
UNIVERSITÉ DE MONTRÉAL

DESIGN AND ARCHITECTURE OF A HARDWARE PLATFORM TO SUPPORT THE

DEVELOPMENT OF AN AVIONIC NETWORK PROTOTYPE

DAVIDE TRENTIN

DÉPARTEMENT DE GÉNIE ÉLECTRIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE ÉLECTRIQUE)

AVRIL 2012

c© Davide Trentin, 2012.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé:

DESIGN AND ARCHITECTURE OF A HARDWARE PLATFORM TO SUPPORT THE

DEVELOPMENT OF AN AVIONIC NETWORK PROTOTYPE

présenté par: TRENTIN, Davide

en vue de l’obtention du diplôme de: Mâıtrise ès Sciences Appliquées

a été dûment accepté par le jury d’examen constitué de:

M. DAVID, Jean-Pierre, Ph.D., président.

M. SAVARIA, Yvon, Ph.D., membre et directeur de recherche.

M. ZHU, Guchuan, Doct., membre et codirecteur de recherche.

M. LIU, Xue, Ph.D., membre.

iii

À mes parents, Carmen et Claudio,

et à mon frère Stefano

qui m’ont toujours supporté

même si ça voulait dire me voir partir.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my research directors Prof. Yvon Savaria at

École Polytechnique de Montréal, and Prof. Cristiana Bolchini at Politecnico di Milano, and

to my research codirector Prof. Guchuan Zhu at École Polytechnique de Montréal for their

suggestions, guidance, and encouragement, that helped me completing this thesis.

I also want to thank Bombardier Aerospace and Thales Canada Inc., as well as CRIAQ,

NSERC/CRSNG, and MITACS, for funding the AVIO 402 Project, allowing me to explore

the world of embedded avionic systems and networks, and to get in contact with professionals

and experts of this domain.

Leaving Italy to study in Montreal has not been easy, but it was definitely an experience

worth having, not only for what I learned in school, but also for what I learned about myself

and for the great people I met. Thanks to my university colleagues José-Philippe, Talal, and

Safwen, who shared with me problems and achievements during the entire project, and to

Normand, who always had precious suggestions ready when I needed them. Thanks to the

people who are living the same amazing international experience, Sergio, Mauro, Giuseppe,

Francesca, Giovanni, Andrea, and the rest of the Italian gang for the nice moments spent

together. Thanks to those who lived great adventures with me and to the greatest roommates

I have ever had: Danai, Massimo, Ilaria, Sarah, and Jon.

Thank you Marie for always supporting me, for being at my side in the best and in the

worst moments of the last year, and for being so special. And yes, thank you for revising my

french! Most importantly, a great thank you to my beloved family, Stefano, Carmen, and

Claudio, who always supported, loved, and encouraged me, even if this meant watching me

go far away for two years and a half.

v

RÉSUMÉ EN FRANÇAIS

La récente évolution des architectures des systèmes avioniques a permis la création de réseaux

avioniques modulaire embarqués (IMA) et l’augmentation du nombre de systèmes embarqués

numériques dans chaque avion. Cette transition vers une nouvelle génération d’avions plus

électriques permet une réduction du poids et de la consommation énergétique des aéronefs et

aussi des couts de production et d’entretien. Pour atteindre une réduction du poids encore

plus poussée et une amélioration de la bande passante des réseaux utilisés, des technologies

innovatrices ont récemment été adoptées : ARINC 825 et AFDX qui permettent en fait une

réduction du câblage nécessaire pour réaliser le réseau embarqué.

Dans le cadre du projet AVIO 402, qui inclut plusieurs sujets de recherche qui concernent

aussi les capteurs et leur interface avec le système IMA, une nouvelle architecture a été

proposée pour la réalisation du réseau utilisé pour le système de contrôle de vol. Cette

architecture est basée sur des bus ARINC 825 locaux, connectés entre eux en utilisant un

réseau AFDX qui offre une meilleure bande passante ; les ponts entre les deux protocoles et

les modules qui connectent les nœuds au réseau ont une structure générique pour supporter

des protocoles différents et aussi plusieurs types des capteurs et actionneurs. Pour une

évaluation des performances et une analyse des défis de son implémentation, la réalisation

d’un prototype du réseau proposé est requise par le projet.

Dans ce mémoire, le développement d’une plateforme matérielle pour soutenir la réalisation

de ce prototype est traité et trois modules fondamentaux du prototype ont été conçus sous

forme de “IP core” pour être subséquemment intégrés dans l’architecture du réseau qui sera

implémenté en utilisant des FPGA. Les trois systèmes sont le contrôleur du bus CAN, utilisé

comme base pour l’implémentation du protocole ARINC 825, le “End System” AFDX et le

commutateur nécessaires pour la réalisation d’un réseau AFDX. Dans la première partie de

ce mémoire, les objectifs visés sont présentés et une analyse des spécifications des protocoles

considérés est fournie, cela permet d’identifier les fonctionnalités qui doivent être incluses

dans chaque système et de déterminer si des solutions pour leur implémentation ont déjà été

publiées et peuvent être réutilisées. Ensuite, le développement de chaque système est présenté

et les choix de conception sont expliqués afin de montrer comment les fonctionnalités requises

par les spécifications des deux protocoles peuvent être implémentées pour mieux répondre

aux nécessités du projet AVIO 402.

Au début du projet AVIO 402, CAN, CANaerospace et ARINC 825 étaient considérés

comme des solutions acceptables pour la réalisation des bus locaux, donc un contrôleur CAN

facilement reconfigurable a été développé pour supporter ces trois technologies différentes, en

vi

profitant des leurs grandes similitudes. Dans un deuxième temps, il a été préféré d’inclure

le seul ARINC 825 dans le prototype et le système conçu a été adapté à cette solution.

La plupart des architectures pour des contrôleurs CAN publiées dans les dernières années

proposent une structure basée sur deux modules de traitement séparés pour les trames entrant

et sortant du nœud. Pour rendre le IP plus facilement adaptable au bus ARINC 825, où les

trames de surcharge ne sont pas permises, un gestionnaire central a été ajouté à ce type de

système. Puisqu’il est responsable de toutes les fonctionnalités qui différencient un protocole

de l’autre, ce gestionnaire est la seule partie du contrôleur qui nécessite une modification. Le

système conçu garantit une occupation de seulement 3% des ressources du FPGA Spartan-6

utilisées pour la réalisation du prototype.

Pour le développement du “End System” (ES), une approche logiciel a été préférée à

la réalisation d’un IP matériel à cause des interconnexions avec les applications du NCAP,

le pont entre le bus local et le réseau principal, qui seraient exécutées par un processeur

embarqué. Pour profiter des similitudes avec Ethernet et pour garantir une meilleure porta-

bilité du code développé, le protocole AFDX est implémenté à partir de fonctionnalités de

réseautage du noyau Linux exécuté par le processeur Microblaze. Cette solution permet de

réutiliser l’interface API généralement utilisée pour Ethernet, basée sur les sockets, et les

protocoles UDP et IP fournis par Linux, et aussi de rendre le “End System”indépendant

du materiel. Pour émuler un environnement ARINC 653, requis par le projet AVIO 402, le

système embarqué a été abandonné et un ordinateur a été utilisé pour continuer la modifi-

cation des fonctions de réseautage du noyau Linux ; cette migration a permis d’apprécier la

bonne portabilité du design conçu, puisque le code développé est indépendant du processeur

utilisé.

Le dernier système réalisé est le commutateur du réseau AFDX. Pour minimiser la latence

maximale des trames, ce module a été complètement implémenté en VHDL pour implémenter

un traitement matériel parallèle des trames reçues. Une architecture à routage en parallèle,

souvent utilisées dans des switch Ethernet, a été adoptée pour effectuer aussi le filtrage requis

par la norme AFDX en parallèle. Un algorithme “token bucket” est exécuté par le module

de gestion, qui détermine aussi la destination des paquets reçus, pour éliminer tous ceux

qui ne respectent pas la bande passante allouée pour leur lien virtuel. L’ordonnancement

des trames vers les destinations correspondantes tient compte des deux niveaux de priorité

prévus par la norme. Un double tampon a été utilisé pour le stockage de trames en entrée

pour séparer le traffic critique du traffic non critique, et conséquemment réduire encore plus

la latence des premières ; la présence d’un tampon supplémentaire permet aussi de créer

un système redondant où le deuxième tampon peut gérer les trames critiques quand l’autre

est en panne. Le commutateur réalisé peut gérer un traffic à la vitesse maximale que le

vii

réseau peut supporter (100 Mbit/s) sur chaque port et éviter l’accumulation des paquets

dans les mémoires internes. Le module de routage est non bloquant, il peut donc transmettre

plusieurs paquets simultanément quand ils n’ont pas la même destination et donc éviter toute

congestion dans cette situation.

Le travail effectué dans ce mémoire sera utile non seulement pour la production du proto-

type en profitant des modules développés, mais aussi pour les leçons apprises et les solutions

identifiées pour leur implémentation. L’architecture du commutateur AFDX en particulier

est une contribution originale; en effet, la littérature concernée est très limitée et donc le

système de filtrage des paquets et de ségrégation de trafics critiques et non critiques de ce

type de système n’a jamais été étudié.

viii

ABSTRACT

The objective of the present project is to design three modules for a hardware platform

that will support the implementation of an avionic network prototype based on the FPGA

technology. The considered network has been conceived to reduce cabling weight and to

improve the available bandwidth, and it exploits the recently introduced ARINC 825 and

AFDX protocols. In order to support the implementation of both these protocols, a CAN

bus controller, an AFDX End System, and an AFDX Switch have been designed. After an

extensive review of the existing literature about the two related avionic protocols, a study of

the existing solutions for CAN and Ethernet protocols, on which they are based, has been

done as well to identify what knowledge and technology could be reused.

Because they are very similar, a flexible CAN controller has been implemented in hardware

instead of an ARINC 825 one in order to support both these technologies and in order to

reduce the IP core size. A combined HW/SW approach has been preferred for the AFDX

End System architecture to leverage an existing UDP/IP protocol stack and the Ethernet

layer included in the Linux kernel has been modified to create a portable and configurable

implementation of AFDX. Since various problems have been encountered to reproduce an

ARINC 653 compliant environment on the embedded system, the suggested design has been

ported in a PC. Finally, an original solution for the implementation of the AFDX switch

fabric has been finally presented; a space-division switching architecture has been chosen

and tailored to meet the AFDX specification. Hardware parallelism is exploited to reduce

the latency introduced on each frame by filtering them concurrently. Input buffers have been

duplicated to separate high from low priority traffics, further reducing latency of critical

frames and creating a redundancy that reduce the possibility of packet loss. Packet scheduling

and double queuing guarantee that all critical frames are forwarded before low priority ones.

Keywords: Avionic Full-Duplex Switched Ethernet, AFDX, ARINC 664, ARINC 825,

CAN, Avionic Data Networks, Ethernet Switch, FPGA.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ EN FRANÇAIS . v

ABSTRACT . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LISTE DES ANNEXES . xv

LIST OF ABBREVIATIONS . xvi

INTRODUCTION . 1

CHAPITRE 1 CONTEXT AND OBJECTIVES . 3

1.1 The AVIO 402 project . 4

1.2 Project objectives . 8

1.3 Hardware platform . 9

1.3.1 Development environment . 9

1.3.2 IP modules . 10

CHAPITRE 2 AVIONIC DATA COMMUNICATION NETWORKS 12

2.1 Overview of avionic protocols . 12

2.1.1 The CAN protocol . 13

2.1.2 The AFDX protocol . 17

2.2 Literature review . 20

2.2.1 CAN bus controller . 21

2.2.2 AFDX End System . 22

2.2.3 AFDX Switch . 25

x

CHAPITRE 3 CAN BUS CONTROLLER . 29

3.1 Specification and requirements . 29

3.2 Design . 30

3.2.1 Hardware vs. Software considerations 30

3.2.2 Architecture . 31

3.3 Implementation . 33

3.3.1 Functional verification . 37

3.3.2 Migration towards ARINC 825 . 40

CHAPITRE 4 AFDX END SYSTEM . 42

4.1 Specifications . 42

4.2 Proposed solution . 43

4.2.1 The Linux Ethernet protocol stack 44

4.2.2 End System design . 45

4.3 End System development . 47

4.3.1 Hardware embedded system . 48

4.3.2 Software implementation . 49

4.4 Practical Problems and Lesson Learned . 52

CHAPITRE 5 AFDX SWITCH . 55

5.1 Specification and requirements . 55

5.1.1 ADFX switch specification . 55

5.1.2 Switch Fabric . 56

5.1.3 AVIO 402 requirements . 59

5.2 Core Design . 59

5.2.1 Hardware advantages . 60

5.2.2 Switch Architecture . 60

5.3 Synthesis results . 71

5.3.1 System size . 72

5.3.2 Timing . 73

5.3.3 Considerations on the implementation 75

5.4 Test and validation . 75

5.4.1 Testbenches . 76

5.4.2 System behaviour . 78

5.4.3 Performance measurement . 79

CHAPITRE 6 CONCLUSION AND FUTURE WORK 84

xi

BIBLIOGRAPHY . 87

APPENDICES . 90

FSM implementation . 90

B.1 Queue implementation . 98

B.2 Manager implementation . 107

B.3 Scheduler implementation . 112

B.4 Filter implementation . 115

C.1 Switch Fabric test cases . 121

C.1.1 Test test case 1 . 121

C.1.2 Test test case 2 . 122

C.1.3 Test test case 3 . 123

C.1.4 Test test case 4 . 123

C.1.5 Test test case 5 . 124

C.1.6 Test test case 6 . 125

C.1.7 Test test case 7 . 126

C.1.8 Test test case 8 . 128

C.1.9 Test case 9 . 128

C.1.10 Test case 10 . 129

C.1.11 Test case 11 . 129

xii

LIST OF TABLES

Table 3.1 Size of the CAN controller modules 36

Table 3.2 Hexadecimal value of each state of the reception branch of the FSM . 38

Table 3.3 List of the scenarios used to validate the Manager behaviour 39

Table 3.4 Size of the ARINC 825 controller . 41

Table 5.1 System size for 10 and 20 ports . 72

Table 5.2 Size of single modules . 72

Table 5.3 After synthesis operating frequence 74

Table 5.4 List of the most significant tests . 77

Table 5.5 Technological latency for frames of minimum and maximum length . 79

Table 5.6 Output FIFO overflow . 81

Table C.1 Test 3: VLs and their destinations 124

Table C.2 Test 4: VLs and their destinations 125

Table C.3 Test 7: Output FIFO overflow . 127

Table C.4 Test 10: Frame sizes . 130

xiii

LIST OF FIGURES

Figure 1.1 Avio 402 network overview . 5

Figure 1.2 Network architecture . 6

Figure 1.3 NCAP structure . 7

Figure 1.4 Prototype overview . 8

Figure 2.1 CAN extended data frame structure 14

Figure 2.2 AFDX network example . 18

Figure 2.3 BAG and Jitter in ES transmission 19

Figure 2.4 AFDX frame structure . 20

Figure 2.5 HW implementation of the ES . 24

Figure 2.6 Combined input/output buffering structure 27

Figure 3.1 CAN controller internal architecture 31

Figure 3.2 FSM execution flow . 34

Figure 3.3 Simulation example: FSM reception reception flow 37

Figure 4.1 SW architecture overview . 44

Figure 4.2 ES hardware architecture . 48

Figure 4.3 SW architecture overview . 49

Figure 4.4 Modified prototype structure . 53

Figure 5.1 Representation of the modules of the Switch taken from the specification 57

Figure 5.2 Example of frame-based leaky bucket algorithm application 59

Figure 5.3 Architecture of the Switch . 61

Figure 5.4 Reception modules . 63

Figure 5.5 Transmission modules . 64

Figure 5.6 Head of Line Blocking . 67

Figure 5.7 Frame treatment by the core functional modules 74

Figure 5.8 Basic routing functionalities . 77

Figure 5.9 Minimal technological latency measure 79

Figure 5.10 Latency of the last byte for a 1ms single-port burst 80

Figure 5.11 Routing of concurrently received frames and priority management . . 82

Figure 5.12 Example of error detection: bad CRC 83

Figure C.1 Test Case 1 . 131

Figure C.2 Test Case 2 . 132

Figure C.3 Test Case 3 . 133

Figure C.4 Test Case 4 . 134

xiv

Figure C.5 Test Case 5 - first example . 135

Figure C.6 Test Case 5 - second example . 136

Figure C.7 Test Case 6 . 137

Figure C.8 Test Case 7 . 138

Figure C.9 Test Case 8 . 139

Figure C.10 Test Case 9 - overview . 140

Figure C.11 Test Case 9 - CRC control . 141

Figure C.12 Test Case 10 . 142

Figure C.13 Test Case 11 . 143

xv

LISTE DES ANNEXES

Annexe A IMPLEMENTATION OF THE MANAGER OF THE CAN CORE . 90

Annexe B IMPLEMENTATION OF THE AFDX SWITCH 98

Annexe C SWITCH FABRIC TEST VERIFICATION 121

xvi

LIST OF ABBREVIATIONS

ADN Aircraft Data Networks

AFDX Avionic Full-Duplex Switched Ethernet

AMP Arbitration based on Message Priority

BAG Bandwidth Allocation Gap

COTS Component Off The Shelf

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

ES End system

FCC Flight Control Computer

FCS Frame Control Sequence

IMA Integrated Modular Avionics

LRM Line Replaceable Module

LRU Line-replaceable Unit

MAC Media Access Controller

MEA More Electric Aircaft

MTU Maximum Transmission Unit

NCAP Network Capable Application Processor

NIC Network Interface Controller

QoS Quality of Service

SOF Start of Frame

TIM Transducer Interface Module

VL Virtual Link

1

INTRODUCTION

The aerospace industry has historically been reluctant to introduce significant innovations to

replace old, well known, reliable systems. In recent years though, the market has been pushing

toward the realization of more efficient and easily maintainable aircrafts to reduce production

and maintenance costs. These needs allowed the introduction not only of new electronic

technologies in the avionic environment, but also a general reorganization of the aircraft

support structure. Integrated Modular Avionics (IMA) is slowly replacing the traditional

federated architecture and the fly-by-wire philosophy is being applied more and more instead

of the old mechanical and hydraulic control used in airborne systems, resulting in a general

trend towards a More Electrical generation of Aircrafts (MEA).

All these innovations involve a significant increase in the complexity of electronic con-

trols, and number of actuators, and sensors; therefore, the volume of digital data exchanged

between avionic systems is growing and becoming harder to handle. Because of this transi-

tions old and mature technologies exploited so far for the communication of electronic data,

such as ARINC 429, are now showing their limits and problems, especially for what concerns

their low bandwidth and the extremely large bundle of wiring they require. This is why new

interesting solutions are finally finding place in avionic networks. For instance, AFDX and

ARINC 825 are two of the most promising technologies available for the aerospace industry

to solve the aforementioned problems.

The work presented in this thesis concerns the development of three IP cores to realize

a hardware platform that will support the implementation of an avionic network prototype.

Such a prototype will support verification as well as testing of reliability and performance of

a new network architecture proposed as a part of the AVIO 402 CRIAQ project, which aims

at helping the industrial partners migrate towards a greener, less costly, and more energy-

efficient generation of aircrafts. ARINC 825, one of the considered protocols, is used for

the communication between sensors and actuators grouped in local clusters. By contrast,

AFDX provides a connection between these local networks and the central Flight Control

Computers (FCCs) and other IMA systems. This architecture offers not only high bandwidth

and reliability, but also a significant reduction of the required cabling, and consequently of

the overall weight of the system.

With this thesis work, a development environment has been set for the prototype imple-

mentation and three fundamental modules of the network have been studied and conceived:

a CAN bus controller to support ARINC 825 connectivity, an AFDX End System, and an

AFDX switch fabric. Each module has been analysed to determine the best approach for its

2

implementation and to propose a design for its architecture considering the needs concerning

performance and system size required by the protocol specification and by the AVIO 402

project. An implementation of their fundamental functionalities has been done as well to

determine if the selected solutions can provide the necessary performance and to provide the

starting point for the realization of the final prototype. The contribution of this work is not

limited to the development of this hardware platform, but also to the identification of critical

aspects of the implementation of these recently introduced technologies to propose possible

design solutions that would help improving their Technology Readiness Level.

Outline of the Thesis

More precise information about the objectives of this work can be found in chapter 1, together

with a description of its context and of the AVIO 402 project. In chapter 2, the ARINC

825 and AFDX protocols are introduced to highlight their peculiarities and their innovative

features, and the state of the art concerning their implementation is presented together

with a review of the existing literature. The following three chapters focus on the three

developed systems, presenting the conceived design, the implemented features, and some

obtained results. In chapter 3, the design of the CAN bus controller is described and the

synthesis results are provided as well. The AFDX End System is treated in chapter 4, where

the proposed solution is explained and its advantages and problems are discussed. Chapter 5

presents the design and implementation of the AFDX switch, describing how the conceived

design can reduce frame latency and reduce the impact of the head-of-line blocking. Final

considerations on the obtained results, on the lesson learned, and on the perspective opened

by this work are included in chapter 6, where future work is discussed as well.

3

CHAPITRE 1

CONTEXT AND OBJECTIVES

The main trend of the aerospace industry in recent years has been directed towards the

development of greener, less costly, and easily maintainable aircrafts. These goals are being

achieved by making airplanes “more electrical”, replacing mechanical controls with electrical

fly-by-wire controls, and adopting Integrated Modular Avionic (IMA) architectures. All these

aspects are closely interconnected with each other.

The idea of More Electrical Aircraft (MEA) became interesting thanks to advances in

solid-state power-related electronics, that can now provide the necessary electrical power to

replace heavy an expensive hydraulic parts, as explained by Rosero et al. [1]. More and more

mechanical and hydraulic systems are now being eliminated from airplanes and electrical

motors and actuators are taking their place. These are usually lighter and more energy-

efficient than their predecessors, and they can also be easily digitally controlled. This last

aspect made also possible the transition from mechanical controls to electrical ones, that

brought to the development of fly-by-wire systems. MEA and fly-by-wire largely contributed

to the reduction of aircraft weight and consequently of the overall fuel consumption, also

reducing components wear out and maintenance costs of the machine.

A classic aircraft is based on a federated architecture, where each of its systems is de-

veloped as a Line Replaceable Unit (LRU) that can be easily changed or replaced, and that

provides a single peculiar functionality in order to guarantee segregation of faults occurring

in one of them and to avoid their propagation. Digital control of engines and actuators made

possible the development of IMA architectures, where embedded systems are exploited to

handle more than one task, thus reducing the number of sub-systems on board, and con-

sequently of the overall weight and power consumption. This concept has been studied in

the 90s and it has been finally standardized at the end of the 2000s, with the production of

the Airbus A380 and the Boeing 787. The new sub-systems of the network are often called

Line Replaceable Modules (LRMs) and they must ensure logical and physical segregation of

the various tasks in order to keep each one of them independent from anything else and to

prevent fault propagation. LRMs often exploit commercial off-the-shelf (COTS) components

in order to reduce production costs and, when they are processor based, they usually rely on

the ARINC 653 compliant operating systems to ensure time and spatial independence of the

various applications running on it. The IMA architecture offers other important advantages

such as reduction of inventories in Airline Maintenance Centres and reduction of cost for

4

version upgrades and functional enhancements.

All these became popular in the last decade and they brought a significant increase

in the volume of digital data that needs to be exchanged on board, exposing limitations

and disadvantages of old technologies usually adopted for data communications: traditional

avionic technologies offer limited bandwidth, and they also involve bulky wiring bundles when

the number of connected systems increases, leading to serious problems related to wiring

weight. The need for a more efficient, highly-reliable network to transmit all this digital

data across the aircraft is consequently becoming a priority. Recently developed protocols

such as ARINC 825 or Avionic Full-Duplex Switched Ethernet (AFDX) aim at solving these

problems providing large bandwidth and a network structure that allows wiring reduction

while guaranteeing high reliability.

1.1 The AVIO 402 project

This project has been proposed and is supervised by two industrial partners, Bombardier

Aerospace Inc. and Thales Group, and it is supported by CRIAQ, NSERC-CRSNG, and

MITACS as well. Not only École Polytechnique de Montreal, but also ETS and McGill Uni-

versity are involved in various aspects of the project. The project has multiple complementary

goals, all intended to push the avionic industry towards a greener generation of aircrafts: the

development of new MEMS, optical sensors, and of a universal smart sensors interface, and

the frequency selection for on board wireless communications, are some of the other topics

covered in this project along with the design of a reliable communication network.

In parallel with the studies on AFDX performance, end-to-end latency, and optimization

and of the reliability of the proposed network architecture, the development of a prototype of

this network is required as well: the objective is to explore practical implementation issues,

and to provide a platform, or test-bed, for practical testing and verification of the achievable

performance and potential limitations. To understand the test-bed structure, what needs

to be included in it, and which modules will be examined in this thesis, a description of

the proposed network architecture is given in the following section. A high-level overview of

the general architecture of the network that is being developed is shown in Figure 1.1: the

system includes some local clusters relying on a local field bus, generic IMA modules, a main

backbone AFDX network, and redundant Flight Control Computers (FCC). Each remote

cluster can rely on a variety of possible technologies, such as CAN, ARINC 825, but also

legacy systems that use traditional protocols such as ARINC 429, and the ES (End Systems)

that connect these clusters with the main network must provide a gateway between these

protocols and AFDX. In particular, ARINC 825 has been chosen for the prototype realization

5

Figure 1.1 Network overview directly taken from the internal documentation of the Avio 402
project

in order to explore this fairly recent technology.

System overview

A refinement of the network architecture has been proposed by J.-P. Tremblay and it has been

conceived to provide high bandwidth and wiring reduction while maintaining a high overall

reliability. As shown in Figure 1.2, sensors and actuators present across the aircraft are

grouped into local clusters, as specified by the AVIO 402 project, which rely on the ARINC

825 protocol. This CAN based protocol is an enhanced version of CANAerospace, which

has known a wide diffusion in recent years, and it is a promising solution for small avionic

networks based on the LRU concept, thanks to its high reliability and its efficient networking

capability. This bus links all the sensors and actuators of the local group together and with

multiple Network Capable Application Processors (NCAPs) as well. The bus is not directly

connected to the peripherals, in fact Transducer Interface Modules (TIMs) are exploited to

provide actuator control, or sensor management, while dealing with commands coming from

the central control unit and with communications with other peripherals. On the other side,

6

the NCAP module realizes the bridge between the local and the main networks, providing a

gateway between the two different adopted protocols and some additional services to handle

data flow, to wrap packets together, and to determine data destination. The generic structure

of this network, as well as the terminology and the acronyms that have been adopted are taken

from the IEEE 1451 standard [2] for a smart transducer interface for sensors and actuators,

that has been used as guideline but that had to be adapted to the avionic environment since

it was not originally intended for it. The main network is based on the AFDX technology

because it must provide a higher bandwidth than the local networks since multiple clusters

will exploit it simultaneously. AFDX allows a reduction of the cabling thanks to the concept

of virtual links and it is one of the most promising technologies for next generations of

aircrafts.

Figure 1.2 Network architecture as specified by J.-P. Tremblay in the internal documentation
of the Avio 402 project

Figure 1.2 shows two clusters, one on the top and one on the bottom, connected to the

main network through multiple NCAPs, their number can change from one cluster to the

other. Each NCAP is connected to the field bus that put it in communication with all the

TIMs that are connected to the sensors and actuators of the local cluster. Redundant paths

are used inside each TIM and NCAP module as well to provide even more possible routes

for transmitted data: when one of the modules stop working correctly, an alternate path can

be used to guarantee data delivery, but the price to pay is that more resources are required.

The NCAP constitutes a sort of bridge between the local network and the main one,

realising a gateway that must be able to communicate with the two protocols it is interfaced

with, but also to provide additional services for the control of the peripherals, for traffic flow

7

Figure 1.3 NCAP structure as designed by J.-P. Tremblay for the Avio 402 project

control, and for the identification of the nature of the information that is passing through

it. As shown in Figure 1.3, the interface with each network is realized via a dedicated

controller that must handle the corresponding protocol. In both directions, crossbars can

redirect received packets towards any of the available service modules, and to any of the

output interfaces, thereby reducing the introduced latency and avoiding the loss of frames

in case of failure of one of the modules of the system. NCAP services are still not precisely

determined, thus flexible interfaces must be considered to communicate with them. The TIM

internal structure is not described here since it is not strictly related to this thesis, but it

is important to know that a communication module identical to the one instantiated in the

NCAP as interface with the field bus is present in the TIM as well to reproduce the same

function. The AFDX network is based on the star topology typical of switched Ethernet,

therefore it requires switches to handle frame routing and traffic control. These routing

modules are mostly similar to a standard Ethernet switch but they must also provide some

additional features required by the AFDX protocol.

With the development of the prototype, it will be possible to test the overall functionality

of this proposed network architecture and its performance. The experimental results will also

be useful to validate the models developed to evaluate end-to-end delay, AFDX jitter, and

system reliability. A first implementation of the prototype will not include the redundant

paths included in the general structure previously presented; the overall structure of the

system that should be included in the prototype is shown in Figure 1.4 where the modules

conceived in this work are highlighted.

8

Figure 1.4 Prototype overview

1.2 Project objectives

The goal of this thesis is to contribute to the development of a hardware platform by de-

veloping three Intellectual Properties (IPs) modules to support the realization on FPGA of

the network prototype required by the AVIO 402 project. These modules will constitute the

starting point of the implementation of an ARINC 825 controller, an AFDX End System

(ES), and an AFDX Switch. It can be observed in Figure 1.4 that these subsystems con-

stitute the fundamental blocks of the basic implementation of the network included in the

prototype. An analysis of the considered modules is required to identify which approach is

the most suitable in each case to reach the best results considering the context this modules

need to be used in; a fully hardware implementation in VHDL, that could be optimal for

certain systems, may not be advantageous when developing other parts of the network. The

parameters used to select the preferable solution (between all those that can meet the per-

formance required by the corresponding specification) are different for the three cases: while

the size is critical for the ARINC 825, and reconfiguration capabilities are important for the

AFDX End System, processing time and frame latency must be minimized in the AFDX

switch fabric.

The first objective is to realize the three subsystems that meet the functionalities and

performance required by the corresponding specification, but this must be done considering

their future integration in the prototype and the tasks included in the AVIO 402 project.

Interfaces need to be compatible with those defined for adjacent modules of the prototype,

and the internal structure of each IP must support potential future modifications that could

become necessary to integrate solutions proposed by other colleagues to improve the network

performance. In order to develop a solution that can be exploited also in a commercial

product (i.e. not only a test-bed for network analysis, design reuse must be addressed as

far as possible; this will also help increase the technology readiness level of the exploited

9

protocols.

Although ARINC 825 has been adopted in the final network architecture, this solution

was not initially confirmed, and CANaerospace and CAN were considered viable choices as

well. Thanks to the very close similarity between these technologies, it has been decided to

initially develop a standard CAN controller, that would be easily configurable to support the

two avionic protocols if necessary. The other two systems needed for the prototype, the ES

and the Switch, are really different from each other even if they realize the same protocol. The

ES requires the development of the protocol on multiple layers, it must in fact communicate

with the physical layer, encapsulate data following the ARINC 664 specification, meet the

traffic control requirements described in the same documentation, and it also has to work in

close relation with the NCAP services and Gateway functionalities integrated in the NCAP.

The AFDX switch fabric has a similar role in the network to the one used in Ethernet switches,

it must in fact route frames towards their destination but also filter them to discard the ones

that do not respect the AFDX requirements.

1.3 Hardware platform

Because of the flexibility required in a prototyping stage, the whole system will be imple-

mented on FPGA. This solution allows easy modifications and testing even after the network

development is completed, and it also provides the possibility of exploiting a mixed HW/SW

approach for the realization of each subsystem. A description of the chosen development

environment is given here before passing to a presentation of the three modules that will be

discussed in this thesis.

1.3.1 Development environment

The FPGA development board has been chosen in function of the provided peripherals, of the

FPGA size, and of its cost. Because of costs and development time, the same board should

host all the various systems composing the network; the chosen device must consequently

satisfy the needs of both the TIM and the NCAP modules, as well as of the AFDX switches.

This solution facilitates portability of the developed modules from one system to another,

for example, the CAN controller could be used on both the TIM and the NCAP with no

modification at all.

The chosen board is the SP605 by Xilinx, expanded with the ISM networking FMC

module by Avnet: this entry level board is an inexpensive solution that can host the whole

NCAP, while the expansion FMC card provides additional communication ports. The SP605

board [3] is based on a Spartan-6 XC6SLX45T FPGA and it provides, among other features,

10

general I/O and UART connectors, one tri-mode Ethernet PHY, a DDR3 memory, a 1-lane

PCI Express connector, and an FMC LPC (Low Pin Count) connector. This last connector

is used to plug the ISMNET LPC extension card [4] that provides two additional Ethernet

PHY as well as two CAN bus connectors required for the ARINC 825 communication into

the board.

This generic development board provides an inexpensive and easy solution for the re-

alization of the whole prototype. The two CAN bus ports provided by the FMC card are

required for the field bus implementation, and the two Ethernet ports for the AFDX End

system connection on the main network. The presence of three Ethernet PHYs overall allows

the realization of a minimal switch on the same board as well.

1.3.2 IP modules

The design and development of three fundamental Intellectual Properties is discussed in this

thesis, these modules are conceived according to the selected FPGA development environment

and to the objectives of the AVIO 402 project.

CAN bus controller

In the description of the network proposed for the AVIO 402 project, the CAN bus was not

mentioned, but, as explained above, at the time this project started, the adoption of the

ARINC 825 protocol was not confirmed yet. Because of the strong analogies between CAN,

CANaerospace, and ARINC 825 protocols, it was planned to initially develop a standard CAN

bus controller that would support potential future modifications if necessary; the smaller

the required changes for this transition the better. A detailed analysis of the two avionic

standards is required to identify their differences from CAN, and to determine how they

could affect the implementation of its controller. Even if inspiration can be taken from

already existing designs and solutions for a CAN controller’s architecture, attention must be

paid to ensure a complete compliance with these avionic technologies. Unfortunately, while

an extensive literature is available for the implementation of a CAN core, the same cannot

be said for ARINC 825 and CANaerospace bus controllers, and even if commercial products

are available, no internal description of these systems has been found in the literature. This

controller constitutes the communication module included in both the TIM and in the NCAP

systems for the communication with the field bus, and, as depicted in Figure 1.3, it needs to

be instantiated multiple times to guarantee better reliability; as a consequence the IP size

can become a critical parameter depending on the number of instantiations required, and it

must be considered as a key feature when designing this system.

11

AFDX End System

The second module that must be designed is the front end of the NCAP module towards the

AFDX network, which is included in the switches as well, and it is called an End System.

