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RÉSUMÉ 

Pour évaluer le module de rupture et la résistance au cisaillement du béton de masse réparé par 

injection de coulis, six spécimens de 400 x 400 x 1250 mm  en béton avec des agrégats de taille 

maximale de 100 mm  ont été testés suivant la norme ASTM C78 et avec une configuration de 

chargement favorisant de grandes contraintes de cisaillement le long d'un plan de rupture vertical. 

L'essai de la norme ASTM C78 a été effectué sur tous les échantillons non-fissurés et sur les 

échantillons réparés (deux spécimens à réparation simple et deux à réparations multiples en 

utilisant deux coulis d'injection microfins avec un ratio eau/ciment (e/c) de 1,0 et 0,5 

respectivement. L'essai de cisaillement a été effectué sur deux spécimens à réparation simple et 

deux spécimens à réparations multiples, injectés dans les deux cas avec les deux mélanges de 

coulis. Une résistance à la traction indirecte moyenne de 2,8 MPa a été obtenue pour les 

échantillons vierges. Cette valeur a été diminuée à 1 MPa et 0,5 MPa pour les échantillons 

réparés à l'aide du coulis avec rapport e/c égal à 0,5 et 1,0 respectivement, quel que soit le 

nombre de réparations. La résistance au cisaillement des spécimens est affectée à la fois par le 

rapport e/c du coulis d‟injection et par de la largeur des fissures réparées. 

 

Mots-clés: Béton de masse; injection de coulis; réparation de coulis; module de rupture; 

résistance en traction; résistance en cisaillement; barrage; béton à gros agrégats.    
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ABSTRACT 

To evaluate the modulus of rupture and the shear strength of mass concrete repaired by grout 

injection, six 400 x 400 x 1250 mm  concrete specimens with a maximum aggregate size of 100 

mm  were tested following ASTM C78 and a loading configuration promoting large shear 

stresses along a vertical failure plane. ASTM C78 was done on the all virgin specimens and on 

repaired specimens (two repaired once and two repaired multiple times) using two different micro 

fine injection grout mixes with water cement ratio (w/c) of 1.0 and 0.5. The shear test was done 

on two single repaired and two multiple repaired specimens; with both grout mixes. Average 

indirect tensile strength of 2.8 MPa was obtained for virgin specimens. This value was reduced to 

1 MPa and 0.5 MPa for specimens repaired using grout with a w/c ratio respectively equal to 0.5 

and 1.0 regardless of the number of repairs. The shear strength of the specimens is affected by 

both the injection grouts w/c ratio and the repaired crack width. 

 

Keywords: mass concrete; grout injection; crack repair; modulus of rupture; tensile resistance; 

shear resistance; dam; large aggregate concrete.    
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INTRODUCTION 

Hydroelectric concrete dams are large complicated mass concrete structures that are prone to 

cracking. It is essential that the proper upkeep be done so that these structures are kept and 

maintained in safe working order. To this end, the cracks that are formed in dams must be 

repaired. Many different types of repair technics exist; however, injection grouting is the most 

common form of dam crack repair. The study of grout injection has mainly focused on, to date, 

the injection grout used in repairs: rheology, cured properties such as compressive and tensile 

strengths, and on the distribution and penetrability of the grout during an injection. Although 

injection grouting has been taking place for many years, there is still little research on the 

mechanical tensile and shear strengths of repaired sections of mass concrete. 

Research Problem 

To date, the best way to ascertain the quality of a grout injection repair in a dam is by taking a 

core of the repaired concrete. In the case of dam mass concrete, this may prove problematic. The 

first problem is that it is not always possible or convenient to obtain a core of the repaired section 

of dam. Additionally, given the size of the aggregates used, it would not be possible to take a 

core which is large enough in diameter to determine the actual strength of the repaired section 

(ASTM, 2002c). 

This problem exists with all repaired mass concrete structures. For the purpose of this research, it 

was decided to focus the study on a successful repair of a crack network of a single arch of a 

multiple arch dam. 

The Daniel-Johnson Dam (BDJ) located in the Manicouagan River in Quebec, Canada, is the 

largest multiple arch dam in the world. The 214 m tall dam consists of 13 cylindrical arches being 

supported by 14 buttresses, with a crest length of 1300m (Tahmazian, Yeh, & Paul, 1989). 

Shortly after construction, many different types of cracks developed in the dam. The Dam 

underwent many grout repair campaigns to minimize seepage and to remove uplift pressure. Of 

particular interest is the repair of the plunging cracks in the arch 5-6 of the dam. The repairs 

undertaken proved successful in stopping virtually all the seepage in the arch. The problem is 

that, although the cracks are repaired, to date there is no information on tensile and shear strength 

that these repairs provide. Because of this lack of information, the numerical models developed to 
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predict the structural stability for different reservoir elevation (including Flood) assume that the 

grouted cracked zone provides no tensile or shear strength. This leads to a potential loss in 

maximum volume reservoir capacity (Saleh et al., 2003). 

Goal and Objectives 

The main goal of this experimental research is to determine the mechanical resistance of a section 

of mass concrete that has been repaired by grout injection. A focus was put on trying to replicate 

the repairs seen in the 5-6 arch of BDJ. 

To this end, the following objectives were established: 

 Develop a mass concrete mix that is representative of the BDJ concrete (maximum 

aggregate size of 150 mm & compressive resistance of 33MPa) (Bulota, Im, & Larivière, 

1991); 

 Develop an experimental setup capable of determining the tensile stress of mass concrete 

and  grouted mass concrete specimens (400 x 400 x 1200 mm); 

 Develop an experimental setup capable of determining the shear resistance of grouted 

mass concrete specimens (400 x 400 x 1200 mm); 

 Develop an experimental setup capable of injecting repair grout to the failure plane and 

maintaining the grout under a constant pressure until it has cured; 

 Quantify the tensile resistance of an un-cracked specimen, a specimen repaired with stable 

grout (w/c = 0.5), and a specimen repaired with unstable grout (w/c = 1.0); 

 Quantify the shear resistance of a specimen repaired with stable grout (w/c = 0.5) and 

unstable grout (1.0); 

 Quantify the effects of multiple repairs on tensile resistance and shear resistance; 

 Use the results obtained to make recommendations on the residual resistance of repaired 

concrete in both tension and shear. 

The following chapter will describe the general approach taken for this experimental research and 

will define the organisation of the thesis 
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CHAPTER 1 APPROACH TO THE PROJECT AND ORGANIZATION 

OF THE THESIS 

The previous chapter identified the research problem and the objectives. The approach taken in 

the project to meet these objectives is described in this chapter. 

1.1 Approach to the Project 

Initially, the first step is data acquisition. To this end, a liaison with Hydro-Quebec was needed. 

The communications that took place served to gather information on the history of the Daniel-

Johnson dam, the cracks that occurred, and the repair methods that have been used. Detailed 

injection plans and injections reports were acquired. Moreover, ideas on the relevant information 

needed and on research plans were exchanged. The communications with Hydro-Quebec were a 

constant throughout the course of the project.  

An extensive literature review was done to determine what has been done on this front so far. The 

literature review covered, mass concrete, causes for cracking in dams (thermal stress, chemical 

attacks, hydrostatic overload), the types of cracks seen, and repair methods used. It then examines 

grout properties (both liquid and cured) such as viscosity and compressive strength. The previous 

research on grout injection in general and specifically on mass concrete dams was reviewed and 

discussed. Lastly, three case studies of grout injections for dam repairs were overviewed. 

To complete the objectives, the first step was to determine a facility capable and willing to 

produce our mass concrete mix. In tandem with the development of the mix, the testing methods 

to obtain the tensile and shear strengths were developed and a testing protocol was established. 

Once completed, the specimens were tested and the data obtained was analysed. 

The results and main conclusions can be found in Chapter 3 a technical paper that was written 

and submitted to American Concrete Institute Structural Journal in November 2012. 

1.2 Organisation of the Thesis 

This thesis starts with an introduction, which briefly describes the subject and highlights the 

issues that need further attention. Chapter 1 is a transitory summary of the approach taken for the 

project as well as the organisation of the memoire. Chapter 2 presents an extensive literature 
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review. Chapter 3 is the paper entitled “Mechanical Resistance of Cracked Dam Mass Concrete 

Repaired by Grouting: an Experimental Study” which was submitted to ACI. Chapter 4 is 

comprised of complimentary data not found in the article as well as some general discussion. A 

conclusion on the project follows can be found after Chapter 4. 
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CHAPTER 2 LITERATURE REVIEW 

The objective of this research project is to evaluate the effectiveness of grout injection repairs to 

cracks in unreinforced concrete dams. More specifically, it is to evaluate the tensile strength and 

shear strength of a repair done with microfine cement grout with water to cement (w/c) ratio of 

0.5 and 1.0. Determining the effects of multiple repairs was also a consideration. To be able to 

properly draw any conclusions from any experimental study it was important to first understand 

the elements discussed in the literature review. The first element discussed is mass concrete, what 

it is, its different properties, and how those properties are tested. The mechanics of dam cracking 

and dam crack repair are then addressed. Injection repairs, and the injection materials are then 

examined in detail. Finally three case studies dams repaired by grout injection are reviewed: Isle 

Maligne gravity dam (43 m), Sayano-Shushenskoe dam (242 m), and Daniel-Johnson multiple-

arch Dam (215 m). 

2.1 Mass Concrete 

Mass concrete is considered to be concrete that is cast in place in such large volumes that special 

precautions need to be taken to control excessive temperatures and the effect that these 

temperatures will have on the final cured concrete. Generally mass concrete has larger than 

average aggregate sizes including crushed rock. The maximum aggregates usually vary between 

80 mm and 150 mm although it is possible to use smaller or larger maximum aggregate sizes. 

Moderate-heat or low-heat cement, with additives and admixtures to control temperature are 

typically used for dam construction (ACI-Committee-207, 1970).  

The compressive strength of dam mass concrete can range from 20 MPa to 40 MPa after 90 days. 

The modulus of elasticity of concrete dams at 90 days is typically found to be between 30 and 45 

GPa. Poisson‟s ratio for mass concrete normally varies between 0.15 and 0.25 (ACI-Committee-

207, 1970). 

2.1.1  Compressive Strength 

The compressive strength of dam concrete is its most important property, since in dam design a 

great effort is put into minimizing tension and promoting stress through compression. Typically, 
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rapid high compressive resistance, except in certain cases, is not required for dams (ICOLD-

Committee-on-Concrete-Dams, 2008). 

The main element that controls tensile resistance in mass concrete is the porosity of the cement 

paste, which depends on the water/cement (w/c) ratio. The weakest link in concrete, and the 

initial cracking point, is at the interface between the aggregate and the cement matrix and the 

porosity at this point is what affects the strength. Because porosity is not easily measured, the w/c 

ratio is normally used. Lowering the w/c ratio in mass concrete will typically improve the 

properties of the concrete that are important for dam construction such as strength and 

impermeability (ICOLD-Committee-on-Concrete-Dams, 2008). 

The type of aggregate, its strength, and the maximum aggregate size also play an important role 

in the strength of mass concrete. Typically, the strength of mass concrete is increased with 

increasing aggregate size. This trend can be reversed if large quantities of cement are used in the 

concrete mix. Additionally, as mentioned by Nallathambi, Karihaloo, and Heaton (1985), the 

critical energy release rate is also  increased by increasing maximum aggregate size. As the 

aggregate strength is increased, the concrete mix using that aggregate will also show increased 

strength. The type of aggregate used can have varying effects on the strength of the concrete. The 

amount of water absorption of different rocks will have an effect on the w/c ratio used in a mix. 

For proper workability, certain sands also require a larger w/c ratio, which in turn has a negative 

effect on strength. Additionally, the cohesion between the cement matrix and different aggregates 

plays a role on concrete strength. This could be affected by the presence of dust on the 

aggregates. Lastly, the roughness of the aggregates will have an effect on the interlock found 

between the aggregates, which will also affect the concrete strength (ACI-Committee-207, 1970; 

ICOLD-Committee-on-Concrete-Dams, 2008). 

The different admixtures and additives used in the concrete mix will also affect the compressive 

strength of the concrete mix. 

It was found by Khaloo, Shooreh, and Askari (2009) that when testing mass concrete specimens, 

the 7 day tests are unreliable. It was also noted that the maximum aggregate size does not have a 

size effect factor on the test results if sufficiently large test specimens are chosen. Larger test 

specimens, however, tend to have lower compressive strengths. 
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2.1.2  Tensile Strength 

The tensile strength of concrete dams is an important factor in determining dam safety. 

According to Raphael (1984), the tensile resistance of concrete is a constant property; however, 

the resistance measured varies depending on the method used to quantify it. The three most 

commonly used tests to determine tensile strength are as follows: direct tensile test, ft; splitting 

tensile test (Brazilian), fsp; and third point bending test (modulus of rupture), fr. Much work has 

been done to determine the relationship between these different tensile strengths and the 

compressive strength of concrete. These relationships can be found in Table 2-1. The stress states 

caused in the specimens during the different tests can be seen in Figure 2-1 (ICOLD-Committee-

on-Concrete-Dams, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

The direct tensile test method is the least accurate of the 3 methods and shows the widest 

variation, as seen in the work done by Nianxiang and Wenyan (1989). This is because a small 

eccentricity in the application of the tensile force can dramatically affect the stresses in the 

specimen. Additionally, surface drying decreases the observed tensile strength dramatically for 

this test (Raphael, 1984). 

