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RÉSUMÉ 

Le domaine du térahertz (THz) se réfère aux ondes électromagnétiques dont les 

fréquences sont comprises entre 0.1 et 10 THz, ou encore pour des longueurs d'onde entre 3 mm 

et 30 μm. Ce type de radiation, qui se situe entre les ondes radios et la lumière infrarouge, 

possède des propriétés uniques. Les ondes térahertz peuvent passer à travers diverses substances 

amorphes, plusieurs matériaux synthétiques et des textiles, mais aussi des diélectriques non 

polaires tels des matériaux à base de pâtes et papiers, qui sont aussi partiellement transparents 

aux ondes térahertz. Plusieurs biomolécules, protéines, explosifs ou narcotiques, possèdent aussi 

des lignes d'absorption caractéristiques (entre 0.1 and 2 THz) tels des « codes barres » permettant 

de les identifier. Il y a deux avantages principaux à l'utilisation des ondes THz: d'une part elles 

peuvent pénétrer des matériaux normalement opaques à d'autres fréquences, et d'autre part, et 

elles permettent une haute sélectivité chimique. Par ailleurs, les ondes THz possèdent une basse 

énergie (1 THz = 4.1 meV), soit un million de fois plus faible que les rayons X, et ne causent pas 

d'effets photo-ionisant néfastes aux tissus biologiques. Ceci offre un avantage majeur autant pour 

l'imagerie de tissus biologiques que dans un contexte médical opérationnel, pour lesquels 

diverses substances doivent être exposées à la radiation THz. Dans le cadre de cette thèse, j'ai 

travaillé sur trois sujets de recherche principaux. 

Le premier sujet concerne le développement de nouvelles méthodes de fabrication et de 

caractérisation térahertz de couches minces composites contenant une matrice de microfils 

alignés en métal (alliage d'étain) ou en verres semi-conducteurs de chalcogénures (As2Se3). Les 

matrices de microfils sont fabriquées par la technique d'empilement-et-étirage de fibres 

employant de multiples étapes de co-étirage de métaux et verres semi-conducteurs à basse 

température de fusion, avec les polymères. Les fibres sont ensuite empilées et comprimées 

ensembles pour former des couches minces en composites (i.e. couches de métamatériaux). La 

transmission optique à travers ces couches minces de métamatériaux a été effectuée sur toute la 

plage des térahertz (0.120 THz) en combinant les mesures d'un spectromètre infrarouge à 

transformée de Fourier (FTIR) ainsi qu'un spectromètre térahertz résolu dans le temps (THz-

TDS). Les couches de métamatériaux comportant des microfils de métal démontrent de fortes 

propriétés polarisantes, alors que ceux contenant des microfils semi-conducteurs permettent un 

large contrôle de l'indice de réfraction tout en étant insensibles à la polarisation incidente. Grâce 
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au formalisme théorique des matrices de transfert, j'ai démontré une approche permettant 

d'évaluer l'indice de réfraction complexe des couches de métamatériaux composites. J'ai par la 

suite développé l'algorithme employé pour extraire les propriétés optiques de l'alliage de métal 

utilisé dans la fabrication des couches de métamatériaux via l'approximation des milieux 

effectifs. Finalement, j'ai étudié les obstacles à surmonter dans la fabrication des métamatériaux 

avec des fils métalliques de dimensions sub-micrométriques, via un processus itératif 

d'empilement et étirage, en comparant les couches fabriquées après 2, 3 et 4 étirages successifs. 

Lorsqu'on utilise des alliages de métal on a observé des effets de séparation de phase et la 

formation de nano-grillages sur les microfils de métal.  

La principale difficulté dans le design de guides d'onde térahertz réside dans le fait que 

pratiquement tous les matériaux connus sont hautement absorbants dans la région du térahertz. 

Puisque les milieux gazeux sont ceux offrant le moins de résistance à la propagation des ondes 

THz, une approche efficace pour le design de guides d'ondes est de maximiser la fraction de 

puissance THz guidée dans les régions gazeuses. Différents types de guides d'ondes THz ont été 

démontrés sur la base de ce concept. Par exemple, un guide d'onde sous-longueur d'onde 

comportant un cœur de taille beaucoup plus petit que la longueur d'onde de la lumière, et par 

conséquent, une large fraction de la puissance THz est guidée en dehors du cœur à hautes pertes.  

Un guide d'onde opérant selon ce principe a récemment été démontré par notre groupe de 

recherche. Ce guide d'onde présente une fibre sous-longueur d'onde suspendue par des ponts 

étroits au milieu d'un grand tube. Les larges canaux créés par les ponts et le tube forment un 

système opto-fluidique offrant un accès facile pour l'insertion de substances liquides à analyser 

ou pour la purge avec des gaz sans humidité. Particulièrement, le guide d'onde THz sous-

longueur d'onde employé dans nos expériences comporte un cœur de 150 µm suspendu par trois 

ponts de 20 µm d'épaisseur au centre d'un tube de 5.1 mm de diamètre et 4 cm de long. Ce type 

de guide d'onde présente des avantages majeurs pour des applications en biosensing. 

Premièrement, ce guide d'onde permet un accès direct et facile au cœur de la fibre et au champ 

évanescent guidé à son pourtour. Deuxièmement, la gaine externe permet d'isoler efficacement le 

mode guidé par le cœur, de l'environnement extérieur (e.g. supports à fibre), prévenant ainsi toute 

perturbation externe indésirable sur le signal térahertz se propageant dans le cœur. 
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Pour cette thèse, j'ai démontré pour la première fois un capteur de bactéries E. coli basé 

sur le champ évanescent du mode fondamental d'une fibre à cœur suspendu. Ce dispositif est 

capable de détecter des bactéries E. coli à des concentrations de l'ordre du 10
4
-10

9
cfu/ml. Le 

cœur de la fibre est rendu biofonctionnel par l’adsorption de bactériophages T4 qui se fixent aux 

bactéries cibles pour ensuite les lyser (i.e. détruire). À l'aide de microscopie électronique à 

balayage (MEB) nous avons démontré que les bactéries E. coli sont d'abord capturées par les 

phages et ensuite détruites en des fragments de taille ~1m qui demeurent fixés sur les parois de 

la fibre. La fixation des phages aux bactéries et la lyse subséquente sont étroitement corrélées à 

une forte augmentation de l’absorption des ondes térahertz. Ce signal permet de détecter les 

bactéries et d’en mesurer la concentration. La technique de détection proposée ne repose pas sur 

le marquage des bactéries E. coli ni sur la signature d’absorption spectrale spécifique à ces 

bactéries dans le spectre térahertz. 

Finalement dans le dernier sujet de recherche de ma thèse, j'ai étudié les performances 

d'un guide d'onde capillaire à base de verres en chalcogénures permettant une transmission 

couvrant les spectres de l'infrarouge moyen (IR-m) et du térahertz. Les verres de chalcogénures 

sont d'un grand intérêt pour des applications potentielles dans les régions de l'infrarouge proche 

(IR-p) et de l'infrarouge moyen (114 µm), et ce en raison des pertes relativement faibles et des 

non-linéarités optiques élevées. De plus, les fibres optiques microstructurées à base de verres de 

chalcogénures ouvrent la porte à de nombreuses possibilités pour le développement d'innovations 

dans le spectre IR-m où les applications émergentes en télédétection, génération de 

supercontinuum et propagation guidée de lumière IR, et la transmission de radiation laser CO et 

CO2, ont été démontrées. Nous proposons ici que l'emploi des verres de chalcogénures représente 

aussi d'un grand intérêt pour le spectre THz, et ce pour différentes raisons. Plus particulièrement, 

ces verres offrent un haut indice de réfraction et leur absorption dans le THz présente plusieurs 

régions de transmission à relativement faibles pertes et haute non-linéarité optique.  

En exploitant les propriétés uniques des verres de chalcogénures dans les spectres IR-m et 

THz, nous prévoyons la possibilité de créer une source de radiation THz cohérente à fibre 

pompée par une source laser dans l'IR-m. À cet effet, nous montrons que les capillaires en verres 

de chalcogénures As38Se62 peuvent agir en tant que guides d'ondes sur toute la région spectrale de 

l'infrarouge moyen et du térahertz. Ces capillaires sont fabriqués via une technique à double 

creuset. Cette approche permet la production de capillaires en verre avec des épaisseurs de l'ordre 
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de 12 µm à 130 µm. Ces capillaires montrent un guidage à faibles pertes sur toute la plage de 

l'IR-m et du THz. Nous démontrons expérimentalement que le guidage à faibles pertes avec de 

minces capillaires implique divers mécanismes physiques dont les réflexions de Fresnel à la 

parois des capillaires, un guidage anti-résonant (de type "ARROW") causé par l'interférence à 

l'intérieur des parois des capillaires, en plus du guidage par réflexion totale interne dans lequel les 

minces parois des capillaires agissent tel un guide d'onde poreux sous-longueur d'onde, ce dernier 

type de guidage pouvant être observé à de grandes longueur d'ondes dans la région du THz. 
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ABSTRACT 

The terahertz (THz) range refers to electromagnetic waves with frequencies between 

100 GHz and 10 THz, or wavelengths between 3 mm and 30 μm. Light between radio waves and 

infrared has some unique properties. Terahertz waves pass through a variety of amorphous 

substances, many synthetics and textiles, but also nonpolar dielectric materials, like paper-based 

materials and cardboard, are transparent to the terahertz waves. Many biomolecules, proteins, 

explosives or narcotics also have unique characteristic absorption lines, so-called spectral 

“fingerprints”, at frequencies between 0.1 and 2 THz. There are two main advantages of the 

terahertz radiation: penetration of conventionally opaque materials on the one hand, and their 

non-ionising nature on the other hand. Particularly, THz waves have low photon energies (1 THz 

= 4.1 meV), one million times weaker than X-rays, and will not cause harmful photoionization in 

biological tissues. This has advantages both for imaging biological materials and in operational 

contexts where different objects have to be exposed to THz radiation. Within the scope of this 

work I would like to address three main research topics. 

In Chapter 2, I describe fabrication method and THz characterization of composite films 

containing either aligned metallic (tin alloy) microwires or chalcogenide As2Se3 microwires. The 

microwire arrays are made by stack-and-draw fiber fabrication technique using multi-step co-

drawing of low-melting-temperature metals or semiconductor glasses together with polymers. 

Fibers are then stacked together and pressed into composite films. Transmission through 

metamaterial films is studied in the whole THz range (0.120 THz) using a combination of FTIR 

and TDS. Metal containing metamaterials are found to have strong polarizing properties, while 

semiconductor containing materials are polarization independent and could have a designable 

high refractive index. Using the transfer matrix theory, it was shown how to retrieve the complex 

polarization dependent refractive index of the composite films. We then detail the selfconsistent 

algorithm for retrieving the optical properties of the metal alloy used in the fabrication of the 

metamaterial layers by using an effective medium approximation. Finally, we study challenges in 

fabrication of metamaterials with sub-micrometer metallic wires by repeated stack-and-draw 

process by comparing samples made using 2, 3 and 4 consecutive drawings. When using metallic 

alloys we observe phase separation effects and nano-grids formation on small metallic wires. 
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In Chapter 3, we have studied fabrication and bacteria detection application of the low-

loss subwavelength THz microstructured fibers. This is the second research topic discussed in my 

thesis. In fact, in June 2012 I became one of the award winners of the “Étudiantschercheurs 

étoiles” (of the Fonds de Recherche du Quebec Nature et Technologies) competition with my 

paper entitled “Label-free bacteria detection using evanescent mode of a suspended core terahertz 

fiber”.  

One of the key difficulties in the design of terahertz waveguides lies in the fact that 

almost all materials are highly absorbing in the terahertz region. Since the lowest absorption loss 

occurs in dry gases, an efficient waveguide design must maximize the fraction of power guided in 

the gas. Different types of THz waveguides have been proposed based on this concept including a 

subwavelength waveguide featuring a core with a size much smaller than the wavelength of light 

in which a large fraction of the guided light is found outside of the lossy core region. A practical 

design of such a waveguide was recently proposed in our research group and presents a 

subwavelength fiber suspended on thin bridges in the middle of a larger protective tube. Large 

channels formed by the bridges and a tube make a convenient opto-microfluidic system that is 

easy to fill with liquid analytes or purge with dry gases. Particularly, the THz subwavelength 

waveguide used in our experiments features a 150 µm core fiber suspended by three 20 µm-thick 

bridges in the center of a 5.1 mm diameter tube of 4 cm in length. This waveguide design 

presents several important advantages for bio-sensing applications. First, the waveguide structure 

allows direct and convenient access to the fiber core and to the evanescent wave guided around it. 

Second, the outer cladding effectively isolates the core-guided mode from the surrounding 

environment, (e.g. fiber holders), thereby preventing the undesirable external perturbations of the 

terahertz signal.  

Next, for the first time an E. coli bacteria sensor based on the evanescent field of the 

fundamental mode of a suspended-core terahertz fiber was proposed. The sensor is capable of 

E. coli detection at concentrations in the range of 10
4
10

9
cfu/ml. The fiber core is 

biofunctionalized with T4 bacteriophages which bind and eventually destroy (lyse) their bacterial 

target. Using environmental SEM we demonstrate that E. coli is first captured by the phages on 

the fiber surface. After 25 minutes, most of the bacteria is infected by phages and then destroyed 

with ~1m-size fragments remaining bound to the fiber surface. The bacteria-binding and 
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subsequent lysis unambiguously correlate with a strong increase of the fiber absorption. This 

signal allows the detection and quantification of bacteria concentration. Presented bacteria 

detection method is label-free and it does not rely on the presence of any bacterial “fingerprint” 

features in the THz spectrum. 

Finally, in Chapter 4, low-loss chalcogenide capillary-based waveguides that operate both 

in the mid-IR and THz spectral ranges are investigated. Chalcogenide glasses have attracted 

strong interest in a view of optical applications in the near-IR and mid-IR spectral ranges 

(114 µm) due to their relatively low losses and high nonlinearities. Furthermore, chalcogenide 

glass-based microstructured fibers open many interesting possibilities for a large number of 

applications in the mid-IR spectral range, where applications in optical sensing, supercontinuum 

generation and single-mode propagation of IR light, transmission of the CO and CO2 laser 

radiation have already been demonstrated. We believe that chalcogenide glasses can be also of 

great interest to the THz spectral range for several reasons. Particularly, these glasses offer very 

high refractive index, and their absorption losses show several regions of relatively low loss and 

high nonlinearity.  

By exploiting the outstanding performance of chalcogenide glasses in the mid-IR and 

THz spectral ranges one can envision building fiber-based THz light sources with pumping in the 

mid-IR. We show that chalcogenide glass As38Se62 capillaries can act as efficient waveguides in 

the whole mid-infrared  terahertz spectral range. The capillaries are fabricated using a double 

crucible drawing technique. This technique allows producing of the glass capillaries with wall 

thicknesses in the range of 12 µm to 130 µm. Such capillaries show low loss guidance in the 

whole mid-IRTHz spectral range. We demonstrate experimentally that low loss guidance with 

thin capillaries involves various guidance mechanisms including Fresnel reflections at the 

capillary inner walls, resonant guidance (ARROW type) due to light interference in the thin 

capillary walls, as well as total internal reflection guidance where very thin capillary walls act as 

a subwavelength waveguide which is especially easy to observe in the THz spectral range. 
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INTRODUCTION 

Invention of the terahertz time-domain spectroscopy (THz–TDS) in the early 1990’s 

opened a new chapter in terahertz science and simultaneously spawned numerous efforts to 

develop terahertz applications and tools. Terahertz (THz) radiation has big potential for such 

applications as biomedical sensing, noninvasive imaging and spectroscopy. More recently, much 

attention has been given to probing explosives and biological samples, which have unique 

terahertz spectral signatures. And efficient waveguide for THz radiation is a key element for 

many practical applications. Various designs of such waveguides have been already proposed. 

However, almost all materials are highly absorbent in the THz region making design of low loss 

waveguides very challenging. Even air might exhibit high absorption loss if the water vapor 

content in it is not controlled. In the same time a variety of THz components and devices based 

on THz metamaterials have been presented, including perfect absorbers, filters, polarizers, THz 

amplitude and phase modulators and etc. [1-3]. 

My thesis is dedicated to the fiber optics for guiding and molding of the THz and mid-IR 

radiation as well as for bio-sensing applications. And for the reader unfamiliar with the principles 

of THz-TDS, in the Introduction I would like to describe our experimental setup and procedure 

including basic methods of the THz generation and detection; data acquisition and interpretation; 

standard methods of the fiber loss characterization. 

Terahertz Time-domain Spectroscopy 

“Terahertz (THz) fields” is a generic term for waves with a spectrum between 0.1 and 

10 THz. To get a better grasp of the frequency region we are referring to it is useful to mention 

that the frequency of 1 THz corresponds to a wavelength of 300 m or 0.3 mm and to a 

wavenumber of 33 cm
-1

. THz fields have wavelengths extending from 3 mm (0.1 THz or 

100 GHz) up to 30 m (10 THz); this wavelength interval ranges between the top edge of the 

millimeter wave spectrum to the bottom edge of the optical spectrum corresponding to the 

boundary of the far-infrared spectral region. 

In order to study transmission properties of the developed waveguides, we require a setup 

that can accurately measure the THz transmission spectrum of the waveguides of different length. 

While spectroscopy setups are generally designed to measure very thin samples, thus a 
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conventional setup must be adapted for the samples of variable length. Additionally special care 

must be taken to insure proper coupling of the THz light into and out of the waveguide. Our THz 

Time Domain Spectroscopy setup consists of a frequency-doubled femtosecond fiber laser 

(MenloSystems C−fiber laser) used as a pump source and of two identical GaAs dipole antennae 

used as an emitter and a detector, respectively, yielding a spectrum ranging from ~0.1 to 3 THz. 

Contrary to standard THz-TDS setups where the configuration of parabolic mirrors is static, our 

setup has mirrors mounted on the translation rails, shown at Fig. 1.1. This flexible geometry 

facilitates mirrors placement, allowing measurement of waveguides up to 45 cm in length without 

the need of realigning the setup. 

 

Fig. 1.1. Pictures of the adaptable-path-length THz-TDS setup for measuring the transmission 

of THz waveguides a) at 0 cm length, in the absence of a waveguide, the mirror assembly is 

translated to the far left so that the focal points of the input and output parabolic mirrors are in 

focus; b) at maximum length of 45 cm. In our setup, waveguides up to 50 cm in length can be 

measured by simply translating the position of these two mirrors along the rail, as illustrated. 

 

A femtosecond laser is used in order to provide synchronization and repeatability between the 

measurements. This laser produces a train of pulses at a repetition rate around 100 MHz and 

pulse lengths around 120 fs. The pulse train then is split into two with a beam splitter, with one 

half utilized in generating the THz signal used to probe the sample and the other half employed in 
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gating the detector. Because the radiation is coherent, electric field ( )E t  can be measured 

directly, instead of just intensity ( )I t
2

( ) ( )I t E t
 
 
 

  

 

Fig. 1.2. a) The schematic diagram of a THz dipole photoconductive antenna, b) photograph of 

the chip with six antennas on it. It is based on low temperature-grown GaAs and optimized for 

the laser source  at 780 nm emission wavelength with 120 fs pulse duration (which is used in 

our setup). 

 

The schematic diagram of a dipole photoconductive antenna is shown at Fig. 1.2. The 

metal transmission lines are typically deposited on either a semi-insulating GaAs substrate or a 

low temperature-grown GaAs film on semi-insulating GaAs. The femtosecond laser pulse 

focused on the biased antenna gap (shown in the diagram) causes photogenerated electrons to 

rapidly traverse the gap, creating a transient photocurrent that produces a THz electromagnetic 

pulse. The change in current is extremely rapid so  ( )I t J t    as given by Maxwell’s 

equations. Emitted THz radiation is then collected by the Silicon lens.  