The role of this system is to provide data encapsulation/decapsulation, traffic flow control,

and transmission/reception of frames over the network. Data that is managed by higher

level applications (that can implement NCAP services, or the Gateway towards the ARINC

825 field bus, or again the switch’s health manager) is passed to the ES for transmission

over the network. The strict relationship of the ES with these other required functionalities

makes it impossible to develop them completely independently, therefore the design of this

system must take the others into consideration and be as flexible as possible because of

the provisional nature of those in this prototyping stage. Active research is in progress

about optimal scheduling and other techniques aimed at minimizing frame latency and jitter

in AFDX networks, and the final prototype should support and facilitate their potential

implementation for testing. Key features of this IP must consequently be ease of integration

and interaction with the aforementioned functionalities, and reconfigurability, to test this

system with different scheduling algorithms and with different configurations of the supported

Virtual Links.

AFDX Switch

The last system considered in this thesis is the routing module, that represents the heart of

the AFDX switch. The AFDX network is based on the same switched topology as a stan-

dard switched Ethernet network, but the nodes that are responsible for the routing of the

frames, although they share multiple identical features with their IEEE 802.3 counterpart,

are different under various aspects such as frame filtering, traffic policing, latency and priority

management. There are no publications in the current literature concerning the implemen-

tation of this system, thus a theoretical study of how techniques and architectures developed

for ATM Ethernet switches can be applied in an AFDX environment becomes necessary to

determine the most suitable approach for its development. The goal is to identify advantages

and problems of existing solutions when applied to airborne networks, to successively identify

the most suitable for the current application and implement it as an IP core that will be

instantiated in the switches of the prototype. While many ATM switches are designed to

optimize the average Quality of Service (QoS) and the average delay introduced, in AFDX

switches, it is the maximum latency that must be limited, and a mandatory differentiated

services (DiffServ) processing is required to handle separately high and low priority traffics.

12

CHAPITRE 2

AVIONIC DATA COMMUNICATION NETWORKS

In this chapter, essential information about the considered protocols is given, as well as an

overview of the existing literature about the current state of the art concerning the archi-

tectures and implementations of the three systems considered in this thesis. Since a basic

knowledge of the most important aspects of the studied technologies is fundamental to fully

understand the architectural choices made throughout this work, a general overview of these

features is depicted in Sections 2.1.1 and 2.1.2, while their detailed description can be found

in the provided references. An exploration of the existing solutions for the implementa-

tion of these three systems is done afterwards in Section 2.2, together with a review of the

publications concerning the considered technologies.

2.1 Overview of avionic protocols

Classical Aircraft Data Networks (ADN) primarily utilize the ARINC 429 standard. This

standard, developed over thirty years ago and still widely used today on a variety of aircrafts

from different companies, has proven to be highly reliable in safety critical applications and

to provide the necessary performance for avionic applications. ARINC 429 networks rely on a

unidirectional bus with a single transmitter and up to twenty receivers. A data word consists

of 32 bits communicated over a twisted-pair cable. There are two speeds of transmission: high

speed operates at 100 Kbit/s and low speed operates at 12.5 Kbit/s. ARINC 429 operates in

such a way that its single transmitter communicates in a point-to-point connection with its

receivers, thus requiring a significant amount of wiring overhead since every new connection

requires additional cables, significantly increasing overall aircraft weight. Although it is

nowadays a popular standard in civil aerospace applications, ARINC 429 requires custom

hardware, which can increase aircraft cost and development time.

Apart from ARINC 429, which remains the most popular and most widely used technology

for digital on board communications, other technologies can be found on most airplanes.

ARINC 629 for example, firstly introduced by Boeing for its 777 aircraft, provides a higher

data speed, up to 2Mbit/s, and does not require the presence of a bus master, thereby

increasing reliability of the network architecture. Its major drawback though is the need for

custom hardware that can make its development time and costs excessive. Another common

protocol is the MIL-STD-1553, mostly used in military avionics and spacecraft for on board

13

data handling. It provides very high reliability but it is expensive and its bandwidth is

limited.

ARINC 825 and AFDX have been conceived to solve the bandwidth, wiring weight,

and costs problems of the above mentioned protocols: the important cabling reduction,

together with the good reliability they guarantee, makes them two of the most promising

technologies for the development of lighter, greener, and less costly aircrafts. The interest

in these technologies is attested by the rich literature that is being produced, especially on

AFDX: various researches are being done on multiple aspects, such as worst-case end-to-end

delay analysis, ES and Switch algorithms, or guaranteed reliability [5, 6, 7]. More details on

the literature available on AFDX and CAN-based technologies are given in Section 2.2.

2.1.1 The CAN protocol

The Controller Area Network (CAN) data bus is a serial communication protocol that sup-

ports distributed real-time control with a high level of security. It is designed to allow

microcontrollers and devices to communicate with each other without the need for a master

host computer. It was designed in the 80s by Robert Bosh GmbH [8] for automotive appli-

cations, but its success, reliability, and versatility attracted the attention of manufacturers

in other industries, including process control, medical equipment, and recently Avionics. It

was Airbus that first introduced it in this field during the development of the A380.

All the devices of a CAN network are connected to a single twisted-pair of wires that they

must share as communication medium, but optical fibre can be used as well. The CAN bus

operates at data rates up to 1Mbit/s for cable lengths less than 40m, but it is necessary to

reduce the data rate for longer cables; it usually falls to 125Kb/s when the length is around

500m. Maximum speed must be decreased also when the number of LRUs connected to the

bus increases. The International Standards Organisation (ISO) has formalized this protocol

in the ISO 11898 (High-Speed CAN bus, up to 1Mbit/s) and ISO 11519 (Low-Speed CAN

bus, up to 125Kb/s) specifications. Two version of the CAN protocol are specified: CAN

2.0 A and CAN 2.0 B, the first uses the standard or base frame format, that supports an

11-bit identifier, while the second uses an extended frame format in which the identifier is

composed by 18 additional bits (for a total of 29 bits).

Controllers connected to the CAN bus must transmit and receive data while avoiding

collision using the CSMA/AMP technique. With Carrier Sense Multiple Access (CSMA), a

bus controller can start a new transmission only when the bus is idle, and if two nodes try to

transmit at the same time an arbitration logic allows the transmission only of the message

with the highest priority (Arbitration based on Message Priority or AMP).

CAN is a broadcast-type bus since each transmission is received by all the terminals

14

connected to it; it is each node’s responsibility to determine if the received frame is relevant

to that particular system or not, and to drop packets that were not addressed to it. Frames

do not include source nor destination addresses, and their header is the only information the

receiving terminal can use to identify relevant frames. This structure makes this bus really

effective and versatile when working with LRUs.

Message arbitration

The bus can have two logic values, dominant and recessive, and whenever two terminals

attempt a simultaneous transmission of a dominant bit and a recessive bit, a dominant

logic value will result on the bus. In a typical implementation of a wired connection 0 is

the dominant value, and consequently this is often called an “AND” implementation. The

first controller that lose a contention, sending a recessive bit and reading a dominant value

resulting on the bus, must immediately stop its transmission. The result is an arbitration

technique based on the message header, which determines the communication priority.

Frame structure

Figure 2.1 CAN extended data frame structure

CAN data frames consists of seven bit fields: Start Of Frame (SOF), Arbitration, Control,

Data, CRC, ACK, and End Of Frame (EOF). At the end of a transmission there is an

Intermission period where no other communication can start. SoF is always a dominant

bit marking the beginning of a transmission, and it is followed by the Arbitration field,

composed by the Identifier, the Remote Transmission Request (RTR) for a standard frame,

or the Substitute Remote Request (SRR) for an extended frame, and finally the Extension

bit IDE, that determines if the frame is standard or extended. r0 an r1 are reserved bits

that are always dominant, and compose the Control field together with the Data Length

Code of 4 bits, which specifies how many bytes are present in the Data field. The Data field

contains the actual information, while the CRC is used to guarantee data integrity. During

the recessive bit transmitted in the Acknowledgement field a dominant value must be received

on the bus to ensure that the frame has been correctly received. In Figure 2.1, a data frame

with extended identifier is shown, since it is the only one used by CANaerospace and ARINC

15

825: SRR and IDE equal to ‘1’ signal the presence of the additional 18 bits Identifier, and

RTR is ‘0’ because this is a data frame. To ensure a strong synchronisation, the protocol

avoids the presence of more than 5 consecutive bits of the same value in the transmitted

frame by adding a stuffing bit after them in order to have a transition of the bus value that

will let all the bus nodes readjust their sampling time.

Error detection

CAN bus is a technology that guarantees high reliability. Each terminal is in fact responsible

for auto-supervision and faulty controllers are automatically disconnected from the bus, with-

out the need for a global supervisor. Whenever an error occurs, the controller that identified

the problem must generate an error frame to make all the other nodes connected to the bus

aware of that. There are five different error types:

• Bit Error : the bus must be monitored during transmission to verify that, once the

arbitration is won, the monitored bit value corresponds to the bit value that is sent;

• Stuff Error : it occurs whenever six consecutive equal bit values are detected in the

received frame, thus violating the mandatory stuffing rule;

• CRC Error : it is detected if the computed CRC is not the same as the received one;

• Form Error : all the fixed-form fields of any received frame must have the expected

structure;

• Acknowledgement Error : it must be flagged by the transmitter if no dominant bit is

monitored during the corresponding acknowledgement slot.

A supervising module is required in any bus controller to disconnect the corresponding ter-

minal if proven faulty multiple times, in order to keep the bus available for all the LRUs

that are working correctly. A transmit error count and a receive error count are incremented

whenever an error occurs following a precise algorithm, specified in [8], to give a suitable

weight to each type of error, and the node is disconnected when its counter gets higher than

a predetermined limit. If no error is detected, these counters are decremented and the node

might eventually be reconnected to the bus. In normal working conditions, the controller is

Error Active, meaning that, since everything is working correctly, it can participate in error

detection generating error frames. If the transmit or the receive error count reaches a value

of 128 the controller must be set in an Error Passive condition, in which it can still interact

with the bus but it can only generate passive error frames, composed only by recessive bits

and that consequently does not perturb the operation of other nodes. If further problems

occur the controller is set as Bus Off so that it cannot interact with the bus any more.

16

Overload Frame

Another feature included in the CAN specification is the Overload Frame: whenever a node

is not in condition to perform a new reception or whenever the bus is too busy, this kind of

frame can be generated to reduce bus usage and let all the controllers be ready for the next

communication. An overload situation can occur also if a dominant bit is monitored on the

bus at the first or second bit of an Intermission, or in the delimiter of an error or overload

frame. If the controller or the system connected to it need more time before being available

for a new reception, they can start an Overload frame at the end of an Intermission or when

the bus is Idle.

CANaerospace and ARINC 825: analogies and differences with standard CAN

The avionic industry opened its doors to CAN thanks to the reduction of cabling it allows, to

its efficiency when working with LRUs, and its reliability. Although this technology already

gave satisfying performance, some modifications were identified to fully adapt this protocol

to airborne systems, bringing to the development of CANaerospace and ARINC 825. Both

these avionic adaptations of CAN are based on the ISO 11898 to ensure interoperability

between them and CAN as well.

CANaerospace defines additional ISO/OSI layers 3, 4, and 6 functions, i.e. in the compo-

sition of the frame header, to support node addressing, and it also introduces Time Triggered

Bus Scheduling. This last feature reduces the maximum bandwidth available for each ter-

minal, forcing it to transmit only in predetermined time slots where no other controller can

use the bus. Thanks to this solution data collision is eliminated and the arrival time of each

packet becomes deterministic, but inefficient bandwidth utilization is the price to pay. It

must be noticed that none of these differences affects the physical layer, nor the data link

layer, and consequently a CAN bus controller is compatible with CANaerospace without any

modification.

The ARINC 825 specification [9] is a general standardization of CAN for airborne use.

Since CAN physical layer already provides error recovery and protection mechanism necessary

in avionic systems, no additional functions have been added at this level. Like CANaerospace,

ARINC 825 is entirely based on the extended frame CAN 2.0B version. The 29 bits of the

extended frame identifier allow the division of the identifier into sub-fields required for the cre-

ation of a standardized application layer. 11-bit identifiers may coexist on ARINC 825 buses

but they are not required. The communication mechanism is derived from CANaerospace,

and similar functions are added to ISO/OSI layers 3, 4, and 6 to support logical communi-

cation channels (LCCs), one-to-many/peer-to-peer communications, and station addressing.

17

Time Triggered Bus Scheduling is adopted in this protocol as well to improve determinism.

Because of the extreme similarity with CANaerospace, ARINC 825 does not seem to require

modification in the actual bus controller either, there is one difference though: since the time

triggered bus scheduling prevents any terminal from starting a transmission during an inter-

mission frame, no overload frame should occur when all the terminals are working correctly.

To reduce network loading, overload frames are prohibited by ARINC 825, and situations

that would cause their generation are to be considered erroneous.

2.1.2 The AFDX protocol

While presenting the network architecture proposed for the Avio 402 project, it has been

stated that AFDX has been chosen to realize the central network of the system because of

its two main advantages over other avionic protocols: high bandwidth and the low amount

of cabling required. This technology is strongly based on the IEEE 802.3 Ethernet, thus

making it possible to benefit from commercial-off-the-shelf (COTS) components, and from

all the expertise and knowledge developed for it over the years, consequently reducing overall

costs, making system development faster, and maintenance less costly as well. The following

description of its features will make clear why this protocol is so promising and will highlight

the differences and analogies with the IEEE 802.3 specification. It is important to remember

that AFDX was designed to exploit Ethernet COTS components and functionalities, but

following the ARINC 429 philosophy, i.e. implying point-to-point communication, known

bandwidth, redundancy, and prioritized quality of service, in order to meet the reliability and

determinism required in any avionic system. The official ARINC 664 (Part 7) specification

[10] relies on many concept taken directly from UDP, IP, and Ethernet protocols.

Virtual Links

The first, and maybe the biggest, difference between AFDX and Ethernet is the concept of

Virtual Link (VL): Virtual Links are independent virtual connections that share the same

physical medium. They are point-to-point communications, but while in ARINC 429 each

one of these requires a physical wire to connect its source with all the destinations, in this case

they all coexist on the same star topology network, with a consequent reduction of the amount

of required wiring. The virtual point-to-point communication channels are emulated on the

network by allocating a limited bandwidth for each one of them: each node can transmit

packets corresponding to a certain VL only in a predefined temporal window dedicated to that

precise connection. This transmission window is called Bandwidth Allocation Gap (BAG)

and allows various VLs to coexist on the same network without interfering with each other. In

18

Figure 2.2 AFDX network example

Section 2.2, an example of a small AFDX network is given, showing how different VLs coexist

and how redundancy is used to increase overall network reliability. Each ES communicates

with two separate and redundant network in order to ensure data delivery, even when a

critical problem makes one of them dysfunctional. Switch S 1b and S 2b constitute the

redundant network B, that can have a different topology, but that must support the same

VLs included in network A.

Flow/Traffic control

The BAG concept introduced by AFDX ensures guaranteed bandwidth and allows end-to-end

delay reduction. In absence of Jitter, this parameter is defined as

...the BAG represents the minimum time interval between the first bits of two

consecutive frames from the same VL.

The BAG value is expressed in milliseconds and it must be 2nms, with a minimal value of 1ms

and a maximal one of 128ms. Whenever the scheduling of multiple VLs introduces jitter on

their transmission, the BAG windown is always referred to the beginning of the transmission

of the first frame, as shown in Figure 2.3.

In addition to the Bandwidth Allocation Gap each VL is assigned also another parameter,

called Lmax, that represents the maximum frame length, in bytes, that can be transmitted

on that VL. In the official ARINC 664 documentation the maximum frame size Smax is often

used instead of the length, and it corresponds to Lmax plus the intermission and preamble

fields, i.e. it is equal to Lmax plus 20 bytes. This upper bound on the frame size limit the

time taken for its transmission on the medium, and together with the BAG it determines the

19

Figure 2.3 BAG and Jitter in ES transmission

resulting maximum bandwidth allocated to the VL. A lower bound Smin is specified also. By

limiting the rate at which frames can be transmitted on a virtual link and the size of these

frames, a sort of isolation mechanism is created, to prevent any VL to interfere with other

Virtual Links managed by the same source node. Non-optimal bandwidth usage decreases

switches load thus reducing the jitter and delay added by them to the communication.

The last parameter that characterize the flow of frames at the output of the End System is

the Jitter, which is the deviation, introduced by the scheduler, from the expected transmission

time. A maximum value for this parameter must be guaranteed since it is hazardous for

determinism, this upper bound is determined by the following equation.max jitter ≤ 40µs+

∑
i∈setofV Ls

(20bytes+ Lmaxbytes) × 8bits/bytes

Nbwbits/s

max jitter ≤ 500µs

(2.1)

In Figure 2.3, an example is shown where various frames are sent respecting and not

respecting the maximum Jitter defined for their VL; a situation like the one represented by

the fourth frame must be avoided.

Frame structure

The structure of the AFDX frames, shown in Figure 2.4, is mostly identical to the one defined

in IEEE 802.3 for Ethernet frames, in order to keep these two protocols as compatible as

possible. The biggest differences relies in how the MAC addresses are composed and used and

in an additional field at the end of the payload that contains the frame Sequence Number.

The Sequence Number is used to guarantee data integrity: the ARINC 664 specifications

determines that data order for each VL must be respected, i.e. packets must be sent and

received in the correct order. To ensure protocol compatibility and make the sequence number

“invisible” for a standard Ethernet network, it is added at the end of the payload field, as if

it were part of it.

20

Figure 2.4 AFDX frame structure

The MAC addresses structure, both for the source and the destination, includes informa-

tion about the type of data contained in the frame and the VL on which the data must be

sent. The peculiarity of the destination MAC address is that it is always defined as multicast

(the 8th bit of the constant field is set to 1), and the last 16 bits determine the VL the packet

must be sent on, as shown in Figure 2.4. In the source address, with some constant bits,

there are also an interface identifier and a used-defined ID as well.

More information about how these features can be translated in a physical implementation

of an ES is given in Chapter 4, while, in Chapter 5, the peculiar functionalities that must

be provided by the AFDX switch, and that have not been discussed in this overview, are

presented.

2.2 Literature review

As mentioned before, various aspects of the two considered technologies have been explored

in the last few years, confirming the attention that grows around them. Studies are being

performed to identify the potential for CAN-based protocols in avionic networks, and Young

et al. [11] underline how these technologies are suited for legacy line replaceable modules.

The work presented by Zhang et al. [12] identifies CAN-based protocols as the ideal choice

for unmanned helicopter systems. Even more promising is AFDX, whose innovative features

opened multiple research perspectives: some examples are the analysis of the worst-case end-

to-end delay [5, 13], the identification of the most performing scheduling algorithm for ES

and Switches [6], or again the network modelling and its reliability analysis [7].

While a lot of attention is reserved to these topics, which are also explored in the Avio 402

project, only limited studies have been published concerning the physical implementation of

these two protocols. In the following sections, a review of the proposed design and solutions

for the system developed in this thesis is provided, but because of the lack of existing material,

21

especially on ARINC 825 controllers and AFDX switches, attention has been paid also to

designs conceived for CAN and Ethernet. Since the considered systems are significantly

different from each other, the review of the existing literature is being done separately for

each one of them.

2.2.1 CAN bus controller

The CAN protocol has been widely used for several years now and many implementations

can be found in the existing literature. Unfortunately, no adaptation of these designs has

been made to port them in an avionic environment, and no ARINC 825 nor CANaerospace

controller has been published so far. As a consequence an analysis of these two avionic

protocols and of related commercial products has been done in parallel with a review of

available designs conceived for CAN bus controllers, to understand what knowledge can be

reused and what should be added to a CAN design to adapt it for an airborne use.

While describing the differences between these two avionic protocols and the standard

CAN protocol in Section 2.1.1, it has been highlighted how most of the new features have been

added in ISO/OSI layers that do not affect directly the design of the bus controller (layers

3, 4, and 6). Nevertheless, some of these alterations are reflected in a possible optimization

of this controller since some functionalities usually necessary in a standard CAN bus are not

needed any more.

The HI-3110 by HOLT [14] is a recently released integrated controller for avionic CAN

bus, which can comply with both ARINC 825 and CANaerospace standards. The internal

structure is based on two parallel paths for transmission and reception, while a separate Error

and Status Control module generates interrupts when problems or unusual behaviours are

detected. This controller can handle standard and extended frames, as determined by the

CAN 2.0B specification, and, when configured to be used in an ARINC 825 environment, it

does not initiate overload frames since they are prohibited by the specification to reduce bus

loading. According to the data sheet, there is no other difference, other than the management

of overload frames, between the ARINC 825 and the CAN configurations.

Multiple architectures and designs have been developed for CAN bus controllers over the

years and, because of the age and diffusion of this standard, a good level of maturity has

been reached. Probably the most popular implementation of a CAN core for FPGA is the

HurriCANe IP core by Stagnaro [15] that has been widely used over the past years since it

was originally open source. It provides bus synchronization and two separate modules for

the transmit and receive paths, which share a single module for CRC computation. Error

count and error frame generation are handled by two separate modules. Although this core

used to be open source and free, its code is not readily available anymore, thus it cannot be

22

used as reference system in this work. The overall system size on a Xilinx Virtex-II FPGA

is 1047 LUTs and 715 registers (FFs), and it can run with a maximum clock frequency of

88MHz with this device of speed grade -6.

Among other designs and implementations proposed over the years, some were inspired

by HurriCANe; for example, Reges and Santos [16] suggest CAN as a suitable protocol to

handle smart sensors, and propose a VHDL implementation of a CAN core based on the same

architecture of HurriCANe, called MARIA. Their goal is to have an inexpensive solution to

replace IPs provided by manufacturers that are generally not free. Error management and

synchronization are not included in their core, that has a size comparable to the corresponding

parts of the HurriCANe core. TinyCAN [17] is another interesting design thanks to the

extremely small size: less than 200 slices and 500 LUTs are used by this core. This core is

only an implementation of the MAC layer alone, and no header composition/decomposition

and CRC control is executed. Its structure is based on a single “Bit Stream Processor” (BSP)

that handles both the tx and rx routines, differently from the previously described solutions.

To further reduce the system size, the error control and recovery procedures have been

implemented in a different way from what is suggested in the official CAN documentation.

The same architecture based on a single BSP is exploited by a commercial product developed

by HiTech Global, that occupies around 1500 slices on a Xilinx FPGA for the complete

controller. This design can work at 60MHz on a device with a -4 speed grade, or at 100MHz

with a -6 speed grade.

Ideas can be taken from all these designs to develop the CAN controller needed for the

AVIO 402 project, and the need for small size and ARINC 825 support must be the key

parameters in the process. For example, while the unique BSP of TinyCAN seems suitable

for reconfigurability, since it contains all the differences between CAN and ARINC 825,

the modified error controller proposed in the same paper is not a viable solution, because

specifications must be strictly followed when developing avionic systems.

2.2.2 AFDX End System

The AFDX End System must realize the interface between the avionic subsystem and the

main AFDX network, providing frame encapsulation and traffic management. Multiple ap-

plications/subsystems can access and exploit the same ES that must consequently be able to

handle data coming from different ports. Some solutions have been proposed to implement

this kind of system, while research is still in progress to determine optimal scheduling and

optimal management of traffics of different nature and priorities. From the development

point of view, the most important choice concerns the implementation approach to be used:

both software and hardware solutions are possible and a few examples exist in the literature.

23

It has been previously stated that one of the advantages of AFDX is how it handles com-

munication ports, that are always used for exchanging data between applications in avionic

systems, where the ARINC 653 specification must be met. This document, whose impor-

tance is described for example by Prisaznuk [18], determines how operating systems should

work to ensure temporal and physical segregations of the various applications, and ports are

the only way this otherwise independent environments have to communicate. Applications

must be expressly developed to be supported by ARINC 653 compliant OSes, and Kinnan

et al. [19] state that it is generally easier and more efficient to directly design an application

considering this context than porting an already existing code for ARINC 653. This is due

to multiple issues that must be faced when adapting the code for this specification.

Most of the reported works about possible implementations of an AFDX End System sug-

gest a software approach; for example, Khazali et al. [20] give an analysis of their experience

when implementing a commercial ES and support the argument that a software solution has

many advantages over its hardware counterpart: it is faster to develop and has lower costs,

it can be portable on different platforms, it is more flexible and easily modifiable, and recent

embedded processors usually have the necessary computing capability to meet the required

performance. In their case, they worked with the A-Stack, a certifiable protocol stack devel-

oped by Embvue, using the XPedite1000 board as development board; this board exploits a

PowerPC 440GX processor running at 666MHz. The modified A-Stack processing time is up

to 11.8µs, and the jitter introduced by the VL scheduling is up to 377µs for maximal sized

frames in a 32-VLs system.

Another possible software implementation based on a soft processor on a Xilinx FPGA

is presented in [21]. The device used is a Xilinx Spartan 3AN FPGA, while the embedded

processor is a MC8051 open core microcontroller. The design employs the processor as

system controller and protocol processing unit, and the interface between this central core

and the dual redundant physical port is realized using two reduced media access controllers

(MACs). Two dual-ports RAMs (DPRAMs) are exploited to simplify the data exchange

between the processor and the MACs. The processor must handle the avionic application

system as well as the AFDX protocol stack, whose UDP and IP layer protocols are inherited

from the standard TCP/IP protocol, while its Virtual Link layer is unique. This virtual link

layer must implement all the features defined in the official documentation [10], and handle

transmission and reception with two parallel paths. Unfortunately, details on how this has

been implemented, and on the actual results that have been obtained are not given.

Chen et al. [22] propose a full software solution of a feasible framework to implement

the AFDX protocol on the VxWorks Operating System. A single task framework has been

chosen over a multi task one, which would handle protocol processing and VL scheduling

24

separately, because of the intrinsic determinism in the execution time. A description of

the data structures used for the transmitting and receiving processes is given and some

interesting considerations are done: the profiled nature of the AFDX network simplify the

TCP/IP protocol since some modules like ICMP and ARP are not required.

In his MS thesis Erdinç [23] discusses the development of the AFDX protocol stack with a

standard PC and Ethernet card to develop a platform for test and validation of this protocol.

He created some specific DLLs to modify the execution flow followed when communicating

with the network. With this kind of implementation, he attained good performance in terms

of maximum number of VLs that the system can handle, and he obtained an average jitter

of about 250µs.

Maybe the most interesting work on the development of an AFDX End system has been

done by Pusik et al. [24] during a workshop for NetFPGA developers, since a comparison

between a full HW and a SW implementation has been done. NetFPGA is a Linux based

platform, thus a hard real-time environment is not possible, but it allows fundamental imple-

mentation and evaluation nevertheless. The software implementation they propose is based

on the modification of the low level drivers that control the Ethernet MACs, while the HW

solution exploits the processor only to provide the payload to be sent and to determine when

to start a transmission. The HW implementation requires 14,960 slice Flip-Flops and 18,957

4-inputs LUTs on the xc2vp50 FPGA mounted on the NetFPGA board, which is around 40%

of the available resources. The results obtained with these two implementations are fairly

similar, and only a slight improvement in the transmission jitter results from a full hardware

implementation thanks to its hardware timers. Unfortunately, the non real-time nature of

the operating system that handles the data flow in both cases causes excessively large delays

in some occasions, especially when the BAG is 1ms. In that case the maximum jitter can

reach 9.5% of the transmission window.

Figure 2.5 HW implementation of the ES

While the previous papers attest that it is possible to achieve the performance required

25

by the specification, they also underline that attention must be paid to reach these results

in an embedded environment. Since a Xilinx board has been chosen for this project, useful

information can be found also in the white paper XAPP1130 [25] where various solutions

for the problem are proposed, and both hardware-centric and processor-centric designs are

suggested. The suggested architecture for both design approaches resembles the one proposed

in [24]. The only difference resides in the choice of which functional modules should be

realized in hardware and which ones should be executed by the processor instead. Figure

2.5 shows a possible architecture for this core, inspired by the hardware-centric solution of

the Xilinx white paper: the Regulator handles the BAG for each VL during transmission,

Integrity checker and Redundancy manager realize the features required for the receive path,

and the processor is in charge of the application and TCP/IP stack execution. The functional

modules here suggested as hardware blocks can be integrated in the stack managed by the

processor, transforming this design into the processor-centric solution proposed by the same

white paper and in the previously discussed papers.

2.2.3 AFDX Switch

Although it is a critical and fundamental part of the network, the AFDX switch does not

have a developed literature concerning its implementation or optimization, such as in the

case of the End System. While there are various papers studying end-to-end delays, optimal

scheduling algorithms, or simulating techniques for AFDX networks, no article has been

found that addresses the development or the architecture of the switches, nor about which

techniques should be adopted to minimize technological latency and jitter in this system. In

Section 2.1.2, peculiar features of the AFDX protocol have been explained, and it has been

highlighted how they make this protocol different form Ethernet even if it remains strongly

based on it. The switch reflects these differences: the profiled network, the presence of critical

frames with high priority in the network, fault detection and confinement, and latency control

are some of the features that should be added to a typical ATM switch design.

Because of the lack of information about this topic, a review of the existing solutions

developed for the implementation of Asynchronous Transfer Mode (ATM) Ethernet Switches

has been done to identify which architectures could be most suitably adapted to the AFDX

protocol. The most common architecture are presented here in order to give a general view

of the state of the art.

26

Ethernet switches

Various architectures have been proposed over the years for the implementation of ATM

Ethernet switches, each one with its own advantages and problems, and thanks to the ma-

turity of this technology, all these designs have already been studied and optimized. Chao

and Liu [26] propose one possible classification of Ethernet switches based on their switching

techniques: time-division switching (TDS) and space-division switching (SDS), the former is

further divided into shared memory type and shared medium type, while the latter is divided

into single-path switches and multiple-path switches, which can in turn be further divided

into several other types.

In time division switching, packets from different inputs are multiplexed and forwarded

through a single data path connecting all inputs and outputs. The maximum number of

ports is limited by the internal communication bandwidth that should be as high as the

aggregated bandwidth of all the input ports. In a shared-medium switch, incoming frames

are time-division multiplexed into a common high-speed medium, such as a bus or a ring,

of bandwidth equal to N times the input line rate. Shared-memory switches save them in a

central memory instead, before scheduling them towards the corresponding output. Shared-

memory structure is better in memory utilization than the shared-medium structure, but

requires higher memory speed.

Space division switching is based on a structure where multiple data paths are available be-

tween input and output ports, thus offering the possibility of concurrent forwarding of frames

when no blocking is present. The total switching capacity is the product of the bandwidth of

each paths and the number of paths that can be used simultaneously for the forwarding op-

eration. This type of switch is classified in function of the number of available paths between

any input-output pair, the two main structures are single-path and multiple-path. While the

first one has simpler routing control, the latter has better connection flexibility, non-blocking

features and fault tolerance. Some of the existing structures for single-path switches are

crossbar-based switches, fully interconnected switches, and banyan-based switches. Aug-

mented banyan switches, multiplane switches, Clos switches, and recirculation switches are,

on the other hand, some of the most popular multiple-path architectures.

Incoming traffic is often unbalanced and burst-based, therefore contention of output ports

and internal links is likely to happen, and buffering techniques become necessary to store

frames that lose the contention. The most common buffering strategies are shared-memory

queuing, output queuing, input queuing, and combined input and output queuing. In shared-

memory queuing a single memory is used to store frames coming from all input ports, dividing

them into virtual queues, and memory utilization is maximized, while switch size is limited

because all the input and output ports must read/write to one single memory, whose access

27

Figure 2.6 Combined input/output buffering structure

time limits the number of ports N. In output queuing structures, incoming packets are imme-

diately forwarded to the corresponding output ports’ buffers. This approach provides better

QoS, but lacks in memory utilization and maximum number of ports, since it must be possi-

ble to forward packets from all the N input ports to the same output buffer in one time slot.

Input queuing attracted much more attention in recent years because of the size limitation

of the previous architecture: each input port has its own FIFO, and a scheduling algorithm

is adopted to choose which packet must be forwarded to the desired destination. One of the

problems of this structure is the Head-Of-Line (HOL) blocking that limits the throughput

of this type of switch since the head of each buffer blocks all the following frames saved in

that same FIFO. The most often adopted solution to eliminate this problem is the Virtual

Output Queuing (VOQ): each input buffer is divided into N logical queues, one for each

output port. This solution unfortunately increases the complexity of scheduling algorithms,

and its optimization is a very hot research topic and various scheduling algorithms have been

proposed, for example in [27, 28, 29]. The results published by Karol et al. [30] prove that

input-buffered switches, although advantageous from a size and resources point of view, limit

the maximum throughput and add a bigger delay to communications when compared with

output-buffered architectures. For large numbers of input ports, the mean waiting time of

input-buffered switches explodes for offered loads that are half of those that cause the same

phenomenon in the second type of routers. A combination of these last two solutions is often

adopted to reach a tradeoff between throughput and switch size; this solution is represented

in Figure 2.6.

Migration towards AFDX

As mentioned before, a review of the literature concerning Ethernet switches has been done

because of a lack of a similar literature about the AFDX counterpart. In Chapter 5, some

considerations on the previously presented architectures is done to highlight which charac-

28

teristics developed for these kind of switches are the most suitable for an avionic application.

The innovative features of AFDX were not considered when these designs were conceived,

and while throughput and support for a wire speed higher than 1Gbit/s drove the design

choices made for Ethernet switches, latency and jitter minimization must be prioritized when

developing the AFDX swithc fabric. Also, although DiffServ capabilities are considered in

Ethernet routers, it is mandatory to have a mechanism to deal with the two priority levels

of AFDX, where low priority frames must not interfere with critical ones.

29

CHAPITRE 3

CAN BUS CONTROLLER

The development of the CAN bus controller is discussed in this chapter. As already men-

tioned, the design of this system started when it was still uncertain if the prototype would

be based on CAN, CANaerospace, or ARINC 825, therefore it was decided to design a CAN

controller that would simplify potential future readjustments aimed at tailoring it for one of

the other two protocols. Thanks to the great similarities presented in Section 2.1.1 between

the CAN protocol and its two avionic adaptations, it was possible to conceive a design that

would support all of these technologies, exploiting the fact that the main differences between

them only concerns the 3, 4, and 6 ISO/OSI layers. Since the controller must implement

only the physical and the data link layers (layer 1 and 2 of the ISO/OSI model) it is mostly

unaffected by these modifications. What really affects the design of this system is the elim-

ination of overload frames from ARINC 825 networks, while the choice of using only CAN

2.0B and removing remote frames only makes standard CAN controllers oversized compared

with their avionic counterparts.

3.1 Specification and requirements

Following the requirements provided in the official specification, it has been determined that

the functionalities that this controller must provide are the following:

• Auto-synchronization with the bus communications

• CSMA/ASM techniques for transmission priority arbitration

• Stuffing and destuffing

• Received frame analysis and CRC validation

• Error detection and error status management

• Frame composition for transmission

Traditional CAN transceivers, such as the SN65HVD233 mounted on the ISM networking

FMC module, usually only requires two serial 1-bit signals for outgoing and incoming data,

therefore the developed IP core must provide this type of interface. Since no synchronization

30

mechanism is generally present in the transceiver, it is necessary to include it in the design

of the core.

Bus synchronization must always be active and provide precise information about when

the bus value should be read, so that destuffing and frame composition can be executed in

real time while reception is in progress to immediately execute CRC validation and error

detection. Outgoing data must be retrieved in the transmission buffer together with the

corresponding header, CRC must then be computed and added at the end of the frame; the

completed frame is stored waiting for the bus to be idle before a transmission can be initiated.