(b) (d) 

(c) (a) 

Not to scale 
 
Figure 2-1: Tension Tests: (a) Direct; (b) Brazilian; (c) Modulus of Rupture; (d) Wedge Splitting 
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The splitting tensile test provides the tensile strength value that is the most accurate and 

representative of the actual tensile strength according to Raphael (1984). For this test the effects 

of surface drying are negligible because, as can be seen from Figure 2-1, there are large 

compressive forces at the surface of the specimen, where surface drying is important, and the 

tension plane is located within the specimen (Raphael, 1984). 

The third point loading test tends to give results that are closest to the results found in numerical 

modeling, which are inclined to overestimate stresses. This is due to the fact that this test model 

assumes, until rupture, a constant modulus of elasticity for the complete stress-strain curve. This 

method has less variability in results than the other two methods and the results from this test are 

easily reproducible (Raphael, 1984).  

A fourth recently developed test method, the wedge splitting test, is advantageous because it 

allows for the strain softening portion of the stress-strain curve to be obtained and thus allows the 

fracture energy to be calculated (ICOLD-Committee-on-Concrete-Dams, 2008; Nordtest, 2005). 

Table 2-1: Relationship Between Compressive Strength and Tensile Strength of Concrete 

No. Strength test Specimens 

Heilmann (1969) 'c'  

 in: fi = c · fc 
2/3

 [kg/cm
2
] 

Other relations (all in kg/cm
2
) 

min. avg. max. Source Formula 

fr 
Flexural: 

Center-point load 
Prisms H: 10 cm  

L: various 
0.86 1.07 1.28 ICOLD (2008) fr = (2.5 to 3.0).Afc 

fr 
Flexural: 

Third-point load 

As above 0.76 0.98 1.2 ICOLD (2008) fr = 2.0.Afc 

10 x 10 x 40 cm 
 

Khan et al. 
(1996) 

fr = 0.86.fc
2/3

 

cyl: 15 x 53 cm 
 

Raphael (1984) fr = 0.95.fc
2/3

 

fsp 
Splitting 

(Brazilian) 
cyl: 15 x 30 cm 0.48 0.50 0.70 

  

ft Pure tension 

cyl: 15 x 30 cm 
cyl: 15 x 25 cm 
5 x 20 x 20 cm 
9 x 15 x 60 cm 

0.36 0.52 0.68 

Raphael (1984) ft = 0.70.fc
2/3

 

Kupfer and 
Gerstle (1973) 

ft = 0.64.fc
2/3

 

Note: 10kg/cm
2
 = 1 MPa; If fc is input in MPa, multiple fi by 0.464 for approximate value in MPa. 

Adapted from ICOLD-Committee-on-Concrete-Dams (2008) 
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2.1.3  Shear Strength 

The shear strength for mass concrete can be represented by the following formula: 

          

Where: 

   = Shear Strength 

  = Cohesion 

  = Shear Area 

  = Coefficient of Friction [tan ( ).   = Friction Angle] 

  = Normal Force 

The first part of the equation represents the bond between the different elements on the shear 

plane. It is a material property that is affected by the component of the concrete mix. The second 

part of the equation is simply the resistance due to friction. It is dependent on the normal force 

applied to the shear plane and the rugosity of the shear plane. With larger aggregates, there is 

better interlock between aggregates and a larger rugosity is observed on the shear plane leading to 

a higher shear resistance (ICOLD-Committee-on-Concrete-Dams, 2008). 

The shear strength of concrete is most important when evaluating discontinuities in a dam, such 

as joints and cracks. On average, shear strength of mass concrete is found to be roughly 0.2 times 

its compressive strength, for concretes with maximum aggregate size of 38 mm (ICOLD-

Committee-on-Concrete-Dams, 2008). 

The fracture energy for shear tests was found by Bažant and Pfeiffer (1986) to be roughly 25 

times larger than for tensile failures. This is thought to be due to the interlocking that takes place 

between aggregates during shear failures, which is more important than for tensile failures. This 

is a reason why maximum aggregate size and surface roughness is very important in shear 

strength (Chupanit & Roesler, 2008). 

2.1.4  Multi-Axial Stress States 

It was found by Wang and Song (2009) that the compression and tension resistance of mass 

concrete is stronger under uniaxial forces than under biaxial compression-tension or tri-axial 
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compression-tension-tension. They also proposed equations for the failure criterion of mass 

concrete under these multi-axial stress-states. 

2.1.5 Modulus of Elasticity and Poisson’s Ratio 

The modulus of elasticity and Poisson‟s ratio for mass concrete are again affected by the w/c 

ratio, aggregates, admixtures, and additives.  

As with the strength of concrete, a decrease in w/c ratio will increase the modulus of elasticity 

and Poisson‟s ratio. When the strength of concrete increases, so does the modulus of elasticity; 

however, they are not directly proportional. Additionally, the modulus of elasticity of the 

aggregate used also plays an important role in the modulus of the mass concrete. 

There is a wide variation found in the measured Poisson‟s ratio and modulus of elasticity of mass 

concrete. This is attributed to the fact that it is difficult to accurately measure the different 

displacements on a large heterogeneous mass concrete specimen (ACI-Committee-207, 1970). 

2.1.6 Additional Considerations 

Shah and Kishen (2010) note that in concrete-concrete cold joints, the size effect rules, a set of 

equations developed to account the effect of size on specimen strength (a larger specimen will 

have a lower strength), developed by Bažant (1999) still hold. Additionally, it was found that the 

greater the difference between the concretes on either side of the cold joint, the weaker the cold 

joint becomes and the more brittle the failure of the specimen. 

 

2.2 Cracking in Concrete Dams 

2.2.1  Causes 

The main reason of cracking in concrete dams is due to tensile stresses in unreinforced concrete 

that exceeds the tensile resistance of concrete. There are many causes for the stress states that 

lead to the deterioration and cracking of concrete. The most important in concrete dams are 

temperature changes and large temperature gradients, chemical reactions, hydrostatic overload, 

and hydrofracturing (Lapointe, 1997; Saleh et al., 2003; Veltrop, Yeh, & Paul, 1990). 
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2.2.1.1 Thermal Stresses 

Changes in temperature in any material will create a change in volume. If this material is not free 

to move, this volume change will create stresses. Thermal stresses in mass concrete are typically 

seen for two reasons: because of seasonal temperature cycles and because of heat released from 

cement hydration. Since the hydration of cement is necessary, it is not possible to avoid this heat; 

however, there are ways to mitigate it or counter-balance it. Normally the concrete mixes used for 

mass concrete have much less cement per unit volume then standard structural concrete, which 

reduces the amount of heat created. There are many additives and admixtures that can be used to 

delay or reduce the heat of hydration. It is also possible to use ice in place of water when mixing 

the concrete to decrease the differential between the ambient temperature and the final cured 

temperature of the concrete. Another technique commonly used is to pass cooling pipes 

throughout the concrete to help dissipate the heat created. Slight temperature changes can be 

acceptable; however, any large temperature change will create cracking in the dam. Seasonal 

changes in ambient temperature are not avoidable but their effects on the main mass of a concrete 

dam are not felt as much as on the surface. Generally, the cracking caused by seasonal 

temperature cycles will be on the surface of the structure and will not penetrate deeply into the 

dam (ACI-Committee-207, 1970; Lapointe, 1997). 

2.2.1.2 Chemical Attacks 

The most common chemical reaction in concrete is the alkali-silica reaction, which is caused by 

the reactions between the hydroxyl ions in the water and the silica in the aggregate. This happens 

when a reactive aggregate is chosen and leads to expansion in concrete. This change in volume 

leads to tensile stresses that in turn might lead to cracking. Many other types of chemical 

deterioration can take place in a dam, but they are all caused by a change in volume and the 

stresses that this change causes (Lapointe, 1997). 

2.2.1.3 Hydrofracture During Grouting 

Hydrofracture during the grouting of dams initiates when the pressures in the injection fluid 

cause stresses in the concrete that exceed the maximum allowable tensile stress of the dam 

concrete. When evaluating the stresses, it is important to consider both the pre-existing stresses in 
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the structure as well as the stresses caused by the injection (Saleh et al., 2003; Wong & Farmer, 

1973). 

2.2.1.4 Hydrostatic Overload 

Hydrostatic overload can be caused by poor designs such as disjointedness in geometry, the 

structure not acting monolithically or as was intended, or due to flooding. Since every dam is 

unique, having different soil conditions, topographic setting, climatic conditions, and available 

construction materials, it is very difficult to identify all the potential problems that may arise. 

That is why it is often very difficult to identify the cause or causes of cracks in dams (Veltrop et 

al., 1990). 

2.2.2 Types of Cracks in Dams 

There are many different types of cracks in dams. They can be horizontal or vertical, thin or 

thick, have a large or small area, or be any combination of the aforementioned qualities. It is 

often necessary to do an in-depth investigation to determine the nature of a crack. There are many 

methods used to characterize and map a crack. Cameras can be lowered down boreholes to 

visually inspect the crack or ultrasound can be used to ascertain the extent of the cracks. Cores 

taken from the concrete can be tested for mechanical strength and used in chemical and 

petrographic tests to evaluate the quality of the concrete (Jansen, 1988; Lapointe, 1997). New 

methods such as the use of Rayleigh waves to characterize cracks and evaluate repairs, as 

proposed by Aggelis, Shiotani, and Polyzos (2009) and the method of using air-coupled sensors 

to evaluate crack depth, as proposed by Kee and Zhu (2010) are constantly being developed and 

put into practice. 

2.2.3 Repair Methods 

Cracks in dams can cause many problems including hindering the structural integrity of the 

structure, problems with leakage, aesthetic concerns, and durability issues. There exists many 

ways of repairing cracks. Depending on the nature of the crack and the reason for the repair, the 

most efficient repair method is chosen. Some of the methods are stitching, drypacking, post-

tensioning, and grout injection. Stitching consist in connecting both sides of the crack with „U‟ 

shaped steel pieces. This repair method can only be used if the crack mouth is accessible. It does 
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not close cracks; it only provides tensile resistance to the crack area. This repair may cause stress 

concentrations and therefore cracking at other locations in the structure. Drypacking consists in 

filling a crack with a low w/c ratio mortar and hand-tapping it into place. This technique is 

appropriate for dormant cracks and for shallow or aesthetic cracks. Post-tensioning consists in 

drilling holes through the cracks, inserting post-tension rods through the holes and then filling the 

holes with grout. This repair method will close an open crack and will provide very good 

resistance. It is important however to provide sufficient anchorage to the bars for risk of causing 

eccentricities and tensile forces leading to cracking at other locations in the structure. Because of 

this constraint, this repair method is usually not suitable for the repairs of cracks in most dams. 

By far the most common repair method for cracks in concrete dams is grout injection (ACI-

Committee-224, 1984; United-States-Dept-of-the-Army, 1970). 

2.3 Injection 

2.3.1 Injection Grout Properties 

Grouts have two sets of properties: their rheological properties, before curing, and their hardened 

properties, once cured. The important rheological properties for injection grouts are their density, 

stability, granulometry, penetrability, curing time, cohesion, and viscosity. Once cured, the 

important characteristics are grout density, mechanical resistance, adhesion, chemical resistance, 

shrinkage, expansion, and resistance to erosion (Mnif, 1997). 

2.3.1.1 Stability 

Grout stability is one of the most important characteristics of an injection grout. The stability of 

the grout reflects the amount of bleeding that occurs in the grout, or the amount of particle 

sedimentation. A grout is considered stable if the amount of bleeding is less than 5% after 2 hours 

of being at rest (ASTM, 2003). A stable grout will have little bleeding while an unstable grout 

will be prone to bleeding and sedimentation, as seen in Figure 2-2. Additionally, the stable grout 

will be more viscous than the unstable grout. The easiest way to affect the stability in a cement 

based grout is to modify the w/c ratio (G. Lombardi, 1985b). 
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2.3.1.2 W/C Ratio 

The w/c ratio is an important variable in cement grouts. A minimum w/c ratio is required to 

ensure the hydration of all cement particles. As the w/c ratio is increased beyond this point, 

capillary porosity is increased, leading to weaker cured grout. A low w/c ratio will yield a stable 

grout having a large density and viscosity before curing and to a cured grout with larger 

resistances and better cohesion and adhesion. Although a stable grout will yield a cured grout of 

higher quality, the increased viscosity decreases its injectability. A low w/c ratio will require 

larger injection pressures to ensure that it propagates through the crack network. To increase 

injectability, a higher w/c ratio is required (Axelsson, Gustafson, & Fransson, 2009). It has been 

observed that in cases with an excessive w/c ratio, the cement hydration takes place with 

individual grains without forming a grout matrix. This results in a fine powder of hydrated 

cement particles on the bottom surface of the crack. Stability and the w/c ratio of injection grouts 

are essential in achieving a balance between injectability of the grout and the quality of the cured 

grout (Giovanni Lombardi, 2007). 

Additionally, the w/c ratio has an effect on the strength of the cured grout. As in concrete, a lower 

w/c ratio leads to a stronger grout. In fact, it was found that in certain grout mixtures, the w/c 

ratio is the most important factor affecting grout strength (Chen, Ye, & Zhang, 2009). 

2.3.1.3 Viscosity and Cohesion 

The viscosity and cohesion of a grout are determined from flow time, which can be determined 

by the use of a Marsh cone (ASTM, 2004b). The viscosity of a fluid, measured in Poise, is a 

(a) (b) Cement Particle 

Figure 2-2: (a) Unstable Grout vs. (b) Stable Grout 
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measurement of its internal shear strength. An injection grout with a low viscosity will require 

smaller injection pressures to deform the fluid and thus to properly penetrate a crack. When a 

fluid with a large viscosity is being pumped, a much larger force is required to deform the fluid. 

