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RÉSUMÉ 

Le polyéthylène téréphtalate (PET), un thermoplastique semi-cristallin, est produit par une 

réaction de condensation soit du téréphtalate de diméthyle soit de l’acide téréphtalique et de 

l’éthylène glycol. Le PET est habituellement utilisé dans l’industrie de l’emballage des aliments 

et boissons. Toutefois le PET ne permet pas d’avoir des propriétés barrières à l’oxygène 

suffisantes pour l’emballage des breuvages telles que la bière et les boissons gazeuses non 

alcoolisées qui sont sensibles à l’oxygène ou à la perte de dioxyde de carbone. L’incorporation de 

silicates en feuillets imperméables à une matrice de PET et la fabrication de nanocomposites à 

base de PET est une méthode prometteuse en vue de l’amélioration des propriétés barrières du 

PET. L’objectif de la présente étude est d’améliorer les propriétés barrières du PET avec des 

silicates en nanocouches. Les nanocomposites à base de PET et d’argile ont été préparés par un 

mélange à l’état fondu. Par rapport au mélange en solution et la polymérisation in-situ, le 

mélange à l’état fondu a des avantages environnementaux et économiques car l’utilisation de 

solvants organiques n’est pas nécessaire. De plus, cette technique entraîne des forces de 

cisaillement élevées ce qui améliore le niveau d’exfoliation des particules d’argile dans la 

matrice. Afin de créer un long chemin tortueux et une diffusion ralentie des molécules de gaz à 

travers le nanocomposite, les particules d’argile doivent être bien dispersées et distribuées dans la 

matrice. Par conséquent, une attention particulière est apportée à l’amélioration du niveau 

d’exfoliation des silicates stratifiés dans la matrice de PET. À cet égard deux types différents 

d’argiles organomodifiées, le Cloisite® 30B (C30B) et le Nanomer® I.28E (N28E), ont été 

mélangées avec le PET. 

Des films de nanocomposite à base de PET ont été préparés par extrusion. Un PET ionomère a 

été utilisé afin d'augmenter la compatibilisation et l'espacement entre les couches des particules 

d'argile. Il a été observé que mélanger un PET et un PET ionomère entraîne la formation d'un 

mélange immiscible. Des interactions favorables entre les particules d'argile et le PET ionomère 

localise les particules d'argile dans les domaines composés du PET ionomère et restreint la 

distribution des particules. Néanmoins, les études morphologiques et rhéologiques montrent que 

le PET ionomère agit comme un agent exfoliant et accroit l'espacement des nanofeuillets de 
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l’argile N28E. L'incorporation de 2 % en masse de C30B dans la matrice de PET entraîne 

l'amélioration de 25 % des propriétés barrières à l'oxygène. 

Les effets des conditions de mise en œuvre, de la composition de l'argile, et de la concentration 

des argiles sur les propriétés morphologiques et rhéologiques des nanocomposites de PET et 

argile ont été examinés dans la seconde partie de cette étude. Différents organo-argiles comme le 

N28E, C30B, Cloisite 25A (C25A), et Cloisite 15A (C15A) aussi bien qu'un argile non-modifié 

synthétique Somasif ME100 (SM100) ont été mélangés avec le PET en utilisant une extrudeuse 

double vis. Les résultats morphologiques et rhéologiques montrent que l'augmentation du temps 

de résidence et un nombre plus grand d'éléments de cisaillement améliorent la dispersion des 

argiles et les propriétés viscoélastiques. Alors que le PET seul présente une viscosité non-

dépendante de la fréquence, la viscosité complexe des nanocomposites montre un comportement 

rhéofluidifiant qui devient plus prononcé quand la quantité d'argile augmente. Le module de 

conservation est presque indépendant de la fréquence aux basses fréquences pour les chargements 

élevés d'argile, due à la formation d'un réseau interconnecté des particules d'argile. Des propriétés 

rhéologiques plus élevées ont été observées pour les nanocomposites les plus intercalés/exfoliés. 

La dégradation de la matrice de PET, due à la présence des organo-argiles, a été quantifiée en 

utilisant l'équation de Maron-Pierce. Parmi les organo-argiles étudiés dans ce travail, la 

dégradation la plus importante a eu lieu pour la matrice contenant du C30B. 

Pour contrôler la dégradation thermique du PET et pour améliorer les propriétés des 

nanocomposites à base de PET, dans la dernière partie de cette recherche, un agent d'allongement 

de chaînes multifonctionnel à base de résine d'époxy, le Joncryl ADR-4368F (Joncryl), a été 

ajouté aux nanocomposites via un lot primaire. L'effet de l'agent d'allongement de chaînes sur les 

propriétés morphologiques, rhéologiques, mécaniques, thermiques, optiques, et sur les propriétés 

barrières aux gaz a été examiné sur le nanocomposite contenant 4 % en masse de C30B et de 

N28E. Grâce aux réactions entre les groupes fonctionnels de l'agent d'allongement de chaînes et 

les groupes terminaux du PET, les propriétés viscoélastiques des échantillons contenant du 

Joncryl ont été augmentées. Des contraintes de cisaillement plus élevées, dues à la présence de 

l'agent, entraînent une exfoliation plus élevée et par conséquent des propriétés mécaniques et 

barrières plus élevées. Une réduction de 46 % de la perméabilité à l'oxygène a été obtenue pour 

les films nanocomposites contenant du C30B et du Joncryl en comparaison aux films de PET pur. 
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La réduction pour les nanocomposites contenant du N28E et du Joncryl était de 40 %. Les 

nanocomposites contenant du N28E et du Joncryl contenant du C30B et du Joncryl 

l'augmentation était légèrement moindre. 



viii 

 

ABSTRACT 

Polyethylene terephthalate (PET), a semi-crystalline thermoplastic, is produced by condensation 

reaction of either dimethyl terephthalate or terephthalic acid with ethylene glycol. PET is 

commonly used in food and beverage packaging industry. However, PET does not offer 

sufficient oxygen barrier properties in packaging of beverages such as beer and carbonated soft 

drinks that are sensitive to oxygen and loss of carbon dioxide. Incorporation of impermeable 

layered silicates into a PET matrix and manufacturing of PET nanocomposites is a promising 

method to enhance barrier properties of PET. The aim of the present study is to improve barrier 

properties of PET with silicate nanolayers. PET clay nanocomposites were prepared via a melt 

blending approach. In comparison to solution blending and in-situ polymerization, melt blending 

has environmental and cost advantageous because there is no need for organic solvents. Besides, 

this technique provides high shear forces that improve the exfoliation level of clay particles in the 

matrix. To create a long tortuous pathway and slow down the diffusion of gas molecules through 

the nanocomposite, clay particles must be well dispersed and distributed in the matrix. Hence, a 

particular attention is paid to the improvement of exfoliation level of silicate layers in the PET 

matrix. In this regard two different types of organomodified clay, Cloisite® 30B (C30B) and 

Nanomer® I.28E (N28E), were melt blended with PET. PET-based nanocomposite films were 

prepared using cast film extrusion. A PET-ionomer was employed to compatibilize and increase 

the interlayer spacing of the clay particles. It was observed that mixing of PET and PET-ionomer 

results in an immiscible blend. Favorable interactions between the clay particles and the PET-

ionomer localize the clay particles into the PET-ionomer domains and restrict the distribution of 

the particles. Nevertheless, morphological and rheological studies show that PET-ionomer acts as 

an exfoliation agent and increases the gallery spacing of N28E nanolayers. Incorporating 2 wt% 

C30B into PET matrix led to 25% enhancement in oxygen barrier properties. 

The effects of processing conditions, clay chemistry, and concentration on the morphological and 

rheological properties of PET clay nanocomposites were investigated in the second part of this 

study. Various organoclays such as N28E, C30B, Cloisite® 25A (C25A), and Cloisite® 15A 

(C15A) as well as unmodified synthetic clay Somasif® ME100 (SM100) were melt blended with 

PET using a twin-screw extruder. Morphological and rheological results show that a longer 
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residence time and more shearing elements improve the dispersion of clay tactoids and enhance 

the viscoelastic properties. While the neat PET exhibits a frequency independent viscosity, the 

complex viscosity of the nanocomposites shows a shear-thinning behavior, which becomes 

stronger with clay loading. The storage modulus was nearly independent of frequency at low 

frequencies and high clay loadings, due to the formation of an interconnected network of clay 

particles. Larger rheological properties were observed for the most intercalated/exfoliated 

nanocomposites. The PET matrix degradation, due to the presence of the organoclays, was 

estimated using the Maron-Pierce equation. The highest degradation occurred for the matrix 

containing C30B among the organoclays studied in this work. 

To control the thermal degradation of PET and improve the overall properties of PET 

nanocomposites, in the last phase of this research a multifunctional epoxy-based chain extender, 

Joncryl® ADR-4368F (Joncryl), was added to the nanocomposites via a master-batch approach. 

The effect of the chain extender on the morphological, rheological, mechanical, thermal, optical, 

and gas barrier characteristics of the nanocomposites containing 4 wt% C30B and N28E was 

examined. The viscoelastic properties of the samples containing Joncryl increased due to the 

reaction between functional groups of the chain extender and PET end groups. Higher shear 

stress induced by the presence of the chain extender resulted in higher exfoliation level and 

consequently better mechanical and barrier properties. A 46% reduction in oxygen permeability 

was obtained for the PET nanocomposites containing C30B and Joncryl, in comparison to the 

neat PET films. The corresponding reduction for the nanocomposites containing N28E and 

Joncryl was 40%. Nanocomposites containing N28E and Joncryl exhibited a 66% improvement 

in tensile modulus, whereas the corresponding improvement for the nanocomposites containing 

C30B and Joncryl was slightly less. 
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CHAPTER 1  

INTRODUCTION 

Polymer/layered silicates, in comparison with unfilled polymers or common microcomposites, 

have shown remarkable improvements in several properties [1-3]. Incorporation of nanolayers 

with high aspect ratio at very low volume fractions improves tensile modulus, strength, gas 

barrier properties, heat resistance, and decreases flammability. One can expect reduction of the 

thickness of the commercial packaging containers by incorporation of nanoplatelets and 

improvement of barrier properties. 

Polyethylene terephthalate (PET) is a linear thermoplastic polyester which has become an 

important commercial polymer owing to its rapid market growth. The wide field of applications 

of PET is due to its desirable qualities such as high tensile strength, dimensional stability, 

chemical resistance, resistance to abrasion, optical clarity, processability, recyclability, and 

reasonable thermal stability. PET is commonly used in synthetic fibers, food and non-food 

containers, soft drink and mineral water bottles, and engineering plastics in automobiles. 

Depending on the required mechanical properties, specific molecular weight is desired for each 

application. For instance, intrinsic viscosity of PET used for audio or video tapes is about 0.55 

dL/g, while PET used for textile fibers, soft drink bottles, and industrial tire cords has intrinsic 

viscosities of 0.65, 0.78, and 0.85 dL/g, respectively [4]. Global demand of PET for packaging 

applications in 1985 was about 0.5 million metric tons, while in 1990 1.5 million metric tons of 

PET was consumed. Seven (7) million metric tons of PET were consumed in 2000, and this 

increased to more than 10 million metric tons in 2005 in the packaging industry [5]. 

Glass containers, usually used for beverage packaging, are fairly heavier than an equivalent PET 

bottle. Besides, PET bottles do not shatter or break. The world market for PET resin in packaging 

could be doubled if PET would gain 50% of the market share in beer bottles packaging. Delicate 

flavor of beer, especially light beer, is very sensitive to exposure to oxygen as presence of oxygen 

sours beer [1]. For example, considering that allowable oxygen concentration limit in beer is 1 

ppm, it has been reported that beer quality preservation in typical 1.5 L PET bottles is around one 

month [6]. Loss of carbon dioxide of carbonated soft drinks leaves a flat drink. Unfortunately 

PET does not provide sufficient barriers to the transmission of oxygen and carbon dioxide. One 

promising method to enhance barrier properties of PET is the incorporation of silicate nanolayers. 
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Presence of obstructing platelets can slow down the transmission of gases through 

nanocomposites by creating a long tortuous pathway. Exfoliation of silicate layers into the matrix 

is the key to obtain this benefit. 

To achieve that goal, in the first phase of this study a PET-ionomer was employed as an 

exfoliating agent to increase the gallery spacing of the clay platelets. Considering the importance 

of processing conditions and clay chemistry in the final morphology of nanocomposites, a 

systematic study was performed to examine the effect of screw geometry, clay concentration and 

chemistry on the rheological and morphological properties of PET-based nanocomposites. The 

first and second parts of this study made it very clear that the PET matrix undergoes severe 

degradation in the presence of the organoclays. Hence, in the last phase of this work a 

multifunctional chain extender was used to compensate molecular weight reduction of the matrix 

and improve the exfoliation level of silicate layers. 

This dissertation is based on three articles that have been accepted by or submitted to scientific 

journals, and consists of the following chapters: 

 Chapter 2 provides a literature review considering the related issues. 

 Chapter 3 presents the objectives. 

 In Chapter 4 the organization of the articles is introduced. 

 Chapters 5, 6, and 7 comprise the three papers describing the main results obtained in this 

study. 

 Chapter 8 gives a general discussion about the results presented in previous chapters. 

 Finally, Chapter 9 summarizes the most important conclusions of this study followed by 

recommendations for future works. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Structure of layered silicates 

Generally, at least one dimension of dispersed particles in nanocomposites must be in the 

nanometer range (<100 nm). Typical nanomaterials which are currently under investigation are 

classified by their geometries. Silica nanoparticles and carbon black are examples of 

nanoparticles, while carbon nanotubes and nanofibers are classified as fibrous materials. Silicate 

layers with plate-like structure belongs to layered nanomaterials [7]. 

Silicate nanolayers which are widely used in polymer clay nanocomposites (PCN) are 2:1 

phyllosilicates and contain octahedral and tetrahedral crystalline sheets. The octahedral sheet 

consists of hydroxyl groups, oxygen, aluminum, iron, and magnesium atoms. On the other hand, 

the tetrahedral sheet comprised a central silicon atom and four oxygen atoms or hydroxyl groups 

[8]. The structure of 2:1 phyllosilicates is shown in Figure 2-1.  

 

Figure 2-1: Structure of 2:1 phyllosilicates [1]. 

The lateral dimensions of these layers changes in a wide range, from 30 nm to some microns, 

while the thickness of the layer is around 1 nm. Interlayer or gallery spacing is a gap between the 

stacked layers. The ability of clay minerals to hold cations is named the cation exchange capacity 
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(CEC), which is generally expressed as meq/100 g clay. Substitution of cations in the tetrahedral 

sheet (e.g. Si
4+

 is replaced by Al
3+

) or in the octahedral sheet (e.g. replacement of Al
3+

 with Mg
2+

 

or Fe
2+

) leads to the generation of a net negative surface charge. This replacement of ions with 

relatively similar sizes is called isomorphous substitution. The negative charge can be 

counterbalanced by alkali and alkaline earth cations such as Na
+
 or Ca

2+
 situated in the gallery 

[1]. 

Montmorillonite is highly polar and its surface is hydrophilic. Therefore, delamination of 

montmorillonite in many engineering polymeric matrices is problematic. In order to make a 

miscible blend from montmorillonite and polymers it is essential to render the hydrophilic silicate 

surface more organophilic. Via this conversion, intercalation of most polymeric matrices between 

silicate nanolayers becomes possible. Cationic surfactants such as alkylammonium and 

alkylphosphonium can penetrate into the interlayer space of silicate nanolayers via ion exchange 

reactions. The produced organosilicate has a lower surface energy, higher interlayer spacing, and 

more ability for polymer wetting in comparison with unmodified montmorillonite (Na-MMT). In 

some cases these organic modifiers or surfactants possess functional groups interacting with the 

polymer matrix [1, 2]. Figure 2-2 displays a schematic representation of a cation exchange 

reaction between pristine montmorillonite and a cationic surfactant. 

 

Figure 2-2: Schematic representation of a cation exchange reaction [3]. 

2.2 Morphologies of polymer layered silicates 

Generally, depending on the interfacial interaction strength between the polymer matrix and the 

nanolayers, three main types of polymer layered silicates morphologies may be observed. In 
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immiscible or phase-separated systems, polymer chains are not able to penetrate between the 

silicate layers gallery spacing. Therefore, the d-spacing of the nanolayers remains unchanged and 

the properties of the resulting composites cannot be better than conventional microcomposites. 

Intercalated nanocomposites are obtained when polymer chains are inserted in the interlayer gap 

between the silicate nanolayers. In the intercalated morphology the stacking order of the 

nanolayers is retained, however due to the penetration of several polymer chains the interlayer d-

spacing expands. Delaminated or exfoliated nanocomposites refer to the morphology in which 

silicate nanolayers are dispersed individually in the polymer host matrix. In this case, the distance 

between separated layers is typically 10 nm or higher, which depends on clay loading. 

Remarkable improvements are expected to be obtained via exfoliation of silicate nanolayers 

within polymer matrices [3]. Figure 2-3 illustrates a schematic representation of the three 

morphologies of polymer layered silicates. Generally, the final morphology of polymer layered 

silicates is determined by the interplay of entropy and enthalpy changes. The entropy change 

includes an entropy loss due to the confinement of polymer chains within the interlayer spacing 

of nanolayers, and an entropy gain because of gallery enhancement and increased conformational 

freedom of organic modifier chains. If the entropic penalty of polymer confinement is equal to or 

larger than the entropy gain, enthalpy will determine if intercalation is thermodynamically 

feasible. The enthalpy of mixing depends on the interactions of the polymer chains with the 

silicate nanolayer surface and the organic modifier chains [1, 9].    
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Figure 2-3: Scheme of different types of composite structures arising from the mixing of layered silicates and 

polymers [10]. 

2.3 Nanocomposite preparation methods 

Solution blending, in-situ polymerization, and melt blending are three processing techniques for 

preparing polymer layered silicate nanocomposites. In solution blending a polymeric solution is 

prepared and layered silicates are swollen in a solvent (e.g. water, toluene, or chloroform). By 

mixing the polymeric and silicate nanolayers solutions, macromolecules can intercalate and 

displace the solvent within the silicate layers gap. By removing the solvents, polymer/layered 

silicate nanocomposites are achieved [1]. A schematic representation of this method is shown in 

Figure 2-4. Pramanik et al. [11] prepared ethylene vinyl acetate (EVA) nanocomposites 

containing 2, 4, 6, and 8 wt% dodecyl ammonium ion intercalated montmorillonite by solution 

blending. EVA was dissolved in toluene and the organoclay was dispersed in N,N-dimethyl 

acetamide. The absence of any diffraction peak in XRD for nanocomposites containing up to 6 

wt% clay was attributed to the homogenously exfoliation and randomly dispersion of silicate 

layers within the polymer matrix. In our opinion, the absence of XRD peak, which can be due to 

clay dilution, is not sufficient to conclude to an exfoliated structure. It is worth noting that EVA 

nanocomposites containing 8 wt% organoclay exhibit the basal reflection peak at the same 
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position as that of the pristine organoclay. The authors reported 36% improvement in tensile 

strength for the nanocomposites containing 2 wt% organoclay. 

 

Figure 2-4: Schematic representation of nanocomposites obtained by solution blending [3]. 

Another technique to prepare polymer layered silicate nanocomposites is in-situ polymerization. 

This method have attracted much academic and industrial interests after Toyota research group 

synthesized polyamide-6 clay nanocomposites, with remarkable mechanical and thermal 

properties improvement, via in-situ polymerization. In this technique a liquid monomer or a 

monomer solution is used to swell the silicate nanolayers. Upon starting polymerization, 

macromolecule formation can occur between the silicate layers [1]. Lee and coworkers [12] 

prepared PET nanocomposites containing trimethyl octadecyl ammonium ion intercalated 

montmorillonite by ring-opening polymerization of ethylene terephthalate cyclic oligomers 

(ETCs). Figure 2-5 depicts the schematic of the process leading to the synthesis of a PET 

nanocomposite. Intercalation of the cyclic oligomer, with low molecular weight and viscosity, 

enhanced gallery spacing of the organoclay. Subsequent polymerization resulted in the co-

existence of exfoliated and intercalated clay particles rather than perfect exfoliation. Besides, this 

method led to the formation of a PET with a very low intrinsic viscosity (IV= 0.55 dL/g).     
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Figure 2-5: Ring-opening polymerization of cyclic oligomers in the interlayer spacing of the organoclay [12]. 

Melt intercalation involves direct mixing of layered silicates with a molten polymer. It is 

desirable that molten polymer chains diffuse into the interlayer spacing of the nanolayers and 

lead to delamination of the nanolayers.    

The melt intercalation method has several advantages over the other mentioned methods. First of 

all, this is an environmental friendly method because there is no need for organic solvents. 

Second, common industrial processing techniques such as extrusion and injection molding can be 
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used by this approach. It is a cost effective method and it can be employed for the preparation of 

nanocomposites of a wide range of polymers, from nonpolar to strongly polar ones. Besides, the 

high shear forces encountered in polymer processing equipments facilitates the dispersion of the 

nanoparticles in the molten polymer matrix. Therefore, this method is greener and commercially 

more viable in comparison with the other approaches. 

2.4 Polymer clay nanocomposites 

2.4.1 Challenges of matrix degradation  

In spite of several advantages of the melt mixing approach, this method may lead to the thermal 

degradation of commercial organoclays. For example, melt processing and polymerization of 

PET is performed at high temperatures (250-300 °C), while commercial organoclays degrade 

below 200 °C [13]. It seems that the thermal stability of organosilicates have a critical role in the 

resulting nanocomposite morphology, because upon decomposition of the silicate nanolayers 

organic modifier the interface between the polymer matrix and the silicate nanolayers may 

change. Moreover the decomposition of the organic modifiers, which leads to the collapse of the 

silicate nanolayers, results in an interlayer spacing decrease and the intercalation of polymer 

chains within the gallery spacing becomes more difficult. Color formation, enhanced degradation 

of the polymer matrix, plasticization effects, and physical properties deterioration may result 

from the thermal degradation of organoclays during melt intercalation. Therefore, if melt 

intercalation is chosen for producing polymer clay nanocomposites, the thermal stability of the 

organic modifiers which are used for the modification of the silicate nanolayers surface should be 

improved to avoid an anticipated collapse and agglomeration of the organoclays. Beside thermal 

stability of organosilicates, compatibility of organosilicates with the polymer matrix is another 

parameter that controls the final morphology and the level of dispersion and delamination of the 

silicate nanolayers in the produced nanocomposites [14, 15]. 

Fornes et al. [16] prepared Nylon-6 nanocomposites containing various quaternary 

alkylammonium organoclays using a twin-screw extruder. Molecular weight reduction and color 

formation was reported for all nanocomposites due to reactions between the matrix chains and the 
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organoclays. More matrix degradation was reported for the nanocomposites with higher platelet 

delamination, which was attributed to more exposure of the organoclays to the matrix. 

Shah and Paul [17] prepared low density polyethylene nanocomposites containing 5 wt% 

trimethyl hydrogenated-tallow ammonium montmorillonite, M3(HT)1, and dimethyl 

bis(hydrogenated-tallow) ammonium montmorillonite, M2(HT)2, using a twin-screw extruder. 

Melt compounding was performed at 150, 165, 180, 200, and 240 °C to study the effect of 

processing temperature on the degradation of the quaternary ammonium surfactants of the 

organoclays. Change in the position of XRD peaks was assigned to the platelets collapse induced 

by mass reduction of the surfactants within the clay galleries. Figure 2-6 shows XRD patterns of 

polyethylene nanocomposites containing M3(HT)1 and M2(HT)2 organoclays. The authors did not 

present TEM images for direct visualization of the state of the organoclays dispersion and XRD 

patterns do not show evidence of intercalation.   

 

Figure 2-6: XRD patterns of low density polyethylene nanocomposites processed at several extrusion temperatures 

and containing M3(HT)1 (a) and M2(HT)2 (b) organoclays [17]. 

 Polycarbonate nanocomposites were prepared by melt intercalation and the effect of organoclay 

structure on color formation was examined. Darker colored nanocomposites were obtained for 

samples containing the organoclay with double bonds in the hydrocarbon tail, in comparison to 

those with saturated organic modifiers. Presence of both hydroxy-ethyl groups and tallow tails 

led to the most color change [18]. 
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 Color formation and significant reduction of intrinsic viscosity and molecular weight of PET due 

to melt blending with organoclays has been reported by several researchers [19-30]. Scaffaro and 

coworkers [20] prepared PET nanocomposite using a twin-screw extruder. Intrinsic viscosity of 

virgin PET and extruded PET was reported to be 0.83 and 0.82 dL/g, respectively, while PET 

nanocomposites containing 10 wt% C30B show an intrinsic viscosity of 0.63 dL/g. This 

remarkable reduction of intrinsic viscosity was attributed to depolymerization of PET induced by 

the degradation of C30B organic modifier. Hwang et al. [27] prepared PET nanocomposites 

containing Cloisite® 10A (C10A) by in-situ polymerization at 285 °C. By incorporating 5 wt% 

C10A, the intrinsic viscosity of the neat PET reduced from 0.76 to 0.7 dL/g. In another work, 

PET nanocomposites containing synthetic mica were prepared using a twin-screw extruder at 270 

°C. Molecular weight of extruded PET was reported to decrease from 90 100 to 78 500 g/mol due 

to incorporation of 5 wt% of the organoclay using gel permeation chromatography [22]. 

