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Résumé

La question d’identifier de bons paramètres a été étudiée depuis longtemps et on

peut compter un grand nombre de recherches qui se concentrent sur ce sujet. Certaines

de ces recherches manquent de généralité et surtout de re-utilisabilité. Une première

raison est que ces projets visent des systèmes spécifiques. En plus, la plupart de ces

projets ne se concentrent pas sur les questions fondamentales de l’identification de

bons paramètres. Et enfin, il n’y avait pas un outil puissant capable de surmonter des

difficulté dans ce domaine. En conséquence, malgré un grand nombre de projets, les

utilisateurs n’ont pas trop de possibilité à appliquer les résultats antérieurs à leurs

problèmes.

Cette thèse propose le cadre OPAL pour identifier de bons paramètres algorith-

miques avec des éléments essentiels, indispensables. Les étapes de l’élaboration du

cadre de travail ainsi que les résultats principaux sont présentés dans trois articles

correspondant aux trois chapitres 4, 5 et 6 de la thèse.

Le premier article introduit le cadre par l’intermédiaire d’exemples fondamentaux.

En outre, dans ce cadre, la question d’identifier de bons paramètres est modélisée

comme un problème d’optimisation non-lisse qui est ensuite résolu par un algorithme

de recherche directe sur treillis adaptatifs. Cela réduit l’effort des utilisateurs pour

accomplir la tâche d’identifier de bons paramètres.

Le deuxième article décrit une extension visant à améliorer la performance du

cadre OPAL. L’utilisation efficace de ressources informatiques dans ce cadre se fait

par l’étude de plusieurs stratégies d’utilisation du parallélisme et par l’intermédiaire

d’une fonctionnalité particulière appelée l’interruption des tâches inutiles.

Le troisième article est une description complète du cadre et de son implémentation

en Python. En plus de rappeler les caractéristiques principales présentées dans des

travaux antérieurs, l’intégration est présentée comme une nouvelle fonctionnalité par

une démonstration de la coopération avec un outil de classification. Plus précisément,

le travail illustre une coopération de OPAL et un outil de classification pour résoudre

un problème d’optimisation des paramètres dont l’ensemble de problèmes tests est

trop grand et une seule évaluation peut prendre une journée.
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Abstract

The task of parameter tuning question has been around for a long time, spread

over most domains and there have been many attempts to address it. Research on

this question often lacks in generality and re-utilisability. A first reason is that these

projects aim at specific systems. Moreover, some approaches do not concentrate on

the fundamental questions of parameter tuning. And finally, there was not a powerful

tool that is able to take over the difficulties in this domain. As a result, the number of

projects continues to grow, while users are not able to apply the previous achievements

to their own problem.

The present work systematically approaches parameter tuning by figuring out the

fundamental issues and identifying the basic elements for a general system. This

provides the base for developing a general and flexible framework called OPAL, which

stands for OPtimization of ALgorithms. The milestones in developing the framework

as well as the main achievements are presented through three papers corresponding

to the three chapters 4, 5 and 6 of this thesis.

The first paper introduces the framework by describing the crucial basic elements

through some very simple examples. To this end, the paper considers three ques-

tions in constructing an automated parameter tuning framework. By answering these

questions, we propose OPAL, consisting of indispensable components of a parameter

tuning framework. OPAL models the parameter tuning task as a blackbox optimiza-

tion problem. This reduces the effort of users in launching a tuning session.

The second paper shows one of the opportunities to extend the framework. To

take advantage of the situations where multiple processors are available, we study

various ways of embedding parallelism and develop a feature called ”interruption of

unnecessary tasks” in order to improve performance of the framework.

The third paper is a full description of the framework and a release of its Python

implementation. In addition to the confirmations on the methodology and the main

features presented in previous works, the integrability is introduced as a new feature

of this release through an example of the cooperation with a classification tool. More

specifically, the work illustrates a cooperation of OPAL and a classification tool to

solve a parameter optimization problem of which the test problem set is too large and
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an assessment can take a day.
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Chapter 1

INTRODUCTION

Despite progresses in computational technology, the need to improve numerical

routines remains. We need to improve performance in terms of computational resource

consumption and computing time; we wish to achieve better results in precision; or

we simply want to extend the applicability of routines in terms of solvable problem

classes. In practice, for a numerical routine, it is possible to improve on any of the

three phases of its lifetime: design, implementation and operation. In the design and

implementation phases, performance is determined by algorithm complexity, local

convergence or evaluation complexity (Cartis et al., 2012), while quality is assessed

by global convergence or numerical stability (Higham, 2002). In the operation phase,

quality and performance are reflected in measurable and less abstract notions such as

computing time, memory consumption and accuracy (in terms of significant digits,

etc). No matter what forms they take, performance and quality are usually sensitive

notions influenced by a large number of factors. In order to control the quality and

performance of a routine, we try to capture as many influencing factors as possible,

model them as parameters and assign suitable values. Any modification in the first

phase can lead to modifications in the next two phases and normally results in a new

algorithm or routine. Modifications in the implementation phase that aim at better

performance or quality are referred to as source code adaptation. Choosing a suitable

setting for parameters at run time is called parameter tuning. Parameter tuning can

be done manually using trial and error or automatically by a finite procedure. It can

also be done analytically by exact computations or empirically based on a finite set

of input data called test problems. Among these possibilities, our work concentrates

on developing a framework for empirical automated parameter tuning.

An empirical method for automated parameter tuning is an iterative method where

each iteration executes at least three steps: propose parameter values, evaluate the

algorithm with these values and finally make a decision on stopping or continuing to

the next iteration. The initial suggestion for parameter values is normally provided



2

by users or simply the default values. In subsequent iterations, the tuning method

suggests other settings using some strategies and information obtained in previous

iterations. The strategy is different for each method and becomes one of the charac-

teristics that distinguish tuning methods. The evaluation is performed by launching

the target routine over a set of preselected test problems. Issues for a quality assess-

ment strategy include test problem selection, analyzing the results and quantifying

the tuning goals. In the last step, the main task is to compare the obtained quality

assessment of the current parameter setting with the tuning goal in order to decide

whether to go on to the next iteration or not. There is no standard response to this

question and its answer usually depends on users goals. Thus, in combining possi-

bilities for each step, there are many ways to build an empirical automated tuning

procedure. Parameter tuning is still a research question, which means that there is

currently no unique satisfactory method for all users. The difficulty comes from many

sources. First of all, it is not easy to identify parameters that impact the tuning ob-

jective. The hidden relation between parameters and performance adds uncertainty

to any automated tuning strategy. Secondly, the numerous parameters and their dis-

tribution create an intricate search space that prevents manual tuning. For example,

the routine IPOPT (Wächter and Biegler, 2006), an interior point solver, has nearly

50 parameters, most of which can be real number. Thus, enumeration of all possibil-

ities is impossible and the trial and error strategy is usually unsatisfactory. Finally,

an effective tuning strategy usually requires expert knowledge of the algorithm and a

thorough understanding of the effects of the parameters. As a consequence, it is not

easy to create a general framework that works well on all algorithms.

Recent achievements in optimization, particularly in blackbox optimization, pro-

vide another approach to the tuning problem. The tuning question can easily be

modeled as an optimization problem, in which variables are the tuning parameters

and performance or quality are expressed as objective functions and constraints. As a

result, several methods of optimization can be applied here. However, classical opti-

mization methods depend strongly on the structure of the problem. With a parameter

optimization problem, we do not have much information about the structure except

the function value at some given parameter points (each parameter point corresponds

to a set of parameter values). The situation becomes even worse when the function

value is estimated using uncertain empirical outputs such as computing time. An

optimization method that depends less on problem structure and handles the lack
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of information on problem structure such as direct-search methods holds promising

prospects for solving the parameter optimization problem. We chose MADS (Audet

and Dennis, Jr., 2006)(Mesh Adaptive Direct Search) as our fundamental algorithm

to solve the parameter optimization problems.

By studying the parameter tuning problem both from the perspective of an iter-

ative method and as an optimization problem, we design a framework of algorithmic

parameter optimization called OPAL (OPtimization of ALgorithms). OPAL is general

and flexible enough to apply to the question of improving the performance of any rou-

tine. We concentrate on algorithmic parameters, and thus sometimes we refer to the

problem of algorithmic parameter optimization as algorithm optimization. Like many

empirical methods, each iteration of our method goes through three steps involving

the NOMAD (Le Digabel, 2011), an implementation of the MADS method: (i) NO-

MAD proposes a parameter settings, (ii) the target algorithm with these settings is

evaluated on a set of test problems, (iii) the evaluation result provides information

to NOMAD to launch the next iteration. As a result, we require minimum effort from

users to define a parameter optimization problem with the following main elements:

parameter description, a set of test problems, evaluation measurements, and tuning

goals expressed as an objective function and constraints. After defining a parameter

optimization problem, all the remaining work is performed by the NOMAD solver.

In simple situations, users do not need to know and provide much information to

launch a parameter tuning session. However, to make the framework more flexible and

sophisticated in situations where the users know more about their algorithms, they

can provide more information to accelerate the search or guide it toward promising

regions. For example, users can refine the parameter space by defining more parameter

constraints to prevent unnecessary target algorithm runnings. Users can also define

surrogate models for their problems to help NOMAD to propose promising parameter

values. In the meantime, from the computing point of view, the tuning process is

composed of fairly independent steps, for example, the observation of the algorithm

over a set of test problems; thus, there are possibilities to exploit parallelism in the

framework.

In this introduction, we have presented a brief overview of the typical research

involving algorithmic parameter optimization. In chapter two, we discuss relevant

literature with a focus on the three main questions of an empirical method and issues

relating to parameter optimization problem. The third chapter gives an outline of
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the remainder of the thesis, with chapter 4, 5 and 6 reserved for three papers on this

problem. Finally, the last chapter shows some conclusions and perspectives.
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Chapter 2

EMPIRICAL OPTIMIZATION

OF ALGORITHMS: STATE OF

THE ART

As presented in the previous chapter, we can improve the performance of a numer-

ical routine in the development stage (also known as source code adaptation) and in

the operaton stage (also known as parameter tuning). Since source code adaptation

can also be considered as parameter tuning of a particular source code generator,

hereafter, we use the term parameter tuning to indicate both source code adapta-

tion and parameter tuning. In this section, we first review some typical projects

involving parameter tuning to show that this is a domain of active research. Next,

by identifying common elements of these approaches, we examine how these projects

answer three basic questions of an automated parameter tuning procedure: (i) what

are the parameters, (ii) how to assess the effect of parameter settings and (iii) how

to explore the parameter setting space. In the final section we describe related issues

where parameter tuning is examined as a blackbox optimization problem, especially

in the context of direct search methods.

2.1 Automatic parameter tuning is an active re-

search area

Better performance can be achieved at the development or operation stage. In

the development stage, the binary code generation is optimized in terms of the per-

formance that depends on the compiler and the platform where the software is built.

There are two approaches for optimizing code generation. The first approach creat-

ing an important branch of research, called compiler, is based on analytical studies

that are therefore outside of the scope of this thesis. The second one is concerned
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with adapting code to the running platform and is based mainly on the combina-

tion of empirical studies and search strategies. The search is performed on the set

of code transformations allowed at the programming language level and is based on

performance evaluation through empirical output.

PHiPAC 1(Portable High Performance Ansi C) (Bilmes et al., 1998) is one of the

earliest automatic tuning projects that aims to create high-performance linear algebra

libraries in ANSI C. It is referred to as a methodology that contains a set of guidelines

for producing high-performance ANSI code. It also includes a parameterized code gen-

erator based on the guidelines and scripts that automatically tune code for a particular

system by varying the generators’ parameters based on empirical results. PHiPAC is

used to generate a matrix-matrix multiplier that can get around 90% of peak (on sys-

tems such as Sparcstation-20/61, IBM RS/6000-590, HP 712/80i) and on IBM, HP,

SGI R4k, Sun Ultra-170, it can even produced a matrix multiplier that faster than

the ones of vendor-optimized BLAS 2 (Basic Linear Algebra Subprograms) (Lawson

et al., 1979).

ATLAS 3(Automatically Tuned Linear Algebra Software) (Whaley et al., 2001), a

more recent project on numerical linear algebra routines, is an implementation of

the Automated Empirical Optimization of Software paradigm, abbreviated as AEOS.

The initial goal of ATLAS was to provide an efficient implementation of the BLAS

library. However, ATLAS was recently extended to include higher level routines from

the LAPACK (Linear Algebra PACKage) library. ATLAS supports automated tuning

in all three levels of BLAS. For level 1 BLAS, which contains routines doing vector-

vector operations, ATLAS provides a set of pre-defined codes contributed from many

sources (with varying floating point unit usage and loop unrolling) from which a

best code is selected based on evaluations of this set. The set of pre-defined code is

enriched over time. In fact, tuning by ATLAS at this level does not achieve significant

improvements; speedup typically ranges from 0% to 15%. The observed efficiency in

level 2 BLAS is much better; the speedup can reach up to 300% in some cases. The

reason is that level 2 includes vector-matrix routines that are much more complex than

the level 1 routines in terms of both data transfer and loop structure; consequent to

these facts, there are more possibilities to be optimized. ATLAS also initiates the

1. http://www.icsi.berkeley.edu/~bilmes/phipac/

2. http://www.netlib.org/blas/

3. http://math-atlas.sourceforge.net/

http://www.icsi.berkeley.edu/~bilmes/phipac/
http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/
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idea of optimizing BLAS by replacing the global search engine with a model-driven

optimization engine based on a robust framework of micro-benchmarking called X-Ray

(Yotov, 2006).

The work of Yotov (2006) is not about an empirical method but the contribution

to the field is remarkable. It initially starts out to study the differences in the per-

formance of BLAS tuned by ATLAS and that supported by compiler restructuring.

They firstly study whether there is a compiler restructuring that produces the same

code generated by ATLAS. Furthermore, by recognizing the fact that ATLAS uses a

fairly simple search procedure to get optimal parameters of the source code genera-

tor, the author proposes a model to get these values instead of an iterative method.

The model computes optimal values from a set of hardware specifications (such as

CPU frequency, instruction latency, instruction throughput, etc) that are gathered by

a micro-benchmark system. The experimental results state that a micro-benchmark

system of high accuracy with a good model can give as good parameters as those

found by ATLAS. This implies that the optimality found by the ATLAS algorithm is

proved at certain levels. In order to improve the result, a local search heuristic is

applied to a neighborhood of the parameter values computed by the model.

Sparsity 4 (Im and Yelick, 1998) and OSKI 5 (Optimized Sparse Kernel Interface,

Vuduc et al. 2005) focus on a narrower direction in tuning linear algebra libraries

- sparse matrix manipulation. Sparsity addresses the issue of poor performance of

general sparse matrix-vector multipliers due to spatial locality. Recognizing that

performance is also highly dependent on methods of sparse matrix representation and

on hardware platforms, Sparsity allows users to automatically build sparse matrix

kernels that are tuned to their target matrices and machines. OSKI, inspired by

Sparsity and PHiPAC, is a collection of low-level C primitives for use in a solver or in

an application. In OSKI, “tuning” refers to the process of selecting the data structure

and code transformations to get the fastest implementation of a kernel in the context

of matrix and target machine. The selection is essentially the output of a decision

making system whose input are benchmark data of a code transformation, matrix

characteristics, workload from program monitoring, history and heuristic models.

In addition to linear algebra libraries, signal processing is a promising ground for

4. http://www.cs.berkeley.edu/~yelick/sparsity/

5. http://bebop.cs.berkeley.edu/oski/

http://www.cs.berkeley.edu/~yelick/sparsity/
http://bebop.cs.berkeley.edu/oski/
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empirical source code adaptation. Among many projects, SPIRAL 6 (Püschel et al.,

2005, 2011) is the best example despite its restricted consideration on linear signal

transforms. SPIRAL optimizes code by exploiting not only hardware factors but also

mathematical factors of transforms (Milder, 2010); it optimizes at both the algorith-

mic and the implementation levels. More specifically, a transform can be represented

as formulas based on different mathematical factors. Hence, there are usually many

choices of representing a single transform. These formulas are next implemented by

considering appropriate target programming languages, compiler options, as well as

target hardware characteristics. To search for the best combination of representation

and implementation, SPIRAL takes advantage of both search and learning techniques.

For example, the current version of SPIRAL deploys two search methods: dynamic

programming and evolutionary search. The learning is accomplished by reformulat-

ing the problem of parameter tuning in the form of a Markov decision process and

reinforcement learning. SPIRAL shows very interesting experimental results (Püschel

et al., 2005), including performance spread with respect to runtime within the for-

mula space for a given transform, comparison against the best available libraries,

benchmark of generated code for DCT (Discrete Cosine Transformation) and WHT

(Walsh-Hadamard Transform) transforms. In summary, the idea behind SPIRAL is to

choose the best implementation when we have multiple implementations of multiple

formulas of a transform; this is similar to the PetaBricks 7 (Ansel et al., 2011) project

that targets scientific softwares.

FFTW 8 (Fastest Fourier Transform in the West) (Frigo and Johnson, 2005) is a

C subroutine library for computing the discrete Fourier transform (DFT) in one or

more dimensions, of a real or complex input of arbitrary size. The library is able to

adapt to a new situation not only in terms of input data size but also performance.

The optimization in FFTW is interpreted in the sense that FFTW does not use a

fixed algorithm for computing the transform, but instead adapts the DFT algorithm

by choosing different plans that work well on underlying hardware in order to in-

crease performance. The performance adaptation can be performed automatically

by a FFTW component called a planner or manually by advanced users who can

customize FFTW. Hence, FFTW is a parameter tuning tool rather than source code

6. http://spiral.net/index.html

7. http://projects.csail.mit.edu/petabricks/

8. http://www.fftw.org/

http://spiral.net/index.html
http://projects.csail.mit.edu/petabricks/
http://www.fftw.org/
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adaptation like SPIRAL.

PetaBricks (Ansel et al., 2011) and Orio 9 (Hartono et al., 2009) both target the

source code adaptation problem for a program or a segment code in any domain. The

generalization is obtained by proposing particular programming directives or even a

programming language to specify the possibilities of tuning in the target segment

code. PetaBricks allows to tune a target routine in two levels by having multiple

implementations of multiple algorithms for a target routine. For example, in order

to sort an integer array, we can from several sorting algorithms; and corresponding

to the selected algorithm, several implementations are considered. Orio only focuses

on the implementation level by proposing an annotation language that is actually

the programming directives. A high-level segment code, enclosed by these directives,

will be implemented in different ways corresponding to variations of the architecture

specifications such as the blocking size, cache size, etc. A good implementation is

selected based on the performance of running the generated code.

The work of Balaprakash et al. (2011b) can be considered as a source code adap-

tation project in the sense that it formulates with the help of the Orio annotations

the tuning questions of a set of basic kernels used broadly and intensively in scientific

applications. These problems are solved for each hardware architecture to obtain

the most suitable implementation for each kernel. The contributions to the auto-

mated tuning field are the formulas of kernel optimization problems plus a particular

algorithm to solve effectively these problems.

In practice, the question of parameter tuning has been studied by many re-

searchers. We can list here some examples: optimization of control parameters for

genetic algorithms (Grefenstette, 1986), automatic tuning of inlining heuristics (Cava-

zos and O’Boyle, 2005), tuning performance of the MMAS (Max-Min Ant System)

heuristic (Ridge and Kudenko, 2007), automatic tuning of a CPLEX solver for MILP

(Mixed Integer Linear Programming) (Baz et al., 2009), automatic tuning of GRASP

(Greedy Randomized Adaptive Search Procedure) with path re-linking (Festa et al.,

2010), using entropy for parameter analysis of evolutionary algorithms (Smit and

Eiben, 2010), modern continuous optimization algorithms for tuning real and integer

algorithm parameters (Yuan et al., 2010). However, all these projects target specific

algorithms, maximally take advantage of particular expert knowledge to get the best

possible results and avoid the complexity of a general automated tuning framework.

9. http://trac.mcs.anl.gov/projects/performance/wiki/Orio

http://trac.mcs.anl.gov/projects/performance/wiki/Orio


10

The number of tuning projects continues to increase, indicating that the concern

still exists. Thereby, it begs the question of a general framework where the basic

questions of automated tuning are imposed and answered more clearly. The recent

projects presented in the following paragraphs pay more attention to these questions.

STOP 10(Selection Tool for Optimization Parameters, Baz et al. 2007) is a tun-

ing tool based on software testing and machine learning. More specifically, it uses

an intelligent sampling of parameter points in the search space assuming that each

parameter has a small discrete set of values. This assumption is acceptable for the

intended target problem of tuning MILP branch-and-cut algorithms. At the time of re-

lease, STOP set the parameter values in order to minimize the total solving time over

a set of test problems. No statistical technique is used because the authors assume

that good settings on the test problems will be good for other, similar problems.

ParamILS 11 is a versatile tool for parameter optimization and can be applied to an

arbitrary algorithm regardless of the tuning scenario and objective and with no lim-

itation on the number of parameters. It is derived from efforts of designing effective

algorithms for hard problems (Hutter et al., 2007). Essentially, it is based on the ILS

(Iterated Local Search) (Lourenço et al., 2010) meta-heuristic. ParamILS is supported

by a verification technique that helps to avoid over-confidence and over-tuning. How-

ever, due to the characteristics of the employed local search algorithm, it works only

with discrete parameters; continuous parameters need to first be discretized. More-

over, local search performance depends strongly on neighborhood definition that is

drawn from knowledge on the parameters of the target algorithm. But ParamILS has

not a way to customize the neighborhood definition for a variable.