The cohesion of a fluid is a measurement of the shear force needed to put the fluid in motion. The 

larger the cohesion of a fluid, the larger the injection pressure required to push the fluid a given 

distance. Both viscosity and cohesion are closely related properties (Deere & Lombardi, 1985; G. 

Lombardi, 1985a). 

2.3.1.4 Leaching 

When injecting, it is often into a crack filled with water. Because of this, it is important that the 

grout can resist being washed away by the water and that it does not leach into the water, or mix 

with the water. The use of a stable grout helps tremendously with the anti-leaching capability of 

the grout. Studies done by Dumont (1997) found that the use of colloidal admixtures can help 

greatly with the grouts ability to resist leaching; however, depending on the w/c ratio of the grout, 

they may not be appropriate since they reduce injectability. It is often necessary to use 

superplasticizers with the colloidal agents to ensure injectability. 

2.3.1.5 Thixotropy 

Thixotropic fluids are fluids that have a relatively large viscosity when they are static, but when 

agitated, become less viscous. This is an important property of some chemical injection grouts. It 

can be advantageous because during the injection or pumping of the grout, it has a decreased 

viscosity that allows for better penetration and injectability. Once the injection process stops, the 

grout becomes more viscous. This limits the amount of grout that moves out of place or is eroded 

during the curing process (Mnif, 1997). 

2.3.1.6 Maximum Grain Size 

The maximum aggregate size coupled with the injection pressure will determine the minimum 

crack width that can successfully be injected. The rule of thumb is that the maximum grain size 

must be at least 3 times smaller than a crack to ensure that no blockage occurs (Axelsson et al., 

2009). However it was found by Draganović and Stille (2011) that penetrability can be reduced if 

too small a grain size is used. This can be attributed to smaller grain sizes having faster hydration 
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times and larger attraction occurring between particles. This leads to flocculation which can in 

turn block the flow path. 

2.3.1.7 Curing Time 

The set time for injection grouts needs to be well controlled. It is important that the grout does 

not set before it can properly penetrate the crack being injected. If however the set time is too 

long, there is a risk of the injection grout being washed out or in cold temperature, freezing 

(Giovanni Lombardi, 2007). 

2.3.1.8 Temperature 

The temperature of the injected medium is of import for grouting. Heat is a necessary part of the 

chemical reactions that take place during the hydration of cement-based grouts and during the 

chemical reactions that take place in chemical grouts. To keep grouts warm in cold climates and 

ensure proper curing, it is possible to use external heat sources and use accelerators to decrease 

setting time and increase hydration heat (Biggar & Sego, 1990; Zhivoderov, 1993). 

2.3.2 Types of Grout 

There exists a variety of injection grouts including clay grouts, asphalt grouts, chemical grouts, 

and cement grouts. New injection materials are always being developed (Argal, Korolev, Kudrin, 

& Ashikhmen, 2009). An infinite number of different grout properties can be obtained by 

modifying the components and ratios of these components in a grout mix. For the injection of 

cracks in concrete dams, the most commonly used are chemical or cement-based grouts 

(Domone, 1993). 

2.3.2.1 Chemical Grouts 

There are wide varieties of chemical grouts available on the market, the most common types 

being silicate acrylate, lignin, urethane, and epoxy grouts. The most common type of chemical 

injection grout used for the purpose of crack repair in concrete dams is epoxy-based grouts. 

Epoxy grouts are typically two separate organic chemicals that are mixed prior to being injected. 

By modifying the components used, it is possible to obtain epoxy grouts with varying rheological 

and structural properties so as to be able to obtain the best grout for any given injection. There 

have been some concerns regarding the proper curing of epoxy grouts at low temperatures since 
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some degree of heat is required to start the chemical reaction between the two components. 

However recent developments with epoxy grouts have yielded positive results with the injection 

repair of cracks at near freezing temperatures (Chertykov & Dzhuraev, 1983; Privileggi, 2012). 

Another concern with epoxy grouts is that their material properties vary greatly from that of the 

base material, or mass concrete. For best results in a repair, it is beneficial if the modulus of 

elasticity of the repair material is roughly equal to that of the base material, but for epoxy, this is 

usually not the case (Chandra Kishen & Rao, 2007; Morgan, 1996; Rio, Fernandez, & Gonzalo, 

2006). 

2.3.2.2 Cement Grouts 

By far, the most common injection grouts used for dam repair are cement-based injection grouts. 

Cement-based grout consists of cement powder mixed with water and different admixtures and 

additives. Cement is a finely ground powder with a diameter ranging from a few microns to 

50 μm. Once water is mixed with the cement, an exothermic chemical reaction called hydration 

occurs. This reaction leads to the hardening of the grout (Domone, 1993; Saleh, Tremblay, & 

Desbiens, 1997). 

2.3.3 Additives and Admixtures 

There are wide ranges of additives and admixtures that can be incorporated into grout mixes to 

modify the fluid characteristics and set characteristics of injection grouts. Additives include slag, 

silica fume, fly-ash, pozzolans, and bentonite to name a few. They are added to the cement 

powder for the purpose of creating strength gains, enhancing chemical resistance, delaying set 

time or hydration, increasing cohesion and viscosity, reducing bleeding, and as filler material. 

Admixtures are added to the grout during the mixing phase and include water-reducing 

(plasticizers), air entertaining, corrosion resisting, set-retarding, and accelerating admixtures 

(Naudts, Landry, Hooey, & Naudts, 2003).  

Accelerators increase the rate at which hydration occurs, they can be useful in cases where 

important leakages through cracks could disturb the grout before it can properly set. Retarders, on 

the other hand, are used to slow down the rate of hydration in situations where there is a long 

delay between mixing the grout and its injection. The simplest way of increasing the injectability 

of a grout is to increase the w/c ratio. However, as previously discussed, this will decrease the 
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strength of the hardened grout and decrease the bond between the grout and the injected medium. 

For this reasons, high-range water reducers or superplasticizers are almost always used for grout 

injections. Superplasticizers are chemicals that prevent the particles in the grout mix from 

grouping together, thus decreasing the amount of water required to obtain a stable grout, since 

clumping and settling of particles is reduced (Naudts et al., 2003). 

The effect of the composition of grouts on its rheological behaviour has been widely studied. 

Many relationships have been developed to predict grout rheology based on the grout mixes 

(Nguyen, Remond, & Gallias, 2011). Various studies on the effects of particular grout additives 

have been done. For example it was found by Bremen (1997) that the use of bentonite greatly 

reduces penetrability of grout mixes and that if penetrability is of import, the use of bentonite 

should be minimized and the addition of superplasticizers increased. Tests done by Khayat, 

Yahia, and Sayed (2008) underline the effects of various admixtures and additives on the fluidity, 

rheology, stability, and compressive strength of  grouts. Most notably, it was found that proper 

dispersion of the agents is important to the final product. The addition of superplasticizers greatly 

enhances stability and increases grout strength. 

2.3.4 Injection Methods 

Grout injection is not a definitive science; it is constantly being improved and studied. There 

exist many different schools of thought on grout injection, such as the classical injection method, 

the GIN method, and the RODUR method. The basic approach to all of these dam crack injection 

methods is to drill multiple holes to the crack and to pump an injection grout into the holes in 

succession. Depending on the method and the crack, different parameters will be measured in real 

time to determine the progress of the injection, if any injection parameter needs to be modified 

(grout mix, pressure, etc.), or if the injection should be stopped (Bruce & De Porcellinis, 1989; 

Giovanni Lombardi, 1998).  

A maximum pressure is set for most injections. This maximum is to ensure that the pressure in 

the crack does not become such that it will cause crack propagation.  

The first step with any injection method is to first investigate the cracks. That is to determine the 

history of the crack, the cause of the crack, whether the crack is active or stable, the flow in the 

crack, and any other information that may be useful. The next step is to establish an injection 
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method and its features: the number of injection holes that will be required, injection hole 

spacing, injection grout properties, injection pressures, real-time measurements, etc. This is why 

every injection campaign uses a different and unique approach (G. Lombardi, 1997).  

As more and more is being understood about grout propagation and grout behaviour, new 

grouting methods are always being developed, such as the RTCG method by Stille, Gustafson, 

and Hassler (2012), and the methods discussed by Pronina and Ashikhmen (1996). 

2.3.4.1 Classical Injection Method 

This injection method consists of starting the injection process with a grout with a high w/c ratio. 

As the injection progresses, the w/c ratio of the injection grout is gradually decreased to a 

specified ideal value. The assumption is that if a low w/c ratio grout is used, the crack will not be 

filled properly without risk of crack propagation. If, on the other hand, a high w/c ratio grout is 

used, the quality of the repair will be poor due to the excess water and bleeding. The idea behind 

this method is that the high w/c ratio grout will be able to penetrate the crack completely. 

Although the quality of the grout is not ideal, the particles should settle and form a grout layer 

throughout the entire crack. As the grout w/c ratio is reduced, the quality of the repair should 

increase. The w/c ratio is gradually decreased until either the injection pressure reaches the pre-

specified maximum or until the w/c ratio of the grout reaches its lower limit. This injection 

method is the most common repair method and has served successfully in countless repair 

campaigns; however much research has been done suggesting that it is not the most efficient 

grouting strategy (Giovanni Lombardi, 1998). 

2.3.4.2 GIN 

GIN stands for Grout Intensity Number and is represented as a curve on the injection pressure vs. 

volume curve as seen in Figure 2-3. The GIN method uses a single grout mix for the entire 

injection. This grout must be stable (w/c ratio between 0.67 and 0.8 by mass), a low-to-medium 

injection rate must be used, and real-time measurements of pressure and injected volume must be 

taken. The injection of each individual hole is stopped once the GIN line is intersected on the 

pressure vs. volume graph (G. Lombardi & Deere, 1993). 
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2.3.4.3 RODUR 

The RODUR injection method uses chemical epoxy resin grouts as opposed to cement-based 

grouts. The grout used for every repair is developed based on the needs of each situation; 

however, there are some properties that are always desired. The grout must be a true Bingham 

fluid, must be immiscible in water, and must have a constant and predictable viscosity until set. 

The RODUR method relies on a single injection at each location. Additionally, crack propagation 

is not a huge constraint with the RODUR method. This is because the crack is injected in sections 

so that the entirety of the crack is not subjected to large uplift pressures simultaneously. It is 

assumed that the portion of the dam not being injected can compensate for the uplift pressure 

caused at the injection location. It is assumed that the injected pressure decreases very rapidly 

from the point of injection which further limits the risk of crack propagation. Lastly, if the crack 

does propagate, it is assumed that it will simultaneously be filled with the grout and repaired 

(Bruce & De Porcellinis, 1989). 

Figure 2-3: Grout Intensity Number and Injection flow paths 
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2.3.5 Addition Considerations 

Javanmardi and Léger (2005) developed a simplified method considering nonlinear finite element 

of concrete cracking, hydromechanical coupled analysis, grout state change analysis, and 

hardened grout in the repair to adequately model the grouting process. It was also shown that the 

Universal Distinct Element Code software could successfully be used to model the grouting 

process (UDEC, 2000). 

2.4 Repair Case Studies 

2.4.1 Isle Maligne Hydroelectric Power Complex 

The Isle Maligne Hydro Electric complex is located in Lac St-Jean, Alma, Quebec, Canada. 

Local lift joints in the left gravity dam abutment (43 m high by 110 m long) of the dam were 

repaired by grout injection using the GIN method. The maximum allowable pressure was first 

selected based on the crack opening, cohesion of the concrete, weight of the concrete, and pre-

stressed anchor load. The maximum injection volume was then determined using the maximum 

pressure, the crack thickness and the concrete cohesion. By multiplying these two numbers 

(maximum pressure and maximum volume), a GIN value is established. A GIN number was 

calculated for each section to be injected. The GIN curve (pressure vs. volume) is plotted for each 

injection point and during the injection, the flow path is plotted on the same graph in real-time. 

Once it intersects the GIN curve, the grouting is stopped. On Figure 2-3, a sample GIN curve and 

three (3) observed grouting paths are plotted. Case 1 represents the injection being stopped 

because the injection pressure reached the specified limit. In this case, no uplift was observed 

even though the injection pressure was very high. This is due to the fact that the volume of 

injection grout is small and exerts this pressure over a very small area. Case 2 represents the 

injection being stopped when the injection path reached the GIN curve. Case 3 represents the 

case where the crack accepted large volumes of grout with minimal increase in pressure. For this 

case, the injection was continued past the maximum allowable volume for experimental purposes. 

It was observed that after exceeding the volume limit, small uplift was observed with no increase 

to the pressure. At this point, the injection was stopped and the uplift was reversed. This result 

indicates that there is a risk of uplift even at low pressures. When this pressure is exerted over a 

large area, uplift can be seen. Except for the case were the injection path was in excess of the 
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GIN curve (experimental case 3), no uplift was observed (Turcotte, Savard, Lombardi, & Jobin, 

1994). 