While the transmission is in the arbitration period the bus value must be monitored to verify

that no frame with higher priority is being transmitted at the same time. While executing

transmission and reception procedures the controller must also continuously provide super-

vision for error detection, to set the node state as “error passive” or even “bus off” when a

faulty behaviour persists.

Since this IP needs to be instantiated multiple times in each TIM and each NCAP module

of the network for redundancy purposes, as shown in Figure 1.3, the resulting size becomes a

critical parameter and it must be kept as small as possible to reduce the area and resources

taken by this core in the final system.

3.2 Design

This module has been developed with other colleagues in order to accelerate its implementa-

tion and testing. Its design and architecture keep this aspect into consideration to facilitate

group work and task share-out. In the following sections, the IP architecture is described

after some considerations on how to best implement the CAN bus controller are given.

3.2.1 Hardware vs. Software considerations

As already mentioned in Section 3.1, size is an important parameter to be kept into consid-

eration when developing this module since it will be instantiated multiple times and its area

will consequently limit the maximum number of redundant paths that could be integrated

in the FPGA. Exploiting a processor to run a software CAN protocol stack is an excessively

oversized approach for the implementation of this module since the protocol presents a pretty

simple frame composition/decomposition procedure. Furthermore, a hardware module would

be required anyway for precise synchronization with the bus. It has been consequently de-

cided that a full hardware solution realized in VHDL would be the most suited approach for

the development of this core.

31

3.2.2 Architecture

The internal architecture of the controller is based on two independent paths for frame

composition and bus interface management, in order to allow the generation of a new frame

for transmission while reception is on progress. Transmission and reception routines, on the

other hand, cannot be separated because of the carrier-sense mechanism adopted by the CAN

protocol. Each module of the system is responsible for a single feature that the controller

must provide in order to facilitate independent testing and implementation, thus simplifying

its design. The two separate paths are inspired by the architecture of the HurriCANe core

[15], but a central management unit has been added to facilitate reconfigurability for ARINC

825.

The reception path requires bus synchronization, destuffing, deserializing, and CRC val-

idation before the payload can be passed to the output buffer. On the other hand, frame

composition, CRC computation, and serializing are necessary for data transmission. A central

Manager is responsible for the management of the general execution flow while an indepen-

dent supervising module provides error detection and control. In the overall architecture

presented in Figure 3.1, all these modules are visible; the receive path is on the top part

of the picture, coloured in green, while the transmit one on the bottom, composed by the

orange blocks. The blue arrows represent the state of the Finite State Machine (FSM) of

the Manager, that controls the behaviour of the other modules, and the red arrows show the

error flags: the Bitcheck detects bit acknowledgement errors, the Destuffer form errors and

stuffing ones, and finally the CRC rx must evidently recognize CRC errors.

Figure 3.1 CAN controller internal architecture

The Synchroniser module implements the synchronisation algorithm presented in the

32

official specification [8], where each recessive-to-dominant transition of the bus is used as

a reference to determine the right sampling time since no clock is transmitted with the

data. The sample signal tells the Destuffer module when to sample the input value and the

Synchronizer must anticipate or postpone it whenever a bus transition occurs too early or

too late compared to the expected moment. A different signal called sync is used to control

the FSM execution flow: while the sampling moment is placed around the middle of each

bit time, the synchronization signal identifies the start of this period. The Destuffer must

then sample the bus value when the synchronization signal is asserted, and save each bit in

an array that will contain the entire received frame. As it name states, this module must

also execute a destuffing algorithm to discard all the stuffing bits added to the frame by the

source of the communication. The data in array contains the received frame which must be

passed to the NCAP/TIM, that still needs to analyse the header to determine if the received

data are addressed to it or not.

Frames to be sent are passed to the CAN controller using the tx FIFO and are retrieved

by the Bistream Generator, which composes the frame and completes it by adding the Frame

Control Sequence at its end, before forwarding it to the Serializer. Once the CRC has

been computed by the corresponding block and the outgoing frame is ready to be sent,

the Bitstream Generator advises the Manager that a new transmission can be performed

setting the ready signal. The Manager initializes a new transmission when the bus is idle

by performing the corresponding routine.

The Error Controller supervises the entire core observing all the error signals generated by

the various blocks to determine in which operative state the controller should operate: error

active when everything works fine, error passive or even bus off when too many problems

occur. The transition between these operating states is performed following the algorithm

specified in [8]. Error detection is assigned to every single functional module because it is

easier for each of them to recognize any deviation from the expected behaviour, significantly

reducing the complexity of the supervising unit. The Bitcheck block, in addition to the trivial

task of comparing the transmitted value with the one read on the bus, exploits the resulting

information to detect acknowledgement and bit errors and to perform arbitration.

It can be noticed that, differently from the HuriCANe core and the other controllers found

in the literature, two CRC modules have been included in the design instead of a single one,

the first is dedicated to the transmit path and the other to the receive path. Although this

design choice increase the overall core’s size, it has been considered a small price to pay for

segregating frame construction from packets reception. In [16], the Reges and Santos show

that both in their core and in the HurriCANe controller the CRC module size is at least

10 times smaller than those of the transmit or receive modules, thereby its impact on the

33

overall size is limited. The internal structure has been evidently inspired by the HurriCANe

architecture, but a central management unit has been added to make the design more easily

adjustable to support ARINC 825. The Manager is the only responsible for the generation

of Overload frames, therefore it is sufficient to change the corresponding branch of the FSM

to disable them and generate Error frames instead. The details on the implementation of

the Manager are given in the next section, where the system implementation is discussed.

Since TinyCAN managed to attain an extremely reduced size with an architecture based

on a central BitStream Processor that handles both transmission and reception, a similar

optimization of the resources used by the core in the FPGA can be sought.

3.3 Implementation

In this section, the system implementation is described and, to understand how the design

exposed in the previous section can effectively realize a CAN bus controller, the FSM exe-

cution flow is presented as well; also, some synthesis results obtained before and after the

modifications to support ARINC 825 are given.

In Figure 3.2, the flow chart of Finite State Machine of the Manager module is represented.

For clarity purposes, it has been separated into two parts, one corresponding to the standard

flow, and the other to the error and overload flow. From any of the states included in Figure

3.2(a), it is possible to move to the err active state (or err passive when the node is in

an “error passive” condition) when an error is detected and the error flag is set by the Error

Controller.

When the system is turned on, or after a global reset, the Manager is in the Reset state,

where all the signals generated by this module are reset to the default values. The following

state is always the Wait Idle one, which is necessary to determine if the bus is idle or if a

communication is on progress: whenever more than 10 recessive bits are read subsequently on

the bus the FSM switches to the idle state. Ten bit times corresponds to the length of the

End of Frame field plus the Interframe, thereby after them, the bus is necessarily idle because

it is not possible to have this many consecutive recessive bits during a communication (thanks

to the bit-stuffing). The t sync signal is used to count how many bit times have passed, it

is in fact configured to have the same frequency as the bus. The bitcheck signal can be

used to determine if a dominant bit is received, in fact, since a recessive bit is sent while the

Manager is in this state, a dominant value on the bus would cause this signal to be equal

to ‘1’. Once the FSM reaches the Idle state, three things can happen: a frame is waiting

for transmission in the Bitstream Generator (data out ready = ‘1’) and a transmission is

consequently executed, a dominant bit corresponding to a Start of Frame is received and

34

the reception branch of the flow chart is executed, or an overload request is received by the

system connected to the core, that cause the generation of the corresponding frame. There is

also a fourth possibility, in fact if the error state of the node is “Bus Off”, the FSM switches

to the corresponding Bus Off state, where it remains until the error state changes.

(a) (b)

Figure 3.2 FSM execution flow: (a) standard operating state; (b) error and overload man-
agement.

If the bus is idle and there is a frame ready for transmission, the Manager executes the

transmission branch, starting from the Arbitration state. In this state, the Serializer sends,

one bit at the time, the generated frame on the bus, and the Bitcheck checks if the same

value is received in each bit time. If a recessive bit is read when a dominant one is sent, an

error occurred, while if a dominant bit is received when a recessive one is sent, it means that

the arbitration has been lost. As a consequence, if the bitcheck signal becomes ‘1’ while in

this state, the FSM switches to the Reception state, otherwise it switches to Transmission

when the Serializer sets the tx ctrl signal to ‘1’. The Destuffer, which was operating as

if a reception was on progress when the state was Arbitration, stops working when the

Transmission state is reached. When the Serializer sets the tx ctrl signal to ‘1’ again,

it means that the data has been sent and that the acknowledge should be received next,

therefore the FSM switches to the Wait Ack state. In this state, the value of the bitcheck

signal is observed because, if it remains ‘0’, no acknowledge has been received (a recessive

bit is sent but a dominant value should be received in this period) and an error frame must

be generated; the FSM can switch to Successful otherwise. The Successful state lasts

only one bit time and it corresponds to the acknowledge delimiter, therefore the Manager

35

automatically passes to the End of Frame state when t sync becomes ‘1’ (unless and error

occurs and the corresponding flag is set). A err pass transmission signal is also set to

“true” if the error state of the node is “passive”. The End of Frame, Intermission, and

End Intermission states automatically follows if no error nor dominant bit on the bus is

detected: the first lasts 7 bit times, the second 2 bit times and the last one only 1 bit time.

The Manager must determine how many bus periods elapsed observing the synchronization

signal to execute this flow. These three states are separated and not merged in a single one

(the only thing to do in these states is sending a recessive value on the bus) because the

reception of a dominant bit has different consequences in each case: an error is detected if

bitcheck becomes ‘1’ during the End of Frame period, an overload frame must be generated

if this happens while in the Intermission state, and the dominant bit is considered a new

Start of Frame if received during the End Intermission state. In Figure 3.2(a), it can be

noticed that, from this last state, the FSM can switch to Reception, when a dominant bit

is received, to Idle when nothing happens and the controller is in an “active” error state,

or to a Suspend state when the err pass transmission signal is “true”. This suspension

state is necessary to allow nodes in an “active” error state to start a transmission, thereby

giving them higher priority since they proved themselves less faulty.

If the Manager is in the Idle state and a dominant bit is received before a frame is

ready to be transmitted, the reception flow must be executed. During reception everything

is handled by the Destuffer and the Manager only needs to wait until the rx ctrl signal is

set high to switch to the CRC Delim state. In this state, the result of the CRC computation is

compared with the received frame control sequence (FCS), and an error is generated if they

do not correspond. If no problem is detected, the FSM switches to Send Ack after one bit

time, and then waits for another bit time before moving to the Ack Delim state. While in

the Send Ack state, the Serializer sends a dominant value on the bus, and a recessive value is

transmitted instead during the Ack Delim state. This last state has not been merged with the

Successful one because the reception of a dominant bit in the two cases must be recognized

as two different kinds of error. The End of Frame, Intermission, and End Intermission

states follow like in the transmission flow, but the Suspend state cannot be reached in this

case since the err pass transmission signal has not been set to “true”.

From any of the states of the execution flow shown in Figure 3.2(a), it is possible to

switch to an error state in case an error is detected by one module of the system and flagged

to the Error Controller, that consequently sends an error signal to the Manager. The FSM

switches to the Err Active state if the error state of the node is active, or to Err Passive

otherwise, to generate the corresponding error frame. Since most of the fields are the same

in the two cases and when sending an overload frame as well, the corresponding states are

36

Table 3.1 Size of the CAN controller modules

Module # Slice registers # Slice LUTs

FSM 19 159

Bitcheck 0 4

CRC rx 17 15

CRC tx 15 7

used for the generation of all these type of frames. The Overload state, as mentioned above,

can be reached from the idle state in case a “request overload” signal is received by the

core, from the intermission frame if an unexpected dominant bit is read on the bus, or also

from the delim last state of the error flow chart. When the Manager state is Err Active

or Overload, the Serializer must force a dominant value on the bus, whereas a recessive

value must be sent during the Err Passive state. The Err Active and the Overload states

last 6 bit times, the FSM must then switch to Err Extension the sixth time t sync is set

to ‘1’. In the extension state a recessive value is transmitted and the controller must wait

for all the other nodes connected to the bus to finish their error/overload frame; the FSM

goes to Delim only when a recessive value is read on the bus (and bitcheck is consequently

‘0’). The “passive” error frame is different: it does not influence the operation of the other

nodes connected to the bus, that consequently continue the communication in progress, and

it must wait for six consecutive recessive bits, that can occur only after the End of Frame.

Consequently, a 6 bit-time counter is incremented for each recessive bit received during the

Err Passive state, but it is reset to 0 if a dominant value is read on the bus before it can

reach the final. When this counter is equal to 6, the FSM switches not to the Err Extension

state, but to Delim one instead. In this state, 7 recessive bits are sent, and if a dominant value

is received a new error frame is generated. The Manager finally arrives to the Delim Last

state, which lasts only one bit time; if a dominant bit is received, an overload frame must be

generated, otherwise the FSM can switch to the Idle state.

The entire VHDL implementation of the Finite State Machine that constitutes the core

of the Manager is provided in Appendix A, where all the transitions and the conditions that

cause them can be observed.

When it has been chosen to readjust the design to support only ARINC 825, eliminating

CAN from the prototype, the only modules that were completed and synthesized were the

FSM, the Bitcheck, and the two CRC modules. The size of these blocks obtained with

a synthesis on the same Spartan-6 used for the other systems discussed in this thesis is

presented in Table 3.1. The Bitcheck module, thanks to the very basic function it performs,

37

occupies only 4 lookup tables. The FSM is fairly compact as well even if it is responsible

for the management of the biggest part of the system behaviour. As expected, the size of

each CRC module is small enough to justify the choice of having two separate modules for

processing incoming and outgoing packets separately. The size difference between the two

CRC modules is due to the fact that CRC rx receives the frame in a serial fashion, and

must also compare the result with the received frame control sequence, while CRC tx has a

different interface and it only has to compute it and pass it to the Bitstream Generator.

3.3.1 Functional verification

The functionality of the core has been validated with exhaustive simulations at logical level.

Each module has been initially tested in detail to verify that all the required features were cor-

rectly implemented, and a system level simulation has been finally performed. The core pre-

cisely meets all the requirements of the official specification and the performance are largely

satisfying: the maximal clock frequency attainable with this implementation is 92.7MHz, a

frequency higher than necessary since this core just need to operate with a system clock equal

or higher than 10MHz to provide precise synchronization with the 1Mbit/s bus. Because of

the low bus wire speed, when the last bit of the frame is read during a reception, before a new

communication can start, the received data has already been processed and is already saved

in the output register. Error detection, frame analysis, and frame composition if we consider

transmission, are executed in real-time, and system throughput is significantly higher than

the bus speed, therefore data congestion is avoided.

Figure 3.3 Simulation example: FSM reception reception flow

An example of the simulations run for the single module of the Manager is provided in

Figure 3.3: the execution of the reception branch is verified providing the expected input

coming from the Synchronizer and from the Destuffer (sync and rx ctrl), together with the

bitcheck and the error signals that are used to determine which branch of the execution

flow must be executed. The error state of the node is “active” (“00”). For each state, the

38

Table 3.2 Hexadecimal value of each state of the reception branch of the FSM

State Value

Reset 00
Wait Idle 01

Idle 02
Reception 03

CRC Delim 04
Send Ack 05
Ack Delim 06

End of Frame 07
Intermission 0C

End Intermission 0D

signal expected for the prosecution of the reception is asserted only after having set to ‘1’ all

those that should not influence the execution of a successful reception. This is done to ensure

that they are ignored when they assume erroneous values. Requests for the generation of an

Overload frame and of a transmission are also generated using the overload req signal; as

expected, the reception is not blocked by this requests, which can cause the generation of

the corresponding frame only during the Idle state. The state signal is the output sent to

the other modules, and it can be observed, comparing it with the values of Table 3.2, that

it correctly follows the expected reception execution flow. When the bus is idle, the rx ctrl

is ignored because no reception is in progress, but in the box A in Figure 3.3, a reception

and a transmission flag are received concurrently; since this means that a communication is

already in progress on the bus, the reception branch is executed instead of the transmission

one. During the Reception state, the bitcheck and data out ready signals are ignored and

only rx ctrl is considered to determine when it is necessary to switch to the CRC Delim state.

The box B highlights this reception control signal and the bit time that must pass before the

FSM switches to the Send Ack state, using the sync signal as a reference. The transitions

to the following states is controlled by the synchronization signal as well, and the only other

signals that could break this execution are the error one and the bitcheck, that are always

’0’ in this period to let the branch reach its conclusion. In each state, all the signals that are

ignored, and that consequently do not cause any change in the execution flow, are asserted

to verify that this behaviour is reproduced. Similar tests have been performed to verify the

Manager behaviour in all the expected situations, and the list of the corresponding scenarios

is provided in Table 3.3.

The code coverage for the Manager, obtained with these scenarios plus some injected

faults (bit flips on the state register) is the following:

39

Table 3.3 List of the scenarios used to validate the Manager behaviour

Test Value

1 Successful reception (example provided in this chapter)
2 Successful transmission
3 Arbitration lost during transmission,

and the following reception is correctly performed
4 Overload, all the situations that can bring

to their generation are tested
5 Stuffing error detected during reception.

Both error active and error passive situations are reproduced.
The stuffing error can also be detected during the reception

that follows an arbitration lost
6 CRC error detected. Like in Test 5 both error

active and passive states are considered and also the detection
after the arbitration lost is verified

7 Bit error detected during a transmission
8 Acknowledgement error detected during a transmission
9 Bus Off state, the system must not respond to the bus requests

Coverage Report Summary Data by file

File: C:/Users/Davide/Desktop/Poly/Project CAN/Raccolta VHDL/VHDL/FSM.vhd

Enabled Coverage Active Hits % Covered

---------------- ------ ---- ---------

Stmts 124 124 100.0

Branches 125 125 100.0

Conditions 30 30 100.0

Fec Conditions 40 40 100.0

States 28 28 100.0

Transitions 148 121 81.7

NEVER FAILED: 100.0% ASSERTIONS: 499

Transitions coverage is really low because most of them are not allowed in the finite

state machines, because they corresponds to erroneous behaviours, which cannot occur for

standard operations such as those reproduced in the scenarios. Some unexpected transitions

have forced generating bit flips on the state register, in order to analyze the behaviour of the

FSM when the standard execution flow is interrupted; in addition to the inevitable problems

these faults create in the system’s behaviour, the FSM execution flow can also be broken

by them, since the other modules may not provide the signals required for the following

transitions, leaving the Manager stuck to the state generated by the bit flip. Bit flips have

40

been generated only on the state signal because this is the most hazardous case that can

occur. While the error detection of the CAN protocol can detect this faulty situations, some

nodes may remain for a long time blocked in an erroneous state, and an additional control

mechanism can be added to the design to ensure that the FSM is reset when it does not

switch state for a long time. The implementation of this mechanism and further verification

of the system, using fault injection techniques, would have required more time than available.

3.3.2 Migration towards ARINC 825

When it was decided to include only ARINC 825 in the final network prototype, abandoning

CAN and CANaerospace, the development of this core was not completed yet, therefore, it

was possible to immediately readjust the design to realize a tailored ARINC 825 controller

instead of completing the configurable CAN controller. This transition has been realized

by other colleagues, but an analysis of the required modifications and of the final results is

provided here to highlight how the design presented before supported the implementation of

this avionic protocol.

Most of the system’s modules were already designed to realize features required by the

ARINC 825 as well as the CAN controller, and they have been successfully ported, simply

completing and correcting the work that had already been started for the CAN core. The

core architecture has not been modified, and the role of each module remained the same

as in the original design, with the only exception of the Error controller since the ARINC

specification include some differences at this level to increase the reliability of the system. A

research on error detection is also intended to be performed on this system, therefore some

adjustments have been necessary to support the related tests. The state machine has been

changed to handle the different error control methods, and to eliminate the generation of

overload frames. All the other modules have not been modified in their behaviour but only

completed and improved in their implementation. The resulting size for each module after

synthesis is shown in Table 3.4 as well as the overall occupied area.

The percentages shown at the end of Table 3.4 represent the occupation ratio of the

resources on the Spartan-6 XC6SLX45T FPGA used for the prototype implementation. The

small amount of resources required for this IP core allows of multiple instantiations of the bus

controller to increase redundancy in the NCAP system. The removal of the overload routine

and some improvements on the code reduced the FSM size to only 100 LUTs, and the Bitcheck

modules is now even smaller than before because the detection of acknowledgement and bit

errors is now performed by the Error controller, which is one of the bigger modules, together

with the Destuffer and the Serializer. The overall size of the IP core remains comparable

with those of the already existing CAN controllers. Input and output FIFOs have a depth of

41

Table 3.4 Size of the ARINC 825 controller

Module # Slice registers # Slice LUTs

FSM 25 100
Bitcheck 0 1

Error Control 32 154
CRC in 16 13

CRC out 15 7
Synchronizer 12 18

Destuffing 138 194
Bitstream Generator 68 23

Serializer 53 130

ARINC 825 Controller 529 757
0.97% 2.77%

only 1 register for a better comparison with the data found in the literature, where they are

not considered in the computation of the resources occupied by the core. Even if a precise

comparison is difficult because of the structural differences between the developed system and

the existing ones, we can see that the transmit path (Bistream Generator and Serializer)

requires less resources than the TX module of the MARIA core presented in [16], where 434

LUTs and 154 FFs are used, and that the receive one, composed by the Synchroniser and

the Destuffer, is slightly smaller than their RX module, which uses 153 Flip-Flops and 315

LUTs. For these comparisons it has been considered that the Manager must be included

partially in both computations because it has an active role in both processes. The overall

controller is slightly smaller than the HurriCANe core, that counts 715 FFs but also 1047

LUTs, but it must be considered that the removal of overload frames and of the support

for standard frames helped the size reduction, in fact, as stated before, a CAN core can be

considered oversized for an ARINC 825 bus controller.

The adaptation of the designed core to support only ARINC 825 has been completed and

it has been verified. To conclude its development, it has been planned to integrate it in the

device and to connect the SP605 board with a commercial test bed for avionic data networks

verification. It will be also possible to increase the core reliability by adding a redundancy

mechanism, or the previously mentioned mechanism to ensure that the FSM cannot be stuck

to a faulty state.

42

CHAPITRE 4

AFDX END SYSTEM

In this chapter, an analysis of the AFDX End System, of its features and required perfor-

mances is done, in order to determine the most suitable solution for its implementation and

integration in the network prototype. Differently from the other modules investigated in this

thesis work, this system is strictly related to other research topics of the Avio 402 project

and to other parts of the NCAP system; therefore, its realization cannot be performed inde-

pendently and must consider the needs and requirements coming from these other aspects.

4.1 Specifications

The main features of the AFDX protocol, its similarities and its differences from the Ethernet

protocol, described in Section 2.1.2, will be widely referenced in this chapter, where the End

System is discussed. This system must implement all the features specified in the official

documentation to provide data encapsulation, traffic control, and Virtual Link management.

In addition to the requirements coming from Part 7 of the ARINC 664 specification, further

objectives and constraints derive from the environment of this system.

For the realization of the network prototype, the ES is intended to be implemented on

the same FPGA where the whole NCAP is going to be integrated, in order to be quickly

and easily interfaced with the ARINC 825 controller. Even if the system is intended for a

prototype, and consequently it is not required to strictly follow the safety rules imposed on

avionic systems, the design choices still need to be eventually applicable in a real avionic

system, thus portability must be kept into consideration to allow the reuse of the design

solutions and of the developed code.

This module must also be developed in close contact with the gateway (the bridge between

the AFDX and the ARINC 825 protocols) and the NCAP services that are part of the NCAP

system. Both these functionalities are planned to be implemented as a software executed by

an embedded processor to guarantee better flexibility and to study the use of an ARINC

653 environment within this network, as requested by the Avio 402 project. The presence of

an embedded processor in the NCAP, in close contact with this core, influences the design

choices concerning the ES itself.

43

4.2 Proposed solution

Because of the complexity of this system and of the tight interconnection with the other

modules included in the NCAP, a software approach has been preferred for its development.

This solution allows easier communication with the NCAP services and Gateway, that will

be run by the same processor, and reuse of the already existing (software) TCP/IP protocol

stack. Even if various papers presented in Section 2.2.2 suggest a software implementation for

this kind of system, the system complexity alone may not be enough to justify the exploitation

of an embedded processor since better results in terms of performance and area on the FPGA

could be achieved with a full hardware implementation, but since the aforementioned NCAP

services are planned to be implemented in software, the inevitable presence of a processor

makes this solution definitely preferable. Because of the processor size and the limited number

of Ethernet PHYs available on the SP605 board, it will unfortunately be impossible to include

redundant End Systems in the prototype.

Software advantages

A software approach gives multiple advantages in terms of development time and complexity

and it is usually a bad solution only if it cannot give the required performance or if the tasks

to be performed are not enough to justify the need for a processor that would be an excessive

overhead of resources. In this case, since a processor would be needed for the implementation

of NCAP services and Gateway, not only this overhead is not a problem, but the interface

between the ES and these applications is simplified if it is executed by the processor as

well. Furthermore, the results of the publications presented in Section 2.2.2 confirm that

FPGA embedded processor can provide the performance required to meet the ARINC 664

specification, and that latency and jitter obtained with a processor-based design are really

close to those attained with a custom hardware implementation.

Another valid reason to choose a software approach is given by the analogies between

AFDX and Ethernet, already existing software implementations of UDP/IP and Ethernet

protocol stacks can in fact be reused, and Application Programming Interface (API) and

socket structures developed for Ethernet applications can be exploited as well, saving devel-

opment time and increasing portability. Building AFDX over the protocol stack used by the

Linux kernel for Ethernet communications can save time and guarantee reliable functional-

ity of those parts that do not need modifications, such as UDP and IP layers. Only the

lower layers of the protocol stack need to be modified to integrate the specific functionalities

required by AFDX, as shown in Figure 4.1

44

Figure 4.1 SW architecture overview

4.2.1 The Linux Ethernet protocol stack

Since the Linux 2.6.37 kernel has been chosen as operating system, a general knowledge of the

structure and organization of the Ethernet protocol stack it provides is necessary to better

understand where modifications can be made to successfully add AFDX features to it. The

general structure of this stack is the same shown for Ethernet in figure 4.1, and the /net

folder contains all the code required for its implementation. This folder includes anything

concerning networking, from IrDA, to wireless communications, from CAN, to Ethernet. The

Ethernet networking functions are included in the following folders:

• /net/core: it gathers all the functions that are use to manage the whole stack execution

• /net/ipv4 : it contains all the code needed for the transport and network layers, TCP/UDP

and IP implementations

• /net/ethernet : for anything concerning the Ethernet layer

• /net/sched : it includes various proposed algorithms for packet scheduling

The whole networking protocol stack operates on the socket structure created and con-

figured by the application, and passed by it to the first layer via a standard socket API. The

various fields of this structure, like the IP and MAC headers, must be filled by the corre-

sponding layer of the protocol stack following the information provided by the application

when a datagram socket (the type of socket required for the utilization of the UDP protocol)

is created. Once the socket is ready, it is passed to the Ethernet MAC for transmission.

45

After the UDP and IP encapsulation, the Ethernet layer (/net/ethernet/eth.c) must exe-

cute a final encapsulation of the frame by adding the source and destination MAC addresses,

the frame type, and the final frame control sequence. This layer receives the packet from

the IP layer, and determines the destination address by analysing the IP destination address

using dynamic routing tables. The source MAC address is easily determined since it is the

address of the physical device that will take care of the transmission, while the destination

address is set by the application.

When a frame is received, the Network Interface Controller (NIC) generates an interrupt

to advise the processor that the frame is available. The assigned driver for the NIC must

then retrieve it from the memory where it has been saved and pass it to the Data Link

layer. From that point the protocol stack is executed in the opposite way, filling the socket

structure fields in function of the information carried by the frame. The packet is finally

made available for the application that is listening to the Ethernet communication, which

can analyze its content reading the corresponding socket.

4.2.2 End System design

Using this protocol stack as a starting point, the necessary modifications have been identified

to add the functionalities required by the AFDX protocol. In this section, the planned design

for the development of the End System is presented and a description of the features that

must be added to the protocol stack is provided. During the implementation of this design,

some problems have been encountered, that suggested a change in the prototype design, thus

interrupting the development of this system. The system implementation is discussed in

Section 4.3.

In order to reuse as much as possible the existing implementation of the Ethernet protocol

stack, AFDX can be implemented on a copy of the corresponding code. A new “Ethernet

protocol type” can be created to select this stack instead of the standard IPv4/Ethernet

one when the socket specifies AFDX as protocol type. The socket structure could also be

modified accordingly to be tailored for this stack. With this approach IEEE 803.2 and AFDX

could coexist in the same kernel, and it would be the application to choose which one should

be used, creating the socket correspondingly.

Transmit path

The first difference between Ethernet and AFDX concerns the datagram fragmentation: while

in Ethernet the Maximum Transmission Unit (MTU) is unique for all the packets destined to

the same eth device (it can be set using the ifconfig command in the Linux terminal), the

46

AFDX protocol defines a Lmax for each Virtual Link. The ip fragment() function should

be consequently modified to use a different value of MTU depending on the virtual link of the

frame instead of the destination device. The value of the MTU (Lmax) for each VL should

be previously saved in a table accessible by this function.

All the remaining modifications are part of the lower layers, and they can be inserted in

both the eth.c file or in the driver used to control the physical device since all the features

concerning transmission timing should be as close as possible at the end of the stack in

order to reduce frames jitter. Device drivers can be found in the /drivers/net directory, for

example the xilinx axienet main.c and the xilinx axienet mdio.c files are used to control the

Tri-Mode Ethernet Media Access Controller (TEMAC) used in the platform design. Even if

BAG timing can be more precise if it is the driver to control it when the packet is passed to

the physical device for transmission, this solution is not advantageous from the portability

point of view: if the hardware platform is changed, or the MAC core is changed, all the

adjustments should be ported to the drivers use by the new design. A better choice is to

operate at the output of the Ethernet layer, just before calling the device driver, to remain

close to the bottom of the stack while producing a more portable code; therefore, the eth.c

function and those included in the /net/core folder should be addressed. The functionalities

that need to be included in the protocol stack are the following:

Integrity Checking First, the sequence number must be added at the end of the AFDX

payload (defined as the packet delivered to the data link layer by the IP protocol, including

the IP header and encapsulation). This number must also be considered as part of the

payload from this moment; it is, in fact, taken in consideration when computing the payload

length.

BAG and Jitter control Each VL must respect its own BAG: once the frame is complete

and ready for transmission the network layer must verify that the time elapsed since the

previous packet for this VL was sent is longer or equal to the corresponding BAG, and, if this

condition is met, it can make it available for the scheduling and enqueuing procedures. Once

the packet has been put in the output scheduler qdisc by the dev queue xmit() function

and consequently saved in the output queue, a timestamp of the packet can be checked and

saved together with the current time to retrieve information about the introduced jitter.

Virtual Link scheduling The Linux networking protocol stack has at its disposal various

scheduling algorithms (gathered in the /net/sched folder) to decide which socket should be

processed and passed to the physical device first, from a basic FIFO mechanism (sch fifo.c), to

47

generic multi-purpose algorithms (sch generic.c), to more complex techniques. It is necessary

to develop a dedicated scheduler which can take into consideration the presence of VLs in the

End System. It is possible to implement, in this algorithm, the techniques identified by other

colleagues participating in the AVIO 402 project as the most suitable for reducing jitter and

overall end-to-end delay, as stated, for example, in the article by Tawk et al. [31].

Redundancy management Differently from the previous features, it can be advantageous

to manage the two redundant channels at the driver level because, even if this choice produces

less portable code, it would be more effective. The driver can in fact simply copy the socket

structure to the two ring buffer of the redundant physical devices, while the network layer

need to call the dev queue xmit() routine twice, specifying the corresponding device each

time, thus sending the same socket to two different schedulers (each device has its own

scheduler) and creating the possibility of having different jitters and behaviours on the two

channels.

Receive path

When a frame is received, the corresponding interrupt makes the processor call the netif rx()

routine, that saves the received packet into a poll queue. Before saving the received socket

in the queue a redundancy and integrity check must be performed. The sequence number of

the last received frame of each VL is saved in a table where they can be checked every time

a new frame is received, and the socket is passed to the next (upper) layer of the protocol

stack only if it is not redundant and if the integrity is respected. Redundant frames must

be discarded together with those that do not comply with the sequence order. Once these

controls are performed, the reception routine can continue the same way it would have been

in the Ethernet protocol stack, no other modification is required.

4.3 End System development

As written in Section 2.2, some possible solutions for the AFDX End System implementation

have been published in recent years; unfortunately, most of them do not give applicable

solution for this situation. For example, most of the works analyzed in Section 2.2.2 exploit

standard Windows machines, modifying some DLLs, or proprietary protocol stacks, while,

in this case, the goal is to study an inexpensive, portable solution for embedded systems.

Inspiration has been taken from [25] and [24], from which the fundamental structure of the

embedded system and of the required software modules has been derived.

48

4.3.1 Hardware embedded system

Figure 4.2 ES hardware architecture

The embedded system is evidently processor-centric, in order to support the execution of

the software protocol stack described above; the only other hardware modules instantiated

are those that are necessary for its configuration, remote control, and network capability. All

the exploited IP cores are taken from Xilinx libraries. Since Spartan-6 FPGAs do not include

PowerPC microprocessors, a Microblaze soft processor has been configured and instantiated

to run the ES and the applications that will be responsible for the gateway and NCAP

services. The processor includes an internal RAM memory, interrupt and timer controllers,

and a Memory Management Unit (MMU) to support the Linux operative system. The USB

connection included in the design is used to control the Linux OS run by the processor using

a remote terminal; a second USB port used as JTAG connection is required to program the

board downloading the configuration bitstream generated by the Xilinx ISE tools. A DDR

SDRAM memory is instantiated to host the Linux Kernel. The Ethernet MACs constitute

the connection with the PHY layer and consequently with the network; two MACs have

been instantiated to provide the access to the two redundant AFDX channels. A local

BRAM memory and a FIFO have been also added to the design as generic interface with

the rest of the NCAP. It can be noticed that no AFDX peculiar feature is implemented

in hardware. Figure 4.2 shows a general overview of the described system: two separate

Advanced eXtensible Interfaces (Xilinx adopted the AXI interface beginning with Spartan-6

and Virtex-6 devices) are used in the design, the first one operates at 100MHz and it is used

for memory management and access, while the second is required for communication with

the peripherals and operates with a 50MHz clock frequency.

49

4.3.2 Software implementation

Figure 4.3 SW architecture overview

To improve portability and design reuse, a standard and widely used operative system

(Linux) has been preferred to other embedded operative systems, furthermore this kernel is

completely open source, allowing direct modification of the provided protocol stack. Figure

4.3 presents the overview of the software system that runs on the embedded processor, where

the OS is responsible not only of the management of the networking features but it will also

allow the concurrent execution of multiple applications that will implement NCAP services

and gateway. The Application Programming Interface (API) is a standardized interface

between these applications and the kernel and it constitutes another advantage of this design

in terms of portability since it makes the applications independent from the rest of the

system. The API is called APEX when the OS is compliant with the ARINC 653 standard,

that concerns operating systems for safety critical applications and requires a custom interface

with them to handle temporal and spatial segregation of tasks. The need for an ARINC 653

compliant OS made the development of the ES more complex, as described later. The memory

shown in Figure 4.3 constitute a generic interface with the other sub-systems composing the

NCAP, and frames that need to be exchanged with the ARINC 825 network can be stored

in it waiting for forwarding.

