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RÉSUMÉ 

Au Canada et aux États-Unis la majorité des nouveaux dispositifs de sécurités des ponts sont faits 

des parapets de béton coulé en place. Ce genre de parapets répond bien aux critères de 

performance recherchés pour la sécurité, soit maintenir sur le pont et bien rediriger les véhicules 

afin d’éviter qu’ils sortent de la chaussée. Cependant, les parapets sont coulés directement sur la 

dalle déjà durcie, ce qui restreint les déformations dues au retrait et aux variations thermiques. 

Ceci engendre la formation des fissures au jeune âge qui accélère la dégradation de parapets et 

diminue leur durabilité. De plus, la construction de parapets coulés en place constitue une étape 

qui ralentit la mise en service dû aux opérations de pose d’armatures et de mûrissement du béton. 

Ceci est particulièrement coûteux pour le remplacement de parapets sur les ponts existants. Pour 

rectifier ces problématiques de durabilité et de vitesse de construction, l’École Polytechnique de 

Montréal a mis au point des parapets préfabriqués en béton à haute performance renforcé de 

fibres métalliques (BHPRF). Les parapets préfabriqués ainsi développés permettent d’une part, 

d’augmenter la qualité de construction et d’éliminer la problématique de durabilité associée à la 

formation des fissures au jeune âge. D’autre part, les BHPRF utilisés ont une résistance à 

l’ouverture des fissures améliorée et une microstructure plus dense, ce qui ralentit la pénétration 

et diffusion des chlorures dans le béton. Enfin, les parapets préfabriqués permettent de réduire le 

temps d’installation et accélérer la réparation des ponts. 

L’obtention d’une performance mécanique adéquate pour le niveau de performance 2 (PL-2) avec 

des parapets préfabriqués en BHPRF a été démontrée dans des projets antérieurs réalisés à 

l’École Polytechnique. Cependant, la performance de l’ensemble parapet et dalle de tablier en 

porte-à-faux n’avait pas été évaluée. Ce projet de recherche a étudié le comportement mécanique 

de trois ensembles parapet et dalle en porte-à-faux de 6 m de longueur soumis à un chargement 

statique transversal appliqué sur les parapets visant à reproduire les forces d’impacts de 

véhicules. Les parapets avaient les configurations suivantes : un parapet continu coulé-en-place 

typique des constructions faites au Québec, et deux configurations de trois parapets préfabriqués 

avec niche de liaisonnement avec la dalle coulée en place, une configuration sans liaison entre les 

parapets et une configuration avec clés de cisaillement entre les parapets. Le comportement de 

chacune de ces configurations ont été analysés et comparés. 
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Les résultats ont démontré que les parapets préfabriqués reliés avec une clé de cisaillement ont 

une rigidité et une résistance équivalente au parapet coulé en place, et dépassent les exigences de 

conception des normes pour les ponts construits au Canada ou aux États-Unis. Les dalles en 

porte-à-faux ont toutes eu un comportement semblable pendant les essais avec un réseau de 

fissures bien réparti. Les résultats des essais ont été reproduits avec des analyses non-linéaires par 

éléments finis. Une étude paramétrique a ensuite été réalisée pour évaluer les effets d’échelle, 

pour déterminer les endroits critiques d’impacts, et pour étudier l’effet de certaines modifications 

de la conception des parapets et de la dalle. 

Les études paramétriques ont démontré que pour une longueur de 4 m, longueur attendue pour 

des parapets préfabriqués industriellement, il y un gain de résistance important pour les deux 

configurations de parapets préfabriqués (avec et sans clés) par rapport à des parapets préfabriqués 

de 2 m. Les configurations expérimentales, avec des parapets préfabriqués de 2 m de longueur, 

étaient aussi pénalisantes pour la performance mécanique de la structure que celle correspondant 

à un chargement excentré au bord des parapets préfabriqués de 4 m. Le choix de tester des 

parapets préfabriqués de 2 m était donc conservatrice. La conception de la structure dalle-parapet 

avec une dalle conçue en BHPRF offre des résultats intéressants. La dalle en BHPRF avec une 

résistance en flexion équivalente à celle d’une dalle conventionnelle permet une réduction de 

50% de la quantité de renforcement transversal, offre un gain de résistance et de rigidité à la 

structure, et diminue la fissuration pour une même charge appliquée.  

Ce mémoire décrit en détail ce projet de recherche : une revue de la littérature pertinente au sujet 

de recherché, l’étude préliminaire avec analyses par éléments finis pour établir les paramètres du 

montage expérimental, les plans de conception et de fabrication de chaque spécimen, 

l’installation et l’assemblage de chaque montage y compris l’instrumentation, les résultats et les 

analyses de tous les essais, et l’étude finale à l’aide des analyses non linéaires par éléments finis. 

Le mémoire contient deux articles soumis à des revues avec comité de lecture. 
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ABSTRACT 

In Canada and the United States the majority of new longitudinal bridge barriers are made with 

cast-in-place concrete barriers. These barriers adequately meet the safety performance criteria to 

contain and redirect errant vehicles. However, the barriers are cast directly onto the hardened 

deck and the restrained barrier movements due to shrinkage and thermal effects cause early-age 

cracking. The early-age cracking accelerates barrier deterioration and decreases their durability. 

Furthermore, between the rebar placement, formwork assembly, and concrete curing, the 

installation of cast-in-place barriers is a lengthy process delaying the operational readiness of 

bridges. The time costs are particularly high during barrier repair and replacement work on 

existing bridges. In order to resolve these problems, Polytechnique Montreal has been developing 

a new design of precast bridge barriers made from high-performance steel fibre reinforced 

concrete (HPFRC). Precasting improves fabrication quality and solves the problem of early-age 

cracking. In addition, the HPFRC has an increased resistance to crack openings and a denser 

concrete microstructure, which prevents the penetration and diffusion of harmful chlorides in the 

concrete. Finally, well-conceived precast barriers reduces installation and repair time of the 

bridge barriers. 

The mechanical performance of the HPFRC precast barriers was shown to exceed performance 

level 2 (PL-2) design criteria in recent projects carried out at Polytechnique Montreal. However, 

the overall performance of the precast barriers anchored to bridge deck overhangs was not been 

evaluated. In this research project, the mechanical behaviour of three different barrier 

configurations subjected to transverse static loading and anchored to identical 6 m long bridge 

decks with 1 m overhang lengths was evaluated. The following barrier configurations were 

considered: a typical cast-in-place barrier used in Quebec, and two arrangements of three precast 

barriers with a cast-in-place connection to the deck, in one the precast barriers were placed side-

by-side independently, and in the other shear keys were added between the adjacent precast 

barriers. The behaviour of the three bridge decks were then analysed and compared. 

The results demonstrated that the precast barriers with shear keys have a strength and rigidity 

equivalent to the Quebec cast-in-place barrier and exceed the design forces recommended in the 

Canadian and American bridge codes. The deck overhangs behaved similarly in each test with 

well distributed flexural cracks. Nonlinear finite element models were able to accurately simulate 
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each laboratory test and were then used to carry out a parametric study to investigate the effects 

of barrier length, eccentric edge loading, and design modifications.  

The finite element studies demonstrated that precast barriers with 4 m lengths, the expected 

industrial length of the precast barriers, there is a significant increase in load-carry capacity for 

the two tested precast barrier configurations. The effect of using 2 m precast barriers was shown 

to be at least as critical to the structural performance as eccentric loads applied at the edges of 4 

m precast barriers. The most promising design modification was changing the ordinary concrete 

slab design to HPFRC designed with an equivalent flexural resistance. The HPFRC slab allowed 

a 50% reduction in steel reinforcement, increased the load-carry capacity of the bridge deck, and 

reduced crack opening widths in the slab overhang for a given load. 

This master’s thesis comprehensively details this entire research project. The following sections 

are presented: a review of the relevant literature, the initial finite element study to determine the 

appropriate parameters for the laboratory tests, the design and fabrication of the test specimens, 

the installation and assembly of the test setup including instrumentation, the test results and 

analysis, and a final study using nonlinear finite element analysis. The master’s thesis contains 

two articles as they were submitted to peer-review journals.  
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CHAPTER 1 INTRODUCTION 

1.1 Problem 

Throughout the United States (U.S.) and Canada, the overwhelming majority of longitudinal 

bridge barriers are made using reinforced concrete cast-in-place safety shaped barriers (NCHRP 

574, TAC ATC 2010). The bridge barriers are meant to force errant vehicles to remain on the 

roadway and their two primary functions are (MASH 2009, CSA 2006):  

1. To contain the vehicle on the bridge; 

2. To safely redirect the vehicle back onto the roadway or bring the vehicle to a stop within 

an acceptable distance.  

Crash testing and field experiences have demonstrated that the commonly used Jersey and F 

shaped safety barriers adequately meet these mechanical demands. However, in aggressive 

environments, they often deteriorate prematurely and require expensive repair or replacement 

work to maintain their structural integrity (Haluk & Attanayaka, 2004). The deterioration is due 

to a combination of several factors. Often there is the formation of early-age vertical cracks on 

the barriers, as the deck slab fully restrains the barrier movements caused by concrete shrinkage 

and thermal dilations (Cusson & Repette, 2000). The barriers are also often exposed to severe 

environmental conditions, and in colder climates they must resist freeze-thaw cycles and the 

chlorides present in de-icing salts. The early-age cracks are aesthetically unpleasant, but more 

importantly they give an immediate opening for chlorides to quickly penetrate into the concrete 

matrix through capillary suction and absorption (Conciatori 2005). The corrosion of the 

reinforcing steel reduces the structural capacity, while the pressure induced by the rust growth 

causes concrete spalling, delamination, and pop-out. The use of epoxy-coated reinforcement has 

shown premature degradation. In areas with more extreme winter climates, such as Canada, the 

United States, and Northern Europe, these processes can lead to premature degradation of the 

barriers, and necessitate expensive bridge barrier repairs and replacement (Haluk & Attanayaka, 

2004). 

Since 2007, Polytechnique Montréal has been developing precast high performance steel fibre 

reinforced concrete (HPFRC) bridge barriers as a solution to the above durability issues. The 

proposed precast barriers offer several advantages compared to the cast-in-place barriers 
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currently in use. Precasting provides a higher standard of fabrication quality associated with 

industrialized manufacturing, and will allow the precast barriers to reach their steady-state 

volume at the precast plant without restraint. The HPFRC material has exceptional durability and 

mechanical properties. The HPFRC matrix microstructure is much denser than ordinary concrete 

and the steel fibres limit crack opening widths (Rossi et al, 1987). These properties prevent the 

penetration and movement of chlorides into the HPFRC, and provide a high resistance to chloride 

induced degradation. From a mechanical perspective, the steel fibres give the concrete an 

improved resistance to crack openings and increased fracture energy. The improved mechanical 

properties of the concrete allow the removal of up to 60% of the traditional reinforcement while 

maintaining an equivalent mechanical strength (Niamba 2009, Duchesneau 2010), thereby 

reducing the potential of damage due to steel corrosion. The HPFRC precast barriers will 

improve the barriers resistance to degradation by eliminating early-age cracking, by slowing the 

speed of water and chloride ingress into the concrete matrix, and by reducing the potential for 

corrosion.  

The improved durability of the precast barriers provides a strong incentive for their use, and the 

reduced construction time associated with their installation provides another. Cast-in-place 

concrete barriers are typically poured in alternating sequences, to reduce early-age cracking and 

to incorporate bridge expansion joints (TAC ATC 2011, Bisonnette and Morin 2000). For a 

standard single-span 30 m bridge, it is estimated that the sequenced construction (rebar cage 

assembly, formwork assembly, casting and curing) requires at least 18 days. However, the precast 

barrier systems designed at the Polytechnique Montréal (Niamba 2009, Duchesneau 2010) only 

require an estimated 4 days for installation (Charron et al, 2011), and the FHWA Connection 

Details for Precast Bridge Systems Report (CDPBS 2009) estimates a precast barrier installation 

time of 1 to 2 days. The faster installation (or repair) time of precast concrete barriers is a 

significant financial benefit, particularly in urban areas where construction costs associated with 

traffic delays and hazards can reach up to 30% of the total project costs (Duchesneau et al. 2011). 

Two precast barrier configurations designed according to Canadian Standards Association 

Highway Bridge Design Code (CSA 2006) performance level 2 (PL-2) requirements, equivalent 

to AASHTO test level 4 (TL-4), have been tested and analysed at Polytechnique Montréal 

(Niamba 2009, Duchesneau 2010). The experimental programs evaluated the static and dynamic 

performance of the barriers alone in order to demonstrate that the barrier and connection strength 
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met the needs of a PL-2 / TL-4 barrier. However, the mechanical behaviour of the precast barriers 

and slab at a realistic scale and with representative boundary conditions is necessary to evaluate 

the precast barrier designs as they will be used on highway bridges. The precast barriers do not 

have the same longitudinal continuity or connection detail as their cast-in-place counterparts, and 

there is a risk that the load transfer mechanics between the precast barrier and the deck slab could 

negatively impact the behaviour of the bridge deck, particularly the overhang portion of the 

bridge. In order to adequately assess the performance of the precast barriers, the mechanical 

behaviour of the reference MTQ Type 201 cast-in-place barrier must be evaluated as well. 

1.2 Objectives 

The experimental study described in this master’s thesis is meant to establish the performance of 

the precast barriers developed by Duchesneau (2010) in realistic bridge conditions. The 

experimental study will evaluate and compare the structural behaviour of 6 m long bridge decks 

with 1 m overhangs during the static loading of the bridge barriers to simulate the transverse 

impact forces from vehicles.  

Three different barrier configurations will be tested. Test Configuration 1 will test a continuous 

cast-in-place MTQ Type 201 F shaped barrier and establish the reference bridge deck behaviour. 

Test Configuration 2 will test the precast barriers developed by Duchesneau (2010) as they were 

designed. Test Configuration 3 will test the same precast barriers with the addition of shear 

connections between barriers. The design of a simple and effective shear connection between 

precast barriers compatible with the precast barriers developed by Duchesneau (2010) will be 

necessary for Test Configuration 3. Once the experimental tests will be completed and analysed a 

finite element study will be carried out to broaden the experimental findings and optimize the 

precast barrier design. 

The performance of the reference cast-in-place barrier configuration will be compared with that 

of the precast barrier configurations to determine their structural adequacy for use on highway 

bridges, evaluate the impact of using precast barriers on the durability of the bridge slab 

overhang, and to optimize the precast barrier design for industrial use. 

1.3 Methodology 

The research project was split into three distinct phases: 
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In Phase I, an appropriate setup for the experimental tests was designed. An initial qualitative 

finite element analysis study was carried out in order to establish the necessary bridge deck 

length, overhang width, and overhang support conditions. The finite element study also identified 

important performance indicators for instrumentation during experimental testing. Once the 

general parameters of the laboratory tests were established, the design of each laboratory 

specimen, load application details, and instrumentation plans could be finalized. 

In Phase II, the fabrication, installation, experimental testing, and data analysis for the three 

different test configurations was performed. 

In Phase III, a quantitative finite element evaluation was performed. First, the test configurations 

were accurately simulated. The validated numerical models were then used to correct fabrication 

errors and to evaluate key design parameters as a means to optimize the final design of the 

precast barriers. 

The results from Phases II and III were used to provide recommendations for the final design of 

the precast barriers to be used on actual bridges. 

1.4 Organization of Master’s Thesis 

This Master’s Thesis is divided into five Chapters. Chapter 1 introduces the research topic, 

problem statement, objectives, methodology, and report organization. Chapter 2 provides a non-

exhaustive review of the relevant literature. Chapter 3 consists of a stand-alone article on the 

results and analysis of the experimental portion of this project (Phases I and II) submitted for 

publication in the ASCE Journal for Bridge Engineering. Chapter 4 consists of a stand-alone 

article on the results and analysis of the numerical portion of this project (Phase III) submitted for 

publication in the ACI Structure Journal. Chapter 5 consists of complimentary information to 

both Chapter 3 and Chapter 4 that could not be presented in the articles. Chapter 6 concludes this 

research report by highlighting the important findings and observations and providing future 

recommendations concerning the project. Following the conclusion, five Appendices have been 

attached to comprehensively detail the design & as-built drawings (APPENDIX A), the 

instrumentation plans (APPENDIX B), the slab overhang design (APPENDIX C), the specimen 

fabrication (APPENDIX D), and the injected mortar optimization study (APPENDIX E).   
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CHAPTER 2 LITERARY REVIEW 

2.1 Introduction 

The safety and efficacy of highway bridge barriers has greatly improved since the advent of the 

automobile. The continued evolution in barrier technologies, barrier evaluations, and barrier 

design requirements and/or guidelines throughout North America are the driving force behind 

these improvements.  

The first part of this non-exhaustive literary review covers traditional barrier designs, the 

development of barrier regulations in the United States (U.S.) and Canada, and the most current 

governing regulations. The second part of the review of the literature is on the proposed designs 

of precast concrete rigid bridge barriers with an emphasis on the connection details, structural 

testing, and design methods developed for the precast barrier designs. 

2.2 Bridge Barriers 

2.2.1 Purpose 

Bridge barriers make up a primary safety feature of the bridge railing system. The barriers are 

installed on the edge of the roadway surface and should contain vehicles within the bridge. The 

Canadian Highway Bridge Design Code (CSA-S6 2006) stipulates that traffic barriers: 

Shall be provided on both sides of highway bridges to delineate the superstructure 

edge and to reduce the consequences of vehicles leaving the roadway. The barrier 

adequacy in reducing the consequences of vehicles leaving the roadway shall be 

determined from crash tests. 

The CSA (2006) underlying barrier design and evaluation theory originates from the American 

Association of State Highway and Transportation Officials (AASHTO) Guide Specifications for 

Bridge Railings 1989 and the AASHTO LRFD Bridge Design Specifications 2004. The 

AASHTO LRFD (2004) further clarifies that the primary purposes of the barriers are to contain 

the vehicle and either redirect it safely back into the roadway or bring it to a controlled stop. 
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2.2.2 Barrier Types 

Several types of barriers have been designed and constructed to meet the demands of the evolving 

vehicle fleet and to take advantage of newer technologies. The barriers are all intended to contain 

and redirect vehicles and to protect vehicle occupants and bystanders. However, their proper 

design depends largely on the geographic and demographic environment in which they will be 

used. Longitudinal barriers are broadly categorized as flexible, rigid, or semi-rigid (MASH 

2009).  

The flexible barriers are often preassembled and simply placed on the roadway surface with a 

pinned or bolted connection (Oregon Precast Barrier, Texas Cross-Bolt Precast Barrier, 

Washington State Precast Barrier). The flexible barriers are subject to large displacements up to 

2.5 m during heavy impacts (TAC ATC 2010), and are most often used for temporary 

installations or in areas of low speed traffic without heavy trucks. The large displacement limits 

the usage of flexible barriers to areas with sufficient room. 

Semi-rigid barriers are most-often permanently fixed to the roadway, and typically consist of 

high tension cable systems (HTCS), or weak-post W-beam guardrail systems. The HTCS are 

cheaper to install than more rigid steel guardrails and concrete barriers, and they have been 

shown to successfully contain and redirect vehicles during heavy impacts (Medina 2006, 

WSDOT 2009). However, they require too much space for deflections to be practically used on 

most bridges and are perceived by the public as less secure than more rigid barriers (TAC ATC 

2010). Semi-rigid barriers are most often used as medium barriers to prevent cross-traffic 

accidents, or on low-speed, low-use bridges and roadways. 

In spite of certain advantages of the flexible and semi-rigid barriers – cheaper installation, greater 

dissipation of impact energy, more aesthetically pleasing designs – rigid barriers are most 

compatible with bridge structures and better suited to resist heavy impacts. Rigid barriers are 

almost exclusively used on highway bridges throughout North America (TAC ATC 2010). Rigid 

barriers are fixed permanently to the roadway structure and experience only very small amounts 

of lateral deflection during vehicle impacts. The most commonly used rigid barriers are cast-in-

place concrete, metal post-and-beam, or a combination of the two (Figure 2-1). 
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a) Rigid Concrete Barrier b) Metal Post-and-Beam Barrier c) Combination Barrier 

Figure 2-1: Permanent Barrier Types (Photos from TAC ATC 2010) 

Although both concrete and post-and-beam barrier designs have been successfully crash tested 

and approved for use throughout North America, a survey of state DOT’s in the United States 

determined that concrete barriers account for over 75% of the longitudinal barrier inventory and 

that 44% of states do not use metal post-and-beam type barriers at all (NCHRP 574). The 

concrete barriers have likely gained the market since they have much lower maintenance costs 

(Mak 1990), and the increased flexibility of the metal barriers was not shown to improve 

occupant safety during impacts (NCHRP 289).  

The rigid concrete barriers have been in use since the 1940’s (NCHRP 244) and they have 

undergone extensive research and development. The safety shaped Jersey and F barriers have 

come to dominate the American market (Figure 2-2) and accounted for 68% of concrete barriers 

in use within the US as of 2006 (NCHRP 554). Their structural adequacy and vehicle impact 

interaction have consistently shown satisfactory performance during full-scale crash tests (Buth 

1990, FHWA Bridge Rail Guide 2005). 

 

Figure 2-2: Concrete Barriers Used in the United States (NCHRP 554) 
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2.2.2.1 Safety Shaped Concrete Barriers 

Research and development into rigid concrete barrier safety shapes began in the 1950’s at 

General Motors’ (GM) proving grounds in Milford Michigan (Mak et al. 1990) where the first 

safety shaped GM barrier was developed. The New Jersey Department of Transportation was also 

developing concrete safety shapes around this time and created the Jersey shaped barrier in 1959 

(Kozel 2004). In an effort to improve the vehicle stability after impacts with Jersey shapes, a 

numerical parametric study with six different barrier shapes labelled A-F was performed. The F 

shaped barrier demonstrated the most improvement in the parametric study, as well as in 

subsequent crash testing, and has since been incorporated onto North American bridge and 

roadways (McDevitt 2000). The geometry of the GM, Jersey, and F shaped concrete barriers are 

shown in Figure 2-3. 

   
a) GM Shape b) Jersey Shape c) F Shape 

Figure 2-3: Concrete Barrier Safety Shapes (McDevitt 2000) 

The safety shapes were designed to minimize damage to vehicles during impacts, and the vehicle 

impact behaviour with concrete safety shaped barriers is described by McDevitt (2000). During 

the more common shallow angle impacts with passenger vehicles, the front tires will most often 

simply ride up the lower sloped face and redirect the vehicle back onto the roadway with minimal 

damage. For more severe angle impacts there is a multi-stage response. The vehicle bumper will 

hit and ride up the upper sloped face of the barrier providing an initial uplift and redirection, and 

almost immediately after, as the vehicle begins to re-align itself parallel to the barrier, the wheel 

will then come into contact with lower sloped face of the barrier creating additional (and 

substantially more) vehicle lift. The multi-stage impact behaviour is shown Figure 2-4. The 

upward lift during impact lowers the friction between the vehicle and roadway and therefore 
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reduces the energy necessary to redirect the vehicle. However, the lift also decreases the vehicle 

stability and in certain instances can lead to vehicle rollover when returning to the roadway. The 

impact behaviour of heavy trucks is substantially different. A heavy truck will roll towards and 

over the barrier until the underside of the carriage slides along the top of the barrier, preventing 

the roll to continue as the truck is redirected back onto the roadway (Figure 2-4). 

  

a) Passenger Vehicle Impact b) Single Unit Truck Impact 

Figure 2-4: Typical Impact Response with Safety Shape (TAC ATC 2010) 

For passenger vehicle impacts the key design parameters are the angles of the two sloped faces 

and the height of the slope break from the road surface. The shallower the slope angle, the easier 

for the vehicle to roll up the barrier. The higher the slope break the longer the vehicle will ride up 

the lower sloped face. Shallower angles and higher slope breaks both generate more vehicle lift 

and roll during impacts (Mak 1990, McDevitt 2000). As can be seen in Figure 2-3, the slope 

angles of the three shapes are very similar but the slope break has been consistently lowered as 

the safety shaped barriers have been improved. The slope break of the GM barrier was too high 

and their use was discontinued due to vehicle instability during crash tests (McDevitt 2000). For 

impacts with heavy trucks the key design parameter is the barrier height. The truck carriage must 

come into contact with the barrier at a high enough point to prevent the truck from rolling over. 

The minimum height of the barriers is therefore an important design parameter and is specified in 

the North American codes depending on the expected level and speed of truck traffic. 

Critical vehicle accelerations during impact and vehicle rollover have been isolated as major 

causes of fatality during run-off the road accidents of passenger vehicles (NCHRP 289). An 
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optimized safety shape will provide enough lift to reduce vehicle contact with the roadway and 

lower vehicle accelerations without causing the vehicle to rollover. Full-scale crash tests and 

numerical simulations (Buth 1990, McDevitt 2000) have demonstrated that both the Jersey and F 

shaped barriers adequately contain and redirect vehicles. The F shape has a slope break 77 mm 

lower than the Jersey shape, and has been shown to be less likely to cause vehicle rollover (Buth 

1990, McDevitt 2000). However, the F shape was designed only after Jersey shaped barriers had 

already been installed in many regions throughout North America, and since the advantages of 

the F shape have not been unanimously demonstrated (Mak 1990) and the in-service performance 

of Jersey shaped barriers has been adequate, the Jersey barrier remains the dominant safety 

shaped barrier on bridges and roadways throughout North America. 

2.2.2.2 Single Slope 

Single slope barriers are another rigid barrier system currently in use in North America. These 

barriers come in two variations with either a vertical front face or a constant-sloped front face 

with an angle very similar to the upper sloped face of the safety shaped barriers (Figure 2-5). The 

single slope barriers present significant savings in terms of bridge and roadway maintenance. As 

opposed to safety shaped barriers, the geometry of the single slope barriers is not affected by the 

pavement overlay thickness. As long as the minimum barrier height is maintained new pavement 

can be poured directly on top of the existing roadway surface. For safety shapes however, the 

existing overlay must be ground down before refinishing, an expensive and time consuming 

process (Mak 1990). The single slope barriers also decrease the lift forces during impacts and 

therefore have a much lower risk of vehicle rollover. 

  
 b) Vertical Face c) Constant Slope 

Figure 2-5: Concrete Barrier Single Slope Shapes (TAC ATC 2010) 
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The 32 in. (812 mm) vertical face barrier was crash-tested by Buth et al. (1990) with a small 

vehicle, pickup truck, and single unit truck (SUT). The barrier successfully contained and 

redirected each vehicle, but the lateral accelerations recorded were significantly higher than those 

of the safety shaped barriers. For instance, the lateral acceleration recorded with the SUT impact 

test was 4.6 g and 2.5 g for the vertical face and F shape barriers respectively (Buth 1990). 

Essentially the vertical face barrier simply redirects the vehicle back away from the barrier; 

therefore the kinetic crash energy is absorbed primarily by vehicle crush during impact. The 

result is a more stable vehicle, but greater lateral accelerations associated with increased risk of 

occupant injury. 

The constant slope barrier was therefore developed to combine the advantages of safety shaped 

and vertical face barriers. Mak et al. (1994) crash tested a 32 in. (812 mm) constant slope barrier 

with a 79 slope face with a pickup truck and SUT. The constant slope barrier demonstrated 

improved vehicle stability, and lateral accelerations comparable to Jersey shaped barriers. Despite 

the potential economic gains of using a constant slope barrier, their use represented a very small 

amount of the concrete barriers in use throughout the US in 2006 (Figure 2-2). 

2.2.3 Considerations 

The constant-sloped barriers seem to strike a good balance between minimizing vehicle 

accelerations and maintaining vehicle post-impact stability, and the financial savings are also 

considerable since the pavement overlay thickness does not affect the barrier-vehicle impact 

behaviour (Mak 1994). The F shaped concrete barrier is the current standard in Quebec, CA, 

however consideration should be given to moving towards the use of constant slope barriers. 

2.3 Barrier Regulations in North America 

As personal vehicles and heavy truck traffic have increased in use throughout North America, it 

became necessary to standardize the design and evaluation of bridge and traffic barriers. In the 

U.S. there are several agencies that contribute to the development and oversight of codes 

governing the highway system. The combined and connected publications from the Federal 

Highway Administration (FHWA), the AASHTO, the Transportation Research Board (TRB), the 

Highway Research Board (HRB), and the National Cooperative Highway Research Program 

(NCHRP) have created a convoluted series of regulatory documents and jurisdictional authority.  
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The following section of the literary review is an attempt to trace the development of barrier 

design recommendations and crash testing standards in the U.S. and Canada. 

2.3.1 Chronological Development 

Due to the complicated nature of vehicle barrier impacts, crash testing has been used as a barrier 

design and development tool since the 1930’s. In the initial crash tests, vehicles were simply 

rolled down hills into barriers; there were neither standardized impact procedures nor evaluation 

criteria (FHWA Presentation 2009). In the 1950’s and 1960’s the personal use of automobiles 

became increasingly common and more extensive resources were devoted to the development of 

barriers. In the U.S. the first crash testing procedural guidelines were published in 1962 in HRB 

Circular 482. The one page document recommended using an 1819 kg sedan with an impact 

velocity of 97 km/h and at 7° and 25° impact angles. The idea was to reproduce the worst 

practical conditions with impact tests. Circular 482 was followed up with NCHRP Report 154. A 

16 page document published in 1974 that added the small vehicle (1023 kg) crash test, and 

proposed evaluation criteria for the first time. NCHRP 154 also considered other components of 

railing systems, such as terminals, transition barriers, and crash cushions. The crash testing 

guidelines were modified again in 1978 when the TRB published Circular 191 to address certain 

flaws in NCRHP 154. 

Throughout this time the American and Canadian regulatory agencies did not require crash 

testing for the design of bridge and roadway barriers. The design of the barriers was based on 

static design methods, past experience, and engineering judgment (TAC ATC 2010). In 1980 

another more complete set of crash testing guidelines was published in NCHRP Report 230.  

NCHRP Report 230 “Recommended Procedures for the Safety Performance Evaluation of 

Highway Safety Appurtenances,” was a 36 page document that updated crash testing procedures 

and evaluations. The report added large buses and heavy trucks into the crash test vehicle matrix, 

and implicitly introduced the concept of different barrier performance levels. The crash tests were 

evaluated on the barrier structural adequacy, occupant risk, and vehicle trajectory after collision. 

The NCHRP 230 report became the primary full scale vehicle crash test reference in the U.S. and 

Canada (MASH 2009, TAC ATC 2010). Crash tests throughout the late 1970’s and early 1980’s 

demonstrated that several of the highway and bridge barriers designed with static methods were 

structurally inadequate as shown in Figure 2-6, and several dramatically failed the NCHRP 230 
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crash tests (FHWA Memo 1996). As a result, the regulating agencies began implementing crash 

test requirements for the design and use of barriers. The FHWA first issued a policy 

memorandum in 1986 stating that bridge barriers on the U.S. National Highway System (NHS) 

had to be proven crashworthy according to the NCHRP 230 criteria. The FHWA memo contained 

a list of 22 barrier designs that were already considered crashworthy based on existing crash test 

data (these designs included both Jersey and F shape concrete barriers). The AASHTO Guide 

Specifications for Bridge Barriers published in 1989 also required for bridge barriers to be crash 

tested.  

  
Figure 2-6: Failed Crash Test (TAC ATC 2010) 

The Guide Specifications (1989) explicitly detailed the crash testing vehicle matrix and used the 

barrier multiple performance level concept. The multiple performance level concept was first 

formally introduced in NCHRP Report 239 (1981). The idea being that different site conditions – 

posted speed-limit, heavy truck traffic composition, barrier exposure index – merit different 

levels of barrier performance. Three different barrier performance level testing criteria were 

listed, and were different although generally compatible with the crash test matrix specified in the 

NCHRP 230, where the multiple performance level concept was implicitly present with the 

required (Level 2) and recommended supplementary crash tests (Levels 1 and 3). The AASHTO 

Guide Specification (1989) then provided a series of selection tables to determine the barrier 

performance level necessary for a given bridge. The selection tables were calculated with the 

cost-benefit analysis program called BCAP. The idea was to select the barrier performance level 

that provides an appropriate level of security with the least total cost, considering the costs of 

installation, maintenance, and vehicle crashes. 
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The AASHTO Guide Specifications (1989) also introduced the hierarchy concept that bridge 

anchors and decks should be designed to resist the ultimate moment, shear, and punching loads 

that can be transferred from the barrier. In other words, the barriers should fail before either the 

anchors or bridge deck. Static loads and loading conditions – height and surface – were specified 

for each barrier performance level to design the barrier anchors and bridge decks to resist the 

ultimate barrier capacity. 

The Ontario Highway Bridge Design Code (OHBDC 1991) incorporated most of the 

recommendations from the AASHTO Guide Specifications (1989) and was the first Canadian 

regulatory authority to require crash testing and introduce the multiple performance level 

concept. The OHBDC also used BCAP to create selection tables for the barrier performance 

level, and included design loads for the anchor and bridge deck design. These concepts were 

endorsed nationally throughout Canada with the release of the Canadian Highway Bridge Design 

Code in 2000. 

Modifications to the passenger vehicle fleet and more extensive experience with crash testing 

lead to the publication NCHRP Report 350 in 1993 as the successor to NCHRP 230. The new 64 

page report used metric units for the first time and replaced the 1819 kg sedan with a 2000 kg 

pickup truck as the standard test vehicle. NCHRP 350 also endorsed the multiple performance 

level concept, but defined them in terms of barrier crash test levels (TL). NCHRP 350 

categorized 6 different test levels for barrier classification. 

In 1994 AASHTO also published the LRFD Bridge Design Specifications 1st Edition as an 

alternative to the AASHTO Standard Specifications for Highway Bridges. In the AASHTO 

LRFD (1994) the barrier performance level concept was continued, however the vehicle crash 

test matrix differed from both the Guide Specifications (1989) and NCHRP 350 (1993). In order 

to limit confusion regarding the different crash testing specifications listed in the various research 

reports and regulatory documents, the FHWA, the ultimate authority on the NHS, issued a 

memorandum in 1996 to clarify its position on crashworthy barriers and formally define 

compatibility between the different documents (Table 2-1). The FHWA 1996 memorandum 

stated that: 

 As of august 16, 1998 all new barriers installed on the NHS had to be successfully crash 

tested to the NCHRP 350 criteria. Minimal TL rating for the NHS would be TL-3. 
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 Barriers successfully meeting the NCHRP 230 criteria are considered adequate and do not 

need to be crash tested again with NCHRP 350 requirements. 

 The FHWA strongly recommended that AASHTO adopt the NCHRP 350 crash testing 

criteria and test levels. 

 The FHWA published a list of 68 barrier designs accepted as crashworthy and their 

respective TL. 

Table 2-1: Barrier Crash Testing Equivalencies (FHWA Memo 1996) 

Bridge Railing Testing Criteria Acceptance Equivalencies 
NCHRP Report 350 TL-1 TL-3 TL-3 TL-4 TL-5 TL-6 
NCHRP Report 230 -- MSL-1,-2 -- MSL-3 -- -- 
AASHTO Guide Specs 1989 -- PL-1 -- PL-2 PL-3 -- 
AASHTO LRFD Specs 1993 

 

-- PL-1 -- PL-2 PL-3 -- 

AASHTO followed the FHWA recommendation, and in the 2nd Edition of the AASHTO LRFD 

(1998) six barrier crash test levels as defined in the NCHRP 350 were specified. The 1998 LRFD 

no longer provided selection tables to select the necessary barrier test level, but indicated a 

general guide and left the test level selection up to the bridge governing authority.  

The codes in the U.S. and Canada have continued to develop with emerging technologies and 

increased crash test data. However, no major innovations have developed in regards to bridge 

barrier design and evaluation since the 1990’s. In 2009 the Manual for Assessing Safety 

Hardware (MASH 2009) was published by AASHTO to succeed NCHRP Report 350. The 

MASH (2009) document updated the crash tests vehicles to better represent the traffic fleet, 

added more objective crash test evaluation criteria, and addressed some flaws noted in the 

NCHRP 350. The AASHTO LRFD 5th Edition and the AASHTO Roadside Design Guide were 

published in 2010 and 2011 respectively and are the most recent American publications on the 

design of bridge barriers. In Canada, a more recent bridge design code was published by CSA in 

2006, however there were no notable changes in the approach to bridge barrier design and 

evaluation from the 2000 edition. 