2.4.2 Sayano-Shushenskoe Hydrostation Dam 

The Sayano-Shushenskoe Dam, on the Yenisei River in Khakassia, Russia, is a gravity arch dam 

with a height of 242 m and length of 1074 m. The water stops and grout curtain proved to be 

unsuccessful, leading to cracking near the base of the upstream side of the dam and lifting 

between the dam and bedrock. Once the dam was filled to normal usage levels in 1996, water 

seepage over a 15 m area near the base of the dam was measured to be 458 liters per second. In 

1991, an injection campaign using the classical injection method was undertaken to stop the 

leakage. Due to the high flow rates in the cracks and the interconnectivity between the cracks, the 

horizontal drainage holes, cooling pipes, and the investigation bore holes, these repairs proved to 

be unsuccessful. The injection grout was simply washed out. Many ineffective or failed attempts 

were made until 1995 when two alternate approaches were attempted. The first using the roflex 

material (polymer elastic) and the second using the RODUR method. The attempts made with the 

roflex material failed because the roflex material loses its penetrability at low temperatures and 

becomes overly viscous. The RODUR injection grout used had high viscosity, good penetrability, 

low surface tension, and rapid set times at low temperatures. The injections proved successful 

and completely stopped seepage in the injected section of the dam. Due to this success, an 

injection campaign to repair the entirety of the seepage was started. Forty injection zones were 

identified but due to financial constraints, and to the assumption that the compression caused by 

the injection of some zones would benefit others, 24 injection zones where settled upon. The 

injection grout used was injected with a pressure varying from 25 to 40 MPa along 15 to 20 m-

long injection paths. Due to the length of the path and the viscous nature of the grout, the 

pressure at the crack mouth was found to vary between 6 MPa and 8 MPa. Extensometers were 

installed to monitor the movement of the cracks during the injection and an additional crack 

opening of 2.5 mm was used as a stop criterion for injection. These injections did cause adjacent 

non-repaired cracks to open further; however, cracks previously repaired did not generally open 

due to the compression created by their repairs. The repair was successful with only 1% of the 

seepage remaining in the injected zones (Bryzgalov et al., 1998). 
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2.4.3 Daniel-Johnson Multiple-Arch Dam 

Located on the Manicouagan River north of Baie-Comeau in Quebec, Canada, the Daniel-

Johnson Dam is the largest multiple arch dam in the world. It has a crest length of 1300 m, a 

height of 215 m, and a reservoir area of 2000 km2, which translates into 140x109 m3 of water. The 

dam consists of 13 cylindrical arches being supported by 14 buttresses (Saleh et al., 2003). 

Shortly after its construction which started in 1962 and ended in 1968, the Daniel-Johnson Dam 

(BDJ) experienced multiple types of cracks and infiltration (Saleh et al., 2002). 

Debonding at the base of the dam in most arches was detected due to seepage observed at the 

base of the structure [Figure 2-4 (b)]. The seepage was stopped by grout injections (Bulota et al., 

1991).  

 

 

Figure 2-4: Grouting of plunging crack: (a) BDJ dam, (b) typical concrete crack pattern, (c) 

reservoir level, (d) seepage Arch 5-6 

 

 

 

 

 

 

 

 

Fig. 1 – Grouting of plunging crack: (a) BDJ dam, (b) typical concrete crack pattern, (c) 

reservoir level, (d) seepage Arch 5-6. 
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Oblique cracks as seen in Figure 2-4 (b) on the downstream side of the dam were first observed 

in 1969. These cracks, which are due to thermal stresses, start off being horizontal and form 

elliptical arcs while moving towards the buttresses. These cracks were generally perpendicular to 

the downstream face of the dam and on average went to a depth of 35% of the thickness of the 

dam. Thermal shelters were put in place at the base of the downstream side of the dam to stop the 

crack propagation (Bulota et al., 1991; Tahmazian et al., 1989). 

Plunging cracks, seen in Figure 2-4(b), were caused by a lack of compression in the base of the 

arches (Larivière, Routhier, Roy, Saleh, & Tremblay, 1999). These plunging cracks initiated in 

the center of the arches near the upstream foundation of the dam, to then travel horizontally and 

start diving towards the downstream foundation of the structure (Veltrop et al., 1990).  

An injection campaign aimed at repairing these cracks was started in 1969 and ended in 1982 

after a moratorium was put on grout injections due to the hydraulic fracturing caused by 

significant injection pressures using unstable grout with high w/c ratios. After the repairs, the 

seepage rate increased at a constant rate of roughly 1 l/s per year until 1992, when the seepage 

rate suddenly increased by 5 l/s in five weeks. A team was put in place to study the problem and 

in 1997 a grout injection operation was undertaken to repair the plunging crack in arch 5-6 of 

BDJ using micro fine cement grout [maximum grain size of 12m (0.472 mils)] (Saleh et al., 

2003). 

The classical injection method was selected, starting with a grout with a w/c ratio of 1.0 and 

gradually decreasing it until the stop criteria were met. The stop criteria included a maximum 

injection pressure of 0.2 MPa above the uplift pressure in the crack and a limited injection area of 

100 m2 (Hydro-Quebec, 2008).  

The injection campaign was successful with virtually all of the seepage through the arch having 

been stopped (Saleh et al., 2003). 

2.5 Conclusion 

Grout injection repairs of dams depend on many factors discussed in this literature review. The 

properties and composition of the mass concrete being repaired, the properties and composition 

of the injection grout being used, as well as the specific injection method being used all play an 

important role in grout injections for dam crack repair. There is still much research and debate 
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surrounding grouting repairs; however, the material presented in this literature review sets a good 

foundation for the understanding of the process and sets a starting point for the material presented 

in Chapter 3.  

Although the repairs for BDJ were successful in stopping nearly the entirety of the seepage, it is 

not known whether this repair actually provides any tensile or shear resistance to the structure. 

For this reason, it is assumed in numerical models that the tensile resistance for the repaired area 

is null. As will be presented in Chapter 3 there is reason to believe that this assumption may be 

overly conservative. The following chapter presents the experimental research done on 

ascertaining the tensile and shear strengths that the injection for BDJ provided. 
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CHAPTER 3 ARTICLE 1: MECHANICAL RESISTANCE OF 

CRACKED DAM MASS CONCRETE REPAIRED BY GROUTING: AN 

EXPERIMENTAL STUDY 

3.1 Introduction 

Concrete dams are structures that are prone to cracking. Shrinkage, large temperature gradients, 

and hydrostatic overload are just some of the causes of cracking in dams. Shortly after its 

construction, the Daniel Johnson Dam (BDJ) experienced multiple types of cracks including 

plunging cracks which were caused by a lack of compression in the base of the arches.1,2 These 

plunging cracks initiated in the center of the arches near the upstream foundation of the dam, then 

travel horizontally and start to dive towards the downstream foundation of the structure (Figure 

3-1 a). To minimize water infiltration and leakage as well as to improve structural integrity by 

eliminating uplift pressures, these crack needed to be repaired.  

There are various methods of repair techniques ranging from post-tensioning to injections 

following different procedures and using different materials. In the case of BDJ and for similar 

types of cracks, the most common repair method is grout injection.3  

An injection campaign aimed at repairing these cracks was started in 1969 and ended in 1982 

after a moratorium was put on grout injections due to the hydraulic fracturing caused by 

significant injection pressure using unstable grout with high water cement (w/c) ratio.4 Since, 

many repair products including epoxy based grouts, and micro fine cement grouts have been 

studied and tested.5,6,7,8 In 1997 a grout injection operation was undertaken to repair the plunging 

crack in arch 5-6 of BDJ using stable micro fine cement grout [maximum grain size of 12mm 

(0.472 mils)]. From Figure 3-1, after the injection operation, the total water leakage from arch 5-6 

and buttresses decreased from roughly 19 L/s (1159.5 in3/s) to 3 L/s (183.1 in3/s). The repair is 

important not only to decrease leakage but also to remove uplift pressures that the water in the 

cracks creates.1,4  

Since the injection, as can be seen from Figure 3-1, the water level in the reservoir has increased 

to above pre-repair levels without having a noticeable effect on water leakage. These results 

suggest that the repair increases the ability of the crack mouth in BDJ to sustain tensile stresses 

post-injection. In the finite element models used to assess the initiation and propagation of 
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grouted crack it is most often assumed that there is no gain in mechanical strength because little 

data exists on the strength a repair may provide in mass concrete.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Injection grout research is well documented in terms of rheology, composition, and 

injectability.10,11 There have been some studies done on the tensile strength of mass concrete and 

on cold jointed concrete, however the strength of a repaired section of mass concrete has yet to be 

studied.12,13,14 In the work presented here, the tensile and shear resistance of mass concrete and 

repaired mass concrete was investigated experimentally following a modified ASTM C78 test 

procedure and a shear test procedure.15 Results from virgin specimens, repaired with an injection 

grout with a water cement ratio of 1.0 (Grout I) and of 0.5 (Grout II), were compared. This 

research provides experimental failure behaviour and resistances of mass concrete and the related 

grouted cracks under flexural loading and shear loading. 

Metric (SI) conversion factors: 1 in = 0.0254 m;  

 

 

 

 

 

 

 

 

Fig. 1 – Grouting of plunging crack: (a) BDJ dam, (b) typical concrete crack pattern, (c) 

reservoir level, (d) seepage Arch 5-6. 
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Figure 3-1: Grouting of plunging crack: (a) BDJ dam, (b) typical concrete crack pattern, (c) 

reservoir level, (d) seepage Arch 5-6 
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3.2 Research Significance 

Many studies have been undertaken on the repairs of dams as well as on various different 

injection grouts and repair methods, however there is little literature or experimental research on 

the mechanical strength of repaired sections of concrete, especially mass concrete. This 

experimental study is useful in determining the modulus of rupture and shear strength of repaired 

mass concrete while not having to account for the scaling factor of the aggregate size. This study 

also provides valuable experimental data to assign mechanical strength in numerical models of 

repaired dams including grouted cracks. 

3.3 Experimental Investigation 

3.3.1 Mass Concrete Mix and Related Properties 

The initial BDJ concrete mix used 150 mm (6 in.) max size aggregate. To properly account for 

the rugosity of the large aggregates, but given the constraints of the laboratory, maximum 

aggregates of 100 mm (4 in.) were selected for the experimental concrete mix. All specimens 

tested were from the same concrete mix; three batches were needed to pour all six prismatic beam 

specimens used [400 x 400 x 1250 mm (16 x 16 x 49.2 in.)]. The maximum aggregate size was 

100 mm (4 in.) or 2/3 the max aggregate used for BDJ. Due to the large maximum aggregate size, 

the minimum dimension of a given specimen could not be smaller than 300 mm (12 in.);16 400 

mm (16 in.) was chosen to be conservative. The following are the components of the mix which 

can be found in Table 3-1: General Use Portland cement (Low Heat cement was not used because 

it has little effect on the strength and would increase cure time), superplasticizer (to increase 

workability), entrained air, well graded siliceous river sand, and well graded limestone aggregate. 

The mix was developed by modifying the original 1967-68 mix of BDJ while keeping similar 

granulometry and composition and to have a compressive strength of 30 MPa (4.35 ksi), roughly 

the initial compressive strength of BDJ, while making the concrete workable.7  



29 

 

Table 3-1: Mass Concrete Mixes 
1967-68 BDJ Mix Final Experimental Concrete Mix 

Material 1000 L   Material 1000 L   

Cement** 234 kg Cement 270 kg 

Large Sand 364 kg Sand 675 kg 

Fine Sand 363 kg    
Aggregate 20-10 148 kg Aggregate 5-10 305 kg 

Aggregate 38-20 231 kg Aggregate 10-20 220 kg 

Aggregate 75-38 445 kg Aggregate 20-40 345 kg 

Aggregate 150-75 534 kg Aggregate 50-100 450 kg 

Water*** 113 kg Water 143 kg 

    
  

 

 
   Entrained air 770 ml 

Entrained air 0.3 kg Superplasticizer 3090/2730* ml 

* Batch 2 and 3, ** LH, ***Frozen (Ice) 

 
  

 Note: 1 kg = 2.20lb, 1L = 61.02in3, 1ml =0.06102in3 
 

 

Three cylinder specimens, seen in Figure 3-2, of 400 mm (16 in.) diameter and 800 mm (32 in.) 

in height, one from each batch of concrete, were poured into cardboard tubes. A modified version 

of ASTM C469 (to account for the larger specimens) was used to determine the compressive 

strength, modulus of elasticity, and Poisson‟s ratio of the concrete.17 The size effect for the 

results of the compressive strength are negligible.18 

 

 

 

 

 

 

 

 Figure 3-2: Mass concrete cylindrical specimen (400mm x 800mm) 
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3.3.2 Grout Mixes and Related Properties 

When repairing a dam, a grout with a low w/c ratio is desired because it will bond more strongly 

with the parent material and will have better mechanical strength.19 In practice this is often not 

possible, due to the irregular shape and varying thicknesses of cracks; if a grout is too viscous it 

will not properly fill the entire crack under low pressures. For these reasons, a higher water 

cement ratio is often used for grout injection.9 The latest approach which was used in the repair 

of BDJ was to start the injection with a water cement ratio of 1.0 and gradually decrease it until 

no longer possible, ending the injection with a water cement ratio ranging anywhere from 1.0 to 

0.4.20 

In this study, two grout mixes, seen in Table 3-2, were used for the injections; either a grout mix 

with a water cement ratio of 1.0 (Grout I), or a grout mix with a water cement ratio of 0.5 (Grout 

II). Both mixes used micro fine cement [maximum grain size 12mm (0.472 mils)] and a 

superplasticizer. The grout mixes used are equivalent to the mixes used in the repair of the BDJ.20 

The rheological tests performed on each grout mix were bleeding, according to ASTM C940;21 

viscosity, according to ASTM D6910;22 set time, using a thermocouple; and density. At least 

twelve 25.4mm (1 in.) cylindrical specimens and nine 50.8 mm (2 in.) cylindrical specimens, that 

meet the specifications of ASTM C 579 and ASTM C 496 respectively, were tested with each 

injection.23,24 For the first injection of both specimens A and B (Table 3) no 50.8mm (2 in.) 

cylindrical specimens were poured for compressive strength tests. Cylindrical specimens of 

25.4mm (1 in.) diameter were tested in accordance with ASTM C 579.23 Cylindrical specimens 

of 50.8 mm (2 in.) were tested in compression following ASTM C 39 or in indirect tension 

following ASTM C 496.24 

 Table 3-2: Grout Mixes 
  (I) W/C = 1.0 (II) W/C = 0.5 

Ingredients 
V m V m 

[L] [kg] [L] [kg] 

Micro-fine cement 4.21 12.39 4.25 12.5 

Water 12.14 12.14 6 6 

Superplasticizer 0.25 - 0.25 - 

Total 16.6   10.5   
Note: 1 L = 61.0237 in3; 1 kg = 2.20462 lb. 
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3.3.3 Beam Specimens 

Six 400 x 400 x 1250 mm (16 x 16 x 49.2 in.) unreinforced mass concrete specimens were cast 

(Table 3-3). Each specimen had a notch around its center which was 25 mm (1 in.) deep and 

19mm (3/4 in.) wide. This notch was to ensure that the crack initiated in a predicted location and 

to favour grout penetration for the repair. The specimens were fitted with 10M rebar outside of 

the crack zone for transportation purposes. To attach the support frames to the specimens, 

anchors were mounted to the cured specimens. Bolts where then used to attach the support frame. 

