yetisir and Fisher (1997) experimental tests indicated up to 

approximately 50% difference in work-rate estimation.   

In the present study, the complicated behavior of the tube-support interaction in a steam 

generator is simplified to a two-span tube with a flat support positioned at the tube mid-span. 

This set-up is then used to measure impact forces and mid-span displacements for different 

combinations of gap sizes and excitation forces. The tests enable an accurate study of tube-

support interaction dynamics. The results are also used as a reference database for the estimation 

of impact model parameters using comparisons with numerical simulations. In addition, a tube-

support dynamics model is formulated using the Euler-Bernoulli beam theory. The equations are 

solved using the modal superposition method and Runge-Kutta numerical algorithm in Simulink.  

Using an accurate impact model is a key factor to precisely simulate the interaction. The 

impact model is then divided into two parts including, elastic and inelastic impact. For elastic 

impact, three deflections during tube-support interaction including local deformation of tube, 

deflection of support and tube ovalization are studied. The impact model is then upgraded using 

an empirical parameter associated with nonlinearity in the force-displacement relationship. This 

nonlinearity is attributed to geometry of the contact interface and inability to precisely model the 

ovalization phenomenon. The model is then compared to experimental tests for different 

excitation forces and gap sizes. The source of energy dissipation in the tube-support interaction is 

mainly due to wave propagation, structural damping, friction and local impact damping. In this 

study, the effect of impact damping and the choice of nonlinear damping model parameters on 

tube response are investigated. Additionally, the effect of vibration amplitude on structural 

damping is studied. Furthermore, the mid-span displacement differences between the 

experimental tests and numerical simulation are investigated by upgrading the structural damping 

model. This is achieved using different damping magnitudes for contact and no-contact phases. 



60 

 

 Experimental Rig and Measured Variables 3.2

    As mentioned earlier, different authors have carried out experimental tests to construct a 

reliable reference to validate various tube-support interaction models. One of the most important 

components of the overall model is the impact model. The accuracy in the impact model is 

important due to its effect on the estimation of friction force and subsequently the tube-support 

dynamic response. In this section, the complicated structure of a tube bundle in a real heat 

exchanger is simplified to a simple experimental rig, including a two-span tube with a flat 

support in the middle. This makes it possible to precisely study the normal impact force. This 

section includes a description of the experimental rig, instrumentation, experimental procedure 

and the selection of measured variables. 

3.2.1  Experimental test rig and instrumentation 

To study the dynamics of tube-support interaction, an apparatus was designed which 

consists of a straight clamped-clamped tube, (with specifications presented in Table 3.1), 

interacting with a flat support. A schematic sketch of the experimental rig is shown in Figure 3-1. 

            

Figure 3-1 Tube-support experimental rig. 
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The tube is glued to two links at its lower and upper ends. The links are fastened to two 

steel blocks in the upper and lower parts of a large I-beam mounting post, as a support for the 

tube. The links have narrow neck regions to approximately produce pinned-pinned boundary 

conditions. 

Table 3.1 Experimental test parameters. 

Description Variable Unit Value 

Density         8190 

Inner diameter      0.0139 

Outer diameter       0.0159 

Tube length   m 2.5 

Young‟s Modulus       200 

Poisson ratio   - 0.29 

Damping ratio     0.12-0.2 

Natural frequency      8.75 

 

During the tube-support interaction, three external forces act on the tube: external 

excitation, impact and friction forces. Imparting an excitation force on the tube is a challenging 

process due to the need to avoid excessive vibration and noise resulting from the exciter contact 

with the tube. To achieve this, an electromagnetic shaker is used as an excitation source. As 

shown in Figure 3-2, the shaker is positioned at 1/8 of the tube length from the tube center in the 

direction normal to the support. The shaker is in turn installed on the I-beam mounting post using 

a rotating fixture. This fixture enables rotation of the shaker, along the tube longitude axis. The 

rotating mechanism is then used to adjust the tube-support inclination angle. In addition, the flat 

support is positioned at the tube mid-span while it is installed on a positioning system. This 

system can precisely produce various gap sizes between the tube and its flat support. 
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Figure 3-2 Experimental rig including tube, support, fixture and electromagnetic exciter. 

To evaluate an incorporated impact model in a numerical simulation, it is important to 
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Figure 3-3 Experimental rig-measuring devices: force transducers and laser displacement sensors. 
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flat bar support to measure the impact forces. Figure 3-3 shows a close-up photo of the test region 

with the tube, support, force transducers and laser displacement sensors indicated. 

3.2.2 Experimental procedure 

  The experimental test is conducted in four steps: the first is to accurately measure the 

tube structural damping coefficient and natural frequencies. To achieve this goal, an excitation 

force is employed on the tube using the electromagnetic shaker and then the shaker power is cut 

after a period of 30 seconds. The time domain response after the power-cut is used to measure the 

structural damping coefficient using the curve fitting method. In addition, the damping 

coefficient is measured for different mid-span displacements between 0.25 mm to 2.5 mm. This 

enables one to study the effect of tension in the tube structure and various nonlinearities, 

including the tube clamped-clamped condition and inhomogeneity in the tube material. The 

second step is to measure the tube mid-span displacements for different forcing amplitudes 

without interaction with the flat bar support. A sinusoidal excitation force is employed using a 

forcing frequency of 10.5Hz, which is approximately 10% higher than the tube first natural 

frequency and excitation force amplitude is chosen between 0.1 N-0.55 N. This step is valuable 

to validate a numerical code without considering the effect of interaction models. The third step 

is to excite the tube in the presence of the support to study its impact behaviour. To achieve this 

goal, a sinusoidal excitation force is imparted on the tube in the direction normal to the support 

using five different gap sizes of 0, 0.25, 0.5, 0.75 and 1 mm. The comparisons, for different gap 

sizes, make it possible to accurately examine the impact model parameters and damping 

coefficients. As shown in Table 3.2, four different excitation amplitudes, with the forcing 

frequency of 10.5 Hz, are employed for each gap size. The mid-span displacements and impact 

forces are then measured for each experimental test. 

Table 3.2 Excitation force amplitude for each gap size. 

Gap (mm) Force Level-1 (N) Force Level-2 (N) Force Level-3 (N) Force Level-4 (N) 

0  0.0181 0.0410 0.1088 0.2617 

0.25  0.1454 0.2616 0.3456 0.4510 

0.5  0.2625 0.3462 0.4567 0.5747 

0.75  0.3458 0.4559 0.5735 0.7062 

1  0.3446 0.4541 0.5714 0.7060 
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The fourth step in the experimental test is to study energy dissipation during the tube-

support interaction. The tube mid-span is therefore initially displaced to a fixed position and 

released resulting in imparting against the flat support, in the direction normal to the support. The 

different initial displacements for each gap size are listed in Table 3.3. The study of the tube mid-

span displacement in a dissipative motion, without an instantaneous external excitation, is 

valuable to investigate the inelastic tube-support impact model. 

Table 3.3 Initial displacements of the tube mid-span. 

Gap(mm) Disp-1 (mm) Disp-2 (mm) Disp-3 (mm) Disp-4 (mm) 

0 3.9 5.7 8.3 10.2 

0.25  3.7 5.6 8.2 9.5 

0.5  3.6 5.9 7.6 9.4 

0.75  3.3 5.5 7.8 9.9 

1  3.9 5.6 7.8 10.1 

3.2.3  Measured variable 

  The tube-support interaction can be divided into elastic and inelastic interactions. In the 

elastic interaction, various elastic phenomena may be involved, including the tube local 

deformation, tube ovalization and support deflection. The most dominant impact force during the 

interaction is the elastic force. Therefore, the interaction force comparison between the 

experimental tests and numerical simulations is used to estimate the elastic impact model 

parameters. As mentioned in Section 3.2.2, the experimental results in the third step are used to 

make the comparisons. Using different combinations of gap sizes and forcing amplitudes enables 

one to examine a numerical model in greater detail. It is important to study the tube mid-span 

displacements and impact force differences between the experimental tests and numerical 

simulations. However, the study of the rate of change in the differences may also provide a 

number of insights into the investigation of elastic and inelastic impact dynamics.  

  On the other hand, tube-support inelastic interaction consists of different inelastic 

phenomena, including hysteretic energy dissipation, ovalization dissipation, wave propagation 

and higher modes structural dissipation. As mentioned in Section 3.2.2, the experimental tests, 

using tube initial displacement as an external excitation, are performed to study the dissipative 
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behaviour of the tube during the interaction. The mid-span displacements comparisons may 

therefore be valuable to study the inelastic dynamics. 

 Dynamic Computation of Tube-Support Interaction 3.3

 In Section 3.2, the complicated structure of the tube-support interaction in a real heat-

exchanger was simplified to a two-span tube. The simplification of the structure makes it possible 

to carefully study the impact dynamics. The first step of the study is to employ a proper dynamic 

computation method for tube-support modeling. In the present work, the Euler-Bernoulli beam 

equation and the modal superposition method are chosen to model the tube-support dynamics, as 

described by Antunes et al. (1990) and Rubiolo (2006). 

3.3.1  Euler-Bernoulli beam modeling  

  For the nonlinear dynamic analysis of tube-support interaction, the modal superposition 

approach is used to solve the Euler-Bernoulli equation of motion. The tube partial differential 

equations of motion are formulated as, 

2 4

2 4
( , ) ,z

z z z
A EI f z t

t t y
 

  
  

  
 

2 4

2 4
( , ) ,x

x x x
A EI f x t

t t y
 

  
  

  
 

where z and x are the normal and tangential directions to the support, respectively. ρ is the density 

of the tube material, A is the tube cross-sectional area, η is the structural damping coefficient and 

EI is the bending stiffness. In equations (3-1) and (3-2), the terms  fz(z,t) and  fx(x,t) are the total 

forces acting on the tube in the normal and tangential directions, respectively. The force terms 

may then be expressed as follows: 

( , ) ( ) ( ) ( ) ( ) ,z ez e i if z t F t y y F z y y      

( , ) ( ) ( ) ( , ) ( ) ,x ex e f if x t F t y y F x z y y      

where Fez and Fex are the projection of the external excitation force in the z and x directions, 

respectively. Fi and Ff  are the impact and friction forces, respectively. yi and ye are the axial 

positions of the external force and support along the tube span. The partial differential equations 

(3-1) 

(3-2) 

(3-3) 

(3-4) 
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of motion may then be simplified using the modal superposition approach. Thus, the 

displacements in the equations of motion may expressed as, 

1

( ) ( ) ,
N

n nz

n

z y q t



 

1

( ) ( ) ,
N

n nx

n

x y q t


  

where qnz and qnx are the modal responses in the z and x directions, respectively, and φn(y) is the 

n
th

 tube unconstrained mode of vibration. 

The equations of motion are discretized using the normalized mode shapes and 

considering the orthogonality proprieties of the mode shapes. The discretized modal equations are 

obtained by substituting equations (3-5) and (3-6) into equations (3-1) and (3-2) and following a 

standard Galerkin procedure the following modal equations are obtained. 

2( ) 2 ( ) ( ) ( , ),p

n nz n n nz n n nz zm q t m q t m q t f z t     

2( ) 2 ( ) ( ) ( , ),p

n nx n n nx n n nx xm q t m q t m q t f x t     

where the projected forces are given by  

 
0

( , ) ( ) ( ) ( ) ( ) ( ) ,

l

p

z n ez e i if z t y F t y y F z y y dy     

 
0

( , ) ( ) ( ) ( ) ( , ) ( ) ,

l

p

x n ex e f if x t y F t y y F x z y y dy       

Equations (3-7)-(3-10) are numerically solved using the fourth-order Runge-Kutta 

algorithm in Simulink. 