When photoconductive antenna is used as a detector, a time-varying current in the 

photoconductive antenna is provided by the time-dependent electric field induced by the THz 

pulse. A part of the excitation laser pulse is delivered to the detector and together with incident 

THz wave creates photo-electrons. The measured current at the electrodes relative to the timing 

of the laser pulse reproduces the THz waveform in the time domain (schematic is shown at 

Fig. 1.3). 
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Fig. 1.3. a) Photoconductive antenna acting in the THz generation regime: photocarriers are 

accelerated by the voltage bias. b) Photoconductive antenna acting as a THz detector: 

photocurrent is proportional to ( )THzE t . 

 

 

Fig. 1.4. The THz electric field is measured point-by-point in the time-domain ( ( )THzE t ) using a 

THz detector (photoconductive antenna). b) The Fourier transform of the time signal gives an 

amplitude ( ( )THzE f ) and phase (  ( )THzphase E f ) information. Presence of water vapor 

absorption peaks in the amplitude spectrum could be observed. 
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All of the above can be summarized as follows. At the emitter, the optical pump beam 

stimulates THz pulsed radiation via charge transport. The diverging THz beam is collimated and 

focuses onto the sample by a Silicon lens and a pair of parabolic mirrors. After passing through 

the sample, the THz beam is re-collimated and focused onto the detector by an identical set of 

lenses and mirrors. At the detector, the initially divided probe beam optically gates the THz 

receiver with a short time duration compared with the arriving THz pulse duration. 

Synchronizing between the optical gating pulse and the THz pulse allows the coherent detection 

of the THz signal at a time instance. A complete temporal scan of the THz signal is enabled by 

the discrete micro-motion of a mechanical stage controlling the optical delay line. 

THz-Time domain Spectroscopy setup is capable to provide both amplitude and phase 

information. Amplitude of the typical pulse ( ( )THzE t ) generated by a pulsed broadband THz 

source is achieved through by point by point sampling of the electric field with a time resolved 

measurements and is illustrated in Fig. 1.4 a). In general during the transmission measurements 

amplitude yields information about the absorption of the sample whereas the phase gives 

information about its refractive index see Fig. 1.4 b). 

Basic data analysis in THz spectroscopy 

 

Fig. 1.5. Basic scheme of a THz-TDS transmission experiment: sample under study is a parallel 

plate with thickness d and complex refractive index n . 

 

In a THz-TDS experiment one measures a signal that is proportional to the electric field 

of the THz pulse ( )E t . To get the frequency information, a Fourier transform is applied: 
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1
( ) ( )

2
i tE e E t dt








  ,                                                 (1.1) 

Let us consider a typical spectroscopic experiment: usually two signals are measured, one for the 

pulse propagating through the sample and one as a reference pulse (
samE , refE ). From these data it 

is possible to extract information about the dielectric constant of the sample, usually absorption 

coefficient  , and the real part of the refractive index .
real

n  

In the transmission spectroscopy, the sample is properly prepared with smooth surfaces 

and a well defined thickness. To analyze the data correctly, several assumptions about the 

geometry of the spectroscopic setup have to be made. First, when the THz pulse goes through the 

sample it undergoes reflections at the sample interfaces and gains a phase shift samP . In the 

simplest case we consider only reflection and transmission at the first and the second interfaces. 

If we assume normal incidence and planar surfaces without scattering, we can use the well known 

expressions for the Fresnel equations. Further, we assume that the medium surrounding the 

sample is the dry air so we can set its complex refractive index equal to 1. Thus for the signal 

transmitted through the sample we obtain: 

0( ) ( ) ( ) ( , ) ( )sam as sam saE E t P d t                                            (1.2) 

with 

2

1 ( )ast
n 


 

,                                                          (1.3) 

2 ( )

1 ( )sa

n
t

n











,                                                          (1.4) 

where imreal
n n in   denotes the complex refractive index of the sample and d  is the sample 

thickness. The phase shift accumulated by the pulse while crossing the sample is described by: 

( , ) expsam

n d
P d i

c




 
 
 

 


,                                               (1.5) 

For the reference pulse we have no reflections at the interfaces, only the phase shift 

accumulated during the propagation at distance d  through the air: 
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0 0( ) ( ) ( , ) exp
ref ref

i d
E E P d E

c


  

 
 
 

    ,                                (1.6) 

If we make the quotient of ( )samE   and ( )
ref

E   we get: 

 
 2

4 ( )
( ) exp 1

( ) 1

sam

ref

E n d
H i n

E cn

 




 
 
 

   






,                                  (1.7) 

This quantity is also called transfer function ( )H   of the system  

We are interested in the absorption coefficient 2 imn c    and the real part of the 

refractive index 
real

n . Quantities available from the experiment are ( )samE   and ( )
ref

E  . So we 

have to solve Equation (1.7) for 
real

n
 
and imn . The ratio of the Fourier transforms is a complex 

number that we write as: 

 
( )

( ) exp ( )
( )

sam

ref

E
R i

E


  


  ,                                              (1.8) 

At this point we have to introduce a further assumption to make an Equation (1.7) 

analytically solvable. For the calculation of the t -factors (Eq. 1.3, Eq. 1.4) we assume that the 

material has no absorption, i.e. ,
real

n n
 
Equation (1.7) then simplifies to: 

   2

4 ( )( ) 1
( ) exp ( ) exp 1 exp

( ) 2( ( ) 1)
sam real

real
ref real

nE d
R i i n d

E cn

 
   

 

   
   

  
     


.      (1.9) 

Solving Equation (1.9) for 
real

n  and  we get: 

( )
( ) 1

real

c
n

d

 





 


,                                                  (1.10) 

 
2

( ) 12 2
ln

4 ( )

realim

real

n Rn

c d n






 
 
 
 
 

 
  ,                                     (1.11) 

In THz-TDS, we are also interested in measuring ' ''( ) ( ) ( )i       , i.e. the real and 

imaginary part of the permittivity. Hence, the real and the imaginary parts of the dielectric 

constant are determined from the following equations: 
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 
2

2' ( )
( ) ( )

2

c
n

 
  



 
  
 


  ,                                            (1.12) 

'' ( ) ( )
( )

c n   
 



 
 ,                                                 (1.13) 

Cutback method 

A standard technique for measuring the fiber transmission loss is the cutback method [4]. 

Within this method a direct power transmission through the fibers of different lengths is 

measured. The input end of the fiber under test remains fixed during the procedure, and all the 

cuts are performed at the fiber output end. By plotting the transmission intensity versus the fiber 

length on a log-log plot, one can extract the fiber loss coefficient. The main advantage of this 

procedure is that it eliminates the need to estimate the input coupling efficiency into the 

waveguide. While being a very powerful method for measuring losses in telecommunication 

fibers, the standard cutback method must be modified to be applicable in the case of the short 

fibers exhibiting high losses. 

Assuming single mode propagation, the equation governing the input and output electric 

fields of the fiber can be written in the frequency domain as: 

 2
1 2( ) ( ) exp exp

2
eff

out ref eff

L
E E T T C i L


  

 
 
 
 


     ,                        (1.14) 

where, ( )outE   and ( )
ref

E   are the complex electric fields at angular frequency   on the 

entrance and exit ends of the fiber, respectively; 1T  and 
2T  are the total transmission coefficients 

that take into account the reflections at the entrance and exit faces, respectively; C  is the 

coupling coefficient, which is the same for the entrance and exit faces; 
eff

  is the propagation 

constant of the fundamental mode; eff
  is the effective material loss that the propagating mode 

experiences; and L  is the fiber length. 

At least two different lengths of the fiber are required for calculating its THz properties 

(
eff

  and 
eff

 ). Applying Equation (1. 14) to two different lengths ( 1L  and 2L ), the transfer 

function can be determined from the ratio of 1( )outE   and 2( )outE   which reads: 
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 1 21

1 2
2

( )( )
exp exp ( )

( ) 2
effout

eff
out

L LE
L L

E






 
 
 
 

 
   ,                          (1.15) 

The C , 
1T  and 

2T  coefficients are cancelled, because the positions of the fiber and 

antenna do not change during the cut back measurement. Then 
eff

  and 
eff

 of the fiber are 

obtained from the amplitude and the phase of the transfer function. However, the cutback 

technique is a destructive method and is prone to errors due to variations in the cleave quality and 

realignment of the fiber output end. 
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CHAPTER 1 

MOTIVATION AND OBJECTIVES OF MY RESEARCH 

1.1 Motivation and objectives of my research 

The THz spectral range is extremely promising for a large number of possible 

applications, and is one of the less explored and exploited region of the electromagnetic 

spectrum, referring to electromagnetic waves with frequencies between 100 GHz and 10 THz, or 

wavelengths between 3 mm and 30 μm, i.e. in the gap between the realms of electronics and 

photonics. Much of the motivation to advance THz science and technology could be explained by 

the unique characteristics of THz radiation. 

From the fundamental point of view this is the highest electromagnetic frequency at 

which the electric field vector and its time dynamics could be measured directly. It allows, for 

example, determining the complex refractive index of the sample without performing the 

Kramers-Kronig analysis, which is usually employed for mid-infrared spectroscopy and requires 

two independent measurements. 

At the same time, THz radiation is very beneficial for the practical applications as it is 

non-ionizing one and most dry materials are transparent to few cm in depth. So that THz pulses 

have the ability to pass through such materials as clothing, foods and packing. Plus the THz 

region is also rich with vibrational signatures, enabling chemical sensing of illicit materials such 

as explosives and narcotics, thus offering a considerable potential for material characterization, 

biological sensing, security scanning, quality control. 

Still there are some challenges that limit real-life implementation of the THz 

spectroscopy. First of all, THz emission systems are still bulk, as they consist of free-space optics 

together with a large nitrogen purged cage, that is needed to minimize the effects of absorption 

from the ambient water vapor (as an example, photograph of our THz-TDS setup is shown in 

Fig. 1.6). And in general such systems are very inconvenient to work with, especially in 

applications that require scanning, as the user has to bring the sample into the nitrogen purged 

cage, or even modify the whole system depending on the requirements (size of the sample, its 

dimensions). In response to this challenge we propose our solution: THz fibers designed for 

flexible delivery of THz light. 
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Fig. 1.6. Photograph of the THz Time Domain Spectroscopy setup built in our group.  

 

Second, almost all materials are highly absorbing in the THz spectral range. For example, 

standard bulk material loss for Polyethylene is 0.2 cm
-1

, which means that one can transmit only 

10% and only up to ~23 cm with a solid core fiber made from Polyethylene. The same is valid for 

most plastics. Therefore using of solid core fibers is out of the question. Thus, our solution is 

development of the hollow and porous core fibers, where THz light is guided mostly in the low-

loss gas, filling the waveguide. 

Metamaterials and frequency selective surfaces attract constant significant attention as 

they allow designing materials with desirable optical properties, such as refractive index and 

permittivity that can be used for fabrication of the optical components for guiding and molding of 

the THz and mid-IR radiation, for example, wire-grid polarizers. However fabrication of 3D THz 

metamaterials is still quite challenging and labor-intense. Present-day fabrication methods 

typically involve fabrication of 2D metamaterials layers by the means of lithography, these layers 

are then stacked to the 3D multilayer structures. As a solution we propose fiber based metal-

containing structures.  

At a glance it may look like we deal with several completely different questions. However 

the unifying factor is the usage of fiber drawing techniques to find a fiber-based solution. 
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1.2 Origins and main project results 

I’ve joined the Complex Photonic Structures and Processes group in 2009. At that time 

we have already presented subwavelength fiber with a porous core and had already performed 

theoretical simulations. My goal was in general not only to be able to fabricate such fibers and 

improve fabrication techniques, but rather to find possible applications of them. 

Our original theoretical investigations have predicted that addition of an array of 

subwavelength holes into the crossection of a subwavelength fiber increases the fraction of power 

guided in the air, thus leading to a lower absorption loss [5-7]. The idea of adding holes into a 

subwavelength fiber was inspired by the earlier work of Nagel et al. [8]. The authors have 

demonstrated that addition of a single subwavelength hole into the center of the solid core can 

result in strong field confinement inside this hole. However, in their case diameter of the 

waveguide was comparable to the wavelength, and the central hole was very small. In contrast 

with our waveguide that features much smaller, comparing to the THz wavelength, fiber diameter 

along with big holes. In our case addition of several holes within the subwavelength fiber reduces 

the fiber absorption loss by forcing a greater portion of the radiation to guide in the dry low-loss 

gas filling the porous fiber core. Exploring this approach we were later able to make a waveguide 

with the subwavelength (150 m) fiber core suspended on the thin bridges in the middle of large 

protective tube [9]. Such waveguide design provides several important advantages for bio-

sensing applications. First, the waveguide structure allows direct and convenient access to the 

fiber core and to the evanescent wave guided around it. Second, the outer cladding effectively 

isolates the core-guided mode from the surrounding environment, (e.g. fiber holders), thereby 

preventing the undesirable external perturbations of the terahertz signal. Overall we have found 

that described waveguide is very well suited for biosensing applications. 

At the same time we started to work on fibers with incorporated metal or semiconductor 

wires. As it was already mentioned, fabrication of 3D metamaterials is still challenging [10]. 2D 

metamaterials are typically fabricated by the means of lithography direct writing, or two-photon 

polymerization however all these techniques are only suitable for relatively small shapes of 1-2 

m [11]. Thus for the fabrication of 3D metamaterials the only choice is 3D printing or 

stereolithography, still the resolution of this method is about ±20 m in XY plane and ±50 m in 

Z-direction [12]. In our group we had investigated a new approach of co-drawing the metal wires 
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of low melting temperature alloys together with polymers into microstructured fibers that are then 

pressed into composite films. A process for the production of fine metal wire directly from the 

melt was first reported by Taylor in 1924 [13]. In this technique, which is called Taylor-wire or 

microwire process, the metal to be drawn is contained in a glass tube with the one end closed. 

Then this end is melted, softened and drawn into glass cladded microwire.  

And recently we had an industrial collaboration with fiber manufacturer CorActive Inc. 

(Québec) within the CRD grant. During this collaboration we have fabricated the As2Se3 

chalcogenide glass capillaries with different wall thickness in the range from 12 µm to 130 µm 

by double crucible glass drawing technique. Produced capillaries were extensively studied in the 

broad spectral range from mid-IR to THz and we found that to act as efficient waveguides. 

According to the three main research objectives, during my PhD studies I was mainly 

working on the three general types of fibers presented above. Each fiber concept resulted in the 

practical application as a solution to the currently existing challenges in THz research domain 

and is described in details in corresponding section of the current thesis. 

1.3 Structure of the thesis 

This thesis is organized as follows: 

Chapter 2 provides a literature review of the modern metamaterials and their applications 

in the THz spectral range, including basics of the metamaterial operation principles, description 

of their fabrication techniques, and characterization of their optical properties. Chapter 2.2 

provides a literature review of the different methods for highly sensitive chemical and biological 

detection in the THz operation range. In Chapter 2.3, I review recent studies of the transmission 

characteristics of the hollow-core waveguides with resonant dielectric reflectors in the form of 

capillaries. In what follows we call such waveguides  pipe waveguides.  

Chapter 3 represents my first paper “Composite THz materials using aligned metallic and 

semiconductor microwires, experiments and interpretation” published in Opt. Express in 2010. 

This paper is devoted to the experimental and theoretical work concerning THz composite films 

and includes detailed description of the fabrication and characterization techniques. 

Chapter 4 represents my second paper “Label-free bacteria detection using evanescent 

mode of a suspended core terahertz fiber,” also published in Opt. Express in 2012. In this chapter 
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I present the results on the development of the E. coli bacteria sensor based on the evanescent 

field of the fundamental mode of a suspended-core terahertz fiber.  

 Chapter 5 represents my third paper “Thin chalcogenide capillaries as efficient 

waveguides from mid-IR to THz,” published in the J. Opt. Soc. Am. B in 2012. It is devoted to 

the investigation of low-loss chalcogenide capillary-based waveguides in mid-IR and THz 

spectral regions. 

 Finally, general discussion of the achieved results and future research perspectives are 

presented. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Metamaterials in the THz spectral range 

Metamaterials or left-handed media (LH) materials, where the electric field (E), magnetic 

field (B), and wavevector (k) form a left-handed coordinate system, were first studied by Russian 

physicist Veselagoin 1967 [14]. These left-handed materials, which are also called negative index 

materials, have both negative electrical permittivity (ε) and negative magnetic permeability (μ) 

inside a common frequency band [15, 16]. Within the definition of metamaterials we also include 

the so-called single-negative materials (SNG) [17], where either ε or μ is negative, which are used 

for the creation of a super-lenses with thin silver films [18] as well as devices based on 

controlling the resonances exhibited by sub-wavelength structures. 

Metamaterials are a class of artificial materials and typically consist of periodic arrays of 

metal-dielectric resonant inclusions, which are properly tailored in shape and in size and are 

embedded within, or on top of, a dielectric substrate [19, 20]. The size and the distance of the 

individual inclusions in metamaterials are subwavelength. This allows one to describe the optical 

response of metamaterials by effective material parameters [21-24]. They enable a desired 

electromagnetic response that is difficult or impossible to obtain from naturally occurring 

materials. Recently metamaterials were investigated experimentally, starting with Pendry [25], 

who suggested a design consisting of concentric metallic rings with gaps, called split-ring 

resonator (SRR), which exhibits μ<0. Although it was well known how to obtain a ε<0 material 

by using metallic wire arrays [26], the realization of μ<0 response (especially at high 

frequencies) has been a challenge, due to the absence of naturally occurring magnetic materials 

with negative μ. However at THz frequencies, it has long been known that antiferromagnets such 

as FeF2 or MnF2 exhibit a resonant magnetic response [27]). The first experimental realization of 

LH-materials was achieved soon after, by separately constructing ε<0 and μ<0 components, and 

then by combining them together [28]. 

Since then, metamaterials have emerged as versatile tools for the implementation of 

optical components. The main advantage of metamaterials as compared with conventional 

materials is that by changing the size and shape of the subwavelength constituents, the optical 
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response of a metamaterial can be easily designed to whichever values are desired for an 

application. 

2.1.1 Effective medium approaches 

Propagation of the electromagnetic waves in heterogeneous media like metamaterials can 

be analyzed using various effective medium approaches [21-24]. Among these approaches, there 

are three major ones that are used most frequently, including Maxwell-Garnett theory [23], 

Bruggeman effective medium model [24], and the simple effective medium approximation. All of 

these theories assume that inclusions (e.g. spheres, discs, rods) have been dispersed into a host 

matrix, that these inclusions are much smaller than the wavelength in the host material 

( 0.1 0.2  ), and that the material can, therefore, be treated like an effective dielectric medium. 

In what follows, we consider composite materials in the form of a parallel wire arrays. The 

simplest effective medium approach for such a material is the one that uses linear interpolation, 

and relies on the filling factor 2 1f S S  which defines the volume fraction of the particles 

embedded into the matrix, where 
1S  is the active area of the matrix and 

2S  is the total cross-

sectional area of the particles: 

( ) ( ) (1 ) ( )ieff h
f f        ,                                            (2.1) 

in which i  
is the dielectric constant of the inclusions and 

h


 
is the dielectric constant of the host 

material. The constitutive parameters of the base material and inclusions can depend on 

frequency. Another model that is frequently used is called the Maxwell-Garnett effective medium 

theory, developed more than 100 years ago. Within this model, electric permittivity is: 
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This typical approximation holds at low values of the filling factor 0.05 0.15f   . For higher 

values of the filling factor, the theory developed by Bruggeman must be used to achieve an 

accurate determination of the effective dielectric constant. In this case, this effective electric 

permittivity is given by: 
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where k  is a screening parameter. The value for k  is 1 if the inclusions are an array of cylinders 

with their axes collinear with the incident radiation and the value for k  is 2 if they are spherical 

particles. Parameter k  is determined by the shape and orientation of the inclusions with respect 

to the external electric field. Screening parameter is directly related to the Lorentz depolarization 

factor L as: 

1
1k

L
                                                                 (2.4) 

Formulas for calculating depolarization factors of ellipsoids and the table of 

depolarization factors for canonical spheroids (i.e. spheres, disks, and cylinders) can be found in 

papers [29, 30]. Effective medium theory models allow that within the same composite material, 

particles can have different depolarization factors. However, in reality it is almost impossible to 

have perfect ellipsoidal or spherical particles, so, for any arbitrary shape a reasonable 

approximation is needed. If the inclusions are thin rods (cylinders), two of their depolarization 

factors are close to 1 2L , and the third depolarization factor can be calculated as

 
2

1 ln( )L b b  [31]. Where, b l d  is the aspect ratio of an inclusion of length l  and 

diameter .d  The sum of all three depolarization factors is always unity. 

