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“Since  all  measurements  and  observations  are  nothing  more  than 

approximations to the truth, the same must be true of all calculations resting 

upon them, and the highest aim of all computations made concerning concrete 

phenomena must be to approximate, as nearly as practicable, to the truth. But 

this  can be  accomplished  in no other way  than by  a  suitable  combination of 

more observations than the number absolutely requisite for the determination 

of the unknown quantities.” 

 

Gauss, K. G. Theory of Motion of Heavenly Bodies, New York, Dover, 1963, p. 249. 
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RÉSUMÉ 

L’industrie nord-américaine des pâtes et papiers fait présentement face à plusieurs défis pour 

survivre dans le contexte actuel. Dans cette optique, le fait de pouvoir comprendre les marges de 

chacun des produits devient indispensable afin de déterminer un prix de vente optimal et de 

montrer la vraie rentabilité de la production. Cependant, les systèmes et les pratiques de 

comptabilité actuels basés sur des recettes prédéterminées ne fournissent qu’une estimation ad-

hoc de ces valeurs, et ne peuvent alors seulement servir que de point de repère pour l’évaluation 

de la performance. Par ailleurs, l’implantation des systèmes de gestion de l’information dans les 

entreprises papetières a permis une meilleure compréhension de la dynamique des procédés et des 

affaires. Ceci a d’ailleurs permis le développement de méthodes avancées qui les assistent dans le 

contrôle des coûts et donc dans l’amélioration de la rentabilité. Ces systèmes sont d’une 

importance capitale pour les producteurs de produits de commodité tels que les usines de papier 

journal, où de faibles coûts de production sont essentiels pour la survie des entreprises. 

Cette thèse a pour objectif de développer une méthodologie permettant une analyse en ligne des 

coûts manufacturiers pour l’évaluation des coûts marginaux réels, et d’utiliser cette information 

pour la prise de décision au niveau tactique et stratégique. Cette méthode utilise des données de 

procédés en temps réel et de coûts provenant du système de gestion de l’information de l’usine. 

De plus, l’information obtenue peut être exploitée au niveau stratégique de prise de décision afin 

d’évaluer les impacts des coûts de procédé de diverses alternatives de projets de rétro-installation. 

Cette méthodologie comprend trois étapes principales. Lors de la première étape, une technique 

de traitement de signaux, basée sur la transformation multiéchelle d’ondelettes et leur filtrage, est 

appliquée afin d’analyser simultanément chaque segment du réseau d’instrumentation de l’usine. 

Cette étape nettoie les données de mesures du bruit à haute fréquence et des anomalies, et cherche 

à identifier les périodes où le procédé s’approche d’un régime permanent. La seconde étape 

améliore davantage la qualité des données de procédés en comparant l’ensemble des variables de 

l’usine à un modèle fondamental de procédé. Cette information sur les procédés est mise à jour 

par coaptation et correction des mesures biaisées. Troisièmement, cette information 

opérationnelle est intégrée aux données financières dans un modèle de coûts axé sur les 

opérations afin de calculer et d’analyser les coûts de production de différents régimes 
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d’opération. Cette méthodologie a été appliquée à une étude de cas considérant une usine de 

papier journal et une implantation potentielle du bioraffinage en rétro-installation. 

Il a été constaté que le fait d’utiliser une combinaison de la technique des ondelettes avec les 

techniques de réconciliation de données classiques apportait plusieurs avantages au niveau de 

l’usine. D’abord, une implantation en ligne de cette technique a été en mesure de fournir un 

nombre important d’ensembles de données extraites du système de gestion de l’information de 

l’entreprise. Ces ensembles ont pu ensuite être utilisés pour représenter les opérations en régime 

permanent. Ils ont aussi fourni une base statistique suffisante pour caractériser la production 

selon différents régimes d’opérations. Ce faisant, la méthodologie a permis d’améliorer la qualité 

des données et d’identifier les endroits où l’incertitude des mesures était importantes. Pour le cas 

relativement simple de l’usine de papier journal, la technique a été en mesure d’obtenir plusieurs 

ensembles de données représentant les opérations avec un niveau de précision acceptable. Par 

ailleurs, la combinaison de cette implantation en ligne avec la méthode de réconciliation de 

données a permis d’améliorer la performance du système d’instrumentation en identifiant les 

appareils présentant des erreurs systématiques. De plus, il a été montré que si cette technique était 

implantée à l’usine pour une utilisation quotidienne, elle permettrait d’identifier les mesures 

erronées en temps réel, améliorant significativement l’instrumentation et le diagnostic des 

anomalies de procédés. Par ailleurs, l’évaluation des coûts manufacturiers des différents régimes 

d’opération a fourni de nouvelles façons de visualiser la structure de coûts de l’usine, permettant 

ainsi d’interpréter de façon transparente les coûts de procédé. À titre d’exemple, dans 

l’application de ce cadre méthodologique à l’étude de cas de l’usine papetière, les régimes 

d’opération les plus rentables et les plus coûteux pour la production d’un même grade de papier 

ont pu être identifiés. La caractérisation et l’interprétation des variances de coûts entre les 

différents régimes d’opération ont aussi permis d’identifier divers problèmes de production. 

L’application de cette méthodologie pour l’évaluation des coûts manufacturiers de scenarios de 

rétro-installation a montré la capacité de cette méthodologie pour utiliser les informations 

opérationnelles basées sur les régimes afin d’améliorer la prise de décision au niveau stratégique 

de l’usine. Par exemple, il a été montré que la rentabilité opérationnelle de nouvelles lignes de 

production intégrées dépend fortement de chacun des régimes d’opérations actuels de l’usine 

papetière. Les différences entre chacun de ces régimes peuvent ainsi être visible d’une 

perspective de procédé et permettent l’évaluation des marges des futurs produits et combinaisons 
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de produits. Entre autres, ces informations sur les différents régimes d’opérations permettraient 

d’améliorer la rentabilité de futures bioraffineries en fournissant l’information nécessaire pour 

utiliser de façon optimale la flexibilité des procédés selon les conditions de marché. 

Les travaux futurs comprennent l’élargissement de ce travail dans un cadre méthodologique pour 

l’aide à la prise de décision pour d’investissements stratégiques au niveau corporatif. De plus, 

une analyse des coûts marginaux basée sur les données réelles et sur une analyse de la 

performance des opérations pourrait être ajoutée à cette méthodologie afin d’analyser différentes 

options de procédés de bioraffinage forestier implantés en rétro-installation et différents niveaux 

de flexibilité.  
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ABSTRACT 

The North American pulp and paper industry currently faces many challenges. Due to its 

commodity-focused and capital intensive nature, the industry experiences increasing difficulty to 

survive in the current global market place. Knowing individual product margins becomes 

essential to determine the optimal unit prices, thus uncovering the real operating profitability of 

manufacturing. However, current cost accounting systems that are based on predetermined 

resource spending can provide only ad-hoc assessment of these values, thus serve only as a mill 

benchmark for cost performance evaluation. The implementation of information management 

systems in pulp and paper companies has enabled a better understanding of both business and 

production processes. This allow for the development of advanced methodologies that assist the 

forestry sector in better controlling costs and improving profits. These systems are of especially 

critical importance for commodity producers such as newsprint mills, where low production costs 

are essential for business survivability. 

The objective of this thesis was to develop a methodology for online manufacturing cost analysis 

using real-time process and cost data available from the information management systems that 

would be capable to assess actual product margin costs, and use this information for operational 

and tactical decision-making. Furthermore, the knowledge from applying this methodology can 

be explored in the strategic decision-making level for addressing the process-cost impact of 

retrofit design alternatives. This methodology consists of three major steps. First, a signal 

processing technique, based on multiscale wavelet transformation and filtering, is applied to 

simultaneously analyze every segment of the plant-wide instrumentation network. A second step 

further improves process data quality by confronting the plant-wide set of variables to the 

underlying fundamental process model using data reconciliation techniques. The plant-wide 

manufacturing information is updated by coaptation and correction of biased measurements. 

Third, this operational knowledge is integrated with the financial data in an operations-driven 

cost model to calculate and analyze production costs of operating regimes for short and long term 

benefits of the company. The methodology is applied to a case study considering current 

newsprint mill characteristics and potential retrofit biorefinery implementation.  

It was found that using a combination of the wavelet technique with classical data reconciliation 

technique provides multiple facility-level benefits. An online implementation of this technique 
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was able to provide a significant number of data sets that were extracted from the information 

management systems as potential candidates to represent plant-wide and near steady-state 

operation. These data sets have provided sufficient statistical basis for characterising 

manufacturing operation per different operating regime. By doing this automatically, the 

methodology was able to enhance the quality of data and highlight the manufacturing region 

where the uncertainty in measurements is significant. The number of near steady-state candidates 

that can be detected was increased, when state identification parameters were being relaxed. 

However, it was shown that the uncertainty in the resulting data sets is increasing with relaxing 

the steady state assumption. In the analyzed rather simple newsprint operation, the technique was 

able to acquire multiple near steady-state data sets representing plant-wide operation with 

satisfactory level of accuracy. Moreover, the on-line implementation in combination with data 

reconciliation method, helped to improve measurement sensor performances by identifying 

sensors with systematic errors. This valuable information was then used to tune individual 

instruments further, and hence improve the overall performance of the methodology. 

Furthermore, it was shown that if this technique is implemented at the facility level for everyday 

use, it would help identify biased measurements in real-time and thus improve instrumentation 

and process troubleshooting significantly. 

The manufacturing cost assessment based on these data sets that represent individual operating 

regime, has provided a new insights into the cost structure of the facility with transparent and 

visible process-cost interpretation capabilities. The application of the overall methodological 

framework, in the context of real production processes, has proved the ability to identify 

favourable and costly operating regimes when producing the same product grade. The 

characterisation and interpretation of the cost variances between individual regimes as well as 

within the same operating regime helped to identify process problems. Further application of the 

methodology for evaluating manufacturing costs of retrofit design scenarios have shown the 

ability to exploit the current operations-driven manufacturing knowledge based on regimes to 

enhance strategic decision-making at the facility. The results from this application showed that 

the operational profitability of new integrated production lines strongly depends on the 

operational differences in current manufacturing regimes of core business products.  These 

differences in manufacturing costs can be visible from a process perspective and enable 

assessment of individual future product and mix-product margins. This information is essential 
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for margin-centric supply chain planning of the enterprise and for exploring process flexibility to 

achieve an optimal production profile according to market conditions.   

Future work includes the expansion of this work into strategic investment decision-making at the 

corporate level in order to enhance tactical and strategic planning. Furthermore, marginal cost 

analysis based on real-data and operations-performance analysis could be included in the 

methodological framework in order to obtain more flexible forest biorefinery retrofit designs with 

good strategic fit. 
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CONDENSÉ EN FRANÇAIS 

L’implantation des systèmes de gestion de l’information dans les entreprises papetières a permis 

une meilleure compréhension de la dynamique des procédés et des affaires. Bien que les 

ingénieurs et les comptables incorporent maintenant les données en temps réel dans leurs 

pratiques quotidiennes, l’utilisation de celles-ci est souvent limitée pour la résolution ad-hoc de 

problèmes. L’information critique comprise dans ces données n’est souvent pas visible pour les 

gestionnaires. Les tendances des données sont étudiées, mais l’information est rarement extraite à 

partir des variables mesurées. Si les systèmes de gestion de l’information pouvaient être exploités 

à leur plein potentiel, les activités de prise de décisions stratégiques, tactiques et opérationnelles, 

seraient grandement améliorées par cet accès à une information nouvelle et pertinente. 

Les entreprises de pâtes et papiers fabriquent plusieurs produits de commodités selon des 

spécifications individuelles à chaque client pour satisfaire ces derniers. Le fait de pouvoir 

comprendre les marges de chacun des produits devient alors indispensable afin de déterminer un 

prix de vente optimal et de montrer la vraie rentabilité de la production. Les systèmes et les 

pratiques de comptabilité actuels ne fournissent qu’une estimation ad-hoc de ces valeurs. En fait, 

on émet généralement une hypothèse d’homogénéité des produits, se traduisant alors par une 

distorsion au niveau des coûts lors de l’analyse. Les méthodes habituelles de comptabilité des 

coûts basées sur les recettes ne peuvent alors seulement servir que de point de repère pour 

l’évaluation de la performance. D’autre part, les calculs de coûts réels obtenus par les méthodes 

traditionnelles ne fournissent que des coûts agrégés qui sont évaluées de façon top-down. La 

séparation de ces coûts agrégés en groupes de coûts correspondant à chacun des produits est 

généralement basée sur le volume, incorporant alors plusieurs variations du procédé en raison de 

perturbations au niveau des matières premières ou bien de la dynamique du procédé. Cette façon 

de faire est souvent loin de ce qui se produit en réalité, ce qui rend l’estimation des coûts peu 

fiable pour la détermination de la vraie rentabilité d’un produit. Les comptables et les ingénieurs 

de l’usine reconnaissent généralement que le taux auquel chaque usine génère des coûts peut 

varier considérablement, et ce, même lorsque ces usines fabriquent le même produit. Ainsi, 

pouvoir déterminer la véritable marge de contribution d’un produit représente un réel défi pour 

les comptables de l’industrie des procédés, étant donnée que les données de procédé et de coûts 

sont toutes deux biaisées. 
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Cette thèse a pour objectif de développer une méthodologie permettant une analyse en ligne des 

coûts manufacturiers pour l’évaluation des coûts marginaux réels, et d’utiliser cette information 

pour la prise de décision au niveau tactique et stratégique. Cette méthode utilise des données de 

procédés en temps réel et de coûts provenant du système de gestion de l’information de l’usine. 

De plus, l’information obtenue peut être exploitée au niveau stratégique de prise de décision afin 

d’évaluer les impacts coûts-procédé de diverses alternatives de projets de rétro-installation. Cette 

méthodologie a été appliquée à une étude de cas considérant une usine de papier journal et une 

implantation potentielle du bioraffinage en rétro-installation 

Une étape essentielle de cette méthodologie est la considération de la flexibilité et des différentes 

options de production. Les différents régimes d’opération ou façons d’opérer afin de fabriquer un 

produit doivent être clairement identifiées. Par exemple, pour le cas étudié, il était intéressant 

d’analyser la variabilité potentielle des coûts de diverses « recettes » utilisées pour produire un 

même grade de produit, mais utilisant différentes configurations de procédé caractérisées par 1) 

les différents points de consignes correspondant à une certaine qualité de pâte, 2) le type et l’âge 

des plaques de raffineurs, et 3) le débit de production. Ensuite, les trois étapes principales de la 

méthodologie ont été utilisées. Lors de la première étape, une technique de traitement de signaux, 

basée sur la transformation multiéchelle d’ondelettes et leur filtrage, est appliquée afin d’analyser 

simultanément chaque segment du réseau d’instrumentation de l’usine. Cette étape nettoie les 

données de mesures du bruit à haute fréquence et des anomalies, et cherche à identifier les 

périodes où le procédé s’approche d’un régime permanent. La seconde étape améliore davantage 

la qualité des données de procédés en comparant l’ensemble des variables de l’usine à un modèle 

fondamental de procédé. Cette information sur les procédés est mise à jour par coaptation et 

correction des mesures biaisées. Troisièmement, cette information opérationnelle est intégrée aux 

données financières dans un modèle de coûts axé sur les opérations afin de calculer et d’analyser 

les coûts de production de différents régimes d’opération. 

Lors de la première étape, l’espace temps-fréquence de chaque point de mesure du système 

d’instrumentation de l’usine est analysé selon la méthode de transformation et de filtrage des 

ondelettes proposée. Les données en temps réel sont purifiées du bruit à haute fréquence et des 

anomalies de procédés. De plus, elles sont utilisées afin d’identifier diverses occurrences de 

régime permanent. Deux étapes essentielles sont nécessaires pour initialiser la technique des 

ondelettes : 
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 Recueillir de l’information pour chacun des points de mesure et analyser les données 

historiques dans l’optique d’identifier la coupe optimale de transformée d’ondelette (WT) 

pour chaque variable, et  

 Analyser les données historiques pour initialiser les paramètres optimaux de détection des 

régimes permanents. 

Après avoir appliqué la transformée d’ondelette, le bruit gaussien et les anomalies sont extraites 

ou éliminées des tendances de procédé. Le signal sans bruit est ensuite analysé afin d’identifier 

l’occurrence de régimes permanents suivant une méthodologie en trois étapes : 

1. Le point de départ de la période de régime permanent est détectée en utilisant les 

caractéristiques de la WT et de sa première dérivée (valeurs prédéterminées du paramètre 

alpha) 

2. Les composantes à haute fréquence du signal mesuré qui n’ont pas été préalablement 

éliminées, sont extraites par filtrage. La durée du régime permanent peut ensuite être 

estimée. 

3. La fin du régime permanent est détectée en utilisant les caractéristiques de l’analyse de la 

WT. 

Cette analyse a d’abord été effectuée pour un petit sous-système de l’usine. Les résultats 

montrent que cette technique est robuste et peut améliorer significativement la précision des 

variables mesurées, tout en fournissant des candidats de régime permanent variables et multi-

variables. Ensuite, pour plusieurs variables présentant des comportements dynamiques 

importants, les hypothèses de pseudo régime permanent ont été relaxées en relaxant les 

paramètres de seuil pour la détection des conditions optimales de régime permanent. Les impacts 

de ces hypothèses vis-à-vis la précision des coûts ont ensuite été abordés afin de calculer les 

incertitudes reliées aux coûts. Les valeurs de seuil retenues sont directement reliées aux 

dynamiques du système impliquées dans l’hypothèse de régime permanent. Or, cette information 

est déjà calculée pour chaque variable, chaque sous-système et l’opération du procédé global. 

Cette dernière peut alors être utilisée pour améliorer les résultats de l’analyse des coûts en 

fournissant une valeur de confiance sur les marges d’un produit. 
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Lors de la seconde étape, l’exactitude et la validité des ensembles de données obtenus lors de la 

première étape sont améliorées par l’utilisation de la réconciliation des données basée sur une 

simulation. Cette étape est nécessaire pour fournir des données adéquates au modèle fondamental 

du procédé correspondant. Lors de l’étude de cas (usine de papier journal), plusieurs instruments 

mal calibrés ont ainsi pu être identifiés, et leurs valeurs erronées ont pu être ré-estimées et 

corrigées. La performance de ces instruments de mesure a donc été améliorée grâce à ces 

informations, qui permirent de mieux les calibrer. De plus, il a été montré que si cette technique 

était implantée à l’usine pour une utilisation quotidienne, elle permettrait d’identifier les mesures 

erronées en temps réel, améliorant significativement l’instrumentation et le diagnostic des 

anomalies de procédés. Une estimation des erreurs de mesure par la matrice de variance-

covariance est ensuite effectuée en se basant sur l’analyse de performance de l’instrumentation de 

l’étape de prétraitement. Les poids de confiance pour chacune des variables sont attribués avec le 

jugement technique de l’ingénieur. Cette étape de la méthodologie garantit que la représentation 

des régimes d’opération de l’usine soit en accord avec la modélisation de procédé. Ainsi, le 

réseau du système a pu être vérifié simultanément pour d’éventuelles erreurs systématiques, 

aidant les employés de l’usine dans leurs activités reliés à l’instrumentation et à la résolution de 

problèmes. Il a pu être démontré que l’échec de certains instruments de mesure, ou simplement 

une mauvaise calibration de ces derniers, menait à des activités de production plus coûteuses. 

Lors de la troisième étape, l’information caractérisant les différents régimes de production est 

utilisée conjointement avec les données financières de l’entreprise afin de développer un modèle 

innovateur de coûts basé sur les opérations donnant des informations pertinentes à propos des 

coûts manufacturiers, permettant ainsi d’évaluer les marges réelles de chacun de produit. Dans ce 

modèle, l’évaluation des coûts manufacturiers de chaque régime d’opération est basée sur les 

principes de la comptabilité par activités (comptabilité ABC). Le modèle de coût est développé 

avec le détail nécessaire pour extraire l’information liée aux changements lors de l’opération et 

aux modifications àla conception, et est utilisé pour évaluer les coûts de production par tonne 

pour chacun des différents grades de papier journal. Ainsi, les coûts manufacturiers directs et 

indirects de l’usine de papier journal à l’étude ont pu être caractérisés et interprétés afin 

d’identifier les régimes de production les plus rentables. Plusieurs implications ont pu être tirés 

des résultats de cette étude de cas pour générer des économies potentielles et procurer un 

avantage à court terme. D’abord, une amélioration de la compréhension et de la visibilité de la 
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structure de coûts de l’usine a permis d’effectuer une interprétation des variances de coûts entre 

l’hiver et l’été, et a aidé à identifier les coûts associés aux transitions. À titre d’exemples, il a été 

constaté que l’arrêt des unités de récupération impacte de façon considérable les coûts de 

production en été. Aussi, les modifications quant à l’alimentation en matières premières ont pu 

être traduites en termes de variance de consommation de vapeur, d’électricité et de produits 

chimiques. Par ailleurs, il a été constaté qu’une variance significative au niveau des coûts 

survient quelques temps avant une transition planifiée entre deux produits. Cette variance est 

principalement due au fait que certains paramètres du second régime d’opération sont utilisés 

avant même d’avoir terminé d’opérer selon le premier régime.  

