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RÉSUMÉ 

 

Le but de ce travail est de caractériser expérimentalement la performance du mélangeur 

Maxblend dans le cas de suspensions solides. 

De par le très grand nombre d’applications industrielles qui utilisent le mélange solide-liquide, 

d'importants efforts ont été mis en œuvre pour améliorer la compréhension de cette opération. Le 

principal objectif du mélange solide-liquide est de créer et de maintenir l'homogénéisation de la 

suspension. De telles opérations étant généralement réalisées dans des cuves agitées 

mécaniquement, le choix d'un agitateur à haute performance est primordial pour assurer à la fois 

la dispersion des particules et leur suspension. 

L'agitateur Maxblend est un des plus efficaces parmi la nouvelle génération de mélangeur. Il est 

composé d’une large pale, située au bas de la cuve, et d'une grille sur la partie supérieure. La pale 

joue le rôle d'une pompe et la grille permet de créer la dispersion. Le mélangeur Maxblend est 

une alternative intéressante aux agitateurs raclant et est utilisé dans différents procédés, allant de 

la dispersion de gaz à la polymérisation. 

Dans ce travail, une étude expérimentale a été réalisée pour caractériser la performance d’un 

système de mélange équipé d’un agitateur Maxblend et d’une cuve cylindrique, dans le cas des 

fluides newtoniens. 

La vitesse d'homogénéisation (NH), correspondant à la vitesse critique pour obtenir une 

suspension uniforme, est mesurée par tomographie à résistance électrique. Le travail 

expérimental a permis d’obtenir, pour diverses viscosités de fluides, la puissance consommée et 

le temps de mélange. De plus, l’impact de la géométrie de la cuve, de l'espace entre le fond de la 

cuve et l'agitateur, ainsi que la quantité de solide sur l’efficacité de l’agitateur à générer la 

suspension ont été étudiés. En se basant sur ces résultats, il est possible de confirmer que le 

Maxblend est un mélangeur performant, puisqu’il permet d’obtenir une suspension uniforme, un 

temps de mélange court avec une faible consommation d'énergie. 

 

Mots clé: Mélange, Suspension, Solide-Liquide, Maxblend, Newtonien, fluide visqueux, 

Suspension homogène. 
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ABSTRACT 

 

The goal of this work is to characterize experimentally the performance of a Maxblend impeller 

for solid suspensions. 

Significant efforts have been devoted to better understand the solid liquid mixing phenomena, 

because of the large number of industrial applications of this operation. The major objective of 

solid-liquid mixing is to first create and then maintain homogenous slurry conditions. Such 

operations are commonly carried out in tanks stirred by suitable mechanical agitators. The 

important point in designing a solid-liquid suspension is choosing a high performance impeller 

for achieving both the dispersion of the particles and their suspension, at the same time.  

The Maxblend impeller is one of the most efficient kinds of the new generation impellers. It is 

composed of a large bottom paddle and an upper grid. The paddle acts as a pump and the grid 

provides dispersion capabilities. The Maxblend impeller represents an interesting alternative to 

close clearance impellers and it has been used in many different processes ranging from gas 

dispersion to polymerizations. 

In this study, an experimental investigation is carried out to characterize the mixing performance, 

for Newtonian fluids in a cylindrical tank equipped with a Maxblend impeller.  

The homogenization speed (NH) is introduced as the critical speed for the uniform suspension and 

it is measured by Electrical Resistance Tomography. The experimental work consisted in 

obtaining the power consumption and the mixing time for various liquid viscosities in Maxblend. 

Also the effects of vessel geometry, off-bottom clearance and solid loading on solid suspension 

efficiency are investigated. According to the results, it can be confirmed that Maxblend is an 

interesting technology to obtain a uniform suspension in light of short mixing time and low 

power consumption. 

 

Key Words: Mixing, Suspension, Solid-Liquid, Maxblend, Newtonian, Viscous fluid, Homogeneous 

suspension  
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INTRODUCTION 

 

Mixing processes are encountered widely throughout industry involving chemical and physical 

changes (Paul et al., 2004). Mixing is a central feature of many processes in the polymer 

processing, petrochemicals, biotechnology, pharmaceuticals, pulp and paper, coating, paints and 

automotive finishes, cosmetics and consumer products, food, drinking water and wastewater 

treatment, mineral processing, fine chemicals and agrichemicals, etc. 

Despite the extensive applications of mixing, tremendous problems are very often encountered in 

industries due to a lack of understanding of the fundamentals involved in mixing processes.  

When viewed on an international scale, the financial investment in costs of mixing processes is 

considerable (Nienow et al., 1997). Process objectives are crucial to the successful manufacturing 

of a product. If scale-up fails to produce the required product yield, quality, the costs of 

manufacturing may be increased significantly, and perhaps more importantly, marketing of the 

product may be delayed or even cancelled in view of the cost and time required to correct the 

mixing problem (Paul et al., 2004). 

It has been estimated that 1-10 billion dollars/year are lost by North American industries due to 

mixing problems (Paul et al., 2004). Most industries are suffering from an oversimplified design 

of the mixing systems. While an oversimplified design leads to low quality products, an overly 

complex design is extremely costly in large scale production plants. 

Although extensive experimental and numerical studies have been done on mixing systems, the 

successful design, operation, and scale-up of such systems still present a challenge. 

Among the various mixing processes (e.g., liquid-liquid, gas-liquid, solid-liquid), solid-liquid 

mixing is one of the most important mixing operations, because it plays a crucial role in many 

unit operations, such as suspension polymerization, solid-catalytic reaction, dispersion of solids, 

dissolution and leaching, crystallization and precipitation, adsorption, desorption, and ion 

exchange (Paul et al., 2004, Zlokarnik, 2001). The major objective of solid-liquid mixing is to 

create and maintain homogeneity in a slurry, or to improve the rate of mass and heat transfer 

between the solid and liquid phases. 

With this objective in mind, researchers across the world have started to study and design high 

performance mixing setups for solid-liquid mixing. 



2 

 

 

 

For low viscosity fluids the most common mixing systems are based on high speed blade turbines 

such as flat blade turbine, pitched blade turbine and hydrofoils in tanks equipped with baffles. In 

high viscosity fluids these turbines lose their efficiency because of the high clearance, dead zones 

and cavern effects. In order to alleviate these problems, close clearance impellers such as helical 

ribbon, anchor, or Paravisc rotating at low speeds could be used. These impellers provide more 

efficient top to bottom flow, and thus good homogenization. In solid liquid mixing of high 

viscosity continuous phases, usually two mechanisms are required: the first is used to reduce 

average particle size and the second to reach a uniform degree of dispersion throughout the 

vessel. A combination of the impellers mentioned above can achieve this task, resulting in the 

integration of several mixing step within one vessel. Multi shaft mixers can be used to carry out 

mixing in highly viscous systems. In many mixing processes, the rheological properties of the 

mixture evolve during the mixing operation. The rheology modification often originates from a 

chemical reaction, additives, or physical change in the solution structure. The viscosity of the 

final product is often higher than that of the starting material. Non-Newtonian properties may 

develop, depending on the nature of the reactants involved in the process. Specific types 

of agitators are suitable for such processes. Indeed, it is uncommon to change agitators during the 

reaction. Mixing specialists look for versatile agitators that can fulfill the requirements of these 

processes while handling the variable rheological properties.   

To meet the needs of these processes with variable rheological properties a new impeller design 

called Maxblend has been proposed by Sumitomo Heavy Industries, Japan. It belongs to the 

family of the so-called “wide” impellers and has been recently introduced for the chemical 

process industries (See Figure 1). This impeller is mounted in a vessel with a very small 

clearance between the bottom wall and the lower edge of the impeller. Baffles at the vessel wall 

can also be installed depending on the flow regime and application in mind. The impeller’s main 

advantages are a precise control of the mixing flow in the vessel and the generation of a relatively 

uniform shear contrary to open turbines, where high shears are located in the vicinity of the 

turbine, yielding cavern phenomena when shear-thinning fluids are used (Solomon et al., 1981). 
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Figure 1: Maxblend reactor (SHI Mechanical & Equipment, 2001) 

 

The mixing mechanism operated by the Maxblend is illustrated in Figure 2. The top to bottom 

pumping induced by the Maxblend is remarkable, the flow goes upward near the wall and 

downward in the center along the shaft.  

This impeller is effective over a wide range of viscosities (Figure 3). It would therefore retain a 

high mixing efficiency for many processes, regardless of viscosity changes during mixing. 
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Figure 2: Mixing mechanism (SHI Mechanical & Equipment, 2001) 

 

 

Figure 3: Range of Maxblend impeller efficiency (SHI Mechanical & 

Equipment, 2001) 

 

SHI uses the Maxblend for a variety of applications in liquid-liquid, liquid-solid and gas-liquid 

mixing. According to the manufacturer claims, the Maxblend can handle processes from 

suspension polymerization and crystallization operation to high viscosity gas absorption      

(Table 1). 
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Table 1: Applications of Maxblend mixer  

Mixing Medium Process/Operation Product/Application Example 

Solid -Liquid Mixing 

Suspension Polymerization 

Crystallization Operation 

Salting-Out, Oxygenation-Out 

Powder and Resin Dissolution 

PVC, PS, Water Adsorbent Polymer 

Cooling, Reaction, Condensation 

Clam Former, ABS Precipitation 

PVA, CMC, Lignin 

Liquid-Liquid Mixing 

Emulsion Polymerization 

Solution Polymerization 

Bulk Polymerization 

Condensation Polymerization 

ABS, Paste PVC, Vinyl Acetate, Acrylic 

Emulsion 

AS, BR, Thermoplasticity Elastomer 

PS, PMMA, Spandex 

Biodegradable Polymer 

Gas-Liquid Mixing 

Hydrogenation, Chlorination 

EO, PO Addition Reaction 

High Viscosity Gas 

Absorption 

High Viscosity Cultivation 

Polymer Hydrogenation, Oils and Fats, Amine 

Surfactant 

Thermoplastic Elastomer etc. 

Biopolymer, Bio-Cellulose 

 

Although these claims make this impeller pretty attractive for solid-liquid mixing applications, in 

practice, the actual performance of the impeller is not well documented. The objective of this 

work is to describe the solid-liquid mixing behavior when using a Maxblend. The project 

considers Newtonian viscous mixing. We are especially interested in the performance 

characteristics of this impeller and how they compare when the impeller operates in different 

operating and design conditions. The study is performed experimentally.  
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CHAPTER 1 

LITERATURE REVIEW 

 

 

1.1.     Solid Suspension 

 

Dispersion generally consists of discrete particles randomly distributed in a fluid medium. 

Dispersion can be divided into three categories: solid particles in a liquid medium (suspension), 

liquid droplets in a liquid medium (emulsion) or gas bubbles in a liquid (foam). Suspension is the 

dispersion of particulate solids in a continuous liquid phase, which is sufficiently fluid to easily 

circulate by a mixing device (Uhl and Gray, 1986). However, in the case that a system 

incorporates powders and fine particles throughout the liquid medium is considered as dispersion 

or colloidal suspension (Harnby et al., 1997). When the particle concentration and, for a range of 

sizes, the size distribution is constant throughout the tank, homogeneous suspension exists 

(Harnby et al., 1997). The quality of solid suspension can be divided into three regimes: on-

bottom (partial), off–bottom (complete) and homogeneous (uniform) suspension regimes (Paul et 

al., 2004). These are illustrated in Figure 1-1. 