The FHWA remains the ultimate authority to approve barrier prototypes for use on the United 

States NHS. The FHWA maintains a public inventory assessable online, the Bridge Rail Guide 
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(2005), with approved barriers of different type and TL. Barriers approved for use in the U.S. are 

considered acceptable in Canada for the equivalent PL as defined by the FHWA in Table 2-1. 

2.3.2 Governing Codes 

2.3.2.1 Manual for Assessing Safety Hardware (MASH) 2009 

The MASH (2009) is based on the same worst practical conditions philosophy as the initial crash 

test document, HRB Circular 482. The idea is to create crash testing criteria that simulate extreme 

impact conditions that may occur over the lifetime of a barrier system. For instance, the small 

vehicle is representative of the 2nd percentile lightest and the pickup truck is representative of the 

90th percentile heaviest passenger vehicle. The impact speed, 100 km/h, and impact angle, 25°, 

together approximate the 92.5th percentile of off-road impacts on high speed roadways. 

Considering these crash test parameters together, the crash tests simulate extreme impacts for the 

lightest and heaviest passenger vehicles on the roadway. In addition, strategic critical impact 

points are identified for each barrier type and configuration to test the weakest portion of the 

barriers or areas of particular impact hazards. The critical impact points identified for rigid 

concrete barriers are at barrier joints and transitions between the rigid concrete barrier and 

potentially more flexible roadway barriers. Consideration is still given for practicality; the crash 

test criteria must allow for barrier types that are financially feasible. 

The MASH (2009) maintained the 6 TL’s from the NCHRP Report 350, and the test level vehicle 

types and speed requirements are shown in Table 2-2. TL’s 1-3 modify impact speed criteria, and 

TL’s 4-6 vehicle type criteria. General descriptions of the test vehicle types and weights are listed 

in Table 2-3, and photos of the standard test vehicles are shown in Figure 2-7. 
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Table 2-2: Test Levels (MASH 2009) 

Test  
Level 

Test Vehicle  
Designation and Type 

Test Conditions 
Speed km/h (mph) Angle (degrees) 

1 1100C (Passenger Car) 
2270P (Pickup Truck) 

50 (31) 
50 (31) 

25 
25 

2 1100C (Passenger Car) 
2270P (Pickup Truck) 

70 (44) 
70 (44) 

25 
25 

3 1100C (Passenger Car) 
2270P (Pickup Truck) 

100 (62) 
100 (62) 

25 
25 

4 
1100C (Passenger Car) 
2270P (Pickup Truck) 

10000S (Single-Unit Truck) 

100 (62) 
100 (62) 
90 (56) 

25 
25 
15 

5 
1100C (Passenger Car) 
2270P (Pickup Truck) 

36000V (Tractor-Van Trailer) 

100 (62) 
100 (62) 
80 (50) 

25 
25 
15 

6 
1100C (Passenger Car) 
2270P (Pickup Truck) 

36000T (Tractor-Tank Trailer) 

100 (62) 
100 (62) 
80 (50) 

25 
25 
15 

Table 2-3: Vehicle Gross Static Mass Upper and Lower Limits (MASH 2009) 

Test Vehicle Designation and 
Type 

Target Vehicle Weight, 
kg (lb.) 

Acceptable Variation, 
kg (lb.) 

1100C (Passenger Car) 1 100 (2 420) ± 25 (55) 
1500A (Passenger Car) 1 500 (3 300) ± 100 (220) 

2270P (Pickup Truck) 2 270 (5 000) ± 50 (110) 

10000S (Single-Unit Truck) 10 000 ( 22000) ± 300 (660) 

36000V (Tractor-Van Trailer) 36 000 (79 300) ± 500 (1 100) 

36000T (Tractor-Tank Trailer) 36 000 (79 300) ± 500 (1 100) 
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a) 1100C Passenger Car b) 2270P Pickup Truck 

  
c) 10000S Single-Unit Truck d) 36000V Tractor-Van Trailer 

Figure 2-7: Standard Crash Test Vehicle Types (TAC ATC 2010) 

A notable change in the crash test matrix between the MASH (2009) and NCHRP 350 (1993) is 

the SUT test for TL-4. In Report 350, the SUT had a specified weight and impact speed of only 

8000 kg and 80 km/h. The modification was necessary because the TL-4 test in Report 350 had a 

lesser impact severity (IS), a measure of impact energy, than its TL-3 test. The MASH has fixed 

this logical incoherence (Figure 2-8). The IS for TL-3 has also been increased from the NCHRP 

Report 350. 

 

Figure 2-8: Impact Severity (TAC ATC 2010) 
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The evaluation criteria in the MASH (2009) have become more precisely defined and 

quantifiable. Like the NCHRP Reports 230 and 350 (1980, 1993), three criteria are used to assess 

a full scale impact: 

1. Structural Adequacy 

2. Occupant Risk 

3. Post-impact Trajectory 

The barrier structural adequacy refers to the containment and redirection of the crash test vehicle. 

The primary function of a barrier is to maintain a vehicle on the roadway. The vehicle should also 

remain stable and return to the roadway with a maximum of 75° pitch and roll angles. Heavy 

trucks may rollover on their side during a successful crash test. The reason for this discrepancy is 

that crash data does not indicate the strong causal link between rollover and fatality for heavy 

trucks as it does for passenger vehicles. 

The occupant risk is considered in terms of penetration or excessive deformation of the vehicle 

occupant compartment, and the theoretical occupant impact velocity (OIV) and subsequent ride 

down acceleration. The theory is based on two concepts. The first is that penetration of barrier 

components into the vehicle can often prove fatal during high speed accidents and must be 

avoided at all costs. Likewise, if the occupant compartment deforms too severely during impact 

there is a much higher risk of fatalities. The extent of allowable intrusion is shown in Table 2-4, 

however specific limits are also provided for certain high risk components, such as the roof, 

windshield, and windows. 

Table 2-4: Occupant Compartment Intrusion Ratings (MASH 2009) 

Rating Extent of Intrusion 

Good < 6 in. (150 mm) 
Acceptable 6 in. – 9 in. (150 – 225 mm) 

Marginal 9in. – 12 in. (225 – 300 mm) 

Poor > 12 in. (300 mm) 

The second concept is the theoretical limits of OIV and vehicle ride down accelerations. This was 

introduced in NCHRP Report 230 (1980) and has been shown to be a relatively good measure of 
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impact risk. The idea is that the occupant will have an initial impact within the occupant 

compartment during impact, and then go through ride down accelerations. If the OIV and ride 

down accelerations are below a certain threshold criteria, the occupants are less likely to be 

critically injured. The OIV is simply the integral of the horizontal (x) and longitudinal (y) 

accelerations from the beginning of vehicle impact until occupant impact at time t*. And the ride 

down is the greatest average vehicle acceleration in the x and y directions after time t*. The 

acceleration is averaged over a 0.01 s time interval because accelerations that are less than 0.007 

s in length are typically not injurious to occupants. Time of occupant impact, t*, is found by 

taking the double integral of the lateral and longitudinal accelerations and finding the smallest 

time for either the lateral movement to reach 0.6 m or the longitudinal movement to reach 0.3 m. 

The MASH (2009) provides a maximum threshold and recommended limit for both the OIV and 

ride down acceleration (Table 2-5). The vertical accelerations are not considered because 

passenger vehicles must always remain upright and therefore vertical accelerations are seen as 

less critical.  

Table 2-5: OIV and Ride down Acceleration (MASH 2009) 

Occupant Impact Velocity, m/s (ft/s) 

Component Preferred Maximum 
Longitudinal, Lateral 9.1 (30) 12.2 (40) 

Occupant Ride down Acceleration, G 

Component Preferred Maximum 
Longitudinal, Lateral 15 20.5 

 
The post-impact trajectory is an effort to minimize the risks of a subsequent collision between the 

impacting vehicle and other vehicles or objects on the roadway. Ideally, the impacting vehicle 

will not rebound into adjacent or opposing lanes of traffic. MASH (2009) has adopted the exit 

box criterion directly from European norms. The idea is that when the crash test vehicles remain 

within a conceptual exit box after barrier impact, then they are unlikely to pose a high risk of 

secondary collisions during actual accidents. The exit box dimensions are based off of the vehicle 

type and geometry (length and width). The concept and dimensions are shown in Figure 2-9. 
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a) Geometry b) Concept 

Figure 2-9: Exit Box Criterion (MASH 2009) 

The MASH (2009) does not require in-service evaluation for barrier approval, but they are highly 

recommended. An in-service evaluation is seen as a valuable way to evaluate a barrier’s 

performance in numerous impacts with different vehicles, speed, angles, and site-conditions. The 

impacts will likely not be as extreme as crash tests, but they provide the missing information. 

Therefore crash testing and in-service evaluations are highly complementary. However, in-

service evaluations are also necessary to identify secondary problems with barrier design, such as 

installation difficulties, expensive maintenance, and poor durability. In-service evaluations 

provide valuable information; the problem is that it is difficult for a state or provincial agency to 

invest in an extensive in-service evaluation for an unproven barrier prototype. Therefore the 

amount of actual impact data collected before approval of a barrier for full use is generally very 

limited. 

2.3.2.2 AASHTO Roadside Design Guide (RDG) 2011 and LRFD 5
th

 Edition 2010 

The AASHTO RDG (2011) and LRFD (2010) are the governing documents guiding barrier 

design in the United States.  

The RDG (2011) gives general indications on bridge barrier purpose, performance requirements, 

selection guidelines, and maintenance or replacement. The RDG reiterates that longitudinal 

bridge barrier primary purpose is to prevent vehicles from leaving the roadway, that barriers must 

meet certain geometric criteria, resist static design loads as specified in the AASHTO LRFD 

(2010), and that all barriers on the NHS must have been crash tested to at least the TL-3 in 

NCHRP Report 350 (1993). Higher barrier test levels may be necessary if a barrier failure would 

be particularly hazardous, if the bridge height is abnormally high, and if the bridge shape is 

unusual. The selection of the barrier type depends on the following: 

1. Necessary barrier performance 
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2. Roadway and bridge barrier compatibility 

3. Cost (railings that minimize deck maintenance are desirable) 

4. Past Experience (barrier in-service evaluations) 

5. Aesthetics 

The top consideration should always be barrier performance needs however. The RDG (2011) 

states that most barrier designs since 1964 are structurally adequate. However, retrofit of these 

older barriers should increase barrier strength and improve longitudinal continuity. The RDG 

(2011) explains that the FHWA is responsible for the evaluation and approval of new barrier 

prototypes based off crash testing but also recognizes that there is a precedent for the FHWA to 

approve barrier designs similar to crashworthy barriers without requiring new crash tests (FHWA 

2000 Memorandum). 

The AASHTO LRFD (2010) specifies six barrier test levels and crash test criteria that are still 

based off of NCHRP Report 350. Barrier heights, geometric requirements, and design loads are 

also identified with respect for the design of new barriers for crash tests, as shown in Figure 2-10. 

Barrier design loads are to be applied with the Extreme Event II limit state with impact load 

factor of 1.0. The transverse and longitudinal horizontal forces are to be applied together and 

separately from the vertical force. The length of application of the transverse and longitudinal, LT 

and LL, come from the length of vehicle-barrier contact observed during crash testing. The 1.07 m 

(3.5 ft) is the length of the rear-tire axel of the SUT, and the 2.44 m (8.0 ft) is the length of the 

double axels of the design tractor-trailer truck. The length of the vertical load, LV, comes from 

the length over which the weight of the vehicle rests on the barrier. In the case of the SUT and 

tractor-trailer trucks, this length corresponds to the vehicle carriage. 

The Extreme Event II limit state is an ultimate limit state and therefore the barrier only needs to 

survive the application of these static loads. The LRFD (2010) provides simplified formulas to 

use Yield Line Analysis for the design of rigid concrete barriers with the load conditions 

specified in Figure 2-10. The barrier should also be checked for punching shear failure. The 

anchors and bridge deck overhang must also be designed for the Extreme Event II limit state, as 

well as the truck load in the Strength limit state. The LRFD (2010) recommends designing the 

anchors and deck to resist the shear and moment loads transferred from the barrier at its ultimate 

strength calculated using the yield line analysis. Thus, while the LRFD (2010) does not explicitly 
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mention the hierarchy concept, it is implicit since the anchors and slab overhang are designed to 

resist the ultimate barrier strength. It is recognized in the LRFD (2010) that since the barrier and 

deck overhangs are designed to survive crash tests, they are most likely overdesigned. 

The AASHTO LRFD (2010) does not provide detailed selection tables for the barrier crash test 

level to specify for different bridge sites, it does however provide the following guidelines: 

TL-1 Work zones in local streets with low traffic speed and volume 

TL-2 Generally acceptable for work zones 

TL-3 Acceptable for high speed roadways with low quantities of heavy vehicles 

TL-4 Acceptable for the majority of highways, freeways, expressways and interstates 

with regular mixture of trucks and heavy vehicles 

TL-5 Use justified in TL-4 areas where a high quantity of heavy trucks is expected or 

unfavorable bridge conditions exist 

TL-6 Use justified in TL-4 areas where heavy trucks with high centre of gravity are 

expected or unfavourable bridge conditions exist. 

LRFD defines unfavourable conditions as bridges with small bending radius, steep downgrades, 

and/or inclement weather. 

Design Forces and 
Designations 
 

Railing Test Levels Barrier Types TL-1 TL-2 TL-3 TL-4 TL-5 TL-6 
FT Transverse 
(kips) 13.5 27.0 54.0 54.0 124.0 175.0 

 

FL Longitudinal 
(kips) 4.5 9.0 18.0 18.0 41.0 58.0 

FV Vertical (kips) 
Down 4.5 4.5 4.5 18.0 80.0 80.0 

LT and LL (ft.) 4.0 4.0 4.0 3.5 8.0 8.0 

LV (ft.) 18.0 18.0 18.0 18.0 40.0 40.0 

He (min) (in.) 18.0 20.0 24.0 32.0 42.0 56.0 

Minimum H 
Height of Rail (in.) 27.0 27.0 27.0 32.0 42.0 90.0 

Figure 2-10: AASHTO LRFD (2010) Design Forces and Barrier Types 
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2.3.2.3 CSA (2006) Canadian Highway Bridge Design Code  

In Canada, the CSA (2006) is the national code governing both the evaluation and design of 

bridge barriers. The treatment of barrier loading, design, and evaluation is based off of the 

AASHTO Guide Specifications for Bridge Barriers (1989) and AASHTO LRFD (1994) 

documents whose design criteria were mainly influenced by NCHRP Report 230 (1980). 

Provincial codes may also provide extra stipulations for barrier design and crash testing; however 

they have not been included in this review of the literature.  

The CSA (2006) states that barriers must delineate the superstructure edge and to reduce the 

consequences of vehicles leaving the roadway, and the barriers are defined into three different 

performance levels as per the AASHTO (1989) and described as follows: 

PL-1 Sufficient for use in low traffic volume bridges with no unusual safety hazards 

PL-2 Sufficient for use on high-to-moderate traffic volume bridges on high speed 

roadways with normal mix of heavy truck traffic 

PL-3 Sufficient for use on high-traffic volume bridges on high speed roadways with 

large mix of heavy truck traffic 

The code commentary recognizes the equivalence between the three performance levels listed 

and the NCHRP 350 test levels as defined by the FHWA in Table 2-1. Like the older AASHTO 

documents, the CSA (2006) provides selection tables to determine what barrier performance 

level is necessary at different bridge sites. The selection tables were determined using the 

cost/benefit analysis program, BCAP, and consider the barrier clearance, traffic speed, and 

barrier exposure index (BEI). The BEI is itself determined using selection tables based off of the 

bridge AADT, roadway type, curvature, grade, and height. 

General crash test guidelines – vehicle type, weight, impact speed, and impact angle – are 

specified for the different performance levels. However, the commentary refers the evaluation of 

crash tests to be done in accordance with NCHRP Report 230 (1981). It also references 

previously crash tested barrier types and their level of crashworthiness (both the Jersey and F 

shaped concrete safety shaped barriers crash tested by Buth et al. (1990) for PL-2 are referenced). 

The CSA (2006) stipulates that crash tested barrier designs may be modified, but the 

modifications must not harmfully affect the vehicle barrier interaction during impacts. The 
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commentary provides examples of the following acceptable modifications: using materials of 

equivalent or superior properties or using anchors with equivalent or greater strength than crash 

tested anchors. The CSA (2006) commentary noted specifically that the rigidity of the barrier 

should remain unchanged or be increased. 

For the design of anchors, and deck overhang, the CSA (2006) provides the equivalent static 

design loads and minimum barrier height for each PL (Table 2-6). The application details are 

shown in Figure 2-11. The impact loads come from the AAHSTO Guide Specifications (1989); 

however they were adjusted to account for the live load factor of 1.7, and the noted increase in 

the strength of structures under dynamic loads of 40%. There is no dynamic load allowance, and 

the static design loads are to be applied simultaneously to the barrier. The barrier performance 

should be determined from crash tests. However, the design loads can be used for the initial 

design of new barriers, as well as for the anchor and deck overhang reinforcement details.  

Table 2-6: Equivalent Static Impact Loads (CSA 2006) 

Performance level Transverse load Longitudinal load Vertical load Height 
PL-1 50 kN 20 kN 10 kN 0.68 m 
PL-2 100 kN 30 kN 30 kN 0.80 m 
PL-3 210 kN 70 kN 90 kN 1.05 m 

 

 

Figure 2-11: Application of Impact Design Loads (CSA 2006) 
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The code stipulates that the transverse bending moment in the deck overhang should be 

calculated using the greater of either the CL-W wheel loads or the barrier impact loads as 

specified in Table 2-6 and Figure 2-11. An acceptable refined analysis method (grid lines, finite 

element) or yield line analysis method should be used.  

Anchors that have successfully passed crash testing are suitable for field use to the appropriate 

performance level. Anchors are considered to have passed crash testing if neither the anchors nor 

deck are significantly damaged (or need of replacement). New anchor details should be designed 

to resist the ultimate flexural, shear, and punching loads that can be transferred by the barrier 

during impact. However, their design need not exceed loads greater than specified in Table 2-6. 

2.3.3 Expected Modifications to American and Canadian Codes 

The publication of the MASH (2009), as well as an expected amendment in 2012 to the chapter 

12 of the CSA (2006) bridge design code dealing with bridge barriers (TAC ATC 2010), implies 

impending modifications to the treatment of bridge barriers by the governing authorities in the 

U.S. and Canada. 

The MASH (2009) modified the vehicle test matrix and impact conditions, notably increasing the 

impact severity for TL-3 and TL-4 barriers (Figure 2-8). Since the MASH is an AASHTO 

document and has also already been recognized as the successor to the NCHRP Report 350 

(1993) by the FHWA for the crash testing of new barriers as of 2012, it is very likely that the 

upcoming AASHTO RDG and LRFD editions will incorporate these changes with higher 

equivalent static design loads for barriers, anchors, and deck overhangs.  

The TAC ATC 2010 guide has shed some insight into the expected modifications to chapter 12 of 

the CSA (2006). Most notably, is the expected use of NCHRP 350 (1993) as the new basis for the 

crash testing and design load criteria. The three performance levels are expected to be converted 

to the six test levels as defined in NCHRP Report 350 (1993). The barrier heights are also to be 

changed to better comply with the crash test vehicle matrix from Report 350 (1993). Another 

expected change is the process of determining the necessary barrier PL/TL at a bridge site. The 

process is expected to be simplified, and one possibility is to use the algebraic approach currently 

used by the Ontario Ministry of Transportation.  
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2.3.4 Considerations 

The increased impact severity for TL-3 and TL-4 in the MASH (2009) is an important point to 

address because certain barriers that were shown to be adequate for TL-3 and TL-4 of the 

NCHRP Report 350 (1993) may no longer be crashworthy for these test levels. The TRB, 

AASHTO, and FHWA all worked closely together in the preparation of the MASH (2009) and 

anticipated this problem and a two-fold approach was taken. First, all barriers crash tested to the 

NCHRP Report 350 (1993) criteria are still considered crashworthy for the respective test level in 

MASH (2009) and are not in need of new crash testing. Second, during the preparation of MASH 

(2009), the TRB performed crash tests with the new testing criteria on several of the most 

popular barriers in use in the U.S. Most of the barriers passed the MASH (2009) crash tests for 

their respective test level, but one notable exception was the TL-4 32 in (812 mm) Jersey shaped 

concrete barrier. The SUT actually rolled over the barrier and therefore was not contained (The F 

shaped TL-4 32 in barrier was not tested). The FHWA and AASHTO will jointly review the 

results and decide on whether the Jersey barrier should still be considered adequate for TL-4 

designated areas. The FHWA may very well approve the continued use of the TL-4 32 in Jersey 

shaped concrete barrier; however, this provides another argument for bridge authorities to shift 

towards an increased use of constant-sloped barriers. 

It is important to note that both the CSA (2006) and the RDG (2011) allow for existing crash 

tested barriers to be modified without further crash tests so long as detailed analytical and/or 

experimental data demonstrate that the modifications will not have any negative effects on the 

crash test behaviour of barriers. This precedent was first set by the FHWA in their May 16th 2000 

Memorandum where they accepted the Colorado Type 10 bridge rail on the basis of analytical 

analysis and a comparison to the crash tested Wyoming TL-4 rail. This is an important method 

for the approval of barrier modification because the costs of crash testing are prohibitive.  

The discrepancies between American and Canadian regulations must be highlighted because in 

general the two nations share very similar codes, highways, vehicle fleets, and barrier designs. In 

general, Canada has been slow to update their regulations to reflect changes in the United States. 

Presently, the primary references for the CSA (2006) are NCHRP Report 230 and the ASSHTO 

Guide Specifications for Bridge Barriers published in 1980 and 1989 respectively. The updates 

expected to the CSA bridge design code in 2012 are only expected to move to the crash test 
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criteria from NCHRP Report 350 published in 1993. The CAN/CSA should make more of an 

effort to be up-to-date, if anything, to best account for changes in the passenger vehicle fleet and 

heavy truck traffic. The difference in the calculation of the static equivalent design loads is 

another important difference. The CSA (2006) accounts for the increase in strength of materials 

during highly dynamic impacts of approximately 40% while the AASHTO codes do not. The 

approach of the CSA (2006) is more logical, albeit less conservative than AASHTO and results in 

factored design loads that are 40% smaller than their AASHTO counterparts. The problem with 

this situation is that many of the barriers in use in Canada have been designed to resist the 

AASHTO design loads. Therefore the hierarchy principal that barriers should fail before the 

anchors and deck is potentially compromised on Canadian bridges when the barriers have been 

designed to the higher AASHTO factored loads, and the anchors and deck overhang to the lower 

CSA (2006) factored loads. This is a discrepancy that should be addressed in the upcoming code 

modifications. 

2.4 Precast Concrete Rigid Bridge Barriers 

Recently there has been a lot of research and development into designing adequate precast 

concrete rigid bridge barriers. The impetus for this research is the potential to produce a higher 

quality bridge barrier with a reduction in installation time related costs. Precasting is known to 

improve quality because standardized fabrication processes are used and the fabrication 

environment is well regulated. The on-site installation time can also be significantly reduced 

since the barrier arrives on-site already built and only needs to be fixed to the bridge deck. The 

FHWA Connection Details for Precast Bridge Systems Report (CDPBS 2009) estimates a precast 

barrier installation time of 1 to 2 days for a standard single span bridge and Charron et al. (2011) 

estimates, more conservatively, 4 days for the installation of undercut connected precast barriers. 

This represents an enormous savings in time costs compared to typical cast-in-place barriers. 

Between reinforcement placement, formwork assembly, concrete casting, and curing the cast-in-

place installation time for an equivalent single span bridge takes approximately 18 days (Charron 

et al. 2011). Another advantage of precast concrete barriers is that the shrinkage strains of the 

barriers are much less restrained (if not totally unrestrained) by the rigid bridge deck, and 

therefore shrinkage cracks are less likely to develop. The shrinkage cracks typical to cast-in-place 

barriers are aesthetically unpleasing and expose the steel reinforcement to more rapid migration 
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of chlorides reducing the barrier durability. It is clear that a well-conceived and well fabricated 

precast concrete bridge rigid barrier system can improve the bridge railing aesthetics, increase the 

barrier durability, and reduce time costs of installation. 

The key to all precast structural elements is the design of the connection detail between the 

precast element and the remaining structure. Moreover, as has been previously documented, all 

barriers to be approved for use on the U.S. and Canadian highway bridges must be proven 

through full-scale crash testing. Crash testing is a cost and labor intensive process, and very few 

regulatory agencies have been willing to invest in the crash testing of the precast barrier designs. 

This subsequent review of the literature will evaluate different proposed precast barriers, their 

connection types, and the different structural validation methods used to establish the structural 

adequacy of the precast barrier and connection. Finally, a small segment will also summarise the 

different analysis methods available in the literature for precast barriers.  

2.4.1 Connection Types 

The Precast Concrete Institute (PCI) Bridge Design Manual (2010) cites two typical connection 

types used between precast concrete barriers and bridge decks. The first, through anchor 

connection, uses threaded reinforcement protruding from the bottom of the precast barrier 

through the entire deck and are fixed underneath using bolts and bearing plates (Figure 2-12-a). 

The second, undercut anchor connection, is similar except the protruding reinforcement is 

anchored directly into the deck using some sort of adhesive anchoring system (Figure 2-12-b). It 

should be noted the anchors could be undercut in the precast barrier as opposed to the deck 

(Charron et al. 2011). These two connection types can be more broadly categorized as bolt-down 

anchor connections. There exists in the literature another connection type, where a voided recess 

is cast into the precast barrier and injected with a cementitious material (concrete, mortar, or 

grout) once the barriers are placed on the deck (Figure 2-13). The injected material and 

reinforcement protruding into the recess connect the barrier to the injected section to the deck. 

This connection type will be referred to as the injected recess connection. A few examples of 

these connections and their typical properties will be examined in the following sub-sections. 
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2.4.1.1 Bolt-Down Anchor Connections 

Bolt-down anchor connections are the most commonly designed precast barrier to deck systems 

found in the literature. These connections have been shown to be mechanically efficient and some 

designs have even been crash tested to NCHRP 350 Test Level 4 (LB Foster Precast Barrier, 

Clampcrete Precast Barrier). The general principal of these connections is to provide anchoring 

sleeves in the new bridge deck using PVC or steel with a sleeve spacing compatible with the 

precast barriers. The threaded rebars are then passed through the sleeves, bolted, post-tensioned, 

and grouted in place to secure the barrier to the deck (Figure 2-12). The through anchor design 

could also be compatible with existing bridge decks, however the decks would have to be cored 

at each anchor which would be very time consuming. The design considerations for these 

systems are the tensile capacity of the anchors and the concrete breakout capacity at bearing sites. 

Table 2-7 presents several different bolt-down anchor systems proposed and their general 

properties. The designs are similar, the main differences being barrier length, through-anchor or 

undercut anchor design, anchor spacing, anchor bar size, and anchor post-tension force. The 

anchor spacing is an important design consideration. The larger the spacing the faster the 

installation, but also the greater the tensile transfer force at each anchor during impacts.  

Some concerns with the bolt-down anchor systems is the extensive use of steel bars, nuts, and 

bearing plates that could potentially corrode if they are not properly protected from aggressive 

environments. The movement of water through the seams and corrosion of bottom anchors and 

steel framing has been observed for these systems (FHWA CDPBS 2009). Moreover, each 

anchor must be aligned, post-tensioned, and grouted at an average spacing of 645 mm, all this 

labor could potentially reduce the gains in time-costs associated with precast elements. 
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a) Mitchell 2010 Through Anchors b) Mitchell 2010 Undercut Anchors 

Figure 2-12: Bolt-Down Anchor Connections (Mitchell 2010) 

Table 2-7: Precast Barriers with Bolt-Down Anchor Connection 

Designer Barrier Length Connection Anchor Size Anchor Spacing 
Post-Tension 

Force 
 Alywan, 2007 6.10 m Through 25.4 mm 773 mm -- 

Clampcrete -- Through -- -- -- 

LB Foster 6.10 m Undercut 25.4 mm 610 mm -- 

Mitchell, 2010 1.52 m Through 19.0 mm 203 mm 50 kN 

Mitchell, 2010 1.52 m Undercut 19.0 mm 203 mm 50 kN 

Ngan, 2008 5.79 m Through 25.0 mm 830 mm -- 

Niamba, 20101 2.00 m Undercut2 32.0 mm 1500 mm 240 kN 

Patel, 20093 3.00 m Through 25.0 mm 600 mm 79 kN 
170 MPa-1.5% FRC barrier considered. 2Undercut side in Barrier. 3Also Sennah, 2011. 

2.4.1.2 Injected Recess Connections 

Only three examples of the injected recess have been found in the literature (Aminmansour 2004, 

Duchesneau 2010, and Jeon 2011). Figure 2-13 shows two of the proposed connections. The 

injected recess connections have proven to be mechanically efficient, as the Aminmansour (2004) 

and Duchesneau (2010) barriers have both shown static and dynamic resistances exceeding the 

load requirements for Test Level 4 barriers (Jeon as well but only with static tests). Still none of 

the injected recess designs have been proven through crash testing.  
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a) Aminmansour 2004 b) Duchesneau 2010 

Figure 2-13: Injected Recess Connection 

The advantage of this connection method is that the mechanics of force transfer from the barrier 

to the deck is done in a manner very similar to cast-in-place barriers, which has been proven 

through crash testing and extensive use throughout North America (Figure 2-2). The 

disadvantage is that the quality of the injection – material properties and fill – is an essential 

component of the structural capacity and must be adequately monitored and controlled. In the 

end-to-end injection method employed by Aminmansour (2004) and Duchesneau (2010), 

assessing the injection quality is particularly difficult because there can be no visual inspection of 

the recess. In the design proposed by Jeon (2011), shown in Figure 2-14, the cementitious 

material is poured into slits blocked out in the barrier that sit directly above the recess. This is 

perhaps an improved injection detail because it uses the force of gravity and the recess injection 

can be visually inspected. 
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Figure 2-14: Precast Barrier Jeon (2011) 

The Aminmansour (2004) design is the only recess that has hooped anchor bars entering the 

recess from both the barrier and the deck. Once in place a longitudinal bar is inserted between the 

hoops. This is an interesting detail because it confines the fill material between the opposing 

hoop anchors which is essentially working as continuous reinforced cylinder under multiple point 

loads (Figure 2-15). Aminmansour (2004) tested two series precast barriers, Series I with a 300 

mm hoop bar spacing and regular grout material, and Series II with 229 mm hoop bar spacing 

and a fibre reinforced grout material. Series I can be seen as a weaker recess design and Series II 

stronger. The results of form Aminmansour (2004) showed that increasing the recess capacity 

moved the failure area from the recess to the slab overhang (Figure 2-16), but both designs still 

had a similar ultimate strength, 269 kN and 277 kN respectively, and the weak recess exhibited 

significant energy dissipation as the dowel bar deformed and the crack opened (Figure 2-16). 

 
a) Before Testing   

 
b) After Testing   

Figure 2-15: Dowell Bar and Recess Reinforcement (Aminmansour, 2004) 
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a) Series I Failure Schematic b) Series II Failure Schematic c) Series I Failure Photo 

Figure 2-16: Aminmansour (2004) Static Test Results 

2.4.1.3 Longitudinal Barrier Continuity 

Several of the precast barrier designs, including the Clampcrete and LB Foster TL-4 crash tested 

barriers, have included a connection between precast barriers to provide a certain longitudinal 

continuity and to transfer the lateral impact force from one precast barrier to another (Jeon 2011, 

Ngan 2008, Patel, 2009). The barrier connection is most often a simple mechanical shear key 

(Figure 2-17), however some designs provide more robust shear and moment continuity (Figure 

2-18). 

The mechanical shear keys are typically simpler and more efficient designs. For instance, as 

shown in Figure 2-17, the LB Foster precast barrier uses a steel plate simply inserted into slits 

cast into the barriers, and the Jeon (2011) design cast a mechanical joint into the barrier shape. 

The experimental phase for Jeon (2011) highlighted that the dry joint was did not provide enough 

of a connection and an epoxy was added to improve the connection performance, increasing labor 

costs and perhaps transferring some bending as well. The shear and moment connection designed 

by Patel (2009) shown in Figure 2-18 uses a male/female connection between HSS and S beams 

cast into the barriers using shear studs. Once the barriers are placed the entire shear area is filled 

with grout. The Clampcrete design also shown in Figure 2-18 is perhaps more efficient. Steel 

dowels are fitted into metal couplers at the barrier edges to provide continuity to the longitudinal 

rebar. The dowel effect and the rebar continuity should transfer both shear and moment forces. 
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a) LB Foster (FHWA Bridge Rail Guide 2005) b) Jeon (2011) 

Figure 2-17: Longitudinal Connections, Mechanical Shear Keys 

 
 

a) Patel (2009) or Sennah (2011)   b) Clampcrete (FHWA CDPBS 2009) 

Figure 2-18: Longitudinal Connections, Shear and Moment 

Only the work of Jeon (2011) has evaluated the influence of the longitudinal connection on 

barrier performance, as the connection detail was improved during the experimental testing 

phase. The addition of the epoxy at the shear key increased the ultimate strength from 250 kN to 

290 kN. This implies that a longitudinal connection is an important design component of precast 

barriers; however, this does not localize the effect of the shear key but only the improvement of 

adding epoxy to the dry joint. Moreover, it should be noted that Jeon (2011) was testing a TL-5 

barrier and therefore the static load was applied over a 2.44 m length exceeding that of the 2.0 m 

precast barrier. Therefore the loading apparatus itself engaged the exterior barriers making it 

more difficult to evaluate the performance of the shear connection used. 
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In general, the longitudinal connection should be simple, effective, and durable. The connection 

proposed in the LB Foster system is very simple, but there is a risk that the eventually the steel 

plate could corrode and damage the barriers due to rust growth. The Patel (2009) connection is 

likely very mechanically effective but it requires costly materials and is more labor intensive and 

could also potentially have durability problems. The Jeon (2011) and Clampcrete designs seem to 

best combine simplicity, efficiency, and durability. 

2.4.2 Structural Validation Methods 

As has been stated previously, both the Canadian and American codes require full-scale crash 

testing before a barrier can be approved for use. This requirement is often necessary due to the 

complicated vehicle-barrier behaviour during impacts and is a means to guarantee both adequate 

barrier strength and vehicle impact response. However, the costs of full scale crash tests are 

prohibitive and in some ways an impediment to improving barrier designs. Table 2-8 lists the 

research projects on precast barriers cited in this review. It can be seen that in spite of the large 

resources devoted to the development of precast barrier systems, only two have actually been 

crash tested. As a means of avoiding crash tests, researchers have often restricted themselves to 

using a crash tested safety shape and then attempted to prove the structural adequacy of the new 

barrier systems using static and/or dynamic tests (Table 2-8). The idea is that if static or dynamic 

strength is shown to be sufficient to resist the impact energy associated with a barrier test level, 

and if the rigidity and shape are identical to the crash proven barrier, then it can safely be 

assumed that the new barrier would also be crash worthy. Certain local authorities, such as the 

New York Department of Transportation (FHWA CDPBS 2009), have accepted this design 

philosophy for approving the use of barriers within their jurisdiction. This section of the review 

will evaluate the primary methods used by researchers to demonstrate that their new precast 

barrier designs are crashworthy. In general either static tests, dynamic tests, numerical 

simulations, or some combination are used. 