Lors de l’application de cette méthode pour l’analyse stratégique de futurs projets de rétro-

installation, il a été montré qu’un modèle de coûts basé sur les opérations utilisant les principes 

de la comptabilité ABC permettait d’améliorer le processus de prise de décision en fournissant 

des informations additionnelles habituellement non considérées. En effet, le modèle de coûts 

présenté calcule les coûts reliés aux procédés de production et n’effectue pas seulement une 

évaluation des coûts des produits. Il est donc possible d’analyser les implications de l’utilisation 

de divers régimes d’opérations pour chaque future option de procédé de bioraffinage implanté en 

rétro-installation. Entre autres, ces informations sur les différents régimes d’opérations 

permettraient d’améliorer la rentabilité de ces futures bioraffineries en fournissant l’information 

nécessaire pour utiliser de façon optimale la flexibilité des procédés selon les conditions de 

marché. 

Les contributions les plus importantes de ce travail sont les suivantes : 

 Une méthode en ligne basée sur la transformation d’ondelettes et de leur filtrage qui est en 

mesure de fournir une représentation en régime permanent précise de petits sous-

systèmes. Cette méthode peut aussi représenter des systèmes à l’échelle de l’usine pour 

des applications industrielles où les opérations sont plutôt stables et simples. 

 Un cadre systématique pour l’analyse et la gestion des incertitudes lors de la 

représentation d’opérations près du régime permanent. Cette approche pragmatique peut 

être utilisée pour attribuer automatiquement un niveau d’infidélité à un ensemble de 

données près du régime permanent représentant un régime de production.  
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 Une approche pratique mais valable pour la validation par modèle de données de procédés 

basées sur des mesures en temps réel. Cette approche combine la technique de 

prétraitement par ondelettes et la réconciliation de données basée sur la simulation en un 

seul système capable de fournir des ensembles de données réconciliés pour des systèmes à 

faible redondance. 

 L’évaluation des implications économiques de procédés de fabrication par une approche 

reliant les données en temps réel et les données réconciliées de l’usine à  unemodélisation 

des coûts basée sur les principes de la comptabilité par activité. Cette approche unique 

aide à caractériser et interpréter certaines relations de coûts de procédé complexes, et aide 

à la résolution de problèmes liés aux procédés. 

 L’utilisation d’une technique unique d’épluchage de données de procédés qui caractérise 

les régimes d’opération à l’intérieur d’un environnement de production complexe. Cette 

technique permet d’analyser les coûts réels d’un procédé de production. L’information 

obtenue permet aussi de caractériser et d’interpréter les différences en termes de profit de 

différents produits et régimes d’opération, et fournit de nouveaux conseils pour 

l’amélioration continue.  

 L’évaluation des impacts des coûts de procédé et des implications de projets stratégiques 

de rétro-installation par la combinaison systématique de données en ligne de procédés et 

d’un modèle de coûts avancé basé sur les principes de la comptabilité par activité. 

L’utilisation d’informations réelles de procédés et donc d’une meilleure compréhension 

de la structure de coûts de l’usine permet ainsi une meilleure prévision de la performance 

future de l’activité principale de l’usine, et met en évidence les combinaisons de produits 

les plus rentables. 

Les aspects suivants constituent quelques possibilités de recherches futures : 

 La méthode présentée pour le calcul des marges de produit pourrait être utilisée afin 

d’effectuer une gestion de la chaine logistique, une planification et un ordonnancement 

centrés sur les marges. 

 Afin d’analyser différentes options de procédés de bioraffinage forestier implantés en 

rétro-installation et différents niveaux de flexibilité, une analyse des coûts marginaux 
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basée sur les données réelles et sur une analyse de la performance des opérations pourrait 

être ajoutée à cette méthodologie. 

 La méthodologie développée dans cette thèse a été appliquée pour caractériser, interpréter 

et guider les activités de réduction de coûts pour une seule usine. Ce cadre pourrait être 

utilisé pour analyser tous les sites de production d’une entreprise dans l’optique 

d’améliorer la planification stratégique de l’entreprise. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem statement 

Canadian pulp and paper products are mature and standardized commodity goods, many of them 

beyond their product lifetimes. Every day, paper manufacturers are being challenged by 

diminishing market conditions and by increasing resource and energy prices. Different corporate 

business strategies are being investigated to remain viable in these tough market conditions and 

to achieve short- and long-term competitive advantage. Today’s focus on managing at the 

strategic level by choosing the number of facilities, their locations, and their capacities is helping 

pulp and paper companies to reduce their enterprise cost curves temporarily. However, managing 

at the tactical level, in the facility itself, will not only tighten control of manufacturing costs at 

each individual mill, but will also provide critical information for long-term strategic planning 

and decision-making. To sustain a successful business in North America, however, these 

commodity products must first be manufactured at the lowest possible mill-level cost. Today, 

tactical or operating decisions are based mainly on information derived from mill benchmarking, 

home-grown cost accounting systems, or a combination of both. It is rare that this information is 

based on actual process measurement data from information management systems.  

In recent years, developments in information technology and management systems and their use 

in the pulp and paper industry have expanded significantly. The use of these systems is, however, 

still limited, and they are often used only for troubleshooting. To enhance production profitability 

and product quality, the information captured in real-time data could be used to promote the 

development of decision-making tools which would enable mill personnel to react promptly to 

process and market changes. One of the major opportunities for exploiting the information 

extracted from the data available from information management systems (IMS) in pulp and paper 

companies lies in the field of manufacturing cost accounting, where operating-cost-related 

efficiency improvements remain to be achieved. To grasp effectively the operating knowledge 

that resides within cost-accounting data, the underlying operating characteristics must be 

integrated with the cost data. Because traditional cost-accounting practices use top-down cost 

allocation per volume of production using weekly or monthly statements, some other approach 

must be used to account for process operations. Activity-based costing (ABC), which has been 
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developed in the last couple of decades, and its process-based characteristics could enhance 

production-cost modelling in the continuous manufacturing industries. Many companies, mostly 

in the discrete manufacturing industry, are saving millions of dollars through well-informed 

decisions based on results from ABC and its granular view of resource consumption. In the 

continuous manufacturing industries, however, only a few implementations have been done, with 

the majority occurring within oil and petrochemical companies. These home-grown enterprise-

specific practices are often kept confidential as company know-how and are not available to the 

public.  

Recently, a few applications of ABC-like cost accounting have been demonstrated in several case 

studies aimed at improving the visibility of manufacturing costs and using this information for 

higher-level analysis such as supply-chain management and retrofit design decision-making 

activities. The use of lower-level process data together with financial data in this “bottom-up” 

cost accounting approach has yielded a better understanding of complex continuous production 

environments such as those found in pulp and paper mills. In these high-level applications, the 

relatively long time scale used for cost modelling (weeks to years) is adequate. Further 

decreasing the time scale (to hours) for production cost assessment could enable tracking of 

actual product margins and their variations due to changes in operating practices. To do this, the 

biased process measurement data from information management systems must be corrected; 

otherwise, wrong cost information could distort the process-cost characterization and 

interpretation activities. Usually, data reconciliation techniques that enable validation of 

measured data against a process model are used for this task. This is a common practice in the 

petrochemical industry, where the fact that production remains fairly stationary enables the use of 

averaged process data (usually every hour) for data reconciliation. In a continuous manufacturing 

process which is characterized by faster process dynamics, several holding tanks, and process 

loops, data reconciliation results may result in an incorrect process characterization. In dynamic 

papermaking processes, regular use of data reconciliation with averaged measurements would 

provide an inaccurate process representation if not done carefully. Engineering judgment must be 

used to evaluate measurement trends to identify a time frame where data reconciliation could be 

used. This necessary step prohibits the use of classical data reconciliation in on-line applications 

for validating data from pulp and paper manufacturing processes. Furthermore, because of their 
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age and characteristics, pulp and paper facilities do not offer sufficient system redundancy in 

their instrumentation networks for classical data reconciliation techniques to be used. 

An on-line method that would be able to extract a measurement data set corresponding to a time 

frame when the manufacturing operation was near a steady-state process condition would be 

necessary to enable and facilitate the use of on-line data reconciliation in the pulp and paper 

industry. Generally, various types of filters are used to analyze the process status around a 

process unit or a small process subsystem. Very often, such an approach to process state 

identification fails because of the sudden occurrence of measurement spikes 

(outliers/abnormalities), resulting on false rejections of near-steady-state occurrence. 

Furthermore, for large systems or plant-wide applications, near-steady-state occurrence is not 

obvious because of the natural process dynamics involved between and within the individual sub-

systems. The combination of these difficulties prohibits on-line application of data reconciliation 

in pulp and paper facilities. If a method existed that would provide reconciled data across the 

entire plant-wide operation and that hence would represent accurately pseudo-steady-state 

operating regimes (characterized by operating practices), the appropriate advanced cost models 

could then provide a unique operating profitability assessment of these production processes. 

This approach would provide, for the first time in the pulp and paper industry, access to the actual 

operating margins for each product, enhancing significantly mill cost-control strategies and 

providing an opportunity to use this information for far-reaching applications.  

The aim of this work was therefore to develop a systematic methodology which would be able to 

provide valuable information on product operating margins for on-line industrial applications and 

to facilitate the use of this information to generate valuable decision-making knowledge. The 

near-steady-state detection technique should be able to detect and eliminate abnormalities, clean 

high-frequency noise from process data, and identify when plant-wide operation is near steady-

state conditions. The data reconciliation technique should be able to compensate for the lack of 

redundancy in pulp and paper processes and to incorporate steady-state detection tools to enable 

an automatic flow of information among tools. The cost-accounting framework should be able to 

capture cost-process relationships eloquently in the form of visible and transparent resource-

consumption insights. The cost analysis must further be able to analyze process cost impacts to 

generate a better understanding of the integration of new production facilities in retrofit design 

analysis. 
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1.2 Objectives 

The discussion in the problem statement leads to the formulation of the main hypothesis of this 

work, which is entitled, “On-line steady-state data reconciliation for advanced cost analysis in the 

pulp and paper industry”: 

Given the availability of data and the emergence of information management 

systems, significant improvements in the profitability of pulp and paper mills can 

be achieved by coupling real-time process information with product and cost 

information, and interpreting both on the basis of plant-wide reconciled pseudo-

steady-state data. 

This main research assumption can be divided into three sub-hypotheses: 

 Near steady-state conditions of a plant-wide operation can be identified from real-time 

data by using signal processing techniques based on wavelet transform. 

 It is possible to use reconciled process data representing near steady-state operating 

regimes for instrumentation and process troubleshooting in pulp and paper mills. 

 Product-based cost information can be assembled for continuous processes by resolving 

the product cost structure for different process operating regimes, thus providing 

information on the product operating margin in each case. 

Given the problem statement and the hypothesis as formulated, a systematic methodology was 

developed to demonstrate the value of the proposed framework in advanced production cost 

analysis for short- and long-term benefits. The methodology is presented through a case study of 

an integrated thermo-mechanical newsprint mill, which has the following objectives:  

Main objective 

 To develop a practical methodology for making available on-line plant-wide reconciled 

process and business data in a form suitable for advanced decision-making and to 

demonstrate the value of this approach using a case study.  

 

Sub-objectives 
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 To develop an on-line technique for analyzing process status and to identify when the 

manufacturing operation is near steady-state conditions. 

 To develop a process model for data reconciliation technique in order to acquire 

reconciled near steady-state data sets that represent plant-wide operating regime and 

that can be simultaneously used for detecting biased instruments. 

 To develop an operation-driven cost methodology that would systematically assess the 

manufacturing costs of an operating regime, with the ability to interpret cost variability 

and to use this information for the short- and long-term benefit of the company. 

 

1.3 Thesis organization 

This thesis is organized as follows: In Chapter 2 the relevant literature is reviewed in order to 

identify the gaps in the body of knowledge. The next chapter presents the methodology and the 

case study to which the methodology is applied. Chapter 4 synthesizes the results obtained in the 

process of demonstrating the methodology. In Chapter 5 general conclusions are given, followed 

by the contributions to knowledge and recommendations for future work presented in Chapter 6. 
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CHAPTER 2 LITERATURE REVIEW 

 

In this chapter, a critical review of pertinent literature was carried out. The thread of thoughts 

starts with section 2.1 covering the general principles of manufacturing costs assessment. Then, a 

critical review of classical cost analysis based on standard recipes and monthly spending, 

followed by the recent cost control improvements over the last decades.  

The assessment and analysis of process-based manufacturing costs requires using lower time-

scale than the traditional practices (hours). Essentially, this requirement creates the necessity to 

improve the accuracy of process characterisation. The representation of manufacturing processes 

must be based on reconciled process measurements (Section 2.2) in order to validate the 

measured variables with a process model, and thus make the overall fundamental manufacturing 

cost balances justified. Usually, production cost analyses are steady-state applications and hence 

section 2.3 deals with the pertinent literature done in the field of signal analysis for process state 

identification. 

2.1 Manufacturing cost analysis  

2.1.1 Introduction 

Every business environment must exploit some level of cost-control strategies in order to analyze 

its variability in performance. For this purpose, cost and financial accounting measures are 

exploited. Cost accounting is the pillar of the accounting framework that provides valuable 

financial insight to decision makers. Commonly, the information provided is confidential and is 

used only internally to help managers find the optimal way to maximize the company’s profits. 

The environment and the outcome of decision-making activities is the cost accounting system. 

Many business companies and production facilities use several various cost accounting 

systems for problem-solving. Considering that the limits of practice are entirely within the 

company’s control, the prepared cost reports can be based on whatever rules, standards, or 

rational bases. Generally, the cost accounting knowledge is exploited in the second pillar of an 

accounting framework, financial accounting. This branch of accounting deals with public 
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corporate information used solely for a company’s financial statements, and its preparation must 

follow generally accepted accounting principles (GAAP). 

The general control elements of cost accounting can be divided into three pools: material, labor, 

and overhead costs. Direct material and labor costs are generally variable costs and are a 

function of the number of units manufactured or sold. Overhead costs, on the other hand, are 

fixed costs that do not change with the level of production. For instance, management salaries, 

rent, or depreciation expenses do not vary from month to month, even though the rate of 

production is never the same. The ability to track these various cost elements accurately 

determines the value of the accounting system to final decision-making activities. In the early 

20th century, this task was not difficult because overhead costs were negligible compared to 

material and labor. However, it became more complex to account correctly for indirect and 

overhead costs once the face of manufacturing had shifted from a labor-intensive to a 

machine-intensive environment. 

Clearly, the ultimate goal in every organization should be to control these different types of costs. 

Often a company chooses to use only one costing system, even though there are several approaches 

available. The most commonly used in today‘s industrial practice are summarized in the table 

below: 

Table 2-1: Cost accounting systems 

Cost‐volume‐profit analysis Throughput accounting

Standard cost accounting Lean accounting

Resource consumption accounting

Activity‐based costing

Traditional costing framework Funcional or activity driven

 

The first two systems, cost-volume-profit and standard costing, are often referred to as 

traditional or normal costing and are used extensively in the pulp and paper sector. This 

traditional approach was created for the needs of the early industrial era when the total costs 

were dominated by variable elements (Enotes, 2011). The overhead and other indirect costs are 
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accounted for based on simple volume-based measures such as labor or machine hours. 

Therefore, a product with a low level of labor hours is allocated less overhead cost. However, 

the actual costs may be very different if this product requires special attention or testing. The 

resulting unit production cost becomes even more distorted when overhead and other indirect 

costs begin to dominate overall manufacturing costs. Then it is strongly recommended that other 

supplementary costing systems be used. The following four costing principles are rather new in 

management accounting. These enhanced costing methods belong to the group of functional-

based costing (FBC). The common factor of all four is the introduction of more levels of detail 

to the company’s cost structure. This is done by simply assigning and allocating the individual 

costs to the unit-level of operation. This approach then aggregates the granular representation of 

costs in to the mill level for cost reporting and/or cost control purposes. The allocation bases and 

drivers are expressed by the use of production throughput or direct labour hours and machine 

hours. Thus, individual processing units, subsystems and activities (departments) are 

characterised as the consumer of resources. The end products are then consuming these 

individual activities, instead of the direct assignment of all costs to end product.  

 Throughput accounting was developed for the enterprise-wide level, to help identify 

factors that limit the enterprise in achieving its established goals (Eliyahu 1992).  

 In lean accounting, the essential philosophy is to preserve value with less work. This 

approach was developed for the car industry which was aiming to eliminate waste while 

simultaneously minimizing production costs and time, using techniques such as poka-

yoke (Robinson 1997) or value-stream mapping (Rother 1999).  

 Resource consumption accounting (RCA) is a fully integrated and complex managerial 

approach that uses available state-of-the-art methods. The combination of the German 

Grenzplankostenrechnung (GPK) cost management system and activity-based costing 

principles create a system that can be used and interpreted by non-accountants. The next 

two sections explain more in details the cost structures and cost practices that are 

incorporated within these different types of cost accounting system. 
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2.1.2 Traditional cost accounting practices 

Generally, continuous industry such as mining, pulp and paper, in some cases petrochemical and 

chemical industries use accounting practices that are dominated by traditional costing, because of 

its simplicity and the wide understanding of this approach among accountants. An important part 

of standard costing is a variance analysis. By breaking down the overall variance into the three 

pools listed below, this analysis helps managers identify where the difference between actual and 

budgeted costs has occurred (Table 2.2): 

Table 2-2: Example of some of the elements of traditional cost variance analysis 

Cost‐volume variances

Material‐cost variation

Volume variation

Labor‐cost variation  

This valuable information assists managers to identify the source of the overall cost variance, but 

not the cause of it. For instance, if the variance is largely due to material-cost variation, 

accountants with the help of process engineers need to drill down into historical process data to 

interpret the variance and take appropriate action. 

The problem is that traditional costing considers all costs as variable with regard to production 

volume. This often creates inaccuracy in fixed costs whenever the volume of production 

changes. Furthermore, arbitrary rather than cause-and-effect overhead allocation makes the 

traditional approach highly inappropriate in a multiproduct environment. Another problem in the 

current general accounting profession, not only in the forestry sector, is the emphasis on 

financial accounting. Most of the time, decision-makers must create their own cost analysis 

based on financial accounting reports. However, these statements contain aggregated and 

distorted costs with no activity data incorporated, leading to poorly informed decisions. There 

are a few existing advanced systems at the academic level (operations-driven cost modeling 

developed by Janssen, 2011; cost-function modeling by Fogelholm, 2000) or already being used 

by advanced processing industries such as the petrochemical sector. The pillar of these 

approaches is the principles of activity-based costing, which is briefly discussed in the following 

section. 
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2.1.3 Activity based costing accounting 

Activity-based costing (ABC) is a new philosophy that emerged in the 1980s in response to 

overhead allocation discrepancies (Kaplan 1989). By simply adding an activity as a link between 

resource consumption and a cost object, the knowledge of costs incurred in the organization is 

improved significantly. The activity becomes a fundamental cost item whose value is directly 

assigned to the final cost objects such as products and customers. In other words, the rate of 

resource spending is traced to an activity, and the activity is then traced to the product, as shown 

in Figure 2.1 (Korbel and Stuart (c))  

 

Figure 2.1: Activity-based costing and traditional costing 

The significant advantage of using ABC is that it attempts to assign all costs to final cost objects, 

including marketing, engineering, and administrative costs. This added ability to trace indirect 

costs directly enables accountants to track overheads rationally and as closely as they track direct 

costs. This is done by making use of so-called drivers. As shown in Figure 2.1, resources are 

linked to activities by resource drivers, and similarly activities are linked to cost objects by cost 

drivers. According to this definition, resource drivers determine the amount of a resource 

consumed by each activity, while activity drivers specify how different cost objects (products, 

customers) consume these activity costs. Labor hours, kWh, and number of shipments are 

examples of resource drivers, whereas number of customers and number of products are 

examples of the second stage, the activity driver. The difference between these drivers is that the 

former focuses on why things happen and the latter on what happens (Emblemsvåg and Bras 
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2001). The implementation of an ABC system may be a complex and expensive task, and 

therefore it is important to determine the minimum number of appropriate drivers that will meet 

accounting objectives. 

As shown in Figure 2.1, the process-oriented character of ABC means that it is implemented in 

two simple and logical stages, while structure-oriented traditional costing is implemented in one. 

This fundamental principle is the basis for increasing the accuracy of the cost data (Drucker, 

1996). Traditional costing cannot encompass this critical linkage between actual causes and 

associated costs. Furthermore, advanced ABC has recently evolved into multistage systems 

where individual activities can be used by other activities before being used by final cost objects, 

thus enhancing even more the accuracy of cost modeling (Emblemsvåg and Bras, 2001). 

In a continuous manufacturing context, the process-oriented character of an ABC system and the 

causal relationships between cost drivers and activities make the method highly suitable for 

modeling and analyzing costs. The availability of real-time cost and process data from 

information management systems (IMS) makes ABC easier to implement. It must be made clear 

that ABC is a cost accounting system that can help managers understand their actual costs and 

improve their profits efficiently. Traditional methods are complementary to the financial 

reporting prepared according to GAAP. 