Chung and coworkers [31] proposed a novel method for the preparation of PET nanocomposites 

in the absence of organic modifiers to avoid the thermal decomposition of alkyl ammonium 

modifiers in silicate layers. For de-intercalation (i.e. removal) of the organic modifiers from the 

silicate layers a strong acid was used. Lee et al. [32] reported that ionic bonds between strong 

acids and organic modifiers are stronger than bonds between organic modifiers and negatively 

charged silicate layers. Figure 2-7 presents gallery spacing reduction of dodecylammonium 

montmorillonite (C12-MMT) treated with various acids as a function of acid concentration.     



12 

 

 

Figure 2-7: Interlayer spacing of C12-MMT treated with different acids [32]. 

Chung et al. [31] employed trifluoroacetic acid (TFA) to remove the ionically attached organic 

modifiers (polyoxypropylene methyldiethylammonium cations) of the organically modified 

layered silicates (OLS). OLS were added to chloroform and TFA was poured in this solution. 

Then neat PET was dissolved in OLS/chloroform/TFA solution. PET/OLS/chloroform/TFA 

solution was added to cold methanol to obtain PET nanocomposites excluding organic modifier 

(S-PetLSNeom), as shown in Figure 2-8. PET nanocomposites including organic modifier (S-

PetLSNiom) were prepared by removing solvents from PET/OLS/chloroform/TFA. By melt 

mixing of neat PET with S-PetLSNeom and S-PetLSNiom in a twin screw extruder (neat PET/S-

PetLSN = 1/0.333 weight ratio), M-PetLSNeom and M-PetLSNiom were obtained. Direct melt 

mixing of OLS with PET (PET/OLS = 1/0.067) denoted by (D-PetLSN) was performed for 

comparing results with this novel approach. 
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Figure 2-8: Schematic representation of the preparation of exfoliated PET nanocomposites excluding organic 

modifier (S-Pet-LSNeom) [31]. 

For characterization of the prepared nanocomposites, both WAXD and TEM techniques were 

employed. WAXD patterns are shown in Figure 2-9.  

 

Figure 2-9: WAXD patterns of S-Pet-LSN (a), and M-Pet-LSN (b) [31]. 

For the OLS two peaks appeared in the WAXD patterns corresponding to 4.4 nm and 2.8 nm of 

gallery spacing. However, no peak was detected for both S-Pet-LSN and M-Pet-LSN, while two 

peaks corresponding to the OLS remained unchanged for D-PetLSN, which were attributed to the 

lack of intercalation of the PET chains into the interlayer spacing of the OLS. Figure 2-10 shows 

the TEM images of the prepared nanocomposites. 
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Figure 2-10: Images of S-Pet-LSNeom (a), S-Pet-LSNiom (b), M-Pet-LSNeom (c), and M-Pet-LSNiom (d) [31]. 

The optical transparency of neat PET film was compared with nanocomposites films, as shown in 

Figure 2-11 and it was found that M-Pet-LSNeom and neat PET showed similar transparency, 

while lower transparency and darker color with slight yellowing was observed for M-Pet-LSNiom 

and D-PetLSN  [31]. 
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Figure 2-11: Optical aspects of neat PET (a), M-Pet-LSNeom (b), M-Pet-LSNiom (c), and D-PetLSN (d) [31]. 

Although better optical transparency, thermal stability and enhanced mechanical properties were 

obtained, this procedure is obviously tedious and not convenient because of the use of solvents. 

Another approach to reduce matrix degradation is the purification of the organoclays by 

removing unbounded halogen impurities. Davis et al. [33] treated Na-MMT and synthetic mica 

(Na-SM) with dimethyl dioctadecyl ammonium bromide (DMDODA-Br). After the ion exchange 

reaction, both types of organoclays contained ionically bounded DMDODA, unbounded 

DMDODA-Br, and NaBr by-product. Both NaBr and DMDODA-Br decreased the thermal 

stability of the produced organosilicates. Therefore, it is desirable to remove these two sources of 

residual bromide. Ngo and coworkers [34] reported that the onset temperature of degradation of 

imidazolium cations reduces drastically in the presence of a halide (by about 100 °C). Cui et al. 

[35] have shown that washing organoclays to remove the excess unbounded organic modifier salt 

improves the thermal stability of the organoclays. Davis and coworker [33] found that thermal 

stability of organosilicates depends on the employed solvent for removing bromide impurities. 

Hot water, ethanol, and tetrahydrofuran (THF) were used for washing the organoclays. While hot 

water washing had no effect on the thermal stability of the organoclays, a 40 °C enhancement in 
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temperature at 5% mass fraction loss, T5%, was obtained for organoclays that experienced both 

ethanol and THF extraction. Stoeffler et al. [36] purified Cloisite® 20A (C20A) by successive 

washing with a water/ethanol (1:1) mixture at 70 °C to eliminate the residual chloride anions 

present in the organoclay. They however only reported a negligible 4 °C improvement in T5% for 

the purified C20A.  

Modification of silicate layers with highly thermally stable cationic surfactants is another 

approach to reduce matrix degradation. Quaternary ammonium organic modifiers are cheaper 

than thermally stable organic modifiers such as imidazoliums [33]. Besides, organoclays based 

on quaternary ammonium surfactants are already commercialized, which make purification of the 

alkyl ammonium-modified organoclays more reasonable. However, purification procedures are 

time consuming and require solvents. Besides, this approach increases the final cost of the 

commercialized alkyl ammonium-modified organoclays.  

Kim et al. [13] modified Na-MMT with a thermally stable organic modifier based on dimethyl 

imidazolium bromide (DMIBr). PET nanocomposites containing 3 wt% of this organoclay were 

prepared by a melt intercalation approach at 280 °C. PET nanocomposites containing Cloisite® 

15A (C15A) and C30B were also prepared for comparison. Thermogravimetric analysis (TGA) 

measurements were carried out for the organoclays. The onset of decomposition temperature of 

the imidazolium-based organoclay, C15A, and C30B was reported to be 255, 196, and 174 °C, 

respectively. TEM images of PET nanocomposites containing the imidazolium-based organoclay 

are presented in Figure 2-12 at different magnifications. Although imidazolium-based organoclay 

exhibits better thermal stability over C30B and C15A, the TEM images show an intercalated 

morphology containing tactoids of several silicate layers rather than an exfoliated structure.     
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Figure 2-12: TEM images of PET nanocomposites containing imidazolium-based organoclay at various 

magnifications [13].  

Ghasemi et al. [37] prepared PET nanocomposites containing C30B, and thermally stable 

organoclays modified with imidazolium, pyridinium, and phosphonium surfactants using a twin-

screw extruder. TGA analysis confirmed that T5% of the thermally stable organoclays was 

significantly higher than that of C30B. However, based on XRD results the highest gallery 

opening (i.e. PET intercalation) was obtained for C30B. Image analysis based on TEM images 

also confirmed a higher degree of intercalation for the nanocomposites containing C30B. 

Stoeffler et al. [38] prepared PET nanocomposites containing alkyl phosphonium, alkyl 

pyridinium, and dialkyl imidazolium-modified montmorillonite using an internal mixer at 280 

°C. Based on TEM images, intercalated morphologies with tactoids made of around 4-10 layers 

were reported for the nanocomposites. The presence of micro-aggregates, observed by optical 

microscopy, was also reported for all the nanocomposites. PET nanocomposites containing alkyl 

phosphonium and dialkyl imidazolium-modified montmorillonite exhibited a yellowish/brownish 

color, and those containing pyridinium-modified montmorillonite presented a dark brown color in 

comparison to the neat PET matrix. 

Na-MMT was modified with thermally stable hexadecyl quinolinium bromide (Q16) and PET 

nanocomposites were prepared with an inorganic clay loading of 3 wt% using an internal mixer at 

280 °C [39]. Figure 2-13 shows XRD patterns of the pristine and modified montmorillonite, as 

well as PET nanocomposites containing the organoclay. According to the XRD results, 

modification of Na-MMT with the quinolinium surfactant increases the d-spacing from 1.21 nm 

to 1.73 nm, and after melt blending with PET the gallery spacing reaches 3.15 nm. 
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Figure 2-13: XRD patterns of Na-MMT, quinolinium modified montmorillonite (MMT-Q16), and PET 

nanocomposite containing MMT-Q16 [39]. 

Low and high magnifications TEM images of the obtained nanocomposites are presented in 

Figure 2-14. Based on the XRD and TEM results, a mixed morphology including immiscible, 

intercalated, and exfoliated silicate layer structures was reported [39]. 

 

Figure 2-14: Low (a) and high magnification (b) TEM images of PET nanocomposites containing MMT-Q16 [39]. 

In another study PET nanocomposites containing imidazolium-modified montmorillonite were 

synthesized by in-situ polymerization. XRD and TEM results revealed the coexistence of large 

aggregates and intercalated silicate layers for the synthesized nanocomposites [19]. 

2.4.2 Nanocomposites morphology and properties 

Food and beverage producers require distributing their products all over the world. This increases 

the time interval between production and consumption of the products. The shelf life of many 
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foods and beverages is strongly dependent on their packaging resistance to oxygen, carbon 

dioxide, and water vapor. Hence, various efforts have been devoted on the improvement of 

barrier properties of packaging materials. A thin layer of materials with high intrinsic barrier such 

as aluminum and silicon oxide has been coated on polymer substrates to reduce gas permeability. 

The level of adherence between the plastic substrate and the coating limits the durability of the 

coated article. The barrier performance significantly reduces if the interior coating delaminates or 

the exterior coating scratches off [40, 41].  

The permeability of semi-crystalline polymers depends on the degree of crystallinity. Annealing 

(heat setting) of semi crystalline polymers results in crystal perfection by the reduction of defects 

and the enhancement of the degree of crystallinity [42]. Crystalline domains are impermeable and 

a higher degree of crystallinity reduces the volume of polymer available for gas penetration. 

Besides, impermeable crystals create tortuous path and force gas or liquid molecules to follow 

longer diffusion pathways within the amorphous phase [43, 44]. Therefore, crystalline domains 

affect both the solubility and diffusivity of gases in the matrix [45]. The influence of annealing 

on the degree of crystallinity and oxygen permeability of PET was studied by Perkins [46]. A 

33% improvement in barrier properties was reported when crystallinity of the matrix increased 

from around 25% to 55% [46]. Another study showed that after 20 min annealing at 150 °C, the 

degree of crystallinity and oxygen barrier properties of PET increased by 7 times and 40%, 

respectively. However, it was reported that after annealing the sample became completely opaque 

and white [47]. Another drawback of annealing is brittleness of the product. 

Blending with high barrier polymers is another approach to increase barrier properties of 

polymers like PET or polyolefines [48-50]. Yeo et al. [50] prepared a blend of polypropylene 

(PP)/ethylene-vinyl alcohol copolymer (EVOH) (85/15) using a single-screw extruder. Oxygen 

permeability of bi-axially stretched PP/EVOH films increased by about 10 times compared to the 

neat PP. A 19% improvement in oxygen barrier properties of bi-axially stretched PET films 

blended with 5 wt% poly(m-xylene adipamide) MXD6 was also reported [49]. The main problem 

of this approach is the immiscibility of the components in the blends, which deteriorates 

properties of the final product such as visual appearance. Besides, bi-axial stretching is essential 

to deform the droplets of the high barrier dispersed phase into parallel and extended layers to 

create a tortuous pathway and restrain the diffusion of gas molecules. 
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Another approach to increase barrier properties is employing high barrier polymers for multilayer 

containers. The high barrier polymers alone are not used as single material containers because of 

low physical properties and cost issues [51]. Packaging containers with multilayer structures (3-9 

layers) comprised a main constituent polymer (e.g. PET) and high barrier polymer (e.g. EVOH). 

In contrast to the previous method, the multilayer approach does not cause miscibility and visual 

appearance problems. However, layer adherence can be a limitation and therefore an adhesive 

polymer is required to tie or bond the barrier layers to the main constituent polymer. Higher 

production and material costs is another disadvantageous of this approach. Besides, it is more 

economical and simpler to recycle a single component plastic than a multilayer container [41, 52, 

53]. 

Introducing impermeable lamellar fillers with high aspect ratio in the polymer matrix is another 

method to enhance barrier properties [54-59]. A tortuous path is created in the polymer matrix 

due to the presence of the impermeable silicate layers. The impermeable obstacles force the gas 

permeant to travel a longer path to penetrate through the film, and consequently the permeability 

decreases. Permeability is the product of diffusion and solubility. The kinetic aspect of the 

transport is described by the diffusion coefficient, D, and the thermodynamic aspect of the 

transport is reflected by the solubility coefficient, S, which implies the affinity between the 

polymer matrix and gas molecules. The following equation shows the relationship between the 

permeability coefficient, P, with the solubility and diffusion coefficients: 

                                                               DSP                                                                          (1) 

By ignoring the effect of the filler on the local characteristics of the host polymer matrix, the gas 

solubility in the nanocomposite is given by the following equation: 

                                                         PPCN SS )1(                                                                      (2) 

 where φ is the clay volume fraction, PCNS , and PS  are solubility coefficients of the polymer clay 

nanocomposite and the neat polymer, respectively. Presence of the silicate layers not only 

decreases the available area for diffusion of the solutes but, due to the tortuosity, it also reduces 

the diffusion rate of the nanocomposites according to the following equation: 
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where τ is the tortuosity, PCND , and PD  are diffusion coefficients of the polymer clay 

nanocomposite and the neat polymer, respectively. Relative permeability is obtained by 

combining Eqs. (1) - (3): 
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where PCNP and PP  are permeability coefficients of the polymer clay nanocomposite and the pure 

polymer, respectively [60]. Tortuosity must be known in order to predict the permeability of the 

nanocomposites. There are several models describing tortuosity of the filled systems [61-66]. For 

example, following model was proposed by Bharadwaj [62] for tortuosity: 

                                                              


 2cos
2

1                                                               (5) 

where α is silicate layers aspect ratio and θ is the angle between the direction of penetrate flow 

and the normal of the layers.  

Ghasemi et al. [47] prepared PET nanocomposite films containing 3 wt% C30B by cast 

extrusion. A partially exfoliated/intercalated morphology was reported for the nanocomposite 

films. In comparison to the neat PET films, oxygen barrier properties and Young modulus of the 

nanocomposite films exhibited 23% and 20% improvement, respectively. The presence of the 

silicate nanolayers increased brittleness of the samples and resulted in more hazy films. In 

another study, they investigated the effect of processing conditions on theproperties of PET 

nanocomposite films containing C30B [67]. Compared with the neat PET, a 27% reduction in 

oxygen permeability and a 30% improvement of the tensile modulus was reported for the 

nanocomposites containing 3 wt% C30B, processed by employing a severe screw profile in terms 

of mixing and high screw rotational speed [67]. 

In another study, PET nanocomposites containing C15A were prepared using a twin-screw 

extruder. A 16% reduction in oxygen permeability was reported for the nanocomposites 

containing 3 wt% C15A [68].  



22 

 

Various blends of PET and polyamide-6 containing Nanomer® I30TC (N30TC) were prepared 

by injection molding. Figure 2-15 presents TEM images of a blend containing 20 wt% 

polyamide-6 and 5 wt% N30TC. The silicate layers are located in the dispersed phase due to a 

higher affinity between polyamide-6 and the organoclay. Around 14% improvement in the 

Young modulus was reported for the nanocomposite [69]. 

 

Figure 2-15: TEM images of PET nanocomposites containing 20 wt% polyamide 6 and 5 wt% N30TC [69]. 

Hwang and coworkers [27] prepared PET nanocomposites containing Na-MMT and C10A by in-

situ polymerization. Figure 2-16 shows TEM images of the samples containing 2 wt% of the 

pristine clay and the organoclay. 
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Figure 2-16: TEM images of PET nanocomposites containing 2 wt% Na-MMT (a) and C10A (b) prepared by in-situ 

polymerization [27]. 

A mostly intercalated morphology was obtained for the nanocomposites containing C10A; 

however, the pristine clay was not efficiently intercalated with the PET chains. Large aggregates 

containing an average of 66 platelets per particle were reported for the samples containing Na-

MMT. The better morphology obtained for PET nanocomposites containing C10A, in 

comparison to samples containing Na-MMT, was attributed to the surfactant of the organoclay, 

which promotes the compatibility between the inorganic clay and the organic PET. Mechanical 

properties of the nanocomposites are shown in Figure 2-17. Because of extreme brittleness of the 

samples containing Na-MMT, mechanical properties of the corresponding samples were 

measured only up to 2 wt% loading. The Young modulus increased with clay concentration for 

both Na-MMT and C10A-containing samples. Around 35% enhancement in the Young modulus 

was obtained for the nanocomposites containing 5 wt% C10A. The reduction of elongation at 

break was attributed to the increased stiffness and formation of microvoids around clay particles 

during tensile testing.  
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Figure 2-17: Young modulus (a) and elongation at break (b) of samples containing pristine clay and organoclay [27]. 

A polarizing optical microscope was employed to investigate the crystallization of the neat PET 

and the clay-containing samples. The samples were held at 200 and 220 °C for 5 min and the 

spherulite morphologies are presented in Figure 2-18. A well defined spherulite texture is 

observed for the neat PET, but by increasing the crystallization temperature the Maltese cross 

disappears. Clay-containing samples exhibit smaller spherulites with more nuclei density as 

compared to the neat PET [27]. Similar results (i.e. smaller spherulites size and more nuclei) 

were obtained by other researchers for PET nanocomposites in comparison to neat PET [70, 71].     
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Figure 2-18: Micrographs showing spherulites of the neat PET at 200 °C (a) and 220 °C (b), PET/0.5 wt% Na-MMT 

(c), PET/2 wt% Na-MMT (d), PET/2 wt% C10A (e), and PET/5 wt% C10A (f) all at 220 °C [27].   

PET nanocomposites containing various concentrations of Cloisite® 20A (C20A) were prepared 

using a twin-screw extruder. The reduction of the cold-crystallization temperature of PET in 

nanocomposites was attributed to the nucleating effect of C20A. XRD results indicated 

expansion of the gallery spacing of the organoclay due to intercalation by the PET chains. An 

inhomogeneous dispersion of the clay particles in the nanocomposites was reported, based on 

TEM images, and it was attributed to less favorable interactions between C20A and the polymer 

matrix. TEM images of the prepared nanocomposites with inorganic clay loading equal to 1.3 and 

2 wt% are shown in Figure 2-19 [72]. 
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Figure 2-19: TEM images of PET nanocomposites containing C20A with inorganic clay loading equal to 1.3 (a) and 

2 wt% (b) [72].  

Biaxial stretching was reported to improve exfoliation of silicate layers within a PET matrix [73, 

74]. Rajeev et al. [74] employed a twin-screw extruder to produce PET nanocomposites 

containing Somasif® MAE, which is an alkylammonium-modified synthetic clay. Platelets in 

tactoids slip past each other due to biaxial stretching. As a result, tactoid length and the frequency 

of single layer and double layer particles are increased. Figure 2-20 exhibit the effect of equi-

biaxial stretching with a stretch ratio equal to 3 in both directions on the morphology of 

nanocomposites containing 2 wt% Somasif® MAE. A 22% reduction in oxygen permeability was 

reported for the nanocomposites, in comparison to the neat PET [74]. The Young modulus of the 

samples with various clay loadings and stretch ratios is shown in Figure 2-21. A 10, 20, and 30% 

improvements in Young modulus were reported for the unstretched samples containing 1, 2, and 

5 wt% Somasif® MAE, respectively. By stretching the samples better mechanical properties 

were obtained, which was attributed to the reduced agglomeration and more tactoid alignment 

[73]. 
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Figure 2-20: TEM images of PET nanocomposites before (a) and after stretching [74]. 

 

Figure 2-21: Effect of biaxial stretch ratio and clay concentration on the tensile modulus of PET and PET-based 

nanocomposites [73].  

Efforts have also been devoted to improve the compatibility between organoclays and polyesters. 

Compatibilizers have been considered to improve the morphology of PET nanocomposites. 

Pentaerythrytol and maleic anhydride were employed to improve the compatibility between 

silicate nanolayers and PET chains; however, an exfoliated morphology was not achieved [75]. 

Chisholm and coworkers [76] investigated the effect of sodium sulfonate functionalization of 

poly(butylene terephthalate) (PBT) on the properties of PBT nanocomposites containing 5 wt% 

Na-MMT, and an alkylammonium modified montmorillonite. TEM images of PBT and PBT-

ionomer samples containing the organoclay and Na-MMT are shown in Figure 2-22. PBT and 
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PBT-ionomer composites containing Na-MMT exhibit almost the same morphology, while the 

presence of sulfonated groups in PBT-ionomer/organoclay nanocomposites leads to a significant 

change in the morphology as compared to the reference PBT/organoclay nanocomposite. Higher 

exfoliation level obtained for PBT-ionomer/organoclay nanocomposites was attributed to 

favorable interactions between the positively charged edges of montmorillonite and the 

negatively charged ionomer. Other researchers also took advantage of strong affinity of 

negatively charged sulfonic groups of ionomers with the edges of clay nanoparticles to prepare 

nanocomposites with improved morphology [23, 77-81].  

 

Figure 2-22: TEM images of PBT/Na-MMT (a), PBT-ionomer/Na-MMT (b), PBT/organoclay (c), and PBT-

ionomer/organoclay (d) [76]. 

 

2.4.3 Rheology of nanocomposites 

XRD, SEM, and TEM are widely used for morphological characterization of nanocomposites. 

Rheology has been used extensively in complement to these techniques in several studies as it is 
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very sensitive to the morphology of nanocomposites [1, 82-89]. The summary of the most 

significant results of these studies is the transition from liquid-like to solid-like viscoelastic 

behavior for nanocomposites, even at low volume fractions of silicate layers, as well as a strong 

shear-thinning behavior. Solid-like behavior has been attributed to the formation of a percolated 

network of clay particles which happens at relatively low clay loadings due to the anisotropy of 

the particles which prevents their free rotation and dissipation of stress. 

Aubry et al. [86] studied rheological properties of polyamide-12 containing C30B prepared by an 

internal mixer. The storage modulus as function of frequency and clay volume fraction is shown 

in Figure 2-23. A low-frequency plateau is observed for the nanocomposites containing more 

than 1.5% C30B and the storage modulus increases monotonically with clay concentration. 

 

Figure 2-23: Storage modulus vs. frequency for neat polyamide-12 (●), and nanocomposites containing 0.5% (○), 

1% (■), 1.5% (□), 2.5% (▲), 5% (∆), and 10% (▼) C30B [86]. 

Vermant et al. [85] prepared polypropylene (PP) nanocomposites containing Cloisite® 20A 

(C20A) using a twin-screw extruder at 205 °C. Maleic anhydride grafted PP (PPMA) was 

employed as a compatibilizer. The prepared master-batch was diluted using a lab scale re-

circulating co-rotating extruder to fabricate nanocomposites containing various concentrations of 

C20A while the C20A/PPMA ratio was kept at 0.67. Figure 2-24 shows the effect of the 

organoclay volume fraction on the storage modulus of the matrix. In comparison to the neat 
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samples, larger storage modulus was obtained for the nanocomposites, which increases with clay 

loading. At high volume fractions clay particles may touch each other, which leads to the 

formation of a space filling network and appearance of a low frequency plateau. 

 

Figure 2-24: The storage modulus as a function of frequency and C20A volume fraction, as indicated in the legend, 

measured at 220 °C [85]. 

It has been reported that the empirical Cox-Merz rule is inapplicable in case of nanocomposites 

[90, 91]. Poly(butylenes succinate-co-adipate) (PBSA) nanocomposites containing 6 wt% C30B, 

C15A, and Cloisite® 93A (C93A) were prepared using an internal mixer [84]. Figure 2-25 

exhibit the viscosity of PBSA and the nanocomposites as a function of frequency or shear rate. 

While the Cox-Merz rule holds for the neat PBSA, the complex viscosity of the nanocomposites 

is always above their corresponding steady shear viscosity. This was attributed to the alignment 

of the silicate layers in the flow direction due to steady shear.      
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Figure 2-25: Cox-Merz representation of the neat PBSA and the nanocomposites: open symbols, steady shear data; 

filled symbols, dynamic data [84]. 

It was demonstrated that the formation of a percolated network increases the viscoelastic 

properties of nanocomposites significantly. Therefore, a remarkable decrease in the viscoelastic 

properties is expected if the percolated network is destroyed. Several studies have shown that 

steady pre-shearing can disrupt internal percolated networks of nanoparticles [92-94]. Wu et al. 

[92] prepared poly(butylene terephthalate) (PBT) nanocomposites containing C10A using an 

internal mixer. Figure 2-26 shows the effect of steady pre-shearing on the rheological behavior of 

PBT nanocomposites containing 4 wt% C10A. A significant reduction in the elastic modulus of 

the pre-sheared sample is observed. Besides, the low-frequency dependence of the elastic 

modulus is enhanced in the pre-sheared nanocomposites. These were attributed to the preferential 

orientation of the silicate layers in the shear direction and disruption of the percolation network. 