2.1.2 Wire grid theory 

One of the simplest example of metamaterials is metal-dielectric composite called “wire 

array medium” as shown in Fig. 2.1. It consists of thin metallic wires embedded into a dielectric 

matrix or suspended in vacuum. For the polarization of incident field with electric field parallel to 

the wires (along X axis at Fig. 2.1), the effective permittivity of such a composite in the 

Maxwell-Garnett approach is then given by: 
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                                       (2.5) 

The value for k  is taken as 1 because the inclusions are an array of cylinders, whose axes are 

collinear with the direction of electric field of the incident radiation, f  is a filling factor. The 
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medium in this case behaves in a similar manner as the surface of a metal sheet. Since electrons 

are free to move along the wires, the incident field induces electric currents in the wires (like the 

microwave dipole receiver antenna) and medium reflects light, with some energy lost due to 

Joule heating of the wires. For wire grids made of good conductors, absorption is usually 

negligible. 

For electromagnetic waves with electric fields perpendicular to the wires (electric field 

along Y axis in Fig. 2.1), the flow of the electric current is limited by the width of the wire; 

therefore, for deeply subwavelength-size wires, little energy is lost or reflected, and the incident 

wave is able to travel through the wire array, thus, resulting in a considerable transmission of the 

incident wave. In this respect, the wire grid behaves as a dielectric rather than a metal sheet. For 

perpendicular polarization, the effective electric permittivity of the wire array is described by 

simple effective medium approximation: 

( ) ( ) (1 ) ( )ieff h
f f                                                     (2.6) 

From the presented arguments it follows that polarization sensitivity of the wire arrays (wire grid 

polarizers) is due to widely different effective permittivities for the electric field components 

along the wires and perpendicular to them. 

 

 

Fig. 2.1 Wire array medium 

 

An alternative interpretation for the operational principle of the wire grid polarisers is in 

terms of the effective plasma frequency of a metamaterial. This was proposed by 

Pendry et al [32] to explain wave propagation through a 2D array of wires. He demonstrated that 
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such an array behaves like a Drude metal with effective plasma frequency which is only a 

function of the geometrical parameters of a wire array:  

2
2 0

2

2

ln(2 )
p

c

a a d


                                                          (2.7) 

where 
0

c  – the vacuum light speed, a  – is the spacing between wires and wire diameter d . 

Several more complicated but precise derivations of the effective plasma frequency for the wire 

medium have been developed [33] and a comparison between the models has been 

conducted [34]. Since the effective plasma frequency in a wire medium can be tuned by adjusting 

the medium’s geometrical parameters, the spectral region for the desired permittivity values can 

be engineered to occur at practically any frequency. 

2.1.3 Metamaterials for THz optical components 

Metamaterials play a potentially important role in creating necessary functional devices 

for THz applications. A variety of THz components/devices based on THz metamaterials have 

been presented [1-3]. This includes perfect absorbers [35], filters [36], polarizers [37, 38], THz 

amplitude and phase modulators [39]. In this section, I present a brief review of some recent 

progress regarding novel THz metamaterial devices for manipulating THz radiation. 

 

Polarization optics 

 

Many metamaterials have a polarization-sensitive response because of the symmetry 

properties of their constituent elements. This renders them good candidates for construction of 

efficient terahertz polarization optics such as polarizers and wave plates.  

Probably the best-known metamaterial component for polarization control of terahertz 

waves is the wire-grid polarizer, which provides broadband behavior, low loss and a high 

extinction ratio [40, 41]. Currently, a host of wire-grid structures composed of uniformly spaced 

metal wires are employed as polarizers and filters for THz applications. Although these exhibit 

high extinction coefficients at THz wavelengths, they have drawbacks of fragility and high cost. 

Conventional THz polarizers are made by mechanically winding thin metallic strings, such as 

tungsten wires, on rigid frames under physical tension. Such widely used and commercially 

available THz polarizers are typically free-standing, with function efficiencies highly reliant on 
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wire spacing constants. Nowadays there are also THz polarizers in the form of micrometer-pitch 

metal grating on a Si substrate fabricated by photolithography and wet etching. This method 

allows to create uniform pitch and hereby to increase extinction ratio [42]. 

Liquid-crystal polarizers are also widely used. They have a high extinction ratio; 

however, their working frequency range is limited between 0.2 and 1.0 THz [43]. Birefringent 

negative-index metamaterial was proposed as phase retarder. However, owing to the intrinsic 

resonant properties of metamaterial, the absorption of energy was severe and the working 

frequency band was narrow [44, 45]. Also, birefringence from electric resonance of metamaterial, 

as well as scaled double-layer meanderline structure, were used to fabricate terahertz quarter-

wave plate working in narrow bandwidth [46, 47]. Combining six quartz plates together, a 

quarter-waveplate operating from 0.25 to 1.75 THz was designed and fabricated [48]. However, 

with the bulk thickness of 31.4 mm, the device was not compact. In the study of generation of 

elliptically polarized terahertz pulses, Amer [49] proposed a rough “quarter-wave plate” by 

simply assembling a wire-grid polarizer with a metal mirror, whereas the achromaticity was not 

achieved. 

 

THz absorbers 

 

Metamaterial-based absorbers can be conceived which exhibit a terahertz reflectance of 

almost zero in a certain frequency range. The basic idea in the design of a metamaterial absorber 

is to minimize the reflection through impedance matching, and minimize the transmission by 

maximizing the absorption, which are determined by the permittivity ( )   and permeability 

( )  of the designed structure [50]. After a first theoretical investigation by Landy et al in 

2008 [51], the first metamaterial-based terahertz absorber was fabricated and experimentally 

characterized in 2008 by Tao et al. [52]. The metamaterial consisted of two metallic layers 

separated by a polyimide spacer layer. The top layer comprised an array of electric resonators, 

while the bottom layer employed cut wires. With this design, a maximum absorption of 70% was 

measured at a frequency of 1.3 THz. In the same year, this design was significantly improved by 

exchanging the layer of cut wires with a continuous metal sheet [53]. In 2012 metamaterial 

absorbers with nearly 100% absorption have been designed and fabricated using a periodic array 

of aluminum (Al) squares and an Al ground plane separated by a thin silicon dioxide (SiO2) 
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dielectric film [54]. The entire structure is less than 1.6 mm thick. Films with different dielectric 

layer thicknesses exhibited resonant absorption at 4.1, 4.2, and 4.5 THz with strengths of 98%, 

95%, and 88%, respectively. 

 

THz filters 

 

Functionality of most metamaterials is explained by the resonances of their constituent 

elements. Therefore transmission and reflection characteristics of the metamaterials generally 

exhibit strong frequency dependence. Hence, it is not surprising that wavelength-filtering devices 

were among the first metamaterial optical components for terahertz radiation. Metamaterial-based 

filters are very versatile because it is easy to adapt their designs to a desired operating frequency 

range by simple scaling of their geometric structure. 

Terahertz filters consisting of thin structured/perforated metal sheets have been well-

known. Among the earliest reported designs are single- or multi-layer wire arrays and their 

complements [55] and arrays of metallic crosses or cross-shaped holes [56]. Until today, 

numerous THz filter designs have been proposed using variations of these early concepts. These 

include photonic band gap filters constructed from metallic meshes [57], arrays of holes of 

different shapes in metallic sheets [58], and a closely-spaced composite of a metallic mesh/ wire 

arrays and a complementary mesh [59]. Technologically different approach for THz filters, 

microfabricated pillar arrays have been demonstrated [60] with a low-pass behavior in reflection 

and a high-pass characteristic in their transmission spectrum. 

2.1.4 Fabrication methods 

Owing to the relatively large wavelengths of terahertz radiation (λ = 300 μm at1 THz), 

terahertz metamaterials can be easily fabricated with standard microfabrication techniques such 

as UV lithography [61], with the smallest feature size typically in the order of few micrometers. 

Lithographic or direct-laser writing techniques are versatile, however, their biggest disadvantage 

is in a fairly slow processing time, which results in the 2-4 hours per square millimetre sample 

production rate. 

Recent technological advances allow metamaterials via super-fine ink-jet (SIJ) printing 

technology to be produced [37, 38, 40]. A silver film is fabricated using an SIJ printer with silver 
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paste ink, allowing simple THz metamaterials such as metal wire-grid structures and split-ring 

resonators to be printed on high-resistivity silicon substrates. The main limitation of such a 

fabrication process remains the limited resolution of the printer head, which is difficult to reduce 

below ~10 microns.  

 

Fiber drawing technique 

 

The idea of an alternative technique suitable for the mass-production of metamaterials 

was taken from the fabrication principle of photonic crystal fibers. Particularly, fabrication of 

metamaterials employs co-drawing of the low-melting-temperature metal wires in a polymer 

matrix [13, 62, 63]. During drawing process, the cross-section of the preform can be preserved so 

that the array of relatively thick wires is simply scaled down to micro- or even nano-dimensions. 

A process for the production of fine metal wire directly from the melt was first reported by 

Taylor [13] in 1924. In Taylor's inherently simple technique, subsequently known as the Taylor-

wire or microwire process, the metal to be drawn is contained in a glass tube which is closed at 

one end. The metal is then melted and the end of the glass tube softened and drawn down to 

produce a fine glass-encapsulated metal filament. Since then many different metals and alloys 

have been produced in microwire form using this basic method [62]. 

 

 

Fig. 2.2. (a) Schematic of a metal-dielectric preform, drawn into a metamaterial via heating. 

(b) SEM micrograph of a fabricated 590 m indium-filled PMMA fiber cross-section. 

(c) Experimentally measured metamaterial transmittance, the electric field E is either parallel 

(solid line) or perpendicular (dashed line) to the wires. A measurement for an array of 500 m 

PMMA fibers is also shown (dotted line) [Reprinted from Ref. [63]]. 
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First use of the fiber-drawing techniques for production of electric metamaterials was 

based on the adaptation of the Taylor-wire process to indium wires in (PMMA) tubes [63]. 

Produced fibers comprised a hexagonal array of indium wires measuring 10 μm in diameter and 

100 μm separation in a polymer fiber, and were designed to operate at terahertz frequencies as 

high-pass filters and polarizers [this technique shown in Fig. 2.2]. 

Shortly after, in our research group we have demonstrated the integration of similarly 

drawn metamaterials into a substrate [64]. The microwire arrays are made by stack-and-draw 

fiber fabrication technique using multi-step co-drawing of low-melting-temperature metals or 

semiconductor glasses together with polymers. Fibers are then stacked together and pressed into 

composite films. Optical micrographs of the fabricated films containing metal and semiconductor 

microwires are shown in Figure 3.2 in the Chapter 3. 

 

 

Fig. 2.3. (a) Optical microscope image of the metamaterial array. (b) SEM micrograph of i) the 

cross section of the metamaterial fiber and ii) of its 250 nm silver coating. (c) Optical 

microscope image of the cross section of (i) 350 μm, (ii) 300 μm and (iii) 250 μm fiber 

originating from the same preform. (c) Cross-sectional image of the spooled 250 μm fibers. 

[Adapted from Ref.[65]] 

 

Recently, magnetic metamaterials were also demonstrated by fiber drawing [65, 66]. Such 

materials are more challenging to fabricate as they require non-circular metallic wires. The first 

method was based on drawing a pure dielectric fiber and then sputtering the fiber with silver from 

one side, creating split ring resonators (SRRs) [65] (Figure 2.3 (a, b)). These fibres have a 

magnetic resonance, resulting in negative relative permeability. The second method was to create 
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a non-circular indium shape within a polymer preform and draw this preform into a fiber [66]. 

Figure 1.3 (c, d) shows a resulting fiber, which also demonstrated a magnetic resonance in 

the THz. 

2.2 Chemical or biological detection methods that operate in the terahertz 

spectral range 

The selectivity and sensitivity of optical biosensors have put them into the class of most 

popular biosensors [67-70]. A large number of methods for highly sensitive chemical or 

biological detection that operate in the THz range were developed [68, 71, 72]. 

Among these methods, metamaterials and frequency selective surfaces have been 

employed [71, 72]. Sensing based on resonant metamaterials represents a promising direction, 

particularly for high sensitivity detection. As stated earlier, metamaterials are made of a 

collection of subwavelength resonators whose resonant frequency can be tailored according to 

their shape and/or geometrical dimensions. This means that metamaterials can easily be made 

resonant at terahertz frequencies by simple scaling of their geometry. A systematic experimental 

study of metamaterial sensing was performed by O’Hara et al. [71] using an array of double split 

ring resonators. It has been shown that even a small quantity of material deposited on THz 

metamaterial can shift its resonance frequency. 

 

Fig. 2.4. (a) Optical microscopy image of one portion of an as-fabricated paper metamaterial 

sample. (b) Experimentally measured transmission spectra of the paper metamaterial sample 

coated with a series of glucose solution [Reprinted from Ref. [72]]. 
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More recently, Tao et al. [72] demonstrated the use of paper metamaterials as sensors. 

Planar metallic resonators with minimum features of less than 5 m have been fabricated on 

paper, using a photoresist-free shadow mask deposition technique. Glucose solutions with 

concentrations varying between 3 and 30 mmol/l were then deposited on the paper. A maximum 

shift of about 300 GHz was observed in measuring the 30 mmol/l glucose solution coated 

sample [these results are shown in Fig. 2.4]. 

In addition, techniques based on THz vibration spectra characterization have become 

available for biological materials in the form of the diluted water solutions and pressed 

pellets [73, 74]. 

The concept of using waveguides for sensing is well-established in other frequency 

ranges, but has only recently started maturing in terahertz systems [68, 75-78]. Notably, a 

significant amount of work has been done on guided-wave sensors with a focus on the novel THz 

waveguide geometries and sample preparation in the form of thin layers or films, which are then 

introduced into the waveguide structure. The propagation characteristics of a guided wave depend 

on several factors including frequency of operation, waveguide geometry and composition, and 

the nature of analyte. All of these factors influence phase and amplitude of the propagating wave. 

Likewise, changes in a thin sample (e.g., analyte) introduced onto or into the waveguide, alter the 

frequency dependent phase and amplitude of the guided wave. Up to now, numerous materials 

have been characterized using different types of waveguides. Notably, parallel plate waveguides 

(PPWG) have been used extensively in THz guidance and sensing experiments [68, 75]. The 

PPWG is typically composed of two parallel, smooth metal plates separated with an air gap as 

shown in Fig. 2.5.  

 

Fig. 2.5 Parallel plate waveguide (PPWG) [Reprinted from Ref.[68]]. 
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The molecular sample is usually deposited on one of the plates in the form of 

polycrystalline film. Different film preparation techniques, such as drop-casting or sublimation, 

are employed to obtain an ordered polycrystalline film. This technique was used to obtain high-

resolution THz absorption spectra of many biological molecules. This includes the nucleobase 

thymine, the nucleoside adenosine, the deoxynucleoside deoxycytidine, the sugar D-glucose, and 

the amino acids tryptophan, glycine, and L-alanine [68]. 

Recently, molecular spectroscopy of the polycrystalline lactose powder dispersed on the 

top of metal wire was demonstrated [76]. An 11-cm-long platinum/iridium wire was used in the 

experiments with a diameter of 254 m and with a sharp tip on one side and a flat end on the 

other. Metal-wire THz-TDS combines the advantages of waveguide spectroscopy for measuring 

small sample amounts in close proximity to the confined THz field with the capability to increase 

the interaction region by simply extending the propagation length along the wire. This potentially 

allows either the investigation of even weakly absorbing materials such as biomolecules or 

extremely thin films deposited on the metal wire. 

A related technique [77] measured the absorption properties of liquids in the THz wave 

range, based on the interaction between the liquid and the evanescent wave covering the surface 

of a cylindrical waveguide made of high-resistivity silicon. A test measurement was performed 

on a series of D-glucose solutions having various concentrations.  

 

Fig. 2.6. Experimental setup for THz evanescent wave sensing by using a subwavelength plastic 

wire. The inset illustrates the cross section of interaction between THz evanescent wave and the 

sample where D1 refers to the separation between wire and top surface of sample and D2 

denotes the depth of the PP holder [Reprinted from Ref. [78]] 
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A similar label-free THz sensing based on the plastic wires was also reported [78]. The 

THz subwavelength plastic wire used in the experiment had a circular cross-section, an infinite 

air-cladding, and a step-index profile. The wire core was made of polystyrene (PS), in which the 

refractive index is 1.59 [see Fig. 2.6]. Due to the thin core and low core index, a large portion of 

THz power is transmitted in the air cladding. 

The enhanced evanescent wave causes considerable variation of waveguide dispersion 

when the cladding index changes. Based on the measured variation of waveguide dispersion dip, 

various concentrations of melamine alcohol solution are successfully identified.  

 

Fig. 2.7. a) Size of the plasmon’s tail in visible range (typical size is less than 100 nm) and b) 

probing length of the evanescent field of an optical waveguide (in THz spectral range) that are 

used to detect changes in the optical properties at the interfaces.  

 

The present work is motivated by the recent reports on evanescent field of surface plasmon 

resonance (SPR) biosensors in the visible and near-IR regions [79, 80]. Most of the investigations 

in these spectral regions focus on the detection of relatively low concentrations of proteins and 

small molecules with sizes about/less than tens of nanometers. The reason being is that the 

probing length of an evanescent field of an optical waveguide, or the size of the tail of a plasmon 

that are used to detect changes in the optical properties at the interfaces, is deeply subwavelength 

(see Fig. 2.7 a). For example, a typical size of a plasmon tail in the visible range is smaller than 

100 nm, which allows us to track the dynamics of a biochemical event in the immediate vicinity 

of the interface. However, when one tries to measure directly the presence of a bacteria on a 

metallic surface, the standard SPR method runs into difficulty as the size of the probing field 
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(plasmon) is not only smaller than the size of a bacteria, but is also comparable to the size of a 

phage molecule (~100 nm) that connects the bacteria to the surface. Therefore the detection of 

large target such as cells and bacteria by SPR methods remain a challenge.  

Straight fibre-optic probes suffer from low penetration depth of the evanescent field 

particularly in the UV/visible spectral ranges. These probes are, generally, unsuitable for thicker 

analyte layers such as bacteria cell layers. This problem can be addressed by adapting optical 

fibre probes (via geometry modification)in order to improve the overlap of the evanescent field of 

the fiber mode and a relatively thick analyte layer. One of the possible approaches is to operate at 

a shorter wavelength and then increase evanescent field presence in the analyte by fiber 

tapering [81] in order to match the mode extent of the analyte with the thickness of the analyte 

layer. In order to get a better access to the evanescent field of the guided mode one can also 

expose the fiber core by chemical etching [82] or bending the fiber probe [83]. Another 

alternative is to use longer wavelengths (such as mid- or far-IR) and then match the extent of the 

modal evanescent field with the analyte layer thickness by reducing the modal penetration into 

the cladding region by using high-refractive-index core/clad material combination. This is the 

method studied in our work where we explore using THz fibers operating at wavelength longer 

than the size of the studied object, while reducing extent of the modal evanescent field into the 

cladding by using high refractive index plastic/air combination. 

2.3 Guiding THz waves using thin chalcogenide capillaries 

Chalcogenide glasses have attracted strong interest in a view of optical applications in the 

near-IR and mid-IR spectral ranges (114 µm) [84] due to the glass relatively low losses and high 

nonlinearities. Furthermore, chalcogenide glass-based microstructured fibers open many 

interesting possibilities for a large number of applications in the mid-IR spectral range, where 

applications in optical sensing [85], supercontinuum generation [86, 87], and single-mode 

propagation of IR light [88], and transmission of the CO and CO2 laser radiation [89, 90] have 

already been demonstrated. We believe that chalcogenide glasses can be also of great interest to 

the THz spectral range for several reasons. Particularly, as indicated in [91] these glasses offer 

very high refractive index, and their absorption losses show several regions of relatively low loss 

and high nonlinearity.  
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The main difficulty in designing terahertz waveguides lies in the fact that almost all 

materials are highly absorbent in the terahertz region [92]. Since the lowest absorption loss 

occurs in dry gases, an efficient waveguide design must maximize the fraction of power guided in 

the gas. Different types of THz waveguides have been proposed based on this concept [93, 94]. 