The MASH (2009) does address the use of structural analysis, static tests, dynamic tests, and 

computer simulations in the design of new barrier systems in Appendix D, however none of these 

methods are deemed adequate to assess the crash test performance of a new barrier design. The 

applications and limitations for each of these design techniques according to the MASH (2009) 

are paraphrased in Table 2-9.  
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Table 2-8: Precast Barrier Structural Adequacy Evaluation 

Designer Barrier Design 
Level Static Strength Dynamic 

Strength 
Crash Test 

Level 
Structural 
Adequacy 

Alywan, 2007 TL-3 262 kN -- -- TL-3 
Aminmansour, 
20041 -- 277 kN 365 kN -- PL-2 / TL-4 

Clampcrete -- -- -- PL-2 / TL-4 PL-2 / TL-4 
Duchesneau, 
20112 PL-2 / TL-4  > 215 kN3 -- PL-2 / TL-4 

Jeon, 2011 PL-3 / TL-5 360 kN -- -- PL-2 / TL-4 

LB Foster -- -- -- PL-2 / TL-4 PL-2 / TL-4 

Mitchell, 2006 
and  2010 

TL-3 116 kN  170 kN3 -- TL-3 

TL-3 -- 271 kN3 -- TL-3 
Ngan, 2008 PL-2 / TL-4 250 kN -- -- PL-2 / TL-4 

Niamba, 20102 PL-2 / TL-4 350 kN > 215 kN3 -- PL-2 / TL-4 

Sennah, 2011 PL-3 / TL-5 175 kN -- -- PL-3 / TL-5 
1Series II considered. 270 MPa-1.5% FRC barrier considered. 3Max impact force.  

Table 2-9: Barrier Design Technique (MASH 2009 Paraphrased) 

Technique Application Limitations 

Structural 
Analysis 

Preliminary design of bridge barrier 
 

Barrier-vehicle impact behaviour unknown 
and occupant risk impossible to assess. 

Static Tests Validation of structural analysis and 
force-displacement behaviour  

Dynamic behaviour remains unknown, and 
occupant risk impossible to assess. 

Dynamic Tests 
(Pendulum) 

Dynamic strength of bridge barrier 
and anchor systems 

Only transversal impact and cannot 
evaluate extent of vehicle crush. 

Computer 
Simulations 

Parametric studies and design 
optimization 

Models need to be validated using crash 
tests and are influenced by small details. 

2.4.2.1 Static Tests 

Static tests are generally used in the design of new precast barriers (Table 2-8) and allow 

researchers to establish the structural capacity of the barrier, anchors, deck, and to evaluate the 

effect of certain important design modifications. There is no standardized ASTM static test for 
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barriers and therefore every research institution must develop their own testing setup (Figure 

2-19). Some of the key testing parameters to consider are the length, boundary condition (deck 

overhang or no), and loading surface. 

The static tests are considered to validate the system design when the factored equivalent static 

design forces from the AASHTO LRFD (2010) or CSA (2006) are met for the appropriate barrier 

TL or PL. In the case of the AASHTO LRFD (2010) loads, this may be overly conservative since 

the increase in material strength is not accounted for. The strength of materials is approximately 

40% higher due to high strain rate effects associated with vehicle impacts (CSA 2006), and it is 

likely that the barrier’s ultimate strength will be higher during dynamic tests than static tests. This 

physical phenomenon is apparent in the study of Aminmansour (2004) and Mitchell (2006), see 

Table 2-8. The MASH (2009) warns that although static testing will cause failure at the lowest 

load level, this may not be the lowest energy mode. The literature does not suggest that this 

would be a concern for rigid concrete barriers (Aminmansour 2004, Mitchell 2006, Niamba 2009, 

Duchesneau 2010). 

 
 

a) Aminmansour (2004) b) Duchesneau (2010) 

Figure 2-19: Static Test Setups 

2.4.2.2  Dynamic Testing 

Certain research projects have also created dynamic tests to establish the structural capacity of 

the precast barrier designs. The dynamic tests have the advantage that they can recreate realistic 

crash load histories (Figure 2-20) and indeed prove the dynamic capacity of the barrier systems. 

Though they require much more extensive preparation and instrumentation than static tests. 

The most typical setup is the pendulum or drop mass tests shown in Figure 2-20 (Aminmansour 

2004, Mitchell 2010). In the pendulum test, the impact severity is calibrated by varying the drop 
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height and suspended mass. If the impact between mass and barrier occurs at the lowest point, the 

kinetic impact energy ( 
 
   ) can be reasonably assumed to equal the potential energy (   ) 

before releasing the mass. The time history of the mass accelerations monitored with 

accelerometers are used to determine the load history and dynamic strength of the barriers. For 

these tests it is important that the crush package (mass nose) is calibrated to have a similar crush 

behaviour as a vehicle to accurately reproduce the loading signal.  

The test setup used at Polytechnique Montréal by Niamba (2009) and Duchesneau (2010) is an 

interesting and novel dynamic test. This impact setup used a hydraulic actuator to provide a 

controlled dynamic impulse onto the barrier specimen (Figure 2-21). The impulse signal was a 

smoothened load history recorded during the impact test of a Toyota Echo with a 20° impact 

angle and 110 km/h impact velocity published by Jiang et al. (2004). This testing method 

presents a more controlled method of applying the vehicle crash signal and there is no longer 

need for a calibrated crush package since the load history is controlled by the actuator. The 

instrumentation is also simplified since the actuator will also monitor the load history and 

accelerometers are no longer necessary. 

 
 

a) Test Setup (Mitchell 2006) b) Load History (Mitchell 2010) 

Figure 2-20: Pendulum Test 
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a) Application of Dynamic Force (Duchesneau 2010) b) Load History (Niamba 2009) 

Figure 2-21: Dynamic Test Setup Niamba (2009) and Duchesneau (2010) 

2.4.3 Analysis Methods 

An appropriate structural analysis of a precast barrier is one of the most important steps to detail 

and optimize a new barrier design. Presently, yield line analysis is the main method used to 

determine the ultimate strength of reinforced concrete cast-in-place barriers. Hirsch (1978) 

derived the yield line formulas initially proposed in the AASHTO Guide Specifications for 

Bridge Barriers (1989) and still used today in the AASHTO LRFD (2010). Jeon (2011) has 

derived new yield line equations based upon the failure planes observed during the static loading 

of TL-5 barriers. Yield line analysis has been shown to provide a good estimate of the barrier 

ultimate flexural strength for cast-in-place barriers. However, strut-and-tie analysis is perhaps 

better suited for the design of precast barriers. Strut-and-tie analysis considers shear, flexure, and 

torsion for reinforced concrete structures in a unified design approach and can be used to design 

disturbed structural regions such as impact areas and the load transfer between barrier and slab. 

Aminmansour (2004) did an extensive analysis of the force movement during static loading of 

barriers and provided valuable insights into an optimized strut-and-tie model. This portion of the 

review of the literature will examine the different design methods proposed by Hirsh (1978), Jeon 

(2011), and Aminmansour (2004). 

2.4.3.1 Yield Line Analysis 

Yield line analysis is an ultimate strength method and is based on the following assumptions: 

 Flexural strength controls the barrier failure; 

 The reinforced concrete barrier is ductile enough for yield planes to develop; 
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 The steel is fully yielded along the rupture line and the resisting moment is evenly 

distributed along the rupture line; 

 The reinforced concrete sections rotate around the yield lines as rigid bodies. 

Though equilibrium concepts can be used, yield line analysis is typically developed using the 

principle of virtual work. The ultimate strength is calculated by setting the external work done by 

the applied forces equal to the internal work done by the resisting mechanism. This method is an 

upper-bound solution and inherently non-conservative. Therefore a minimization process using 

partial differentiation to identify parameters leading to minimum energy conditions (angles and 

yield line lengths) and also evaluating other potential failure planes must be carried out to 

approach the actual ultimate strength. The proposed yield lines derived by Hirsch (1978) and 

Jeon (2011) for continuous barriers are shown in Figure 2-22. 

  
a) Hirsch (1978), AASHTO LRFD 

(2010) Yield Lines b) Jeon (2011) Yield Lines 

Figure 2-22: Yield Lines for Rigid Concrete Barriers 

The solution by Hirsch (1978) for the yield line pattern in Figure 2-22-a is 
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and the solution by Jeon (2011) for yield line pattern 4 (YL4) in Figure 2-22-b is: 
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Equation 2-4  

 

where Rw is the ultimate strength of the barrier, Lc is the critical yield line length, and Mc and Mw 

are the barrier flexural strength per unit length about the longitudinal and vertical axes 

respectively (Mb is the additional flexural strength per unit length at the top of the barrier 

analysed by Hirsch (1978) in Figure 2-22a). The subscript 1 in Jeon’s equations refers to the 

height of the upper sloped face of the barrier H1, because the proposed yield lines occur only over 

that portion of the barrier (Figure 2-22b). Jeon (2011) compared the computed ultimate strength 

using the Hirsch (1978) formulas and the proposed Jeon (2011) formulas to the results from tests 

performed on the TL-5 barriers. In Table 2-10 Jeon’s (2011) equations were more accurate. Jeon 

(2011) used the failure planes observed to derive the yield line equations and that his barriers did 

include a joint at the edge of the precast barriers (Figure 2-17b) that likely affected the barrier 

continuity and may have affected the development of the failure planes.  

Table 2-10: Yield Line Analysis Jeon (2011) 

Specimen No. Test Strength Hirsch (1978) Jeon (2011) 
3 360 kN 558 kN 397 kN 
4 330 kN 454 kN 322 kN 

Jeon (2011) applied the yield line analysis method to help provide insight into a proper design for 

discontinuous precast barriers (no longitudinal connection), and isolated four potential failure 

planes (Figure 2-23). The critical impact load for the barrier is governed by the edge impact case 

(Figure 2-23a) and the maximum applied load, P, was calculated by Jeon (2011) as: 

          √
    

 
  for case A, Equation 2-5 

 

            
 

 
   for case B Equation 2-6 
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a) Crash at Joint (Edge) of Barrier b) Crash in General Part (Centre) of Barrier 

Figure 2-23: Failure Modes of Precast Barriers without Longitudinal Connection (Jeon 2011) 

The controlling factor governing whether the failure mode is on the diagonal, case A, or 

horizontal, case B, is shown to be the geometric length to height ratio of the precast barrier. 

Ideally, the case B failure will occur because the failure will cross the entire barrier section and is 

a more efficient failure mode (Jeon 2011). Assuming that    is equal to   
 

 (a reasonable 

assumption for Jersey and F shaped barriers), the diagonal yield failure will occur for edge 

impacts as long as L > 2H, and for general impacts when L >  √  .  

2.4.3.2 Strut-and-Tie Analysis 

Strut-and-tie analysis of reinforced concrete is based on the truss analogy. The cracked reinforced 

concrete section is analysed as an analogous truss of struts, ties, and nodes that resist the applied 

forces (Figure 2-24). The compressive struts represent concrete stress fields that are primarily in 

compression. Tension ties are members of the analogous truss in tension. Steel reinforcement 

generally transfers the tensile loads, but tensile stress fields do form in concrete until they exceed 

the concrete tensile strength. The nodes are the areas where the forces meet. It is important to 

verify the bearing capacity of the concrete struts and the anchorage of the steel ties at nodes. The 

positioning of the steel reinforcement will control the load redistribution once the concrete 

cracks. A well designed strut-and-tie model will position the steel to optimize the internal 

resistance and therefore minimize the quantity of steel reinforcement necessary.  
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Figure 2-24: Strut-and-Tie Model (Aminmansour 2004) 

Figure 2-25-a shows the initial strut-and-tie model of Aminmansour (2004) for the Series II 

precast barriers. Strut D represents the barrier transverse reinforcement and node N5 the dowel 

bar in the injected recess (Figure 2-13a). A concrete tie was necessary to balance the forces at 

node N6, which is not an ideal design because of the weak tensile capacity of the concrete. Once 

the concrete tie fails, truss members A, I, and H become zero force members and the internal load 

path is redistributed as shown in Figure 2-25b. It should be noted that since Aminmansour (2004) 

wanted to evaluate the strength of the precast barriers and connection, the slab had been designed 

to resist twice the load. In spite of this, the ultimate strength of the Series II barriers, where 

failure occurred in the slab (Figure 2-16b), of 277 kN compared to Series I, where failure 

occurred in the barrier (Figure 2-16a), of 267 kN represents only a 3% increase in strength. The 

lack of strength gain is due to the opening of the shear crack in the slab once concrete tie I fails. 

To improve the performance of the precast barrier, Aminmansour (2004) considered changing the 

shape of the anchor bars to develop a steel tie crossing the diagonal tensile crack. The proposed 

anchors are superimposed over the deformed slab and the corresponding strut-and-tie model are 

shown in Figure 2-26. Aminmansour (2004) noted the importance of hooking the legs of the 

anchor bar back towards the slab overhang edge in order to develop compressive struts at end of 

the slab (Figure 2-26-b). The improved anchor detail is a cost-effective way of improving the 

structural performance without additional reinforcement, and is a good demonstration of how the 

strut-and-tie modeling can optimize the design of disturbed regions.  
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a) Model with Concrete Strut* b) Model without Concrete Strut* 

*Struts dashed and ties solid 

Figure 2-25: Aminmansour (2004) Strut-and-Tie Model Series II Precast Barriers 

  
a) Proposed Anchor Superimposed on Specimen b) Corresponding Strut-and-Tie Model 

Figure 2-26: Aminmansour (2004) Improved Barrier-Deck Connection Detail 

2.4.4 Considerations 

The review of the precast barrier systems proposed in the literature brings up several 

considerations for the future design and approval of new precast barrier prototypes. 

The mechanical performance of both bolt-down and injected recess connections have been 

extensively proven through static and dynamic testing throughout the literature. When comparing 

the two connection types, the injected recess stands out as a superior connection detail. The 

connection is more similar to the well proven cast-in-place barrier connection and is less labor 

intensive. The injected recess also seems less costly because there is no need for expensive high 
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strength steel threaded bars, nuts, and anchor plates, and the reduced amount of steel components 

also lowers the risk of durability problems. The only disadvantage of this method is the questions 

surrounding the quality of the injection. However, combining the designs of Aminmansour 

(2004) and Jeon (2011) should resolve this potential issue. The mechanical connection of the 

hooped anchors and dowel provide substantial ductility to the recess in spite of a weaker injection 

material (Aminmansour 2004) and the Jeon (2011) injection method simplifies the process and 

provides a visual inspection of the finished injection.   

It is notable that most of the precast anchor designs have longitudinal connection details between 

barriers. Jeon (2011) is the only researcher to have demonstrated the impact of using an improved 

connection detail; however, the Jeon (2011) connections were not adequately tested since the 

loading apparatus directly activated all three precast barriers at one time. Because longitudinal 

connections increase installation time and material costs, a more thorough examination of their 

impact remains necessary. 

Crash testing has been shown to be a necessary requirement to ensure that barrier designs are 

structurally adequate and that the post-impact behaviour of the vehicle is acceptable. However, 

looking through the literature it is clear that few institutions possess the resources needed to 

implement full-scale crash tests (Table 2-8). The crash testing requirement should not become an 

impediment to improving the bridge barriers. The approach adopted by the NY DoT merits note. 

The NY DoT has allowed barrier designs to be modified so long as the crash tested geometry 

remains unchanged and either static or dynamic testing establish the barrier structural adequacy 

and rigidity (CDPBS 2009). It is a reasonable assumption since the concrete bridge barriers 

deflect very little during impacts, that modifying the design will not affect the impact dynamics 

so long as the strength remains sufficient and impact geometry unchanged. If the governing codes 

– CSA 2006, MASH 2009, AASHTO 2010, and RDG 2011 – were to more officially sanction 

this design method, it would facilitate the validation of new and improved barrier prototypes. 

In the MASH (2009) Appendix D, they do evaluate some of the methods used to establish barrier 

structural adequacy. The reader is warned that static load methods may underestimate the energy 

mode of failure. Several researchers have tested both the ultimate static and dynamic capacity of 

concrete bridge barriers and have consistently found that dynamic loading causes a similar failure 

mode at an elevated ultimate strength for rigid cast-in-place barriers. Indeed the research of 
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Aminmansour (2004) and Mitchell (2006) show an increase of 32% and 47% in barrier ultimate 

strength during dynamic loading of their respective precast barrier designs. There are two 

proposed mechanisms for the increase in strength of concrete at high strain rates (Brara & 

Klepaczko, 2007). The first is the effect of free water within the concrete porous structure which 

adds a viscous behaviour and slightly increases ultimate strain and strength of concrete. The 

second is that during short impulses the micro cracks do not have the time to localize and find the 

path of least resistance to opening. They therefore pass through as opposed to around stiffer 

aggregate materials and increase the concrete strength. The research implies that static loading of 

either bolt-down or injected recess precast barrier types would not underestimate the energy 

mode of failure. In light of the increased costs in time, equipment, and energy, static testing 

should be sufficient to establish the structural adequacy of a precast barrier with one of these 

types of connections. 

The analysis methods used to evaluate and optimize the precast barrier designs are very helpful in 

the design of new types of precast barriers. The proposed yield line analysis equations from Jeon 

(2011) have been shown to provide an adequate estimate of the ultimate strength of the barriers 

(Table 2-10). Moreover, the analysis of the potential failure planes for precast barriers without 

connections has shed light on the effect of the barrier length to height ratio. Jeon (2011) showed 

that a diagonal yield line will develop for edge impacts so long as L > 2H, and for general 

impacts when L >  √   if     
  

 
 (for the standard MTQ Type 201 F-shaped barrier used in 

Quebec    = 127 kN-m/m and   
 

 = 124.2 kN-m/m). This means that for a precast barrier based 

off of the MTQ Type 201 barrier that is 820 mm in height, a length of 1.76 m is required to 

ensure diagonal rupture line at edge impacts and 4.98 m is required to ensure diagonal rupture 

line across the entire barrier. A 5 m precast length may be too long due to practical 

considerations, but it is important to keep this in mind. 

The strut-and-tie analysis by Aminmansour (2004) highlights the importance of using anchor bars 

that cross the potential shear crack in the slab overhang underneath the barrier. The anchors 

proposed by Aminmansour (2004) are similar to those used in the Duchesneau (2010) precast 

barrier, however both legs hook back towards the far edge of the slab cantilever. This is an 

important design consideration because it will help develop the compressive strut in the concrete 

at this location, and could potentially improve the Duchesneau (2010) barrier design. 
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2.5 Conclusions 

The review of the literature concerning barrier types, regulations, and precast designs brings up 

certain conclusions for this research project. 

 The F shaped safety barrier is the current standard in Quebec and therefore continued 

research into the development of a new type of precast barrier should use the MTQ Type 

201 F shaped barrier as the reference prototype; 

 Design modifications of a currently used and crash tested bridge barrier may be approved 

for use on the American and Canadian highway network if the structural adequacy of the 

modified barrier is adequately demonstrated; 

 The injected recess connection type between precast barrier and deck stands out as the 

most complete connection method; 

 The effect of including longitudinal connections between barriers still has not been 

adequately examined in the literature; 

 An acceptable static strength is sufficient to establish the structural adequacy for precast 

concrete bridge barriers, and it can be assumed that the dynamic strength is 30-45% 

greater; 

 The Duchesneau (2010) precast concrete barrier design, based off of the MTQ Type 201 

barrier, is ideal for continued research. It is based off of a crashworthy barrier, it uses the 

injected recess connection, and it has already been mechanically proven using both static 

and dynamic testing.  
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CHAPTER 3 ARTICLE 1: “STRUCTURAL BEHAVIOUR OF CAST-IN-

PLACE AND PRECAST CONCRETE BARRIERS SUBJECTED TO 

TRANSVERSE STATIC LOADING AND ANCHORED TO BRIDGE 

DECK OVERHANGS.”  

Abstract 

In this study, experimental testing was performed on cast-in-place and precast barriers subjected 

to quasi-static loading and anchored to 6 m long bridge decks with a 1 m overhang. The three 

selected bridge barrier configurations include an ordinary concrete cast-in-place barrier, and two 

high performance fibre reinforced concrete (HPFRC) precast barriers, one with and one without 

barrier-to-barrier connections. An experimental setup dedicated to testing the large-scale barrier-

deck slab overhang specimens to failure was designed. The structural behaviour of the three 

barrier configurations were analysed and compared. The tests demonstrated that all three test 

configurations exceeded the design criteria in the CSA (2006) and AASHTO LRFD (2010), that 

the durability of the slab overhang is not adversely affected when using precast barriers, and that 

the shear key designed to connect the precast barriers provides adequate barrier longitudinal 

continuity.  

3.1 Introduction 

Throughout North America, reinforced concrete bridge barriers are used to force errant vehicles 

to remain on the roadway. The bridge barriers two primary functions are to contain errant 

vehicles and adequately redirect them back onto the roadway (MASH 2009, CSA 2006). Crash 

testing and field experience has demonstrated that the commonly used Jersey and F shaped safety 

barriers meet these performance demands. However, in severe environmental conditions, they 

often deteriorate prematurely and require expensive repair or replacement work to maintain their 

structural integrity. Barrier cracks usually form at an early-age as the deck slab restrains barrier 

shrinkage and thermal dilations after casting (Cusson & Repette, 2000). The early-age cracks are 

aesthetically unpleasant, but more importantly they give an immediate opening for water and 

chlorides to quickly penetrate into the concrete matrix. Barriers are also often exposed to severe 

environmental conditions, and in cold regions they must resist freeze-thaw cycles and chlorides 
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present in de-icing salts. The vertical cracks due to restrained barrier movement have been shown 

to accelerate barrier degradation necessitating costly maintenance and repair work (Haluk et al, 

2004). 

An extensive research project carried out at Polytechnique Montreal is aimed at developing 

precast high performance fibre reinforced concrete (HPFRC) bridge barriers as a solution to the 

above durability issues. The proposed precast barriers offer several advantages compared to the 

cast-in-place method. Precasting provides a higher standard of fabrication quality, and eliminates 

early-age cracking due to restrained barrier movement since the HPFRC is free to reach its 

steady-state volume at the precast plant. In addition, the HPFRC material has superior durability 

and mechanical properties because the steel fibres limit crack openings and increase fracture 

energy (Desmettre and Charron, 2012). Finally, installation of precast barriers could enable 

significant time savings. Charron et al. (2011) estimates 4 days for the installation of precast 

barriers on a standard 30 m long single span bridge. This is a significant reduction compared to 

cast-in-place barriers that take up to 18 days, especially during repair of existing bridge barriers 

where traffic disruption implies a significant project cost. The improved durability of the precast 

barriers and the reduced time costs anticipated with faster installation provide a strong financial 

incentive for their use. 

Two different precast barriers were designed, optimized, and tested with different types of high 

and ultra-high performance steel fibre reinforced concrete’s in preceding projects (Niamba 2009; 

Duchesneau et al. 2011). The designs were based on a Quebec Ministry of Transportation (MTQ) 

Type 201 F shaped barrier shown in Figure 3-2a (MTQ 2010). The MTQ Type 201 barrier is 

used in Quebec for PL-2 (AASHTO TL-4 equivalent) category barriers. The proposed precast 

barriers have less steel reinforcement and reduced sections compared to the MTQ 201 barrier. 

The precast barriers differ from one another primarily in their respective barrier to slab 

connection. Niamba used steel couplers embedded into the precast concrete barrier, which would 

then be post-tensioned with steel rods anchored unto the underside of the bridge deck. The 

Duchesneau et al (2011). design left a hollowed out recess into the base of the precast barrier, 

which would then be positioned above the anchor bars cast into the bridge slab and injected with 

an appropriate cementitious material to secure the barrier to the slab (Figure 3-2b). The 

connection design of Duchesneau et al (2011). was selected for this project, because of its 

simplicity, efficiency, and similarity to the well-established cast-in-place barrier slab connection. 
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Using precast barriers limits the length to transfer impact loads from the barrier to the slab and 

increases the stress concentrations in the anchor bars and slab reinforcement. to attenuate this 

effect, the length of the bridge barrier can be increased or a longitudinal connection between 

barriers can be added to increase the effective load-transfer length. The experimental study 

described in this paper compares the performance of a continuous 6 m cast-in-place barrier  

against two different HPFRC precast barrier configurations – each using three adjacent 2 m 

barriers, however one with and one without barrier-to-barrier shear connections. The barriers in 

all three configurations are supported on a slab overhang selected to be representative of realistic 

bridge deck connection and load transfer conditions. The principal objectives for this study were 

to evaluate the effect of using precast barriers on the structural behaviour and durability of the 

bridge deck overhang during equivalent static loading and to design a simple and effective 

longitudinal shear connection between barriers.  

3.2 Experimental Program 

3.2.1 Design Criteria 

The precast barriers were designed for the PL-2 barrier performance level criteria according to 

Canadian regulations (CSA 2006), or the TL-4 barrier test level in AAHSTO (2010). The 

minimum transverse, longitudinal, and vertical factored static loads to be resisted by the anchors 

and slab are shown in Table 3-1.  

Table 3-1: AASHTO 2010 and CSA 2006 Design Criteria for TL-4/PL-2 Barriers 

 

 

The AASHTO and CSA design loads were both calculated as static equivalent loads of the 

maximum crash test forces for the respective performance (test) level. However, the CSA 

considers the 40% increase in structural resistance observed during dynamic vehicle impacts 

when calculating the static equivalent loads while the AASHTO does not. This explains the 40% 

Force Direction AASHTO 2010 TL-4 CSA 2006 PL-2 

Transverse 240 kN 170 kN 

Longitudinal 80 kN 51 kN 

Vertical 80 kN 51 kN 
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difference between the AASHTO and CSA transverse impact load. The minimum transversal 

resistance necessary for the PL-2 / TL-4 barriers is obtained by dividing the design force by the 

performance factor, considered as 0.75 for concrete barriers, which gives 320 kN and 227 kN for 

the AASHTO (2010) and CSA (2006), respectively. 

3.2.2 Preliminary Nonlinear Finite Element Evaluation 

A preliminary evaluation with NLFE software, ATENA 3D 4.1.4a (Cervenka 2011), was done to 

establish the details of the experimental configuration. The initial study evaluated the boundary 

and loading conditions (model length, overhang span, slab support type, truck wheel loads) and 

the barrier configuration (the length of the loaded barrier and the connection between precast 

barriers). The full report of this study can be found in Namy (2012). 

The study indicated that a significant bridge deck model length was necessary to limit size 

effects, and a 6 m long specimen was selected as a reasonable compromise between the necessary 

length and practical limitations for a controlled laboratory experiment. Consideration of slab 

overhang span of 0.9 up to 1.8 m indicated that a 1.0 m slab overhang length was a critical length 

and is representative of typical bridges. A 1.0 metre wide concrete support block was selected to 

recreate the rigid slab and beam interface typical of stiff prestressed concrete bridge beams. 

Decreased torsional or flexural restraining conditions, more representative of actual bridge deck 

and exterior beam restraints, were shown to be less critical than the selected rigid conditions. 

The barrier continuity was the independent variable between laboratory tests because the NLFE 

study highlighted the significance of barrier continuity on the load transfer length and structural 

performance. The three barrier configurations described in Table 3-2 were tested. 

Table 3-2: Laboratory Test Configurations 

Laboratory Test Barrier Type Longitudinal 
Continuity 

Configuration 1 One 6-m long cast-in-place (reference) barrier Full 
Configuration 2 Three 2-m long precast barriers None 

Configuration 3 Three 2-m long precast barriers with shear key connection Partial 
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3.2.3 Design of Laboratory Specimens 

Figure 3-1 presents the basic configuration of the laboratory tests and the instrumentation 

installed on the specimens. 

  
a) Overhead View b) Instrumentation, Elevation View 

Figure 3-1: Experimental Setup 

The support block had to be robust and maintain its integrity for all three lab tests, and therefore a 

HPFRC 70 MPa concrete mix with 1.5%-Vol fibres (30 mm length and 0.5 mm diameter) was 

used for its fabrication. The three deck slabs were fabricated using the match-cast technique with 

the support block to ensure a proper connection. High strength post-tensioned bars clamped the 

deck slab to the support block to laboratory strong floor.  

The three slabs were identical and their reinforcement details were determined for a 1.0 m long 

deck slab cantilever according to the CSA (2006) and MTQ (2010) specifications. The slabs were 

each 225 mm in depth and 2 m wide. The top transverse reinforcement consisted of 20M bars 

every 150 mm c/c and the bottom transverse reinforcement of 15M bars every 150 mm c/c with 

60 mm and 35 mm of top and bottom cover, respectively. Hooked ends (180º) were added to the 

transversal slab reinforcement to avoid local shear failure in the disturbed area of load transfer 

below the barrier. Longitudinal top and bottom reinforcement consisted of 15 M bars at 300 mm 

c/c. 

The MTQ Type 201 F shaped barrier design and anchorage method (MTQ 2010) were used for 

the cast-in-place option, and the anchorage system developed by Duchesneau et al. (2011) was 



54 

` 

used for the precast barriers. The precast barriers were also F shaped, but made from HPFRC 70 

MPa with 1.5%-Vol fibres. The precast barriers had a transverse section reduced by 10% from 

the Type 201 barrier, and 60% less steel reinforcement was used (15M at 500 mm c/c as opposed 

to 200 mm c/c).  

An effective shear key was a crucial design component for Test Configuration 3 (Table 3-2). It 

consisted of a trapezoidal recess boxed out from the ends of the barriers (Figure 3-2c). The recess 

descends from the top to the bottom of the barrier forming a hexagonal void when the precast 

barriers are placed side-by-side. This design was easily integrated into the assembly of the precast 

barriers, and the shear keys can be filled with the same material and at the same time as the recess 

between the barrier and slab. 

  
 

a) MTQ Type 201 
Cast-in-place Barrier 

b) Precast Barrier developed by 
Duchesneau et al (2011) 

 

c) Shear Key 

Figure 3-2: Barrier Sections 

3.2.4 Experimental Conditions 

Table 3-3 lists the mechanical properties of the concretes in each specimen. Grade 400W steel 

was used for all reinforcement throughout the project. Due to the large production scale and 

potentially other factors, such as a different cement quarry source, unexpectedly large amounts of 

air were found in the HPFRC’s used for the precast barriers. The precast barriers’ compressive 

and tensile strength (f’c and ft) were significantly lower than their design values.  

During the pour of the cast-in-place MTQ Type 201 barrier, the formwork was not rigid enough 

and deformed due to the pumping energy and static concrete pressure. The barrier ended up 

having a transverse section width approximately 10% larger than designed. The effect of the 
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enlarged barrier section and unexpected concrete properties are examined in Section 3.3.4 of this 

article. 

Table 3-3: Specimen Concrete Mechanical Properties 

Specimen Cast-in-place 
Barrier & Slabs1 

Support 
Block 

Precast 
Barriers2 

Precast 
Barrier3 

Injected 
Mortar1 

Material (MPa) HPC 35 HPFRC 70  HPFRC 70  HPFRC 70  FRM 50  
f'c (MPa) 54.4 70.1 47.8 59.2 50.2 
ft (MPa) 3.04 5.7 3.1 3.0 3.3 
Ec (MPa) 36300 24380 25800 35800 22700 

 0.24 -- 0.24 0.28 0.21 
1.Average  2.Test configuration 2  3.Test configuration 3 4.Calculated from CSA (2006) 

3.2.5 Experimental Setup 

The slab overhang and bridge barrier were anchored to the support block and laboratory strong 

floor with 12 to 16 high strength steel bars tensioned at 350 kN (Figure 3-1). For the precast 

barrier installation, the barrier/barrier and barrier/slab joints were all sealed and the hollowed out 

recess and shear recess (Configuration 3 only) were injected with a fibre reinforced mortar 

(FRM-1% Vol Fibre). The FRM mix contained steel fibres (10 mm length and 0.2 mm diameter), 

a shrinkage reducing admixture, and a water-reducing admixture. The added components were to 

ensure the mix had the proper fresh and hardened state properties for injection and strength.  

The applied quasi static load was displacement controlled with a 1000 kN capacity hydraulic 

actuator at a rate of 0.6 mm/min. Once the structure reached its ultimate capacity, the 

displacement speed was increased to 1.2 mm/min. The actuator was pinned at its extremity and 

supported by a counterweight swing. The swing mechanism counterbalanced the weight of the 

actuator, reducing forces perpendicular to the actuator piston during loading. 

A loading plate made from ultra-high performance fibre reinforced concrete (UHPFRC) was 

fastened to the barrier using drop-in anchors to precisely control the load application height, 700 

mm from slab grade (CSA 2006), and surface, 350x700 mm2 (AASHTO 1989). The contact 

between the actuator and UHPFRC load plate was done with a high-performance (fy = 800 MPa) 

half steel cylinder with a 76.2 mm radius of curvature and a thin steel plate (fy = 400 MPa) was 

used to increase the bearing resistance at load transfer. 
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To quantify the structural behaviour during loading, each bridge deck had several displacement 

potentiometers, strain gauges, and load cells instrumented at a 5 Hz reading frequency (Figure 

3-1).  

3.3 Results and Analysis 

3.3.1 Strength, Failure, and Ductility 

Table 3-4 summarises the results for the three different bridge deck configurations. In Figure 3-3 

the applied load is plotted against the lateral barrier displacement and the vertical slab 

displacement. The minimal static strength from the CSA (2006) is indicated with a dotted line. 

During each test, the structure was inspected at 50 kN intervals of strength increase and at peak 

strength to evaluate the damage on the slab and barrier. Drops in applied load seen in the graphs 

at these intervals are due to the relaxation of the structure during the inspections.   

The reference Test Configuration 1, with a cast-in-place barrier, remained linear-elastic until an 

applied load of 70 kN. After, the stiffness began to diminish as cracks coalesced within the slab 

overhang. The post-cracking rigidity remained constant between 150 kN and 460 kN, and then 

began to decrease. The structure entered the yielding phase at 500 kN, and shear cracks were also 

observed on the back side of the barrier at this load. The peak load was reached at 527 kN. The 

structure then began losing strength and failed dramatically in punching shear. The failure was 

very fragile as the load dropped suddenly to 240 kN. The ratio of lateral barrier displacement at 

250 kN yield strength to peak strength was 1.4. 

Test Configuration 2, with discontinuous precast barriers, remained linear-elastic until an applied 

load of 90 kN. The initial and post-cracking rigidity were very similar to Configuration 1 until 

the structure began yielding at 220 kN. The failure mode was in flexure due to the overturning 

transverse moment. The failure was ductile, and the ratio of lateral barrier displacement at 250 

kN yield strength to peak strength was 1.9. 

Test Configuration 3, with shear connections between precast barriers, remained linear-elastic 

until an applied load of 90 kN. The initial and post-cracking rigidities were also very similar to 

Configuration 1 until the structure began yielding at 375 kN. The onset of yielding coincided 

with the formation of shear cracks in the two exterior barriers adjacent to the loaded barrier. The 

shear cracks were controlled only with steel fibres, and by 400 kN the shear cracks reached the 
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back face of the exterior barriers and began opening. As the cracks opened the connection 

between the barriers was lost, restricting the load transfer length between barrier and slab to the 2 

m length of the loaded precast barrier itself. The structure reached a peak force of 404 kN before 

failing in flexure in much the same way as Configuration 2. The failure was ductile and the 

displacement at 250 kN yield strength to peak strength displacement ratio was 2.7. 

Table 3-4: Experimental Results Summary 

Configuration 1 (reference) 2 3 
Linear-elastic, kN 0 – 70 0 – 90 0 – 90 

Yield onset, kN 500 220 375 

Peak load, kN 527 296 404 

Failure mode Punching Shear Flexure Shear and Flexure 
 

  
Figure 3-3: Lateral Barrier and Vertical Slab Displacements 

3.3.2 Slab Barrier Interaction 

In Figure 3-4 the applied load is plotted against the opening width at the edge of the barrier-slab 

interface.  

The opening was caused by the formation and growth of a crack at the cold-joint, and is 

controlled by the tensile and cohesive properties of the contact surface and the anchor bars 

crossing the crack plane. The opening at peak load was 2.5 mm for Configurations 1 and 3 and 5 

mm for Configuration 2. For Configuration 1, the opening width decreased as the structure failed, 
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whereas the opening grew to nearly 20 mm in Configurations 2 and 3. The difference in post-

peak behaviour is related to the failure mode of the respective configurations.  