The frames seen in Figure 3-3 consists of two „U‟ shaped steel assemblages that are at either end 

of the specimen and are attached by means of four 25 mm (1 in.) steel rods. In cases in which the 

specimen was to be repaired, a hole was drilled to the center of the specimen prior to the test to 

create an exit point for the grout during injection. The drilled holes were capped with an exit 

valve so that pressure could be controlled. 

 

 

 

 

 

 

 

 

 

3.3.4 Testing Program 

The Testing program, summarized in Table 3-3, consists of the modulus of rupture tests, 

injections, and shear tests. 

Figure 3-3:Modified Modulus of Rupture – ASTM C 78 

 Roller 

Metric (SI) conversion factors: 1 in = 25.4 mm 
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 Table 3-3: Specimens and Test Order 
Specimens A B C D E F 

Modulus of Rupture x x x x x x 

Initial Repair  W/C ratio: 1 0.5 1 0.5 - - 

Modulus of Rupture x x - - - - 

Second Repair  W/C ratio: 1 0.5 - - - - 

Modulus of Rupture x x - - - - 

Third Repair  W/C ratio: 1 0.5 - - - - 

Shear Test x x x x - - 

Batch 1 3 2 1 - - 

 

3.3.5 Modified Modulus of Rupture ASTM C78 

To determine the modulus of rupture of the concrete, all six specimens were first tested using a 

variation of ASTM C78, Standard Test Method for Flexural Strength of Concrete. The two 

differences were the specimen size and the notched center. The Specimens were larger than the 

size prescribed by the standard due to the large aggregates. ASTM C78 does not call for a 

notched specimen. The geometric proportions prescribed by the standard were followed.15 To 

apply the load, two 245 kN (55 000 lb) hydraulic jacks were used. As shown on Figure 3-3, a 

spacing of 400 mm (16 in.), 1/3 the total length, was set between any given support and the 

nearest load and between the two loads. The total span between the two supports was 1200 mm 

(47 ¼ in.). Both ends of the specimens were fitted with a steel frame. The two frames were 

connected to each other by four 25.4 mm (1 in.) steel rods fitted with four bolts each. The frame 

served two purposes: ensuring that the two ends, upon fracture, would not fall; and to allow the 

two pieces to be re-aligned with a specific crack opening. The vertical displacement at mid-span 

was measured with two linear variable displacement transducers (LVDTs). The horizontal 

deflection at the center of the specimen was measured with four Linear Potentiometers (LPs). The 

force applied to the specimen was measured by a load cell located in the control system of the 

actuators. Specimens A and B were repaired by grout injection and retested 28 days later (Table 

3-3). This was repeated twice. They were subsequently tested in shear. Specimens C and D were 

repaired by grout injection and then tested in shear. Specimens E and F were not repaired to 

allow examination of the failure plane. 
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3.3.6 Grouting Repair 

In the repair of BDJ, the injection pressure needs to be superior to the water pressure found at the 

crack mouth to ensure that the water in the crack is flushed and replaced by the injection grout. It 

is important that the injection pressure not be too high because this increase in pressure inside the 

dam could cause crack propagation. It was found that 0.2 MPa (30 psi) above the water pressure 

found at the crack mouth was an appropriate injection pressure to adequately flush the water 

while not propagating the crack.4 In the case of the injection of BDJ, the concrete is completely 

saturated.20 

The temperature of the concrete injection in BDJ was roughly 4 ºC (39.2 ºF). The injections for 

the experimental procedure were done at room temperature, roughly 20 ºC (68 ºF).4 The effects 

of the temperature were not taken into consideration.  

 

 

 

 

 

 

 

 

The specimens were mounted with a support frame as seen in Figure 3-4. Upon failure of the 

specimen the crack between the two specimen halves was set to 2 mm (78.74 mil); this opening 

was selected so as not to impede the injection grout and to insure the best repair possible. This 

range of opening is representative of some of the openings at the crack mouth of BDJ. This was 

done with the help of 8 pairs of DEMEC points and by adjusting bolts on the 4 rods. The 

injection frame was installed on the specimens (A,B,C, and D) to allow the fracture to be 

repaired. The frame consisted of four 100 x 420 x 12 mm (4 x 16 x 1/2 in.) piece of pure gum that 

were held against the four sides of the specimen by steel plates. The plates were compressed onto 

the specimen by bolts attached to a steel frame that is installed around the specimen to seal the 

Figure 3-4: Injection and Injection Frame 
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specimen perimeter. Water was flushed through 

the crack with a manual pump to clean out any 

debris or dust. The water was then pressurized to 

0.2 MPa (30 psi) to test the seal and ensure water 

tightness. The pressure was maintained for at 

least 24 hours to saturate the concrete as would 

be the case for BDJ and so that the concrete 

would not absorb water from the grout. A grout 

mixture, which can be found in Table 3-2, was 

then flushed through the specimen to ensure that 

the water was entirely evacuated from the crack. 

Once all the water was flushed and grout filled 

the entirety of the crack, the exit valve was 

closed. The pressure was elevated to and 

maintained at 0.2 MPa (30 psi) until the grout set. 

The injection frame was removed after 7 days. 

After removing the injection frame, the crack 

width was measured with the DEMEC points. 

Due to the pressure in the crack during the 

injections, the crack width has a tendency to open 

so that the layer of repair grout is in fact found to 

be larger than 2 mm (78.74 mil), being closer to 3 

mm (118.1 mil). This was repeated twice more for 

specimens A and B (Table 3-3). 

3.3.7 Shear Test 

A shear test, modified from that proposed by 

Bazant et al.26, was performed on the 4 repaired 

specimens, A, B, C, and D. The modifications to 

the test were the use of larger specimens and a 

smaller notched center. Figure 3-5 (a) shows that 

Metric (SI) conversion factors: 1 in = 25.4 mm 

Shear Force Diagram

Bending Moment Diagram

12 % P 

88 % P 

62.4 x P 

Figure 3-5: Shear Test Setup: (a) Test Setup; 
(b) Shear Force and Bending Moment 
Diagram 
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the specimens were placed on two supports; the first support being 25 mm (1 in.) from the beam 

end and the second 680 mm (27-3/4in.) from the first support. A single 12 MN (1350 ton-force) 

actuator was used to apply the load at the center of the specimen to a HSS transfer beam. By 

geometry, this beam in turn applied a load of 12% and 88% of the total applied load to the 

specimen at 25 mm (1 in.) from the hanging end and 680 mm (27-3/4 in.) away from this point. 

The horizontal displacement was measured using four LPs with a gauge length of 200 mm (8 in.). 

The vertical displacement was measured by 6 LVDTs; 2 above the centrally applied load, 2 

above the central reaction and 2 at the overhang. 

3.4 Experimental Results and Discussion 

3.4.1 Mass Concrete Mix and Related Properties 

The properties of the mass concrete developed, found in Table 3-4 and Table 3-5, were similar to 

BDJ concrete. The compressive resistance of the concrete used for BDJ was targeted to be 30 

MPa (4.35 ksi) (although now it is 40 MPa (5.8 ksi)). The average compressive resistance of the 

experimental concrete was 28 MPa (4 ksi). The elastic modulus and Poisson‟s ratio from batch 

one was not available due to an instrumentation problem. The average elastic modulus and 

Poisson ratio were, omitting results for batch one, 33.4 GPa (4844 ksi) and 0.12 respectively 

which again, is representative of the same properties for BDJ concrete.7 

 Table 3-4: Concrete Rheology 
Batch Slump/Spread Temperature Air Density 

#  [mm] [°C] [%] [kg/m3] 

1 250 / 545 25 4,2 2339,5 

2 190 / 365 26.2 4,7 2288,4 

3 60 / 205 26 6,8 2232,1 

Average 167 / 372 25.7 5,2 2286,7 
Note: 1 mm = 0.0394 in; 1 °C x 9/5 + 32 = 1 °F; 1kg = 2.20462 lb; 1 m3 = 35.3147 ft3 
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 Table 3-5: Concrete Properties 
Batch Resistance f'c Modulus E Poisson ν 

# [MPa] [GPa] [m/m] 

1 29.3 N/A N/A 

2 28.0 33.7 0.115 

3 26.7 33.0 0.132 

Average 28.0 33.4 0.124 
Note: 1 m = 39.37 in; 1 MPa = 145.0377 psi; 1 GPa = 145.0377 ksi 

3.4.2 Grout Mixes and Related Properties 

Although the grout had a very large compressive resistance, the material was very brittle, 

delicate, and friable after air drying. One in three of the test cylinders were broken while being 

removed from their moulds or while being manipulated. The failure mode for the compressive 

tests was very brittle or explosive failure; this is true for both the 25.4 mm (1 in.) and the 50.8 

mm (2 in.) cylinders. In the case of the Brazilian splitting test, the failure was observed to be two 

clean fractures down the center of the specimen leaving a small intact band in the center. This 

was expected as there were no aggregate. Based on the bleeding test, Grout I was considered 

unstable with significant cement particle settlement as indicated while Grout II is considered 

stable with cement particle remaining in suspension in the mix. From Table 3-6, the grout 

rheology and strength were equivalent to the grout used in BDJ and the results given by the grout 

manufacturer.20,27 

Table 3-6: Grout Properties and Rheology 

  

Bleeding 
[%] 

Flow Time 
[sec] 

Density 
[Relat.] 

Set Time 
[h] 

f'c 
[MPa] 

Brazilian 
[MPa] 

f'c 2'' cylinder 
[MPa] 

Grout I 3.75 32.27 1.51 8.0 49.09 2.43 43.51 

Grout I 4.38 31.93 1.49 6.5 24.43 1.81 - 

Grout I 3.00 29.47 1.49 7.0 45.71 2.45 36.93 

Grout I 5.13 31.13 1.49 7.0 33.33 1.52 40.49 

Grout II 0.13 150.7 1.78 8.0 37.70 3.96 69.09 

Grout II 0.63 262.0 1.68 7.0 53.96 4.04 - 

Grout II 0.13 285.6 1.73 9.0 69.01 3.03 58.25 

Grout II 0.00 256.1 1.78 7.0 37.69 3.41 30.49 

        Avg Grout I 4.06 31.20 1.50 7.1 38.14 2.05 40.31 

Avg Grout II 0.22 238.6 1.74 7.8 49.59 3.61 52.61 
Note: 1 MPa = 145.0377 psi 
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3.4.3 Modulus of Rupture 

The failure of both virgin and repaired specimens was brittle. The failure plane of virgin 

specimens, Figure 3-6, stayed in the concrete matrix and avoided most large aggregates, leaving 

them intact and protruding from the failure plane. The failure plane of repaired specimens 

followed the same path as for virgin specimens along the interface between the concrete and the 

injection grout. The failure plane propagated from one concrete surface through the grout to the 

other concrete surface depending on the positioning of the aggregate. The modulus of rupture of a 

virgin specimen, found in Table 3-7 and Figure 3-7, was 2.79 MPa, which is, 10% that of the 

compressive strength of the concrete.12 After being repaired, the modulus of rupture was 

significantly reduced. For injection Grout I and Grout II, it was 0.55 MPa (80 ksi) and 0.95 MPa 

(138 ksi) respectively as seen in Table 3-7 and Figure 3-8. Multiple repairs had no noticeable 

effect on the modulus of rupture. The modulus 

of rupture of the repaired specimens was not 

reflective of the strength of the virgin concrete 

or the strength of the repair grout. The 

modulus of rupture exhibited distinct 

properties as a hybrid material being tributary 

of the adhesive strength between the grout and 

the concrete surface made of cement paste and 

aggregates. The increased modulus of rupture 

for a specimen repaired with a grout with a 

favourable or lower w/c ratio is not due to the 

grout being stronger, but due to the bond 

formed between the grout and the concrete. A 

lower water cement ratio increased bleeding 

and decreased density of grout as seen in 

Table 3-6. This in turn decreased the bond 

strength between the parent material and the 

injection grout. 