The above projects are based on heuristics and focus only on specific target algo-

rithms or particular parameter types. Recently, the question of parameter tuning was

approached more systematically where the connection between the parameter tuning

and stochastic optimization is established. These projects are based on a frame-

work called Sequential Parameter Optimization (SPO) (Bartz-Beielstein et al., 2010b;

Preuss and Bartz-Beielstein, 2007), which is a combination of classical experiment

design and stochastic blackbox optimization. The main idea of this approach is to

use a stochastic model called a response surface model to predict relations between

three principal elements of the automated tuning question: parameters, performance

10. http://www.rosemaryroad.org/brady/software/

11. http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

http://www.rosemaryroad.org/brady/software/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
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and test problems. Response surface models can be useful in order to study a parame-

ter tuning problem in some different aspects: interpolate empirical performance from

evaluated parameter settings, extrapolate to previously-unseen regions of the param-

eter space, and qualify the impacts of parameter settings as well as test problems.

SPOT 12 (Bartz-Beielstein, 2010) is a R package implementing the general idea of SPO

that are applied in the context of parameter tuning. Extensions such as SPO+, can

be found in the works of Hutter et al. (2010a, 2009).

SPO and our framework OPAL have one thing in common: they both model

parameter tuning as a blackbox optimization problem. However, the blackbox model

in SPO is assumed to be a stochastic blackbox model while we do not impose any

assumption over blackbox model.

2.2 The basic questions of an automated tuning

method

We can identify three common basic elements of all the projects presented in the

above section: parameterization, performance evaluation and parameter search strat-

egy. The first is the question of identifying variable factors that influence performance

and describing these factors in terms of parameters. For algorithmic parameter op-

timization, the variables are defined explicitly; thus identifying parameters is usually

not difficult. In contrast, identifying variables for source code adaptation is often

difficult since source code performance is influenced by many hidden factors. In ad-

dition to the parameter identification, it is necessary to define the parameter space

by specifying the domain for each parameter, simple relations between parameters.

The second question is about assessing the quality of parameter settings. In

other words, it is the problem of comparing the empirical performance of the target

algorithm with various parameter settings. Obviously, this question depends on the

tuning objective. In general, comparison criteria are established based on observations

of running the algorithm over the set of test problems, such as computing time,

consumed memory, and/or algorithm output. In the simplest case, we can choose

an observation as a criterion of comparison, but criteria can be expressed in more

sophisticated ways such as a function and even as an output of a computation process

12. http://cran.r-project.org/web/packages/SPOT/index.html

http://cran.r-project.org/web/packages/SPOT/index.html
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or a simulation process whose inputs are the observations from running the target

algorithm. The main concern for an assessment method is the inaccuracy that comes

from two sources: uncertainty of some observations and empirical noise. However, it

is not possible to totally eliminate the inaccuracy; we often must balance the cost of

inaccuracy reduction and the sophistication of a search method.

The last question concerns the search strategy in parameter space. The complexity

of a strategy depends on the two previous questions. The larger the parameter space

is, the more sophisticated the strategy we need. The less accurate the performance

evaluation is, the more flexible the search strategy we need to come up with. The

more specific the application is, the more particular the knowledge is to be integrated

into the strategy. The fact of the matter is we have no guide to build a search strategy.

2.2.1 Parameterizing the target algorithm

The process of algorithm parameterization is composed of two tasks: identifying

parameters and describing them. The former will imply which parameters are in-

volved. Parameters of an algorithm (or a routine) are generally all the factors that

can be changed by an user of the algorithm that have an impact on the implementa-

tion’s performance. For the code adaptation, these factors vary from one language to

another, and from one architecture to another. However, the spectrum of code gener-

ators’ parameters is usually not very broad. As a consequence, parameter spaces can

be described well once the parameters are identified. In contrast, identifying param-

eters in algorithmic parameter tuning is less difficult but describing the parameter

space or selecting a subset of parameters which are significant is a big issue.

ATLAS optimizes the BLAS library using both techniques, parameter tuning and

source code adaptation. In the former, ATLAS focuses on parameters of the library

kernels such as the blocking factor and the cache level. These parameters control

the cache utilization and as a consequence, directly influence speedup. The source

code adaptation is performed by choosing the best code from a pre-fixed set of codes

provided by many contributors or by automatically generating codes from templates.

In the first approach, we have a single parameter whose possible values correspond to

the set of contributions of source code. In the second approach, the set of parameters

of a template includes L1 data cache tile size, the L1 data cache tile size for non-

copying version, register tile size, unroll factor, latency for computation scheduling,
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choices of combined or separate multiply and add instructions and load scheduling.

Corresponding to each combination of parameter settings, a source code of the routine

is generated from the template. For other projects concentrating on linear algebra

routines (except for Sparsity and OSKI which exploit particularities of sparse matrices),

the set of involved parameters is typically selected from the set proposed by ATLAS.

Most project have parameters expressing the selections called the selecting pa-

rameters. The domain of this parameter type is sometimes simple as an unordered

set of values. ATLAS uses a categorical parameter to indicate a the set of predefined

code. Sometime, the domain is a set of a particular order such as the case of the plan

selecting parameter in FFTW or the component selecting in ParamILS. The domain

can be so complicated to be represented by a set, for example, each selection of the

algorithm selecting parameter in PetaBrick is represented as a tree.

For some tuning projects that includes a selecting components, the parameter

space can be changed corresponding to each selection. For example, SPIRAL opti-

mizes a routine by finding the most suitable implementation of a transform. In order

to get a possible implementation for a transform, SPIRAL translates the transform to

formulas, and codes these formulas in a target programming language. Parameters of

the formula generation stage include the atomic size of formula, formula character-

istics such as parallelizable construct or vectorizable construct. Hence, in the second

stage, in addition to the parameters of a code generator, the particular parameters of

the selected formulas will be considered.

2.2.2 Empirical quality evaluation methods

Empirical quality evaluation involves the process of comparing performance of two

instances of parameters through a set of experiments, and it is sometimes referred

to as experimental comparison. More concretely, within the context of an empirical

automated tuning project, the assessment is performed through a sequence of tasks,

running the target algorithm over a set of test problems, collecting all concerned ob-

servations (referred to as atomic measures in OPAL terminology) on each test problem

and building comparison criteria (referred to as composite measures in OPAL termi-

nology) from the observations. Examples of observations are wall-clock running time

and outputs of the algorithm (such as the solution, number of significant digits of so-

lution, norm of the gradient, etc). There are two main issues related to the empirical
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comparison. The first is that atomic measures are often noisy. A typical example is

the wall-clock time: running the target algorithm on a machine can result in different

running times in different launches due to operating system, influence. The second

is that, because observations are obtained from running algorithm over a set of test

problems, they are concrete instances of a performance measure. A better perfor-

mance based on these concrete instances does not guarantee a better performance in

general or on other instances. The different techniques of quality evaluation deal with

the two issues in different ways.

The simplest way to deal with the noise of some elementary measures is to choose

an alternative one that is less noisy. For example, to benchmark an optimization

solver, the number of function evaluations may be more suitable than the com-

puting time. CUTEr (Constrained and Unconstrained Testing Environment, revis-

ited) (Gould et al., 2003a) is a project that provides systematic measures for assessing

an optimization solver. To provide a general description of CUTEr 13,

it is a versatile testing environment for optimization and linear algebra

solvers. The package contains a collection of test problems, along with

Fortran 77, Fortran 90/95 and Matlab tools intended to help developers

design, compare and improve new and existing solvers.

CUTEr provides a mechanism to extract the number of metrics (such as objective

functions and constraint functions, the final value of objective function, of gradient

norm, etc). Such a performance assessment of an optimization solver may better

reflect the practical performance of a solver, independent of the platform.

Other common ways to address the noise are drawn from statistics. For exam-

ple, the noise of an observation can be reduced by repeatedly launching the target

algorithm over the set of test problems and taking the sampled mean value. This

treatment is expensive in terms of computational resources. A more efficient way is

to think of each test problem as a sample drawn from a problem population; and

that an analysis over a good enough sample set can achieve accurate descriptions of

dependences between performance and the parameters. Answers to the question of

how to get an accurate description are summarized in Kleijnen (2010) and result in

a methodology called design of experiments. Statistical design of experiments is the

process of first planning an experiment so that appropriate data is collected and ana-

lyzed using statistical methods so that useful conclusions can be drawn. For example,

13. http://www.cuter.rl.ac.uk/

http://www.cuter.rl.ac.uk/
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CALIBRA (Adenso-Diaz and Laguna, 2006) employs fractional factorial designs to

draw conclusions based on a subset of experiments from a set of pk possible combina-

tions of parameters where k is the number of parameters and p is number of critical

values of each parameter. The strategy for selecting the subset from the total set is

that of Taguchi et al. (2004), which uses orthogonal arrays to lay out the experiments.

CALIBRA uses the L9(34) orthogonal array that can handle up to 4 parameters with 3

critical values by just 9 experiments. More examples can be found in Bartz-Beielstein

et al. (2010a), a book on experiment design techniques specialized to parameter tun-

ing with a particular focus on sequential techniques that instruct how to select new

promising points based on information obtained from previous experiments.

Another research area that can be involved in empirical evaluation is the concept of

performance and data profiles of Dolan and Moré (2002) and Moré and Wild (2009) for

comparing solvers through a set of test problems. In the context of parameter tuning,

the target algorithm associated with each parameter setting is regarded as a solver.

These profiles provide a visual qualitative information, and hence a method to get

a quantitative output from performance profiles can be a good empirical assessment

method, for example, the area of the region below a profile curve.

In addition to techniques of treating measures and observation, selecting a good

test problem set can significantly improve the extrapolatory quality of the evaluations.

Although the set of test problems is pre-selected, having awareness of the influences

of the test problems is necessary for a good empirical result analysis. More detailed

arguments can be found in Auger et al. (2009) and Hutter et al. (2010b).

2.2.3 Search methods for exploring parameter space

In any method of empirical quality evaluation, there is an assumed model that

expresses the relation between parameter value combinations and observations or

quality. The model can be formulated implicitly as a blackbox (Audet and Orban,

2006) or explicitly as a stochastic model (Bartz-Beielstein et al., 2010b) or as a deter-

ministic model (Yotov, 2006). Search strategies must take into account the parameter

space representation as well as the method of quality assessment.

Most parameter tuning projects choose heuristic approaches. Targeting a specific

problem, taking advantage of particular descriptions about the parameters, a heuristic

may get good performance. However, the flexibility is often reduced as efficiency is
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gained. There are some projects that develop their heuristic from a meta-heuristic;

if the development does not involve too much particularities, it can be extended or

be modified to deploy in other projects. For example, ParamILS (Hutter et al., 2007)

is developed from the ILS (Lourenço et al., 2010) meta-heuristic, which proposes

iterative jumps to other regions after reaching a local optimum of the current region.

ILS leaves users free to choose a method to find local minima as well as how to jump

to another region. ParamILS approaches parameter tuning with the two most basic

ingredients: search a better solution by a simple procedure and as soon as finding it,

jump to another region by a random move.

Besides the dependence of performance on particularities, most heuristics work

with finite discrete sets, which means that a tuning algorithm based on these heuristics

can only work on categorical parameters or integer parameters with bounds. For real

parameters, these methods require a discretization without loosing information phase

that may be costly. Moreover, heuristics can only handle simple parameter spaces

that are composed of a small number of variables and each variable may have few

values.

As mentioned previously, an experiment design method includes not only tech-

niques for drawing conclusions from experimental results, but also techniques to set

up or control experiments. In the context of parameter tuning, the latter techniques

will figure out potential parameter settings where the tests can manifest all the char-

acteristics of the target algorithm, hence most simply, we can choose one of suggested

settings as the solution. There is a class of techniques called the sequences of exper-

iments that suggest the next settings to examine based on the result of experiments

performed. The SPO search strategy is built based on this theory.

In reality, three basic questions are tightly corded. However, previous projects

have focused on each question separately or not paid enough attention to the relations

between them. This is one possible reason why the proposed tuning techniques in the

literature have remained non-systematic approaches. In the next section, we study

the parameter tuning problem from the optimization point of view where the three

basic questions are examined in a unique model.
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2.3 Automatic parameter tuning as an optimiza-

tion problem

In the optimization community, the automated tuning parameter question may be

formulated as an optimization problem where variables are the involved parameters

and the tuning objective and the context are expressed by objective function and

constraints, respectively. By formulating as a blackbox problem, minimal information

on problem structure is required. This means that users can easily and quickly define

a parameter optimization problem and rely on the chosen solver. Nonetheless, it does

not prevent the possibility of providing more specific information to accelerate the

search process.

2.3.1 Formulation of a parameter optimization problem

We formulate the parameter tuning problem as a blackbox optimization problem.

The simplest statement of a parameter optimization problem is

minimize
p

ψ(p)

subject to p ∈ P

ϕ(p) ∈M

(2.1)

where p denotes a parameter vector; P represents the valid parameters region; the

objective function ψ(p) expresses the tuning objective; and general constraints ϕ(p) ∈
M encode the restrictions of the tuning process. Note that the elements of a vector

parameter p are not necessary of the same type. An element can be one of three

following types: a real number (type R), an integer number (type Z) or a categorical

value (type C) (Audet and Dennis, Jr., 2000). Hence, if a target parameter set has

n parameters of type R, m parameters of type Z and l categorical parameters, a

vector p is an element of Rn×Zm×Cl. The valid parameter region, P, is a subset of

Rn×Zm×Cl that models the parameter region reacts such as a positive number or a

real number in the interval (0, 1). The target algorithm assessment result is expressed

in the objective function ψ(p) and the general constraints ϕ(p) ∈M. The reason why

we split the constraints in two categories p ∈ P and ϕ(p) ∈ M is that the former

is used to validate a parameter setting and decide if we need to launch the target

algorithm over the test problems while the latter is only verified if all runnings are
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terminated.

Another attempt to bring automated tuning into the optimization community is

proposed by Balaprakash et al. (2011b) where the parameter optimization problem is

stated simply as

min
x
{f(x) : x = (xB, xI , xC) ∈ D ⊂ Rn} (2.2)

where xB, xI and xC correspond to the binary, integer and continuous parameters, and

f(.) is some performance measure. The efficiency of solving 2.2 depends on the domain

D whose the construction requires expertise knowledge on the target algorithm. In

other words, this formulation does not give much information to a solving method

until the domain D is well established.

A blackbox optimization problem can be solved by using a direct-search solver

or a heuristic. The heuristic efficiency depends strongly on the expert knowledge.

In the general case of a blackbox optimization problem, we assume that there is no

information except for function values at certain points; this implies the inefficiency

of heuristic methods. Thus, we reserve the next subsection for discussing only direct-

search methods.

2.3.2 Direct-search methods for solving blackbox optimiza-

tion problem

Direct-search solvers comprise all methods that use only functions values (objec-

tive and constraints) to search for a local optimum. These methods are distinguished

from classical methods that require first order-information (derivative, gradient), such

as gradient-based methods or even second order-information (Hessian matrix), such as

Newton methods. Direct-search methods form only a subset of derivative-free meth-

ods that includes methods that approximate derivatives or use derivative-like concepts

such as sub-gradients (Conn et al., 2009b). Focusing only on methods that work well

for blackbox optimization, we review results of direct-search methods. There are two

main ideas for direct-search methods. The first one is to use a model to guide iterates

approaching a local optimum, the methods are classified as model-based methods.

The model can be a local approximation of the objective function and its precision is

improved from iteration to iteration. Another option is stochastic models that cap-

ture the global characteristics of the functions. The second idea is based on sampling

variable domains; at each iteration, the variable domain is sampled at certain points
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depending on a sampling strategy to evaluate the objective function. This branch is

in turn divided into two sub-categories, such divide-and-conquer and pattern-based

are sometimes referred to as directional search. Figure 2.1 illustrates some state-of-

art methods that are considered as fundamental ideas; variants and derived methods

now constitute a rich set of direct-search methods.

Direct-search
methods

Model-based
methods

Sampling
methods

Extrapolation
model-based

methods

Interpolation
model-based

methods

Pattern-based
methods

Divide and
Conquer
methods

EGO (Jones et al., 1998)

SKO (Huang et al., 2006)

SPO (Bartz-Beielstein et al., 2010b)

DFO (Conn et al., 1998)

ORBIT (Wild et al., 2008)

MNH (Wild, 2008)

Coordinate Search (Fermi
and Metropolis, 1952)

Nelder-Mead (Nelder and Mead, 1965)

GPS (Torczon, 1997)

MADS (Audet and Dennis, Jr., 2006)

DIRECT (Jones et al., 1993)

Figure 2.1 Classification of direct-search methods

The DFO (Derivative-Free Optimization) (Conn et al., 1998) method locally mod-

els the objective function by quadratic interpolation and uses this local model to find

the next iterate. In each iteration, the local optimum of the model within a trust

region is chosen as the next iterate if the reduction of the model and the reduction

of the objective/merit function at this point are compatible. Otherwise, the method

remains at the incumbent point and tries to find a local minimum of the model in a
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smaller region. In both cases, the model is updated in order to improve its quality by

adding to the interpolation set a new point satisfying a well-poisedness condition (for

example Λ-poisedness, where Λ is a constant related to geometry of the interpolation

set). In practice, DFO uses a quadratic model that is not expensive to construct and

optimize. The idea behind this procedure is that interpolation models can accurately

represent the objective function that can be a smooth (twice differentiable) function

over a small region. However, the interpolation can suffer from issues on a practical

engineering blackbox or stochastic blackbox problems. Furthermore, interpolation for

a full quadratic model in n-dimension space requires an interpolation set of (n+1)(n+2)
2

points that mentions a non-realistic condition for a computationally expensive black-

box and hence, an addition mechanism to build models using fewer points is necessary.

Such mechanisms can be MFN (Minimum Frobenius Norm) Conn et al. (2009b) (used

in DFO package) or MNH (Minimal Norm Hessian) (Wild, 2008) that build underde-

termined quadratic models. EGO (Efficient Global Optimization) (Jones et al., 1998)

handles problems with noisy blackboxes using a stochastic model and a Bayesian-

based update mechanism. In order to deal with the issue of computational expense,

ORBIT (Optimization by Radial basis function Interpolation in Trust region) (Wild

et al., 2008) uses a radial basis function (RBF) interpolation model that is constructed

from a flexible set of data points, which does not have too many requirements.

ORBIT (Wild et al., 2008; Wild and Shoemaker, 2011) approaches the blackbox

optimization problem in a similar way to DFO with an interpolation model and the

trust-region framework. However, using RBF instead of quadratic models (polynomial

models in general) gives it some advantages: it does not need a large initial set of base

points; and has a more flexible update mechanism because the set of interpolation

points can freely vary.

EGO uses a kriging model to capture a function “shape” in a region of interest. It

determines the next iterate by the expected improvement procedure. The new iterate

is added to the set of intrapolation points in order to build a new model in the next

iteration. SKO (Sequential Kriging Optimization) modifies the selection of the next

iterate; the new principle called augmented expected improvement is able to adapt

more smoothly to stochastic blackbox problems.

Model-based methods differ by their model, their strategy to select new iterates

and their updating mechanism. The divergence of these elements shown in the previ-

ous examples is not merely a small modification to improve, to adapt to each specific
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use-case, they originate from assumptions about the blackboxes with which they work.

EGO and SKO use kriging models because they focus on the shape of functions in a

larger region instead of focusing on local function behavior like DFO or ORBIT do. In

other words, DFO targets deterministic blackboxes that can produce a smooth out-

put, meanwhile EGO and SKO are for noisier models. This means that information

about the blackbox is necessary to select a model.

In contrast, sampling-based methods do not usually need assumptions on the

blackbox because they concentrate on potential regions instead of function behavior.

One of the oldest and most popular methods is the Nelder-Mead method (Nelder and

Mead, 1965), which is based on a geometry concept called the simplex. A simplex

in n-dimensional space is the convex hull of a set of n + 1 vertices in this space.

The Nelder-Mead method transforms the simplex by replacing the worst vertex, in

the sense of objective function value, by a new, better one. Although the idea is

very simple, convergence properties are only studied for strictly convex functions in

dimensions 1 and 2 (Lagarias et al., 1998), but the method is intuitive and efficient

in practice. The idea of Coordinate Search is introduced in the work of Fermi and

Metropolis (1952). In Coordinate Search, a set of sampling points, also called a pattern,

is defined along the coordinate axes, and GPS (Generalized Pattern Search) (Torczon,

1997), where the patterns are fixed in some predefined directions. The patterns tied

to fixed directions prevent these two methods from exploring thoroughly the space;

certain regions can never be reached. Examples illustrating this issue can be found in

Abramson (2002), Audet (2004) or Audet and Dennis, Jr. (2006). This implies that

we still need more information to assure that the pattern-based algorithms work,

because there are only finitely many prefixed search directions.

Considered as the most recent evolution in the pattern-based branch, MADS (Mesh

Adaptive Direct Search) Audet and Dennis, Jr. (2006) overcomes most obstacles en-

countered by its predecessors. It not only removes many assumptions related to the

blackbox, but also relies on a solid hierarchical convergence analysis that guarantees

convergence to a first-order point. We describe in more detail this algorithm in the

next subsection.

DIRECT (DIviding RECTangles) (Jones et al., 1993) targets bound-constrained,

non-smooth, Lipschitz-continuous problems. Its convergence is analyzed in Finkel

and Kelley (2004). The sampling procedure of DIRECT is simple: at each iteration,

it samples the function at the centers of hyperrectangles to determine the hyper-
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rectangles with the most potential. These hyperrectangles are divided into smaller

hyperrectangles in next iterations and the sampling process is repeated.

2.3.3 The MADS algorithm and the NOMAD solver

The MADS algorithm repeatedly samples the domain of a problem by patterns

built on integer lattices called a mesh. Mathematically, at the kth iteration, the set

of sampling points, called the poll set, denoted as Pk, is defined as:

Pk = {xk + ∆m
k d : d ∈ Dk},

where

– xk is the current incumbent that plays the role of poll center

– ∆m
k ≥ 0 is the mesh size

– Dk is the set of poll directions at the kth iteration and has to satisfy three

conditions:

(i) sampling points are laid on a mesh predefined at the beginning of the

iteration,

(ii) distance between a poll point and the poll center does not exceed a con-

stant times of the poll size denoted as ∆p
k,

(iii) Dk is a positive spanning set of Rn.