Thus, a subwavelength waveguide [94, 95], features a core with a size much smaller than the 

wavelength of light, and as a consequence, a large fraction of the guided light is found outside of 

the lossy core region. Another type of a low-loss waveguide is presented by the hollow-core 

fibers featuring a structured cladding that traps the light in the fiber core. As in the case of 

subwavelength waveguides, hollow core fibers confine most of the guided light within the low 

loss gas region. In the design of hollow-core fibers the main challenge is to ensure high reflection 

of light back into the hollow core at the core-cladding interface. Different cladding structures 

have been developed for the hollow-core-type waveguides, that include metallic reflectors [96-

98] and various resonant multilayered dielectric [99-101] reflectors.  

Among the hollow-core waveguides with resonant dielectric reflectors the simplest ones 

are in the form of a capillary [99-101]. In the following we refer to this type of waveguides as 

pipe waveguides. The structure of the THz pipe waveguide is very simple and consists only of a 

pipe featuring a thin dielectric layer on its inner surface with a layer size comparable to the 

wavelength of light. The hollow-core defined by the pipe has a diameter which is typically much 

larger than the wavelength of light. Similar pipe structures have also been demonstrated for 

guiding infrared (IR) light [102, 103]. The guiding mechanism of pipe waveguides has a resonant 

nature and is generally referred to as an ARROW type guidance.  

The guiding mechanism in such capillaries has been well described [104, 105]. In the THz 

spectral range they guide via total internal reflection, while in the mid-IR spectral range guiding 

mechanism is dictated by the antiresonant reflection conditions where the wall of the capillary 

acts as a Fabry–Pérot resonator [99-101]. At the resonant frequencies, the light leaks through the 

capillary wall and leaves the waveguide. In contrast, when the antiresonant condition is satisfied, 

the field is strongly reflected by the capillary wall back into the core leading to the efficient field 

confinement in the hollow core. Positions of the transmission windows (spectral regions of high 

transmission) are, thus, defined by the resonant frequencies of the capillary wall, which can be 

accurately predicted. Within transmission windows, only few percent of power is guided in the 

capillary wall, while most of the power is guided in the air. As a result, capillary attenuation 
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within the transmission windows can be remarkably lower than attenuation of the bulk material. 

As an example, in silica pipes at THz frequencies, the attenuation coefficient can be lower than 

0,03 cm
−1

 (13.62 dB/m), whereas absorption of the bulk silica is around 2 cm
−1

 [105, 106], 

signifying that the light propagation loss in the capillary is almost 100 times lower than the light 

propagation loss in the bulk material. Clearly, as the capillary thickness increases, light 

propagation loss will also increase. 
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CHAPTER 3 

COMPOSITE THZ MATERIALS USING ALIGNED METALLIC AND 

SEMICONDUCTOR MICROWIRES, EXPERIMENTS AND 

INTERPRETATION 

3.1 Introduction 

In this section we study the fabrication and optical properties of continuous uniform 

metamaterial films fabricated by densification technique, where individual metamaterial fibers 

are first aligned and then pressed together at elevated temperature. The effective refractive index 

and the permittivity of such composite media have complex frequency dependence. In order to 

extract a material’s effective optical parameters from transmission measurements a transfer 

matrix-based analytical model of transmission trough a 3-layer metamaterial film was first 

developed. A numerical procedure was then used in order to fit experimental data with 

transmission curves generated by the semi-analytical formulas containing effective optical 

parameters as fitting variables.  

Right from the start the two main distinctive features of our metamaterials should be 

pointed out. First of all, most of the existing experimental studies of the THz wire array materials 

deal with highly ordered arrays of relatively large diameter wires (hundreds of microns). For such 

materials, a comparison with analytical theories (Pendry’s formula, for example) developed for 

strictly periodic structures is relatively straightforward. In our case, due to the specifics of the 

fabrication technique, we create the arrays of parallel yet randomly positioned microwires of 

variable from wire-to-wire diameters on the order of 1-10 microns. Therefore, the applicability of 

formulas developed for periodic wire arrays to our metamaterials is questionable, if at all 

justified. Instead, to describe our metamaterials one has to use effective random media theories 

such as Maxwell-Garnett or Bruggeman theories. Moreover, in most experimental work on the 

wire-array media, one typically uses commercial wires made of pure metals such as copper or 

gold having dielectric constants that can be fitted well with a Drude model. Again due to the 

specifics of our fabrication technique, we could only use low melting temperature alloys which 

are thermo-mechanically compatible with plastics used during fiber drawing. In particular, we 
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use alloys of semi-metals Tin (Sn) and Bismuth (Bi) with dielectric constants that cannot be 

generally described by a simple Drude model. 

Finally, it will be demonstrated that metal containing metamaterials yield strong 

polarization effects, as well as the possibility to design high refractive index composite materials 

using chalcogenide nanowires. 

3.2 Fabrication process 

 

 

Fig. 3.1. SEM pictures of the cross-sections of fabricated wire-array metamaterial fibers. 

a) metal wire fiber after 2
nd

 drawing, b) metal wire fiber after 3
rd

 drawing, c) semiconductor 

wire fiber after 4
th

 drawing. Insets show magnification of individual wires. Inset of c) shows 

cluster of nanowires with the individual fiber diameters as small as 200nm. 

 

The microwire arrays are made by the stack-and-draw fiber fabrication technique using 

co-drawing of low melting temperature metals or amorphous semiconductor glasses together with 

polymers. The fabrication process of both metal and chalcogenide glass (As2Se3) samples is 

similar and can be divided into several steps. First, we prepare microstructured fibers containing 

microwire arrays. For that we start by filling a single PC (polycarbonate) tube with a liquid melt 

(Tm ~ 130˚C) of Bismuth and Tin alloy (42% Bi, 58% Sn). After the first preform is made it is 

drawn at 190˚C into a polymer-clad wire with a diameter of ~ 260 µm (first drawing). We then 

stack hundreds of wires together, clad them with another PC tube and draw it again under the 

same temperature. A scanning-electron-micrograph of the cross-section of a composite fiber after 

the second drawing is shown in Fig. 3.1 (a). Inset is a magnification of an individual wire of size 

~ 10 µm. Note that after the first drawing, metallic wire is surrounded by a polymer cladding of 
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thickness comparable to the size of a wire. Relatively thick cladding is needed to prevent 

individual wires from coalescing with each other during the following consecutive drawings. 

By repeating stack and draw process several times we can create ordered wire arrays with 

sub-micron size wires. The inset in Fig. 3.1 (c) shows crossection of a fiber after the 4
th

 drawing 

featuring semiconductor wires with diameters as small as 200 nm. Finally, to create metamaterial 

films we use fibers after the 3
rd

 drawing, place them on a flat surface next to each other and then 

press them under pressure of several tons at 195˚C. Fig. 3.2 presents optical micrographs of the 

cross-sections of a film containing metal (Fig. 3.2 (a)) and semiconductor (Fig. 3.2 (b)) 

microwire arrays. When pressing the fibers a three-layer film is created. The fiber polymer 

cladding creates the two outer polymer layers that sandwich a metamaterial layer.  

 

 

Fig. 3.2. Optical micrographs of a film containing (a) metal, and (b) semiconductor microwire 

arrays. The metamaterial layer is sandwiched between the two polymer layers. Figures (c) and 

(d) present top view of the films where metal and semiconductor wires can be seen to traverse 

the entire span of the film. 

 

Fig. 3.2 (c, d) presents an optical micrograph displaying the top view of a metamaterial film, 

where the aligned metal (c) or chalcogenide (d) wires can be clearly seen. From the SEM images 

of the pressed films we see that the wire size fluctuates in the range 0.5–4 µm. To create 

semiconductor nanowires we follow the same fabrication procedure but start with As2Se3 
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semiconductor chalcogenide glass rods cladded with a PSU (PolySulphone). Fibers were then 

drawn at 300˚C and subsequently arranged and pressed into films at temperatures 280˚C and 

pressures of several thousands of PSI. 

A single fiber drawing yields hundreds of meters of a uniform diameter fiber. Cutting, 

stacking, and pressing such fibers into films enables fabrication large area composite films. In our 

experiments we have produced films having an area of several cm
2
, with the main limitation 

being the size of the hot press. The main challenge in pressing the composite films is to guarantee 

the uniformity of the metamaterial layer. Because of the relatively thick plastic cladding of the 

individual wires, most of the pressed films show stripes of metal wires separated by stripes of 

clear plastic. Press parameters have to be chosen carefully to guarantee that during the 

compactification process the wires are free to intermix in the horizontal plane without loss of 

alignment. 

3.3 Transmission measurements 

Transmission spectra for the films were then studied in the whole THz range (0.1–

20 THz) using a combination of Terahertz Time-Domain Spectroscopy (THz-TDS) and Fourier-

Transform Infra-Red spectroscopy (FTIR). In Fig. 3.3 (a) we present the FTIR transmission 

spectra of a metamaterial film containing ordered metal wires (in the range 0.1–20 THz) for two 

different polarization of the incoming light. Grey color corresponds to polarization of the electric 

field parallel to the wires, whereas black color corresponds to polarization perpendicular to the 

wires. As seen from Fig. 3.3 (a) metamaterial films are strongly polarization sensitive for 

frequencies up to 5 THz, while polarization sensitivity persists up to 10 THz. For comparison, in 

Fig. 3.3 (b) we present transmission spectra through a metamaterial film containing As2Se3 

semiconductor glass wires, where no polarization sensitivity is observed.  

The polarization dependence of THz light transmission through metamaterial samples is 

clearly seen in Fig. 3.3 (a); however, the lack of phase information makes it difficult to retrieve 

the corresponding effective refractive indices for the two polarizations. As shown in Fig. 3.3 (a), 

light polarized parallel to the metal wires is blocked, while light polarized perpendicular to the 

wires is largely transmitted. The wire-grid polarizer consists of an array of slender wires arranged 

parallel to one another. The metal wires provide high conductivity for the electric fields parallel 

to the wires. Such fields produce electric currents in the wires, like the microwave dipole receiver 
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antenna. The energy of the fields is converted into energy of currents in the wires. Such currents 

are then partially converted to heat because of the small but significant electrical resistance of the 

wires, and partially irradiated back. The physical response of the wire grid is, thus, similar to that 

of a thin metal sheet. As a result, the incident wave is mostly absorbed or reflected back and only 

weakly transmitted in the forward direction. Because of the nonconducting spaces between the 

wires, no current can flow perpendicular to them. So electric fields perpendicular to the wires 

produce virtually no currents and lose little energy, thus, there is considerable transmission of the 

incident wave. In this respect, the wire grid behaves as a dielectric rather than a metal sheet.  

 

Fig. 3.3. FTIR transmission spectra (0.1–20 THz) of a metamaterial film containing ordered 

(a) metal and (b) semiconductor wires. Strong polarization dependence of transmission 

spectrum is observed for metallic wire arrays. 

 

Alternatively, for the parallel polarization of incoming wave, the response of a wire-grid 

medium can be modeled as that of a metal with an effective plasma frequency defined solely by 

the geometrical parameters of the medium such as wire size and inter-wire separation. Thus, at 

lower frequencies below the effective plasma frequency of a wire medium, electromagnetic 

waves are effectively blocked by such a material. However, at frequencies above plasma 

frequency polarization sensitivity of the wire grid medium is greatly reduced as both 

polarizations can go through the medium. At even higher frequencies when the inter-wire spacing 

and individual wire size (which are comparable in our samples) become comparable to the 

wavelength of light the metamaterial approximation breaks down. In our samples we observe that 
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polarization sensitive transmission through the wire-medium is lost completely at frequencies 

higher than 10 THz. 

In order to obtain the complex permittivity of the samples, complex transmission spectra 

(amplitude (Fig. 3.4 a, c) and phase (Fig. 3.4 b, d)) through metamaterial films were measured 

with a THz-TDS setup. The THz-TDS setup uses a frequency-doubled femtosecond fiber laser 

(MenloSystems C-fiber laser) as a pump source. Identical GaAs dipole antennae were used as 

THz source and detector yielding a spectrum ranging from 0.1 to 3 THz. The FWHM spot size of 

the THz beam at the focal point of the parabolic mirrors is roughly 3 mm. For convenient 

handling of samples, the metamaterial films were cut into 1cm x 1cm pieces and placed at the 

focal point of the parabolic mirrors. For each film sample, two transmission spectra were 

measured corresponding to the parallel and perpendicular polarizations of the THz beam with 

respect to the wire direction. 

 

Fig. 3.4. Transmission spectra (a, c) and phase difference (b, d) of THz light through 

metamaterial film containing (a, b) ordered metallic wires, (c, d) ordered semiconductor wires. 
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To ensure constant input illumination conditions during rotation of samples, we used a 

rotation mount (RSP1 from Thorlabs). It utilizes two precision bearings for smooth, backlash-free 

rotation, and a small iris was inserted in the center of the rotation mount. The metamaterial film 

was then placed over the iris. The normalized transmittance through the metamaterial film was 

calculated by dividing the transmission data with, and without, the metamaterial film. 

3.4 Interpretation of the experimental data 

 

Fig. 3.5. Schematic of (a) one layer of plastic and (b) a metamaterial film modeled as a three 

layer system. The subscripts indicate the layer number, while the + and the – signs distinguish 

incoming and outgoing waves, respectively. 

 

In order to infer the optical parameters of metamaterial layers, one has to assume a 

particular geometry of a composite film, as well as optical parameters of the constituent 

materials. As mentioned previously, the fabricated films can be viewed as a three-layer system 

(Fig. 3.2 a, b), where a wire metamaterial layer is sandwiched between the two polymer layers 

(either PC or PSU for metal or chalcogenide wire films, respectively). Therefore, we first 

characterize refractive indexes and absorption losses of the pure PC and PSU polymers. We then 

use this data to fit the parameters of a metamaterial film.  

3.4.1 Procedure for retrieving the refractive index and losses of pure 

polymers 

Characterization of refractive indices of pure plastics is done with THz-TDS setup using 

thick polymer slabs with parallel interfaces. Samples were prepared by pressing the PC or PSU 

tubes into thick films at temperatures similar to those used during the fabrication of metamaterial 

films. Transmission spectra and phase difference of THz light through the plastic slabs are shown 

at Fig. 3.6 (a, b). 
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Fig. 3.6. Transmission spectra (a) and phase difference (b) of THz light through a plastic slabs. 

 

We retrieve the refractive index and absorption losses of pure plastics by fitting the 

predictions of a transfer matrix model to the experimental transmission data [107-109]. 

Particularly, using the + and – superscripts to denote forward and backward traveling waves, the 

field amplitudes before and after a plastic slab are: 
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where ,a pr , ,p ar  and ,a pt , ,p at  are the complex reflection and transmission Fresnel coefficients 

of the interface between air (subscript a) and plastic (subscript p), as well as between plastic and 

air respectively. These coefficients have the same form for both s and p polarizations due to 

normal angle of radiation incidence. Denoting pd  to be the plastic layer thickness, and pn  to be 

the refractive index of a plastic layer, we can write:  
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For the calculation of refractive index and absorption losses of pure plastics we can assume that 

slabs are thick enough, so that multiple reflections within a sample (i.e. Fabry-Pérot reflections) 

can be neglected. In this case we can assume that the denominator of Eq. (3.2) simply equals 1, 

which allows us to write: 
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The transmittance ( )T   and phase shift   at each frequency are obtained simultaneously by the 

THz-TDS measurements. Eq. (3.5) easily separates into two equations respectively for the real 

and imaginary parts of the refractive index [92, 110]. For realn  and   we get: 
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It is important to realize that imaginary part of the refractive index of common plastics in 

THz frequency range can be several percent from the value of the real part of the refractive index. 

Therefore, to guarantee the third digit accuracy in the value of the real part of the extracted 

refractive index, Eq. (3.6, 3.7) may no longer be valid, and the use of the complete formula 

Eq. (3.5) may be necessary. Experimentally the thicknesses of the two polymer slabs were 5 mm. 

In fact, the samples should be thick enough so that multiple Fabry-Pérot reflections are 

suppressed via absorption of the reflected waves on the length scale of a sample width. On the 

other hand, the sample should not be too thick, otherwise absorption losses even after one 

passage would be too large to make a reliable measurement of a transmitted field.  

The value of the fitted refractive index of PC is almost constant across the whole THz 

range and it equals to 1.64n  , which is in good agreement with prior reports [92]. Absorption 

loss of plastics are a rapidly increasing function of frequency which can be fitted as PC: 
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1 2[ ] 3.77 6.65PC cm f f    , PSU: 1 2[ ] 5.03 20.25PSU cm f f    ,where f  is frequency in [THz]. In 

this work, for the first time to our best knowledge, we also report the THz refractive index of 

PolySulphone 1.74n , which is also effectively constant across the whole THz range. Fig. 3.7 

details frequency dependence of the PC and PSU refractive indices (a) and absorption losses (b) 

obtained by fitting the experimental transmission data.  

 

Fig. 3.7. a) real part of the refractive index and b) absorption losses of pure plastics PC, PSU. 

 

3.4.2 Procedure for retrieving the refractive index and permittivity of 

metamaterial layers 

As mentioned earlier, we model the experimental films as a three-layer system 

(Fig. 3.5 b)) where a wire metamaterial layer is sandwiched between two polymer layers (either 

PC or PSU for metal or chalcogenide-based wire arrays). We start with the metal wire-based 

metamaterial films. The total thickness of such films is 150 µm. Thickness of a metamaterial 

layer alone is 35±5 µm. The layer comprises metal wires of 1.3±0.5 µm average diameter. 

The complex transmission of a 3-layer system is modeled using a transfer matrix theory, 

assuming that a multilayer is surrounded by air. The field amplitudes inE , outE  in the first and 

last semi-infinite air regions respectively are related via the product of four 2×2 transfer matrices 

on each interface: 
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Each side of an interface is represented by the corresponding transmission matrix
iD , 

whereas the propagation inside the bulk material of each layer is represented by its propagation 

matrix 
iP  
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of the interface, 
id
 
is the thickness of i  layer, and in

 
is the complex refractive index. In our case 

we made only transmission measurements, thus we only have amplitude and phase information 

about the forward traveling waves 
inE

 
and outE . The complex transmission coefficient of the 

multilayer is given in terms of the system transfer matrix elements ijT
 
as 111 m

theor
T T . The THz-

TDS setup allows to obtain information about amplitude outE  and phase   of the signal 

transmitted through the sample for all THz frequencies in a single measurement. The measured 

complex transmission coefficient is obtained from the ratio of the sample and reference fields, 

)(
)()()( refi

refout

i

measured eEEeTT
 
  .                          (3.13) 

The reference field amplitude 
ref

E  and phase ref
 
are obtained by measuring the signal 

without sample. Assuming that multilayer geometry and refractive index of a host material are 

known, complex refractive index of the metamaterial layer is found by taking the difference 
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between the measured and theoretical transmission coefficients to be zero, and then finding the 

roots of a resultant equation:  

    Re ,Im 0measured theory meta metaT T n n   .                                 (3.14) 

Note that Equation (3.14) is effectively a system of two purely real equations for the real 

and imaginary parts of the complex transmission coefficient. This system of equations has two 

unknowns, which are the real and imaginary parts of the metamaterial refractive index. 

Therefore, equation (3.14) is well defined.  