The barrier-slab interface was also closely monitored during each test. The crack opening at the 

interface was first observed in Configuration 1 at 250 kN over a 1.5 m length beneath the load 

application, and the crack grew to 5 m in length by 300 kN. In Configuration 2 the crack opening 

was first observed at 200 kN over the 2 m length of the loaded precast barrier. The crack width 

grew in magnitude as the test went on, however the crack length was logically confined to the 

loaded barrier. In Configuration 3 the crack opening was visible over a 2.5 m length at 250 kN, 

and by 350 kN was visible over entire barrier-slab 6 m length. The opening continued to increase 

until peak load and then grew mainly between the loaded barrier and slab, as in Configuration 2. 

 
Figure 3-4: Barrier-Slab Interface Crack Opening Width 

3.3.3 Cracking Pattern 

Figure 3-5 provides a virtual reconstruction of the damage in each structure at 250 kN and 

ultimate load.  

The crack formation and growth within the slabs was very similar for all three test configurations. 

The first visual cracking occurred in the slab overhang at 150 kN. Between 150 and 250 kN 

cracks formed and developed, running longitudinally in the overhang region (perpendicular to 

loading) and reached the edges around 250 kN or 300 kN. They then began to join one another 

and form a webbed crack pattern.  
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The crack patterns in the barriers varied depending on the test configuration. In Configuration 1, 

vertical cracks first formed on the back face of the cast-in-place barrier at 250 kN due to 

longitudinal curvature. The front face of the barrier started cracking around 300 kN, and by 350 

kN the front face of the barrier was cracked along diagonal rupture lines due to the double 

curvature (longitudinal and transverse) of the barrier. At 500 kN shear cracks became visible on 

the back side of the barrier, followed by the rupture cracks at 527 kN. 

In Test Configuration 2, the precast barriers did not exhibit any damage due to longitudinal 

curvature throughout the test. At 250 kN, a longitudinal crack was found on the front face of the 

loaded precast barrier (at barrier slope break) due to the transverse overturning moment. The 

longitudinal crack ran the length of the barrier and continued to grow during yielding. 

In Test Configuration 3, shear keys transferred the load from the loaded precast barrier to the 

exterior barriers. At 300 kN very small cracks were noticeable in the FRM at the two edges of the 

injected recess and at the top face of both shear keys. The cracks in the shear keys spread into the 

two exterior precast barriers at 350 kN and progressed to the back edge of the two exterior 

barriers by 400 kN. Also at 400 kN, the first signs of damage were visible on the loaded barrier 

as cracks opened on the back face due to longitudinal curvature. During structural yielding, a 

longitudinal crack became visible on the front face of the loaded barrier.  
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a) Configuration 1  

250 kN Load 
c) Configuration 2 

250 kN Load 
e) Configuration 3 

250 kN Load 

   
b) Configuration 1 

Ultimate Load 
d) Configuration 2 

Ultimate Load 
f) Configuration 3 

Ultimate Load 

Figure 3-5: Structural Damage at 250 kN and Ultimate Load 

3.3.4 Strain in Reinforcing Bars 

The anchor and slab reinforcement strain were measured locally at centre section with strain 

gauges installed directly on the vertical leg of an anchor bar – tensile strain caused by the 

moment couple between barrier and slab – and on the upper-row of a slab reinforcing bar – 

tensile strain caused by negative moment in the slab overhang (Figure 3-1). In Figure 3-6 the 

applied load is plotted against anchor strain and slab reinforcement strain for each configuration. 

The measured strains in each test were similar at a given load until the onset of yielding in 

Configurations 2 and 3 at 250 kN and 400 kN respectively. The slight delay observed between 

structural and strain yielding (see Table 3-4) is likely due to the positioning of the strain gauges, 

which did not perfectly reflect the critical zones. 

In Test Configuration 1 the post-cracking rate of strain change with respect to load remained 

generally constant for the entire test, and the anchor and slab reinforcement strain surpassed 2000 

. The strains measured in the anchor and slab reinforcement behaved similarly. In Test 

Configurations 2 and 3 the anchor strain reached 3300  and 2200 , respectively, which 

indicate that the anchor bars were yielding.  
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Figure 3-6: Slab Transverse Reinforcement and Anchor Bar Strain 

3.3.5 Numerical Correction to Fabrication Errors 

As discussed in Section 3.2.4, problems encountered during specimen fabrication modified the 

geometric and mechanical properties of certain specimens from the design specifications. A 

numerical correction was performed with finite element software to account for the construction 

errors.  

Table 3-5 below summarises the fabrication errors and their effect on the structural behaviour. 

The fabrication problems were advantageous to the structural behaviour of the cast-in-place 

barrier configuration, and were disadvantageous to both precast barrier configurations. Figure 

3-7a shows the accurate reproduction of the as-built force displacement behaviour of each 

Configurations using NLFE, and Figure 3-7b shows the force displacement behaviour after 

numerically correcting the fabrication errors. The correction lowers the stiffness and ultimate 

strength for Configuration 1 and does the opposite for Configurations 2 and 3. 

Table 3-5: Fabrication Problems and Consequences 

Configuration Problem Design As-Built Implication 
1 Cast-in-place Increased Section MTQ 201 +10 % Increased resistance & stiffness 
1 Cast-in-place Barrier Concrete 35 MPa 59 MPa Increased resistance & stiffness 

2 Precast Barrier HPFRC 70 MPa 48 MPa Decreased resistance & stiffness 
3 Precast with 
connection Barrier HPFRC 70 MPa 59 MPa Decreased resistance & stiffness 
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a) Experimental and NLFE Reproduction b) NLFE Correction to Fabrication Errors 

Figure 3-7: Lateral Barrier Displacement, Experimental and NLFE Models 

3.4 Discussion 

This discussion focuses on the experimental results; however, it is important to consider the 

fabrication errors and the implications of the numerical correction presented in Figure 3-7b. The 

structural performance of the bridge decks with different barrier configurations imply several 

considerations for the behaviour, design, and use of precast bridge barriers.   

The design criteria for the transverse static equivalent loads presented in Section 3.2.1 were 320 

kN and 227 kN for the AASHTO 2010 and CSA 2006, respectively. Configurations 1 and 3 each 

exceeded these design criteria. Configuration 2 with an ultimate strength of 296 kN only met the 

CSA (2006) requirements. However, as noted previously, a 30-40% increase in barrier strength is 

expected during dynamic loading (Aminmansour 2004, CSA 2006, Mitchell et al. 2006). 

Furthermore the static strength of NLFE correction for Configuration 2 is 328 kN and meets the 

AASHTO (2010) requirements. Therefore the static-strengths of the three design configurations 

can be considered to meet the design criteria from the Canadian and American bridge codes. 

The results clearly indicate that the continuous barrier configurations used almost the entire 6 m 

length to transfer the applied load from the barrier to the slab. In Configurations 1 and 3, the 

crack opening at the barrier-slab interface ran nearly the entire 6 m length, whereas the opening 

was confined to 2 m for Configuration 2. The difference in the length of load transfer explains the 

reduced load carrying capacity for Configuration 2, and Configuration 3 once the shear 

connections failed. The structural behaviour of Test Configuration 3 was almost identical, or even 
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superior, to Configuration 1 until the connections began failing at 375 kN (Figure 3-3) or 460 kN 

in the numerically corrected NLFE model (Figure 3-7b). The length of barrier to slab load 

transfer means that an effective connection between precast barriers is necessary to provide 

adequate barrier longitudinal continuity and optimize the mechanical performance of the bridge 

deck. In light of this point, the remaining discussion will focus on the results for Test 

Configurations 1 and 3. 

Test Configuration 1 had a punching failure in the barrier characterized with a sudden loss of 

load-carry capacity (Figure 3-3). Test Configuration 3 had a two-phase failure. The initial failure 

occurred in shear in the barriers adjacent to the loaded barrier near the connections, the load path 

was then redistributed and the failure mode shifted to flexure as the anchors became critical. 

Considering that the strength of both Test Configurations 1 and 3 far exceed the PL-2/TL-4 

requirements, the failure mode of Test Configuration 3 is considerably more ductile and 

preferable from a structural design viewpoint since more energy is dissipated during failure. The 

failure of both configurations occurs in the barriers, which follows the hierarchy concept implicit 

in the CSA (2006) and AASHTO (2010). The hierarchy concept is that the anchors and slab 

should be designed to resist the ultimate strength of the barrier. The shear connections controlled 

the ultimate strength for Test Configuration 3, and therefore should not be designed to exceed the 

capacity of the anchors or slab. 

A secondary research objective was to evaluate if the mechanics of bridge decks using precast 

barriers instead of cast-in-place barriers might be detrimental to overall durability, and 

particularly that of the slab overhang. The slab overhang behaviour – displacement, crack growth, 

and crack openings – was similar for all three test configurations (Figure 3-5). Initial cracking 

within the overhang is inevitable because of the much smaller lever arm for the internal resisting 

moment between the slab and the F shaped barriers. The results indicate that the slab durability 

will not be adversely affected using precast bridge barriers. The crack opening at the barrier-slab 

interface also affects the bridge deck durability. This interface is a potential site for water ingress 

and corrosion of anchor reinforcement. The barrier-slab interface behaviour of Configurations 1 

and 3 superposed until the applied load reached 310 kN during testing, which represents a very 

rare and extreme impact condition for these bridge barriers (MASH 2009, Jiang et al 2004), and 

service-life impacts are not expected to reach this force level. Therefore, precast barriers with 

connections do not have an increased risk of water penetration at the barrier-slab interface.   
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The quasi-static loading behaviour and failure mode for rigid concrete bridge barriers has been 

shown to be representative of dynamic loading as well (Aminmansour 2004, Charron et al. 2011, 

Mitchell et al. 2006). Therefore comparing the static behaviour of precast barrier Configuration 3 

against that of the crash tested cast-in-place barrier Configuration 1 provides insight into the 

potential crash test performance for the precast barriers. The force displacement (vertical and 

horizontal) relationship of the two configurations was very similar until the applied load 

exceeded 375 kN during testing. Considering that the frontal geometry of the barriers is identical 

and that 375 kN exceeds the expected impact force, it is logical that the vehicle-barrier impact 

behaviour should be very similar during crash tests. There was also no visually discernible 

relative displacement between precast barriers of Test Configuration 3 until the shear cracks in 

the exterior barriers began opening at 400 kN of applied load in the tests. Thus, the edges of the 

precast barriers are highly unlikely to cause vehicle snag during a crash test. The results indicate 

that the precast barriers with lateral shear connections would have the same vehicle-barrier crash 

test performance as the MTQ Type 201 cast-in-place barriers.  

The numerical study performed to address the fabrication errors suggests that the design 

behaviour of Configuration 3 would have nearly an equivalent strength and stiffness, and superior 

energy dissipating capacity as Configuration 1 (Figure 3-7b). This correction was performed 

using NLFE models that very accurately simulated the experimental results with the as-built 

properties.  

Furthermore, a numerical study performed to address the size effect of the precast barrier length 

performed in Namy (2012) suggests that many of the differences observed in this experimental 

program would be less discernible when 4 m precast barriers are used. The strength performance 

of the three Test Configurations would be largely equivalent, within 10%, as well as the 

structural stiffness and cracking behaviour. The importance of adding shear keys to connect the 

precast barriers would therefore be diminished. The keys help maintain a uniform displacement 

between precast barrier edges up to a static load of 400 kN, which could be key to successfully 

crash testing of the precast barriers. 

3.5 Conclusions 

The objectives for this research project were to evaluate the structural performance and durability 

of the bridge deck overhang during quasi-static loading with cast-in-place and precast barrier 
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configurations, and to design a simple and effective shear connection compatible with the precast 

barriers. The following conclusions can be drawn from the analysis of the experimental and 

numerical results: 

 The ultimate strength of all three bridge deck configurations with cast-in-place and 

precast barriers built to the design specifications exceed the design criteria specified in the 

CSA 2006 and AASHTO 2010; 

 Longitudinal barrier continuity is necessary to provide an appropriate barrier to slab load 

transfer length and maximize the structural performance of the bridge deck; 

 The shear keys, forming a hexagonal recess at the ends of the precast barriers, filled with 

a cementitious composite during installation provide adequate longitudinal continuity; 

 The bridge deck using precast barriers with shear keys had an ideal failure mode and 

maintained a preferable failure hierarchy (CSA 2006, AASHTO 2010) ; 

 Durability of the bridge deck should not be adversely affected when using precast barriers 

with adequate longitudinal continuity; 

 The bridge deck behaviour during static loads indicate that the vehicle-barrier interaction 

during crash testing would be very similar with either the MTQ Type 201 cast-in-place 

barrier or the precast barrier developed by Duchesneau et al. (2011) with shear keys.  

 The numerical correction demonstrates that the precast barriers installed with lateral shear 

connections provide comparable mechanical performance to the cast-in-place barrier 

reference configuration. 

The precast barrier developed by Duchesneau et al. (2011) with shear keys are made of a more 

durable concrete material and present a similar strength, displacement behaviour, and geometry 

to the MTQ Type 201 F shaped barrier. In consequence, these precast barriers meet the 

stipulations of the CSA (2006) for modifying existing barrier designs. It is very likely that precast 

barriers with shear connections would successfully pass PL2 / TL 4 crash tests. The industrial use 

of these precast barriers should be strongly considered given the improved durability of the 

HPFRC barrier, the advantages of precasting, and the mechanical performance. 
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CHAPTER 4 ARTICLE 2: “NUMERICAL STUDY OF CAST-IN-PLACE 

AND PRECAST CONCRETE BARRIERS FOR BRIDGE DECKS.” 

Abstract 

Nonlinear Finite element (NLFE) calculations were performed to reproduce the mechanical 

behaviour of concrete barriers anchored to bridge deck overhangs and submitted to static 

transverse loading by Namy (2012). The behaviour of the three different barrier configurations – 

a normal concrete cast-in-place barrier, high performance fibre reinforced concrete (HPFRC) 

precast barriers, and HPFRC precast barriers with barrier-to-barrier connections – anchored to 

slab overhangs were accurately simulated with the NLFE models. The validated NLFE models 

were then used to investigate the impact of the fibre orientation in the HPFRC precast barriers, 

the effect of the precast barrier length, the eccentric load application, and the utilisation of a 

HPFRC slab overhang. The fibre orientation of the HPFRC precast barriers was shown to be well 

oriented to resist the applied overturning moment but not the shear loads at the barrier-to-barrier 

connections. The effect of using smaller 2 m model precast barriers instead of the 4 m expected 

industrial length significantly reduced the structural load-carry capacity. The precast barrier 

length was as critical to the structural performance as the application of an eccentric load. The 

HPFRC slab allowed the reduction of crack spacing and crack opening widths, and increased the 

rigidity and load-carry capacity of the bridge deck overhang.   

4.1 Introduction 

Bridge barriers are used to protect vehicle occupants during off-road bridge accidents. Their 

primary functions are to contain vehicles, and redirect them back onto the roadway or stop them 

within an acceptable distance (MASH 2009, CSA 2006). Cast-in-place concrete barriers have 

proven through crash-testing and in-field evaluations that they meet these structural requirements. 

However, they are prone to early-age cracking due to a combination of shrinkage and thermal 

dilations (Cusson & Repette, 2000). The early-age cracks immediately expose barriers to water 

ingress increasing the risk of corrosion from chlorides and damage from freeze-thaw cycles, and 

have been observed to accelerate the deterioration processes requiring premature and expensive 

bridge repairs (Haluk & Attanayaka, 2004).  
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Polytechnique Montreal has been developing precast bridge barriers to solve the durability 

problems encountered with cast-in-place reinforced concrete bridge barriers. The proposed 

barriers are precast with a high performance steel fibre reinforced concrete (HPFRC). Precasting 

provides a higher standard of fabrication quality, and will not restrain early-age barrier 

movement. The HPFRC also offers enhanced durability and mechanical properties. The matrix 

microstructure is denser than normal concrete and the steel fibres limit crack opening widths 

(Desmettre and Charron, 2012). In addition, the reduced installation time of the precast barriers 

provides important savings to time related costs. 

Many precast barriers have been developed and introduced in the literature (Aminmansour 2004; 

Duchesneau 2010; Jeon et al., 2011; Mitchell et al., 2006; Niamba 2009), however the large-scale 

performance of the bridge deck overhang has not been adequately evaluated and compared with 

their cast-in-place barrier counterparts. Jeon (2011) tested 6 m bridge deck overhangs; however, 

the research objective was to formulate yield line formulas to calculate the ultimate strength of 

precast barriers. The governing American and Canadian bridge codes (AASHTO LRFD 2010, 

CSA 2006) both implicitly provide a failure hierarchy as the slab overhang and anchors are 

designed to resist the ultimate barrier strength. It is therefore necessary to evaluate the 

performance of the entire deck overhang structure at a large-scale to identify how barrier 

continuity or precast barrier lengths affect the failure hierarchy. An evaluation of the slab 

overhang damage during barrier loading is also important to optimize the slab design, the barrier-

slab connection, and ultimately improve the durability of the slab overhang. 

This study presents a numerical investigation of the experimental tests performed in Namy 

(2012) comparing the structural behaviour of bridge deck overhangs during static loading with 

cast-in-place and precast barriers. The experimental behaviour was reproduced numerically using 

nonlinear finite element (NLFE) analysis software. The numerical models were then used to 

gather more information about the bridge deck overhang behaviour and optimize the design of 

the barriers and slab.   

4.2 Research Significance 

The overall behaviour of bridge deck overhangs has not been adequately investigated in the 

literature, particularly when precast barriers and utilisation of fibre reinforced concrete is 

considered. The barrier continuity – barrier length and barrier-to-barrier connections – 
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significantly affect the structural behaviour. This study evaluates these design parameters, with 

NLFE models validated on full-size bridge decks tested in laboratory, and quantifies their effect 

to propose design recommendations.  

4.3 Experimental Program 

The experiments in Namy (2012) consisted of a 6.2 m long by 2.0 m wide slab with 1 m 

overhang. The slab was representative of short bridge deck overhangs, and was clamped onto a 1 

m wide, 6.2 m long, and 0.4 m high concrete block representing a torsionally stiff girder. The 

slab and block were anchored to the laboratory strong floor with post-tensioned high strength 

steel bars tensioned to 350 kN. The barriers were loaded in the transverse direction at the 

structure mid-length (centre) in quasi-static controlled displacement. The load was applied 700 

mm above the slab (CSA 2006). Figure 4-1a provides an overhead view of the general laboratory 

configuration. Figure 4-1b shows an elevation view of the instrumentation used to quantify the 

structural response during loading. The testing program is described in Table 4-1.  

The barrier configuration was the variable under study. The MTQ Type 201 (MTQ 2004) cast-in-

place barrier was used for Test Configuration 1 (Figure 4-2a), and the precast barriers developed 

by Duchesneau (2010) for Test Configurations 2 and 3 (Figure 4-2b). The barriers were all F 

shaped and designed for performance level 2 (PL-2), equivalent to AASHTO test level 4 (TL-4), 

stipulating a minimal factored design strength resisting the static transversal load of 227 kN 

(CSA 2006). The precast barriers were fabricated with a 70 MPa HPFRC with 1.5%-Vol steel 

fibres 30 mm length and 0.5 mm diameter. A shear key was added between precast barriers to 

increase longitudinal barrier continuity in Test Configuration 3 (Figure 4-2c). A fibre reinforced 

mortar (FRM) was used for the injected recesses. 

Table 4-1: Laboratory Test Configurations 

Laboratory Test Barrier Type Continuity 

Configuration 1 One 6 m long cast-in-place barrier Yes 

Configuration 2 Three 2 m long discontinuous precast barriers No 

Configuration 3 Three 2 m long precast barriers with shear key 
connections Yes 
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a) Overhead View b) Instrumentation, Elevation View 

Figure 4-1: Experimental Setup 

  
 

*Dimensions shown in mm (1 mm  = 1/25.4 in) 
a) MTQ Type 201 

Cast-in-Place Barrier 
b) Precast Barrier developed by 

Duchesneau et al (2011) 
c) Shear Key 

Figure 4-2: Barrier Configurations 

4.4 Numerical Modeling 

4.4.1 3D Finite Element Analysis Program 

NLFE software, ATENA 3D (Cervenka et al. 2011), designed specifically for non-linear analysis 

of reinforced concrete structures, was used in this project. The Nonlinear Cementitious 

formulation can simulate the tensile and compressive behaviour of concrete, crack closure, and 

high confinement. Rankine failure criterion is used to determine the onset of fracture,  ≤ ft, and 

crack band theory relates fracture energy, GF, with fracture strain, f, and crack opening width. 
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The software provides a USER formulation for concretes with very high fracture energy, such as 

a HPFRC’s, and the experimentally defined strain-softening curve can be introduced into the 

material model. The concrete compressive hardening and softening behaviour is computed using 

the Menètrey-Willam (1995) failure surfaces. Strain decomposition is used to analyse the 

nonlinear fracture and compression strains separately.  

4.4.2 3D Models 

The finite elements used and their general properties are listed in Table 4-2. A labeled 3D 

representation of a numerical model is shown in Figure 4-3. More in-depth information about the 

3D models is provided in Namy (2012). 

A controlled displacement step was used to load the bridge decks, and the full Newton-Raphson 

iterative method to solve the structural response. The post-tensioning and loading equipment 

were physically entered into the numerical models in addition to the barrier(s), deck, and support 

block. The support and loading conditions were identical for all three models. The Bigaj (1999) 

bond-slip law was used to model reinforcement slip for the anchor bars where development 

length was inadequate. Brick finite elements were used where the structural geometry was 

compatible, otherwise tetrahedral elements were used. The mesh density varied depending on the 

structural component and was refined in areas of significant  anticipated damage. Gap elements 

were used to model the behaviour of material interfaces. The gap element contact properties 

(Figure 4-3) were based off experimental data from Lessard (2009). 

To properly model the structural response, the internal stresses due to restrained shrinkage and 

self-weight had to be accounted for. The ACI 209 (1992) formulas approximate 320 shrinkage 

strain for the concrete type and ambient conditions during the 4 month delay between fabrication 

and testing. The shrinkage effects in the slabs and MTQ Type 201 barrier were not negligible, 

because of the reinforcement quantity and support conditions. ATENA’s construction case 

feature was used to apply the shrinkage in a realistic sequence. The slab and support block were 

modeled in the first construction case in which the slab shrinkage and self-weight were 

considered. The barriers were incorporated into the NLFE model in the second construction case 

such that the slab shrinkage occurs before barrier installation onto the slab. The shrinkage of the 

cast-in-place barrier was considered, whereas the shrinkage of the precast barriers was not 
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modeled because they were not significantly reinforced and the shrinkage freely occurred before 

they were anchored to the slab.  

Table 4-2: Finite Element Properties 

Finite Element Structural Component Nodes Integration 
Points 

Interpolation 
Functions 

3D Solid Brick Block, Slab, Steel Plate 8 8 Linear 

3D Solid Tetrahedral Barriers, Bearing Plates, 
Load Bar and Plate 4 1 Linear 

3D Truss Element Reinforcement / Post-
Tension Bars 

 

2 1 Linear 

3D Gap Elements Interfaces and Joints 6 or 8 2 Linear 

 

 

Figure 4-3: Numerical Model, Test Configuration 3 Precast Barriers with Connections 

4.4.3 Model Input Properties 

The mechanical properties of the concrete specimens were experimentally determined and are 

shown in Table 4-3. The fracture energy (GF) suggested by the software user guide (Cervenka et 

al. 2011) and Hordijks (2009) strain-softening formula were used to compute the exponential 

softening form and critical crack opening width, w0, for the normal concrete. The HPFRC and 

FRM both have very large fracture energy, and therefore the strain-softening behaviour of these 

materials was determined with tensile tests. The USER formulation was verified by using 
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ATENA to accurately reproduce the tensile tests (Delsol 2012). The uniaxial tensile behaviour 

for the different concrete’s is shown in Figure 4-4. 

Table 4-3: ATENA Fracture-Plastic Cementitious Material Properties 

Concrete E, MPa  ft, MPa f`c. MPa GF, N/mm 

HPC1 34800 0.233 3.23 -52.2 0.074 

HPFRC1 30000 0.259 3.03 -53.5 
See Figure 4-4 

FRM1 22800 0.210 3.14 -50.2 
1Average value used for above material properties 

 

   
a) Pre-Peak Behaviour b) Post-Peak Behaviour 

Figure 4-4: Measured Material Tensile Behaviour 

4.4.4 Model Validation 

The force-displacement relationships and cracking behaviour from the experimental and 

numerical results are compared in Figure 4-5 and Figure 4-6. The instrumentation shown in 

Figure 4-1b indicates that the lateral barrier displacement in Figure 4-5a and crack opening at the 

slab barrier interface in Figure 4-5b were recorded in line with the load application (actuator 

centre line). In the figures, C1, C2, and C3 refer to Test Configurations 1, 2, and 3, respectively, 

and Exp or Num are used to differentiate between experimental and numerical results. The results 

demonstrate that each deck overhang configuration exceeded the design strength of 227 kN 

required by the CSA (2006). 
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The close agreement between experimental and numerical stiffness, ultimate strength, cracking, 

and failure mode indicate that the NLFE software and modeling assumptions accurately simulate 

the reinforced concrete bridge deck overhang behaviour. The numerical results for Configuration 

3 overestimate the ultimate strength observed experimentally. The increase in numerical strength 

is likely due to the fibre orientation of the HPFRC with respect to the failure plane, and is 

examined in Section 4.5.1.  

  
a) Lateral Barrier Displacement a) Slab Barrier Crack Opening 

Figure 4-5: Experimental and Numerical Results 

Configuration 1 Configuration 2 Configuration 3 

   
a) Experimental Crack 3D Reconstruction 

   
b) ATENA Crack Output, 0.1 mm crack filter 

Figure 4-6: Experimental and Numerical Cracking Pattern at Ultimate 
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4.5 Results and Discussions of Numerical Studies 

The following parametric studies were performed to better understand the experimental 

behaviour and to evaluate modifications to the barrier or deck designs and the testing 

configuration.  

4.5.1 Precast Barrier Fibre Orientation 

The experimental behaviour of Configuration 3 began yielding when shear cracks formed at the 

barrier-to-barrier shear key connections on the exterior barrier side. The cracks were first noticed 

at the 350 kN inspection, and reached the back face of barriers by 400 kN, Figure 4-7a). The 

shear cracks opened quickly once peak strength was reached at 404 kN (Figure 4-7b), and the 

longitudinal continuity between barriers was lost. In the numerical validation model shown in 

Figure 4-5, the shear cracks form and grow only at a peak strength of 474 kN. The discrepancy 

between the experimental and numerical results is likely due to the fibre orientation.  

In fibre reinforced concretes (FRC), the fibres can only limit crack opening widths and increase 

fracture energy when they are adequately oriented across the crack plane. If the fibres are aligned 

parallel to the crack, then the FRC will behave similarly to normal concrete in tension. The crack 

opening law for the numerical models was determined with concrete specimens poured 

specifically with a favorable fibre orientation. The precast barriers were poured from the back 

side with the front (loaded) face down. This pouring technique most likely oriented the fibres in 

the vertical and longitudinal direction of the barrier, favorable to resist the applied overturning 

moment, but not to resist the shear cracks that formed at the lateral connections.  

Numerical simulations were performed with the post-peak behaviour of the HPFRC reduced only 

in the exterior barriers to simulate an unfavorable fibre orientation to resist shear forces in this 

specific area. One simulation used the 70 MPa HPFRC with a 50% post-peak efficiency and 

another with 15% post-peak efficiency (i.e. 50% or 15% of the HPFRC post-peak crack opening 

width for a given tensile stress, see Figure 4-8a). The results of the parametric studies are shown 

in Figure 4-8b. The model with a 15% post-peak efficiency in the exterior barriers best simulates 

the experimental results. 

The FRC plays an important role in the precast barriers because it leads to a 10% reduction in the 

barrier cross-sectional surface area and a 60% reduction in steel reinforcement (Figure 4-2). 
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However, the parametric study indicates that the fibres were not well aligned to resist the shear 

failure observed experimentally near the barrier-to-barrier connections. Even though a 15% 

HPFRC efficiency dissipates a significantly greater amount of energy during fracture (Figure 

4-8a), other fabrication methods for the precast barriers could be investigated to provide a more 

3-D fibre orientation throughout the barriers, and even to favor a higher shear strength near the 

barrier connections (Figure 4-7). Pouring the barriers from the top, as is traditionally done for 

cast-in-place barriers, or from end-to-end are two options that could potentially improve the fibre 

alignment with respect to shear.  

  
a) Cracks Observed at 400 kN Inspection b) Shear Cracks Opening Post Peak Strength 

Figure 4-7: Shear Crack Development Experimental Observations 

  
a) Post-Peak Behaviour for Exterior Barrier b) Results 

Figure 4-8: Fibre Orientation, Configuration 3 
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4.5.2 Effect of the Precast Barrier Length  

The length of the precast barriers in the laboratory tests were limited to 2 m for practical 

purposes; however, the actual length of the precast barriers designed for industrial use is expected 

to be 4 m. The increased length of the precast barriers would likely increase the peak strength of 

the precast barrier test configurations and could possibly reduce the differences observed 

experimentally between all three test configurations. 

Numerical simulations were performed to simulate Test Configurations 2 and 3 when the loaded 

precast barrier was 4 m instead of 2 m. The total bridge deck overhang length was maintained, 

and therefore the length of the exterior barriers was shortened in the numerical models from 2 m 

to 1 m.  

The results for the barrier length effect study are shown in Figure 4-9. The increase in loaded 

precast barrier length increases the ultimate strength for Configuration 2 from 310 kN to 484 kN 

and for Configuration 3 from 435 kN to 506 kN. The failure mode was not affected by the 

increase in precast barrier length. 

In Test Configuration 2, the precast barriers were not connected and therefore the length of the 

barrier plays a very important role in the structural performance of the deck overhang. This is 

apparent in the results of the parametric study with a significant force increase of 56%. The 

results indicate that the 4 m precast barriers without connections have an equivalent performance 

to continuous cast-in-place barriers (Figure 4-5a). In Test Configuration 3, the precast barriers 

had a shear connection between one another and therefore the increased length does not have as 

much of an impact (16% strength increase). The peak strength of both 4 m precast barrier 

configurations is very similar (±5%). This is because the shear keys fail before the peak strength 

is reached and the same failure mode controls the two configurations. The reduced length in the 

NLFE model of the exterior barriers (1 m only) may have also reduced their contribution to the 

structural resistance for Test Configuration 3. 
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Figure 4-9: Barrier Length, Configurations 2 and 3 

4.5.3 Eccentric Load Application 

In the experimental setup, the precast barriers were loaded at their mid-length (centre span) and 

not their edges, their critical impact points. This choice is explained because the barriers were 

built at a reduced model length of 2 m and loading them at the edges would have been too severe 

of a penalty. Therefore, a parametric study was carried out on the 4 m precast barriers loaded 

closer to their edge to determine the performance of the precast barriers during eccentric loading. 

The NLFE simulations used to evaluate the 4 m precast barrier in Section 4.5.2 were modified to 

evaluate their performance when the static transverse load was applied at the barrier edge.  

The results for the critical impact point study are shown in Figure 4-10 and Figure 4-11. In 

Configuration 2, the peak strength of the edge loaded barrier is 338 kN, a 30% reduction from the 

centrally loaded 4 m precast barriers (Figure 4-10a). The failure mode moves from flexure due to 

the overturning moment only, to flexure due to longitudinal bending in the barrier in addition to 

the overturning moment (Figure 4-11). This is an expected failure path for barrier edge loads 

(AASHTO 1989, Jeon 2011). The peak strength of Configuration 3 edge loaded barriers is 419 

kN, a 17% reduction from the centrally loaded 4 m barriers (Figure 4-10a). The structure initially 

fails at the peak strength (419 kN) in shear at the barrier connection. After the continuity has been 

lost, the same dual flexure failure controls the post-peak strength as in the Configuration 2 edge 

load study. 
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The results clearly demonstrate that the edge load is a more critical impact point for the two 

precast barrier test configurations (Figure 4-10a). Still, both Configurations exceed the 227 kN 

design requirements for PL-2 barriers (CSA 2006). For Test Configuration 2, the 4 m edge load is 

more resistant (14%) than the experimentally tested configuration of 2 m, and for Test 

Configuration 3, 4 m edge load model has an equivalent resistance to the experimentally tested 

configuration of 2 m (Figure 4-10b). Thus, selecting 2 m barriers for the experimental 

configurations reproduced a more critical case for the precast barriers without connection and 

was equivalent to the critical case for those with connections. 

  
a) Comparison with Barrier Length Study b) Comparison with Experimental Study 

Figure 4-10: Eccentric Load, Configurations 2 and 3 

  
a) Deformed Shape x 5, 0.1 mm Crack Filter b) Stresses, Black indicates Yielding 

Figure 4-11: Eccentric Load Failure, Configuration 2 
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4.5.4 HPFRC Slab Overhang Behaviour 

The slab overhang was always the first structural component to damage during testing, and by 

250 kN a significant amount of flexural cracking was always observed in the overhang slabs. The 

cracking is detrimental to the durability of the slab overhang, however it is difficult to prevent 

because the barrier has a significantly larger lever arm than the slab to resist the same applied 

moment. The advantages conferred when using FRC’s – smaller crack opening widths and 

smaller crack spacing – could improve the durability of the slab overhangs. 

A numerical study was performed to evaluate if the utilisation of a slab overhang designed with a 

50 MPa HPFRC to obtain an equivalent flexural strength would reduce crack opening widths 

under service loads. The flexural strength of the HPFRC slab overhang was initially computed 

using a simple analysis method for FRC. The analysis method is similar to reinforced concrete 

analysis, except the tensile strength of the concrete is not ignored and an equivalent concrete 

tensile stress block is assumed to act across the entire tensile face of the concrete section. The 

equivalent concrete stress at ultimate is considered to be the residual FRC concrete strength at 1 

mm crack width (estimated as 0.75 ft). The modification to the slab design is shown in Figure 

4-12. The spacing of the transverse reinforcement was increased from 150 mm to 300 mm, a 50% 

reduction of steel reinforcement, and the design strength of the modified HPFRC slab is 105 kN-

m/m instead of 100 kN-m/m for the HPC slab.  

Elevation View 

Elevation View 
 

Plan View 

 

Figure 4-12: RC and HPFRC Slab Design 
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The results of the HPFRC slab behaviour study are shown in Figure 4-13 and Figure 4-14. The 

results indicate that replacing the HPC slab with an equivalent strength HPFRC for the slab 

significantly increases the structural rigidity and the ultimate strength of the bridge deck 

overhang (Figure 4-13a). The results also clearly show that the slab is less damaged at a given 

load (Figure 4-14). This behaviour is consistent with experimental data from Moffat (2001) 

comparing equivalent strength FRC and reinforced concrete prisms. Figure 4-14 shows the crack 

damage in the numerical model at 300 kN and 520 kN of applied load. At 300 kN of applied 

load, there are no cracks discernible with a 0.1 mm crack filter (Figure 4-14a), and the largest 

cracks in the slab at this load are 0.05 mm in width. The cracking in the slab observed and 

recorded during the experimental test exceeded 0.1 mm in width by an applied load of 150 kN. 

The crack spacing at 520 kN is reduced in comparison to the Configuration 1 experimental model 

(Figure 4-6).   

  
.a) Lateral Barrier Displacement b) Slab Transverse Reinforcement Strain 

Figure 4-13: HPFRC Slab, Configuration 1 
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a) Numerical Model 300 kN Applied Load b) Numerical Model 520 kN Applied Load 

Figure 4-14: HPFRC Slab Study, Numerical Cracking 0.1 mm Crack Filter 

The gain in structural stiffness observed with the equivalent HPFRC slab is surprising because of 

the large reduction in slab transversal reinforcement. However, it is representative of the 

contribution of the FRC to the tensile resistance of the slab. The fibres bridging the cracks limit 

the opening widths. At a crack width of 0.05 mm for instance (max crack width in HPFRC slab at 

300 kN applied load), the FRC maintains nearly all of its tensile capacity, whereas a HPC is 

approaching the critical crack opening width at which there are no longer any crack bridging 

stresses (Figure 4-13b). The slab was designed to have an equivalent strength and the slab 

reinforcement begins yielding at the same applied load (Figure 4-13b). 