The first condition imposed on sampling points means that Pk ∈ Mk with Mk is

mathematically defined as

Mk = {x+ ∆m
k Dz : x ∈ Vk, z ∈ Nn},

where

– Vk is the set of examined points,

– D = GZ ∈ Rn×p is a positive spanning set with G ∈ Rn×n being nonsingular

and Z ∈ Zn×p.
Thus, the condition Pk ∈Mk can be expressed more specifically as ∀d ∈ Dk,∃u ∈

Np such that d = Du, the condition on the sampling size is

dist(xk, xk + ∆m
k d) = ∆m

k ||d||∞ ≤ ∆p
k max{||d′||∞ : d′ ∈ D}.
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Intuitively, relations between Pk and Mk are shown by examples illustrated in

Figure 2.2 where patterns are represented by arrows with one end at the poll center

and the other at a poll point.

xk

∆m
k = 1, ∆p

k = 1

xk

∆m
k = 1

4
, ∆p

k = 1
2

xk

∆m
k = 1

16
, ∆p

k = 1
4

Figure 2.2 Meshes and poll sets with different sizes

In the definition of a polling set, the introduction of two size-related parameters

∆m
k and ∆p

k is very important. In GPS the pattern size is totally controlled by only

one parameter that converges to zero when the algorithm samples enough points. In

MADS, we control the minimal size (or size unit) by ∆m
k and the maximal size by ∆p

k;

the restrictions on pattern size now are

(i) At all iterations, ∆m
k ≤ ∆p

k

(ii) lim
k∈K

∆m
k = 0⇔ lim

k∈K
∆p
k = 0

The new pattern size control principle does not prohibit of pattern size convergence

to zero; furthermore, as a result, the MADS poll direction set Dk is no longer a subset

of a predefined set D. In consequence, all the poll directions can form a dense set that

indicates that MADS studies thoroughly the neighborhood of the final incumbent.

At the kth iteration, MADS samples the space by performing two steps, Search

and Poll. The latter is the crucial step where sampling points are defined by Pk; this

step guarantees the convergence to a first-order local optimum. In the former, a finite

set of points on Mk is considered; this is an optional step whose aim is to search for

a global optimum, or to accelerate a solving process by integrating a heuristic based

on particular knowledge of the problem. An example of the Search can be found in

the work of Audet et al. (2008a).
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The convergence of MADS on the blackbox problem

minimize
x∈Ω

f(x)

is analysed in Audet and Dennis, Jr. (2006) based on the generalized derivatives

f ◦(x; d) in a direction d, the generalized gradients ∂f(x) and three types of tangent

cones (hypertangent cone THΩ (x̂), Clarke tangent cone TClΩ (x), contingent cone TCoΩ (x̂))

defined by Clarke (1983). The analysis shows that MADS generates a converging

sequence {xk} that contains a subsequence {xk}k∈K , called the refining subsequence

that satisfies the following conditions:

(i) ∀k ∈ K we have f(xk) ≤ f(x) ∀x ∈ Pk,

(ii) lim inf
k∈K

∆p
k = lim inf

k∈K
∆m
k = 0,

(iii) The normalized directions of D̂ =
⋃
k∈K

Dk are dense in the unit sphere.

Thus, the solution x̂ is the limit point of a refining subsequence, x̂ = lim
k∈K

xk.

The convergence hierarchy states that

(i) if Ω = Rn (unconstrained optimization):

– if the function f is strictly differentiable near x̂, then ∇f(x̂) = 0;

– if the function f is convex, then 0 ∈ ∂f(x̂), where ∂f(x̂) is subgradient;

– if the function f is Lipschitz continuous near x̂, then 0 ∈ ∂f(x̂);

(ii) if hypertangent cone THΩ (x̂) is non-empty:

– then x̂ is a Clarke stationary point of f over Ω: f ◦(x̂; d) ≥ 0, ∀d ∈ TClΩ (x̂);

– if f is strictly differentiable at x̂ and if Ω is regular at x̂, then x̂ is a contingent

KKT stationary point of f over Ω: ∇f(x̂)Td ≥ 0, ∀d ∈ TCoΩ (x̂).

A complete description and analysis of MADS can be found in Audet and Dennis,

Jr. (2006) while some examples of its extensions can be found in Abramson et al.

(2009a); Audet and Le Digabel (2012); Audet et al. (2010b).

NOMAD 14 (Le Digabel, 2011) is a C++ software that implements the MADS

algorithm for blackbox optimization under general nonlinear constraints. NOMAD is

provided as an executable program or a library corresponding to two modes: batch

and library. In the batch mode, users must define their blackbox in the form of an

executable that returns output as a list of function values; this mode is intended for

14. http://www.gerad.ca/nomad

http://www.gerad.ca/nomad
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a basic and simple usage. Library mode targets advanced users who require a flexible

solver.
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Chapter 3

ORGANIZATION OF THE

THESIS

The contributions of this thesis are presented through three papers corresponding

to the three following chapters. The present chapter summarizes the works of the

three papers in such a way that readers can see our approaches aiming at a parameter

tuning framework.

From the reviews of related works in the previous chapter, we can see that the

question of parameter tuning is always an important concern; there are many projects

but none of them aim at a general framework or a systematical methodology. Hence,

our motivation is to propose a framework general enough to apply to virtually all

situations, sophisticated enough to take maximum advantage of knowledge of a par-

ticular case and flexible to work with other systems. The methodology is initiated

by Audet and Orban (2006) with impressive numerical results. The works of this

thesis concentrate on developing a framework based on this methodology with three

intentions: generality, sophistication and flexibility.

Chapter 4, which corresponds to the publication (Audet et al., 2010a) describes

three basic elements that allow launching a tuning session. Although this is a paper

that officially introduces the framework, the idea of framework was suggested by Au-

det and Orban (2006). The contribution of this paper is that this is the first time that

the three fundamental questions of an empirical parameter optimization are studied.

The basic elements are next identified; they include parameter description, elemen-

tary (atomic) measures, algorithm wrapper, simple parameter constraints, composite

measures, model data and model structure. As a consequence, to optimize any algo-

rithm, users only need to specify these elements. Within OPAL, these elements are

defined by Python syntax in a natural way and a tuning task is described as an opti-

mization model composed of variables, model data and model structure. In addition

to the framework description, some simple examples of optimizing the DFO algorithm
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and numerical results are selectively presented to illustrate OPAL usage and efficiency.

After a framework is established, chapter 5 investigates particularities in order to

improve the framework. The second paper published in Audet et al. 2011a, illustrates

the extensions that target improving framework performance through parallelism and

interruption of unnecessary tasks. In the opening part, we show our motivations for

parallelizing the tasks. The parallelism is naturally deployed by some particularities of

methodology: the core of assessment is to apply the target algorithm over a list of test

problems; these applications are independent, thus we can start as many applications

as possible at a time; the only constraint is the availability of computational resource.

The second place where parallelism can be deployed is the parameter search; although

its feasibility depends strongly on the search strategy used. Using NOMAD as the

default solver whose parallel working mode is always available, OPAL absolutely has a

parallel solver working mode. Taking the advantage of the independence of two stages,

assessing the target algorithm and searching the parameter space, OPAL also gives

users the possibility of combining two parallelization mechanisms to increase speedup.

We deploy the parallelism into OPAL with three working modes and implement it

with many techniques behind relating to different parallel platforms such as MPI,

LSF or Multi-Threading. However, for OPAL users, parallelism is merely an option in

problem definition; that means users can activate by specifying this option a suitable

value corresponding to the desired strategy. Besides parallelism, OPAL has another

opportunity to accelerate its tuning process with an idea inspired from branch-cutting

techniques. We interrupt the target algorithm as soon as an infeasibility is detected.

For example, if a parameter optimization requires that the target algorithm returns

no error on all 10 test problems, but the target algorithm returned an error on the

third problem, there is no need to continue solving the 7 remaining ones, and the

entire process may be interrupted. In practice, this technique is neither deterministic

nor universal; this means it depends on each concrete problem; it can work with

one problem but not with others. Numerical experiment on a trust-region solver,

called TRUNK is presented. In the discussion, we propose some directions to apply

parallelism more smoothly and more efficiently as well as techniques to increase the

probability of interruptions.

Chapter 6 that is in progress paper describes OPAL as a parameter tuning frame-

work, as a Python package implementing the framework. In addition to systemat-

ically recalling the main characteristics and features, a new feature relating to the
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integration mechanisms of OPAL with other systems is introduced. The new fea-

ture is introduced through a case-study whose numerical results are shown in the

Appendix of this thesis. The case-study shows a cooperation between OPAL and a

classification tool based on SOM (Self-Organizing Map, Kohonen 1997) to solve a

parameter optimization problem. The difficulty is that the set of test problems is so

large that it takes too much time for an assessment, it can also prevent the searching

strategy from heading to a promising region in the parameter space. Thus, we desire

to extract a good subset of test problems for defining the parameter optimization

problem. A SOM-based clustering algorithm is involved in order to get the subset

based on the atomic measures obtained from running the target algorithm with the

default parameter setting. The obtained subset of test problems is then used to de-

fine a surrogate or a parameter optimization subproblem that can guide the search

approaching a promising trajectory within an acceptable restriction on tuning time.

Finally, chapter 7 discusses the contributions of the thesis and suggests possible

extensions of the framework.
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Chapter 4

ALGORITHMIC PARAMETER

OPTIMIZATION OF THE DFO

METHOD WITH THE OPAL

FRAMEWORK

Charles Audet Cong-Kien Dang Dominique Orban

Abstract

We introduce the Opal framework in which the identification of good algorithmic

parameters is interpreted as a black box optimization problem whose variables are the

algorithmic parameters. In addition to the target algorithm, the user of the framework

must supply or select two components. The first is a set of metrics defining the notions

of acceptable parameter values and of performance of the algorithm. The second is

a collection of representative sets of valid input data for the target algorithm. Opal

may be applied to virtually any context in which parameter tuning leads to increased

performance. The black box optimization problem is solved by way of a direct-search

method which provides local optimality guarantees and offers a certain flexibility. We

illustrate its use on a parameter-tuning application on the DFO method from the field

of derivative-free optimization.

This chapter corresponds to the paper published in Audet et al. (2010a)
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4.1 Introduction

Most computational tasks depend on a set of parameters. Such tasks include run-

ning numerical methods on input problems with intent to identify a solution. The

choice of a sparse matrix storage format influences the speed of dot products. The

grain in a grid computing environment directly affects throughput and performance.

The choice of an adequate preconditioner for a given class of problems affects per-

formance and may even make the difference between solving the problem and not

solving it. The list goes on and is not limited to scientific computing applications.

Compilers generate machine code, the efficiency of which depends on loop unrolling

levels, loop blocking and other parameters. Network parameters influence through-

put. A natural question ensues: how can we tune those parameters so as to increase

the performance of our computational tasks? In this paper, we describe a flexible

practical environment in which to express parameter tuning problems and solve them

using nondifferentiable optimization tools. Our environment is independent of the

application area and runs on almost any platform.

Typically, computational tasks do not depend smoothly on their parameters. Jumps

in performance may occur when the value of a parameter is changed. In many cases,

the performance measure cannot be expressed in analytical form. Worse yet, it may

not even be a function, i.e., it may yield different readings when read twice with the

same parameter values. Examples of this phenomenon include cpu time and any

measure that is inherently inaccurate. Computational tasks come in such wide di-

versity and in a multitude of programming languages that any language-dependent

attempt at tackling the parameter-tuning problem is bound to fail. For these reasons,

in the work of Audet and Orban (2006) the problem of identifying locally-optimal pa-

rameters is formulated as a black box optimization problem, i.e., one in which we

seek to maximize performance while at the same time constraining all parameters to

remain within the limits allowed by the application. More precisely, the problem can

be stated as

minimize
p∈Rn

ψ(p) subject to p ∈ P, (4.1)

where p ∈ Rn is the vector of parameters, P ⊆ Rn is the set of acceptable param-

eter values, and ψ is a performance measure. By convention, we state (4.1) as a

minimization problem but it could equally be stated as a maximization problem by

flipping the sign of ψ. A typical property of parameter-turning problems is that ψ
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may be nonsmooth, even discontinuous, and that the set P is not normally described

by smooth functions. The problem is also usually nonconvex. Descent methods or

derivative-free methods that assume the existence of ∇ψ(p) are not viable options to

solve (4.1) since we must rely on function values only. For these reasons, direct meth-

ods are employed—see for instance Kolda et al. (2003) for an overview and pointers

to the literature. Besides only requiring the evaluation of ψ at a number of different

values of p, a well-chosen direct method will offer certain optimality guarantees upon

termination, which is in contrast with heuristic methods.

In a typical situation, inexperienced users trust the default parameter settings and

never change them. Even the most experienced users may find it challenging to set

parameters to better values for the problem at hand. The task is made more arduous

by the fact that simple algorithms can depend on 5 to 20 parameters or more. This

combines with the computational cost of evaluating the worthiness of a given set of

parameter values to make it impossible to thoroughly explore the search space.

In the black box optimization framework of Audet and Orban (2006), two ques-

tions must be answered before parameter tuning can take place:

1. “What are the acceptable parameter values?” This question is usually partially

answered by the specifications of the computational task, e.g., the step length

in a linesearch may not become negative. The user may include additional con-

ditions for specific purposes. For instance, the number of iterations performed

by the method must not exceed a specified threshold and it is understood that

this number of iterations depends implicitly on the parameter settings.

2. “In what sense is a set of parameter values better than another?” This question

defines the notion of performance. Simple performance measures are the total

cpu time, the number of iterations, the number of linear systems solved, the

success or failure to solve a given problem, etc. We call such measures atomic

because they are normally read directly from the output of the computation.

More elaborate, compound, measures are typically used, such as weighted com-

binations of atomic measures.

In this paper, we implement and extend the framework of Audet and Orban (2006)

by generalizing the black box formulation of the parameter tuning problem, and by

providing an environment that is flexible enough to encompass a wide range of appli-

cation areas while at the same time retaining ease of use and efficiency. Our extension

to the framework consists in the utilization of atomic and compound measures to de-
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fine the objective and constraint functions, and in flexibility in the selection of the

optimization solver.

Our environment is written in the Python programming language which is easy

to learn by example for the newcomer, natural to use for the fluent programmer, and

flexible and powerful for the advanced user. Some distinctive aspects of our procedure

are that it is non intrusive, it requires no modification of the code or algorithm being

tuned, and it does not require knowledge of the internals of this code or algorithm

or of the programming language in which it is written. We illustrate the use of this

environment on a test case from the field of derivative-free optimization.

The use of optimization methods for stability analysis of computational methods

may be traced back to the mid-70’s. In Miller (1975) and Larson and Sameh (1980)

languages are devised in which numerical algorithms are to be implemented. Upon

compilation, a descent method exercises the algorithm by varying its input so as to

maximize an error measure with the intent of assessing the numerical stability of the

method as implemented. The programming languages impose a number of stringent

rules on the implementation, which, for instance, may not make use of loops.

The more recent literature on parameter tuning include the description of the

calibra system of Adenso-Diaz and Laguna (2006), based on fractional factorial

experimental designs coupled with a local search. Major limitations of this system

are that it only handles up to five parameters and does not offer optimality guarantees.

On the contrary, ParamILS (Hutter et al., 2007) avoids the pitfalls of over-training

by taking on a stochastic approach and provably converges to a local optimum in a

statistical sense.

Some parameter-tuning applications have had a major impact on the efficiency

of modern numerical methods. The best example is surely the ATLAS 1 library of

automatically-tuned linear algebra software of Whaley and Dongarra (1998) which

adds a parameter-tuning layer over the standard BLAS library of critical linear algebra

kernels (Lawson et al., 1979; Blackford et al., 2002). The addition of such a parameter-

tuning layer is a paradigm termed AEOS—Automated Empirical Optimization of

Software (Whaley et al., 2001). The heuristic search used in the ATLAS is a coordinate

search. The report of Seymour et al. (2008) provides a comparison of various search

strategies, not including direct search, to the study of automatic code optimization.

The PHiPAC project Bilmes et al. (1998) aims to provide near-peak performance

1. http://math-atlas.sourceforge.net

http://math-atlas.sourceforge.net
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in linear-algebra kernels by way of parametrized code generators. The parametrized

code is then explored by heuristic search procedures. Similar functionality is provided

by the OSKI library (Vuduc et al., 2005).

The black box optimization framework for the identification of locally-optimal

algorithmic parameters proposed by Audet and Orban (2006) was used to tune the

four parameters of a trust-region solver for unconstrained optimization with respect

to two performance measures—the total computing time and the number of function

evaluations on test problems taken from the CUTEr collection (Gould et al., 2003a).

Using a surrogate function to guide the optimization, the authors identify parameter

values that reduce the computing time by approximately 25% over the default values.

The final parameter values obtained are very close to those identified by a nearly-

exhaustive exploration of the search space (Gould et al., 2005). This gives us reason

to believe that there is a lot to be gained in using proven optimization methods backed

by a solid convergence theory to tackle parameter-tuning applications.

The rest of this paper is organized as follows. Section 4.2 describes the relevance

of black box optimization and direct-search methods to parameter-tuning problems

and the various ingredients necessary to completely specify a given application. Sec-

tion 4.3 covers the details of our parameter-tuning package. In §4.4 we work through

a practical application in which the parameters of a derivative-free solver for opti-

mization are optimized. We finish with a discussion of further research in §4.5.

4.2 Optimization of Algorithmic Parameters

Optimizing parameters is tightly linked to the type of input that will be fed to the

algorithm or computational task that is to be carried out. For a given collection of sets

of input data (such as for example, test problems), certain locally-optimal parameter

values may be found but these may differ if the collection of sets of input data is

changed. Therefore, the input data is a defining component of the parameter-tuning

problem. For the purposes that the user has in mind, adequate input data must be

used and the final parameter values must be interpreted in the context of this input

data.

Throughout the remainder of this paper we restrict our attention to real parame-

ters and use the following notation. We denote by A the algorithm whose parameters

are to be optimized, by L a finite collection of representative sets of input data, such
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as test problems, for Algorithm A and by p ∈ Rn the vector of parameters that we

wish to optimize. Finally, let P ⊆ Rn denote the domain from which p must be

selected. The definition of P usually follows from the specification of Algorithm A.

For future reference, a (very) high-level structure of our parameter optimization

framework is illustrated in Figure 4.1.

Initial
parameter values

Black box Direct-search solver
Optimal
parameter values

Parameter optimization problem

Parameter values
Model values

Figure 4.1 Schematic Algorithmic Parameter Optimization Framework

4.2.1 Black Box Construction

In the following, and for consistency with our implementation described in §4.3,

a black box optimization problem representing a parameter-tuning problem will be

called a model. We divide the specification of the model into two components. The

first component is the model structure and specifies the fundamental abstract aspects

of the problem: the performance measure and the constraints. The model structure

is the skeleton of the problem. The same structure might apply to various parameter-

tuning problems. In this sense, it does not fully characterize the model until we

specify the model data, which is the second component. It specifies which algorithm

or computational task is concerned, which collection of sets of input data will be fed

to the computational task, as well as a description of the parameters of this task and

a description of P.

In order to define a performance measure and constraints, it is important to de-

scribe and collect all the relevant measures reported by our computational task when

it is fed a valid set of input data. Those measures usually provide statistics on the run

and an assessment of the quality of the final result. For instance, a typical algorithm

for smooth optimization, when fed a test problem, will return the computing time, the
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number of iterations, the number of objective and constraint functions evaluations,

the number of linear systems solved, the accuracy of the solution identified, an exit

code, etc. Such atomic measures are readily accessible from the solver’s output. It is

those atomic measures that are used to define a performance measure and constraints

in our model.

For a given test problem ` ∈ L, the i-th atomic measure may be viewed as a

function of the parameters of the algorithm or computational task, i.e., as a function

p 7→ µi`(p) from Rn into R ∪ {∞}. We gather the, say, q atomic measures reported

by Algorithm A into the vector-valued function µ` : Rn → (R ∪ {∞})q. A run of

Algorithm A essentially gives access to a measure matrix from which compositions

of atomic measures—or compound measures—may be constructed. For example, if

the i-th measure is the cpu time, a typical performance measure is then ψ(p) =∑
` α`µ

i
`(p) for certain weights α` ≥ 0. Arbitrary compound measures may be used

to define performance and constraints in the model without concern for continuity or

smoothness.

The black box optimization problem may now be stated as

minimize
p

ψ(p)

subject to p ∈ P

ϕ(p) ∈M,

(4.2)

where ψ and ϕ = (ϕ1, . . . , ϕs) are compound measures and M is a user-defined

feasible set. For example, the user may wish to minimize the cpu time ψ(p) while

requiring that at least 90% of the test problems be solved to within an accuracy of

10−6. Problem (4.2) generalizes problem (1) of Audet and Orban (2006) by allowing

constraints involving atomic and compound measures, rather than simply allowing

the domain to be entirely defined by P.

The components of the black box are thus as follows. The user supplies two ingre-

dients: The model structure and the model data. The first represents the black box

problem (4.2) while the second contains Algorithm A along with its full specification

and a collection L of test problems.
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4.2.2 Direct Search Algorithms

The nonsmooth optimization problem (4.2) represents the question of identifying

good algorithmic parameters. It is nonsmooth because the evaluation of the objec-

tive function and constraints relies on performance measures obtained by launching

algorithm A on a collection of test problems. It is worth repeating that technically,

the measures may not even be functions since, for example, the cpu time required to

solve a problem may differ slightly from one run to another.