A vanilla version of the Linux Kernel has been chosen as operating system, in particular

the 2.6.37 version provided by Xilinx has been used. This Xilinx distribution of the Linux

kernel is completely identical to the vanilla version, and it only adds drivers for all the Xilinx

IPs and configuration files to support Xilinx’s development boards. This kernel already

includes the Ethernet protocol stack, which is mature and reliable thanks to the testing

50

and development that it experienced over the years. It includes all the TCP/UDP, IP and

Ethernet features used everyday, and that will constitute the basis on top of which AFDX

will be implemented. Ethernet and AFDX protocol stacks are compared in Figure 4.1, that

highlights how most of the code provided with the Linux kernel can be reused as it is, without

any modification. Although they are both supported by AFDX, UDP has been preferred to

TCP for development and testing, since generally suggested: TCP introduces larger delays

and it is not useful since AFDX already guarantees packet delivery.

To test if the planned modifications were actually applicable to the original Linux network-

ing protocol stack, the Ethernet IPv4 protocol has been initially replaced with the modified

AFDX version, instead of creating a separate path for AFDX sockets. This solution simplified

coding and saved development time, but it is not suitable for a commercial product. Even

if the standard Linux can be effectively used to explore possible fundamental implementa-

tions, the obtained results can only be a generic reference because of its non-real-time nature

[24]. To obtain more significant results a Real-Time patch (RTLinux) has been applied to

the kernel; this patch cannot give strict hard-real-time performance but improves the soft-

real-time behaviour of the 2.6.37 Linux kernel. The frequency of the jiffies counter has

been set to 1ms, instead of the standard 4ms. Of all the planned modifications, described

in the previous section, only a basic version of the BAG control has been implemented to

control the transmission time of packets on a single VL, because some problems occurred

and suggested a change in the prototype design before the BAG control could be completed

and before redundancy, integrity and VL management, and scheduling could be addressed.

These problems are described in Section 4.4. The pseudo-code of the algorithm produced

for the control of the transmission time is given in algorithm 4.3.2. This algorithm has been

implemented in two different ways: in the Ethernet MAC driver, and in the eth.c code that

realize the Ethernet layer of the protocol stack.

When the system and the Ethernet devices are initialized, the time of the “last frame sent”

for each Virtual Link is set to “now” using the jiffies timer provided by the Linux kernel.

Whenever a socket structure is received by the Ethernet layer and it is ready to be passed to

the scheduler for transmission, its MAC destination address is analyzed to determine its VL,

and a control over the elapsed time since the last transmission on that link is performed to

determine if a time equal or longer than its BAG has passed. If the condition is respected,

the packet can be sent, otherwise the function returns without doing anything, and the same

control on the same socket structure is done as soon as the operating system schedules a call

to the dev queue xmit function.

To test the precision on the transmission timing obtainable with this kind of implemen-

tation the modified kernel has been compiled and downloaded to the embedded processor,

51

Algorithm 1 BAG control

if initialization then
vl 1.last sent = now;

else
if skb.mac destination = vl 1.mac address then

if vl 1.last sent− now < vl 1.BAG then
exit;

else
send;
vl 1.last sent = now;

end if
end if

end if

and a simple application has been created and run on the same processor to send a series of

dummy packages to a predetermined multicast destination. The kernel has been configured

to only support the minimal functionalities required for this situation, and to only include

the significant drivers for the IPs included in the hardware system; the size of this minimal

kernel configuration is smaller than 4MB. The transmissions have been monitored using a

snooping software on the computer receiving the frames. Since redundancy management is

not present, the traffic is sent on a single channel. It has been observed that the arrival time

of the packets followed the rate imposed by the defined BAG with an average deviation from

the expected value of about 20µs. All the possible BAG values have been set and tested

to determine the relationship between their variation and the measured deviation, and the

observed jitter shows the same characteristics in every simulation, suggesting that the BAG

value does not influence it. The same behaviour and results have been observed implement-

ing the same algorithm both in the device driver code, thus after the scheduler, and in the

Ethernet layer, confirming that both solutions could be effectively used obtaining the same

performance. Due to the non hard-real-time behaviour of the OS occasional delays up to 40µs

have been observed. This value does not include the inevitable jitter that the device sched-

uler will add when dealing with multiple VLs, and consequently the present implementation

may not be able to handle high numbers of virtual link. Better precision could be attained

using timers, one for each VL, generating soft interrupts periodically, forcing the processor

to check if there is any packet ready for transmission for the corresponding VL. this solution

though would radically decrease overall system performance because an excessive amount of

interrupts would be generated even in absence of any socket waiting for transmission. More

time would have been necessary to implement this solution, and to perform more detailed

52

tests on the current implementation.

4.4 Practical Problems and Lesson Learned

The previously presented design has not been fully implemented, unfortunately, because of

practical problems encountered during its development. Some of the issues are a consequence

of other constraints imposed by the AVIO 402 project, while others concern the difficulty

of handling a system realized on multiple levels (hardware, drivers, operating system, and

applications).

The first issue is due to some incompatibilities between the Ethernet PHY chip available

on the ISMNET module for the communication with two IEEE 802.3 physical ports and

the corresponding drivers included in the chosen Linux kernel. The DP83640TVV PHY by

National Semiconductor not only is IEEE 802.3 compliant, but it is also compatible with the

IEEE 1588 standard for real time industrial connectivity. Even though this feature seemed

interesting and promising in the context of the research for synchronization of local network

nodes between each-other (in order to further reduce latency and packet loss), it was a major

drawback because of the lack of dedicated drivers for this kind of PHYs in the stable versions

of the Linux kernel. An unstable patch for the 2.6.37 kernel is available to include the

required drivers in the kernel, but it was not possible to successfully compile the patched

kernel. An official driver is now included in the 3.0 version of the kernel released in July

2011; unfortunately, this update, and the corresponding Xilinx release, arrived when other

problems had manifested and the decision to change approach for the prototype realization

was already being discussed. The previously presented implementation and testing exploits

the Ethernet port available on the SP605 board instead of those of the extension mezzanine.

A second problem is a consequence of the reliability requirements of an avionic system,

and even though the prototype being developed is not supposed to satisfy all of them, it is still

required to be ARINC 653 compliant because this standard is part of the research objectives of

the AVIO 402 project. Even if a real-time patch has been applied to the kernel, in the avionic

environment hard real-time performance is not enough, and spatial and temporal segregation

of the tasks performed by the processor, and supervision and control of its behaviour are

required as well. ARINC 653 standardizes how task segregation and supervision must be

performed by the OS, and applications must be expressly designed following the requirements

of this standard and its modified API, called APEX. In the literature review provided in

Section 2.2.2, it has been observed that it is generally suggested to directly design applications

considering the need for an ARINC 653 compliant operating system, instead of including it

only in an advanced stage of the development. Considering this aspect, it has been decided

53

to directly include ARINC 653 in the design of the prototype, but this involved additional

issues in the implementation of the embedded system.

The problem in developing an ARINC 653-compliant embedded systems is the need for

highly expensive commercial products, such as VxWorks653, LynxOS-178 RTOS, or LynxOS-

SE RTOS operating systems. Furthermore, most of the ARINC 653 compliant OSes do

not support the Microblaze processor, since physical, hard IP core, processors are usually

preferred to softcores in avionic commercial products. A cheaper solution has been found in

the SIMA tool, that emulates an ARINC 653 environment on top of a standard Linux kernel,

but unfortunately it is not possible to run it on an embedded processor. Because of these

considerations and the technical difficulties encountered with the Ethernet PHYs’ drivers the

embedded solutions has been abandoned and a PC has been chosen for the development of

the AFDX End System instead. The modified structure of the prototype is illustrated in

figure 4.4: the ES and all the applications that was previously planned to be implemented

on the embedded processor are now executed by the PC, and a PCIe connection is used to

connect it to the FPGA where the previously presented CAN controller is instantiated.

Figure 4.4 Modified prototype structure

The ES architecture proposed in this thesis proved itself portable and flexible, thanks

to the possibility to reconfigure the same kernel for the Intel x86 processor available in the

PC. In reality, a vanilla kernel has been used instead of the one provided by Xilinx, but

the identical structure of the networking protocols allowed an easy port of the planned and

completed modifications to this new kernel. The work on this system is being continued

by other students that are implementing the entire End System on the PC, and interface

it with the rest of the NCAP, that still resides in the FPGA, through a serial connection.

This serial connection has been realized using a PCIe bus. Presently, the BAG control has

been improved and the VL management integrated in the protocol stack, but redundancy

and integrity mechanisms and custom scheduling are still under development.

54

It will be interesting, once the development is completed, to port it back to the embedded

system, to evaluate how the lower performance of the embedded processor affects the resulting

jitter, and how the number of manageable VL changes.

55

CHAPITRE 5

AFDX SWITCH

This chapter focuses on the description of the design and implementation of an AFDX switch

fabric. This module has been conceived to be used as intellectual property in the development

of the switch that will be included in the network prototype. Section 5.1 defines the features

and functionalities that this system must provide, and the constraints it must respect, the

design and considerations about it are explained in Section 5.2, before turning to the synthesis

results obtained and their analysis given in Section 5.3. In Section 5.4, a description of the

most important tests performed on this subsystem to validate its functionality is given,

together with the resulting performance measurement.

5.1 Specification and requirements

To better understand the implementation choices made for the realization of the routing core

of the AFDX switch, it is important to fully understand its role in the network and also under

the Avio 402 project point of view. In this section, an overview of the most relevant features

of the AFDX Switch is given, while more detailed information can be found in Chapter 4 of

the official documentation [10]; its implications, together with the requirements of the AVIO

402 project, are analysed to introduce the design choices explained in the next section.

5.1.1 ADFX switch specification

While in chapter 2, a general description of the protocol has been provided, an analysis of

the additional functionalities of an AFDX Switch, compared to those of a standard Ethernet

router, still need to be performed to fully understand how the architectures presented in that

same chapter can be applied to an avionic environment.

An AFDX network consists of up to 24 end systems connected to a switch and switches can

be cascaded to increase the capacity of the network that has, consequently, a star topology

identical to a switched Ethernet network. It is important to remember that the redundancy

that characterizes this avionic protocol concerns only the End Systems since the two redun-

dant networks are completely parallel and independent, invisible one to the other, therefore

switches are not influenced by this aspect. The main role of the switches in the network is

to redirect the incoming frames towards the corresponding destination selecting a predeter-

mined path, specified in a routing table. While these routing functionalities are the same as

56

those provided by any Ethernet switch, some additional traffic control features are specified

by the AFDX protocol, to perform error detection and segregation, thus improving network

reliability. The specification identifies four main functional blocks in which the system can

be separated, that are shown in Figure 5.1.

The four subsystems are the following:

1. Switching Function: it is responsible for the routing of the incoming frames towards

the corresponding output ports. It uses the information included in the header of

each frame to determine its Virtual Link and consequently its destination. It must

also provide filtering capabilities to remove erroneous frames from the network. In an

Ethernet network, it is often called Switch Fabric, and it is the module developed in

this thesis.

2. Configuration Tables: they include all the information used by the switching function

module to choose the output ports where the frame must be sent. They also contain

all the Virtual Link parameters, such as related BAG and Lmax, necessary for the

detection of erroneous frames.

3. Monitoring Function: every operation executed by the switch is monitored and identi-

fied errors are recorded to keep track of the switch operating state and determine if it

is able to complete its task or if it must be removed from the network.

4. End System: it is the port that puts the switch in communication with the rest of the

network and with the configuration tools. It can be used to configure the system, to

load data in the configuration tables, and to exchange information about the switch

state with the rest of the network.

As mentioned before, only the switching functions are analysed and implemented in this

work, but the module has been designed to be easily and efficiently interfaced with the rest

of the system that is going to be implemented on the FPGA. The separation of the various

functionalities of the switch provided in the specification allows independent development of

each sub-system, but it is necessary to determine how these modules are going to interact to

provide the necessary interface signals.

5.1.2 Switch Fabric

The switching core of the router is highly similar to the IEEE 802.3 counterpart, since its

main task is exactly the same. The destination address of each incoming frame must be

identified and analysed to determine to which output ports it must be forwarded to, in order

57

Figure 5.1 Representation of the modules of the Switch taken from the specification

for it to reach the required destinations. The frames will most probably have to be forwarded

to more than one output since Virtual Links are multicast communications with generally

more than one destination. As clearly shown in Figure 5.1, routing is not the only task that

this module must execute: traffic policing and filtering are required as well at the reception

of each transmission to identify and discard every erroneous frame. In the following sections,

routing and filtering mechanisms are described.

Routing frames

This is the same exact function that any Ethernet switch must provide: while a frame is being

received, its header is identified and analysed to determine to which VL it is related. The

frame field that contains the relevant information is the destination MAC address, whose last

16 bits represents the virtual link. Information about the VL destination ports as well as VL

parameters must then be retrieved from the configuration table where it is been previously

recorded, and it is used for routing and filtering. Since VLs are usually multicast connections,

the switch fabric must be able to route frames concurrently towards multiple output ports.

The Part 7 of the ARINC 664 standard [10] specifies that, if the FIFO corresponding to

one of the outputs where the packet is being forwarded is full, the frame must be dropped

and it must not wait for the FIFO to be available; this avoids potential stall conditions

that could occur if the output FIFO is dysfunctional. If there is output contention because

multiple frames with the same destination are received concurrently, a scheduling algorithm

must determine which packet will be forwarded first; thus buffers are necessary to store the

packets that lose the contention.

58

Frame filtering

To ensure that only non-corrupted frames are being forwarded into the network, thus avoiding

error propagation, upon arrival, corrupted frames are detected and discarded. To perform

this operation, the core must test each frame’s Frame Check Sequence (FCS) field according

to the IEEE Std 802.3, and verify that the frame size is an integral number of octets greater

than 64 and lower than 1518 bytes. There are also some VL related constraints that must be

satisfied: the switch should in fact discard incoming frames which total Ethernet line size is

greater than the maximum size (Smax) or smaller than the minimum size (Smin) allowed for

the corresponding VL. Finally, it must also discard frames with an erroneous constant field

in the MAC addresses, when the destination is not reachable, or when its VL is not allowed

on the incoming port.

Traffic policing

Valid frames are then filtered for bandwidth: any frame that exceeds the bandwidth defined

for its VL is discarded. The standard specifies a token-bucket algorithm for policing band-

width and it leaves the possibility to choose between a frame-based and byte-based policing.

This algorithm requires that an Account (ACi) is created for each V Li, and initialized to

Smax
i ×

(
1 +

Ji,switch

BAGi

)
. ACi is credited as time elapsed proportionally to

Smax
i

BAGi
, with an up-

per limit equal to the initial value; whenever a valid frame is received on the virtual link i,

the corresponding ACi is debited by Smax
i . When a frame is received, if its ACi is greater

than Smax
i it is considered valid, otherwise the corresponding ACi is not modified and the

frame dropped. For the byte-based version of this algorithm, a frame is valid if its account is

greater than Si, and in that case the account is debited by S, while everything else remains

the same. An example is given in Figure 5.2: the first frame determines where the BAG

for its VL should start, and whenever a frame is received on that virtual link outside of the

corresponding arrival window, the account is too small and the frame is consequently ignored.

Latency control

To limit the maximum end-to-end delay of the network, a maximum delay is defined for

each port of the switch fabric: once a frame’s latency in the core is too high, it must be

considered too old to be useful and it must consequently be discarded. The specification

divides the latency introduced by the switch into three parts: technological latency of the

switching function, the configuration latency due to switch loading, and the time required

to transmit the frame on the medium. Only an upper bound for the technological latency is

specified and fixed at 100µs. No suggestion on a reasonable value for the maximum latency

59

Figure 5.2 Example of frame-based leaky bucket algorithm application

is provided in [10].

5.1.3 AVIO 402 requirements

Like the other modules discussed in this thesis, the switch fabric is also intended to be used

as intellectual property for the development of the network prototype on the same FPGA

used in the rest of the project. Even if no precise constraint is imposed on its internal

implementation, its structure must be suitable for a potential integration of the scheduling

algorithms proposed by other students of the AVIO 402 project [32]. Design reuse must be

considered also for this core. Therefore, the developed design must be portable to other

devices and the conceived solutions must provide a general improvement of the technology

readiness level.

The presence of the other functional modules specified by the ARINC 664 specification

[10] in the final system must be considered, but to develop this core independently from

them, configuration and routing tables are ignored in this thesis work, and the corresponding

information included in internal registers of the switching fabric. To provide multiple Ether-

net ports, the switching core will most probably be connected to the same PC used for the

End System via PCIe, therefore the core interfaces must support this type of solution.

5.2 Core Design

In Section 2.2.3, some solutions developed for Ethernet switches have been presented and

their advantages discussed. Work has been done to identify which existing architectures

could be the more suitable for the AFDX network, considering the great importance of

reliability and latency reduction in avionic networks over speed and throughput, which led

the development of routers used in Gigabit Ethernet networks. Space-division switching

60

architectures seem better than time-division switching ones for an FPGA implementation,

because of the lower clock frequencies it requires; time-division architectures need to work

with frequencies N times higher than the wire speed (where N is the number of ports), and

hundreds of MHz are generally not achievable on FPGAs. Space-division switching also

allows easier implementation of parallel filtering of incoming frames.

In addition to the advantages of parallel processing of incoming data, a space-division

switching architecture has been chosen for the switch fabric also because a simple imple-

mentation of a router of this type was already available. A behavioural description of an

Ethernet switch fabric with this structure has been in fact created by other students of the

research group. Starting from this design, the AFDX specific features previously presented

have been added to adapt it to the ARINC 664 specification, and a VHDL implementation

has been completed. The architecture of this switch fabric is, as anticipated, based on a

parallel treatment of the incoming frames, and on a combined input/output queuing system,

as shown in Figure 5.3. Thanks to the analogies between Ethernet and AFDX, the migration

towards the avionic protocol is possible without any significant modification on the general

structure of the core, but only with some adjustments in the internal functionalities and

features of the functional modules.

5.2.1 Hardware advantages

The switch fabric processing time is translated into latency added to each communication

that passes through this system. When multiple switches realize the path of a certain VL, the

delay introduced by each one of them sums up and contributes to the resulting end-to-end

latency of the communication. It is obvious that the maximum latency of frames inside this

system is a key parameter that needs to be minimized. A full hardware implementation, with

a parallel processing of incoming frames is clearly the most suitable solution to address this

issue, especially in a system like the switch, where multiple packets are received in parallel at

different inputs. Parallel processing must be maximized to increase the system throughput by

reducing the processing time of the modules shared by all the parallel paths. This structure

will also be more robust to certain kinds of faults that can occur to one single part of the

core and remain invisible to the rest of the system, which can consequently continue working

correctly.

5.2.2 Switch Architecture

The original architecture was conceived for an Ethernet Switch, thus it did not considered

the requirements of the AFDX protocol, and it consequently needed some adjustments to add

61

Figure 5.3 Architecture of the Switch

the filtering features described above. Figure 5.3 shows the functional modules that compose

the routing core of the switch, whose general structure has not been changed. Although the

overall architecture is the same as in the original Ethernet version of the design, important

changes were made to the internal behaviour of some of the internal blocks, such as the input

filtering module and the Manager: while the former originally only had to save the incoming

packet in the input queue and to pass its header to the interpreter, which determined its

destination, now, they both have filtering responsibilities. Filtering and traffic policing have

been placed at the entrance of the system to eliminate erroneous frames as soon as possible

from the switch, to prevent them to use important processing resources that can consequently

be dedicated only to good frames. Some system signals have been added as well because of

the added filtering features.

The full hardware solution allows the minimization of the latency of the routed frames

in the core. The parallel processing of the incoming ones as well as the outgoing ones can

keep the technological latency as low as possible especially when multiple frames are received

concurrently. The only bottleneck is the presence of only one configuration table, and only

one manger that can access it. While the first filtering stage can be done in a parallel fashion

in the input blocks, these modules must wait for the manager to be available to complete the

filtering. Because of these resources shared between all the inputs, the amount of processing

executed by the manager has to be minimized to reduce the time spent processing each frame.

62

The number of filter blocks, of queues, and of FIFOs depends on the number of input and

output ports included in the design, and it is set by a single parameter PORT NUMBER. This

value is obviously the same for the inputs and the outputs since each communication port

is bidirectional. In the following section, the behaviour of each module is described while

presenting the reception and transmission processes.

Frame reception

When a frame is received on any input port, it must be immediately stored in the input Queue

while its destination address is analysed by the Manager to determine to which output ports

it must be forwarded. The filtering functionalities required by the AFDX specification must

be integrated in this process as well. The presence of filtering features required both a

modification of the internal functionalities of the input modules and of the communications

between them: the Manager must now ensure that each VL respects its allocated bandwidth,

and send VL parameters to the Filter block to let it complete the frame filtering. The

modifications in the communication between these modules are shown in Figure 5.4 using

blue arrows. In addition to each frame destinations, also its priority is sent to the Queue

that stores it, in order to separate high priority from low priority frames. The Queue must

provide a mechanism to discard erroneous packets. A detailed description of each module’s

behaviour is given in the following paragraphs.

Filter This module is the entry point of the system, and while in an Ethernet Switch it

only has a secondary role, it becomes vital when considering AFDX’s reliability issues. Its

main task is to read incoming frames, 8 bits at a time, from the buffer of the MAC core

that received them, and to store them in the input Queues, while extracting their header

that must be passed to the Manager. It also provides frame filtering in order to detect

and discard erroneous frames; unfortunately, most of the required controls depend on VL

parameters that are provided by the Manager, that consequently needs to be consulted. The

controls performed by the Filter module are the following:

• The Frame Check Sequence received corresponds to the one computed by the filter

• Constant fields have the structure expected for an AFDX header

• The Ethernet frame size is an integral number of octets (alignment)

• The Ethernet frame size is within the range 64 to 1518 octets

• The Ethernet frame size is lower or equal to Smax and greater or equal to Smin

63

Figure 5.4 Reception modules

Evidently, information about the the upper and lower bound of the frame size (Smax and

Smin) are VL dependent, and consequently the Manager ’s intervention is unavoidable for

this verification; therefore, the third point, that is otherwise redundant, is performed as well

to drop the packets not conforming to those bounds before processing time of the Manager

is wasted. Whenever an error is detected by one of the VL-independent verifications before

the header is passed to the Manager, the frame is immediately discarded.

Received bytes are saved in the Queue without waiting for the complete reception of the

frame to avoid the introduction of an additional delay to the communication. The fact that

most of the time an erroneous frame is detected only at the end of its reception, once the

FCS is computed and the frame size is known, makes it necessary to implement a mechanism

to drop them once they are already stored in the queue. This process is entirely handled by

the Queue itself and the Filter must simply send a drop frame signal to it whenever it is

necessary. To improve the system throughput, received bytes are merged into 16-bits words

to create a larger datapath.

Manager This module has access to the Configuration Table and to the Routing Table

saved in an external RAM memory, and, consequently, it has access to all the information

the system needs to complete filtering as well as to determine the path each frame must

follow to reach the correct destinations. As aforementioned, it is responsible for providing

the Queue and the Filter information about the size, Smax, Smin, and priority of the frame

they are treating, but it must also execute traffic policing, a feature peculiar of AFDX, and

not expected in any Ethernet switch.

Since the priority of incoming frames is unknown before the identification of their VL,

if multiple Filters ask for the attention of the Manager at the same time, a round robin

scheduling approach is used. Once the header is received, the destination MAC address is

extracted to determine its VL and this is used to retrieve the corresponding information from

the configuration tables. If the VL is not valid, the Manager tells the Filter to drop it.

64

Figure 5.5 Transmission modules

Another important feature this module must provide is traffic policing. Frames that does

not respect the Bandwidth Allocation Gap that corresponds to their VL must be eliminated

from the network. Between the two possible algorithms proposed by the ARINC 664 specifi-

cation (frame-based and byte-based leaky bucket algorithms), the frame-based one has been

preferred because a study by Yao et al. [33] highlighted some possible weakness of the byte-

based solution. To implement the algorithm presented in Section 5.1.2, an account has been

created for each VL, and it has been initially set to Smax
i ×Ni ×

(
1 +

Ji,switch

BAGi

)
. It is debited

by Smax
i × Ni each time a valid frame is received, and credited by Smax

i each clock cycle.

Smax
i is the maximum frame size for the V Li, Ji,switch is its maximum allowed jitter and it

can be expressed as fraction of its BAGi, and, finally, Ni is the number of clock cycles that

the BAGi lasts. Since a moderate resolution is requested by the specification (better than

100µs) a clock with a lower frequency than the system one has been chosen to keep registers’

and reduce power consumption. A frame is considered valid if, when it is received, its account

is higher than Smax
i ×Ni, and it is dropped otherwise by using the bad BAG signal.

Listing 5.1 Overview of the Manager VHDL code
−− PROCESS −−
−− MainManager : i t ’ s the process t ha t hand les the f l ow of the FSM tha t c on t r o l s t h i s module ,

−− i t a l s o s e t the va lue s o f the s i g n a l s used to communicate with the F i l t e r and with the Queue

−−−
MainManager : process (c lk , r e s e t)

variable cpt round rob in : i n t e g e r := 0 ;

variable current VL : i n t e g e r := 0 ;

variable index : i n t e g e r := 0 ;

variable l a s t p o r t : i n t e g e r := 0 ;

begin

i f (r e s e t = ’1 ’) then

−− r e s e t a l l s i g n a l s −−
. . .

manager state <= INIT STATE ;

e l s i f (c lk ’ event and c l k = ’1 ’) then

65

case manager state i s

when INIT STATE =>

−− r e s e t a l l s i g n a l s −−
. . .

manager state <= WAIT STATE;

when WAIT STATE =>

. . .

−− I f a F i l t e r has a header ready the rou t ine can s t a r t

i f (h eade r va l i d /= v e c t o r o f z e r o s) then

manager state <= SEND STATE;

end i f ;

when SEND STATE =>

−− s t a r t i n g from the l a s t p o r t + 1 (to execute a Round Robin)

−− the Manager determines which F i l t e r asked i t s i n t e r v en t i on

−− index = port to be t r ea t e d

. . .

else

−− e x t r a c t VL

current VL := conv in t eg e r (header (index) (79 downto 64)) ;

VL rece ived <= current VL ;

−− VL i s v a l i d i f in the accep tab l e range (VL must be mapped to a consecu t i v e

−− l i s t o f number going from 0 to Nbr VLs

i f ((current VL < Nbr VLs) and (current VL >= 0)) then

−− TRAFFIC POLICING: i f the ACcount f o r the current VL i s lower than

−− the corresponding ACmin the frame i s not v a l i d

i f (AC(current VL) < AC min(current VL)) then

bad BAG jitter (index) <= ’1 ’ ;

f r ame re c e i v ed <= f a l s e ;

else

bad BAG jitter (index) <= ’0 ’ ;

f r ame re c e i v ed <= true ;

end i f ;

−− The outputs towards the input por t t ha t sent the header are updated

p r i o r i t y (index) <= p r i o r i t y t a b l e (current VL) ;

Smin (index) <= array Smin (current VL) ;

Smax(index) <= array Smax (current VL) ;

d e s t i n a t i on (index) <= array Por t s (current VL) ;

Manager out va l id (index) <= ’1 ’ ;

else

−− The VL i s not a ccep tab l e and the frame must be dropped

bad BAG jitter (index) <= ’1 ’ ;

end i f ;

−− Round Robin : l a s t por t processed i s saved

l a s t p o r t := index +1;

end i f ;

manager state <= WAIT STATE;

when others =>

manager state <= INIT STATE ;

end case ;

end i f ;

66

end process ;

−−− PROCESS −−
−− Tra f f i cPo l i c i n g : i t hand les the ACcounts f o r each VL, incrementing them cons t an t l y

−− and decreas ing them when a frame from the corresponding Vl i s r e ce i v ed

−−
Tr a f f i cP o l i c i n g : process (c lk , r e s e t)

begin

i f (r e s e t = ’1 ’) then

−− Al l the ACcounts are s e t to t h e i r maximum va lue = Smax ∗ N ∗ (1 + J/BAG)

. . .

e l s i f (c lk ’ event AND c l k = ’1 ’) then

case manager state i s

when INIT STATE =>

−− Al l the ACcounts are s e t to t h e i r maximum va lue = Smax ∗ N ∗ (1 + J/BAG)

−− Like i f a r e s e t occurred

. . .

−− OTHERS: in any other case they are incremented cont inuous ly , or decremented i f a

−− v a l i d frame i s r ece i v ed on tha t VL

when others =>

−− I f a frame i s rece ived , the corresponding AC i s decremented by the r e l a t i v e AC min

−− AC > AC min i s not v e r i f i e d because that ’ s a l ready done in the main process

i f (f r ame re c e i v ed)then −− the main process de t e c t ed a v a l i d frame

AC(VL rece ived) <= AC(VL rece ived) − AC min(VL rece ived) ;

end i f ;

i f (c l k l ow = ’1 ’) then

for j in 0 to Nbr VLs − 1 loop

i f (AC(j) < AC max(j)) then

AC(j) <= AC(j) + delta AC (j) ;

end i f ;

end loop ;

end i f ;

end case ;

end i f ;

end process ;

The significant part of the Manager code is reported in Listing 5.1, this code is a shortened

version of the one developed for the core implementation, which can be found in Appendix

B.2. Two different processes are used to control the Manager ’s execution flow and the

accounts management for the traffic policing. A 1MHz clock is used to increment the ACs

in order to use smaller registers to save the various ACs, saving memory while providing the

required precision (better than 100µs.)

Frame scheduling and transmission

Once a frame is saved in the input Queue, it needs to be forwarded to the corresponding

output ports, and the Scheduler is responsible for most of the related operations. Scheduling

becomes crucial when multiple Queues contain frames waiting for transmission and output

67

contention occurs, because the algorithm chosen for the scheduling will determine frame

latency in the system. All the high priority frames must be forwarded before considering low

priority ones.

(a) (b)

Figure 5.6 Head of Line Blocking: (a) Single buffered; (b) Double buffered. The numbers in
the “packets” correspond to their transmission order.

Queue During reception, the Queue saves the packet in its internal RAM, saving the start

and the end address that delimit the memory region occupied by it. If the drop flag is set in

any moment of the reception the frame is immediately discarded. Since there are two possible

priorities but they are not known at the beginning of the reception, the packet is initially

saved in both of two separate FIFOs, one for high priority and the other for low priority

frames, and it is dropped from the wrong one when information on the priority is received.

If no information is received before the end of the reception the frame, this is removed from

both queues because the system must be ready to receive a new packet.

The Queue must tell to the Scheduler, whenever asked, whether it contains a frame ready

to be forwarded or not. If frames are present, the high priority FIFO must be emptied before

low priority data can be considered. The destination and priority of the first packet to be

forwarded must be provided to the Scheduler as a response. When the send signal is received

a transmission must be initialized.

Maximum latency control is implemented in this module as well, since frames can remain

in its FIFO indefinitely, depending on the Scheduler behaviour. When the last byte of

a frame is received, the value of the global timer is saved as reception time; when this

frame is the next scheduled for transmission the difference between the global timer and

the reception time is computed and, if this difference becomes higher than the Max delay

for that port, the frame is discarded. This global timer has been added to the architecture

presented before to implement this control over frame latency; it is simply a counter whose

68

value is provided to all the Queue modules of the Switch. Using the same counter, a control

over the jitter of each frame can be implemented. This parameter is defined on a per-VL

basis, and not on a per-port basis as the latency, and should not be higher than 10ms; it is not

included in the design at the moment since it is not expressly required by the specification.

The biggest problem of input queuing, as mentioned in Section 2.2.3, is the Head of Line

(HOL) blocking, that can add significant delay to frames waiting for forwarding in the Queue,

when other Queues are sending packets to the same output port. This phenomenon, shown

in Figure 5.6, becomes more critical when frames with different priorities are stored in the

same FIFO: a low priority frame must wait that all the high priority frames are scheduled

before it can be transmitted, consequently increasing the latency of all the following frames,

that could be critical. In this figure, the numbers in each frame represent the scheduling

order, while their ID gives an idea of the reception sequence. It can be observed that the first

high priority frame in Q1 must wait 9 “rounds” when it should have been forwarded before

the low priority frame in the same queue. Separating high from low priority frames, it can

be noticed how the latency on the packet A has been reduced to only 1 “round”. Virtual

queuing becomes necessary in this case, but since only two priority levels are possible, it

has been chosen to exploit two separate FIFOs instead of having virtual queues in the same

physical memory; this solution not only creates a physical segregation of the two types of

traffic, but it also provides a form of redundancy that can be exploited to increase the core

reliability. Whenever one of the two FIFOs of one Queue is dysfunctional, the corresponding

traffic is redirected towards the other FIFO, avoiding the loss of all the packet that should

have been saved in it. In the current implementation, this mechanism is applied only if

the high priority FIFO stops working, and it has been preferred to lose low priority frames

instead of increasing the latency of critical ones.

Scheduler This module manages the transmission of frames waiting in the input Queues to

the output FIFOs depending on their destinations. The algorithm executed by the Scheduler

starts by checking the output FIFOs and the Queues, to determine whether there are frames

ready and whether there are available outputs. The rest of the algorithm is not executed

until there is at least one available output FIFO. The destination specified by the Queue

includes information on the frame priority as well. Starting with the high priority frames, the

destinations of the packet in each queue are analysed to check if the corresponding FIFOs are

available and, whenever this condition is met, the control signal send for the corresponding

Queue is set high, and the output FIFOs that will be used are set to “unavailable”. The

next Queue is then considered. After the first round, where only high priority frames are

processed, a second one is performed to forward low priority frames to the output ports which

69

are still available. The last variable saves the Queue where the “Round” started, so that

it will start from the following one next time the algorithm is performed. In addition to the

send signal sent to each Queue to start a transmission, a configuration array is also set up

depending on where each frame must be redirected, to properly configure the Crossbar.

The complete VHDL implementation of the Scheduler is provided in Appendix B.3, but

an overview of the developed module and of the algorithm is also given here.