 Tube-Support Impact Model  3.4

 In the previous section, the basic dynamic model of the tube-support interaction was 

outlined. The model is based on Euler-Bernoulli beam theory and modal superposition technique. 

However, the incorporated interaction forces play an important role to determine a precise 

interaction response. The interaction forces are decomposed into impact and friction forces. As 

noted in Section 3.2.2, the effect of the friction force in the experimental tests was minimized by 

(3-5) 

(3-6) 

(3-8) 

(3-7) 

(3-10) 

(3-9) 
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considering the interaction in a normal direction to the support. The normal impact force can 

therefore be assumed as the effective interaction force, in the model. The normal impact force 

formulation consists of two models: elastic impact and inelastic impact models. In this section, 

these models are elaborated in greater detail.  

3.4.1  Contact detection algorithm 

 The first step to estimate the interaction force is to define the condition of incipient contact 

between the tube and support. This can be achieved using a penalty function as formulated below 

(Delaune et al., 2010), 

1

1

1

1

        ( ) ( ) 0
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0            ( ) ( ) 0
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where Δ1 is the tube-support clearance and Kequ is the equivalent normal contact stiffness. The 

above penalty equation may accurately define the contact moment, when a relatively small time-

step is used. 

3.4.2  Tube-support elastic interaction 

  Different phenomena may affect the elastic displacement during the tube-support 

interaction, including tube local deformation, ovalization and support deflection. Investigating 

such effects is important for a precise representation of the elastic impact force. The general 

normal elastic impact force, dependent upon the flatness of the contact interface, may be 

expressed as follows (Babistky, 1998): 

2 1

2  ,
m

m
zF cu




 

where 1 ≤ 
    

  
 ≤ 3/2 and uz is the normal displacement. The flatter the contact surfaces the 

closer to linearity is the above equation. Using the parameter m in the tube-support contact force 

function allows one to consider the contact geometry effect during the tube-support interaction. 

(3-11) 

(3-12) 
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Choosing the factor m equal to 1 leads to an interaction force similar to the Hertz contact force. 

The interaction force then takes the following form (Johnson, 1985): 

3/2

1 ,zF c u
 

  The stiffness coefficient, c1, may be determined based upon contact geometry and 

material proprieties. In the case of the tube-support local deformation, the geometry can be 

simplified by considering two cylinders in contact. The flat support is then modeled by choosing 

the radius of one of the cylinders equal to infinity. On the other hand, the axial curvature of the 

tube during interaction may vary as a result of the tube-support gap size. Thus, an elliptical 

contact region may be formed. Considering a point, line, circular or elliptical contact area, 

different values may be obtained for the Hertzian contact stiffness. However, in all cases, the 

value is relatively large compared to the tube ovalization stiffness.  

  The tube ovalization stiffness is the most effective stiffness compared to the tube local 

deformation and the support deflection stiffness during the tube-support interaction. The effect 

was proven by Axisa et al. (1988) work using the Morley‟s thin circular cylinder study (Morley, 

1960). In the study, the shell equations were solved for a cylinder. The loading consisted of two 

equal point forces, acting at the cylinder mid-span and directed towards each other. The study 

introduced a dimensionless parameter ψ, which represents the ovalization force-displacement 

relationship. This parameter was formulated as (Morley, 1960), 

2

2  ,z

Et t
w

FD D


 
  

 
 

where wz is the ovalization displacement, F is the ovalization force, t is the tube thickness and D 

is the tube diameter.  

The parameter ψ is mostly dependent upon the ratio of tube length to tube diameter. In 

this study, the ratio,    ⁄ , is greater than 40 which suggests a constant value of 0.737 for the 

parameter ψ, using the Flugge-Morley equation (Morley, 1960). Another deflection during tube-

support interaction is attributed to the support deformation. The support used in this work is a 

fixed-fixed stainless steel flat bar. Assuming the occurrence of tube-support interaction in the 

middle of support, the support stiffness may then be formulated as,
   

(3-13) 

(3-14) 



69 

 

3

192
 ,s s

s

s

E I
k

L
  

where Ls is the support length and EsIs the support bending stiffness.  

3.4.3  Tube-Support inelastic interaction 

  There are some limitations to using the Hertz and ovalization impact theories since these 

theories are developed for elastic bodies and frictionless contact interfaces. However, it is 

important to consider energy dissipation during impact. This can be achieved using the Hunt and 

Crossley model (Hunt and Crossley, 1975). This model is formulated as, 

3
,

2

p q

dF kz z

 

where Fd is the impact damping force, k is the contact stiffness and β is a ratio dependent upon 

energy dissipation during impact. p and q are empirical parameters depend upon the impact 

velocity, material and contact interfaces. 

3.4.4 Tube-support spring-damper impact model  

  The mathematical tube-support impact model may be elaborated using a hybrid spring-

damper system. As shown in Figure 3-4, the first part of the impact model consists of tube 

structural stiffness and damping. The second part consists of two parallel dampers and three 

springs in series. The dampers are associated with tube restitution and energy dissipation in the 

support while the springs are associated with tube local deformation, support deflection and tube 

ovalization. 

                               

Figure 3-4 Tube-support impact model. 
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Tube structural stiffness is proportional to the tube elastic modulus and moment of inertia. 

However, the value may vary depending on the natural frequency of different modes of vibration.  

  Experimental Results and Numerical Simulation Comparisons 3.5

 As noted in Section 3.2.2, the experimental tests were conducted in four steps to precisely 

evaluate the normal impact model used in tube-support numerical simulation. In this section, the 

experimental tests are compared to numerical simulations. In Section 3.5.1, the structural 

damping measurements are presented. Section 3.5.2 evaluates the elastic impact model by 

comparing the tube-support experimental tests with the related numerical simulations based on a 

nonlinear impact model. Section 3.5.3 investigates impact damping models by comparing the 

tube-support free vibration experimental tests with the corresponding numerical simulations.  

3.5.1 Tube forced vibration comparison 

 As noted in Section 3.2.2, the first two steps of the experimental tests are designed to 

validate the numerical model and related code for the case of tube forced vibration, without 

support interaction. Accurate numerical simulation of tube-support interaction dynamics depends 

on correct modeling of the dependency of tube response on structural damping. Therefore, an 

accurate measurement of structural damping is important for a precise tube-support numerical 

simulation. 

 

Figure 3-5 Experimental measurement of the tube structural damping. 
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As shown in Figure 3-5, the damping measurement is strongly dependent on the 

amplitude of the tube mid-span displacement. The damping magnitude increases from 0.12% to 

0.18% as a result of an increase in the tube mid-span displacement from 0.2 mm to 2.5 mm.  

 

Figure 3-6 Tube mid-span displacement comparisons experiments and numerical simulations. 

As noted in Section 3.2.2, the experimental tests are conducted using sinusoidal excitation 

forces. To examine the ability of the numerical model to reproduce the tube dynamic response, 

the steady-state normal mid-span displacements are compared to the related experimental tests 

for various forcing amplitudes in Figure 3-6. The results indicate reasonable agreements between 

the experiments and numerical simulations with a 2 % to 8 % difference. The small error may be 

associated with the experimental measurement error, nonlinearities in the supports and 

inhomogeneity in the tube material. However, the comparisons confirm the accuracy of the modal 

parameters, used in the numerical simulations. 

3.5.2 Tube-support interaction with a sinusoidal excitation 

  The tube-support normal dynamic response is complex as a result of the nonlinearities 

involved in the impact process. As described in Section 3.4.2, the elastic impact force may be 

incorporated into the vibro-impact model using equation (3-12). In the equation, the empirical 

parameter m represents nonlinearities in tube-support force-displacement relationship. However, 
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assuming the contact interface as a perfectly flat surface may lead to the estimation of parameter 

m equal to infinity. This assumption will simplify the equation (3-12) to a linear form.  

 

 

 

Figure 3-7 Impact forces comparison between simulations and experiments 

(a) gap-0 mm (b) gap-0.25 mm (c) gap-0.5 mm. 
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Numerical simulations are conducted using the impact model parameters listed in Table 

3-4. The simulation results indicated that choosing a number of modes higher than 20 leads to 

stable convergence of the numerical simulation. This is consistent with the sufficient number of 

modes suggested by Antunes et al. (1990) and Hassan et al. (2002). However, in this study the 

number of modes is chosen equal to 40 for higher accuracy. 

Table 3.4 Simulation model parameters. 

β q k m N(modes) 

0.3 1 6.3e+6 infinity 40 

 

As shown in Figure 3-7, the comparisons between the average peak impact forces in the 

experimental tests and numerical simulations show significant differences, when the parameter m 

is infinity. The error in the numerical simulations depends on gap size and excitation force. For 0 

mm, 0.25 mm and 0.5 mm gap the simulations are off, compared to experiments, in the ranges of 

0.5-2.5, 2.5-3.5 and 3.5-4, respectively. 

The numerical simulation results indicate that the impact damping force obtained using 

the Hunt and Crossley model is associated with less than 5 percent of the total impact force. This 

indicates that the parameters β and q have a minor effect on the tube response. The effects of 

these two parameters on the tube response will be investigated in Section 3.5.3.1 in greater detail. 

In addition, a decrease in the contact stiffness by a factor of 0.1 leads to a 25% decrease in the 

average impact force. This may, however, not account for the significant differences between the 

experimental tests and numerical simulations. 

  The above differences may likely be attributed to nonlinearities in each contact stiffness 

coefficient. Since all the springs, in the current impact model, are assumed to be in a series, the 

smallest stiffness coefficient becomes the most effective one. This emphasizes the importance of 

the ovalization stiffness in the impact model. The ovalization stiffness, using the Morley‟s thin 

cylindrical shell (Morley, 1960), is derived based upon certain assumptions. The assumptions 

include a geometric limitation for the non-dimensional structural parameter χ. As this parameter 

is given by,  

4 2 2 24 12(1 )  ,R t  
 

(3-17) 



74 

 

where v is the Poisson ratio, R is the tube radius and t is the tube thickness. For valid of use 

Morley‟s shell equation, the dimensionless structural parameter χ  must then satisfy the inequality 

as follows (Morley, 1960): 

5 50 ,   

 In this study, the parameter χ is estimated to be 3.69 which is out of range but not far 

below the lower limit of the validity range. Another assumption in Morley‟s model (Morley, 

1960) is the type of  loading which was considered as a point loading. However, in reality the 

loading area in the tube-support interaction is an elliptical region due to the tube diameter and 

longitudinal curvature during the interaction. Although the tube-support conditions may violate 

certain assumptions in Morley‟s model, the general phenomenon of ovalization during tube-

support interaction is still admissible. 

  Therefore, to have a precise impact model, it is important to consider the nonlinearities 

in the force-displacement relationship by estimating a proper value for the empirical parameter m 

in equation (3-12). The optimal parameter is estimated by minimizing the impact force difference 

between the experimental tests and numerical simulations. The results indicate an optimal value 

of 1.67 for the parameter m. For comparison with the experimental tests, the tube-support model 

parameters are chosen according to Table 3.5, where analysis is done using m equal to infinity 

and 1.67. 

Table 3.5 Tube-support simulation parameters 

fexc Frms gap m 

10.5 Hz 0.4559 N 0.75 mm Infinity-1.67 

(3-18) 
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Figure 3-8 Impact force time history for the experimental test and numerical simulation using 

(a) m=infinity (b) m=1.67. 