As suggested by Figure 4.1, problem (4.2) is treated as a black box. Direct search

algorithms, designed for nonsmooth optimization problems, rely on function values

only at sample points to search for an optimal solution. They do not require knowl-

edge or even existence of any derivatives to explore the space of variables. In the

present work, we use the Mesh Adaptive Direct Search (Mads) algorithm (Audet and

Dennis, Jr., 2006). The reasons motivating our choice are that Mads is supported

by a hierarchical convergence analysis based on Clarke’s nonsmooth calculus (Clarke,

1983), and has been successfully applied to parameter-optimization problems (Audet

and Orban, 2006).

In order to solve (4.2), a Mads algorithm generates trial points on an underlying

mesh in the domain space. A mesh is an enumerable subset of the domain space

whose coarseness is driven by an iteration-dependent mesh size parameter ∆k > 0.

At each iteration, the algorithm attempts to improve the current best solution, called

the incumbent, by evaluating the objective and constraint functions at finitely many

trial points on the mesh. Trial points that violate the constraints are either simply

rejected from consideration, or handled by a progressive barrier (Audet and Dennis,

Jr., 2009). This last strategy allows an infeasible starting point. If an improved

solution is found, the mesh size can be increased to allow sampling further away and

thus promote fast progress towards promising regions. Otherwise, the incumbent is a

local minimizer with respect to the neighbouring poll points. The mesh size parameter

is reduced and another cycle begins on the finer mesh.

As the algorithm unfolds, the mesh size parameter satisfies lim inf ∆k = 0 under

the assumption that all trial points remain in a bounded set. Thus, regardless of the

smoothness or lack thereof of the functions defining the problem, Mads generates

a convergent subsequence of trial points, each of which is a local mesh-minimizer

in a certain sense, on a sequence of meshes that become infinitely fine. Adding

more assumptions on the smoothness leads to a hierarchical convergence analysis.
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If the objective function is Lipschitz continuous, the Clarke generalized derivatives

are nonnegative in the hypertangent directions to the feasible region. The analysis

also states that if the objective is strictly differentiable, and if the domain is regular,

then the limit point is a KKT stationary point. The interested reader can consult

Audet and Dennis, Jr. (2006) for a complete description of Mads and its convergence

analysis.

4.3 The OPAL Package

We propose the Opal package as an implementation of the framework detailed

in the previous sections. The name stands for Optimization of Algorithms. In this

initial version, only real algorithmic parameters are allowed, although our framework

makes provision for integer and categorical parameters. Work is under way to permit

usage of those more general parameter types.

Computational tasks in need of parameter tuning come in infinite variety on widely

different platforms and in vastly different environments and languages. It seems à

priori arduous to design a parameter-tuning environment that is both sufficiently

portable and sufficiently flexible to accommodate this diversity. Moreover not all

users are computer programmers and therefore any general tool seeking to meet the

above flexibility requirements must be as easy to use as possible without sacrificing

expandability and advanced usage. In our opinion, the latter constraints rule out

all low-level programming languages. There remains a handful of options that are

portable, flexible, expandable and user friendly. Among those, our option of choice is

the Python programming language 2.

Python is an open-source scripting language in constant development which has

evolved through its thriving user community to become a standard. It is available

on almost any imaginable platform. Users can write Python programs much in the

same way as shell scripts, batch scripts or Apple scripts, or elect to use the full power

of object-oriented programming. A wide range of numerical and scientific extensions

is available for Python. In addition, Python is a full-fledged programming language

with an extensive standard library.

2. http://www.python.org
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4.3.1 The OPAL Structure

Within the Opal Python environment for algorithmic parameter optimization,

a model is represented by the same two ingredients as described in §4.2: a model

structure and model data. Once a model has been defined, it may be solved with any

direct-search solver available. The whole environment is decomposed into a number

of modules that help users describe a model in a natural manner. There are thus two

main components to the parameter-tuning problem: the Black-Box Model and the

Direct-Search Solver. Those two components of Opal along with a few other can be

combined to form a fully-specified parameter optimization problem.

For now, the Direct-Search Solver component contains a single specific instance:

the NOMAD implementation (Abramson et al., 2004) of the Mads family of algo-

rithms.

The Black-Box Model component contains the two main ingredients that consti-

tute a model. The Model Structure component lets users specify a high-level descrip-

tion of Problem (4.2). It gives access to atomic measures and gives the possibility

to build arbitrary compound measures. The Model Data component contains the

problem-specific information necessary to start solving (4.2). It allows users to spec-

ify an algorithm from the Algorithms component. It lets users choose corresponding

input data from the Test Problems component. Finally, it offers a selection of pre-

programmed compound measures that are likely to be useful in many contexts, such

as the total cpu time, the total number of function evaluations, and the termination

code, to name a few.

Opal is build with easy expandability in mind thanks to object-oriented pro-

gramming. Users can define new algorithms, compound measures, test data sets and

solvers by specializing—or subclassing—high level conceptual classes that abstract

such objects.

4.3.2 Usage of OPAL

We now briefly describe, by way of an example, a few implementation details

regarding some of the above-mentioned components. This will give a glimpse of the

conciseness of working examples and of how the power of the Python language is

harnessed in Opal. The example concerns the algorithm DFO described in the next

section. Knowledge of DFO is not necessary however to work through the example.
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The final code is given in Listing 4.1. As is customary in Python, but not mandatory,

we gather all import commands at the top of our script. Note that thanks to object-

oriented constructs and Python’s human-readable syntax, the code is relatively close

to natural language and is intuitive. We now describe its various statements.

Listing 4.1 Minimal Realistic Example

1 from opal.Algorithms import DFO

2 from opal.TestProblemCollections import CUTEr

3 from opal.Solvers import NOMAD

4 from opal import StatisticalMeasure as stats

5 from opal import ModelStructure , ModelData , BlackBox

6

7 # Select real parameters for DFO

8 params = [par for par in DFO.parameters if par.is_real]

9

10 # Select tiny unconstrained HS problems

11 probs = [pb for pb in CUTEr.HS if pb.nvar <=5 and pb.ncon ==0]

12

13 # Build (unconstrained) model structure and model data

14 data = ModelData(DFO , probs , params)

15 structure = ModelStructure(objective=stats.average(’CPU’))

16

17 blackbox = BlackBox(modelData=data , modelStructure=structure)

18 NOMAD.solve(blackbox)

An important component is the parameter. In Opal, parameters are represented

by abstract objects that have a name, a kind and a default value. Parameters are

intrinsically tied to the computational task whose performance is to be optimized. In

Opal, computational tasks are generically referred to as algorithms.

The DFO object exposed in the current workspace by the import command on line 1

is a compound object containing certain members. The set of parameters associated

with DFO is one such member and is accessible by typing DFO.parameters. If we

wanted to work on all parameters of DFO irrespective of their kind, we would supply

DFO.parameters as an argument when we build the model data. However, the Python

syntax lets us easily extract parameters of interest only using list comprehension as in

the statement of line 8. As expected, this statement builds a list of the real parameters

only. Another, longer to type, possibility would be to select the parameters by name.

The only missing ingredient to the model data is the set of input test problems.

Because DFO is an optimization algorithm, we select optimization test problems from

the Hock and Schittkowski (“HS”) collection (Hock and Schittkowski, 1981). Since the
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latter is an integral part of the CUTEr collection (Gould et al., 2003a), it is defined as

a subcollection of the CUTEr problems in Opal. The CUTEr problems are imported

via the command of line 2 and the subcollection of HS problems, being a member of

CUTEr, is accessed via CUTEr.HS. For our minimal example, we illustrate another usage

of list comprehension to select only a few HS problems in line 11. This effectively

restricts our test set to unconstrained HS problems that have at most 5 variables. We

have all the elements to assemble our model data. Line 5 imports the definition of

the abstract template representing the data of a model, along with similar templates

for the model structure and the black box solver, to be used later. Line 14 creates an

instance by populating the abstract template with our selections.

The model structure of the minimal example does not have any constraints, for

simplicity, aside from those defining the set P. The latter set is defined in the speci-

fications of the DFO object. The objective function of the problem is chosen in line 15

to be the average time. This simple predefined measure was imported on line 4. Note

that the ModelStructure template was imported at the same time as ModelData

above. The final step is to use our complete model to define a black box, and solve it

using NOMAD. This is performed in lines 17 and 18.

In the second part of this paper, we work through a more realistic parameter tuning

of DFO and compare our results with those corresponding to default parameters.

4.4 Application to Derivative-Free Optimization

In this section, we illustrate the usage of our software package to determine suitable

parameter values in the derivative-free optimization solver DFO (Conn et al., 1998).

4.4.1 General Description of DFO

DFO is the implementation of an algorithm for constrained and unconstrained

problems which does not rely upon availability of the derivatives of the objective and

constraint functions. It does however assume that they exist. The method is said to

be model-based because at each iteration, a quadratic model of the objective function

is computed and approximately minimized within a trust region. In the presence of

linear constraints or simple bounds, the model is minimized over the intersection of

the trust region and the portion of the feasible set described by those constraints.
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If more general constraints are present and are not simply true/false constraints,

they are combined with the objective function by way of a penalty term. The latter

depends on a penalty parameter which is updated as the algorithm proceeds. DFO

also allows boolean constraints which simply indicate whether a given point is feasible

or not, without returning any measure of infeasibility.

The premise of DFO is that an evaluation of the objective and nonlinear constraints

is expensive enough that building a quadratic model from an interpolation set and

minimizing this model over a trust region has negligible cost. At each iteration,

the algorithm stores a set of feasible points arranged so that computing a quadratic

interpolant is a well-posed problem—this set is said to be poised.

4.4.2 Two DFO Parameter Optimization Problems

DFO depends on the set of algorithmic parameters described in Table 4.1. We

restrict our attention to the real parameters, holding the others fixed at their default

value and use the tools described in the previous sections to identify parameter values

that approximately minimize various performance measures.

Table 4.1 Algorithmic Parameters of DFO.

Name Type Domain Purpose
maxit integer N Maximum number of iterations
maxnf integer N Maximum number of evaluations
stpcrtr categorical {1, 2} Stopping criterion
delmin real R+ Smallest trust-region radius
stpthr real R+ Slow progress threshold
delta real R+ Initial trust region radius
cnstol real R+ Feasibility tolerance
pp real R+ Initial penalty parameter
scale categorical {True,False} Scaling

We use sets of test problems extracted from the CUTEr (Gould et al., 2003a)

and HS collections (Hock and Schittkowski, 1981). The sets consist of equality-

constrained, inequality-constrained and unconstrained problems, respectively. The

name and dimension of these problems are presented in Tables 4.2 and 4.3. Our test

problems are the same as those of Conn et al. (1998) except for some differences in
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the selection of HS problems. Observe that in the latter paper, problem HS26 is

misclassified as an inequality-constrained problem. Furthermore, our tests differ from

those of Conn et al. (1998) as we use IPOPT (Wächter and Biegler, 2006) to minimize

the quadratic model at each iteration. In our experiments, the test problems are

partitioned into two sets, one to optimize the parameters—the training set—and the

other for cross-validation tests.

Table 4.2 Unconstrained problems from the CUTEr collection; n is the number of
variables.

Name n Name n Name n Name n
AKIVA 2 ALLINITU 4 BEALE 2 BIGGS6 6
BOX3 3 BRKMCC 2 BROWNAL 10 BROWNBS 2
BROWNDEN 4 BRYBND 10 CLIFF 2 CRAGGLVY 10
CUBE 2 DENSCHNA 2 DENSCHNB 2 DENSCHNC 2
DENSCHND 3 DENSCHNE 3 DENSCHNF 2 DIXMAANK 15
DJTL 2 DQRTIC 10 EIGENALS 6 ENGVAL2 3
EXPFIT 2 FMINSURF 16 GROWTHLS 3 GULF 3
HAIRY 2 HATFLDD 3 HATFLDE 3 HEART6LS 6
HEART8LS 8 HELIX 3 HIELOW 3 HILBERTA 2
HILBERTB 10 HIMMELBB 2 HIMMELBF 4 HIMMELBG 2
HIMMELBH 2 HUMPS 2 JENSMP 2 KOWOSB 4
LOGHAIRY 2 MANCINO 10 MARATOSB 2 MEXHAT 2
MEYER3 3 MOREBV 10 OSBORNEA 5 OSBORNEB 11
OSCIPATH 15 PALMER1C 8 PALMER1D 7 PALMER2C 8
PALMER3C 8 PALMER4C 8 PALMER5C 6 PALMER6C 8
PALMER7C 8 PALMER8C 8 PARKCH 15 PFIT1LS 3
PFIT2LS 3 PFIT3LS 3 PFIT4LS 3 POWER 10
ROSENBR 2 S308 2 SINEVAL 2 SISSER 2
SNAIL 2 SROSENBR 10 STRATEC 10 TRIDIA 10
VARDIM 20 VIBRBEAM 8 WATSON 12 WOODS 12
YFITU 3 ZANGWIL2 2

For conciseness, we will use the following notation when referring to the test

problems and parameters. The list of test problems is denoted by L, and will

either contain all 82 unconstrained problems, or the 125 constrained ones. Let

p = (p1, p2, p3, p4, p5) = (delmin, stpthr,cnstol,delta,pp) denote the real-valued

parameters of DFO. Following the recommendations from the DFO User’s Manual
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Conn et al. (2009a), we define the feasible region to be the set P of vectors p ∈ R5

that satisfy the following linear and bound constraints

10−8 ≤ p1 ≤ 10−3, 0 ≤ p2 ≤ 1, 0 ≤ p3 ≤ 0.1, p1 ≤ p4, and 1 ≤ p5.

The default parameter values are p0 = (10−4, 10−3, 10−5, 1, 103).

Note that while the DFO documentation does not explicitly recommend a value

for p5 = pp, the example driver sets it to 1000. We thus selected the latter value as

default.

We next define atomic measures associated to a specific test problem ` from one

of the test sets L presented in the above tables.

– µEVAL
` : P → N returns the number of function evaluations required by DFO to

solve problem ` with parameters p,

– µSOLVED
` : P→ {−9,−8, . . . ,−1, 0, 1, 2} returns the DFO exit code when solving

problem ` with parameters p. A zero exit code means that the problem ` was

solved successfully. All other exit codes indicate a failure,

– µQUALITY

` : P → R ∪ {+∞} returns +∞ if µSOLVED
` 6= 0. Otherwise, it returns

the final objective function value produced by DFO using the parameters p on

problem `.

From the atomic measures, we define the following compound measures to con-

struct our objective function and constraints. The proportion of problems solved

is

ϕSOLVED(p) =
|S(p)|
|L|

∈ [0, 1],

where S(p) = {` ∈ L | µSOLVED
` (p) = 0} is the set of indices of problems solved when

using parameter p. For comparison with the default values, we also define S(p, p0) =

S(p)∩S(p0) to be the set of problems successfully solved with both parameters p and

p0.

The average normalized reduction in the number of evaluations with respect to the

default parameter p0 on problems that were successfully solved with both parameters

p and p0 is written

ϕEVAL(p) =
1

|S(p, p0)|
∑

`∈S(p,p0)

µEVAL
` (p)− µEVAL

` (p0)

µEVAL
` (p) + µEVAL

` (p0)
.
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Table 4.3 Constrained problems from the Hock-Schittkowski collection. Here, n is the
number of variables and m is the number of constraints.

Name n m Name n m Name n m Name n m
HS1 2 0 HS10 2 1 HS100 7 4 HS100LNP 7 2
HS100MOD 7 4 HS101 7 5 HS102 7 5 HS103 7 5
HS104 8 5 HS105 8 1 HS106 8 6 HS107 9 6
HS108 9 13 HS109 9 10 HS11 2 1 HS110 10 0
HS111 10 3 HS111LNP 10 3 HS112 10 3 HS113 10 8
HS114 10 11 HS116 13 14 HS117 15 5 HS118 15 17
HS119 16 8 HS12 2 1 HS13 2 1 HS14 2 2
HS15 2 2 HS16 2 2 HS17 2 2 HS18 2 2
HS19 2 2 HS2 2 0 HS20 2 3 HS21 2 1
HS21MOD 7 1 HS22 2 2 HS23 2 5 HS24 2 3
HS25 3 0 HS26 3 1 HS268 5 5 HS27 3 1
HS28 3 1 HS29 3 1 HS3 2 0 HS30 3 1
HS31 3 1 HS32 3 2 HS33 3 2 HS34 3 2
HS35 3 1 HS35I 3 1 HS35MOD 3 1 HS36 3 1
HS37 3 2 HS38 4 0 HS39 4 2 HS3MOD 2 0
HS4 2 0 HS40 4 3 HS41 4 1 HS42 4 2
HS43 4 3 HS44 4 6 HS44NEW 4 6 HS45 5 0
HS46 5 2 HS47 5 3 HS48 5 2 HS49 5 2
HS5 2 0 HS50 5 3 HS51 5 3 HS52 5 3
HS53 5 3 HS54 6 1 HS55 6 6 HS56 7 4
HS57 2 1 HS59 2 3 HS6 2 1 HS60 3 1
HS61 3 2 HS62 3 1 HS63 3 2 HS64 3 1
HS65 3 1 HS66 3 2 HS67 3 14 HS68 4 2
HS69 4 2 HS7 2 1 HS70 4 1 HS71 4 2
HS72 4 2 HS73 4 3 HS74 4 5 HS75 4 5
HS76 4 3 HS76I 4 3 HS77 5 2 HS78 5 3
HS79 5 3 HS8 2 2 HS80 5 3 HS81 5 3
HS83 5 3 HS84 5 3 HS85 5 21 HS86 5 10
HS87 6 4 HS88 2 1 HS89 3 1 HS9 2 1
HS90 4 1 HS91 5 1 HS92 6 1 HS93 6 2
HS95 6 4 HS96 6 4 HS97 6 4 HS98 6 4
HS99 7 2

By convention, we set ϕEVAL(p) = +∞ when S(p, p0) = ∅. We average ϕEVAL(p)

over the problems successfully solved, since the in the course of the direct method
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iterations, we may encounter trial parameters for which not all problems can be solved.

It would however be desirable that all, or sufficiently many, problems be solved with

the optimized parameters.

Similarly, the average normalized solution quality improvement with respect to

the default parameter p0 is expressed as

ϕQUALITY(p) =
1

|S(p, p0)|
∑

`∈S(p,p0)

µQUALITY

` (p)− µQUALITY

` (p0)

|µQUALITY

` (p)|+ |µQUALITY

` (p0)|
.

A negative value of ϕQUALITY(p) indicates that, on average, the parameters p produce

an improvement over p0. If ever both the numerator and denominator of the `-th

term of the sum vanish, we reset this term to zero.

The above compound measures allow us to formulate the two following parameter

tuning problems.

minimize
p∈P

ϕEVAL(p)

subject to ϕSOLVED(p) = 1,

ϕQUALITY(p) ≤ 0,

p2 = p0
2,

p5 = p0
5,

(4.3)

minimize
p∈P

ϕEVAL(p)

subject to ϕSOLVED(p) = 1,

ϕQUALITY(p) ≤ 0,

p2 = p0
2,

p3 = p0
3

(4.4)

Problem (4.3) will be used to tune parameters on the unconstrained test problems

of Table 4.2 while (4.4) will be used on the constrained problems of Table 4.3. In

both problems we fix p2 = stpthr to its default value because this parameter is

a stopping tolerance for DFO. Allowing it to vary while minimizing the number of

evaluations would not make sense, since the optimizer would simply increase its value.

For the same reason, the feasibility tolerance p3 = cnstol is fixed in (4.4). However,

p3 also plays other roles related to management of the trust region in the DFO

implementation, and this is why it is allowed to vary in (4.3). Since the penalty

parameter p5 = pp has no effect for unconstrained problems, we fix it in the constraints

of (4.3) and thereby reduce the dimension of the search space.
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4.4.3 Numerical Results

We perform three sets of numerical experiments. In each experiment, the test

problem set is divided into two subsets: a training subset and a cross-validation

subset. We apply the Opal framework to the training set to identify good algorithmic

parameters. The quality of those parameters is then measured on the cross-validation

subset. In order to determine what proportion of problems should be considered in the

training phase, we select training subsets consisting in 50%, 25% and 10% of the test

problems. The training problems are selected by listing all problems alphabetically

(as in Tables 4.2 and 4.3) and selecting every second, fourth or tenth problem. The

remaining 50%, 75% and 90% of the problems constitute the cross-validation subset.

The optimization in the training phase is performed with the NOMAD direct-

search method, using all default parameters. The termination criteria is set to 500

evaluations, i.e., DFO is launched on the training set at most 500 times. In addition,

NOMAD performs an automatic diagonal scaling of the variables by dividing p ∈ R5

by (10−5, 1.0, 1.0, 10−4, 102).

Table 4.4 illustrates the training phase. The table shows the default and optimized

parameters for the unconstrained and constrained cases. The column bb gives the

number of black-box evaluations—i.e., the number of times that ϕEVAL was evaluated—

that were necessary to identify the final parameter values. Recall that one evaluation

of ϕEVAL requires a run of DFO on each training problem.

Table 4.4 Optimized Parameters from Training Phase for (4.3) on Unconstrained Test
Problems (left) and for (4.4) on Constrained Test Problems (right). For each training
phase, the column bb gives the number of black-box evaluations.

delmin cnstol delta bb delmin delta pp bb

Deflt 1.000e−4 1.000e−5 1.000e+0 1.000e−4 1.000e+0 1.000e+3

50-50 1.075e−4 2.225e−4 9.688e−1 339 9.984e−4 1.265e−1 1.000e+0 474

25-75 5.250e−5 2.500e−5 1.250e+0 318 3.294e−4 1.785e+0 1.051e+0 302

10-90 2.041e−6 4.600e−4 1.000e+0 325 9.994e−4 1.722e−1 1.729e+0 420

In both the unconstrained and constrained cases, a locally optimal parameter

set p∗ is identified and is feasible for (4.3) and (4.4), i.e., ϕSOLVED(p∗) = 1 and

ϕQUALITY(p∗) ≤ 0. In the unconstrained case, the parameters generated during the
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training phase differ only slightly from the default ones. There is however no clear

tendency. For each of the three parameters, there is a training case where it is in-

creased, and another where it is decreased. This suggests that the default parameter

recommendations are good for unconstrained problems.