The increase in ultimate strengths shown in Figure 4-13a is related to the failure that takes place 

in the barrier due to punching shear, and seems independent of the slab. The numerical results 

indicate that the barrier punching strength is essentially superposed onto the initial strength of the 

uncracked structure. This is logical because the initial structural rigidity is controlled by the slab 

behaviour, cracking begins in the slab overhang, and the post-cracking stiffness of the structure 

remains unchanged. 

4.6 Conclusion 

The NLFE models created for this study accurately reproduced the experimental results – 

stiffness, crack damage, and failure mode – from Namy (2012). The results demonstrate that all 

three bridge deck configurations with cast-in-place and precast barriers exceed the design criteria 

specified in the CSA (2006) bridge design code. The validated models were then used to perform 

several parametric studies. The studies and general findings are listed below: 
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Fibre orientation study:  

 The NLFE model accurately reproduced the experimental results for the precast barrier 

configuration with shear connections when the exterior HPFRC barriers were modeled 

with a 15% post-peak tensile efficiency. 

 The reduced HPFRC post-peak efficiency is likely due to an unfavorable fibre orientation 

with respect to the observed shear failure. New fabrication methods may improve barrier 

shear strength. 

Precast barrier length effect study:  

 The increased length of the loaded precast barrier from 2 m to 4 m, the expected length 

for use on bridges, significantly enhances the load-carry capacity. 4 m precast barriers 

with or without shear connections present nearly an equivalent load-carry capacity to the 

reference cast-in-place barrier.  

Eccentric load application study: 

 The 4 m precast barriers were loaded flush at their edge. Edge loading decreased the load-

carry capacity of the barriers with respect to centred loading; however, 4 m precast 

barriers subjected to eccentric loads still surpass the CSA (2006) and AASHTO (2010) 

design requirements.  

 For precast barriers without connections, the length effect of using 2 m precast barriers 

was more critical to the structural behaviour than edge loading. For precast barriers with 

connections, the length effect of using 2 m precast barriers was as critical to the structural 

behaviour as edge loading.  

HPFRC slab study: 

 The slab overhang was modeled with an equivalent strength HPFRC that led to a 50% 

reduction of steel reinforcement. Utilisation of this material increases the structural 

stiffness and reduces damage to the slab overhang during service loads. It also increases 

the ultimate strength of the structure. Thus, equivalent strength HPFRC slabs are of great 

interest for bridge deck applications. 
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CHAPTER 5 COMPLIMENTARY INFORMATION AND GENERAL 

DISCUSSION 

The progress of this research project can be divided into three distinct phases. There was the 

preliminary finite element study to evaluate the general bridge deck overhang behaviour and 

identify the key design parameters for evaluation. Then there was the experimental phase, which 

included the specimen design, the testing configuration, the laboratory tests and the results 

analysis. Finally there was the subsequent numerical study to reproduce the experimental tests 

results, and evaluate other design parameters that could not be performed experimentally. 

Chapter 3 and Chapter 4 summarise the principal information from these three phases, while this 

Chapter provides all the complimentary information that could not be detailed previously.   

5.1 Preliminary Finite Element Evaluation 

The initial parametric study done using ATENA (Cervenka 2009) was meant to establish the 

behaviour of the bridge deck and barrier structure during static loading to isolate key design 

parameters and to define the experimental conditions. The study provided an order of magnitude 

of the structural performance and resistance; however, it was meant primarily as a qualitative 

evaluation. In light of this and the large scale of the numerical models, a simplified barrier 

geometry and coarse mesh was permitted as a means to reduce simulation time. 

The barrier used for this study had a simplified geometry. However, the cross-sectional area, base 

width, reinforcement ratio, and concrete cover were all equivalent to those from the MTQ Type 

201 cast-in-place barrier, and the material used was a HPFRC 50 MPa with 1 %-volume of fibre 

reinforcement in lieu of the traditional 50 MPa concrete.1 A 225 mm thick normal strength 

concrete (35 MPa) slab was used with a 1.8 m overhang and 20M bars at 125 mm c/c spacing. 

The 1.8 m overhang length was selected because it is the longest bridge overhang that can be 

                                                 

1Afterwards a corrected model with a traditional 50 MPa concrete was examined to observe more realistic cracking 

pattern in the cast-in-place barrier, but the general structural behavior of the model remained similar. Because the 

study was qualitative the findings with the HPFRC were considered to be valid.   
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designed with simplified analysis methods of the CSA (2006). The design aids from the MTQ 

Design Guide (2004) were used to design the steel reinforcement.  

The concrete was modeled using the Nonlinear Cementitious fracture-plastic concrete 

formulation. All reinforcement was modeled discretely as truss elements with an elastic-perfectly 

plastic bilinear material law using the nominal yield stress of 400 MPa. A bond-slip relationship 

was not considered for this initial analysis. The slab was fixed in all directions at its far edge. A 

coarse mesh of 150 mm was used for the barrier and 56 mm for the slab. The slab mesh density 

was significantly higher than the barrier because a minimum of 4 rows of mesh elements were 

necessary to model the slab bending and reinforcement yielding. The loading was applied in the 

middle of the barrier via a high performance steel (fy = 800 MPa) plate with surface area of 

350x700 (AASHTO 1989), and a load application height of 700 mm (CSA 2006). The loading 

was displacement controlled. Figure 5-1 provides a schematic of the base model used for this 

study. 

 

Figure 5-1: Simplified Finite Element Model for Lab Configuration Study 

The base model reached a load-carry capacity of 540 kN before the slab and anchor 

reinforcement yielded, and the barrier was not significantly damaged during the load application. 

The effects of the following modifications to the base model were analysed, and the findings are 

summarised in Table 5-1: 

 Length of the bridge deck and barrier structure 
 Discontinuous precast barriers of 4 m length 
 Lateral connections added between discontinuous precast barriers of 4 m length 
 Cantilever overhang length 
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 Addition of inner deck-span 
 Addition CL-625 truck wheel loads in addition to transversal impact force 
 Centred and non-centred load application 
 Boundary conditions representative of steel or concrete beams 

Table 5-1: Initial Parametric Study and Findings 

Condition Force (% Change)
1
 Results 

Model length    
4 m 540 kN (0%) 

Reference – Slab resists load along entire length.  
Yielding in anchor and slab reinforcement. Slab 
critical.   

Model length  
12 m 1206 kN (0%) 

Increased deck length significantly increases structure 
resistance. Yielding of reinforcement concentrated 
over 4 m length. General behaviour similar to 
reference study.   

Precast, length 
12 m  670 kN (-44%) 

Discontinuity in barrier restricts load transfer length to 
precast barrier length, and concentrates stresses in slab. 
Slab and anchor reinforcement become more critical. 
Cracking in slab concentrated in front of the loaded 
barrier.   

Precast w/ 
connection, 
length 12 m 

1152 kN (-5%) 
Structure behaviour very similar to continuous 
configuration. Highlights interest in shear connection 
between precast barriers.  

0.9 m Slab 
Overhang, 
length 12 m 

1049 kN (-13%) 

Reduced overhang length stiffens structure.  Higher 
stress level in transversal slab reinforcement at 
support. Reinforcement adjusted according to MTQ 
Design Guide (2004) reducing slab resistance. 

Added inner 
deck span, 
length 4 m 

534 kN (-1%) Additional deck span has insignificant influence on 
structural behaviour and performance.  

CL625 Wheel 
Loads, length    
4 m 

500 kN (-7%) 

Wheel loads do little to change structure response.  
Applied loads remain critical. Wheel loads solicit slab 
near edge support, while applied barrier load increases 
stress at slab-barrier junction.  

Ecc. load, 
Precast, length 
12 m 

603 kN (-50%) Eccentric load application on precast railings is 
critical, significantly lowering structural capacity.  

Ecc. Load 
Precast 
w/connection, 
length 12 m 

1106 kN (-8%) Eccentric load application is much less critical in 
precast configuration with connections.  

1. Percent change relative to trial with same length, 4 m or 12 m to provide a more equitable comparison 
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The simulations with precast barriers highlighted the influence of adding a connection to transmit 

the transverse loads between barriers. When no connection is present, the load transfer from the 

barrier to the slab is limited to the precast length, and therefore the anchor bars and the slab 

reinforcement experience significantly higher stress levels for a given load. Introducing shear 

connections between barrier segments proved to limit this effect, and the structural capacity 

essentially became equivalent to that of a continuous cast-in-place configuration. Thus, the shear 

connection between barriers was established as a key design condition for investigation in the 

experimental program. 

The implication of this parameter on the experimental program was very important. First, to test 

the efficacy of any proposed shear connections, the length of the experimental tests would have 

to be able to accommodate at least three precast barriers (connection on each end of loaded 

barrier). Second, the length of the precast barriers would also be a very important parameter, 

because similar to adding a shear connection between barriers, an increased barrier length would 

also attenuate the concentration of load transfer. However, an increased length would also have a 

significant impact on the size of the experimental setup. The precast barriers selected for 

investigation in this project (Duchesneau 2010) were previously designed at a length of 2 m, 

however the length of the barriers for actual use could potentially be 4 m or even 6 m. For 

practical considerations in respect to fabrication, transportation, and manipulation of the 

experimental specimens, it was decided that 2 m barriers would be used, limiting the 

experimental setup to a total length of 6 m. The implications of the barrier length on the 

numerical findings was later considered in a numerical study. 

The simulation with a reduced slab overhang length, 0.9 m instead of 1.8 m, did not significantly 

affect the structural behaviour. This is logical because the steel reinforcement within the 

overhang was adjusted with respect to the cantilever length in accordance with the MTQ Design 

Guide (2004) and, furthermore, because the applied moment from the transversal load is constant 

throughout the overhang. Therefore, a commonly used slab overhang length in Canada of 1 m 

was selected for the experimental tests. The simulation including an inner deck span in addition 

to the overhang span had no effect on the structural behaviour and therefore the deck slab was 

limited to the overhang and supported portions. 
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In the CSA (2006), the specified impact loads (transverse, vertical, and longitudinal forces) for 

the design are to be applied simultaneously to the barrier. The transverse and longitudinal 

components correspond to the vehicle deceleration during impacts, and the vertical force to the 

vehicle weight. Considering the structural stiffness of the barrier and deck in the longitudinal 

direction, the longitudinal force component was never considered. The heaviest vehicle 

considered for impact for PL-2 bridges is the 8000 kg Single Unit Truck (NCHRP 350), however, 

the condition with CL-625 truck wheel loads was examined to be conservative. The incorporation 

of CL-625 wheel loads applied simultaneously with the transverse impact force only marginally 

affected the load-carry capacity of the structure (7% decrease). This observation is logical 

because the wheel loads are critical to the supported edge of the slab, while the transverse impact 

force is critical at the barrier-slab junction. The vertical barrier load specified in the CSA (2006) 

was therefore not considered necessary to incorporate into the experimental setup.   

The CSA (2006) also specifies that the barriers must be able to resist impact loads at all sections. 

Thus the effect of eccentric barrier impacts was also studied. Simulations with an eccentric load 

did reduce the structural resistance, particularly for precast railings without shear connection 

(50% loss of load-carry capacity compared to monolithic barrier). However, the resistance still 

exceeded the requirements of the governing codes (AASHTO 2004, CSA 2006), and the centric 

loading condition was seen as a more principal aspect of research for this project. Therefore, the 

consideration of eccentric loads would be the subject of numerical analysis and future studies. 

The initial finite element evaluation formed the basis of the experimental setup and test 

parameters. Three 6 m long bridge deck-and-barrier configurations were tested in the laboratory. 

One configuration had a cast-in-place barrier, to establish a performance reference, and two 

configurations used precast barriers. The difference between the two precast configurations was 

the incorporation, or not, of a lateral shear connection between barriers. The slab only consisted 

of the overhang and supported portions. The overhang was 1 m in length. Only the transverse 

impact load was applied in the centre of each configuration. 

5.2 Design of Experimental Specimens 

Once the experimental program was determined the next phase of the project was to design and 

fabricate the laboratory specimens.  
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5.2.1 Support Block Design 

Only one support block was used throughout the laboratory tests to save on time, energy, and 

expenses. The support block had to be able to resist stresses from transportation, post-tensioning, 

and the laboratory tests; to be representative of a typical prestressed concrete beam; and to be 

compatible with the experimental setup. Considering the strength requirements, the support block 

was built with a HPFRC 70 MPa (see Table 5-4 for mix design) with a high percentage of 

reinforcement for a continuously supported block. A 1 m width was selected to correspond to that 

of a NEBT prestressed bridge beam top flange encountered in Quebec. A 0.4 m height was 

selected to give ample room for the vertical slab deflection, and to provide access to the 

underside of the slab (once cantilevered) to install the necessary instrumentation. The access 

height was particularly important for the installation of strain gauges on the underside of the slab 

overhang. The chamfers at each corner of the block were meant to minimize the build-up of stress 

concentrations in the slab as it would rotate about the support block during loading. 65 mm post-

tension ducts were poured into the block in two rows every 500 mm in order to be compatible 

with the anchoring pattern on the laboratory strong floor. The design drawings for the support 

block can be consulted in APPENDIX A. 

5.2.2 Slab Design 

The slabs were designed to be representative of the cantilevered portion of a bridge slab in 

Quebec with a 1 m non-supported overhang length. The slab thickness of 225 mm and the 

preliminary slab reinforcement were selected using the MTQ Structure Design Manual (MTQ, 

2004). The design aids specified a minimum of 1780 mm2/m of transversal reinforcement for the 

negative moment for a 1.0 m slab overhang. Thus, 20M bars at 150 mm c/c spacing (2000 

mm2/m) were selected for the negative moment reinforcement in the slab overhang. A clear cover 

of 60 mm and 35 mm were specified for top and bottom transverse reinforcement respectively. 

The maximum allowable longitudinal slab reinforcement was selected and corresponded to 15M 

bars at 300 mm c/c.   

A secondary design was performed to make sure that the slab overhang met design criteria in the 

governing design code for bridges in Canada, CSA (2006). The slab thickness must provide 

enough room to meet the minimum cover specified for the top and bottom rows of transversal 

reinforcement, as well as the clear spacing of 55 mm between longitudinal reinforcement. The 
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minimum cover specified in Clause 8.11.2 is more conservative than the 60 mm and 35 mm clear 

cover allowed by the MTQ for top and bottom reinforcement respectively. The MTQ imposes 

less minimum concrete cover because their bridge decks are additionally sealed with an 

impervious membrane as well as an asphalt layer. The MTQ values were maintained because 

they are a more realistic representation of bridge slabs in Québec. The slab thickness of 225 mm 

was adequate and was maintained for the slab design. 

According to Clause 5.7.1.7 (CSA 2006), the slab overhang for decks supported by prestressed 

concrete beams must be designed to resist the negative transverse moments caused either by the 

CL-625 wheel loads (Clause 3.8.3.2) in the bridge overhang or by the transversal barrier impact 

load (Clause 3.8.8.1 and Clause 12.4.3.5) applied independently. The transverse bending 

moments induced by CL-625 wheel loads can be determined with the simplified methods detailed 

in Clause 5.7.1.6 (CSA 2006). The negative transverse moment induced by impact loads must be 

calculated using either a refined analysis method or yield line theory. The factored bending 

moments, axial forces, and transfer lengths specified in Table C5.4 in the CSA Commentary 

(2006), which were derived from a FE analysis were used. The simplified method of analysis in 

Clause 5.7.1.2.1 (CSA 2006) must be used to find the longitudinal moment in the slab for an 

overhang span length of more than 3 metres. Because this method is not particularly applicable to 

the experimental setup though, and the maximum longitudinal reinforcement allowable in the 

MTQ Structure Design Manual (2004) was selected, the longitudinal reinforcement was assumed 

to exceed the code requirements. Table 5-2 below summarises the design checks performed for 

the slab as designed with the MTQ Structure Design Manual (2004). The calculations are 

detailed in APPENDIX D of this document. 
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Table 5-2: Slab Overhang Design Summary 

Component Interior Exterior
2
 

MR 100 kN-m/m 177 kN-m/m 
MULS 73 kN-m/m 137 kN-m/m 
NR 1200 kN/m 1920 kN/m 
NULS 100 kN/m 142 kN/m 
MULS/MR + NULS/NR 0.82 0.85 
VR, Transverse  279 kN/m 387 kN/m 
VULS, Transverse  100 kN/m 142 kN/m 

The slab overhang design met all the design checks imposed by the governing CSA (2006) and 

was designed in accordance with the MTQ Structure Design Manual (2004). However, there was 

still concern of inadequate development length of the transverse reinforcement for the negative 

moment in the slab. Figure 5-2 indicates that the preliminary numerical simulations and 

experimental results of Benmokrane et al. (2010) demonstrated a strong risk of localized shear 

failure in the slab at the load transfer region of the slab beneath the bridge barrier. 

  
a) Numerical Model b) Benmokrane et al.(2010) 

Figure 5-2: Local Shear Failure in Slab Overhang 

One of the causes of this local shear failure in the slab was the inadequate development length of 

the transverse reinforcement at this region. The slab reinforcement proposed in the MTQ 

                                                 

2The exterior portion of the slab overhang is defined as portion within distance Sc, 1 m, of longitudinal slab edges. 

Due to the reduced size of the experimental setup, the exterior slab reinforcement was limited to 0.5 m on both sides. 
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Structure Design Manual (2004) uses straight reinforcing bars for the negative moment 

reinforcement. A strut-and-tie model of this disturbed region of the slab (Figure 5-3) indicates 

that the development length of the tie (top row of transverse reinforcement) needs to be reduced 

as much as possible to prevent a local shear failure. To better anchor the reinforcing bars at this 

region, hooks were added to the ends of the top row of transverse reinforcement, effectively 

decreasing the development length from 383 mm to 231 mm, a 40% reduction (See APPENDIX 

D for Ld calculation). The reinforcement detail in this region is an important design detail and 

was examined in the numerical parametric study of the project. 

  
a) Standard Reinforcement Detail b) Modified Reinforcement Detail 

Figure 5-3: Strut-and-Tie Model of Slab at Disturbed Load Transfer Region 

Figure 5-4 shows the final slab design for the Test Configuration 1. The only difference between 

slabs designed for Test Configurations 2 and 3 was the configuration of the anchors cast into 

them, which depended on the barriers used. The design and as-built drawings for each slab 

specimen can be found in APPENDIX A. 
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Figure 5-4: Final Slab Design Lab Trial 

5.2.3 Barrier Designs 

The cast-in-place barrier used to establish a reference performance of the bridge was a 35 MPa 

MTQ Type 201 bridge barrier which can be found in the MTQ Structure Design Manual (2004). 

This barrier has an F-shaped geometry, a barrier safety shape commonly used throughout North 

America, Europe, and Australia (MASH 2010, TAC ACT 2010, Jiang et al. 2004). 

The precast barrier design for the laboratory test was taken directly from Duchesneau (2010) 

without any modifications. The barriers from Duchesneau (2010) are 2 m in length and made 

from HPFRC 70 MPa. The geometry is similar to that of the MTQ Type 201 barrier except that 

the section width is reduced by 9% at the base and 16% at the top. The steel reinforcement is also 

optimized with a 60% reduction of transverse reinforcement and 63% reduction of longitudinal 

reinforcement. These reductions to the section area and reinforcing steel are possible because of 

the tensile behaviour of the HPFRC 70 MPa concrete. The longitudinal barrier sections of the 

cast-in-place and precast barriers are shown in Figure 3-2. The design and as-built drawings for 

each barrier specimen can be found in APPENDIX A of this document.   

The precast barriers with shear connections were similar to those designed by Duchesneau 

(2010), except for the trapezoidal recess added to each end of the barriers. The recesses were 
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injected with mortar once the barriers were installed on the deck and the mortar worked to 

transfer shear forces between railings. The shear key is described in Section 3.2.3. Figure 5-5 

below shows photos of the shear key, during installation and after injection with a FRM. 

  
a) Plan View b) Elevation View 

Figure 5-5: Shear Key 

5.2.4 Loading Plate 

A loading plate was fabricated to distribute the actuator load to the barrier over a controlled 

surface. To withstand the bearing forces, the loading plate was made from 120 MPa UHPFRC. 

The dimensions of the loading surface, 350 by 700 mm, are specified as an impact dimension in 

AASHTO (1989) for PL-2 barriers, and were selected to maintain continuity between this project 

and those of Duchesneau (2010) and Niamba (2009). The loading plate was anchored directly to 

the barrier with drop in bolts. The loading plate design is shown in Figure 5-6. After the first two 

configurations were tested, small cracks were detected on the back face of the loading plate. Thus 

a second was fabricated for the remaining test configuration as a precautionary measure. The 

mechanical properties of the two loading plates are given in Table 5-3. 
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a) Top View  

  
b) Front View c) Side View 

Figure 5-6: Loading Plate Design 

Table 5-3: Loading Plate Mechanical Properties 

Property Configurations 1, 2 Configuration 3 
f'c (MPa) 105.2 114.5 
ft (MPa)1 9.7 11.0 
Ec (MPa) 40600 39700 

 0.25 -- 
1. Tensile strength determined with direct tension tests. 

5.2.5 Concrete Composition 

Table 5-4 gives the different concrete compositions used for fabrication of the 35 MPa concrete 

slabs and cast-in-place barrier, the HPFRC support block, and the HPFRC precast barriers.
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Table 5-4: Concrete Composition* 

 
35 MPa Concrete  70 MPa HPFRC 
Barrier & Slabs Support Block Precast Barriers 

Cement, kg/m3 360.0 650.0 625.0 
Water, kg/m3 160.0 195.0 218.8 
Sand, kg/m3 753.0 827.3 842.4 
Gravel, kg/m3 1066.0 649.0 601.7 
Super-plasticizer, kg/m3  3.1 44.4 12.1 
Viscosity Modifier, kg/m3 -- 2.2 -- 
Air-entraining  
Admixture, kg/m3 0.14 -- -- 

Steel Fibres, kg/m3  -- 120 120 
Fibre Length, mm / 
Diameter, mm -- 30 / 0.5 30 / 0.5 

Water / Binder Ratio, (-) 0.44 0.30 0.34 
*For injected mortar and UHPFRC composition’s APPENDIX E 

5.3 Fabrication of Experimental Specimens 

The fabrication of the laboratory specimens was done at the Sallaberry-de-Valleyfield (Québec) 

precast plant of Béton Brunet Group, an industrial partner for this research project. The details of 

each specimen pour, date, times, fresh concrete properties, and commentary, were all recorded in 

the Fabrication Log attached in APPENDIX D. 

5.3.1 Support Block 

The support block was built outdoors on an elevated steel platform.  The steel platform was used 

directly as a form for the bottom side of the block, and wooden formwork was built-up along the 

sides. The fabrication of the support block was relatively straightforward, however the spacing 

and verticality of the post-tension ducts were very important. PVC tubes were used for the duct 

reservations, and they were fitted into steel inserts welded onto the platform at the exact centre-

to-centre spacing, 500 mm (Figure 5-7). 
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Figure 5-7: Block Formwork 

Figure 5-8 shows that angled steel sections were fixed on-top of the formwork with inserts fitted 

into the top portion of the PVC pipes. The verticality of the pipes was then adjusted before 

securing the steel angles to the formwork. This procedure was an effective method to maintain 

the spacing and verticality of the PVC pipes, as well as to resist any movement during the 

concrete pour. A similar design was used for the post-tension ducts in the slabs. The finishing of 

the block surface was also of particular importance. The slabs were anchored to the block and 

post-tensioned, any unevenness or asperities in the finished surface could potentially cause a 

stress build-up in the slabs during post-tensioning. The HPFRC used for the fabrication was 

completely self-leveling and compacting, which helped the surface finish. However the steel 

braces and inserts in the PVC pipes limited trowel access to the particularly important areas 

around the post-tension ducts. Furthermore, because the specimen was poured outdoors at the 

onset of winter, the support block was steam cured until a resistance of 50 MPa was reached. The 

steam curing, or perhaps temperature gradient after the steam was cut-off, seemed to have an 

effect on the finished surface as well, which was very flaky with several air bubbles. To improve 

the finishing, the entire surface was passed over with a concrete grinder. 
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Figure 5-8: Block and Steel Bracing for Post-Tensioning Ducts 

5.3.2 Slab Fabrication 

The slabs were each poured match-cast with the support block, meaning the support block was 

used directly as part of the formwork for the slabs. The remaining forms were built-up around the 

support block. A greasing agent was applied to the block and wooden forms before pouring the 

slabs in order to more easily break down the forms and remove the slabs. 

Once the formwork was built-up for the slab, the PVC pipes were placed to create the post-

tensioning ducts in the slab. The same steel bracing configuration was used to maintain the exact 

spacing and adequate verticality for the reservations as for the support block (Figure 5-9).   

After the PVC pipes were fixed in, the slab reinforcement was put together directly within the 

forms. Plastic chairs were used to maintain the appropriate cover for the transversal 

reinforcement and clear spacing between the longitudinal reinforcement. The anchor bars for the 

cast-in-place barriers had several longitudinal reinforcing bars tied into them, essentially making 

a cage. This gave the anchors enough rigidity to remain in place and avoid external support 

during the slab pours. However, the anchors for the precast barriers had no longitudinal bars and 

therefore had to be supported externally.  

To place the anchors for the slabs, a rectangular steel bar, 12 mm thick by 50 mm in height, was 

supported at the two ends of the slab, and temporary wooden supports were added before the 
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anchors were tied in. The bar was positioned to be at the centre-line of the anchors and so that the 

anchors could be placed on top of the bar and sit at the proper height, at which point only the 

longitudinal position of the bars had to be adjusted. The anchors were then tied in to the slab 

reinforcement where possible (Figure 5-9). 

As seen in Figure 5-9, the slabs had a significant quantity of reinforcement. The placement of the 

reinforcement was followed from design as-strictly as possible, but there were some placement 

conflicts between the PVC post-tension ducts and the transverse reinforcement, as well as 

between the transversal reinforcement and the anchor bars. The PVC reservations always had 

priority because they had to be compatible with the laboratory strong floor. Thus, the transverse 

rebar would be moved over next to the PVC tubes at any conflicts. It also happened that the 

anchors would occasionally have to be moved in order to tie into the slab reinforcement. The 

anchor bars were placed after the slab reinforcement, it was only their positioning that could be 

modified. Conflicts in the placement of slab and anchor bars were most often encountered in the 

precast configuration, the anchor bars were skewed at a 45° angle. This was especially true within 

0.5 m of the slab edges where both the transversal and anchor reinforcement were doubled. The 

final position of all the anchor bars was recorded and can be found on the As-Built drawings in 

APPENDIX A. 

The concrete used for the slabs was a self-leveling and self-compacting design mix. The concrete 

truck poured the concrete as close to the slab centre as-possible, and the concrete was manually 

pushed to the far and near edges of the slab. The slabs were cast in the winter and as such were 

protected in a canopy. The canopy was used to protect the slabs from the elements and to insulate 

the slabs from the cold. However, as can be seen in Figure 5-10, the canopy also limited the truck 

access to the slab. 
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Figure 5-9: Slab Reinforcement and Anchor Support 

  

Figure 5-10: Truck Assess for Slab Casting 
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The slab pours were done outdoors in the middle of winter, and as soon as the top surface of the 

slab was finished, the slab was covered with insulated tarps and then steam cured. 12 cylinders 

were poured with every slab specimen and placed in the same curing and storage conditions. The 

steam curing was only stopped once the slabs had met their design strength of 35 MPa. The 

curing was then lowered gradually in order to reduce the thermal shock. 

The slabs used for the precast barrier configuration had a special surface treatment in the region 

where contact with the precast barriers was expected (barrier-slab interface region). Immediately 

after pouring, the zone was sprayed abundantly with a concrete surface retarder from Euclid 

Chemical (Formula S for horizontal surfaces). The next day the steam curing was temporarily 

stopped, and a high pressure water hose was used to remove the surface mortar and expose the 

aggregate in this area of the slab. In Figure 5-11 the exposed surface can be compared against the 

finished surface of the slab. The goal was to increase the friction and cohesion of the barrier-slab 

interface. This was seen as less critical for the cast-in-place barrier because the concrete was 

poured directly onto the slab, and for the cast-in-place configuration this area of the slab was 

simply left unfinished.  

 

Figure 5-11: Exposed Aggregate Surface on Slabs 



105 

` 

5.3.3 Cast-in-Place Barrier, MTQ Type 201 

The cast-in-place barrier was built on-top of the slab as soon as the slab steam curing was 

stopped. The slab remained in its formwork while the barrier was built on top of it. The 

remaining rebar for the barrier was tied into the existing reinforcement cage built before the slab 

was poured (anchors and longitudinal reinforcement). The wooden formwork was built-up 

indoors and then placed on the slab. Once the formwork was fixed into place, the barrier was 

ready for concrete placement. The MTQ 35 MPa concrete mix was used for the cast-in-place 

barrier (same mix as for the slabs).   

There was a delay of 10 days between the slab casting and barrier casting. The slab had been 

steam cured and had gained the majority of its resistance before the barrier pour. Therefore, in 

order to minimize the differential shrinkage between these two components, the slab surface was 

kept humid until the barrier pour to reduce restrained shrinkage cracks in cast-in-place barrier.  

The forms were fixed to the slab on each end, and on the back and front sides. On the ends the 

forms were closed off using plywood and then supported with 2x6 boards. The backside of the 

formwork was attached to the slab using 2x6 boards screwed in at both ends. The front was fixed 

using four 2x8 ties screwed into the far end of the slab formwork and braced with 2x4 boards. 

The top of the forms were also connected using four 2x4 boards nailed to both the front and back 

side. Figure 5-12 shows photos of the barrier formwork assembly and fixation before the concrete 

placement. The formwork seemed to be very solidly supported and well-fixed to the slab. 

The barrier was poured from the top, and was supported by the slab, support block, and elevated 

steel platform. Thus, in order to pour the barrier, a height of 2 m above ground level had to be 

reached. This clearance height was too high for the concrete truck available at the precast plant. 

An industrial concrete pump had to be used (Figure 5-13). The concrete static pressure combined 

with the increased pouring energy from the concrete pump were superior to the formwork 

resistance. The forms began to deform along their length, and particularly in the centre (fixation 

at the ends was the most rigid). Some concrete also began to flow in-between the joint of the 

formwork and slab on both the front and back sides. To limit the deflection of the formwork, 

several clamps were placed on the top of the barrier and tightened to reduce the relative 

displacement of the two sides of the formwork. However, the forms deformed and the pour was 

stopped once all the rebar had been covered for fear that they might collapse completely. The 



106 

` 

result of this was a barrier section that was larger than the design section of the MTQ Type 201 

barrier. The as-built average width of the barrier was 248 mm at the crest and 450 mm at the 

base, a 10% increase from design width (Figure 5-14).The as-built average height was 860 mm, 

20 mm shorter than design (2% decrease). In Figure 5-15 the slight curvature of the barrier front 

face due to the increased deformation at the centre section can be seen as well as the concrete that 

spilled out along barrier-slab interface. 

The effect of an increased sectional area relative to design caused the as-built barrier to be more 

rigid and resistant than the design barrier. This is an important point to take note of because it 

means the reference configuration used for this study had an improved structural performance. In 

order to avoid deformation of the formwork, the front and back faces of the barrier forms should 

have been connected with two threaded steel rods every 300 mm along the 6 m length.   

  
Figure 5-12: Formwork Assembly and Fixation, Cast-in-place Barrier 
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Figure 5-13: Barrier Pour with Industrial Pump 

  
Figure 5-14: Barrier As-Built Section 

  
Figure 5-15: Barrier Joint Spill and Curvature 
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5.3.4 Precast Barriers 

The precast barriers with and without shear connections were fabricated with the same 

methodology. The difference between the two configurations was limited to the forms of the 

barriers. One set blocked out the trapezoidal recesses at each end, which was used to incorporate 

a shear connection between barriers; and the other did not. The barriers were cast with 70 MPa 

HPFRC, which required a special mixing and pouring procedure. Six barriers were cast in two 

pours, one for the standard precast barriers and another for those with shear keys. The curing and 

form stripping procedure detailed in Duchesneau (2010) were followed.    

The steel forms were supported on 4x4 blocks to improve the quality of the steam cure. Most of 

the form surfaces were simply cleaned and oiled. However, the surfaces that would be in contact 

with the injected mortar – recesses between barrier-and-slab as well as barrier lateral extremities 

– were coated with a EUCON Formula F surface retarder. The steel reinforcement was placed in 

the forms using plastic chairs and tied together. Holes were cut into the hollowed out recess 

between the barrier and slab to place the steel stirrups. The holes were sealed with a combination 

of extruded polystyrene (styrofoam) and duct tape. Once the forms surfaces were coated, the 

rebar placement was verified and the holes were sealed, the precast barriers were ready for 

casting (Figure 5-16). The preparation for the precast barriers was quick and easy. 

  
Figure 5-16: Precast Barrier Pour Preparation 

The 70 MPa HPFRC was mixed in a specific procedure to reproduce that used in the Structures 

Laboratory at Polytechnique Montreal where the concrete design was formulated.  First the dry 

materials were loaded into the concrete truck. The sand and gravel were loaded at the mixing 

plant; however the cement could only be introduced manually. The cement at Béton Brunet was 



109 

` 

incompatible with the admixtures in the HPFRC mix, and Holcim St. Laurence GUbSF cement 

was shipped to the factory by big bag. Figure 5-17 indicates that the cement was then loaded into 

the truck with the aid of an overhead crane. Once the cement was added, the truck headed back to 

the mixing plant to load the water and admixtures. However, only 50% of the super-plasticizer 

was added at this time. The concrete truck proceeded to the casting area, and once there, the steel 

fibres were introduced into the mix by hand. The remaining quantity of super-plasticizer was also 

be added to the mix at this time. Once the 70 MPa HPFRC concrete was mixed the flow slump 

and air content were verified to ensure that the mix was adequate. The two-phased addition of the 

super-plasticizer was done to maintain an optimal concrete workability regardless of the delays 

inherent to the mixing process (adding 370 kg of steel fibres by hand and quality control checks).  

Once the quality was assured, the concrete was cast into the forms and placed with the aid of an 

external vibrator and trowels (Figure 5-17). Internal vibrators are not compatible with FRC 

because the vibrators cause local segregation of the fibres. For similar reasons, only the flat 

surface of the trowels was used to move and compact the concrete. After pouring the concrete, 

the back sides of the barriers were finished and then a moistened polyethylene plastic was placed 

tightly over the exposed surface to maintain the finish.   

  
a) Loading Cement b) Casting  

Figure 5-17: Precast Barrier Fabrication 
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The barriers were left alone throughout the night to allow the hydration process to start. The 

following morning the plastic seals were removed and steam curing began. The steam cure was 

stopped once the barriers reached a compressive strength of 25 MPa, at which point the 

formwork could safely be removed. Once the forms were broken down, a high pressure water 

hose was used to remove the surface mortar and expose the aggregate of the surfaces treated with 

the surface retarder. After which, the steam cure continued until the design strength was reached 

or a period of 7 days had passed, whichever came first. 

During the casting of each set of specimens concrete was taken during the pour to cast 12 102 

mm (4 in) cylinders as well as 4 concrete dog bone coupons for direct tensile tests (Delsol 2012). 

The tensile tests were used to define the HPFRC tensile stress-strain law for numerical modeling. 

During the fabrication of the barriers, problems were encountered with the 70 MPa HPFRC used. 

The concrete had been previously formulated and verified at the Structures Lab at Polytechnique 

Montreal, and the fresh-state and hardened state properties of the concrete were very regular. The 

laboratory version of the HPFRC had a low air content between 1 and 2% as expected since no 

air entraining admixture was added to the concrete. However, when the concrete was mixed in 

the factory at an industrialized scale, the air content reached levels upwards of 10%. The air 

content increased dramatically after the introduction of the fibres and remaining super-plasticizer, 

during which time the concrete truck mixed the concrete at full capacity. It is believed that an 

unfortunate chemical reaction between the cement, the fibre glue, and the polycarboxylate super-

plasticizer caused the high air content. It is possible that the cement fabricator changed their 

quarry source, or the fibre manufacturer changed the glue contents, both of which could cause the 

chemical incompatibility between the HPFRC components. The first attempt to cast the precast 

barriers had to be abandoned because the measured air content of 12% was too high. An increase 

by 10-11% of the air content from the design value would certainly diminish the resistance of the 

HPFRC to an unacceptable degree.   