32 

 

 

Figure 2-26: Effect of steady pre-shearing on the viscoelastic properties of PBT nanocomposites containing 4 wt% 

C10A [92]. 

Li et al. [93] studied rheological behavior of PP nanocomposites containing an alkylammonium-

modified montmorillonite prepared by an internal mixer. PP nanocomposites containing 6 wt% 

the organoclay was first sheared at shear rate equal to 0.1 s
-1

 for 5 min. Then, the flow was 

stopped and after different rest times the sample was sheared in the reverse direction for 5 min at 

0.1 s
-1

 and 200 °C. The transient stress response of the sample is shown in Figure 2-27. The 

magnitude of the stress overshoot depends on the rest time significantly, which was attributed to 

structural evolution in the sample during the quiescent period. 
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Figure 2-27: The stress response to the startup of steady shear in reverse flow measurements for PP nanocomposites 

containing 6 wt% the organoclay at 200 °C [93]. 

2.5 Summary 

Many efforts have been made to improve barrier properties of polymers against oxygen, carbon 

dioxide, and water vapor. One promising approach, which has attracted considerable attention in 

recent years, is incorporating impermeable silicate layers with high aspect ratio in the polymer 

matrix. It has been observed that properties of the nanocomposites are influenced by the 

exfoliation level of the silicate layers, which depends on the compatibility between the host 

polymer matrix and nanoclay, as well as the employed processing techniques and conditions. 

Many studies have been aimed at delaminating silicate layers within a PET matrix. A mostly 

intercalated morphology was reported for PET nanocomposites prepared by in-situ 

polymerization. Lack of exfoliation may be due to the absence of high shear forces as well as the 

long time procedure of the technique at high temperatures (e.g. 280 °C), which led to the 

degradation of the organic modifiers and the polymer matrix. While employing twin-screw 

extrusion in the melt blending approach provides high shear forces, the degradation of the matrix 

and organoclays remained unsolved. Purification of the commercial organoclays by removing 

unbounded halogen impurities led to negligible improvement in thermal stability of the 

organoclays, and no significant improvement in morphology was obtained. Employing solvents 
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makes this method even less interesting. PET nanocomposites containing silicate layers modified 

with thermally stable cationic surfactants exhibit an intercalated morphology containing tactoids 

of several silicate layers, rather than an exfoliated structure. In addition, several studies reported 

severe matrix degradation by incorporating organoclays. In summary the preparation of PET 

nanocomposites with exfoliated morphology and good barrier properties remain challenging, and 

novel approaches need to be undertaken to improve these materials.         



35 

CHAPTER 3  

OBJECTIVES 

 

Taking into account the significant demands in the packaging industry for single layer containers 

with high barrier and mechanical properties, and considering the various drawbacks of previous 

approaches to improve barrier properties of PET to fabricate food and beverage containers, the 

main objective of this study is: 

 

“To improve barrier properties of PET by incorporating silicate layers via melt 

compounding” 

 

To meet this objective, PET nanocomposite films containing different organoclays are prepared 

by cast extrusion. A PET-ionomer is employed to improve exfoliation of the organoclays, and its 

effect on morphology and properties of the nanocomposites is examined. 

Subsequently, PET nanocomposites containing various organoclays and pristine synthetic clay 

are prepared and the effects of clay loading and organic modifier on the morphology and 

rheology of PET nanocomposites are investigated. By changing screw configuration the effect of 

processing conditions on the morphology and rheology of the nanocomposites are studied as 

well. 

Finally, to control the thermal degradation of the matrix induced by the presence of the 

organoclays, a multi-functional epoxy-based chain extender is employed to rebuild the molecular 

weight and viscoelastic properties. The effects of the chain extender on the morphology and 

various properties (e.g. optical, thermal, barrier, mechanical, and rheological properties) of the 

nanocomposites are examined. 
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CHAPTER 4  

ORGANIZATION OF THE ARTICLES 

 

The following three chapters comprise the articles containing the main results of this study. 

Chapter 5 presents the first article entitled “Morphology and properties of polymer organoclay 

nanocomposites based on PET and sulfopolyester blends”. In this work, PET nanocomposite 

films containing C30B and N28E were prepared by extrusion casting. A PET-ionomer was 

employed to increase basal spacing of the organoclays and enhance exfoliation level of the 

nanocomposites. Scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) revealed that PET and PET-ionomer are immiscible and silicate layers are preferentially 

localized in the more polar PET-ionomer phase. Although homogeneous distribution of silicate 

layers in the nanocomposites is restricted due to their migration into the PET-ionomer domains, 

x-ray diffraction (XRD), TEM, and rheological results show that the presence of the PET-

ionomer improved the exfoliation level of N28E. A 25% improvement in oxygen barrier 

properties was obtained for the nanocomposites containing 2 wt% C30B. This paper has been 

accepted by Polymer International. 

Chapter 6 presents the second article entitled “Morphological and rheological properties of 

PET/clay nanocomposites”. This work investigates the role of clay chemistry and concentration 

on the morphological and viscoelastic properties of the nanocomposites. A twin-screw extruder 

was used and the effect of screw configuration was examined on the rheology and morphology of 

the nanocomposites. The neat PET displays a Newtonian-like behavior while the complex 

viscosity of PET nanocomposites exhibits shear-thinning, which becomes stronger with clay 

loading. A pseudo-solid like behavior due to the formation of a network-like structure was 

observed for the nanocomposites at high clay concentrations and low frequencies. The highest 

degree of intercalation was obtained for C30B and the corresponding nanocomposites exhibit the 

largest values of the complex viscosity and storage modulus. It is worth noting that the solubility 

parameter of PET is closer to that of C30B than the other organoclays. The matrix degradation 

due to the presence of the organoclays was estimated using the Maron-Pierce equation and high 

frequency data. The apparent molecular weight of the PET matrix was found to decrease from 65 
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kg/mol for the neat PET to 29.8 kg/mol for the PET nanocomposites containing 8 wt % C30B. 

This work has been submitted in June 2012 to Rheologica Acta. 

Finally, Chapter 7 presents the third article entitled “Influence of chain extension on the 

morphology and properties of PET nanocomposites”. According to the rheological results of the 

second article, the PET matrix undergoes a remarkable degradation in the presence of the 

organoclays. Hence, in the third phase of this project a multifunctional chain extender, Joncryl® 

ADR-4368F (Joncryl), was added to the nanocomposites via a master-batch approach. XRD and 

TEM were used for morphological characterization and it was found that the presence of the 

chain extender improves the level of exfoliation. The complex viscosity and storage modulus of 

the nanocomposites increased significantly by incorporation of the chain extender, which is 

attributed to the reactions between functional groups of Joncryl and PET end groups. PET 

nanocomposites containing Joncryl exhibit higher barrier and mechanical properties. A 46% and 

40% improvement in barrier properties were obtained for the nanocomposite films containing 

Joncryl and 4 wt% C30B and N28E, respectively. PET nanocomposite films containing N28E 

and Joncryl exhibit 66% improvement in the Young modulus, slightly more than the 

corresponding C30B nanocomposites. Compared to the neat PET, larger crystallinity and lower 

cold-crystallization temperature were obtained for the nanocomposites due to the nucleation 

effect of the silicate layers. This article has been submitted in August 2012 to Polymer.   
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5.1 Abstract 

Poly(ethylene terephthalate) (PET) nanocomposite films containing two different organoclays, 

Cloisite 30B® (C30B) and Nanomer I.28E
®

 (N28E), were prepared by melt blending. In order to 

increase the gallery spacing of the clay particles, a sulfopolyester (PET-ionomer or PETi) was 

added to the nanocomposites via a master-batch approach. The morphological, thermal and gas 

barrier characteristics of nanocomposite films were studied using several characterization 

techniques such as scanning electron microscopy (SEM), transmission electron microscopy 

(TEM), x-ray diffraction (XRD), differential scanning calorimeter (DSC), dynamic mechanical 

analysis (DMA), rheometry and oxygen permeability. The PET and PETi were found to form 

immiscible polymer blends and the nanoparticles were preferably located in the PETi dispersed 

phase. A better dispersion of clay was obtained for nanocomposites containing N28E with PETi. 

On the contrary, for nanocomposites containing C30B and PETi the number of tactoids increased 

and the clay distribution and dispersion became worse than for C30B alone. Overall, the best 

properties were obtained for the PET/C30B nanocomposite without PETi. Higher crystallinity 

was found for all nanocomposite films in comparison to that of the neat PET. 

Keywords: Poly(ethylene terephthalate); nanocomposite; organoclay; rheology, ionomer. 

 5.2 Introduction 

Nowadays PET is one of the most widely used engineering polymers due to its good 

processability, high transparency, mechanical and gas barrier properties, as well as chemical 

resistance and low cost. This semi-crystalline thermoplastic has found wide applications in the 

form of fibers and non-fibers (such as food and beverage packaging, automotive, electrical 

devices and construction). For some applications it is desirable to increase specific characteristics 
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such as barrier properties for beverage and food packaging. Incorporation of silicate nanolayers 

into a PET matrix has been demonstrated to enhance various physical properties.
1,2

 

Large efforts have been devoted to achieve well dispersed and delaminated silicate nanolayers in 

a PET matrix. In most studies, the coexistence of a PET microcomposite along with an 

intercalated structure has been observed.
3-7

 The processing temperature of PET is around 260 ºC 

while commercial organoclays start degrading around 200 ºC. The decomposition of the organic 

modifier leads to a collapse of the silicate nanolayers and to a decrease of the interlayer spacing, 

thus impedes the intercalation of polymer chains within the gallery spacing. Moreover, the lack 

of a delaminated or exfoliated morphology in PET nanocomposites is often due to the lack of 

compatibility of the organic modifiers used in commercial organoclays with the PET 

macromolecules. For these reasons, several studies have been performed to modify silicate 

nanolayers with various cationic surfactants
6,8-10

, mostly aimed at improving the thermal stability 

of commercial organoclays. Efforts have also been devoted to improve the compatibility between 

the organoclay and polyesters. Chisholm and coworkers
11

 have synthesized sulfonated 

poly(butylene terephthalate) copolymers (PBT-ionomers) by the melt polymerization of dimethyl 

terephthalate, dimethyl-5-sodiosulfoisophthalate, and 1,4-butanediol. They found that the 

incorporation of 5% mol. of -SO3Na groups into PBT had no significant effect on the 

morphology of composites containing pristine clay (i.e. Na-MMT). However, the presence of 

sulfonated groups in PBT-ionomer/organoclay nanocomposites led to a dramatic change in the 

morphology, in comparison to the reference PBT/organoclay nanocomposites. It was suggested 

that the better intercalated and delaminated morphology obtained in the presence of sulfonated 

groups was attributed to the binding of these negatively charged groups to the edges of the clay 
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platelets that bear positive charges. This attachment could facilitate the diffusion of mobile 

polymer chain segments into the gallery spacing of the organoclay. Improvements on the 

processing and formulation sides have also been considered. Ghasemi et al.
12

 prepared 

nanocomposites containing 3 wt% C30B using a PET experimental grade of high viscosity (Selar 

PTX 295, Dupont) blended with a commercial grade PET (9921, Eastman Chemical Company) at 

a ratio of 1:4. They studied the effect of feeding rate and screw speed using two screw geometries 

with different mixing elements. For the best case (higher screw speed), 27% reduction in oxygen 

permeability was achieved. In another study, Xu and coworkers
13

 prepared nanocomposites 

containing 2 wt% N28E and 6 wt% PETi using the same experimental grade high viscosity PET 

(Selar PTX 295, Dupont). The best improvement of the barrier properties achieved via their 

procedure was 19%. 

In this work a commercial sulfopolyester (PET-ionomer, or PETi) is used to improve the 

compatibility between a PET matrix and two different organoclays. Formulation and 

compounding are entirely based on a melt processing approach. In the current work a thorough 

investigation of the state of miscibility between PET and PETi is carried out. Furthermore we 

show that the dispersion and delamination of the clay are dependent on the organo-modifier 

chemistry. The interactions between the clays and the ionomer are studied through rheological 

measurements in order to explain the resulting morphologies.  
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5.3 Experimental 

5.3.1 Materials 

A commercial grade PET (PET 9921), with intrinsic viscosity of 0.8 dL/g, was obtained from 

Eastman Chemical Company. The PET ionomer, PETi AQ55S, with an ionic content of 9 mol%, 

and inherent viscosity of ~ 0.3 dL/g, was also kindly supplied by Eastman Chemical Company. 

The chemical formula of the PETi is shown in Figure 5-1. The organically modified 

montmorillonites, Cloisite 30B® (C30B) and Nanomer I.28E® (N28E), were obtained from 

Southern Clay Products Inc. and Nanocor Inc., respectively. C30B is modified with methyl, 

tallow, bis-2-hydroxyethyl, quaternary ammonium (MT2EtOH), while N28E is modified with 

octadecyl ammonium (ODA) according to R&D of Nanocor Inc. It has also been proposed that 

the Nanomer and Cloisite montorillonites do not have the same origin, since they contain 

different amounts of Fe
3+

.
14

 

 

Figure 5-1: Repeat unit of the PET-ionomer. The ionic comonomer is randomly incorporated within the structure.15 

 

5.3.2 Samples preparation 

The PET, PETi, and the organoclays were vacuum dried at 80 ºC for 24 h before processing. For 

all blends the organoclay nominal content was 2 wt% of the total mass, while the amount of the 

PETi was 6 wt% in the nanocomposites containing the compatibilizer. The nanocomposites 
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containing PETi were prepared by a master-batch approach: 25 wt% PETi, 8.3 wt% clay, and 

66.7 wt% PET were melt blended using a small co-rotating twin-screw Leistritz extruder (screw 

diameter = 18 mm and L/D = 40). Then the prepared master-batch was diluted with the neat PET 

using a larger Leistritz extruder (screw diameter = 34 mm and L/D = 42). Figure 5-2 shows the 

larger extruder screw geometry. The first and third mixing zones contained 10 and 15 kneading 

elements, respectively, with 7.5 mm width kneading lobes with right hand (positive) and left 

hand (negative) 60º staggering angles. The second mixing zone was composed of two left and 

right-handed gear type mixing elements. There were 8 tooths around each circumference and 5 

gears in each block, while the total length of the mixing block was 30 mm. The screw speed and 

feed rate were kept at 200 rpm and 3 kg/h, respectively. The extrusion temperature profile from 

the feed to the die was set between 240 and 265 ºC. Table 5-1 shows the nanocomposite 

compositions and nomenclature. 

 

Figure 5-2: Screw geometry of the Leistritz 34 mm twin-screw extruder. 
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To prepare the PET-based films, a 20 cm wide slit die with a 1.42 mm die gap was used. An air 

knife was mounted on both sides of the die. To stretch the extrudate, chill rolls (20 ºC) were 

employed and the distance between the die and the chill rolls was approximately 10 cm. The 

width of the films was 16 cm and the average neck-in due to stretching was 20%. The draw ratio 

was around 44 and the corresponding thickness of the films was 40 µm. 

 

 

Table 5-1: Nomenclature and compositions of the nanocomposite films.  

N28E wt% C30B wt% PETi wt% PET wt% Nomenclature 

0 0 0 100 Neat PET 

0 0 6 94 PET/PETi 

0 2 0 98 PET/C30B 

0 2 6 92 PET/PETi/C30B 

2 0 0 98 PET/N28E 

2 0 6 92 PET/PETi/ N28E 

 

Finally, to investigate the miscibility between PET and PETi, several PET/PETi blends 

containing 0, 10, 20, 30, 50, 70 and 100 wt% PETi were prepared using a 30 mL Plasti-Corder 

internal mixer (Brabender). Melt compounding was performed at 260 ºC and 100 rpm for 10 min 

under dry nitrogen. Also, PET/PETi blends containing 6 and 20 wt% PETi and 2 wt% C30B were 
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prepared using the same instrument and conditions (except at 250 ºC) to detect preferential 

localization of clay particles.   

 

5.3.2 Characterization of the polymer blends and nanocomposites 

DMA was carried out on a TA Instruments DMA 2980 from 40 to 120 ºC at a heating rate of 5 

ºC/min and frequency of 1 Hz. Rectangular-shaped samples were prepared via compression 

molding in a hot press at 265 ºC for 9 min under a nitrogen atmosphere, followed by quenching 

using a cold press for 5 min. The curves of tan δ as a function of temperature were analyzed to 

obtain the glass transition temperature, Tg, of the PET/PETi blends. 

XRD patterns were obtained using a Bruker D8 Discover with Cu K radiation operating at an 

incident X-ray wavelength λ = 0.15406 nm and a scan rate of 0.6 º/min. The spectra were 

recorded over the 2θ range of 0.8 -10 º. 

The level of clay distribution and dispersion were determined using SEM and TEM at the micro- 

and nano-level, respectively. SEM observations were carried out using a cold Field Emission 

Gun SEM (FEG-SEM), Hitachi S4700, with an operation voltage of 2 kV. All the specimens 

were prepared by employing an Ultracut FC microtome (LEICA) with a diamond knife followed 

by coating with Pt vapor. TEM images were obtained using a JEOL JEM 2100F microscope 

operating at 200 kV. The samples were ultramicrotomed into ultrathin slices of about 50-80 nm 

thickness at Cryo temperature (i.e. -100° C) using the aforementioned microtome system. To 

determine if PET and PETi were miscible, PET/PETi samples of different compositions were 
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etched in deionized hot water to selectively extract the PETi domains prior to SEM 

characterization. 

The thermal behavior of the nanocomposites was analyzed using a DSC TA Instruments Q1000. 

All the measurements were performed under a helium atmosphere. The samples were heated 

from room temperature to 300 ºC and held at that temperature for 3 min, then cooled to 30 ºC and 

heated again to 300 ºC at a constant rate of 10 ºC/min.  

Molten state rheological measurements were performed using a strain-controlled rotational 

rheometer Advanced Rheometric Expansion System (ARES, TA Instruments) and a stress-

controlled Bohlin Gemini, both with a parallel plate flow geometry (25 mm diameter, 1 mm gap). 

Dynamic linear frequency sweeps were carried out for the neat PET and PET-based 

nanocomposites at 265 ºC under a nitrogen atmosphere. The time for the measurements was 

restricted to 5 min to avoid a severe change of the molecular weight of the samples.   

Finally, to determine oxygen transmission rates (OTRs), an OX-Tran model 2/21 apparatus 

(Mocon Inc.) with an oxygen permeability MD module was employed. All measurements were 

performed at 23 ºC under a pressure of 690 mmHg (0.91 atm) of 100% dry oxygen. The 

permeability coefficient [P, in L/(m.day.atm)] was obtained from the OTR values using the 

following formula:  

                                                        P = OTR × L/p                                                                    (5-1)   

 where L is the film thickness (m) and p is the testing pressure (atm).  
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5.4 Results and discussion 

5.4.1 Investigation of PET and PETi miscibility 

The compounding of two polymers may lead to miscible, partially miscible and immiscible 

blends.
16

 In the scientific literature
16-18

, a single glass transition temperature  Tg for a polymer 

blend is generally recognized as a sign of miscibility (where the size of the domains is below 15 

nm), while a blend is qualified as immiscible if it exhibits two or more Tgs at a given 

composition. To use the Tg approach, the content of each component in the blend should be more 

than 10 wt%, and their Tgs should differ by at least 10 ºC. The melting point depression of a 

semi-crystalline polymer in the presence of an amorphous polymer is also used to examine the 

miscibility of a blend. Based on this method, a blend is considered miscible if the melting 

point Tm decreases with composition, while a constant Tm is a characteristic of immiscible 

polymer blends.
17,18

 There are, however, several publications reporting that these two methods 

may lead to contradictory results regarding the miscibility state of a blend.
17,19-21

 For example, for 

a blend exhibiting two Tgs, a melting point depression was observed
20

, and a single Tg with no 

melting point depression has been reported as well.
21

 On the basis of the above observations, it 

seems that a conclusion on the miscibility of two polymers based on the Tg and melting point 

depression may be uncertain. In this work, the miscibility between PET and PETi was 

investigated by the former two methods, as well as via a selective solvent dissolution technique 

followed by SEM.  

DMA data for the neat PET, neat PETi and their blends (70-30, 50-50 and 30-70 wt%) are 

reported in Figure 5-3 in terms of the loss tangent (tan δ). The Tg of the neat PET and neat PETi 
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are 88.1 and 73 
o
C, respectively. A single Tg is observed for all blends, and this value is 

composition dependent, suggesting miscibility of the two polymers. DSC data are shown in 

Figure 5-4, illustrating the melting behavior of PET in the presence of the amorphous PETi. The 

melting point drops monotonically with increasing PETi content: however, at the largest PETi 

concentration (70 wt%), the melting peak disappears completely. It seems that a less stable 

crystalline phase, which melts at lower temperature, is formed in the presence of PETi. The 

observation of a single Tg for all blend compositions (Figure 5-3) along with the melting point 

depression shown in Figure 5-4 strongly suggest miscibility of the two polymers. However, after 

further investigation by solvent extraction, the blends showed phase separated domains as 

illustrated in the SEM micrographs of Figure 5-5 for PET/PETi blends containing various 

amounts of PETi. Separated droplet-like domains, of the order of several hundreds of nanometer 

to microns, are observed, indicating the non-miscibility of PET and PETi at this scale. In blends 

containing 50 wt% PETi a co-continuous structure is generated during the phase separation 

process, while in blends containing 20 and 30 wt% PETi phase separation leads to a droplet-

matrix type of morphology. As expected, droplets are larger for blends containing 30 wt% PETi 

in comparison to those containing 20 wt% PETi. To explain the apparent contradiction between 

the DMA and SEM results, it is necessary to have a closer look at Figure 5-3. The broad peak 

associated to the pure PETi in the DMA data suggests that it may be a two-phase system itself, 

with separation of the ionic copolymer (with the sulfonated groups in Figure 5-1) from the PET 

homopolymer in PETi. Hence, there may be the possibility that the phase-separated portion of 

PETi interferes with the crystallization of the other PET in the blends, leading to the melting 

point depression observed in Figure 5-4.  
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Figure 5-3: Tan  vs. temperature for several blend compositions of PET and PETi. 
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Figure 5-4: Melting behavior of PET/PETi blends containing 0 to 70 wt% PETi. 
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Figure 5-5: SEM micrographs of PET/PETi blends initially containing (a, b) 50 wt% PETi  at different 

magnifications, (c) 30 wt% PETi and (d) 20 wt% PETi. All micrographs were taken after extraction of the PETi 

phase. 

 

5.4.2 Morphology of PET-PETi nanocomposites 

As the organoclays have positive charges on the edges while the PETi exhibits negative charges 

at the sulfonated groups
3,11

, and as higher affinity of silicate nanolayers to polar polymers has 

been reported in the literature
22,23

, it is anticipated that the organoclays will have greater affinity 

with the PETi phase. Thus the phase separation behavior of PET and PETi discussed in the 

previous section may cause migration and partitioning of the clay particles. Figure 5-6 shows 
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TEM images at different locations of nanocomposites containing 2 wt% of C30B and 20 and 6 

wt% of PETi, respectively. This figure reveals that the C30B clay particles are indeed 

preferentially localized in the PETi domains than in the PET matrix. As expected, the greater 

PETi concentration of 20 wt% generates larger domains of the PETi in the nanocomposites 

(Figure 5-6a-d versus Figure 5-6e-f). As a consequence, the clay distribution density in the 

separated (PETi) domains is indeed expected to be higher in the lower PETi content system (6 

wt%), since the overall clay concentration remains the same in both cases.  

 

Figure 5-6: TEM images of nanocomposites containing 2 wt% C30B and 20 wt% PETi (a-d) and 6 wt% PETi (e,f).  

 

The preferred affinity of the organoclay for the PETi phase may impede its efficient distribution 

within the bulk phase. A “good distribution” refers to a case where single layers and/or multilayer 
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clay particles show a uniform presence within the whole material, both the domains and the 

matrix, even if clay aggregates might be observed. On the other hand, the term “dispersion” 

refers to how well the clay layers are delaminated and form single layers at the nanoscale.
24

 

Figure 5-7 shows the SEM micrographs of various PET-based nanocomposites with and without 

PETi, at a nominal content of 2 wt% of organoclay C30B or N28E.   

 

Figure 5-7: SEM micrographs of (a) PET/C30B, (b) PET/PETi/C30B, (c) PET/N28E, (d) PET/PETi/N28E. 

 

In the nanocomposite containing C30B in the absence of ionomer (Figure 5-7a), the observed 

clay density is low and the particle size is smaller than for samples containing the PETi (Figure 

5-7b). The low density of clay particles may be due to the limitation of SEM for sub-micron 
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levels while smaller aggregates suggest that clays are well dispersed in the PET matrix. By 

adding the PETi in nanocomposites containing C30B, more and larger clay particles are visible in 

the SEM image and there are several “empty” spaces neighboring large agglomerates (Figure 

5-7b), indicating a bad distribution and dispersion of C30B particles in this system. The presence 

of large aggregates is due to concentration of particles in the PETi domains as discussed earlier. 