In the constrained case, the delmin parameter is increased by a factor ranging

from 3 to 10 in all three training phases. The delta parameter is decreased in two

cases, and increased in another. The most noticeable variation is to the penalty

parameter. In all three cases, it is reduced by three orders of magnitude.

In order to measure the quality of the sets of parameters given in Table 4.4, we

run DFO on the corresponding cross-validation subsets. Tables 4.5 and 4.6 summarize

the comparison with the default parameters. The tables report the objective function

value ϕEVAL as well as the constraint value ϕQUALITY for both the training and cross-

validation phases.

Table 4.5 Cross-Validation Results on Unconstrained Test Problems

Training Cross-validation

ϕEVAL ϕQUALITY ϕEVAL ϕQUALITY

50-50 −5.68e−2 −5.22e−3 6.96e−4 1.16e−2

25-75 −4.95e−2 −1.89e−2 2.45e−3 1.27e−1

10-90 −1.21e−1 −6.82e−2 4.22e−3 −1.91e−2

Table 4.6 Cross-Validation Results on Constrained Test Problems

Training Cross-validation

ϕEVAL ϕQUALITY ϕEVAL ϕQUALITY

50-50 −2.91e−1 −7.73e−2 −2.91e−1 −8.04e−2

25-75 −3.04e−1 −1.60e−1 −1.46e−1 −2.75e−1

10-90 −2.94e−1 −1.03e−1 −2.53e−1 −1.18e−1

The function values values ϕEVAL and ϕQUALITY are all negative on the training sets.

This is not surprising, since the first function was the objective, and the second is con-

strained to be non-positive. In the cross-validation phase on unconstrained problems,
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some values are positive, but very small, and others are negative, which suggests

that both sets of parameters produce a comparable average normalized number of

evaluations. In the constrained case, all values are negative which suggests that the

optimized parameters yield an improvement over the default values.

The quantitative data of Tables 4.5 and 4.6 are adequately complemented by the

more qualitative performance profiles (Dolan and Moré, 2002). If we denote by p0 the

default parameters and by p∗ the optimized parameters, the profile corresponding to

p ∈ {p0, p∗} represents the step function

α 7→ 1

|LC|
·
∣∣{` ∈ LC such that µEVAL

` (p) ≤ αmin
[
µEVAL

` (p0), µEVAL

` (p∗)
]}∣∣ ,

where α ≥ 1 and LC is the relevant cross-validation subset. For α = 1, the above

value is the proportion of problems on which the method with parameters p was the

best in terms of number of function evaluations. For α = 2, we obtain the proportion

of problems on which the method with parameters p was within a factor 2 of the best.

For α→∞, we obtain the proportion of problems solved.

Figures 4.2 and 4.3 show performance plots for the optimized parameters obtained

from the three training phases. Because the objective function of (4.3) and (4.4)

average the number of evaluations over the cross-validation subset, a fourth plot is

introduced for a finer look at the quality of the optimized parameters. The vertical

axis refers to a proportion of the cross-validation test problems. The horizontal axis

refers to the values

ρEVAL

` (p∗) =
µEVAL
` (p∗)− µEVAL

` (p0)

µEVAL
` (p∗) + µEVAL

` (p0)

present in the sum used in the definition of the compound measure ϕEVAL(p∗). From

the 10–90 training curve of Figure 4.2(d), we see that ρEVAL
` (p∗) ≤ 0 for approximately

60% of the unconstrained test problems, i.e., the optimized parameters did equally

well or better than the default ones on 60% of the cross-validation problems, and

this results from tuning the parameters on a training sample of 10% of the problems.

Notice that this value of 60% can also be seen on the vertical axis of Figure 4.2(c). Of

course, exactly which 10% of the problems appear in the training subset influences the

results and as a general rule, a representative subset should be chosen. The 50–50 and

25–75 curves do not yield as much improvement as one might expect and suggest that

there is no significant difference between the performance of the default and optimized
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(d) Comparison of the Number of Evaluations

Figure 4.2 Profiles for (4.3) on Each Cross-Validation Set.

parameters in the unconstrained case. The leftmost part of Figure 4.2(d) indicates

that the number of evaluations required by DFO with the optimized parameters is less

than or equal to that with the default parameters on 60% of the problems. Conversely,

the number of evaluations required with the default parameters was less than or equal

to that with the optimized ones on 85% of the problems. We deduce that both variants

of DFO required the same number of evaluations on 45% of the test problems, the

default parameters were (strictly) preferable on 40% and that the optimized ones are

(strictly) preferable on only 15% of the problems.

On the other hand, Figure 4.3 is more clear-cut and suggests a marked difference

in quality between p0 and p∗. In all three performance plots, the optimal parameters
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clearly dominate the default ones. Figure 4.3(d) confirms that for all three training

scenarios, the optimized parameters (strictly) improved the number of evaluations on

more than 70% of the cross-validation problems.

As this case study illustrates, black-box optimization offers a convenient, non-

intrusive, mechanism for parameter tuning. In all cases, the choice of training set

influences the results directly. Moreover, the precise formulation of the performance

criterion is determinant and dictates how the results should be interpreted.
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4.5 Discussion

The Opal system is a general framework for algorithmic parameter optimization

and is an implementation of the groundwork laid out in Audet and Orban (2006).

Opal effectively acts as a modeling and solution environment for parameter tuning

problems. The modeling stage involves the declaration of the algorithm to be tuned

and the definition of meaningful metrics used to formulate the notions of performance

and of feasibility of parameters. The solution phase consists in selecting an appropri-

ate black-box optimizer and adequate sets of input data. All such tasks are performed

by way of natural Python commands. The lack of assumptions on the nature of the

algorithm being tuned and on the input data provides maximum flexibility and we

hope that Opal will be used in a wide range of parameter-tuning applications.

We have studied the optimization of some of the DFO parameters. Our study

confirms that the default values proposed in the documentation are well-chosen in

the unconstrained case. If the training set used to tune the parameters is too small

or ill chosen, then the resulting parameters may not perform well on a larger or more

representative test set. On the constrained optimization problems, our study iden-

tified alternate DFO parameters that lead to a important decrease in the number of

evaluations on the cross-validation sets. In all cases, the direct-search solver required

between about 300 and 500 black-box evaluations, which may be expensive in some

applications. Current research is focusing on decreasing this number with the choice

of a better initial guess than the default parameter values. A good initial guess may

for instance be identified via a simplified version of (4.3) and (4.4).

At present Opal is only able to work with real parameters but the generalization

to integer and categorical parameters is the subject of ongoing research. Additional

ongoing improvements include the use of surrogates to guide the local search in hopes

to identify promising regions or search directions quickly. An example of such a surro-

gate in the context of tuning the parameters of another optimization algorithm is given

in Audet and Orban (2006). Finally, identifying robust locally-optimal parameters—

i.e., for which small perturbations lead to comparable performance—remains an open

question.
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Chapter 5

EFFICIENT USE OF

PARALLELISM IN

ALGORITHMIC PARAMETER

OPTIMIZATION

APPLICATIONS

Charles Audet Cong-Kien Dang, Dominique Orban

Abstract

In the context of algorithmic parameter optimization, there is much room for effi-

cient usage of computational resources. We consider the Opal framework in which

a nonsmooth optimization problem models the parameter identification task, and is

solved by a mesh adaptive direct search solver. Each evaluation of trial parameters

requires the processing of a potentially large number of independent tasks. We de-

scribe and evaluate several strategies for using parallelism in this setting. Our test

scenario consists in optimizing five parameters of a trust-region method for smooth

unconstrained minimization.

This chapter corresponds to the publication (Audet et al., 2011a)
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5.1 Introduction

The Opal framework (Audet et al., 2010a) for automated algorithmic parameter

optimization identifies locally optimal parameter settings by formulating and solving

a nonsmooth constrained optimization problem in which evaluating the objective

and constraints consists in running a target algorithm on a given training set of

test problems. The search for local optimality is performed by the Nomad software

(Le Digabel, 2011) – an implementation of the mesh adaptive direct search family

of algorithms (Mads) for nonsmooth constrained optimization (Audet and Dennis,

Jr., 2006; Abramson et al., 2009b; Audet and Dennis, Jr., 2009). The structure of

both the optimization procedure and the objective and constraints evaluations creates

opportunities for parallelism at various levels on several types of commodity hardware.

The goal of the present paper is to describe and study various strategies for using

parallelism opportunities efficiently in an algorithmic parameter optimization appli-

cation. Our discussion focuses on the Opal framework but most ideas developed here

can be adapted to other contexts.

Audet and Orban (2006) proposed a methodology to optimize real algorithmic

parameters and reported numerical experience in a serial environment on a standard

trust-region algorithm (Conn et al., 2000) for unconstrained optimization. A strategy

involving a surrogate model used to guide the search led to an overall 25% decrease in

average cpu time on a training set of 163 test problems. In such a context, evaluat-

ing the objective and constraints can be particularly costly in terms of computational

effort and time. The cumulative computing resources necessary to perform the opti-

mization can thus be very large. In this work (Audet and Orban, 2006), the reported

cumulative cpu time is approximately 18 days on a sequential machine.

At each iteration, the mechanism of Mads consists in evaluating the quality of

each vector of trial parameters from a finite set. This is done by running the target

algorithm on a collection of test problems with each of those trial parameters in

turn. For each trial parameter vector, the target algorithm returns a number of

metrics which are the constituents of the parameter optimization problem. With

n parameters, a set of 2n vectors of parameters may need to be evaluated at each

iteration. For each one of these parameters, the target algorithm must work through

the training set of test problems. Different vectors of parameters are non-correlated

in the sense that their quality is assessed independently. Similarly, solving each test



54

problem in the training set is a self-contained and independent task.

The present paper compares three ways of using parallelism within Opal. The

first strategy consists in relying on the blackbox solver to evaluate the quality of the

trial parameters in parallel. The second one exploits the structure of the optimization

problem and consists in launching the target algorithm to solve the test problems

concurrently on a number of different compute nodes or processors. The third strategy

is a combination of the first two: several trial parameters are treated in parallel, and

for each of them, the test problems are solved in parallel by the target algorithm.

The paper is divided as follows. Section 5.2 gives a high-level description of the

Opal framework and Section 5.3 describes in more detail the three strategies to

use parallelism. Section 6.3.6 presents numerical results on the trust-region target

algorithm using the Nomad blackbox solver. Concluding remarks are presented in

Section 5.5.

5.2 The Opal framework

Opal is used to optimize the performance of a given target algorithm with respect

to (some of) its parameters, where performance is a context-dependent concept de-

fined by the user. In order to achieve this goal, the user provides the target algorithm,

a collection of representative test problems L, specifies which parameters p will par-

ticipate in the optimization and the domain P of these parameters. The user must

also specify various measures of the quality of any given realization of the parameters

p. These measures can be combined in arbitrary ways into composite measures to

define the objective function and, possibly, additional constraints of the parameter

optimization problem. The latter is treated as a blackbox problem, i.e., one in which

the structure is not exploited and only the value of the objective and constraints can

be computed. Schematically, a realization of the parameters is fed as input to the

blackbox, which returns the value of the objective and the constraints corresponding

to the input parameters.
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5.2.1 Parameter optimization as a blackbox optimization prob-

lem

A blackbox solver iteratively generates a parameter value p and inputs it into

the blackbox. If p lies in the domain P , the blackbox launches the target algorithm

on each test problem ` ∈ L in turn to collect atomic measures µ`(p). The atomic

measures can be viewed as the log produced by the application of the target algorithm

to problem ` using the value p as algorithmic parameters. Typical atomic measures

include the cpu time to solve the problem, the accuracy of the final solution produced

by the algorithm or a measure of the amount of work required to solve the problem.

A flag indicating whether p lies in P or not is returned to the blackbox solver.

Once all test problems have been processed and all atomic measures collected,

the score Ψ(p) is computed and returned to the solver. The score is composed of a

series of composite measures, and contains an objective function value together with

values indicating whether the constraints are satisfied. A typical objective function

might be the sum over all test problems of the cpu-time atomic measure. Constraints

might require, for example, that at least 90% of the test problems be solved to within

a precision of 10−3. The score is then recorded by the solver, and a new parameter

value is supplied to the blackbox, initiating the next iteration. The blackbox solver

terminates when appropriate optimality criteria are met.

In this paper, we are only concerned with real parameters and simple composite

measures.

5.2.2 Computational cost reduction with Opal

Parameter optimization in the Opal framework may be a time-consuming and

computationally-intensive task. Fortunately, the typical mechanism of a direct-search

solver and of the nonsmooth problem guiding the optimization suggest various ways

to reduce the computational effort.

Firstly, parallelism may be exploited at either the solver level, the target algorithm

level, or both. Such strategies are detailed in §5.3.

Secondly, the specifics of the constraints may enable Opal to avoid unnecessary

runs entirely. Opal distinguishes two types of constraints on the parameters. The

first type are a priori constraints defining the domain of definition P , and are typically

bounds or simple linear constraints that are easily verified independently of the list
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L of test problems. An example of such a constraint might require the parameters

to remain positive and their sum to remain below 1. Some of these constraints can

be supplied directly to the blackbox solver; most solvers perform better when bounds

on the variables are supplied, as it allows them to scale the variables and functions

appropriately. A priori constraints are checked prior to launching the target algorithm

on the test problem collection. If they are not satisfied, i.e., if p 6∈ P , the entire

scoring process will be bypassed and a flag indicating infeasibility will be returned to

the solver within the score. This strategy, known as the extreme barrier (Audet and

Dennis, Jr., 2003), significantly reduces the computational effort.

Constraints of the second type, said to be a posteriori, are modeled as ϕ(p) ∈M ,

where ϕ(p) is a vector of composite measures. They represent restrictions that can

be measured only after some or all atomic measures are computed. The constraint

stating that 90% of the test problems need to be solved with a precision of 10−3 is

an example. A posteriori constraints can either be handled by the extreme or the

progressive barrier (Audet and Dennis, Jr., 2009).

5.3 Parallelism in algorithmic parameter optimiza-

tion

A sequential way to solve a parameter optimization problem is illustrated in Fig-

ure 5.1a. The solver sends parameter values p to the blackbox, which assigns a score

Ψ(p) by launching the target algorithm on each problem ` ∈ L and analyzing the

atomic measures µ`(p). The next subsections present three strategies of using paral-

lelism to solve this optimization problem.

5.3.1 The blackbox solver handles the parallelism

Some direct search optimization algorithms are designed to handle parallelism

by generating a list of trial parameters to be assessed concurrently. Each process

is given specific values for the parameters, and launches the target algorithm on

every test problems from the collection L. The direct search solver deals with the

synchronization issues, as it is most likely that the cpu time will differ from one

blackbox evaluation to another. Figure 5.1c illustrates this type of parallelism. When

a total of r processors are available, the solver can send up to r evaluations in parallel



57

TARGET
ALG

PROBLEM
LIST

`

p

Ψ(p)

SOLVER

(a) Sequential

TARGET
ALG

PROBLEM LIST

`1

TARGET
ALG

`2

... TARGET
ALG

`s

p

Ψ(p)

SOLVER

(b) Parallelism within blackbox

TARGET
ALG

PROBLEM
LIST

`

pr

Ψ(pr)

...

TARGET
ALG

PROBLEM
LIST

`

p2

Ψ(p2)

TARGET
ALG

PROBLEM
LIST

`

p1

Ψ(p1)

SOLVER

(c) Parallel solver

TARGET
ALG

PROBLEM LIST

`1

TARGET
ALG

`2

... TARGET
ALG

`s

pr

Ψ(pr)

...

TARGET
ALG

PROBLEM LIST

`1

TARGET
ALG

`2

... TARGET
ALG

`s

p2

Ψ(p2)

TARGET
ALG

PROBLEM LIST

`1

TARGET
ALG

`2

... TARGET
ALG

`s

p1

Ψ(p1)

SOLVER

(d) Mixed parallelism

Figure 5.1 High level representation of the sequential and parallel strategies in Opal

with parameters p1, . . . , pr, and wait for the scores Ψ(p1), . . . ,Ψ(pr). In the numerical

experiments of §6.3.6, r is set to the number of available processors.

Our numerical experiments are performed using Nomad (Le Digabel, 2011) as

the blackbox optimization solver, which is the default solver in the Opal framework.

Other implementations of parallel direct search solvers include APPSPACK (Griffin

et al., 2008; Gray and Kolda, 2006) and IFFCO (Gilmore et al., 1999). Nomad is an

implementation of the mesh adaptive direct search (Mads) framework (Audet and
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Dennis, Jr., 2006) designed for blackbox optimization, and is supported by a rigor-

ous hierarchical convergence analysis based on Clarke’s nonsmooth calculus (Clarke,

1983). It is designed to exploit parallelism synchronously or asynchronously (Audet

et al., 2008b; Le Digabel, 2009) and handles general, hidden and non-relaxable con-

straints (Audet and Dennis, Jr., 2009; Choi and Kelley, 2000; Conn et al., 2009b) by

the extreme barrier, the progressive barrier, the filter or combinations of these strate-

gies. Nomad has been used successfully on a wide range of test problems (Audet

et al., 2010b; Le Digabel, 2011) and is freely available (Abramson et al., 2004) under

the LGPL license.

Mads is an iterative algorithm for constrained optimization. At each iteration

it generates a finite set of trial points in the solution space, and sends them to the

blackbox for evaluation. Mads then studies the scores associated to these trial points

in order to determine the set of points to be used in the next iteration. Mads

does not rely on any sufficient decrease condition and, under reasonable assumptions,

produces a limit point satisfying necessary optimality conditions that depend on the

local smoothness of the objective function and on local properties of the feasible

region.

Nomad is able to evaluate the trial points scores synchronously or asynchronously.

The synchronous version evaluates the points in parallel and waits for all evaluations

to be completed before processing a new batch. The advantage of this strategy is that

it performs identically to—but more rapidly than—a sequential run. However, it does

not exploit the available resources efficiently since some processors may remain idle

for extended periods of time. The asynchronous version is a simplified version of the

asynchronous parallel pattern search algorithm APPSPACK (Gray and Kolda, 2006)

and allows to terminate an iteration as soon as a new success is recorded. Evaluations

still in progress are not terminated and if one of them later results in an improvement

over the current best point, the algorithm will backtrack and consider this point as the

new incumbent. The numerical experiments of §6.3.6 use the asynchronous strategy.

5.3.2 Parallelism within the blackbox

A different way to exploit parallelism is to use a sequential blackbox solver, but to

take advantage of the structure of the blackbox itself by having the target algorithm

process the test problems in parallel. This situation is depicted in Figure 5.1b. The



59

solver evaluates the score of one trial point at a time, but the blackbox launches

the target algorithm on a problem ` ∈ L as soon as a compute node is available.

In the numerical results, we allocate a fixed number s of processors to the blackbox

evaluations. This strategy requires synchronization, as all test problems from the

collection L need to be solved before returning the score Ψ(p) to the solver.

In Opal, different paradigms may be used to parallelize the blackbox. The first

one is the Message Passing Interface (MPI) (Gropp et al., 1994) via the Python

module mpi4py 1. Although there is typically no communication between processes at

the blackbox level, this paradigm is useful because of its ubiquity. The second one is

the Load Sharing Facility (LSF) job scheduler 2, better suited to distributed-memory

concurrent computation environments such as blade centers and networks with slow

interconnections. Finally, the third paradigm is the Symmetric Multi Processing

(SMP) architecture which is suitable for multicore environments and shared-memory

platforms.

5.3.3 Mixed parallelism

A third way to handle parallelism is a combination of the previous two in which

the scores of trial points are evaluated in parallel over a certain number r of processors

and each blackbox evaluation also occurs in parallel over s processors. As depicted in

Figure 5.1d, the solver launches up to r blackboxes in parallel, each with a different

parameter value p1, . . . , pr. Each blackbox uses a subset of processors to solve in

parallel the problems from the list L.

In the numerical experiments, we set r to be equal to the number of parameters

n over which the optimization occurs. In the context of optimizing the trust-region

parameters, this number is r = n = 5. The blackboxes compete for all remaining

processors. In our case, because Nomad itself parallelizes the processing of trial

points using MPI, the blackbox is parallelized via SMP.

1. http://code.google.com/p/mpi4py

2. http://www.platform.com/workload-management/high-performance-computing

http://code.google.com/p/mpi4py
http://www.platform.com/workload-management/high-performance-computing
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5.4 Numerical results

5.4.1 The target algorithm: A trust-region method for un-

constrained optimization

Trust-region methods provide a mechanism for ensuring global convergence in the

unconstrained minimization of an objective function f . Our target algorithm only

concerns the minimization of a twice-continuously differentiable objective but trust-

region methods are sufficiently flexible to be adapted to other cases (Conn et al.,

2000). At the k-th iteration of a trust-region method, a quadratic model mk of

the objective is approximately minimized over a ball of radius ∆k centered at the

current iterate xk—the trust region. Based on whether the decrease δmk in the model

accurately reflects the decrease δfk actually achieved in the objective, the size of the

trust region is adjusted and the trial step is accepted or rejected. For the purposes

of this paper, we need only be concerned with the management of the trust region

and the parameter that it involves. The step proposed by the minimization of the

model is accepted if δfk > η1δmk for some fixed η1 ∈ (0, 1) and rejected otherwise.