The HPFRC mix was changed to the mix design from Niamba (2009), which is a perfectly 

adequate mix from a mechanical perspective, but less workable and harder to pour and finish.  

Also, following consultation with experts from Euclid Chemical, a new product was brought to 

the pours that could potentially reduce air content within a concrete mix called EUCON Air Out.   
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The new mix design and EUCON Air Out made it possible to proceed with the barrier 

fabrication; however, it should be noted that the air content was always quite high, 8% for the 

Duchesneau barriers (no use of EUCON Air Out) and 5% for the barriers with shear keys 

(EUCON Air Out used). Table 3-3, the compressive and tensile strengths of the 70 MPa HPFRC 

concretes were lower than anticipated, and this is likely due to the increased air content. The 

general rule is that the compressive strength loses 3 to 5 MPa for every percent of air entrained. 

This is the case for a well dispersed network of air-bubbles within the cement matrix that would 

be created with an air entraining agent. The dispersion and shape of the air within these mixes is 

unknown, so the air content could have been even more detrimental to the concrete strength. 

Contrary to the fabrication defaults of the reference cast-in-place barrier, the reduced mechanical 

properties of the precast barrier HPFRC were unfavorable to the structural performance of the 

precast barrier test configurations. 

As stated earlier, the new HPFRC mix had a reduced workability and an adequate compaction of 

the barriers was more difficult to ensure. During the pours, an external vibrator was used and the 

concrete was compacted manually with trowels. Still, there were several compaction voids on the 

front faces of the barriers. It is unlikely that the compaction voids had any effect mechanical 

performance of the barriers, but it was still not ideal for laboratory tests. The faces of the precast 

barriers were later patched up with plaster to improve their aesthetics. Figure 5-18 shows photos 

of a precast barrier before and after being patched up. 

  
a) Before Patch Up b) After Patch Up 

Figure 5-18: Precast Barriers Before and After Patch Up 

5.3.5 Specimen Properties 

Table 5-5 below and Table 3-3 from Section 3.2.4 give the fresh state material properties and 

hardened state mechanical properties of the specimens fabricated. As can be seen the average 
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compressive and tensile strengths of the 70 MPa HPFRC concrete used for the precast barriers is 

53.5 MPa and 3.1 MPa respectively. Thus the concrete was much weaker than that used in the 

initial design of these barriers by Duchesneau (2010) with a compressive strength of 74 MPa (-

28%) and tensile strength of 4.2 MPa (-26%). 

Table 5-5: Specimen Fresh State Properties 

Property Cast-in-place 
Barrier & Slabs 

Support 
Block 

Precast 
Barriers1 

Precast 
Barriers2 

Injected 
Mortar 

Loading 
Plates 

Air Content, % 6.1 1.1 7.2 5.0 -- 2.2 
Slump Flow, mm 600 770 430 325 810 700 
Temperature, °C 20.2 20.7 17.7 24.8 17.9 -- 
Density, kg/m3 -- 2425 -- 2150 -- 2530 

1.Test Configuration 2. 2.Test Configuration 3 (with shear key) 

5.4 Experimental Setup and Procedure 

The experimental scale for this project was quite large and an acute attention to the detail of the 

laboratory configuration, load application, installation, and assembly was very important. The 

primary objectives were to make sure that no laboratory personnel were injured, that no 

equipment was damaged, and that each test provided informative and exploitable results.   

5.4.1 Laboratory Configuration 

The laboratory setup consisted globally of the loading components: hydraulic actuator, 

supporting system, and loading apparatus; the specimens for each test: support block, slab, and 

barrier(s); and the anchoring system: post-tensioning bars, bearing plates, and lock nuts. The 

general setup was inspired by the projects of Duchesneau (2010) and Niamba (2009); however 

the details had to be modified in order to accommodate the larger scale and differing support 

conditions.   

The loading equipment used was an MTS 1000 kN capacity hydraulic actuator. The challenge of 

the experimental setup was to adequately support the actuator during each test and apply the load 

to the barrier in a manner consistent with the previous experiments of Duchesneau (2010) and 

Niamba (2009). It was important to verify the response of the actuator during loading to make 

sure that 1 – the actuator would not be damaged by any lateral forces induced during loading 

(forces perpendicular to the actuator’s strong axis), and 2 – that the displacements of the barrier 
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and cantilever slab would be compatible with the allowable movement of the actuator (within 

tolerances of semi-pinned connections and available piston stroke). 

In the preliminary loading design taken from Duchesneau (2010) and Niamba (2009), the 

actuator was supported by a rigid column at the supported end with a semi-pinned connection, +/- 

8°, and the loading end was simply supported with the piston and loading apparatus cantilevered 

from this support. The loading apparatus consisted of a fully pinned joint attached directly to the 

actuator load cell and a steel frame with an UHPFRC ram to apply the load onto the tested barrier 

(Figure 5-20). The loading ram had the specific 350x700 mm2 surface as specified in AASHTO 

(1989) for PL-2 impacts. This design was well suited for previous tests where a 2 m barrier was 

anchored to a fixed, continuously supported slab and only the barrier was moving during loading. 

However, the slab overhang in the current setup was expected to displace and rotate during 

loading, significantly increasing the structure’s flexibility. The increased flexibility of the 

structure presented certain incompatibilities with the preliminary loading design. One potential 

risk was that both articulated ends of actuator could activate forming a mechanism and the pinned 

connection nearest to the loaded end would displace vertically (Figure 5-19). Another that the 

contact between the UHPFRC ram and barrier could degrade as the barrier rotates relative to the 

ram (Figure 5-19). The reality would be some combination of both of these incompatibilities. To 

prevent either from occurring, two design changes were implemented. First, the pinned 

connection on the load end was removed. Second, instead of using the loading ram to control the 

surface area of load transfer, a loading plate was anchored directly to the barrier to control the 

surface of load transfer, and a rounded high performance steel profile, 75 mm radius or curvature, 

was used to apply the load (Figure 5-20). 

In this configuration the friction forces and local deformation at the load application would have 

activated the pinned connection at the supported end and the loading forces would be resisted 

internally throughout the actuator’s strong axis. However, the actuator would have been 

supported on one end by the loaded specimen. Not only creating lateral forces in the actuator 

piston due to its self-weight, but more importantly, the actuator support conditions would become 

dependent on the structural capacity of the loaded specimens. The actuator would have been 

vulnerable to a fragile failure within the structure, in which case it would be supported only with 

a semi-pinned connection at the far end. This was an unacceptable possibility, and a counter 

weight was installed to support the loading end of the actuator at all times during the tests.  
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The counter weight system consisted of a 3.5 m high steel frame built around the actuator with a 

pulley system on the top of the frame. 10 mm steel cables were used to connect the actuator to the 

suspended weight, and also to descend the weight all the way to laboratory basement (the cables 

passed through the post-tensioning ducts in the strong floor). A weight of nearly 1000 kg was 

necessary to balance the actuator, and it was built on top of a wooden platform loaded with 

laboratory materials, typically 40 kg bags of cement and 20 kg bags of steel fibres. The 

suspended weight was calibrated one bag at a time until the loaded end of the actuator was free 

standing and horizontally level. Figure 5-21 shows photos of the steel frame, cables, pulleys, and 

suspended weight. The counter weight eliminated the risks inherent to a brittle failure during 

loading, and removed the lateral forces due to gravity on the loaded end; thus effectively ensuring 

the protection of the MTS 1000 kN hydraulic actuator. 

  
a) Loading Mechanism b) Loss of Loading Contact 

Figure 5-19: Preliminary Loading Problems 

 
a) Original Loading Apparatus from Duchesneau (2010) 

 
b) Modified Loading Apparatus 

Figure 5-20: Loading Modification 
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a) Frame, Cables, and Pulleys b) Suspended Weight in Lab Basement 

Figure 5-21: Counter Weight System 

The specifics of the load application still remained to be finalized; specifically the bearing 

resistance of the UHPFRC load transfer plate, and the allowable relative rotation between the 

rounded steel loading ram and the load transfer plate. The rounded steel ram was assembled with 

existing pieces from other projects at the lab. 

Initially it was assumed that the UHPFRC load transfer plate would easily resist the bearing force 

of the loading ram. However, a check was carried out before testing. The CDH (2004) does not 

have any bearing formulas between rounded surfaces, and so the following formula from section 

[10.13] of the CSA S16.01 (2003) was used: 

              
  

  
  
  
⁄

    
         

 

Equation 5-1   

 br is 0.67 

 R1, radius of the rounded steel member, is 75 mm 

 R2, radius of the load transfer plate is infinite 
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 L, length of load transfer, is estimated conservatively at 470 mm 

 fy of the UHPFRC is 105 MPa.   

The resulting bearing force was only 68 kN signaling a big deficiency in the load setup. To 

compensate for this a 12.5 mm standard steel plate was placed between the loading ram and 

UHPFRC plate. Using the same formula, the bearing capacity of the steel plate was 980 kN.  Still 

however, the bearing between the steel plate and the UHPFRC had to be checked, and the 

following formula from the CSA-A23.4 (2004) section [10.8] was used: 

                        

 

Equation 5-2 

 A1, the bearing area was calculated as 495 x 25 mm2 

The bearing between the two plates was 718 kN, which was at the very upper limit of what was 

expected, and this was considered adequate considering that material reduction coefficient was 

being used on what was a very small and well controlled concrete batch. The load transfer plate 

was also inspected after each laboratory test. 

The rounded steel member was fixed onto a larger steel plate to connect it to the hydraulic 

actuator. It was possible that this plate and the load transfer plate could interfere with one another 

if there was sufficient relative rotation between the two. Figure 5-22 indicates the allowable 

relative rotation was finalized at 19° with the addition of an additional 12.5 mm plate between the 

rounded member and its backing. A 19° relative rotation was more than sufficient. Figure 5-23 

shows the final load laboratory configuration schematically. 

   
a) Initial Detail b) Final Detail c) Photo 

Figure 5-22: Load Application Detail 
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Figure 5-23: Final Laboratory Configuration 

5.4.2 Installation and Assembly 

For all three tests it was important to properly anchor the slab and support block to the laboratory 

strong-floor. The anchoring process was relatively straightforward. Post-tensioning ducts had 

been blocked out of the support block and slabs to match the existing pattern on the laboratory 

strong floor, holes at a 500 mm centre-to-centre spacing. The specimens were then positioned in 

place. The cantilever portion of the slab was temporarily supported, and leveled, using a 100 kN 

capacity hydraulic jack and a 102x102x12 mm HSS section was used to distribute the supporting 

surface. Once in place the post-tensioning bars were placed and stressed. 

For the post-tensioning, 3.7 m long 36 mm diameter Dywidag threadbars were used with 

178x191x41 mm3 bearing plates. To avoid local cracking in the slab at the application of the 

post-tension forces, a thin layer of Ultracal, gypsum cement, was poured between the bearing 

plates and slab. The cement layer served to both level the surface and create a much improved 

contact between the plates and slab. Figure 5-24 shows the Ultracal layer as well as the molding 

used to place the plates. Dywidag bars have a cold rolled deformed pattern similar to a thread 

with a specified ultimate strength fpu of 1030 MPa corresponding to 1048 kN, and a maximum 
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lock off stress of 0.7fpu corresponding to 734 kN. However, the laboratory policy limits the lock 

off stress to 0.5fpu equivalent to 524 kN, to guarantee the longevity of the bars.   

 

Figure 5-24: ULTRACAL Layer and Placement Mold 

The necessary post-tension lock off force for the bars was established through a numerical study 

at 350 kN for two rows of 8 bars centred on the specimen (total of 16 bars at 350 kN post-tension 

force total). During the post-tensioning two bars were always instrumented. It was noticed that 

there was often a significant loss between the maximum jacking force and remaining lock off 

force. The post-tensioning was applied in the laboratory basement from the bottom end of the 

bars. This meant that the jacking equipment had to be manually supported and gravity would not 

work to assure the vertical alignment of all the components. Thus the alignment of the bearing 

plates, hydraulic jack, load-transfer frame, and anchor nut all had to be verified visually and 

adjusted manually before jacking. It is likely that the losses occurred when these elements were 

skewed and the bar or anchor nuts shifted after lock off. Figure 5-25 shows a schematic of the 

post-tensioning equipment. The effective post-tension length of 1.7 m may also have contributed 

to the post-tension losses. The short post-tension distance means a smaller bar elongation (L) 

was necessary to stress the bar, and conversely that any losses in elongation resulted in an 

amplified loss of prestressing force.   
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To  minimize prestressing force losses, particular attention was paid to the alignment of all the 

jacking equipment, and a jacking force of 450 kN was reached before locking off in order to 

attenuate the effect of any prestressing losses. Finally, the solidity of the anchored bars was 

verified manually. These measures were used to ensure an adequate anchorage of the slab and 

beam specimens to the laboratory strong floor. During each test, the horizontal and vertical 

movement of the slab and beam were both measured and the results indicated that the specimens 

were well-anchored. However, it should be noted that with the exception of the two bars 

instrumented with load cells, there was no way to be sure of the final post tension force in the 

other Dywidag bars. 

 

Figure 5-25: Post Tensioning Equipment 

For the cast-in-place barrier configuration, the slab and barrier were fixed together before post-

tensioning (anchoring); whereas the precast barriers were only installed once the slab was 

anchored in place. 

The precast barriers were installed in much the same way as detailed in Duchesneau (2010).  

Before placing the barriers, a 5 mm layer of fresh mortar mix was spread over the barrier-slab 

contact. The contact zone was framed off with wooden forms fixed to the slab. This mortar bed 

was added to make sure the barrier was in full contact with the slab and to increase the contact 

properties (tension, cohesion, and friction) between the barriers and slab. Figure 5-26 shows the 

contact region with the fresh mortar layer just before placing a precast barrier. 
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Figure 5-26: Mortar Bed for Precast Barriers 

In Figure 5-26 the soft rubber strips around the hollowed out recess can also be seen. These strips 

were glued to the specimen in the hope that they would help seal the joint between adjacent 

barrier.   

After placing the barriers, the next step was the injection of the hollowed out sections of the 

barriers with the FRM. This step fixed the precast barriers to the slab, and a sufficient injection 

was absolutely critical to the performance of both precast configurations. To make sure of the 

injection quality, an optimization study on the fresh and hardened state properties of the mortar 

and an evaluation of the injection method were carried out. Both phases are detailed in Section 
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5.5 of this report. All three barriers with a total length of 6 m were injected at the same time from 

one end of the specimen to the other. To maintain pumping pressure, and to avoid important 

losses of mortar, all the joints had to be sealed off. The rubber strips added around the hollowed 

out sections at the barrier joints were meant to provide a seal, but in addition these joints were 

filled with expandable spray foam (soft insulation) and then completely sealed off with silicone. 

All the joints between the barriers and slab and the ends of the hollowed out recess were closed 

off with wooden boards and sealed with silicone. The pump used was a ChemGrout 50 mm 

displacement based air powered pump, with a maximum pressure of 2.76 MPa. The pump was 

fixed directly into the hollowed out recess with a steel pipe and sealed with duct tape. A photo of 

the joint preparation is shown in Figure, as well as the connection between the pump and recess. 

  
a) Pump Connection b) Barrier-Slab Joint Seal 

Figure 5-27: Mortar Injection Feed (left) and Joint Sealing (right) 

The vertical pressure exerted by the mortar during the injection could be quite significant.  

Duchesneau (2010) had even experienced vertical uplift of the barrier specimens during this step.  

To protect against any vertical displacement of the precast barriers; the vertical movement of the 

barriers was restrained during the injection. Two 102x102x12 mm HSS sections were placed on 

the top of the barrier with wooden bearing boards at each end (HSS sections simply supported). 

As can be seen in Figure 5-28, a steel chain was then wrapped around each HSS and post-

tensioned. Supports were aligned with the bearing boards under the slab overhang to make sure 

the slab was not damaged by the post-tensioning of the chains. 
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Figure 5-28: Temporary Vertical Restraint of Barriers 

  Figure 5-29: Ends of Hollow Recess after Injection 
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Photos of the ends of the injected recess are shown in Figure 5-29. The photos demonstrate the 

quality of the injections, the hollowed recess was completely filled at each end. The circular 

disturbances were due only to the injection intake, and air outtake pipes at the two ends. There 

was no indication that there were any air voids or pockets in the injected recess for either of the 

precast configurations.   

For the precast configuration with connection, the same mortar was used to fill up the hexagonal 

recess between barriers. Figure 5-30 indicates that the seals between barriers began blowing out 

during the injection of the hollow recess between the barrier and slab, thus the voids in the shear 

keys were simply filled manually from the top opening on the following day. It should be noted, 

that with more functional seals there would have been no problem filling the shear keys at the 

same time as the hollow section of the barriers. Figure 5-30 also shows a photo of the finished 

shear key. 

After the installation of the specimens they were all coated with a thin layer of latex based white 

paint cut at 50% with water. At this point each configuration was ready for instrumentation. 

  
a) Joint Blowout b) Finished Shear Key 

Figure 5-30: Joint Blowout and Shear Key 

5.4.3 Instrumentation 

To quantify the structural behaviour of each tested structure and to monitor the laboratory 

configuration itself, several potentiometers, strain gages and load cells were installed on the 

specimens before each test. An acquisition rate of 5 Hz was used for all the instrumentation 
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equipment. The complete instrumentation schematics and schedules for all three laboratory 

configurations are shown in APPENDIX B of this document.  

The lateral displacement of the barrier directly behind the load application, and the vertical 

displacement of the slab provided important information about the structural rigidity and 

capacity. The lateral displacement was measured with a linear displacement transducer with pivot 

heads mounted on each end (pinned ends), and the vertical displacement with a cable-extension 

transducer. The typical installations used for both of these sensors are shown in Figure 5-31. 

The linear displacement transducers with pivot heads were also used to measure the crack 

opening widths in the slab overhang and barrier front face; and the barrier uplift relative to the 

slab (barrier-slab crack opening width). These measures were all taken at the specimen mid-

length (aligned with the actuator piston) and at a 1 m offset. The pivot heads were very useful 

because the pivots were fitted through 5 mm threaded rods, and the threaded rods could easily be 

fixed directly onto the specimen. The threaded rod placement also gave the precise location of 

where on the specimens the transducers measurements were taken from. Therefore, the precise 

length over which the crack opening measurements were taken was known, and the crack 

opening could be converted to strain. Figure 5-32 shows a typical installation of the transducers 

used to measure crack opening and relative barrier-to-slab uplift. 

Two concrete strain gages were installed on the bottom face of the slab overhang directly 

opposite to the measures of the crack opening on the top face. Again, one strain gage was centred 

on the slab, and the other was offset 1 m.  

Strain gages were glued onto one transversal reinforcing bar and one anchor bar – in a portion of 

the bar within the slab – for each test. Because the bars were not in pure tension, each bar was 

instrumented with a strain gauge on the tensile and compressive sides. The average reading 

between the two recorded measurements was used in order to better approximate the strain at the 

neutral axis of the bar, in addition to providing redundancy in case one of the gauges came 

unglued. The reinforcing bars selected for instrumentation were those at the centre section 

directly aligned with the actuator piston and load. The positioning of the gauges was selected to 

be representative of the highest strains within the bars.  

Figure 5-33 shows how the longitudinal deformation of the barriers was measured over a length 

of 1.85 and 0.75 metres using linear transducers. The springs within the transducers were 
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compressed (counter-torqued) using rubber bands and then the actuating rod of the transducers 

was tied to a very stiff fishing cord, which was extended over the distance of the reading. Spacers 

were placed every 150 mm to maintain the same offset between the fishing cord and barrier 

throughout the measurement length. The rubber bands were not calibrated for these 

measurements, and the accuracy is not as high as the other measurements; however, these 

readings were used to gain qualitative insights into the longitudinal barrier deformation. For Test 

Configurations 2 and 3, a strain gauge was added to the front side of the barriers in order to 

compare the compressed and extended strains of the barrier as well as to read the barrier 

longitudinal curvature. 

Finally, the instrumentation was also used to verify the laboratory configuration itself. Linear 

transducers were used to monitor the vertical and lateral movements of both the slab and support 

block throughout each test. This confirmed that there were no (or very little) rigid body 

movements (lateral sliding or vertical uplift) of the structure during loading. Two anchor bars 

were also connected to load cells. The load cells were used to quantify the post-tension force 

within these two bars and then to monitor the evolution during the tests.  

The instrumentation for each configuration was very similar; however, some additional sensors 

were added to the tests with precast barriers. The lateral displacement at the ends of the loaded 

barrier and an adjacent barrier were taken in order to compare the relative barrier displacements 

between Configurations 2 and 3, without and with shear connections. There were also a couple of 

linear transducers with the actuator rods extended directly into the injected barrier recess and 

supported on the barrier (Appendix B Figure 4). The goal of these sensors was to determine at 

approximately what point the injected mortar and barrier begin separating from one another.
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a) Lateral Displacement b) Vertical Displacement 

Figure 5-31: Barrier Lateral and Slab Vertical Displacement Sensors 

 

Figure 5-32: Barrier and Slab Crack Opening and Relative Uplift Sensors 

 

Figure 5-33: Barrier Longitudinal Deformation Sensors 
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5.4.4 Load Application 

Once the instrumentation setup was completed, the barriers were ready to be loaded. Before 

applying the load the UHPFRC loading surface was marked longitudinally at a height of 700 mm 

from the slab grade. This way the height of the loading ram would be adjusted such that the load 

was applied exactly at the 700 mm design height (CSA 2006). The steel plate added to the 

increase the bearing resistance had to be held manually. The plate was held while a small pre-

load, between 3 kN and 5 kN, was placed on the barrier, securing all the elements in place. The 

contact between the rounded loading ram and the steel plate was then verified. A flashlight was 

placed underneath the load contact facing upwards and any passages of light indicated a gap. 

Because the actuator was pinned at the column end in both directions, it was adjusted to improve 

the load contact if necessary. After inspecting and approving the load contact, the loading 

procedure of the test began. 

For each test, the barrier was loaded at 0.6 mm/min and the load was stopped at increments of 50 

kN to inspect the specimens for damage. Once the structure yielded, the speed of loading was 

increased to 1.2 mm/min. Each laboratory test was terminated once the load had receded back to 

150 kN or a complete fragile failure was imminent. 

5.5 Mortar Injection Study 

For Test Configurations 2 and 3, the injection of the hollow recess between the barrier and slab 

was the most important step of the installation process. The connection between these two 

components is dependent on the quality of the injection and the mechanical properties of the 

injected material. In order to ensure that this step was successfully implemented, a full study was 

dedicated to the injection method, and the fresh and hardened state properties of the FRM used 

for injection. 

5.5.1 Injection Method 

The injection method used for Duchesneau (2010), consisted of injecting the FRM mix with a 

displacement pump from one end of the barrier to the other. The two ends were completely sealed 

off with the exception of the mortar entry, fitted directly to the pump with a steel pipe, and an air 

outlet at the far end. The pump was placed above the hollowed section and the pipe was angled 

downwards (Figure 5-34), in order to use gravity to reduce the pumping resistance. The air exit, 
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extends diagonally upwards from the hollow recess as well. This was to make sure the injected 

mortar would only leave the hollowed section after the entire height of the recess would be filled. 

This injection method worked well for Duchesneau (2010), and the same method was adopted in 

this project.  

However, the length of injection was increased by 300%, from 2 m to 6 m. The increased 

injection length meant a new balance would have to be found between the pumping pressure and 

mortar properties (initial flow rate, thixotropy, and structural buildup). 

  
a) Pump Access b) Air Outlet 

Figure 5-34: Mortar Injection, Pump Access and Air Outlet from Duchesneau (2010) 

5.5.2 Mortar Mix Fresh State Properties 

The initial mortar mix design was taken directly from Duchesneau (2010). The FRM used the 

EHFG ready-mix from Euclid Chemical which was combined with steel fibres (L = 10 mm,  = 

0.2 mm) and Conex (a shrinkage reducing admixture). The steel fibres were added in order to 

increase the rupture energy of the mortar, and the Conex was added to improve the barrier and 

injected mortar contact (less shrinkage). 25% of the water was added as ice in order to reduce the 

initial heat produced by hydration. Duchesneau’s FRM mix design is shown in Table 5-6. 

Preliminary tests on Duchesneau’s mix indicated that the fresh state properties of the FRM mix 

were not suitable for a 6 m long injection. The flow rate of the initial mix was not high enough, 

and the structural buildup was too rapid. The self-leveling/self-compacting behaviour of the FRM 

was not assured for the entire injection. Following the advice of specialists from Euclid 

Chemical, a small increase in water content and the addition of Eucon 727 (set retarder and water 
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reducing admixture) were introduced to improve the rheological properties without significantly 

diminishing the mechanical behaviour of the FRM. 

To test the effects of these two variables on the rheological properties of the fresh mortar, several 

tests were carried out on mixes with varying quantities water and Eucon 727. The temperature of 

the mix was taken 15 and 60 minutes after the onset of hydration to monitor the increase in heat 

due to hydration. Small cone and mini cone flow tests (ASTM C1437, 2007) were also performed 

15 and 60 minutes after hydration in order to determine the evolution of the initial mortar flow 

rate and structural buildup. Finally, inclined plane tests (Khayat 2010) were performed 

immediately after mixing and subsequently every 20 minutes. The inclined plane provided an 

estimate of the static yield stress – the necessary shear to initiate flow – and was used to evaluate 

the evolution of the structural buildup of the FRM with time. The time interval of 60 minutes was 

selected because it was considered a conservative estimate of the time between hydration onset 

and the end of injection for the actual laboratory tests. This study was done to find an optimal 

amount of water and Eucon 727 to add to the original FRM mix. These two components could 

not be increased excessively because they both seemed to reduce the mechanical properties of the 

hardened FRM.  

After this initial optimization study, subsequent tests were done to evaluate the influence of each 

component added to the EHFG ready-mix (Conex, fibres, ice, Eucon 727) on the rheological 

properties. In order to do this, each component was added independently to the EHFG mix and 

compared against a control EHFG mix without any additives. The same tests were carried out on 

the fresh mortar as before. The goal of this subsequent study was to determine if any 

modification in the proportions of the added mix components could improve the flow rate and 

reduce the initial structural buildup of the mortar mix. 

These studies demonstrated that an increase in water content from 3.5 L to 3.65 L and an addition 

of 0.017 kg of Eucon 727 per bag of EHFG improved the initial flow rate of the mortar mix and 

reduced the structural buildup of the mortar. It was also observed that a higher proportion of ice 

content improved both the initial flow rate and decreased the speed of structural buildup. A final 

optimization study was performed to determine an optimal ice to water ratio.  A 40% ice to water 

ratio was selected for the final FRM mixture.  
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The results of the FRM mortar optimization studies are fully explained in APPENDIX E, and the 

mix design is detailed in Table 5-6. 

Table 5-6: FRM Mix Designs 

Mix1 EHFG, kg Conex, kg Fibres, kg Water, kg Ice, kg Eucon 727, kg 

Duchesneau 22.7 0.33 1.014 2.190 1.460 0.000 

Optimized 22.7 0.33 1.014 2.625 0.875 0.017 
1. Mix designs are normalized to one bag of EHFG or 22.7 kg 

5.5.3 Final Verification – FRM Injection and Mechanical Properties 

After optimizing the FRM mix design, a final verification of the injection method and mortar 

mechanical properties was performed. The hollow recess of the Test Configurations 2 and 3 was 

modeled at scale using wooden forms (Figure 5-35).  

The model recess was then injected with the optimized FRM. 250 L of FRM was necessary for 

the injection, accounting for potential losses and characterization specimens. This quantity 

exceeded the capacity of the largest concrete mixer in the structures laboratory and required the 

simultaneous use of three mixers; a pneumatic mixer and a portable electric mixer were used 

concurrently with the primary cement mixer in the structures laboratory. The pneumatic mixer 

was attached to the mortar pump and had a latch that, when opened, fed directly into the pump 

hopper (intake). The procedure of injection was therefore to produce all the FRM and bring it to 

the pump before beginning the injection. Once all the necessary FRM was produced the injection 

began. The mortar was always loaded into the pneumatic mixer before the pump to remix the 

FRM immediately prior to injection. During the fabrication process, the mortar remained 

stationary until loaded into the pneumatic mixer. For this reason the mortar was covered with 

plastic to reduce evaporation and mortar set, and also agitated again before injection to lower the 

viscosity of the previously stationary mortar through shear rejuvenation. 

The model injection was very successful, and, as can be seen in Figure 5-35, the quality of the 

injection was impeccable. The last wooden board on the top of the model recess was left open 

until the final portion of the injection, in order to visually inspect the mortar flow. The 

observations proved that the FRM remained self-leveling and self-compacting throughout the 
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injection. During the model injection, both 100 mm cylinders and 50 mm cubes were cast to test 

the mortar compressive strength. Table 5-7 compares the compressive strength of the Duchesneau 

and optimized FRM mixes. The optimized mix is less resistant, which was expected because of 

the increased water/binder ratio and the addition of the water reducing admixture. However, the 7 

day compressive strength still exceeded the 45 MPa minimal strength established by Duchesneau 

(2010).  

The results of the mortar injection study confirmed that an adequate FRM mix and method had 

been found for the successful injection of the 6 m precast barrier hollow recess. 

 

Figure 5-35: Model Injection 

Table 5-7: FRM Mix Compressive Strength 

Age Duchesneau This Project Difference 

3 50.6 MPa 40.4 MPa - 20.2 % 

7 63.0 MPa 53.3 MPa - 15.4 % 

28 84.3 MPa 65.3 MPa - 22.5 % 

 

 
b) Injection End 

 
a) Overhead View c) Far End 
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5.6 Complimentary Experimental Results 

The results presented in this section are complimentary providing an improved comprehension of 

the data already presented in Chapter 3.  

5.6.1 Barrier Longitudinal Strain 

The LVDT’s shown in Figure 5-33 measured the longitudinal tensile strain of the barriers’ back 

face over 1.9 m and 0.8 m lengths. The longitudinal barrier strains recorded did not have the 

same precision as the other recorded displacements and deformations throughout the structure. 

However, analyzing the results of the longitudinal barrier strains are still indicative of each 

structures’ behaviour during loading. In Figure 5-36, the strains are plotted against the applied 

load, and Table 5-8 compares the maximal barrier longitudinal strain for each test at intervals of 

100 kN.       

The increase in post-peak strain recorded over 1.9 m for Configuration 1 was due to the 

displacement associated with the shear failure and are not representative of the actual barrier 

longitudinal strain. The strain recorded over 0.8 m is always greater at a given load than the 1.9 m 

recording, this is logical because of the local barrier deformation at the load application. Apart 

from the post-peak behaviour of the curves, the longitudinal tensile strains measured on the 

barrier back face of the test configurations were relatively equivalent at a given load. 

  
Figure 5-36: Applied Load vs. Barrier Longitudinal Strain 
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Table 5-8: Barrier Maximal Longitudinal Strain at Given Load 

Load Configuration 1 
Strain,  

Configuration 2 
Strain,  

Configuration 3 
Strain,  

100 129 79 39 
200 209 230 127 
300 683 610 347 
400 1181 -- 804 
500 2027 -- -- 
Peak 2170 at 527 kN 610 at 296 kN 870 at 405 kN 
Cracking Force1 360 at 250 kN -- 800 at 400 kN 

1.Cracking force due to longitudinal curvature in barrier 

The substantial longitudinal strain of the cast-in-place barrier indicates that an important 

component of the barrier deformation came from the longitudinal curvature. The peak strain in 

the cast-in-place barrier of 2170 , taken over a 0.8 m length, means that the top rows of 

longitudinal reinforcement were likely yielded. The change in slope in the load vs. strain curve 

around 450 kN for Configuration 1 is also an indication of this (Figure 5-36). The concrete 

cracking and tensile stresses due to the barrier curvature certainly reduced the shear resistance of 

the concrete and thus the peak load as well. 

The loaded precast barrier in Test Configuration 2 was 2 m in length and had no connections with 

the adjacent barriers. It can be seen in Figure 5-36 and Table 5-8 that, as the structure goes 

through its hardening phase between 200 and 300 kN, the longitudinal strain of the barrier 

increases significantly from 230 to 610 . Once the structure began softening however, the 

longitudinal strain was completely unaffected and became constant. This behaviour implies that 

in the hardening regime the anchors initially yielded in the centre of the barrier and moved 

outwards until the anchors yielded over the entire 2 m length of the precast barrier. It is logical 

that during this phase the longitudinal strain of the barrier significantly increased, because the 

connection of the barrier to the slab is moving further away from the load. Once all the anchors 

yielded however, the failure mechanism essentially became a rigid body rotation of the barrier 

about the slab, which also explains why the longitudinal strain abruptly stopped in the softening 

phase. 
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In Test Configuration 3, the loaded precast barrier was connected to the adjacent barriers with 

shear keys. The connection between barriers had two noticeable effects when compared to 

Configuration 2.   

The first effect was on the longitudinal strain read over a 1.9 m length. The information in Figure 

5-36 was reorganised and zoomed in on in Figure 5-37 and Figure 5-38. Figure 5-37 

demonstrates that there is almost a factor of 2 between the barrier strain read over 1.9 m at a 

given displacement between Configurations 2 and 3. Figure 5-38 demonstrates that in 

Configuration 2 the barrier strain is mainly localized behind the loading plate from the beginning 

of the test, whereas in Configuration 3 the localization only began after 240 kN. These 

differences are indicative of the longer load transfer width between the barrier and slab available 

for Configuration 3 with shear connections, which allowed tensile strain in the barrier over a 

greater length. The divergence between longitudinal strains read over 0.9 m and 1.8 m for Test 

Configuration 3 was likely due to a combination of the connection type (shear only) and the 

degradation of the connections as the applied load increased. 

The second effect was the continued growth in barrier longitudinal strain at the beginning of 

structural softening. As the applied load decreased from 405 kN to 350 kN, the strains increased 

significantly (Figure 5-38). Thus the shear keys were degrading quickly after the peak load. This 

confirms that some load transfer between barriers was still occurring in this range of loading as 

the loaded barrier was not only rotating about the slab in a rigid-body type movement. The 

relative uplift between the barrier and slab offset 1 m from the load (measured in the exterior 

barrier) was also increasing in this softening range. This supports the argument that loads were 

still being transferred between the barriers in Test Configuration 3. 
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a) 0.8 m Strain Reading Length b) 1.9 m Strain Reading Length 

Figure 5-37: Barrier Longitudinal Strain vs. Barrier Lateral Displacement 

  
a) Test Configuration 2 b) Test Configuration 3 

Figure 5-38: Applied Load vs. Barrier Longitudinal Strain 

5.6.2 Relative Barrier Displacement (Precast Barriers) 

For Test Configurations 2 and 3 with precast barriers, the lateral barrier displacement was 

measured at the edges of both the loaded and exterior barriers to determine the relative 

displacement between them. Figure 5-39 shows the instrumentation location. Unfortunately, the 

portion of the exterior barrier instrumented sheared off in Test Configuration 3, thus the measure 

of relative displacement was not meaningful. However, visual inspections were carried out during 

the lab test as well, and up to a load of 400 kN no relative displacement between the barriers was 

observed (Figure 5-40). 
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The graphs in Figure 5-41 show the displacements recorded for both the loaded and exterior 

barriers in Configurations 2 and 3. The relative displacement remained very small until a load of 

170 kN was reached in Test Configuration 2. It should be noted that there was some torsion 

noticed in the structure during the test, and the relative opening between loaded and external 

barriers on the opposite (non-instrumented) end was visually more noticeable. This is apparent in 

Figure 5-42 comparing the relative displacement of the two joints at an applied load of 200 kN 

for Configuration 2. 

 

Figure 5-39: Instrumentation Location for Barrier Edges for Relative Lateral Displacements 

  
a) Instrumented Joint b) Non-instrumented Joint 

Figure 5-40: Barrier-to-Barrier Joints at 400 kN for Test 3 
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a) Test Configuration 2 b) Test Configuration 3 

Figure 5-41: Relative Displacement Between Loaded and External Barriers 

  
a) Non-instrumented Joint b) Instrumented Joint 

Figure 5-42: Test Configuration 2 Relative Barrier Displacement at 200 kN Applied Load 
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In Configuration 2, the recorded relative edge displacements between the loaded and exterior 

barriers began diverging at an applied load 170 kN, and were noticed visually starting 180 kN. 