On-bottom motion or partial suspension: This situation can be described as the complete 

motion of all solid particles in the whole tank, regardless of aggregation of particles in corners or 

other parts of the tank bottom, which means there are still some particles in motion that have 

contact with the tank bottom. In this case, not all the surface area of particles is available for 

chemical reaction or mass or heat transfer. This condition is sufficient for the dissolution of solids 

with high solubility. 

Off-bottom or complete suspension: This situation can be described as the complete motion of 

particles where no particle lays on the tank bottom for more than 1 to 2 seconds, even though the 

suspension throughout the tank might not be uniform. Due to this whole motion, the surface area 

reaches the maximum level for the chemical reaction and diversity of transfer. Since this situation 
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is the minimum mixing requirement in most solid-liquid systems, the “just suspended speed” is 

always chosen as an important parameter in the study of the solid-liquid system.  

Uniform suspension: This situation can be described as the formation of both uniform particle 

concentration and particle size distribution in the whole tank. Any further increase in impeller 

speed or power does not appreciably improve the solids distribution. This condition is required 

for crystallization and solid catalyzed reaction. 

Suspension percentage,  

                                                    

                                                             
        

(1-1) 

might be greater than, equal to, or smaller than 100%. As for the uniform suspension, the 

suspension percentage is 100%. Basically, by increasing the power input or rotating speed, the 

particle distribution does not obviously improve. This suspension is required in processes, such 

as the crystallization process and solid catalyzed reaction, where uniform solids concentration is 

vital to the efficiency of an operation unit or even the continuity of a whole production line. Of 

course, this ideal scenario is based on more power input, more effective equipment configuration, 

and certain operating conditions. 

 

Figure 1-1: Degrees of suspension. (a) Partial suspension, (b) Complete suspension, (c) Uniform suspension (Tahvildarian 

et al., 2011) 

 



8 

 

 

 

Distribution and dispersion are discussed when the quality of solid-liquid mixing is studied. The 

uniform suspension depends on both good distribution and dispersion. Figure 1-2 presents 

examples to clarify the difference between distribution and dispersion. In the first row, 

aggregations exist in both conditions. In Figure (a), the particles aggregate randomly resulting in 

a bad distribution and a bad dispersion. In (b), aggregations distribute orderly which is considered 

as a good distribution and a bad dispersion. Figure (c) demonstrates a good dispersion and a bad 

distribution where there are still some aggregations from a microscopic perspective, but for each 

aggregation, the distribution of particles is uniform. Finally in (d), there is no aggregation and 

particles distribute uniformly within the tank in what is called uniform suspension. 

 

Figure 1-2: Distributive mixing versus dispersive mixing 

 

The physical and chemical properties of liquid and solid particles influence the fluid-particle 

hydrodynamics and, consequently, the suspension. For example, large, dense solids are more 

difficult to suspend than small particles with low density in the same continued phase. Another 
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example is spherical particles, which are more difficult to suspend than thin flat disks (Paul et al., 

2004). The properties of both the solid particles and the suspending fluids influence the 

suspension. Also vessel geometry and agitation parameters are important. The important liquid 

and solid properties and operational parameters are as follows: 

a) Physical properties of the continuous phase: 

 Liquid density, ρl 

 Density differences, ρs-ρl 

 Liquid viscosity, µl 

b) Physical properties of solid particles: 

 Solid density, ρs 

 Particle size, dp 

 Particle shape or sphericity 

 Wetting characteristics of the solid 

 Tendency to entrap air or head space gas 

 Agglomerating tendencies of the solid 

 Hardness and friability characteristics of the solid 

c) Process operating conditions: 

 Liquid depth in vessel 

 Solids concentration 

d) Geometric parameters: 

 Vessel diameter 

 Bottom head geometry: flat, dished, or cone-shaped 

 Impeller type and geometry 

 Impeller diameter 

 Impeller clearance from the bottom of the vessel 

 Baffle type, geometry, and number of baffles 

e)  Agitation conditions: 

 Impeller speed, N  

 Impeller power, P 
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For example, for small solid particles, which have a density approximately equal to the liquid, 

once suspended they continue to move with the liquid. The suspension behaves like a single-

phase liquid at low solid concentrations. For solid particles with higher density their velocities 

are different from that of the liquid. The drag force on the solid particles caused by the liquid 

motion must be sufficient and directed upward to counteract the tendency of the particles to settle 

by the gravity force. 

Solid suspension processes consume a huge amount of processing time and energy, so it is 

necessary to know about the various factors affecting them. There are some studies investigating 

these parameters such as the following: 

a) Physical properties of liquid, such as density and viscosity (Chapman et al., 1983, Ibrahim and 

Nienow, 1994).  

b) Physical properties of solid, such as density, particle size, sphericity, wetting characteristics of 

solid, agglomerating tendencies of the solid and hardness and friability characteristics of the solid 

(Altway et al., 2001, Ayranci and Kresta, 2011). 

c) Process operating conditions, such as liquid depth in the vessel and solid concentration 

(Einenkel, 1980). 

d) Geometric parameters, such as vessel diameter, bottom head geometry like flat, dished or 

cone-shaped, impeller type and geometry, impeller diameter, impeller clearance from the bottom 

of the vessel, baffle type and the geometry and number of baffles (Biswas et al., 1999, Wu et al., 

2001).  

e) Agitation conditions, such as impeller speed, impeller power, impeller tip speed, level of 

suspension achieved and liquid flow pattern (Biswas et al., 1999). 

 

1.1.1.     Settling Velocity 

 

When a dense solid particle is placed in a motionless fluid, it will accelerate to a steady-state 

settling velocity, which is called the free settling velocity. It occurs when the drag forces balance 

the buoyant and gravitational forces of the fluid on the particle. However, in equilibrium the sum 

of these forces is zero. 
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In Newtonian fluids for spherical particles, the free settling velocity (vt) is a function of different 

physical and geometrical parameters and it is defined by 

    
            

     
 

 
  

  (1-2) 

 

In this equation, CD is the drag coefficient, which directly depends on the particle Reynolds 

number (Rep),  

    
        

 
   (1-3) 

and particle shape. The expression of the drag coefficient for each flow regime is defined in Table 

1-1. By substituting each definition of drag coefficient in equation 1-2, the terminal velocity for 

each regime, in the case of low concentration suspensions, could be calculated (Paul et al., 2004). 

 

Table 1-1: Hydrodynamic regimes for settling particles (Paul et al., 2004) 

Regime Rep CD 

Stokes' law(laminar) Rep < 0.3 CD  = 24/ Rep 

Intermediate law 0.3 < Rep <1000 CD  =  18.5/ Rep 
3/5

 

Newton`s low (turbulent) 1000 < Rep < 35×10
4
 CD =  0.445 

 

1.1.2.     Hindered Settling 

 

In the case of low concentration suspensions, the settling velocity can be evaluated using 

equation 1-2. However, when the concentration is increased (>2%) particle-particle interactions 

become significant and other particles decrease the value of Vt (Blanc and Guyon, 1991). 

Hindered velocity occurs because of interactions with surrounding particles, interaction with the 
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upward flow of fluid created by the downward settling of particles, or increase in the apparent 

suspension viscosity and density. An empirical correlation for hindered settling velocity is 

reported by Maude as 

            , (1-4) 

where Vts is the hindered settling velocity, Vt is the settling velocity, Ø is the volume fraction of 

solids in suspension, and n is a function of the particle Reynolds number (Rep) which is defined 

as follows (Maude and Whitmore, 1958): 

 

Table 1-2: Values of the exponent in Maude empirical correlation 

Rep < 0.3 n = 4.65 

0.3< Rep <1000 n = 4.375 Rep 
-0.0875

 

1000< Rep  n = 2.33 

This expression is recommended for preliminary estimates of the effect of solid concentration on 

settling velocity (Paul et al., 2004). 

 

1.1.3.     Rheological Properties of Suspension    

 

Rheology is the science of flow and deformation of materials. The rheology of suspensions is an 

important subject in the field of rheology since it shows various types of rheological 

characteristics, such as thixotropy, shear thinning, shear thicking, viscoelastic, etc. We need to 

develop our knowledge about suspension rheology for a wide range of industrial applications, 

such as paint, ink, cement, cosmetics, food, and agricultural products in order to select the best 

production conditions for the specific application. 

The viscosity of slurry is a function of the continuous phase viscosity, particle-particle 

interactions, and the size distribution, concentration, and the shape of particles. It is also a 
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function of the shear rate, and can be a function of the shearing time (Shamlou, 1993). 

Suspensions are classified depending on the rheological behaviour of the continuous phase 

(Jinescu, 1974).  

a) Suspension in a Continuous Newtonian Phase 

b) Suspension in a Continuous Non-Newtonian Phase 

In Newtonian continuous phase, Newtonian behavior is observed for small solid concentrations, 

whereas the suspension is usually non-Newtonian for high solid concentration (Shamlou, 1993). 

For non Newtonian medium, a suspension shows non-Newtonian behaviour even with small 

concentrations of solid particles. In small solid particle concentrations, the non-Newtonian 

behaviour is caused by the continuous phase. However, with high concentrations of solid 

particles, particle-particle interactions usually heighten the non-Newtonian behaviour of the 

suspensions. 

For non-Newtonian shear thinning liquids, higher agitator speeds can be expected than for 

Newtonian liquids, especially where a single impeller is used. This is due to the rapid fall-off in 

fluid motion away from the impeller. Hence for very shear thinning fluids a multi impeller is 

recommended; also large diameter impellers are more effective at creating movement at the 

liquid surface than small impellers and so are more effective at drawing solids into the liquid 

(Shamlou, 1993). 

Many experimental and theoretical works have been carried out to predict the rheological 

behaviour of suspensions. These models were derived under the assumption of spherical, rigid 

and mono-dispersed particles. 

For example, for the viscosity of suspension, which contains a volume concentration of spherical 

solid particles up to 50%, Gillies et al. derived an equation, which is in good agreement with 

experimental results (Gillies et al., 1999): 

 

                                          (1-5) 

where µr is relative viscosity, φ is the volume fraction of the spheres. In this equation the terms of 

an order of two and higher are a result of particle-particle interactions in highly concentrated 

suspensions.  
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1.2.     Solid-Liquid Suspension in Mechanically Agitated Vessels 

 

1.2.1.     Hydrodynamic Regimes 

 

Suspension of solid particles needs the input of mechanical energy into the solid-liquid system by 

some mode of agitation. The input energy makes a turbulent flow field in which solid particles 

are lifted from the base of vessel and then dispersed and distributed throughout the liquid. 

Nienow discussed in some detail the complex hydrodynamic interactions between solid particles 

and fluids in mechanically agitated tanks. First, there is a drag force on particles arising from the 

boundary layer flow across the bottom of the tank. To suspend the particle the velocity of the 

boundary layer flow should be ten times greater than the particle settling velocity in a motionless 

fluid. Second, turbulence breaks the boundary layer and if the frequency and energy levels are 

high enough, a suspension will be started (Nienow et al., 1997). Latest measurements of the 3D 

velocity of both the solid particles and the fluid confirm this complexity (Paul et al., 2004). 

Solids pickup from the tank bottom is achieved by a combination of the drag and lift forces of the 

moving fluid on the solid particles and the bursts of turbulent eddies originating from the bulk 

flow in the tank. Among the various models which explain the hydrodynamics of solid-liquid 

suspensions, the most successful one was proposed by Baldi et al.. According to his model, the 

particles in the vessel base are suspended mainly due to turbulent eddies of approximately the 

same scale as the particle size (Baldi et al., 1978).  

 

1.2.2.     Solid-liquid Dispersion in High Viscous Continuous Phase 

 

When the continuous phase viscosity is considered to be low enough to reach a turbulent regime, 

obtaining a uniform suspension is a difficult task due to the high settling velocity of the particles. 