Seen in Figure 3-8(a), the numerical simulation, using m equal to infinity, overestimates 

the average peak impact force in the experimental test by a factor of 2.13 which indicates a 

significant difference. Equally or more importantly the maximum peak force is overestimated by 

approximately a factor of 2. A simulation conducted using the optimal parameter m equal to 1.67 

is shown in Figure 3-8(b). The comparison shows a significant improvement in the impact force 
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difference which decreases to a 5% difference in the average peak impact force. The difference in 

maximum peak force also decreases to about 10%. 

 

Figure 3-9 Close-up of a tube-support multiple impact during one interaction 

Figure 3-9 shows a close up of the tube-support multiple impacts during an interaction 

using m=1.67. The result indicates a good agreement not only in the amplitude of the impact 

forces, but also in the number of multiple impacts and the overall interaction duration. Another 

comparison between the experimental tests and numerical simulations is made for the tube mid-

span displacement, using the model parameters listed in Table 3.6.  

Table 3.6 Tube-support experimental parameters. 

fexc Frms gap m 

10.5 Hz 0.3456 N 0.25 mm 1.67 

 

As shown in Figure 3-10, the mid-span peak to peak displacement in the numerical 

simulation using m=1.67, has a 20% difference with the experimental test. The difference may be 

explained by the different mechanisms of energy dissipation during the tube-support interaction. 

The elliptical motion of the tube contributes to the difference. Elliptical motion may cause energy 

dissipation due to friction by introducing a tangential velocity component. The elliptical motion 

can be explained by the non-homogeneity of the tube material, small misalignment of the forcing 

direction relative to the direction normal to the support and nonlinearities in the tube supports. In 

80.14 80.16 80.18 80.2 80.22 80.24

0

5

10

15

20

25

Time (sec)

Im
p

a
c
t-

F
o

rc
e
 (

N
)

 

 

Experimental Test

Numerical Simulation



77 

 

spite of the existing errors in the experimental test, the difference between the numerical 

simulation and experimental test is still within a reasonable range. 

 

Figure 3-10 Experimental test and numerical simulation of the tube mid-span motion in the 

horizontal plane normal to the support. 

As was shown in Figure 3-7(a), the comparisons indicate a significant difference between 

the experiments and simulations for m→∞. These results are reproduced in Figure 3-11 using 

m=1.67. The new comparisons clearly demonstrate the advantage of using the optimal parameter 

m. 

 

Figure 3-11 Impact force comparisons experiments and simulations for m=∞ and m=1.67. 
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To verify the precision of the impact model in detail, it is essential to compare the 

numerical simulations with the experimental tests for different boundary conditions and inputs. 

As shown in Figure 3-7, the comparisons between the experimental tests and numerical 

simulations, using the parameter m equal to infinity, showed significant differences. The trends 

indicated that nonlinearities underlay the differences. The numerical model errors can be 

expected to increase with an increase in gap size and excitation force magnitude. Therefore, the 

gap size and excitation force were chosen as variable parameters for more comparisons. As noted 

in Section 3.2.2, the experimental tests were done for five different gap sizes of 0, 0.25, 0.5, 0.75, 

1.0 mm. For each gap size, the tube was subjected to four different excitation forces, as shown in 

Table 3.2.   

 

Figure 3-12 Mid-span displacements and impact forces for the experimental tests and numerical 

simulations. 

Choosing m =1.67, the results of the tube mid-span displacements versus the tube-support 

impact forces are presented in Figure 3-12. The results indicate a good agreement between the 

experimental tests and numerical simulations. For each gap sizes, an increase in the excitation 

force may lead to a bigger difference for the impact forces and mid-span displacements. 
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However, the mid-span displacements have bigger percentage differences compared to the 

corresponding impact forces. 

The differences in the impact forces and mid-span displacements are shown in Figure 3-

13(a) and Figure 3-13(b), respectively. The force levels, which are presented in Figure 3-13, were 

obtained based on the parameters in Table 3.2. 

  As seen in Figure 3-13(a), the smallest difference in the impact forces is observed for the 

gap size of 0.5 mm and the second excitation force level. However, three zones of differences 

may be demarcated in Figure 3-13(a). The first zone is associated with the gap sizes bigger than 

0.5 mm, the first and second levels of excitation forces. The zone corresponds to 15-20% 

difference in the average impact force. This difference may be explained by the tube elliptical 

path. The bigger gap size may cause a bigger elliptical motion for the tube in the experimental 

test. This motion may consequently cause more dissipation of energy. The second zone of the 

difference in Figure 3-13(a) is associated with gap sizes smaller than 0.5 mm, the third and fourth 

levels of the excitation forces. The zone corresponds to almost 20% difference in the average 

impact force. This difference is likely due to an underestimation of the impact energy dissipation 

in the numerical simulations. In addition, the experimental tests show that the tube forced 

vibration without support may also cause a narrow elliptical motion for the tube. This motion 

may be attributed to the nonlinearities associated with the tube supports. The experimental tests 

show that the elliptical motion of the tube may be narrowed with an increase in the excitation 

force magnitude. This may explain the third zone which corresponds to the smallest difference in 

the average impact force. This zone is found along the diagonal of Figure 3-13(a), within the 

region of increasing gap and increasing excitation force. The combined increases seem to 

decrease the offset elliptical motion of the tube and lead it to move in a narrower elliptical path 

which consequently improves the agreement with the numerical results. 
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Figure 3-13 The differences between the experimental measurements and numerical simulations: 

(a) impact forces (b) mid-span displacements. 

  Figure 3-13(b) presents the mid-span displacement difference between the experimental 

measurements and numerical simulations as a function of excitation force level and gap size. The 

lowest difference is associated with two regions. The first region corresponds to 0.75 mm gap 
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nearly 40 percent for the highest excitation force. This large error in the mid-span displacement 

cannot be explained only by the elliptical motion of the tube and dissipation of energy due to 

friction. The difference may also be attributed to the type of damping model incorporated in the 

numerical simulation. Figure 3-14 compares the change in the impact force and mid-span 

displacement errors with excitation force level. This may provide insight into the weaknesses of 

the impact damping model.  

 

 

Figure 3-14 Impact force and mid-span displacement between the experimental measurements 

and numerical simulations  (a) 0.25 mm gap size (b) 0.75 mm gap size. 
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Figure 3-14(a) and Figure 3-14(b) compare the differences in the impact force and mid-

span displacement for 0.25 mm and 0.75 mm gap sizes, respectively. The two gap sizes are 

associated with the minimum difference for the mid-span displacement as shown in Figure 3-

13(b).  

  As shown in Figure 3-14(a), the simulations underestimate the impact forces and 

overestimate the mid-span displacement for the low excitation forces. However, the impact force 

difference trend reverses by overestimating the impact force for the force levels 3 and 4. On the 

other hand, the mid-span displacement error gradually increases with increasing excitation force. 

The trends may be explained by the weak impact damping, incorporated in the numerical 

simulation. 

 For the 0.75 mm gap, Figure 3-14(b), the differences in the impact force and mid-span 

displacement decrease and subsequently increase with the same trend. This indicates the 

propagation of the impact force difference in the mid-span displacement difference. However, the 

change in the impact force difference, with the excitation force level, is smaller than that in the 

mid-span displacement, particularly after the second level of excitation force. This may also be 

explained by the weaknesses of the damping models, including the nonlinearities in the Hunt and 

Crossley model and the structural damping. In addition, the damping dissipation associated with 

the mounted force transducer behind the support may partially affect the differences. This may be 

evaluated by an increase in the gap size resulting in a smaller impact velocity. The decrease in 

impact velocity may lead to a lower energy dissipation associated with the Hunt and Crossley 

model and the force transducers, as discussed in the next section. 

3.5.3 Tube-support interaction with initial displacements 

  As noted in Section 3.5.2, the tube mid-span displacement difference between the 

experimental tests and numerical simulations may be attributed to underestimation of the 

damping coefficients in the model. Impact damping, structural damping and friction damping 

dissipations are three energy dissipation mechanisms involved during the tube-support 

interaction. To minimize the dissipation as a result of friction, the experimental rig is designed to 

maintain interactions in the normal direction to the support. In this section, the effect of impact 

damping by the Hunt and Crossley model (Hunt and Crossley, 1975) and the structural damping 
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on the tube response are investigated.  As noted in Section 3.2.2, to precisely study the damping 

effect a series of experimental tests are conducted. The experimental tests consist of exciting the 

tube with initial displacements in the presence of the support. Gap sizes of 0 mm, 0.25 mm, 0.5 

mm, 0.75 mm and 1.0 mm are used to investigate the dynamics of interactions. The tube is 

subjected to four initial displacements for each gap sizes, as listed in Table 3.3. The advantage of 

the free vibration experimental test is it simplifies the problem by not subjecting the tube to a 

persistent excitation force. The damping effects may therefore be studied in greater detail. 

3.5.3.1 Impact damping 

As discussed in Section 3.4.2, the impact damping force is incorporated in the numerical 

simulation, using equation (3-16). The two parameters β and q determine the impact damping 

coefficients in the equation. It is important to study the effect of the coefficients on the tube-

support response. Therefore, the tube mid-span displacements between the experimental test and 

numerical simulation are compared, using the simulation parameters listed in Table 3.7. 

Table 3.7 Simulation parameters. 

dexc gap β q N (modes) 

8.2 mm 0.25 mm 0.3 1 40 

 

  

Figure 3-15 Tube-support response comparison between simulation and experiment, beginning 

with the first tube-support interaction. 
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As shown in Figure 3-15, the result indicates a significant difference of up to 55 percent 

in the average mid-span displacement between the experimental test and numerical simulation. 

The overestimation of the vibration amplitude by the numerical simulation suggests possible 

weaknesses in the incorporated damping models. 

According to equation (3-16), β is an empirical coefficient associated with energy 

dissipation during impact. This coefficient is chosen in a physical range of 0.08-0.32 sec/m, to 

study the effect of the parameter β on the mid-span amplitude. As shown in Figure 3-16, the 

result indicates less than 5% difference in the tube mid-span amplitude, when β is decreased to 

0.08. 

  

Figure 3-16 Tube-support response comparison between simulation and experiment with β=0.3 

and β=0.08. 

Computations were also done to investigate the effect of the parameter q on tube 

amplitude. As shown in Figure 3-17, the result indicates little change in the amplitude when the 
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However, the difference in the tube amplitude between the simulation and experiment suggests 

the importance of other mechanisms of energy dissipation rather than impact damping.  

  

Figure 3-17 Tube-support response comparison between simulation and experiment with 

parameter q=0.5 and 1.5. 

3.5.3.2 Structural damping 
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The tube-support interaction occurs in a situation where the tube bending may impose 

both tensile and compressive stresses along the tube material depending on the tube-support gap. 

These pre-stress conditions may accompany with other stresses, associated with the impact, 

including ovalization, wave propagation and higher modes excitation. The mentioned pre-stress 

conditions may change the tube structural damping.  Lesieutre (2009) studied the effect of axial 

loading on structural damping. The study indicated that the structural damping increases as a 

result of an axial compressive load and decreases as a result of axial tensile load. However, the 

effects of the above mentioned pre-stress conditions on the tube structural damping have not so 

far been studied. On the other hand, different mechanisms during the tube-support interaction, 

including ovalization, wave propagation and higher modes excitation may also directly affect the 

tube structural damping. To account for the effects of these mechanisms and the above mentioned 

pre-stress conditions on the tube structural damping, the structural damping model is modified by 

employing the parameter ε as follows:   
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ξs is the measured structural damping as shown in Figure 3-5 and ε is a coefficient representing 

an increase in structural damping during tube-support contact phase. 