Considering that there was no mechanical connection between these barriers, it means that either 

the deformations in the injected FRM initially caused the external barriers to displace with the 

loaded barrier, or that during the injection some of the FRM entered the joint and provided a 

certain degree of adherence (friction and cohesion) between the barriers. It is likely that both of 

these processes occurred concurrently and worked together to limit the relative barrier 

displacements up to 170 kN. 

The visual inspections during testing of Configuration 3 showed that the shear key was extremely 

effective at transferring the lateral displacements between barriers. It was only after the peak 

force, when the shear cracks in the external barriers coalesced and began opening, that there was 

any relative displacement. Figure 5-40 shows an overhead view of a barrier joints at an applied 

load of 400 kN. The shear cracks were highlighted, while they remained closed almost no relative 

displacement could be discerned. Figure 5-40 indicates that shear cracks in the barriers were 

observed between 300 and 400 kN, which corresponds precisely to the hardening phase of the 

structure. It is reasonable to believe that if the shear forces were better resisted, for example with 

a higher performance FRC, an optimized reinforcement detail at the barrier ends, or an improved 

fibre orientation, then Test Configuration 3 would have continued to behave in a manner very 

similar to Test Configuration 1 with the cast-in-place barrier. 

5.6.3 Slab Overhang Transverse Strain 

The slab overhang for each laboratory test was instrumented to measure the crack opening widths 

on the top face and compressive strain on the bottom face at slab mid-length and at a 1 m offset. 

Figure 5-43 shows the instrumentation and the sectional strain profile. The data collected by 

these sensors provide valuable comparative data for analysis. Figure 5-44 shows graphs 

comparing the slab compressive strain against the applied load. The compressive strains indicate 

that cracking began in the slab overhang at a load of 150 kN in Configuration 1 and 200 kN in 

Configurations 2 and 3, this is corroborated by visual data at the location of strain gauges and 

crack opening width sensors (Figure 3-5). The rates of strain change with respect to the applied 

load were very similar until Configurations 2 and 3 began yielding. The compressive strain at the 

centre section for Test Configurations 2 and 3 were indicative of slab yielding at applied loads of 
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290 kN and 370 kN respectively. The yielding behaviour is not apparent in the offset section for 

Configuration 2. 

  
a) Slab Overhang Section CO - CO 

Figure 5-43: Slab Overhang Instrumentation 

  

Figure 5-44: Slab Overhang Compressive Strain 

The section analysis within the slab overhang demonstrated that globally the slab overhang was 

solicited in a similar manner for each of the three testing configurations (Figure 5-44). The two 

notable differences are one, the load at which the overhang begins to damage, and two, the 

yielding behaviour in Test Configurations 2 and 3 that is not present in Configuration 1.  

The cracking of the slab overhang in Test Configuration 1 with the cast-in-place barrier is 

consistent with all the other observations and recorded data. In the curve comparing the vertical 

slab displacement against the applied load in Figure 3-3, the vertical displacement was higher in 

Configuration 1 between 150 kN and 300 kN than in Configurations 2 and 3. The vertical 

displacement of the slab was primarily controlled by the curvature within the slab overhang 

region. Figure 5-45 shows the damage visually observed in Configurations 1 and 3 at 150 kN (the 
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transverse cracks in both specimens were present before loading due to shrinkage, transportation, 

and post-tensioning pre-stresses). A longitudinal crack runs almost 4.5 m in length along the slab 

overhang for test 1, whereas in test 3 only a 1 m longitudinal crack was observed, which did not 

yet run under the crack opening instrumentation. It is important to note that the crack opening 

instrumentation in the slab overhang can be seen on the 3D damage reconstruction. 

The cause of the earlier cracking load of the slab overhang for the cast-in-place configuration is 

difficult to clearly identify. It may be explained by a weaker concrete composition, more 

significant slab damage prior to loading, the different barrier base width, or even the more 

significant weight of the cast-in-place barrier. Another possibility is that the confinement in the 

slab beneath the barrier due to the restrained shrinkage actually induces an initial negative 

moment in the overhang due to Poissons effect. The increased cracking of the overhang in this 

load range is important, because it is a load that a bridge barrier would likely be exposed to 

throughout its life-cycle. However, it is also possible that the lower cracking force of the slab 

overhang is due to a particularity of the slab itself rather than intrinsic difference between the 

cast-in-place and precast barrier configurations. 

  
a) Configuration 1 at 150 kN b) Configuration 3 at 150 kN 

Figure 5-45: Structure Damage at 150 kN 

The yielding behaviour within the slab overhang apparent in the recorded compressive strain at 

the centre section is indicative of a fundamental difference between the 3 configurations (Figure 

5-44). The slab overhang for the cast-in-place configuration is only beginning to yield at an 

applied load of 527 kN, whereas the compressive strain at the centre section indicates yielding at 

300 and 400 kN for Configurations 2 and 3 respectively. The earlier yielding is once again 

specific to the load transfer length between the barrier and slab. It is interesting that the yielding 

evident in the centre section of slab for Test Configuration 2 was not recorded at all in the offset 

Crack Opening Instrumentation 
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of 1 m. The yielding of the slab overhang for the precast specimens is therefore highly local. 

Comparing the compressive strain between Configurations 1 and 3 again highlights the 

importance of the shear key between precast barriers. The compressive strain behaviour in 

Configuration 3 is very similar to that of Configuration 1 until a load of 350 kN was achieved. 

This load corresponds precisely to the coalescence of shear cracks in the exterior barriers at the 

barrier-to-barrier connection (Figure 5-40). The logical conclusion is that the higher the load for 

which the shear key between barriers is functional, the longer the precast barrier configuration 

will behave similarly to the cast-in-place configuration. 

5.7 Complimentary Numerical Modeling 

The following section provides complementary information to the numerical models and results 

presented in Chapter 4. The results of other parametric studies are also detailed and analysed. 

5.7.1 Model Information 

The material formulations and the mesh dimensions used in the ATENA models are detailed in 

Table 5-9 and Table 5-10.  

Classical material formulations are used with the exception of the Nonlinear Cementitious 

formulation used to model the concrete behaviour. The mesh was refined in areas of significant 

fracture damage observed during the experimental tests for each respective configuration. For the 

numerical reproduction of Test Configurations 2 and 3, the tensile behaviour of the HPFRC was 

experimentally determined and entered into the Nonlinear Cementitious (USER) formulation. 

Numerical modeling with ATENA in the past has demonstrated that best results are obtained for 

the USER formulation when the minimum mesh dimension and the physical crack band are set 

equal to one another in the areas of expected fracture (Beaurivage 2009, Niamba 2009, 

Duchesneau 2010). The crack band (disturbed width during crack localization) for the HPFRC 

with a max aggregate size of 10 mm and fibre length of 30 mm was estimated at 35 mm. The 

mesh was most densely refined on the central portion of the barrier around the load application 

for Configuration 1; on the front face of the loaded barrier for Configuration 2; and on the two 

exterior barriers in the vicinity of shear transfer as well as on the front face of the loaded barrier 

for Configuration 3. Figure 5-46 show the surface mesh used for the simulations of Test 

Configuration 1 and 2 (see Figure 4-3 for Test Configuration 3). 
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Table 5-9: ATENA Material Formulations 

Model Elements Material Formulation Details 
Concrete Barrier and 

Slab 
Nonlinear  

Cementitious 
Fracture-Plastic model using Rankine failure 

criterion and smeared crack formulation 

Steel bar and plates Von Mises  
Plasticity 

Bilinear stress-strain behaviour. Elastic limit 
defines onset of plastic flow, no hardening. 

Reinforcement Reinforcement Uniaxial truss element with bilinear stress-strain 
law. 

Post-tension bars Reinforcement Uniaxial truss element with bilinear stress-strain 
law, contact only at anchor points. 

Support Block Elastic Isotropic Elastic and isotropic material behaviour. 

Reinforcement Bond Bigaj (1999) Stress-slip model based off of concrete 
strength, bond quality, and rebar dimension. 

Table 5-10: Mesh Dimensions 

Structural  
Component 

Test 
Configuration Material General Mesh 

Dimension, mm 
Refined Mesh 

Dimension, mm 
Slabs 1, 2, and 3 HPC 56 -- 

Cast-in-Place Barrier 
 

1 HPC 100 55 

Precast Barriers 2 and 3 HPFRC 100 35 

Injected Sections 2 and 3 FRM 50 35 

 

  
a) Test Configuration 1 b) Test Configuration 2 

Figure 5-46: Test Configurations 2 and 3 Models Surface Mesh 
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5.7.1.1 Load and Support Conditions 

The loading configuration was an important aspect of the numerical models. Experimentally, the 

load was applied by the steel actuator with a high-performance rounded steel ram, and a thin steel 

bearing plate / UHPFRC bearing plate were used to distribute the load onto the barrier. In the 

numerical model, the steel and UPHFRC load transfer plates were physically modeled with their 

experimentally determined material properties. The actuator and loading ram were modeled with 

an overly rigid bar in order to reproduce an accurate loading rigidity. The experimental and 

numerical loading conditions are shown in Figure 5-47. A gap contact element (Table 5-11) was 

added between the loading bar and steel plate to allow the bar to rotate relative to the plate during 

loading (the actual geometry of the loading ram was not used for calculation reasons). The 

properties were determined through a trial-and-error process to provide for the rotation and 

maintain numerical stability. Gap contacts were also added between the UHPFRC plate and 

barrier as well as the steel post-tensioning plates and the slab. These contacts were used to limit 

the transfer of shear stresses at these interfaces and prevent the UHPFRC or steel plates from 

externally reinforcing the concrete. The contact properties are given in Table 5-11 as mortar-to-

concrete since a layer of mortar was poured at the joint between the plates and barrier or slab. 

The support conditions were imposed on the support block. The bottom face of the block, which 

in reality was in contact with the laboratory strong floor, was fixed in the vertical and 

longitudinal directions, and the transversal movement of the block was controlled with a surface 

spring, k = 833 kN/mm, to match experimental results. 

  
a) Actual Load Configuration b) Numerical Load Configuration 
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Figure 5-47: Load Application 

Table 5-11: Gap Element Contacts 

Contact  Tension (MPa) Cohesion (MPa) 
Load bar to Steel Plate 1.0 0.0 0.2 
Mortar to Concrete 0.8 0.1 0.5 
Barrier to Barrier1 0.6 0.0 0.17 

1.Only used for Configuration 2 models to account for barrier friction 

5.7.1.2 Loading Steps 

Reproducing the initial state of each configuration, particularly the effects of shrinkage strain, 

was necessary to accurately model the structural rigidity, strength, and failure mode. Table 5-12 

and Table 5-13 detail the numerical steps before displacement loading. 

In Test Configuration 1, the barrier was cast directly on top of the hardened slab and the 

shrinkage was fully restrained. In Test Configurations 2 and 3, the barriers were precast and the 

shrinkage was not restrained by the slab. In addition the precast barriers had 60% less steel 

reinforcement than the cast-in-place barrier. For these reasons, it was not necessary to model the 

barrier shrinkage for Configurations 2 and 3. The ATENA construction cases feature was used to 

apply the slab shrinkage before the barriers were included in the numerical model. It should be 

noted however, that it proved impossible to apply the slab shrinkage without the support block, 

and therefore the slab shrinkage was restrained by the support block. Only 17% of the post-

tension force was applied until the slab shrinkage was complete. This, in addition to the contact 

elements added between post-tension plates and slab, helped to limit incidental slab damage 

during shrinkage loading. The slab overhang and barrier stresses before displacement load 

application are shown in Figure 5-48 (tensile stresses are positive). The barrier tensile stress in 

Configuration 1 is much higher than for Configurations 2 and 3 because of the restrained 

shrinkage. Moreover, the barrier has cracked which has relieved stress on the concrete surface. 
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Table 5-12: Test Configuration 1 Model, Pre-Loading Steps 

Step Construction Cases ATENA Load Cases Load 

1 1 – Block and Slab  S1, 17 % Post-tension2 60 kN Post-tension 
2 1 – Block and Slab S, Body Force Block and Slab weight 

3 1 – Block and Slab S, Shrinkage  150  slab shrinkage 
4 1 – Block and Slab S, Shrinkage 150  slab shrinkage 
5 2 – Block, Slab, and Barrier S, Body Force Barrier weight 

6 2 – Block, Slab, and Barrier S, Shrinkage 150  barrier shrinkage 
7 2 – Block, Slab, and Barrier S, Shrinkage 150  barrier shrinkage 
8 2 – Block, Slab, and Barrier S, 83 % Post-tension2 290 kN Post-tension 

9 3 – All S, Prescribed Deformation 0.15 mm displacement 
1 Support Conditions, 2 Post-tension applied in steps to reduce slab restraint during shrinkage 

Table 5-13: Test Configurations 2 and 3 Models, Pre-Loading Steps 

Step Construction Cases ATENA Load Cases Load 

1 1 – Block and Slab  S1, 17 % Post-tension2 60 kN Post-tension 
2 1 – Block and Slab S, Body Force Block and Slab weight 

3 1 – Block and Slab S, Shrinkage  150  slab shrinkage 
4 1 – Block and Slab S, Shrinkage 150  slab shrinkage 
5 2 – All S, Body Force Barrier weight 

6 2 – All S, 83 % Post-tension2 290 kN Post-tension 

7 2 – All S, Prescribed Deformation 0.15 mm displacement 
1 Support Conditions, 2 Post-tension applied in steps to reduce slab restraint during shrinkage 
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a) Configuration 1 b) Configurations 2 and 3 c) Scale (MPa) 

Figure 5-48: Numerical Models, Pre-Loading Stresses, Centre Section 

5.7.1.3 Numerical Model Validations 

The numerical simulations were generally able to reproduce the experimental data very well. 

Figure 5-49, Figure 5-50, and Figure 5-51 provide comparison between experimental and 

numerical for complementary results for Test Configurations 1, 2, and 3, respectively. Other 

results are described in Chapter 3 and Chapter 4. 

The vertical barrier (bending) displacement is underestimated for Test Configurations 1 and 3 

starting at around 275 kN of applied load. This is likely because the slab mesh was limited to 4 

rows of mesh elements due to computational limitations. The FE software manual (Cervenka 

2011) recommends at least 6 rows to well reproduce bending behaviour. The slab strain and 

anchor strain are often overestimated in the numerical models. It should be noted that the strain 

recorded is a function of the discrete location of the concrete cracks, the strain rates are generally 

parallel between the experimental and numerical models. 
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Figure 5-49: Test Configuration 1 Results 
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Figure 5-50: Test Configuration 2 Results 
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Figure 5-51: Test Configuration 3 Results 

5.8 Complimentary Parametric Studies 

The following parametric studies were also performed in addition to those already presented in 

Chapter 4. 

5.8.1 Loading Effect 

The surface used to apply the equivalent static load in the experimental tests was 350 x 700 mm. 

This surface was prescribed in the AASHTO Guide Specifications for Bridge Railings (1989) for 

PL-2 impact vehicles. The current bridge codes in the U.S. and Canada do not prescribe a loading 

surface but simply a 1.05 m load length applied 700 mm above finished slab grade. The Guide 

Specifications surface was used to maintain continuity between the projects of Niamba (2009), 

Duchesneau (2010), and Namy (2012) in the development of precast barriers at Polytechnique 

Montréal.  

0

100

200

300

400

500

0 2 4 6 8 10 12

Exp

Num

A
pp

lie
d 

Lo
ad

 (k
N

)

Vertical Barrier Displacement (mm)

0

100

200

300

400

500

0 1 2 3 4 5

A
pp

lie
d 

Lo
ad

 (k
N

)

Slab-Barrier Interface Opening (mm)

0

100

200

300

400

500

0 500 1000 1500 2000 2500

A
pp

lie
d 

Lo
ad

 (k
N

)

Anchor Reinforcement Deformation ()

0

100

200

300

400

500

0 500 1000 1500 2000

A
pp

lie
d 

Lo
ad

 (k
N

)

Slab Reinforcement Deformation ()



150 

` 

Numerical models were used to confirm that the difference between the loading surface used and 

the loading prescribed in the current bridge codes would not substantially alter the behaviour 

observed experimentally. A numerical simulation was done for each test configuration with the 

load applied to the barriers using a 150 x 1050 mm rigid steel beam. 

The force-displacement relationships for the loading effect study are shown in Figure 5-52. The 

results show only a slight increase in ultimate strength for Test Configuration 1. The peak 

strength reaches 547 kN and represents a 7% strength increase from the numerical model with the 

actual loading configuration. This strength increase is logical since the load is applied over a 

longer length and more barrier stirrups resist the punching shear. The total perimeter of the 

modified load application is also increased from 2.1 m to 2.4 m and therefore the concrete shear 

resistance is also increased. The modified load effect increases the contribution of steel and 

concrete to shear  resistance and is therefore slightly less critical to the punching failure. 

  
Figure 5-52: Load Effect Study, Test Configurations 1, 2, and 3 

5.8.2 Modified Precast Barrier Reinforcement Detail 

As mentioned previously, the behaviour of Test Configuration 3 only began diverging from the 

reference Test Configuration 1 when shear cracks grew in the exterior barriers at the connections. 

It is possible that an improved reinforcement detail could prevent the formation and growth of the 

shear cracks.  

Numerical simulations were performed to investigate the proposed reinforcement modifications 
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longitudinal reinforcement was extended to the barrier edges, and standard 90° hooks were added 

to the top row of longitudinal bars. The modifications were meant to minimize any increase in 

steel quantity. 

  
a) Original Barrier Reinforcement Detail b) Modified Barrier Reinforcement Detail 

Figure 5-53: Barrier Reinforcement Detail 

The results from the barrier reinforcement detail study are shown in Figure 5-54. The new models 

have slightly higher peak strength than the reference models (6% gain in peak strength); however 

the strength gain is not significant. The shear cracks seem to simply move around the 

reinforcement (Figure 5-54b). The change to the reinforcement detail only slightly increases the 

quantity of steel reinforcement, but the gains do not seem to justify the extra materials. 

  a) Shear Failure Original Reinforcement b) Shear Failure Modified Reinforcement 

Figure 5-54: Barrier Reinforcement Study, Test Configuration 3 
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5.8.3 Modified Anchor Reinforcement Detail 

Aminmansour (2004) used extensive strut-and-tie modeling to optimize the connection of the 

anchor reinforcement between barrier and slab overhang. Aminmansour (2004) recommended 

hooking both legs of the anchor bar back towards the slab overhang edge in order to resist 

compressive struts at end of the slab and increase the development of the tensile forces within the 

anchor (Figure 5-55a). This modification was also meant to decrease the opening of shear cracks 

in the slab beneath the barrier. The shear cracks were not quantified during the experimental 

tests; however, they are very substantial in the numerical simulations and have been noted within 

the literature as the cause of failure in the slab overhangs (Aminmansour 2004, Benmokrane et al. 

2010 - Figure 5-55d). Moreover, the numerical models for Test Configurations 2 and 3 

highlighted that the anchors are not adequately developed. 

The anchors used in the Duchesneau (2010) precast barriers only have one leg directed back 

towards the slab overhang edge (Figure 5-55b), the leg less critical to the transfer of the tensile 

load. A numerical simulation was performed using Aminmansour’s (2004) recommended anchor 

design (Figure 5-55c) to evaluate if angling both legs back toward the overhang edge would 

decrease shear cracking in the slab and improve the development of the anchors.  

   
 

a) Anchor Detail 
(Aminmansour 2004) 

b) Duchesneau (2010) 
Anchors 

c) Anchor 
Modification 

d) Shear Failure 
(Benmokrane et al., 2010) 

Figure 5-55: Anchor Design, Development, and Shear Cracking 

The results of the anchor reinforcement detail study are described in Table 5-14. The anchor 

reinforcement modification did not significantly change the force-displacement relationships or 

peak strength (increase of 8% and 3% for Configurations 2 and 3 respectively). However, the 

results generally demonstrate an increased stress in the anchor bars at a given load, particularly 

near peak strength.  
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The anchor design modification does not conclusively demonstrate an improved performance. 

However, the higher anchor stresses recorded at peak load are indicative of an improved anchor 

development. It should also be noted that the new anchor design would not increase the material 

or fabrication costs associated with the precast barriers and therefore should be considered for 

future tests. 

Table 5-14: Anchor Reinforcement Study, Slab Shear Cracking and Anchor Stress Development 

Load kN Measure Configuration 2 
Standard 

Configuration 2 
Anchor Change 

Configuration 3 
Standard 

Configuration 3 
Anchor Change 

200 kN 
Stress1 160 MPa 160 MPa 110 MPa 110 MPa 
Crack2 0.1 mm 0.1 mm < 0.1 mm < 0.1 mm 

300 kN 
Stress1 260 MPa 280 MPa 160 MPa 160 MPa 
Crack2 0.3 mm 0.3 mm 0.1 mm 0.1 mm 

400 kN 
Stress1 

NA NA 
250 MPa 250 MPa 

Crack2 0.25 mm 0.2 mm 

Peak  
Strength 

Stress1 350 MPa 380 MPa 280 MPa 300 MPa 
Crack2 0.9 mm 0.7 mm 0.3 mm 0.3 mm 
Load 310 kN 336 kN 435 kN 449 kN 

25 mm 
Disp. 

Stress1 400 MPa 400 MPa 330 MPa 370 MPa 
Crack2 2.7 mm 2.5 mm 2.0 mm 2.0 mm 
Load 299 kN 306 kN 395 kN 432 kN 

1.Max anchor stress on tensile leg 2.Max shear crack width in slab  

5.9 General Discussion 

This Chapter has provided extensive background information to the articles submitted for 

publication in Chapter 3 and Chapter 4 on the experimental and numerical results obtained during 

this research project.  

A detailed account of the preliminary FE evaluation to establish the design parameters of the 

experimental tests – bridge deck length, overhang length, and barrier configurations – was given 

in Section 5.2. This initial evaluation identified the importance of the barrier-slab load transfer 

length and barrier continuity. The length of load transfer was demonstrated to reach beyond 4 m, 

and therefore a 6.2 m slab length was selected for testing. A 1.0 m slab overhang length was 

established as a realistic testing length and a critical case for bridge deck overhangs.  
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The design considerations and fabrication methods of the test specimens are documented in 

Sections 5.2 and 5.3. The specimens were all designed to be representative of bridge deck 

specimens typically found in Canada (with the exception of the precast barriers). The specimen 

formulation and final properties are fully documented. 

The design of the testing setup, loading procedure, and assembly are all detailed in Section 5.4. 

The experimental testing performed for this project was non-standard, and involved large-scale 

specimens, sophisticated laboratory testing equipment, and extensive instrumentation. The setup 

required a large attention to detail in order to ensure that the experimental tests were well 

executed and that a maximum of quantitative data could be derived from each test.  

The assembly of the testing components was generally straightforward with the exception of the 

FRM injection to connect the barriers to the slab. In order to ensure an adequate injection, the 

FRM material was optimized, and a full-scale injection test was performed. The details of which 

are provided in Section 5.5 and APPENDIX E. This injection is critical to the performance of the 

precast barrier test configurations, and it is difficult to control the overall quality of the injection 

process since there can be no visual inspections. This highlights a weakness in the current precast 

barrier design. Small design modifications could simplify either the injection quality control, or 

the injection technique. Small vertical ducts could be cast from the top of the hollow recess to the 

outer face of the barrier at 1 m intervals. The tubes would only fill with the injected cementitious 

material once the entire section was filled and would provide a visual confirmation of the 

injection quality. Another option would be to cast large ducts into the top of the hollow recess 

that would be used for the injection itself. In fact, it would not really be an injection but a pour, 

and it would be sufficient to ensure that a self-leveling cementitious material is used for the pour. 

This concept is similar to the precast barrier design of Jeon et al. (2011). 

In Section 5.6 complementary results and discussion are provided to the experimental data in 

Chapter 3. The complimentary data clearly distinguish the effect of barrier longitudinal continuity 

on the experimental results. The complimentary data draw out that the effect of the barrier 

longitudinal continuity (or lack thereof) is very evident in the experimental data. The cast-in-

place barrier used in Configuration 1 is fully continuous which increases the barrier longitudinal 

strain and distributes the applied overturning moment over the length of the slab. The precast 

barriers used in Configuration 2 exhibited at first a small amount of barrier continuity due to a 
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certain friction between precast barriers. However, it quickly dissipated and the slab overhang 

was stressed more locally. This is apparent in the considerably higher slab compressive strain 

observed in line with the load rather compared to the 1 m offset section. As would be expected 

the precast barriers with shear connections used in Configuration 3 exhibit a mixed behaviour 

between these two extremes. Until the peak strength was reached the exterior barriers were 

displaced with the loaded barrier and the load-transfer length from barrier to slab was very 

similar to that of Configuration 1. After peak strength was reached the beneficial contribution of 

the shear keys dissipated and the loaded barrier began to move relatively to the exterior barriers. 

From this point the behaviour of Configuration 3 moved towards that of Configuration 2. A 

flexural failure was observed and the load transfer length was limited to 2 m. The compressive 

strain at the 1 m offset section does demonstrate that there was still some force transfer between 

precast barriers at the beginning of the softening regime. This likely explains the increased 

residual strength observed compared to Test Configurations 2. 

The full details of the numerical validation models of each test configuration are disclosed in 

Section 5.6 along with more extensive numerical results. The element formulations used, precise 

mesh dimensions, and gap contact element properties are each described. The structural condition 

prior to the application of the displacement load was very important for the numerical models. 

This is because the concrete shrinkage and restraint conditions prestress the slab overhangs and, 

in the case of test Configuration 1, the barrier as well. The pre-displacement loading steps are 

detailed for each validation model. The description of the numerical models is sufficiently 

detailed that the numerical models and results can be simulated with an appropriate NLFE 

program. 

The additional parametric studies on the loading application effect, barrier reinforcement detail, 

and barrier-slab anchor bar detail are performed and discussed in Section 5.8.  

The loading application study investigated the loading surface used in the experimental tests. The 

loading surface used was based off recommendations from the AASHTO Guide Specification for 

Bridge Barriers (1989) and is different from the current load recommendations found in the CSA 

(2006) and AASHTO LRFD (2010). The numerical results showed that only the Test 

Configuration 1 was impacted by the load surface. The modified loading surface of 1050 x 150 

mm (from the current codes) activates more steel shear reinforcement and more concrete surface 
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to resist the critical punching shear loads. This resulted in a 7% increase in ultimate strength. The 

structural stiffness and damage progression was not affected however.  

The barrier reinforcement detail was investigated to improve the barrier resistance to shear at 

load transfer. The results demonstrated the shear cracks would simply move around the new 

reinforcement positioning, with only a modest strength gain (6%). The increased strength does 

not seem to justify the design changes which would slightly increase the steel quantity. 

A new anchor reinforcement detail was based on design recommendations from Aminmansour 

(2004) on similarly designed precast barriers. The design modification did not increase material 

quantity or fabrication costs and was meant to improve the development of tensile forces in the 

anchor bars. The effects of the modification on the structural performance were not found to be 

significant, however the tensile leg of the anchor bars did seem to have a better stress 

development at a given load, particularly near peak strength and post-peak. The modification 

merits further investigation considering there are no extra costs. 

 



157 

CHAPTER 6 CONCLUSION AND RECOMENDATIONS 

This master’s thesis provides exhaustive documentation of the work performed during the 

research project on the behaviour of bridge barrier wall subjected to static transverse loads. The 

research objectives have been achieved, and valuable conclusions and recommendations have 

been found for the continued development, use, and improvement of precast bridge barriers on 

bridge deck overhangs.  

6.1 Reminder of Research Objectives 

The primary research objective for this research project was to develop an improved 

understanding of bridge barriers anchored to the deck overhang behaviour during transverse 

loading to evaluate the impact of using precast barriers on the strength of the bridge slab 

overhang and to optimize the precast barrier design for industrial use. 

To achieve this objective, three large-scale experimental tests were performed on bridge deck 

overhangs with different barrier configurations. Test Configuration 1 used a traditional MTQ 

Type 201 cast-in-place barrier to establish a performance reference. Test Configuration 2 used 

three adjacent precast barriers developed by Duchesneau (2010). Test Configuration 3 added 

shear connections between the three adjacent precast barriers. An effective shear key compatible 

with the precast barriers had to be designed for Test Configuration 3. The findings of the 

experimental tests were broadened with the use of numerical parametric studies performed with 

validated NLFE models.  

6.2 Conclusions 

The analysis of the experimental and numerical results has led to the following conclusions for 

the use of the HPFRC precast bridge barriers: 

 The precast barriers built to an appropriate 4 m length have an equivalent strength and 

structural stiffness as their cast-in-place counter-part (MTQ Type 201 F shaped barrier). 

 The experimental testing configurations using 2 m precast barriers loaded in the structure 

centre represent a load case at least as critical as an eccentric edge load applied to 4 m 

precast barriers, with or without consideration of shear keys between barriers. 
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 The ultimate strength of the bridge deck overhangs built with HPFRC precast bridge 

barriers exceed the design criteria specified in the CSA 2006 and AASHTO 2010. 

 Utilization of shear keys provided a greater load transfer length and increased peak 

strength. 

 The shear keys added between precast barriers are necessary to satisfy loading demands 

prescribed by design codes, to limit relative barrier deflections during service loads, and 

to eliminate potential adverse effects during vehicle-barrier impacts. 

 The results from this study indicate that the precast barriers with shear connections meet 

the necessary stipulations in the CSA (2006) Commentary for barrier modifications. The 

frontal geometry is unchanged, the HPFRC is a more durable concrete, adequate anchor 

strength has been demonstrated, and the structural stiffness is equivalent.  

The HPFRC precast barriers have conclusively been shown to provide a more than adequate 

strength and stiffness to be used in industrial applications. The stipulations for modifying existing 

barrier design, the MTQ Type 201 cast-in-place barrier, have been met. The results in this study 

indicate that the precast barriers with shear keys would pass crash tests. Responsible jurisdictions 

in Canada may now consider using these barriers, or investing in crash test validation. 

Furthermore, the results from this study could be used to receive FHWA certification for this 

barrier design for barrier performance level 2 (test level 4). 

6.3 Recommendations 

The literary review, specimen fabrication, specimen installation, experimental results, and 

numerical studies all help provide several new research areas for the potential improvement of 

the HPFRC precast barriers used in this study. 

Bridge slab overhangs are significantly reinforced, particularly to resist the transverse negative 

moment in the overhang. It would be helpful if the barrier anchor bars could be placed 

perpendicular to the slab edge, as this makes it much more difficult to follow the proper anchor 

spacing, and complicates the anchor bar assembly. The angle of anchor rotation may be 

maintained, but the legs of the anchors bars could both be angled backwards and parallel to the 

slab reinforcement. There is no reason to believe that this modification would adversely affect the 
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structural behaviour, and the results from the anchor modification parametric study indicate that 

the development of the anchor tensile stresses would be improved. 

The injection quality of the hollow recess of the anchors is also questionable. During this project, 

extensive time and resources were dedicated to ensure that the FRM injection would be adequate. 

It is unlikely that industrial contractors will spend a similar amount of energy. Using industrial 

concrete pumps could significantly ease the injection process; however, the barriers would have 

to be properly fixed to the bridge slab, and sealed at all joints – a time consuming process. 

Furthermore, some sort of quality control mechanism would still need to be implemented in order 

to visually confirm the injection quality. Jeon (2011) boxed voids directly out of the barriers that 

fed into the top of the recess. This is perhaps the easiest fix because it provides visual access into 

the recess, and simplifies the injection process (which essentially becomes a pour and not 

injection). Another option would be to add air ducts from the top of the recess to the exterior face 

of the barrier at well-defined intervals. This would facilitate the quality control of the injection. 

More research should be performed on the recess injection method. 

Adding a compressible material on the inside of the edges could also help fit the precast barriers 

against one another and improve the barrier-barrier seal before injecting the recess. A simple 

solution would be to place a soft rubber or neoprene on the sides of the precast barrier forms 

before casting. A cost-benefit analysis of this design modification should be considered before 

modifying the barrier design. 

The performance of the HPFRC precast barrier Test Configurations was very good, especially 

when 4 m precast barrier lengths were considered. However, the numerical studies demonstrated 

that the fibre orientation was not optimized to resist the shear loads at the barrier-barrier 

connection. Investigation into other barrier fabrication techniques could potentially improve the 

fibre orientation in these areas. An improved fibre orientation would certainly be necessary to 

achieve a higher barrier performance level (test level). For a higher performance level, the anchor 

design used by Aminmansour (2004) should also be evaluated. Aminmansour (2004) installed 

hooped bars from both the slab and barrier into the recess and connected the two with a steel 

dowel. This essentially creates a mechanical connection between the steel components and should 

improve the strength and ductility of the recess. It would also add redundancy to the connection 

detail should the injection by faulty. 
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In all the experimental tests and numerical studies, the slab overhang cracked prior to the bridge 

barriers. This is a function of the barrier lever arm which is significantly larger than that of the 

slab. The slab overhang had visible cracks exceeding 0.1 mm opening widths by 150 kN and was 

substantially cracked by 250 kN for all three test configurations. A numerical study using a 50 

MPa HPFRC in the slab with a 50% reduction in transversal steel reinforcement demonstrated 

that the crack opening widths would be substantially reduced during service loads compared to 

conventionally reinforced concrete design (less than 0.05 mm at 300 kN applied load) and that 

the structural stiffness would also be increased. The potential gains of using a HPFRC slab 

should be seriously evaluated because the reduction in costs of steel installation and placement 

could largely offset the increased costs of the HPFRC slab. Moreover, the increased deck 

overhang stiffness should reduce the risks of vehicle rollover observed when using safety shaped 

concrete barriers because the initial slope face of the barrier would not be significantly decreased 

due to the slab deflection (an decreased slope would generate more vehicle lift and create 

additional vehicle instability immediately following impact). 
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APPENDIX A  DESIGN DRAWINGS, AS-BUILT DRAWINGS, AND 

REINFORCEMENT SCHEDULES 

 

Appendix A Figure 1: Slab ~ Configuration 1: Design and As-Built, Elevation 
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Appendix A Figure 2: Slab ~ Configuration 1: Design and As-Built, Plan and Elevation 
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Appendix A Figure 3: Slab ~ Configurations 2 and 3: Design and As-Built, Elevation 
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Appendix A Figure 4: Slab ~ Configurations 2 and 3: Design and As-Built, Plan and Elevation 
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Appendix A Figure 5: MTQ Type 201 Barrier ~ Test Configuration 1: Design Only, Elevation 

 

Appendix A Figure 6: MTQ Type 201 Barrier ~ Configuration 1: Design Only, Plan and 

Elevation 
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Appendix A Figure 7: Barrier ~ Test Configuration 1: As-Built Only, Elevation 
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Appendix A Figure 8: Barrier ~ Test Configuration 1: As-Built Only, Plan and Elevation 
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Appendix A Figure 9: Duchesneau Type Barrier ~ Test Configuration 2: Design and As-Built 
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Appendix A Figure 10: Duchesneau Type Barrier with Shear Key ~ Test Configuration 3 : 

Design and As-Built 
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Appendix A Figure 11: Support Block ~ Test Configurations 1, 2, and 3 : Design and As-Built 
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APPENDIX B INSTRUMENTATION 

The instrumentation plans for each laboratory test, with the corresponding schedules are detailed 

in this appendix. At the end of the appendix, two photos of the instrumentation used to measure 

the relative barrier displacements and also the separation of the injected mortar from the barrier. 