The theoretical transmission coefficient of the multilayer depends on the knowledge of the 

exact thicknesses of the layers and their complex refractive indices. While the complex refractive 

indices of the host polymers, as well as the total thicknesses of a multilayer have been accurately 

measured, the thickness of a metamaterial layer must be assumed to be an adjustable parameter 

since its accurate estimation from the micrographs is not possible due to ambiguity in the 

definition of a boundary between metamaterial and a plastic cover. As it will become clearer in 

the following section, the exact choice for the value of the thickness of a metamaterial layer can 

only be made if an additional optimization criterion is established. Without a supplemental 

restriction on Eq. (3.14), this equation can be solved for any given value of the metamaterial layer 

thickness. To solve numerically Eq. (3.14) we use a nonlinear Newton method for the real and 

imaginary parts of the refractive index at each frequency point. Another subtlety in solving 

Eq. (3.14) comes from the possibility of multiple solutions of this equation. For the cases with 

more than one solution, unphysical solutions are eliminated by verifying their compatibility with 

the Kramers–Kronig relations. Finally, the effective permittivity is calculated from the extracted 

complex refractive index of the metamaterial in order to facilitate the interpretation of the 

metamaterial behaviour and the analysis via the effective medium theory. 

3.4.3 Extracted refractive index and permittivity of the films 

Figure 3.8 presents the complex refractive index and complex permittivity of the metal 

wire metamaterial films, calculated using the transmission spectra of Fig. 3.4. (a) and the 

procedure described in the previous section. A clear difference in the reconstructed optical 

properties of a metamaterial layer can be seen for the two polarizations of the incident light. Not 

surprisingly, we find that a wire-grid structure behaves like a metal ( 0)Re(   and 0)Im(  ) 
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for the electromagnetic waves polarized parallel to the wires. From Fig. 3.8 we see that the real 

part of the dielectric constant of our metamaterial changes sign around 1THz, which within the 

Drude model corresponds to the metamaterial plasma frequency. 

Alternative interpretation for the operational principle of the wire grid polarisers is in terms of 

the effective plasma frequency of a metamaterial. This was proposed by Pendry et al. [32] to 

explain wave propagation through a 2D array of wires. He demonstrated that such an array 

behaves like a Drude metal with effective plasma frequency which is only a function of the 

geometrical parameters of a wire array  2 2 22 ln( / )p c a a r  , where c  is the speed of light in 

vacuum, a  is the inter-wire spacing, and r  is the wire radius. Several more complicated but 

precise derivations of the effective plasma frequency for the wire medium have been 

developed [33] and a comparison between the models has been conducted in [34]. Since the 

effective plasma frequency in a wire medium can be tuned by adjusting the medium’s 

geometrical parameters, the spectral region for the desired permittivity values can be engineered 

to occur at practically any frequency.  

At this point it would be interesting to estimate theoretically the plasma frequency of our 

metamaterial using Pendry’s model. However, in our case we believe that the results of such a 

prediction would have a limited validity. Particularly, Prendry’s plasma frequency is derived for a 

periodical network of wires of a fixed diameter. From the SEM pictures of a typical cross-section 

of the wire-array metamaterial fibers after 3
rd

 drawing (see Fig. 3.1) we see that the wire diameter 

fluctuates in the range 0.5–4 µm, with an average wire size being around 1 µm. The distance 

between wires could be estimated from the optical micrograph of the film containing metal 

microwire array (Fig. 3.2), we see that it varies between 5 µm and 50 µm. Thus, when using 

Pendry’s formula we get estimates to the plasma frequency ranging from 1 THz ( d =0.5 µm, 

a =50 µm) to over 25 THz ( d =4 µm, a =5 µm). Therefore, applicability of the Pendry’s formula 

to random wire arrays is not obvious. 

In passing we mention that there is a growing body of work dedicated to the study of 

influence of disorder in the metal wire arrays on their transmission properties. Thus, small 

disorder typically results in the shift of plasma frequency to lower frequencies [111]. Disorder 

also leads to increase in the attenuation of the wire medium, which is, moreover, highly sensitive 

to the particular realisation of a disorder. In general, in disordered systems plasmonic response 
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becomes less pronounced [112]. In metamaterials consisting of split ring resonators, small 

disorder yields to narrowing and reduction of the resonance gap [113], while large disorder could 

lead to a complete suppression of resonances [114]. 

 

Fig. 3.8. Extracted (a) refractive index, and (b) permittivity of a metamaterial layer containing 

metal wires. 

 

As we note from Fig. 3.8 (b), while frequency behavior of the real part of the 

metamaterial dielectric constant is consistent with a Drude model ( Re( ) changes sign from 

negative to positive at plasma frequency), the imaginary part of the metamaterial dielectric 

constant does not exhibit a typical Drude behavior ( Im( ) should decrease monotonically as 

frequency increases). We believe that there are two reasons for the non-Drude behavior of our 

material, one is related to the inversion algorithm, and another is related to the non-Drude nature 

of the semimetals from which our metamaterial is made. At this point we cannot say with 

certainty which is the main reason and additional studies are still needed to resolve this issue. 

The first reason is due to extraction algorithm itself. Note that due to manufacturing 

process, the metamaterial layer is thin ~ 40 µm. As a result, even with relatively high absorption 
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losses in a metamaterial layer where Im( ) ~2 one cannot disregard interference effects in the 

metamaterial layer. The extraction algorithm, therefore, is based on a full transfer matrix theory 

and uses the roots of highly nonlinear equation where real and imaginary parts of the 

metamaterial dielectric constant are strongly coupled to each other. We note that non-Drude 

behavior of Im( )  is most pronounced in the spectral region of low frequencies below 0.3 THz. 

This is the region where THz source power is already quite low. At the same time, this is the 

region where real part of the dielectric constant is negative and very large (compared to the 

imaginary part). We, therefore, observe that uncertainties in the intensity and phase data results in 

relatively small errors in the Re( ) , while potentially large errors in Im( ) . Therefore, non-Drude 

behavior of Im( ) of our metamaterial at lower frequencies can be related to the artifact of 

inversion algorithm. A way to improve the accuracy of inversion algorithm would be to work 

with much thicker metamaterial samples, so that interference effects inside metamaterial layer 

could be ignored. In this case one can simply assume an exponential decay of THz light in the 

metamaterial layer, and in the resultant equations real and imaginary parts of the metamaterial 

dielectric layer would be decoupled. 

Second reason is the non-Drude behavior of the semimetals and their alloys from which 

our metamaterial is made. Particularly, it is suggested in several references that spectral behavior 

of the terahertz conductivity of the poor conductors (such as semi-metals Sn, Bi and their allows), 

as well as materials near the metal-insulator transition is described by a Drude-Smith model 

which is a generalization of the Drude model, that can exhibit a substantially different frequency 

dependence from a classical Drude model [115]. In our samples we use Bismuth Tin alloy, bulk 

electrical conductivity of which is only around 2% of the conductivity of the pure Copper. 

Moreover, it is known that in micro and nanostructures (such as microwires in our case) Bismuth 

Tin alloy exhibits phase separation into pure metals, which greatly complicates description of the 

electrical properties of such alloys [116]. In our case phase separation manifests itself in 

formation of the nano-sized grids as presented in Fig. 3.10 of the last section. There are several 

works about refractive index and conductivity of nanostructured Bi in the form of thin (sub-

micron) Bismuth layers [117, 118]. In these works they conclude that the plasma frequency of the 

nanosized Bi films is on the order of pl
 = 100 THz. At the same time, plasma frequency of the 

monocrystal bismuth was reported to be 4.86
pl

   and 5.64 THz, depending on the anisotropy 
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axis orientation [119], which is more than 20 times different from the plasma frequency of Bi 

thin films. From this we conclude that microstructure of the semimetal alloys can influence 

dramatically its electrical properties. To remedy this complexity in our future work we will try to 

find the material combination of plastics and pure low melting temperature metals such as In, Sn 

or Bi, to fabricate microwire arrays with electrical properties that would be easier to interpret. 

The only reason for the use of Tin Bismuth alloy in this work was that it showed outstanding 

compatibility with the plastic host material during drawing. Finally, additional experiments are 

needed to study optical properties of the pure low melting temperature metals in the vicinity of 

1 THz, which are still not available in the literature. 

 

Fig. 3.9. Extracted (a) refractive index, and (b) permittivity of a metamaterial layer containing 

chalcogenide glass wires 

 

Finally, for comparison with the metal wire arrays, we present the refractive index and 

permittivity of the metamaterial layer containing chalcogenide glass wire array. The values 

calculated from the transmission spectra of Fig. 3.4 (b) are shown in Fig. 3.9. Due to the low 

conductivity of the chalcogenide wires, the wire-array does not act as an effective metal and there 
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is no difference between the polarizations parallel or perpendicular to the wires. In this case, the 

chalcogenide glass inclusions merely form a dielectric composite material having a significantly 

higher refractive index compared to the pure PSU plastic host. 

3.5 Discussion 

Here we would like to discuss briefly two issues that are related to the fundamental 

relation between the components of a dielectric tensor of a wire array medium, and to the 

unexpected self-organized nanostructure observed when drawing wires from the binary alloys. 

3.5.1 Effective medium theory 

It is interesting to note that according to the effective medium theories [20, 21, 30], 

components of the dielectric tensor of a wire array metamaterial are not independent. They are, in 

fact, well defined functions of the filling factor and dielectric constants of the metal and host 

materials. Therefore, one can, in principle, design an algorithm that can check consistency 

between the experimentally measured parallel and perpendicular components of the metamaterial 

dielectric tensor. The goal, for example, is to determine validity of various assumptions for the 

geometrical and material parameters that are made in the data interpretation algorithms, thus 

improving their reliability. 

A typical effective medium theory assumes that inclusions (spheres, discs, rods) are 

randomly dispersed within a host matrix, and that these inclusions are much smaller than the 

wavelength of light inside the host material (<0.1– 0.2 λ). Among many effective medium 

theories, one of the most popular is the Maxwell-Garnett model [23, 24], which uses as a 

fundamental parameter a volume fraction (filling factor)
particles background

f V V  of the particles 

embedded in the uniform background material. In the case of wire arrays, 
background

V
 

is 

proportional to the active area of the background material, and 
particles

V
 
is proportional to the total 

area of the metallic wires. For the polarization parallel to the wires, the effective permittivity of 

the composite in Maxwell-Garnett approach is then given by: 
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where m  is the dielectric constant of the wires, and 
plastic

  is the dielectric constant of the host 

material. For polarization perpendicular to the wires the effective permittivity of the composite is: 

( ) ( ) (1 )eff theory m plasticf f        .                                     (3.16) 

In order to find the optimal value of the filling factor and thickness of a metamaterial 

layer that one uses in the data interpretation algorithms, one can proceed by simultaneous 

minimization of the two weighting functions:  
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|| ( ) (exp)( , ) ( ) ( )eff theory effQ d f d
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    .                           (3.18) 

Ideally, if the metamaterial layer thickness and filling fractions are chosen correctly one expects 

0),(  fdQ  and 0),(|| fdQ , meaning that consistency between the two components of the 

dielectric tensor is achieved via their underlying relation to the geometrical and optical 

parameters of the constituent materials. An obvious disadvantage of this algorithm is the 

necessity of knowledge of the dielectric constants of metal and host material used in the 

metamaterial sample. In our particular case, we could not apply the consistency algorithm as the 

optical data for the Tin Bismuth alloy in THz region is not available. 

Finally, one can be tempted to use effective medium theory in the attempt to invert 

equations (3.15) and (3.16) in order to extract, for example, the permittivity of a semimetal alloy 

from the measured data. For example, from equation (3.16) it follows that: 

( ) ( ) (1 )eff theory plastic

m

f

f

  


  
  .                                           (19) 

When trying to use this relation, especially in the case of low volume fractions where this relation 

is most applicable, one quickly finds that small measurement errors are greatly amplified by the 

1f   factor, which renders the inversion algorithm practically unusable. 
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3.5.2 Nanostructured inclusions 

 

Fig. 3.10. Microwires after 2
nd

 drawing featuring nanogrids. Microwires were obtained by 

dissolving PC polymer matrix. In the inset, shown is a pure Bi, Sn lamellar structure due to 

phase separation of an alloy. 

 

We note in passing, that metallic wires made of multi-components alloys can exhibit an 

additional self-organized nanostructure. Particularly upon solidification, the metals of Bi42%Sn58% 

alloy have been found to separate into different pure metal phases [116]. To illustrate this, 

Fig. 3.10 presents a scanning-electron-micrograph of the eutectic alloy wires obtained after two 

subsequent drawings. These wires were extracted from the composite by dissolving the PC 

cladding. On the wire surfaces one clearly sees formation of nanogratings. Stoichiometric studies 

using TOF-SIMS measurements (Time-of-Flight Secondary Ion Mass Spectrometry) showed that 

the lamellar structure on the surface of the individual wires is made of pure Bi (Bismuth) and Sn 

(Tin) parts. 

3.6 Conclusion 

This work presents an in-depth study of the challenges and practical issues encountered 

when trying to extract from the THz optical transmission data both the material and geometrical 

parameters of the deeply subwavelength wire arrays making a metamaterial film. Particularly, we 

detail a novel fabrication method for the large area THz metamaterial films using a two step 

fabrication process. First, we draw microstructured fibers containing ordered arrays of micro- or 

nano-wires made from either metal or dielectric materials. We then arrange such fibers parallel to 

each other and compactify them into a composite film by using a hot-press technique. 

Characterization of the THz transmission through metal wire composite films demonstrates 
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strong polarization sensitivity of their optical properties, promising application of such films as 

polarizers or high pass filters for THz radiation. Furthermore, composite films containing high 

refractive-index dielectric wires in place of metallic wires showed no polarization sensitivity, 

while the effective refractive index of such metamaterial films could be adjusted in a broad range. 

Using the transfer matrix theory, we then demonstrate how to retrieve the polarization dependent 

complex refractive index and complex effective permittivity of the metamaterial films from the 

THz optical transmission data. Finally, we detail the selfconsistent algorithm for the validation of 

such parameters as filling factor and thickness of the metamaterial layers by using an effective 

medium approximation. 

 



53 

CHAPTER 4 

LABEL-FREE BACTERIA DETECTION USING EVANESCENT MODE OF 

A SUSPENDED CORE TERAHERTZ FIBER 

4.1 Introduction 

In this chapter the possibility of using THz fibers operating at wavelength longer than the 

size of the studied object is explored. Combination of high refractive index of the core 

(polyethylene) and the cladding (air) allows to significantly reduce the size of the probing 

evanescent tail. Thus it becomes possible to develop a label-free technique (target bacteria are not 

labelled or altered and are detected in their natural forms) based on the interaction between the 

evanescent wave, localized around the core of the fiber, and a thin layer of bacteria covering it. 

This technique is then used for the detection and quantification of the E. coli bacteria in the THz 

spectral range. 

In addition, established measurement protocol allows measurement of the biological 

properties in the aqueous environment, while using THz waves that are normally unsuitable for 

this purpose because of the strong absorption of water. This so-called “frozen dynamics” 

approach allows all the biological processes to take place in water, while the system is robust 

enough to allow drying for THz measurements at the intermediate stage without affecting the 

biological subcomponents (such as phages). 

4.2 Terahertz subwavelength fiber 

The major complexity in the design of the terahertz waveguides is the fact that most dielectric 

materials are highly absorbing in this spectral region [92] with a typical loss in excess of ~1 cm
-1

. 

To combat material losses, a novel approach based on the introduction of porosity in the fiber 

core has been recently introduced by our group [120]. We have proposed that since the 

absorption loss is lowest in dry air, one way to reduce waveguide propagation loss is to maximize 

the fraction of power guided in the air.  
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Fig. 4.1. (a, b) The THz fiber featuring a 150 µm core suspended by three 20 µm-thick bridges 

in the center of a 5.1 mm diameter tube, (c) 4 cm-long fiber piece used in the experiments. 

 

One of the waveguides that operates on this principle was recently described in [9] and 

presents a subwavelength fiber suspended on thin bridges in the middle of a larger protective tube 

(see Fig. 3.1). Large channels formed by the bridges and a tube make a convenient opto-

microfluidic system that is easy fill with liquid analytes or purge with dry gases. Particularly, the 

THz subwavelength waveguide used in our experiments features a 150 µm core fiber suspended 

by three 20 µm-thick bridges in the center of a 5.1 mm diameter tube (Fig. 4.1. (a, b)) of 4 cm in 

length. This waveguide design presents several important advantages for bio-sensing 

applications. First, the waveguide structure allows direct and convenient access to the fiber core 

and to the evanescent wave guided around it. Second, the outer cladding effectively isolates the 

core-guided mode from the surrounding environment, (e.g., fiber holders), thereby preventing the 

undesirable external perturbations of the terahertz signal.  

All the data in our experiments was acquired using a modified THz-TDS (Time-Domain 

Spectroscopy) setup. The setup consists of a frequency-doubled femtosecond fiber laser 

(MenloSystems C-fiber laser) used as a pump source and identical GaAs dipole antennae used as 

source and detector yielding a spectrum ranging from ~ 0.1 to 3 THz. Contrary to the standard 

THz-TDS setup where the configuration of parabolic mirrors is static, our setup has mirrors 

mounted on translation rails. This flexible geometry facilitates mirrors placement, allowing 

measurement of waveguides up to 45 cm in length without realigning the setup. Fig. 3.2 (a) 

illustrates the experimental setup where the fiber is fixed between the two irises and placed 

between the focal points of the two parabolic mirrors. 
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Fig. 4.2. (a) Schematic of the experimental setup: the fiber is placed between the focal points of 

the two parabolic mirrors, (b) schematic presentation of phages adsorbed onto the fiber core. 

The capsid adsorbed onto the fiber, while the tail (which is specific to the bacteria) faces 

towards the cladding for bacteria capturing. 

4.3 Materials and methods 

4.3.1 Bacteria culture 

The bacteria solution was prepared as follows. A frozen stock of E. coli B strain was used 

to seed an overnight culture in LB media (liquid media for growing bacteria, contains 10 g 

Tryptone, 5 g yeast extract, 10 NaCl in 1L H2O). Bacteria were harvested by centrifugation at 

3000xg for 10 min, followed by washing in PBS (Phosphate Buffer Saline). Dilutions of the 

overnight culture were spread on LB agar plate to determine the titre, expressed in colony 

forming unit (cfu). Appropriate dilutions of bacteria stock with a concentration 10
4
 – 10

9
cfu/ml 

were made in PBS for subsequent experiments. 

4.3.2 Phage production 

100 L of E.coli B log-phase culture was added to 3 ml cooled top agar and poured onto 

LB agar plate until solidified. 100uL of phage stock specific to E.coli B was added onto the 

solidified top agar and incubated at 37ºC overnight. A macroplaque was developed on the lawn 

of bacteria after incubation. 3 ml of lambda buffer was added onto the top agar, which is then 

scraped off and collected in a 50 ml centrifuge tube, followed by an additional washing of the LB 

agar plate with 3ml lambda buffer. 3 drops of chloroform were added into the suspension, 

vortexed and centrifuge at 3500xg for 10 min to pellet pieces of agar and bacteria. The 

supernatant was then passed through a 0.22 m filter to remove the remaining bacteria. The 

filtrate is the stock phage solution and is prepared fresh for each experiment. The titre of the 
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phage stock was determined by serial dilution of the stock, followed by infection to E.coli as 

described above. Plaques were counted and the titre of the phage stock is expressed in plaque 

forming unit (pfu). 

4.4 Characterization 

The light propagating through an optical fiber consists of two components: the field 

guided in the core and the exponentially decaying evanescent field in the cladding. For 

evanescent sensing one typically removes the fiber cladding and introduces analyte into the 

immediate proximity of the fiber core [121]. In the presence of strong absorption or scattering in 

the analyte, the intensity of guided wave would decrease, which can then be then used to interpret 

various analyte properties. In application to THz evanescent sensing, both analyte refractive 

index and analyte absorption can be deduced by comparing the signals from the empty 

waveguide with that from the waveguide containing a layer of the measured material. By 

measuring the changes in both amplitude and phase caused by the addition of the analyte layer 

even very small amounts of analyte can be detected and characterized (see, for example, [122] 

where nanometer-size aqueous layers were characterized in THz) [123].  

An immediate complication for evanescent biosensing in THz is that natural environment 

for a majority of bacteria is water and water is highly absorbing in THz spectral range. To avoid 

this problem, we have developed a protocol where all the bio-reactions take place in the natural 

aqueous environment, while the THz measurement is done on dried samples.  