The update of the trust-region depends on the adequacy between the model and the

objective. If δfk > η2δmk for some fixed η2 ∈ (η1, 1) the model is considered very

accurate and ∆k+1 is set to γ3∆k for a given γ3 > 1. If the step is rejected, the

adequacy is poor and we set ∆k+1 = γ1∆k for a given γ1 ∈ (0, 1). In the intermediate

situation, ∆k+1 = γ2∆k for some γ2 ∈ (γ1, 1]. Shrinking the trust region when a step

is rejected guarantees that a step will eventually be accepted once ∆k has become

sufficiently small and progress will be achieved because mk is required to coincide

with f up to first order at xk.

The parameter η1 determines how demanding we are in the adequacy between the

model and objective before accepting a step. Consider the limiting case η1 = 0 where

we are satisfied with a simple decrease in f—a strategy which does not yield global

convergence. The parameter η2 determines how eager we are to increase the size

of the trust region and promote larger steps with the aim of making faster progress.

However, using too large a trust region is risking a potentially long sequence of rejected

steps if xk lies in a region where f cannot be accurately modeled by a quadratic over

a wide domain. The meaning of the parameters γ1, γ2 and γ3 is easier to grasp; they

simply represent the factor by which we decrease or increase the size of the domain
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in which we believe that a quadratic model of f can be trusted. To summarize, the

five real parameters of a trust-region algorithm are

0 < η1 < η2 < 1, and 0 < γ1 < γ2 ≤ 1 < γ3.

These conditions represent a priori constraints on our parameter optimization prob-

lem.

Our Fortran 95 implementation of the trust-region method uses a second-order

Taylor expansion of f about xk as model mk and computes an approximate mini-

mizer of mk within {xk + s | ‖s‖ ≤ ∆k} using the generalized Lanczos method for

trust-region subproblems GLTR (Gould et al., 1999) as implemented in the GALAHAD

library (Gould et al., 2003b). In the absence of preconditioning, the main computa-

tional cost of GLTR is matrix-vector products Hkv where Hk is the Hessian matrix of

f at xk and v is some vector of appropriate size. In theory, it is possible to require up

to n of those products to compute a single trust-region step, where n is the number

of variables of f . The total number of such products is a measure of the overall work

performed to solve a given problem. The algorithm stops with a success if it identifies

an iterate xk such that

‖∇f(xk)‖2 ≤ max(10−5, 10−6 ‖∇f(x0)‖2)

or declares failure when it reaches the limit of 500 iterations.

5.4.2 The parameter optimization problem

An important feature of optimization methods for nonlinear problems is their

ability to reliably solve a large class of problems within a reasonable amount of work,

where work may be a function of the number of objective evaluations—the premise

being that the objective function may be costly to evaluate—, of the number of

matrix-vector products—which determines the effort expended on solving subprob-

lems iteratively—, or of other related quantities. This prompts us to consider the

atomic measure µH
` (p) defined as the number of matrix-vector products with the Hes-

sian of the objective necessary to solve problem ` using parameters p if the solver

was indeed able to identify an optimal solution to problem ` to within the prescribed

tolerance. In case the problem failed to be solved to optimality, the maximum allowed
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number of products, iterations or evaluations has likely been reached and this prob-

lem will contribute adversely to the minimization of the objective of the parameter

optimization problem. We choose however to impose that all problems in L be solved

to optimality as an a posteriori constraint via the atomic measure µE
` (p), which is

set to zero if problem ` was solved to optimality in 500 iterations or less and to 1

otherwise.

Our parameter optimization problem is thus to

minimize
p∈P

∑
`∈L

µH
` (p) subject to

∑
`∈L

µE
` (p) ≤ 0. (5.1)

Table 5.1 records our test problems along with their number of variables. The test

problems are a subset of those used in Audet and Orban (2006) chosen because of

their widely different typical solve times. We hope those differences will help contrast

the benefits of each type of parallelization. All test problems are available as part of

the CUTEr collection (Gould et al., 2003a). The table also shows the atomic measures

for two sets of parameters: p0, the standard values often found in the literature—see

for example, Conn et al. (2000)—and pcpu, an alternate set of values identified as a

good initial guess in the work of Audet and Orban (2006) by minimizing the total

cpu time of the trust-region method for solving a collection of 54 easy test problems

with dimension 2 ≤ n ≤ 500 and small run times. The precise values of p0 and pcpu

are given in the next section.

5.4.3 Comparative study of parallelism within Opal

The parameter optimization problem (5.1) is in general a highly nonconvex prob-

lem with many local minima. Our experimental tests solve (5.1) using the parallel

strategies detailed in Section 5.3 from the two feasible initial parameter values p0 and

pcpu. The strategies are labeled as follows: Solver denotes the parallel blackbox

solver with sequential blackbox evaluations, Mixed denotes the parallel blackbox

solver with parallel blackbox evaluations, Blackbox denotes the sequential black-

box solver with parallel blackbox evaluations, and Sequential denotes the sequential

blackbox solver with sequential blackbox evaluations. Both p0 and pcpu are given in

Tables 5.2 and 5.3. Note that the present tests differ from those in Audet and Orban

(2006), where the objective function depends on the cpu time, in that the objective
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Table 5.1 Test set.

Name n µH` (p0) µE` (p0) µH` (pcpu) µE` (pcpu)

BDQRTIC 5000 91 0 120 0
BROYDN7D 5000 11135 0 7503 0
BRYBND 5000 79 0 85 0
CRAGGLVY 5000 251 0 135 0
CURLY10 10000 147345 0 127478 0
DIXON3DQ 10000 51264 0 44187 0
EIGENALS 2550 5509 0 5408 0
FMINSRF2 5625 3953 0 3874 0
FMINSURF 5625 3104 0 2999 0
GENROSE 500 15387 0 14530 0
HIELOW 3 31 0 24 0
MANCINO 100 60 0 20 0
NCB20 5010 2392 0 2036 0
NCB20B 5000 5953 0 4390 0
NONDQUAR 5000 8211 0 5471 0
POWER 10000 1338 0 1374 0
SENSORS 100 169 0 138 0
SINQUAD 5000 35 0 40 0
TESTQUAD 5000 2539 0 2243 0
TRIDIA 5000 1537 0 1639 0
WOODS 4000 283 0 271 0

function of (5.1) is deterministic.

All tests are performed on a 64-bit computer with two 6-core Core i7 processors and

12Gb of RAM. A single processor is used for the sequential run. All 12 cores are used

by Nomad-MPI in the Solver strategy. The solver is asynchronous, and no processor

remains idle as Nomad proposes new parameters as soon as a blackbox evaluation

terminates. The Blackbox case imposes a form of synchronization. The problems

from the test collection are solved by the trust-region algorithm concurrently, and

the blackbox must wait for the last one to be processed before returning the atomic

measures to the solver. Consequently, if the runtimes of the individual problems differ

sufficiently, there are situations where most processors are idle. Finally, in the Mixed

case, we assign five processors to Nomad. The test problem collection is solved in

parallel by the trust region algorithm using all the 12 available processors. This is

possible because on a given processor, the Nomad process does not compete with
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the blackbox process—it merely waits for the result of the evaluation.

For comparison purposes, the termination criteria for each run is fixed to a preci-

sion of three decimals in the parameter values.

Table 5.2 summarizes the results of the four runs using the standard trust-region

parameter values p0 as initial guess. The value of p0 appears in the last line of the

table, together with the value of the objective function of problem (5.1) at p0. The

four other lines of the table list the final values of the trust-region parameters at the

end of the optimization process, together with their corresponding objective function

value, and wall-clock time required by the run. Table 5.3 displays similar results,

generated by taking the solution pcpu as a starting guess for the optimization.

Table 5.2 Solutions produced from the initial point p0

Strategy η1 η2 γ1 γ2 γ3 Obj Time

Solver 0.046875 0.9640625 0.346875 1 8.03125 158634 11h 40m
Mixed 0.04609375 0.751953125 0.203125 1 3.01171875 191516 8h 23m
Blackbox 0.05 0.65 0.5 1 3 214309 16h 05m
Sequential 0.05 0.65 0.5 1 3 214309 > 24h
p0 0.25 0.75 0.5 1 2 260666 -

Table 5.3 Solutions produced from the initial point pcpu

Strategy η1 η2 γ1 γ2 γ3 Obj Time

Solver 0.121625 0.95207031 0.38996094 1 8.2792969 183 145 10h 07m
Mixed 0.121625 0.90207031 0.13996094 1 6.2792969 166 854 7h 35m
Blackbox 0.01091333 0.95211303 0.2897259546 0.99987182 8.2780151 165 792 12h 19m
Sequential 0.01091333 0.95211303 0.2897259546 0.99987182 8.2780151 165 792 > 24h
pcpu 0.221625 0.90207031 0.38996094 1 2.2792969 223 965 -

Inspection of these two tables and the logs of the runs leads to the following ob-

servations. In both tables, the Sequential and the Blackbox strategies perform

exactly the same steps. This is because Nomad with default parameters is a deter-

ministic method and the blackbox returns the same values regardless of whether it is

evaluated in parallel or sequentially. This behavior is apparent on Figures 5.2 and 5.3,

where the objective function values are plotted for each of the four strategies versus

the wall clock time. From the starting point p0, these two strategies were not able to
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reduce the objective function value as much as with the other ones. Further analysis

of the logs reveals that the reason is that most of the computational effort was de-

ployed – and wasted– around an infeasible solution with a very low objective function

value. This could be corrected by adjusting the constraints-handling parameters in

Nomad, but we preferred to focus on parallelism rather than to tune Nomad itself

in the present study.

Figure 5.2 Objective function value versus wall clock time from the initial point p0.

The parallel runs from both starting points all lead to different final solutions,

having objective function values that range from 158 634 to 191 516. This suggests

that (5.1) possesses several local optimal solutions, and that the starting point lo-

cation has an important influence on where the algorithm converges to. Some of

Nomad’s options (that are not activated in the default settings) such as the Variable

Neighborhood Search (Audet et al., 2008a) could be used to attempt to escape from

local solutions. However, we do not consider such options in the present research.
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Figure 5.3 Objective function value versus wall clock time from the initial point pcpu.

If the computing resources were limited to a few hours, both figures suggest that

the Mixed strategy is the one for which the objective function value decreases the

most rapidly. It is also able to find the second best value from both initial guesses.

It thus appears to be the most promising of all.

The final parameter values are consistent with those of Audet and Orban (2006).

This suggests that the results obtained in Audet and Orban (2006) are not particular

to the test problems used there; they also apply to other test problems. It is interesting

however to note that the direct solver left γ2 at its initial value, even though γ2

is an additional parameter in comparison with Audet and Orban (2006). This is

satisfactory in our view as it confirms that the intuitive choice γ2 = 1 made in most

implementations of the trust-region method is a sound one—see, e.g., Conn et al.

(2000).

From both starting points, the largest speedup due to paralellism occurs with
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the Mixed strategy, followed by the Solver strategy, i.e., when Nomad handles

all or part of the parallelism. This is certainly due to the fact that Nomad is asyn-

chronous while the Blackbox strategy alone requires synchronization at the end

of each blackbox evaluation. In the present context, the test problem CURLY10 is

expensive in terms of number of Hessian-vector products—and therefore in terms of

cpu time. As we see from Table 5.1, this problem contributes more than twice the

number of Hessian-vector products of all the other problems combined.

The starting point pcpu was obtained in Audet and Orban (2006) in a parameter

optimization study to minimizes the overall cpu time required by the trust region

algorithm to solve a large collection of easy test problems. There is a strong correlation

between the cpu time and the objective function considered in the present paper. This

translates in a significant time reduction in the last column of Tables 5.2 and 5.3.

5.5 Outlook

The Opal framework shows great promise as a general tool for the automatic

tuning of algorithmic parameters and allows for parallelism at several levels. As such

we believe its importance will continue to grow as an aid in the design of efficient

numerical methods.

In addition to the synchronous and asynchronous strategies discussed in the present

work, Nomad can exploit parallelism in two other ways. Psd-Mads (Audet et al.,

2008b) explores in parallel various subspaces of variables while coop-Mads (Le Di-

gabel, 2011) launches concurrent executions of Mads with different seeds. These two

implementations are not directly integrated inside the Nomad package, but are sep-

arated programs using Nomad as a library. In future work, we plan to have Opal

exploit these alternate parallel strategies.

There is more room for parallelism in algorithmic parameter optimization con-

texts. It is typical to use a surrogate model to guide and accelerate the search in

applications. The freedom allowed to devise this surrogate model can be used advan-

tageously to benefit from a parallel computing environment. For instance, during the

so-called search step, the surrogate evaluates the quality of parameters which may be

far from the current best choice and this task may be performed in parallel. However,

constructing the surrogate can obviously be done in parallel as well, e.g., if construct-

ing an interpolatory or least-squares model, or if the structure of the surrogate is
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similar to that of the blackbox problem. Finally, the target algorithm itself may be

able to run in parallel.

With a heterogeneous set of test problems such as those of Table 5.1 where one

problem is twice as costly as all the others combined, proper load balancing between

the processors is required. In the future, Opal should be able to gather test problems

into pools of roughly equivalent cost and reallocate those pools dynamically.

On-the-fly job interruption is another worthwhile mechanism in the context of

algorithmic parameter optimization. As the blackbox is being evaluated, the solver

might infer that the point being evaluated will not result in an improvement based

on the partial information accumulated so far. Resources would be best used by

interrupting this evaluation and moving on to the next candidate.

In the presence of a fixed architecture and a fixed set of resources, the question

of how to best exploit these resources given the various components that are able to

run in parallel is open.
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Chapter 6

OPTIMIZATION OF

ALGORITHMS WITH OPAL

Charles Audet Cong-Kien Dang Dominique Orban

Abstract

Opal is a general-purpose system for modeling and solving algorithm optimization

problems. Opal takes an algorithm as input, and as output it suggests parameter

values that maximize some user-defined performance measure. In order to achieve

this, the user provides a Python script describing how to launch the target algorithm,

and defining the performance measure. Opal then models this question as a blackbox

optimization problem which is then solved by a state-of-the-art direct search solver.

Opal can handle a wide variety of parameter types, exploit multiple processors in

parallel at different levels and take advantage of a user-defined surrogate for blackbox

optimization problem.

6.1 Introduction

Parameter tuning has widespread applications because it addresses a widespread

problem: improving performance. Evidently, this is by no means a new problem and

it has been addressed in the past by way of various procedures that we briefly review

This chapter corresponds to a technical report (Audet et al., 2011b) and has been submitted for
publication.
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below. In this paper, we describe a flexible practical environment in which to express

parameter tuning problems and solve them using nondifferentiable optimization tools.

Our environment, named Opal 1, is independent of the application area and runs on

most platforms supporting the Python language and possessing a C++ compiler. Opal

is non-intrusive in the sense that it treats the target application as a blackbox and does

not require access to its source code or any knowledge about its inner mechanisms.

All that is needed is a means to request a run for a given set of parameters. At

the heart of Opal is a derivative-free optimization procedure to perform the hard

work. Surprisingly, the literature reveals that other so-called autotuning frameworks

use heuristics, unsophisticated algorithms such as coordinate search or the method

of Nelder and Mead, or even random search to perform the optimization—see, e.g.,

Seymour et al. (2008); Whaley et al. (2001); Bilmes et al. (1998); Vuduc et al. (2005);

Balaprakash et al. (2011a). By contrast, Opal uses a solid optimization method

supported by a strong convergence theory, yielding solutions that are local minimizers

in a meaningful sense.

Audet and Orban (2006) study the four standard parameters of a trust region

algorithm (Gould et al., 2005) for unconstrained nonlinear optimization. In particular,

they study the question of minimizing the overall cpu time required to solve 55 test

problems of moderate size from the CUTEr (Gould et al., 2003a) collection. The

question is reformulated as a blackbox optimization problem, with four variables

representing the four parameters, subject to bounds, and a strict linear inequality

constraint. An implementation of the mesh adaptive direct search (Mads) (Audet

and Dennis, Jr., 2006) family of blackbox optimization methods is used to solve the

problem. In addition, a surrogate function obtained by solving a subset of the trust

region test problems is used to guide the Mads algorithm. The numerical experiments

lead to a 25% computing time reduction compared to the default parameters.

Audet et al. (2010a) extend the framework to make it more configurable, and use

it to tune parameters of the DFO algorithm (Conn et al., 2009b) on collections of

unconstrained and constrained test problems. They introduce the first version of the

Opal package. Finally, Audet et al. (2011a) illustrate usage of parallelism at various

levels within the Opal framework and illustrate its impact on performance of the

algorithm optimization process.

The present paper presents extensions to the Opal framework, discusses its imple-

1. OPtimization of ALgorithms
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mentation and showcases usage on a few example applications. A goal of the present

work is also to illustrate how Opal interacts with other tools that may be useful in

parameter optimization applications. The rest of this paper is divided as follows. §4.2

describes a blackbox formulation of parameter-optimization problems. §5.2 describes

the Opal package, and illustrates its usage on well-known parameter optimization

problems. We conclude and look ahead in §6.4.

6.2 Optimization of Algorithmic Parameters

In this section, we formalize the key aspects of the parameter-tuning problem in a

way that enables us to treat it as a blackbox optimization problem. We then explain

how direct-search methods go about solving such blackbox problems. The precise

construction of the blackbox is detailed in §6.2.2. A description of direct-search

methods along with our method of choice are given in §6.2.3.

Throughout this paper we refer to the particular code or algorithm whose perfor-

mance is to be optimized, or tuned, as the target algorithm.

6.2.1 Algorithmic Parameters

The target algorithm typically depends on a number of parameters. The defining

characteristic of algorithmic parameters is that, in theory, the target algorithm will

execute correctly when given valid input data regardless of the value of the parameters

so long as those values fall into a preset range guaranteeing theoretical correctness

or convergence. The performance may be affected by the precise parameter values

but the correctness of the output should not. In practice, the situation is often more

subtle as certain valid parameter values may cause the target algorithm to stall or to

raise numerical exceptions when given certain input data. For instance, a compiler

still produces a valid executable regardless of the level of loop unrolling that it is

instructed to perform. The resulting executable typically takes more time to be

produced when more loop unrolling, or more sophisticated optimization, is requested.

However, an implementation of the Cholesky factorization may declare failure when

it encounters a pivot smaller than a certain positive threshold. Regardless of the

value of this threshold, it may be possible to adjust the elements of a perfectly valid

input matrix so that by cancellation or other finite-precision effects, a small pivot
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is produced. Because such behavior is possible, it becomes important to select sets

of algorithmic parameters in a way that maximizes the performance of the target

algorithm, in a sense defined by the user. We may want, for example, to select the

appropriate preconditioner so as to minimize the number of iterations required by a

Krylov method to solve a large system of linear equations, or adjust the memory of

a limited-memory quasi-Newton method so as to minimize a combination of the cpu

time and the computer memory used to solve a set of optimization problems.

It is important to stress that our framework does not assume correctness of the

target algorithm, or even that it execute at all. Failures are handled in a very natural

manner thanks to the nondifferentiable optimization framework.

Algorithmic parameters come in different kinds, or types, and their kind influences

how the search space is explored. Perhaps the simplest and most common kind is

the real parameter, representing a finite real number which can assume any value

in a given subset of R. Examples of such parameters include the step acceptance

threshold in a trust-region method (Gould et al., 2005; Audet and Orban, 2006), the

initial value of a penalty parameter, a particular entry in an input matrix, etc. Other

parameters may be integer, i.e., assume one of a number of allowed values in Z. Such

parameters include the number of levels of loop unrolling in a compiler, the number

of search directions in a taboo search, the blocking factor in a matrix decomposition

method for specialized architectures, and the number of points to retain in a geometry-

based derivative-free method for nonlinear optimization. Binary parameters typically

represent on/off states and, for this reason, do not fit in the integer category. Such

parameters can be used to model whether a preconditioner should be used or not

in a numerical method for differential equations, whether steplengths longer than

unity should be attempted in a Newton-type method for nonlinear equations, and

so on. Finally, other parameters may be categorical, i.e., assume one of a number

of discrete values on which no particular order is naturally imposed. Examples of

such parameters include the type of model to be used during a step computation

in a trust-region method (e.g., a linear or a quadratic model), the preconditioner

to be used in an iterative linear system solve (e.g., a diagonal preconditioner or an

SSOR preconditioner), the insulation material (Kokkolaras et al., 2001) to be used

in the construction of a heat shield (e.g., material A, B or C), and so forth. Though

binary parameters may be considered as special cases of categorical parameters, they

are typically modeled differently because of their simplicity. In particular, the only
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neighbor of an on/off parameter at a particular value (say, on) is its complement

(off ). The situation may be substantially more complicated for general categorical

parameters.

6.2.2 A Blackbox to Evaluate the Performance of Given Pa-

rameters

Let us denote the vector of parameters of the target algorithm by p. The per-

formance of the target algorithm is typically measured on the basis of a number of

specific metrics reported by the target algorithm after it has been run on valid input

data. Specific metrics pertain directly to the target algorithm and may consist of

the number of iterations required by a nonlinear equation solver, the bandwidth or

throughput in a networking application, the number of objective gradient evaluations

in an optimization solver, and so forth. Performance may also depend on external

factors, such as the cpu time required for the run, the amount of computer mem-

ory used or disk input/output performed, or the speedup compared to a benchmark

in a parallel computing setting. Specific metrics are typically observable when run-

ning the target algorithm or when scanning a log file, while external factors must

be observed by the algorithm optimization tool. Both will be referred to as atomic

measures in what follows, and the notation µi(p) will often be used to denote one of

them. Performance, however, does not usually reduce to an atomic measure, but is

normally expressed as a function of atomic measures. We will call such a function a

composite measure and denote it ψ(p) or ϕ(p). Composite measures can be as simple

as the average or the largest of a set of atomic measures, or might be more technical,

e.g., the proportion of problems solved to within a prescribed tolerance. Most of the

time, atomic and composite measures may only be evaluated after running the target

algorithm on the input data and the parameter values of interest. It is important to

stress at this point that they depend on the input data. Technically, their notation

should reflect this but we omit the explicit dependency in the notation for clarity.