(3-20) 
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Figure 3-18 Experimental and numerical simulation of tube-support interaction for ε=1 and ε=20. 

The parameter ε is adjusted to reproduce the experimental result with minimum difference 

possible, as shown in Figure 3-18. The simulation result indicates better agreement with the 

experimental result choosing the parameter ε equal to 20.  

 

Figure 3-19 Experiment and simulation differences versus parameter ε for the initial 

displacements d1-d4 and gap size 0 mm. 
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As mentioned Section 3.2.2, the tube is subjected to four different initial displacements 

for each gap size, as defined in Table 3.3. Figure 3-19 shows the differences in the average peak 

amplitudes between the experimental tests and numerical simulations for the gap size of 0 mm. 

The general trends of the differences, for the four initial displacements, decrease with increasing 

ε until they reach optimal values. For 0 mm gap size, the range of optimal parameter ε is between 

2 and 10. Having bigger magnitudes for the parameter ε, associated with the displacements d1 

and d2, compared to the magnitudes, associated with the displacements d3 and d4, can be 

explained by nonlinearities which may cause a bigger tube-support impact inclination angle. This 

may then cause more energy dissipation as a result of friction hence the need for a larger value of 

ε to account for the higher dissipation. 

 

Figure 3-20 Experiment and simulation differences versus parameter ε for initial displacements 

d1-d4 and gap size 0.75 mm.

 
Figure 3-20 shows that the optimal parameter ε is in the range 25-40, for a gap size of 

0.75 mm. This indicates a higher value of the parameter ε for 0.75 mm gap size compared 0 mm. 
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Figure 3-21 Ranges of the optimum parameter ε for different gap sizes. 

Figure 3-21 shows the ranges of the optimal parameter ε for different gap sizes. The range 

of the parameter for each gap size is associated with four initial displacements, as noted in 

Section 3.2.2. The results indicate an increase in the parameter ε value as the tube-support gap 

size increases.  

  Conclusions 3.6

Impact modeling of tube-support interaction is an important step due to its role in 

quantifying tube fretting-wear. This study was aimed at carefully investigating the tube-support 

impact models, identifying the sources of differences with experimental tests and upgrading the 

models to better represent the dynamics of tube-support interaction. These goals were achieved 

by conducting a series of experimental tests and evaluating elastic and inelastic impact models 

for tube-support interaction.   

 In this work, the complicated structure of tube-support interaction in a heat exchanger was 

simplified to a two-span tube with a flat bar supported in the middle of the tube. The 

experimental rig allows one to carefully evaluate the normal impact model in a numerical 

simulation. The tube structural damping measurements indicated a nonlinear behaviour 

depending on tube displacement. The damping increased from 0.12% to 0.2% for a mid-span 

displacement in the range of 0.2-2.5 mm. In addition, the effects of elastic and inelastic impact 
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forces on the tube response were investigated, using tube-support interaction experimental data 

with sinusoidal excitation forces. The results confirm the minor effect of impact damping, using 

the Hunt and Crossley model, on total impact force. On the other hand, two elastic impact force 

parameters m and k were also investigated. The parameter k was estimated, using ovalization 

stiffness based on the Morley shell equation. The results indicated that a decrease in the 

parameter k by a factor of 0.1 leads to a decrease of less than 25 percent in the average impact 

force. In an extension of the above investigations, this study provided a unique insight into the 

nonlinear elastic force-displacement relation, associated with the parameter m. The results 

indicated that using the optimal value of 1.67 for the parameter m, significantly reduced the 

impact force differences between the experimental tests and numerical simulations. The 

comparisons for different gap sizes and excitation amplitudes indicated up to 20% difference in 

the impact forces and 40% difference in the mid-span displacements, using the nonlinear force-

displacement relationship.  

A series of experimental tests were conducted considering the tube-support interaction with 

a tube initial displacement as an external excitation. This enabled a detailed investigation of the 

tube response in a dissipative motion without continuous external excitation. The results 

confirmed the small effect of the Hunt and Crossley impact damping force on the tube 

displacement. For improved accuracy, the tube-support structural damping model was modified 

by introducing the coefficient ε, to increase the structural damping in the tube-support contact 

duration. This was explained by a variation in structural damping due to an increase in the tube 

stress condition. The result indicated a significant improvement in compatibility of the numerical 

simulations with the experimental tests using the optimal coefficient ε. Additionally, the optimal 

value of the coefficient was also estimated for different gap sizes and tube initial displacements. 

The results indicated an increasing trend for the coefficient ε, with increasing gap size.  
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CHAPTER 4  

GENERAL DISCUSSION  

 

This chapter will summarize the main objectives of the thesis and evaluate them with brief 

discussions. The chapter is divided into four sections. The first Section 4.1 briefly outlines and 

reviews the objectives. Section 4.2 lists the main conclusions with further discussions. In Section 

4.3 the main contributions made in this study are presented, and finally Section 4.4 contains 

recommendations for future research in the area. 

 Review of Objectives 4.1

  The objectives of this Thesis were listed in Section 1.3, so in conclusion it may be 

beneficial to evaluate the progress made through this research and highlight its achievements. As 

noted in this thesis introduction, this research was directed towards developing and evaluating 

friction and impact models to improve the estimation of tube-support fretting-wear.  

The first objective was to design and develop a friction model to represent the real bristle 

behavior from zero velocity to the gross-slip state. To achieve this goal, the tangential stress 

distribution within the contact region was studied. Based upon this distribution, a hybrid spring-

damper friction model was designed to demarcate the elastic, plastic and partial-slipping regions 

during the friction process.  

The second objective of the research was to study the effect of the break-away force and 

Stribeck phenomenon on the stick-slip regime. The study emphasized the importance of 

considering the above effects in a friction model. This objective was materialized by comparing 

the stick-slip regimes in the velocity-limited and LuGre friction models. 

The third objective was to conduct a series of experiments designed to measure the impact 

forces and mid-span displacements. Therefore, the complicated structure of the tube-support 

interaction in a heat exchanger was simplified to a two-span tube with a flat support at mid-span. 

Tests were conducted for different gap sizes and excitation amplitudes. The results were then 

used to validate the tube-support interaction dynamics model. 
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The fourth objective was to develop a numerical code to simulate the tube-support 

dynamic interaction. This code was developed using the Euler-Bernoulli beam theory and the 

modal superposition technique. The numerical computations were performed based upon the 

forth-order Runge-Kutta algorithm in Simulink. 

The fifth objective was directed towards the analysis of the nonlinearity in the force-

displacement relation, during tube-support interaction. An investigation was conducted 

comparing impact forces in experimental tests to numerical simulations. To carefully study the 

dynamics of this interaction, different gap sizes and excitation amplitudes were considered.  

The sixth objective was to study the source of energy dissipation during the tube-support 

interaction. To achieve this goal, a series of the tube-support experiments were conducted, where 

the tube initial displacement was adopted as the excitation force. Finally, the effects of the Hunt 

and Crossley damping and the structural damping on the mid-span displacement were also 

investigated. 

 

 Further Discussion  4.2

Detailed discussions on the friction and impact models were presented in Chapters 2 and 3. 

In this Section, overall discussions and main conclusions of the research are presented. 

4.2.1 Friction model discussion 

The friction model discussion is geared to look at the hybrid spring-damper friction 

model, which was developed to accurately estimate the slipping distance. To analyze the various 

developments, the stick-slip regime of a simple mass-spring system was investigated by 

implementing different forcing functions. Two different friction models including the velocity 

limited-friction model and LuGre friction model were incorporated into the system. Applying a 

constant pulling velocity as the external excitation, a slipping time difference of up to 5 percent 

was reported between the two friction models. The difference was mainly attributed to the 

conceptual design of the friction models. In the LuGre model, the varying break-away force and 

the Stribeck effect played an important role to define the stick-slip regime. This was 

demonstrated by an increase in the magnitude of the constant pulling velocity in the range of 0.1-
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0.3 m/s, which led to a decrease in the break-away force in the range of 1.26-1.39N. Additionally, 

the ability of the velocity-limited and LuGre friction models to accurately detect the stick-slip 

region was examined by implementing a chirp function, which is a frequency varying function. 

For the chirp excitation force with the frequency range of 1-5 Hz, the slipping time difference of 

1-2 percent was found. However, an increase in the target frequency to 1-10 Hz led to a 

difference of 10 percent. This increase in the difference was then explained based upon the 

inability of the velocity-limited friction model to adjust the magnitude of the limiting velocity 

based upon the change in the break-away force.  

  Further detailed analysis of the LuGre friction equations inspired the idea to develop an 

equivalent spring-damper model. The equivalent model attributed physical meaning to the 

mathematical functions. This is valuable because it associates the physical parameters such as the 

Stribeck damping, bristle stiffness and bristle damping to the friction model parameters. 

However, the reorganization of the mathematical equation to a spring-damper model leads to a 5-

10 percent difference in the slipping-time between the two models. Despite this difference 

developing a physical hybrid model, which may represent the real behavior of the bristle in the 

contact region, is clearly beneficial. In the development, the comprehensive study of the 

tangential stress distribution within the contact region was essential. As mentioned in the state of 

the art review, Cattaneo (1938) and Mindlin (1949) associated a tangential stress distribution to 

the real bristle behavior within the contact region. The stress distribution was established based 

upon the different regions of elastic and partial slipping. As an extension, Mindlin and 

Deresiewicz (1953) determined the energy dissipation associated to the partial-slipping region. 

Furthermore, Odfalk and Vingsbo (1992) upgraded the tangential stress distribution by 

considering the plastic deformation and yielding effect within the contact region. As shown in 

Figure 4-1, the contact region was demarcated into the three main regions of elastic, plastic and 

partial-slipping based upon the above tangential stress distributions. This led to associating a 

spring or damper to each region based upon the elastic or inelastic behaviors.  
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Figure 4-1 Displacement field in the contact area and hybrid spring-damper model. 

As a result, the conceptual design of the phenomena led to the development of the hybrid 

spring-damper friction model shown in Figure 4-2.                     

                                                            

Figure 4-2 New hybrid spring-damper friction model. 

The research also examined the ability of the hybrid model to reproduce experimental 

tests. The examination presented several challenges due to the estimation of the model 

parameters. The parameters were therefore divided into two main groups, the first group 

including the parameters associated with the pre-sliding displacement and the second the general 

gross-slip phase parameters. An inverse numerical method was then adopted to estimate the 

model parameters. The displacement-time history was compared among the Ozaki and 

Hashiguchi model (Ozaki and Hashiguchi, 2010), the experimental tests conducted by 

Baumberger et al. (Baumberger et al., 1994) and the hybrid spring-damper model. The 
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comparisons confirmed a better reproduction of the experimental tests, both qualitatively and 

quantitatively, by using the hybrid spring-damper model rather than the Ozaki and Hashiguchi 

model.  

   

Figure 4-3 K-V dynamic phase diagram for the stick-slip stability for the Baumberger 

experimental test (Baumberger et al., 1994) , Lim and Chen model (Lim and Chen, 1998) and 

Hybrid spring-damper model. 

Furthermore, the stability dynamic phase diagram was considered for detailed 

comparisons between the models. As shown in Figure 4-3, the Baumberger experimental test 

(Baumberger et al., 1994) was compared with the Lim and Chen theoretical model (Lim and 

Chen, 1998) and the hybrid spring-damper friction model. As reported in the Lim and Chen 

study, their model has a weakness when reproducing the correct slope of the stability diagram. 

The results indicated that the model mostly approximates the stability diagram with a constant 

line which does not represent the system behavior particularly for the creep dominated regions. 