However, it is interesting to note that this phenomenon is not observed in the nanocomposites 

containing N28E (Figure 5-7c-d).  

In order to complement the information provided by the SEM micrographs, XRD and TEM 

techniques were employed to have a better understanding of the nanocomposites morphology. 

Investigation of XRD patterns is among the important tasks to evaluate the overall morphology of 

nanocomposites. Morphological information on the nanocomposites can be inferred from the 

position, shape and intensity of the reflected X-ray beam. Figure 5-8 shows the XRD patterns of 

nanocomposites containing N28E and C30B, respectively. The basic interlayer spacing of N28E 

is 2.4 nm. The interlayer spacing of the organoclay in the PET/N28E nanocomposite increases up 

to 3.4 nm (Figure 5-8a). This increase is assumed to be the result of the diffusion of PET 

macromolecules within the silicate layers, and suggests an intercalated morphology. For the 

N28E nanocomposite containing PETi, no peak is observed. This can be due to the delamination 

of silicate nanolayers within the PET matrix and disruption of the well-ordered structure of the 

nanolayers. The weaker second-order peak also disappears for nanocomposites containing PETi, 

which is another sign that the high degree of the periodic order of N28E does not exist in these 

nanocomposites. By incorporation of C30B into the PET matrix, the interlayer spacing of this 

organoclay increases from 1.8 nm to 3.6 nm (Figure 5-8b). This is in agreement with the findings 
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of Ghasemi et al.
12,25

 The increment is here also attributed to the intercalation of PET chains 

within the clay galleries. The C30B nanocomposites containing the PETi show no diffracted 

peak, possibly because of clay dilution due to aggregate formation as illustrated by Figure 5-7b.  

However, the disappearence of a diffraction peak cannot always be directly attributed to an 

exfoliated morphology. For these reasons, XRD analysis is not sufficient for morphological 

characterization of nanocomposites, and TEM imaging is required for a better understanding of 

the internal structure.  
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Figure 5-8: XRD patterns of PET nanocomposites containing 2 wt% N28E (a) and C30B (b). Nanocomposites 

without ionomer (thick solid line) and nanocomposites containing the ionomer (narrow dotted line). 
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Figure 5-9: TEM images of PET/N28E (a,b) and PET/PETi /N28E (c,d) at various magnifications. 

 

Figure 5-9 shows TEM images of PET-based nanocomposites containing 2 wt% of N28E. For 

these nanocomposites, a better distribution of clay particles is achieved for samples containing no 

PETi (Figure 5-9a) as the particles have a larger area to be distributed in. In contrast, in 

nanocomposites containing PETi the clay particles are trapped in the restricted PETi phase as 

discussed earlier and their distribution is hence constrained (Figure 5-9c). However, the presence 

of PETi results in a better dispersion of the clay layers due to a better affinity between PETi and 

(c) 
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clay, as mentioned before. A larger gallery spacing and a greater clay layer disorder due to the 

addition of PETi can be observed by comparing the TEM images of nanocomposites with and 

without PETi (Figure 5-9d and Figure 5-9b, respectively). It seems that a semi-exfoliated 

morphology is achieved for nanocomposites containing PETi and N28E (Figure 5-9d). For these 

systems, a significant amount of individual clay layers can be observed in the TEM images.  

TEM images of nanocomposites containing C30B are shown in Figure 5-10 for various 

magnifications. The TEM observations are in good agreement with the SEM ones. Figure 5-10a 

reveals a good distribution of the C30B clay particles within the PET matrix. At high 

magnifications, single layers, double layers and tactoids containing a few layers can be observed 

(Figure 5-10b) indicating a good level of dispersion and exfoliation. However, after adding PETi, 

the clay particles are not distributed as well as in the PET matrix alone (Figure 5-10c). This is 

related to the lack of miscibility between the PETi and PET phases and greater affinity of clay for 

the PETi phase as discussed above. The TEM observations also demonstrate that the morphology 

of the N28E systems (Figure 5-9c-d) is very different from that of the C30B systems (Figure 

5-10c-d), in which the PETi domains are larger and less uniform. As clays are mainly 

concentrated in the PETi domains in both cases, it can explain for the appearance of large clay 

aggregates in the C30B-PETi systems and not in the N28E-PETi ones. 
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Figure 5-10: TEM images of PET/C30B (a,b) and  PET/PETi /C30B (c,d) at various magnifications. 

 

To evaluate quantitatively the effect of the compatibilizer on the PET-based nanocomposites 

containing the two organoclays, the number of platelets per clay particle was manually counted 

using the TEM images. Around 400 particles were counted to ensure statistical validity of the 

analysis. The corresponding data are shown in Figure 5-11. In the case of PET/C30B 

nanocomposites, the count for single and double layer particles is the highest among all of the 

nanocomposites (around 80%), indicating that this organoclay is both well dispersed and 

distributed in the PET matrix. In the presence of PETi, the amount of C30B clay aggregates (five 
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or more platelets/particle) increases due to the confinement of the clay particles within the small 

available area of the PETi phase. On the contrary, for the PET/N28E nanocomposites the count 

for single and double layer particles is the lowest one and this kind of organoclay is neither well 

dispersed nor distributed in the PET matrix alone (Figure 5-9a-b). However, by adding the PETi 

to the nanocomposites containing N28E, the counts for single and double layer particles increase. 

While it was seen that the addition of PETi leads to C30B aggregate formation resulting in a 

worse morphology, the use of a more polar polymer enhances the gallery spacing in the case of 

N28E and results in more single and double layer particles.  The better dispersion of C30B over 

N28E in the PET can be due to the presence of the two ethoxy (or ethyloxy) groups in the 

intercalant of the former that can facilitate the interaction with the carboxylic and hydroxyl 

groups of PET molecules via hydrogen bonds or even chemical bonds (etherification or 

esterification).  The better dispersion of N28E over C30B in the PETi domains should be 

explained by the better affinity of PETi with N28E over C30B. The primary amine used in the 

intercalant in N28E should provide a less crowded surface as opposed to the quaternary amine 

used in the intercalant in C30B, thus allowing a better interaction between the clay surface and 

the PETi. 

To quantify further the degree of layer dispersion in the nanocomposites, the free-path spacing 

measurement introduced by Luo and Koo is employed.
26

 According to this method, a 

dimensionless dispersion value D0.1 is calculated based on the distribution of the free-path 

spacing distances between the clay layers according to the following equation:  
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where µ is the mean spacing between the clay layers, and σ is the standard deviation. 

 

Figure 5-11: Number of platelets per particle histogram. The total number of counted particles was around 400 for 

each nanocomposite. 

 

A value below 4% for the dimensionless dispersion parameter D0.1 suggests an immiscible system 

or microcomposite; an intercalated nanocomposite displays a dispersion value between 4-8%, 
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while for an exfoliated nanocomposite this value is above 8%.
26

 While the D0.1 value increases 

from 4.3 to 6.3% for PET/N28E and PET/PETi/N28E, respectively, for samples containing C30B 

a reverse trend is observed. The D0.1 values for PET/C30B and PET/PETi/C30B is 7.5 and 4.6 %, 

respectively. PET/C30B has the highest D0.1 value with 7.5% which is close to that of a fully 

exfoliated system. This value is in agreement with the one obtained by Ghasemi et al.
12 

for PET 

nanocomposites containing C30B obtained under the best processing conditions. For the N28E 

nanocomposites, the addition of PETi transforms a nearly microcomposite (D0.1 = 4.3%) to an 

intercalated system (D0.1 = 6.3%), in agreement with previous observations.
 

 

5.4.3 Rheological properties of PET-PETi nanocomposites 

Figure 5-12 reports the complex viscosity and storage modulus of the neat PET and its 

nanocomposites. The various nanocomposites show a shear-thinning behavior while the neat PET 

displays a pseudo-Newtonian behavior on the whole frequency range. The lowest viscosity and 

storage modulus are observed for the nanocomposite containing C30B and PETi. However, at 

high frequency, where the behavior of the matrix is dominant, all the nanocomposites show a 

lower viscosity and lower storage modulus than the neat polymer, presumably due to the 

degradation induced by the presence of the organic modifiers. The addition of PETi in the 

nanocomposites containing N28E increases the melt viscosity and storage modulus on the whole 

range of frequency, in comparison to the PET/N28E samples. This is most probably due to the 

better dispersion of the N28E particles in the nanocomposites containing PETi. In contrast, the 

presence of PETi in the nanocomposites containing C30B decreases the melt viscosity and 

storage modulus on the whole range of frequency in comparison to the PET/C30B samples. This 
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may be the results of two factors:  the poor dispersion of the C30B particles in the presence of the 

ionomer, and a plasticization effect. 
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Figure 5-12: Complex viscosity (a), and storage modulus (b) as functions of frequency for the neat PET and its 

nanocomposites at 265 ºC. 
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In order to understand better the interactions between PETi and the two nanoclays, the complex 

viscosity and storage modulus of the neat PETi and its corresponding composites containing 6 

wt% N28E and C30B were measured. This large concentration of clay was used to amplify its 

effect on the rheological properties of PETi, and results are presented in Figure 5-13. Both the 

neat PETi and the PETi/6 C30B samples display a pseudo-Newtonian behavior, while the sample 

containing N28E exhibits a marked shear-thinning behavior, which is one of the characteristics of 

nanocomposites with a favorable morphology. In the case of PETi/6 C30B, most probably C30B 

particles form large aggregates leading to a pseudo-Newtonian behavior as for the neat PETi. In 

contrast, it seems that N28E particles form an interconnected network-like structure, which is 

obvious at low frequency and suggests a strong interaction between the PETi and N28E. The 

lower complex viscosity of the PETi/6 C30B sample in comparison to the neat PETi is largely 

due to the degradation of the matrix induced by the organic modifier used for the C30B particles. 

In addition, it may suggest a low interaction between this clay and the ionomer, which was 

already shown in the SEM (Figure 5-7b) and TEM (Figure 5-10c-d) images. 
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Figure 5-13: Complex viscosity (a), and storage modulus (b) as functions of frequency for the neat PETi (●), PETi/6 

C30B (▲), and PETi/6 N28E (♦) at 250 ºC. 
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5.4.4 Thermal properties  

The influence of clay platelets on the glass transition temperature Tg, the melting temperature Tm, 

cold crystallization temperature Tcc, hot crystallization temperature Thc, and crystal content of 

PET nanocomposite films was investigated by DSC. The thermal characteristics of the various 

films are given in Table 5-2. The glass transition temperature of the nanocomposite films is 

somewhat lower than that of the neat PET, with a slightly larger reduction for nanocomposites 

containing PETi, which suggests thermal degradation of PET chains and/or plasticization. No 

significant difference is observed in the melting point of the nanocomposites in comparison with 

the neat PET. For all the nanocomposites, cold crystallization and hot crystallization temperatures 

decreases and increases, respectively, in comparison to the neat PET. This reveals that clay 

particles act as heterogeneous nucleating agents and promote nucleation of the semi-crystalline 

PET. The crystal content of the nanocomposite films is evaluated according to the following 

equation: 

o

m

CCm
C

H

HH
X






/)(
                           (5-3)                                                                                               

where α is the PET weight fraction, mH  the enthalpy of melting, CCH the enthalpy of cold 

crystallization and o

mH  the enthalpy of melting of 100% crystalline PET (140 J/g).
27

 As shown 

in Table 5-2, the crystalline content of nanocomposite films is slightly larger than that of neat 

PET films, which is another indication of a promoted crystallization in the presence of clay. 
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Table 5-2: DSC results for neat PET and nanocomposites films containing C30B and N28E.  

Sample )( CTg   )( CTcc   )( CThc   )( CTm   Crystalline fraction (%) 

Neat PET 78.7 ± 0.1 135.7 ± 0.1 174.8 ± 0.1 243.1 ± 0.1 8.6 ± 0.5 

PET/C30B 76.5 ± 0.2 126 ± 0.1 193.8 ± 1 244 ± 0.1 13.0 ± 0.3 

PET/PETi /C30B  74.8 ± 0.1 129.2 ± 0.2 194 ± 2 244 ± 0.1 12.9 ± 0.1 

PET/N28E  77.5 ± 0.1 133.3 ± 0.1 197 ± 3 244.2 ± 0.1 11.1 ± 0.5 

PET/PETi /N28E  75.2 ± 0.1 125.9 ± 0.1 198 ± 0.3 244 ± 0.2 14.3 ± 0.3 

 

5.4.5 Barrier properties 

The barrier property improvement of nanocomposites is generally explained by the tortuous path 

model.
28,29

 The presence of silicate nanolayers, which are assumed impermeable lamellar fillers 

with a high aspect ratio, induce a more tortuous gas path. Longer diffusion pathways are created, 

hence preventing the gas to pass directly through the material.
28,29

 Crystallinity is another 

important factor, which can promote barrier properties of a material. Figure 5-14 shows the 

measured oxygen permeability of the neat PET and its nanocomposites. For all the 

nanocomposite films, the permeability is decreased in comparison to the neat PET due to both the 

presence of clay particles and a higher crystallinity. The best barrier properties are obtained for 

the nanocomposite film containing C30B, for which a reduction of oxygen permeability up to 

25% is observed in comparison to the neat PET, confirming the results of Ghasemi et al.
12 

By 

comparing Figure 5-9a and Figure 5-10a, it can be concluded that the better distribution of C30B 



69 

 

within the PET matrix and the larger D0.1 value, as compared to N28E, explain the permeability 

results. These data clarify the strong role of the nanoclay distribution on the barrier properties. 

However in the case of clay particles like N28E, which cannot be well dispersed, employing a 

more polar polymer (the sulfopolyester) can be helpful to achieve a better dispersion level. 

Miscibility between the more polar polymer and polymer host matrix plays a key role as 

properties of nanocomposites is controlled by the level of clay distribution too. In this work, a 

fundamental study was performed to investigate the state of miscibility between PET and PETi 

and clarify the effect of PETi on the migration and partitioning of two different clay particles 

within a PET matrix. Unfortunately the immiscibility of PETi in PET does not permit a good 

distribution and dispersion of the clay particles outside of the PETi domains. Thus the advantage 

of the good clay dispersion in an immiscible system such as PET-PETi does not lead to improved 

barrier properties. 
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Figure 5-14: Oxygen permeability of the neat PET and its nanocomposite films. 

 

5.5 Conclusion 

In this work, morphological, rheological, thermal and gas barrier properties of PET 

nanocomposites containing C30B and N28E were studied. The effect of a sulfopolyester (PETi) 

on the morphology of nanocomposites was investigated. Based on SEM and TEM results, PETi 

was found to be immiscible with PET although the PET backbone of this copolymer influences 

the crystallization of the PET matrix and leads to a melting point depression. Nanoclay particles 

have greater affinity with the PETi phase due to the formation of favorable electrostatic 

interactions between the ionic groups of this copolymer and nanoclay particles, which localize 

themselves preferentially into the PETi domains. Although migration of clay particles into 
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droplets of the PETi phase restricts distribution of the particles, XRD, TEM and rheological 

results show that for nanocomposites containing N28E, PETi acts as an effective exfoliation 

agent and improves the dispersion of the clay particles. 

Higher crystallinity was observed for all nanocomposite films in comparison to that of neat PET. 

Finally, it was found that the gas barrier properties of nanocomposites were improved by a good 

distribution of clay particles within the matrix. The best nanoclay distribution and barrier 

properties were obtained for C30B in the absence of PETi. 
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6.1 Abstract  

This work investigates the effects of clay chemistry and concentration on the morphology and 

rheology of polyethylene terephtalate (PET)/clay nanocomposites. The complex viscosity of the 

PET nanocomposites exhibited a more solid-like behavior, in contrast to the matrix that had a 

frequency independent viscosity. In addition, at high frequencies where the behavior of the 

matrix should be dominant, a lower complex viscosity of the nanocomposites was observed due 

to PET degradation in the presence of the organoclays. The high frequency data were used to 

estimate the matrix degradation using the Maron-Pierce equation. The apparent molecular weight 

of the PET matrix was found to decrease from 65 kg/mol for the neat PET to 30 kg/mol for a PET 

nanocomposite containing 8 wt% Cloisite® 30B. The apparent yield stress in the nanocomposites 

was determined using the Herschel-Bulkley model. Yield stress increased with the level of 

exfoliation and clay concentration, from ~ 0 to 166 Pa when the clay concentration increased 

from 2 to 8 wt%. 

 

Keywords: Polyethylene terephtalate. Nanocomposites. Organoclay. Rheology. Morphology. 

 

6.2 Introduction 

Polymer/layered silicate nanocomposites have attracted remarkable scientific and technological 

interests due to significant improvement of material properties, at low clay loadings, in 

comparison with unfilled polymers or common micro composites. These notable changes include 

enhancements in mechanical properties, thermal stability, barrier and flame retardant properties 

(Gupta et al. 2009; Ray and Okamoto 2003).  

To prepare polymer/layered silicate nanocomposites, three main approaches consist of solution 

blending, in-situ polymerization, and melt blending. Melt blending is an environmental friendly 
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method because there is no need for organic solvents. Besides, low cost and common industrial 

processing techniques such as extrusion can be used for the preparation of nanocomposites from 

a wide range of thermoplastic polymers. In addition, the high shear force in polymer processing 

equipments facilitates the dispersion of the nanoparticles in the molten polymer matrix. 

Therefore, melt blending is industrially a more viable method in comparison to other approaches 

(Pavlidou and Papaspyrides 2008; Ray and Okamoto 2003). 

Wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and transmission 

electron microscopy (TEM) are the most common techniques to characterize the nanocomposite 

morphology. WAXD is a convenient and rapid method to determine the gallery spacing of 

silicate layers for both pristine clays and organically modified clays and when polymer chains 

penetrate into the galleries. However, little information about the distribution of the silicate layers 

can be obtained by this method. On the other hand, although TEM provides direct visual 

information about the distribution of the silicate layers, it is a time-consuming and expensive 

technique which covers only a very small portion of the sample, with the possibility of micro-

scale inhomogeneity. SEM is used to characterize the particle distribution at the micrometer scale 

and to assess the presence of large aggregates. In conjunction with the aforementioned 

techniques, rheology is employed as an indirect tool for the microstructure characterization of 

nanocomposites. The advantage of rheological methods is that they probe the bulk of 

nanocomposite materials on a significant volume of sample tested, which increases the reliability 

of the data. In addition measurements are performed in the melt state, which can provide valuable 

information about the processability of the nanocomposites. Furthermore the interactions 

between the nanoparticles and the matrix can also be detected and quantified. Finally, detailed 
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information about molecular level changes in the structure (e.g. oxidation, degradation, 

crosslinking, etc.) can be obtained by employing rheometry (Pogodina et al. 2008; Galindo-

Rosales et al. 2011; Bhattacharya et al. 2007; Gupta et al. 2009; Vermant et al. 2007).  

A large number of rheological studies have been carried out to assess the state of clay dispersion 

in polymer matrices, especially thermoplastics (Nazockdast et al. 2008; Wu et al. 2005; Vermant 

et al. 2007; Eslami et al. 2010; Wang et al. 2011; Aubry et al. 2005; Manitiu et al. 2009; Ayyer 

and Leonov 2004; Gahleitner et al. 2006; Lim and Park 2001; Mobuchon et al. 2007, 2009a; 

Mobuchon et al. 2009b). Large increases in viscoelastic properties, storage modulus and complex 

viscosity, as well as a slower relaxation and a transition from liquid-like to solid-like behavior are 

the most significant findings of these studies. The appearance of a solid-like terminal plateau in 

the storage modulus of nanocomposites has been commonly attributed to the formation of a 

space-filling percolated network of individual clay platelets and/or intercalated tactoids acting 

like a weak solid (Pujari et al. 2011; Utracki and Lyngaae-Jorgensen 2002; Solomon et al. 2001; 

Ren et al. 2000; Ray and Bousmina 2005). Therefore, by destroying this interconnected network 

of clay particles (for example by pre-shearing) a remarkable reduction of viscoelastic properties 

is expected. Orientation of clay particles in the shear direction and a transition from solid-like 

behavior to liquid-like behavior has been observed by many researchers (Nazockdast et al. 2008; 

Wu et al. 2005; Dykes et al. 2012; Solomon et al. 2001). The presence of a percolation network is 

also inferred by the stress response upon start-up of steady shear. The stress overshoot observed 

in transient rheological response of nanocomposites depends on rest time duration and applied 

shear rate, and is attributed to both interaction between nanoparticles and the viscoelastic 

properties of the polymer matrix.  
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PET is a semi-crystalline thermoplastic polymer widely used in soft drink bottles as well as both 

food and non-food containers. PET is non-toxic, shows high dimensional stability, high 

transparency, and good mechanical and thermal properties. Barrier properties of PET to oxygen 

should however be improved for some applications like packaging of oxygen-sensitive beverages 

such as soft drinks and beer. Incorporation of silicate nanolayers into a PET matrix has been 

shown to enhance the barrier properties of PET (Ghanbari et al. In press.; Ghasemi et al. 2011a; 

Xu et al. 2011; Frounchi and Dourbash 2009; Soon et al. 2009; Ghasemi et al. 2012). 

Several studies have been performed on PET/organoclay nanocomposites. It was observed that 

introducing a PET-ionomer as an exfoliating agent, which has a higher polarity than PET, 

improved the dispersion of clay particles and increased the viscoelastic properties of the 

nanocomposites (Ghanbari et al. In press.; Xu et al. 2011). In another study, it was demonstrated 

that contrary to thermally stable phosphonium and imidazolium modified clays, ammonium-

modified Cloisite® 30B (C30B) exhibited good dispersion and distribution within a PET matrix 

(Ghasemi et al. 2011b). The incorporation of 3 wt% of C30B into PET led to a 27% reduction in 

oxygen permeability (Ghasemi et al. 2011a). Sanchez-Solis et al. (Sanchez-Solis et al. 2004) 

observed that the incorporation of 3 wt% silicate nanolayers in a PET matrix resulted in a 45% 

enhancement of the Young’s modulus. 

Although several studies have been devoted to polymer/clay nanocomposites, the rheological 

behavior of PET/clay nanocomposites is not fully understood. For example, it has been observed 

that the incorporation of 2 wt% Nanomer® I.28E (N28E) and C30B in the PET matrix reduces 

the complex viscosity (Ghanbari et al. In press.; Xu et al. 2011). Scaffaro et al. [20] prepared PET 

nanocomposites containing C30B and C15A using a twin-screw extruder. They observed that the 
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complex viscosity of the nanocomposites containing 3, 5, and 10 wt% of the organoclays was 

smaller than that of the neat PET at high frequencies. More severe degradation was observed for 

the nanocomposites containing C30B than those containing C15A.   

In the present work, various clay particles (from unmodified synthetic clay to commercially 

available organoclays) at different concentrations (from 0 to 8 wt%) were used to study the effect 

of surfactant and clay concentration on the rheological properties of PET nanocomposites. In 

addition, by changing the twin-screw configuration, the effect of processing was also examined. 

To our knowledge, there is no work addressing the effects of these parameters on both the 

rheology and morphology of PET nanocomposites in order to have a more in-depth 

comprehension. Particular emphasis is placed on studying the yield stress of the solid-like 

network induced by the presence of the clay particles at clay concentrations higher than the 

percolation threshold. High frequency data are used to estimate the thermal degradation of the 

PET matrix and analyze the influence of clay content on a more solid basis. Rheological 

properties are also correlated with morphological observations.     

  

6.3 Experimental 

6.3.1 Materials 

The polyethylene terephtalate used in this study, PET 9921, is a commercial product of Eastman 

Chemical Company with intrinsic viscosity of 0.8 dL/g and a melting point of 243 °C. The 

following natural organoclays have been used: C30B, Cloisite® 15A (C15A) and Cloisite® 25A 

(C25A) from Southern Clay Products Inc., and N28E from Nanocor Inc. Unmodified synthetic 
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clay Somasif® ME100 (SM100) from CBC Co. Ltd was also utilized. The chemical composition 

of the organic modifiers (when applicable), the interlayer spacing of the clays, and the solubility 

parameter of the organic modifiers are summarized in Table 1. The content of organic modifier 

presents in the various organoclays was determined by thermogravimetric analysis (TGA Q500, 

TA Instruments). For these tests, samples of 10 mg were heated from room temperature to 800 °C 

with a heating rate of 10 °C/min under an air atmosphere. In Table 6-1 it is observed that the 

organoclays d-spacing is correlated with the organic modifier content. 

Table 6-1: Characteristics of the clay particles.  