Listing 5.2 Overview of the Scheduler VHDL code
−−
−− SCHDULING PROCESS −−−
−−
Schedul ing : process (r e s e t , c l k)

begin

i f (r e s e t = ’1 ’)then

−− Al l the output s and con t ro l s i g n a l s are r e s e t

. . .

e l s i f (c l k = ’1 ’ and c lk ’ event) then

case s t a t e i s

−− IDLE: I t checks which output s are a va i l a b l e , and i f the answer i s p o s i t i v e , i t

−− sw i t che s to REP QUEUE to perform the schedu l ing

when IDLE =>

queue send := (others => ’ 0 ’) ;

−− i f t h e re i s at l e a s t one a v a i l a b l e FIFO, the l i s t o f a v a i l a b l e output s i s saved

−− and the reque s t i s sent to the queues . The schedu l ing rou t ine i s then s t a r t e d

i f (o u t p o r t a v a i l a b l e /= v e c t o r o f z e r o s) then

v FIFO avai lab le := ou t p o r t a v a i l a b l e ; −− a v a i l a b l e FIFOs are saved

r eque s t <= (others => ’ 1 ’) ; −− r eque s t i s sent to the Queues

s t a t e <= REPQUEUE;

end i f ;

−− REP QUEUE: I t wa i t s f o r the queues ’ response , then i t saves them and f i n a l l y

−− i t s t a r t s the schedu l ing .

when rep queue =>

request<= (others => ’ 0 ’) ;

−− After one cyc l e the answer o f the queue i s read

. . . −− wait f o r 1 c l k c y c l e

r e spon s e r e g <= response ;

s t a t e <= R ROBIN H ;

−− R ROBIN H: the round rob in a lgor i thm i s performed fo r to determine which queues can send

−− t h e i r packet because t h e i r d e s t i n a t i on s are a v a i l a b l e . Only high p r i o r i t y frames

−− are cons idered here

when R ROBIN H =>

−− The queues d e s t i n a t i on s are ana lysed to determine which ones have high p r i o r i t y

for j in 0 to Nbr ports − 1 loop

−− Round Robin : the p o l l i n g s t a r t s from the queue immedia te l l y a f t e r the l a s t one

index := s ta r t queue + j ;

. . . −− index r e s e t to 0 when h igher than Nbr ports − 1

−− I f the cons idered queue has a high p r i o r i t y frame and a non−zero d e s t i na t i on

i f (r e spon s e r e g (index) (Nbr ports) = ’1 ’ AND

r e spon s e r e g (index) (Nbr ports−1 downto 0) /= nu l l v e c t o r)then

−− s end po s s i b l e i s s e t back to f a l s e i f the requ i red output s are not a v a i l a b l e

s e nd po s s i b l e := true ;

70

for i in 0 to Nbr ports − 1 loop

−− I f the requ i red FIFO i s not a v a i l a b l e the frame w i l l not be sent

i f (r e spon s e r e g (index) (i) = ’1 ’ AND v FIFO avai lab le (i) = ’0 ’) then

s e nd po s s i b l e := f a l s e ;

end i f ;

end loop ;

−− I f the queue can s t a r t a tranmsiss ion the ”send” vec tor i s updated to f o r ce t h i s transmiss ion ,

−− the cros sbar con f i gu ra t i on i s updated , and the output por t s t ha t w i l l be used

−− are now cons idered unava i l a b l e

i f (s e nd po s s i b l e)then

queue send (index) := ’ 1 ’ ;

for i in 0 to Nbr ports − 1 loop

i f (r e spon s e r e g (index) (i) = ’1 ’) then −− f o r each requ i red d e s t i na t i on

v FIFO avai lab le (i) := ’ 0 ’ ;

c r o s s b a r c o n f i g (i) := index ;

be ready (i) <= ’1 ’ ; −− i t t e l l s to the corresponding FIFO tha t i t i s

−− going to r e c e i v e a packet

end i f ;

end loop ;

end i f ;

end i f ;

end loop ;

s t a t e <= R ROBIN L ;

−− R Robin L : The remaining queues , the ones with low p r i o r i t y , are now cons idered

−− The same a lgor i thm used fo r h igh p r i o r i t y queues i s adopted here as we l l

when R ROBIN L =>

for j in 0 to Nbr ports − 1 loop

index := s ta r t queue + j ;

. . .

i f (r e spon s e r e g (index) (Nbr ports) = ’0 ’ AND −− the frame must have L p r i o r i t y

r e spon s e r e g (index) (Nbr ports−1 downto 0) /= nu l l v e c t o r)then

. . . −− determine i f the ” index ” frame can be sent

−− in t h i s case s end po s s i b l e i s t rue

−− The outputs used by high p r i o r i t y queues are not a v a i l a b l e anymore

−− low p r i o r i t y frames can use only the remaining output s

i f (s e nd po s s i b l e)then

queue send (index) := ’ 1 ’ ; −− f o r c e transmiss ion

for i in 0 to Nbr ports − 1 loop

i f (r e spon s e r e g (index) (i) = ’1 ’) then −− f o r each requ i red d e s t i na t i on

. . . −− used d e s t i na t i on i s not a v a i l a b l e anymore , c ros sbar

−− con f i g i s updated , and output FIFO i s adv i sed t ha t

−− a frame i s going to be forwarded

end i f ;

end loop ;

end i f ;

end i f ;

end loop ;

s t a t e <= SEND QUEUE OK;

−− SEND QUEUE OK: the po in t e r to the current queue i s incremented fo r the round rob in

when SEND QUEUE OK =>

−− When at l e a s t one frame i s forwarded the round rob in i s incremented , or s e t to 0 when

−− i t reaches the l a s t input queue

i f (queue send /= nu l l v e c t o r)then

i f (s t a r t queue = Nbr ports −1)then

71

s t a r t queue <= 0 ;

else

s t a r t queue <= sta r t queue + 1 ;

end i f ;

end i f ;

−− The to send output i s updated with the r e s u l t o f the schedu l ing , caus ing the queues

−− to s t a r t a transmiss ion i f the corr i spond ing b i t o f the array i s ’1 ’

−− Sta te sw i t che s back to IDLE, to s t a r t a new round in case other output s are

−− now a v a i l a b l e

t o s end r eg <= queue send ;

s ta te<=IDLE ;

when others =>

−− This shou ld not happen , the s t a t e i s s e t back to IDLE

s t a t e <= IDLE ;

end case ;

end i f ;

end process Schedul ing ;

Even if this algorithm is functional and respects the official specification, the scheduling

algorithm could still be improved to further reduce frame latency: some results of the AVIO

402 project [32] identify a BAG-based algorithm as the best choice to reduce End-to-End

delay for example. Another solution would be to forward small sized frames before large

frames because they add a smaller latency on the latter than vice-versa.

Crossbar and Output FIFOs As mentioned above, the Crossbar is simply a programmable

connection, configured by the manager, which brings the frames stored in the Queues to the

corresponding output FIFOs. It is designed to allow concurrent transmission from any Queue

to any available output, so that frames from different inputs can always be forwarded simulta-

neously. The FIFOs are the interface that the switch fabric offers to the rest of the prototype;

they can consequently be connected to an Ethernet MAC core if the SP605 ports are used,

or to the PCIe connection if the physical ports of the PC are used instead.

5.3 Synthesis results

This section describes how the system described in Section 5.2 was implemented and veri-

fied. Since the configuration and routing tables were emulated using internal registers in the

Manager, it was possible to validate the functional behaviour of the system even if the other

modules of the switch, presented in figure 5.1, were not ready. These modules (Configuration

tables, End System, and Error controller) are necessary for the development of a complete

switch, but they do not impact the behaviour of the switch fabric. To perform a verification

of the system, the developed VHDL code has been simulated at logical level using ModelSim.

The hardware implementation of the core has been realized in VHDL, and it has been

successively synthesized for a Xilinx XC6SLX45T using the ISE design suite version 12.4;

72

Table 5.1 System size for 10 and 20 ports

ports 5 (5 in, 5 out) 10 (10 in, 10 out)

slice registers 13166 (24%) 24691 (45%)

slice LUTs 18684 (68%) 33607 (123%)

Table 5.2 Size of single modules

Module # Slice registers # Slice LUTs # Instantiations

Repack 368 (<1%) 461 (1%) N

Queue 1898 (3%) 2305 (8%) N

FIFO 459 (<1%) 523 (1%) N

Manager 107 (<1%) 1121 (4%) 1

Scheduler 416 (<1%) 2939 (10%) 1

Crossbar 0 245 (<1%) 1

the following results are consequently related to this platform and software. The system has

been synthesized for the same device used for the End System, even if larger FPGAs could be

more appropriate for this particular system, because in this way it will be possible to easily

interface it with the PC using the same PCIe connection developed for the end System. All

the code was developed from scratch, and no pre-compiled IP cores, from Xilinx or other

vendors, have been used; therefore, this core should be portable to any other FPGA without

needing modifications, but synthesis has been tried only for devices from Xilinx.

5.3.1 System size

The system size obviously depends on the number of input and output ports that are included

in the switch since it determines the number of parallel paths that will be included in the

core. Even if the Manager and the Scheduler occupy a considerable area, this is only a small

fraction of the available resources, and the real limit is imposed by the resources taken by

the Queues because they need to be instantiated multiple times. In Table 5.1, it can be

noticed that doubling the number of ports, the occupied resources almost double as well,

proving that the impact of the Manager, Scheduler, and Crossbar is small on the overall size,

especially for high number of ports. The area of a single Queue significantly increased once

the separation of high and low priority traffic has been integrated, because it is equivalent

to doubling the number of Queues, and they are now the most critical module in terms of

73

occupied resources, as shown in Table 5.2.

If the network does not need to support the 100Mbit/s speed (supported by the specifi-

cation, but the network could be configured to work just at 10Mbit/s making a 100Mbit/s

capable switch overpowered), the datapath could be modified to reduce the system size while

reducing its throughput as well.

The occupied resources by the entire core depends not only on the number of ports,

but also on the size of the RAM blocks used for implementing the FIFOs included in the

Queues and at the outputs. Their depth influences the size of the registers used to handle

the read and write addresses, and the complexity of the logic connected to them. The results

previously shown are referred to a core that exploits 4k RAMs wherever a FIFO must be

implemented, in order to allow the storage of at least two frames of maximum size in each

buffer.

5.3.2 Timing

Timing results are given in Table 5.3. They show that the number of ports affects the

critical path, thus decreasing the maximum possible operating frequency; this is due to the

additional work demanded to the Scheduler when more Queues are present. A frequency

of 30MHz is easily achievable even for high number of I/O ports; considering the 16-bit

datapath implemented in the system, a 480Mbit/s data rate per path in the switch fabric is

achieved for this clock frequency. This result is more than sufficient to handle the 100Mbit/s

transmission rate of the AFDX port without generating congestion. If a size reduction is

desired, a 4-bit datapath cold be a valid tradeoff between occupied resources and throughput,

it would in fact suffice to handle a 100Mbit/s network with its 120Mbit/s data rate. If the

switch is designed to be used only in 10Mbit/s networks the core could be made even smaller

adopting datapath down to 1-bit wide. It must be considered though that keeping a good

margin between the network operating frequency and the switch throughput helps dealing

with high-load situations.

Since the datapath can already give the required data transfer rate, an improvement

of the system operating frequency could be important only if the processing performance

proves itself a limitation for high input data rates. In this case, the scheduling algorithm

implementation should be addressed since the longest path of the synthesized core is part of

the Scheduler module. The maximum operating frequency is determined also by the adopted

device, a Spartan-6 in this case, and better performances could be obtained using a different

FPGA family, or an FPGA with a better speed grade.

The latency of the frames inside of the switch is influenced by the size of the packet and

the number of frames that must be redirected towards the same output port at the same

74

Table 5.3 After synthesis operating frequence

ports 5 10

Max frequency 52.814MHz 34.301MHz

min period 18.934ns 29.153ns

Figure 5.7 Frame treatment by the core functional modules

time; in fact, the longest time lost in the system is due to the transmission from the Queue

to the FIFO. A frame with the maximum allowed size of 1542 octets needs around 20us to

be written into the output FIFOs (16 bits datapath at 30MHz clock frequency); this time

limits the maximum number of frames that can be simultaneously received and forwarded to

the same output without exceeding the maximum latency constraint. The header processing

(the other potential bottleneck because it is a shared resource between the parallel paths)

is not critical since the computations that must be performed by the Manager have been

minimized. The overall time lapse between the moment the header is passed to the Manager

and the moment it provides the results is of only 4 clock cycles.

Figure 5.7 illustrates how the frame is processed and propagated in the core; the boxes

represent the time each module is working on the considered frame. It can be noticed that

the Manager is active only for a limited percentage of the time taken by the frame to be

completely received by the Filter module, that is equal to Trx = Nbytes × Tclk, where Nbytes

is the number of Bytes that compose the received packet, and Tclk is the clock period. The

scheduler continuously check if data is present in the Queue, and when it receives a positive

response, it forces the transmission of the packet to the output FIFO, which takes only Trx

2

since the packet is transferred 16 bits at a time.

75

5.3.3 Considerations on the implementation

The size of the system, even if it could be reduced with some optimizations on the Queue’s

code, is small: up to 8 input and 8 output ports can be instantiated on a small size FPGA

such as the Xilinx XC6SLX45T used for the prototype. The interfaces are generic FIFOs and

they consequently can be connected to both an Ethernet MAC core or the PCIe controller to

be communicate with the PC. In both cases, a simple wrapper should be developed to adapt

the basic FIFO interface with the MAC interface, or with the PCIe controller; in the second

case, a simple protocol should be implemented to converge the packets coming from different

ports in the single PCIe channel, and then distribute them towards the corresponding Eth

port of the PC. Ethernet MACs usually have separated receive and transmit buffers, and

consequently the Filter module should read from the first, while the second can directly

replace the output FIFO.

The system performance satisfies the specification and the project requirements: the

switch can handle 10 and 100Mbit/s communications on the network without creating con-

gestion, therefore bringing to a minimum the number of frames lost because of buffer overload.

The scheduling algorithm is located entirely in the Scheduler, and it can be easily modified

to test other solutions without requiring any modification to the other parts of the core.

To complete the realization of the entire switch, it is necessary to implement the monitor-

ing functions and the configuration tables required by the specification, and the End System

discussed in Chapter 4 must be adapted to be interfaced with the switch fabric. The Man-

ager will need some modifications when external tables will be available instead the internal

registers currently used. Even if these modules are not implemented yet, it is possible to

use the switch fabric alone for frame routing in this prototyping stage, since reconfigurability

and monitoring are not required.

5.4 Test and validation

In order to validate the implemented system functionality, each module has been individu-

ally debugged and verified, and a series of possible scenarios has been successively used to

analyse the overall system behaviour under standard and critical conditions. For a detailed

description of the most interesting test cases and of the resulting information derived from

each one of them, see Appendix C.1. For all the tests, the output FIFO has been configured

so that it start transmitting the received frames as soon as possible, in order to study the

system behaviour without the need for the Ethernet MAC to retrieve the packets from the

output ports; this configuration allows the measurement of the latency of the frames in the

core, independently from the system it will be connected to. In this section, an overview of

76

the results and the considerations deriving from these tests is given, in order to provide an

analysis of the core performance and behaviour. In order to generate readable and compre-

hensible results, a 5-port switch fabric has been used in the simulations. Another reason for

choosing this number of ports is that it is a reasonable size for the core that will be used in

the prototype.

5.4.1 Testbenches

System verification has been performed using logical simulations, run with the ModelSim

simulation tool, that highlight specific features of the system. All modules have been inde-

pendently tested to verify that they provide all the required features, and to analyze their

behaviour when input signals do not reproduce expected situations; on the other hand, such

a detailed verification is not possible when they are integrated in the complete switch fabric

due to the complexity of the system. It has been consequently decided to perform two types

of test on the switch fabric:

1. a generic traffic, including valid and erroneous frames, has been generated and sent to

the input ports, and the outputs of the core have been observed to determine if each

packet reached the desired destinations;

2. some specific scenarios have been recreated to analyze not only the overall functional-

ities, but also the internal behaviour of the switch fabric, when critical and stressful

situations occur.

While the first kind of test only validated the general routing and filtering features of the

system, the latter is required to perform some specific performance measurements, and to

observe how the system works in detail, to detect potential design weaknesses. The tests

developed to realize these peculiar scenarios are listed in Table 5.4 and then described in

detail in Appendix C.1; these scenarios concern routing of frames concurrently received, error

detection (CRC, frame size, and BAG), scheduling under high loads, priority management,

and latency and throughput measurement.

In the testbenches, the generated frames are transmitted to the system directly writing

them in the input filters using the data in, data in valid and data in EOP (End of Packet)

signals. In the smaller tests, where only a specific functionality is analysed, the internal

signals and outputs are individually observed on the resulting waveforms. For the first type

of test, where multiple frames are processed by the system, a module has been added in

the testbench to each output port to save the packets transmitted by it, and successively

compare them with the expected ones on that output. A simulation for a 1ms time lapse

requires around 1min to be executed.

77

Figure 5.8 Basic routing functionalities

Table 5.4 List of the most significant tests

Test Objectives

1 Measure the technological latency for a frame with minimum size

2 Measure the technological latency for a frame with maximum size

3 Verify the routing functionalities of the switch when a single

input is considered

4 Analyse how the scheduling of concurrently received frames is performed

5 Verify the priority management when a concurrent reception occurs

6 Analyse the behaviour of the system in presence of input data burst

at a single input; congestion must be avoided

7 Analyse how buffer overload occurs for high traffic loads at

all the input ports

8 Verify that frames that do not respect their BAG are dropped

9 Verify that frames with an erroneous frame control sequence

are dropped

10 Verify that frames with non conforming size are dropped

11 Verify that frames with an excessive latency in the internal buffers

are dropped

The requested routing functionalities can be observed in Figure 5.8, related to the test case

3, as given in Table 5.4, whose description can be found in Appendix C.1, where packets with

different destinations are received only at the input port 0 and transmitted at all the output

ports depending on each frame’s virtual link. It can be observed that transmission starts

before the subsequent reception is completed, avoiding data accumulation in the internal

78

buffers, and that all the outputs can be reached by the incoming frames. The Scheduler

behaviour of the core can be observed in test cases 4 and 5, where routing features are

further explored as well by concurrently sending frames at the 5 input ports of the core and

by observing how they are forwarded to the corresponding outputs. In Figure 5.11, at the

end of this chapter, it can be observed how the frames with higher priority are forwarded

first (a description of the destination and priority of each VL is provided in the Appendices),

and the remaining packets are forwarded as soon as possible. In the same figure, it can be

observed how the crossbar config array is used to configure the crossbar that connects each

Queue to the required destinations: each element of the array corresponds to one output,

“-1” means that is unconnected, otherwise the specified value corresponds to the Queue that

is going to write on that FIFO.

5.4.2 System behaviour

The testbenches designed to study error detection proved that the specification [10] is com-

pletely met, and all the frames that do not respect it are correctly detected and discarded by

the switch. When an error is detected by the Filter, the drop signal sent to the related Queue

is set to ‘1’, forcing the elimination of the packet from the storage memory. While frames

that do not respect the BAG allocated for their VL are detected as soon as the Manager

can process their header, all the other types of error can be identified only once the packet

is completely received. One example of the performed filtering can be observed at the end

of this chapter in Figure 5.12, where the packets received at ports 1 and 2 are correct, while

the other three contain erroneous bits, which causes a mismatch between the CRC included

in the frame and the one computed by the switch. The Filters corresponding to the input

ports 3, 4, and 5 detects this mismatch and set the drop flag immediately after the end of the

reception. Only the two valid packets are forwarded by the switch fabric. When no problem

occurs, frames are correctly forwarded, as shown in Figure 5.8, following the execution flow

previously described in Section 5.2.2.

The Scheduler behaviour can be observed in Figure 5.11, corresponding to the test case

#5, where multiple frames with different priorities are concurrently received. The last byte

of each packet is received at the same time, and the Queues are ready to answer to the

Scheduler request two clock cycles later, when it is sure that the frames are valid. In the

waveforms, it can be noticed how the scheduler request signal is periodically asserted,

while the queue response is not null only after the reception of the last byte of the packet.

Since all the frames share one destination (the output port number 0) they can’t be forwarded

concurrently, and a scheduling must be performed considering the frames priority. In this

test, only the packets from ports 2 and 3 are critical, while the others have low priority. At

79

Table 5.5 Technological latency for frames of minimum and maximum length

Frame length Technological latency

64 Bytes 2.24µs

1518 Bytes 45.9µs

Figure 5.9 Minimal technological latency measure

the first round of the scheduling algorithm, frames 0 and 1 are ignored and, accordingly to the

expectations, the critical frame 2 is transmitted first. Once its transmission is completed and

the output FIFO is available again, the other critical packet is forwarded, and only after the

other three frames are considered. The scheduler polling of FIFOs and Queues is repeated

each 7 clock cycles (only 140ns for a 50MHz clock) thus adding a variable component to the

latency of frames in the input buffers, that depends on when they are available and when the

Scheduler tests that status. The time lapse between the time the send signal is asserted and

the time the corresponding packet can be observed at the output corresponds to the time

necessary to write that frame in the output buffers, and it depends on the packet’s length.

5.4.3 Performance measurement

Some tests have been conceived to stress the switch and evaluate the performance it can

provide in these situations; others are intended to measure parameters that characterize the

core, such as the technological latency. A 50MHz clock has been used in all the simulations

because it is achieved by the 5-ports switch fabric synthesized for the prototype.

The ARINC 664 specification [10] does not describe precisely where the latency must be

measured; therefore, it has been decided that, for this core, it would be measured as the time

lapse between the reception of the last byte of the frame by the input Filter and the moment

the same byte leaves the output FIFO. Figure 5.9 represents the waveform corresponding to

test case 1 presented in Appendix C.1, where only one frame is received and routed, thus

recreating the situation specified in [10] for the technological latency measurement. It can be

observed that 2240ns pass between the reception of the frame and its complete transmission,

80

Figure 5.10 Latency of the last byte for a 1ms single-port burst

and that there is an empty space between the two processes, where the scheduling and

forwarding to the corresponding outputs is performed by the core. In this case, a frame of

minimum length is considered, but the latency is clearly influenced by this parameter, as

already discussed in Section 5.3.2. In Table 5.5, the technological latencies resulting from the

routing of a minimum-sized and a maximum-sized frames are shown, highlighting the great

difference in the results due to the frame length.

Another important test evaluated the system performance under highly stressful traffic

loads: frames are sent at maximum wire-speed (100Mbit/s) at the switch to analyse if there is

congestion, where it occurs, and if buffer overflow can cause packet loss. Two different types

of simulations have been conceived: one-port traffic and multi-port traffic. In the first case,

frames are received only at one input; therefore, output contention is not possible and the

core should be able to handle this traffic avoiding congestion and frame accumulation in the

internal buffers. Since the time required to forward a packet in the output FIFO is half the

time necessary to receive a new frame, the first can be completely transferred to the output

buffer before the following one is completely received, when no contention is present; therefore

no accumulation occurs in the input buffers, and since only one-port traffic is considered and

the wire speed is the same at the two sides, no output congestion occurs either. This results

can be observed in the test case 6 in the Appendix C.1 and in Figure 5.10, where the last

packet (that has a size of 500 bytes) leaves the core with a delay of 15.28µs, that correspond

to the technological latency of a 500 bytes frames (this delay is equal to 764 clock cycles,

that correspond to 500 + 250 cycles for the forwarding and 14 for the scheduling). The same

result is obtained both when incoming frames are directed towards different outputs or to

the same one.

A different situation occurs for communications at maximum wire speed at all the input

ports, since if there is output contention there will also be an inevitable accumulation of

frames in the internal buffers. The most critical situation occurs when all the incoming

packets (N*100Mbit/s) need to be routed towards the same output, which has a 100Mbit/s

bandwidth available. In this case, congestion will occur and buffer overflow is inevitable

if this burst is too long. The burst length that can be handled without buffer overflow

81

Table 5.6 Output FIFO overflow

FIFO depth [16 bits words] Time elapsed before FIFO out is full

212 433µs

213 1.56ms

214 3.73ms

215 8.9ms

216 17.3ms

depends on the depth of the FIFO of the output where all the frames are destined, while no

significant problem is noticed in the Queue’s buffers. Maximum burst lengths for different

FIFO depths are presented in Table 5.6. These results have been measured observing when

the fifo full signal of the most stressed output buffer becomes ‘1’ for the first time. To

evaluate the additional latency introduced by the scheduling and output contention with this

kind of input load, a 1ms burst of frames with the same destination has been generated on

each input (with an output FIFO size of 216 words), and the time required for the routing

of all these frames has been measured, as it has been done for the single-port traffic in

Figure 5.10. The routing latency, equal to the entire delay minus the technological latency

corresponding to the size of the last transmitted packet, is about 40µs; this value depends

on the composition of the traffic.

82

Figure 5.11 Routing of concurrently received frames and priority management

83

Figure 5.12 Example of error detection: bad CRC

84

CHAPITRE 6

CONCLUSION AND FUTURE WORK

The work presented in this thesis addressed the design and development of three fundamental

modules of the hardware platform that will support the realization of a prototype for the

communication network proposed by the AVIO 402 project. These three systems are the

CAN bus controller, the End System and the Switch fabric of an AFDX network. Due to

the different nature of these systems, their study and development has been separately and

independently executed, and different approaches have been used for their realization. The

objectives for each part of this thesis were slightly different because of the role of the module

in the final prototype and its relations with other tasks of the AVIO 402 project.

The presented work constitutes a contribution to the progress of the Avio 402 project,

thanks to its strong practical aspects and to the consideration on the implementation of

physical systems. In the three cases the development stage required a previous study to

determine the specification for each module, since the literature provides only limited infor-

mation related to this topic. The cores have been also conceived to simplify their integration

in a generic prototyping platform, thus addressing portability and reuse, in order to simplify

their adaptation to the different needs of this early stage in the development of the network

prototype. By designing the three systems from scratch, not only we provided the means

to integrate and test different solutions to improve the network performance, but we also

explored design challenges and constraints. This process allowed the evaluation of how the

adaptation for avionic systems of two popular technologies, such as CAN and Ethernet, can

impact the architecture of the modules required for their physical implementation, even when

these differences mainly concerns higher levels of the ISO/OSI model..

CAN is a mature technology but, although an exhaustive literature is available for the im-

plementation of the bus controller, its exploitation in an avionic environment is nothing has

been published to discuss what modifications are required in the Data Link and Physical lay-

ers to adapt it to the CANaerospace and ARINC 825 specifications. The controller developed

for this thesis was designed to minimize the core area, and to facilitate a potential migration

towards ARINC 825. An architecture based on a central manager, where all the differences

between these technologies are included, has been chosen instead of the traditional two-paths

solution adopted, for example, by the HurriCANe core. After ARINC 825 has been chosen to

implement the local field bus in the AVIO 402 network instead of CAN, the core was quickly

adapted to this protocol by changing the manager’s behaviour, eliminating overload frame

85

generation. The resources occupied by the IP core on the XC6SLX45T FPGA used for the

prototype are less than those of the HurriCANe and MARIA cores used as a reference; this

corresponds to a 2% utilization of device resources.

AFDX, on the other hand, is a recent technology, whose potential and limits are still being

explored; research on various topics concerning this protocol is part of the AVIO 402 project

as well. The ES development is strictly related to those studies since potential improvements

and solutions identified by them will be eventually included in this system; considering this

aspect, the complexity of this system, and the inevitable presence of a processor in the

NCAP, a software approach has been preferred for its development. The proposed solution

is based on the modification of the existing Ethernet protocol stack included in the Linux

kernel to add the specific features of AFDX. An embedded system has been realized using

a Microblaze processor, that runs a minimal configuration of the Linux 2.6.37 kernel. A

first implementation of the BAG controller has also been obtained modifying the Ethernet

MAC drivers and the Data Link layer. Major problems concerning the need for an ARINC

653-compliant OS and the recognition of some peripherals suggested a change of strategy:

the embedded solution has been abandoned, and a PC has been connected to the FPGA via

PCIe to realize the software part of the ES. The implementation of the AFDX protocol in the

Linux kernel is still on progress, following the same design initially intended for the embedded

processor. This integration of the ADFX protocol stack in the kernel protocol stack makes

it easily portable to other platforms, it exploits standard Linux sockets as the interface with

the NCAP applications, and it allows to easily modify the scheduling algorithm. This last

characteristic will be a solid starting point for the implementation and testing for the optimal

scheduling techniques proposed, for example, by Tawk et al. [31], who suggest a BAG-based

policy as the best way to reduce ES delay.

Finally, the development of the switching core of the network router has been addressed.

Differently from the ES, this module is more self-contained and it has been possible to imple-

ment it thoroughly. Since no study concerning its development has been found in the existing

literature, an original architecture has been presented in this thesis: starting from an Ether-

net switch fabric, functionalities required by AFDX have been identified and integrated in it.

To perform a parallel processing of incoming frames, thus minimizing the delay introduced

by the system to each communication, a space-division switching architecture provided with

combined input/output buffering has been implemented in VHDL, and synthesized on the

same XC6SLX45T FPGA used for the rest of the prototype. Synthesis results shows that up

to 5 in/out ports can be supported using half of the device capacity, with an operating fre-

quency that can go up to 50MHz. With a clock frequency of 50Mhz, the system can provide

an 800Mbit/s throughput (if no output contention is considered) thanks to its 16-bit wide

86

datapath. AFDX specific features have been added to the design, originally intended for an

Ethernet switch, including input filtering, latency control, and priority management. Input

queues have been doubled to separate high priority from low priority traffic, preventing the

latter from increasing the latency of critical frames, and to create a redundant path for them

whenever a problem occurs to the high priority buffer.

While the CAN core has already been completely transformed in a dedicated ARINC 825

bus controller by other colleagues, the AFDX End System is still under development. The

switching core as well needs some additional work to interface it with the Ethernet ports

of the PC, and to complete the switch by developing a monitoring module and a properly

managed configuration table, but its switching functions are completely implemented and

tested. Once all the parts of the prototype are ready, the integration and testing stage will

follow. When the prototype is functional, measurements on the network performance and

reliability can be performed, and it will be possible to evaluate if the mathematical models

developed in other tasks of the AVIO 402 project properly represent the network behaviour;

it will be also interesting to see if the solutions identified thanks to these models can be

practically integrated in the real network, and how this can be done. For example another

paper by Tawk et al. [32] shows that BAG-based scheduling could be an optimal choice

also for handling the traffic flows in all the network nodes, both ES and Switches; thanks

to the prototype it will be possible to evaluate if this algorithm can bring the expected

improvements.

Hopefully, the contributions of this thesis will not be limited to the products delivered

to the AVIO 402 project for the realization of the prototype, but they will also help the

improvement of the technology readiness level of the considered protocols, thanks to the

design solutions proposed in this work. The three IP cores have been conceived considering

portability not only of the developed code, but also of the ideas behind it, that consequently

can be potentially reused when developing commercial avionic products. Not only the positive

results and successful solutions obtained with this work, but also the problems and the related

lessons learned will constitute an important reference when approaching the development of

one of the considered systems.

87

BIBLIOGRAPHY

[1] J. Rosero, J. Ortega, E. Aldabas, and L. Romeral, “Moving towards a more elecric

aircraft,” IEEE A&E System Magazine, 2007.

[2] IEEE, “Ieee std. 1451 standard for a smart transducer interface for sensors and actua-

tors,” standard, Institute of Electrical and Electronical Engineers, September 1997.

[3] Xilinx, “Sp605 hardware user guide.” White paper UG526 (v1.5), 2011.

[4] Avnet, “Ism networking fmc module user guide,” 2010.

[5] H. Bauer, J. Scharbarg, C. Fraboul, et al., “Applying trajectory approach with static

priority queuing for improving the use of available afdx resources,” 2010.

[6] J. Zhang, S. Qiao, D. Li, and G. Shi, “Modeling and simulation of edf scheduling al-

gorithm on afdx switch,” in Signal Processing, Communications and Computing (IC-

SPCC), 2011 IEEE International Conference on, pp. 1–4, IEEE, 2011.

[7] K. Wang, S. Wang, and J. Shi, “Integrated network reliability research for afdx,” in

Fluid Power and Mechatronics (FPM), 2011 International Conference on, pp. 973–976,

IEEE, 2011.

[8] R. Bosh, “Can specification version 2.0,” specification, Robert Bosh GmbH, 1991.

[9] AEEC, “Arinc specification 825, general standardization of can for airborne use,” stan-

dard, Areonautical Radio INC., 2007.

[10] ARINC, “Aircraft data network part 7, avionics full-duplex switched ethernet network,”

standard, ARINC, September 2009.

[11] J.-S. Young, C.-Y. Hua, and K.-H. Chang, “The feasibility study of sru/lru for air vehicle

communication network based on can bus,” Journal of Aeronautics, Astronautics and

Aviation, Series A, vol. 42, no. 1, pp. 57–66, 2010.

[12] L. Zhang, M. Zhu, and Z. Wu, “Can bus application layer protocol design for un-

manned helicopter system,” Journal of Beijing University of Aeronautics and Astronau-

tics, vol. 37, no. 11, pp. 1264–1270, 2011.

88

[13] T. Lv, N. Hu, Z. Wu, and N. Huang, “The analysis of end-to-end delays based on afdx

configuration,” in Reliability, Maintainability and Safety (ICRMS), 2011 9th Interna-

tional Conference on, pp. 1296–1300, IEEE, 2011.

[14] HOLT, “Avionics can controller with integrated transceiver.” HI-3110 Data Sheet,

September 2011.

[15] L. Stagnaro, “Hurricane - free vhdl can controller core,” white paper, European Space

Agency, March 2000.

[16] J. Reges and E. Santos, “A vhdl can module for smart sensors,” in Programmable Logic,

2008 4th Southern Conference on, pp. 179–182, IEEE, 2008.

[17] F. Carvalho, I. Jansch-Porto, E. Freitas, and C. Pereira, “The tinycan: an optimized

can controller ip for fpga-based platforms,” in Emerging Technologies and Factory Au-

tomation, 2005. ETFA 2005. 10th IEEE Conference on, vol. 1, pp. 4–pp, IEEE, 2005.

[18] P. Prisaznuk, “Arinc 653 role in integrated modular avionics (ima),” in Digital Avionics

Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th, pp. 1–E, IEEE, 2008.

[19] L. Kinnan, J. Wlad, and P. Rogers, “Porting applications to an arinc 653 compliant ima

platform using vxworks as an example,” in Digital Avionics Systems Conference, 2004.

DASC 04. The 23rd, vol. 2, pp. 10–B, IEEE, 2004.

[20] I. Khazali, M. Boulais, and P. Cole, “Afdx software network stack implemen-

tation—practical lessons learned,” in Digital Avionics Systems Conference, 2009.

DASC’09. IEEE/AIAA 28th, pp. 1–B, IEEE, 2009.

[21] B. Yu, T. Zhang, and D. Liu, “Low cost afdx end system based on system on a pro-

grammable chip,” Applied Mechanics and Materials, vol. 29, pp. 2308–2311, 2010.

[22] X. Chen, X. Xiang, and J. Wan, “A software implemetation of afdx end system,” in New

Trends in Information and Service Science, 2009. NISS’09. International Conference on,

pp. 558–563, IEEE, 2009.

[23] E. Erdinç, Soft AFDX (Avionics Full Duplex Switched Ethernet) End System Imple-

mentation With Standard PC and Ethernet Card. PhD thesis, Middle East Technical

University, 2010.

[24] P. Pusik, J. Hangyun, S. Daekyo, L. Kitaeg, and Y. Jongho, “Implementation of the

hardwired afdx nic.” 1st Asia NetFPGA Developers Workshop, June 2010.

89

[25] Xilinx, “Architecting arinc 664 part 7 (afdx) solutions.” White Paper XAPP1130, 2009.