On the other hand, the hybrid spring-damper friction model reproduced the experimental stability 

diagram with a qualitatively good agreement. However, the magnitude of the stability velocity 

has some differences with the experimental test. The differences may have different 

interpretations in the different regions of the stability diagram: in the region with the high spring 

stiffness, the difference may be mostly associated with the underestimation of the Stribeck 

velocity. A higher Stribeck velocity leads to a lower stability velocity.  On the other hand, in the 
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region with the lower spring stiffness, the differences may be mostly associated with the 

underestimation of the damping coefficients in the hybrid friction model.   

4.2.2 Impact model discussion 

  The impact model in the tube-support dynamic interaction was also studied. The first 

step in the research was to conduct a series of experiments to create a reference database for the 

numerical code validation. The structural damping measurements of the tube indicated 

nonlinearity in the damping magnitude which was dependent on the tube mid-span amplitude. 

For instance, structural damping coefficients of 0.12-0.18 were obtained for the mid-span 

displacements of 0.2-2.5 mm. The comparisons of the tube mid-span displacement without the 

supports present indicated 2 to 8 percent differences between the experimental tests and 

numerical simulations. The results provided credence to the accuracy of the magnitude of the 

modal parameters incorporated in the numerical simulation. To study the force-displacement 

relation during the tube-support interaction, experimental tests were conducted with different gap 

sizes and excitation amplitudes. As discussed in Section 3.5.2, a linear force-displacement 

assumption led to a significant difference between the impact force in the experimental tests and 

numerical simulations. The difference became larger with increasing gap size and excitation 

force. In addition, the study of the empirical parameter, m, in Equation 3-13, indicated the 

sensitivity of the response to the parameter magnitude. As a result, the optimal parameter, m, 

equal to 1.67 was deduced to minimize difference between the experimental measurements and 

numerical simulations. 
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Figure 4-4 Mid-span displacements and impact forces for the experimental tests and numerical 

simulations. 

As shown in Figure 4-4, the diagram of the mid-span displacement versus the impact 

force shows a reasonable agreement between the experimental tests and numerical simulations 

using the optimal parameter. The results indicated up to 20 percent difference for the impact 

forces and 40 percent difference for the mid-span displacements. As noted in Section 3.5.2,   the 

differences originated mainly from the error associated with the tube elliptical motion and 

weaknesses of the incorporated damping model. This led us to study the energy dissipation 

during the tube-support interaction in great detail. The study consisted of a series of experimental 

tests for the tube-support interaction adopting the tube initial displacements as the origin of the 

excitation force. The experimental tests allowed careful examination of the damping model. The 

experimental tests and numerical simulation comparisons indicated a significant difference in the 

mid-span displacements, which was mainly attributed to the damping model. This necessitated 

the investigation of the Hunt and Crossley damping model based upon equation (3-16). In the 

damping model, the two parameters, β and q, were varied in the physical range of 0.08-0.32 

sec/m and 0.5-1.5, respectively. The results indicated less than 5 percent difference in the tube 

mid-span displacement for these parameter variations. The energy dissipation was then 

interpreted based upon a higher structural damping coefficient during the interaction. Thus, the 

structural damping was modified by introducing the parameter, ε, according to Equation 3-20. To 
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have reasonable agreements between the experimental tests and numerical simulations, the 

magnitude of the parameter, ε, was then estimated as shown in Figure 4-5.  

 

Figure 4-5 Range of the optimum parameter ε for different gap sizes.  

 Main Contributions 4.3

This study was conceptualized to better estimate fretting-wear during the tube-support 

interaction. The two quantities on which the work-rate is mainly dependent are the normal force 

and sliding distance. The study therefore focused mainly on the improvement and upgrade of the 

related friction and impact models. 

In evaluating the relevance of this study, the primary contribution was the development of 

a new hybrid spring-damper friction model. The model was developed based upon the tangential 

stress distribution within the contact region. The model is able to demarcate the different regions 

of elastic, plastic and partial-slipping during the friction process. The Stribeck stick-slip transition 

effect was also incorporated in the model in the form of a nonlinear damper. The model makes it 

possible for the work-rate calculation to associate different wear coefficients to different regions 

in the friction process. The friction model was then compared against the Baumberger et al. 

experimental test (Baumberger et al., 1994). The comparison indicated a reasonable compatibility 

with the dynamic phase diagram of the stick-slip stability. Furthermore, the weakness that exists 

in the Lim and Chen friction model (Lim and Chen, 1998) to reproduce the slope of the dynamic 

phase diagram was significantly overcome by the new hybrid elasto-plastic friction model. 
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Secondly this research also contributes to improve and upgrade the impact model for 

tube-support interaction. The improvement was achieved by studying the tube-support elastic and 

inelastic impact models. The first stage of the study was to conduct experimental tests for the 

tube-support interaction as a reference to carefully evaluate the impact model. The experimental 

tests were subsequently advanced to different gap sizes and excitation amplitudes to study the 

dynamics of the interaction. The second stage was to study the elastic impact model and the 

nonlinearity involved in the force-displacement relation. These analyses were able to estimate an 

empirical parameter associated with the nonlinearity, which significantly reduces the difference 

between impact forces in the numerical simulations and experimental tests. The third stage was to 

analyze the inelastic impact model. This objective was accomplished by conducting a series of 

tube-support experimental tests using a tube initial displacement as an external excitation. The 

study demonstrated the minor effect of the Hunt and Crossley inelastic impact model on the tube 

response. Therefore, the difference in the mid-span displacement was interpreted as resulting 

from the energy “dissipation” in the forms of the higher mode excitation, wave propagation and 

ovalization. 

 Recommendations for Future Work 4.4

In pursuance of this or similar research in the future, the following recommendations are put 

forward:  

1) Performance of experimental tests to produce the stability phase diagram for the case of 

the tube and support. This will require an accurate measuring instrument to precisely 

measure the pre-sliding displacement. The results may be used to estimate the parameters 

of the new hybrid spring-damper friction model for the case of the tube-support 

interaction; 

2) A study of the effect of the variation of the normal force on the pre-sliding displacement; 

3) Experimental investigation of the tube-support oblique interaction may also be beneficial 

to precisely evaluate the energy dissipation due to friction force; 

4) Performance of tube-support experimental test in the presence of fluids would be useful 

for the evaluation of squeeze-film effects and viscous friction. 
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CONCLUSIONS 

 

This thesis mainly focused on accurate estimation of work-rate which is an important 

parameter to quantify fretting-wear during tube-support interaction. The work-rate is mostly 

dependent upon two factors, sliding distance and normal force. Therefore, this study consisted of 

two main parts including the development of a new hybrid spring-damper friction model and 

upgrading tube-support impact model.  

In the first part of this study, the weaknesses and advantages of the velocity-limited and 

the LuGre friction models, to detect stick-slip regions, were investigated. This achieved by 

examining the ability of these friction models to demarcate the stick-slip motion of a simple 

mass-spring system subjected to different types of pulling velocity. The results underlined the 

importance of the varying break-away force and the Stribeck effects on the estimation of the 

sliding distance. In addition, the incorporations of the Stribeck effect and the presliding damping 

in the LuGre mathematical formulations were studied. This led to the development of an 

extended LuGre model using an equivalent spring-damper system which attributes physical 

meanings to the mathematical functions. Additionally, a new hybrid elasto-plastic friction model 

was developed by considering different regions during the friction process from zero velocity to 

the gross-slip state. This was achieved by demarcating elastic, plastic and partial slipping 

displacements using the tangential stress distribution within the contact area. Finally, the new 

hybrid spring-damper friction model was examined using the Baumberger et al. experimental 

tests and the Lim and Chen friction model. The stability velocity phase diagram was chosen to 

make the comparisons between the experimental tests and numerical simulations. The results 

indicated better agreement between the experimental tests and numerical simulations using the 

new hybrid friction model compared to the Lim and Chen friction model. 

The second part of this study investigated the normal impact model during the tube-

support interaction. This was achieved by undertaking an experimental program for the tube-

support interaction as a reference database. The experimental tests were conducted for different 

combinations of the tube-support gap size and excitation force to carefully investigate the 

dynamics of the interaction.  This interaction was then simulated using the Euler-Bernoulli beam 
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theory and the modal superposition technique. The elastic and inelastic normal impact models 

were also investigated. The impact force comparisons between the experimental tests and 

numerical simulations underlined a nonlinear force-displacement relationship. This relationship 

was defined by the estimation of the empirical parameter m equal to 1.67. The numerical 

simulations and experimental test comparisons indicated a significant reduction, up to 20 percent, 

in the differences by adopting the nonlinear force-displacement relationship. In addition, the 

inelastic impact force was investigated. The results indicated the minor effect of the Hunt and 

Crossley impact model on the tube response. For improved accuracy, the structural impact model 

was modified by adopting the empirical parameter ε. The optimal value for the parameter ε was 

estimated for different gap sizes and excitations. The result indicated a good agreement between 

experimental results and numerical simulation using the optimal parameter ε. 
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ABSTRACT 
 

Flow induced excitation forces in heat exchangers cause 

tube-support interactions. The long-term interaction is an 

important phenomenon which may cause fretting-wear of the 

tubes. Experimental tests of the interaction show the occurrence 

of stick-slip intermittent behavior in the tube response. Many 

factors are involved to precisely predict the interaction behavior 

including flow excitation forces, impact and friction forces. 

One of the explanations behind the intermittent stick-slip 

behavior may be interpreted by refinements in the conceptual 

choice of friction model and coefficient of friction. Therefore, 

among the factors above, the incorporated friction model plays 

an important role in the determination of the level of fretting-

wear in the system. The friction model should satisfy two 

important criteria: the first important aspect is the strategy of 

the friction model to detect the cessation of sticking, the 

beginning of partial slipping and establishment of the sliding 

region. The second important aspect is defining a friction 

coefficient function for the entire system response to precisely 

represent the transient stick-slip regions. In the present work, 

the velocity limited friction model was compared with the 

LuGre model which is a rate dependent friction model. The 

effect of varying the break-away force and Stribeck effect on 

the stick-slip region was also investigated. Furthermore, the 

criteria to demarcate the stick-slip region in the LuGre model 

are discussed and a different method to incorporate the Stribeck 

effect and presliding damping in the Dahl friction model are 

proposed. Finally, a new hybrid spring-damper friction model 

inspired by the Cattaneo-Mindlin stress distribution in the 

contact region is proposed.  

  

INTRODUCTION 
 

 During interaction between metallic components, friction and 

wear play important roles. These phenomena cause material to 

be removed at the points of interaction which may lead to 

component failure. Different wear processes may be involved 

during the interaction such as abrasion, delamination, fatigue, 

corrosion and fretting wear [1, 2]. Tube-support interaction in 

heat exchanger tube bundles may cause the same problem. 

Different experimental tests have been carried out to determine 

the exact mechanism of the wear process and material removal 

[3, 4]. The results indicate that cracks propagate in the sub-

layer parallel to the contact surface and gradually turn toward 

the contact surface due to stress concentration [3, 5]. The 

process may cause wear debris which explains the main 

mechanism of material removal during the wear process [3, 6].  

 

 For tube-support interaction simulation, especially in the 

presence of wear, it is vital to incorporate a proper friction 

model. The friction model should have certain capabilities to 
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precisely reproduce the interaction behavior. During 

interaction, three phases of relative motion may be considered: 

sticking, partial-slip and gross-slip. Thus, it is important for the 

friction model to be able to demarcate the boundaries between 

the different phases of the relative motion and measure the 

length of the relative motion in each phase. Switching among 

different phases of the relative motion has been observed in the 

different experimental test [7, 8]. Moreover, different 

mathematical functions were incorporated in the friction 

models to reproduce the intermittent stick-slip behavior 

especially in the vicinity of zero velocity where there is a 

nonlinear transient behavior from the stick to slip phase [7, 9-

11].  