 

 

Fig. 4.3. SEM images illustrating each step of the experiment (a) step 1 – phages are 

immobilized on the fiber core surface, (b) step 2 – capturing of E.coli bacteria by the phages, 

and lysis of the bacteria, (c) step 3 – fiber is washed with PBS, bacteria chunks remain bound to 

the core surface. 
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In what follows all the SEM images were taken with a Quanta 200 FEG scanning electron 

microscope operating in high vacuum mode. First, the samples were fixed with formalin for 

12 hours and then metalized with several nm-thick layer of gold.  

To follow the dynamics of the bacteria binding we performed several experiments 

according to the three-step procedure described below. Before the measurement, the suspended 

core fiber (4 cm in length) was cleaned with isopropyl alcohol and distillated water. The fiber 

was incubated overnight (12 hours) with T4-bacteriophage solution at 10
10 

pfu/ml concentration. 

During this incubation, phages are adsorbed non-specifically onto the plastic fiber surface. The 

T4 phages recognize and bind to specific cell surface protein on the E. coli bacteria using their 

tail proteins (scheme of the process is shown at Fig. 4.2 (b)). This recognition is highly specific 

and has been extensively used for typing of the E. coli. 

After phage adsorption the fiber was washed 3 times with distillated water and PBS. Only 

10% of the fiber’s bridges surface and core were covered by phages. The exposed fiber surface 

was therefore blocked with bovine serum albumin (BSA) for 30 min in order to reduce non-

specific adsorption of the bacteria, and washed again with the buffer solution and dried out. 

Blocking with BSA is required because it is not possible to achieve 100% coverage of the fiber 

by the phages. Without BSA blocking, exposed fiber surface could cause non-specific adsorption 

of the bacteria and other components present in the sample, causing false positives.  

 

Fig. 4.4. (a) Transmission spectrum of the fiber during each step of the experiment: step 1 – 

black line, only phages, step 2 – red line, transmission of the fiber decreased due binding of 

E. coli bacteria to the phages, step 3 – blue line, fiber is washed with PBS. Fiber transmission is 

increased but not up to the level of the first step, suggesting that some bacteria (or parts of it) 

remain bound to the fiber via specific interaction with the phages. (b) Difference in 

transmission between each step of the experiment. 
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SEM imaging was performed to confirm the adsorption of the phages onto the fiber core 

as well as the stability of the phage layer, and the extent of fiber surface coverage. Fig. 4.3 (a) 

illustrates phages adsorbed onto the fiber (dark spots within the area define by dashed line). At 

the same time, THz transmission through the fiber was measured. The fiber transmission 

spectrum is shown in Fig. 4.4 (a − black line). 

After the addition of the bacteria and subsequent binding of the phage on the bacterial 

surface, the phage infection process will start. The phage progeny will accumulate and eventually 

the bacteria host is ruptured followed by the release of the phage. The period between infection 

and bacteria lysis is known as the latent period and usually last for 25 minutes. The second 

measurement of the THz transmission through the fiber was done during the first 15 min after the 

introduction of bacteria (Fig. 4.4 (a − red line)). It could be clearly seen that the transmission of 

the fiber decreases considerably due to binding of the bacteria to the phages. A zoom-in of the 

waveguide core after some reaction time ~5-10 min is shown in Fig. 4.5. There, the dashed line 

circumscribes the part of a core covered with the bacteriophages; E. coli Bacteria are clearly 

visible bound to the region covered by the phages and not to the rest of the core surface blocked 

with BSA.  

 

 

Fig. 4.5. Zoom-in of the waveguide core, dashed line marks the area covered with the 

bacteriophages. Bacteria are clustered in the phage-covered surface with the rest of the surface 

blocked by BSA. 
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In the last step, after 25 min of reaction time, the fiber was washed with the PBS in order 

to remove the unbound bacteria on the fiber surface and then again dried out. Fiber transmission 

(Fig. 4.4 (a − blue line)) increased compared to the previous step, but not up to the level of the 

first step, suggesting that some bacteria (or parts of them created by lysis and rapture) remain 

bound to the fiber via specific interaction with the phage. 

The following SEM images (Fig. 4.6) were prepared at different moments of time during 

the process of specific recognition and binding of the E. coli bacteria with phages in order to 

understand the process that take place during the last 10 min of the 2
nd

 step of the measurements.  

 

 

Fig. 4.6. SEM images of the fiber core (a) after 20 min since the beginning of the 2nd step;  (b) 

after 30 min before washing with PBS (end of the 2nd step); (c) after 30 min after washing with 

PBS. The bacteria shape changed from a uniform rod shape to a random shape. Eventually, the 

bacteria cell wall ruptures and releases intracellular components with only the cell membrane 

left on the fiber. 

 

Fig. 4.6 (a) shows fiber core after 20 min of interaction of E. coli bacteria with the phages. 

The bacteria are bound to the phages and have well defined rod shapes. Fig. 4.6 (b) shows the 

fiber core at the end of the 2
nd

 step, after 30 min of bacteria interaction with pages. It is clearly 

seen that by the end of the 2
nd

 experiment the bacteria change its shape form the rod-like to a 

highly distorted rod shape which is a result of bacteria lysis. During lysis the bacteria cell wall is 

eventually ruptured and releases intracellular components with only the cell membrane left on the 

fiber. Fig. 4.6 (c) illustrates the core of the fiber after 30 min of interaction of the bacteria with 

the phages and after washing with PBS. After the fiber was washed, traces of the bacteria 
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(membrane fragments) can be clearly seen still bound to the phages. Visually, washed fibers 

corresponding to Fig. 4.6 (c) look cleaner than the same fibers before washing. 

In order to explain the considerable increase in the fiber transmission loss due to bacteria 

binding (during the course of the 2
nd

 measurement) we note that the E. coli largely consists of 

water. Therefore, it is expected that its mobilization on the core surface would lead to a 

significant loss increase due to water absorption. Particularly, cell dry weight ("dry weight" is the 

remaining material after all the water is removed) of the E. coli bacteria is only 30% and can be 

subdivided into protein (55%), RNA (22.5%), DNA (3.1%), lipids (9.1%), peptidoglycan (2.5%), 

polysaccharides (3.4%) and Glycogen (2.5%), while remaining 70% of the bacteria weight is 

water [124]. Additionally, we expect that the presence of the large and irregular bacteria clusters 

on the fiber surface would lead to scattering loss.  

Similarly, after washing the fiber at the end of the 2
nd

 measurement, the fiber transmission 

is expected to increase as only the dry chunks of bacteria membrane remain on the surface. 

Moreover, their surface coverage is smaller than this of the bacteria before washing, therefore 

scattering loss is expected to be smaller in washed fibers. For completeness, we note that the 

outer membrane of the gram-negative bacteria such as E. coli is a complex structure composed of 

phospholipids, proteins, and polysaccharides that controls the permeability and helps maintain 

the shape and rigidity of the cell. The protein complement of the outer membrane includes a 

Murein-lipoprotein that is one of the most abundant proteins in bacteria: there are about 

7.2 10
5
 molecules per cell.  

Finally, we have observed that there are two spectral regions in the vicinity of 0.7 THz 

and in the range of 1.52.0 THz where the changes in the fiber absorption are especially 

pronounced. These particular spectral regions of high sensitivity were consistently identified in 

each of the several repetitions of our experiments. The physical nature of high absorption in these 

spectral regions is still unclear to us, while there is an indication that it can be related to spectral 

signatures of specific macromolecules abundant in the E. coli bacteria composition. In particular, 

in the THz spectral range large tandem repeats peptides or nucleosides have some observable 

spectral features, whereas nonperiodic biological molecules such as DNA and proteins have 

relatively featureless spectra [68]. Optimal regions for the THz detection of the E. coli bacteria 

found in our work correlate with the position of the absorption peaks of the Murein-lipoprotein or 
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Broun’s lipoprotein (BLP), that is one of the most abundant proteins in bacteria [124, 125]. 

Additionally, there is a 0.68 THz absorption peak of Thioredoxin protein which is a commonly 

occurring electron transport protein in a bacteria. For the sake of clarity we also note that all the 

measurements were done in a nitrogen purged cage at 12% of humidity, therefore all the narrow 

dips in the transmission spectrum as observed in Fig. 4.4 (for example the 0.752 THz peak) are 

caused by the water vapour [126-128], which has to be distinguished from the broad absorption 

features due to bacteria. 

4.5 Results and Discussion 

In this section we present and interpret the changes in the fiber absorption loss during the 

bacteria binding process. Fiber absorption loss is defined as  ln
ref

P P L    where L  is the 

fiber length, refP  is the transmitted power through the setup without fiber, and P is a transmitted 

power through the setup with fiber. To see the influence of bacteria binding on the THz 

transmission of a suspended core fiber in dynamics we measure the absorption loss of the fiber 

(with a dry sample) as a function of time. Particularly, during each step of the experiment we did 

at least 1015 scans of the transmitted spectrum (one scan takes ~1 min). As a result, we have 

absorption losses of the fiber as function of time. Also, as it was mentioned before, the THz 

measurement is done with dried samples, while the bio-reactions take place in the natural 

aqueous environment. In particularly, after the 1
st
 step of the experiment, the fiber was incubated 

with bacteria aqueous solution and then after 15 min (during this time phages have already 

captured bacteria) the fiber was dried out for transmission measurements. This results in a 

~15 min gap in the sensorgram where it was impossible to measure losses due to high water 

absorption in THz spectral range. 

Figure 4.7 illustrates the effect of the bacteria binding on the THz transmission of a 

suspended core fiber at 0.7 THz. First the reference sensorgram was acquired (Fig. 4.7 (a)) for 

which the fiber was prepared exactly the same way as described in the characterization section. 

However, no phages were used (phage solution was simply substituted with buffer during the 1
st
 

step), while the fiber surface was blocked with BSA to prevent non-specific bacteria binding to 

the core surface. The absorption loss returned to the initial level after bacteria were washed away 

with PBS. This transmission measurement and SEM images (not showed here) prove that the 
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fiber surface was indeed blocked with bovine serum albumin and no non-specific adsorption of 

the bacteria took place on the fiber surface. 

 

Fig. 4.7. Absorption losses of the fiber. (a) reference sensorgram; (b) sensorgram for bacteria 

concentration at 10
6
cfu/ml as a function of time; (c) Correlation between the changes in the 

fiber absorption losses and bacteria concentration: difference between base level (absorption 

losses of the fiber with phages immobilized on the fiber core) and losses of the “washed” fiber 

is shown in blue triangles, as a function of a concentration. Black dots correspond to the 

difference between absorption losses of the fiber after 2
nd

 and 3
rd

 steps (before and after fiber 

washing). 

 

In Fig. 4.7 (b), results of the experiments with phages are presented where despite 

extensive washing, some bacteria are always retained by specific binding to the phage-coated 

fiber, and as a consequence, fiber absorption loss does not return to the original level. More 

importantly, we are able to show the correlation between the fiber absorption losses and the 

bacteria concentration of the samples, further suggesting the specificity of the detection method. 

Thus, in Fig. 4.7 (c) the difference between the base level (absorption losses of the fiber with 

phages immobilized on the fiber core) and losses of the “washed” fibers are shown in blue 

triangles, as a function of bacteria concentration in the solution used during the 2
nd

 experiment. 

Also, in black circles we show difference between absorption losses of the fiber after 2
nd 

and 3
rd

 

steps (before and after washing of the fiber). This difference is related to a signal due to both 

specific bacteria binding to the phages and nonspecific temporary adsorbed bacteria onto a fiber 

surface so by itself it cannot be used for sensing. From the presented data (blue triangles) we see 

that the detection of limit of this method is around 10
4 

cfu/ml, which is comparable with existing 

commercially available methods [80]. The commercial methods usually employ antibodies (Abs) 

as recognition elements instead of bacteriophages. The production of the specific Abs, however, 
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is difficult, expensive and very time-consuming. Also, antibodies easily lose their activity when 

subjected to changing environmental conditions. Bacteriophages are alternative method of 

bacteria capture that offer many advantages compared to antibodies. Particularly, phages are easy 

to produce in large quantities at a relatively low cost, they have long storage life and unlike 

antibodies can be physically adsorbed onto the fiber surface. 

Considerable sensitivity enhancement of our method is possible by increasing the amount 

of the initial phage coverage of the fiber surface by better anchoring the phages via covalent 

immobilization onto the fiber surface, rather than physical adsorption. This however implies 

considerable effort in fiber surface biofunctionalisation chemistry which is beyond the scope of 

this paper.  

4.6 Simple theoretical model to explain changes in the fiber absorption loss 

 

 

Fig. 4.8. SEM images of the fiber core with bacteria concentration of (a) 109 cfu/ml and 10 min 

interaction time (b) with a concentration of 10
6
 cfu/ml, 10 min interaction time. 

 

We believe that strong changes in the fiber transmission loss during the 2
nd

 phase of the 

experiment (before washing the fiber) can be explained by the presence of water containing 

bacteria on the fiber core due to non-permanent adsorption or sedimentation during rapid drying 

of samples. As seen in Fig. 4.7 (c) these losses are proportional to the bacteria concentration. 

Moreover, from the direct observation of the SEM images, bacteria coverage of the fiber core is 

also proportional to the bacteria concentration. For example, at 10
9
 and 10

6 
cfu/ml, the average 
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coverage was correspondingly 4.35% and 1.52% (Fig. 3.8. (a, b). These values were achieved 

after analyzing presented SEM images via custom LabVIEW software. First we determined the 

ratio of the area covered with the bacteria (in pixels) to the total area of the picture in percentage. 

At the same time the total number of the bacteria in the field of view was also counted, which 

divided by the area of the SEM image yields the coverage ratio of 45 cells/100 µm
2
 for the 

concentration 10
9 

cfu/ml and 15 cells/100 µm
2
 for the concentration 10

6 
cfu/ml. Despite the fact 

that at concentration 10
9 

cfu/ml we have 1000 times more bacteria then at the concentration 

10
6
 cfu/ml, we do not have any significant increasing of the bacteria coverage ratio due to 

limitation of the initial phage coverage of the fiber surface (only 10%) and number of phages 

required for the bacteria binding and subsequent lysis. As we will see in the following, it is the 

presence of the water containing bacteria on the fiber surface that leads to strong increase in the 

fiber absorption before washing. After washing, only dry bacteria chunks remain bound at the 

fiber surface and, therefore, fiber loss decreases. Thus, the additional loss after washing is most 

probably due to scattering on the bacteria remains. 

 

Fig. 4.9. Transverse distribution of power flow for the fundamental mode of (a) the real 

waveguide and of (b) the simplified design of the waveguide profile. The field is confined in 

the central solid core and is guided by total internal reflection. 

 

To create a theoretical model of the experiment we first studied the modal structure of our 

fiber. We started by importing the fiber cross-section as captured by the optical microscope 

Fig. 4.1. (a) into COMSOL Multiphysics Finite Element software. The complex effective 

refractive indices and field profiles of both core guided and cladding modes were then studied. 
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Then, the power coupling coefficients were computed from the overlap integrals of the modal 

fields with those of the Gaussian beam of a source as described in [9]. The inspection of the 

coupling coefficients confirms that the fundamental mode is predominantly excited in the 0.2 – 

2.0 THz frequency range. The transverse distribution of the longitudinal power flux in the 

fundamental mode of a fiber at 0.71 THz is shown in Fig. 4.9 (a) and a typical penetration depth 

of the evanescent field into the air cladding is determined to be 25 5 m which is in good 

agreement with a theoretical estimate  
0.71

4 29core cladding
THz

     m. 

Next, absorption losses of a suspended core fiber with a bacteria layer have been 

investigated numerically using COMSOL. The simplified fiber geometry has been used to 

facilitate the task of distribution of bacteria on the core and characterization of the bacteria 

coverage ratio. We have reduced the transverse shape of the core to a circle and we have assumed 

that the bridges are straight and of constant width. The values of the waveguide core radius and 

the bridges width were chosen to make the changes in the effective refractive index, the 

absorption losses and the modal size minimal compared to the microscope imported design, and, 

hence, for simulation we used 175coreD  m and 30
bridges

d  m. 

E. coli are typically rod-shaped, about 2.0 m long and 0.5 m in diameter. To simulate 

bacteria we have approximated their shape as an infinite cylinder of diameter 1
bacteria

d  m. 

positioned along the fiber length. Considering that bacteria are mostly made of water (70% by 

total wet wt. [124]) we considered their refractive index and losses as those of the bulk water. 

The complex dielectric permittivity of water has been calculated using the full Rocard-Powles-

Lorentz model with the parameters taken from [129]. For 0.71 THz the water refractive index 

is 2.19+0.65i resulting in absorption loss of 191 cm
-1

. For low density polyethylene the real part 

of the refractive is about 1.514 in THz frequency range and the material loss are computed from 

the measurements [130]: 1 2[ ] 0.75 0.1 0.2cm      where is the frequency in THz.  

From the SEM images of the fiber surface with bacteria (see Fig. 4.8) we see that bacteria 

are randomly positioned on the core surface with relatively low concentrations. To take this into 

account in our simulations water cylinders (bacteria) were randomly distributed (see 

Fig. 4.10 (a)) on the fiber core surface with a fixed value of a coverage ratio (i.e., the core’s 

surface occupied by the water cylinders to the overall core’s surface). Then, the fundamental 
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mode and its losses were found using FEM software, and the modal losses were then averaged 

over 10 random bacteria distributions. 

 

Fig. 4.10. (a) Randomly distributed 1 µm water cylinders on the waveguide core’s surface for a 

given value of surface coverage. (b) Absorption loss of the fundamental mode for the fiber with 

a bacteria layer as a function of the bacteria coverage ratio. The crossing of the dash lines in the 

figure corresponds to the experimentally measured value of the propagation losses minus the 

theoretically estimated coupling loss for the 10
9
 cfu/ml concentration of bacteria. 

 

In Fig. 4.10 (b) we present the calculated propagation losses of the fiber fundamental 

mode as a function of the bacteria coverage ratio. We observe that the increase in the bacteria 

coverage ratio leads to a linear growth of the modal absorption losses. Due to much higher 

absorption losses of water compared to those of a polyethylene core, even a small coverage ratio 

of the bacteria results in large increase in the modal absorption loss. As an example, in 

Fig. 4.10 (b) we show at the intersection of the dashed lines the case of bacteria of concentration 

10
9
 cfu/ml that corresponds to the experimental fiber loss of ~1.2 cm

-1
 at 0.71 THz. Our 

theoretical analysis predicts that this loss is produced by the absorption loss of the fundamental 

modes due to 4% coverage ratio of water on the core’s surface multiplied by the modal coupling 

coefficient from the Gaussian beam to the fundamental mode, which corresponds well with the 

experimental value of the bacteria coverage ratio 4.35% found from the SEM observations  

Another important feature found in Fig. 4.10 (b) is an observation that for a given water 

coverage ratio, fiber absorption loss is small at low frequencies, then shows a rapid increase in 

the vicinity of 0.5 THz, and, then, at frequencies above 0.7 THz it simply follows the absorption 

loss of the polyethylene material with an almost constant loss contribution from the water layer. 
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This is easy to rationalize by noting that at low frequencies (< 0.3 THz in our case) the mode of a 

subwavelength fiber is strongly delocalized, and, therefore, its presence in the thin water layer 

around the core is minimal. When frequency increases (~0.5 THz in our case), the fiber mode 

shows rapid localization in the vicinity of a core region, and, therefore, its relative presence in the 

water layer and, hence, losses also rapidly increase. This also explains why in Fig. 4.4, there is 

little difference in the measured transmission losses of bare and bacteria activated fibers at 

frequencies below 0.5 THz. Finally, at even higher frequencies (above 0.7 THz in our case) the 

fundamental mode becomes mostly localized in the fiber core of radius R with a small fraction of 

power in a thin layer (of thickness d ) on the core surface being  2 3d R . Here we assume that 

the layer thickness is smaller than the evanescent field penetration depth into the air cladding 

 4 core cladding
d      , which is a true assumption all the way up to 10 THz. Considering 

that the bulk absorption loss of water increases   with frequency [126-128] we conclude that at 

higher frequencies absorption loss contribution due to a small water layer on the fiber surface 

becomes a slowly decreasing function of the operation frequency  3d R , compared to the 

2  behavior of the fiber loss due to polyethylene absorption (see Fig. 4.10 (b)). 