[26] H. Chao and B. Liu, High performance switches and routers. Wiley-IEEE Press, 2007.

[27] F. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardi, and E. Neri, “Packet schedul-

ing in input-queued cell-based switches,” in INFOCOM 2001. Twentieth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,

vol. 2, pp. 1085–1094, IEEE, 2001.

[28] N. McKeown, Scheduling algorithms for input-queued cell switches. PhD thesis, Univer-

sity of California, 1992.

[29] D. Serpanos and P. Antoniadis, “Firm: A class of distributed scheduling algorithms

for high-speed atm switches with multiple input queues,” in INFOCOM 2000. Nine-

teenth Annual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings. IEEE, vol. 2, pp. 548–555, IEEE, 2000.

[30] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on a space-division

packet switch,” Communications, IEEE Transactions on, vol. 35, no. 12, pp. 1347–1356,

1987.

[31] M. Tawk, G. Zhu, L. Jian, X. Liu, Y. Savaria, and F. Hu, “Optimal scheduling and

delay analysis for afdx end-systems,” 2011.

[32] M. Tawk, G. Zhu, Y. Savaria, X. Liu, J. Li, and F. Hu, “A tight end-to-end delay bound

and scheduling optimization of an avionics afdx network,” in Digital Avionics Systems

Conference (DASC), 2011 IEEE/AIAA 30th, pp. 7B3–1, IEEE, 2011.

[33] M. Yao, Z. Qiu, and K. Kwak, “Leaky bucket algorithms in afdx,” Electronics Letters,

vol. 45, no. 11, pp. 543–545, 2009.

90

ANNEXE A

IMPLEMENTATION OF THE MANAGER OF THE CAN CORE

The VHDL code of the Finite State Machine that control the execution flow of the Manager

of the CAN controller, and consequently of the entire core, is given in this appendix.

VHDL code of the Manager’s FSM

1 --

2 -- Title : Manager

3 -- Project : AVIO 402

4 --

5 -- File : fsm.vhd

6 -- Author : Davide Trentin

7 -- Created : 2010/07/01

8 -- Last Modified : 2010/08/15

9 --

10 -- Description : this state machine must manage the execution flow of both reception

11 -- and transmission of data on a CAN bus. It must also manage the error and

12 -- overload routines.

13 --

14 -- Modification history :

15 -- 2010/07/01 : created

16 -- 2010/07/23 : modified => the error signal is checked before entering the "case"

17 -- 2010/08/15 : modified => - counter must be reset when an error routine starts

18 -- - to avoid loosing a cycle changing state when using the

19 -- counter the state is changed when cnt = n-1 AND t_sync = ’1’

20 --

21

22 library ieee;

23 use ieee.std_logic_1164.all;

24 use ieee.std_logic_signed.all;

25 use work.states.all;

26 use work.states_error.all;

27

28 entity fsm is

29 port(

30 clk : in std_logic;

31 rst : in std_logic;

32 -- The following signals come from the synchronization modules and are used to

33 -- synchronize the state machine with the communication on the bus

34 t_sync : in std_logic; -- It goes high at the beginning of each bit time

35 t_sample : in std_logic; -- It goes high when the value of the bis is sampled

36

37 -- The following signals are related to error and overload situations

38 ovl_req : in std_logic; -- When it is ’1’ the node need to send an overload frame

39 err : in std_logic; -- It is ’1’ when an error is detected

40 err_state : in std_logic_vector(1 downto 0); -- It specifies the error state

41

42 -- Control signals

43 check : in std_logic; -- It comes from the bitcheck module and it is ’1’ when

44 -- the bit sent and the received one are different

45 data_out_ready : in std_logic; -- Specifies when there are data available to be sent

46 tx_ctl : in std_logic; -- It is used to synchronize the FSM with a transmission

47 end_rec : in std_logic; -- It goes high when the CRC sequence has been received

48

49 -- Outputs

50 send_bit : out std_logic; -- It forces a dominant bit on the bus

91

51 reg_available : out std_logic; -- It tells the bitstream gen that data have been sent

52 state : out std_logic_vector(4 downto 0) -- It is the state of the FSM

53);

54 end fsm;

55

56 architecture behav of fsm is

57

58 -- signals

59 signal current_state : std_logic_vector(4 downto 0);

60 -- signal next_state : std_logic_vector(4 downto 0);

61 signal cnt : std_logic_vector(7 downto 0);

62 signal tr_err_pass : std_logic;

63 signal tr_successful : std_logic;

64 signal rd_bus : std_logic;

65

66 begin

67 state <= current_state;

68

69 next_state_process : process(clk, rst)

70 begin

71 if (rst = ’1’) then

72 current_state <= STATE_RESET;

73 elsif (clk’event and clk = ’1’) then

74

75 -- All the states where the presence of an error must be checked, and where consequently

76 -- there could be a transition to an error state have the bit current_state[4]=’0’.

77 -- For all the other states the error flag isn’t verified.

78 if(err = ’1’ AND current_state(4) = ’0’) then

79 if(err_state = ERR_ACT_STATE) then

80 cnt <= x"00";

81 current_state <= STATE_ERR_ACT;

82 -- Only err_state="00" and "01" are expected

83 elsif(err_state = ERR_PASS_STATE)then

84 cnt <= x"00";

85 current_state <= STATE_ERR_PASS;

86 else

87 current_state <= STATE_BUS_OFF;

88 end if;

89 else

90 case current_state is

91 when STATE_RESET =>

92 -- RST: Whene the system is turned on or when it is reinitialized by the reset signal the

93 -- state machine starts its execution flow from a reset state. In this state all the internal

94 -- registers and the outputs are set as zeros.

95 send_bit <= ’0’;

96 cnt <= x"00";

97 current_state <= STATE_WAIT_IDLE;

98 tr_err_pass <= ’0’;

99 rd_bus <= ’0’;

100 tr_successful <= ’0’;

101 reg_available <= ’0’;

102

103 when STATE_WAIT_IDLE =>

104 -- WAIT_IDLE: When the reset state is over the FSM must check is if the bus is in an

105 -- idle state or if there is a transmission going on. To do it it must verify that the

106 -- value on the bus remains recessive for at least 10 bit times. This time correspond

107 -- to the length of the End of Frame and Intermission fields of a frame. The error flag

108 -- is the signal with the highest priority and it can force the FSM to move to the error

109 -- active or error passive state (it depends on the "error state" of the error controller).

110 -- If no error is present the FSM then moves to the state IDLE.

111 if (check = ’1’) then

112 cnt <= x"00";

113 current_state <= STATE_WAIT_IDLE;

114 else

115 if (cnt = x"0a") then

116 cnt <= x"00";

117 current_state <= STATE_IDLE;

118 elsif (t_sync = ’1’) then

92

119 cnt <= cnt + 1;

120 current_state <= STATE_WAIT_IDLE;

121 end if;

122 end if;

123

124 when STATE_IDLE =>

125 -- IDLE: Starting from this state there are three possible destination state for the next cycle:

126 -- - If the error state is "bus off" the next state will be BUS_OFF;

127 -- - Else if there is an overload request the next state will be OVERLOAD;

128 -- - Else if there is a Start of Frame (the signal check becomes ’1’) a RECEPTION will start;

129 -- - Else if there is a frame ready to be sent a TRANSMISSION will start;

130 -- - Else the next state will still be IDLE.

131 -- NB: the reception has the priority over the transimission

132 if (err_state = BUS_OFF_STATE) then

133 current_state <= STATE_BUS_OFF;

134 elsif (ovl_req = ’1’) then

135 current_state <= STATE_OVL;

136 elsif (check = ’1’) then

137 current_state <= STATE_REC;

138 elsif (data_out_ready = ’1’) then

139 current_state <= STATE_ARB;

140 else

141 current_state <= STATE_IDLE;

142 end if;

143

144 when STATE_REC =>

145 -- RECEPTION: The signal with the highest priority is the error signal that can force the

146 -- controller to send an error frame immediately. If the reception is correct the FSM remains

147 -- in this state until the destuffer receives the whole CRC sequence and sets the signal

148 -- "end reception" at ’1’. When the FSM detects tx_ctrl = ’1’ it moves to te state CRC_DELIM

149 if (end_rec = ’1’) then

150 -- I can eliminate CRC_DELIM asking the destuffer to send me the signal AFTER the delimiter

151 current_state <= STATE_CRC_DELIM;

152 else

153 current_state <= STATE_REC;

154 end if;

155

156 when STATE_CRC_DELIM =>

157 -- CRC_DELIM: The FSM remains in this state for one bit time and the next state depends on

158 -- the result of the CRC computation:

159 -- - If a CRC error is detecte the error routine will be initiated (active or passive);

160 -- - Else, that means that there is correpondance between the received and the computed CRCs,

161 -- the next state is SEND_ACK.

162 if (cnt = x"00") then

163 if(t_sync = ’1’) then

164 cnt <= x"01";

165 end if;

166 current_state <= STATE_CRC_DELIM;

167 else

168 if(t_sync = ’1’) then

169 current_state <= STATE_SEND_ACK;

170 send_bit <= ’1’;

171 cnt <= x"00";

172 end if;

173 current_state <= STATE_CRC_DELIM;

174 end if;

175

176 when STATE_SEND_ACK =>

177 -- SEND_ACK: If a frame is received with no errors an acknowledge must be sent during the

178 -- acknowledge slot. This state consequently lasts one bit time and force the serializer to

179 -- send a dominant bit on the bus. The following state is ACK_DELIM.

180 send_bit <= ’1’;

181 if (t_sync = ’1’) then

182 send_bit <= ’0’;

183 current_state <= STATE_ACK_DELIM;

184 else

185 current_state <= STATE_SEND_ACK;

186 end if;

93

187

188 when STATE_ACK_DELIM =>

189 -- ACK_DELIM: The FSM must one bit time before moving to the End Of Frame state. The error

190 -- flag still has the priority and can make an error routin to start. The serializer must

191 -- now be forced to send a recessive bit.

192 send_bit <= ’0’;

193 if (t_sync = ’1’) then

194 current_state <= STATE_EOF;

195 else

196 current_state <= STATE_ACK_DELIM;

197 end if;

198

199 when STATE_EOF =>

200 -- END_OF_FRAME: This state must last seven bit times and it is followed by the INTERMISSION

201 -- state. Again, the error flag has the priority and can force the start of an error routine.

202 if(cnt = x"06" AND t_sync = ’1’) then

203 cnt <= x"00";

204 if(tr_successful = ’1’)then

205 reg_available <= ’1’;

206 tr_successful <= ’0’;

207 end if;

208 current_state <= STATE_INTER;

209 elsif (t_sync = ’1’) then

210 cnt <= cnt + 1;

211 current_state <= STATE_EOF;

212 else

213 current_state <= STATE_EOF;

214 end if;

215

216 when STATE_ARB =>

217 -- ARBITRATION: The error flag has always the priority to start an error routine (the next

218 -- state will be ERR_ACTIVE or ERR_PASSIVE in function if the error state). During this

219 -- state if the bit check detect a difference between the bit read and the bit sent it means

220 -- that the arbitration has been lost (signal "check" = ’1’) and the FSM must pass immedialtely

221 -- to the RECEPTION state. If check remains ’0’ the FSM remains in this state until the

222 -- serilizer ends the arbitration part o the frame (and puts the signal "tx controller" at ’1’).

223 -- At this point the FSM moves to the state TRANSMISSION.

224 if (t_sample = ’1’ AND check = ’1’) then

225 current_state <= STATE_REC;

226 elsif (tx_ctl = ’1’) then

227 current_state <= STATE_TR;

228 else

229 current_state <= STATE_ARB;

230 end if;

231

232 when STATE_TR =>

233 -- TRANSMISSION: The FSM remains in this state until the serilizer sends the last bit of the

234 -- CRC frame and puts "tx controller" high (’1’) again. When this happens the state changes to

235 -- WAIT_ACK. The error flag has always the priority and is it is ’1’ the next state will be ERR_ACT

236 -- or ERR_PASS.

237 if (tx_ctl = ’1’) then

238 current_state <= STATE_WAIT_ACK;

239 else

240 current_state <= STATE_TR;

241 end if;

242

243 when STATE_WAIT_ACK =>

244 -- WAIT_ACK: This state lasts one bit time that corresponds to the acknowledge slot of a

245 -- transmission. If a recessive bit is read on the bus an acknowledge error is detected.

246 -- If the acknowledge is receive the machine moves to the SUCCESSFUL state.

247 if (cnt = x"01") then

248 if (t_sync = ’1’) then

249 current_state <= STATE_SUCC;

250 cnt <= x"00";

251 else

252 current_state <= STATE_WAIT_ACK;

253 end if;

254 else

94

255 if (t_sync = ’1’) then

256 cnt <= x"01";

257 end if;

258 current_state <= STATE_WAIT_ACK;

259 end if;

260

261 when STATE_SUCC =>

262 -- SUCCESSFUL: This state lasts one bit time and corresponds to the acknowledge delimiter.

263 -- If the error state of the node os passive a signal "error_passive_transmission" becomes

264 -- ’1’, otherwise it remains ’0’. Successively the FSM goes to the state END_OF_FRAME.

265 if (err_state = ERR_PASS_STATE) then

266 tr_err_pass <= ’1’;

267 end if;

268

269 if (t_sync = ’1’) then

270 tr_successful <= ’1’;

271 current_state <= STATE_EOF;

272 else

273 current_state <= STATE_SUCC;

274 end if;

275

276 when STATE_INTER =>

277 -- INTERMISSION: The FSM remains in this state for two bit times:

278 -- - If a dominant bit is read on the bus an overload frame must be generated;

279 -- - Else the FSM goes to the END_INTERMISSION state.

280 reg_available <= ’0’;

281

282 if (check = ’1’) then

283 rd_bus <= ’1’;

284 end if;

285

286 if (cnt = x"01" AND t_sync = ’1’) then

287 cnt <= x"00";

288 if(rd_bus = ’1’) then

289 rd_bus <= ’0’;

290 current_state <= STATE_OVL;

291 else

292 current_state <= STATE_END_INTER;

293 end if;

294 elsif (t_sync = ’1’) then

295 if(rd_bus = ’1’) then

296 rd_bus <= ’0’;

297 cnt <= x"00";

298 current_state <= STATE_OVL;

299 else

300 cnt <= cnt + 1;

301 current_state <= STATE_INTER;

302 end if;

303 else

304 current_state <= STATE_INTER;

305 end if;

306

307 when STATE_END_INTER =>

308 -- END_INTERMISSION: It lasts one bit time:

309 -- If a dominant bit is read it’s interpreted as a SoF and the FSM goes to the state RECEPTION;

310 -- Else if it is recessive and error_passive_transmission is ’0’ the next state is IDLE;

311 -- Else if it is recessive and error_passive_transmission is ’1’ the next state is SUSPEND;

312 if (check = ’1’) then

313 rd_bus <= ’1’;

314 end if;

315

316 if (t_sync = ’1’) then

317 if (rd_bus = ’1’) then

318 rd_bus <= ’0’;

319 current_state <= STATE_REC;

320 elsif (tr_err_pass = ’1’) then

321 tr_err_pass <= ’0’;

322 current_state <= STATE_SUSPEND;

95

323 else

324 current_state <= STATE_IDLE;

325 end if;

326 else

327 current_state <= STATE_END_INTER;

328 end if;

329

330 when STATE_SUSPEND =>

331 -- SUSPEND: This state is necessary to let the nodes in an error active state to have a

332 -- higher transmission priority over the ones in an error passive state. It lasts 8 bit

333 -- times and force the serilizer to send recessive bits. If a dominant bit is read on the

334 -- bus the machine moves immediately to the RECEPTION state and error_passive_transmission

335 -- signal is set to ’0’, otherwise it will go back to the IDLE state after the eight bit times.

336 if (check = ’1’) then

337 cnt <= x"00";

338 current_state <= STATE_REC;

339 elsif (cnt = x"07" AND t_sync = ’1’) then

340 cnt <= x"00";

341 current_state <= STATE_IDLE;

342 elsif (t_sync = ’1’) then

343 cnt <= cnt + 1;

344 current_state <= STATE_SUSPEND;

345 else

346 current_state <= STATE_SUSPEND;

347 end if;

348

349 when STATE_BUS_OFF =>

350 -- BUS_OFF: The FSM remains in this state as long as the error state is "bus off".

351 -- When it chenges to "error active" the FSM will go back to the IDLE state.

352 if (err_state = BUS_OFF_STATE) then

353 current_state <= STATE_BUS_OFF;

354 else

355 current_state <= STATE_IDLE;

356 end if;

357

358 when STATE_ERR_ACT =>

359 -- ERR_ACT: The machine is in this state if an error has been detected and the error

360 -- state is active. This state lasts six bit times and force the serilizer to send six

361 -- dominant bits on the bus. After that the state becomes EXTENSION.

362 send_bit <= ’1’;

363

364 -- There is a seventh count because the first one is the beginning of the error frame

365 -- The error frame is consequently synchronized with the bus starting from the first

366 -- bit time after the error signal becomes ’1’

367 if (cnt = x"06" AND t_sync = ’1’) then

368 cnt <= x"00";

369 current_state <= STATE_EXT;

370 elsif (t_sync = ’1’) then

371 cnt <= cnt + 1;

372 current_state <= STATE_ERR_ACT;

373 else

374 current_state <= STATE_ERR_ACT;

375 end if;

376

377 when STATE_ERR_PASS =>

378 -- ERR_PASS: The machine is in this state if an error has been detected and the error

379 -- state is passive. The FSM remains in this state until six consecutive recessive bits

380 -- have been detected on the bus. When this happens the state becomes DELIM.

381 -- Each time a dominant bit is read on the bus the count ot the 6 recessive ones is reset.

382 if (check = ’1’) then

383 cnt <= x"00";

384 current_state <= STATE_ERR_PASS;

385 elsif (cnt = x"06" AND t_sync = ’1’) then

386 cnt <= x"00";

387 current_state <= STATE_DELIM;

388 elsif (t_sync = ’1’) then

389 cnt <= cnt + 1;

390 current_state <= STATE_ERR_PASS;

96

391 end if;

392

393 when STATE_OVL =>

394 -- OVERLOAD: When an overload frame must be sent the FSM arrives in this states and

395 -- remains here for six bit times. The serializer is forced to send a dominant bit

396 -- for all this time. After the 6 bit times the machine moves to the state EXTENSION.

397 send_bit <= ’1’;

398

399 if (cnt = x"06" AND t_sync = ’1’) then

400 cnt <= x"00";

401 current_state <= STATE_EXT;

402 elsif (t_sync = ’1’) then

403 cnt <= cnt + 1;

404 current_state <= STATE_OVL;

405 else

406 current_state <= STATE_OVL;

407 end if;

408

409 when STATE_DELIM =>

410 -- DELIM: It lasts seven bit times before changing to DELIM_LAST. If in the meanwhile

411 -- a dominant bit is read on the bus an error routine will be started immediately

412 -- (the state changes to ERR_ACT or ERR_PASS).

413 if (cnt = x"06" AND t_sync = ’1’) then

414 cnt <= x"00";

415 current_state <= STATE_DELIM_LAST;

416 elsif (t_sync = ’1’) then

417 cnt <= cnt + 1;

418 current_state <= STATE_DELIM;

419 else

420 current_state <= STATE_DELIM;

421 end if;

422

423 when STATE_DELIM_LAST =>

424 -- DELIM_LAST: It corresponds to the last bit of the error/overload delimiter.

425 -- If a dominant bit is received from the bus an overload frame will be generated,

426 -- otherwise the FSM will move to the IDLE state after one bit time.

427 if (check = ’1’) then

428 rd_bus <= ’1’;

429 end if;

430

431 if (t_sync = ’1’) then

432 if (rd_bus = ’1’) then

433 rd_bus <= ’0’;

434 current_state <= STATE_OVL;

435 else

436 current_state <= STATE_IDLE;

437 end if;

438 else

439 current_state <= STATE_DELIM_LAST;

440 end if;

441

442 when STATE_EXT =>

443 -- EXTENSION: The machine needs this state to wait for the end of the transmission

444 -- of error flags by all the other nodes. When a recessive bit is finally read it

445 -- moves to the state DELIM.

446 send_bit <= ’0’;

447

448 if (check = ’1’) then

449 rd_bus <= ’1’;

450 end if;

451

452 if (t_sync = ’1’) then

453 if (rd_bus = ’1’) then

454 rd_bus <= ’0’;

455 current_state <= STATE_EXT;

456 else

457 current_state <= STATE_DELIM;

458 end if;

97

459 else

460 current_state <= STATE_EXT;

461 end if;

462

463 when others =>

464 -- This situation shold never occur

465 end case;

466 end if;

467 end if;

468 end process;

469

470 end behav;

471

98

ANNEXE B

IMPLEMENTATION OF THE AFDX SWITCH

The VHDL implementation of the most important modules of the switch fabric core is pro-

vided here. The code that realizes the Queue, the Manager, the Scheduler, and the Filter

is reported in this appendix to show how the requested features have been included in the

design.

B.1 Queue implementation

1 --

2 -- Title : Queue

3 -- Project : AVIO 402

4 --

5 -- File : Queue.vhd

6 -- Author : Davide Trentin

7 --

8 -- Description : the queue module must stock incoming frames waiting for them to be

9 -- forwarded to the output FIFOs. Frames arrive from the Filter module using 16-bit

10 -- words and are delimited by an EndOfPacket(EOP) signal. If the drop signal is

11 -- asserted the last received frame must be discarded. A frame is considered valid only

12 -- when the manager sends the destination and priority information, if a new frame is

13 -- received before this moment the previous one is overwritten. High priority frames

14 -- must be sent before low priority ones. When the scheduler gives the start input the

15 -- fisrt frame of the queue is sent to the FIFO.

16 --

17 library IEEE;

18 use ieee.std_logic_1164.all;

19 use ieee.std_logic_unsigned.all;

20 use ieee.numeric_std.all;

21 -- Project Libraries

22 use work.Router_Types.all;

23

24 entity Queue is

25 port(

26 -- Inputs

27 clk : in std_logic;

28 reset : in std_logic;

29 -- From Input Filter

30 data_in : in std_logic_vector(PORT_IN_LENGTH-1 downto 0);

31 data_in_valid : in std_logic;

32 data_in_EOP : in std_logic;

33 data_in_drop : in std_logic;

34 -- From Manager

35 destination_in : in std_logic_vector(NBR_PORTS-1 downto 0);

36 priority : in std_logic;

37 destination_valid : in std_logic;

38 -- From Scheduler

39 request : in std_logic;

40 to_send : in std_logic;

41 -- Outputs

42 -- To Scheduler

43 destination_out : out std_logic_vector(NBR_PORTS downto 0);

44 -- To Crossbar

45 data_out : out std_logic_vector(15 downto 0);

46 data_out_valid : out std_logic;

99

47 data_out_EOP : out std_logic;

48 -- additional signal for the timer used for latency control

49 tick : in std_logic_vector(timer_range-1 downto 0)

50);

51 end Queue;

52

53 architecture behaviour of Queue is

54 -- TYPES ---

55 type state_repack_type is (INIT, IDLE, RECEIVE);

56 type state_tx_type is (INIT, IDLE, SEND_L, SEND_H, END_SEND);

57 type dest_port_type is array (INTEGER range <>) of std_logic_vector(NBR_PORTS-1 downto 0);

58 type addr_type is array (INTEGER range <>) of std_logic_vector(QUEUE_RAM_DEPTH-1 downto 0);

59 type priority_type is array (INTEGER range <>) of std_logic;

60 type latency_type is array (integer range <>) of std_logic_vector(timer_range-1 downto 0);

61 -- SIGNALS ---

62 -- Possible states for the communication with the repack, the scheduler, and the FIFO

63 signal l_state_repack: state_repack_type := INIT;

64 signal h_state_repack: state_repack_type := INIT;

65 signal state_tx: state_tx_type := INIT;

66 -- Counters

67 signal l_frame_count : integer := 0; -- It counts how many frames are in the L queue

68 signal h_frame_count : integer := 0; -- It counts how many frames are in the H queue

69 signal l_frame_rx : integer := 0; -- Received frames in the L queue

70 signal l_frame_tx : integer := 0; -- Transmitted frames in the L queue

71 signal h_frame_rx : integer := 0; -- Received frames in the H queue

72 signal h_frame_tx : integer := 0; -- Transmitted frames in the H queue

73 signal l_table_count : integer := 1; -- Used to keep track of the current frame

74 signal l_table_count_old : integer := 1;

75 signal h_table_count : integer := 1;

76 signal h_table_count_old : integer := 1;

77 signal l_next : integer := 1; -- pointer to the next frame to be sent (L queue)

78 signal h_next : integer := 1;

79 -- Full/Empty

80 signal l_queue_empty : boolean := false;

81 signal l_queue_full : boolean := false;

82 signal h_queue_empty : boolean := false;

83 signal h_queue_full : boolean := false;

84 -- Tables

85 signal l_start_addr : addr_type(QUEUE_DEPTH downto 1);

86 signal l_end_addr : addr_type(QUEUE_DEPTH downto 1);

87 signal l_dest_port : dest_port_type(QUEUE_DEPTH downto 1);

88 signal l_frame_priority : priority_type(QUEUE_DEPTH downto 1);

89 signal h_start_addr : addr_type(QUEUE_DEPTH downto 1);

90 signal h_end_addr : addr_type(QUEUE_DEPTH downto 1);

91 signal h_dest_port : dest_port_type(QUEUE_DEPTH downto 1);

92 signal h_frame_priority : priority_type(QUEUE_DEPTH downto 1);

93 signal l_latency : latency_type(QUEUE_DEPTH downto 1);

94 signal h_latency : latency_type(QUEUE_DEPTH downto 1);

95 -- Signals for the communication with the internal RAM to stack frames

96 signal l_wren : std_logic := ’0’;

97 signal l_rdaddress : std_logic_vector(QUEUE_RAM_DEPTH-1 downto 0) := (others => ’0’);

98 signal l_wraddress : std_logic_vector(QUEUE_RAM_DEPTH-1 downto 0) := (others => ’0’);

99 signal data : std_logic_vector(PORT_IN_LENGTH-1 downto 0) := (others => ’0’);

100 signal l_q : std_logic_vector(PORT_IN_LENGTH-1 downto 0) := (others => ’0’);

101 signal h_wren : std_logic := ’0’;

102 signal h_rdaddress : std_logic_vector(QUEUE_RAM_DEPTH-1 downto 0) := (others => ’0’);

103 signal h_wraddress : std_logic_vector(QUEUE_RAM_DEPTH-1 downto 0) := (others => ’0’);

104 signal h_q : std_logic_vector(PORT_IN_LENGTH-1 downto 0) := (others => ’0’);

105 -- ERROR

106 signal null_vector : std_logic_vector(NBR_PORTS downto 0) := (others => ’0’);

107 -- Output registers

108 signal destination_out_reg : std_logic_vector(NBR_PORTS downto 0) := (others => ’0’);

109 signal send_priority : std_logic := ’0’;

110

111 -- COMPONENTS --

112 component ram_fifo

113 generic(ADDR_SIZE : integer := QUEUE_RAM_DEPTH;

114 PORT_IN_LENGTH : integer := PORT_IN_LENGTH);

100

115 port(

116 clka : in STD_LOGIC;

117 wea: in std_logic;

118 addra: in std_logic_vector(ADDR_SIZE-1 downto 0);

119 dina: in std_logic_vector(PORT_IN_LENGTH-1 downto 0);

120 clkb: in std_logic;

121 addrb: in std_logic_vector(ADDR_SIZE-1 downto 0);

122 doutb: out std_logic_vector(PORT_IN_LENGTH-1 downto 0));

123 end component;

124

125 begin

126 Lmem : ram_fifo

127 port map (

128 clka => clk,

129 wea => l_wren,

130 addra => l_wraddress,

131 dina => data,

132 clkb => clk,

133 addrb => l_rdaddress,

134 doutb => l_q

135);

136

137 Hmem : ram_fifo

138 port map (

139 clka => clk,

140 wea => h_wren,

141 addra => h_wraddress,

142 dina => data,

143 clkb => clk,

144 addrb => h_rdaddress,

145 doutb => h_q

146);

147

148 -- COMBINATORIAL ---

149 destination_out <= destination_out_reg;

150 l_frame_count <= l_frame_rx - l_frame_tx;

151 h_frame_count <= h_frame_rx - h_frame_tx;

152 data_out <= l_q when (send_priority = ’0’) else h_q;

153

154 -- PROCESS ---

155 -- Old_counter: keeps track of the previous table_count value in case the currently

156 -- received frame is dropped

157 --

158 Old_counter: process(clk, reset)

159 begin

160 if(l_table_count = 1)then

161 l_table_count_old <= QUEUE_DEPTH;

162 else

163 l_table_count_old <= l_table_count - 1;

164 end if;

165

166 if(h_table_count = 1)then

167 h_table_count_old <= QUEUE_DEPTH;

168 else

169 h_table_count_old <= h_table_count - 1;

170 end if;

171 end process;

172

173 -- PROCESS ---

174 -- Full_FIFO: checks if the H and L FIFOs are full. In that case the corresponding flag

175 -- is set high. No need for an empty signal since the frame counter replace that function

176 --

177 Full_FIFO: process(clk, reset)

178 variable v_l_free_space : integer := 0;

179 variable v_l_rd_addr : integer := 0;

180 variable v_l_wr_addr : integer := 0;

181 variable v_h_free_space : integer := 0;

182 variable v_h_rd_addr : integer := 0;

101

183 variable v_h_wr_addr : integer := 0;

184 begin

185 if(reset = ’1’)then

186 l_queue_full <= false;

187 h_queue_full <= false;

188

189 elsif (clk’event and clk = ’1’) then

190 v_l_rd_addr := conv_integer(’0’&l_rdaddress);

191 v_l_wr_addr := conv_integer(’0’&l_wraddress);

192 v_h_rd_addr := conv_integer(’0’&h_rdaddress);

193 v_h_wr_addr := conv_integer(’0’&h_wraddress);

194 -- LOW PRIORITY - Free space computation

195 if(v_l_wr_addr >= v_l_rd_addr)then

196 v_l_free_space := QUEUE_RAM_WORDS - (v_l_wr_addr - v_l_rd_addr);

197 else

198 v_l_free_space := v_l_rd_addr - v_l_wr_addr;

199 end if;

200

201 -- FIFO full if there is no place for a frame of maximum size

202 -- Smax = 1518; 16bit words --> 1518/2 = 759

203 if(l_frame_count > 0 AND v_l_free_space <= 759)then

204 l_queue_full <= true;

205 else

206 l_queue_full <= false;

207 end if;

208 -- HIGH PRIORITY - free space computation

209 if(v_h_wr_addr >= v_h_rd_addr)then

210 v_h_free_space := QUEUE_RAM_WORDS - (v_h_wr_addr - v_h_rd_addr);

211 else

212 v_h_free_space := v_h_rd_addr - v_h_wr_addr;

213 end if;

214

215 if(h_frame_count > 0 AND v_h_free_space <= 759)then

216 h_queue_full <= true;

217 else

218 h_queue_full <= false;

219 end if;

220 end if;

221 end process;

222

223 -- PROCESS ---

224 -- LowPriority: handles the reception of low priority frames from the filter module.

225 -- The frame is saved in any case, but if at the end its priority is H it is dropped.

226 -- If the drop signal is received the packet is droppes also.

227 --

228 LowPriority: process(clk, reset)

229 variable v_infoManagerSent : boolean := false; -- TRUE when Manager sends info

230 begin

231 if(reset = ’1’)then

232 -- All signals are reset to the default value

233 l_frame_rx <= 0;

234 l_table_count <= 1;

235 l_wren <= ’0’;

236 l_wraddress <= (others => ’0’);

237 data <= (others => ’0’);

238 for j in 1 to QUEUE_DEPTH loop

239 l_start_addr(j) <= (others => ’0’);

240 l_end_addr(j) <= (others => ’0’);

241 l_dest_port(j) <= (others => ’0’);

242 l_frame_priority(j) <= ’0’;

243 l_latency(j) <= (others => ’0’);

244 end loop;

245

246 elsif (clk’event and clk = ’1’) then

247 data <= data_in;

248

249 case l_state_repack is

250 -- INIT: is a sort of reset state that can be reached in case of error. It is also the

102

251 -- first state executed by the FSM when it is booted

252 when INIT =>

253 l_wren <= ’0’;

254 l_wraddress <= (others => ’0’);

255 l_frame_rx <= 0;

256 l_table_count <= 1;

257 v_infoManagerSent := false;

258 for j in 1 to QUEUE_DEPTH loop

259 l_start_addr(j) <= (others => ’0’);

260 l_end_addr(j) <= (others => ’0’);

261 l_dest_port(j) <= (others => ’0’);

262 l_frame_priority(j) <= ’0’;

263 l_latency(j) <= (others => ’0’);

264 end loop;

265 l_state_repack <= IDLE; -- State moves to IDLE

266

267 -- IDLE: Queue waits for the start of a reception. If it‘s not full and a reception

268 -- starts the FSM moves to RECEPTION otherwise it ignores the received frame.

269 when IDLE =>

270 v_infoManagerSent := false;

271

272 if(l_queue_full AND data_in_valid = ’1’)then

273 -- TODO: since the received frame is ignored when the queue is full an error signal

274 -- could be generated. For the moment nothing is done.

275 l_state_repack <= IDLE;

276 -- If the FIFO is not full and a reception starts the current wr_addr is saved as

277 -- start_addr and the new state is RECEIVE.

278 elsif(data_in_valid = ’1’)then

279 l_wren <= ’1’;

280 l_start_addr(l_table_count) <= l_wraddress;

281 l_state_repack <= RECEIVE;

282 else

283 l_state_repack <= IDLE;

284 end if;

285 -- RECEIVE: received data are saved in the internal FIFO (L priority). If the drop flag

286 -- is set the frame is dropped

287 when RECEIVE =>

288 -- When the manager provides destination and priority they are saved in the

289 -- corresponding table and v_infoManagerSent is set to TRUE

290 if(destination_valid = ’1’)then

291 v_infoManagerSent := true;

292 l_dest_port(l_table_count) <= destination_in;

293 l_frame_priority(l_table_count) <= priority;

294 end if;

295 -- data_in is saved in the FIFO and wr_addr incremented

296 if(data_in_valid = ’1’ and data_in_EOP = ’0’)then

297 l_wraddress <= std_logic_vector(unsigned(l_wraddress) + 1);

298 l_wren <= ’1’;

299 l_state_repack <= RECEIVE;

300 elsif(data_in_EOP = ’1’)then

301 -- When End of Packet arrives state goes back to IDLE, and the last written address

302 -- is saved in the corresponding table. if the data from the manager have been

303 -- received the frame is valid and the counter incremented otherwise it is dropped

304 l_wren <= ’0’;

305 if(v_infoManagerSent)then

306 -- if priority is L it keeps the frame, saves the timer value and increment the table

307 -- counter. RX counter is incremented as well.