 

 For numerical simulation of the tube-support interaction, 

different numerical codes have been developed to reproduce the 

interaction behavior. These include VIBIC [12], H3DMAP [13] 

and FIVDYNA [14]. As mentioned earlier, a proper friction 

model is vital to determine the amount of wear in the 

simulations. The Velocity Limited Friction Model (VLFM), 

Force-Balanced Friction Model (FBFM) and Spring-Damper 

Friction Model (SDFM) are three friction models which have 

been used in the simulations. 

 

 In the present work, the advantages and weaknesses of 

different friction models were investigated for a simple mass-

spring system. Furthermore, a hybrid friction model is proposed 

which is capable of estimate of the length of sticking, partial-

slip and gross-slip during movement. Physical parameters were 

introduced into the friction model based on the stress-

distribution in the contact area considering bristle elastic 

displacement, bristle yielding and the relative tangential 

displacement of bristles [15-17].  

FRICTION MODELS 
 

 The main purpose of developing different friction models is to 

have capabilities to reproduce the exact behavior of the 

movement before the cession of sticking. Moreover, due to 

nonlinear friction behavior in the vicinity of zero velocity, it is 

important for the friction model to have a more realistic 

transient function for this period in contrast with the simple 

Coulomb friction model.  

 

  The basic friction model is the Coulomb friction model. All 

the different types of friction models use the Coulomb friction 

model to determine the friction forces during sliding. However, 

different methods are used for demarcating between the stick -

slip regions, which plays an important role in our research since 

more slipping regions may increase the work-rate and 

consequently increase estimated fretting during tube-support 

interaction. 

 

Different friction models were developed to evaluate the stick-

slip regions and estimate the sticking friction forces as follows 

[18]: 

 

1- Velocity-limited friction models (VLFM) [19] 

2- Force balance friction models (FBFM) [20] 

3- Spring damper friction models (SDFM) [18] 

Each type of friction model has limitations and advantages. 

Researchers have tried to combine the friction models to 

compensate for the weaknesses of each individual model to be 

able to precisely determine the slipping distance [21]. 

RATE DEPENDENT FRICTION MODELS 
 

 To have a more precise friction model, the model should be 

able to reproduce the process from an absolute zero velocity to 

the condition of incipient gross slip. The contact interaction 

process contains different regions of elastic, plastic and partial 

slipping before the complete cession of sticking [15, 17, 22]. 

Much effort has been dedicated to precisely simulating the 

different parts of the process. Ozaki and Hashiguchi [10] have 

simulated the non-linear intermittent stick-slip behavior by 

introducing a mathematical function for the friction coefficient. 

The function not only depends on the rate of change of the 

friction coefficient but  also the plastic sliding velocity and the 

friction coefficient itself [10]. With the help of the transient 

function the pre-sliding displacement and the stick-slip 

switching may be reproduced based on an equation as follows 

[10]: 

 

( 1) (1 ).p

sk

k v
 

 
 

      

  

 Lim and Chen [9] developed a model considering a conceptual 

choice of the friction coefficient by taking into account velocity 

weakening and creep before the cession of sticking as follows 

[9, 23]:
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 Another effort has been made to consider the Stribeck effect in 

a state variable model for switching from the sticking state to 

the slip state [11, 24]. The LuGre model was developed based 

on the elastic displacement of a conceptual bristle and 

considering a rate-dependent break-away force, presliding 

displacement and hysteretic behavior and has the following 

form [11, 24, 25] :  

0 1 2 ,f

dz
F z x

dt
      

,
( )

xdz
x z

dt g x
   
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(3) 

(4) 

(5) 

(6) 
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
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where Fs, Fc, vs and z are the static friction force, coulomb 

friction force, Stribeck velocity and average bristle deflection, 

respectively. σ0, σ1 and σ2 are the stiffness coefficient and 

damping coefficients, respectively.  

 

 Figure 1. shows the transient function modeling the switching 

between the stick state and slip state in the LuGre model. The 

effect of varying the Stribeck velocity, vs, is shown. The 

Stribeck velocity is the parameter which defines how fast 

switching takes place in the friction model. 

 
FIG. 1 STRIBECK VELOCITY EFFECT ON SWITCHING FROM 

STICK STATE TO   SLIP STATE 

MASS-SPRING MODEL 
 

As shown in Fig. 2, a mass attached to a spring was chosen 

to perform the simulations. The system allows us to precisely 

study the effect of the friction model parameters on the 

predicted friction force and slick-slip regions. 

 

 

 

 

 

 

 

The equation of the motion of the system may is, 

 

.p fmx kx kv t F  
 

 
 In Eq. (8), the mass, m, and stiffness, k, are chosen respectively 

equal to 1 kg and 20 N/m
2
. vp and Ff  are the pulling velocity 

and friction force, respectively. In this study, different types of 

pulling velocities are chosen to examine friction model 

behavior under various conditions. 

 

 The first applied excitation consisted of a constant pulling 

velocity to the mass-spring model.  In Fig.3, the friction force 

histories obtained using the velocity-limited friction model and 

the LuGre model are shown. For pulling velocities of 0.1, 0.2 

and 0.3 m/s, break-away forces of 1.39, 1.34 and 1.26 N were 

respectively obtained for the LuGre model.  

    

 
 

 

 
FIG.3 BREAK-AWAY FORCES COMPARISON FOR THE VELOCITY 

LIMITED FRICTION MODEL AND THE LUGRE MODEL WITH 

DIFFERENT PULLING VELOCITY (a) vp = 0.1 (m/s2), (b) vp = 0.2(m/s2), 

(c) vp = 0.4 (m/s2) 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Velocity (m/s)

F
ri
c
ti
o
n
 F

o
rc

e
 (

N
)

 

 

vs=0.1

vs=0.5

vs=1 

0.68 0.7 0.72 0.74 0.76 0.78 0.8

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time(sec)

F
ri
c
ti
o
n
F

o
rc

e
(N

)

 

 

Stribeck-Effect

VLFM

0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time (sec)

F
ri
c
ti
o
n
 f

o
rc

e
 (

N
)

 

 

Stribeck effect

VLFM

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time(sec)

F
ri
c
ti
o
n
 f

o
rc

e
(N

)

 

 

Stribeck effect

VLFM

vp 

k 

m 

             FIG. 2 MASS-SPRING SYSTEM 

(a) 

(b) 

(c) 

(7) 

(8) 

LuGre 
 

LuGre 
 

LuGre 
 



                                                                                                                                                                                             118 

 

 The results show that the break-away force in the LuGre model 

decreases with increasing the excitation force in contrast with 

the velocity-limited friction model which gives a constant 

break-away force. The comparison shows not only the 

importance of the varying break-away force but also the change 

in the stick-slip regions due to the difference. In other words, 

the LuGre model switches to the gross-slip regime sooner than 

the velocity-limited friction model in the study. 

  

 In Fig. 4, the differences between the slipping times for 

different simulation times for both models are presented. The 

results show an increase in the slipping time percentage with 

increasing in simulation time for both models which eventually 

attains a steady state after passing a certain time.  The results 

indicate approximately a 4% difference in slipping duration 

between the LuGre and VLFM models. 

 

 
FIG. 4 SLIPPING TIME FOR LUGRE MODEL AND VELOCITY-

LIMITED FRICTION MODEL (a) THE LUGRE SLIPPING TIME (b) 

THE VLFM SLIPPING TIME (c) DIFFERENENCE BETWEENTHE  

LUGRE AND VLFM 

 To more carefully investigate the ability of the friction models 

to capture the stick-slip regions, the chirp excitation function 

was chosen. The chirp is a cosine function with a linearly 

increasing instantaneous frequency with time. As shown in Fig. 

5, four different chirp excitation functions are applied to the 

pulling velocity. The chirp functions with 0.2 m amplitude have 

target frequencies increase from 5 Hz to 30 Hz for cases 1 to 4, 

respectively, in 10 second simulation time. The results indicate 

decreasing in the slipping time with the LuGre model in 

contrast with the VLFM. 

 

 
FIG. 5 SLIPPING TIME COMPARISON VLFM AND LUGRE                 

(1) CHIRP [1,5] (2) CHIRP [1,10] (3) CHIRP [1,20] (4) CHIRP [1,30] 

 Based on the slipping time duration for the LuGre and the 

VLFM models, it is vital to choose a proper criterion to 

demarcate the stick-slip regions. In the LuGre model, the rate 

of average bristle deflection is chosen as the criterion for 

detection of incipient gross-slip displacement. Based on the 

mathematical formulation of the LuGre model, the parameter, 

dz/dt, needs to be chosen small enough to capture all sticking 

regions. In Fig.6, the effect of decreasing the rate of the average 

bristle deflection is investigated. Decreasing the parameter 

from 1e-9 (m/s
2
) to 1e-12 (m/s

2
) shows only a slight difference 

in the slipping time until the critical point of 1e-12 (m/s
2
). The 

results indicate that by choosing an average bristle deflection 

smaller than 1e-11 (m/s
2
), the LuGre model assumes a big 

portion of the movement to fall in the sticking region. 

Therefore, a steep decrease from 62.37% to 3% of the slipping 

time is observed. 

 
FIG.6 SLIPPING TIME PERCENTAGE VERSUS LOGARITHMIC 

AVERAGE BRISTLE DEFLECTION 

EQUIVALENT SPRING-DAMPER FRICTION MODEL 
 

 In this section the LuGre model is expressed in the form of an 

equivalent physical nonlinear spring-damper model .The LuGre 

model is a friction model which was developed based on the 

Dahl friction model by considering hysteretic behavior and 
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presliding displacement [11, 26]. To achieve these goals, the 

Stribeck function, Eq. (6), is incorporated into Eq. (5). 

Moreover, two additional damping terms are introduced in Eq. 

(5) which represent the damping associated with the rate of the 

average bristle deflection and viscous damping.  

          
FIG. 7 SPRING-DAMPER MODEL EQUIVQLENT TO THE LUGRE 

MODEL 

As shown in Fig. 7, it is proposed to represent the Stribeck 

function and damping term by a physical hybrid spring-damper 

model.  

 
FIG. 8 SLIPPING TIME COMPARISON BETWEEN LUGRE AND 

REVISED SDFM FOR DIFFERENT LOGARITHMIC RATE OF 

AVERAGE BRISTLE DEFLECTION 

 As shown in Fig. 8, the simulation results show 5-9% 

difference for the slipping time between the LuGre model and 

the physical equivalent spring-damper friction model. The 

advantage of the latter model is that gives an intuitive physical 

meaning to the mathematical functions in the LuGre model. 

NEW HYBRID SPRING-DAMPER FRICTION MODEL 
 

 In this study, different weaknesses and advantages of the 

LuGre model were investigated. Two important aspects of the 

friction model are considered. The first aspect is the criterion to 

demarcate the stick-slip regions. The second aspect is 

incorporation of different friction phenomena such as the 

Stribeck effect and presliding displacement based on a physical 

hybrid spring-damper model.  The issues are vital due to 

sensitivity of fretting-wear to slipping distance. The 

demarcating parameter was chosen as the rate of the average 

bristle deflection. However, as shown in Fig.6, the slipping 

time may strongly depend on the magnitude of the limiting 

parameter.  

 

 Researchers have investigated the micro-behaviour in the 

contact area during the stick-slip states. Mindlin [27] developed  

a model for the tangential stress distribution in the contact area. 