In most industries dealing with food, polymer, pharmaceutical and biotechnological processing, 

mixing involves high viscosity medium or low rotating speeds, which means operating at the 

laminar regime. 
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Processing these high viscosity materials may require the incorporation of fine solids. To achieve 

a solid dispersion in a viscous continuous phase, the objective is to produce a uniform material 

with an acceptably low level of agglomerates of the basic individual particles. 

In high viscosity continuous phases, in the absence of turbulent eddies, the stresses, which are 

produced within the liquid during laminar flow, are responsible for breaking and rupturing 

agglomerates of particles and dispersing them uniformly as individual particles throughout the 

vessel. In the absence of molecular diffusion, this mechanism tends to reduce the size and scale 

of the unmixed clumps. High shear stresses for such a task can be achieved in mixers which 

provide high shear and the components should pass through these zones as often as possible. In 

mixers handling high viscosity fluids (such as Rneaders, internal mixers, planetary mixers, and 

helical ribbons) the flow patterns are very complex. All of these mixers incorporate high shear 

zones and regions where fluids are redistributed. The shear produced, however, in the high shear 

zones of these mixers may not be enough to reduce the size of the agglomerates and break the 

lumps as required. In this case, incorporation of a high shear mixer and a distributive mixer for 

high viscosity continuous phases would improve the mixture quality. 

 

1.2.3.     Just Suspension Speed in Stirred Tanks (Njs) 

 

The minimum impeller speed at which all the particles reach complete suspension is known as 

Njs. Under this condition, the maximum surface area of the particles is exposed to the fluid for 

chemical reaction or mass or heat transfer. The “just suspended” situation refers to the minimum 

agitation conditions at which all particles reach complete suspension. 

Many efforts have been made to characterize this parameter experimentally, and theoretically 

which result in different equations for predicting it. 

One of the first studies in this field was done by Zwietering (Zwietering, 1958). He introduced 

the visual observation method to find out Njs. The motion of the solid particles on the tank bottom 

was visually observed through the transparent tank. Njs was measured as the speed at which no 

solids are visually observed to remain at rest on the tank bottom for more than 1 or 2 seconds.  

Simplicity is the main advantage of visual methods. However, only with careful and experienced 

observation it is possible to achieve ±5% reproducibility in a diluted suspension. Furthermore, 
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visual methods need a transparent vessel, which is feasible for most laboratory-scale studies, but 

rather out of reach for large-scale tanks. To overcome the limitations of the visual method other 

techniques have been proposed and different concepts have been applied, like solid concentration 

change directly above the vessel bottom (Bourne and Sharma, 1974a, Musil and Vlk, 1978), 

ultrasonic beam reflection from the static layer of the solid on the vessel base (Buurman et al., 

1986), variation of power consumption or mixing time (Rewatkar et al., 1991), pressure change at 

the bottom of the vessel (Micale et al., 2000, Micale et al., 2002). 

Experimental techniques have been used to perform many empirical and semi-empirical 

investigations on solid suspension, results of which have been critically reviewed in the literature 

(Armenante and Nagamine, 1998, Armenante et al., 1998, Paul et al., 2004, Harnby et al., 1997). 

Most presented correlations have been developed based on the visual technique. Most of the 

studies resulted in modifications of model parameters in the Zwietering correlation. Zwietering 

derived the following correlation from dimensional analysis.  He estimated the exponent by 

fitting the data to the just-suspended impeller speed (Zwietering, 1958),  

 

          
         

  
           

         (1-6) 

where: 

       
           

 

  
 
   

         (1-7) 

      
    

 

 
  (1-8) 

    
     

   

         
  (1-9) 

where D is the impeller diameter, dp is the mass-mean particle diameter (dp)43, X is the mass ratio 

of suspended solids to liquid × 100, S is the dimensionless number which is a function of impeller 

type, ν is the kinematic viscosity of the liquid, gc is the gravitational acceleration constant, and ρs 

and ρl are the density of particle and the density of liquid, respectively. 

He showed that in the calculation of Njs a significant variance appears and there is no correlation 

with universal validity. Bohnet (Bohnet, 1980) determined Njs using nine correlations to find that 
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the reported values were in the range of -56% to +250% from their own value. Different 

empirical correlations have been developed based on experimental characterization of Njs. 

Prediction of Njs was a subject of few CFD studies (Fletcher and Brown, 2009, Lea, 2009, 

Murthy et al., 2007, Panneerselvam et al., 2008). Kee and Tan presented CFD approach for 

predicting Njs and characterized effect of D/T and C/T on Njs (Kee and Tan, 2002).  

 

1.2.4.     Cloud Height 

 

In solid suspension, there is a distinct level at which most of the solids become lifted within the 

fluid. This height of the interface from the bottom of vessel is called cloud height and above this 

interface there are only a few solid particles. Liquid below this height, however, is solid-rich 

(Bittorf and Kresta, 2003). Measurement of cloud height within the stirred vessel provides a 

qualitative indication of suspension quality. Many studies have been done to express 

homogeneity as a function of cloud height (Bujalski et al., 1999, Hicks et al., 1997, Ochieng and 

Lewis, 2006b, Oshinowo, 2002). Cloud height is considered as a global parameter and cannot 

provide satisfactory information on local mixing quality. 

Bittorf and Kresta derived an equation for cloud height that corroborates the best results for 

solids distribution at low clearance and for a large impeller diameter (Bittorf and Kresta, 2003): 

 

   
 

   
           

 

 
     

 
 
  

 

   
 
  

     (1-10) 

 

where CH, N, Njs, C, D and T are cloud height, impeller speed, just suspended impeller speed, 

clearance, impeller diameter, and tank diameter, respectively.  
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1.2.5.     Mixing Time 

 

Mixing time is a parameter commonly used to characterize the mixing performance of impellers 

in agitated vessels. It is defined as the time required to reach a certain degree of local 

homogeneity. Quantitative mixing time measurements, which can be carried out using several 

different methods, give us a qualitative understanding of mixing behavior. The most appropriate 

technique for mixing time measurement depends on the fluid specifications and the mixing 

scenarios. Many physical and chemical methods have been developed with various degrees of 

success. However, since each technique has its own limitations, there is no universally accepted 

technique for mixing time measurement. The mixing time measurement methods can be divided 

into two groups based on the volume of fluid involved in the measurement; local and global 

techniques. The local measurement methods rely on physical measurements made with intrusive 

probes. They provide a single mixing time, which is the time necessary to reach a given degree of 

homogeneity at a given location. However, more than one probe can be applied in a vessel to 

partially circumvent the problem of local measurement. Thermal methods, conductometric 

methods, fluorimetric methods, and pH based methods are examples of this measurement 

technique. The global measurement methods are either chemical-based, involving a fast reaction 

(e.g., acid-base and redox color change methods) or optical-based likes Schlieren’s method. The 

global methods possess instructive features such as the capability to identify—and very often 

quantify—the unmixed zones. Also, the global methods can measure the mixing end point. They 

are nonintrusive and they do not perturb the flow. However, they are usable only in transparent 

laboratory vessels. One main drawback of these techniques is the subjectivity of the measurement 

interpretation. Indeed, the mixing time is typically determined with the naked eye and may yield 

different results if the same experiment is realized by different individuals or repeated many 

times by the same operator. 
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1.2.6.     Power Consumption 

 

In fact one important parameter in the design and operation of mechanically agitated vessels is 

the amount of power dissipated in the vessel by the impeller. For designing a process system, the 

selection of the most appropriate mixing system according to the process specifications is a 

significant task. The selection criterion is often based on mixture quality (homogenization) and 

power consumption (Holland and Chapman, 1966). 

Generally in Newtonian fluids, the power consumption of an impeller is expressed in terms of 

power number,  

   
 

      
   (1-11) 

For constant geometrical relationships and negligible gravitational influence, the power number 

depends only on the impeller Reynolds number, 

   
    

 
  (1-12) 

In a laminar regime the power number is inversely proportional to the Reynolds number, 

   
  

  
  (1-13) 

where Kp is a constant, that depends on the geometry of the mixing system. In a transitional 

regime there is no simple expression for Np vs. Re.  

For non-Newtonian fluids where the apparent viscosity of the fluid varies as the shear rate 

changes, predicting the power consumption is complicated. A means of dealing with this 

difficulty was first proposed by Metzner and Otto for a non-Newtonian fluid in a laminar regime 

based on calculations of apparent viscosity for mixers. The basic assumption of this method is 

that there is an effective shear rate for a mixer, which can describe the power consumption and 

this shear rate is proportional to impeller speed (Metzner and Otto, 1957), 

  
 
     , (1-14) 
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where Ks is a shear rate constant, which depends on the geometry of the impeller and     is an 

effective shear rate, which defines an apparent viscosity for predicting power consumption in 

non-Newtonian fluids. In order to determine the value of Ks, the following steps are proposed: 

 For a specific rotational speed (N), the power consumption can be determined 

experimentally, and the power number for non-Newtonian fluids can be calculated from 

equation (1-10). 

 From the Newtonian power curve, find the Reynolds number corresponding to the non-

Newtonian power number. This Reynolds number is known as the generalized Reynolds 

number (Reg). The apparent viscosity is calculated from the following equation: 

    
    

  
   (1-15) 

 From the curve of viscosity versus shear rate, which can be obtained experimentally, the 

shear rate can be found according to the apparent viscosity. 

 Finally, the slope of effective shear rate versus rotational speed gives the value of Ks. 

The value of Ks, can also be determined by mathematical manipulation. By substituting 

Newtonian viscosity (µ) by the apparent viscosity of the non-Newtonian fluid (  ) in the 

expression for Kp (due to the fact that our non-Newtonian fluids obey the power law): 

 

            (1-16) 

We obtain: 

   
  

  
 

           

    
 

    
   

    
   (1-17) 

Based on the fact that Kp (n) = Np . Repl , 

    
     

  
 

 
   

  (1-18) 

This method can also be generalized for Bingham fluids and Hershel-Bulkley fluids. From these 

correlations, two power measurements, one for Newtonian fluids and one for non-Newtonian 

fluids of known viscosities, are enough to obtain Ks. 
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For power consumption in suspensions few investigations have been done. Pasquali et al. were 

the first to estimate the power curve for suspensions of rigid, spherical particles of uniform size 

with maximum 30% volume of solid concentration in Newtonian fluids. Afterwards, for solid - 

liquid suspensions, they introduced the modified power number and modified Reynolds number 

as 

  
  

 

      
 (1-19) 

and  

    
     

  
   (1-20) 

where ρ* is density and µ* is the viscosity of the suspension (Pasquali et al., 1983). These two 

parameters are defined as 

                  (1-21) 

and  

                     
                        (1-22) 

 

where Øv is the solid volume concentration. In this manner, they observed that the modified 

power curve (Np* vs Re*) superimposes the single phase power curve (NP vs Re). Consequently, 

the power consumption of solid-liquid mixing can be estimated if the single phase power curve is 

known, as well as the density of the suspension (defined as the total mass in the vessel divided by 

the total volume) and the volume fraction of particles (Figure 1-3). 

Bujalski (Bujalski et al., 1999) determined the power number for the A-310 impeller (hydrofoil) 

for solid loading up to 40 wt% . They showed that by increasing the solid loading, the power 

number increases. At solid loading higher than 20 wt% the variation of power number showed 

different trends. At low impeller speeds (N<200 rpm) the power number is lower than that for the 

single phase. By increasing impeller speed the power number increases until it reaches a 

maximum value and then it slightly decreased. The constant value of the power number at higher 

impeller speeds was higher than that for the single phase and it is related to solid concentration, 

which affects the mixture density surrounding the impeller. 
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Figure 1-3: Power curve for solid suspension in compare with single phase  (Pasquali et al., 1983) 

 

Bujalski et al. related the lower power variation to bottom shape change by increasing impeller 

speed. They have mentioned that at low speed the presence of a solid layer at the bottom of the 

vessel redirected the flow and the overall effect is that the power number is reduced. By 

increasing impeller speed this layer starts to vanish and the power number increases.  