Organoclay Organic modifier d-spacing 

(nm) 

Organic modifier 

(wt%) 

δ of organic modifier
a,b

 

(J
1/2

.cm
-3/2

) 

C30B methyl, tallow, bis-2-hydroxyethyl, 

quaternary ammonium 

1.85 29 

 

21.5 

C25A dimethyl, dehydrogenated tallow, 2-

ethylhexyl quaternary ammonium 

1.86 31 17.2 

N28E octadecyl ammonium 2.4 33 16.0 

C15A dimethyl, dehydrogenated tallow, 

quaternary ammonium 

3.15 40 16.9 

SM100 none 0.96 0 - 

 

a
 δ is the solubility parameter calculated based on the Fedors group contribution method (Van Krevelen and Te 

nijenhuis 2009) 

b
 experimental value of δ for PET is between 19.9 and 21.9 (Van Krevelen and Te nijenhuis 2009) 

 

6.3.2 Melt Compounding 

The PET and clay particles were vacuum dried at 90 ºC for 24 h before extrusion. A co-rotating 

twin-screw Leistritz extruder (screw diameter = 18 mm and L/D = 40) was used to prepare 
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samples containing 0 to 8 wt% of clay particles. Figure 6-1 depicts two different screw 

configurations (SC1 and SC2) which were used in this study. Both screw geometries have the 

same conveying and pressuring elements, followed by the first mixing zone with 30, 60 and 90° 

elliptical kneading elements 4 mm thick. The second and third mixing zones, with 30 and 60° 

elliptical elements, respectively, are also the same for both screw configurations. The only 

difference is that SC2 has a fourth mixing zone with 30 and 60° elliptical elements and a reverse 

element located between the third and the fourth mixing zones. It was observed that residence 

time at 200 rpm increases from 51 s for SC1 to 90 s for SC2. The residence times were estimated, 

15 min after starting the extrusion, by adding a colored resin while feeding the neat PET. The 

measured torque value of the second screw was about 8% larger than the first one for 

nanocomposites containing 8 wt% C30B. 

 

Figure 6-1: Screw configurations SC1 and SC2.  
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The extrusion conditions were the same for both screw configurations. Melt blending was 

performed at a screw speed of 200 rpm and feeding rate of 2 kg/h. The temperature profile from 

the feed to the die was set between 240 and 265 ºC. To cool the extrudate, a bath containing a 

mixture of water and ice was used. The extruded samples were granulated and vacuum dried at 

90 ºC for 24 h. Compression molding was subsequently performed to obtain disk-shape samples 

of approximately 2 mm thickness and 25 mm diameter by employing a Carver® laboratory press 

(model 3912) at 265 ºC for 9 min at a pressure of 20 MPa and under a blanket of nitrogen, 

followed by quenching in another Carver® laboratory press (model 30-12H) for 5 min. The disk-

shape samples were vacuum dried at 90 ºC for 24 h before being subjected to rheological testing. 

6.3.3 Characterization 

WAXD was used to obtain the basal distance of the clay layers by employing a Bruker D8 

Discover with Cu K radiation of wavelength λ = 1.5406 Å. The generator was operated at 40 kV 

and 40 mA. The spectra were recorded over a 2θ range of 0.8 -10 º using a scan rate of 0.6 º/min.  

SEM observations were done to evaluate the micro-scale distribution of the clay particles in the 

PET matrix using a Field Emission Gun SEM (FEG-SEM), Hitachi S4700, operating at 2 kV. 

The specimens were prepared using an Ultracut FC microtome (LEICA) with a diamond knife 

and then coated with platinum. TEM images were obtained using a JEOL JEM-2100F 

microscope operating at 200 kV to assess the quality of clay dispersion in the samples. For TEM 

imaging the samples were microtomed into ultrathin slices about 50-80 nm thick at a cryogenic 

temperature (i.e. -100° C) using the aforementioned microtome system.       

Rheological measurements in oscillatory mode were performed using a Bohlin Gemini 

rheometer, with a parallel plate flow geometry (25 mm diameter, 1 mm gap). Time and frequency 
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sweeps in small-amplitude oscillatory shear were carried out on the neat PET and PET-based 

nanocomposite samples at 265 ºC under a nitrogen atmosphere to avoid oxidative degradation. 

The time sweep test of each sample was repeated twice, always with a fresh specimen, at 0.628 

rad/s over 900 s. The frequency sweep tests were repeated four times for each sample, always 

using a fresh specimen and carried out in the linear regime. Two specimens were subjected to 

frequency sweep from low to high frequency, and two more from high to low. Strain sweeps 

were applied at a frequency of 6.28 rad/s and strain amplitudes from 0.01 to 1. After adjusting the 

gap, the samples were hold in quiescent state for 3 min before starting the rheological tests. This 

should allow orientation relaxation if there was any induced by sample loading. We also verified 

the effect of gap size on the viscoelastic properties of the nanocomposites at the maximum clay 

loading of C30B (i.e. 8 wt%).  We observed that gap size had no significant effect on the results.  

 

6.4 Results and discussion 

6.4.1 Morphology of nanocomposites prepared using screw configuration #1 

(SC1) 

XRD patterns of PET nanocomposites with various C30B concentrations are shown in Figure 

6-2. The nanocomposite samples are denoted with a nomenclature “PET/x y”, where x and y 

denote concentration and type of clay particles, respectively. The gallery spacing of C30B 

powder (d001 diffraction), which is 1.85 nm, increases up to 3.4 nm (2 ≈2.5 
o
) after being melt 

blended with PET. The enhancement of C30B basal spacing is due to the diffusion of the PET 

chains into the interlayer spacing of the layered silicate. Although the peak position of the XRD 

curves does not change with clay concentration, the intensity of the peaks increases 
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monotonically with clay concentration, which is a sign of more extensive domains of periodicity, 

(Delozier et al. 2003; Bhattacharya et al. 2007). Note that the second peaks observed at 2θ ≈ 5.2° 

may be attributed to the d002 diffraction and/or clay gallery collapse. 

 

Figure 6-2: X-ray diffractograms of PET nanocomposites containing different weight fractions of C30B prepared by 

screw configuration #1 (SC1). 

 

Figure 6-3 shows the SEM images of PET nanocomposites containing 2, 4, 6, and 8 wt% of 

C30B prepared using screw configuration #1 (SC1). This figure illustrates the state of the clay 

particles distribution within the PET matrix and the efficiency of SC1 in breaking down C30B 

aggregates. SEM results also show large aggregates for the nanocomposites at high clay loadings 
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(Figure 6-3b–d). Thirty-five (35) SEM micrographs were examined and it was concluded that the 

number of kneading elements and the residence time in SC1 for compounding are not sufficient 

to break down all the large aggregates. 

 

Figure 6-3: SEM micrographs of (a) PET/2 C30B, (b) PET/4 C30B, (c) PET/6 C30B and (d) PET/8 C30B  

nanocomposites prepared using screw configuration #1 (SC1). 

 

6.4.2 Morphology of nanocomposites prepared using screw configuration #2 

(SC2) 

As the SC1 was not efficient for the compounding, additional kneading elements were employed 

in screw configuration #2 to increase the shear stresses. In addition, by placing reverse conveying 
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elements between the two last kneading blocks, a longer residence time was achieved for screw 

configuration #2 in comparison to screw configuration #1 (90 s vs. 51 s). Figure 6-4 presents the 

SEM micrographs of PET nanocomposites containing 2 and 6 wt% C30B prepared using screw 

configuration #2. The PET nanocomposite containing 2 wt% C30B exhibits a homogenous 

distribution of the clay particles all over the sample (Figure 6-4a). Using this screw configuration, 

even by incorporating 6 wt% C30B, no large aggregates are observed and the clay particles are 

well distributed within the PET matrix (Figure 6-4b). By comparing the morphologies of PET/6 

C30B nanocomposites prepared using screw configurations #1 and #2 (Figure 6-3c and Figure 

6-4b, respectively) it is seen that SC2 is more efficient than SC1 in breaking down the large clay 

aggregates, as expected. Changing screw configuration did not have a pronounced effect on XRD 

patterns of nanocomposites in terms of the peak position and shape of the peak (data are not 

shown here). Based on the poor morphology obtained using SC1, this screw configuration is not 

discussed further and all following results were obtained with SC2.    

 

Figure 6-4: SEM micrographs of (a) PET/2 C30B and (b) PET/6 C30B (b) nanocomposites prepared using screw 

configuration # 2 (SC2). 
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6.4.3 Effect of clay concentration on the rheological properties of PET 

nanocomposites 

Oscillatory time sweep tests were performed to examine if the neat PET and its corresponding 

nanocomposites had time-dependent rheological properties due to thermal degradation and/or 

possible chemical reactions between PET and the clay organo-modifiers. The complex viscosity 

and storage modulus of the neat PET and PET nanocomposites containing 2 to 8 wt% C30B are 

shown as functions of time in Figure 6-5a and Figure 6-5b, respectively. As stated before the time 

sweeps were repeated twice for each sample, always with a fresh specimen, and the results are 

shown in Figure 6-5 in the form of filled and unfilled symbols. These tests confirmed that for all 

samples a period of up to 10 min resulted in less than 10% changes in the viscoelastic properties. 

The complex viscosity of the PET nanocomposite containing 2 wt% C30B is observed to be 

lower than that of the neat PET. This is attributed to the severe degradation of the PET matrix in 

the presence of the organoclay. This aspect is discussed in more details below. A lower complex 

viscosity for PET nanocomposites containing 2 wt% of N28E and C30B in comparison to the 

same neat PET has been reported before (Ghanbari et al. In press.; Xu et al. 2011).  For the 

nanocomposites containing 4, 6 and 8 wt%, the linear viscoelastic properties increase markedly 

with clay loading. For example the PET/8 C30B sample is more than 20 times more viscous than 

the neat PET.   
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Figure 6-5: Modulus of complex viscosity (a) and storage modulus (b) as functions of time for the neat PET and 

PET/C30B nanocomposites. 
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The complex viscosity and storage modulus as functions of frequency for the neat PET and PET-

based nanocomposites with various C30B loadings are presented in Figure 6-6a and Figure 6-6b, 

respectively. While the neat PET displays a pseudo-Newtonian behavior, the nanocomposites 

exhibit a marked solid-like behavior (Figure 6-6a), which becomes stronger with C30B 

concentration. Except for the sample containing 2 wt% C30B, the complex viscosity of PET 

increases with clay concentration at low frequencies. It seems that the incorporation of a small 

amount of C30B (2 wt%) lowers considerably the complex viscosity of the PET matrix. This 

behavior has been reported previously (Ghanbari et al. In press.; Wang et al. 2011). At low clay 

concentration, particle-particle interactions are not pronounced and the viscosity of PET 

nanocomposites is governed by the host polymer matrix. It has been well documented that the 

presence of organoclays leads to a severe chain scission of a PET matrix (Davis et al. 2002; 

Todorov and Viana 2007; Stoeffler et al. 2008; Litchfield et al. 2010). At high frequencies, where 

the behavior of the matrix is dominant, all PET nanocomposites show a lower viscosity than that 

of the neat polymer, which again can be attributed to the degradation induced by the presence of 

the organoclay.  

One approach to determine the apparent viscosity of the degraded matrix in the nanocomposites 

is to use the Maron-Pierce empirical model: 

                                                                      2

*

*

)1( 
mM 






                                                    (6-1) 

where * and *

M  are the complex viscosity of the nanocomposite and the matrix, respectively,   

is the volume fraction of the clay and m  is the maximum packing volume fraction which is set 
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here as 
p

m

55.3
 , where p is the clay aspect ratio (Sun et al. 2009; Wan et al. 2011). In that 

method TEM images are used to determine the length to thickness ratio of clay particles. For 

overlapped tactoids, the average thickness and overall length were used, while an end-to-end 

vector was considered for length of curved tactoids. The aspect ratio of the clay particles was 

determined by the method described by Ghasemi et al. (Ghasemi et al. 2012). A value of 46 was 

obtained for the average aspect ratio of the silicate particles in the PET matrix. Ghasemi et al. 

(Ghasemi et al. 2012) and Fornes and Paul (Fornes and Paul 2003) reported values of 47 and 57, 

respectively, for the aspect ratio of C30B layered silicates in nanocomposites prepared by melt 

blending.      

The matrix apparent viscosity, *

)/100( sradM , is evaluated at 100 rad/s where the contribution of the 

matrix should be dominant, using the Maron-Pierce empirical model (Equation 6-1). The 

calculated apparent matrix viscosity is presented in Table 6-2 for neat PET and PET-based 

nanocomposites. 

From the apparent matrix viscosity, it is possible to estimate an apparent matrix molecular weight 

in order to quantify the degradation induced by the presence of the organoclay. To this end the 

classical relationship between the zero-shear viscosity, 0 , and the weight average molecular 

weight, wM , has been used, assuming a pseudo-Newtonian behavior for the PET matrix:  

                                                               
4.3

0

*

)/100( wsradM kM                                                 (6-2) 

where k is taken as )./(1002.3 4.34.34 kgsmol considering the neat PET’s molecular weight and 

complex viscosity. The apparent matrix molecular weight is reported in Table 6-2 for the neat 
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PET and PET-based nanocomposites. Both the zero-shear viscosity and molecular weight of the 

PET matrix for PET/C30B nanocomposites are found to decrease with clay concentration, and 

this behavior is attributed to the severe degradation (i.e. chain scission) of the PET matrix in the 

presence of the organoclay. It explains the lower complex viscosity for the nanocomposites at 

high frequencies observed in Figure 6-6a, in comparison to the neat sample. The results for the 

apparent matrix viscosity and apparent matrix molecular weight of PET nanocomposites 

containing 6 wt% C15A, C25A, and N28E reported in Table 6-2 will be discussed later. 

 

Table 6-2: Apparent complex (≈ zero-shear) viscosity and apparent molecular weight for the neat PET and the PET 

matrix in nanocomposites calculated from Equations 6-1 and 6-2, respectively. 

Sample Matrix apparent 

complex viscosity at 100 

rad/s 

Matrix apparent molecular 

weight (kg/mol) 

Neat PET 440 65.0* 

PET/2 C30B 174 49.5 

PET/4 C30B 98 41.8 

PET/6 C30B 51.9 34.7 

PET/8 C30B 30.9 29.8 

PET/6 C15A 57 35.6 

PET/6 N28E 64.6 37.0 

PET/6 C25A 91.6 41.0 

* This value is reported based on the works of Fox et al. (Fox et al. 1997) and Champagne et al. (Champagne et al. 

1999) using the same grade of PET.  

 

The effect of C30B content on the storage modulus of the PET nanocomposites can be observed 

in Figure 6-6b. The storage modulus increased significantly with C30B concentration at low 

frequencies. With increasing clay loading, the dependence of storage modulus on frequency 
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decreases (slope of 'G  vs. ω at low frequencies reported in text boxes), and at high clay 

concentrations (6 and 8 wt%), the storage modulus is nearly independent of frequency at low 

frequencies. This pseudo-solid-like behavior is attributed to the formation of a space-filling 

interconnected network of clay particles. This percolated three-dimensional network acts like a 

weak solid and causes significant enhancement of the storage modulus, as well as the emergence 

of a low frequency plateau (Mobuchon et al. 2007; Aubry et al. 2005; Eslami et al. 2010; 

Solomon et al. 2001; Vermant et al. 2007; Wu et al. 2005; Mobuchon et al. 2009a; Pujari et al. 

2011). Although the incorporation of 2 wt% C30B in the PET matrix enhances the low frequency 

storage modulus, a sharp increment is seen when the clay concentration reaches 4 wt%, implying 

the formation of a percolated network. 
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Figure 6-6 Modulus of complex viscosity (a) and storage modulus (b) of PET/C30B nanocomposites (frequency 

sweep tests). Numbers in the text boxes represent the η* and G’ slopes at low frequencies. 

 

Figure 6-7 shows the reduced viscosity and reduced storage modulus of the neat PET and PET 

nanocomposites containing 2 to 8 wt% C30B as functions of angular frequency. The reduced 

viscosity (Figure 6-7a) is obtained by taking the ratio of the magnitude of the complex viscosity 

of the various samples to the matrix apparent viscosity estimated at 100 rad/s (Table 6-2). It is 

observed that the reduced viscosity increases with clay content on the whole frequency range. 

Hence, the normalization allows removing thermal degradation effects to highlight the clay 

contribution. The reduced viscosity of the PET nanocomposites exhibits a very strong solid-like 

behavior at high clay loadings with a slope on the log-log plots approaching -1. The reduced 

storage modulus (Figure 6-7b) is obtained by taking the ratio of the magnitude of the storage 

modulus of the various samples to the matrix apparent viscosity estimated at 100 rad/s (Table 

6-2) and the frequency equal to 100 rad/s. It also increases with clay concentration and exhibits a 

low frequency plateau at high clay loadings. It is noteworthy to mention that the reduced storage 

modulus of the neat PET does not exceed the reduced storage modulus of PET nanocomposites at 

high frequencies, as previously seen in Figure 6-6a when thermal degradation effects are not 

accounted for. 
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Figure 6-7: Reduced viscosity (a) and reduced storage modulus (b) of the neat PET and PET/C30B nanocomposites 

as functions of clay loading and frequency.  
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Figure 6-8 reports plots of the elastic modulus vs. the loss modulus for PET nanocomposites 

containing 2 to 8 wt% C30B and prepared using screw configurations #1 and #2. PET 

nanocomposites containing 2, 4, and 6 wt% C30B and prepared using screw configuration #2 

exhibit larger values of the elastic modulus in comparison to those prepared using screw 

configuration #1. These observations suggest that a better dispersion of C30B particles is 

obtained by employing screw configuration #2, in good agreement with SEM micrographs of 

Figure 6-3 and Figure 6-4. The data for the PET/8 C30B nanocomposites prepared by screw 

configurations #1 and #2 are however very similar. It seems that when the clay concentration is 

very high, even the more severe screw geometry cannot help breaking down the large aggregates 

and disperse further the nanoparticles. Consequently, morphologies similar to that presented in 

Figure 6-3d are expected for PET/8C30B nanocomposites prepared using screw configuration #2. 

This may be attributed to the lack of sufficient space for the dispersion of clay particles, as the 

C30B volume fraction is equal to 0.046, which is close to the maximum packing volume fraction 

( 3 55 0 077m . / p .   ). Hence, some clay tactoids may remain undelaminated. Therefore we 

may expect a lower level of exfoliation and higher number of clay aggregates at increasing clay 

concentration, which will be proven later in this study using image analysis. At high clay 

loadings plots of 'G  vs. "G  (Figure 6-8) exhibit pseudo solid-like behavior for both screw 

configurations, indicating the presence of an interconnected network of individual clay platelets 

and/or intercalated tactoids acting like a weak solid. The differences between the elastic modulus 

of PET nanocomposites prepared using screw configurations #1 and #2 are more pronounced at 

low values of the loss modulus (low frequencies) where the effect of clay particles is more 

pronounced.  
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As observed earlier in Figure 6-7b, a significant increase (almost four orders of magnitude with 

respect to the neat PET) of the low frequency 'G  of PET nanocomposites takes place for the clay 

concentration of 4 wt%, and the rheological behavior changes from liquid- to solid-like. These 

observations suggest that percolation must happen when the C30B concentration increases from 2 

to 4 wt%.  

The value of the elastic modulus at low frequencies (ω = 0.3 rad/s) was used to determine the 

percolation threshold for PET/C30B nanocomposites. The following percolation model (Vermant 

et al. 2007; Khalkhal et al. 2011) was used:  

                                                                       n

perG )('                                                       (6-3) 

where per and n are the percolation threshold volume fraction and a power-law exponent, 

respectively. The parameter n is equal to 1.68 and 1.07 for screw configurations #1 and #2, 

respectively. The calculated percolation values (in wt%) are 3.4 and 3.2 for PET/C30B 

nanocomposites prepared using screw configuration 1 and 2, respectively, hence between 2 and 4 

wt% as suggested by Figure 6-6b and Figure 6-7b. It seems that the screw configuration and 

residence time does not impact much the value of the percolation threshold, which is somehow 

surprising.    
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Figure 6-8: Storage modulus vs. loss modulus for the neat PET and PET/C30B nanocomposites prepared using screw 

configurations #1 (SC1) and #2 (SC2). 

 

The pseudo solid-like behavior of the storage modulus at low frequencies indicates the existence 

of a yield stress for these systems. To observe this effect more clearly, we plot the complex 

viscosity vs. complex modulus in Figure 6-9 as a function of C30B concentration. A sharp 

increase of the complex viscosity as the complex modulus decreases indicates the existence of an 

apparent yield stress. This representation highlights clearly the presence of a yield stress in the 

PET nanocomposites with clay concentration above the percolation threshold of ~ 3 wt%. The 

presence of an apparent yield stress was also observed by other researchers for various 

nanocomposite systems (Mitchell and Krishnamoorti 2002; Abbasi et al. 2009; Mobuchon et al. 

2007; Galgali et al. 2001; Aubry et al. 2005).   

To estimate the apparent yield stress, a modified Herschel-Bulkley model is used as follows: 
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                                                        (6-4) 

where *

0G  is the magnitude of the complex modulus at the lowest frequency, 0  is the strain 

amplitude, k is a constant, and n is the flow index which determine the behavior of the fluid. 

It has been observed that yield stress, 0

0 0

*G  ,
 
and n can be related to the microstructure of 

nanocomposites (Xia and Song 2006; Litchfield and Baird 2006). A lower value of n means a 

higher shear-thinning behavior, which corresponds to a stronger network. Therefore, it is 

reasonable to expect a lower value of n when clay concentration increases. Besides, stronger 

particle-particle and/or polymer-particle interactions results in larger apparent yield stresses 

(Litchfield and Baird 2006). Table 6-3 lists the calculated Herschel-Bulkley parameters for the 

PET-based nanocomposites, and the fits of Equation 6-4 are shown by the dashed lines in Figure 

6-9 for the PET/C30B nanocomposites. The Herschel-Bulkley parameters for PET 

nanocomposites containing 6 wt% C15A, C25A, and N28E will be discussed later. PET 

nanocomposites containing C30B exhibit larger values of the yield stress at the same clay 

concentration. This is indicative of the stronger affinity of C30B for PET compared to the other 

clays. The shear-thinning exponent, n, decreases slightly with clay content, implying the 

formation of a stronger network at high clay loadings. 
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Figure 6-9: Complex viscosity vs. complex modulus for neat PET and PET/C30B nanocomposites. Dashed lines are 

fits of Equation 4 for clay content above 2 wt%. 

 

Table 6-3: Herschel-Bulkley parameters for PET nanocomposites.  

Sample 0

0 0

*G   (Pa) k (Pa.s
n
) n 

PET/4 C30B (SC2) 25.7 257 0.88 

PET/6 C30B (SC2) 91.8 152 0.85 

PET/8 C30B (SC2) 166 189 0.78 

PET/6 C25A (SC2) 69.5 417 0.82 

PET/6 C15A (SC2) 43.4 215 0.84 
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PET/6 N28E (SC2) 41.8 266 0.82 

 

It has been reported that the limit of linearity, 0

c , of filled systems is very sensitive to filler 

content (Yziquel et al. 1999; Eslami et al. 2010; Aubry et al. 2005; Khalkhal and Carreau 2011; 

Vermant et al. 2007). Figure 6-10 shows the normalized storage modulus (i.e. 0'/' GG , where 
0

'G  

is the storage modulus at the smallest strain) as a function of strain, 0 , for the neat PET and 

PET/C30B nanocomposites at 6.28 rad/s. The dashed line indicates the transition from the linear 

to nonlinear behavior, which is defined as the threshold where the storage modulus decreases by 

more than 10% from its value at the smallest strain (i.e. 0 0 9'G'/ G . ) (Khalkhal and Carreau 

2011). Nonlinearity appears at lower strain as the C30B concentration increases. Clay particles 

are solid, so the straining motion is totally concentrated in the polymer melt, which increases the 

effective deformation of the matrix and reduces the linearity limit (Vermant et al. 2007). The 

inset in Figure 6-10 illustrates the maximum strain amplitude for the linear viscoelastic behavior 

as a function of the clay volume fraction. It is observed that critical strain displays a power-law 

dependency on the volume fraction of C30B, which is approximated by the following relation: 

 

                                                                 0 2

c
                                                                       (6-5) 
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Figure 6-10: Normalized storage modulus vs. strain amplitude for the neat PET and PET/C30B nanocomposites at 

6.28 rad/s. The inset shows the maximum strain amplitude for the linear viscoelastic behavior as a function of the 

clay volume fraction. 

 

6.4.4 The effect of clay chemistry on the morphology and rheology of PET 

nanocomposites 

 

The morphology of a polymer nanocomposite, which governs the final properties, is dependent 

on particle-particle interactions, but also on the degree of compatibility between the polymer 

matrix and the organoclay that rules polymer-particle interactions. Therefore, the existence of 
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strong interactions between silicate layers and a host polymer matrix is essential to achieve 

desirable properties. In this work, in addition to various organo-modified clays (C30B, C15A, 

C25A, and N28E), the effect of a pristine synthetic clay (i.e. SM100) is examined. PET 

nanocomposites containing 6 wt% of different clays were prepared using screw configuration #2, 

and their corresponding XRD patterns are shown in Figure 6-11. As expected, the PET chains are 

not able to diffuse within the gallery spacing of SM100 layered silicate and the gallery spacing 

remains the same as the clay alone (Table 6-1). The largest increase of the basal spacing, 1.55 

and 1.44 nm, were obtained for C30B and C25A, respectively. The gallery spacing of N28E and 

C15A shows only 1.0 and 0.45 nm enhancement in their corresponding PET nanocomposites. 