2.1.4  ABC-like cost accounting 

A cost accounting system that is used by a wide spectrum of industries is the resource 

consumption accounting (RCA), whose development has been strongly influenced by German 

cost accounting and ABC principles. The structure is very close to variable costing, a well-

documented method discussed in cost accounting textbooks, but rarely used by industry. RCA 

and its variations are extensively used by advanced processing industries such as mining, 

petrochemicals, and chemicals. Often their costing methods are confidential and inaccessible to 

the public or to researchers. In general, RCA is based on three fundamental pillars (for further 

details, the reader should refer to Friedl and Kupper (2005)): 

 View of resources: The use of a high volume of cost pools establishes a clear linkage 
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between resource spending and a company’s costs and revenues; 

 Quantity-based model: The value of the costing system is created in this pillar by the 

use of operations data and models. Traditional costing uses the output of variance 

analysis with dollar values, which create overhead-costs bias due to their fixed nature. 

By contrast, RCA exploits causal operational relationships; 

 Cost behavior: Understanding the nature of costs is a very important aspect of the 

third pillar of RCA. The clear distinction between direct, indirect, variable, and fixed 

costs is based on aggregating pools. 

There have been significant changes in recent years, although not well documented; some 

forestry companies are approaching now ABC-like costing for improved decision-making 

activities. For example, Fogelholm (2000) has discussed the difficulties of product costing in the 

paper making industry and its potential industrial application. This approach is now a pillar of 

Metso Automation's MetsoDNA - Dynamic Network of Applications (Metso, 2011) that some 

companies are presently using for product-customer decision making as well as it helps their 

budgeting activities. The application seek to anticipate and determine the resource requirements 

for the next individual customer orders based on current raw material content, dimensions and 

quantities of the paper product (Fogelholm, 2004). 

Several applications of process-driven accounting frameworks have been developed based on 

ABC philosophy with potential industrial applications. For example, an approach that integrates 

ABC principles with environmental metrics to perform analytical economic and environmental 

assessment for decision-making activities was developed by Emblemsvåg and Bras (2001). Their 

activity-based cost and environmental management (ABCEM) system is extensively discussed 

in their 2001 book. The use of an uncertainty variable introduces extra complexity and versatility 

into the system. The ABCEM has been applied to a wide range of industries including 

furniture, carpets, and supply vessels, where it has provided insights and highlighted potential 

areas for improvement.  

Lastly, a sophisticated ABC-like approach that integrates process and cost information into one 

system is called operations-driven costing (Janssen and Laflamme-Mayer 2011) method. The basis 

of this approach is in making a link between costs and process operations data using principles 

similar to those of activity-based costing. This approach is similar to RCA in some aspects, but 
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is more versatile because it includes an in-depth engineering understanding of the process 

operation. The following section discusses this approach in more detail. 

2.1.4.1  Operations-driven costing approach 

The operations-driven costing approach (ODCA) is an interdisciplinary approach developed by 

accountants and process engineers in the pulp and paper industry. Understanding the cost of 

process performance is a critical success factor for paper mills. Chemical and process engineers 

are concerned with developing systematic tools and methodologies for both optimal design and 

optimal process operation. These procedures range from nano to industrial scales (Puigjaner, 

2006). The concept can be understood from the supply chain point of view, where on the one 

hand, product quality is determined on the nano or micro scales, and on the other hand, the desired 

product properties are determined by its functionality and structure (Figure 2.2 Grossmann, 

2005). 

 

Figure 2.2: From micro scale to macro scale complexity or the “chemical supply” chain 

In the pulp and paper industry, fiber micro properties influence the quality of pulp and paper 

products. On the macro industrial scale, as an analogy to the principles presented on the figure 
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2.2., a reflection of the micro complexity of the fiber structure can be brought to light using 

information extracted from real-time data through IMS. The most practical way of doing this in 

the pulp and paper industry is to develop tools and methodologies for macro or mega scale 

applications that are based on real-time data and that reflect the meso and micro scales according 

to the general chemical-engineering definition of complexity levels. 

Janssen and Laflamme-Mayer (2011) developed an operations-driven cost modeling framework 

to provide in-depth understanding of resource consumption by integrating process and cost data. 

The bottom-up structure (Figure 2.3, Laflamme-Mayer, 2011) provides mutual communication 

between different business levels. The resulting generic framework can be used to enhance the 

understanding of manufacturing processes both for design and for operational decision support. 

 

 

Figure 2.3: Overview of the bottom-up process-based approach 

Later, Laflamme-Mayer (2011) presented in work an application of operations-driven cost 

modeling to assess the production costs for different product campaigns. This information was 

then used for planning and scheduling and optimization of high-level supply-chain analysis. The 

understanding and differentiation of product margins for each campaign can be used to enhance 

the current ad hoc representations of product margins. This versatile view of manufacturing costs 

in the paper industry is revolutionary and has tremendous value for reducing production costs. 
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Figure 2.4: Comparison of standard cost, actual grade cost, and operations-driven grade costing 

Figure 2.4 (Laflamme-Mayer, 2011) compares standard costing with actual and operations-driven 

costing information. Standard costs represent how the resources should have been used to 

manufacture a particular grade; actual grade costs are the true resource consumptions at the end 

of the three-month period. The operations-driven grade-cost assessment breaks up the three-

month period into segments corresponding to campaign runs. From these results, it is clear 

that manufacturing the same product varies significantly from one campaign to another. 

 

2.1.5 Product profitability assessment 

In the continuous industries, such as pulp and paper producers, the multiple-product 

environment is characterized by numerous customers with different needs and corresponding 

product specifications and prices. It is therefore crucial to understand individual product 

margins; however, as discussed above, the current cost practices and systems provide only 

approximate values that are based on time-framed (usually monthly) spending information. 
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These traditional accounting systems use practices that aggregate costs over the manufacturing 

period and use a standard recipe, e.g. it is based on experience from the process operation. This 

overall cost information incorporates various changes in process operation due to mechanical 

(process) or raw material disturbances. By experience and understanding of production, 

engineers and accountants can recognize that within the manufacturing period, the generation of 

cost differs from one product to another as well as within the production process for the same 

product. However, it is not a simple task to determine these cost variances. First, current 

accounting practices cannot accommodate cost information from a process perspective, and 

second, the discrepancies in the current cost data are significant. In 2003, a survey by Ernst & 

Young and the Institute of Management Accountants (Ernst and Young, 2003) indicate that 

98% of respondents claim that cost reporting is distorted, with indirect costs and overhead 

allocation being the main biases reported, and almost 40% believe that the cost data they 

receive are significantly inaccurate. The following section summarizes several pertinent 

applications to determine product margins in the continuous industries: 

 Operational Performance Simulator (from Acorn Systems©) - the engine of this 

application is the integration of operational data with financial planning software. It 

allows decision makers to create proactive plans and analyze different operational 

scenarios. The ABC character of the application is providing enhanced cost-control via 

benchmarking key performance indicators. The applications are based on standard costs 

and use several real-time data points for benchmarking purposes. 

 Fogelholm (2000) has developed a methodology for product costing in the paper making 

industry and for its potential industrial application (Metso Automation's Metso DNA ©). 

The use of standard drivers (instead of real-time data) for profitability assessment 

enhanced the insights and understanding of the cost variances between different 

productions recipes.  

  Quesada-Pineda (2004), the use of ABC was explored for forestry and wood sector. The 

methodology is based on classical ABC principles. The division of different operating 

activities into batch tasks helped indenting optimal sequence of production. 



17 

 

 SAS® Profitability Management – the profitability assessment provides increased 

analytic power and faster results based on ABC principles. This power allows ABC 

analysis of complex business models. Several petrochemical facilities use SAS® 

Profitability Management for real-time profitability analysis. Different tools of data 

mining and statistical analysis are used for results transparency uncovering the hidden 

insights into various drivers of profitability. This system is based on reconciled data 

using Simagine© form OSISoft®. However, very often biased values in business data 

were reported due to process data inaccuracy. 

 Laflamme-Mayer (2011), application of ABC-like cost accounting to address the costs 

of production in different product campaigns, and use this information for supply chain 

optimization. The ABC-like character of cost accounting system used, have provided 

improved insights into production costs, and helped to enhance the overall corporate 

profitability. 

2.1.6 Manufacturing costs assessment for retrofit design evaluation 

Generally the main financial indicator in retrofit design assessment is the profitability of the 

project with the emphasis on profitability of the future operation. The profitability of the projects 

are expressed by different types of metrics, e.g. return on investment (ROI), turnover ratio and 

payback time), and more recently characterised measures, such as discounted cash flow rate of 

return, net present value (NPV), or internal rate of return (IRR) (Dimian 2003). For profitability 

of the future operation, different types of manufacturing costs such as variable costs (materials, 

energy, and chemicals) are generally estimated using monthly statements and different 

purchasing measures. The level of variable costs must be calculated based on material and energy 

balances. On the other hand, the fixed and indirect manufacturing costs (maintenance, 

administration, labour, operating supplies, insurances, rents, other overheads, etc.) are estimated 

based on the predetermined rules for the operating requirements. For this purpose very often 

ratios and factors of capital investment costs are exploited (Dimian 2003). 

Financial analysis for process retrofit projects usually seeks to evaluate capital investment cost 

and ignores the necessity to account for evaluating operating cost. However, recently some work 

have been done using advanced accounting methods for continuous process industries  



18 

 

 

 Janssen (2007) have introduced the use of operations-driven cost modelling in a single-

product and multi-feedstock system retrofit design problems. The industrial case study 

was looking at the increased deinked pulp production and cogeneration at an integrated 

newsprint mill. The drivers characterising resource and activity consumptions were 

defined by the use of data from the information management systems. The processes of 

new retrofit options were simulated by suing simple first principle analysis.  Fixing by-

product cost flows was used to approximate the main product cost flow between activities 

and overhead costs. This cost information have allowed for further used in net present 

value analysis of the design projects and compare different alternatives. 

 Janssen et al, (2011), presented a generic retrofit process design methodology uniting 

process and supply chain level assessment steps. The particularity of this sustainable 

design methodology is that: 1) generation of design options is based on process data, 

techno-economic study and environmental impact analysis; 2) operations driven cost 

modelling; 3) Life Cycle Analysis and Supply Chain –level profitability assessment; 4) 

multi-criteria decision making (MCDM) process for selecting the preferred design option 

using the whole set of criteria covering economic, environmental and supply chain 

profitability. 

 Sadhukhan (2008) presented a new methodology for retrofit process design based on 

value analysis. A design superstructure was formed summarising all retrofit alternatives 

and then linear mathematical programming was exploited to identify the optimal 

operating conditions in each of the subsystems of the whole master problem. Next, for 

manufacturing cost evaluation, these favourable operating states are selected. Cost 

association between multiple results of operational segments are not considered, e.g. all 

products of the segment are assigned the very same manufacturing costs. The 

methodology was applied to a case study being oil refinery. 

 Janssen et al, 2011, explored the use of marginal costs of energy (steam and electricity) 

and the impact to production rate change on project profitability using the ABC-like 

costing method. The results indicate that system constraints govern in that specific 
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context and that design capacity was the most suitable with regards to all marginal 

performance measures. (Janssen, Naliwajka et al.). 

 Hytönen and Stuart, (2010), presented a sophisticated methodology for identifying 

promising retrofit integrated forest biorefinery strategies - design decision making under 

uncertainty. In his work, ABC-like accounting was used to improve transparency into 

uncertainty of raw material prices on production costs.  

 Process integration investment decision making was studied by Berntsson et al. (2009) 

under uncertainty, focusing on improving energy efficiency. Several process integration 

tools were used consecutive steps.: pinch analysis, process simulation and optimisation 

and scenario planning  

In summary, if production facilities are able to determine their actual values of individual 

product margins, the implications are enormous. In order to do this actual operating knowledge 

must be involved. The use of IMS becomes pertinent to extracting process measurement data 

that provide knowledge about the underlying process. However, the lack of reliability in certain 

measurements as well as the lack of instrumentation on site makes this task very challenging.  

2.2 Process data reconciliation 

2.2.1 Introduction 

The data reconciliation problem is an old industrial application which was proposed first by 

Kuehn and Davidson (1961) to minimize the error between measured data and the underlying 

process model. Since they first published their pilot solution to the linear steady-state data 

reconciliation problem, further studies have led to progress in this area. Crowe (1996) proposed 

to solve the non-linear data reconciliation problem by successive linearization. Liebman and 

Edgar (1988) demonstrated that reconciliation results can be improved by non-linear 

programming instead of successive linearization when solving the non-linear data reconciliation 

problem. Tjoa and Biegler (1991) showed that non-linear programming together with a 

contaminated normal (Gaussian) objective function other than the least-squares objective 

function can improve the results further. Many other developments in data reconciliation and 
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gross error detection have been proposed in numerous papers (Arora & Biegler, 2001; Johnston 

& Kramer, 1995).  

The most usual estimator exploited for data reconciliation is the weighted least-squares estimator, 

which is very sensitive to the potential presence of systematic errors, often referred to as gross 

errors. If gross errors exist in the measurement data, the weighted least-squares estimator will 

yield incorrect estimates which will then significantly deflect reconciliation of other 

measurements. The critical task of identifying the presence of gross errors and estimating their 

values remains a challenge in practical industrial applications. Several methods to solve this 

problem have been proposed, for instance, the measurement test gross-error detection method 

presented by Tamhane and Mah (1985) and the modified iterative measurement test gross-error 

detection algorithm presented by Serth and Heenan (1986). Other statistical approaches have also 

been used, such as the generalized likelihood ratio (Narasimhan & Mah, 1987), the maximum 

power test (Crowe, 1992), and the principal component test (Tong & Crowe, 1995). The method 

proposed here exploits the statistics of the historical measured process data. The analysis of each 

measured variable is compared to its historical values. If a change is detected, then the current 

systematic error is estimated, and the biased measurement value is corrected. Data reconciliation 

is then repeated with the new corrected value of the measurement. 

2.2.2 Formulation of data reconciliation problem 

Measured data quality affects not only the quality of high-level tasks such as optimization and 

cost accounting, but also the quality of any estimated process model. Therefore, reliable and 

consistent measurement data play an important role in process plants. Random and gross errors 

can result in poor-quality measured data. Data processing and data reconciliation can be 

beneficial in minimizing measurement errors. The general form of data reconciliation is the 

minimization of measurement errors subject to the constraints of the physical process. Random 

errors are minimized by the use of data processing techniques and refined further in a 

reconciliation step. However, systematic errors must be identified and estimated before 

reconciliation. For a steady-state application, inconsistencies between instrument values and a 

steady-state process model are also caused by process dynamics. In this case, data reconciliation 

helps to distribute the errors caused by the steady-state assumption systematically onto the whole 

set of variables while still satisfying the underlying process model. For purposes of illustration, 
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Figure 2.5 presents a simple data reconciliation problem around a single unit, a splitter. The 

illustration shows the minimisation problem on the variables (for simplicity in illustration the 

third variable is equal to 100 and is considered to be as “perfect” measurement). The physical 

constraint is a steady-state process model. The measurements are an average values within the 

steady-state duration (the length of steady-state must correspond to at least the time lag of the 

splitter processing unit) 

 

Figure 2.5: Example of the data reconciliation concept around a splitter 

A simplified mathematical formulation of the data reconciliation approach may be written as the 

weighted least-squares minimization problem of the difference between measured/unmeasured 

and reconciled values of variables with regard to instrument and process characteristics: 

Equation 2.1: General formulation of data reconciliation problem 
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Subject to: mass, energy, component balances 

With an assumption of normally distributed random errors with no systematic errors present, this 

constrained minimization procedure was first introduced by Kuehn and Davidson (1961). It is 
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important that analytical or hardware redundancy1 of measured variables be present if data 

reconciliation is to be performed. The character of the problem represented by Equation 2.1 

depends on the formulation of the constraints, e.g., linear, non-linear, or dynamic. Furthermore, 

data reconciliation not only validates and estimates measured values, but also provides estimates 

for variables that are not being measured (often referred to as a coaptation process).  

Many methods in the literature provide simplifications and solutions of the problem stated in 

Equation 2.1 by eliminating the unmeasured process variables from the problem statement. In 

linear data reconciliation, Crowe (1983) used a projection matrix method to decouple the 

unmeasured variables from the constraints. Other methods have also been used, such as a Gauss-

Jordan elimination procedure (Madron, 1992) and QR decomposition (Sanchez, 1996). For non-

linear data reconciliation, the procedure is based on successive linearization of the constraints, 

and the resulting simplified problem is then solved using Crowe’s (1983) projection matrix (Pai 

and Fisher, 1988, Liebman 1988, Veverka, 1997). Crowe (1986) extended his previous technique 

to non-linear (bilinear) processes by a two-step projection matrix technique which significantly 

reduced the computational effort for bilinear systems. Many other authors have addressed the 

computational challenges of data reconciliation for particular cases. However, there is a lack of 

practical applications to the pulp and paper industry, which is to some extent due to the low 

system redundancy of the papermaking operation. Monitoring of a sufficient number of variables 

to ensure redundancy is limited by installation and maintenance costs (Jacob, 2003), inaccurate 

measurement techniques, and the current unavailability of instrumentation. Hence, reconciling 

process data in the pulp and paper mills becomes a challenging and often impossible task. 

2.2.2.1 Weighting matrix estimation 

The success of data reconciliation methods generally depends on the hypothesis that the errors 

are normally distributed, and hence on the quality of estimation of the variance-covariance 

matrix. This symmetric and positive-definite matrix quantifies the uncertainties in each 

                                                 

1 It is said that a measured variable has hardware redundancy if two instruments are used to measure its value. On 

the other hand, analytical (software or spatial) redundancy of a variable is ensured when its value can be estimated 

in two independent ways, e.g., by a measurement and by a value from a process model. 
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instrument value (Benqlilou, 2004). If the process is truly at steady state, the covariance matrix 

can be estimated by the direct method (Bagajewicz, 2000), which is simply a sum of standard 

deviations within the time of the true SS. The mean value can be calculated as: 

Equation 2.2: Weighting matrix estimation 

           

 and the covariance matrix can be estimated as: 

Equation 2.3: Covariance matrix can be estimation 

           

where n is the duration of true steady state and y is the measurement set. This direct estimation of 

the covariance matrix helps to correct instrument values on an optimal statistical basis. Because it 

is known that the process is never at true steady state, the process of estimating the variance-

covariance matrix becomes more complex (Gedeon, 1984; Crowe, 1996; Chen, 1997). 

A highly simplified and common practice in industrial applications is to use engineering 

judgment for matrix estimation by allocating uncertainty weights to each instrument (Narasimhan 

and Jordache, 2000). This pragmatic approach, which is also used in the current study, takes into 

account knowledge of the process dynamics around each particular instrumentation sub-network 

as well as information about each instrument’s accuracy, precision, and reliability. 

2.2.2.2  Gross error handling 

Because data reconciliation is limited to the elimination of random errors, systematic errors must 

be eliminated a priori. There are generally two principal issues linked to gross error (GE) 

handling, e.g. the gross error detection and its value estimation. Furthermore in any proper GE 

detection technique, the four following points should always be addressed: 

 GE detection – possibility to identify the existence of one and/or multiple GEs in the 

measurements 

 GE location – possibility to locate one or multiple gross errors 
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 GE identification – possibility to determine the GE type, 

 GE estimation – possibility to estimate the magnitude of GE. 

Several methods are available to do this, ranging from pure statistics through neural networks to 

time-series screening. The efficiency and practical usefulness of the statistical approaches seem 

to be superior to the others. In the present work, historical knowledge about the potential 

locations and relative sizes of biases is used. This approach can be situated in the framework of 

measurement adjustment using statistical methods such as the measurement test (Mah, 1982 or 

Crowe, 1983). In this type of method, the data are first reconciled, and then each measurement 

point is tested for possible bias. If gross errors are present, then their values are estimated by 

solving a simple non-linear problem (McBrayer, 1995): 

Equation 2.4: Gross error estimation 

 

s.t.  f(y) = 0       

ymin < yi < ymax 

bmin < bi < bmax 

B(y,b) = (-)i-1… + [(yi – (ymi-bi))/si ]
2 + …(-)i+1 

where yi is the ith measured variable, i y is the ith estimate, si is the measurement noise standard 

deviation of the ith measured variable and bi is the estimate of bias on the ith measured variable. It 

must be noted here that the bias, bi is also included in the inequality constraints which allows for 

setting limits on the range of biases that are admissible. Once the values of the gross errors are 

known, the biased measurement value is corrected, and the data reconciliation procedure can be 

run again. The process is repeated until convergence to a minimum value of squared error is 

achieved. 
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2.2.3 Plant-wide data reconciliation 

In large-scale applications such as plant-wide optimization or cost modelling, the need for 

reliable2 and consistent3 plant-wide data sets is critical. To reconcile process data plant-wide, it is 

common practice to use a data set that consists of averaged variables over a specific, fairly 

stationary time period. However, the discrepancies in the measurements are due not only to 

random errors (assumed to be normally distributed), but to process dynamics as well. Clearly, 

this type of error does not follow the assumption of a normal distribution. Bagajewicz and Jiang 

(2000) has shown that in systems with no significant hold-ups, this error can be neglected. 

However, a papermaking operation is a collection of unsteady-state manufacturing processes with 

many hold-ups and recirculation loops; hence, significant error may be created if averaged 

process data are used with no systematic approach. 