Wu et al. investigated power number variation for PBT-D and RT at extreme solid concentrations 

(>50 vol %). They found, the power number of PBT increases at high solid concentrations while 

that of RT decreases (Wu et al., 2002). Increasing the power number for PBT can be explained in 

the same way as Bujalski et al. (Bujalski et al., 1999) did, but a reduction in the power number of 

RT was related to the fact that damping at high solid loading suppresses the dead flow zones at 

the back of the Rushton turbine blades leading to the reduction of drag. On the other hand there is 

no dead flow zone behind the Rushton turbine blades and increasing solid loading only increases 

skin friction and, accordingly, drag coefficient. Those results are in contrast with what has been 

reported by Angst and Karume (Angst and Kraume, 2006), who reported the reduction of the 

power number for the Pitched blade turbine. 

 

 

 

 



23 

 

 

 

1.3.     Impeller for Solid-liquid Suspension 

 

The impeller plays several tasks in the agitation vessel; to suspend solid particles and to disperse 

them effectively. Choosing the proper impeller to satisfy the required solid suspension with a 

minimum power requirement is the key for the technical and economic viability of the process. 

There are two regions at the tank bottom where recirculation loops are weak: underneath the 

impeller and at the junction of the tank base and wall. Njs is affected significantly by the region of 

the vessel where the final portions of the settled solid particles are lifted into suspension. This 

region varies for different impeller types. Impellers are classified as radial or axial flow 

impellers. Flow pattern of axial and radial flow impellers are completely different. Differences in 

flow pattern leads to different solid suspension mechanisms. Radial flow impellers sweep 

particles toward the center of the vessel base and suspend them from an annulus around the 

center of the vessel bottom. On the other hand, axial flow impellers tend to suspend solid 

particles from the periphery of the vessel bottom. It is more difficult to lift particles from the 

center than drive them toward the corner. The flow pattern of axial flow impellers facilitates 

suspension in comparison to radial flow impellers. 

 

 

Figure 1-4: Radial and axial flow pattern 

 

For impeller selection it is important to identify which impeller can provide the required 

hydrodynamics for the process at lower power consumption. In addition it is necessary to have 

information on cloud height, solid concentration distribution, and mixing-reaction contributions 

to make the proper selection. 
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In a turbulent liquid, suspending solid particles can be considered as balancing energy supplied 

by a rotating impeller and energy needed to lift the solids. Axial flow impellers with high 

pumping efficiencies are most appropriate for solids suspension. These impellers generate a flow 

pattern which sweeps the bottom of tank and suspends the particles. Solid pickup from the vessel 

base is achieved by a combination of the drag and lift force of the moving fluid on the solid 

particle and the bursts of turbulent eddies originating from the bulk flow in the vessel (Paul et al., 

2004). 

In solid-liquid mixing with high viscosity continuous phases, usually two mechanisms are 

required: the first is used to reduce particle size distribution and the second to reach a uniform 

degree of dispersion homogeneity throughout the vessel. A combination of the impellers 

mentioned above can achieve this task, resulting in the integration of several mixing steps within 

one vessel. In practice, the following mixing systems are found in industry (Tanguy et al., 1997): 

 Multiple intermeshing kneading paddles mounted on a carousel (planetary mixer). 

  A main centered impeller associated with off-centered ancillary turbines located close to 

the vessel surface. 

 Co-axial impellers of a similar type rotating at the same speed. 

 Co-axial or contra-rotating coaxial impellers with different speeds. 

The existence of a scientific basis behind the development of these types of mixing systems is 

rare, as they have been developed by empirical considerations and industrial experiences. Many 

studies were done to find more effective impellers for solid-liquid suspensions. These 

investigations have shown that axial impellers have better performances (Paul et al., 2004).  

Lightnin impellers, such as A100, A200, A310 and A320, are used in different studies. These 

impellers make high downward flow pumping. Using ligtnin impellers in a flow controlled 

operation, e.g. solid suspension, is more cost effective than other axial impellers (McDonough, 

1992).  

Cooke and Heggs reported that the hollow blade turbine is an efficient impeller for the solid-

liquid mixing operations under gassed conditions (Cooke and Heggs, 2005). Bararpour 

investigated the dual shaft mixer consisting of a wall-scraping Paravisc and a high speed Deflo 

disperser (Bararpour et al., 2007). Lea employed a Standard 45˚ pitch 6-bladed turbine (Lea, 
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2009) and Sardeshpande et al. used a down-pumping, pitched 6-bladed  turbine (PBTD-6) and a 

4-bladed Hydrofoil (HF-4) in their work (Sardeshpande et al., 2009).  

Lehn et al. compared power consumption for different impellers (Figure 1-5). Knowledge on 

power consumption in solid-liquid stirred tank is essential for proper design and operation (Lehn 

et al., 1999). 

 

Figure 1-5: Ungassed power number of impellers in turbulent regime for different impellers (Lehn et al., 1999) 

 

Some researchers have studied solid-liquid mixing in agitated vessels through experimental 

investigation (Baldi et al., 1978, Bujalski et al., 1999, Hicks et al., 1997, Wu et al., 2001) and 

some have employed CFD to explore the effect of impeller type on CH and  Njs (Oshinowo, 2002, 

Micale et al., 2004). Sardeshpande et al. investigated the effect of solid volume fraction and 

impeller speeds on the Njs, CH, power consumption, mixing time, and circulation time using 

PBTD and HF impeller. They used tap water and glass bead particles (50-250 μm) with 1, 3, 5, 

and 7 vol% loading. They developed a new way of characterizing solid-liquid suspensions and 

liquid phase mixing using nonintrusive wall pressure fluctuation measurements. They found out 

that at higher solid loading (above 3 vol% ), cloud height measurements indicated different stages 

of suspension. By increasing impeller speed under certain conditions, cloud height is decreased. 

Interaction of incompletely suspended solids, a bed of unsuspended solids at the bottom and 

impeller pumping action cause such non-monotonic variations of cloud height with the impeller 
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speed (Sardeshpande et al., 2009). Giraud et al. showed that the optimal impeller speed has a 

significant effect on the degree of homogeneity. This speed should always be between two 

critical impeller speeds, Njs and the impeller speed for the maximum homogeneity, preferably 

closer to the latter. Also, by increasing the particle size, the free settling velocity in solid 

suspension is increased and the extent of homogeneity is decreased (Guiraud et al., 1997). 

Most of the studies on just suspended speed have been carried out in flat bottom vessels. A few 

work attempted to characterize Njs in dish bottom vessels (Buurman et al., 1986) or studied the 

effect of tank bottom shape (Chudacek, 1985, Musil and Vlk, 1978). Ghionzoli et al. studied the 

effect of bottom roughness on Njs. They have reported that effect of bottom roughness is related 

to particle size. For small particles size, suspension is helped by roughness. But by increasing dp 

rough bottom begin to hinder suspension (Ghionzoli et al., 2007). The influence of the clearance 

on the flow pattern has been the subject of extensive studies. (Kresta and Wood, 1993, Bourne 

and Sharma, 1974b, Sharma and Shaikh, 2003). Montante et al. investigated transition in flow 

pattern for RT by decreasing impeller clearance by means of laser-Doppler anemometry (Micale 

et al., 2000, Montante et al., 1999). they also studied flow regime transition for RT by means of 

CFD tools For axial flow impellers (Montante et al., 2001, Micale et al., 2004, Micale et al., 

2000). Sharma and Shaikh showed that all impellers with very low clearance (C/T <0.1) behave 

like the axial flow impeller and generate a single-eight loop flow. This low-clearance range is the 

most efficient condition for the impellers (Sharma and Shaikh, 2003). Foucault et al. utilized the 

determination theory of just-suspended speed that was developed by Zwietering, using Delfo, 

Sevin and Hybrid coaxial mixers. It was shown that for Newtonian or Non-Newtonian continuous 

phases, the capability of Sevin and Hybrid impellers to generate axial pumping was better than 

Deflo and they needed lower Njs (Foucault et al., 2004). Bararpour et al. studied the power 

consumption and homogenization efficiency in a dual shaft mixer consisting of a wall-scraping 

Paravisc and Deflo disperser in the case of a highly viscous continuous phase. In their work, the 

power consumption by solid-liquid dispersion was detailed. They showed that Deflo provides 

good pumping capacity and increasing the rotational speed of the Deflo lowers the Paravisc 

power draw. They also explained the maximum and minimum power consumption by the 

possibility of the formation of particle agglomerates (Bararpour et al., 2007). Pinelli and Magelli 

studied the solid distribution in pseudo plastic fluid in a stirred tank with four Rushton turbines. 

They found out the concentration profiles of two different pseudo plastic liquids are qualitatively 
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similar with Newtonian liquid and the higher viscosity of the primary liquid makes the lower 

deviation from suspension homogeneity (Pinelli and Magelli, 2001). Fajner et al. studied the 

dispersion behavior of buoyant solid particles in multiple Rushton turbines. Due to the buoyant 

property, the solid concentration in this case is increasing from tank bottom to top, which is 

symmetrical to the profile of solid particles with higher density than continuous liquid. Moreover, 

the higher speed causes more uniform concentration distribution. They also pointed out that the 

solids loading has no effect on the concentration profile (Fajner et al., 2008). Kresta and Wood 

investigated the effect of the impeller clearance on the flow pattern generated by PBT in a fully 

baffled stirred tank. They concluded that by increasing the impeller clearance the angle of flow 

discharge from the axial direction toward the radial direction will be changed (Kresta and Wood, 

1993). Hicks et al. studied solid suspension with four-bladed, 45° pitched blade turbines and 

Chemineer high-efficiency impellers. They reported that impeller type and physical properties do 

not strongly influence cloud height except for the fastest-settling solids (Hicks et al., 1997). Peker 

and Helvaci also reported that the degree of homogeneity decreases when the terminal velocity of 

the solid particles increases (Peker and Helvacı, 2007). A similar trend was also observed by 

Godfrey and Zhu (Godfrey and Zhu, 1994). Hoseini et al. investigated the effect of impeller type 

(LightninA100, A200, A310, and A320impellers), impeller speed, impeller off-bottom clearance, 

particle size (210–1500 mm), and solid concentration (5–30wt %) on the degree of homogeneity 

in an agitated tank. They developed CFD modeling to explore the effects of these parameters on 

mixing and compared their results with the experimental data. It was shown that the homogeneity 

of the system will be increased by increasing impeller power/speed. When homogeneity reaches 

the maximum, any further increase in impeller power/speed is not beneficial, but detrimental. The 

reason is the formation of regions with low solid concentrations inside the circulation loops at 

higher impeller speed. Hence, in a solid–liquid mixing system, the measurement of the optimal 

impeller speed as a function of the operating conditions and design parameters has a vital role in 

achieving maximum homogeneity (Hosseini et al., 2010a, Hosseini et al., 2010b). Tamburini et 

al. employed CFD modeling to investigate the dynamic behavior of the mixing of the silica 

suspension in a fully baffled mixing tank equipped with a radial flow impeller (Rushton turbine). 