Therefore, higher viscoelastic properties are expected for PET nanocomposites containing C30B 

and C25A, in comparison to those containing N28E or C15A. It has been also shown by other 

researchers that the higher surfactant content of C15A, which results in a high initial gallery 

spacing, does not guarantee a higher intercalation in a polymer matrix (Hyun et al. 2001; Ray and 

Bousmina 2005).     
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Figure 6-11: XRD patterns of PET nanocomposites containing 6 wt% clay particles prepared using screw 

configuration #2 (SC2). 

 

Figure 6-12 reports the complex viscosity and storage modulus of the neat PET and PET 

nanocomposites containing 6 wt% of C30B, C15A, C25A and N28E prepared using screw 

configuration #2. All PET nanocomposites exhibit a strong solid-like behavior (Figure 6-12a), as 

well as a pseudo solid-like behavior at low frequencies (Figure 6-12b). These rheological 

observations are in good agreement with the XRD results: the lower peaks shown in Figure 6-11 

at 2 = 2.5 
o
 suggest a better clay dispersion for C30B and C25A in comparison to N28E and 
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C15A, resulting in larger values for the complex viscosity and storage modulus at low 

frequencies.  

The solubility parameter, δ, of the different organoclay surfactants was calculated based on the 

Fedors group contribution method to evaluate the extent of compatibility of PET with the various 

organoclays (Van Krevelen and Te nijenhuis 2009). According to the solubility parameters 

presented in Table 6-1, the order of favorable interactions between PET and the organoclays is: 

ENACACBC 28152530  , which is in good agreement with the rheological observations.   

As mentioned earlier, the yield stress can be used to quantify the solid-like character of 

nanocomposites. Larger yield stress means better dispersion of clay particles in nanocomposites 

at the same clay concentrations (Litchfield and Baird 2006; Xia and Song 2006). The Herschel-

Bulkley parameters for PET nanocomposites containing 6 wt% of different organoclays are 

reported in Table 6-3. Experimental data of the complex viscosity vs. complex modulus are 

shown in Figure 6-13, along with the fits of Equation 6-4 (dashed lines). The values of the 

apparent yield stress exhibit the following order for PET nanocomposites containing the different 

organoclays: ENACACBC 28152530  , in good agreement with the order of favorable 

interactions between PET and the organoclays based on the solubility parameter. It is observed, 

however, that the shear-thinning exponents of PET nanocomposites containing the various 

organoclays are almost the same, hence the behavior of the different fluids does not change 

much. The better morphology and rheological properties obtained for nanocomposites containing 

C30B are attributed to the favorable interactions between carboxyl groups of the PET chains and 

hydroxyl groups of the C30B organic modifier (Ghasemi et al. 2011b).   
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Figure 6-12: Complex viscosity (a) and storage modulus (b) for PET nanocomposites containing 6 wt% organoclays 

prepared using screw configuration #2 (SC2). 
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Figure 6-13: Complex viscosity vs. complex modulus for PET nanocomposites containing 6 wt% of various 

organoclays. Dashed lines are fits of Equation 6-4. 

 

As done above, the apparent viscosity and apparent molecular weight of the degraded PET matrix 

in the nanocomposites containing 6 wt% of different organoclays are reported in Table 6-2. It is 

observed that the reduction of the PET matrix apparent molecular weight and apparent viscosity 

is dependent on the surfactant chemistry of the organoclay (Table 6-1). The highest degradation 

occurs for the matrix containing C30B, which can be attributed to the specific organic modifier of 

this organoclay. Previous studies have shown that a better dispersion of organoclays increase the 

exposure of silicate nanoplatelet surfaces to the polymer matrix, and results in a higher level of 
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thermal degradation (Fornes et al. 2003). In addition, organoclays modified with unsaturated 

tallow that contain double bonds in their alkyl chain result in a greater degradation, in 

comparison to those modified with hydrogenated tallow (Yoon et al. 2003). Surfactants with 

double bonds are prone to free radical formation and induce more chain scission, as the free 

radicals can attack polymer chains. It has also been shown that organic modifiers possessing 

hydroxyl-ethyl groups lead to more degradation than those having methyl groups (Fornes et al. 

2003; Yoon et al. 2003). As C30B has the highest level of exfoliation in the PET matrix and its 

organic modifier contains unsaturated tallow as well as hydroxyl-ethyl groups (Table 6-1), a 

higher level of thermal degradation is expected for PET nanocomposites containing this 

organoclay. This is confirmed by the lowest apparent molecular weight reported in Table 6-2 

(34.7 kg/mol) for a 6 wt% clay content. The amount of organic modifier used in the treatment of 

C15A is larger than the cation exchange capacity (CEC) of the pristine montmorillonite (125 

meq/100 g clay vs. 92.6 meq/100 g clay, an excess of nearly 35%). This excess gives rise to 

unbounded surfactant that may cause more degradation (Mittal 2011; Cui et al. 2008). N28E has 

25% excess of the organic modifier while C25A bear an excess of only 2.6%. The unbound 

surfactant of C15A and N28E can result in a significant degradation of the PET matrix, as 

confirmed by the low apparent molecular weights of 35.6 and 37 kg/mol reported in Table 6-2 for 

PET/6 C15A and PET/6N28E, respectively. In contrast, C25A yields the lowest thermal 

degradation, as confirmed by the largest apparent molecular weight reported in Table 6-2 (41 

kg/mol) for the nanocomposites containing 6 wt% C25A.  

Figure 6-14 presents the reduced complex viscosity and reduced storage modulus vs. frequency 

for the neat PET and PET nanocomposites containing 6 wt% C30B, C15A, C25A, and N28E 
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prepared using screw configuration #2. The reduced viscosity of all the PET nanocomposites is 

now larger than that of the neat PET, even at 100 rad/s, and it shows a remarkable solid-like 

behavior. Hence, again the normalization allows removing the effect of the PET matrix thermal 

degradation. As expected, PET nanocomposites containing C30B and N28E exhibit the largest 

and the smallest reduced complex viscosities, respectively. The reduced storage modulus of PET 

nanocomposites containing 6 wt% of the different organoclays is larger than that of the neat PET 

on the whole frequency range. The largest and the smallest reduced storage modulus are 

exhibited by the PET nanocomposites containing C30B and N28E, respectively. It is of interest to 

look more closely at their respective morphologies in order to correlate with the rheological 

behavior.   
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Figure 6-14: Reduced viscosity (a) and reduced storage modulus (b) for neat PET and PET nanocomposites 

containing 6 wt% C30B, C15A, C25A, and N28E prepared using screw configuration #2. 
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SEM and TEM techniques were used to examine the state of spatial distribution and dispersion of 

C30B and N28E particles in the PET matrix. Figure 6-15 presents SEM micrographs of PET 

nanocomposites containing 6 wt% C30B and N28E prepared using screw configuration #2. There 

are more empty spaces neighboring N28E particles than C30B particles. It seems that PET 

nanocomposites containing C30B exhibit higher clay density than those containing N28E. Based 

on the SEM observations, more particle-particle and polymer-particle interactions are expected 

for this nanocomposite, due to the higher clay distribution density  resulting from fewer 

aggregates. The interpretations of the SEM micrographs are in good agreement with the XRD 

(Figure 6-11) and rheological results (Figure 6-14). 

 

Figure 6-15: SEM micrographs of PET nanocomposites containing 6 wt% C30B and N28E prepared using screw 

configuration #2 (SC2). 

 

Typical TEM bright field images of PET nanocomposites containing 2 and 6 wt% C30B and 

those containing 6 wt% N28E are shown in Figure 6-16. Both individual platelets and tactoid 

aggregates are seen in the images. It is not easy to differentiate PET nanocomposites containing 2 

and 6 wt% C30B based on the high magnification of the TEM images. A better exfoliation of 
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C30B in comparison to N28E in the corresponding PET nanocomposites is obvious at both low 

and high magnification TEM images. Again, TEM results are in good agreement with XRD, 

SEM and rheology results presented before.  

To quantitatively estimate the degree of layer dispersion in the PET nanocomposites, a technique 

based on free-path spacing distance introduced by Luo and Koo is used (Luo and Koo 2007, 

2008). In this method, the free-path distance between the platelets is measured by drawing 

random lines (usually horizontal and/or vertical) to intercept silicate layers in a TEM image. 

After measuring the free-path distance between the platelets, the dimensionless dispersion value, 

D0.1, is calculated based on the distribution of the free-path spacing distances between the clay 

layers according to the following equation:  
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                                           (6-6) 

where µ is the mean spacing between the clay layers, and σ is the standard deviation. 

A value below 4% for D0.1 suggests an immiscible system or microcomposite, and values over 

8% indicate an exfoliated structure, while values between 4 and 8% indicate intercalation. For 

approximately 500 measurements, performed on around 15 TEM images with 50 and 100 nm 

scale bars, D0.1 values of 5.8, 5.5, and 4.3% were obtained for PET/2 C30B, PET/6 C30B, and 

PET/6 N28E nanocomposites, respectively. We obtained a D0.1 value of 7.5 for a PET/2wt% 

C30B, but in drawn films prepared via a larger twin-screw extruder (Ghanbari et al. In press.). 

Higher dispersion value of PET/6 C30B in comparison to that of PET/6 N28E indicates a higher 

level of intercalation for this nanocomposite, in agreement with the XRD patterns and SEM 
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micrographs. On the other hand, a reduction of the D0.1 value with clay concentration indicates 

that the level of clay exfoliation is less when the clay loading increases. 

 

Figure 6-16: TEM images of PET/2 C30B, PET/6 C30B and PET/6 N28E nanocomposites prepared by screw 

configuration #2 at low and high magnifications. 

 

To quantify the effect of clay chemistry and concentration on the morphology of PET 

nanocomposites, the number of layers per clay particle was manually counted using the TEM 

images. Figure 6-17 shows the number of platelets per clay particle histograms for PET 

nanocomposites containing 2 and 6 wt% C30B and that for the nanocomposite containing 6 wt% 

N28E. Around 400 particles were counted to ensure statistical validity of the analysis. As 

expected, the count for clay aggregates increases at higher clay loadings by comparing the PET/2 

C30B and PET/6 C30B nanocomposites. The count for single layers and double layer particles is 
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also larger for PET/6 C30B in comparison to PET/6 N28E. On the other hand, the frequency of 

clay aggregates (5 or more layers) is higher for the nanocomposite containing N28E. Favorable 

interactions between layered silicates and the polymer matrix enhance diffusion of polymeric 

macromolecules into the gallery spacing of the clay platelets and result in morphologies with 

higher level of exfoliation. Among the organoclays studied in this work, C30B is the only one 

that has hydroxyl groups. The highest level of PET chains intercalation into the gallery spacing of 

C30B in comparison to other organoclays, based on XRD results is attributed to the favorable 

interactions between the carboxyl groups of the PET backbone and the hydroxyl groups present 

in the organo-modifier of C30B. Hence the higher initial gallery spacing of N28E in comparison 

to that of C30B (Table 6-1) does not help further intercalation of PET macromolecules. Besides, 

the solubility parameter of PET is closer to that of C30B in comparison to N28E, implying that 

C30B is more miscible with PET.   
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Figure 6-17: Number of platelets per particle histogram. The total number of counted particles was around 400.  

6.5 Conclusion 

In this work, PET nanocomposites containing C30B, C15A, C25A, N28E, and SM100 were 

prepared by melt compounding using a twin-screw extruder. The effect of the screw geometry, 

clay concentration, and surfactant chemistry of the organoclays on the morphology and rheology 

of the PET nanocomposites were investigated using XRD, SEM, TEM, and rheometry. The 

relationship between the microstructure and rheological behavior of the nanocomposites was 

discussed. It is observed that increasing residence time and employing more shearing elements 

help breaking and dispersing clay tactoids and improve the viscoelastic properties. Although 
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gallery spacing was found to be independent of the silicate concentration, the count for exfoliated 

layers was higher for nanocomposites based on C30B and decreased with clay concentration. The 

complex viscosity of PET nanocomposites exhibits solid-like behavior which becomes stronger 

with clay loading. The storage modulus shows a pseudo solid-like behavior at low frequencies 

and high clay concentrations, due to the formation of a percolated network. The apparent yield 

stress in nanocomposites has been determined using the Herschel-Bulkley model, and it was 

shown to increase with clay concentration and level of exfoliation. Among the various 

organoclays studied in this work, those being more intercalated with the PET chains exhibited 

larger rheological properties. The largest values of the complex viscosity and storage modulus as 

well as the highest degree of intercalation were obtained for C30B, which has the solubility 

parameter value closer to that of PET. The degradation of PET chains in the nanocomposites due 

to the presence of organoclays led to a lower complex viscosity for PET nanocomposites in 

comparison to the neat sample at high frequencies. It was possible to account for the degradation 

of the PET matrix by using the Maron-Pierce equation for the high frequency data. The molecular 

weight of the PET matrix was found to decrease from 65 kg/mol for the neat PET to 29.8 kg/mol 

for the PET nanocomposite containing 8 wt % C30B. 
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7.1 Abstract 

Two different types of organomodified clay, Cloisite® 30B (C30B) and Nanomer® I.28E 

(N28E), were melt blended with polyethylene terephthalate (PET) using a twin-screw extruder. A 

multifunctional epoxy-based chain extender, Joncryl® ADR-4368F (Joncryl) was added to the 

nanocomposites via a master-batch approach to compensate the molecular weight reduction of 

the matrix under processing. The morphological, rheological, mechanical, thermal, optical, and 

gas barrier characteristics of the nanocomposites were studied using several characterization 

techniques. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were 

employed to quantify the gallery spacing and the state of the organoclays dispersion within the 

polymer matrix. A remarkable improvement in viscoelastic properties was observed for samples 

containing the chain extender due to recoupling of degraded chains. A better clay dispersion, 

enhanced barrier properties and increased Young modulus were also obtained for nanocomposites 

containing the chain extender. Compared to neat PET films, the oxygen permeability of 

nanocomposite films containing 4 wt % C30B and 1 wt % Joncryl decreased by 46% whereas the 

corresponding permeability decrease for the N28E nanocomposite was 40 %. A 66% 

improvement in the Young modulus was obtained for nanocomposite films containing 4 wt % 

N28E and 1 wt % Joncryl. The improvement of the tensile modulus for the corresponding C30B 

nanocomposite was slightly less. 

 

Keywords: Polyethylene terephthalate, Organoclay, Nanocomposite, Chain extender, Rheology, 

Morphology, Barrier properties.  

 

7.2 Introduction 

Polyethylene terephthalate (PET) is a semi-crystalline thermoplastic polymer used in a wide 

variety of applications. PET is found in the manufacture of textile fibers, carbonated beverage 

bottles, food and non-food containers, and engineering plastics in automobile. In comparison to 

an equivalent glass container, PET bottles are fairly light as well as they do not shatter or break. 
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PET bottles are not only being used as large two- and three-liter sizes for carbonated soft drinks, 

but they also have taken a remarkable market share in the single serving size containers from 

glass and metal cans. The world market for PET resin in packaging could be doubled if PET 

would gain 50% of the market share in beer bottles packaging [1, 2]. Beer is a very sensitive 

beverage to oxygen while PET does not offer sufficient oxygen barrier properties. One promising 

method to enhance barrier properties of PET is the incorporation of silicate nanolayers [3-7]. 

When well dispersed and distributed in a polymeric matrix, the impermeable silicate nanolayers 

create a tortuous pathway and force the oxygen molecules to travel a longer path for diffusing 

through the nanocomposite [8]. 

The incorporation of silicate nanolayers to polymers does not necessarily lead to the formation of 

nanoscale structures. Microcomposites, intercalated nanocomposites, and exfoliated 

nanocomposites are the three main types of morphology that may be observed in practice, or a 

combination of the three [9]. Most polymers are hydrophobic while pristine clay is hydrophilic 

thus, their combination leads to the formation of microcomposites due to the lack of 

compatibility. Organic modification of silicate nanolayers using surfactants such as 

alkylammoniums is a convenient method to make pristine clay organophilic and enhance the 

compatibility with the polymer matrix. Besides, organic modification increases the gallery 

spacing of silicate nanolayers and, thus, facilitates intercalation of polymer chains [1]. However, 

the principal obstacle to the incorporation of commercially available organoclays in polymers 

with high processing temperatures is the low thermal stability of the organomodifier. 

Organoclays treated with various alkylammoniums undergo significant thermal degradations 

above 180 ºC [10]. Matrix degradation that results in a lower molecular weight and reduced 

viscoelastic properties as well as color formation have been reported for polymer nanocomposites 

that must be processed at high temperatures [3, 6, 10-13]. 

PET nanocomposites have been prepared via two approaches: in-situ polymerization [14] and 

melt blending [3-6, 15-17]. Ghasemi et al. [5] reported that the incorporation of 3 wt% Cloisite® 

30B (C30B) in a PET matrix using twin-screw extrusion resulted in a 20% increment of the 

Young modulus. In another study, they demonstrated that among three different types of 

organoclay, including the ammonium-modified C30B and thermally stable phosphonium- and 

imidazolium-modified clays, C30B yielded the best intercalation with PET chains [15]. They also 
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reported that by employing a severe screw profile in terms of mixing and high screw rotational 

speed, the incorporation of 3 wt% C30B into a PET matrix led to a 27% reduction in oxygen 

permeability and a 30% improvement of the tensile modulus [4]. PET nanocomposites containing 

3 wt% Cloisite® 15A (C15A) and Nanolin® DK2 were also prepared using a twin-screw 

extruder [18]. It was observed that the addition of C15A and Nanolin® DK2 to PET improved 

the barrier to oxygen by 16 and 30%, respectively. Soon et al. [7] reported that the addition of 5 

wt% synthetic clay to PET led to a 29% reduction in oxygen permeability. Compatibilizers such 

as pentaerythrytol and maleic anhydride have been used by Sanchez-Solis and coworkers [17] to 

improve the dispersion of C15A particles in PET. The Young modulus increased with the 

incorporation of C15A, however the effect of the coupling agents on the Young modulus of the 

nanocomposites was not significant. To enhance interactions between PET chains and silicate 

nanolayers, an alternative approach consists of a random incorporation of sulfonated groups 

along the polymer backbone. Due to electrostatic interactions between clay platelets and PET 

sulfonated groups, nanocomposites with higher degree of intercalation were obtained [3, 6, 19]. 

To avoid thermal decomposition of the organic modifier of clay particles at the high processing 

temperature of a fiber grade PET, Chung et al. [20] dissolved PET and organoclay in a mixture of 

chloroform and trifluoroacetic acid. Then, the solution was added dropwise to cold methanol to 

eliminate the organic modifier. Next, the precipitated material was dried and melt blended with 

neat PET using a twin-screw extruder. This method led to a better optical transparency, thermal 

stability, and enhanced mechanical properties. However this procedure is tedious and not 

convenient because of the use of solvents. The molecular weight and viscosity of PET may 

decrease during melt processing as a result of thermal, hydrolytic, mechanical, and oxidative 

degradations [21]. During melt blending of organoclays with PET, even more severe degradation 

is expected due to the thermal decomposition of the clay organic modifier and reactions between 

the decomposition products and the polymer matrix. This may affect the thermodynamics of melt 

intercalation and deteriorate the exfoliation level of silicate nanolayers, which consequently 

affects the final properties of the nanocomposites [10, 12, 22]. The nucleophilic substitution 

reaction and the Hoffman elimination reaction (β-elimination) are generally believed to be the 

primary decomposition pathways of ammonium salts [12]. Both of these reactions lead to the 

formation of a tertiary amine from the decomposition of a quaternary ammonium. Nucleophilic 
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attack of the quaternary ammonium by a halide ion also leads to the formation of an alkyl halide 

[12]. On the other hand, an alkene is formed in the case of the Hoffman elimination reaction due 

to the presence of a basic anion (e.g. hydroxyl groups at the edges of the silicate nanolayers), 

which extracts a hydrogen atom from β-carbons of the quaternary ammonium salt [10, 12].     

Stoeffler et al. [12] modified pristine sodium montmorillonite using more thermally stable 

phosphonium, pyridinium, and imidazolium salts to reduce the thermal decomposition of PET 

nanocomposites. They nevertheless found that pyridinium and phosphonium modified clays 

released volatiles above 250 ºC. The thermal decomposition of surfactants significantly affected 

the visual appearance of the nanocomposites in that study. For example, the nanocomposites 

containing phosphonium and imidazolium modified clays presented a yellowish/brownish color, 

and those containing pyridinium modified clays were reported to be dark brown.   

To build back up the molecular weight of PET one approach is solid state polymerization (SSP). 

This post-condensation batch process must be done under high vacuum and high temperature for 

a time period of 12 to 20 h in special equipments for large scale operation, which makes this 

approach less interesting [23]. On the other hand, the use of chain extenders has been proposed as 

another approach to compensate molecular weight reduction induced by chain scission [11, 23-

27]. Lower costs and faster reactions are the main advantages of the chain extension method over 

the SSP approach. Torres et al. [27] melt-blended PET with approximately 1 wt% of various 

chain extenders and they reported that the molecular weight of PET increased from 40.5 to 76.7 

kg/mol in the presence of hexamethylenediisocyanate for a residence time of 2 min. Other bi-

functional chains extenders such as dianhydrides and diepoxides have been reported to increase 

the molecular weight of PET [23, 28, 29]. Triphenyl phosphate was employed by Cavalcanti and 

coworkers [30] as another chain extender for PET and an increase in torque during mixing was 

associated to a chain extension reaction. 

The aim of this work is to control the thermal degradation of PET and improve the properties of 

PET nanocomposites using a multifunctional epoxy-based oligomeric chain extender. Two 

different types of commercially available organoclay, C30B and Nanomer® I.28E (N28E), are 

employed and morphology, viscoelastic, barrier and mechanical properties of the samples are 

examined to assess the effects of the chain extender. To our knowledge no report has been 
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published on the improvement of morphology and properties of PET nanocomposites using 

multifunctional chain extenders. 

 

7.3 Experimental 

7.3.1 Materials 

A commercial grade PET (PET 9921), with intrinsic viscosity of 0.8 dL/g and a melting point of 

243 °C, was obtained from Eastman Chemical Company. The two organically modified 

montmorillonites, C30B and N28E, were obtained from Southern Clay Products Inc. and 

Nanocor Inc., respectively. C30B is modified with methyl, tallow, bis-2-hydroxyethyl, quaternary 

ammonium (MT2EtOH), while N28E is modified with octadecyl ammonium (ODA), according 

to R&D of Nanocor Inc. Joncryl® ADR-4368F (Joncryl), which is a styrene-acrylic 

multifunctional epoxy-based chain extender, was kindly supplied from BASF. This chain 

extender is designed to rebuild the molecular weight of degraded condensation polymers such as 

PET, polyamides, and polycarbonate. The chemical structure of Joncryl is shown in Figure 7-1. 

According to the supplier data sheet, the glass transition temperature ( gT ) and molecular weight 

( wM ) of Joncryl are 54 °C and 6800 g/mol, respectively.    

 

Figure 7-1: Chemical structure of the chain extender Joncryl. R1–R5 are H, CH3, a higher alkyl group, or 

combinations of them; R6 is an alkyl group, and x, y and z are all between 1 and 20 [26]. 

 



127 

 

7.3.2 Sample preparation 

The PET, organoclays, and Joncryl were vacuum dried at 90 ºC for 24 h before extrusion. To 

obtain a better morphology, the nanocomposites were prepared by a master-batch approach. First, 

PET granules were ground into a powder and dry-mixed with 6 wt% C30B or N28E to obtain 

uniform feeding mixtures. Next, the feeding mixtures were processed using a co-rotating twin-

screw Leistritz® extruder (screw diameter = 18 mm and L/D = 40) with SC#1 geometry. Then 

the prepared master-batches were diluted with the appropriate amount of neat PET and Joncryl 

using the same twin-screw extruder, to obtain nanocomposites containing 5 wt% of organoclays 

(nominal value) and 1 wt% Joncryl. Hence, in this master-batch approach the initially low 

molecular weight PET chains could easily diffuse into the gallery spacing of the silicate layers 

and then delamination and exfoliation could be facilitated by the larger stresses resulting from the 

reaction of the chain extender with the PET. The temperature profile from the extruder feed to the 

die was set between 240 and 265 ºC, and the extrusion was performed at 200 rpm and feeding 

rate of 1.8 kg/h. A 20 cm wide slit die with a 1 mm die gap was used to prepare films. Calender 

rolls were employed to stretch the extrudate and an air knife was mounted on both sides of the 

film. The width of the films was around 19 cm, which means that the average neck-in was 5%. 

The thickness of the films was 50 µm corresponding to a draw ratio around 21. The same 

extrusion procedure was followed to prepare pellets using a circular die of 2 mm diameter. A bath 

containing a mixture of water and ice was used to cool the extrudate. The extruded samples were 

granulated and vacuum dried at 90 ºC for 24 h before compression molding. Disk-shape samples 

of approximately 2 mm thickness and 25 mm diameter were prepared by employing a Carver® 

laboratory press (model 3912) at 265 ºC for 9 min at a pressure of 20 MPa under a purge of 

nitrogen, followed by quenching in another Carver® laboratory press (model 30-12H) for 5 min. 