 

Appendix B Figure 1: Instrumentation Plan View 

 
Appendix B Figure 2: Instrumentation Elevation View 
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Appendix B Figure 3: Instrumentation Elevation View 
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Appendix B Table 1: Instrumentation Schedule Lab Test 1 

Instrumentation Laboratory Test 1 - MTQ Type 201 Cast-in-Place Barrier 

Type ID 
Length 
(mm) 

Offset 
(mm) Notes 

Linear Pot D1 481 49 Lateral displacement barrier at load application 
String Pot B1 260 429 Vertical displacement slab 
Linear Pot CO1 263 28 Slab overhang crack opening in line with load 
Linear Pot CO2 268 27 Slab overhang crack opening in line with load 
Linear Pot CO3 180 27 Barrier crack opening in line with load 
Linear Pot CO4 260 27 Slab overhang crack opening offset 1 m from load 
Linear Pot CO5 269 27 Slab overhang crack opening offset 1 m from load 
Linear Pot CO6 176 30 Barrier crack opening offset 1 m from load 

LVDT S1 186 505 Horizontal slip slab 
LVDT S2 -- 204 Horizontal slip beam 
LVDT U1 100 470 Vertical uplift slab 
LVDT U2 108 255 Vertical uplift beam 

Linear Pot U3 140 58 Relative barrier to slab uplift in line with load 
Linear Pot U4 132 56 Relative barrier to slab uplift offset 1 m from load 
String Pot U5 600 1805 Vertical displacement actuator 

LVDT Cu1 1860 29 Longitudinal extension barrier back face 
LVDT Cu2 780 27 Longitudinal extension barrier back face 

Gage 350 
 R1 -- -- Strain in slab transversal reinforcement 

Gage 350 
 R2 -- -- Strain in slab transversal reinforcement 

Gage 350 
 A1 -- -- Strain in anchor bar 

Gage 350 
 A2 -- -- Strain in anchor bar 

Gage 120 
 JB1 -- -- Strain underside of slab overhang in line with load 

Gage 120 
 JB2 -- -- Strain underside of slab overhang offset 1 m from load 

Load Cell LC(C)  -- -- Force in post-tension bar on compressed row, in line with load 
Load Cell LC(T)  -- -- Force in post-tension bar on extended row, in line with load 
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Appendix B Table 2: Instrumentation Schedule Lab Test 2 

Instrumentation Laboratory Test 2 - Duchesneau Precast Barriers 

Type ID 
Length 
(mm) 

Offset 
(mm) Notes 

Linear Pot D1 519 68 Lateral displacement barrier at load application 
LVDT D2 134 1177 Lateral displacement loaded barrier at 70 mm from end 
LVDT D3 134 1177 Lateral displacement adjacent barrier at 70 mm from end 

String Pot B1 300 452 Vertical displacement slab 
Linear Pot CO1 285 26 Slab overhang crack opening in line with load 
Linear Pot CO2 317 27 Slab overhang crack opening in line with load 
Linear Pot CO3 206 24 Barrier crack opening in line with load 
Linear Pot CO4 285 25 Slab overhang crack opening offset 1 m from load 
Linear Pot CO5 316 24 Slab overhang crack opening offset 1 m from load 
Linear Pot CO6 192 23 Barrier crack opening offset 1 m from load 

LVDT S1 168 515 Horizontal slip slab 
LVDT S2 173 203 Horizontal slip beam 
LVDT U1 90 460 Vertical uplift slab 
LVDT U2 103 260 Vertical uplift beam 

Linear Pot U3 140 38 Relative barrier to slab uplift in line with load 
Linear Pot U4 155 33 Relative barrier to slab uplift offset 1 m from load 
String Pot U5 600 1805 Vertical displacement actuator 

LVDT Cu1 1915 29 Longitudinal extension barrier back face 
LVDT Cu2 790 27 Longitudinal extension barrier back face 

Gage 120 
 Cu3 -- -- Longitudinal compressive strain barrier front face 

Gage 350 
 R1 -- -- Strain in slab transversal reinforcement 

Gage 350 
 R2 -- -- Strain in slab transversal reinforcement 

Gage 350 
 A1 -- -- Strain in anchor bar 

Gage 350 
 A2 -- -- Strain in anchor bar 

Gage 120 
 JB1 -- -- Strain underside of slab overhang in line with load 

Gage 120 
 JB2 -- -- Strain underside of slab overhang offset 1 m from load 

Linear Pot De1 55-h 80 Delamination barrier and injected mortar in line with load 
Linear Pot De2 125-h 80 Delamination barrier and injected mortar in line with load 
Linear Pot De3 55-h 85 Delamination barrier and injected mortar offset from  load 
Linear Pot De4 125-h 85 Delamination barrier and injected mortar offset from  load 
Load Cell LC(C)  -- -- Force in post-tension bar on compressed row, in line with load 
Load Cell LC(T)  -- -- Force in post-tension bar on extended row, in line with load 
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Appendix B Table 3: Instrumentation Schedule Lab Test 3 

Instrumentation Laboratory Test 3 - Duchesneau Precast Barriers with Shear Connection 

Type ID 
Length 
(mm) 

Offset 
(mm) Notes 

Linear Pot D1 571 75 Lateral displacement barrier at load application 
LVDT D2 196 1178 Lateral displacement loaded barrier at 70 mm from end 
LVDT D3 200 1181 Lateral displacement adjacent barrier at 70 mm from end 

String Pot B1 276 440 Vertical displacement slab 
Linear Pot CO1 285 27 Slab overhang crack opening in line with load 
Linear Pot CO2 316 28 Slab overhang crack opening in line with load 
Linear Pot CO3 198 30 Barrier crack opening in line with load 
Linear Pot CO4 285 32 Slab overhang crack opening offset 1 m from load 
Linear Pot CO5 316 28 Slab overhang crack opening offset 1 m from load 
Linear Pot CO6 198 28 Barrier crack opening offset 1 m from load 

LVDT S1 168 515 Horizontal slip slab 
LVDT S2 173 203 Horizontal slip beam 
LVDT U1 90 460 Vertical uplift slab 
LVDT U2 103 260 Vertical uplift beam 

Linear Pot U3 138 31 Relative barrier to slab uplift in line with load 
Linear Pot U4 138 43 Relative barrier to slab uplift offset 1 m from load 
String Pot U5 600 1805 Vertical displacement actuator 

LVDT Cu1 1862 28 Longitudinal extension barrier back face 
LVDT Cu2 795 29 Longitudinal extension barrier back face 

Gage 120 
 Cu3 -- -- Longitudinal compressive strain barrier front face 

Gage 350 
 R1 -- -- Strain in slab transversal reinforcement 

Gage 350 
 R2 -- -- Strain in slab transversal reinforcement 

Gage 350 
 A1 -- -- Strain in anchor bar 

Gage 350 
 A2 -- -- Strain in anchor bar 

Gage 120 
 JB1 -- -- Strain underside of slab overhang in line with load 

Gage 120 
 JB2 -- -- Strain underside of slab overhang offset 1 m from load 

Linear Pot De1 55-h 80 Delamination barrier and injected mortar in line with load 
Linear Pot De2 125-h 80 Delamination barrier and injected mortar in line with load 
Linear Pot De3 55-h 80 Delamination barrier and injected mortar offset from  load 
Linear Pot De4 125-h 80 Delamination barrier and injected mortar offset from  load 
Load Cell LC(C)  -- -- Force in post-tension bar on compressed row, in line with load 
Load Cell LC(T)  -- -- Force in post-tension bar on extended row, in line with load 
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Appendix B Figure 4: Barrier and Injected Mortar Separation 

 
Appendix B Figure 5: Displacement at End of Loaded Barrier and Adjacent Barrier 
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APPENDIX C SLAB OVERHANG DESIGN 

Final Checks 

Moment ULS Check Interior Portion of Slab Overhang 

ULS 1 = DL + 1.7LL= 1.2*9.0 + 1.7*36.7 = 73.2 kN-m/m  

ULS 8 = 1.2DL + 1.7H3 = 1.2*9.0 + 38 = 48.8 kN-m/m  

MULS, 73.2 kN-m/m <Mr, 99.7 kN-m/m OK! 

Moment ULS Check Exterior Portions of Slab Overhang 

ULS 1 = DL + 1.7LL= 1.2*9.0 + 1.7*73.4 = 136.6 kN-m/m  

ULS 8 = 1.2DL + 1.7H = 1.2*9.0 + 52 = 60.0 kN-m/m  

MULS, 136.6 kN-m/m <Mr, 177.1 kN-m/m OK! 

Axial ULS Check Interior Portion of Slab Overhang 

ULS 8 = 1.2DL + 1.7H = 1.2*0 + 100 = 100 kN/m  

PULS, 100 kN/m <Pr, 1200 kN/m OK! 

Axial ULS Check Exterior Portion of Slab Overhang 

ULS 8 = 1.2DL + 1.7H = 1.2*0 + 142 = 142 kN/m  

PULS, 142 kN/m <Pr, 1920 kN/m OK! 

Flexure and Axial Load Check 

PULS/Pr + MULS/Mr< 1.0  

100/1200 + 73.2/99.7 = 0.82 OK! 

142/1920 + 136.6/177.1 = 0.85 OK! 

Shear Resistance at Slab Barrier Interface Check Interior Portion 

                                                 

3In CSA S6 2006 Commentary Clause 3.8.8.1 specifies to use a load factor of 1.7 for barrier loads and not 1.0 as 

written in Table 3.1 of the S6 2006 Code. 
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VULS, 100 kN/m < Vr, 278.8 kN/m OK! 

Shear Resistance at Slab Barrier Interface Check Exterior Portion 

VULS, 142 kN/m < Vr, 386.9 kN/m OK! 

Transversal Resisting Moment of Slab 

Given: 

f’c = 35 MPa, fy = 400 MPa, Ec = 30000 MPa, Es = 200000 MPa 

s = 0.9, c = 0.75 

1 = 0.7975, 1 = 0.8825 

Slab Height = 225 mm 

Height to top reinforcement, d = 155.3 mm 

Height to bottom reinforcement, d’ = 43.0 mm  

Interior Portion of Overhang: 

As,top, As = 300*1000/150 = 2000 mm2/m 

As,bot, A’s = 200*1000/150 = 1333 mm2/m 

Transversal Resisting Moment, Mr,x = 99.7 kN-m/m 

Exterior Portion of Overhang within Sc
4 to slab edge: 

As,top, As = 300*1000/75 = 5000 mm2/m 

Transversal Resisting Moment, Mr,x = 177.1 kN-m/m 

Axial Resistance of Slab 

Design Assumptions: 

1. Only transversal steel reinforcement resists axial tension in slab 

2. Both top and bottom rows of transversal reinforcement resist axial tension in slab  

                                                 

4Due to limited length of slab overhang of 6.2 m, Sc was reduced from 1.0 m to 0.5 m for slab design 
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Given: 

As in slab interior portion = 3333 mm2/m 

As in slab exterior portion = 5333 mm2/m  

Pr,int =  1200 kN/m 

Pr,int =  1920 kN/m 

Shear Resistance of Slab at Barrier Interface 

Given: 

f’c = 35 MPa, fy = 400 MPa 

s = 0.9, c = 0.75 

Cohesion, c = 0.5 MPa, friction coefficient,  = 0.6 

Avf = 1000 mm2/m, Acv = 410000 mm2/m  

N = barrier weight = 6.69 kN/m 

Interface shear resistance, vr,int = c*(c + )< 0.25cf’c = 9.3 MPa &6.5 MPa 

Where  = vfy + N/Acv and  = Avf/Acv 

vr,int = 0.68 MPa, Vr,int = 278.8 kN/m  

At exterior slab regions Avf = 2000 mm2/m and Vr,int = 386.9 kN/m 

Transversal Moment (My) due to CL-625 wheel loads 

CL-625 transversal bending moment in slab overhang can be calculated with the below 

equation, CSA S6 2006 Clause 5.7.1.6.1.1. 

My = (2PA/ ) * 1/[1+(A-x)/(C-y)2]2, where 

P = Wheel load 

A = Coefficient from figure 5.2 = 0.47 

C = Transverse distance of load P from supported edge of slab 

C = Overhang (1.0) - Barrier width (0.41) – Distance to wheel centre (0.3) = 0.29 m  
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x = Offset from point on slab being evaluated in longitudinal direction, depends on wheel 

load for CL-625 being analysed. 

y = Offset in transversal direction, 0 in all cases (critical). 

My must be found for critical CL-625 truck wheel load in the slab overhang, and the loads 

superimposed upon one another.  The final value needs to be amplified by the proper DLA 

value, My = (My CL-625)*(1+DLA) 

My is critical when x = 0 for the 4th wheel of CL-625 truck, and DLA = 0.4 (only 4th axel of 

truck on bridge. 

My,critical CL-625 = 26.2 *(1.4) = 36.7 kN-m/m (not factored) 

At distance within Sc of longitudinal slab edge My is doubled! 

Transversal Moment (My) and Shear (Vy) due to Barrier Impact Loads 

From Table C5.4 in CSA S6 2006 Commentary: 

 Factored My at barrier edge for PL-2 = 38 kN-m/m 

 Factored Vy  at barrier edge for PL-2 = 100 kN/m 

 Factored My within Sc of slab longitudinal edge for PL-2 = 52 kN-m/m 

 Factored Vy within Sc of slab longitudinal edge for PL-2 = 142 kN/m 

Vertical force for PL-2 railing is 30 kN applied over 5.5 m length at railing crest (225 mm) 

 Factored My due to vertical impact force = 30*1.7*(1-0.225)/5.5 = 7.2 kN-m/m 

My,critical Barrier Impact Loads = 45.2 kN-m/m (factored) 

My,critical Barrier Impact Loads within Sc of slab edge = 59.2 kN-m/m (factored) 

Transversal Moment (My) due to dead loads 

Barrier weight = 6.68 kN/m, Barrier C.G. = 0.84 m from support 

Slab Overhang weight = 6.76 kN/m, Slab Overhang C.G. = 0.5 m from support 

My Dead Loads = 9.0 kN-m/m (not factored) 

Check that Manipulation Stresses will not crack slab concrete, max< ft concrete  
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Longitudinal Moment (Mx) due to Manipulation and Transportation of Slab 

Slab anchors positioned at 0.21*Length of slab from each end in order to minimize bending 

moment with 4 anchors in total. 

Slab weight per 1 m of slab width, w = 6.8 kN/m 

Positive Moment = w*(L-0.21*L)2/8 – w*(0.21*L)2/2 =  5.3 kN-m 

Negative Moment = w*(0.21*L)2/2 = -5.7 kN-m 

Add maximum dynamic amplification factor of 2 

Mx, critical Slab Movement = 11.4 kN-m 

Maximum tensile stresses due to Mx 

max = Mx*y/I = 6M/bh2 = 6*5.7E6 N-mm/(1000*2252) = 0.68 MPa  

max< f’t Concrete, slab should not crack during manipulation and transportation. 

Negative Moment Reinforcement Development Length 

Straight Bars:  

Ld = 1.15*[(k1k2k3k4)/(dcs + Ktr)]*fy/f’c
0.5*Ab> 300 mm 

dcs = 2.5db and Ktr = 0 for slabs 

k1k2k3k4= 0.8 

Ld = 382.8 mm 

180° Hooked Bars: 

Lhb = 100db/f’c
0.5 * Reduction Factor, Reduction Factor = 0.7 

Lhb = 230.7 mm 
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APPENDIX D SPECIMEN FABRICATION LOG 

2010-11-23 Support Block, Test Configurations 1, 2, and 3– HPFRC 70 MPa  

10h54 - Water and admixtures added to dry mix 

11h14 - Temperature 20.1° C 

 - Slump Flow 820 mm 

 - Mix highly liquid but ok 

11h15 - Fibres added to mix manually 

11h30 - Air content 1% 

 - Density 2383 kg/m3 (error with tare, value indicative only) 

 - Too much segregation and bleeding visible in the mix! 

11h40 - Addition of 1.5 kg of CATEXOL Collaxim L7, viscosity modifying agent 

11h53 - Temperature 20.7° C 

 - Slump flow 755 mm 

 - Slump flow 775 mm without rodding 

 - Improvement in concrete mix, but still too much segregation and bleeding 

 - Addition of 2 kg of CATEXOL Collaxim L7, viscosity modifying agent 

12h00 - Temperature 20.7° C 

 - Air content 1.1% 

 - Density 2425 kg/m3 

 - Slump flow 770 mm (no rodding) 

 - Mix much more stable, and has been deemed acceptable for casting. 

12h20 - Pouring of concrete begins 

 - Concrete self-leveling and self-compacting 

 - Steel fibres and aggregate moves with flow, mix stability is satisfactory 
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 - Casting of characterization specimens: 4 concrete coupons and 12 101.6 mm (4 

in) cylinders 

12h40 - Pouring of concrete finished 

 - Begin finishing of exposed surface 

13h00 - End finishing of exposed surface 

 - Surface well finished but concrete very viscous and sticky, so not perfect 

 - Polyethylene plastic placed on top of support block. 

Follow-up Directions 

1. Attempt to refinish surface in  1-2 hours 

2. At end of day shift, 17h00, begin steam curing and cover support block with 

insolated tarp to make sure specimen does not freeze over-night 

3. Continue steam cure until support block has reached at least 45 MPa 

4. Always keep characterization specimens in same conditions as support block 

2010-12-06 Slab, Test Configuration 1 –MTQ 35 MPa Concrete  

15h20 - Water and admixtures added to dry mix 

 - Temperature 19° C 

 - Slump flow 640 mm 

 - Air 7.2% (within specifications for air-entrained mix) 

 - Concrete ready for pour 

16h00 - Pouring of slab begins 

 - Casting of characterization specimens: 12 101.6 mm (4 in) cylinders  

16h20 - Pouring of slab finished 

 - Slab surfaced finished with trowel 

Follow-up Directions 

1. Progressively begin steam cure in starting at 17h00  
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2. Cover slab with insolated tarps  

3. Steam cure until slab reaches 35 MPa 

4. Cure gradually stopped to reduce thermal shock 

5. Slab surface maintained humid until pour of cast-in-place barrier 

6. Always keep characterization specimens in same conditions as slab 

2010-12-16 Cast-in-place Barrier, Test Configuration 1 – MTQ 35 MPa Concrete  

10h15 - Water and admixtures added to dry mix 

10h40 - Problems taking air reading, eventually air content established at 6% 

 - Slump flow 550 mm, however this is the concrete at the end of the pump and is 

likely stiffer than fresher concrete. 

 - Concrete sample taken directly from cement truck much more workable 

 - Concrete ready for pour 

10h50 - Pouring of barrier begins 

 - Several cracks heard during pouring and two sides of barrier forms begin to 

separate.  Clamps placed and tightened on top of formwork to restrict movement 

of two sides of forms. 

 -  Due to deflections of forms and cracks that were heard, the concrete is just 

poured to cover the reinforcement and not all the way to the design height. 

 - Casting of characterization specimens: 4 concrete coupons and12 101.6 mm (4 

in) cylinders 

Follow-up Directions 

1. Progressively begin steam cure in starting at 16h00  

2. Cover barrier with insolated tarps  

3. Steam cure until barrier reaches 35 MPa 

4. Cure gradually stopped to reduce thermal shock 
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5. Always keep characterization specimens in same conditions as slab 

2011-01-13 Duchesneau Type Precast Barriers (x3), Test Configuration 2 – HPFRC 70 MPa  

10h50 - Cement loaded into concrete truck with two big bags (1000 kg each) 

11h10 - Water and admixtures added to dry mix 

11h30 - Air content 3.5% 

 - Slump flow 597.5 mm 

11h32 - 18 bags of steel fibres, Dramix ZP-305, added to concrete truck by hand 

11h42 - Fibres all added 

11h50 - 8 L of super-plasticizer, Eucon 37, added to the mix to improve workability 

12h00 - Slump flow 365 mm 

 - Air 12%, too high for casting! 

12h05 - Another 12 L of super-plasticizer added to mix (20 L total) 

 - Air still at 10.5%, concrete mix wasted 

Notes 

1. Air content only became problematic after introduction of fibres and extra super-

plasticizer, and jumped from 3.5% to 12%. 

2. When the cement was added to the dry mix in the concrete truck via big bag, one 

of the bags interior plastic lining fell into the mix.  It was later removed after 

mixing, but lots of cement was caught in it and it was not good for the mix 

homogeneity.  In future pours more attention must be paid to make sure the plastic 

lining does not fall into the concrete truck. 

2011-02-07 Slab, Test Configuration 2 – MTQ 35 MPa Mix 

13h30 - Water and admixtures added to dry mix 

13h55 - Air content 5.5% 

 - Slump flow 540 mm, too stiff for the pour 
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14h05 - 2.84 L of super-plasticizer added to mix 

14h15 - Air content 6% 

 - Slump Flow 610 mm 

 - Concrete ready for pour 

14h20 - Pouring of slab begins 

 - Casting of characterization specimens: 12 101.6 mm (4 in) diametre cylinders 

14h40 - Pouring of slab finished. 

 - Slab surface finished with trowel 

14h45 - Surface retarder sprayed over slab at portion to be in contact with precast barriers 

Follow-up Directions 

1. Progressively begin steam cure in starting at 16h00  

2. Cover slab with insolated tarps  

3. After 24 hours of curing temporarily stop steam cure and spray slab with high 

pressure water hose at portion to be in contact with precast barriers 

4. Steam cure until slab reaches strength of 50 MPa (to match strength of previous 

slab) 

5. Cure gradually stopped to reduce thermal shock 

6. Always keep characterization specimens in same conditions as slab 

2011-02-08 Duchesneau Type Precast Barriers (x3),Test Configuration 2 – HPFRC 70 MPa  

13h50 - Cement truck loaded with aggregate 

14h10 - Cement loaded into concrete truck with two big bags (1000 kg each) 

14h30 - Water and admixtures added to dry mix 

 - 20 L of super-plasticizer, Eucon 37, added at this time (50% of total dosage) 

14h50 - Air content 1.2% 

 - Slump flow 440 mm 
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 - Temperature 15.3° C 

14h55 - 18.5 bags of steel fibres, Dramix ZP-305, added to concrete truck by hand 

15h01 - All fibres added 

15h05 - 6 L of super-plasticizer, Eucon 37, added to the mix to improve workability 

15h20 - Air content 7.2% 

 - Slump flow 430 mm 

 - Temperature 17.7° C 

 - Concrete is deemed ok for barrier pour.  No more super-plasticizer is added to 

the mix for fear of introducing more air. 

15h25 - Pouring of barrier begins 

 - Concrete generally looks good, however some unmixed balls of cement found in 

mix. 

 - External vibrator and trowels used to push concrete and improve compaction 

15h40 - Casting of characterization specimens: 4 concrete coupons, 4 small slabs, and 12 

101.6 mm (4 in) cylinders  

15h50 - Pouring of barrier finished 

 - Finishing of barriers by trowel 

16h15 - Barriers sealed off with plastic to maintain finish  

Follow-up Directions 

1. Begin steam cure at half-power at 17h00 

2. Beginning of morning shift following day increase steam cure to full power 

3. Begin breaking cylinders after 24hours of steam curing every 24 hours 

4. Once concrete compressive strength has reached 25 MPa, strip molds and then 

continue steam cure 

5. Continue steam cure until barriers have reached 70 MPa or 7 days have passed 
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7. Always keep characterization specimens in same conditions as slab 

2011-03-17 Slab, Test Configuration 3 – MTQ 35 MPa  

9h45 - Water and admixtures added to dry mix 

10h30 - Air content 5.0% 

 - Slump flow 610 mm 

 - Temperature 21.3° C 

 - Concrete ready for pouring 

10h38 - Pouring of slab begins. 

 - Casting of characterization specimens: 12 101.6 mm (4 in) diametre cylinders 

10h55 - Pouring of slab finished. 

 - Slab surface finished with trowel 

11h20 - Surface retarder sprayed over slab at portion to be in contact with precast barriers 

Follow-up Directions 

1. Progressively begin steam cure in afternoon  

2. Cover slab with insolated tarps  

3. After 24 hours of curing temporarily stop steam cure and spray slab with high 

pressure water hose at portion to be in contact with precast barriers 

4. Steam cure until slab reaches strength of 50 MPa (to match strength of previous 

slabs) 

5. Cure gradually stopped to reduce thermal shock 

6. Always keep characterization specimens in same conditions as slab 

2011-04-12 Precast Barriers with Shear Connections (x3), Test Configuration 3 – HPFRC 

70 MPa  

9h50 - Cement truck loaded with aggregate 

10h10 - Cement loaded into concrete truck with two big bags (1000 kg each) 
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10h30 - Water and admixtures added to dry mix 

 - 20 L of super-plasticizer, Eucon 37, added at this time (50% of total dosage) 

10h40 - Air content 2.0% 

 - Slump flow 380 mm 

 - Slump 220 mm 

 - Temperature 19.7° C 

10h45 - 374.4 kg of steel fibres, Dramix ZP-305, added to concrete truck by hand 

10h50 - All fibres added 

11h00 - Air content 2.8% 

 - Slump flow NA, concrete too stiff 

 - Slump 70 mm 

 - Temperature 20.6° C 

11h05 - 8 L of super-plasticizer, Eucon 37, added  

11h20 - 12 L of super-plasticizer, Eucon 37, added  

11h12 - Air content 12.0% 

 - Slump flow 325 mm 

 - Temperature 24.8° C 

 - Density 2149 kg/m3 

11h25 - 200 mL of Eucon Air Out added 

11h35 - Air content 5.0% 

 - Temperature 25.0° C 

 - Density 2386 kg/m3 

 - Concrete deemed ok for pour 

11h40 - Pouring of barrier begins 
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 - Concrete generally looks good, however a little stiff due to long delay between 

water cement contact and pour 

 - External vibrator and trowels used to push concrete and improve compaction 

11h50 - Casting of characterization specimens: 4 concrete coupons and 12 101.6 mm (4 

in) cylinders  

12h20 - Pouring of barrier finished 

 - Finishing of barriers by trowel 

12h25 - Barriers sealed off with plastic to maintain finish  

Notes 

1. The increase in air content after the addition of the fibres and super-plasticizer 

highlighted the synergetic effect between the fibres and super-plasticizer on the air 

content within the concrete mix 

2. The Eucon Air Out proved to be a very effective means of stopping the problem, 

only 200 mL were needed for nearly a 3.5 m3 concrete pour! 

Follow-up Directions 

1. Begin steam cure following morning after removing plastic 

2. Begin breaking cylinders after 24hours of steam curing every 24 hours 

3. Once concrete compressive strength has reached 25 MPa, strip molds and then 

continue steam cure 

4. Continue steam cure until barriers have reached 70 MPa or 7 days have passed 

5. Always keep characterization specimens in same conditions as slab 
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APPENDIX E FRM OPTIMIZATION STUDIES 

The main studies that guided the optimization of the FRM mix are detailed in this appendix. It is 

important to note that certain inconsistencies were found between the mortar shipments, as one 

shipment in particular may have been expired. The shipment used for the study is always noted 

and the conclusions drawn are relative to the shipment.  

Study 1 – 22
nd

 December 2010 – Water Content 

EHFG Shipment from November 2010 

Appendix E Table 1: Mortar Optimization Study 1, Water Content 

Component Reference  Mix 1 Mix 2 Mix 3 Unit 
EHFG5 22.7 22.7 22.7 22.7 kg 
Conex 0.330 0.330 0.330 0.330 kg 
Fibres 1.014 1.014 1.014 1.014 kg 
Water 2.625 3.044 3.526 3.989 kg 

Ice 0.865 0.865 0.865 0.865 kg 
Eucon727 17.5 17.5 17.5 17.5 g 

Tests and Results 

Mini cone, small cone, and temperature were taken for each mix immediately after mixing. 

Appendix E Table 2: Study 1 Results 

Mix Temp, °C Mini Cone (mm) Small Cone (mm) 
Reference NA 170 237.5 
Mix 1 - 3L 22.9 180 260 
Mix 2 - 3.5L 23.4 220 290 
Mix 3 - 4.0L 22.7 220 NA 

Commentary 

The influence of water content on the mini cone and small cone slump flow is clearly 

established as expected. The higher the water content, the higher the slump flow.  

                                                 

5The mix quantities have been normalized to one bag of EHFG for comparative purposes, since the quantity of 

EHFG was not always identical. Typically the formulations for these tests only used 10 or 11 kg of EHFG and the 

mortar components were adjusted accordingly. 
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After this study it was still necessary to evaluate the loss of slump flow over time, as well as 

to establish the necessary/acceptable increase in water content. 

Study 2 – 11, and 18
th

 January 2011 –Eucon 727 and Water Content 

EHFG Shipment from January 2011 

Appendix E Table 3: Mortar Optimization Study 2 

Component Reference Mix 1 Mix 2 Unit 
EHFG 22.7 22.7 22.7 kg 
Conex 0.330 0.330 0.330 kg 
Fibres 1.014 1.014 1.014 kg 
Water 2.625 2.625 3.008 kg 
Ice 0.865 0.865 0.992 kg 
Eucon727 0.0 12.0 12.0 g 

Tests and Results 

Inclined plane tests were taken immediately following mixing and in 20 minute intervals for 

60 minutes. Mini cone, small cone, and temperature were taken 15 and 60 minutes after 

mixing. 

Appendix E Table 4: Study 2 Inclined Plane Results 

Rest Time 
(minutes) 

Static Yield Stress, 0 (MPa) 
Reference Mix 1a Mix 2a 

0 113.4 39.4 33.9 
20 179.4a 46.3a 39.2 
40 -- 49.5a 61.4a 

60 -- 113.0a -- 
a. Indicates static yield stress only achieved after shaking inclined plane 
-- Static yield stress not attained 

Appendix E Table 5: Study 2 Results, Temperature and Flow 

Mix  Delay (min) Temp, °C Mini Cone (mm) Small Cone (mm) 

Reference 15 20.4 190.0 285.0 
60 21 117.5 147.5 

Mix 1a 15 14.8 270.0 377.5 
60 15.1 197.5 372.5 

Mix 2a 15 11.3 327.5 435.0 
60 12.6 192.5 270.0 

a. Ambient temperature in laboratory only 13-14 °C due to external circumstances 
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Commentary 

The addition of the Eucon 727 decreased the static yield stress, increased the initial flow, and 

reduced the structural buildup over the 60 minutes period. The same effect was more 

pronounced in Mix 2 with both Eucon 727 and increased water content. 

It should be noted that the differences between the reference mix and the modified mixes 

were quite drastic. It is likely that the lower laboratory temperature – 6°C colder than usual 

because the windows had to be opened due to dust problems – had an effect on the fluidity of 

the mixes. This assumption is supported by the results of Study 3. 

Study 3 – 10
th

 February 2011 – Mix Component Isolation 

EHFG Shipment from February 2011 

Appendix E Table 6: Mortar Optimization Study 3 

Component Reference Mix 1 Mix 2 Mix 3 Mix 4 Units 
EHFG 22.7 22.7 22.7 22.7 22.7 kg 
Conex 0 0.33 0 0 0 kg 
Fibres 0 0 0 1.014 0 kg 
Water 3.5 3.5 2.625 3.5 3.5 kg 
Ice 0 0 0.875 0 0 kg 
Eucon727 0 0 0 0 17.4 g 

Tests and Results 

Inclined plane tests were taken immediately following mixing and in 20 minute intervals for 

60 minutes. Mini cone, small cone, and temperature were taken 15 and 60 minutes after 

mixing. 

Appendix E Table 7: Study 3 Inclined Plane Results 

Rest Time 
(minutes) 

Static Yield Stress, 0 (MPa) 
Reference Mix 1 Mix 2 Mix 3 Mix 4 

0 239.5 77.0 36.9 80.3 43.9 
20 281.9a -- 119.9a 315.4a 187.9a 
40 -- -- -- 387.0a 230.0a 

60 -- -- -- -- -- 
a. Indicates static yield stress only achieved after shaking inclined plane 
-- Indicates static yield stress was not attained 

  

 



  200 

` 

Appendix E Table 8: Study 3 Results, Temperature and Flow 

Mix  Delay (min) Temp, °C Mini Cone (mm) Small Cone (mm) 

Reference 15 25.5 130.0 180.0 
60 21.8 100.0 115.0 

Mix 1 15 21.7 157.5 210.0 
60 21.8 100.0 120.0 

Mix 2 15 17.3 227.5 297.5 
60 20.3 135.0 185.0 

Mix 3 15 21.7 167.5 205.0 
60 21.0 100.0 125.0 

Mix 4 15 20.8 205.0 280.5 
60 20.0 125.0 160.0 

Commentary 

The results from this study were generally logical, unfortunately it did seem as though the 

reference mix was slightly less workable/fluid than normal. The following conclusions could 

still be drawn however. 

 Conex, the shrinkage reducing admixture, did not improve the initial flow rate, and 

increased structural buildup. 

 Substituting ice for water improved the initial flow rate and decreased structural 

buildup. This supports the observation from Study 2 that the colder room temperature 

improved the FRM flow properties. 

 Steel fibres did not improve the initial flow rate, and increased structural buildup. 

 Eucon 727, water reducing admixture, improved the initial flow rate and decreased 

structural buildup. 

An optimized mix will include the Eucon 727 and a higher proportion of ice with respect to 

water. 
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Study 4 – 21, 34
th

 February 2011 – Final FRM Mix Design 

EHFG Shipment from February 2011 

Appendix E Table 9: Mortar Optimization Study 4 

Component Reference Mix 1 Mix 2 Mix 3 Mix 4 Units 
EHFG 22.7 22.7 22.7 22.7 22.7 kg 
Conex 0.33 0.33 0.33 0.33 0.33 kg 
Fibres 1.014 1.014 1.014 1.014 1.014 kg 
Water 2.625 2.450 2.275 2.190 2.250 kg 
Ice 0.875 1.050 1.225 1.460 1.500 kg 
Total Water 3.50 3.50 3.50 3.65 3.75 kg 
Ice/Water Ratio 25 30 35 40 40 % 
Eucon727 17.5 17.5 17.5 17.5 0.0b g 
a. Mix 3 selected for injection 
b.Eucon 727 left out of mix erroneously. 

Tests and Results 

Inclined plane tests were taken immediately following mixing and in 20 minute intervals for 

60 minutes. Mini cone, small cone, and temperature were taken 15 and 60 minutes after 

mixing.  

Appendix E Table 10: Study 4 Inclined Plane Results 

Rest Time 
(minutes) 

Static Yield Stress, 0 (MPa) 
Reference Mix 1 Mix 2 Mix 3 Mix 4 

0 57.4 28.8 34.6 20.5 14.9 
20 119.7a 54.5 69.3 17.8 17.7 
40 -- -- -- 37.4 52.3 
60 -- -- -- -- -- 

a. Indicates static yield stress only achieved after shaking inclined plane 
-- Indicates static yield stress was not attained 
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Appendix E Table 11: Study 4 Results, Temperature and Flow 

Mix  Delay (min) Temp, °C Mini Cone (mm) Small Cone (mm) 

Reference 15 20.8 192.5 272.5 
60 21.6 130 162.5 

Mix 1 15 16.6 227.5 310 
60 19.4 152.5 217.5 

Mix 2 15 16.8 240 300 
60 20.2 140 175 

Mix 3 15 15.5 260 362.5 
60 19.3 170 237.5 

Mix 4 15 13.6 262.5 355 
60 18.1 172.5 242.5 

Commentary 

This last optimization study confirmed the effect of the ice to water ratio. The following 

observations were evident. 

 The lower the mortar temperature, the higher the initial flow rate and the slower the 

structural buildup. 

 An ice to water ratio of 40% presented no mixing problems. After the standard 5 

minutes of mixing, the mortar was homogenous. 

 An increased ice to water ratio did not produce any noticeable effects on the mortar 

segregation or bleeding. 

 A significant improvement in the mortar behaviour can be deduced from the above 

studies, and Mix 3 had very adequate properties for the injection. 

 Mix 3 was selected as the optimal mix, shown in Appendix E Table 12 

Appendix E Table 12: FRM Mix and Properties 

Mortar Final Mix Fresh and Hardened State Properties 
EHFG 22.7 kg 

 
Lab Test 2 Lab Test 3 

Conex 0.33 kg Slump Flow 845 mm 775 mm 
Fibres 1.014 kg Temperature 18.3 C 17.4 C 
Water 2.19 kg f'c 40.0 MPa 60.4 MPa 

Ice 1.46 kg ft 3.3 MPa 3.2 MPa 
Eucon727 0.017 kg Ec 19400 MPa 26090 MPa 

 