A different approach to plant-wide data validation is dynamic data reconciliation, which has 

received significant attention within the last decade, although large-scale industrial applications 

still remain to be developed. Clearly, the inhibiting factor is the high computational requirements 

of these procedures. However, with today’s advances in information technology, and considering 

that processes are actually never at steady state, it may be better to consider using dynamic data 

reconciliation techniques even for near-steady-state processes (Narasimhan and Jordache 2000). 

On the other hand, from a practical perspective, for on-line applications, it would be wise to 

extend steady-state reconciliation to deal with dynamic situations (Benqlilou, 2000). Process 

optimization and process control would undoubtedly benefit from dynamic data reconciliation; 

however, for cost modelling, steady-state, not dynamic, data sets are required. In fact, as 

mentioned by Bagajewicz and Jiang (2000), for the time being, there are more pressing problems 

to resolve, for example gross error detection, which is closely related with the problem of data 

reconciliation. 

                                                 

2 “Reliable process data” refers here to estimated variable values that are close to the true values of the process 

variables. 

3 “Consistent process data” refers here to data sets that are consistent with the underlying process model. 
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Several publications are devoted to gross error handling, and many methodologies and techniques 

have been proposed. However, our capabilities to detect and correct gross errors are still limited. 

As for current commercial software available for gross error handling, the main technique used 

today is the serial elimination strategy. As mentioned by Bagajewiczand Jiang (2000), vendors 

need to improve their strategies, for example by implementing methodologies to handle 

uncertainty and to enhance processing of gross errors in an industrial context. 

2.2.4 Industrial applications of data reconciliation 

Many commercial software packages for process analysis and simulation today provide 

integrated functionality for data reconciliation. All these applications are for linear steady-state 

data reconciliation. Bagajewicz and Rollins (2002) discussed the functionality of one academic 

and eight commercial packages and concluded that most of them deal with material and 

component balances. Only a few provide the advanced possibility to connect directly to DCS 

systems for on-line applications. Generally, all the packages were developed for the 

petrochemical industry, with embedded features such as phase equilibrium constraints or model 

libraries for some petrochemical process units. The most popular packages in the industry are 

Sigmafine (OsiSoft), Datacon (Invensys), and Vali (Belsim). 

Industrial applications of any commercial software in the papermaking industry are scarce 

because of the dynamic nature of the process and its lack of measurement redundancy. Summary 

of some industrial applications are listed in the following section: 

 The Sigmafine package has been used for off-line data conditioning (Jiang 2003a) and has 

been assessed for possible on-line application in a recausticizing plant at a kraft paper 

mill. The application was limited to material balances because the package cannot 

accommodate non-linear constraints such as energy balances.  

 A further commercial implementation of this software involves a dynamic application to 

track pulp stock from batch digesters (Rankin 2009).  

 Another package used in papermaking is the CADSIM® Plus simulation software from 

Aurel Systems. It has been applied to on-line energy accounting for the steam utility 

system in a kraft paper mill (Wasik 2007). This practical approach uses a parallel process 
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simulator module to perform a process data validation procedure, and performs data 

reconciliation of dynamic data.  

 In the work by Osisoft (2003), the use of a process information system at the Alabama 

River mill in Perdue Hill is described. The new system focuses on plant coordination in 

order to better synchronize processes and holding tanks, thus avoiding slowdowns, 

speedups, and shutdowns. Personnel can identify and examine a process problem in order 

to solve it rapidly. The applications are used also for monitoring performance, 

troubleshooting and reporting.  

 Another application of Osisoft (2002), at the Georgia Pacific mill in Plattsburgh, NY. The 

data management system monitors and collects process data from the paper machine and 

from the winders. The output of the implemented system is used for maintenance, process 

troubleshooting, and monitoring grade specifications. 

2.2.4.1 The use of optimisation and simulation modules for data reconciliation 

In the case of CADSim software that is very adaptive to papermaking environment, the 

simulation solver is sequential, but the data rectification solver is simultaneous. The principle is 

to select several key and independent variables (by the plant operator or analyst) and use these to 

model the process operation using simulator modules (Figure 2.6, Korbel et al (b)) in order to 

estimate the whole set of process variables. The pillar of the data rectification module is the 

modified version of the simplex optimization technique. In the first iteration, the algorithm 

compares the changes in the free simulated variables to their measured values. The simulation 

and iteration process repeats until the minimum least-squares error between the simulated 

variables and the measured values is obtained. The output of the rectification process is the set of 

simulated variables, including rectified measured values and other calculated variables not 

available from measurements. 

The mathematical description of the minimization problem is identical to that of a classical data 

reconciliation procedure, with the difference that the constraint of the minimization problem is 

not the underlying process model, but rather is user-defined: 
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Equation 2.5: Formulation of simulation driven data reconciliation problem 

In the frame of the method implementation, a minimization of the weighted square error between 

the simulated values, which are necessarily balanced, and the corresponding measured variables, 

which are inherently unbalanced: 

 

s.t.  f (x, z) = 0 

 g (x, z) ≥ 0 

where: 

xi = reconciled value; 

yi = measurement – free variables (FV); 

wi = weight; 

zi = non-measurement variables - computed variables (CV) 

spanxi = normal operating span for variable xi ; 

The vector x is subject to constraint equations, i.e. mass and energy conservation laws and 

specified inequality constraints. The objective function is added to the simulation to be reconciled 

using mathematical functions native to the simulator used. The iterative search for values of x is 

performed using optimization module based on a simulated annealing version of the well known 

simplex optimization algorithm. Furthermore, normalized values are used to calculate the 

objective function due to the variety of physical units met in pulp and paper operation, for 

instance volumetric flows which can be in the thousands and mass fractions which are between 0 

and 1.  
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Figure 2.6: Iterative algorithm in simulation-driven process data rectification 

In summary, the extensive work done in the literature is focusing on the improvements of solving 

efficiently the optimization problems related to all types of data reconciliation: linear, bilinear, 

non-linear or dynamic data reconciliation problems. These applications are suited to high 

redundant and only small industrial sub-systems, such as in chemical and petrochemical, 

pharmaceutical and in some cases mining industries. However, plant-wide applications are 

challenging in industrial concept due to the process dynamics involved (Bagajewitz, 2001). 

Dynamic data reconciliation is very computationally expensive for on-line industrial applications 

(Benqlilou, 2004) and plant-wide steady-state data reconciliation creates errors due to process 

dynamics. Papermaking industry is a special manufacturing environment characterized by both of 

these types of challenges: low redundancy (if only small amount of measurements are available 

not allowing performing reconciliation on the overall system) in measurements and highly 

dynamic processes. To the authors’ knowledge, a methodology that would provide plant-wide 

and steady-state data sets in low redundant systems has not been addressed. 

 

2.3 Signal processing  

2.3.1 Introduction 

Signal processing is an area of research in many fields, such as of electrical engineering, control 

and systems engineering, and applied mathematics that deals with operations for both, discrete or 
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continuous time. Signals can represent various elements, such as images, sounds, continuous 

measurement data and sensor values, for instance astronomical data representing series of solar 

flares, control system signals, transmission signals, and many others. Signals can be analog and 

digital electrical representations of time-, spatial- or time-spatial varying physical quantities. The 

first signs for principles in signal processing date to the development of classical numerical 

analysis techniques of the 17th century (Schafer, 1974). Further digital refinement of the first ides 

of time series analysis is associated with the digital control systems of the 1940s and 1950s. 

In the continuous industries signal processing helps to analyze time-frequency signals that are 

being measured by sensors and captured by the information management systems at the facility. 

The main goal of their application in everyday practice is to provide more accurate measured data 

for plant control. There are several types of errors that are affecting the usability of process 

signals (Figure 2.7, Bellec, 2004): 

 Random errors (measurement fluctuations, process noise) 

 Outliers or abnormalities 

 Systematic errors (gross errors) 

 

 

Figure 2.7: Errors in measurements  

The random errors are assumed to follow normal distribution and are usually caused by the 

external disturbances such as equipment vibration or ambient conditions, but can be also caused 

by the measurement process itself. Typical outliers are caused by electricity fluctuation or wiring 

problems. Systematic errors, on the other hand, are associated with bias and are caused by for 

example drift in electricity supply, instrument miscalibration, incorrect instrument installation or 
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process leaks. The presence of random or systematic errors if not processed will certainly lead to 

poor decisions, which will adversely affect all information in other business layers. Data 

processing, data reconciliation and gross error detection and estimation techniques deal with the 

errors elimination/minimization from process measurements. 

2.3.1.1 Information technology and management systems in P & P mills 

Pulp and paper facilities are more and more integrating process information systems (Enterprise 

Resource Planning (ERP), Enterprise Asset Management (EAM) and Process Information 

Systems (PIS)) that are helping them to improve managing their activities such as purchasing and 

asset management, plant monitoring and maintenance, production planning and scheduling, 

inventory management, shipping and customer service, and companywide financials. The 

advantage of using these systems has been recognized in 90s by pulp and paper facilities based 

on the successes reported by chemical companies (Scharpf, 1999). However, the gaps between 

the functionality of these systems and the papermaking needs prevent their application. This is 

mostly due to the particular nature of the pulp and paper manufacturing processes. Couple of 

surveys has been carried out in order to provide information on how the growth in information 

technology and management systems is exploited in the pulp and paper industry. A review by 

Fadum (1996) points out on the limited use of process information systems only for 

troubleshooting and that this system should be exploited more to enhance production profitability 

and product quality. Shaw’s (1999) survey points out on the indeed increased availability and 

usage of acquired data, however no advanced use of these data was reported by surveyed users 

(engineers, IT and mill managers). Yeager (2000) has shown that today’s real-time data 

availability promotes possible development of decision-making tools, which would allow mill 

personnel to react promptly. A recent detailed survey (Janssen et al, 2003, 2004) concludes that 

the interpretation of data from data management systems is on its ascent in pulp and paper mills. 

Different types of errors, that are present in the real-time process data, are the main reason why 

these systems are not being exploited to their full extent. For this purpose various pre-processing 

techniques are used. In the pulp and paper facilities it is done using various types of filters. Use 

of the analog or digital filters that are usually incorporated in distributed control systems is not 

however, sufficient to eliminate the effect of abnormal measurements completely. Some larger 

outliers can be eliminated using the permissible lower and upper bounds of process variables; 
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however, many outliers pass unprocessed and remain within these bounds. The presence of 

abnormalities decreases the performance of any process-state identification system (Shankar, 

2000). In order to eliminate this problem, data pre-processing must be applied. This can be 

termed as a process of converting real-time measurements from manufacturing operation into 

useful operational knowledge. In order to obtain a decent steady-state data set, measurements 

need to be cleaned before steady-state identification can be performed. There are various 

techniques presented in the literature that deal with data processing and steady-state detection. 

Since this field is vast, only pertinent techniques are being presented in this thesis. Wavelet 

transform for data processing have been proved by many authors as the most robust technique for 

extracting the true process trend and omitting the random and abnormal errors (Jiang, 2000, Cao 

and Rhinehart, 1995; Benqliou, 2004;  Flehmig et al, 1998; Nounou and Bakshi, 1999). 

2.3.2 Wavelet transform 

The recent development in continuous wavelet transform (WT) into time series analysis has 

provided its benefit also for process trend estimation in industry The measurement process signal 

f(t) (defined by measurement values) consist of two unobservable components, the desired 

process trend T(t) and process noise N(t) (stochastic component). 

Equation 2.6: Process trend representation 

     

.  
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Figure 2.8: Multi-scale wavelet representation of real time measurements. 

Wavelet transform technique is used to decompose this one-dimensional time series into two-

dimensional time-frequency space. This feature is of use when a desired signal is corrupted by 

multiple events occurring at different locations in time and space (N(t) and T(t)). Jiang (2000) 

used this basic idea of process trend decomposition in a very efficient methodology for 

abnormality detection and denoising of the real-time process data. This process signal is 

decomposed into diverse frequency components at different scales (see Figure 2.8, Korbel et al, 

(a)). It uses the fundamental idea to represent the series of measurements as limit successive 

approaches at different frequencies: 

Equation 2.7: Wavelet transformation of a signal 

f (t) = f (0) =  
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 jIi ijijc ,,  is the smoothed signal representing the low frequency part of the original 

signal with so-called mother coefficients cj,i and 
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representing the high frequency components with father coefficients dj,i. Individual isolated 

components are then analyzed and modified by altering its coefficients cj,i, dj,i to c’j,i, d’j,i. This 

way the wavelet transform has the features to denoising signal from different frequencies by 

thresholding the coefficients below given threshold value. The validated ones then serve for 

process trend reconstruction using the inverse wavelet transformation. The thresholding is the 

process of discarding values that are below a threshold and keeping values over the threshold, 

which is often used in data compression or image processing. This process of tuning is done by 

applying the wavelet algorithm to each measurement separately. 

2.3.2.1 Abnormality detection 

Abnormalities are errors represented as large changes at high frequency or can be defined as high 

amplitude peaks of short duration.  Such changes in real time can be detected using the first order 

WT, which is proportional to the first derivative of the smoothed signal (Equations 2 and 3). 

Since the extrema of the first derivative indicate fast changes in the function under study, one can 
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detect such changes in a set of measurements using the first order WT (Jiang et al 2003a) and 

remove them from the process measurements.  

For the first order WT:    

Equation 2.8: Derivative wavelet signal 

dt
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t j
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Equation 2.9: Smoothed wavelet signal 
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Abnormality detection is very important task in data processing due to the fact that if pre-

processing via filters is applied the spikes will distort process trend (Narasihman and Jorache, 

2000). Bakshi and Stephanopoulos (1993) proposed a wavelet based approach for multiscale 

extraction of trends, which is capable of characterizing different process features according to the 

corresponding information varying with successive scales. The method proposed by Jiang 

(2003a) and used in this study is particular for identification of abnormalities at a single scale, 

usually at the finest scale (time sampling scale). 

2.3.2.2 Data pre-processing using wavelets 

Pre-processing raw measured data by means of trend analysis involves a de-noising of data and 

elimination of abnormal data in measurements which in turn leads to better estimation accuracy. 

Wavelet de-noising utilizes the temporally redundant information of measurements. These trends 

are theorized to be more accurate than their measurements though they are usually inconsistent 

with underlying process model; therefore reconciliation has to be employed to resolve this 

conflict. In a way, the wavelet noise elimination creates measurements obtained by more accurate 

instruments (Benqliou, 2003). It can be also argued that wavelet based trend de-noising equalizes 

the uncertainty in process measurements with different standard deviations  

Complete removal of the unsuitable high frequency features will be achieved if the correct 

cutting scale is employed.  According to Jiang and al (2003a), the optimal choice of scale for 

signal denoising is based on the process dynamic, which is relatively easy to approximate off-line 
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but cannot be predicted in real time and thus is not useful for a real time application. The 

technique proposed in the present paper bases the scale choice on historical data, and assumes 

that the scale choice is time invariant. The inconsistencies related to that assumption will be 

removed by using a low pass filter in subsequent steps of the applied methodology. As discussed 

previously, choosing a WT scale that is too high creates a distortion of process measurements, 

and leads to an inaccurate reflection of process trends. On the other hand, choosing a scale that is 

too low will leave the smoothed signal dominated by noise and unsuitable temporal features. This 

second possibility does not affect the true process trend. At an under-evaluated scale, the process 

trend is still available, but it is corrupted with high frequency measurements. Therefore, in a 

subsequent step, the corrupted smoothed signal can be refiltered to isolate the process trend from 

higher frequency perturbations. This opportunity is not possible in the case where the scale is 

over-estimated due to the distortion created in the signal. 

In order to keep the true signal properties intact, one should choose a scale that does not affect the 

process trend. By studying historical process measurements, one can investigate the optimal 

cutting criterion for different process operations. The scale employed for on-line implementation 

can be selected in such a way that high frequency features are mostly deleted, and the true 

process trend is not affected by signal distortion. To do so, one should test the performance of the 

optimum cutting scale (for off-line data treatment) proposed by Jiang et al (2000a) on historical 

data and compare it to the previous scale (filtered data at lower frequencies). 

The theoretical formalization of threshold in the context of removing noise via thresholding 

wavelet coefficients was presented by Donoho (1995). This method estimates threshold by  

Equation 2.10: Wavelet threshold estimation 

 =  σ(2logN)1/2        

where N is the size of the wavelet coefficient arrays and σ is the noise standard deviation. The 

rationale for this choice is that the matched filter is theoretically the optimal detection filter. This 

condition is best suited only for stationary white noise. Recently, some new methods have been 

presented, which estimates threshold according to wavelet coefficients at different scales (Jiang 

2003a). 
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2.3.3 Process steady-state identification 

In order to generate near steady-state data set candidates from real-time measurements, signal 

processing technique must be employed. Several methods for on-line process status identification 

have been presented in the literature based on statistics or filtering (Cao and Rhinehart, 1995, 

Bakshi and Stephanopoulos, 1993), which creates data distortion when abnormalities are present. 

With the advent of wavelet transform theory, the signal processing field has evolved into more 

multidimensional analysis of trends allowing for multiscale and accurate representations of 

functions. Flehmig et al (1998) explored the wavelet transform features to approximate process 

measurements. Nounou and Bakshi (1999) used wavelet features to identify and to remove 

random and gross errors. Recently, Jiang et al (2003a) proposed a wavelet method for the 

detection of near steady state periods. These methods are used for offline signal representation. 

The wavelet data processing can be used efficiently to eliminate random noise and abnormalities, 

and simultaneously analyze the trend for steady-state occurrences. False detection of the process 

steady state can lead to misinterpretation of true process features, especially if the incorrect 

steady state data are subsequently reconciled. Under-estimating the true process steady state 

periods can lead to only partial correction of gross errors (Figure 2.9a and Figure 2.10), while 

over-estimating steady state periods can result in false input to data reconciliation (Figure 2.9b). 

 

Figure 2.9: Inaccurate estimation of steady state periods (Korbel et al, (a)) 
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a) Under-estimated period  b) Over-estimated period 

A variety of techniques for on-line process status identification have been proposed in the 

literature. Bakshi and Stephanopoulos (1993) developed a geometric approach for the description 

of process trends. Cao and Rhinehart (1995) proposed a steady state identification technique 

based on the comparison of data variances calculated in different ways. In this method, a 

weighted moving average is used to filter the sample mean. Then, the filtered mean square 

deviation from the new mean is compared with the filtered squared difference of successive data. 

This method uses a low pass filter to estimate the mean value. On the one hand, the 

computational requirements and storage are significantly reduced. On the other hand, low pass 

filters are less sensitive to the presence of abnormal measurements. Furthermore, using a 

weighted average to filter the calculated variances creates a delay in the characterization of 

process measurement frequency. These delays can cause detection problems in periods where the 

signal properties vary in real time.  

 

Figure 2.10: Multi-scale decomposition of real-time measurements 

a) Impact of under-scaling on steady state identification (wavelet transform is corrupted by high 

frequency noise) 

b) Impact of over-scaling on steady state identification (extensive smoothing of process signal, 

creating distortion of process state representation) 

Flehmig et al (1998) used wavelet transform features to approximate process measurements by a 

polynomial of limited degree and to identify process trends. Nounou and Bakshi (1999) used 
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wavelet features to identify and to remove random and gross errors. More recently, Jiang et al 

(2003a) proposed a wavelet transform (WT) based method for the detection of near steady state 

periods. The wavelet based multi-scale data processing technique was used to eliminate random 

noise and abnormalities. Then, the process status was analyzed according to the modulus of the 

first and second order wavelet transforms.  This method can accurately analyze high frequency 

components and abnormalities. When applying the multi-scale method, the accurate choice of 

scale is critical. If the scale selected is too low, the WT will be corrupted by high frequency 

noise, i.e., process status identification is corrupted by temporal features. If the scale selected is 

too high, then process measurements are excessively smoothed, which creates distortion in the 

process signal. This creates a deviation from the true process trend and leads to an incorrect 

reflection of process status. 

Jiang et al (2003a) proposed selecting the optimal scale (the scale at which the most of the high 

frequency noise is removed without distorting the actual process trend) by taking into 

consideration the response time constants and sampling intervals. This criterion is adequate for 

off-line purposes, but is not practical for on-line treatment of real time data because on-line 

measurements can be corrupted with different high frequency features over time. Therefore, the 

scale choice must be known a priori for on-line wavelet-based treatment of real time data. 

Furthermore, this method uses the second order WT of the signal to distinguish zero-crossing 

points from steady state periods (steady state is detected when WT is near zero however fast 

changes in the process variable correspond to a zero value of WT). The second WT is directly 

proportional to the second derivative of the smoothed signal at the sample cutting scale. It is 

adequate to represent process trends but requires great computational speed and storage. Finally, 

in the so-called direct approach, linear regression of the measured values is calculated over a data 

window, and a t-test is performed on the regression slope. This approach is executed over a 

specified time period, which is not ideal when dealing with real time measurements.  
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2.4 Gaps in the body of knowledge 

Based on the pertinent literature review the following holes in the body of knowledge were 

identified: 

Signal processing 

On-line signal processing method for detection of steady state operating conditions based wavelet 

transform is missing. Furthermore, there is no industrial application of on-line signal processing 

technique that would provide automatically process data sets representing near steady-state 

operating conditions of a small subsystem and a plant-wide manufacturing in the pulp and paper 

facilities and simultaneously pre-process real-time data from random errors and abnormalities. 