The compression molded samples were vacuum dried at 90 ºC for 24 h before being subjected to 

rheological testing. 
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7.3.3 Characterization 

Wide angle X-ray diffraction (WAXD) was used to estimate the basal spacing ( 001d ) of silicate 

nanolayers. The measurements were performed on a Philips X’Pert X-ray diffractometer with 

CuK radiation (λ = 1.54056 Å). The generator was operated at 50 kV and 40 mA. The spectra 

were recorded over a 2θ range of 1-10 º using a scan rate of 0.01 °/s. 

The quality of clay dispersion in PET nanocomposites, with and without chain extender, was 

evaluated using transmission electron microscopy (TEM) (JEOL JEM-2100F microscope, 

operating at 200 kV). The samples were microtomed into approximately 50-80 nm thick slices at 

a cryogenic temperature (i.e. -100° C) using an Ultracut FC microtome (LEICA) with a diamond 

knife. 

Fourier transform infrared (FT-IR) spectra were recorded on a Perkin-Elmer FT-IR spectrometer 

from 4000 to 600 cm
-1

 in the attenuated total reflection (ATR) mode. All the spectra were 

obtained by accumulation of 32 scans with a spectral resolution of 4 cm
-1

 and a scanning speed of 

32 kHz. This technique was employed to detect any reactions that may have occurred between 

the matrix and the chain extender. 

To determine the exact amount of organoclays in the nanocomposite samples thermogravimetric 

analysis (TGA) was conducted under an air atmosphere using a TGAQ500 from TA Instruments. 

These tests were performed on samples of 10 mg from room temperature to 900 °C with a 

heating rate of 10 °C/min followed by 30 min isothermal hold at 900 °C. C30B and N28E contain 

around 30 wt% of organic modifier. Therefore, the ash content of the nanocomposites containing 

5 (nominal) wt% C30B and N28E is expected to be 3.5%. However, the measured ash content 

was about 2.8%, probably due to a loss of clay during feeding in the extruder hopper, which 

means that the real amount of the organoclays in the nanocomposites was around 4 wt%. 

Differential scanning calorimetry (DSC) of PET and the nanocomposites was performed on a 

DSCQ1000 (TA Instruments) on typically 10 mg of material, under a helium atmosphere to 

investigate thermal behavior and crystalline content of the samples. The samples were heated 

from room temperature to 300 ºC and held at that temperature for 3 min, then cooled to 30 ºC at a 
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constant rate of 10 ºC/min. This test was performed twice for each sample, always with a fresh 

specimen. 

The rheological properties of PET and the nanocomposites were measured using a stress-

controlled Bohlin Gemini rheometer. The experiments were conducted under a blanket of 

nitrogen to avoid oxidation of the samples. A parallel plate flow-geometry was used with a gap 

size of 1 mm and a plate diameter of 25 mm. Time and frequency sweeps in small-amplitude 

oscillatory shear were carried out on the samples at 265 ºC. The time sweep tests were performed 

at 0.628 rad/s over 900 s on two fresh specimens of each sample and the average value is 

reported. The frequency sweep tests were performed in the linear regime for four fresh specimens 

of each sample. Two specimens were subjected to frequency sweep from low to high frequency, 

and two more from high to low. 

Mechanical properties of the films were measured using an Instron 3365 at room temperature 

according to standard ASTM D638. The tensile specimens with a rectangular geometry of 25 mm 

wide and 100 mm long were stretched at a cross-head speed of 12.5 mm/min. To obtain the 

toughness of the samples, the area under the stress-strain curve were calculated according to the 

Simpson 1/3 rule of integration. 

A Mocon Ox-Tran Model 2/21 oxygen permeability MD module was used to determine oxygen 

transmission rates (OTRs) of the films at 23 °C under a pressure of 0.96 atm. 100% dry oxygen 

was passed over one side of the sample and a mixture of 98% N2 (nitrogen) with 2% H2 

(hydrogen) was used as the carrier gas. The permeability coefficient [P, in L/(m.day.atm)] was 

obtained from the OTR values using the following formula:  

                                                                
p

L
OTRP                                                                (7-1) 

 where L is the film thickness (m) and p is the testing pressure (atm). At least four specimens 

were tested for each sample.  
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Haze and clarity were determined using a Haze Guard Plus™ instrument (Qualitest International 

Inc.) according to ASTM D1003. For each nanocomposite film, at least five different specimens 

have been tested. Haze is defined as the percentage of the total transmitted light which deviates 

from the incident beam more than 2.5° when passing through the specimen. Transparency, often 

referred to as clarity, is defined as the percentage of light that is scattered from the incident beam 

by an angle lower than 0.1°. While denominator for haze is the total transmitted light (Eq. 7-2), it 

is the incident light for clarity (Eq. 7-3) [31]: 
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where iI , rI , and sI represents the incident light, regular transmitted, and scattered transmitted 

light intensity, respectively. 

 

7.4 Results and discussion 

7.4.1 Fourier transform infrared spectroscopy (FT-IR)  

By comparing the FT-IR spectra of the neat materials and of PET containing Joncryl, the 

chemical reactions between the matrix and the chain extender may be identified. Figure 7-2a and 

Figure 7-2b show the FT-IR spectra of Joncryl, neat PET, and PET containing 1 wt% Joncryl in 

two different wavenumbers range. The peaks at 842, 908, and 1255 cm
-1

, which are observed in 

the spectra of Joncryl, are assigned to the C-O stretching modes of the epoxy group [11, 32]. No 

peaks or weak ones occur at these wavenumbers in the spectrum of PET/1 wt% Joncryl, which 

means that most of the epoxy groups in Joncryl have been consumed in the PET sample treated 

with Joncryl. For a better comparison, these wavenumbers are identified by dotted lines in Figure 

7-2b. The consumption of epoxy groups may be due to chemical reactions between these and 

PET end groups, as both carboxyl and hydroxyl groups can react with epoxy groups [33]. New 

hydroxyl groups are formed due to these reactions [33]; however, the hydroxyl end group content 
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is not affected if these hydroxyl groups react with epoxy groups. In contrast, due to the reaction 

of epoxy groups with carboxyl end groups of PET, new hydroxyl groups are formed and an 

increment in hydroxyl content is expected. It has been proposed by several researchers that the 

esterification of PET carboxyl end groups with electrophilic epoxy groups is more favorable than 

etherification of hydroxyl end groups [26, 33]. 

 

Figure 7-2: FT-IR spectra of Joncryl, PET, and PET containing 1 wt% Joncryl: (a) high wavenumber range, (b) low 

wavenumber range. 
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7.4.2 Morphology 

XRD patterns of C30B and N28E and their corresponding nanocomposites with and without 

Joncryl are shown in Figure 7-3. By monitoring the presence, shape, intensity, and position of 

XRD peaks it is possible to make a preliminary assessment about the structure or morphology of 

the nanocomposites. The gallery spacing of both C30B and N28E increases to 3.4 nm after melt 

blending with PET, which illustrates the intercalation of PET chains into the basal spacing of 

these two organoclays. C30B exhibits a higher level of intercalation in comparison to N28E, as 

the increment from 1.85 to 3.4 nm of its gallery spacing is more than that of N28E (from 2.4 to 

3.4 nm). XRD pattern of nanocomposite PET/4 C30B exhibits a shoulder instead of a defined 

peak, corresponding to a disordered intercalation, while the XRD pattern of sample PET/4 N28E 

shows a well-defined peak, characteristic of an ordered intercalation. The periodicities of the 

layers are preserved for silicate nanolayers with ordered intercalated structures, while, due to a 

degree of incoherence in layers, a disordered stacking is expected for nanocomposites revealing a 

shoulder peak [1]. The introduction of Joncryl in nanocomposites containing C30B and N28E 

reduces the intensity of the XRD peaks significantly. The reduction of the peak intensity in clay-

containing polymers is associated with a higher level of exfoliation, as no peak is expected for 

exfoliated structures, and consequently smaller domains of periodicity (smaller tactoids). Note 

that the second peaks observed at 2θ ≈ 5.2° may be attributed to the d002 diffraction and/or to clay 

gallery collapse.  
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Figure 7-3: XRD patterns of the nanoclays and nanocomposites: (a) C30B and its corresponding nanocomposites, (b) 

N28E and its corresponding nanocomposites. 

 

TEM was employed to obtain visual information about the internal structure of the 

nanocomposites at the nanometer scale. Figure 7-4 presents TEM images of nanocomposites 

containing N28E, with and without Joncryl, at two magnifications. Both delaminated platelets 

and tactoids are seen in the images. Comparing the low magnification images (Figure 7-4a and 

Figure 7-4c) we observe that the addition of Joncryl improves the distribution of clay particles in 

the PET matrix, displaying a higher clay distribution density (number of particles per unit area) 

and a more uniform distribution of clay particles in comparison to the nanocomposite prepared 

without Joncryl. The high magnification images (Figure 7-4b and Figure 7-4d) reveal that the 

presence of Joncryl reduces significantly the tactoid size. Clay tactoids with high number of 
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silicate layers per particle breakdown to more clay particles with lower numbers of platelets per 

particle. The reduction of the amount of large tactoids and the increase of single layer and double 

layer particles as shown in the next section confirm the observation of larger clay distribution 

density for nanocomposites containing Joncryl in the low magnification TEM images. Similar 

observations were made for the nanocomposites containing C30B. These results are in good 

agreement with XRD patterns as the peak intensity decreases for nanocomposites containing 

Joncryl. 

 

Figure 7-4: TEM images of PET/4 N28E (a, b) and PET/4 N28E/1 Joncryl (c, d) at various magnifications. 

 

The number of platelets per tactoid was counted manually using the TEM images to evaluate 

quantitatively the effect of Joncryl and clay organic modifier on the level of clay dispersion 

within the PET matrix. Around 600 particles were counted for each sample, using around 40 
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TEM micrographs with 20 and 100 nm scale bars, to ensure statistical validity of the analysis. 

Figure 7-5 reports the histogram of the number of platelet per clay particle for PET 

nanocomposites containing 4 wt% C30B and N28E, with and without Joncryl. For both C30B 

and N28E nanocomposites, the introduction of the chain extender increases the count for single 

layer and double layer particles and decreases the frequency of clay aggregates (5 or more 

layers). It is worth noting that the PET/4 C30B nanocomposite exhibits a higher level of 

exfoliation than PET/4 N28E. Favorable interactions between hydroxyl groups present in the 

organic-modifier of C30B with PET result in a higher level of intercalation of PET chains into 

the gallery spacing of C30B in comparison to N28E, as suggested by the calculation of the 

solubility parameter of the organoclays based on the Fedors group contribution method [34]. The 

experimental value of the PET solubility parameter is 19.9-21.9 J
1/2

.cm
-3/2

 [34], while the 

calculated values for C30B and N28E are 21.5 and 16 J
1/2

.cm
-3/2

, respectively. Therefore, the 

solubility parameter of PET is identical to that calculated for C30B in comparison to N28E, 

which explains the higher level of exfoliation of C30B within the PET matrix. 
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Figure 7-5: Histogram of the number of platelets per particle. The total number of counted particles was around 600. 

 

Luo and Koo [35] introduced a TEM method to quantify the level of clay dispersion within a 

polymer matrix. A dimensionless parameter called the dispersion value, 01D , is calculated based 

on the distribution of the free-path spacing distances between the silicate nanolayers according to 

the following equation:  
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(7-4) 

where µ is the mean spacing between the clay layers, and σ is the standard deviation. More than 

100 measurements were suggested by the authors to ensure validity of the analysis. 
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It has been proposed that 01D  below 4% characterizes immiscible systems or microcomposites, 

and over 8% is a characteristic of exfoliated nanocomposites. The dispersion value is between 4 

and 8% for intercalated nanocomposites. In this work around 600 measurements were carried out 

for each sample to ensure the validity of the values reported for 01D . The values obtained are 5.0 

and 6.9 % for PET/4 C30B and PET/4 C30B/1 Joncryl, respectively;  01D  is 4.1 and 5.6 % for 

PET/4 N28E and PET/4 N28E/1 Joncryl, respectively. These results suggest a higher degree of 

clay exfoliation for nanocomposites based on C30B and those containing Joncryl. It is worth 

mentioning that a value of 7.5 for 01D was obtained for a PET containing 2 wt % C30B in drawn 

films prepared via a larger twin-screw extruder [3]. 

    

7.4.3 Rheological properties 

The linear viscoelastic functions, complex viscosity ( * ) and storage modulus ( 'G ), of the neat 

PET and its corresponding nanocomposites with and without Joncryl are presented as functions 

of time in Figure 7-6a and Figure 7-6b, respectively. These tests were performed to assess if the 

samples exhibited a time-dependent behavior and to determine a time window for subsequent 

frequency sweep tests. The viscoelastic properties may be time-dependent due to possible thermal 

degradation of the PET matrix and/or chemical reactions between PET, clay organomodifiers, 

and Joncryl. Two fresh disk-shape specimens of each sample were tested and the average value, 

which has a maximum 5% deviation, is reported. Based on these tests, less than 10% variations 

took place in the viscoelastic properties of all samples up 5 min. Samples containing Joncryl 

displayed considerably larger viscoelastic properties than those without Joncryl. The viscoelastic 

properties of PET containing the chain extender increase with time. Joncryl is a multifunctional 

epoxy-based chain extender and it is probable the epoxy groups continue to react with the 

hydroxyl and carboxyl end groups of PET during the rheological tests. The residence time in the 

extruder, measured to be around 1 min, was probably too short for a completed reaction between 

Joncryl and PET. During compression molding chain scission and chain extension may also take 

place. However due to the low level of shearing, the probability of significant chain extension 

decreases due to less contact between reactive groups. The presence of organoclays accelerates 
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the PET degradation during melt mixing and increases the carboxyl end group content [22]. The 

degradation of the PET matrix in the presence of the organoclays may occur during the master-

batch preparation as well as during the dilution of the master-batches. A larger carboxyl end 

group content increases the probability of consumption of epoxy groups of the chain extender 

during the master-batch dilution. That may explain why the viscoelastic properties of the 

nanocomposites containing Joncryl do not increase with time in the rheometer. The reaction of 

epoxy groups with terminal groups of PET chains increases the viscoelastic properties of the PET 

nanocomposites containing Joncryl. However, this reaction results in the generation of new 

hydroxyl groups that may attack the PET backbone and reduce the molecular weight of the PET 

matrix for nanocomposites containing Joncryl in the rheometer with time. 
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Figure 7-6: Complex viscosity (a) and storage modulus (b) as functions of time for the neat PET and its 

corresponding nanocomposites with and without Joncryl. 

 

Figure 7-7a and Figure 7-7b present the complex viscosity and the storage modulus of the neat 

PET and PET-based nanocomposites, with and without Joncryl, as functions of frequency. The 
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neat PET exhibits a pseudo-Newtonian behavior, while all PET-based nanocomposites show a 

marked shear-thinning behavior, characteristic of nanocomposites. At low frequencies the 

complex viscosity and the storage modulus of PET/4 C30B are larger than those of PET/4 N28E, 

which is due to the higher degree of C30B exfoliation over N28E revealed by XRD and TEM 

results. At high frequencies, where the contribution of the matrix is more pronounced, PET/4 

C30B shows a lower complex viscosity than PET/4 N28E. The better dispersion of C30B 

increases the exposure surface of this organoclay to the PET matrix and consequently causes a 

higher level of degradation. Contrary to the organic modifier of N28E, that of C30B contains 

unsaturated tallow with double bonds as well as hydroxyl groups which causes more degradation 

of the PET matrix [10]. On the other hand, the introduction of the chain extender increases the 

viscoelastic properties of the neat PET and its corresponding nanocomposites. As mentioned 

earlier, the epoxy groups of Joncryl may link the functional terminal groups of degraded PET 

chains and rebuild the molecular weight and viscoelastic properties [26]. The higher level of 

exfoliation observed for nanocomposites containing Joncryl, according to XRD and TEM results, 

may be explained by the larger viscosity of the matrix, which generates larger shear stresses that 

break down large clay tactoids into individual layers and double layer particles. The elastic 

modulus of the PET-based nanocomposites (Figure 7-7b) exhibit a plateau at low frequencies, 

corresponding to the formation of a percolated three-dimensional network of clay particles, which 

acts like a weak solid [36]. The introduction of Joncryl increases the viscoelastic properties of the 

PET nanocomposite containing N28E more than that containing C30B. Joncryl functional groups 

connect shorter chains in the case of PET-based nanocomposites containing C30B in comparison 

to those containing N28E, due to the more severe chain scission induced by C30B. Besides, the 

organic modifier of C30B contains hydroxyl groups that might also react with the epoxy groups 

of Joncryl and consequently reduce the amount of Joncryl functional groups available for chain 

extension.     



141 

 

 

Figure 7-7: Complex viscosity (a) and storage modulus (b) of the neat PET and PET-based nanocomposites with and 

without Joncryl as functions of frequency. 

 

Adding multifunctional chain extenders to linear polymers may result in chain branching and 

gelation. A gel content test were performed at 25 ºC by dissolving the samples containing Joncryl 

in a (60/40 ratio wt/wt) phenol/1,1,2,2-tetrachloroethane solution. In less than half an hour all 
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samples were completely dissolved in the solvent, suggesting a gel-free structure for all samples 

containing the chain extender. The critical mole fraction of the chain extender for gelation, c , 

may be estimated from the following equation: 

                                                                       
1

1




f
c                                                             (7-5) 

where f is the chain extender functionality [11, 37]. For the chain extender used in this study c ~ 

0.33 as the functionality of Joncryl is around 4 [26]. The weight average molecular weights of 

Joncryl and the PET are 6800 and 65 000 g/mol, respectively, implying that the critical weight 

fraction of Joncryl for gelation is 4.97%, which is remarkably larger than that used in this study. 

Wood-Adams et al. [38] investigated the effect of molecular weight and short and long chain 

branching on the linear viscoelastic behavior of polyethylenes. They observed that while short 

chain branching does not change the viscoelastic properties of the matrix, the loss angle (δ) 

curves for branched polyethylenes are quite different from that of linear polyethylenes. It has 

been also reported by other researchers that long chain branching decreases the value of δ and 

changes the plot of δ vs. ω [11, 39]. Figure 7-8 presents the loss angle of the neat PET and PET 

containing 1 wt% Joncryl as a function of frequency. This graph clearly shows that the presence 

of Joncryl changes the linear molecular structure of PET, with δ = 90º at low frequencies, to a 

branched structure with lower δ at all frequencies. 
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Figure 7-8: Loss angle of the neat PET and PET containing 1 wt% Joncryl as a function of frequency. 

 

7.4.4 Thermal properties 

Table 7-1 reports the effect of Joncryl and the organoclays on the glass transition 

temperature, gT , the melting temperature, mT , cold crystallization temperature, ccT , hot 

crystallization temperature, hcT , and crystal content of PET. The melting point of PET is almost 

unaffected by the presence of the chain extender or the organoclays, suggesting that the addition 

of the organoclays and/or Joncryl does not change the melting process. gT  of the nanocomposites 

is almost equal to that obtained for the neat PET, except for PET/4 C30B, which shows the 

lowest glass transition temperature that may be attributed to the severe thermal degradation of 

PET chains induced by C30B. The nanometric dispersion of silicate nanolayers in a polymer 

matrix provides a large interfacial area and promotes heterogeneous crystallization as clay 

platelets act as a strong nucleating agent. This explains the lower cold crystallization temperature 

of the nanocomposites in comparison to the neat PET. Based on the rheological results the 

presence of Joncryl increases the complex viscosity of the samples, which generates larger 

stresses during film extrusion and, consequently, we may expect more oriented chains for the 

films containing the chain extender. All the samples containing Joncryl display a lower ccT in 
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comparison to those without Joncryl because the required energy for crystallization decreases as 

the chains become more oriented [40]. The crystal content of the films was calculated from the 

enthalpy of melting mH  and the enthalpy of cold crystallization ccH according to the following 

equation: 
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where PETw  is the PET weight fraction and 
mH  is the enthalpy of melting of 100% crystalline 

PET (140 J/g) [40]. The presence of silicate layers enhances the crystallinity of the PET-based 

nanocomposite films. Higher crystal content was also obtained for the samples containing 

Joncryl. The orientation of molecular segments increases the nucleation rate of crystallization. In 

comparison to polymer random coils in an isotropic state, oriented uncrystallized polymer chains 

have lower configurational entropy which reduces the entropic penalty for crystallization [41]. 

The heterogeneous nucleating effect of clay platelets also results in the enhancement of the hot 

crystallization temperature of the nanocomposites, in comparison to the neat PET. After 

removing the effect of processing, all samples containing the chain extender exhibit lower hot 

crystallization temperature in comparison to those without Joncryl. It seems that the branched 

structure of the samples containing Joncryl results in a steric hindrance to close packing of PET 

chains and affects the ability of the matrix to crystallize. 

Table 7-1: Thermal properties of the neat PET and PET-based nanocomposites with and without Joncryl. 

Sample )( CTg


 )( CTm


 )( CTcc


 )( CThc


 Crystalline 

degree (%) 

Neat PET 78.5 ± 0.1 243.1 ± 0.1 136.4 ± 0.1 181.6 ± 0.3 4.1 ± 0.2 

Neat PET/1 Joncryl 78.2 ± 0.2 242.0 ± 0.2 121.3 ± 0.1 176.0 ± 1 5.6 ± 0.3 

PET/4 C30B  75.1 ± 0.3 244.8 ± 0.1 128.9 ± 0.2 198.5 ± 0.2 8.2 ± 0.1 

PET/4 C30B/1 Joncryl  76.2 ± 0.1 243.4 ± 0.3 117.8 ± 0.1 194.5 ± 0.1 9.7 ± 0.2 

PET/4 N28E  77.1 ± 0.4 244.5 ± 0.1 133.6 ± 0.1 199.7 ± 0.1 6.6 ± 0.4 

PET/4 N28E/1 Joncryl 76.0 ± 0.1 243.5 ± 0.1 123.3 ± 0.2 196.7 ± 0.1 7.9 ± 0.6 
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7.4.5 Mechanical properties 

The tensile modulus and the toughness of the neat PET and PET-based nanocomposites, with and 

without Joncryl, and in the machine direction are reported in Figure 7-9a and Figure 7-9b, 

respectively. The incorporation of clay particles into the PET matrix increases the tensile 

modulus and leads to more brittleness in comparison with the neat PET films. The Young 

modulus of PET/4 N28E/1 Joncryl nanocomposite films is improved by about 66% compared 

with the neat PET. The tensile modulus of the PET matrix is around 1.8 GPa, while clay platelets 

have a modulus of 178 GPa [42]. Therefore, the presence of clay particles within the PET matrix 

increases the mechanical properties because a significant portion of the applied load may be 

carried by the clay particles. The Young modulus of the samples containing Joncryl is larger than 

those without Joncryl, which may be attributed to the larger molecular weight and increased 

crystallinity of the matrix. Besides, for nanocomposites containing Joncryl, the larger Young 

modulus might also be attributed to a better dispersion of the silicate nanolayers in the matrix, as 

confirmed by the XRD and TEM results. Despite the higher exfoliation level of C30B over N28E 

within the PET matrix, it seems that the more severe chain scission induced by C30B results in 

nanocomposites with lower Young modulus values in comparison to those containing N28E. It 

has been reported that the introduction of clay particles to a polymer matrix leads to a reduction 

of the elongation at break and more brittleness [5, 15, 43, 44]. The brittle behavior of 

nanocomposites is probably due to the higher crystallinity, molecular weight reduction due to 

thermal degradation, presence of clay aggregates, and interlaminar debonding of clay particles 

and formation of microvoids, which can initiate the crack propagation throughout the matrix. 

Coalescence of the microvoids and formation of large cracks results in the embrittlement of 

nanocomposites [44, 45]. He et al. [46] reported that elongation at break of polyamide 

6/Nanomer® I.30TC decreases with clay concentration, while the Young modulus increases with 

clay concentration. They postulated that although the adhesion between the clay particles and the 

matrix was adequate the clay particles promoted the formation of numerous crazes and 

microcracks near the interface of the clay platelets and the matrix [46]. In this work, all PET-

based nanocomposite films exhibit lower toughness values in comparison to the neat PET films, 

due to the presence of the organoclays and higher crystallinity [47]. The presence of the chain 

extender and/or the organoclays increases stiffness, but deteriorates the elongation at break of the 
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samples at the same time (data not shown). The resulting toughness is a combination of the 

mentioned factors.      

 

Figure 7-9: Tensile modulus (a) and toughness (b) data of the neat PET and PET-based nanocomposites with and 

without Joncryl. 