308 -- NB: the frame is saved also if it has H priority but the H FIFO is full (redundancy)

309 if(h_frame_priority(h_table_count) = ’0’ OR (

310 h_frame_priority(h_table_count) = ’1’ AND H_queue_full))then

311 l_wraddress <= std_logic_vector(unsigned(l_wraddress) + 1);

312 l_frame_rx <= l_frame_rx + 1;

313 l_latency(l_table_count) <= tick;

314 if(l_table_count < QUEUE_DEPTH)then

315 l_table_count <= l_table_count + 1;

316 else

317 l_table_count <= 1;

318 end if;

103

319 else

320 -- Otherwise the frame is dropped

321 l_wraddress <= l_start_addr(l_table_count);

322 end if;

323 else

324 l_wraddress <= l_start_addr(l_table_count);

325 end if;

326 l_state_repack <= IDLE;

327 l_end_addr(l_table_count) <= l_wraddress;

328 end if;

329 -- If at any moment the drop flag is set the frame is dropped

330 if(data_in_drop = ’1’)then

331 l_wren <= ’0’;

332 l_wraddress <= l_start_addr(l_table_count);

333 l_state_repack <= IDLE;

334 end if;

335

336 when others =>

337 l_state_repack <= INIT;

338 end case;

339 end if;

340 end process;

341

342 -- PROCESS ---

343 -- HighPriority: handles the reception of high priority frames from the filter module.

344 -- The frame is saved in any case, but if at the end its priority is L it is dropped.

345 -- If the drop signal is received the packet is droppes also.

346 -- Most of this process is identical to the previoous one, refer to the commentaries of

347 -- the corresponding code for information, only different features are explained here

348 --

349 HighPriority: process(clk, reset)

350 variable v_infoManagerSent : boolean := false;

351 begin

352 if(reset = ’1’)then

353 h_state_repack <= INIT;

354 h_frame_rx <= 0;

355 h_table_count <= 1;

356 h_wren <= ’0’;

357 h_wraddress <= (others => ’0’);

358 for j in 1 to QUEUE_DEPTH loop

359 h_start_addr(j) <= (others => ’0’);

360 h_end_addr(j) <= (others => ’0’);

361 h_dest_port(j) <= (others => ’0’);

362 h_frame_priority(j) <= ’0’;

363 h_latency(j) <= (others => ’0’);

364 end loop;

365

366 elsif (clk’event and clk = ’1’) then

367 case h_state_repack is

368 -- INIT: reset state

369 when INIT =>

370 h_wren <= ’0’;

371 h_wraddress <= (others => ’0’);

372 h_frame_rx <= 0;

373 h_table_count <= 1;

374 v_infoManagerSent := false;

375 for j in 1 to QUEUE_DEPTH loop

376 h_start_addr(j) <= (others => ’0’);

377 h_end_addr(j) <= (others => ’0’);

378 h_dest_port(j) <= (others => ’0’);

379 h_frame_priority(j) <= ’0’;

380 h_latency(j) <= (others => ’0’);

381 end loop;

382 h_state_repack <= IDLE;

383

384 -- IDLE: waits the start of a new reception, that is performed only if H FIFO

385 -- is not full

386 when IDLE =>

104

387 v_infoManagerSent := false;

388 if(H_queue_full AND data_in_valid = ’1’)then

389 h_state_repack <= IDLE;

390 elsif(data_in_valid = ’1’)then

391 h_wren <= ’1’;

392 h_start_addr(h_table_count) <= h_wraddress;

393 h_state_repack <= RECEIVE;

394 else

395 h_state_repack <= IDLE;

396 end if;

397

398 -- RECEIVE: reception is performed. The frame is dropped if the corresponding

399 -- flag is set or if it has L priority

400 when RECEIVE =>

401 if(destination_valid = ’1’)then

402 v_infoManagerSent := true;

403 h_dest_port(h_table_count) <= destination_in;

404 h_frame_priority(h_table_count) <= priority;

405 end if;

406

407 if(data_in_valid = ’1’ and data_in_EOP = ’0’)then

408 h_wraddress <= std_logic_vector(unsigned(h_wraddress) + 1);

409 h_wren <= ’1’;

410 h_state_repack <= RECEIVE;

411 elsif(data_in_EOP = ’1’)then

412 h_wren <= ’0’;

413 if(v_infoManagerSent)then

414 if(h_frame_priority(h_table_count) = ’1’)then

415 h_wraddress <= std_logic_vector(unsigned(h_wraddress) + 1);

416 h_frame_rx <= h_frame_rx + 1;

417 h_latency(h_table_count) <= tick;

418 if(h_table_count < QUEUE_DEPTH)then

419 h_table_count <= h_table_count + 1;

420 else

421 h_table_count <= 1;

422 end if;

423 else

424 h_wraddress <= h_start_addr(h_table_count);

425 end if;

426 else

427 h_wraddress <= h_start_addr(h_table_count);

428 end if;

429 h_state_repack <= IDLE;

430 h_end_addr(h_table_count) <= h_wraddress;

431 end if;

432

433 if(data_in_drop = ’1’)then

434 h_wren <= ’0’;

435 h_wraddress <= h_start_addr(h_table_count);

436 h_state_repack <= IDLE;

437 end if;

438

439 when others =>

440 h_state_repack <= INIT;

441 end case;

442 end if;

443 end process;

444

445 -- PROCESS ---

446 -- Transmit: communication with the scheduler is performed to determine when a

447 -- frame is available for forwarding and when it is scheduled for transmission

448 --

449 Transmit: process(clk, reset)

450 variable tick_now : integer := 0; -- present time

451 variable h_tick_old : integer := 0; -- time of reception of H head of FIFO

452 variable l_tick_old : integer := 0; -- time of reception of L head of FIFO

453 begin

454 if(reset = ’1’)then

105

455 send_priority <= ’0’;

456 data_out_valid <= ’0’;

457 data_out_EOP <= ’0’;

458 l_rdaddress <= (others => ’0’);

459 h_rdaddress <= (others => ’0’);

460 l_next <= 1;

461 h_next <= 1;

462 destination_out_reg <= (others => ’0’);

463 -- destination_out "000...0" means that there is no frame ready for transmission

464 null_vector <= (others => ’0’);

465 state_tx <= INIT;

466

467 elsif (clk’event and clk = ’1’) then

468 case state_tx is

469 -- INIT: reset state

470 when INIT =>

471 destination_out_reg <= (others => ’0’);

472 send_priority <= ’0’;

473 data_out_valid <= ’0’;

474 data_out_EOP <= ’0’;

475 l_rdaddress <= (others => ’0’);

476 h_rdaddress <= (others => ’0’);

477 l_next <= 1;

478 h_next <= 1;

479 state_tx <= IDLE;

480 -- IDLE:

481 when IDLE =>

482 data_out_EOP <= ’0’;

483 tick_now := conv_integer(’0’&tick);

484 h_tick_old := conv_integer(’0’&h_latency(h_next));

485 l_tick_old := conv_integer(’0’&l_latency(l_next));

486

487 -- MAXIMUM LATENCY CONTROL ---

488 -- If there is a frame in the H FIFO its reception time is compared with the "now"

489 -- If the difference is greater than the MAX_LATENCY it is dropped

490 -- To drop it, the Queue consider it transmitted even if it is not the case

491 if(h_frame_count > 0 AND tick_now /= h_tick_old)then

492 if(tick_now > h_tick_old)then

493 if(tick_now - h_tick_old > MAX_LATENCY)then

494 h_frame_tx <= h_frame_tx + 1;

495 if(h_next < QUEUE_DEPTH)then

496 h_next <= h_next + 1;

497 else

498 h_next <= 1;

499 end if;

500 end if;

501 else

502 if((tick_now + 255) - h_tick_old > MAX_LATENCY)then

503 h_frame_tx <= h_frame_tx + 1;

504 if(h_next < QUEUE_DEPTH)then

505 h_next <= h_next + 1;

506 else

507 h_next <= 1;

508 end if;

509 end if;

510 end if;

511 end if;

512 -- The same process is executed for the Head of Queue of the L FIFO

513 if(l_frame_count > 0 AND tick_now /= l_tick_old)then

514 if(tick_now > l_tick_old)then

515 if(tick_now - l_tick_old > MAX_LATENCY)then

516 l_frame_tx <= l_frame_tx + 1;

517 if(l_next < QUEUE_DEPTH)then

518 l_next <= l_next + 1;

519 else

520 l_next <= 1;

521 end if;

522 end if;

106

523 else

524 if((tick_now + 255) - l_tick_old > MAX_LATENCY)then

525 l_frame_tx <= l_frame_tx + 1;

526 if(l_next < QUEUE_DEPTH)then

527 l_next <= l_next + 1;

528 else

529 l_next <= 1;

530 end if;

531 end if;

532 end if;

533 end if;

534

535 -- TRANSMISSION --

536 -- If there is a H frame ready to be sent the queue answers to the Scheduler

537 -- request specifying a H priority

538 if(h_frame_count > 0)then

539 send_priority <= ’1’;

540 if(request = ’1’)then -- Scheduler request

541 -- The MSB of the destination corresponds to the priority

542 destination_out_reg <= ’1’ & h_dest_port(h_next);

543 elsif(destination_out_reg /= null_vector AND to_send = ’1’)then

544 -- destination_out_reg /= null_vector to be sure that a transmission is not started

545 -- if the answer to the Scheduler was not sent.

546 h_rdaddress <= h_start_addr(h_next);

547 state_tx <= SEND_H;

548 end if;

549

550 -- If the H queue is empty the frames are fetched from the L queue

551 elsif(l_frame_count > 0)then

552 send_priority <= ’0’;

553 if(request = ’1’)then

554 destination_out_reg <= ’0’ & l_dest_port(l_next);

555 elsif(destination_out_reg /= null_vector AND to_send = ’1’)then

556 l_rdaddress <= l_start_addr(l_next);

557 state_tx <= SEND_L;

558 end if;

559 end if;

560

561 -- SEND_L: transmission of a frame from the L queue is performed

562 when SEND_L =>

563 -- Answers to Scheduler are reset

564 send_priority <= ’0’;

565 destination_out_reg <= (others => ’0’);

566 data_out_valid <= ’1’;

567 -- rd_addr is incremented until it reached the end_address

568 l_rdaddress <= std_logic_vector(unsigned(l_rdaddress) + 1);

569 if(l_rdaddress = l_end_addr(l_next))then

570 state_tx <= END_SEND;

571 l_frame_tx <= l_frame_tx + 1;

572 -- pointer to the next frame to be sent is updated

573 if(l_next < QUEUE_DEPTH)then

574 l_next <= l_next + 1;

575 else

576 l_next <= 1;

577 end if;

578 end if;

579

580 -- SEND_H: transmission of a frame from the H queue is performed

581 when SEND_H =>

582 send_priority <= ’1’;

583 destination_out_reg <= (others => ’0’);

584 data_out_valid <= ’1’;

585 h_rdaddress <= std_logic_vector(unsigned(h_rdaddress) + 1);

586 if(h_rdaddress = h_end_addr(h_next))then

587 state_tx <= END_SEND;

588 h_frame_tx <= h_frame_tx + 1;

589

590 if(h_next < QUEUE_DEPTH)then

107

591 h_next <= h_next + 1;

592 else

593 h_next <= 1;

594 end if;

595 end if;

596 -- END_SEND: state necessary to indicate to the destination FIFOs that the

597 -- packet has been completely transmitted

598 when END_SEND =>

599 data_out_valid <= ’0’;

600 data_out_EOP <= ’1’;

601 state_tx <= IDLE;

602

603 when others =>

604 state_tx <= INIT;

605 end case;

606

607 end if;

608 end process;

609

610 end behaviour;

B.2 Manager implementation

1 --

2 -- Title : Manager

3 -- Project : AVIO 402

4 --

5 -- File : Manager.vhd

6 -- Author : Davide Trentin

7 --

8 -- Description : The manager wait until an input port received a complete header and

9 -- send it to it. Depending on the VL specified by the destination address included in

10 -- the header, the manager retrieves the corresponding information about Smin and Smax

11 -- and sends them back to the filterand sends also their destinations and priority

12 -- to the corresponding queue. A control over the bandwidth allocated for each VL is

13 -- performed as well using a token bucket algorithm to perfrom the frame based traffic

14 -- policing described in the specification.

15 --

16 library ieee;

17 use ieee.std_logic_1164.all;

18 use ieee.std_logic_unsigned.all;

19 use ieee.numeric_std.all;

20 -- Project Libraries

21 use work.Router_Types.all;

22

23 entity Manager is

24 port (

25 clk : in std_logic;

26 reset : in std_logic;

27 clk_low : in std_logic; -- 1MHz clock

28 -- From and to Repack

29 header : in Mngr_ports_in (Nbr_ports - 1 downto 0);

30 header_valid : in std_logic_vector (Nbr_ports - 1 downto 0);

31 Smin : out Smin_array(Nbr_ports - 1 downto 0);

32 Smax : out Smax_array(Nbr_ports - 1 downto 0);

33 bad_BAG_jitter : out std_logic_vector(Nbr_ports - 1 downto 0);

34 Manager_out_valid : out std_logic_vector(Nbr_ports - 1 downto 0);

35 -- To queue

36 destination : out Destination_array(Nbr_ports - 1 downto 0);

37 priority : out std_logic_vector(Nbr_ports - 1 downto 0)

38 -- To Routing Table - TODO: connection with external routing table

39 --ram_data : inout std_logic_vector(26 downto 0);

40 --ram_oe_n : in std_logic;

41 --ram_address : out std_logic_vector(18 downto 0);

42 --ram_cen_n : out std_logic;

43 --ram_ce_n : out std_logic_vector(2 downto 0);

108

44 --ram_adv : out std_logic;

45 --ram_we_n : out std_logic

46);

47 end Manager;

48

49 architecture behaviour of Manager is

50 -- TYPES ---

51 type state_mgr_type is (INIT_STATE, WAIT_STATE, SEND_STATE);

52 type AC_array is array (NATURAL range <>) of std_logic_vector(28 downto 0);

53 type delta_array is array (natural range <>) of std_logic_vector(10 downto 0);

54 -- SIGNALS ---

55 -- Traffic Policing

56 signal AC : AC_array (Nbr_VLs-1 downto 0); -- ACcount for each VL

57 signal delta_AC : delta_array (Nbr_VLs-1 downto 0); -- Delta of the AC ramp

58 signal AC_max : AC_array (Nbr_VLs-1 downto 0); -- ACmax = Smax*N*(1+J/BAG)

59 signal AC_min : AC_array (Nbr_VLs-1 downto 0); -- ACmin = Smax * N

60 --(N is the number of steps in one BAG)

61 -- Frame Filtering and Routing

62 signal array_Smin : Smin_array(Nbr_VLs-1 downto 0);

63 signal array_Smax : Smax_array(Nbr_VLs-1 downto 0);

64 signal array_Ports : Destination_array(Nbr_VLs-1 downto 0);

65 signal priority_table : std_logic_vector(Nbr_VLs-1 downto 0);

66 -- Execution flow control

67 signal frame_received : boolean := false; -- true when a frame header has been received

68 signal VL_received : integer := 0; -- VL of the currently received frame

69 signal manager_state : state_mgr_type;

70 signal null_vector : std_logic_vector (Nbr_ports - 1 downto 0);

71

72 begin

73 -- PROCESS ---

74 -- Initialization: all the registers that should be retrieved from the configuration

75 -- table are here initialized; in a final version this process should initialize them

76 -- by reading the table. The considered signals are: Smin, Smax, priority, DeltaAC,

77 -- ACmax, and ACmin

78 --

79 Initialization: process(clk, reset)

80 begin

81 null_vector <= (others => ’0’);

82 if(clk’event AND clk = ’1’)then

83 if(manager_state = INIT_STATE)then

84 for j in 0 to Nbr_VLs - 1 loop

85 --

86 -- ACcounts initialization: they include information both about BAG and Jitter, as

87 -- well as about Smax. Registers dedicated to BAG and Jitter can be eliminated, they

88 -- must be used at configuration time to assign the required value to AC_min, AC_max

89 -- and delta_AC. Smin and Smax still need to be provided in the configuration table

90 -- N = 1ms * 1Mhz is the number of clock cycles per minimum BAG = 1000

91 --

92 -- NB: in this case all parameters, for all VLs, have the same value to reduce code,

93 -- but for the simulation various possible values have been tested

94 -- Smax = 1538, Jmax/BAG = 1/5, BAG = 1ms

95 delta_AC(j) <= "11000000010"; -- 1538 = Smax i the amplitude of each step

96 AC_max(j) <= "00000000111000010100101100000"; -- 1845600

97 AC_min(j) <= "00000000101110111011111010000"; -- 1538000

98

99 -- Another example: Smax = 1538 and BAG = 128ms

100 -- delta_AC(j) <= "11000000010"; -- 1538*128*1000

101 -- AC_max(j) <= "10001100110011101110000000000";

102 -- AC_min(j) <= "01011101110111110100000000000";

103 end loop;

104

105 --

106 -- Destination and Priority initialization

107 --

108 priority_table <= "00000000000001111100"; -- for 20 VLs

109

110 -- 5 ports -- various possible destinations for testing

111 array_Ports(0) <= "00001";

109

112 array_Ports(1) <= "10100";

113 array_Ports(2) <= "11111";

114 array_Ports(3) <= "11000";

115 array_Ports(4) <= "00011";

116 array_Ports(5) <= "01101";

117 array_Ports(6) <= "11101";

118 array_Ports(7) <= "00010";

119 array_Ports(8) <= "01000";

120 array_Ports(9) <= "11000";

121 array_Ports(10) <= "10000";

122 array_Ports(11) <= "10101";

123 array_Ports(12) <= "01100";

124 array_Ports(13) <= "00110";

125 array_Ports(14) <= "01010";

126 array_Ports(15) <= "11111";

127 array_Ports(16) <= "11000";

128 array_Ports(17) <= "01110";

129 array_Ports(18) <= "00100";

130 array_Ports(19) <= "00001";

131

132 --

133 -- Smin and Smax

134 --

135 for j in 0 to Nbr_VLs -1 loop

136 -- Like for ACs, all VLs have the same Smin and Smax in this case only to reduce code

137 -- size, but various values have been used for simulations

138 array_Smin(j) <= "00001010100"; -- 84

139 array_Smax(j) <= "11000000010"; -- 1538

140 end loop;

141

142 end if;

143 end if;

144 end process;

145

146 -- PROCESS ---

147 -- MainManager: it’s the process that handles the flow of the FSM that controls this

148 -- module, it also set the values of the signals used to communicate with the Filter

149 -- and with the Queue

150 --

151 MainManager: process(clk, reset)

152 variable cpt_round_robin : integer := 0;

153 variable current_VL : integer := 0;

154 variable index : Integer := 0;

155 variable last_port : integer := 0;

156

157 begin

158 if(reset = ’1’) then

159 Manager_out_valid <= (others => ’0’);

160 bad_BAG_jitter <= (others => ’0’);

161 for j in 0 to Nbr_ports - 1 loop

162 destination(j) <= (others => ’0’);

163 Smin(j) <= (others => ’0’);

164 Smax(j) <= (others => ’0’);

165 end loop;

166 frame_received <= false;

167 VL_received <= 0;

168 priority <= (others => ’0’);

169 index := 0;

170 last_port := -1;

171 current_VL := 0;

172 manager_state <= INIT_STATE;

173

174 elsif (clk’event and clk = ’1’) then

175

176 case manager_state is

177 -- INIT_STATE: all the variables and signals are initialized to the required values

178 when INIT_STATE =>

179 Manager_out_valid <= (others => ’0’);

110

180 bad_BAG_jitter <= (others => ’0’);

181 for j in 0 to Nbr_ports - 1 loop

182 destination(j) <= (others => ’0’);

183 Smin(j) <= (others => ’0’);

184 Smax(j) <= (others => ’0’);

185 end loop;

186 frame_received <= false;

187 VL_received <= 0;

188 index := 0;

189 last_port := -1;

190 current_VL := 0;

191 manager_state <= WAIT_STATE;

192

193 -- WAIT_STATE: The Manager waits for a Filter module to ask its intervention by

194 -- sending a header to analyze

195 when WAIT_STATE =>

196 frame_received <= false;

197 bad_BAG_jitter <= (others => ’0’);

198 Manager_out_valid <= (others => ’0’);

199 -- If one of the header_valid signal is high the analysis routine is started

200 -- more than one Filter can send the request

201 if(header_valid /= 0) then

202 manager_state <= SEND_STATE;

203 end if;

204

205 -- SEND_STATE: the received header is studied to determine the corresponding VL and

206 -- send the relative information to the Filter that is receiveing the frame

207 when SEND_STATE =>

208 -- header_valid signals from all ports are polled to check who’s asking

209 -- the manager intervention. A round robin algorithm is used to poll each

210 -- time starting from the port that follows the one treated in the last cycle

211 for j in 0 to Nbr_ports - 1 loop

212 index := (last_port + j);

213 if(index > Nbr_ports - 1)then

214 index := index - Nbr_ports;

215 end if;

216

217 -- When the first port asking for the manager intervention is found the loop

218 -- is broken and the index value used for the rest of the analysis

219 if(index /= -1)then

220 if header_valid(index) = ’1’ then

221 EXIT;

222 end if;

223 end if;

224 end loop;

225

226 -- If only one port has set header_valid = ’1’ it doesn’t have the time to put

227 -- it to ’0’ before a new SEND is started. if this is the case traffic policing

228 -- would recognize this as a new frame on the same VL and signal a bad BAG.

229 -- To avoid this if the port is the same as before nothing is done and the Round

230 -- Robin set back to port 0

231 if(index = last_port - 1)then

232 last_port := -1;

233 else

234 -- Retrieve current VL from the current header

235 current_VL := conv_integer(header(index)(79 downto 64));

236 VL_received <= current_VL;

237

238 -- TODO --

239 -- A more refined algorithm must be implemented to ensure that only acceptable VL are

240 -- considered valid for now this is done only for consecutive VLs.

241 --

242 if((current_VL < Nbr_VLs) and (current_VL >= 0)) then

243

244 -- TRAFFIC POLICING: if the AC for the current VL is lower than Smax the bandwidth

245 -- alloc gap is not respected and the frame must be dropped,otherwise it is valid

246 if(AC(current_VL) < AC_min(current_VL))then

247 bad_BAG_jitter(index) <= ’1’;

111

248 frame_received <= false;

249 else

250 bad_BAG_jitter(index) <= ’0’;

251 frame_received <= true;

252 end if;

253

254 -- The outputs towards the input port that sent the header are updated

255 priority(index) <= priority_table(current_VL);

256 Smin(index) <= array_Smin(current_VL);

257 Smax(index) <= array_Smax(current_VL);

258 destination(index) <= array_Ports(current_VL);

259 Manager_out_valid(index) <= ’1’;

260 else

261 -- The VL is not acceptable and the frame must be dropped

262 bad_BAG_jitter(index) <= ’1’;

263 end if;

264

265 -- The port next to the one treated in this cycle is saved so that in the next

266 -- cycle the polling will start from there, assuring a Round Robin polling of

267 -- the request of the input ports

268 last_port := index +1;

269 end if;

270

271 manager_state <= WAIT_STATE;

272

273 when others =>

274 manager_state <= INIT_STATE;

275 end case;

276 end if;

277 end process;

278

279 --- PROCESS --

280 -- TrafficPolicing: it handles the ACcounts for each VL, incrementing them constantly

281 -- and decreasing them when a frame from the corresponding Vl is received

282 --

283 TrafficPolicing: process(clk, reset)

284 begin

285 if(reset = ’1’)then

286 -- All the ACcounts are set to their maximum value = Smax * N * (1 + J/BAG)

287 for j in 0 to Nbr_VLs - 1 loop

288 AC(j) <= AC_max(j);

289 end loop;

290

291 elsif(clk’event AND clk = ’1’)then

292 case manager_state is

293 -- INIT_STATE: all the AC are reset to their maximum value

294 when INIT_STATE =>

295 for j in 0 to Nbr_VLs - 1 loop

296 AC(j) <= AC_max(j);

297 end loop;

298

299 -- OTHERS: in any other case they are incremented continuously, or decremented if a

300 -- valid frame is received on that VL

301 when others =>

302 -- If a frame is received the corresponding AC is decremented by the relative AC_min

303 -- AC > AC_min is not verified because that’s already done in the main process

304 if(frame_received)then -- the main process detected a valid frame

305 AC(VL_received) <= AC(VL_received) - AC_min(VL_received);

306 end if;

307

308 if(clk_low = ’1’)then

309 for j in 0 to Nbr_VLs - 1 loop

310 if(AC(j) < AC_max(j))then

311 AC(j) <= AC(j) + delta_AC(j);

312 end if;

313

314 end loop;

315 end if;

112

316 end case;

317

318 end if;

319 end process;

320

321 end behaviour;

B.3 Scheduler implementation

1 --

2 -- Title : Scheduler

3 -- Project : AVIO 402

4 --

5 -- File : Scheduler.vhd

6 -- Author : Davide Trentin

7 --

8 -- Description : It controls which output ports have free space in their FIFO to receive

9 -- new frames for transmission, and continuously polls the Queues to determine if any of

10 -- them has a frame ready to be forwarded to the available ports. If more than one queue

11 -- can send data, a RoundRobin algorithm is used to decide which one should transmit.

12 --

13 library ieee;

14 use ieee.std_logic_1164.all;

15 use ieee.std_logic_unsigned.all;

16 use ieee.numeric_std.all;

17 -- Project Libraries

18 use work.Router_Types.all;

19

20

21 entity Scheduler is

22 port(

23 -- Inputs

24 clk : in std_logic;

25 reset : in std_logic;

26 response : in Reponse_queues (Nbr_ports - 1 downto 0); -- From Queues

27 port_available : in std_logic_vector (Nbr_ports-1 downto 0); -- From FIFOs

28 -- Outputs

29 request : out std_logic_vector (Nbr_ports-1 downto 0); -- To Queues

30 to_send : out std_logic_vector (Nbr_ports-1 downto 0); -- To Queues

31 selection : out slctn (Nbr_ports-1 downto 0); -- Crossbar configuration

32 be_ready : out std_logic_vector(Nbr_ports - 1 downto 0) -- To FIFOs

33);

34 end Scheduler;

35

36 architecture behaviour of Scheduler is

37

38 -- TYPES ---

39 type state_type is (idle, rep_queue, R_Robin_H, R_Robin_L ,Send_Queue_OK,Etat_tampon);

40 -- SIGNALS ---

41 signal state : state_type:= idle ;

42 signal sent : std_logic;

43 signal response_reg : Reponse_queues (Nbr_ports - 1 downto 0);

44 signal request_reg : std_logic_vector(Nbr_ports-1 downto 0) := (others => ’0’);

45 signal to_send_reg : std_logic_vector(Nbr_ports-1 downto 0) := (others => ’0’);

46 signal port_available_reg : std_logic_vector (Nbr_ports-1 downto 0);

47 signal waitBool : boolean := false;

48 signal Selection_tampon :slctn (Nbr_ports-1 downto 0);

49 signal null_vector : std_logic_vector(Nbr_ports -1 downto 0) := (others => ’0’);

50 signal start_queue : integer; -- Used for Round Robin

51

52 begin

53 -- COMBINATORIAL--

54 to_send<=to_send_reg;

55

56 -- PROCESS ---

57 -- Scheduling: it handles the polling of the queues, the analysis of their response, and

113

58 -- it determined which ones should start a transmission

59 --

60 Scheduling: process(reset,clk)

61 -- VARIABLES ---

62 variable queue_send : std_logic_vector(Nbr_ports -1 downto 0);

63 variable v_FIFO_available : std_logic_vector(Nbr_ports -1 downto 0);

64 variable send_possible : boolean;

65 variable index : integer; -- Used for Round Robin

66 variable select_buffer : slctn (Nbr_ports-1 downto 0);

67

68 begin

69 if (reset=’1’)then

70 -- All the outputs and control signals are reset

71 waitBool <= false;

72 state <= IDLE;

73 request_reg(Nbr_ports-1 downto 0) <=(others =>’0’);

74 to_send_reg(Nbr_ports-1 downto 0) <=(others =>’0’);

75 queue_send := (others => ’0’);

76 start_queue <= 0;

77 for j in 0 to Nbr_ports - 1 loop

78 select_buffer(j) := -1;

79 be_ready(j) <= ’0’;

80 end loop;

81 request <= (others => ’0’);

82

83 elsif (clk=’1’ and clk’event) then

84 case state is

85 -- IDLE: It checks which outputs are available

86 when IDLE =>

87 waitBool <= false; -- required because REP_QUEUE needs to last 2 cycles

88 queue_send := (others => ’0’);

89 -- if there is at least one available FIFO the scheduling routine is initialized

90 -- available ports are saved and the request signal sent to the queues

91 if(port_available /= null_vector) then

92 v_FIFO_available := port_available;

93 request <= (others => ’1’);

94 for j in 0 to Nbr_ports - 1 loop

95 be_ready(j) <= ’0’;

96 end loop;

97 state <= REP_QUEUE;

98 end if;

99

100 -- REP_QUEUE: It waits for the queues’ response. since they come after 2 clock cycles

101 -- there is one wait cycle

102 when rep_queue =>

103 waitBool <= not(waitBool);

104 request<= (others => ’0’);

105 -- After one cycle the answer of the queue is read

106 if(waitBool) then

107 response_reg <= response;

108 state <= R_ROBIN_H;

109 end if;

110

111 -- R_ROBIN_H: the round robin algorithm is performed to determine which queues can send

112 -- their packet because their destinations are available.

113 when R_ROBIN_H =>

114 -- The queues destinations are analysed to determine which ones have high priority

115 for j in 0 to Nbr_ports - 1 loop

116 -- Round Robin: the polling starts from the queue immediatelly after the last one

117 index := start_queue + j;

118 if(index > Nbr_ports - 1)then

119 index := index - Nbr_ports;

120 end if;

121 -- If the considered queue has a high priority frame and a non-zero destination

122 if(response_reg(index)(Nbr_ports) = ’1’ AND

123 response_reg(index)(Nbr_ports-1 downto 0) /= null_vector)then

124 -- send_possible is set back to false if the required outputs are not available

125 send_possible := true;

114

126 for i in 0 to Nbr_ports - 1 loop

127 -- If the required FIFO is not available the frame will not be sent

128 if(response_reg(index)(i) = ’1’ AND v_FIFO_available(i) = ’0’)then

129 send_possible := false;

130 end if;

131 end loop;

132

133 -- If the queue can start a tranmsission the "send" vector is updated to force this transmission

134 -- and the output ports that will be used are now considered unavailable

135 if(send_possible)then

136 queue_send(index) := ’1’;

137 for i in 0 to Nbr_ports - 1 loop

138 if(response_reg(index)(i) = ’1’)then

139 v_FIFO_available(i) := ’0’;

140 select_buffer(i) := index;

141 be_ready(i) <= ’1’; -- it tells to the corresponding FIFO that it is

142 -- going to receive a packet

143 end if;

144 end loop;

145 end if;

146 end if;

147 end loop;

148

149 state <= R_ROBIN_L;

150 -- R_Robin_L: The remaining queues, the ones with low priority, are now considered

151 -- The same routine used for high priority queues is adopted here

152 when R_ROBIN_L =>

153 for j in 0 to Nbr_ports - 1 loop

154 index := start_queue + j;

155 if(index > Nbr_ports - 1)then

156 index := index - Nbr_ports;

157 end if;

158

159 if(response_reg(index)(Nbr_ports) = ’0’ AND

160 response_reg(index)(Nbr_ports-1 downto 0) /= null_vector)then

161 send_possible := true;

162 for i in 0 to Nbr_ports - 1 loop

163 if(response_reg(index)(i) = ’1’ AND v_FIFO_available(i) = ’0’)then

164 send_possible := false;

165 end if;

166 end loop;

167

168 -- The outputs used by high priority queues are not available anymore

169 if(send_possible)then

170 queue_send(index) := ’1’;

171 for i in 0 to Nbr_ports - 1 loop

172 if(response_reg(index)(i) = ’1’)then

173 v_FIFO_available(i) := ’0’;

174 select_buffer(i) := index;

175 be_ready(i) <= ’1’;

176 end if;

177 end loop;

178 end if;

179 end if;

180 end loop;

181

182 state <= SEND_QUEUE_OK;

183

184 -- SEND_QUEUE_OK: the pointer to the current queue is incremented for the round robin

185 when SEND_QUEUE_OK =>

186 -- When at least one frame is forwarded the round robin is incremented

187 if(queue_send /= null_vector)then

188 if(start_queue = Nbr_ports -1)then

189 start_queue <= 0;

190 else

191 start_queue <= start_queue + 1;

192 end if;

193 end if;

115

194

195 -- The to_send output is updated with the result of the scheduling

196 to_send_reg <= queue_send;

197 port_available_reg<=port_available ;

198 state<=IDLE;

199 when others =>

200 state <= IDLE;

201 end case;

202 end if;

203

204 -- The configuration signal for the crossbar is always updated depending on the

205 -- scheduling results

206 selection <= select_buffer;

207

208 end process Scheduling;

209

210 end behaviour;

B.4 Filter implementation

1 --

2 -- Title : Filter

3 -- Project : AVIO 402

4 --

5 -- File : Filter.vhd

6 -- Author : Davide Trentin

7 --

8 -- Description : It receives the packets with 8bit words and composes the 16bit words

9 -- that must be saved in the Queue. It extracts the header and passes it to the manager

10 -- for processing. It filters frames that do not respect size, format, or CRC.