Plant-wide data reconciliation 

For higher level analysis it is critical to ensure plant-wide data reliability and consistency. There 

is no systematic methodology in the literature that would address plant-wide and steady-state data 

reconciliation in the low redundant industries such as pulp and paper sector. The information 

gained from having multiple plant-wide data sets would provide enhanced representation of 

manufacturing operation for higher level applications, such as cost analysis. Furthermore, there is 

no evidence in the literature about an industrial application for plant-wide and steady-state data 

reconciliation coupled with on-line wavelet technique for process state identification and process 

data cleansing in the pulp and paper industry. 

Advanced manufacturing cost analysis 

A critical element of a facility business model is the cost modelling methodology and how it uses 

process knowledge. The product-based cost analyses resolving operating regimes in the pulp and 

paper industry have not yet taken place.  

There is no manufacturing cost methodology capable of providing information on actual product 

margins in the pulp and paper industry that exploits real-time reconciled process data in 

combination with mill cost data. Furthermore there is no activity-based costing –like 

methodology that systematically assesses the impact of retrofit implementation of new 

production facility on the current core business manufacturing costs that are based on real-time 

data measurements. 
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CHAPTER 3 OVERALL METHODOLOGICAL APPROACH 

3.1 Overall methodology 

Generally, manufacturing facilities such as pulp and paper mills are creating goods according to 

production recipes. Within individual recipes, different operating regimes are chosen by operators 

to produce goods in optimal and safe manner or different operating regimes are selected as a 

respond to external perturbations (change in raw material quality). These operating regimes are 

characterized by control set points and/or the type of production assets utilized. These different 

production set-ups result in potential resource consumption rate variances. These changes can be 

assessed and interpreted by the proposed methodology (Figure 3.2) and thus validate the main 

hypothesis.  

The methodology that will be able to capture production cost variances due to changes in 

operating conditions consists of three main steps: 

1. Pseudo steady-state detection of a process operation 

2. Plant-wide steady-state data reconciliation  

3. Operations-driven cost analysis 

The scope of the process and cost analysis must be first defined by clear characterization of 

operating regimes. The time boundaries are selected (starting and ending points) for process data 

analysis that correspond to duration of production campaign runs and operating regimes (Figure 

3.1). Since the operator action to external perturbations or desired changes in operating set-up is 

aimed to a steady-state condition, the operating regime must be represented by steady-state data 

sets. The transient periods that are inherently occurring between individual steady state 

conditions cannot be accounted for cost assessment of regime because their duration and 

variation is never occurring the same way for the same operating regime. Cost analysis based on 

such data would not represent operating regime correctly. The aim of the method is to 

characterize periods of operation that we may take an action upon to enhance cost profitability. 

However, as stated earlier, some of the regimes occur as a respond to external perturbations and 

cannot be avoided. On the other hand an action to these perturbations is answered by different 

operating set-ups and hence the cost representation of them would be essential to understand. 
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Figure 3.1: Different levels of analysis 
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Figure 3.2: Overall methodological approach for production cost assessment of operating regimes 
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Following sections describe each step of the overall methodology in more details as a block of 

activities: 

3.1.1 Pseudo steady-state detection 

Generally, if near steady-state conditions of an operation need to be detected in paper making 

facilities, the measurement process data must be analyzed manually. Often, only the average of 

the relevant variables within the analyzed time framework are calculated, and used for the needs 

of the analyst. This off-line and conventional process analysis is very laborious and often does 

not provide accurate data for optimization or advanced cost accounting (Narasimhan and 

Jordache, 2000). Conventional on-line techniques are based on filters and have difficulties with 

abnormal measurements. The use of the wavelet transform of signals and data filtering is tested 

for the purpose of an on-line industrial application for plant-wide steady-state detection. 

First, the proposed technique is used to pre-process and analyze the time-frequency space of each 

measurement (within each individual operating regime). This step in the proposed methodology 

is done to get rid off high-frequency noise and most process abnormalities in the real-time 

process data in order to enhance the detection of near steady-state operation. The performance of 

steady-state identification is tested by comparing the outputs of different conventional methods 

(Korbel et al, a) on a small sub-system of a newsprint operation. 

For each measurement variable, the knowledge from historical data (from information 

management systems at the mill) is used to tune several parameters of the method (wavelet 

transform and filtering). This is done by applying the wavelet algorithm to each measurement 

separately. The set of optimal parameters (the wavelet parameters of each measured variable that 

provide the most robust performance of processing step possible) is then stored in the database 

for testing the on-line applicability of the method for the small sub-system and then plant-wide 

operation. The detection of the optimal parameters is described in Appendix A (Korbel et al, (a)). 

It can be summarized in four critical steps: 

 Select independent and comprehensive variables for determining near-steady states; 

  Establish near steady-state criteria for each variable and for the system as a whole;  
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 Determine the minimum length of the steady-state periods according to process system 

delays; 

 Determine criteria for threshold values for steady-state periods (for each variable and for 

the system as a whole). 

This step requires profound engineering analysis of the underlying process dynamics to represent 

the true process trend correctly by the wavelet transformation. 

On the one hand, the ability of detecting near steady-state operation of larger systems (plant-wide 

operation) strongly depends on the process dynamics involved. On the other hand, the 

characterization of the plant-wide data sets with the steady-state assumption depends on the 

judgment of the analyst. The plant-wide operation is divided into smaller sub-systems in order to 

analyze process dynamics for each. This division of the mill operation into small sub-systems 

corresponds to the third and forth steps of the methodology, where these subsystems are defined 

as cost centers of production activities in order to enhance tracking of changes in resource 

consumption. Sensitivity analysis of the process variables for each part of the mill is performed. 

The variables that have a major influence on the process sub-system dynamics are selected and 

only these key variables are used for steady-state detection thereafter. The parameters of the 

method that allow for detection of a steady state (Appendix A) are tuned, to enhance the 

frequency of steady-state identification within each subsystem. This way representation of near-

steady state condition for plant-wide operation can be selected more frequently. The validity of 

these data sets is then analyzed using steady-state data reconciliation (next step described in 

details in the next section). If the assumption of steady-state is wrong, the discrepancies in the 

data reconciliation results will manifest as a high magnitude of least square error, indicating that 

the given plant-wide data set is not valid (i.e. the process can not be assumed to be at steady state 

or a large bias measurement is present). Such data sets are omitted from further use. 

The results of the on-line signal processing technique were multiple data sets representing plant-

wide, near steady-state operation. These are further used in data reconciliation for further 

enhancement of the manufacturing knowledge they represent. 
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3.1.2 Plant-wide steady-state reconciliation  

Papermaking facilities are known of having a very poor instrumentation network. Only the 

necessary instruments for control and safety are installed. In order to validate the plant-wide data 

sets and identify if certain measurements exhibit biased values, data reconciliation must be 

employed. Conventionally in the pulp and paper facilities, several lengthy manual tests are 

necessary for reconciling process data due to a lack of instrumentation redundancy. Some small 

parts of the modern mill operations can be reconciled using data from information management 

systems using averaged data, however with the need of the analyst (chemical engineer) to search 

for good periods (periods with relatively steady operation) that would provide good estimates. 

The use of a simulation model using CADSIM software (section 2.2.4.1), coupled with the 

wavelet steady-state detection technique is tested for on-line, plant-wide application of steady-

state data reconciliation. Parallel to the simulation-driven approach (presented and discussed in 

literature review: section 2.2.4.1), conventional data reconciliation is used (where applicable) to 

compare the outcomes and thus validity of the method (Figure 3.3). This strategy of comparing 

two different techniques is assumed to validate the approach and highlight the variance in 

outcomes. For instance the difference in using only average values within operating regime 

duration instead of characterizing regime by steady state is essential to manifest. This way the use 

of proposed method will manifest its advantages and contributions to engineering field. 

First, the process simulation model is built using information from flow sheets of the actual 

production and close interaction with mill personal (operators and process engineers). Several 

empirical equations (for instance back steam generation from operation of high consistency 

refiners as a function of electricity demand) based on years of practice were added to the 

simulation model, thus decreasing the degrees of freedom (increasing system’s redundancy).  

In order to establish a weighting matrix for the optimization module (optimization engine of the 

simulation-driven data reconciliation, presented in the section 2.2.4.1), the historical data for each 

instrument is used. The knowledge gained from the analysis from the previous data processing 

step is used. The standard deviation for each measurement is calculated. This knowledge coupled 

with years of experience (close collaboration with mill personal) in the given manufacturing 

environment is used to express the trust (the selection of weighting procedure is described in the 

Appendix I, the sensitivity testing of this choices is discussed in Appendix J) in each individual 
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instrument. The system of data reconciliation coupled with wavelet pre-processing is tested 

iteratively, which allows for better tuning of the weights in time. 

The outcomes of the data reconciliation are updated and stored in the information management 

system for each operating regime. The least square error and the variance between individual 

measurements are compared to these values in situations when biased measurements are detected. 

This allows for systematic detection and estimation of the gross error (biased measurement) and 

can assist in calibrating the faulty instrument.  

The results of plant-wide steady state data reconciliation represent the process characterization of 

each individual operating regime. These are further used in the operations-driven cost analysis 

step that is described in more details next. 

 

Figure 3.3: Methodological steps in plant-wide data reconciliation 

 

3.1.3 Operations-driven cost analysis 

The papermaking production processes can be dissected into different levels, according to the 

representation in figure 3.1. First, traditional accounting techniques (standard and actual costing) 

are used to estimate the manufacturing costs of the current production. The same practices are 

also applied to estimate the manufacturing costs of the analyzed future retrofit scenarios 

(presented in the following section – case study). Three different retrofit scenarios (described 

more in detail in the following section: Case study) have been chosen for analysis based on the 

case study mill’s preferences. The information on production costs based on traditional 
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techniques is used as a benchmark to compare the outcomes of the proposed operations-driven 

cost methodology.  

The steady-state process simulation model and real-time data are used to define resource and 

activity drivers of the cost model for current business and for the forest biorefinery options. 

 

 

Figure 3.4: Methodological steps for building operations-driven cost modeling framework 

The focus of cost-model development is first to characterize the direct and indirect manufacturing 

costs of the studied facility (for both, current core business and integrated forest biorefinery 

strategies – Figure 3.5) in order to identify the most profitable and most costly operating regimes. 

This information can be interpreted to define cost variances. The five methodological steps for 

cost model development and analysis are (Figure 3.4): 

1. Cost objectives definition - The first important step is to clearly define the scope 

and the objectives of the cost analysis procedure. It is necessary to develop guidelines for 

identifying relevant cost items and for characterizing the desired cost behavior for use in 

decision-making. 
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2. System and data dissection - The production system is divided into smaller 

subsystems to enable the qualification and quantification of different types of cost drivers. 

This step increases the in-depth cost analysis capabilities of the system. The separate 

subsystems are called Process Work Centers (PWCs) and are further divided into 

individual Processing Units for increased cost-tracking transparency. The system division 

step is based on rules derived from the first and second step of the overall methodology 

(Korbel et al. (b)). Then, individual production runs of a given grade can be dissected into 

operating regimes at this stage, or additional production regimes can be identified and 

added to the cost analysis. 

3. Driver description phase - This step involves intensive discussion with mill personnel to 

identify the cost drivers. This phase is of critical importance because it structures the 

shape of the cost model and the characterization and interpretation of the results. 

a. Resource drivers: The characterization and measurement of the resource 

consumption rates of processing units and process activities are based on process 

data. For instance, flow measurement is a resource driver for a given flow 

medium. 

b. Process activity drivers: These drivers characterize the linkage between operating 

conditions and the consumption of a resource driver. This phase identifies what 

information is necessary to characterize the intensity of a process activity within a 

process work center. For instance, the pressure in a vessel will characterize the 

required rate of steam flow to be input. 

c. Process work center drivers: The boundaries of each PWC are defined in the 

second phase of the methodology. The interpretation must be intuitive to capture 

the cost-insight capabilities of the method clearly in a graphic user interface. The 

aim is to explain cost generation better at a mill-wide level. One of the important 

cost centers is the overhead work center, where the drivers must be clearly defined 

to achieve indirect-cost transparency throughout all mill departments. For 

instance, the work center driver for maintenance is the head count for a given 

subsystem of the operation. 
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4. Cost model development - The model development follows the operations-driven cost 

modeling framework presented in Laflamme-Mayer et al. (2011). The supporting pillar is 

the integration of process and financial information based on ABC-like principles. The 

systematic consideration and cost aggregation of individual production processes and 

their operating condition into the plant-wide manufacturing operation are essential 

principles of this stage.  

5. Characterization phase - The last phase involves the characterization of the costs 

incurred and the interpretation of the results based on the objectives defined in phase one. 

Process understanding is the key element at this stage. Therefore, interaction with mill 

personnel is necessary to interpret the results. Sometimes, steps 2-4 will need to be 

repeated to arrive at a satisfactory level of in-depth cost understanding. The results of this 

stage, when validated, can be clearly visualized and used for decision-making support. 

 

 

Figure 3.5: Dataflow between the operation-driven cost model and process operation and retrofit 

design analysis 
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3.2 Case study – Advanced manufacturing cost analysis of current 

and retrofit design process operations 

3.2.1 Background 

3.2.2 Product cost assessment of a core business - base case 

The base-case mill is an existing integrated newsprint mill. The thermo-mechanical facility 

produces different pulp qualities based on paper mill demand and specifications, with the 

throughput matched to that of the paper mill. Two newsprint products with different basis 

weights, 48 g.m-2 and 45g.m-2, are produced (Figure  3.6, Korbel et al (b)). 

Existing mill configuration 

The following manufacturing steps are involved in the base-case mill: 

 One paper machine that is 8.4 metres wide built by Beloit in 1985 with a production rate of 

680 tonnes/day of newsprint, 

 One thermomechanical pulping line consists of a single series of Sunds CD-82 two-stage 

 refiners and related equipment with an average production of 680 tonnes/day of pulp. 

The following supporting processes are also part of the base-case mill configuration: 

 A wastewater treatment plant processing 30,000 m3/day 

 A boiler plant producing 2500 GJ/day of steam 

 A steam recovery unit in the TMP line, producing 3000 GJ/day of steam. 
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Figure 3.6: Simplified block diagram of a complex thermo-mechanical pulping process with 

paper mill (for detailed mill model presentation see Appendix I) 

3.2.3 Product cost assessment of selected biorefinery scenarios 

The case mill under analysis is a highly competitive newsprint mill (in the first quartile of 

manufacturers) with limited access to biomass. Hence, they have chosen to investigate a 

biorefinery strategy that could be integrated into their existing operations. Three major forest 

biorefinery retrofit options at an integrated newsprint mill were selected for production cost 

analysis:  

 Cellulosic ethanol production: ~3000 gallons per day ethanol production from 

hemicelluloses extracted before pulping 

 PLA production: 11.5 tons per day of polylactic acid (PLA) production from lactic acid 

extracted from hemicelluloses before pulping 

 Biocomposite production: 80 tons per day of biocomposite pellets produced from the 
blending of TMP fibres and polypropylene.  

The first two retrofit options are based on the sugar platform, i.e., sugars are the feedstock for 

production of these biochemicals. Ethanol and PLA products share the same process design up to 

the fermentation unit (Figures 3.7 and 3.8, Korbel et al (d)). The third forest biorefinery 
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alternative is based on mechanical blending of TMP fibres with a plastic matrix to create a 

biocomposite material (Figure 3.9, Korbel et al (d)). 

 

 

 

Figure 3.7: Simplified flowsheet of simultaneous ethanol production. 

 

 

Figure 3.8: Simplified flowsheet of simultaneous PLA production 
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Figure 3.9: Simplified flow-sheet of simultaneous biocomposite production 
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Figure 4.1: The line of thoughts between individual publications. 
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4.2 Links between publications 

The following discussion links different segments of this Ph.D. work that were presented in 

individual publications. Figure 4.1 demonstrates the links discussed.  

Theoretical background on data cleansing focusing on data processing and reconciliation, in the 

industrial context of this Ph.D. work, was reviewed in order to gather necessary information for 

making real-time data consistent with underlying process operations and available for higher 

level cost analyses. This review was presented during the TAPPI Conference - Innovations in 

Engineering, Pulping & Environmental in Jacksonville, Florida (2007) (Appendix G). A more 

detailed report on the practical value that can be obtained from the smart dissection of these 

process data by integrating them with financial information is reported in a chapter of a 

biorefinery design book (Appendix F). In the former publication, in addition to the theoretical 

background, a case study example on an existing newsprint mill was presented to concretize the 

value of smart data dissection. These two pilot papers are not part of the body of thesis but serve 

only as a reference. 

The methodology that is necessary to pre-process the raw real-time data and identify process 

conditions on-line, is described in detail in Appendix A. Two case studies are presented in this 

article. The first case study, being a sub-system of the newsprint process operation, proves the 

capability of the method for on-line use. The comparison to conventional offline methods was 

carried out in order to validate the method’s robustness. The results indicate that the method is 

capable to provide multivariable near steady-state data sets of high quality, in some cases with 

better identification capabilities than the conventional methods. The second case study work, 

being a large system (plant-wide operation), was done in order to 1) analyze the near steady-state 

probability of occurrence for different mill sub-systems and of the whole mill as a function of 

adjusting the method’s parameters, and 2) address the accuracy of plant-wide pseudo steady-state 

assumptions and its influence on the final higher-level applications (advanced cost analysis in the 

context of this Ph.D. work). This work was submitted to the International Journal of Computers 

and Chemical Engineering and it is under investigation for potential application and 

implementation in the CADSIM simulation software for improved data accuracy.  
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The on-line identification of near steady-state operation has created the critical basis for plant-

wide and steady-state data reconciliation in the pulp and paper industry. This manufacturing 

sector presents many challenges from making traditional data reconciliation possible. Therefore, 

a very practical and simulation-based data rectification method was explored for plant-wide data 

validation. This work is described in detail in Appendix B. It was found that the presented 

method overcomes redundancy issues at paper making mills and makes reconciled process data 

for large systems available for further use. 

This new process information acquired by careful process data analysis was explored for 

advanced cost analysis. An operations-driven cost accounting model was developed, that uses for 

the first time, reconciled real-time process data for operational and retrofit design decisions. 

These two publications are described in detail in Appendices C and D. The results from the 

proposed cost modeling framework provide superior insight into production costs compared to 

conventional cost accounting techniques. Two case studies have been done to validate the above 

statement. The first case study focusing on the newsprint business presented the characterization 

and interpretation of the current production costs while making visible actual product margins. 

The second case study (Appendix D) takes advantage of knowing this valuable information for 

analyzing future company’s opportunity in exploring/adding new business. Particularly, the focus 

was to analyze the cost impact of integrating new production lines into the core business facility. 

Finally, the overall on-line operations-driven cost accounting methodology for short and long 

term company’s benefits, which were discussed in detail in above mentioned articles, is united 

into one publication (Appendix E). This publication assembles all methods into one 

methodology, discussing every major step with case study results. The overall methodology is 

proposed to be used as a multidisciplinary tool for day-to-day instrumentation & process 

troubleshooting, cost assessment of operating regime (thus providing a framework for continuous 

improvements by selection the profitable ones), and use this information for tactical and strategic 

decision making activities at the facility. 
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4.3  Synthesis 

The synthesis part of this thesis presents an overview of the most pertinent results of the work 

done in this Ph.D. research project to highlight the main values and deliverables from the 

proposed methodology. The overall methodology was proposed at the outset of the project and 

then systematically addressed as summarized in this section. The focus was on three essential 

aspects of the method after operating-regime scope definition: 1) on-line data pre-processing and 

near-steady-state identification, 2) plant-wide process data rectification, and 3) advanced cost 

analysis for true product margin assessment with short- and long-term benefits to the company. 

For each of these aspects, a comparison with traditional process data or cost analysis is 

performed. 

Because the case study is based on an existing newsprint mill, the majority of the results are 

presented as normalized values due to the confidentiality requirements of this highly competitive 

commodity business environment.  

4.3.1 Operating-regime scope definition  

The first essential step in application of the proposed methodology is to analyze the process 

operation under consideration to determine its manufacturing options and flexibility. The various 

operating regimes or operating practices that create the final products must be clearly identified. 

In the base-case operation studied here, the focus was on analyzing the potential cost variances of 

the same grade “recipe,” but with different operating set-ups characterized by 1) groups of 

process control setpoints corresponding to a given pulp quality, 2) the type and age of the refiner 

plates used, and 3) the volume of production throughput. Changes in control setpoint strategy 

were generally observed in response to two manufacturing situations to which process operations 

need to adjust:  

 Mechanical causes: a change in raw material (wood chips) quality (humidity, dimensions, 

or variability) or a change in the ratio of different types of chips used (high or low ratio of 

softwood or addition of hardwood). The pulp and paper mill under analysis uses the same 

“recipe” to specify the range of fibre types and chemical requirements needed for 

producing a given grade. 
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 Process causes: a planned change in the manufacturing operation, for instance, a change 

of grade or preparation for a partial or plant-wide shut-down. 