 

7.4.6 Optical properties 

For several applications, transparency and haze are considered as two important optical 

properties. Clarity correlates with the ability of the film to show the fine details of an object 

viewed through it. As the clarity decreases, the clear or sharp image of the object appears to be 

fuzzy. If a bright dot on a dark field is viewed through a film with low clarity, a halo appears 

around the dot and gives an out-of-focus image of the bright dot. On the other hand, high haze 

values are associated with seeing a smoky, milky, or cloudy image of an object viewed through 

the film. In this case the contrast between the bright dot and the dark field reduces and a decrease 

in visibility similar to what occurs in fog [31]. Crystalline regions and filler particles, which have 

different refractive index from the rest of the material, filler concentration, particle size, and 

dispersion quality of the particles influence the transparency of a film. Any chemical changes in 

the polymer structure such as degradation may also change the optical properties [48]. The 

measured haze and clarity values for the films investigated in this study are depicted in Figure 
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7-10a and Figure 7-10b, respectively. From these figures it can be observed that all 

nanocomposite films have higher haze and lower clarity with respect to neat PET. The samples 

containing Joncryl exhibit higher haze and lower transparency values in comparison to those 

without Joncryl. When the haze percentage is higher than 30%, the material is considered as 

translucent instead of transparent [48]. Accordingly, the PET-based nanocomposites without 

Joncryl are classified as transparent materials while those containing Joncryl are translucent.  

 

Figure 7-10: Haze (a) and clarity (b) measurements of the neat PET and PET-based nanocomposites with and 

without Joncryl. 

 

7.4.7 Barrier properties 

Impermeable silicate nanolayers block gases transport through a polymer matrix, and by creating 

a tortuous pathway force the permeant to travel longer diffusive path. Hence, higher level of 

exfoliation is favorable for barrier properties enhancement [1]. As mentioned earlier, the presence 

of clay layers increases the crystal content of the nanocomposite films. The permeability of gases 

through a polymer matrix depends on the available free volume of the matrix. The crystalline 

phase increases the barrier properties of polymers as polymer chains are efficiently packed in 

crystallites, which reduce the unoccupied volume of the matrix essential for gas transport. Figure 

7-11 shows the measured oxygen permeability values of the neat PET and PET-based 
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nanocomposite films, with and without Joncryl. All nanocomposite films exhibit higher barrier 

properties than the neat PET due to the presence of clay layers and larger crystal content. The 

barrier properties of the films containing Joncryl are better than those without Joncryl, which can 

be attributed to the better clay dispersion and/or larger crystallinity. Overall, a 46% improvement 

in barrier properties was obtained for the PET nanocomposites containing C30B and Joncryl in 

comparison to the neat PET films. The corresponding improvement for the PET/4 N28E/1 

Joncryl was 40%. According to XRD, TEM, and DSC results, the PET/4 C30B/1 Joncryl films 

show the highest level of exfoliation and contain the highest amount of crystals, which explains 

the lowest oxygen permeability. It is worth noting that barrier properties of the PET/4 C30B films 

are better than those of the PET/4 N28E films because of the larger crystallinity and better clay 

dispersion. 

 

Figure 7-11: Oxygen permeability of the neat PET and PET-based nanocomposites with and without Joncryl. 
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7.5 Conclusion 

A twin-screw extruder was used to prepare PET nanocomposites containing C30B and N28E. To 

rebuild the molecular weight of the degraded matrix and improve clay dispersion, a chain 

extender (Joncryl) was introduced in the nanocomposites via a master-batch approach. XRD and 

TEM were employed to evaluate the morphology and the state of delamination. The level of 

exfoliation improved for nanocomposites containing Joncryl. Functional groups of the chain 

extender reacted with PET end groups and resulted in the enhancement of the viscoelastic 

properties. The nanocomposite films exhibit larger crystallinity and lower cold crystallization 

temperature due to the nucleation effect of the clay layers. The presence of the organoclays 

and/or the chain extender resulted in more hazy films. Higher barrier and mechanical properties 

were obtained for the films containing Joncryl in comparison to those without Joncryl. The 

Young modulus of the nanocomposite films containing N28E and Joncryl was improved by 66%, 

slightly more than the corresponding C30B nanocomposites.  The oxygen permeability of the 

nanocomposite films containing  4 wt% C30B and 1 wt% Joncryl decreased by 46% in 

comparison to the neat PET films. The corresponding permeability decrease for the N28E 

nanocomposite was 40%. 
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CHAPTER 8  

GENERAL DISCUSSION 

 

The morphology of a polymer nanocomposite, which governs the final properties, is dependent 

on the degree of compatibility between components (i.e. polymer matrix and silicate layers). 

Silicate layers of organoclays have polar groups, therefore polymers with polar groups are 

capable to have strong interactions with clay particles. The exfoliated morphology of 

polyamide/organoclay nanocomposites and consequently, the marked improvements in barrier 

and mechanical properties of the matrix, show the importance of favorable interactions between 

silicate layers and the host polymer matrix. Accordingly, the first part of this study was devoted 

to investigating the effect of a PET-ionomer with sulfonated groups on the exfoliation of PET-

based nanocomposites. As the final morphology of nanocomposites is also dependent on the 

organic part of the organoclays, two commercially available organoclays, C30B and N28E, 

modified with different surfactants were employed.  

Contradictory results regarding the miscibility state of PET and PET-ionomer were obtained 

based on various characterization techniques. For all compositions of PET/PET-ionomer blends, 

a single glass transition temperature was observed. A continuous reduction of melting point was 

also observed for the blends with increasing PET-ionomer content. Although results of these two 

methods (i.e. the melting point depression and the Tg approach) suggest a miscible blend, a 

selective solvent dissolution technique followed by SEM revealed droplet-matrix and co-

continuous morphologies for the blends. Therefore, any decision regarding the miscibility state of 

a blend based on the melting point depression and the Tg approach should be done with 

precautions. It is worth noting that droplets of the dispersed PET-ionomer phase were also clearly 

observed in TEM images, which confirm SEM results. It is worth mentioning that rheological 

techniques are also frequently used to assess miscibility of polymers, however since PET is very 

sensitive to thermal degradation, which influences the results, this approach could not be used in 

this work. 

The advantage of C30B over N28E is that the former’s surfactant contains two hydroxyl groups 

which could bring good compatibility between PET chains and the organoclay. Hence, a good 
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dispersion and distribution of C30B particles were obtained in the nanocomposites. However, 

migration of the C30B particles into the more polar polymer (i.e. PET-ionomer domains) 

restricted their uniform distribution. Due to localization of the organoclays in the PET-ionomer 

domains, the barrier properties were not improved as compared to the PET nanocomposite 

without the ionomer. It is reasonable to generalize migration of polar nanoparticles to a more 

polar phase to other polymer blends. Therefore, an appropriate polar polymer, which is miscible 

with the matrix, must be selected to take advantage of this approach. In the case of immiscible 

blends, adding enough of the polar polymer to obtain a co-continuous morphology may help the 

uniform distribution of the nanoparticles. Barrier properties of the polar polymer against 

transmission of oxygen in comparison to the matrix, along with optical clarity of the blend, are 

also challenging issues to be considered.  

Another key issue to be addressed is food contact regulations of the matrix, additives, and 

nanoparticles. While PET 9921 produced by Eastman Chemical Company can be used for 

refillable carbonated soft drinks, food packaging, and health and nutrition containers, food 

contact regulations for ionomeric resins must be verified in the Code of Federal Regulations-Title 

21: Food and Drugs (21 CFR 177.1330). According to these regulations, ethylene/methacrylic 

acid copolymers such as Surlyn® supplied by DuPont™ may be safely used for contacts with 

food. AQ 55S, supplied by Eastman Chemical Company and used as the PET-ionomer in this 

study, is reported safe for cosmetic and personal care applications. However, to our knowledge 

there is no data in the literature regarding its food contact regulations. According to the data sheet 

provided by Eastman Chemical Company, numerous safety studies have been performed on the 

determination of the toxicity of Eastman AQ™ polyesters (including AQ 55S), and results from 

these studies indicate that the polyester ionomers can be used in many different types of 

applications with wide safety margins. In terms of clay use, it has been reported that pristine 

natural nanoclay is approved by the U.S. Food and Drug Administration (FDA) for food contact 

applications [95]. The organo-modified clay C30B used in this study was also reported to be 

FDA approved to be used as a food contacting material [96]. Hence, while further investigation 

of the appropriateness of the materials used in this study is required for food and beverage 

applications, they a priori appear to be on the safe side. In addition, they may relatively easily be 

replaced by FDA-approved equivalents. 
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In the first phase of this study we observed that XRD results may be misleading in morphological 

characterization of nanocomposites as no peak was observed for nanocomposites containing large 

aggregates. It was attributed to clay dilution due to non-uniform distribution. SEM and TEM are 

expensive and time-consuming techniques, which examine only a very small portion of the 

sample, especially in the case of TEM. Besides, SEM cannot display exfoliated layers and very 

small tactoids. Accordingly, rheological methods must be employed as a significant volume of 

sample is tested which increase the reliability of the data. However care must be taken if 

degradation occurs during the rheological measurements since it may be misleading and hide 

phenomena related to nanoparticles or morphology evolution. 

Various organoclays with different organic modifiers were employed to fabricate PET 

nanocomposites. The effect of clay loading and processing on the morphology and rheology of 

the nanocomposites was also investigated. XRD patterns indicated that the gallery spacing of 

C30B in the nanocomposites is independent of clay loadings and processing conditions. 

However, SEM micrographs showed that the screw configuration with more kneading blocks and 

longer residence time is more efficient in breaking down the large clay aggregates. SEM 

observations were confirmed by rheological measurements as larger viscoelastic properties were 

obtained for the nanocomposites processed with a more severe screw profile. Presence of the 

nanoparticles makes it impossible to directly measure the molecular weight of the matrix of the 

nanocomposites using viscometry. The presence of the nanoparticles influences the flow time of 

the nanocomposite solutions and lead to wrong estimation of the matrix molecular weight. That is 

why the Maron-Pierce equation and high frequency data were employed to determine the PET 

apparent viscosity and subsequently the apparent molecular weight of the matrix. Incorporating 8 

wt% C30B led to more than 50% reduction in the molecular weight of the PET matrix. Therefore, 

incorporating high concentrations of nanoparticles may not improve the properties of 

nanocomposites to expected level if severe matrix degradation takes place. It should be 

mentioned that favorable interactions between PET and the organoclays, estimated based on the 

solubility parameter, follow the same order as the apparent yield stress. This finding also 

confirms that the rheological method can be thought as a strong tool in the characterization of 

nanocomposites and detecting the interactions between nanoparticles and a host polymer matrix. 

XRD, SEM, TEM, and rheological results indicate that the organoclay with the solubility 

parameter closer to that of the matrix yields a better morphology. Therefore, calculating a priori 
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the solubility parameter, based on the Fedors group contribution method, may be useful to choose 

an appropriate organoclay for a specific polymer matrix.    

Higher amount of organic modifier in the interlayer spacing of organoclays increases the 

hydrophobicity of clay particles. Moreover, the initial basal spacing of the organoclays increases 

with surfactant loading. C15A has the highest excess of the organic modifier (35%) with the 

largest initial gallery spacing as compared to the other organoclays studied in this work. 

Nevertheless, XRD results indicated that PET nanocomposites containing this organoclay 

exhibited the lowest intercalation level. Besides, the unbound excess amount of the organic 

modifier contributed to the severe degradation of the matrix. The apparent yield stress obtained 

for the corresponding nanocomposite is among the lowest values obtained in this study. 

Saturation or high organic content of interlayer restricts the penetration of PET chains into the 

gallery spacing; hence nanocomposites with lower level of intercalation are obtained. 

In view of our finding about the severe degradation of the PET matrix in the presence of the 

organoclays, the last part of this research aimed at compensating the degradation of the matrix by 

employing a multifunctional chain extender. Functional groups of the epoxy-based chain 

extender may link the terminal groups of degraded PET chains and enhance viscoelastic 

properties of the samples. However, high viscosity of the matrix has two opposite effects on the 

process of exfoliation. A PET matrix with higher viscosity imparts a higher level of shear stress 

onto the clay particles and facilitates the exfoliation of the silicate nanolayers within the matrix. 

But at the same time, it hinders the diffusion of PET chains within the interlayer spacing of the 

silicate layers. Considering these two antagonistic phenomena, the nanocomposites were 

prepared by a master-batch approach in which initially low molecular weight PET chains could 

easily diffuse into the gallery spacing of the silicate layers, and then by incorporating the chain 

extender high shear stresses were generated, which enhanced the exfoliation level. It should be 

mentioned that the chain extension approach proposed here is of interest only at limited 

concentrations of the multifunctional chain extender. In fact concentration of the chain extender 

must be lower than the critical mole fraction for gelation (cross-linking). Besides, according to 

the European Food Contact Legislation, Joncryl®ADR-4368 supplied by BASF and employed as 

a chain extender in this study, may be used up to 1 wt% in the manufacture of PET food 

packaging containers in contact with aqueous, acidic, and alcoholic (up to 10% alcohol) foods in 

compliance with the Framework Regulation 1935/2004/EC and the Plastic Directive 2002/72/EC. 
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XRD, TEM, and image analysis indicated that PET nanocomposites containing Joncryl exhibited 

better morphology (i.e. higher delamination level and lower clay aggregates). The chain 

extension reaction was confirmed with both FT-IR and rheological characterization. The Young 

modulus and oxygen barrier properties were also improved in the presence of the chain extender. 

However, more hazy films were obtained due to the presence of the organoclays and/or the chain 

extender as well as increased crystallinity. Generally speaking, for any polymer/particle blend 

experiencing degradation, employing a suitable multifunctional chain extender may rebuild 

molecular weight and improves dispersion of the particles within the matrix. Needless to say that 

although bifunctional chain extenders preserve linear structure of the matrix, multifunctional 

chain extenders are more efficient in increasing the molecular weight. 

Secondary processing, such as bi-axial stretching, affects orientation of clay particles and the 

morphology and final properties of nanocomposites. During bi-axial stretching platelets may 

slide along the tactoids, which creates longer tortuous pathway by increasing the tactoids length, 

and consequently improve barrier properties [74]. On the other hand bi-axial stretching 

parameters (e.g. stretch ratio, temperature, etc,) must be carefully optimized as crack formation 

around clay particles may take place and cause barrier properties to deteriorate. 

As mentioned earlier, considering that allowable oxygen concentration limit in beer is 1 ppm, it 

has been reported that the time limit for beer quality preservation in typical 1.5 L PET bottles is 

around one month [6]. Therefore, a 50% reduction in oxygen transmission rate may increase the 

shelf life of beer in 1.5 L PET nanocomposites bottles to about 2 months. 
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CHAPTER 9  

CONCLUSIONS AND RECOMMENDATIONS 

 

9.1 Conclusions 

In this dissertation, PET nanocomposites containing various organoclays were prepared by melt 

intercalation and morphological, rheological, thermal, optical, mechanical, and barrier properties 

of the nanocomposites were examined by means of various characterization tools. 

First, PET nanocomposite films containing 2 nominal wt% C30B and N28E were prepared by 

cast extrusion. A PET-ionomer was added to the nanocomposites to enhance the gallery spacing 

of the incorporated organoclays. A comprehensive study was performed to evaluate the state of 

miscibility of PET and PET-ionomer. Droplet-matrix and co-continuous morphologies of the 

immiscible blends were clearly displayed in SEM and TEM images. Higher affinity of the silicate 

layers for the PET-ionomer domains led to the migration of the organoclay into the dispersed 

phase. The preferential localization of the clay particles within the PET-ionomer restricted the 

uniform distribution of the organoclays in the nanocomposites. XRD patterns, TEM image 

analysis, and rheological results, however, indicated that for nanocomposites containing N28E, 

the PET-ionomer acted as an effective exfoliation agent and improved the level of delamination 

of the silicate layers. Thermal studies demonstrated the nucleating role of the silicate layers in 

crystallization behavior of the nanocomposite films. Compared to the neat PET film, cold 

crystallization and hot crystallization temperatures of the nanocomposite films decreased and 

increased, respectively. Crystallinity of the nanocomposite films was higher than that of the neat 

PET film. Incorporation of the organoclays led to gas barrier enhancements for all the 

nanocomposites in comparison to the neat PET film. Adding 2 nominal wt% C30B brought about 

25% reduction in oxygen permeability. The highest value for the dispersion parameter, D0.1 = 

7.5%, was obtained for the nanocomposites containing C30B which is very close to the fully 

exfoliated value of the parameter. 

The effect of clay chemistry, clay loading, and processing conditions on the morphology and the 

rheology of the nanocomposites were investigated in the second part of this study. According to 

XRD patterns, the gallery spacing of the organoclays (i.e. C30B, C15A, C25A, and N28E) was 
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increased due to the intercalation of PET chains, while the peak position of the pristine synthetic 

clay (i.e. SM100) did not shift to lower angles. XRD results showed that the interlayer distance of 

the clay particles is independent of the clay concentration. However, the intensity of the peaks 

increased with clay loading. TEM images indicated that the count for exfoliated layers decreased 

with clay concentration. The morphology and rheological properties of the nanocomposites 

improved significantly by employing a screw configuration with reverse elements and more 

kneading blocks. 

A pseudo Newtonian-like behavior was observed for the neat PET while all PET nanocomposites 

exhibited a shear-thinning behavior which became more pronounced with clay concentration. A 

pseudo solid-like behavior was observed for the nanocomposites at low frequencies and high clay 

loadings, which was attributed to the formation of an interconnected network of clay particles. 

Due to PET degradation, induced by the presence of the organoclays, the complex viscosity of 

the nanocomposites was lower than that of the neat PET at high frequencies. The Maron-Pierce 

equation was used for estimating the matrix degradation. Incorporating 8 wt% C30B led to 

remarkable reduction of the matrix molecular weight, from 65 to 29.8 kg/mol. The highest degree 

of intercalation, the largest values of the apparent yield stress, complex viscosity, and storage 

modulus were obtained for the nanocomposites containing C30B. It is worth mentioning that the 

solubility parameter of PET is closer to that of C30B. 

Finally, the last part of this thesis looked at the effect of a multifunctional epoxy-based chain 

extender on the control of thermal degradation of the matrix induced by the presence of the 

organoclays. Epoxy groups of the chain extender react with PET end groups and rebuild the 

molecular weight of the matrix by linking the degraded chains. Intensity of the XRD peaks 

reduced significantly for the nanocomposites containing Joncryl, which is a promising sign for a 

higher level of delamination. TEM results indicated that for nanocomposites containing Joncryl 

the count for single layer particles and aggregates increased and decreased, respectively. Higher 

clay density was obtained for the nanocomposites containing the chain extender, as clay tactoids 

with a high number of silicate layers per particle broke down to more clay particles with lower 

numbers of platelets per particle. The presence of Joncryl led to a significant improvement in the 

viscoelastic properties of the samples, due to connection of PET chains together. Higher degrees 

of crystallinity and lower cold crystallization temperatures were obtained for the nanocomposites 

in comparison to the neat PET. 61 and 66% improvements in the tensile modulus were obtained 
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for the nanocomposite films containing C30B and N28E, respectively, in the presence of Joncryl. 

Incorporation of Joncryl in the nanocomposite films containing C30B and N28E reduced the 

oxygen permeability by 46 and 40%, respectively. 

 

9.2 Original contributions 

 Comprehensive properties of PET nanocomposite films have been rarely reported. In this 

regard, PET nanocomposite films were prepared by extrusion and various properties of 

the samples such as thermal, mechanical, optical, and barrier properties were examined. 

 A fundamental study was performed to investigate the state of miscibility of PET and 

PET-ionomer, which has not been addressed in the literature. It has been demonstrated 

that the melting point depression and the single Tg approaches may be misleading in 

predicting miscibility of a blend and microscopy techniques are required to shed more 

light on the state of miscibility of a blend. 

 We observed that incorporation of a more polar polymer may increase the gallery spacing 

of silicate layers; however, clay particles migrate in the more polar PET-ionomer 

domains. 

 In the first part of this study we observed that the complex viscosity decreases by adding 2 

wt% C30B and N28E which was quite surprising at the beginning. In the second part of 

this work, the molecular weight reduction of the matrix in the presence of the organoclays 

was quantified using the Maron-Pierce equations. It was shown that the apparent yield 

stress of the PET nanocomposites containing various organoclays follows the same order 

as favorable interactions between PET and the organoclays based on the solubility 

parameter. 

 To our knowledge, no work has been published on the control of thermal degradation of 

PET nanocomposites using a multifunctional chain extender. In view of our experimental 

results, we observed that employing of the chain extender not only increased the 

viscoelastic properties of the nanocomposites, but it also improved the dispersion of the 

organoclays and led to better barrier and mechanical properties.  
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9.3 Recommendations 

The following subjects are proposed for future studies: 

1) The presence of silicate layers in PET films reduces the elongation at break and lead to 

more brittleness. Toughness of the nanocomposite films may increase significantly by the 

addition of a small amount of an elastomer. By changing clay and/or elastomer 

concentration, as well as their ratio, a wide range of properties may be obtained and 

therefore, it may be possible to optimize properties. 

2)  In view of the importance of processing conditions such as screw configuration in 

exfoliation of silicate layers, parameters affecting mixing quality (e.g. width of kneading 

blocks, staggering angle, forward/backward flow) should be optimized. 

3) The PET nanocomposites containing thermally stable organoclays are partially 

intercalated with large aggregates due to the lack of compatibility between the matrix and 

the organic modifier of the clays. Hence, further studies should be devoted to the 

chemistry of the organoclays to preserve the thermal stability of the surfactants, while 

improving their thermodynamic compatibility with the matrix. 

4) To fabricate PET nanocomposite films containing synthetic clays. Synthetic clays with 

higher aspect ratios than natural clays, if modified with a suitable organic modifier, are 

prone to create longer tortuous pathway and consequently yield better barrier properties. 

5) Considering the improvements achieved in the morphology and properties of the 

nanocomposites containing Joncryl, it is recommended to investigate the effect of the 

multifunctional chain extender on the morphology and properties of PET nanocomposites 

containing thermally stable organoclays. Variation of the chain extender content offers 

good potential to tune morphology and properties of the final product. 

6) Blow molding is applied for the fabricating PET nanocomposite bottles. The effect of clay 

chemistry, clay concentration, and the chain extender on the barrier and mechanical 

properties of blow molded bottles should be studied.  
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APPENDIX A:  

PERCOLATION THRESHOLD 

 

The following percolation model [85, 97] was used to determine the percolation threshold in the 

nanocomposites:  

n

perG )('                   (A-1) 

where per and n are the percolation threshold volume fraction and a power-law exponent, 

respectively. The parameter n is equal to 1.68 and 1.07 for screw configurations #1 and #2, 

respectively. 

The calculated percolation values (in wt%) are 3.4 and 3.2 for PET/C30B nanocomposites 

prepared using screw configuration #1 and #2, respectively. The following Figure  

shows the fit for the percolation threshold.  

 

Figure A-1: Storage modulus of the PET/C30B nanocomposites as a function of clay loading for screw 

configurations #1 and #2 (data at 0.3 rad/s). 
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APPENDIX B:  

INTRINSIC VISCOSITY 

An Ubbelohde viscometer was used with the goal of measuring the intrinsic viscosity of the neat 

PET and the PET nanocomposites containing 2, 4, 6, and 8 wt% C30B at 30 °C according to 

ASTM D-4603. The main objective of this part was to determine the matrix degradation induced 

by the presence of the organoclay. PET and all the nanocomposites were dissolved in a mixture 

of (60/40 ratio wt/wt) phenol/1,1,2,2-tetrachloroethane to prepare solutions at 0.50 wt% 

concentration. Elimination of the clay particles from the solutions is required to rule out the effect 

of the particles on the intrinsic viscosity of the samples. To this end syringe filters with 220, 100, 

and 20 nm pore sizes were employed. The syringe filters were kindly supplied by Whatman™ 

Company. 

The intrinsic viscosity, η, of the samples determined using the Billmeyer relationship, cited in the 

ASTM D-4603: 

Crr /)ln31(25.0    

where C is the polymer concentration (g/dL), r is the relative viscosity obtained by taking the 

ratio of the average solution flow time (s) to the average solvent flow time (s). 

While all the samples passed easily through the syringe filters with 220 nm pore size, those with 

100 and 20 nm pore sizes were clogged by the clay particles after filtering a few droplets. 

Therefore, the PET-based nanocomposites were filtered by employing only the syringe filters 

with 220 nm pore size, which meant that the filtered solutions most probably still contained clay 

particles. 

Table B-1: Intrinsic viscosity and molecular weight of the neat PET and the nanocomposites containing C30B 

filtered by syringe filters with 220 nm pore size. 

Sample Average flow time 

(s) 

Relative viscosity Intrinsic viscosity 

(dL/g) 

Apparent viscosity-

averaged molecular 

weight (kg/mol) 

Solvent 76.5 - - - 
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Neat PET 107.8 1.41 0.719 61.7 

PET/2 C30B 108.9 1.42 0.741 64.3 

PET/4 C30B 104 1.36 0.640 52.6 

PET/6 C30B 96.2 1.26 0.472 34.7 

PET/8 C30B 96.1 1.25 0.470 34.5 

  

Obviously the presence of the remaining clay particles in the samples has influenced the flow 

time of the solutions. For example, while the thermal degradation of the matrix of the 

nanocomposite containing 2 wt% C30B was already verified by the rheological results and color 

formation, a larger intrinsic viscosity and molecular weight were obtained for this sample in 

comparison to the neat PET. Besides, intrinsic viscosity and molecular weight of the 

nanocomposites containing 6 and 8 wt% C30B are very close to each other, which is not 

expected. 