4.7 Conclusion 

We demonstrate the possibility of using suspended core ( d =150 µm) polyethylene THz 

fibers for sensing of the E. coli bacteria with detection limit of 10
4 

cfu/ml. The structure of the 

suspended core fiber allows convenient access to the fiber core and to the evanescent part of the 

guided wave. The outer cladding effectively isolates the core-guided mode from interacting with 

the surrounding environment such as fiber holders and humid air, thus making the fiber 

convenient to handle and to operate. 

It was shown that selective binding of the E. coli bacteria to fiber surface bio-

functionalized with specific phages unambiguously influences the THz transmission properties of 

the suspended core fiber. Moreover, changes in the fiber absorption loss can be correlated with 

the concentration of bacteria samples. Thus, our setup allows not only detection of the E. coli, but 

also quantitative measurement of its concentration. Presented bacteria detection method is label-

free and it does not rely on the presence of any bacterial “fingerprint” features in the THz 

spectrum.  
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A simple theoretical model was also developed in order to explain observed changes in 

the fiber absorption losses. It was found that the strong increase in the fiber loss can be explained 

by absorption of a thin water layer corresponding to the bound bacteria. 

 

.



69 

CHAPTER 5 

THIN CHALCOGENIDE CAPILLARIES AS EFFICIENT WAVEGUIDES 

FROM MID-IR TO THZ 

5.1 Introduction 

In this chapter we investigate low-loss chalcogenide capillary-based waveguides that 

operate both in the mid-IR and THz spectral ranges. By exploiting the outstanding performance 

of chalcogenide glasses in the mid-IR and THz spectral ranges one can envision building fiber-

based THz light sources with pumping in the mid-IR.  

5.2 Glass synthesis and capillaries fabrication 

The capillaries in this work are drawn under pressure from the chalcogenide glass melt by 

using a double crucible drawing technique [105, 106]. The wall thickness of the glass capillary is 

controlled during drawing using temperature and pressure, thus allowing fabrication of very thin 

capillaries with wall thickness, ranging in the 12 µm (Fig. 5.1 (b)) 130 µm (Fig. 5.1 (a)). 

 

 

Fig. 5.1. Fabricated chalcogenide glass capillaries with different wall thickness in the range of 

(b) 12 µm to (a) 130 µm by double crucible glass drawing technique. To perform an imaging of 

thin wall capillaries, such as capillary with 12 µm walls shown at (b), they were glued in epoxy 

and then polished. 

 

Chalcogenide glasses are typically synthesized from pure chemical elements, where bulk 

samples of vitreous arsenic chalcogenides of optical grade are produced by solidification of the 



70 

 

glass forming melt [131]. We here use As38Se62 glass. This composition was chosen because of 

its higher stability against crystallization during the drawing compared to As2Se3. An 80 g glass 

preform was prepared from the pure materials (Se: 99.999% 5N and As: 99.999% 5N). The 

compounds are introduced in a chemically cleaned and dried silica ampoule. The ampoule was 

then evacuated using a diffusion vacuum pump to the pressure of 5×10
-7 

mbar and placed into a 

rocking furnace where the glass is melted at temperatures above 600°C. In the next step, the glass 

is first slowly cooled down to 450°C and then quenched in cold water in order to solidify the 

glass forming-melt. The obtained glass rod is then annealed overnight under a temperature close 

to the glass transition temperature Tg (Tg = 165°C) so as to reduce inner stress caused by the 

quenching. The chalcogenide glass rod then removed from silica ampoule and inserted into the 

quartz-based double crucible.  

Traditionally, the double crucible set-up is used to draw step index fibers in which both 

volumes of the double crucible contain core and clad glasses with different refraction indices (i.e. 

different chemical compositions) in order to yield either a multimode or single-mode fiber, 

depending on the core size in the final fiber [131]. A schematic of our drawing tower with the 

double-crucible method is presented in Figure 5.2. In our case, the volume of the crucible 

designed for the fiber core remains empty while the clad crucible contains the synthesized 

As38Se62 glass. The entire chamber with the double crucible is purged at 50°C overnight with a 

constant flow of N2 to avoid O2 and dust particles in the heated zones. 

 

Fig. 5.2. Set-up for drawing capillaries using the double-crucible method. 
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The temperature slowly increases from the bottom to the top of the crucible. In the higher 

zone, at 400°C the glass starts to melt and flows down to the cooler zones (~295°C) along the 

crucible, thus the viscosity of the melt in the lower zones is higher which enables us to have a 

slower and more controllable flow. At the tip of the double crucible, a drop of glass is formed and 

as it goes down by gravity, the fiber is drawn like in a conventional fiber drawing tower. As soon 

as the drop reaches the tractor, it is pulled down with a controlled speed; meanwhile the pressure 

in the core crucible is increased in order to form a capillary. By varying the drawing conditions 

such as tractor speed and pressure in the core, numerous dimensions of capillaries and wall 

thicknesses have been obtained.  

In case of capillaries with thin walls (around 20 μm), the mechanical stability of the 

drawn fiber can sometimes be low. If the walls of the capillary are very thin, they can be easily 

crushed due to squeezing within mechanical parts of the tractor during the fabrication or later 

with fingers. For the capillaries with the outer diameter of 2 mm and wall thickness 80 µm the 

minimal bending radius is around 15 cm, which demonstrates good mechanical strength. 

However capillaries with thinner walls are still very fragile and are almost impossible to be bent. 

5.3 Absorption loss of the As38Se62 glass 

 

Fig. 5.3. Absorption loss of the As38Se62 rod with diameter 350 µm. Absorption bands in the 3–

5 µm spectral range corresponds to impurity absorptions due to SeH bond at 3.53, 4.12, 

4.57 µm. Also strong absorption bands at 2.72.93 µm and 6.31 µm are due to OH–group and 

water. 
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Figure 5.3 presents the absorption loss of the As38Se62 rod-in-the-air fiber with diameter 

350 µm in the 1–12 µm spectral range obtained by the cut-back measurement from 1 m to 30 cm. 

The minimum of attenuation is about 2.89 dB/m at 3.85 µm. One can notice that the absorption 

bands due to hydrogen impurities (O-H and H2O) are important compared with the SeH band at 

4.5 µm. Such impurities can be in principle removed by using standard static or dynamic 

distillation processes that requires complex glassware [131-133]. The increase of the optical 

losses in the 10–12 µm spectral region is usually explained by the effect of the oxygen impurity 

(Se-O, Arsenic oxides) [133-135]. 

In the mid-IR spectral range we have used Sellmeier fit of the real part of the refractive 

index versus wavelength [136]: 

     
1/2

2 2 2 2 2 2 2 2 2 2
0 1 2 3 1( ) 1 19 4n A A A A A     

  
        ,                   (5.1) 

where
0A  2.234921, 1A  0.24164, 

2A 0.34744, 
3A  1.308575 resulting in the values in the 

range 2.76 – 2.8. As38Se62 glass in the 2–12 μm range features a relatively small absorption losses 

0.01 cm
-1

, while showing complex and generally nonmonothonic growth of the absorption losses 

with the subsequent increase of the wavelength in the 418 THz spectral range. 

The refractive index of the chalcogenide glass in THz spectral region was measured in 

house using THz-TDS setup. The real part of the refractive index was found to be nearly constant 

in the whole 0.1–2.5 THz range and its value is approximately 3.12. The imaginary part of the 

refractive index in the 0.12.5 THz spectral range was found to increase quadratically with 

frequency and can be estimated as 21.9 50.9   where   is the frequency in THz. 

5.4 Results and discussion 

 

Fig. 5.4. (a) Profile of the capillary waveguide. (b) Fabry-Pérot etalon. 
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As we have mentioned earlier, the guiding mechanism of the leaky core modes in the 

capillary waveguide (chalcogenide glass tube) is similar to that of the antiresonant optical 

waveguides (ARROWs) [99, 100, 103, 104], and can be simply described by considering the 

capillary wall as a Fabry-Pérot étalon [Fig. 5.4 (a)(b)]. Close to the resonance 

frequencies [Eq. (5.2)], there is almost no reflection from the tube walls and, consequently, light 

is not well confined inside the capillary. On the other hand, under the antiresonant condition 

considerable reflections at the inner side of the tube result in the strong light confinement (waves 

bounce back and forth inside of the capillary). 

The resonant frequencies of the tube wall are given by the condition of the constructive 

interference between the multiple reflections of light between the two refracting surfaces of the 

wall [Fig. 5.4 (b)], where 
2

n  and 
1

n  denote the refractive indices of chalcogenide glass and air 

respectively, 1  
and 2  are incident and reflected angles with respect to the interface normal 

respectively; t  is the wall thickness of the capillary. Then, frequencies at which the tube wall 

becomes virtually transparent to the incident light are given by: 

 
2 2 2

2 2 2 12 1 2

2 cos 22 1
m

mc mc mc
f

n t t n nn t n n


  
       

 ,                       (5.2) 

where c  is the speed of light in vacuum, m is an integer and we suppose that radiation angle of 

incidence is grazing ( 1 2  ), which is true for the capillaries with diameters much larger than 

the wavelength of light. These resonances result in the appearance of the periodic minima in the 

capillary transmission spectrum. The bandwidth of the transmission windows is given by: 

1 2 2
2 12

mm

c
f f f

t n n
   

 
 ,                                            (5.3) 

or in terms of wavelength: 

1
1 2 2

2 12

m m
m m

t n n

 
   




   

 
 .                                            (5.4) 

The modal characteristics of the pipe waveguides have been also numerically investigated using 

full-vector transfer matrix theory and finite element method (COMSOL software). For each 

capillary the attenuation constants of the lowest 12 modes of the waveguide have been calculated. 
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The fundamental HE11 ARROW mode has the highest coupling coefficient with an incident 

linearly-polarized Gaussian beam and has the lowest attenuation constant. The resonance 

positions and the bandwidth of the transmission windows are the same for the fundamental and 

higher-order modes. Modal indices of the higher-order modes are somewhat lower than that of 

the fundamental mode. Within the ray-optics approach, this means that the higher-order modes 

propagate at a higher inclination angle (with respect to the propagation axis) than the 

fundamental mode; the modes with higher angles at the core-cladding interface incur larger 

attenuation constants. Also we note that the modes of a fiber only with angular momentum equal 

to 1 can be excited by the incoming (centered) Gaussian beam due to symmetry considerations. 

Finally, distribution of the transverse E field components  ,x x
output output outputE E E at the output 

facet of a fiber of length wL  is modeled as a coherent superposition of the N  12 lowest loss 

guided modes: 

  ,
1

( , , ) , , exp exp
2

N
m m

output m m weff m
m

L
E x y C E x y i n L

c


 



  
  

   
     


 ,              (5.5) 

where  ,x x
output output outputE E E  stands for the transverse field components of the m-th guided 

mode. The variables m  and 
,eff m

n  denote respectively the power loss coefficient and the real 

effective refractive index of the m-th mode at a given frequency  . The variable mC  refers to the 

standard normalized amplitude coupling coefficients computed from the overlap integral of the 

respective flux distributions of the m-th mode with that of the input beam [7]. 

Transmission measurements were performed in two spectral ranges: in mid- IR from 1.5 

to 14 µm by the Fourier Transform Infrared Technique (FTIR) using a modified ABB FTLA2000 

Fourier transform IR spectrometer, and in THz spectral range from 0.1 up to 3 THz by a 

Terahertz Time-Domain Spectroscopy (THz-TDS) setup. The setup consists of a frequency-

doubled femtosecond fiber laser (MenloSystems C-fiber laser) used as the pump source and two 

identical GaAs dipole antennae used as source and detector of a spectrum ranging from ~ 0.1 to 

3 THz. Contrary to the standard THz-TDS setup where the configuration of parabolic mirrors is 

static, the utilized setup has mirrors mounted on translation rails. This flexible reconfiguration 

facilitates mirrors placement, allowing measurement of waveguides up to 50 cm in length without 

realigning the setup (for more details see [9]). 
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5.4.1 Capillaries in mid-IR spectral range 

In the mid-IR spectral range, the dominant guidance mechanism is the anti-resonant 

reflection from the capillary walls with the highest fraction of power concentrated inside the 

hollow core. 

 

Fig. 5.5. (a) Absorption losses of capillary with 22 µm average wall thickness in spectral range 

from  214 µm, measured with the cut-back method. (b) Measured period of the resonances 

  as a function of product of two consecutive resonance wavelengths 
1m m    (µm

2
) from 

Fig. 5.5 (a) of absorption losses. (c) Measured period of the resonances f  as a function of 

frequency. Blue dashed line is the experimental fit of the resonances, which gives the wall 

thickness value of 21.2 4.8fitt    µm, which is in a good agreement with measured with 

optical microscope wall thickness 22.1 5.5t   µm. 

 

Very thin chalcogenide capillaries with wall thickness below 25 µm and outer diameter 

12 mm guide very well the mid-IR radiation with losses from 7 to 16 dB/m depending on the 

wavelength. Figure 5.5 (a) illustrates the absorption losses of capillary with average wall 

thickness of 22 µm in the spectral range from 214 µm, measured with cut-back method by FTIR 

technique. The results of the transfer matrix calculation for the fundamental mode are shown as a 

dashed line. The comparison of the theoretical results with the experimental data shows that for 

such capillaries the positions of the absorption minimums and the widths of the transmission 

R2=0.96 
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bands can be well described by taking into account only a single fundamental HE11 mode. 

Figure 5.5 (b) shows measured periods of the resonances 
1 mm      (difference between the 

two adjacent absorption loss maxima 
1m 
, m ) as a function of product of two consecutive 

resonance wavelengths 
1 mm    (µm

2
). Blue dashed lines in the figures 5.5 (b) and (c) are the 

theoretical fits of the experimental data using equations (5.3) and (5.4). From these fits we find 

that to explain position of the transmission minima capillary wall thickness has to have value of 

21.2 4.8
fit

t m   which is in a good agreement with measurements corresponding to the wall 

thickness retrieved with the optical microscope 22.1 5.5t    µm (inset in the Fig. 5.5 (a)). 

 

Fig. 5.6. (a) Absorption losses of the capillary with average wall thickness 40 µm in the spectral 

range 214 µm. (b) measured period of the resonances 
1m m      (difference between the 

two adjacent absorption loss maxima 
1m 
,

m ) as a function of product of two consecutive 

resonance wavelengths 
1m m    (µm

2
) from Fig. 5.6 (a) of absorption losses. (c) Measured 

period of the resonances f  as a function of frequency. Blue line is the experimental fit of the 

resonances, which gives the wall thickness value of 41.4 5.6fitt   µm, which is in a good 

agreement with measurements via the optical microscope 40.1 6.2t    µm 

 

Figure 5.6 (a) illustrates absorption losses of capillary with average wall thickness of 40 µm 

within the spectral range from 214 µm. Compared to the thin capillaries, spectral oscillations in 

the transmission spectrum of the twice as thick capillary are much less pronounced, especially at 

shorter wavelengths. Weak oscillations are still visible between 8 and 13 µm. Figure 5.6 (b) 

R2=0.91 
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shows measured period of the resonances 
1 mm      (difference between the two adjacent 

absorption loss maxima 
1m 
, m ) as a function of product of two consecutive resonance 

wavelengths 
1 mm    (µm

2
) from Fig. 5.6 (a) of absorption losses, blue dashed lines are the 

experimental fit of the resonances, which gives a wall thickness value of 41.4 5.6
fit

t    µm, that 

is in good agreement with measurements with the optical microscope observation: 

40.1 6.2t m   [inset of Fig. 5.6 (a)]. The absorption losses measured using capillaries samples 

are typically consistently higher than the losses of the rods of the same material. We believe that 

it can be explained by the surface roughness of the capillaries. The scales of this roughness and 

the nonuniformity of the capillaries wall thickness can be comparable with the wavelength 

causing the dissipation of the transmitted power. 

 

 

Fig. 5.7. (a) Absorption losses of the capillary in the spectral range 214 µm, it tends to show a 

featureless spectrum with ~15 dB/m losses. (b) and (c) optical micrographs of the capillary with 

outer diameter of 0.98 mm and averaged wall thickness 117 µm. 

 

When using even thicker capillaries, the spectral contrast between minima and maxima in 

the mid-IR transmission spectrum decreases, and in very thick capillaries with wall thicknesses 

above 100 µm, the oscillations are not detectable with the FTIR technique. 

Capillaries tend to show a featureless spectrum with ~15 dB/m losses. Figure 5.7 (a) 

illustrates absorption losses of the capillary 0.98 mm in diameter with average wall thickness 

117 µm in the spectral range 214 µm [Fig. 5.7 (b), (c)]. 
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5.4.2 Capillaries in the THz spectral range 

In the THz spectral range, the thicker capillaries (~100 µm) show clear anti-resonant 

guidance with periodic minima and maxima as a function of frequency. Figure 5.8 (a) illustrates 

the transmittance through a 50 cm long capillary with wall thickness t = 98 μm and diameter 

0.95 mm with total losses by power (coupling and transmission) ranging from 58 to 93 dB/m 

depending on the frequency. 

 

 

Fig. 5.8. (a) Transmittance by field of the effectively single mode 50 cm-long capillary with 

98 µm average wall thickness and 0.95 mm diameter in the spectral range between 0.1 

2.5 THz. At lower frequencies ( < 0.3 THz) guidance mechanism is of TIR type with losses 

~44 dB/m, while at higher frequencies ( > 0.3 THz) guidance is of ARROW type with total 

losses ranging in the 58  93 dB/m range depending on the operation frequency; (b) and (c) 

optical micrographs of the capillary used in the experiments with outer diameter of 0.95 mm 

and averaged wall thickness 98 µm .Orange dashed lines correspond to the positions of the 

water lines in the THz spectrum. 

 

Numerical simulations show that a 50 cm-long chalcogenide capillary of 0.95 mm 

diameter and 98 µm thickness operates in the effectively single-mode regime, while higher-order 

modes contribute only to small oscillations in the fiber transmission spectrum due to their higher 

attenuation constants.  
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Fig. 5.9. Longitudinal energy flux distributions for (a) ARROW type fundamental (HE11 mode) 

in thick wall capillary (98 µm thickness, 0.95 mm diameter) at 0.57 THz, (b) total internal 

reflection (TIR) type mode guided by the deeply subwavelength capillary walls at 0.18 THz of 

the same capillary. 

 

Particularly, at low frequencies (< 0.3 THz) the only guided mode supported by a 

capillary is a TIR mode where thin-walled capillary acts as a subwavelength waveguide (see 

Fig. 5.9 (b)). In this case capillary wall thickness is much smaller than the wavelength of light, 

while the capillary diameter is comparable or smaller than the wavelength of light. At higher 

frequencies (> 0.3 THz), the waveguide is again effectively single mode with the principal mode 

being the ARROW mode mostly concentrated in the fiber core (see Fig. 5.9 (a)). In this case, 

capillary wall thickness is comparable to the wavelength of light, while the capillary diameter is 

much larger than the wavelength of light. Longitudinal energy flux distributions for the ARROW 

and TIR modes computed at frequencies 0.57 THz and 0.18 THz are shown in Fig. 5.9 (a) 

and (b). The operation frequency for the ARROW mode is chosen to be in the center of a 

transmission band, so that the fiber fundamental mode power is confined almost entirely inside of 

the capillary hollow core (see Fig. 5.9 (a)). In contrast, the TIR mode is guided mostly outside of 

the capillary with only a small fraction of power inside the hollow core (see Fig. 5.9 (b)). The 

capillary wall thickness of 91 μm (compared to 98 µm measured thickness) was taken in 

numerical simulations for the best match of the positions of the transmission peaks with the 

experimental data. This difference can be explained by the non-uniformity of the capillaries, their 

average thickness can differ slightly from the value measured on its facets. Alternatively, it can 

be explained by an inaccuracy in measurement of refractive index of the chalcogenide glass. Both 
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these values are key parameters in the equation which defines the positions of minimal and 

maximal transmittance of the capillary when it guides through anti-resonant mechanism. 