The parameter optimization problem is formulated as the optimization—by de-

fault, we use the minimization formulation—of an objective function ψ(p) subject to
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constraints. The generic formulation of the blackbox optimization problem is

minimize
p

ψ(p)

subject to p ∈ P

ϕ(p) ∈M.

(6.1)

The set P represents the domain of the parameters, as described in the target

algorithm specifications. Whether or not p ∈ P can be verified without launching

the target algorithm. The set M constrains the values of composite measures. Opal

allows the user to use virtually any composite measure to define an objective or a

constraint.

A typical use of (4.2) to optimize algorithmic parameters consists in training

the target algorithm on a list of representative sets of input data, e.g., a list of

representative test problems. The hope is then that, if the representative set was well

chosen, the target algorithm will also perform well on new input data. This need not

be the only use case for (4.2). In the optimization of the blocking factor for dense

matrix multiplication, the input matrix itself does not matter; only its size and the

knowledge that it is dense.

6.2.3 Blackbox Optimization by Direct Search

Opal allows the user to select a solver tailored to the parameter optimization

problem (4.2). Direct-search solvers are a natural choice, as they treat an optimization

problem as a blackbox and aim to identify a local minimizer, in a meaningful sense,

even in the presence of nonsmoothness. Direct-search methods belong to the more

general class of derivative-free optimization methods (Conn et al., 2009b). They are

so named because they work only with function values and do not compute, nor

do they generally attempt to estimate, derivatives. They are especially useful when

the objective and/or constraints are expensive to evaluate, are noisy, have limited

precision or when derivatives are inaccurate.

In the Opal context, consider a situation where the user wishes to identify the

parameters so as to allow an algorithm to solve a collection of test problems to within

an acceptable precision in the least amount of time. The objective function in this

case is the time required to solve the problems. To be mathematically precise, this

measure is not a function, since two runs with the exact same input parameters will
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most likely differ slightly. The gradient does not exist, and its approximation may

point in unreliable directions. For our purposes, a blackbox is an enclosure of the

target algorithm that, when supplied with a set of parameter values p, returns either

a failure or a score consisting of the values of ψ(p), ϕ(p) and all relevant atomic

measures µj(p).

The optimization method that we are interested in iteratively calls the blackbox

with different inputs. In the present context, the direct-search solver proposes a trial

parameter p. The first step is to verify whether p ∈ P. In the negative, control is

returned to the direct-search solver, the trial parameter p is discarded, and the cost

of launching the target algorithm is avoided. If all runs result in such a failure, either

the set P is too restrictive or an initial feasible set of parameters should be supplied

by the user. Otherwise, a feasible parameter p ∈ P is eventually generated and the

blackbox computes the composite measures ψ(p) and ϕ(p). This is typically a time-

consuming process that requires running the target algorithm on all supplied input

data. Consider for instance a case where the blackbox is an optimization solver and

the input data consists in the entirety of the CUTEr collection—over 1000 problems

for a typical total run time of several days. The composite measures are then returned

to the direct search solver.

Direct-search solvers differ from one another in the way they construct the next

trial parameters. One of the simplest methods is Coordinate Search, which simply

consists in creating 2n trial parameters (where n is the dimension of the vector p) in

hopes of improving the current best known parameter, say pbest. These 2n tentative

parameters are

{pbest ±∆ei | i = 1, 2, . . . , n}

where ei is the i-th coordinate vector and ∆ > 0 is a given step size, also called a

mesh size. Each of these 2n trial parameters is supplied in turn to the blackbox for

evaluation. If one of them is feasible for (4.2) and produces an objective function value

ψ(p) < ψ(pbest), then pbest is reset to p and the process is reiterated from the new

best incumbent. Otherwise, the step size ∆ is shrunk and the process is reiterated

from pbest. Fermi and Metropolis (1952) used this algorithm on one of the first digital

computers.

This simple coordinate search algorithm was generalized by Torczon (1997) in a

broader framework of pattern-search methods, which also include the methods of Box

(1957) and Hooke and Jeeves (1961). Pattern-search methods introduce more flexi-
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bility in the construction of the trial parameters and in the variation of the step size.

Convergence analysis of pattern-search methods was conducted by Torczon (1997) for

unconstrained C2 functions, and the analysis was extended to nonsmooth functions

by Audet and Dennis, Jr. (2003) using the Clarke (1983) generalized calculus.

Pattern-search methods were subsequently further generalized by Audet and Den-

nis, Jr. (2006) and Audet and Dennis, Jr. (2009) to handle general constraints in

a way that is both satisfactory in theory and in practice. The resulting method is

called the Mesh-Adaptive Direct-Search algorithm (Mads). It can be used to solve

problems such as (4.2) even if the initial parameter p does not satisfy the constraints

ϕ(p) ∈M.

Like the coordinate search, Mads is an iterative algorithm generating a sequence

{pk}∞k=0 of trial parameters. At each iteration, attempts are made to improve the

current best parameter pk. However, instead of generating tentative parameters along

the coordinate directions, the Mads algorithm uses a mesh structure, consisting of

a discretization of the space. The union of all normalized directions generated by

Mads is not limited to the coordinate directions, but instead grows dense in the unit

sphere.

The convergence analysis considers the iterations that are unsuccessful in improv-

ing pk. At these iterations, pk satisfies some discretized optimality conditions relative

to the current mesh. Any accumulation point p̂ of the sequence of unsuccessful pa-

rameters pk for which the mesh gets infinitely fine satisfies optimality conditions that

are tied to the local smoothness of the objective and constraints near p̂. The con-

vergence analysis relies on the Clarke (1983) nonsmooth calculus. Some of the main

convergence results are

– p̂ is the limit of mesh local optimizers on meshes that get infinitely fine;

– if the objective function ψ is Lipschitz near p̂, then the Clarke generalized

directional derivative satisfies f ◦(p̂; d) ≥ 0 for any direction d hypertangent to

the feasible region at p̂;

– if the objective function ψ is strictly differentiable near p̂, then ∇ψ(p̂) = 0 in

the unconstrained case, and p̂ is a contingent KKT stationary point, provided

that the domain is regular.

The detailed hierarchical presentation of the convergence analysis given by Audet

and Dennis, Jr. (2006) was augmented by Abramson and Audet (2006) to the second-

order and by Vicente and Custódio (2012) for discontinuous functions. One of these
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additional results shows that unlike gradient-based methods for unconstrained C2

optimization (such as Newton’s method), Mads cannot stagnate at a strict local

maximizer or at a saddle point. This is somewhat counterintuitive that a method

that does not compute nor require derivatives has stronger convergence properties

than a method exploiting first and second derivatives for C2 functions.

It is however interesting in our opinion to use a solver capable of guaranteeing—

admittedly at some cost—that a local minimizer will be identified when the problem

is sufficiently smooth, and not only a stationary point. Consider for example the

objective ψ(p) depicted in Fig. 6.1, which represents the performance in MFlops of

a specific implementation of the matrix-matrix multiply kernel for high-performance

linear algebra. The implementation used here is from the ATLAS library (Whaley

et al., 2001). The function ψ was sampled over a two-dimensional domain for two

types of architecture; an Intel Core2 Duo and an Intel Xeon processor. The two

parameters are, in this case, integers. One represents the loop unrolling level in the

three nested loops necessary to perform the multiply. The other is the blocking factor

and controls the block size when the multiply is computed blockwise rather than

elementwise. Though the graph of ψ is a cloud of points rather than a surface in

this case, it is quite apparent that the performance is not an entirely erratic function

of the parameters, even though it appears to be affected by noise, but has a certain

regularity. In this sense, the Mads framework provides a family of methods that have

the potential to identify meaningful minimizers rather that just stationary points.

6.3 The OPAL Package

We propose the Opal package as an implementation of the framework detailed in

the previous sections.

6.3.1 The Python Environment

Computational tasks in need of parameter tuning come in infinite variety on widely

different platforms and in vastly different environments and languages. It seems à

priori arduous to design a parameter-tuning environment that is both sufficiently

portable and sufficiently flexible to accommodate this diversity. It should also be

understood that not all users are computer programmers, and therefore any general
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Figure 6.1 Performance in MFlops of a particular implementation of the matrix-matrix
multiply as a function of the loop unrolling factor and the blocking factor.

tool seeking to meet the above flexibility requirements must be as easy to use as

possible without sacrificing expandability and advanced usage. In our opinion, the

latter constraints rule out all low-level programming languages. There remains a

handful of options that are portable, flexible, expandable and user friendly. Among

those, our option of choice is the Python programming language (www.python.org)

for the following reasons:

– Python is a rock-solid open-source scripting language. Python has been in

constant development since about 1990 and has evolved through its thriving

user community to become a standard. Because it is open source, it may be

freely shared and distributed for both commercial and non-commercial purposes.

Since it is a scripting language, running Python programs does not involve a

compiler. It is accompanied nevertheless by a sophisticated debugger.

– Python is available on almost any imaginable platform. Besides covering the

three major families, UNIX, OSX and Windows, Python programs are entirely

portable to many other platforms, such as OS/2, Amiga, Java VM, including

portable devices.

– Python interoperates well with many other languages. A standard C/C++ API

combines with automatic interface-generation tools to make interfacing Python

and C/C++ programs a breeze. Interfacing Fortran presents no particular

difficulty save perhaps for some more recent Fortran 95 features.

http://www.python.org


79

– Users can write Python programs much in the same way as shell scripts, batch

scripts or Apple scripts, or elect to use the full power of object-oriented pro-

gramming. Object orientation is by no means a requirement so that users can

get started fast and efficiently. For more elaborate purposes, object-oriented

programming quickly becomes more convenient, but it is also very natural.

– A wide range of numerical and scientific extensions is available for Python.

Among them are Numpy 2, an extension providing the array type and vector

operations, Scipy 3, a general-purpose library of scientific extensions akin to

Matlab toolboxes, and SAGE 4, a symbolic computation package akin to Math-

ematica, to name only a few, as well as state-of-the art plotting packages such

as Matplotlib 5.

– Aside from scientific capabilities, Python is a full-fledged programming language

with an extensive standard library that is able to satisfy the most demanding

needs, including cryptography, networking, data compression, database access

and a lot more.

– The Python syntax is human readable. A user ignorant of the Python syntax

is usually able to understand most of what a Python program does simply by

reading it.

– It is possible to get up and running on Python programming in one day, thanks

to well-designed tutorials and a profusion of documentation and ressources.

– Python comes with “batteries included” on many platforms. For instance, the

Enthought Python Distribution 6 and Python(x,y) 7 come with numerous exten-

sions pre-installed. It should be noted that they also come with licensing terms

to abide by.

– A fast-paced and fast-increasing body of work has been and is being developed

in Python. The best resources to get a glimpse of the expanse of Python-based

research and projects is the Python Package Index website 8.

We urge the reader to visit www.python.org to learn more and get started with

Python programming.

2. www.scipy.org/numpy

3. www.scipy.org

4. www.sagemath.org

5. matplotlib.sf.net

6. www.enthought.com

7. code.google.com/p/pythonxy

8. pypi.python.org/pypi

http://www.python.org
http://www.scipy.org/numpy
http://www.scipy.org
http://www.sagemath.org
http://matplotlib.sf.net
http://www.enthought.com
http://code.google.com/p/pythonxy
http://pypi.python.org/pypi
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6.3.2 Interacting with Opal

One of the goals of Opal is to provide users with a set of programmatic tools

to aid in the modeling of algorithmic parameter optimization problems. A complete

model of a problem of the form (4.2) consists in

1. declaring the blackbox and its main features; this includes declaring the param-

eters p, their type, their domain P, a command that may be used to run the

target algorithm with given parameters, and registering those parameters with

the blackbox;

2. stating the precise form of the parameter optimization problem (4.2) by defining

the objective and constraints as functions of atomic and composite measures;

3. providing an executable that may be run by the direct-search solver and whose

task is to read the parameter set proposed by the solver, pass them to the

blackbox, and retrieve all relevant atomic measures.

Other ingredients may be included into the complete model. We provide a general

description of the modeling task in this section and leave additions for later sections.

For illustration, we use an intentionally simplistic problem consisting in finding the

optimal stepsize in a forward finite-difference approximation to the derivative of the

sine function at x = π/4. The only parameter is the stepsize p = h. The objective

function is ψ(h) = |(sin(π/4 + h) − sin(π/4))/h − cos(π/4)|. It is well known that

in the absence of noise, the optimal value for h is approximately a constant multiple

of
√
εM where εM is the machine epsilon. Although intuitively, only small values of

h are of interest, the domain P could be described as (0,+∞). Note that P is open

in this case and although optimization over non-closed sets is not well defined, the

barrier mechanism in the direct solver ensures that values of h that lie outside of

P are rejected. The declaration of the blackbox and its parameter is illustrated in

Listing 6.1, which represents the contents of the declaration file. In Listing 6.1, a new

algorithm is declared on line 5, an executable command to be run by Opal every time

a set of parameters must be assessed is given on line 6, the parameter h is declared

and registered with the algorithm on lines 8–10 and the sole measure of interest is

declared and registered with the algorithm on lines 12–13. We believe that Listing 6.1

should be quite readable, even without prior knowledge of the Python language.

For maximum portability, information about parameter values and measure values

are exchanged between the blackbox and the direct solver by way of files. Each time
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Listing 6.1 fd_declaration.py: Declaration of the forward-difference algorithm

1 from opal.core.algorithm import Algorithm

2 from opal.core.parameter import Parameter

3 from opal.core.measure import Measure

4

5 FD = Algorithm(name=’FD’, description=’Forward Finite Differences ’)

6 FD.set_executable_command(’python fd_run.py’)

7

8 h = Parameter(kind=’real’, default =0.5, bound=(0, None),

9 name=’h’, description=’Step size’)

10 FD.add_param(h)

11

12 error = Measure(kind=’real’, name=’ERROR’,

13 sdescription=’Error in derivative ’)

14 FD.add_measure(error)

the direct solver requests a run with given parameters, the executable command

specified on line 6 of Listing 6.1 will be run with three arguments: the name of

a file containing the candidate parameter values, the name of a problem that acts

as input to the blackbox and the name of an output file to which measure values

should be written. The second argument is useful when each blackbox evaluation

consists in running the target algorithm over a collection of sets of input data, such

as a test problem collection. In the present case, there is no such problem collection

and the second argument should be ignored. The role of the run file is to read

the parameter values proposed by the solver, pass them to the blackbox, retrieve the

relevant measures and write them to file. An example run file for the finite-differences

example appears in Listing 6.2.

The run file must be executable from the command line, i.e., it should contain

a __main__ section. Parameters are read from file using an input function supplied

with Opal. The parameters appear in a dictionary of name-value pairs indexed by

parameter names, as specified in the declaration file. The run() function returns

measures—here, a single measure representing ψ(h)—as a dictionary. Again the keys

of the latter must match measures registered with the blackbox in the declarations

file. Finally, measures are written to file using a supplied output function. It is worth

stressing that typically, only lines 6–9 change across run files. The rest stays the

same, with a few variations in the import section (lines 2 and 3).

There remains to describe how the problem (4.2) itself is modeled. Opal sepa-

rates the optimization problem into two components: the model structure and the
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Listing 6.2 fd_run.py: Calling the blackbox

1 from opal.core.io import *

2 from fd import fd # Target algorithm.

3 from math import pi, sin , cos

4

5 def run(param_file , problem ):

6 "Run FD with given parameters."

7 params = read_params_from_file(param_file)

8 h = params[’h’]

9 return {’ERROR’: abs(cos(pi/4) - fd(sin ,pi/4,h))}

10

11 if __name__ == ’__main__ ’:

12 import sys

13 param_file = sys.argv [1]

14 problem = sys.argv [2]

15 output_file = sys.argv [3]

16

17 # Solve , gather measures and write to file.

18 measures = run(param_file , problem)

19 write_measures_to_file(output_file , measures)

model data. The structure represents the abstract problem (4.2) independently of

what the target algorithm is, what input data collection is used at each evaluation

of the blackbox, if any, and other instance-dependent features to be covered in later

sections. It specifies the form of the objective function and of the constraints. The

data instantiates the model by providing the target algorithm, the input data col-

lection, if any, and various other elements. This separation allows the solution of

closely-related problems with minimal change, e.g., changing the input data set, re-

moving a constraint, and so forth. The optimize file for our example can be found in

Listing 6.3. The most important part of Listing 6.3 is lines 10–12, where the actual

problem is defined. In the next section, the flexibility offered by this description of a

parameter optimization problem allows us to define surrogate models using the same

concise syntax.

6.3.3 Surrogate Optimization Problems

An important feature of the Opal framework is the use of surrogate problems to

guide the optimization process. Surrogates were introduced by Booker et al. (1999)

for pattern search, and are used by the solver as substitutes for the optimization

problem. A fundamental property of surrogate problems is that their objective and
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Listing 6.3 fd_optimize.py: Statement of the problem and solution

1 from fd_declaration import FD

2 from opal import ModelStructure , ModelData , Model

3 from opal.Solvers import NOMADSolver

4

5 # Return the error measure.

6 def get_error(parameters , measures ):

7 return sum(measures["ERROR"])

8

9 # Define parameter optimization problem.

10 data = ModelData(FD)

11 struct = ModelStructure(objective=get_error) # Unconstrained

12 model = Model(modelData=data , modelStructure=struct)

13

14 # Create solver instance.

15 NOMAD = NOMADSolver ()

16 NOMAD.solve(blackbox=model)

constraints need to be less expensive to evaluate than the objective and constraints of

(4.2). They need to share some similarities with (4.2), in the sense that they should

indicate promising search regions, but do not need to be an approximation.

In the parameter optimization context, a static surrogate might consist in solving

a small subset of test problems instead of solving the entire collection. In that case,

if the objective consists in minimizing the overall cpu time, then the surrogate value

will not even be close to being an approximation of the time to solve all problems. Sec-

tion 6.3.6 suggests a strategy to construct a representative subset of test problems by

using clustering tools from data analysis. Another type of surrogate can be obtained

by relaxing the stopping criteria of the target algorithm. For example, one might ter-

minate a gradient-based descent algorithm as soon as the gradient norm drops below

10−2 instead of 10−6. Another example would be to use a coarse discretization in a

Runge-Kutta method.

Dynamic surrogates can also be used by direct search methods. These surrogates

are dynamically updated as the optimization is performed, so that they model more

accurately the functions that they represent. In the Mads framework, local quadratic

surrogates are proposed by Conn and Le Digabel (2011) and global treed Gaussian

process surrogates by Gramacy and Le Digabel (2011).

In Opal, surrogates are typically used in two ways. Firstly, Opal can use a

surrogate problem as if it were the true optimization problem, and optimize it with
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the blackbox solver. The resulting locally optimal parameter set can be supplied as a

starting point for (4.2). Secondly, surrogates are used by the solver to order tentative

parameters, to perform local descents and to identify promising candidates.

A more specific description of the usage of surrogate functions within a parameter

optimization context is given by Audet and Orban (2006). In essence, when problems

are defined by training the target algorithm on a list of sets of input data, such

as test problems, a surrogate can be constructed by supplying a set of simpler test

problems. An example of how Opal facilitates the construction of such surrogates is

given in Listing 6.4 in the context of the trust-region algorithm examined by Audet

and Orban (2006) and Audet et al. (2011a). This example also illustrates how to

specify constraints. The syntax of line 19 indicates that there is a single constraint

whose body is given by the function get_error() with no lower bound and a zero

upper bound. If several constraints were present, they should be specified as a list of

such triples.

In Listing 6.4 we define two measures; ψ is represented by the function sum_heval(),

which computes the total number of Hessian evaluations and the constraint function

ϕ is represented by the function get_error(), which returns the number of failures.

The parameter optimization problem, defined in lines 18–20 consists in minimizing

ψ(p) subject to ϕ(p) ≥ 0, which simply expresses the fact that we require all problems

to be processed without error. A surrogate model is defined to guide the optimization

in lines 23–25. It consists in minimizing the same ψ(p) with the difference that the in-

put problem list is different. For the original problem, the input problem list consists

in all unconstrained problems from the CUTEr collection—see line 14. The surrogate

model uses a list of smaller problems and can be expected to run much faster—see

line 15. In line 19, the syntax for specifying constraints is to provide a list of triples.

Each triple gives a lower bound, a composite measure and an upper bound. In this

example, a single constraint is specified.

6.3.4 Categorical Variables

Several blackbox optimization solvers can handle continuous, integer and binary

variables, but fewer have the capacity to handle categorical ones. Orban (2011) uses

categorical variables to represent a loop order parameter and compiler options in a

standard matrix multiply.
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Listing 6.4 Definition of a surrogate model.

1 from trunk_declaration import trunk # Target algorithm.

2 from opal import ModelStructure , ModelData , Model

3 from opal.Solvers import NOMADSolver

4 from opal.TestProblemCollections import CUTEr # The CUTEr test set.

5

6 def sum_heval(parameters , measures ):

7 "Return total number of Hessian evaluation across test set."

8 return sum(measures["HEVAL"])

9

10 def get_error(parameters ,measures ):

11 "Return number of nonzero error codes (failures )."

12 return len(filter(None , measures[’ECODE’]))

13

14 cuter_unc = [p for p in CUTEr if p.ncon == 0]

# Unconstrained problems.

15 smaller = [p for p in problems if p.nvar <= 100] # Smaller problems.

16

17 # Define (constrained) parameter optimization problem.

18 data = ModelData(algorithm=trunk , problems=cuter_unc)

19 struct = ModelStructure(objective=sum_heval ,

20 constraints =[(None ,get_error ,0)])

21 model = Model(modelData=data , modelStructure=struct)

22

23 # Define a surrogate (unconstrained ).