11 --

12 library IEEE;

13 use ieee.std_logic_1164.all;

14 use ieee.numeric_std.all;

15 use ieee.std_logic_unsigned.all;

16 -- Project Libraries

17 use work.Router_Types.all;

18

19 entity Filter is

20 port (

21 -- Inputs

22 clk : in std_logic;

23 reset : in std_logic;

24 port_in : in std_logic_vector ((port_length - 1) downto 0);

25 port_in_valid : in std_logic;

26 port_in_good_frame : in std_logic;

27 port_in_bad_frame : in std_logic;

28 bad_BAG_jitter : in std_logic; -- From Manager to drop packet

29 Smin : in std_logic_vector(10 downto 0);

30 Smax : in std_logic_vector(10 downto 0);

31 Manager_in_valid : in std_logic;

32 -- Outputs

33 data_out : out std_logic_vector ((port_in_length - 1) downto 0); -- To Queue

34 data_out_valid : out std_logic;

35 data_out_drop : out std_logic;

36 data_out_EOP : out std_logic;

37 header : out std_logic_vector (111 downto 0);

38 header_valid : out std_logic

39);

40 end Filter;

41

42 architecture behaviour of Filter is

43 -- COMPONENT ---

44 component CRCgenerator is

45 port (data_in : in std_logic_vector (7 downto 0);

46 crc_en , rst, clk : in std_logic;

116

47 crc_out : out std_logic_vector (31 downto 0));

48 end component;

49 -- CONSTANTS ---

50 constant buffer_size : integer := 2; -- 16 bit words passed to the Queue

51 constant wordEmpty: std_logic_vector((port_in_length/2 - 1) downto 0):=(others => ’0’);

52 --TYPES---

53 type CRC_buffer_type is array (integer range <>) of std_logic_vector(31 downto 0);

54 type data_in_buffer_type is array (integer range <>) of std_logic_vector(7 downto 0);

55 type repack_state is (idle, receive, EOP, drop1, dropn, iGAP);

56 --SIGNALS---

57 signal CRC_buffer : CRC_buffer_type(buffer_size-1 downto 0);

58 signal data_in_buffer : data_in_buffer_type(3 downto 0);

59 -- Input register

60 signal port_in_valid_reg : std_logic := ’0’;

61 signal port_in_good_frame_reg : std_logic := ’0’;

62 signal port_in_bad_frame_reg : std_logic := ’0’;

63 signal bad_BAG_jitter_reg : std_logic := ’0’;

64 signal Smin_reg : std_logic_vector(10 downto 0) := (others => ’0’);

65 signal Smax_reg : std_logic_vector(10 downto 0) := (others => ’0’);

66 signal Manager_in_valid_reg : std_logic := ’0’;

67 -- Output registers

68 signal data_out_reg : std_logic_vector ((port_in_length - 1) downto 0);

69 signal data_out_valid_reg : std_logic;

70 signal data_out_drop_reg : std_logic;

71 signal data_out_EOP_reg : std_logic;

72 signal header_reg : std_logic_vector (111 downto 0);

73 signal header_valid_reg : std_logic;

74 -- Others

75 signal CRC : std_logic_vector(31 downto 0);

76 signal CRC_received : std_logic_vector(31 downto 0);

77 signal bufferIn1 : std_logic_vector((port_in_length/2 - 1) downto 0);

78 signal bufferIn2 : std_logic_vector((port_in_length/2 - 1) downto 0);

79 signal completeWord : boolean := false;

80 signal t_state : repack_state := idle;

81 -- CRC Module

82 signal CRC_in : std_logic_vector(7 downto 0);

83 signal CRC_en : std_logic;

84 signal CRC_reset : std_logic;

85 signal new_CRC : std_logic_vector(31 downto 0);

86

87 begin

88 CRC_gen: CRCgenerator

89 port map(data_in => CRC_in,

90 crc_en => CRC_en,

91 rst => CRC_reset,

92 clk => clk,

93 crc_out => new_CRC

94);

95

96 -- COMBINATORIAL ---

97 data_out <= data_out_reg;

98 data_out_valid <= data_out_valid_reg;

99 data_out_drop <= data_out_drop_reg;

100 data_out_EOP <= data_out_EOP_reg;

101 header <= header_reg;

102 header_valid <= header_valid_reg;

103 CRC_received <= data_in_buffer(3)&data_in_buffer(2)

104 &data_in_buffer(1)&data_in_buffer(0);

105

106 -- PROCESS ---

107 -- RepackProc: it’s the main process of the Filter, it handles reception and output

108 -- generation. Filtering is included in this process as well

109 --

110 Repack_proc: process(reset, clk)

111 -- Variables

112 variable drop : boolean := false;

113 variable cpt_InterGAP : integer range 0 to 12 := 0;

114 variable cpt_header : integer range 0 to 112 := 112;

117

115 variable cpt_frameSize : integer range 0 to 1540 := 0;

116 variable manInfo : boolean := false; -- Manager answered

117

118 begin

119 if(reset = ’1’) then

120 t_state <= idle;

121 data_out_valid_reg <= ’0’;

122 data_out_drop_reg <= ’0’;

123 data_out_EOP_reg <= ’0’;

124 data_out_reg <= (others => ’0’);

125 header_reg <= (others => ’0’);

126 header_valid_reg <= ’0’;

127 cpt_InterGAP := 0;

128 cpt_header := 112;

129 cpt_frameSize := 0;

130 completeWord <= false;

131 manInfo := false;

132 drop := false;

133 elsif(clk’event AND clk=’1’)then

134 case t_state is

135 -- IDLE: all the signal are reset and the module waits for the start of a new reception

136 -- when the valid input is set high the reception routine starts

137 when idle =>

138 -- All the signal used for the reception are reinitialized to be ready for a new one

139 data_out_valid_reg <= ’0’;

140 data_out_drop_reg <= ’0’;

141 data_out_EOP_reg <= ’0’;

142 data_out_reg <= (others => ’0’);

143 header_reg <= (others => ’0’);

144 header_valid_reg <= ’0’;

145 cpt_InterGAP := 0;

146 cpt_header := 112;

147 completeWord <= false;

148 manInfo := false;

149 drop := false;

150 -- If a receptions starts (port_in_valid = ’1’) move to reception state

151 if((port_in_valid_reg = ’1’) AND (port_in_good_frame_reg = ’0’) AND

152 (port_in_bad_frame_reg = ’0’)) then

153 t_state <= receive;

154 -- First byte is saved in the 8 LSB of the header

155 for j in 0 to 7 loop

156 header_reg(j + cpt_header - 8) <= bufferIn1(j);

157 end loop;

158 cpt_header := cpt_header - 8;

159 completeWord <= true; -- Used to determine if the LSB are received

160 -- If other signal than port_in_valid are set high an error occurred

161 -- and the frame is dropped

162 elsif((port_in_valid_reg = ’1’) AND

163 ((port_in_good_frame_reg = ’1’) OR (port_in_bad_frame_reg = ’1’)))then

164 t_state <= dropn;

165 end if;

166 -- RECEIVE: received data are saved in the queue and the manager is composed and passed

167 -- to the Manager. When the EoP is received the state changes

168 when receive =>

169 data_out_valid_reg <= ’0’;

170 -- When the good_frame signal is received it means that the EoP has been reached

171 -- We move to the EOP state. If rhe frame has an odd number of bytes, the last

172 -- 8 bits of the 16-bit word are set to 0

173 if(port_in_valid_reg = ’0’ AND

174 (port_in_good_frame_reg = ’1’) AND (port_in_bad_frame_reg = ’0’)) then

175 if(completeWord) then

176 data_out_valid_reg <= ’1’;

177 data_out_reg <= bufferIn2 & wordEmpty;

178 end if;

179 t_state <= EOP;

180 drop := drop or not(manInfo); -- drop keeps track of the possible

181 -- error that can occur, it the Manager still has not answered now

182 -- the frame is dropped because the system must be ready for

118

183 -- a new reception

184 -- Frame is dropped because the bad_frame signal is set high

185 elsif((port_in_valid_reg = ’1’) AND

186 ((port_in_good_frame_reg = ’1’) OR (port_in_bad_frame_reg = ’1’)))then

187 t_state <= dropn;

188 data_out_drop_reg <= ’1’;

189 -- Frame is dropped if a non acceptable situation occurs

190 elsif((port_in_valid_reg = ’0’) and not((port_in_good_frame_reg = ’1’) and (port_in_bad_frame_reg = ’0’)))then

191 t_state <= drop1;

192 data_out_drop_reg <= ’1’;

193 -- Otherwise it means that the reeption is still on progress

194 else

195 -- Each 2 bytes received the 16bit word is saved in the Queue

196 if(completeWord) then

197 data_out_reg <= bufferIn2 & bufferIn1;

198 data_out_valid_reg <= ’1’;

199 end if;

200 completeWord <= not(completeWord);

201 if(cpt_header > 0) then -- for header composition

202 for j in 0 to 7 loop

203 header_reg(j + cpt_header - 8) <= bufferIn1(j);

204 end loop;

205 cpt_header := cpt_header - 8;

206 end if;

207 end if;

208 -- EOP: the end of the packet has been reached, the Filter completed the filtering and drop

209 -- erroneous frames.

210 when EOP =>

211 data_out_valid_reg <= ’0’;

212 -- all the filtering controls are executed and the results is saved in drop

213 drop := drop OR (CRC_buffer(1) /= CRC_received) -- CRC control

214 OR (header_reg(20 downto 16) /= "00000") -- fixed structure fields

215 OR (header_reg(63 downto 40) /= "000000100000000000000000")

216 OR (header_reg(111 downto 80) /= "00000011000000000000000000000000") -- custom

217 OR (cpt_frameSize < (conv_integer(’0’&Smin_reg) - 22)) -- Smin

218 OR (cpt_frameSize > (conv_integer(’0’&Smax_reg) - 21)) -- Smax

219 OR (cpt_frameSize < 63) OR (cpt_frameSize > 1538); -- Lmin and Lmax

220 -- TODO: no control over the fixed structure fields of the frame is executed since

221 -- these fields are not defined at the moment

222 if(not(drop)) then

223 t_state <= idle;

224 data_out_EOP_reg <= ’1’;

225 else

226 t_state <= drop1;

227 data_out_drop_reg <= ’1’;

228 end if;

229 -- DROP1: currently received frame is dropped and the filter goes immediately

230 -- back to IDLE

231 when drop1 =>

232 t_state <= idle;

233 data_out_valid_reg <= ’0’;

234 data_out_EOP_reg <= ’1’;

235 -- DROPN: same as before but this time this state lasts as long as there is a reception

236 -- in progress. Ita waits for its end before going back to IDLE

237 when dropn =>

238 data_out_drop_reg <= ’1’;

239 if(port_in_valid_reg = ’0’)then

240 t_state <= idle;

241 data_out_EOP_reg <= ’1’;

242 end if;

243 data_out_valid_reg <= ’0’;

244 -- OTHERS: error

245 when others =>

246 t_state <= idle;

247 end case;

248

249 -- When the Manager sends the required information they are saved

250 if((Manager_in_valid_reg = ’1’) AND (t_state = receive))then

119

251 manInfo := true;

252 drop := drop or (bad_BAG_jitter_reg = ’1’);

253 end if;

254

255 -- When the header is ready it is sent to the Manager

256 -- the header_valid signal remains high until the manager answers

257 if((cpt_header <= 0) AND NOT(manInfo) AND (t_state = receive))then

258 header_valid_reg <= ’1’;

259 else

260 header_valid_reg <= ’0’;

261 end if;

262

263 -- The number of bytes of the packet are counted to perform size control

264 if((port_in_valid_reg = ’1’)) then

265 cpt_frameSize := cpt_frameSize + 1;

266 end if;

267 -- When the state is IDLE the counter is reset to be ready for a new reception

268 if(t_state = idle)then

269 cpt_frameSize := 0;

270 end if;

271 end if;

272 end process Repack_proc;

273

274 -- PROCESS ---

275 -- Reg: all the inputs are registered,

276 -- most of them are used when they are not available anymore

277 --

278 Reg: process(reset, clk)

279 begin

280 if(reset = ’1’)then

281 bufferIn1 <= (others =>’0’);

282 bufferIn2 <= (others =>’0’);

283 port_in_valid_reg <= ’0’;

284 port_in_good_frame_reg <= ’0’;

285 port_in_bad_frame_reg <= ’0’;

286 bad_BAG_jitter_reg <= ’0’;

287 Smin_reg <= (others => ’0’);

288 Smax_reg <= (others => ’0’);

289 Manager_in_valid_reg <= ’0’;

290 elsif(rising_edge(clk))then

291 bufferIn1 <= port_in;

292 bufferIn2 <= bufferIn1;

293 port_in_valid_reg <= port_in_valid;

294 port_in_good_frame_reg <= port_in_good_frame;

295 port_in_bad_frame_reg <= port_in_bad_frame;

296 bad_BAG_jitter_reg <= bad_BAG_jitter;

297 Smin_reg <= Smin;

298 Smax_reg <= Smax;

299 Manager_in_valid_reg <= Manager_in_valid;

300 end if;

301 end process Reg;

302

303 -- PROCESS ---

304 -- CRC_proc: it computed the CRC32 of the received frame one byte at the time

305 -- Since the filter can’t know when the frame is going to end, the last two computed

306 -- values of the CRC are stored in a buffer because the second last computed one

307 -- corresponds to the CRC of the frame before the CRC field is received

308 --

309 CRC_proc: process(reset, clk)

310 begin

311 if(reset = ’1’) then

312 CRC_reset <= ’1’;

313 CRC_en <= ’0’;

314 CRC_in <= (others => ’0’);

315 for j in 0 to buffer_size-1 loop

316 CRC_buffer (j) <= (others => ’1’);

317 end loop;

318 CRC <= (others => ’1’);

120

319 elsif(clk’event AND clk = ’1’)then

320 CRC_en <= ’1’;

321 -- when a byte is received it is passed to the CRC module

322 -- previously computed CRC is saved in the buffer

323 if(port_in_valid = ’1’) then

324 CRC_in <= port_in;

325 CRC <= new_CRC;

326 CRC_reset <= ’0’;

327 CRC_buffer(0) <= CRC;

328 for j in 1 to buffer_size-1 loop

329 CRC_buffer(j) <= CRC_buffer(j-1);

330 end loop;

331 -- if the packet is dropped or the reception is completed the CRC is reset

332 elsif(t_state = idle OR t_state = drop1 OR t_state = dropn)then

333 CRC <= (others => ’1’);

334 CRC_reset <= ’1’;

335 for j in 0 to buffer_size-1 loop

336 CRC_buffer(j) <= (others => ’1’);

337 end loop;

338 end if;

339 end if;

340 end process;

341

342 -- PROCESS ---

343 -- CRC_received_proc: it saves the last 4 received bytes, that at the end of the frame

344 -- correspond to the received CRC

345 --

346 CRC_received_proc: process(reset, clk)

347 begin

348 if(reset = ’1’) then

349 for j in 0 to 3 loop

350 data_in_buffer(j) <= (others => ’0’);

351 end loop;

352 elsif(clk’event AND clk = ’1’)then

353 if(port_in_valid = ’1’) then

354 data_in_buffer(0) <= port_in;

355 for j in 1 to 3 loop

356 data_in_buffer(j) <= data_in_buffer(j-1);

357 end loop;

358 end if;

359 end if;

360 end process;

361

362 end behaviour;

121

ANNEXE C

SWITCH FABRIC TEST VERIFICATION

C.1 Switch Fabric test cases

In Chapter 5.4, the most important results deriving from the switch fabric simulation have

been briefly presented. A detailed description of the most important test cases used for the

system verification is provided in this appendix. The described scenarios represent only the

verification of the most significant functionalities of the switch, to verify that AFDX specific

features are respected even for critical situations where the system is subjected to stressful

conditions. After the presentation of all the testbenches, some waveforms are presented to

show the corresponding results.

For test purposes, and to obtain images easier to read, the output FIFOs have been

configured so that they start a transmission as soon as a frame is completely saved in them.

UDP and IP fields of the used frames contain dummy bytes since the switch fabric does not

analyze their content in any case. In every test where multiple frames are generated, payloads

and lengths of these packets are different from each other to recreate a generic situation.

C.1.1 Test test case 1

Objective: Measure the technological latency for a frame with minimum size

Description: The VL of the input packet is set to 1 and this VL has been configured

to have only the output port 0 as destination. The packet is 64 bytes long, which is the

smallest size allowed by the ARINC specification. In Figure C.1, the most significant signals

are shown in the waveforms that represent the routing process, and it can be observed that

the frame arriving at input port 0 is correctly routed only to output port 0. The last byte

of the packet is received at 1530ns and it leaves the system after 2240ns, that consequently

is the technological latency.

The same waveforms show the internal behaviour of the system. As soon as the header is

received, the Filter advises the Manager that it can be processed setting the header valid

signal to ‘1’, and waits for its answer. When manager answer is ‘1’ the values of Smin and

Smax are saved by the Filter, which also puts header valid back to ‘0’, and the destina-

tion and priority are saved by the Queue. While it is extracting the header, the Filetr is

also saving the incoming bytes in the Queue (the related signals are data to queue and

122

write to queue. As soon as the frame is completely saved in the input buffer, if it is not

dropped (as is the case here), the Queue is ready to answer to the Scheduler, that contin-

uously polls them. The polling signal is scheduler request, while queue answer has the

form "priority & destination" when a frame is ready to be forwarded, and it is an array

of zeros otherwise. When the Scheduler receives the destinations of the frame saved in the

buffer, it prepares the configuration array for the Crossbar and initiates the transmission by

asserting the scheduler force send signal. The frame is forwarded 16 bits at a time to

the output FIFO using the data to FIFO and write to FIFO signals. When the packet is

completely saved in it, the FIFO begins its transmission, and the output can be observed on

the external signal data out 0 since it is only forwarded to that port.

The technological latency is composed by the time taken to save the frame in the output

FIFO, plus the time required to transmit it, plus a variable scheduling component; since the

Scheduler polls the Queues each 7 clock cycles, thus there is a 140ns potential difference in

the technological latency from case to case, depending on when the last byte of the frame is

saved in the buffer compared to when the Scheduler last checked it. 2240ns corresponds to

112 clock cycles, and it can be noticed that 64 of them are due to the transmission of the

64 bytes of the packet, 32 for their storage in the FIFO, and the remaining 16 are mostly

dedicated to the Scheduler polling and processing.

C.1.2 Test test case 2

Objective: Measure the technological latency for a frame with maximum size

Description: This test is identical to the previous one, but this time, the size of the routed

frame is of 1518 bytes, which is the maximum size allowed by the AFDX specification. The

change of the frame size allows an evaluation of the maximum technological latency that

can be expected with this switch, since its largest component, observed in the previous test,

depends directly on the packet length. Figure C.2 shows that the last byte is sent by the

FIFO after 76490ns, while it was received at 30590ns; therefore, the resulting technological

latency is equal to 45900ns, i.e to 2295 clock cycles. 1518 cycles are used for transmission,

and 759 for the frame storage in the output FIFO; the remaining 18 cycles, resulting from the

scheduling process, confirms that there is a small variable component on the latency due to

the Scheduler behaviour. The advantage of having a 16-bit datapath is evident when dealing

with long frames, since an 8-bit datapath would have brought to a technological latency 30%

longer than in our case. The same behaviour described for the previous test case can be

observed in the waveform corresponding to this test as well.

123

C.1.3 Test test case 3

Objective: Verify the routing functionalities of the switch when a single input is consid-

ered

Description: To check if the core routes incoming frames towards the expected desti-

nation, frames of different VLs have been sequentially sent to the same input, after having

configured the various VLs to have different destination ports. The destination ports for

each VL have been set as shown in Table C.1. To recognize the packets at the output, their

payloads have been filled with the value of the corresponding virtual link.

Figure C.3 shows the resulting waveform for this test: each frame reaches the expected

output, thus the main functionality of the system is correctly implemented. It can be noticed

that each frame reaches its destinations after a time lapse equal to the technological latency

previously measured, and no congestion can be observed since each packet can be completely

forwarded to the corresponding FIFO before the reception of the following one is completed

(in fact the transmission of each packet at the output starts before the following one is

received).

C.1.4 Test test case 4

Objective: Analyse how the scheduling of concurrently received frames is performed

Description: In this scenario, five frames are received concurrently at the five input

ports, and the scheduling process is observed; the goal is to study how the Scheduler handles

this concurrent reception (the five Queues have a frame ready for transmission at the same

time). The VLs have been configured to have destinations that can give visually significant

waveforms: as illustrated in Table C.2 the virtual links 1, 2, and 3 share one output, while

VL 4 and 5 have one destination in common between them but not with the other three. The

waveforms obtained with this simulation are presented in Figure C.4, which has also been

coloured highlighting each packet with a different colour.

When the Queues answer to the Scheduler request of information, it can start the schedul-

ing routine. It initially determines that the Queue 0 can start a transmission towards FIFO 0,

and Queue 3 towards FIFO 2 and FIFO 3 as well since these outputs are still available, all the

others must wait for their destinations to be available again before the Scheduler determines

that they can start a transmission. As soon as these two buffers have finished forwarding

their frame, the corresponding output FIFOs advise the Scheduler that they are available

again, using a FIFO available signal. Since VL 2 and 3 share one destination, the latter

will have to wait another round to be forwarded. In the waveforms, it can be observed that

124

Table C.1 Test 3: VLs and their destinations

VL Destinations

1 port 0

2 port 1

3 port 2

4 port 3

5 port 0

6 port 0 and 1

7 port 0, 2, and 4

different jitters are introduced on each output the frame is destined to, depending on its

traffic load.

The configuration array crossbar config is composed in the following way: while “-1

-1 -1 -1 -1” means that no output FIFO should be connected to any of the Queues, “3 -1 4

4 2” means that FIFO 0 is connected to Queue 2, that FIFO 1 and FIFO 2 are connected to

Queue 4, FIFO 4 is connected to Queue 3, and finally that FIFO 3 is unconnected.

C.1.5 Test test case 5

Objective: Verify the priority management when a concurrent reception occurs

Description: In this scenario, each input port receives a frame at the same time, and

the behaviour of the scheduler is studied. Differently from the case number 4, VLs have

been set so that they have different priorities but one common destination. Two examples

are illustrated in Figures C.5 and C.6; in the former, VL 3 and 4 have high priority and

the others do not, while, in the second one, the high priority virtual links are 2 and 5. In

order to make this situation more significant and also to make the waveform more readable,

while VL0 has only out port 0 as destination, VL1 has also out port 1, VL2 out port 1

and out port 2, and so on. In Figures C.5 and C.6, each frame has been coloured differently

so that it can be easily identified when it is transmitted. The waveform shows that not only

the frames reach the desired output, but also that the high priority frames are transmitted

before the others.

In the second example, even if the Scheduler starts transmitting the frame 2 since it is

the first with high priority and available destinations identified in the round robin. Since all

the other frames need the same destination used by it (output port 0 they must wait for

125

Table C.2 Test 4: VLs and their destinations

VL Destinations

1 port 0

2 port 0

3 port 0 and 1

4 port 2 and 3

5 port 1, 2, and 4

that FIFO to be available again. When frame 2 is completely saved in the output buffer (in

Figure C.5 this moment is identified by the start of its transmission on data out 1, 2, and

3) the other critical frame is transmitted. Only after its transmission the three low priority

frames are considered, starting from the one saved in Queue 4, that is the one immediately

after the one that just finished forwarding its packet. Each time a packet must be forwarded,

the crossbar config array is reconfigured, and the send signal is sent to the Queue that

must start a transmission.

C.1.6 Test test case 6

Objective: Analyse the behaviour of the system in presence of input data burst at a

single input

Description: A 1ms burst of back-to-back frames is sent to the switch to study how it

can work when one input is working at maximum wire speed; this test can consequently

prove if the system throughput is high enough to support an input burst on a single input

port without creating congestion, thus avoiding accumulation of frames in internal buffers.

16 frames of variable length, and payload have been sent to in port 0 in 1ms, for a total of

100kbit in 1ms, thus recreating the 100Mbit/s that is the maximum wire speed supported by

AFDX. In reality, not all these bits are treated by the system since preambles and interframe

gaps are handled by the PHY layer that precedes the switch fabric. Every packet is sent on

a different VL in order to avoid filtering due to traffic policing, and they all share the same

destination port. Since it is difficult to make the 1ms simulation results readable, a zoom

on the last transmitted frame is provided in C.7(b) to show the delay of the last processed

packet.

The results are satisfying: packet can be transmitted by the FIFO even before the next

frame is received and the latency added by the switch to the last packet of the burst is

equal to its technological latency, as if no other packet preceded it. The bust could have an

126

indefinite length and no buffer overflow would occur. In figure C.7(a), the entire simulation

can be observed, while in Figure C.7(b) only the transmission of the last frame is highlighted,

to show its latency. The latency of the last frame is equal to 15280ns, corresponding to 764

clock cycles; since the last packet has a size of 500 bytes it can be observed once again that

this latency is the result of the time of transmission (500 cycles) plus the time to write to

the output FIFO (250 cycles) plus the variable time necessary for the scheduling, in this case

equal to 14 clock cycles. We can conclude that congestion is avoided and no accumulation of

packets in the internal memories is present when a burst is received at a single input, proving

that each path of the switch has a throughput effectively higher than the maximum AFDX

wire speed.

C.1.7 Test test case 7

Objective: Analyse the buffer overload for high traffic loads at all the input ports

Description: In order to explore the maximum performance that this router can provide

when high traffic loads must be managed, a situation similar to the one of the previous

test has been reproduced, but this time, bursts are received at all the input ports. As in

the previous cases, to realize readable simulations in a reasonable time a 5 ports switch has

been considered. A wire-speed traffic, similar to the one used in the previous case, has been

generated at each input (frames are sent back-to-back in order to have 100kbits in 1ms of

transmission at a single port). To make the test bench easier to realize all the frames received

at one input have the same size, but different VL and consequently different CRCs. All the

VL used in this simulation have different destinations, but out port 0 is shared by all of them

in order to create a critical situation where high traffic loads must share the same destination,

thus creating output contention. After the 1ms burst (last frame received after 1014.92µs)

some frames have been accumulated in the internal memories of the system and need some

additional time to be forwarded: a delay of 84970ns is added to the last received frame.

This delay is longer than the maximum technological latency previously computed, equal to

45900ns (since the last transmitted byte has a length of 1518 bytes), and the additional delay

of 39070ns is due to the unavoidable congestion at in the output FIFO. The same test has

been run with a different traffic and a slightly different result has been obtained (42100ns of

additional delay), thus it must be concluded that this value depends on the incoming traffic.

To avoid buffer overflow large buffers have been instantiated in the system for this test.

The congestion caused by high loads coming from multiple ports directed towards the

same output inevitably brings to frame accumulation in the internal memories. An analysis

of the situation of these memories over time can give important information on the switch

127

Table C.3 Test 7: Output FIFO overflow

FIFO depth [16 bits words] Time elapsed before FIFO out is full

212 433µs

213 1.56ms

214 3.73ms

215 8.9ms

216 17.3ms

performance: the test case 7 has been readjusted to generate the same traffic shown in figure

C.8 continuously (the same frames are repetitively transmitted in a loop also after 1ms).

The memories included in the Queues are never going to overflow since the Scheduler can

organize transmission towards the outputs fast enough to avoid congestion in this part of

the system (at least for a 5 port switch). A depth of 2048 words of 16 bits seems more than

enough to guarantee no overflow even for high traffic situations, since it can store two frames

of maximum size.

A different condition can be observed at the output: since all the frames need to be

transmitted at the out port 0, an accumulation of packet waiting for transmission occurs

in the corresponding output FIFO. As requested by the specification this buffer must be

considered “full” when there is no space for a frame of maximum size of 1518 bytes in it,

and if a queue tries to write a new frame in a full FIFO, this is ignored and lost to avoid the

corruption of frames already present in the memory; even if a real overflow is avoided this

situation is to be considered erroneous and must be avoided. The modified version of the

Test case 7 has been run for different sizes of the output buffer to see how this parameter

affects the moment the “overflow” occurs, and the results are presented in table C.3. Even

if these kind of loads directed towards a single destination port should not be present in an

AFDX network, where usually only 20% of the bandwidth is used, an output buffer larger

than 4096 words could be adopted to ensure overflow prevention in case of short burst on

various inputs especially when the switch has an high number of inputs.

It is important to notice that in a complete switch these results would be worse: in this

case the output FIFO is configured to start a transmission as soon as a frame is available

(in order to measure the technological latency of the switching processing alone), but this

means that the output port has a bandwidth of 8-bit*50MHz = 400Mbit/s. Therefore, when

only 100Mbit/s are available at the output, as in a real network, the output buffer overflow

would occur more rapidly. This is not a problem in previous tests where single-port traffics

are used, or where the goal is to evaluate the latency of the switch fabric alone.

128

C.1.8 Test test case 8

Objective: Verify that frames that do not respect their BAG are dropped

Description: This and the following scenarios are conceived to test the filtering features

required by the AFDX specification. In this test, the traffic policing algorithm is verified:

frames related to various VLs are sent to the switch respecting their BAG, and some non-

conforming frames are included in the traffic as well in order to check if they are recognized

and dropped. To make the waveform more readable in Figure C.9, only one VL is used for

each input, but more detailed tests have been run with multiple VLs arriving at the same

input, and with the same VL received by different inputs as well. In this figure, a transmission

with a BAG of 1ms is received on in port 0, another with BAG 2ms on in port 1, 4ms on

in port 2, and 8ms, and 16ms on the last two ports. All the frames that arrive after a time

equal to or grater than the corresponding BAG are considered valid, also when they have

an acceptable jitter. The nonconforming packets, on the other hand, are recognized and the

port n bad BAG flag of their port is asserted to force the Filter to discard it (by sending the

drop signal to the Queue that is saving it.

In Figure C.9, the erroneous frames are highlighted with a red box, and it can be observed

that the corresponding bad BAG signal is correctly asserted. No other packet has a bad jitter,

thus no other communication is dropped. In the image, the vertical lines of the grid mark

a 1ms time lapse, consequently it can be observed that the communication on port 0 is

correctly considered non conforming to its traffic policing when a packet is received before

1ms has passed from the last reception.

C.1.9 Test case 9

Objective: Verify that frames with a CRC that does not correspond to the computed

one are dropped

Description: Frames that contain errors, whose structure and bit values have been cor-

rupted during transmission, must be identified and discarded. In this scenario, one packet is

received at each input at the same time, and while the first two are correct, the ones received

at in port 2, in port 3, and in port 4 are erroneous. In the first one, an erroneous CRC

is included in the packet, in the other two one bit of the frame has been flipped and the CRC

is left as it should have been if no error were present, to see if this bit flip is detected. The

goal is to check if the system recognizes these three packets as faulty and discards them.

Figure C.10, where the entire simulation is included, shows that only the frames at port

0 and 1 are forwarded to the output, as expected, because a drop signal is set on the other

129

three paths causing the elimination of the erroneous frames from the network. In figure C.11,

the moment when the frames are recognized as erroneous is highlighted to show that when

the CRC computed by the input filter corresponds to the one included in the received packet

everything is correct, whereas if they are different, the drop signal is set high to tell the

corresponding queue to ignore the last received frame.

C.1.10 Test case 10

Objective: Verify that frames with non conforming size are dropped

Description: Like in the previous test, a filtering feature is tested here: the objective

of this simulation is to show how the system detects and eliminates frames with a non

acceptable size. The size of the frames received at each input is given in Table C.4: for

the first two ports, Smin and Smax have not been modified and the minimum and maximum

Ethernet sizes are used, but the incoming packet does not respect these boundaries; for

in port 2 and 3, frames with a size that would be accepted by the IEEE 802.3 standard are

used, but custom boundaries for the frame size are defined in the configuration tables. The

communication received at in port 4 is the only one conforming to the VL parameters that

must consequently be forwarded, all the others should be dropped. In Figure C.12, it can

be observed that the required functionality is correctly implemented and that all the non

conforming frames are detected and flagged, using the corresponding drop signal, in order

to them to be dropped by the corresponding Queue. Only the correct packet reached its

destination.

C.1.11 Test case 11

Objective: Verify that frames with an excessive latency are dropped

Description: The last test provided was conceived to show how the frames that spend

too much time in the internal queues are discarded since they must be considered too old.

The specification defines the max delay on a per port basis, thus independent from the VL

of the considered frame. To check this property, a fault has been inserted in the Scheduler

in order to skip the queue 0 while performing the Round Robin algorithm, thus preventing

it from forwarding the received frames and consequently adding an excessive delay to them.

Two frames are sent to the in port 0, i.e. to the faulty internal path of the system, and

two different VLs have been used for them, to ensure that the delay is determined on a per

port basis. To make the waveform easier to read, in this thesis the max delay has been set

to only 40µs even if this value is not realistic.

130

Table C.4 Test 10: Frame sizes

in port Frame size [bytes] VL Smin Smax

0 83 1 84 1538

1 1539 2 84 1538

2 500 3 700 1538

3 1100 4 84 1024

4 84 5 84 1538

As shown in Figure C.13, the two frames that have low priority are received and saved by

the Queue in the corresponding memory and, since no send signal is received, they remain

indefinitely there. The global latency timer is incremented each 1µs and its value is stored

when the last byte of a frame is received. next frame arrival is the arrival time of the first

frame in the head of the FIFO, and since no high priority frames are received in this test,

the low priority queue is considered. When the difference between the latency timer, that

represents the “now”, and the next frame arrival is higher than the max delay set for the

input port 0 the “next” frame is discarded; to drop a frame the queue treats it as if it was

transmitted (by incrementing the counter L frame tx, even if no transmission occurred, so

that the read pointer can move to the next frame in the memory. This behaviour can be

observed in the “drop 1st” and “drop 2nd” boxes: the arrival of the next frame to be sent is

1µs, so when the timer reaches 41µs the latency monitor determines that this frame excessed

the allowed maximum latency and mark it as sent, causing the frame counter to decrease by

one and the next frame pointer to move to the second frame that has been received after

12µs, which is dropped as well when the timer reaches 53µs

131

Figure C.1 Test Case 1

132

Figure C.2 Test Case 2

133

Figure C.3 Test Case 3

134

Figure C.4 Test Case 4

135

Figure C.5 Test Case 5 - first example

136

Figure C.6 Test Case 5 - second example

137

(a) (b)

Figure C.7 Test Case 6: (a) Overview; (b) Detail on the last received frame.

138

Figure C.8 Test Case 7

139

Figure C.9 Test Case 8

140

Figure C.10 Test Case 9 - overview

141

Figure C.11 Test Case 9 - CRC control

142

Figure C.12 Test Case 10

143

Figure C.13 Test Case 11

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ EN FRANÇAIS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LISTE DES ANNEXES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	1 CONTEXT AND OBJECTIVES
	1.1 The AVIO 402 project
	1.2 Project objectives
	1.3 Hardware platform
	1.3.1 Development environment
	1.3.2 IP modules

	2 AVIONIC DATA COMMUNICATION NETWORKS
	2.1 Overview of avionic protocols
	2.1.1 The CAN protocol
	2.1.2 The AFDX protocol

	2.2 Literature review
	2.2.1 CAN bus controller
	2.2.2 AFDX End System
	2.2.3 AFDX Switch

	3 CAN BUS CONTROLLER
	3.1 Specification and requirements
	3.2 Design
	3.2.1 Hardware vs. Software considerations
	3.2.2 Architecture

	3.3 Implementation
	3.3.1 Functional verification
	3.3.2 Migration towards ARINC 825

	4 AFDX END SYSTEM
	4.1 Specifications
	4.2 Proposed solution
	4.2.1 The Linux Ethernet protocol stack
	4.2.2 End System design

	4.3 End System development
	4.3.1 Hardware embedded system
	4.3.2 Software implementation

	4.4 Practical Problems and Lesson Learned

	5 AFDX SWITCH
	5.1 Specification and requirements
	5.1.1 ADFX switch specification
	5.1.2 Switch Fabric
	5.1.3 AVIO 402 requirements

	5.2 Core Design
	5.2.1 Hardware advantages
	5.2.2 Switch Architecture

	5.3 Synthesis results
	5.3.1 System size
	5.3.2 Timing
	5.3.3 Considerations on the implementation

	5.4 Test and validation
	5.4.1 Testbenches
	5.4.2 System behaviour
	5.4.3 Performance measurement

	6 CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY
	APPENDICES
	FSM implementation
	B.1 Queue implementation
	B.2 Manager implementation
	B.3 Scheduler implementation
	B.4 Filter implementation
	C.1 Switch Fabric test cases
	C.1.1 Test test case 1
	C.1.2 Test test case 2
	C.1.3 Test test case 3
	C.1.4 Test test case 4
	C.1.5 Test test case 5
	C.1.6 Test test case 6
	C.1.7 Test test case 7
	C.1.8 Test test case 8
	C.1.9 Test case 9
	C.1.10 Test case 10
	C.1.11 Test case 11