An illustrative example of a change in process regime is presented in Figure 4.2. This figure 

illustrates a scenario in which the thermo-mechanical pulping process, which is producing a 

given pulp quality (characterized by its freeness4 number (CFN)) must respond to the need of the 

paper machine for a change in pulp specifications (due to frequent paper breaks). The quality is 

improved by lowering the pulp freeness value. The manipulated control parameters STP1–STP6 

are adjusted through a transient period to arrive at the final required freeness value.  

 

                                                 

4 CFN stands for Canadian freeness number, which is simply a measure of the drainage capacity of different pulp 

types. The drainage rate is related to fibre swelling and to surface conditions. 
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Figure 4.2. An illustration of a operating regime change (production settings) due to required 

change in pulp quality (presented as a change in one monitored variable - steam production from 

boilers and recovery units) 

When the time boundaries for process analysis are chosen, the raw measurement data can be 

extracted for process analysis and then cost analysis. 

 

4.3.2 Signal processing using multiscale wavelet trend decomposition 

The first important activity phase in the proposed methodology is careful cleansing of real-time 

process data from high-frequency noise and process abnormalities and identification of when the 

process is near steady-state operation. First, a test case study, which was a small subsystem of the 



61 

 

overall operation, was chosen to analyze the suitability of the method for industrial application. 

The technique used involves multiscale wavelet decomposition of measurement trends (Figure 

2.8). Two essential steps are required to initialize the wavelet technique: 

 Gathering of information on each individual measurement point and analysis of its 

historical values to identify the optimum wavelet transform (WT) cutting scale for each 

variable, and 

 Analysis of historical data to determine the optimal steady-state values of the detection 

parameters (alpha parameters). 

According to the two steps described above, the sensor network at the mill was analyzed, and 

each measurement point was characterized by its accuracy and precision values. Multiple 

decomposition trials and tests of each variable trend were carried out to identify the two essential 

scaling and parameter values. This knowledge is maintained as a matrix representation of the 

sensor network, whose values will potentially need to be changed over longer time periods. 

Implementation of adaptive techniques would improve the long-term degree of automation of the 

system.  

The two simultaneous tasks of data pre-processing and pseudo-steady-state detection are 

discussed further in the following section. 

4.3.2.1 Tuning the on-line steady-state detection technique  

Figure 4.3 presents the principle of the method by a schematic representation of the overall 

algorithm. The measurement data were extracted from the data management system (DMS) as a 

noisy signal. The optimal WT scale was analyzed using an iterative procedure to find the optimal 

values. After applying a wavelet transform of the chosen scale (data pre-processing), Gaussian 

noise and other abnormalities were extracted or discarded from the process trend.  
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Figure 4.3: Schematic representation of an algorithm for on-line pseudo-steady-state detection 

The de-noised signal was then analyzed for potential steady-state occurrence using a three step 

simultaneous methodology (see Appendix A for a detailed mathematical description of each 

step): 

1. The starting point of the steady-state period is detected using the WT characteristics and 

its first derivative (values of the pre-determined alpha parameter), 

2.  High-frequency features of the measured signal, which were not eliminated in the first 

step, are removed by filtering, and the steady-state duration is approximated by the use of 

filters (for more details see Appendix B on how the method is performing), and 

3. Finally, the steady-state end point is detected through WT feature analysis. 

The results from the application of the proposed technique to two different case studies indicated 

that the method is robust and can provide significant improvements to the accuracy of measured 

variables. The first case study on a small sub-system was intended to prove the method’s 

robustness by comparing its results to those of conventional steady-state detection techniques 

(Figure 4.4). To determine the impact on overall system accuracy, the Sigmafine software 

package from OsiSoft Inc. was used for linear steady-state data reconciliation. The results further 

indicated that the proposed methodology was able to reduce the probability of not detecting a 

multivariable operating pseudo-steady state by at least 46% compared to other methods. On the 

other hand, false detection was only marginally reduced. In critical situations, such as when the 
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system was at a true steady state, but systematic error (bias value) was present, the proposed 

method was still able to detect that the operation was at a pseudo-steady state and hence to reduce 

the overall system error (and actually to identify the steady-state period). In fact, for several 

variables, the use of the proposed methodology in combination with a steady-state data 

reconciliation technique resulted in higher accuracy. 

 

Figure 4.4: Improvement in accuracy achieved by use of various on-line steady-state detection 

techniques. 

 

These results, which were obtained from application to a small sub-system of the process 

operation, proved the capability of the method to be used on-line in a real industrial context. 

However, for higher-level analysis such as optimization or advanced production cost analysis, 

plant-wide near-steady-state operation is required. This restriction is due to the steady-state 

nature of these applications and because only steady-state models can provide the process 

knowledge of various operational regimes which must be used in the context of this Ph.D. 

research. As already discussed there are few reasons of why steady-state detection is important. 

The changes in operating control set points are aimed to arrive to safe and steady-state operating 

conditions. Transitions between them will always occur but cannot be taken as a representation of 
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a given operating conditions. Furthermore, the engine of advanced operations-driven cost 

analysis is steady-state mass and energy balances coupled with cost information. 

The expression for ‘‘steady-state’’ is a misnomer in a rigorous sense because no system 

parameter is ever steady, and its measurements will always vary to some degree with time. Thus, 

detection of near steady-state periods requires first to establish an assumption of what near 

steady-state is, and then evaluate whether the operation satisfies this criteria. The assumptions 

that were taken into account were based on the analysis of process dynamics. Different trends of 

measurement variables and their representation with wavelet decomposition present different 

levels of variations due to process dynamics. Therefore a second case study was carried out to 

analyze the frequency of multivariable steady state (MSS) occurrence in each section of the mill 

and in the whole plant-wide operation. Furthermore, the pseudo-steady-state assumption was 

relaxed by using predetermined alpha parameters to define a optimal steady state. The impact of 

these assumptions on cost accuracy was then addressed to determine cost uncertainties. The 

accepted value of alpha is directly linked to the level of system dynamics involved in the steady-

state assumption, which was expressed for each variable, each subsystem, and the whole process 

operation. This information can be used to enhance the results of cost analysis as a confidence 

value for product margins.  

For the purpose of the test case, a relatively unstable (very dynamic) period of operation was 

chosen that lasted for 600 min. For each subsystem, several key variables were chosen; for 

instance, seven variables were defined for PWC1 (chips treatment). These variables were chosen 

to determine whether the subsystem could be assumed to be in a pseudo-steady state or whether it 

was undergoing a transition (dynamic) period. For each of the key variables, the degree of 

fluctuation in the WT and its first derivative was analyzed to determine the optimal alpha values. 

This was achieved by selecting successive measurements at steady state, performing the first-

order WT, and then computing the standard deviation of the WT modulus ( WT ). The method 

was then used to detect the overall MSS for only these selected variables. 

Figure 4.6 shows the increase in the ability to detect pseudo-steady states with increasing values 

of the wavelet threshold of the alpha parameter for steady-state assumption (however, the 

probability for false steady-state detection is also increased). It was noticed that only certain 

variables exert fast dynamic behaviour and hence are responsible for the subsystem’s being 
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characterized as not being at steady-state. Figure 4.5 (Korbel et al, (b)) summarizes three aspects 

of the problem:  

 the evolution of the wavelet transform for each key variable 

 the corresponding state identification using a binary representation (1=steady state 

identified, 0=transient period), and  

 the number of variables in steady state at each period. If the number of variables in steady 

state equals the number of key variables (e.g., 7 in the case of the given subsystem) then a 

MSS of PWC1 was assumed. 

The value of the wavelet-transform thresholding parameter has been successfully increased from 

its minimum value to a value where the dynamics of the process do not permit a MSS to be 

detected. Note that relaxing the alpha values increases the frequency of single-variable steady-

state occurrence (assumption of steady-state) and consequently the number of MSS identified. 

This systematic approach to MSS detection has been shown to be very practical; however, during 

the analysis, special attention was paid to identifying the impact of overestimating the steady-

state assumption for high-transient dynamic periods or hold-ups. To quantify this impact, the 

quality (the error associated with the near-stationary assumption) of the pseudo-steady-state data 

sets obtained was investigated. 

 

Figure 4.5: Plant-wide steady state analysis 
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Increase in the number of steady states obtained with relaxation of the value of the wavelet 

threshold (alpha). A: the value of the threshold is set to 0.1, leading to two multivariable steady 

states (MSS) identified, B: the value of the threshold is set to 1.2, leading to four pseudo-steady 

states detected (the two new MSS are represented in blue), C: a threshold value of 5 has increased 

the number of steady states to eight (the four new MSS are represented in red). 

4.3.2.2 Quality of pseudo-steady-state data sets 

Clearly, relaxation of the steady-state assumption (steady state assumption includes some degree 

of process dynamics, relaxing this assumption means here to incorporate more and more process 

dynamics into near steady-state representation) by increasing the alpha value enables more MSS 

to be detected. However, this may result in biased information, for instance in estimating 

production cost, possibly leading to wrong decisions. Therefore, a careful sensitivity analysis of 

each key variable was carried out to highlight systematically the variables that were causing the 

overestimation of MSS. For this purpose, two measures were selected 

1. A multivariable measure describing the offset of a sub-system or a whole system from 

some kind of trend (steady-state). In this case, MTE (measurement trend error) was 

selected as the measure: 

1
∆

,
2

2
∆

 

 

where  refers to the first derivative of the variable yM, which was determined by an 

algorithm presented in Appendix A. 

2. The absolute error of the end application (production cost analysis) corresponding to the 

absolute error in the product margin estimation. The cost results were compared to the 

base-case values for the very same operating regime, which were quantified before this 

analysis using several near-steady-state data sets, thereby statistically ensuring the 

validity of the results. 

Figure 4.7 presents the relation between the probabilities of MSS occurrence (how often near 

steady-state assumption occurs) in each sub-system of the plant-wide operation and the MTE 
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values. From the figure, it is evident that the PWC3 sub-system (pulp screening) is characterized 

by relatively little dynamic variation of variables, which enables a larger number of detections of 

potentially near steady-state condition. For the time frame analyzed, a plant-wide MSS could not 

be detected without relaxing the steady-state parameters. The alpha values correspond to the 

maximum threshold value that at least one of the key variables (in most cases, steam flow) had to 

attain to reach a required number of steady states. This increase in the threshold value for some 

variables was necessary to obtain at least one plant-wide near steady-state data set in all cases 

(Figure 4.6.). The impact of this assumption was then analyzed by looking at the MTE of the 

system and the absolute error in product margin estimation. For comparison, Figure 4.6(b) also 

shows the value obtained by the ad-hoc approach that analysts are using (in petrochemical or 

other processing industries) an average of variables within the time frame. The higher cost error 

is due to the fact that the average values incorporate inconsistencies due to presence of tanks 

(“hold-ups”) and due to the nonlinearity nature of process model. This approach can be used with 

relatively accurate results for linear processes operating frequently near steady-state conditions 

(such as petrochemical and chemical industry). 
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Figure 4.6: Steady-state probability of occurrence 

A: MSS occurrence as a function of the threshold values for different sub-systems and for the 

overall plant.  
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B: the relation between the MTE and MSS occurrence, as well as the relation between absolute 

changes in the product margin and the absolute errors in the data set. 

In summary, within each operating regime, the method presented here has provided accurate and 

reliable steady-state candidates for production cost analysis. Furthermore, after iterative tuning of 

the parameters of the wavelet algorithm (a simple program written in the C language), this data 

pre-processing and pseudo-steady-state detection task was performed automatically for several 

production regimes. In this way, the method proved its applicability for on-line use with a low 

need for user interaction. Note that the thermo-mechanical pulping operation under study is a 

very stable manufacturing environment, and hence the method was able to identify several 

pseudo-steady-state operations without the necessity to relax steady-state assumptions using 

alpha values.  

This portion of the study has demonstrated that the method is robust for on-line industrial 

application and can provide plant-wide pseudo-steady-state data sets within the operating regimes 

analyzed. Furthermore, a careful analysis of steady-state assumptions can be done automatically 

while providing an increase in detection rate. This feature increases the visibility and 

transparency of errors for each PWC and each individual variable. This knowledge can be used to 

provide guidance in situations in which the method is applied in more dynamic manufacturing 

environments (such as a Kraft operation) to quantify the impact of steady-state assumptions. 

4.3.3 Plant-wide process data rectification  

The first block of tasks, including signal processing for process data cleansing and steady-state 

identification, provided a very good basis for characterizing the manufacturing processes 

involved in the production of different newsprint grades. However, when these pseudo-steady-

state operation data sets were used for product cost analysis, unclear and biased results were 

produced. Even though the pre-processed data sets had been cleansed from random errors, 

systematic errors and errors due to the process dynamics themselves were still present. These 

discrepancies must be identified and eliminated before the data are used in end applications. 
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Several miscalibrated instruments and highly inaccurate5 individual sensors were the main causes 

of the overall discrepancies in results.  

The variance-covariance matrix estimation of the measurement errors was performed based on 

the instrumentation performance analysis from the pre-processing step. Trust weights were 

allocated to all measured variables based on engineering judgment.  

A data reconciliation technique using the Sigmafine software from OSISoft (c) was then used to 

identify potential systematic errors while providing a complete set of process variables (by a 

process of coaptation). However, the validation of process measurements showed that only 

certain variables could be reconciled, depending on the level of redundancy involved. Classical 

steady-state data reconciliation methods are not applicable to newsprint production because of the 

low redundancy of the instrumentation network. The number of currently installed sensors is 

sufficient for production control and safety, but not enough to create the level of software 

redundancy required for classical data reconciliation. A certain level of redundancy was created 

by the use of process simulation together with a separate optimization module. 

. 

4.3.3.1 Development of the simulation-driven data rectification model 

The next step was to choose a model-based cleansing method that could identify and estimate 

biased measurements and provide complete plant-wide process data sets. The heart of the data-

reconciliation step of the methodology is the process simulation using the CADSim (c) software 

from Aurel Inc. The reason for this choice was that this particular software is well adapted to the 

papermaking industry. Various process parameters and equations describing processing units 

were able to increase the number of degrees of freedom for the problem at hand. Furthermore, the 

minimization of least-squares error, which is the engine of data reconciliation, could be 

performed in various ways, enabling the use of system redundancy corresponding to zero degrees 

of freedom. 

A process model of the integrated newsprint mill was constructed by a classical flowsheet 

definition using standard building blocks which describe fundamental operations such as mixing 

                                                 

5 Accuracy is the ability of a sensor to measure the correct or “true” value (Bagajewicz, 2001) 
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or separating, but also papermaking-specific units such as chip refiners and paper machines. The 

steady-state simulation was performed using several key variables from real-time steady-state 

process data sets to ensure zero degrees of freedom. The sequential solver for steady-state 

nonlinear systems calculated each process module in turn with its output/input streams for the 

next module, an approach which provides additional software redundancy. The results of the 

simulation were then compared to the whole set of measurements, and the least-squares error was 

calculated. The advantage of this technique is that the measured and simulated variables can then 

be iteratively reconciled by minimizing a weighted least-squares error while satisfying the 

simulation model and other user-defined modelling constraints. The optimization module uses a 

simplex search algorithm to arrive at the optimal solution.  

When comparing the performance of the proposed method in low-redundancy systems to 

classical data reconciliation, it was shown that the relative error reduction (RER of pulp 

volumetric flow) was similar in several process sub-systems with some degree of redundancy 

(e.g., Main and Rejects, Main Refining) (Figure 4.7). In other sub-systems of the mill where too 

few measurement sensors are available, classical data reconciliation will at best result in some 

level of data coaptation process (input = output model). However, with the use of a simulation-

driven approach, it is sufficient to maintain zero degrees of freedom to obtain a more significant 

relative error reduction (close to 62% error reduction in the chip pre-treatment section of the 

operation) than classical reconciliation could provide (no error reduction). It is important to 

mention that because the iterative process of error minimization is taking place between 

simulated and measured variables, process model quality is of critical importance. In the context 

of this Ph.D. research, the model is assumed to represent precisely the underlying process 

operation. 
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Figure 4.7: Relative error reduction of production rate in different sub-systems of the process 

operation 

Figure 4.8: Relative error reduction of pulp flow measurement and its dependence on overall 

system redundancy 

For plant-wide process data reconciliation, the classical method reduced the error in production 

rate by approximately 10% (only redundant variables were corrected). On the other hand, the 

simulation-driven approach could reduce the error by approximately 50% (Figure 4.8, from 

Korbel and Stuart, d). Assuming that simlation model is correct, it is apparent that the estimators 

produced by the proposed methodology are superior to those produced by the classical approach. 

The difference in the outcomes of the two methods reflects the fact that the simulation module 

includes more system redundancy because the specific papermaking modules are described with 

more equations (including empirical relationships). Furthermore, the nature of the optimization 

module enables more practical equality and inequality constraints to be implemented. 

Historically, similar constraints have been based on the engineering judgment and experience of 

mill personnel involved with particular processing units and can be in many cases difficult to use 

in the optimization formulation of classical data reconciliation.  
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Figure 4.9: Example of a corrected biased measurement. 

 

In a more general approach, the method was applied to various hypothetical production situations 

where the level of redundancy was being increased from its current value of 19.9% by adding 

new instruments. The process of adding new measurement points was performed systematically 

based on a methodology for instrumentation design and upgrade (Appendix B). The following 

assumptions and steps were followed:  

 A hypothetical steady-state data set representing the manufacturing process was created 

for each level of system redundancy (the weighting matrix was updated based on vendor-

supplied accuracy and precision values). 

 For each level of redundancy, reconciliation with both techniques was carried out, and a 

relative error reduction was calculated to analyze the impact of system redundancy on the 

performance of each method. 

As can be deduced from the results presented in Figure 4.8, the advantage of using this method is 

the possibility of validating process data for low-redundancy systems, where at least zero degree 

of freedom are present. This is of crucial importance in the papermaking industry, where low-

redundancy systems are common because of poor instrumentation-network accuracy. With 

increasing redundancy values, the simulation-driven method will provide an additional possible 
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improvement of only 20% (from approximately 50% to approximately 70%). Clearly, this fact 

illustrates that the quality of the simulation model is of critical importance. 

The presence of miss-calibrated or malfunctioning instrumentation is determined by the gross 

error handling process. This task is performed in a very practical way. Historical knowledge 

about each instrument is used for systematic error testing by analyzing the squared error. If the 

values are very high compared to the historical data, the most commonly occurring biased 

measures are checked for potential gross error presence. The bias estimate can then be assessed 

according to historical values corresponding to similar situations (an example of flow measure 

correction is shown on Figure 4.9.) 

In summary, the simulation-driven method has proved to be practical and its performance to be 

comparable to that of classical data reconciliation for systems with high redundancy. The risks of 

the method lie with the trust and accuracy of the simulation model. The method’s main practical 

advantages are: 

 More of the equations that characterize the process operation are already implemented in 

individual processing units as a fundamental basis of the simulation engine. 

 The use of the CADSim simulation for reconciling the papermaking operation is very 

convenient for the user (no need to develop an additional reconciliation model for model-

based data validation). 

This portion of the study has demonstrated that the presented simulation-driven data rectification 

(reconciliation) is capable of making pre-processed real-time data consistent with the underlying 

process model in a low-redundancy manufacturing environment. 

Both methods, wavelet signals processing and data rectification, are then combined into a single 

unique methodology that was then applied to analyze manufacturing operations and provide 

plant-wide consistent data sets automatically in real time. Figure 4.10 presents an analysis 

performed on one of the months studied. This period of time was found to be a very stable 

operation in which the mill operated mainly in three different operating regimes for each grade. 

For each operating regime, multiple steady states had been identified and subsequently 

reconciled. Many other operating regimes have occurred but only for short time period. The 

selected ones that are presented were being periodically repeated according to the needs of paper 
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machine. It must be noted that the relatively stable production was attributed to exceptionally 

homogenous feedstock quality (humidity and size of chips) and to some extent an ambient 

conditions (temperature, pressure and ambient humidity). Some external perturbations (change in 

chips quality) have occurred however, these transient regimes were not analysed due to their very 

short time periods of occurrence. After the passage of several perturbations, the production was 

always stabilised to one of the tree operating regimes based on paper machine requirements. 

These cyclic operating situations serve as very good basis for analysing the variance between 

chosen manufacturing conditions. 
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Figure 4.10: Operating-regime selection based on frequency of occurrence 

 (three regimes for each product were selected based on their frequency of occurrence). 

 

4.3.4 Advanced cost analysis for true product margin assessment  

4.3.4.1 Development of the cost modelling framework 

The goal of the initial work was to develop an on-line data processing methodology that would 

generate accurate real-time process data capable of characterizing the plant-wide operating 

regime for cost modelling and analysis. The third pillar of the methodology—the operations-
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driven cost model—was then developed to explore these novel and unique insights into 

papermaking production for the short- and long-term benefit of the company. 

The operations-driven cost modelling approach consists of four steps (Figure 4.11) and was 

implemented using the Impact: EDCTM software: 

1. Characterization of the process operation based on real-time process data. The data are 

dissected to describe multiple operating regimes for manufacturing products in the core 

business and in the various biorefinery retrofit scenarios. 

2. Defining and organizing cost data and cost drivers into matrices that correspond to 

underlying fundamental (mass and energy) equations. 

3. Modeling and calculation of manufacturing costs for operating regimes and biorefinery 

design alternatives. 