24 surr_data = ModelData(algorithm=trunk , problems=smaller)

25 surr_struct = ModelStructure(objective=sum_heval)

26 surr_model = Model(modelData=surr_data , modelStructure=surr_struct)

27

28 NOMAD = NOMADSolver ()

29 NOMAD.solve(blackbox=model , surrogate=surr_model)

Ansel et al. (2009) discuss strategies to select the best sorting algorithm based

on the input size. They state that insertion sort is adapted to small input sizes,

quicksort to medium sizes, and either radix or merge sort is suitable for large inputs.

With Opal, a categorical parameter may be used to select which sorting algorithm

to use. Listing 6.5 gives the Opal declaration of a categorical parameter representing

the choice of a sort strategy. Note however that the ultimate goal of Ansel et al.

(2009) is different in that they exploit the fact that most sort strategies are recursive

by nature. They are interested in determining the fastest sort strategy as a function

of the input size so as to be able to determine on the fly, given a certain input size,

what type of sort is best. To achieve this, their parameters are the sort type to be

used at any given recursive level. Thus if the variable sort_type ever takes the value
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quick, it gives rise to two new categorical variables in the problem, each determining

the type of sort to call on each half of the array passed as input to quicksort. This is

an example where the dimension of the problem is not known beforehand.

Mads easily handles integer variables by exploiting their inherent ordering. This

is done by making sure that the step size parameter ∆ mentioned in § 4.2.2 is integer.

Furthermore, a natural stopping criteria triggers when an iteration fails to improve

pbest with a unit step size.

Categorical variables cannot be handled as easily as integer ones. They do not

posses any ordering properties, and they need to be accompanied by a neighborhood

structure, such as the one illustrated in Listing 6.5. Each iteration of the Mads al-

gorithm constructs two sets of tentative trial parameters. One set retains the same

categorical values as those of pbest and modifies only the continuous and integer vari-

ables using the same technique as without categorical variables. The other set is

constructed using the user-provided set of categorical neighbors. A precise descrip-

tion of how this is accomplished for the pattern search algorithm is presented by

Abramson et al. (2007), and the method is illustrated by Kokkolaras et al. (2001)

on an optimization problem where the neighborhood structure is such that changes

in some of the categorical variables alter the number of optimization variables of the

problem.

6.3.5 Parallelism at Different Levels

Opal can exploit architectures with several processors or several cores at different

levels. Audet et al. (2011a) compare three ways of using parallelism within Opal. The

first strategy consists in the blackbox solver evaluating the quality of trial parameters

in parallel, the second strategy exploits the structure of (4.2) and consists in launching

the target algorithm to solve test problems concurrently, and the third simultaneously

Listing 6.5 Example use of categorical variables in Opal

1 sort_type = Parameter(kind=’categorical ’, default=’quick’,

2 neighbors ={’insertion ’: [’quick’],

3 ’quick’: [’insertion ’, ’radix’,

4 ’merge’],

5 ’radix’: [’quick’, ’merge ’],

6 ’merge’: [’quick’, ’radix ’]})
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applies both strategies. The blackbox solver is parallelized by way of MPI and can be

set to be synchronous or asynchronous. When parallelizing the blackbox itself, Opal

supports MPI, SMP, LSF and SunGrid Engine.

6.3.6 Combining Opal with Clustering Tools

In this section, we briefly illustrate how Opal may be combined with external

tools to produce effective surrogate models. The experimental test illustrated in the

appendix considers the optimization of six real parameters from IPOPT, a nonlinear

constrained optimization solver described by Wächter and Biegler (2006). The objec-

tive to be minimized is the total number of objective and constraint evaluations, as

well as evaluations of their derivatives. The only constraint requires that all the test

problems be solved successfully. The testbed L contains a total of 730 test problems

from the CUTEr collection (Gould et al., 2003a). The objective function value with

the default parameters p0 is ψL(p0) = 207, 866. The overall computing time required

for solving this blackbox optimization problem is 27h55m, and produces a set of pa-

rameters p̂ with an objective function value of ψL(p̂) = 198, 615. Paralellism is used

by allowing up to 10 concurring function evaluations on multiple processors.

Clustering is used to generate a surrogate model with significantly less test prob-

lems than the actual blackbox problem. More specifically, he performs a clustering

analysis on the cells of a self-organizing map based on the work of Kohonen (1998);

Kohonen and Somervuo (2002) and Pantazi et al. (2002). The self-organizing map

partitions the testbed into clusters sharing similar values of the objective and con-

straints. A representative problem from each cluster is identified by the clustering

scheme, resulting in a subset L1 of 41 test problems from L. Opal is then launched

on the minimization of ψL1(p) subject to the same no-failure constraint. This surro-

gate problem is far easier to solve, as it requires only 4h17m and produces a solution

p1 which is close to p̂.

6.3.7 The Blackbox Optimization Solver

The default blackbox solver used by Opal is the Nomad software (Le Diga-

bel, 2011). It is a robust code, implementing the Mads algorithm for nonsmooth

constrained optimization of Audet and Dennis, Jr. (2006), which is supported by a

rigorous nonsmooth convergence analysis. Nomad can be used in conjunction with a



88

surrogate optimization problem. Among others, dynamic quadratic model surrogates

can be generated automatically (Conn and Le Digabel, 2011).

Nomad handles all the variable types enumerated in §6.2.1, and in addition allows

subsets of variables to be free, fixed or periodic. It also allows the possibility of

grouping subsets of variables. In the Opal context, consider for example an algorithm

that has two embedded loops, and a subset of parameters that relates to the inner

loop, while another subset relates to the outer loop. It might be useful to declare

these subsets as two groups of variables as it would allow Nomad to conduct its

exploration in smaller parameter subspaces.

Nomad is designed to handle relaxable constraints by a progressive barrier or by

a filter, and non-relaxable constraints by the extreme barrier, which means that the

objective function ψ is replaced with

ψ̂(p) :=

ψ(p) if p is feasible,

+∞ otherwise.

It is also robust to hidden constraints (i.e., constraints that reveal themselves by

making the simulation fail). A discussion of these types of constraints and approaches

to handle them are described by Audet et al. (2010b), together with applications to

engineering blackbox problems.

6.4 Discussion

In designing the Opal framework, our goal is to provide users with a modeling

environment that is intuitive and easy to use while at the same time relying on

a state-of-the-art blackbox optimization solver. It is difficult to say whether the

performance of an algorithm depends continuously on its (real) parameters or not.

Since parameters may also often be discrete, a nonsmooth optimization solver seems

to be the best choice.

Algorithmic parameter optimization applications are in endless supply and there

is often much to gain when there are no obvious dominant parameter values. The

choice of the Python language maximizes flexibility and portability. Users are able

to combine Opal with other tools, whether implemented in Python or not, to gen-

erate surrogate models or run simulations. Opal also makes it transparent to take
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advantage of parallelism at various levels. It has been used in several types of appli-

cations, including code generation for high-performance linear algebra kernels to the

optimization of the performance of optimization solvers. It is however not limited to

computational science—any code depending on at least one parameter could benefit

from optimization.

Opal is non intrusive, which could make it a good candidate for legacy code that

should not be recompiled or for closed-source proprietary applications.

Much remains to be done in the way of improvements. Among other aspects,

we mention the identification of robust parameter values—values that would remain

nearly optimal if slightly perturbed—and the automatic identification of the most

influential parameters of a given target algorithm.
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Chapter 7

GENERAL DISCUSSION

The main contribution of this thesis is not only a framework for optimization of

algorithms but also a Python package implementing the framework. Three papers in

previous chapters reveal the development of these two main contributions. In each

paper some conclusions have been made, hence we reserve this chapter to review the

general aspects of the two achievements: a general, flexible, efficient framework and

an easy-to-use, extensible, integrable package.

Although the parameter tuning question has been raised for a long time and there

have been many attempts to address it, the focus on a particular target algorithm

prevents the popularity of these attempts. By approaching the problem of empirical

parameter tuning from two points of view, OPAL becomes a general, flexible and ef-

ficient framework for parameter tuning or algorithm optimization. Having identified

and answered the crucial questions, the OPAL framework satisfies the requirements

of a versatile tool for parameter tuning. Within OPAL, a tuning parameter question

is modelled as a blackbox optimization problem. The versatility is confirmed in the

sense that any type of parameter is accepted and can be easily defined; any objective

and restriction can be specified by the composite measures; no particular prerequi-

site is needed to solve defined problem. Users can experiment with the flexibility in

activating parallel mode, in defining a surrogate for accelerating the search or in inter-

acting with other systems. Finally, efficiency is illustrated by numerical experiments

illustrated in the thesis.

The Python package OPAL includes components that facilitate defining a parame-

ter optimization and invoking a solver. Besides essential components of an automated

tuning system, OPAL works as an interface that gathers external components such as

a target algorithm, a direct solver or a benchmarking system, etc. This characteristic

requires OPAL components to be fairly independent but can communicate to each

other easily. Therefore, we design the package in such a way that every component is

autonomous and communicates to each other by exchanging text messages through
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a message pool. As a result, our package possesses high extensibility and integra-

bility. An arbitrary component such as a software or, a Python-based module can

be deployed programmatically into OPAL if it is equipped with an inter-process com-

munication mechanism and is able to understand OPAL message as well as to throw

the OPAL-understandable messages to the message pool. Otherwise, OPAL can be

integrated in a passive way through the text-based logging files and Python scripts;

the host system will read log messages of OPAL and write Python scripts to control

OPAL.
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Chapter 8

CONCLUSION AND

RECOMMENDATIONS

The main contribution of this thesis is not only a framework for optimization

of algorithms but also a Python package implementing the framework. The main

features are discussed in the previous chapter. In this chapter, there are discussions

on perspectives regarding the framework.

OPAL is a general, flexible and efficient framework for parameter tuning or algo-

rithm optimization. Having identified and answered the crucial questions, the OPAL

framework satisfies the requirements of a versatile tool for parameter tuning. Addi-

tionally, the Python package OPAL includes autonomous components that make OPAL

be integrated easily with other systems. Although satisfying the requirements of a

versatile framework, OPAL can still be developed further. The ideas behind any ex-

tension are to exploit as many particularities as possible of a parameter optimization

problem. Some ideas are already realized by the extensions presented in our work,

others are still in discussion.

Solving parameter optimization problems with NOMAD, users can use surrogate

models to accelerate search or to guide to a promising region. A surrogate model

can be anything that can simulate the behaviour of the blackbox but has a lower

computational cost. OPAL allows users to freely define a surrogate and integrate

it into a tuning process in a simple way. In our previous experiments, surrogate

models were mainly defined as other parameter optimization problems whose set of

test problems is small. The set of test problems is normally pre-selected based on

knowledge of the test problems. Hence in future works, we would like to develop a

feature of automated constructing of a surrogate based on information gathered since

the launching of the tuning process. For example, users can select the problems by a

classification tool or a machine learning techniques.

The second paper showed two techniques for improving performance. However,
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these techniques are realized at fairly simple levels; they can not adapt to changes

in computational resources availability. Hence, a load balancing strategy can be

considered. We can selectively launch test problems in such a way that the test

problems having similar computing time are executed in parallel at the same time.

Alternatively an asynchronous strategy of executing test problems can be used to take

maximal advantage of the computing capacity of the system. Another possibility is

that we can reorder the list of test problems in such a way that the probability of

interruption is increased. For example, suppose we have a parameter optimization

problem that requires no failure in the test problems and in a previous iteration, we

find a test problem failed, we obviously want to execute this test problem first at the

next iteration to avoid wasting time when an interruption occurs.

Besides concrete techniques targeting performance issues, we also suggest another

perspective on the parameter optimization problem. The objective function is nor-

mally an aggregate function that synthesizes the results on multiple test problems

such as the sum or the mean. In fact, each test problem or each class of test prob-

lems has a different influence on a target algorithm, and hence can direct the search

towards different regions. In other words, the aggregate functions eliminate the role

of test problem structure while it is one of the most important factors dominating

target algorithm behaviors. Intuitively, we want to find a parameter setting where the

target algorithm works well on most test problems. As a result, parameter optimiza-

tion can be studied as a multi-objective optimization problem. However, in practice

if we consider each test problem to represent for an objective, the multi-objective

parameter optimization problem becomes unrealistic and infeasible. Therefore, the

idea of grouping test problem such that each group represents an objective for multi-

objective parameter optimization problem is out of the question. Clearly, clustering

or classification techniques can be considered for grouping test problems. Following

this approach, we give more opportunities for test problems to “communicate” with

one another.

Continuing to exploit the roles of test problems, we consider MDO (Multidisci-

plinary Design Optimization) (Cramer et al., 1994). MDO uses optimization methods

to solve design problems incorporating multiple disciplines; the idea behind this is to

exploit the interaction between disciplines during the optimization to get an optimum

superior to solutions obtained by optimizing each discipline sequentially. In the case

of a numerical algorithm that is usually sensitive to problem structure, each class of
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test problems can be considered as a discipline because it will cause different reac-

tions and behaviors from target algorithm. In other words, different classes of test

problems require different optimal settings and will take the tuning process in differ-

ent directions. Hence, application techniques from MDO to the problem of empirical

parameter optimization could be a relevant direction of research.
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Püschel, M., Franchetti, F. and Voronenko, Y. (2011). Encyclopedia of

Parallel Computing, Springer, chapter Spiral.
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Appendix A

Case-study on tuning IPOPT

parameters

In this appendix, OPAL is used together with a clustering tool to identify good

algorithmic parameters at a reasonable cost. The target algorithm considered here is

IPOPT, a nonlinear constrained optimization solver described by Wächter and Biegler

(2006). In our setup, we analyze the effect of six parameters on the computational

effort. The parameters, their bounds, type, default value, scale and context of uti-

lization are summarized in Table A.1.

Table A.1 Six IPOPT parameters

Variable Type Default Scale Context
and bounds value

0 < τmin < 1 Real 0.99 0.05 fraction-to-boundary parameter update
αmax
k = max{α ∈ (0, 1] : xk + αdxk ≥ (1− τj)xk}

0 < sθ <∞ Real 1.1 5 switch condition in a search step
0 < sϕ <∞ Real 2.3 5 αk,l[−∇ϕµj (xk)Tdxk]sϕ ≤ δ[θ(xk)]sθ
0 < δ <∞ Real 1.0 5

0 ≤ pmax <∞ Integer 4 8 maximal number of second order corrections

0 < κsoc < 1 Real 0.99 0.05 minimal reduction for second order correction step

In order to evaluate the quality of a prescribed set of parameters, IPOPT is

launched on a testbed L containing a total of 730 test problems from the CUTEr

collection (Gould et al., 2003a). The application of IPOPT with the default parame-

ter values reveals that:

– 11 problems return code 1 indicating that the algorithm did not converge to the

desired tolerance levels, but produced a point satisfying other weaker tolerance

levels.
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– 25 problems return code 2, which means that the restoration phase converged

to a minimizer for the constraint violation function, which is not feasible for the

original problem. This suggests that the problems may be locally infeasible.

– 3 problems return code 4 indicating that the problems may be unbounded as

the iterates grow unbounded.

– 3 problems return code 6, which means that the problem has as many equality

constraints as free variables, and a feasible point was found.

– The remaining 688 problems are solved with return code 0, indicating that a

locally optimal point within the desired tolerances was found.

– None of the problems returned a negative return code, which would indicate

failure.

A.1 Direct Optimization of some IPOPT Param-

eters

The optimization problem considered by OPAL consists in minimizing the objective

function ψL:

ψL(p) =
∑
`∈L

ψ`(p)

where ψ`(p) := µFEVAL
`,p + µGEVAL

`,p + µEQCVAL
`,p + µINCVAL

`,p + µEQJVAL
`,p + µINJVAL

`,p

subject to the constraint:

ϕL(p) :=
∣∣{` : µECODE

`,p < 0}
∣∣ ≤ 0

and where µFEVAL
`,p , µGEVAL

`,p , µEQCVAL
`,p , µINCVAL

`,p , µEQJVAL
`,p and µINJVAL

`,p represent the number

of objective, gradient, equality constraints, inequality constraints, equality Jacobian

and inequality Jacobian function evaluations, respectively, and where µECODE
`,p returns

the exit code of solving problem ` using the parameter p. The constraint requires

that all the test problems be solved by IPOPT. The constraints defining the domain

P are simply the bounds and types reported in Table A.1. The objective function

value with the default parameters p0 is ψL(p0) = 207866.

The overall computing time required for solving this blackbox optimization prob-
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lem with OPAL is 27h55m, and produces a set of parameters p̂ with an objective

function value of ψL(p̂) = 198615.

A.2 Combining OPAL with a clustering tool

An alternate and less expensive way to use the OPAL framework for this problem

is by using clustering analysis on the cells of a self-organizing map based on the work

of Kohonen (1998); Kohonen and Somervuo (2002) and Pantazi et al. (2002). The

self-organizing map partitions the testbed into clusters sharing similar values of the

objective and constraints. A representative problem from each cluster is identified by

the clustering scheme, resulting in a subset L1 of 41 test problems from L. OPAL is

then launched on the minimization of ψL1(p) subject to the same no-failure constraint.

This surrogate problem is far easier to solve, as it requires only 4h17m and produces

a solution p1 which is close to p̂.

Table A.2 lists the three solutions with their corresponding objective function

values ψL1(p) and ψL(p), together with the overall computational time required to

generate them. The value ψL(p1) is computed and inserted in the table for comparison

purposes. The output codes generated by IPOPT on the entire testbed L with p1 are

identical to those produced by p0 and p̂.

Table A.2 Default and optimized parameters for IPOPT

Solution Parameter value ψL1(p) ψL(p) Time
p0 0.99 1.1 2.3 1.0 4 0.99 51233 207866 -
p̂ 0.99 1.1 2.3 1.0 4 0.927548828125 198615 27h55m
p1 0.99 1.1 2.3 1.0 4 0.94 49633 198663 4h17m

Inspection of the table reveals that the default IPOPT parameter values are well

chosen. The only modification that the tests suggest is to slightly reduce the value of

the parameter κsoc < 1, used to determine the second order correction step constraint

violation reduction. But with the value of κsoc = 0.94 instead of 0.99, the number of

function evaluations required by IPOPT drops by approximately 4.4% on the entire

collection of 730 test problems, even if the optimization is conducted on a subset of

only 41 problems.

Figure A.1 compares the two sets of parameters p0 and p1 from a different perspec-

tive. These performance profiles plot the proportion of problems solved with p0 or p1
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within a factor of α (on the horizontal axis) of the best strategy. In both subplots

the optimized parameters p1 dominates the default ones p0. The differences between

the two parameter settings are more pronounced in subfigure (a). This is due to the

fact that the optimization was conducted on the list L1. Figure (b) confirms that

the combination of the clustering and self-organizing maps produced a representative

subset of the collection of test problems.
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Figure A.1 Performance profiles for the sets of parameters p0 and p1


	Acknowledgements
	Résumé
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	Acronyms and abbreviations
	1 INTRODUCTION
	2 EMPIRICAL OPTIMIZATION OF ALGORITHMS: STATE OF THE ART
	2.1 Automatic parameter tuning is an active research area
	2.2 The basic questions of an automated tuning method
	2.2.1 Parameterizing the target algorithm
	2.2.2 Empirical quality evaluation methods
	2.2.3 Search methods for exploring parameter space

	2.3 Automatic parameter tuning as an optimization problem
	2.3.1 Formulation of a parameter optimization problem
	2.3.2 Direct-search methods for solving blackbox optimization problem
	2.3.3 The MADS algorithm and the NOMAD solver 


	3 ORGANIZATION OF THE THESIS
	4 ALGORITHMIC PARAMETER OPTIMIZATION OF THE DFO METHOD WITH THE OPAL FRAMEWORK
	4.1 Introduction
	4.2 Optimization of Algorithmic Parameters
	4.2.1 Black Box Construction
	4.2.2 Direct Search Algorithms

	4.3 The OPAL Package
	4.3.1 The OPAL Structure
	4.3.2 Usage of OPAL

	4.4 Application to Derivative-Free Optimization
	4.4.1 General Description of DFO
	4.4.2 Two DFO Parameter Optimization Problems
	4.4.3 Numerical Results

	4.5 Discussion

	5 EFFICIENT USE OF PARALLELISM IN ALGORITHMIC PARAMETER OPTIMIZATION APPLICATIONS
	5.1 Introduction
	5.2 The Opal framework
	5.2.1 Parameter optimization as a blackbox optimization problem
	5.2.2 Computational cost reduction with Opal

	5.3 Parallelism in algorithmic parameter optimization
	5.3.1 The blackbox solver handles the parallelism
	5.3.2 Parallelism within the blackbox
	5.3.3 Mixed parallelism

	5.4 Numerical results
	5.4.1 The target algorithm: A trust-region method for unconstrained optimization
	5.4.2 The parameter optimization problem
	5.4.3 Comparative study of parallelism within Opal

	5.5 Outlook

	6 OPTIMIZATION OF ALGORITHMS WITH OPAL 
	6.1 Introduction
	6.2 Optimization of Algorithmic Parameters
	6.2.1 Algorithmic Parameters
	6.2.2 A Blackbox to Evaluate the Performance of Given Parameters
	6.2.3 Blackbox Optimization by Direct Search

	6.3 The OPAL Package
	6.3.1 The Python Environment
	6.3.2 Interacting with Opal
	6.3.3 Surrogate Optimization Problems
	6.3.4 Categorical Variables
	6.3.5 Parallelism at Different Levels
	6.3.6 Combining Opal with Clustering Tools
	6.3.7 The Blackbox Optimization Solver

	6.4 Discussion

	7 GENERAL DISCUSSION
	8 CONCLUSION AND RECOMMENDATIONS
	Bibliography
	Appendix
	A.1 Direct Optimization of some IPOPT Parameters
	A.2 Combining OPAL with a clustering tool