They observed a high level of agreement between experimental results and relevant 

computational pictures (Tamburini et al., 2009). Ochieng et al. investigated nickel solids 

distribution with a four blade hydrofoil propeller in a stirred tank, using CFD and experimental 
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methods. They reported that for high solids loading, the turbulent dispersion force is very 

important. By increasing particle size and loading, axial concentration distribution decreases and 

the difference between axial solid concentrations at different elevations increases (Ochieng and 

Lewis, 2006a, Ochieng and Lewis, 2006b). Fradette et al. employed CFD modeling to explore the 

migration of particles in a stirred vessel and developed the diffusion model to predict the 

behavior of concentrated suspensions. The average behavior of a suspension in a three 

dimensional situation can be predicted with this model (Fradette et al., 2007a). 

 

1.3.1.     Maxblend Impeller 

 

In the 1990’s, a wide impeller named Maxblend was designed by Sumitomo Heavy Industrials 

(SHI) Mechanical & Equipment. It combines two parts, a low paddle and a grid. The Maxblend is 

one of the most promising impellers of the new generation, due to its good mixing performance, 

its low power dissipation, its simple geometry that makes it easy to clean, and its capability of 

operating in a wide range of Reynolds numbers (Mishima, 1992, Kuratsu et al., 1995). 

 

Figure 1-6: Schematic of the Maxblend impeller 

 

The Maxblend impeller represents an interesting alternative to close-clearance impellers and it 

has been used in different processes. SHI uses the Maxblend for a variety of applications in 

liquid-liquid, liquid-solid and gas-liquid mixing. According to the manufacturer claims, the 
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Maxblend can handle processes from suspension polymerization and crystallization operation to 

high viscosity gas absorption. The Maxblend design idea originally comes from multi-stage 

impellers. As shown in Figure 1-7, the separation plan (interfering boundary) is formed by the 

upward and downward flow while the two multi-stage impellers are rotating. By combining the 

two impellers in a wide impeller, the boundary can be eliminated. Moreover, moving the impeller 

close to the bottom of the tank creates just one circulation flow in the tank. Finally, by adding the 

grid part, efficient mixing can be achieved. In addition, the simple shape of the impeller (no 

pitch, no angle, no spiral) makes the clean-up process easy and reduces the adhesion problem and 

the polymer blocks. 

 

 
               Multi-stage                             One-stage                        One circulation                      Efficient mixing 

                                                         boundary disappear 

 

Figure 1-7: Concept of the Maxblend design (Iranshahi et al., 2007) 

 

The top-to-bottom pumping induced by Maxblend is remarkable: the flow goes upward near the 

wall and downward in the center along the shaft. With regard to the flow pattern in the Maxblend 

mixer, it was proven that the paddle produces a strong tangential flow and a weak axial flow, 

generating a strong recirculation at the bottom of tank that causes flow segregation, while the grid 

part generates an axial pumping, with an upward motion at the vessel wall and a downward flow 

along the shaft. Therefore, four large loops are generated in the tank, two near the paddle (one in 

front and one behind) and two in the grid region (Figure 1-8). In fact, due to the symmetry, these 

four loops comprise two mixing structures: one at the bottom and one at the grid part (Iranshahi 

et al., 2007). The size of the two bottom circulation zones decreases by increasing the Reynolds 

number (Devals et al., 2008). 
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Figure 1-8: Effect of Reynolds numbers on flow pattern and velocity field for un baffled configuration: (a) Re = 80  

(b) Re = 40 (Iranshahi et al., 2007) 

 

There are different types of Maxblend, including: straight, wedge, modified N˚1, and modified 

N
˚
2, which are shown in Figures 1-9 and 1-10. The Maxblend modified N

◦
1 presents small 

apertures accounting for 1/3 of the paddle surface and the Maxblend modified N
◦
2 presents larger 

openings, about 2/3 of the bottom paddle surface. The shape of the Maxblend is known to 

influence the overall pumping capability. The wedge type is used for viscous applications while 

the straight-shaped Maxblend is preferred for the turbulent regime. The recirculation areas 

observed in high viscosity with the wedge Maxblend can be removed by making openings in the 

bottom paddle. 

 

 

Figure 1-9: (a) Straight Maxblend impeller (b) Wedge Maxblend impeller  

 

(a)               (b) 



31 

 

 

 

 

 Figure 1-10: Maxblend modified (a) N◦1 and (b) N◦2 

 

The Maxblend impeller represents an interesting alternative to close clearance impellers. 

However, little information is available to understand and explain its good performance in many 

difficult mixing processes. Yao et al. carried out a numerical investigations on dispersive mixing 

involving the Maxblend and a comparison with double helical ribbon impellers indicates that the 

Maxblend exhibits satisfactory local dispersive mixing performance (Yao et al., 2001).  

The double helical ribbon impeller is unable to generate local mixing, although it can induce 

efficient global circulation throughout the stirring tank (Fuente et al., 1997).  

Fradette et al. carried out a comprehensive investigation on the mixing characteristics of 

Maxblend in terms of power consumption, mixing evolution and mixing time in the laminar, 

transient and turbulent regimes with both viscous Newtonian and Non-Newtonian fluids in three 

different setup scales (Fradette et al., 2007b). For Newtonian fluid it was found that the regime 

becomes transitional from Re =40 and 50 with and without baffles. The turbulent regime starts at 

Re=300. For the Non-Newtonian fluid the trend is different. The laminar regime seems to be 

finished at Re=3 for both baffled and unbaffled conditions, but in the extended part there is a 

rapid and linear decrease at Re=10 for unbaffled mode and an obvious transition curve for baffled 

condition. Moreover, the power consumption for both Newtonian and Non-Newtonian fluids is 

the same in this mode. 
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Figure 1-11: Power curves for Newtonian and non-Newtonian fluids, Maxblend 35 L (Fradette et al., 2007b) 

 

 

Figure 1-12: Comparison of various mixing agitators based on the dimensionless time (Fradette et al., 2007b) 

 

They also studied the mixing time and power consumption of two types of Maxblend comparing 

with other large impellers. As it were shown in Figures 1-12 and 1-13, the Maxblend performs 
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advantageously in the range of Re larger than 20–30. At lower values, the HR takes over and at 

larger values, the Maxblend is comparable to the best geometries. For power required for mixing, 

the comparison with the same impellers shows again reveals a good performance of the 

Maxblend in the Re range larger than 0.1. 

 

 

Figure 1-13: Comparison of various mixing geometries based on the mixing energy versus the Re mixing time. Data for 

agitators other than Maxblend taken from Yamamoto et al., 1998. (Fradette et al., 2007b) 

 

Hiruta et al. investigated the application of the Maxblend fermentor for microbial processes and 

compared its performance with a turbine impeller fermentor. They concluded that the shear stress 

distribution for the Maxblend is more uniform than the turbine impeller (Yamamura and Hiruta, 

1997). 

Yao et al. carried out a numerical investigation on dispersive mixing of the Maxblend and 

compared it with helical ribbons impellers. They showed that even though the Maxblend has 

efficient performance at high Reynolds numbers, the dispersive mixing cannot be achieved at a 

deep laminar regime (Yao et al., 2001).  

Dohi et al. investigated the power consumption and solid suspension performance of the 

Maxblend and other large-scale impellers in a gas-liquid-solid reactor. They found that the 
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Maxblend  has the minimum power consumption and the most uniform solid suspension among 

the large scale impellers (Dohi et al., 2004).  

Sumi and Kamiwano studied some mixing characteristics of the Maxblend with highly viscous 

fluids and compare it with multistage impellers (Sumi and Kamiwano, 2001).  

Takahashi et al. have investigated liquid phase mixing time in boiling stirred tank reactors for the 

maxblend and other large scale impellers. They found that the Maxblend has essentially the same 

performance as competing impellers in this application (Takahashi et al., 2006).  

A numerical characterization of 3D mixing hydrodynamics of Maxblend highlighted that 

homogeneous mixing cannot be easily achieved for highly viscous fluid (Iranshahi et al., 2007).  

Iranshahi et al. investigated the hydrodynamic characteristics of the Maxblend impeller with 

viscous Newtonian fluids. They carried out both laboratory experiments and CFD modeling. 

They showed that the best performance of the Maxblend mixer is achieved at the end of the 

laminar regime and in the early transition regime with baffles. The presence of baffles increases 

the axial pumping and the flow number. Also, they showed that in the Maxblend system the 

baffled configuration creates more shear rate variations in the tank. The interaction between the 

paddle edge and the baffle increases the shear rate by 30% compared to the unbaffled 

configuration. Compared with blade turbine impellers, the Maxblend has a very uniform shear 

rate distribution that makes it suitable for many shear sensitive processes. In addition, by 

increasing the Reynolds number the volume of the loops near the paddle diminishes (Iranshahi et 

al., 2007).  

Gutzburger et al. tried to characterize the effect of the vessel geometry (number of baffles) and 

the shape of the Maxblend impeller (a modified configuration of the bottom paddle and the angle 

of the upper grid) on viscous Newtonian fluids. It was shown that the shape of the Maxblend 

influences the overall pumping capability. Modified geometries avoid the creation of unmixed 

volumes because of the destruction of the segregated zones at the bottom of the tank while they 

utilize the same mixing energy as the standard wedge Maxblend. Regardless of the flow regime, 

the number of baffles does not have a significant effect on the power consumption and the mixing 

time. They recommended using only 2 baffles for the industrial application (Guntzburger et al., 

2009). 
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1.4.     Measurement Techniques for Solid Distribution 

 

There are many techniques available that can provide both qualitative and quantitative 

information on the solid suspension in the stirred tank. These techniques, either provide general 

observations and semi-quantitative information on the distribution of solids (visual observation, 

process tomography) or give accurate quantitative data on local concentrations of solids 

(conductivity probe, optical probe, sampling for external analysis, or process tomography) (Paul 

et al., 2004).  

Visual observation: Visual observation is most commonly used to determine the minimum speed 

for the suspension of solids (Njs). Also, it is useful for roughly estimating the degree of 

homogeneity in a mixing tank. Observation is necessary in order to choose the best position for 

locating the instruments in the tank. It also helps us identify problems, such as stagnant areas 

where solids may collect. Despite the advantages of visual observation, this technique will not 

help in high solid concentration systems, because solids prevent most of the tank from being 

viewed. Visual investigation of mixing mechanisms may be possible at lower solid concentration, 

but flow pattern observations should be carried out at high concentrations due to the fact that 

flow patterns change considerably with solid concentration. 

Conductivity probe: The conductivity probe is useful for obtaining precise and accurate 

information about local solid concentration. The dimensions of the measuring volume should be 

at least an order of magnitude greater than the dimensions of the solid particles, and the probe 

should allow free flow through the measuring volume. It is based on the conductivity changes in 

the suspension according to the quantity of present solid particles. The conductivity method is 

low cost and accurate in dense systems. But, there is an intrusive effect of the probe in the vessel. 

The influence of the probe on the suspension process can be eliminated by suitably adjusting the 

size proportion of the probe versus vessel diameter (McMillan et al., 1999, Nasr-El-Din et al., 

1996, Spidla and Sinevic, 2005). Spidla et al. measured solid concentration by using a 

conductivity probe in a large scale vessel. They have also proved the presence of radial solid 

concentration in an agitated vessel (Spidla and Sinevic, 2005). Bourne and Sharma measured Njs 

from solid concentration change directly above the vessel bottom (Bourne and Sharma, 1974b) 

and Musil (Musil and Vlk, 1978).  
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Optical probe: Optical probes can also be used to measure solid concentration. Two types of 

optical probes exist, light absorption or light scattering. In both cases the amount of light 

absorbed or scattered is related to the solids concentration.  This non-intrusive method is 

generally limited to solids concentrations less than 1–2%. This is due to the scattering and 

blocking of light by the solids between the source and the receiver.  