4. Analysis, interpretation, and evaluation of cost model outcomes. 

The core of the methodology for manufacturing cost assessment of operating regimes and hence 

for product cost distribution is the ABC-like philosophy. The model was developed at the level of 

detail necessary to extract complex cost information on operating and design changes and was 

used to assess the production costs per tonne of each newsprint grade (as a cost object). The 

individual cost activities, referred to as process or overhead work centres (PWC and OWC 

respectively),  

 



76 

 

O
p

er
a

ti
o

n
s-

D
ri

ve
n

 C
o

s
t 

M
o

d
e

l

P
ro

ce
ss

 m
an

uf
a

ct
u

rin
g

 k
n

ow
le

dg
e

P
W

C
3

P
ro

ce
ss

 S
ub

sy
st

em

P
W

C
3

P
ro

ce
ss

 S
ub

sy
st

em

P
W

C
3

P
ro

ce
ss

 S
ub

sy
st

em

O
p
e
ra
ti
n
g 
re
gi
m
e

C
ri
te
ri
o
n
 1

C
ri
te
ri
o
n
 2

…
…
.
C
ri
te
ri
o
n
 N

48
‐0
1 
(0
01
)

48
‐0
1 
(0
02
) …

48
‐0
2 
(0
12
)

45
‐0
1 
(0
07
) …

45
‐0
3 
(0
21
)

P
ro
d
u
ct
‐R
e
gi
m
e
(N
)

T
A

B
LE

: 
O

p
er

a
tin

g
 r

eg
im

e
 c

ri
te

ria
 a

n
d 

ch
a

ra
ct

er
is

tic
s

D
ire

ct
 C

o
st

 C
al

cu
la

tio
n

 

D
e
si
gn

 s
ce
n
ar
io

C
ri
te
ri
o
n
 1

C
ri
te
ri
o
n
 2

…
…
.
C
ri
te
ri
o
n
 N

Et
H
_4
8‐
01
  (W

e
ig
h
A
v)

Et
H
_4
8‐
02
  (W

e
ig
h
A
v)

…

P
LA
_4
5‐
01

 (W
e
ig
h
A
v)

P
LA
_4
5‐
02
  (W

e
ig
h
A
v)

…

B
io
C
o
m
_4
8‐
03
  (W

e
ig
h
A
v)

B
io
C
o
m
_4
5‐
01
  (W

e
ig
h
A
v)

Sc
e
n
a
ri
o
_C
o
re
P
ro
d
‐R
e
gi
m
e
(N
)

T
A

B
L

E
: D

es
ig

n 
an

d 
O

pe
ra

tin
g

 r
eg

im
e 

cr
ite

ria
 a

nd
 c

ha
ra

ct
e

ris
tic

s

P
W

C
1

P
ro

ce
ss

 S
ub

sy
st

em
P

W
C

2
P

ro
ce

ss
 S

u
bs

ys
te

m
P

W
C

N
P

ro
ce

ss
 S

ub
sy

st
em

P
ro

d
u

ct
 

C
o

st

C
o

st
 m

od
e

l f
ra

m
ew

or
k 

fo
llo

w
s 

A
B

C
-l

ik
e 

p
rin

ci
pl

es
F

irs
t p

rin
ci

pl
e 

st
ru

ct
ur

e
 o

f c
os

t m
od

el
 (

M
&

E
 b

al
a

nc
e

s)
It

er
a

tiv
e 

ca
lc

u
la

tio
n 

fo
r 

in
te

rn
a

l c
o

st
 a

ss
es

sm
e

nt
S

eq
ue

n
tia

l a
nd

 m
od

ul
ar

 e
ng

in
e

 (
P

W
C

i =
 a

ct
iv

ity
 m

o
du

le
)

fl
ow

re
f

pr
od

fl
ow

re
f

W
C

fl
ow

re
f

W
C

fl
ow

re
f

fl
ow

re
fun

it

un
it

.
.

.

.

.

.

$





h
B

D
M

T

h
B

D
M

T

h
B

D
M

T

h
B

D
M

T

B
D

M
T

kW
h

kW
h

/
30

/
29

/
29

/
3.

19
30

0
$

04. 0





F
lo

w
 o

f c
os

t i
nf

or
m

at
io

n

O
W

C
D

ire
ct

 a
nd

 in
di

re
ct

 c
os

t

In
d

ire
ct

 C
o

st
 C

al
cu

la
tio

n
 

∑
(F

C
i /

 O
A

D
PW

C
i)

R
es

u
lts

 f
ro

m
 p

ro
ce

ss
 a

na
ly

si
s 

an
d 

si
m

ul
at

io
n 

A
n

al
ys

is
 o

f c
o

m
p

an
y’

s 
fin

a
nc

ia
l i

n
fo

rm
at

io
n

B
D

M
T

–
b

ou
n

d 
dr

y 
m

et
ric

 to
n

F
C

–
fix

e
d 

C
o

st
s

O
A

D
–

o
ve

rh
e

ad
 a

llo
ca

tio
n

 b
as

is
P

W
C

i–
P

ro
ce

ss
 W

or
k 

C
e

nt
er

 (
co

st
 a

ct
iv

ity
)

V
C

 –
va

ria
bl

e 
co

st
s

re
f.

 f
lo

w
 –

re
fe

re
n

ce
 fl

o
w

 fo
r 

id
en

tif
yi

ng
 

o
pe

ra
tin

g 
re

gi
m

e 
an

d/
or

 r
et

ro
fit

 d
es

ig
n 

sc
en

ar
io

W
C

 –
w

o
rk

 c
en

te
r 

(d
ef

in
e

s 
p

ro
ce

ss
in

g
 u

ni
t)

M
a

n
u

fa
ct

u
ri

n
g

 C
o

st
s

C
o

st
o

f f
in

al
 p

ro
du

ct
, 

in
di

vi
du

al
 p

ro
du

ct
 m

ar
gi

n
, 

co
st

 o
f 

ac
tiv

iti
e

s 
an

d 
d

ep
a

rt
m

e
nt

s,
 u

ni
ts

 c
os

ts

C
o

m
p

an
y’

s 
fin

an
ci

a
l k

n
ow

le
dg

e

M
o
n
th
ly
 f
in
an
ci
al
 s
ta
te
m
e
n
ts

Ja
n
u
ar
y

Fe
b
ru
ar
y

…
.
D
e
ce
m
b
e
r

B
le

ac
hi

ng
 A

id

R
et

en
tio

n 
A

id

M
ac

hi
ne

 fa
br

ic
s

M
ac

hi
ne

 c
lo

th
in

g

C
he

m
ic

al
s 

-E
ffl

ue
nt

O
th

er
 c

he
m

ic
al

s

…
…
…
…
.

P
ro
d
u
ct
io
n
 r
e
ci
p
e
s

48
.8

45
.2

…
.
G
ra
d
e
 N

B
le

ac
hi

ng
 A

id

R
et

en
tio

n 
A

id

M
ac

hi
ne

 fa
br

ic
s

M
ac

hi
ne

 c
lo

th
in

g

O
th

er
 c

he
m

ic
al

s

…
…
…
…
.

F
ix

ed
 C

o
s

ts
(S

er
vi

ce
s,

 
m

a
in

te
na

n
ce

, 
op

er
a

tin
g 

su
p

pl
ie

s,
 

be
ne

fit
s,

 e
tc

)

A
ll

o
ca

ti
o

n
 r

u
le

s
(h

e
ad

co
un

t b
a

se
d

 
al

lo
ca

tio
n,

 
m

an
u

fa
ct

u
rin

g
 h

ou
rs

 
ba

se
d 

a
llo

ca
tio

n
)

D
ir

e
ct

 C
o

s
ts

(r
es

ou
rc

e
 

dr
iv

e
rs

, r
es

o
ur

ce
 

ID
 a

nd
 t

ag
 ID

, 
ac

tiv
ity

 d
riv

e
rs

,)

P
ri

c
e 

ta
b

le
(r

es
ou

rc
e 

un
it 

co
st

s,
 m

a
rk

et
 

p
ro

d
uc

t p
ric

e
s)

In
fo

rm
at

io
n 

e
xc

h
an

g
e 

fo
r 

co
st

 d
riv

er
s 

de
fin

iti
o

n

S
tr

uc
tu

re
 o

f o
pe

ra
tio

ns
 d

riv
en

 c
os

t m
o

de
lin

g
 fr

a
m

ew
or

k

F
ig

ur
e:

 4
.1

1
: I

m
pl

em
en

ta
tio

n 
of

 th
e 

op
er

at
io

ns
-d

riv
en

 c
os

t m
od

el
in

g 
fr

am
ew

or
k 

fo
r 

m
an

u
fa

ct
ur

in
g 

co
st

s 
as

se
ss

m
en

t o
f 

op
er

at
in

g 
re

g
im

es
 a

nd
 

pr
od

uc
t m

a
rg

in
s:

 1
 –

P
ro

ce
ss

 o
p

er
at

io
n

 k
no

w
le

d
ge

 m
a

tr
ix

 r
e

pr
es

en
ta

tio
n,

 2
 –

de
fin

iti
on

 o
f c

os
t i

te
m

s 
3 

–
C

os
t 

m
o

de
lin

g 
en

gi
ne

, 
4 

–
P

ro
ce

ss
 

o
pe

ra
tio

n 
co

st
 e

va
lu

a
tio

n 

1

2

3

4

 



77 

 

Figure 4.11: Implementation of operations-driven cost modeling framework 

were defined to capture and represent the chain of production as it moves through manufacturing 

sub-systems (in some cases mill departments). The direct cost (raw material resources) was 

linked to these activities based on the process model, whereas the indirect or overhead costs were 

linked based on predetermined allocation rules and drivers. The cost items in both categories are 

stored in a matrix representation for convenient access and manipulation using database cost 

scripts incorporated in the software. Each PWC consists of the following essential elements: 

 The process operation criteria and characteristics describing the process regime or retrofit 

design alternative, 

 The integration of cost with mass and energy flow along the manufacturing operation, 
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Figure 4.12: Definition of the process and overhead work centers which capture various cost 

categories within the current business base-case mill. 
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 Specific calculations (cost-related or simply unit conversion-related) for individual PWCs,  

 The allocation (or assignment) of indirect and overhead costs, and 

 The core ABC-like engine (operations-driven cost calculation). 

Figure 4.12 shows how different types of costs were traced and allocated within the costing 

framework. Direct and overhead production costs were addressed for each PWC, for each process 

regime (Figure 4.13) or retrofit alternative (Figure 4.14). The second type of costs that cannot be 

traced (but can be allocated) by traditional accounting were directly associated with each 

individual PWC based on allocation information. This association makes the indirect costs 

behave similarly to direct costs by introducing the link between overhead cost pools and cost 

objects (newsprint or future FBR products) using PWCs. The costs used were obtained by 

averaging the cost output of several steady-state data sets representing individual operating 

regimes. The error associated with each operating regime was relatively small (maximum of 

4.2% relative error) when compared to the cost variations among the individual operating 

regimes.  
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Figure 4.13: Production costs of different operating regimes divided into process work centres 

and by types of cost 
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Overheads allocation was performed per ton of newsprint produced, and therefore the variances 

between regimes are due mainly to production volume. The cost variations of the paper-mill 

department are associated mainly with variations of steam price, whereas the cost variations in 

the TMP mill are associated mainly with electricity consumption. The three operating regimes 

presented here are characterized by different pulp qualities and production volumes, and hence 

the “free” steam production from refining high-consistency pulp varies. This variance as well as 

the production changes in the paper mill must be compensated for by producing more high-

pressure steam from the boilers (using natural gas, electricity, or oil fuels), which changes the 

internal unit price of steam. The unit price of steam is calculated iteratively as a ratio of high-

pressure steam production price and recovered-steam production price. The iteration step is 

necessary because the recovered steam price depends on multiple interactions between PWCs. 

The electricity cost variation is due mainly to the specific energy difference between operating 

regimes, the production rate, the ratio of reject volumetric rate to mainline production rate, and 

potential changes in refiner plate characteristics. However, the mill generally uses the same types 

of plates for a long period of time; therefore, the impact of this parameter was not addressed. The 

electricity variance due to the change in the reject-line ratio is attributable to the change in the 

specific electricity consumption in reject pulp refining. The cost of fibre remains essentially 

constant, with slight variations due to small yield fluctuations, which becomes essential when 

comparing different grade recipes (e.g., when comparing the productions of 48.8 g.m-2 and 45.1 

g.m-2 grades). The increase in costs due to steam price and the dependence of costs on the 

interrelation of process activities, as well as the increase in electricity costs, can be captured and 

interpreted only because of the operations-driven nature of the cost model. The cost model has 

integrated the resources consumed and their related costs with the process activities in each PWC 

and has brought process and financial knowledge closer together. This type of analysis 

demonstrates that the operations-driven cost model proposed here is able to unify the flows of 

cost and process information to increase the transparency of production costs. Furthermore, the 

characterization of production costs and the interpretation of variances using lower-level real-

time process data have never been done before in the pulp and paper industry. Hence, the 

opportunity to use this approach for continuous mill improvements will minimize manufacturing 

costs and increase the cash flow of the company, thus providing competitive advantage. 
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A similar characterization of mill manufacturing costs for a different one-month period was tried 

to validate the operating-cost assessment procedure and to compare the outcomes from the 

proposed method to the values acquired from traditional cost-accounting techniques. Figure 4.14 

presents the results of an analysis of several campaign runs at the beginning of the month, 

producing a 48.8 g.m-2 grade. The results are dissected into different operating regimes and cost 

items. Between individual runs, another product grade is being produced, or a long transient 

period occurred. For simpler representation, the overhead cost items were united into one cost 

pool—the overhead costs.  

0

0.5

1

St
an
d
ar
d
 c
o
st
s

R
e
gi
m
e
0
1

R
e
gi
m
e
0
2

R
e
gi
m
e
1
2

R
e
gi
m
e
0
1

R
e
gi
m
e
0
6

R
e
gi
m
e
0
4

R
e
gi
m
e
1
1

R
e
gi
m
e
0
2

R
e
gi
m
e
0
5

R
e
gi
m
e
1
2

R
e
gi
m
e
1
0

R
e
gi
m
e
1
1

R
e
gi
m
e
1
1

R
e
gi
m
e
0
7

R
e
gi
m
e
0
5

R
e
gi
m
e
0
6

R
e
gi
m
e
0
9

R
e
gi
m
e
0
2

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9

pr
o
du
ct
 4
8
.8
 p
ro
du
ct
io
n
 c
os
t 
($
/t
o
n)

Running production costs during winter period 

Overheads

Labour costs

Steam

Electricity

Material

Furnish

 

Figure 4.14: Manufacturing costs of newsprint in different operating regimes 

Manufacturing costs of a 48.8 g.m-2 newsprint product within the time frame of campaign costs 

analyzed and its corresponding operating regimes (normalized to standard costs). 

A few intriguing cases were identified:  

 During several runs, steam costs, electricity consumption, use of direct materials, and 

overheads were significantly different. After closer analysis and discussions with mill 

personnel, it was determined that a different furnish ratio and a different chip pile were 

used for these runs, creating a peak in specific electricity consumption for different 

operating regimes while producing the same grade (regime 01-12) 

 Manufacturing costs for the same operating regime but within different campaign runs can 

vary significantly (e.g., operating regime 09, campaign runs 1, 2, and 9): 
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o This variance was determined to be caused by an increase in the use of bleaching 

chemicals as well as an increase in electricity consumption in the primary refiner. 

This disturbance was caused by a change in raw material characteristics. After 

further analysis, it was determined that the reason was an instrument which was 

miscalibrated and that therefore measured slightly higher production throughput 

than was actually being produced (a difference in chip moisture). This biased 

measurement caused the specific energy to move outside the optimal range, 

creating higher energy consumption. 

o The steam unit decrease was caused by an increase in steam recovery, minimizing 

the need to produce high-pressure steam. The steam consumption in the paper mill 

is was identical. 

 Operating regime 11 cost variance between runs 6 and 7 was mainly due to the unit steam 

price. This variance was attributed to excess production of high-pressure steam because of 

low efficiency of the steam recovery unit due to a mechanical cause: the microfibers 

present in the dirty steam coming from the high-consistency refiners had clogged the 

recovery unit. This problem had not been identified for a couple of days, resulting in 

significant profit losses. Note that the unit steam price fell back to its optimal value 

(regime09 and regime02 of runs 8 and 9) after the problem had been corrected. 

 Comparing the outcomes of the proposed methodology to the values generated by 

classical cost accounting, it can be concluded that standard costing is an ad-hoc method 

that does not provide the essential process perspective on costs incurred. 

This clear process operation visibility enables a better understanding of the mill’s cost structure. 

Furthermore, because process operating regimes are defined based on process characteristics and 

conditions, the manufacturing costs of the same product can be addressed in multiple ways, 

making the actual cost distribution of a given product grade available for the first time in pulp 

and paper mills.  Figure 4.15 shows the manufacturing information covering the whole set of 

operating regimes that were identified and analyzed during the whole month (for the 48.8 g.m-2 

grade). Each regime is labelled by its corresponding total production cost (normalized to the 

average value) and its probability of occurrence. The width of the bar corresponds to the cost 

range of the regime because of the use of multiple steady-state data sets for regime costing (the 
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abnormalities caused by process or raw material were omitted). The thick line inside each of the 

bars represents the weighted average of near-steady-state costs. The colors towards the red 

spectrum indicate the more costly operating regimes, whereas the bars with green colors 

represent the more profitable regimes. The grey bars represent average values. The cost variance 

in producing the same grade under different operating regimes is significant (~22$ per ton of 

paper). 

This section of the study has demonstrated that the proposed methodology is able to provide cost 

distributions for different products. This essential analysis enables identification of less profitable 

operating regimes with the capability to interpret the causes from a process perspective.  
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Figure 4.15: Product operating profitability distribution 

(Wide range of product profit margins for a 48.8 g.m-2 product for one month of operation.) 

The knowledge acquired from characterization of the current mill was used to explore the future 

production costs of three integrated forest biorefinery (FBR) options. The profitability analysis 

expressed with EBIDTA values for different FBR scenarios is presented in Figure 4.6. From the 

company’s production profit margin, it was concluded that the option of the integrated 

biocomposite production line would increase the company’s cash flow significantly. The 

manufacturing costs were calculated based on current mill information and simulated data for the 
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new process. The simulation was integrated into the existing base-case simulation. All three 

retrofit options are tightly integrated with the current core business manufacturing processes by 

multiple flows. These retrofit scenarios were represented in the operations-driven cost model as 

different cost objects. Various driver types are used in the model to describe resource 

consumption by activities or cost objects. Because many of the activity drivers in chemical 

operations, which characterize direct costs, are based on continuous material flows, the ABC 

parameters and definitions are reorganized to capture these new activities: for instance, various 

by-product streams, new material flows, and process steam.  

The impact on manufacturing costs of current core business products is presented in Figure 4.17. 

To analyze the true impact of process integration, the first set of cost analyses within the stable 

production month was used (only three main operating regimes per product grade were 

considered (Figure 4.10) and the corresponding manufacturing-cost analysis presented in Figure 

4.13). This choice is justified by the high accuracy of the results as a consequence of using many 

steady-state data sets to quantify the manufacturing costs of a single operating regime.  
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Figure 4.16: Overall manufacturing profitability for each biorefinery scenario 

(Overall manufacturing profitability expressed as EBIDTA (broken down by product) of each 

scenario under consideration.) 
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When looking at the integrated biocomposite scenario, the cost impact on the core business, 

newsprint products (both 45 and 48 grades), is minimal. Generally, the variance in manufacturing 

costs among all three scenarios is due to steam price, electricity costs, and overhead costs. The 

cost-impact characterization and interpretation can be summarized in several findings: 

 Variance in steam unit price between different FBR scenarios is due to the increase in the 

overall operation demand for producing high-pressure steam in both VPP options (bio-

ethanol and PLA scenario). Both PLA and bio-ethanol processes require steam for the 

final purification step; however the production volume is so small that the cost impact on 

core business products is marginal. 

 The increase in pulp throughput, from the pre-treatment step to the secondary high-

consistency refiners (to account for producing 80 tons per day of biocomposite pellets), 

increases the production of dirty (low-pressure) steam from the primary refiner. This 

impact was manifested as a decrease in steam price; however, the new processing line 

requires steam for biocomposite pellets drying, and therefore the overall net impact 

increases the steam unit price marginally. 

  This change in pulp flow rate reduces the specific energy of the primary refiner (from 

980 kWh/ODMT to 920 kWh/ODMT), which has only a small impact on electricity 

consumption. These process changes and cost impacts on core business products are 

minimal in the case of the biocomposite scenario. 

 Pre-treatment of chips using acetic acid, which is common to both VPP scenarios, 

provides significant cost savings for the core products. The change in specific energy is 

almost 25%.  

 The difference in overhead costs is due to the sharing of indirect costs with the new 

process operation. However, due to the increase in labor and maintenance, the overall mill 

burden increased, which manifested itself as a small change in the net impact on core 

products. 