The model suggests two regions within the contact area. A 

sticking region inside of the contact area and a partial slipping 

region in a peripheral region outside of the contact area which 

progressively develops towards the contact center with increase 

in the friction force [17]. Johnson [28] experimentally proved 

the theory. Moreover the Cattaneo-Mindlin [27] theory was 

further developed to consider the effect of plastic deformation 

and yielding in the border between the sticking and slip regions 

[15]. 

 To develop a new friction model, three regions of sticking, 

yielding and partial slipping are considered before incipient 

gross-slip based on relations as follows:  

 

,f e e p p s sF k z c z c z    

,e p s       

 

where ke , cs , cp are the stiffness, plastic-damping and slip-

damping coefficients. ze, zp and zs are the elastic, plastic and 

partial slipping displacements.  

 

Based on the Eq. (9) and (10), a new hybrid spring-damper 

friction model is proposed as shown in Fig. 9. 

 
        FIG. 9 HYBRID SPRING-DAMPER FRICTION MODEL 

 

The new model consists of two damping coefficients for the 

plastic and partial slipping. Moreover, three stiffness 

coefficients for the elastic, elasto-plastic and elasto-slipping 

displacements are incorporated in the model. One of the 

important properties of the new hybrid friction model is the 

capability to explicitly determine the elastic displacement, 

plastic displacement and partial slipping displacement. To 

demonstrate this, the system is excited below the break-away 

force with a function as follows:   
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FIG. 10 DISPLACEMENT COMPARISON BETWEEN THE LUGRE 

AND THE NEW FRICTION MODELS 

 In Fig. 10, the displacements of the mass-spring system 

obtained using the LuGre and the new friction model are 

presented. Both models behave similarly with slight differences 

in the displacements. However, as shown in Fig. 11. the new 

friction model has the capability to demarcate elastic, plastic 

and partial slipping displacements during the motion. 

 

 
FIG. 11 ELASTIC, PLASTIC, PARTIAL SLIPPING DISPLACEMENT 

 In the numerical simulation of stick-slip motions, it is 

important to precisely estimate the pre-sliding displacement. 

The LuGre model is an elastic model with the weakness of 

inability to demarcate between the elastic, plastic and partial 

slipping regions within the presliding displacement. As shown 

in Fig. 11, the new hybrid model overcomes this difficulty. 

Furthermore, the demarcating capability makes the new hybrid 

friction model more flexible in terms of reproducing the pre-

sliding displacement. To examine the flexibility, another 

comparison between the LuGre model and the new friction 

model is made by implementing an excitation displacement as 

follows: 

 

 0.050.05 cos2 .t

ex e t   

  
FIG. 12 DISPLACEMENT COMPARISON THE LUGRE AND NEW 

FRICTION MODELS  

The displacements of the mass-spring system are compared in 

Fig. 12 for the two friction models. The results show the 

capability of the hybrid friction model to reproduce a bigger 

presliding displacement while at same time reproducing the 

correct general motion. In contrast with the LuGre model, the 

new friction model is an elasto-plastic model. The elasto-

plasticity property enables the new friction model not only 

reproduce a more precise presliding displacement but also the 

capability to reproduce the nonlinear behaviour in the vicinity 

of zero velocity. 

 

 
FIG. 13 PRESLIDING DISPLACEMENT IN THE LUGRE MODEL AND 

NEW HYBRID FRICTION MODEL 

 In Fig.13, the presliding displacement in the LuGre model and 

new hybrid friction model are presented in greater detail. The 

points ‘A’ and ‘B’ represent the beginning of the presliding 

displacement in the new hybrid friction model and LuGre 

model, respectively. The results emphasize the flexibility of the 
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new hybrid friction model to reproduce a bigger presliding 

displacement while maintaining the general trend of the motion. 

CONCLUSION 
 

 In this study, commonly used friction models for tube-support 

interaction simulation were discussed. The weaknesses and 

advantages of the models are compared with a rate dependent 

friction model. For comparison a simple mass-spring system 

was used. The Stribeck effect and effect of changing the break-

away force on the stick-slip regions were investigated. To have 

better comparison between the models, different excitation 

forces were applied on the mass-spring system and the 

capabilities of the models to capture all the sticking regions 

were examined.  

 

 Furthermore, two aspects in the LuGre model were 

investigated. The first aspect is the criterion for demarcating the 

stick-slip regions and the second aspect is incorporation of the 

Stribeck effect and presliding damping in the Dahl [11] friction 

model. A modified and extended LuGre model based on an 

equivalent spring-damper was then proposed. The slipping time 

comparison was made for the two models which indicated 5-

9% difference. 

 

 To have a precise estimation of the slipping distance, it is 

important for the friction model to be able to detect different 

regions during the motion especially before incipient gross slip. 

To achieve this, a new elasto-plastic model was proposed to 

determine the elastic, plastic and partial slipping regions within 

the contact area. The model was developed based on a hybrid 

spring-damper model. Simulation results confirm the capability 

of the new friction model to accurately demarcate the different 

regions of elastic, plastic and partial-slipping within the 

presliding displacement. Consequently, the capability makes 

the new friction model more precise not only in reproducing the 

presliding displacement but also reproducing the nonlinear 

trend of the displacement in the vicinity of zero velocity. 
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ABSTRACT 
 

 Fretting wear is a common problem in different industries 

especially when it comes to interactions between metallic 

components. In heat exchangers, the problem plays a 

destructive role due to long term interaction between tubes and 

supports which may consequently lead to tube failure. In the 

present work, the tube-support fretting wear problem was 

investigated by refining models for friction effects in the stick-

slip regions. The Slip distance is the most important parameter 

for wear estimation. Using the tangential stress distribution in 

the contact area, a new hybrid spring-damper friction model 

was developed. The model is able to estimate elastic, plastic 

and partial slipping distances during relative motion. The 

ability of the model to reproduce experimental tests is 

investigated in the present work. 

    

 
INTRODUCTION 

 

 The long term tube-support interaction in heat exchangers may 

cause tube-support fretting-wear [1]. In numerical simulations 

of the phenomenon the type of incorporated friction model 

plays an important role. Nonlinearities of the friction models in 

the vicinity of zero velocity pose serious difficulties when 

developing and incorporating these models in numerical 

simulations. Experimental studies of tube-support interaction 

show significant chattering between stick-slip regions during 

the tube-support interaction [1, 2]. The friction model should 

therefore be designed to give details and boundaries of three 

different modes of relative movement: slip, stick and stick-slip. 

The velocity limited friction model (VLFM) [3], force balanced 

friction model (FBFM) [4] and spring-damper friction model 

(SDFM) [5, 6] are the three major friction models which are 

commonly used in tube-support numerical simulations. 

 

 Azizian and Mureithi [7] compared the LuGre [8] friction 

model which is a rate-dependent friction model with the 

velocity-limited friction model. The results indicated the 

importance of considering the presliding displacement and the 

Stribeck effect in the stick-slip regions. In the present work, the 

process of transition from absolute zero velocity to entirely 

gross slipping was refined by considering the tangential stress 

distribution over the contact region. The results indicate three 

main regions of elastic, yielding (plastic) and partial slipping 

before incipient gross-slip. Each region of the motion is 

represented by a theoretical model. The elastic displacement is 

represented by Cattaneo-Mindlin theory [9]. The plastic 

displacement and yielding are characterized with the Odfalk 

and Vingsbo method [10]. The partial-slipping displacement is 
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associated with a damping coefficient based on the Cattaneo 

and Deresiewicz method [9]. Moreover, the Stribeck effect is 

modeled with a transient function based on the LuGre model [8, 

11] .  

 Finally, to consider the different effects, a hybrid spring 

damper friction model was designed. A simple mass-spring 

system was chosen according to experimental tests by 

Baumberger et al. [12] to test the new friction model.  

 

 

FRICTION MODELS 
 

 A friction model is a key element in wear-rate estimation. The 

importance of choosing a proper friction model can be 

recognized in establishing accurate stick-slip regions. A larger 

slipping distance may lead to more material removal due to 

fretting-wear. The Coulomb friction model is the fundamental 

basis of all friction models. The model gives the friction force 

in the gross slip state. The model, however, cannot predict 

incipient gross slip or estimate the friction force in the sticking 

region. 

 

Different friction models have been proposed to overcome 

these short comings as follows [5, 13, 14]: 

 

1-Velocity-Limited Friction Model (VLFM) [14] 

 

  In the velocity-limited friction model, a limiting velocity is 

defined to demarcate stick-slip regions.  

 

t 0             V >V     ,f nF F if  

t 0

0

       V V  ,
t

f n

V
F F if

V
   

 

where V0 , μ and Fn are the limiting velocity, friction coefficient 

and normal force, respectively.  

 

2-Force Balanced Friction Model (FBFM) [4]

 
 

 

 In the force-balanced friction model, the slipping friction force 

is determined similarly to the Coulomb’s friction model but the 

sticking friction force is determined as follows: 

 

 ,f eF Ku F   

 

where Ku and Fe are internal and external forces, respectively. 

 

3-Spring Damper Friction Model (SDFM) [5] 

 

 In the spring-damper friction model, the friction force during 

sticking is composed of two terms: damping force and spring 

force. The model is formulated as, 

 

                               sliding ,f nF F  

0( )          sticking ,f a c a tF K u u C V    

 

where the parameters uc and u0 are, respectively,  the current 

and the zero velocity tangential displacement. Ka and Ca are 

stiffness and damping coefficients. 

 

RATE DEPENDENT FRICTION MODELS 
 

To have a precise estimation of the slipping distance, it is vital 

for the friction model to be able to recognize different regions 

where sticking, presliding and sliding occurs. Moreover, 

incorporating a proper mathematical function in the friction 

model to represent the transient process of switching between 

the sticking phase and slip phase is important. The function can 

affect the stick-slip regime. 

  

 Different studies have been conducted to examine the 

weaknesses and advantages of the traditional friction models. 

Azizian and Mureithi [7] made a comparison between the 

velocity-limited friction model and LuGre model. The study 

indicated the weaknesses of the traditional friction models 

compared to a rate dependent friction specially in terms of 

estimating the precise slipping distance. 

 

LuGre Friction Model [8] 

 

The LuGre friction model is an elastic rate-dependent 

friction model. In the model, phenomena such as varying break-

away force, friction hysteretic behavior and presliding 

displacement are considered [11].  The model is expressed 

mathematically as follows: 

 

0 1 2  ,f

dz
F z x

dt
      

 ,
( )

xdz
x z

dt g x
   

 
0

1
( ) ( )exp( ( ))  ,c s c sg x F F F x v


   

 

 
where σ0, σ1 and σ2 are the stiffness, presliding damping and 

viscous damping coefficient, respectively. Fs , Fc and vs are the 

static friction force, coulomb friction force and Stribeck 

velocity, respectively.  

 

 In the LuGre model, the Stribeck effect was considered by 

introducing an exponential function according to equation (8). 

The Stribeck velocity, vs, determines the rate of changing from 

the sticking phase to gross slipping phase. Moreover, the 

presliding displacement is taken into account by introducing a 

damping term, σ1, as shown in equation (6). 

 

Ozaki and Hashiguchi Friction Model [15] 
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 Ozaki and Hashiguchi [15] developed a rate-dependent friction 

model based on a conceptual definition of a friction coefficient 

for the entire motion. The model may describe as follows: 

( 1) (1 ) ,p

sk

k v
 


 

    

 
 

where k and ξ are the rate of decrease and recovery of the 

friction coefficient, respectively.  vp , µs , µk are the plastic 

sliding velocity, static coefficient of friction and kinetic 

coefficient of friction, respectively.  
 