 

Figure 3-6: Modulus of Rupture Failure Plane 
(Specimen E) 
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Table 3-7: Modulus of Rupture Test Results 
Specimen Test # W/C Max Force Max Avg. Deflection Max Stress 

      [kN] [mm] [MPa] 

A 1 - 119.8 0.487 3.35 

A 2 1 17.4 0.057 0.49 

A 3 1 21.6 0.056 0.61 

B 1 - 98.2 0.432 2.75 

B 2 0.5 33.4 0.120 0.93 

B 3 0.5 33.1 0.096 0.93 

C 1 - 88.8 0.355 2.49 

D 1 - 110.2 0.356 3.08 

E 1 - 92.3 0.223 2.58 

F 1 - 88.9 0.300 2.49 

      

Average for 1 - 100 0.359 2.79 

Average for 2 - 25 0.088 0.71 

Average for 3 - 27 0.076 0.77 

Average for - 0.5 33 0.108 0.93 
Average for - 1 20 0.056 0.55 

Note: 1 kN = 224.8089 lbf; 1 mm = 39.3701 mil in; 1 MPa = 145.0377 psi 

  

 

Figure 3-7: Force vs. Displacement of Virgin 
Specimens (A to F) 

Figure 3-8: Force vs. Displacement of Repaired 
Specimens (A (grout w/c) and B (grout w/c) 
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3.4.4 Shear Strength 

The shear failure in all cases was brittle. The failure plane, seen in Figure 3-9, and shear 

resistance, seen in Table 3-8, are dependent on two factors: the crack width and the repair grout 

w/c ratio. 

 Table 3-8: Shear Test Results 

Specimen 
# 

W/C 
Vr 

[kN] 
t(Vr) 

[MPa] 

Number 
of 

Repairs 

Crack 
Width 
[mm] 

A 1 70 0.57 3 9.5 

B 0.5 251 2.05 3 8.3 

C 1 351 2.87 1 3.1 

D 0.5 457 3.73 1 2.5 

Note: 1 kN = 224.8089 lbf; 1 mm = 39.3701 mil in; 1 MPa = 145.0377 psi 

 
In the case of a thin width of grout and a low w/c ratio, two failure planes developed, the first has 

a tendency to go from the central applied load to the central reaction, forming a new crack 

through the un-cracked concrete which travels through both aggregates and the matrix [Figure 

3-9 (b)]. This type of failure does not tend to circumvent the aggregates but shears a lot of them. 

The second failure plane observed traveled, as seen in the modulus of rupture test, at the 

concrete-grout interface [Figure 3-9 (a)]. A thin layer of low w/c ratio repair grout leads to a 

stronger repair. 

In the case of a wide width of grout and a high w/c ratio, the shear strength of the repair 

decreases. This also leads to only a single failure plane forming in the initial crack at the 

concrete-grout interface as with the modulus of rupture test. It propagates through the interface 

moving from one concrete surface to the other depending on the aggregate placement [Figure 3-9 

(a)]. A high w/c ratio and large crack width leads to the lowest shear strength. 

When a large crack width is coupled with a low w/c ratio grout or a thin crack is coupled with a 

high w/c ratio grout, the strength is found to be somewhere in between the previously mentioned 

„best‟ case and „worst‟ case scenarios. Additionally, the failure plane observed is a combination 

of the two. As was observed in the previous two cases, the concrete-grout interface failure plane 

occurs, however, the inclined failure plane is also partially present. In this case, some cracking is 

observed on this failure plane but not in its entirety.  
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With a thin grout layer, the weakest section of the repaired specimen, the grout concrete 

interface, is only solicited on a very small section near the middle. As this layer gets wider, the 

area of grout being solicited increases, decreasing the maximum resistance. Additionally, as the 

grout layer widens, there is an increased influence from the moment on the failure mechanism as 

can be seen from Figure 3-5 (b). 

When comparing specimens with similar grout thicknesses (A-B and C-D) the specimen repaired 

with the lower w/c ratio had higher shear strength. Again, this is due to the adherence between 

the grout and the concrete and not the actual strength of the grout. In the case of a thin grout 

layer, the effect of the grout w/c ratio is less noticeable due to the fact that only a small portion of 

the grout is being solicited. As this layer thickens, the grout w/c ratio becomes more important 

and more influential on the shear resistance of the specimen. 

3.5 Summary and Conclusions 

The purpose of this paper was to investigate the modulus of rupture and shear strength of repaired 

dam mass concrete. The experimental program included a modified 4 point modulus of rupture 

(a) 

(b) 
Figure 3-9: Shear Failure Plane: (a) vertical 

failure plane – Specimen B; (b) inclined failure 
plane – Specimen D 
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test, a shear test, and a pressurized grout-injection repair protocol performed on six 400 x 400 x 

1250 mm (16 x 16 x 49.2 in.) mass concrete specimens. Based on the results of this experimental 

investigation, the following conclusions are drawn: 

1. Concrete Mix 

A concrete mix with similar properties to the BDJ mass concrete with maximum aggregate size 

of 100 mm (4 in.) was developed. The concrete mix developed was more workable than the 

original BDJ mix so that it could be used in laboratory settings. 

2. Grout Mix 

Injection grouts with a water cement ratio by weight of 1.0 and 0.5, the range used for the 

injection BDJ, were successfully used to repair mass concrete specimens. The grout mix was 

virtually identical to the grout mix used in the injection of BDJ and the grout properties tested 

were also the same.20 

3. Injection 

An injection system able to maintain pressure was successfully developed and implemented to 

sustain the injected grout at a pressure equal to or above 200 kPa (30 psi). 

4. Modulus of Rupture 

Failure Mechanism  

A brittle failure was observed in the case of both the virgin specimens and repaired specimens. In 

the case of the virgin specimens, the crack propagated itself through the concrete matrix and 

avoided aggregates, preferring to circumvent them instead. In the case of the repaired specimens, 

either single or multiple repairs, the crack propagated itself in the initial crack at the interface 

between the concrete and the grout. It did not stay on one concrete surface; it travelled through 

the grout to move from one concrete surface to the other depending on the arrangement of the 

aggregates. 

Strength 

The modulus of rupture of the virgin specimens was equal on average to 2.8 MPa (406 psi) or 

10% of the concrete compressive strength. The modulus of rupture of the repaired specimens on 

average, when repaired with Grout I (w/c = 1.0) and Grout II (w/c = 0.5) is equal to 0.55 MPa (80 
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ksi) and 0.95 MPa (138 psi) respectively. The quality of the grout has an effect on the strength of 

the repair; however, the hybrid material‟s modulus of rupture is smaller than that of either the 

concrete or the grout and is tributary of the adhesive properties between the gout and the 

hardened cement paste and aggregates along the crack surfaces.  

5. Shear Test 

Failure Mechanism 

The failure mechanism was always brittle, however the failure plane varied depending on the 

thickness of the grout and w/c ratio of the repair grout. With a thick layer of grout and high w/c 

ratio repair grout, the crack occurred on the same failure plane as with the modulus of rupture 

test. It traveled through the concrete grout interface around aggregates moving from one concrete 

surface to the other depending on the aggregate placement. In the case of a thin layer of grout and 

a low w/c ratio repair grout two failure planes occurred; one being the same as with the thick 

grout layer while the other travelled from the point of application of the load towards the 

reaction. This new failure plane that was created traveled through, and sheared some aggregates. 

When a combination of these two factors was used, the failure plane observed was the concrete-

grout interface failure plane as well as partial cracking on the new oblique failure plane. 

Strength 

The shear resistance observed ranged from 3.73 MPa (541 psi) to 0.57 MPa (83 psi). The quality 

of the grout has an effect on the shear resistance; specimens repaired with Grout II had a better 

shear resistance than those repaired with Grout I. The effect of the grout layer thickness was 

much more important. In cases where the grout layer is thicker, a much lower strength was 

observed. 

6. Structural Significance of the Results 

Grouted mass concrete cracks could mobilize 1 to 0.5 MPa (145 psi to 72.5 psi) and 3.73 to 0.57 

MPa (541 psi to 82.7 psi) in tension and shear respectively. This is significant for the prevention 

of further cracking during the service life of dams given an increased applied loading. The tests 

were performed on fresh cracks under controlled laboratory conditions. This may not reflect the 

reality in the field where cracks may have been leaking for years leading to potential erosion, 
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calcite formation, and build-up of sediments. Caution should be used when extrapolating these 

results to actual structures.  

7. Recommendations 

These results show that the no-tension assumption, that is currently in use for the modeling of 

repaired crack section, is conservative. In fact the experimental procedure undertaken shows that 

the grouting repair provides a structurally significant tensile and shear strength. This means that 

the models currently used could be improved to account for this increase in strength provided by 

the repair. This is conditional to in situ quality control of the grouting work. This would allow for 

the dam reservoir to be increased by a certain amount without crack re opening. 

Further research is being considered to assess the effects of a normal force in the mobilized shear 

strength to establish a Mohr-Coulomb type of failure envelope and to consider more complex 

stress state representative of ach dam in service while cracking and assessing the strength of 

repaired specimens. 
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CHAPTER 4 COMPLEMENTARY RESULTS AND GENERAL 

DISCUSSION 

Chapter 4 discusses the development of the concrete mix for the specimen construction, the 

rheological tests done on the grout, the design and reasoning behind the test method used and 

describes the injection procedure in detail. Complimentary data obtained during the experimental 

research is also presented. Finally, future research in this area is presented. 

4.1 Development of Concrete Mix 

The mass concrete mix used for the experimental research was based on the BDJ mass concrete 

mix (Table 4-1). BDJ concrete used low heat of hydration cement to reduce the temperature 

increase during curing of the dam. In the case of BDJ the slower curing times were deemed 

acceptable. Ice and cooling pipes circulating cold water were also used in the concrete mix and its 

placement to reduce the initial temperature of the dam so that maximum cement hydration 

temperatures would be reduced. This was done to reduce the likelihood of excessive thermal 

gradients inducing cracking and other effects of thermal stresses including delayed shrinkage in 

contraction joint grouting to ensure arch action in the dam (Bulota et al., 1991). 

 Table 4-1: 1967-68 BDJ Concrete Mix 
Material 1000 L   

Cement* 234 kg 

Large Sand 364 kg 

Fine Sand 363 kg 

Aggregate 20-10 148 kg 

Aggregate 38-20 231 kg 

Aggregate 75-38 445 kg 

Aggregate 150-75 534 kg 

Water** 113 kg 

entrained air 0.3 kg 

* LH, **Frozen (Ice) 

 
In the case of this experimental study, general use cement was used. This was done because 

thermal stresses were not a concern for small specimens and a quick curing time was beneficial to 

complete the experimental research in a timely manner. Additionally, using general use cement in 

lieu of low heat cement will have a negligible effect on the mechanical properties and strengths 

of the specimens for the purpose of this study (Vagn, Peter, & Paul, 2006). 
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The maximum aggregate size feasible in the laboratory was 100 mm. This is due to the fact that if 

an aggregate size of 150 mm was used in accordance to the actual BDJ concrete mix, to satisfy 

the ratio of maximum aggregate size to specimen dimensions size, it would require specimens 

with a volume of roughly 650 liters (ASTM, 2002c). The concrete mixer used had a volume of 

roughly 550 liters which would be insufficient to accommodate the larger pouring volumes that 

would have been required. 

The first step in modifying the BDJ concrete mix was to reallocate the weight of aggregates 

larger than 100 mm to the rest of the weight of the mix. Three separate mixes form the 

redistributions are seen in Table 4-2: mix 1, mix 2, and mix3. For mix 1, the weight of the 

aggregates in the 150 mm to 75 mm bracket was assigned to aggregates in the 75 mm to 38 mm 

bracket. For mix 2, the weight of the aggregates in the 150-75 mm bracket was distributed over 

the weight for all the grain sizes equally (including sand). For mix 3, the weight of aggregates in 

the 150 mm to 75 mm brackets was distributed over all the other aggregates (excluding sand). 

For the first mixes, the largest aggregate bracket available without exceeding 100 mm was 38 

mm to 75 mm. Aggregates of 50 mm to 100 mm were obtained for future mixes. The percentage 

passing vs. grain size (log) for each mix can be seen in Table 4-3 and was plotted Figure 4-1. 

Mix 3 showed the smoothest curve and was chosen to continue the concrete mix development. 