Optical fibers also have been used widely for characterizing solid concentration in multiphase 

systems (Shamlou and Koutsakos, 1989, Magelli et al., 1991, Chaouki et al., 1997, Boyer et al., 

2002) 

Sampling: Direct sampling is a very useful method for cases where information about particle 

size distribution or solid concentration is required. Two methods exist for removing a sample 

from the tank: pump the sample out through a pipe, or take a grab sample. The removal of 

samples through a pipe should be performed isokinetically, meaning that the velocity of the 

sample, which enters the pipe, must be the same as the local fluid velocity, and the pipe must be 

aligned in the local direction of the flow.  

Grab sampling is performed by means of immersing a container fitted with a lid into the tank. 

The lid is opened slightly in order to fill the container, then the lid is closed and the container is 

removed to withdraw the sample. This technique can be applied in many situations, as it can be 

done even at high solid concentrations. The major disadvantage of this technique is that the 

equipment is not commercially available. Thus, the required equipment has to be designed and 

built for each job. The sample withdrawal method is the simplest method and has been employed 

widely (Barresi and Baldi, 1987, MacTaggart et al., 1993).  

Buurman et al. (Buurman et al., 1986) studied a highly concentrated system at relatively 

homogeneous conditions. They reported no differences in the solid concentration at three sample 

withdrawal points situated in an axial direction. Even though the presence of the radial 

concentration gradient depends on the agitator type and speed as well as on impeller off-bottom 

clearance, particle diameter and solid loading, the significance of it has never been analyzed in 

detail. Literature data suggest that the radial concentration gradients are usually negligible 

(Barresi and Baldi, 1987, Montante et al., 2002, Yamazaki et al., 1986). However, this 

assumption cannot be generalized. The presence of radial concentration gradients has been 

reported by Micheletti et al. (Micheletti et al., 2003). By measuring solid concentration at 

different radial positions they indicated that a solid concentration gradient exists and it depends 
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on impeller type, particle size and solid loading. It is negligible only for small particle sizes, but 

increases significantly when particles of a larger size or density are suspended. 

Other techniques: To overcome the limitations and eliminate the subjectivity of these methods 

new techniques are proposed. Angst and Kraume determined axial and radial particle 

distributions using an endoscope system (Angst and Kraume, 2006). Micale et al. measured the 

Njs using pressure recording method. In this technique Njs is computed by measuring the change 

in the recorded pressure at the bottom of the vessel, while the impeller speed increases (Micale et 

al., 2000, Micale et al., 2002). Buurman et al. used the Doppler effect at the vessel bottom to 

measure Njs (Buurman et al., 1986). Chapman et al. studied Njs by measuring  peak in solid 

concentration close to the bottom of the vessel (Chapman et al., 1983). Using radioactive tracer is 

another non intrusive method which has been employed by Rewatkar et al.. Njs is determined by 

monitoring the decrease of the rate of radioactive tracers, as the impeller speed increases 

(Rewatkar et al., 1991). Jafari developed a technique based on gamma ray densitometry 

characterizing Njs and he showed that this technique provides accurate measurements (Jafari, 

2010). 

Beside all these methods, Electrical resistance tomography is an emerging technology which is 

explained in detail in the next section.  

Electrical resistance tomography (ERT): ERT is a nonintrusive measurement technique for 

obtaining information about the contents of process vessels. ERT can be used to investigate and 

monitor any process where the main continuous phase is at least slightly conducting and the other 

phases and components have differing values of conductivity. Multiple electrodes are arranged 

around the boundary of the vessel at fixed locations in such a way that they make electrical 

contact with the fluid inside the vessel but do not affect the flow or movement of materials. 

(Giguère et al., 2008) 

The primary advantage of this technique is the realization of three-dimensional imaging in a 

solid-liquid environment. An ERT system contains a series of sensors, a data acquisition system, 

and an image reconstruction system which are shown in Figure 1-14. An ERT sensor consists of 

an array of electrodes (typically 16 electrodes) that are distributed along the inner periphery of a 

non-conducting tank at equal intervals (Figure 1-15). Each sensor follows a procedure, which is 

also known as data acquiring strategy, to collect boundary voltage measurements. A constant 

current of low frequency is applied to an adjacent pair of electrodes and the voltages measured 
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successively from each pair of adjacent electrodes. The current is then switched to the next pair 

and the voltage measurements are repeated. This procedure is repeated until a full rotation of 

electric field around the cross-section is completed. 

 

 

Figure 1-14: The schematic of ERT system 

 

 

Figure 1-15: Schematic diagram of electrode arrangement and placement.(Xu et al., 2010) 
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Since the electrical conductivity for each electrode pair can be obtained, image reconstruction 

algorithms are used to compute a cross-sectional image. The Data Acquisition System is 

responsible for obtaining the quantitative data describing the state of the conductivity distribution 

inside the vessel. The data must be collected quickly and accurately in order to track small 

changes of conductivity in real-time thus allowing the image reconstruction algorithm to provide 

an accurate measurement of the true conductivity distribution. Finally, the solid and liquid 

concentration can be calculated and the concentration tomogram is able to display the situation of 

solid dispersion and distribution. 

An ERT system produces a cross-sectional image showing the distribution of electrical 

conductivity of the contents of a process vessel from measurements taking at the boundary of the 

vessel. Figure 1-16 shows a typical tomographic image. The image contains a region of high 

conductivity indicated by the colour red and a region of low conductivity indicated by the colour 

blue. The scale below the image relates colour to conductivity. In this case the scale is between 

0.08 and 0.15 mS/cm. 

 
 

 
Figure 1-16: Tomogram showing region of high and low conductivity (ITS, 2009) 

 

There is some literature reported on the ERT application in the stirred tank. Williams and Beck 

have discussed the difference of ERT technology from other tomographic approaches. They 
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proved that ERT measurement outperforms others on the faster data capture rate and finer spatial 

resolution (Williams and Beck, 1995).  

Kim et al. studied a Rushton turbine mixing setup with two miscible liquids, tap water and brine. 

Data was collected on four virtual planes from top to bottom, called P1, P2, P3, and P4. 

Figure 1-17 demonstrates the relative conductivity measured by ERT, where darker shades of 

gray represent lower conductivity. Once the brine is injected into the tank, the top plane, P1, first 

displays the variation of conductivity in the center part. As the mixing continues, the darkness 

tends to even throughout the planes. Finally, when the local darkness disappears and the whole 

tomogram becomes uniform, the mixing process is considered to be finished (Kim et al., 2006).  

 

Figure 1-17:  Tomograms of relative conductivity. (a) 40th frame, (b) 50th frame, (c) 60th frame, (d) 70th frame, (e) 80th 

frame, (f) 90th frame, (g) 100th frame, (h) 110th frame (Kim et al., 2006) 

 

Hosseini et al. used ERT to investigate the solid–liquid mixing in an agitated tank equipped with 

a top-entering axial-flow impeller. The signals obtained from eight ERT planes were utilized to 

reconstruct the tomograms by using the linear back projection algorithm. The ERT measurements 

were correlated to solid concentration profiles by which the degree of homogeneity was 

quantified (Hosseini et al., 2010b).  
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While ERT has advantages in cost, speed and safety, it has its own drawbacks, including low 

resolution of reconstructed images and the measurement inaccuracy caused by the delay between 

particle dispersion and the time that signals are sent. 

 

1.5.      Summary and Objectives 

 

In solid suspension process it is important to define what level of suspension is required versus 

the desired process results. While the just suspended condition is optimal for many processes, a 

high degree of suspension (homogeneity) is required for crystallization or the slurry feed system 

and partial suspension is sufficient for the dissolution of highly soluble solids. Failure to operate 

at optimal conditions leads to considerable drawbacks. 

Choosing the proper impeller to satisfy the required solid suspension with a minimum power 

requirement is the key for the technical and economic viability of the process. Impeller plays 

several tasks in the agitation vessel; to suspend solid particles and to disperse them effectively. 

The flow pattern of axial flow impellers facilitates suspension in comparison to radial flow 

impellers.  Many studies were done to find more effective impellers for solid-liquid suspension. 

Different Impellers, such as Lightnin A100, A200, A310 and A320, with high flow downward 

pumping were used in different studies. Cooke and Heggs reported that the hollow blade turbine 

is an efficient impeller for the solid-liquid mixing operations under gassed conditions (Cooke and 

Heggs, 2005). Bararpour investigated the dual shaft mixer consisting of a wall-scraping Paravisc 

and a high speed Deflo disperser (Bararpour et al., 2007). Lea employed a standard 45˚ pitch 6-

bladed turbine (Lea, 2009) and Sardeshpande et al. used a down-pumping, pitched 6-bladed  

turbine (PBTD-6) and a 4-bladed Hydrofoil (HF-4) in their work (Sardeshpande et al., 2009). In 

most of these studies, tap water and glass beads (≤10%) were used. Several experimental 

methods such as visual observation, wall pressure fluctuation, laser-Doppler anemometry, 

densitometry technique and electrical resistance tomography were used to characterize Njs. These 

experimental techniques were applied to numerous empirical and semi-empirical investigations 

on solid suspension whose results were critically reviewed in the literature (for example (Jafari, 

2010)).  
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The Maxblend is claimed to be one of the most promising impellers of the new generation, due to 

its good mixing performance, its low power dissipation, and its capabilities of operating in a wide 

range of Reynolds number. The Maxblend was designed for a variety of applications in liquid–

liquid, liquid–solid and gas–liquid mixing. This recent product can handle processes from 

suspension polymerization and crystallization operation to high viscosity gas absorption.  

However no experimental mixing characteristics on solid suspension with Maxblend are available 

in the open literature. Therefore, the objective of the present work is to determine the 

performance of Maxblend in producing solid suspension in Newtonian fluids.  

The related specific objectives are:  

1. To characterize the power consumption and determine the mixing time for solid-liquid 

suspension in a Maxblend impeller for various solid concentrations. 

2. To characterize mixing performance for a Maxblend impeller by introducing a new 

parameter, homogenization speed, and the comparison of performance for various operation 

and design conditions. 
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CHAPTER 2 

METHODOLOGY 

 

This work is an experimental investigation on solid suspension in a mechanically agitated vessel 

using a Maxblend impeller. The study considers Newtonian viscous fluid as continuous phase. 

We are especially interested in the performance characteristics of the impeller and how they 

evolve when the impeller operates with various operating conditions.  

 

 2.1.     Methodology 

 

In this part the methodology of the experiments is presented. The experimental setup and the 

materials used in the experiments are explained. Finally the experimental strategy demonstrates 

how the specific objectives were satisfied. 

 

 2.1.1.     Experimental Setup 

 

The schematic of the mixing rig with its major components are shown in Figure 2.1. The system 

consists of a vessel with 0.379 m diameter and 0.598 m height. The tank volume is 37 L. The 

Maxblend impeller has a diameter of 0.255 m and is driven by a variable speed motor. The speed 

is controlled by a solid-state frequency controller, receiving a feedback signal from a speed 

encoder. In addition, the shaft is equipped with a torque meter to measure the effective power 

consumption of the impeller. 
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Number Equipment 

1 Motor and speed reducer 

2 Torquemeter flexible couplings 

3 torquemeter 

4 Shaft bearings 

5 Impeller flanged coupling 

6 Polycarbonate vessel 

7 Wedge Maxblend impeller 

8 Transportation skid 

 

Figure 2-1: Schematic of the mixing rig (Fradette et al., 2007b) 

 

The geometrical details of the Maxblend set up are shown in Table 2-1. Two types of wedge 

Maxblend with flat and dish shape are used in this work (Figures 2-2). 
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Figure 2-2: Wedge Maxblend impeller (a) Flat bottom and (b) Dish bottom  

 

Table 2-1: Geometrical details of Maxblend systems 

Mixing system Tank dimension impeller Bottom clearance 

Wedge  Maxblend 

 

T = 0.379 m 

H = 0.598 m 

V =37 L 

Material of construction:  Plexiglass 

Geometry Cylindrical with flat  /dish bottom 

D = 0.255  m C = 5.0 mm 

 

The experimental set up used for the study is shown in Figure 2-3. 