 

 

Fig. 5.10. (a) Transmittance of the capillary with average wall thickness 18 µm in the 

0.12.0 THz spectral range with ~19 dB/m transmission loss at 0.75 THz. (b)(c) photograph 

of the capillary used in the experiments with outer diameter of 1.56 mm and average wall 

thickness 18 µm . 

 

Finally, even thinner capillaries (wall thickness < 20 µm) show a broad 0.50.9 THz 

transmission band [Fig. 5.10 (a)] that corresponds to the TIR mode guided by the deeply 

subwavelength capillary walls. In Fig. 5.10 (a) transmittance of the capillaries with 18 μm thick-

walls is shown for various values of the capillary length (cut-back measurements). Capillary 

transmission losses are low (below 0.05 cm
-1

 / 19 dB/m at 0.75 THz) in the whole transmission 

window of 0.50.9 THz. Transmission measurements at different capillary length reveal the fine 

spectral structure, which could be a result of the structural imperfection of the capillary walls 

along the fiber length. The numerical simulations using transfer matrix method give a simple 

explanation to the spectral position of the transmittance peak of the TIR mode. It is simply a 

frequency at which the overlap between the TIR mode and incoming Gaussian beam (whose 

waist is proportional to the wavelength) is maximized.  
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5.5 Conclusion 

In this work we have demonstrated that chalcogenide glass As38Se62 capillaries can be 

used as efficient waveguides covering the whole mid-IRTHz spectral range. The capillaries are 

fabricated using a double crucible glass drawing technique. The wall thickness of the glass 

capillaries can be well controlled during drawing by using temperature and pressure parameters, 

thus, enabling fabrication of the chalcogenide capillaries with wall thickness varying in a wide 

range of 12 µm to 130 µm. Such capillaries show low-loss transmission of the mid-IR and THz 

light. Particularly, in the mid-IR range, guidance is mostly governed by Fresnel reflections at the 

inner walls of the capillary and by the resonances in the capillary walls (ARROW guidance). 

Additionally, in the THz spectral range capillaries with deeply subwavelength wall canguide via 

total internal reflection mechanism. 
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GENERAL DISCUSSION 

In the previous chapters I have reported experimental and theoretical results that were 

achieved within the three main research directions during my doctoral studies. In this section, I 

would like to clarify several specific questions regarding experimental setup, procedures, 

simulation methods and some other practical aspects that should be taken into consideration.  

Signal processing in THz time domain spectroscopy 

In this section, I explain the choice of the acquisition frequency in the temporal domain 

and the associated delay line displacement that allows avoiding spectral artifacts appearance. 

To obtain the amplitude and phase information from the experiment, we measure current 

signal at the detector antenna which is proportional to ( )THzE t  using a mechanical delay stage and 

a lock-in amplifier. We record one point of data at each position of the delay stage, N points in 

total. This gives us a discretely sampled signal (measured point-by-point) with t being the time 

interval between the samples. For any sampling interval t , there is a special frequency 

max[ ]THzf  called the Nyquist critical frequency, given by: 

max

300[ ]1
[ ]

2 2 2 4 [ ]

THz mc
f THz

t dx dx m





  
     ,                               (5.6) 

max min

1 300[ ]
[ ]

2 [ ]
df

t t

GHz mm
GHz

x mm


 


,                                       (5.7) 

where c  is the speed of light, dx  is the step size of the delay line and x  is the total 

displacement. For the frequencies equal or below Nyquist frequency THz spectrum can be 

retrieved without the aliases caused by sampling. 

Example of the THz electric field measured point-by-point in the time-domain ( )THzE t  

and its Fourier transform ( )THzE f  are shown in Fig. 5.11. Figure 5.11 (a) presents the THz 

electric field ( )THzE t  as a function of the delay line displacement. Figure 5.11 (b) shows the THz 

electric field ( )THzE t  as a function of the associated recalculated time in picoseconds. For better 

visualisation of the step size dx , measured point-by-point in the time-domain with 1024N   

points, 68.2t ps   and 10dx m  a zoom-in of the THz electric field ( )THzE t  is shown in 
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Fig. 5.11 (c). The Fourier transform of the time signal gives an amplitude ( )THzE f  with 

max 7.5f   THz (Fig. 5.11 (d)) and with a frequency resolution 14.66df   THz (Fig. 5.11 (f)). 

 

 

Fig. 5.11 (a) THz electric field ( )THzE t  as a function of the delay line displacement and 

(b) associated recalculated time in picoseconds. (c) Zoom-in of the THz electric field ( )THzE t

measured point-by-point in the time-domain with 1024N   points, 68.2t ps   and 

10dx m . The Fourier transform of the time signal gives an amplitude ( )THzE f  with 

max 7.5f  THz (d)-(e) and with a frequency resolution 14.66df  THz (Fig. 5.11 (f)). 

 

Thus, for a typical THz spectrum that extends from 0 to 4 THz (shown in Fig. 5.11 (e)), it 

is required to have Nyquist critical frequency max 5f THz  and scan with the step size 

15dx m to avoid spectral artifacts. Furthermore, a frequency resolution of 10 GHz requires a 

delay line displacement of 15x mm  , and a resolution of 1 GHz requires 15 .x cm   
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Ambient humidity  

Ambient water vapor has very strong absorption lines at THz frequencies. A detailed list 

of the frequency positions and strengths of the absorption lines can be found in the literature  [31, 

137]. In order to illustrate the strong effects of the water vapor absorption, a comparison of the 

typical spectra from the THz Emitter measured at 12% and 65% of humidity is given in 

Figure 5.12. 

 

 

Fig. 5.12. Comparison of the typical spectra from the THz Emitter measured at a) 12% and 

b) 65% of humidity. Water absorption lines are indicated by red dashed lines in the range of 

03 THz. At high humidity levels the spectrum is very much altered by absorption lines. 

 

Our THz system is placed within a large nitrogen purged cage to minimize the absorption 

effects. However it is impossible to completely remove the water vapor in our setup, this is why 

we can only compare “high” (6580%) and “low” (512%) humidity levels. Positions of water 

absorption lines are indicated by red dashed lines in the spectra presented in Fig. 5.12. It could be 

noticed that at high humidity levels the spectrum is very much altered by absorption lines. Thus 

before each experiment the cage was purged with pure Nitrogen overnight (approximately from 8 

to 12 hours) in order to reach 1012 % of humidity during the summer and 45 % during the 

winter time. 
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Fiber holders 

Another important question that I would like to discuss is the reproducibility of my 

measurements. It is influenced by many factors, but specific fiber holders used during the 

experiments are most crucial elements. Ideally, fiber holder should not cause any undesirable 

perturbations in the initial radiation during the measurements and in the same time allow placing 

the fiber at the same exact position during each measurement.  

Label-free bacteria detection 

 

 

Fig. 5.13. a) a top view and b) front view of the THz fiber, fixed between  two irises and placed 

between the focal points of the two parabolic mirrors for the label free bacteria detection. 

 

We used HFS001 V-groove hexagonal holder for the label-free bacteria detection 

experiments (see Fig. 5.13 a)). It has a V-shaped groove, which allows us to fix fibers with a 

typical diameter of 5 mm. The holder itself was fixed on the 3-axis translation stage. Also, in our 

setup two apertures are placed in the focal points of each parabolic mirror while the fiber is fixed 

between these two apertures (Fib 5.13 b)). Thus we can ensure consistent alignment during all the 

experiments. For example, in the case of the E-coli bacteria detection measurements the fiber has 

to be removed after each step of the experiment and then placed back. Our fiber holder and two 

apertures allow us to put the fiber back exactly at the same position as it was during the previous 

steps of the experiment.  
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Another aspect that has to be mentioned regarding the E-coli bacteria detection 

experiments is fiber drying. Earlier it was mentioned that the fiber was dried out for the 

transmission measurements. We found that the best way to dry the fiber is using a low flow of the 

compressed air. After the drying surface of the fiber core and bridges was checked under the 

optical microscope in order to avoid small drops of buffer or distillated water that could remain 

after the washing. 

 

Chalcogenide glass capillaries 

 

 

Fig. 5.14. a) Front view of the chalcogenide glass capillary, suspended on the threads fixed over 

the holder placed on 3-axis translation stage. This kind of holder was used, because thin-walled 

capillaries are very fragile. b) The capillary was aligned with respect of the two apertures and 

placed between the focal points of the two parabolic mirrors. 

 

Thin-walled chalcogenide glass capillaries with a wall thickness below 20 m are very 

fragile. And we have figured out that the most reliable way is to suspend the capillary on the tiny 

threads fixed over the holder which is placed on 3-axis translation stage (see Fig 5.14 a)). Then 

the capillaries were aligned with respect of the two apertures (see Fig. 5.14 b) as discussed above 

and placed between the focal points of the two parabolic mirrors. 
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Label-free bacteria detection 

Some comments have to be made about the Fig. 4.4 in the Chapter 4. As it was mentioned 

in Chapter 4, the THz subwavelength waveguide used in our experiments features a 150 μm core 

fiber suspended by three 20 μm-thick bridges in the center of a 5.1 mm diameter tube. This fiber 

was made from the low density polyethylene (LDPE) with a typical wall thickness 

750 50
wall

t   m. 

 

Fig. 5.15. (a) Transmission spectrums of the fiber during each step of the label-free bacteria 

detection experiment: step 1- black line, only phages, step 2 – red line, transmission of the fiber 

decreased due binding of E. coli bacteria to the phages, step 3 – blue line, fiber is washed with 

PBS. Green line –a reference spectrum. Positions of the water absorption lines are indicated by 

orange dashed lines. (b) The THz subwavelength waveguide used in our experiments features a 

150 μm core fiber suspended by three 20 μm-thick bridges in the center of a 5.1 mm diameter 

tube. (c) Transverse distribution of the power flow of the real waveguide at 0.25 THz. 
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The THz radiation is focused into the fiber with the parabolic mirror (Fig 4.2 (a)). The 

focusing of a Gaussian beam leads to a frequency-dependent beam size that is approximately 

given by: 
0 4 ( )d F D     , where F  is the focal distance of the parabolic mirror (4 inch), and 

D  is initial diameter of the Gaussian beam (in our case it equals the aperture size of the parabolic 

mirror which is 2 inches). Thus, we can estimate, that frequency-dependent beam size at focal 

point at 1 THz is around 767 m, while at 0.25 THz the beam size is around 2.56 mm. Due to a 

large beam size at low frequencies we have coupling not only to the modes of the core, but also 

to the modes of the waveguide as a whole. Moreover, the coupling efficiency of the initial 

Gaussian beam into the modes of the tube (the waveguide as a whole) dominates over the 

coupling into modes of the waveguide, since the wavelength is much higher than the dimensions 

of the core. The transverse distribution of the power flow of the waveguide at 0.25 THz is shown 

in Fig. 5.15 (c). For the simulation we have used the structure of the waveguide obtained from its 

microscopic photo. Fig. 5.15 (c) shows high delocalization of the modal power, the radiation is 

affected by the presence of the tube’s walls and, therefore, the diameter of the waveguide and its 

walls thickness affect transmission at low frequencies. The guiding mechanism at low 

frequencies is similar to the ARROW guiding in capillaries. Thus, the dips in the transmission 

spectra can be explained as antiresonant reflection conditions where the wall of the capillary acts 

as a Fabry–Perot resonator. Under the antiresonant condition considerable reflections at the inner 

side of the tube result in the strong light confinement inside this tube (waves bounce back and 

forth inside of the tube). The guiding mechanism of the pipe waveguides is described in 

Chapter 5. The resonant frequencies of the tube wall are given by the condition of the 

constructive interference between the multiple reflections of light between the two refracting 

surfaces of the wall (Fig. 5. 4 (b)), where 
2

n  and 
1

n  denote the refractive indices of plastic 

(polyethylene) and air, respectively; 
wall

t  is the wall thickness of the tube: 
2 2
2 12 wall

m

mc
f

t n n


 
, 

where c  is the speed of light in vacuum, and m is an integer. Typical value for the refractive 

index of Polyethylene is 1.514, thus resulting in 0.176f THz  , which perfectly fits the 

positions of the two resonances presented in Fig. 5.15. 

I would also like to emphasize that all presented graphs are the results of the averaging 

over 15 spectra measured during each step of the experiment. As it was mentioned before during 
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each step of the experiment we performed at least 10-15 scans of the transmitted spectrum (one 

scan takes ~1 min).  

Despite the high selectivity and sensitivity of the currently available methods, a number of 

drawbacks limit their universal application, notably the time duration required to yield a result, 

which typically varies from days to weeks. These detection methods are designed specifically for 

laboratory use and cannot be expected to serve in field. Plus, the supporting systems are 

expensive and require complicated sample processing as well as specialized operator training. 

This is why major research efforts are currently focused on the development of the efficient and 

low-cost sensor devices for detection of pathogenic bacteria.  

A great number of recent research projects were devoted to the investigation of the use of 

bacteriophages (phages) as recognition elements. The phages identify their host by specific 

receptor molecules on the outside of the bacterial cell, infect the host and use it as a factory for 

their own replication. The advantage of phages is their sensitivity and high specificity to bacteria. 

Moreover, these small viruses are harmless to humans and animals, are much less expensive and 

faster to produce than antibodies, and have a much longer shelf life. Phage-based recognition 

receptors also show very high thermal stability. In the same time a number of optical sensors 

have been developed for label-free detection of bacteria based on the surface plasmon resonance 

(SPR) or resonant mirrors (RM) effects. Both these effects offer very high sensitivity to 

variations in properties of the external medium.  

We suggest a first implementation of the label-free E.coli bacteria sensor based on the 

evanescent field of the fundamental mode of the suspended core THz fiber that combines benefits 

of the phages-based recognition techniques and evanescent field detection methods.  

The detection of the bacteria should be specific and selective in order to discriminate the 

real signals from false-positive signals. This is why after the phage absorption in our experiments 

the fiber was washed with distillated water and PBS, and then exposed fiber surface was blocked 

with bovine serum albumin (BSA) for 30 min in order to reduce nonspecific adsorption of the 

bacteria. The whole detection procedure takes only 40 minutes and does not require complicated 

sample processing.  

Finally, the detection limit of our method is on the order of 10
4
 cfu/ml. Strictly speaking, 

actual detection limit is 10
6 

cfu/ml, but significant changes in absorption losses are visible, 
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starting from 10
4 

cfu/ml. However these changes are less or comparable with an inaccuracy of the 

transmission measurements. 
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CONCLUSION 

In conclusion, I would like to summarize the results and point out the distinctive features 

of the completed projects, as well as indicate some directions for possible future improvements 

and research. 

THz composite films. In Chapter 3 a novel method for the fabrication of THz 

metamaterial composite films via fiber drawing and subsequent pressing of the metallic or 

dielectric microwire arrays into composite films was proposed. Additionally it was shown that 

fabricated metal wire based metamaterial films appear to have strong polarization properties, 

while chalcogenide-based metamaterial films produced by the same method obtain designable 

high refractive index and are polarization insensitive.  

As it was already mentioned in the introduction to the Chapter 3, there are two main 

distinctive features of our metamaterials. First of all, most of the existing experimental studies of 

the THz wire array materials deal with highly ordered arrays of relatively large diameter wires 

(hundreds of microns). Such ordered wire array materials could be easily described by existing 

analytical models. However in our case, due to specifics of the fabrication technique, we create 

arrays of parallel, while randomly positioned microwires of variable from wire to wire diameters 

on the order of 1-10 microns. Therefore, applicability of formulas developed for the periodic wire 

arrays to our metamaterials is questionable if at all justified. Instead, to describe our 

metamaterials one has to use effective random media theories such as Maxwell-Garnett or 

Bruggeman theories. Moreover, in most experimental work on the wire-array media one typically 

uses commercial wires made of good metals such copper or gold with dielectric constants that 

can be well fitted with a Drude model. Due to specifics of the fabrication technique, we can only 

use low melting temperature alloys which are thermo-mechanically compatible with plastics used 

during fiber drawing. In particular, we use alloys of semi-metals Tin (Sn) and Bismuth (Bi) with 

dielectric constants that cannot be generally described by a simple Drude model. 

The first obvious improvement over the accomplished work would be to use better 

materials, such as highly conductive metals together with thermally compatible low-loss(at THz 

frequencies) plastics or glasses. Among potential material choices are cupper/borosilicate glass or 

even amorphous metal/PSU polymer combinations. Second improvement would be a perfected 

fabrication technique that would result in highly ordered wire arrays embedded into the fiber host 
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material. This would result in better comparison with the existing theoretical predictions for the 

properties of the metal wire arrays, as well as improved polarization performance of the 

polarisers based on the composite films. 

Thus, applying the suggested improvements to the already developed design, cost-

effective mass-production of the presented wire-grid polarizers would become possible.  

Label-free bacteria detection. To our knowledge, a label-free E. coli bacteria sensor based 

on the evanescent field of the fundamental mode of a suspended-core terahertz fiber is studied for 

the first time. In the previous sections we were able to show the correlation between the fiber 

absorption losses and the bacteria concentration of the samples. It was also demonstrated that the 

detection of limit of our method is on the order of 10
4 

cfu/ml, which is comparable with the 

existing commercially available laboratory-based methods [80]. The commercial methods usually 

employ antibodies (Abs) as recognition elements instead of bacteriophages. Production of the 

specific Abs, however, is difficult, expensive and very time-consuming. Also, antibodies easily 

lose their activity when subjected to changing environmental conditions. Bacteriophages present 

an alternative method of bacteria capture that offer many advantages compared to antibodies. 

Particularly, phages are easy to produce in large quantities at a relatively low cost, they have long 

storage life and unlike antibodies can be physically adsorbed onto the fiber surface. 

Considerable sensitivity enhancement of our method is possible by increasing the amount 

of the initial phage coverage of the fiber surface by better anchoring the phages via covalent 

immobilization onto the fiber surface, rather than physical adsorption. This, however, implies 

considerable effort in fiber surface biofunctionalisation chemistry. However, this theme is beyond 

the scope of the current research but could be an interesting stand-alone interdisciplinary project. 

Thin chalcogenide capillaries. Chalcogenide glass As38Se62 capillaries were proved to 

act as efficient waveguides in the whole mid-infrared  terahertz spectral range. As it was 

mentioned earlier in the Chapter 4, guiding mechanism of the capillary waveguide is well known 

and is similar to that of the antiresonant optical waveguides (ARROWs), which can be simply 

described by considering the capillary wall as a Fabry-Pérot etalon. The resonant frequencies of 

the tube wall are given by the condition of the constructive interference between the multiple 

reflections of light between the two refracting walls of the capillary. Therefore, it is not surprising 

that the capillary wall thickness is the most important parameter that controls the fiber 
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transmission. Observed difference in the measured and theoretical results can be, in principle, 

explained by the radial and longitudinal non-uniformity of the capillaries, as well as by the lack 

of detailed knowledge of the chalcogenide glass refractive index in the whole near-IR and mid-IR 

frequency ranges. Both of these parameters are the key factorsin the equation that defines the 

positions of minimal and maximal transmittance of the capillary when it guides via anti-resonant 

mechanism. 

Although in our group we are able to fabricate chalcogenide glass capillaries of various 

sizes, degree of the capillary uniformity still remains an open question. For power transmissionof 

the mid-IR radiation the uniformity of the capillary wall thickness should be better characterised 

and controlled. A more uniform capillary thickness could be achieved by perfecting materials and 

processes, as well as by using various feedback algorithms during capillary drawing. 

One very promising application of the discussed capillaries is development of the all-fiber 

tunable, coherent and narrow-band THz sources based on the effect generation of THz difference 

frequency radiation by the mixing of two output lines of a CO2 laser in nonlinear crystals (e.g. 

GaAs, GaSe, ZnGeP2 or LiNbO3) [138, 139]. Our capillaries are proved to act as efficient 

waveguides in the whole THz to mid-IR spectral range thus it becomes possible both to generate 

and then guide the THz radiation within one chalcogenide glass capillary.  
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