 Table 4-2: Mix1, 2, and 3 

Aggregate ρ [kg/m3] 

Diameter 
mm 

Original BDJ 
1967-1968 

Mix 1 Mix 2 Mix 3 

150 - 75 534 0 0 0 

75 - 38 445 979 552 623 

38 - 20 231 231 338 409 

20 - 10 148 148 255 326 

Large Sand (5) 364 364 471 364 

Fine Sand (2) 363 363 470 363 

Total 2085 2085 2085 2085 

Mix 1: 150 - 75 mm aggregate weight moved to 75 - 38 mm aggregate 

Mix 2: 150 - 75 mm aggregate weight moved distributed over aggregates and sand 

Mix 3: 150 - 75 mm aggregate weight moved distributed over aggregates only 
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 Table 4-3: Sieve Analysis 
  Percent Passing 

Sieve Original Mix 1 Mix 2 Mix 3 

150.0 mm 100 100 100 100 

75.0 mm 74.39 100 100 100 

38.0 mm 53.05 53.05 73.53 70.12 

20.0 mm 41.97 41.97 57.33 50.50 

10.0 mm 34.87 34.87 45.11 34.87 

5.0 mm 17.41 17.41 22.53 17.41 

2.0 mm 0.00 0.00 0.00 0.00 

 

Figure 4-1: Granulometric Curve 

The next step was to determine the w/c ratio needed to achieve a compressive strength of 30 

MPa, the initial design compressive strength of BDJ concrete. Three concrete mixes derived from 

Mix 3 were developed. They have the same paste/aggregate ratio as Mix 3 but have separate w/c 

ratios. The w/c ratios chosen were 0.45, 0.55, and 0.65. Six inch cylinders of the half scale mixes 

seen in Table 4-4 were then tested in compression following ASTM C39 (2002). The results of 

these testes were graphed as compressive strength vs. w/c ratio. From Figure 4-2, a w/c ratio of 

approximately 0.6 corresponded to a compressive strength of 30 MPa.  
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 Table 4-4: Small Scale Concrete Mixes 

  w/c 

 

0.45 0.55 0.65 

  
Mass  

kg 
Volume 

L 
Mass  

kg 
Volume 

L 
Mass  

kg 
Volume 

L 

Cement 16.75 5.32 14.82 4.70 13.29 4.22 

Sand 49.90 18.48 49.90 18.48 49.90 18.48 

2.5 - 10 mm 22.38 8.29 22.38 8.29 22.38 8.29 

10 - 20 mm 28.07 10.40 28.07 10.40 28.07 10.40 

20 - 40 mm 42.76 15.84 42.76 15.84 42.76 15.84 

Water 7.54 7.54 8.15 8.15 8.64 8.64 

Admixture 0.02 0.02 0.02 0.02 0.02 0.02 

(Air) 0.00 4.12 0.00 4.12 0.00 4.12 

Total 167.42 70.00 166.11 70.00 165.06 70.00 

 

Figure 4-2: 28 Day fc` (small scale mix) 
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Scaling back up to normal size, Mix A, seen in Table 4-5, was chosen. The aggregate sizes were 

modified slightly based on available aggregates. Three 400 x 800 mm cylindrical specimens were 

poured at the University of Sherbrooke. The mix was very difficult to pour and had little 

workability. Vibration had very little effect on the concrete. The Specimens were transported to 

Ecole Polytechnique of Montreal to be tested in compression in a 12 MN MTS Actuator. Because 

the concrete was not workable, and vibration had little effect, upon opening the tubes many large 

air pockets were observed. One of the samples was not tested because of the quantity of air 

pockets. After testing only two of the samples, the mix had an average compression resistance 

under 25MPa. 

 Table 4-5: Mix A 
Material 1000 L   

Cement 200.17 kg 

Sand 712.88 kg 

10 - 20 mm 319.67 kg 

20 - 40 mm 401.06 kg 

50 - 100 mm 610.9 kg 

Water 120.1 kg 

Admixture AEA 0.45 kg 

(Air) 0 kg 

Superplasticizer 0.9 kg 

 

The concrete mix needed to be vastly improved so that it could be properly poured. To this end, a 

compressive packing model with parameters defined by Willem (2006) was used to optimise the 

granulometry. A w/c ratio of 0.6 and an initial density of cement were used as the starting 

parameters. Additionally, the specific granulometric breakdown of each aggregate bracket was 

needed. The model then uses this information to determine the optimal required weight of each 

aggregate bracket. It did so by modeling and optimizing the stacking of the aggregates. Two mix 

options were developed: Option I, with 300 kg/m3 of cement and Option II, with 250 kg/m3. 

Option I was a conservative mix with more cement and water to try to ensure a more workable 

end product. Option II used less cement and less water to try and obtain a stronger concrete. 

Three 400 x 800 mm cylindrical specimens were poured for each mix, again at the Université de 

Sherbrooke. The two mixes can be seen in Table 4-6. The Compressive strength for the two 
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mixes was 22 MPa and 25 MPa respectively. Both Options were workable, as expected Option II 

was more workable, however the compressive strength of both mixes was too low. 

 Table 4-6: Stacking Model Mixes 
  1000 L   

Material Option I Option II   

Cement 300 250 kg 

Sand 650 675 kg 

5 - 10 mm 260 305 kg 

10 - 20 mm 220 220 kg 

20 - 40 mm 340 345 kg 

50 - 100 mm 400 450 kg 

Water 180 150 kg 

Admixture AEA 0.45 0.45 kg 

(Air) 0 0 kg 

Superplasticizer 0.9 0.9 kg 

The final mass concrete mix, seen in Table 4-8, was chosen. To obtain this mix, the aggregate, 

sand, and water content from Option II stayed identical however, to increase the strength of the 

concrete it was decided to decrease the w/c ratio from 0.6 to 0.53 by simply increasing the 

quantity of cement used. Three batches of the concrete were poured due to the limitations of the 

volume of the mixer. The slump and spread of the first batch was too high and there was a worry 

of excessive bleeding. Because of this, the quantity of superplasticizers was decreased for batches 

2 and 3 to try and improve the concrete. Table 4-7 has a summary of the results of the rheological 

tests done on all three batches of concrete. The slump and spread for batch 3 were significantly 

lower than for batches 1 and 2. This was due to an error in mixing order for batch 3 in which the 

superplasticizers was added prior to water. Because of this, the superplasticizer was absorbed by 

the dry aggregates and thus was not able to be properly mixed, decreasing its efficiency. The 

slump, spread, density, and air tests were done on concrete sieved to 20 mm. This decreased the 

density from the expected value of 2408 kg/m3. 

 Table 4-7: Wet Concrete Properties 

Batch 
Slump 

mm 
Spread 

mm 
Temperature 

°C 
Air 
% 

Density 
kg/m3 

1 250 550-540 25 4.2 2339.5 

2 190 370-360 26.2 4.7 2288.4 

3 60 210-200 26 6.8 2232.1 

Average 167 377-367 25.7 5.2 2286.1 
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 Table 4-8: Final Experimental Mix 
Material 1000 L   

Cement 270 kg 

Sand 675 kg 

   
Aggregate 5-10 305 kg 

Aggregate 10-20 220 kg 

Aggregate 20-40 345 kg 

Aggregate 50-100 450 kg 

Water 143 kg 

  
 

AEA 770 ml 

Eucon® 37 3090/2730* ml 

* Batch 2 and 3 

 

4.2 Grout Rheology 

The following tests were done on the liquid grout and the results can be found in Chapter 3: 

- Density – C905-01(2012) Standard Test Methods for Apparent Density of Chemical-

Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes; 

- Bleeding – ASTM C940-98a Standard Test Method for Expansion and Bleeding of 

Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory [Figure 

4-3 (a)]; 

- Flow Time – ASTM D6910-04 Standard Test Method for Marsh Funnel Viscosity of 

Clay Construction Slurries [Figure 4-3 (b)]; 

- Set Time – Thermocouple [Figure 4-3 (c)]. 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 4-3: Grout-Rheological tests: (a) Bleeding, (b) Cone Marsh, (c) Thermocouple 
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The set time test involved mounting a thermocouple, which measures the temperature every 10 

minutes, at the center of a 75 x 150 mm cylinder. Once the grout was properly mixed, it was then 

poured into this cylinder. The ambient temperature was also measured every 10 minutes. The 

temperature of the grout was then plotted against the time from initial mixing of the grout. The 

set time was then measured as the time it took for the maximum temperature to be obtained, 

which is the point at which much of the hydration reaction has taken place and when the grout 

has reached initial set (Saleh et al., 1997). Figure 4-4 is a typical graph for the results of the set 

time. 

 

Figure 4-4: Typical Thermocouple Results 

 

4.3 Test Method Design 

Concretes tensile resistance is not as straight forward as its compressive resistance. The tensile 

resistance for concrete is not a constant material property; it changes depending on the way that 

the specimen is loaded. There are many available tests to determine the tensile resistance of un-

reinforced concrete. These tests include direct tensile test, splitting test (Brazilian), third point 

loading test (modulus of rupture), and the wedge splitting test. The relationship between 

compressive resistance and the tensile resistance found for the different tests are discussed in 

Chapter 3. 
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4.3.1 Direct Tension 

A direct tensile test consists of pulling a concrete specimen in direct tension till failure occurs. 

This can be done in many different ways, a few of which are discussed here. 

One method is to pour the specimen with rods embedded both end. Both ends of the specimen 

can then be attached to an actuator and pulled apart in direct tension. Although this method seems 

like it would yield the best results, there are many obstacles when using this method. It is 

important to make sure the rods due not pull out and that there is a sufficient distances between 

the rods and the center of the specimen so that the tensile force can properly develop. This 

method is also difficult to use because it is very difficult to have a perfect alignment of the bars, 

this will cause an eccentricity of the forces and may influence the resistance of the specimen. 

Even if the bars are perfectly aligned, there may also be an eccentricity in the actuator which 

would lead to the same problem. Additionally, in the case of mass concrete specimens, due to the 

large aggregate size, there is little space available for the bars (Raphael, 1984; Wang & Song, 

2009).  

It is also possible to use clamps on the 4 sides of the two ends of the specimens and to pull from 

these clamps. The problem with this method is that a significant compressive force is created in 

the two ends of the specimens. This change in stress-strain state may have  an effect on the tensile 

resistance of the concrete (Wang & Song, 2009). 

It is also possible to use an epoxy glue to attach each end of the specimen to a metal plate which 

can then be attached to an actuator. To use an epoxy binder, the two end faces need to be 

perfectly aligned and well finished and the metal plates need to be perfectly centered. 

Again with all of these methods, there is a risk of eccentricities which typically leads to 

inaccurate results (Raphael, 1984).  

4.3.2 Splitting Test 

The Brazilian test is done on cylindrical specimens. The general approach is to lay the cylinder 

on its side and apply a compressive force along its entire length. This in turn will create an 

indirect tensile force along the central plane which will split the cylinder in two. To do this test, 

ASTM C496 (2011) requires specimens larger than 150 mm diameter because at the point of 

application of the load, the compression force restrains the specimen and causes a local change in 
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the stress-strain distribution which can lead to erroneous results. In the case of mass concrete, this 

size requirement does not pose a problem however; there are difficulties that would arise with a 

large specimen. Placing a large cylindrical specimen on its side with precision, and ensuring a 

level and true contact between the specimen and the mechanism applying a force would prove 

problematic. As well, to repair this type of specimen with the micro fine cement grout used, 

without disturbing the crack area would not be ideal. 

4.3.3 Modulus of Rupture 

ASTM C78 (2002), Standard test method for flexural strength of concrete (using a simple beam 

with using third point loading) was deemed the most appropriate tensile test for this experimental 

research. The test involves placing the beam on a support at either end and applying two equal 

loads at third points. The advantage of C78 is the fact that the moment will be equal along the 

center third of the beam. The moment that is applied to the beam creates a compressive force in 

the top of the beam and tension in the bottom with an assumed linear stress distribution between 

the two. The beam will fail when the tensile force in the most bottom section of the beam exceeds 

the tensile resistance of the concrete. The modulus of rupture at failure can then simply be 

calculated by applying classical strength of material behaviour laws (ASTM, 2002b). 

Here are some of the advantages which lead to this test method being chosen. The specimen 

required for this test is a simple beam specimen. The test is easily reproducible and is highly 

documented. This test also gives accurate results and results which are closest to the results 

obtained from numerical modeling (Raphael, 1984). Additionally, both ends of the specimen are 

supported which allowed easy access to the center of the specimen for the purpose of repairing it.  

4.4 Injection Procedure 

Prior to testing a specimen that was to be repaired, an exit hole was drilled. This hole passed at an 

angle from the center of the specimen to the top surface of the specimen around one quarter of 

the distance to the end. A valve (A) was then attached to this exit hole. A pipe piece fitted with a 

pressure meter was attached to the valve (A). A final valve (B) was attached to this pipe piece as 

seen in Figure 4-5 (a). 

Prior to the injection process, the crack width needed to be set to a fixed value, in this case 2 mm 

was chosen. This was done as described in Chapter 3. 
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The injection needed to be maintained under a constant pressure of roughly 0.2 MPa. To do this, 

the frame seen in Figure 4-5 (b) was used. A layer of pure gum was placed against the specimen. 

When under pressure, the pure gum had a tendency to deform through the corners and let the 

injection liquid escape. To prevent this, four thin steel plates bent at 90 degrees were placed over 

top of the pure gum in the corners. Four steel plates were then placed over top of the pure gum. A 

steel frame consisting of four HSS was then mounted around the specimen. Holes were pre-

drilled through the HSS and fitted with bolts to allow one-inch rods to be screwed through the 

frame. The four steel plates were held tightly against the pure gum by tightening the rods.  

Pure gum was chosen because it has very little relaxation as opposed to a standard rubber. If a 

standard rubber was used, once the injection material under pressure, the rubber would relax and 

over time, the injection fluid could leak out. 

Once the frame installed, a tube attached to the injection pump was fitter to a pre-drilled hole in 

the bottom of the injection frame. A manual injection pump was used to first pass water through 

the crack. Once the water exited the specimen from the exit hole, the valve (B) was shut off and 

the pressure was increased to 0.2 MPa. The pressure meter was checked every 15 minutes. If the 

pressure decreased below 0.2 MPa, the pump would be used to increase the pressure. This was 

done till a constant 0.2 MPa was reached with no additional pumping. The pressure decrease is 

normal due to the two pieces of concrete moving apart and due to the water being absorbed by 

the concrete. The water was left in the specimen for 24 hours. At this point water was once again 

Pump 

Waste 

Valve A 

Valve B 

Valve C 

Piezometer 

Concrete 

Pure Gum 

Steel Plates 

HSS 

(a) (b) 

Figure 4-5: Injection: (a) Injection Flow Path, (b) Injection Frame 
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flushed through the system. Finally, grout was pumped through the specimen. Once the quality of 

the grout, by visual inspection, exiting the specimen was the equivalent to the grout being 

pumped into the specimen, the exit valve (B) was shut until a pressure of 0.2MPa was reached. 