 

 

 

 

 

 



46 

 

 

 

 

Figure 2-3: Photo of the experimental set up 
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2.1.2.     Material 

 

Tap water and glucose-water solutions were used in the experiments as the Newtonian continuous 

phase. Glucose-water solution is transparent with the viscosity varying from 0.1 to 13 Pa.s. 

Because the viscosity of the glucose-water solution is sensitive to temperature changes, process 

temperature was measured to correct the viscosity caused by temperature evolution.  

A viscometer (Bohlin Visco88 and TA-Instruments AR2000) was used to determine the 

rheological properties of the solutions. 

Glass beads were used as the solid phase with a density of 2.5g/cm
3
 and nominal average size of 

500 µm. Table 2.2 and 2.3 list the specifications of solid particles and liquid phase. 

 

 

Table 2-2: Specification of solid particles 

Shape Nominal average size Specific gravity 

Spherical 500 µm 2.5  g/cm
3
 

  

Table 2-3: Specification of liquid phase 

Liquid Viscosity (pa.s) 

Tap water 0.001  

Solution of  90-98% glucose – water 0.1-13.0 

 

2.1.3.     Experimental Strategy 

 

Throughout the experiments, we measure the power consumption and the mixing time in the 

Maxblend impeller as a function of various operating conditions.  

The effective parameters on solid suspension which are investigated in this project are the design 

parameters, including the geometry of the tank bottom and the off-bottom clearance, as well as 

the operating parameters comprising the impeller speed, the solid concentration, and the viscosity 

of the suspending fluid. 

To do so, we propose the following steps: 
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a) Characterization of the power consumption for Newtonian continuous phase and different 

solid concentrations in a Maxblend system. 

b) Determination of the mixing time for solid-liquid suspension. 

c) Characterizing the influence of design parameters (bottom clearance and bottom geometry) 

on the performance of Maxblend to reach uniform suspension. A new parameter, 

homogenization speed, will be considered for homogenous condition.  

d) Characterization of the homogenization speed for solid-liquid suspension in a Maxblend 

mixer. The experiments will be carried out with different viscosities of continues phase and 

different solid concentration to verify the mixing efficiency of Maxblend.  

 

The manufacturer recommended design value for bottom clearance in the liquid-liquid mixing is 

5mm. During the experiments the dimensionless clearance ratio C/C0 was varied from 0.5 to 5.  

 

2.2.     ERT 

 

ERT technology is used in order to measure and determine the solids dispersion state in the tank. 

Both qualitative and quantitative measurements can be carried out through the local conductivity 

of the liquid phase with the solids in the tank. The system contains 3 rows of 16 electrodes, each 

of which can be used for both excitation and voltage measurements. They are mounted flush at 

the tank wall. The primary function of the data acquisition system is to inject a current into 

adjacent electrode pairs and subsequently obtain the voltages on the rest of the others. This 

injection and feedback is repeated in sequence for all the electrode pairs until a full rotation of the 

electrical field is completed. The three levels are excited/read at the same time. Using the 

measured voltages at the electrodes, the electrical conductivity distribution on the cross-section is 

computed by means of an image reconstruction algorithm, and then the concentration of each 

phase can be calculated. The basic idea of colors in a tomogram is to reflect the conductivity and 

ultimately the solids distribution on across section corresponding to an electrode plane. In this 

study, the liquid phase (tap water, water-glucose solution) were conductive and the solid phase 
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(glass beads) was virtually non-conductive. In tomograms, the blue color indicates the lowest 

conductivity, hence the highest concentrations of solid particles. 

An apparent problem in ERT is the noise created by the metal agitator. To overcome this problem 

we perform reference tests for each plane, with motionless and moving impeller. By subtracting a 

reference from the images of the corresponding plane, we reduce the noise effect in the results. 

 

 

Figure 2-4: The schematic of ERT system 
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2.3.     Power Consumption 

 

Power consumption is determined by measuring the torque generated by the rotating impeller. 

Due to friction and other mechanical interferences, the residual torque obtained without fluid in 

the tank is subtracted from the measured torque to obtain the corrected torque used for power 

consumption calculations, 

        , (2-1) 

where Mc and Mm are the corrected and measured torques, respectively. Mr is the residual torque. 

The power consumption can be calculated by the following equation 

       , (2-2) 

where N is the impeller rotational speed.  

 

2.4.     Homogenization Speed 

 

Although the just suspended speed (Njs) is an effective parameter for conventional impellers, it is 

difficult to apply with the Maxblend impeller because this impeller has small off-bottom 

clearance, and the particles could move on the bottom without being suspended. The suspending 

condition is completely different with Maxblend. Since the usual Zwittering criterion is not 

applicable, we propose to use a new parameter, the homogenization speed (NH), as an indicator of 

uniform suspension. We define the homogenization speed as the speed at which a uniform 

suspension is reached. Homogeneous suspension is obtained when the particle concentration is 

constant within the tank. Once the homogeneity reaches the maximum, any further increasing in 

the impeller speed is not beneficial. The optimal impeller speed has a significant effect on the 

degree of homogeneity and should be always between two crucial impeller speeds,  and the 

impeller speed for the maximum homogeneity, preferably closer to the latter (Hosseini et al., 

2010b). 

ERT technique is used to determine the homogenization speed (NH) based on the distribution of 

the conductivity inside the mixing system.  
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2.5.     Mixing Time 

 

ERT provides conductivity and standard deviation data. Conductivity values describing the 

general behavior of mixture and the standard deviation specifies the mixing time.  

In practice, since the axial lift velocity is small near the fluid surface, there is always a layer at 

the top with lower solid concentration, which prevents us from reaching 100% uniformity. As a 

result, obtaining a 95% homogeneity is often considered to be sufficient. 

The time at which conductivity has less than 5% deviation from the final value corresponds to the 

mixing time. An example of typical mixing evolution curve is presented in Figure 2-5 along with 

the determination of the mixing time at 5% deviation. 

 

 

Figure 2-5: Typical suspending evolution curve (Tap water, ν=5 wt%) 
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2.6.     Reproducibility of experiments 

 

To challenge the reproducibility of the method, the same experiments were repeated three times. 

These experiments were performed with tap water and 5 wt% glass beads. The impeller speed is 

100 rpm. The results are reproduced in Figure 2-6 and present the normalized average 

conductivity of the tank depending on the frame number. Frame 0 corresponds to the starting 

time. From the figure, it can be seen that the results are very similar and lead to the same 

conclusion about the time to reach homogeneity. 

 

 

Figure 2-6: Reproducibility experiments, N=100 rpm (Tap water, ν=5 wt%) 

 

To be able to compare final conductivity levels from different experiments, we normalize the 

collected results. 

Figure 2-7 presents the standard deviation from the final mean conductivity with the agitator 

rotating at 60 rpm as a function of the frame number.  The curves overlap perfectly. Both figures 

2-6 and 2-7 are useful for analyzing the ERT results. Conductivity values are describing the 
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general behaviour of solid suspension. NH can be deduced by measuring the conductivity and the 

mixing time is verified by standard deviation.  

 

Figure 2-7: Reproducibility experiments, N=60 rpm (Tap water, ν=5 wt%) 

 

 

Figure 2-8: Conductivity curve at 60 rpm impeller speed (µ=0.1 Pa.s, ν=5 wt%) 
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The reproducibility of experiments for more viscous fluid was tested in three experiments with 

80% glucose-water solution (µ=0.1 Pa.s) and 5 wt% glass beads (Figure 2-8). The results are 

successively reproduced. The three curves overlap to a great extent. This method has been 

confirmed to be usable for Newtonian fluids more or less viscous and its reproducibility was 

verified. 

Figure 2-9 shows the normalized average conductivity of planes versus frame number for 60, 75 

and 90 rpm respectively in 5 wt% glass beads. In constant solid concentration by increasing the 

impeller speed the suspension reaches the homogeneity faster. 

 

 

Figure 2-9: Conductivity curve for different impeller speed (µ=0.1 Pa.s, ν=5 wt%) 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

 

3.1.     Solid Suspending Evolution 

 

The evolution of the suspension homogeneity is shown on Figure 3-1. The Maxblend generates a 

 

                

                

Figure 3-1: Solid suspending evolution with Maxblend  

(a) (b) 

 

 

 

 

 

 

 

 

                   (c)                                                                 (d)              
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flow pattern which sweeps the tank bottom and suspends the solids. In solid suspension with the 

Maxblend, no interface between suspended layer and the clear liquid layer can be seen. This is 

caused by the strong up-pumping flow induced by this wide impeller, which makes it possible to 

yield a uniform solid suspending condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Tomograms obtained for the solid suspension at μ= 0.1 Pa.s, ν=5 wt%, dp=500µm: (a) N=40 rpm, (b) N=53rpm 

 

Figure 3-2 displays set of tomograms for different condition of solid-liquid suspension for 

glucose solution and 5 wt% glass beads. Figure 3-2(a) shows an experiment carried out at 

N=40rpm (below NH). At this impeller speed (below NH) partial suspension was observed. This 

resulted in creation of three distinct zones: an unsuspended solids layer on the bottom (Plane 3), a 

clear liquid layer at the top of the vessel (Plane 1, P1), and a region of solid suspension in 
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between (Plane 2, P2). The blue region in plane 3 (bottom) indicates that most of the unsuspended 

solid particles rested on the bottom of the tank. It means all solid particles were not picked up by 

the fluid because of insufficient impeller speed. When the impeller speed was increased (Figure 

3-2, b), solid suspension improved and the amount of solid particles that rested on the bottom of 

the tank decreased and eventually disappeared. The clear liquid layer in the upper region of the 

tank also decreased slowly and solid suspension reached its maximum homogeneity. This 

impeller speed was sufficient to suspend all solid particles and was considered as NH. 

The normalized average conductivity curve for this experiment is shown in Figure 3-3. By 

increasing the impeller speed, the amount of solid particles remaining on the tank base is 

decreased while the conductivity in this plane is increased. In addition, more solid particles 

disperse in the upper region of the tank and conductivity is decreased. Finally, we obtain uniform 

solid suspension. 

 

 

Figure 3-3: Normalized average conductivity curve for the solid suspension at μ= 0.1 Pa.s, ν=5 wt%, dp=500µm, 

NH=53rpm 
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3.2.     Power Consumption 

 

The experimental power curves for various solid concentrations are shown in Figure 3-4. We 

compute the power number and the Reynolds number using the Equations 

  
  

 

      
 (3-1) 

and  

    
     

 
   (3-2) 

 

where ρ* is the density of the suspension, which is defined as 

                   (3-3) 

In the absence of solid particles, for single phase the Maxblend impeller operates in the laminar 

region for Re lower than 50 and the regime becomes transitional from this point on, for Re higher 

than 300 the flow regime can be considered turbulent (Fradette et al., 2007b). 

 

 

Figure 3-4: Power curves for single phase (Fradette et al., 2007b) and solid suspension ( Glucose- water solution and glass 

beads) 
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As this figure reveals, the solid dispersion was performed in the transition region. For 5 wt% 

solid loading the power curve is above but close to that of a homogeneous liquid free of particles. 