In the model, the instantaneous friction coefficient depends not 

only on the plastic velocity, static and dynamic friction 

coefficient but also depends on the coefficient friction’s rate of 

changing.    

 

 

STRESS DISTRIBUTION IN THE CONTACT AREA 
 

 To come up with a physical model capable of demarcating 

different regions in the contact area, it is vital to study the 

tangential stress distribution in the contact surface between two 

objects. Cattaeno-Mindlin [16] developed a mathematical 

formula to describe the tangential stress distribution over the 

contact area as follows: 
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  

    
  

 

 

where μ is the coefficient of friction and P0  the normal stress. 

 

Based on equation (10), the contact area is divided into two 

regions: a sticking region with elastic displacement and a 

partial slip region. Fig.1 shows the differences in the stress 

distribution in the two regions which are demarcated by the 

parameter ‘c’. 

             
Figure 1 Cattaneo-Mindlin tangential stress distribution [17] 

  In the region 0 r c  , the coincident contact points on the 

contact interface move together which represents the sticking 

region as shown in Fig.2 by the point ‘A’ [16, 17]. However, for 

the region c r a  , the contact points on the two bodies have a 

relative tangential movement which represents the slipping 

region as shown in Fig.2 by the points ‘B’ and ‘C’ [16, 17]. 

  

 
Figure 2 Stick and slip point in contact region [18] 

  

In later development of the Cattaneo-Mindlin theory [16], 

Cattaneo and Deresiewicz [19] studied the effect of varying 

tangential force on the stress distribution in the contact area. 

Consequently, the study determined the energy dissipation 

during oscillatory tangential displacement. Moreover, Odfalk 

and Vignsbo [20] measured the presliding displacement 

dependence on the excitation frequency. The results indicated 

underestimation of presliding displacement by the Cattaneo-

Mindlin elastic theory. To correct for this, Odfalk and Vignsbo 

[10] developed a plastic model to consider yielding effect in the 

contact region. 

 

Using Cattaneo-Mindlin theory for flat surfaces without losing 

its cogency needs to be explained and justified. Considering 

two flat surfaces in contact, with condition of neither gross-slip 

nor partial-slip, the system is similar to a flat punch with the 

same displacement in the loading direction all over the contact 

region. The tangential stress distribution is [18], 

 

2 2 1 2
( )  ,

( )

xQ
Q x

w x



 

  

where x is the position of the coincident points within the 

contact width and w is the contact width. 

 
 The tangential stress distribution shows the amount of infinity 

on the border line of x=w which brings into question the 

condition of no-slip. In other words, the coefficient of friction 

needs to infinite to sustain the condition of no-slip on the 

border of the contact area. This leads us to infer the presence of 

the partial-slipping region for the two-flat surfaces similarly to 

the spherical contact [18]. 

 

𝜇𝑝(𝑟) 

0 c -a a -c 

𝜇𝑝0 

𝑞(𝑟) 

𝑟 

(9) 

(10) 

A B C 

(11) 



                                                                                                                                                                                           126 

 

  Copyright © 2012 by ASME 

 Since the Cattaneo-Mindlin theory is valid for a spherical 

contact, certain assumptions needed to be considered to be able 

to use the theory for flat surfaces including: (1) two smooth flat 

surfaces in contact with each other and one of them includes 

certain waviness [20]. (2) the surfaces are in contact at least in 

three contact points [20]. (3) considering a spherical shape for 

the contact tip between flat surfaces [20]. The experimental test 

conducted by Odfalek & Vingsbo [20] confirmed that the 

presliding displacement is proportional to the 2/3 power of the 

normal force which emphasizes the validity of the Cattaneo-

Mindlin theory for flat surfaces. Based upon the assumptions, 

conceptual incorporation the Cattaneo-Mindlin theory in a 

friction model for flat surfaces is admissible. 

 

NEW HYBRID SPRING-DAMPER FRICTION MODEL 
 

 Based upon the stress distribution in the contact region, 

different phases of displacement may be identified in the 

contact area [10, 18]. Three main regions of elastic 

displacement, plastic displacement and slipping are shown in 

Fig.3. Moreover, to have a precise friction model, two transient 

regions of elastic to plastic and plastic to slipping transition are 

considered. 

 

 
 

Figure 3 Displacement field in the contact area and equivalent 

spring-damper model 

 The hybrid spring-damper friction model was developed based 

on different regions in the contact area which satisfy following 

conditions: 

 ,f e e p p s sF k z c z c z                     

 ,e p sz z z z                              

where ze , zp and zs are the elastic, plastic and partial slipping 

displacements, respectively.
 
ke , cs , cp are the stiffness, plastic-

damping and slip-damping coefficients, respectively. 

 

 
Figure 4 New hybrid spring-damper friction model 

 As shown in Fig.4 , the hybrid friction model consists of four 

important effects: The average elastic bristle displacement 

inspired by the Cattaneo-Mindlin theory [9], plastic 

displacement inspired by the Odfalk-Vignsbo method [10] , 

partial-slipping displacement inspired by the Cattaneo-

deresiewicz method [9] and finally the Stribeck phenomenon 

based on the LuGre model [8]. 
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 The Friction model can be expressed based on equations (14)-

(16) which include the four different effects. Cz in equation (16) 

is the Stribeck damping [7] which may be determine based on 

equation (8).  Considering these effects, the pre-sliding 

displacement may be more accurately modeled. Cz in equation 

(16) is the Stribeck damping [7].  

MASS-SPRING SYSTEM 
 

 A simple mass-spring model is considered for numerical 

simulation as shown in Fig.5. 
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 Table.1 shows constants for the mass-spring system. The 

parameters were chosen to be consistent with the experimental 

test conducted by Baumberger et al. [12] for model verification. 
Table 1 mass-spring model parameters 

M (kg) K (Ncm-1) Vp (μms-1) 

0.8 580 1 

 

 
RESULTS AND DISCUSSION 
  

 To evaluate the new hybrid spring-damper friction model, the 

Baumberger [12] experimental test was chosen. That was the 

only fully documented test program the authors have found in 

the open literature. The experimental test consists of a mass 

attached to a spring with a constant pulling velocity. The set-up 

makes it possible to produce periodic stick-slip motion due to 

the spring force and friction resistance to the motion.  To 

reproduce the experimental test’s displacement, choosing 

proper model parameters is a challenging step. Four parameters 

ke , Fs , Fc ,vs  affect the general stick-slip behavior. On the other 

hand, four other parameters kep , kps , cs , cp mostly affect the 

presliding distance.  

 

 To estimate the parameters, the nonlinear least-squares method 

was used. The optimization was conducted in two steps. The 

first step involved defining the general motion behavior by 

optimizing the first set of parameters. In this step the objective 

function is the quadratic difference between the displacement 

time-history in the experiment and numerical simulation for the 

entire stick-slip motion. In Table 2, the first set of the optimized 

parameters is presented. 

  
Table 2 New friction model parameters 

ke Fs Fc vs 

5.2e+7 1.07 0.707 1e-6 

 

  The second optimization step contains the estimation of the 

second set of parameters which is more sensitive in terms of 

defining the presliding displacement. In this step the objective 

function is the quadratic difference for the time-history of the 

presliding displacement. In Table 3, the second set of the 

optimized parameters is presented. 

 
Table 3 New friction model parameters 

kep kps cs cp 

1.9e+7 8.5e+7 2.3e+3 6.3e+2 

 

 The first-step of the optimization is more costly since the 

objective function is highly sensitive to these parameters. On 

the other hand, the second set of the optimization captured the 

presliding displacement which required a more refined time 

step to more accurately run the simulation and capture the 

entire process. The time step is chosen equal to 1e-6 sec. 

 

Fig.6 shows a comparison of the Baumberger et al. [12] 

experimental test data with the new friction model as well as 

the Ozaki and Hashiguchi [15] model. The new friction model 

can reproduce the same number of the stick regions as reported 

in the experiment contrary to the Ozaki and Hashiguchi [15] 

model which detects five out of eight sticking phases. 

Furthermore, the duration of the sticking region in the new 

friction model has reasonable agreement with the experimental 

test. 

 

 
Figure 6 New hybrid friction model, Ozaki and Hashiguchi 

friction model [15] and Baumberger et al. [12] experimental test 

comparison 

 

Figure 7 K-V dynamic phase diagram for the stick-slip stability for 

the Baumberger experimental test [12] , Lim and Chen model [21] 

and Hybrid spring-damper model 
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   After identifying the system parameters with the optimization 

method, the friction model is evaluated with different inputs for 

the spring stiffness and pulling velocity. The K-V stability 

diagram based upon Baumberger et.al. [12] experimental test 

data is used to compare the stability velocities. The velocity 

may be determined for each spring stiffness coefficient by 

subjecting the mass-spring model to a linearly increasing 

velocity. For low velocity the motion begins with the stick-slip 

behavior until it reaches the stability velocity which transfers 

the motion to a more stable mode of gross-slip.  

 

 As shown in Fig.7, the stability velocity for different spring 

stiffnesses is compared against the hybrid spring damper and 

Lim-Chen friction model [21]. For each set of data, the 

transient stick-slip may occur below the curve whereas the 

more stable motion is located for velocities above the curve. 

  

 As reported by Lim and Chen [21], their friction model has a 

good agreement with the theoretical friction model developed 

by Rice and Ruina [22]. However, the models have limitation to 

reproduce the slope of dynamic stability diagram. As shown in 

Fig.7, the Lim and Chen model produced approximately a 

constant line for the stability curve with highly sensitive 

stability velocity to the stiffness in contrast to experimental 

results. The new hybrid spring damper friction model with the 

optimized parameters may be able to reproduce the 

experimental result with a qualitatively good agreement. 

Quantitatively, the dynamic stability diagram is divided into 

three regions based on the agreement between the experimental 

test and hybrid friction model. The first region of the stability 

velocity of 0 ≤ vc ≤ 10(µms
-1

) shows magnitude differences 

between the model and experimental test. The differences may 

be explained based upon the nature of the creep dominated 

region which may need a higher Stribeck velocity as the motion 

changes slowly from the static to the dynamic. However, the 

trends of the experimental test and numerical simulation have a 

good agreement showing vc tends to zero for high spring 

stiffness. The second region of 10 ≤ vc ≤ 50 (µms
-1

) has a fairly 

good agreement with experimental test. Furthermore, in the 

third stability region of 50 ≤ vc ≤ 350 (µms
-1

) the numerical 

simulation is able to reproduce the general experimental trends. 

However, the simulations overestimate the stability velocity. 

This is likely due to overestimation of the damping coefficients 

in the friction model. 

 

CONCLUSION 
 

 A new hybrid spring-damper friction model was conceptually 

designed incorporating different phenomena which have a role 

in establishing stick-slip regions. Based on the stress 

distribution in a contact area, different regions of elastic, 

yielding (plastic) and partial slipping are considered. Moreover, 

the Stribeck phenomenon was also considered which plays an 

important role in transition stick-slip regions. The hybrid 

spring-damper friction model was compared to experimental 

tests and shown to correctly predict not only the number of the 

stick-slip events but also the correct duration of the sticking 

phase. The model is therefore a significant improvement over 

the Ozaki and Hashiguchi model. Other comparisons were 

made against a series of experimental tests conducted by 

Baumberger et al. The numerical simulation results indicated a 

qualitatively good agreement with the measured stability 

velocity. However, the differences in the stability velocity 

magnitude were reported. The differences were interpreted 

based upon underestimation of the Stribeck velocity and 

overestimation of the damping coefficients in the hybrid 

friction model parameters. 
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