The pressure was increased every 15 minutes as needed. After one hour, the pressure remained 

constant. Valve (A) was shut 1 hour later so that the pressure meter could be removed and 

cleaned. 

4.5 Complementary Load-Displacement Data 

4.5.1 Modulus of Rupture 

Much additional data was collected during the experimental testing. Two LVDTs were used to 

measure the deflection of the specimens and four LPs with a gauge length of 150 mm were also 

fixed to the specimens during testing. One was placed at the center of the top, bottom, north, and 

south face of the specimen respectively. They were used to measure the progression of the 

opening of the crack on all four sides of the specimen as seen in Figure 4-6. 

 

Figure 4-6: Modulus of Rupture Instrumentation 

The progression of the crack opening was used during the tests to be able to note any 

particularities such as excessive eccentricities. It was also measured for future research, to help 

with the validation and verification of numerical models. Figure 4-7 (a) and (b) are examples of 

typical curves for load vs. north-south crack opening and load vs. top-bottom crack opening 

respectively. The absolute value of the crack opening for the top of the specimen was taken as the 

value recorded was negative because the crack was getting smaller. The absolute values obtained 

from the LPs can be found in Table 4-9. 
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As can be seen from Figure 4-7 (a), the slope of the bottom and top curves follow each other very 

well until the 50 kN mark is reached. At this point the bottom crack opens much more than the 

top crack compresses. This is to be expected since the top portion of the specimen is still within 

the elastic range because concrete has a much large compressive force than tensile force. This 

graph can also help explain why the modulus of rupture test tends to overestimate tensile strength 

(Raphael, 1984).  

As seen from Figure 4-7 (b), as expected, since this opening is measured along the assumed 

neutral axis of the specimen the displacement that occurs at the center of the two vertical faces is 

roughly zero. Again, in reality, the neutral axis has a tendency to move towards the top of the 

specimen which explains why the central portion of the specimen does deform horizontally. The 

difference from one side of the specimen to the other is virtually equal to zero with the largest 

difference found to be roughly five one thousandths of a millimetre. A difference is expected as 

concrete is a heterogeneous material and the simple positioning of the aggregates within the 

specimen can account for some discrepancies between the crack openings on either side. 

Table 4-9: Modulus of Rupture Results 

Specimen 
# 

Test 
# W/C 

Max.  
Force 
[KN] 

Δ – Max.  
South  
[mm] 

Δ – Max.  
North  
[mm] 

Δ – Max.  
Avg.  
[mm] 

Max.  
Stress 
[MPa] 

A 1 N/A 119.8 0.483 0.487 0.485 3.35 

A 2 1 17.4 0.162 0.057 0.109 0.49 

A 3 1 21.6 0.135 0.056 0.095 0.61 

B 1 N/A 98.2 0.451 0.432 0.435 2.75 

B 2 0.5 33.4 0.129 0.120 0.124 0.93 

B 3 0.5 33.1 0.106 0.096 0.101 0.93 

C 1 N/A 88.8 0.352 0.355 0.353 2.49 

D 1 N/A 110.2 0.365 0.356 0.361 3.08 

E 1 N/A 92.3 0.304 0.223 0.264 2.58 

F 1 N/A 88.9 0.321 0.300 0.310 2.49 

        Avg. for 1 
 

100 0.379 0.359 0.368 2.79 

Avg. for 2 
 

25 0.145 0.088 0.117 0.71 

Avg. for 3 
 

27 0.120 0.076 0.098 0.77 

Avg. for 
 

0.5 33 0.117 0.108 0.113 0.93 

Avg. for 
 

1 20 0.148 0.056 0.102 0.55 
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4.5.2 Shear Test 

In the case of the shear test, six LVDTs were used to measure the deflection, three on either side 

of the specimen. Two were placed over the hanging edge, two were positioned over the reaction, 

and two were positioned over the applied load. Again, four LP‟s were used to measure crack 

opening however, for this test two were placed on each vertical face. The positioning of the 

different measurement devices can be seen in Figure 4-8. Typical load vs. measured deformation 

graphs for two tests can be seen in Figure 4-9. 

 

 

Figure 4-8: Shear Test Instrumentation 
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Figure 4-7: Crack Opening: (a) Bottom/Top, (b) North/South 
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 Figure 4-9: Load vs. Deformation: (a) Crack Opening B, (b) Center Deflection B, (c) Overhang B, 
(d) Crack Opening D, (e) Center Deflection D, (f) Overhang D  

(a) 

(b) 

(c) 

(d) 

(e) 
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This data was again measured to be able to track the evolution of the specimen deformations and 

crack openings during the tests. It can also be beneficial for future work involving numerical 

modeling. The relatively large difference in displacement on opposing sides of shear specimens 

noted in Figure 4-9 suggests much more eccentricity in the shear test than in the modulus of 

rupture test. This can be explained because firstly, the actuator used to apply the load was not 

hinged in the east west direction. The second factor explaining these eccentricities is that the 

measurement devices are relatively close to the main loading point and reaction which means that 

stress concentrations may play a role in the displacements measured. Since these tests were done 

for comparative purposes and there was an insufficient quantity of specimens to obtain 

statistically accurate results, it was deemed that this error was acceptable.  

4.6 Prospective Future Work 

4.6.1 Experimental 

This research work forms a foundation for similar tests to be conducted in the future. Now that a 

working experimental protocol exists to test repaired mass concrete specimens, more in depth 

research in this area can be done. 

To develop the Mohr-Coulomb shear failure envelope, the shear test can be reproduced with the 

addition of a normal force. An actuator as seen in Figure 4-10 can be used to maintain different 

constant normal forces. 

 

Figure 4-10: Potential Future Shear Test with Normal Force 
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the results found can be used for the refinement of actual dam numerical models in which the 

tensile resistance of repairs is currently assumed null. These results can also be used to help to 

assess the sensitivity of numerical model results dealing with different loading scenarios and 

injection scenarios for mass concrete dams. 
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CONCLUSIONS 

The largest multiple-arch dam in the world, Daniel-Johnson dam, located in northern Quebec has 

experienced multiple types of cracks since the end of its construction in 1968. Extensive research 

has been done to determine the penetrability and injectability of different injection grouts. The 

rheology and behaviour of different injection materials has been the focus of many studies; 

however, the mechanical resistance provided to the injected area is an aspect of the injection 

process that has been neglected. Because of this lack of knowledge, it is assumed that the repairs 

done to repair BDJ provide no tensile or shear resistance. This assumption leads to a loss of 

potential reservoir capacity. 

The main objective of this experimental research was to determine the tensile and shear 

resistance of dam mass concrete repaired one time or multiple times by grout in injection with 

grouts with w/c ratios of 0.5 and of 1.0. The objectives were to determine a mass concrete mix, 

develop an experimental protocol to test the un-cracked and repaired mass concrete, to develop 

an injection process, and determine their tensile and shear resistance. 

For the experimental investigation, the following conclusions can be drawn: 

The mass concrete mix developed, with maximum aggregate size of 100 mm, has a compressive 

strength of 28 MPa, which is representative of BDJ mass concrete mix. The modulus of rupture 

of the mass concrete mix used was equal to 2.8 MPa which was roughly 10% of its compressive 

strength.  

The modulus of rupture of a repair specimen is related to the w/c ratio of the injection grout, or 

the injection grouts adhesion. With a lower w/c ratio, a better adhesion occurs between the 

injection grout and the concrete. It was found that a w/c ratio of 1.0 and 0.5 lead to a modulus of 

rupture of 0.5 and 1.0 MPa or 15% and 30% of the original modulus of rupture respectively. 

It was also found that multiple repairs with the same grout type had no effect on the strength of 

the repair. In other words, a specimen repaired once or two times with the same type of grout had 

the same modulus of rupture. 

The failure plane for the modulus of rupture test occurred at the interface of the concrete and the 

repair grout. The path of this failure plane was dependent on the aggregate placement. The failure 



66 

 

plane tended to circumvent large aggregates and seemed to jump from one concrete-grout 

interface to the other concrete-grout interface when intersected with a large aggregate. 

The shear resistance of the repaired mass concrete specimen was found to vary between 0.57 

MPa and 3.73 MPa and was a function of two factors: the repair grouts w/c ratio as well as the 

width of repair grout layer. These two factors also played a role in the failure planes observed 

during testing. 

As with the modulus of rupture test, a lower w/c ratio leads to a higher shear resistance again 

because of a higher adhesion between base material and repair material. 

Multiple repairs, in the case of shear strength, do have an effect on strength. Multiple repairs lead 

to thicker grout layers, this increased thickness decreases the shear resistance found. 

Two main failure types were observed: (i) a single crack at the grout-concrete interface and (ii) a 

crack at the grout-concrete interface with a crack going through un-cracked concrete going from 

the loading point to the reaction point. 

For the failure plane occurring at the grout-concrete interface, the same failure pattern as for the 

modulus of rupture was observed, with the large aggregates influencing the path of the failure 

plane. For the crack occurring in the previously un-cracked concrete, the failure plane tended to 

shear through all aggregate regardless of size. 

When a specimen was repaired only once and with a grout having w/c ratio of 0.5, failure mode 

(ii) was observed with a resistance of 3.73 MPa. This can be attributed to the fact that the 

concrete grout interface is stronger with a w/c ratio of 0.5 and having a thin layer of grout leading 

to the development of crack between the load and reaction. 

When a specimen was repaired three times and with a grout having a w/c ratio of 1.0, failure 

mode (i) was observed with a resistance of 0.57 MPa. This can be attributed to the fact that the 

concrete grout interface is weakest with a w/c ratio of 1.0 and having a thick layer of grout 

leading to the failure first occurring at this interface. 

When a specimen was repaired once and with a grout having a w/c ratio of 1.0 or three times and 

with a grout having a w/c ratio of 0.5, a hybrid failure mode in between (i) and (ii) was observed 

with a resistance of roughly 2.4 MPa. 
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These results are important for structural applications. A resistance of 1 MPa to 0.5 MPa in 

traction is significant for mass concrete dams and would represent roughly 100 m to 50 m of 

water head (however, the relationship between the stress field near a crack tip and the water head 

is not linear). Additionally, 3.5 MPa to 0.5 MPa shear resistance is significant for mass concrete 

dams. Both the shear and tensile strength provided by grout injection repairs could be depended 

on for the prevention of crack propagation. 

This research was done on ideal specimens in ideal laboratory conditions; the concrete was not 

old and the cracks were fresh and clean. In the reality of dam crack repair, it is unlikely to 

encounter cracks meeting these criteria. Additionally the exact width of the crack, condition of 

the concrete, and geometry of the crack may not be entirely known. Typically a crack could be 

exposed to erosion, calcite deposits could form, sedimentation in the crack can occur, or the 

effects of previously done repairs could be in play. Because of these factors, caution needs to be 

used when extrapolating the results of this study to practical applications. 
(Abdel-Maksoud, Barenberg, & Marino, 2008; ACI-Committee-207, 1970; ACI-Committee-224, 1984; Aggelis et al., 2009; Allas & Savinskaya, 1972; E. Argal, 1991; É. Argal, Ashikhmen, & Korolev, 1972; É. Argal et al., 2009; É. Argal & Ryzhankova, 1996; ASTM, 2001, 2002a, 2002b, 2002c, 2002d, 2003, 2004a, 2004b; Axelsson et al., 2009; Bažant, 1999; Bažant & Pfeiffer, 1986; 

Biggar & Sego, 1990; Billinghurst, 1997; Bouja, 1995; Bremen, 1997; Bruce Barrett & Ringel, 2010; Bruce & De Porcellinis, 1989; Bryzgalov et al., 1998; Bulota et al., 1991; Chandra Kishen & Rao, 2007; Chen et al., 2009; Chertykov & Dzhuraev, 1983; Chupanit & Roesler, 2008; Deere & Lombardi, 1985; Domone, 1993; Draganović & Stille, 2011; Dumont, 1997; Evdokimov, 

Adamovich, Fradkin, & Denisov, 1970; Fomin, 1974; Gallacher & AECOM, 2010; Heilmann, 1969; Holcim, 2008; Hydro-Quebec, 2008; ICOLD-Committee-on-Concrete-Dams, 2008; Jansen, 1988; Javanmardi & Léger, 2005; Kee & Zhu, 2010; Khaloo et al., 2009; Khan et al., 1996; Khayat et al., 2008; Kupfer & Gerstle, 1973; Lapointe, 1997; Larivière et al., 1999; G. Lombardi, 1985a, 

1985b, 1996, 1997; Giovanni Lombardi, 1998, 2007; G. Lombardi, 2007, 2008; G. Lombardi & Deere, 1993; Mailvaganam, 1992; Mnif, 1997; Morgan, 1996; Nallathambi et al., 1985; Naudts et al., 2003; Nguyen et al., 2011; Nianxiang & Wenyan, 1989; Nordtest, 2005; Privileggi, 2012; Pronina & Ashikhmen, 1996; Raphael, 1984; Rio et al., 2006; Kaveh Saleh et al., 2003; Kaveh Saleh 

et al., 1997; K. Saleh et al., 2002; Shah & Kishen, 2010; Silvano et al., 1997; Smoak, 1995; Stille et al., 2012; Tahmazian et al., 1989; Turcotte et al., 1994; UDEC-(Universal-Distinct-Element-Code), 2000; United-States-Dept-of-the-Army, 1970; US-Army-Corps-of-Engineers, 1995; Veltrop et al., 1990; Wang & Song, 2009; Willem et al., 2006; Wong & Farmer, 1973; Zhivoderov, 1993) 
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