This indicates that the modified equations taking the presence of the solid into account can handle 

low concentrations and the Np values obtained for the solid suspension can be considered as the 

same value. For larger solids loadings, Np is always higher with solids than for the single fluid. 

This can be interpreted as a modification of the viscosity that is not taken into account by the 

modified equations for Re and Np. 

 

3.3.     Mixing Time   

 

The experimental dimensionless mixing times versus Re is presented in Figure 3-5. We observe 

that increasing the Reynolds number raises the pumping efficiency of the Maxblend axial motion 

and decreases the mixing time. Also, in presence of solids the mixing time increases, by a factor 

of 5 for 5 wt% solids, and a factor of 15 for 10 wt% solid particles. 

 

 

Figure 3-5: Experimental mixing times for a single fluid (Glucose- water solution)  (Fradette et al., 2007b) and with solids 

present (5 wt%) 
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In the transient regime, the distributive motion is described as follows: the paddle is pumping the 

fluid through the tank, the fluid goes downward along the shaft and upward close to the wall. The 

grid part of Maxblend seems to force the fluid through this recirculation loop. Mixing is mostly 

achieved by axial pumping. Power consumption and mixing time can be explained with the 

dimensionless mixing time variations. The front side of the paddle at the bottom makes an 

overpressure and pushes the fluid close to the wall in the upward direction. The liquid at the top 

of the tank is sucked at the same time by the low pressure created at the tank bottom. The liquid 

goes downward along the shaft. The pressure drop generated by the paddle at the tank bottom is 

written as (dimensional analysis) 

          (3-4) 

with ρ the liquid density, V the velocity written V = ND , N the rotational speed and D the 

impeller diameter. The downward flow rate (Qz) is proportional to the pressure drop ΔP, 

      ΔP. (3-5) 

The mixing time Tm is proportional to the reciprocal of Qz , 

     
  

  
   (3-6) 

Therefore the dimensionless mixing time can be written as follows: 

     
 

  
   (3-7) 

Consequently, NTm for Newtonian fluids decreases with the reciprocal of Re. 

 

3.3.     The Effect of Vessel Geometry 

 

The shape of the vessel base, affects the location of dead zones or regions where solids tend to 

accumulate. It also influences the minimum agitation speed required for suspending all the 

particles from the bottom of the vessel. In flat-bottomed vessel fillet formation tends to occur in 

the corner between the tank base and the tank wall. In dish-bottomed vessel solids tend to settle 



61 

 

 

 

beneath the impeller or midway between the center and the periphery of the base.  As illustrated 

in Figure 3-6, the homogenization speed (NH) is 10% to 15% higher in a flat-bottomed vessel 

than a dish-bottomed one. This curve was obtained with 5-25 % solids in both cases. Figure 3-7 

compares the power for suspending solids in flat and dish bottomed vessels. Not surprisingly, the 

power draw appears higher for flat-bottomed compared with dish-bottomed geometry. 

 

Figure 3-6: The effect of bottom geometry on NH (glucose-water solution, µ= 4.78 Pa.s , ν=5-25 wt%) 

 

Figure 3-7: Power curves for 5wt% solid suspension in flat and dish bottomed tank 
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3.4.     The Effect of Impeller Bottom Clearance 

 

Impeller off-bottom clearance plays an important role in solid suspension. In configurations 

where the impeller operates close to the tank base, momentum transfer from the impeller to the 

particles is maximized. Under this condition, the particles trapped at the bottom of the vessel 

under the impeller are driven toward the junction of the tank base and wall. This motion faces 

minimal resistance while accumulating sufficient momentum to lift the particles into suspension 

after sliding toward the junction of wall and vessel base. By increasing impeller bottom 

clearance, the stagnant zone below the impeller increases and more solid particles are left in that 

region. Also, momentum transfer to solid particle decreases and higher impeller speed is required 

to force particles to move outward at the impeller periphery from where they are suspended. The 

effect of bottom clearance on NH has also been investigated for flat and dish bottomed vessels, as, 

according to the manufacturer, the magnitude of the clearance can have a noteworthy influence 

on the mixing efficiency. Figure 3-8 shows the evolution of NH versus C/C0, where C0 is the 

manufacturer recommended design value for the liquid-liquid mixing. 

 

 

Figure 3-8: Effect of bottom clearance on the NH (Tap water and glass beads, ν=5 wt%) 
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The results shown here indicate that the bottom clearance might have a significant impact on the 

pumping capacity. It can be seen that NH varies non-linearly with the clearance value. Small 

variations of the bottom clearance do not affect the mixing efficiency. The lowest NH was 

achieved at C/C0=2. This clearance allows dissipation of segregated zones. It seems that no 

segregated zone exist for this value.  

 

3.5.     The Effect of Solid Loading 

 

The effect of solid concentration on NH, which is a crucial operating condition in solid–liquid 

mixing processes, was also investigated with 94% glucose solution as the continuous phase. As 

shown in Figure 3-9, higher solids loading causes an increase in required NH. Upon increasing 

solids loading, more power is required to suspend large portions of solid.  

 

 

Figure 3-9: Effect of solid concentration on NH (glucose-water solution, µ= 4.78 Pa.s, 58<Re<83) 
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The graph clearly demonstrates this relationship. Solids loading can be expected to influence the 

impeller performance by modifying the suspension viscosity, local density and/or vortex structure 

in the vicinity of the impeller blades. In fact, when we increase the solid concentration, the 

apparent viscosity and density are increased, so the energy used by the impeller is dissipated 

without producing enough mixing in the tank hence higher impeller speed (more power) is 

needed to homogenize the system. 

  

3.6.     Solid Suspension in Viscous Fluid 

 

The Maxblend impeller is one of the most efficient impellers to handle solid suspension in 

viscous fluids. The distributive motion makes the uniform suspension. The paddle is pumping the 

fluid through the vessel, the fluid goes downward along the shaft and upward close to the wall. 

The grid part of the Maxblend drives the fluid through this recirculation loop. Mixing is mostly 

achieved by axial pumping and this flow pattern sweeps the tank bottom and suspends the solids. 

 

 

Figure 3-10: Effect of liquid viscosity on NH (glucose-water solution and glass beads, ν=5 wt%) 
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Figure 3-11: Homogenization speed curve (glucose-water solution and glass beads, ν=5 wt%) 

 

The NH for different viscosity is shown in Figure 3-10, for the solution of 5% - 92% of glucose. 

The results demonstrate reaching uniformity by Maxblend in high viscosity.  It can be seen that 

increasing liquid viscosity, causes an increase in NH. It means that for lifting the particles in 

higher viscosity more speed hence more power is required. 

Figure 3-11 presents NH versus Re, allowing for the simultaneous analysis of NH and the mixing 

time. We observe a trend similar to that of the master power curve (NP vs. Re). 

 

3.7.     Comparison of ERT with the Sampling Technique 

 

Results of the ERT technique were compared with a sampling technique in Figure 3-13. For local 

solid concentration measurement, the slurry solution is sampled by suction from the upper, 

middle and lower part of the vessel. Sampling points were along the vessel wall. At several 

power inputs the necessary impeller speed to reach the uniform suspension are estimated by 

sampling data. ERT is a novel technique to image the electrical conductivity distribution in a 

cross-section by applying currents at the boundary and measuring the resulting voltages.  
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As illustrated in Figure 3-13 the sampling technique underestimates the homogenization speed 

compared to the ERT technique. These differences in NH values obtained using the different 

methods do not exceed 25%. However, there are several reasons why ERT technique is more 

accurate. First, sampling has been carried out at only 3 points and the data from these sampling 

points are not rich enough to characterize the particle concentration profile in the whole vessel. 

Also, an accurate measurement requires the velocity of the sample entering the pipe to be the 

same as the local fluid velocity, and the pipe to be aligned in the local direction of the flow. The 

difficulty to obtain these conditions in practice leads to more imprecision. 

In addition, ERT is a non-intrusive method and has advantages in cost, speed and safety. 

Nevertheless, it has its own drawbacks, including low resolution of reconstructed images and the 

delay between particle dispersion and the time that signals are sent. 

 

 

 
 

Figure 3-12: Sampling measurement system (SHI Mechanical & 

Equipment, 2011) 

 

 



67 

 

 

 

 
Figure 3-13: Comparison of ERT with Sampling technique (Tap water and glass beads, ν=5 wt%) 

 

3.8.      Conclusions and Recommendations 

 

The performance of Maxblend impeller for solid-liquid mixing was investigated experimentally 

with Newtonian fluids. Solid concentration distribution in the vessel is influenced by the 

operating conditions and its geometrical parameters. 

Electrical resistance tomography (ERT) was successfully employed to determine the quality of 

solids suspension. The homogenization speed (NH) was measured using the conductivity profile 

generated from the ERT data. The efficiency of Maxblend in terms of achieving uniformity was 

determined. The results show that particles can be homogeneously suspended with the Maxblend 

impeller. The particular shape of the Maxblend impeller, paddle at the bottom surmounted by a 

grid was demonstrated as very efficient to promote uniform suspension. The distributive motion 

occurring in the transient regime makes homogeneous suspension. The power consumption and 

dimensionless mixing time has been observed to be similar to the single phase trend. 
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The effect of geometry for the flat and dish bottomed vessels were investigated. The results show 

a 10% to 15% higher NH in a flat bottom vessel than a dish bottom one. Because in flat-base 

vessels, dead zones are created between the tank base and the tank wall. 

Bottom clearance has significant influence on NH and allows for the elimination of dead zones. It 

was found that the minimum NH was achieved at C/C0=2, lower NH reduce the power 

consumption. This observation is very important for the manufacturer and could help improve the 

design significantly. 

The concentration of solid particles also plays a crucial role in the conditions to achieve 

maximum homogeneity. As the concentration of solid particles increases, higher impeller speed 

is necessary to achieve the uniform condition. By increasing the solid concentration, the apparent 

viscosity and density are increased, so higher impeller speed (more power) is needed to 

homogenize the system.  

According to the results, it can be confirmed that Maxblend is an interesting technology to obtain 

the uniform suspension in light of short mixing time and low power consumption. 

It is useful to note some limitations of this work to inform future researchers. In this work we 

were limited to solids concentrations below 25 wt% (5-25 wt% solid concentration for low 

viscosity and 5w/w% solid concentration for high viscosity fluid) because of maximum limit of 

the torque measurements. The choice of the parameter to test the solids suspension capability of 

the Maxblend was also not trivial. While Njs is the main parameter to define solids suspension in 

literature, it was found not applicable for Maxblend impeller because of its small off-bottom 

clearance. A new parameter, the homogenization speed (NH), was defined to test the performance 

of the Maxblend impeller for solids suspension applications. This parameter is an indicator of 

uniform suspension, which is different than the complete off-bottom suspension that is 

determined with Njs. This also led to the lack of comparison with literature data since there is no 

published data available for NH. 

With the light of these information further investigations could include the following: 

 Detailed information on solid motion in agitated vessel will help to extend the current 

knowledge about solid suspension and dispersion mechanism with Maxblend. 

 Characterizing NH in more viscous and non-Newtonian fluids and solids dispersion and its 

mechanism in viscous and non-Newtonian fluids. 
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 Detailed information of solid concentration profile, scale effect and solid motion in Maxblend 

systems will extent the knowledge level to achieve a more reliable design and better operating 

conditions. 

 This study can be extended by considering other types of Maxblend (wedge vs straight) and 

also with other new generation impellers like Superblend. 

 Studying on a similar hydrodynamic Maxblend industrial scale (several m
3
) to verify the 

effect of undercuts on the mixing time and segregated zones and validate tolerance 

established on it.  
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