 Direct material and furnish were not affected by any retrofit option. However, the increase 

due to chip unit price was not considered because of the small production volumes that 
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are required by the FBR options. However if larger volumes were considered, this impact 

might become significant. 
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Figure 4.17: Cost-process impact assessment of different retrofit design alternatives 

(Comparison of the cost impact on core products for each scenario (grades 45 and 48)) 

From the findings presented above, it could be concluded that the biorefinery retrofit options 

involving ethanol and PLA are more attractive when considering the cost savings for paper 

products. One of these retrofit options might be prioritized before the biocomposite scenario if 

the newsprint market were to have a positive price forecast which would ensure an increase in the 

company’s long-term cash flow. However, the overall cash-flow increase in the biocomposite 

scenario is significantly larger compared to the two VPP options. This will provide business 

security for the company over the long term, assuming that biocomposite market prices follow 

the predicted trend. 

When considering specific retrofit options and their impact on core paper products, the proposed 

methodology provides granular cost performance analysis of manufacturing, as represented by 

different regimes (Figure 4.18). The PLA production costs are increased when producing 45 

newsprint grades. This difference is mainly due to steam and overhead costs. The steam unit price 

was determined to be lower because of the increase in the demand of high-pressure steam when 

producing grade 48. The specific steam usage per ton of PLA changed only marginally; however, 

the increase in the internal steam price caused the overall steam costs to be increased. The R45-3 

operating regime is the most profitable operating scenario for simultaneous PLA and 45-grade 
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productions (the absolute cost difference is more visible from Figure 4.19). The favourable 

position of the R45-3 operating regime is mainly due to the higher production rate of PLA, which 

is enabled by the highest rate of parallel production of paper grade 45. Most of the variance can 

be observed to be due to overhead costs because the allocation base (tons of PLA produced) 

increased PLA profitability. The specific use of steam and electricity changed only marginally 

due to the corresponding increase in steam demand and hence unit steam price. Similarly, the 

R48-1 operating regime was identified as the most profitable for parallel PLA and grade 48 

production. The manufacturing costs for this scenario are significantly reduced compared to any 

option with parallel 45-grade production. The difference is due to the increase in PLA 

production, which increases the allocation base (tons of PLA produced). The allocation basis for 

overhead reallocation to departments is based on head count per these departments (for more 

details see Appendix I for cost classification and calculation). The overall mills overhead costs 

are spread across the new integrated facility. Since the tons of PLA production is significantly 

smaller than of paper products, the OH contribution is large. However the specific steam cost is 

higher because of the significant increase in steam unit price resulting from the increase in overall 

steam demand. 
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Figure 4.18: Process-cost impact of PLA scenario to core business production  

(Production costs of PLA option within the biorefinery (paper grades and PLA) scenario for each 

operating regime (paper grade costs are normalized to standard costing of grade 45, whereas PLA 

costs are normalized to PLA standard costs to improve visibility)) 
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The variations in the different scenarios stand out even more when looking at the contribution 

margin (operating profitability) of each product for different scenarios characterized by operating 

regime (Figure 4.19). The values of the changes in actual or true product margin (normalized to 

the base case calculated by standard costing) provide information which can be explored in 

strategic decision-making. The near-zero or negative effect (simultaneous biocomposite 

production in regime R45-3) on the margin relative to the base case indicates that the 

biocomposite option may appear to be unattractive. PLA production appears to be very attractive 

when looking at only this potential decision-making parameter: in some cases, the margin 

increases by over 200% (PLA and grade 45 productions in R45-1 and R45-3 regimes). However, 

different conclusions are obtained when looking at the gross profit margin of the production in 

the retrofit option with biocomposite production (Figure 4.16). 
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Figure 4.19: Operating profitability of each core product under biorefinery scenarios 

Further long-term company benefits from using operations-driven cost modeling based on ABC-

like integration of real-time data with cost data can be seen from a simple analysis of the future 

company’s cash flow. EBITDA (earnings before interest, taxes, depreciation, and amortization), 

also called operating profit, which serves as an indicator of the cash-generation potential of the 

retrofit scenario, was taken as a measure of long-term mill benefit expression. Figure 4.20 

presents a tree of possible future scenarios and their interpretations in the matrix. Each of these 

scenarios has been analyzed under the following assumptions: 

• Constant quantity of paper products sold to customers (only grade 48 is assumed), 
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• Yearly increase in production efficiency due to operating improvements, 

• Yearly labor and raw material cost increases, 

• Selling prices for the base case and for scenarios 2 and 3 are taken from predictions by 

RPA (2001–2020); the selling price is held constant for scenario 1. 

The assumption of constant newsprint price after PLA scenario implementation shows a business 

cash-flow increase of more than 165% compared to that of the current business. This will make 

the new business model break even more than 15.3 years from the present (8 years more than the 

base case). By assuming simultaneous continuous improvements by simply avoiding mill 

operation in regime R48-3, and assuming a change in future paper price, an increase of 106% in 

total cash flow within the analyzed business period may be achieved. Furthermore, the product 

margin of the 48.8 g.m-2 grade is increased by nearly 40%, enabling newsprint production to 

continue more than 22 months longer than in the base case. 

 

 

Figure 4.20: EBIDTA forecast and the potential impact of regime costing on product margins, 

and retirement age of a business. 
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In summary, this analysis of potential retrofit design changes has benefitted from having an 

operations-driven cost model based on ABC-like principles in place which systematically 

integrates process and cost data. The model focuses on process costs instead of only on product 

cost assessment and is able to analyze the implications of operating regimes in future retrofit 

design options. This enables the identification of profitable operating conditions in current and 

future manufacturing environments and provides an increase in the profitability of retrofit design 

alternatives. 

4.4 Conclusions 

This chapter outlined the implementation of the on-line methodology for assessing operating 

product margins, and its results related to the case study involving characterisation and 

interpretation of current core business and to the case study involving the implementation of three 

integrated forest biorefinery scenarios. First, signal processing technique, based on wavelet 

transform and filtering, was applied to analyze the time-frequency space of individual sensor of 

the whole plant-wide instrumentation network. This process was done for several operating 

regimes that were chosen for production cost analysis. This step provided mill personnel with 

multiple steady-state data sets to use in different application. The online ability of the method, to 

detect steady-state has permitted process engineers to gather several data sets without an effort. 

This is due to the wavelet processing features which allow identifying abnormal measurements 

and excluding them from the analysis. The application of the method to case study has shown 

that the accuracy of production costs was improved when compared to the use of average data 

within the analyzed operating regime. In the second step, simulation-driven data reconciliation 

was applied to analyse the sensor network for the presence of potentially biased instruments. The 

estimation and correction of their values was carried on if presence was confirmed. The method 

was able to identify multiple measurements with biased values. The sizes of their errors were 

estimated and correction was applied. This is due to the ability of the method to be applied in the 

low redundant system as the case study was. When classical reconciliation techniques were used, 

the system has failed to crosscheck measurements and detect biased measures. In the third step, 

the use of process knowledge is exploited in the ABC-like cost accounting framework. The 

advantages of this approach have been demonstrated in two case studies for short and long term 

newsprint facility benefits. The improved visibility of the mill cost structure permitted process-
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based interpretation of cost variances between several operating regimes, which creates potential 

framework for continuous improvements. Several process-related problems were identified when 

using the ABC-like character of the method. For instance, it was found that the shutdown of 

recovery unit have a large cost impact on production costs in summer periods. The impact of the 

change in feedstock properties has manifested as the variance in steam, electricity and chemicals 

consumptions. Furthermore, it was found that, significant cost variance occurred, when operating 

in regime that corresponds to a different product grade. This type of interpretations is possible 

due to the ABC-like structure of the model which emphasizes the process costs, whereas the 

traditional cost approach focuses on the product cost. In the last step, the process-based 

production knowledge of the current business was used to analyze future facility manufacturing 

costs for three retrofit design scenarios. The transparency of cost results due to ABC-like method 

have allowed for improved view on the potential cost-process impacts based on actual and real-

time process data. 
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CHAPTER 5 GENERAL DISCUSSION 

 

The implementation of information management systems in pulp and paper companies has 

enabled a better understanding of both business and production processes. Even though mill 

engineers and accountants have incorporated the use of real-time data into their daily practices, 

they are often limited to using these data only for ad-hoc problem solving. The critical 

information captured in the data has not yet been made visible to decision-makers. Data trends 

are studied, but information is seldom extracted from the actual measured variables. If 

information management systems at the mill can be exploited to their full potential, decision-

making activities will be enhanced significantly by access to new and insightful manufacturing 

information for operational, tactical, or strategic decision-making. 

Understanding individual product margins becomes essential to determine the optimal unit prices 

and to reveal the true profitability of production. Current cost accounting systems at pulp and 

paper mills provide only an ad-hoc assessment of these values. The common simplification made 

by all accountants, assuming product homogeneity, creates distortions to the real costs incurred in 

the time frame under analysis. Standard costing methods based on standard recipes can serve only 

as a mill benchmark for performance evaluation. On the other hand, actual cost calculations using 

traditional methods provide only aggregated costs that are assessed in a top-down manner. The 

division of such aggregated costs into cost pools corresponding to individual products is usually 

volume-based and therefore incorporates various changes in process operation due to process 

dynamics, raw material disturbances, or both. For this reason, this assumption is often far from 

reality, making the estimated costs unreliable for determining the true product profitability that is 

critically important for decision-making. Mill accountants and engineers recognize that the rate at 

which each mill generates costs may vary significantly, even when the mills are manufacturing 

the very same product. Determining the true operating margins of individual products is clearly a 

challenging task for accountants in the processing industries because both process and cost data 

are biased.  

The aim of this work was therefore to develop a methodology for on-line manufacturing cost 

analysis, using real-time process and cost data available from information management systems, 

which would be capable of assessing actual product margin costs and of using this information 
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for operational and tactical decision making (Figure 3.1). Furthermore, the knowledge gained 

from applying this methodology can be explored at the strategic decision-making level for 

addressing the process-cost impact of retrofit design alternatives. The methodology is applied in a 

case study which considers both current newsprint mill characteristics and potential retrofit 

biorefinery implementations. 

 

5.1 Manufacturing cost assessment 

With the use of advanced data-processing tools and methodologies, the operating costs of 

manufacturing can be expressed by assessing the costs of different operating strategies (operating 

regimes). Every paper product is manufactured according to a particular production recipe. 

However, within this recipe, different operating strategies can be followed by operator choice or 

as a result of natural process-material interactions. These operating regimes are driven by process 

design characteristics and operating practices. For instance, the use of different chip-refining 

plates, changes in the control setpoint strategy for freeness control, and the open or closed nature 

of process loops and units are examples of operating regimes. In an environment more complex 

than the case study examined here, operating regimes could be defined by the level of process 

flexibility or the use of different production lines to arrive at the same product specifications; 

different product recipes could be as well used for cost analysis.  

In response to these needs, an operations-driven cost approach was developed to capture the 

necessary cost characterization from a process perspective and interpretation. The overall 

structure of this cost-modeling vision, as discussed throughout the thesis, can be understood from 

Figure 5.1 (Korbel and Stuart, 2012). Traditional cost-accounting procedures permit ad-hoc 

profitability analysis of different products (grades). To go further and to understand the actual 

costs incurred from a chemical engineering perspective, a process model should be used to assess 

the profitability of individual operating regimes using the probability of occurrence of each 

regime. At this stage, the information can be used by operational decision-makers to choose the 

most profitable operating regimes and to eliminate costly ones and by tactical decision makers to 

enhance planning and scheduling and to explore process flexibility for the short-term benefit of 

the company. 
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This clear visibility of the process operation provides a better understanding of the mill’s cost 

structure. Furthermore, because process operating regimes are defined based on process 

conditions, the manufacturing costs of the same product can be addressed in multiple ways, 

making the cost distribution of a given product grade available for the first time in pulp and paper 

mills.  

Several operating regimes were recommended to the mill personnel based on the results of the 

case study. It was also concluded that some of the costly operating regimes could not be avoided 

due to process or raw material constraints or because they occur as a natural response to ensure 

operating safety.  

 

 

5.1: Smart data dissection for an operations-driven cost modeling approach  

Because pulp and paper facilities operate in an item-based or order-driven manufacturing 

environment, the use of a regime costing system creates a sustainable option for the corporation. 

Not only will short-term savings in manufacturing costs be generated, but also high-value supply-

chain modeling and the analysis of a potential retrofit or transformation of the business to a forest 

biorefinery will benefit from these valuable insights into production knowledge. This was shown 

in a case study application of the method to strategic analysis of the process-cost impacts of 

possible future retrofit design and manufacturing alternatives. This analysis proved that the 

benefits from an operations-driven cost model based on ABC-like principles will enhance 

strategic decision-making knowledge. These benefits arise because the cost model focuses on 

process costs instead of only on product-cost assessment and is able to analyze the implications 
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of operating regimes in future retrofit design options. Interpretation of different core operating 

strategies and their actual impact on producing a parallel mix of products in the future were 

discussed. The essential knowledge gained from these granular cost results can be exploited in 

the company’s strategic planning activities to enhance decision-making information and to 

identify the optimal option for a complex multi-product manufacturing environment. 

 

5.2 Data reconciliation  

To provide operations-driven cost analysis with process knowledge, data reconciliation must be 

performed, first, to validate the process measurements and second, to help estimate the extent of 

bias in measurement signals. As discussed briefly in the literature (Section 2.2.1), two major 

types of applications can be distinguished based on an analysis of major industrial types of data-

reconciliation applications (Narasimhan and Jordache (2000): 

 Process unit reconciliation (fundamental first-principles balance models for processing 

units) applications for different type of reactors (especially pyrolysis reactors or catalytic 

and cracker-reformer units in the petrochemical industry), including distillation and 

separation columns in the petrochemical industry 

 Plant-wide reconciliation of production and utilities accounting for refineries. Many 

refineries are already saving on production costs by using data-reconciliation techniques. 

However, industrial applications for plant-wide data reconciliation are generally home-grown 

techniques for petrochemical facilities (Romagnoli and Sanchez, 2000). In pulp and paper 

facilities, the lack of measurements has restricted data reconciliation to be performed only as an 

off-line method with very scarce access to data measurements. Usually, manual tests are 

performed over several days (Jacob, 2003) to gather a single snapshot that represents the plant-

wide (or processing unit) operation. The application of this laborious procedure is challenging 

and very impractical for the needs of process-based applications such as the proposed methods 

for operations-driven cost accounting and operating-regime cost analysis that have been 

developed in this work. Several trials of classical data reconciliation have failed in application 

because of lack of redundancy in measurements. 
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In response to this lack of industrial applications of data reconciliation in the papermaking sector, 

the focus of this work was to elaborate a framework for steady-state data reconciliation using 

coupled simulation and optimization models for this purpose. The choice of the CADSIM 

software from Aurel Systems Inc. was justified on the basis of its functionality and degree of 

adaptation to pulp and paper facilities. Close collaboration with the software developers has 

created an opportunity to access the source code and to define customized empirical equations. In 

this way, analytical system redundancy was increased by increasing the degrees of freedom of the 

problem. This approach facilitated the establishment of a system with zero degrees of freedom 

using several necessary key variables. 

This approach has proved to be very practical for on-line industrial application in the pulp and 

paper industry. The approach provides robust estimators of process variables with relatively low 

least-squares error. The sequential nature of the software creates a delay when too many 

iterations are necessary to arrive at the optimal solution. When data pre-processing and steady-

state detection using wavelets were used, the approach provided robust estimators corresponding 

to near-steady-state operation. It must be emphasized that model accuracy is the key factor in the 

approach to provide good measurement estimators corresponding to real operation. 

5.3 Signal processing 

The use of data pre-processing methods for industrial applications was investigated for the 

purpose of providing accurate representation of the underlying production processes. Data pre-

processing in the pulp and paper facilities is done using filters. Use of the analog or digital filters 

that are usually incorporated in distributed control systems is not sufficient to eliminate 

completely the effect of abnormal measurements. Some larger outliers can be eliminated using 

the permissible lower and upper bounds of process variables; however, many outliers pass 

unprocessed and remain within these bounds. The presence of abnormalities decreases the 

performance of any process-state identification system (Shankar, 2000). The method proposed 

here uses wavelet-transform features to decompose the signal in the time-frequency domain. Each 

part of the signal in the frequency space is analyzed by the wavelet transform. Comparison of the 

WT module extrema (as discussed in Section 2.3.2.1 in the critical literature review) makes it 

possible to identify and discard outliers.  
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As mentioned in the critical literature review, several robust methods for steady-state 

identification exist and are used for process state analysis. However, only a few applications 

(using filters) have been reported that focus on on-line applications of state identification. 

Flehmig (1998) built a mathematical framework for state identification using wavelets for 

potential on-line applications. Parallel work by Jiang (2000) introduced an actual algorithm for 

off-line industrial applications. Therefore, in response to the lack of on-line industrial 

applications of data pre-processing and steady-state detection, especially in the pulp and paper 

industry, the focus of this work was to elaborate on Jiang’s efficient and robust method by 

introducing a new three-step methodology and thereby to offer on-line industrial application of 

near-steady-state process detection. 

The method shows robust performance and the ability to detect near-steady state from real-time 

measurements. This is done using key variables representing the state of individual sub-systems, 

from which the multivariable near-steady state of the plant-wide operation can be identified. A 

very practical analysis includes a framework for assessing the uncertainty in the steady-state 

assumption due to operating dynamics. Indeed, this may be a very challenging task because of the 

complex manufacturing environment of a newsprint operation, which consists of a number of 

tanks and process loops. The case study was, however, a rather simple and stable operation. A 

modern, computerized single-line thermo-mechanical pulping operation with a single paper 

machine exhibits near-steady-state operation fairly often. It was therefore possible to detect 

several steady-state data sets to characterize the same operating regime and thus to validate each 

step of the methodology by statistically comparing the offsets of the various data sets from each 

other.  

The method has several advantages that have simplified the cost assessment of the integrated 

thermo-mechanical newsprint mill case study. On-line use of the method facilitated the extraction 

of multivariable steady-state candidates. Note that in the thermo-mechanical mill under study, the 

method was implemented as a trial for data pre-processing. The control personnel and operators 

at the mill have agreed that the results are superior to the current practice of using the filters in 

the DCS system.  
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

Canadian P&P facilities have tremendous opportunities to increase their level of competitive 

advantage by developing tools and methodologies to exploit their information management 

systems. These systems have gathered vast amounts of process and cost data which are not now 

fully exploited. The use of the activity-based costing philosophy and its variations could help 

managers improve forest-company profits based on these valuable data. This thesis presented 

ABC-like methodology for on-line manufacturing cost assessment that is based on using this 

real-time process and cost data from information management systems. The supporting pillar of 

the method is an on-line technique that is able to detect near-steady-state operation and to 

establish that the steady-state data sets are relatively accurate. The accuracy and validity of the 

operating-regime representation with the use of near-steady-state data increases with the number 

of near-steady states identified. When wavelet signal processing is combined with a data 

reconciliation method, the analysis can provide a complete set of plant-wide reconciled data 

representing operating regimes. 

It was found that this methodology provides granular cost results thus provide transparency to 

manufacturing-cost knowledge of a current business environment, enhancing multiple 

opportunities for short and long term company’s benefits. This methodology can be used as a tool 

in day-to-day operations that would assist mill personal on multiple aspects of the organisation. 

The strategy of continuous mill improvement can benefit from this information, process 

flexibility can be explored when tracking paper prices, a margin-centric supply chain will benefit 

from providing actual product margins for each operating regime, process-driven explanation of 

cost variances on a daily basis will enhance cost-control practices, and outcomes from signal and 

data processing will provide enhanced instrumentation and process troubleshooting. These are 

but a few essential examples of the potential implications of the proposed method for short-term 

facility’s benefits. Furthermore, the analysis of potential retrofit design scenarios would benefit 

from having an operations-driven cost model based on ABC-like principles in place, providing 

systematic integration of process and cost data. The model focuses on process costs instead of 

only on product cost assessment and is able to analyze the implications of operating regimes for 

future retrofit design options. This leads to the identification of profitable operating conditions in 
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both current and future manufacturing environments and makes possible increased profitability of 

retrofit design alternatives. 

6.1 Contributions to the body of knowledge 

A development and industrial application of multiscale signal processing technique that is used 

for efficient on-line near steady-state detection based on wavelet transform and filtering. The 

individual methodological contributions can be listed as follows: 

 An on-line methodology based on wavelet transforms and filtering which is able to 

provide highly accurate steady-state representation of small subsystems. This ability can 

be elaborated to plant-wide systems for industrial applications in cases where the 

operation under study is fairly stable and simple.  

A development and industrial application of plant-wide and steady-state data reconciliation in 

low redundant systems that is based on process simulation and optimisation 

 A practical approach of model-based measurement data validation, that is based on 

linking wavelet steady-state detection technique with simulation-driven data-

reconciliation method into one methodological framework that is capable of providing 

plant-wide reconciled data sets that representing operating regimes. 

 A practical approach for identifying presence of biased measurements in the pulp and 

paper manufacturing processes. 

Development and application of costing method based on real-time data and ABC-like cost 

accounting principles for assessing actual product operating margins for short and long term 

company’s benefits. The operations-driven cost modeling approach enables the analyst to 

analyze, characterise and interpret different operating regime alternatives based on real-time 

process data. More specifically: 

 A way to address cost implications of manufacturing processes by linking real-time and 

plant-wide reconciled process data with advanced cost modelling on the basis of activity-

based costing principles. This unique approach helps to characterize and interpret 

complex cost-process relationships and enables process troubleshooting  
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 Use of a unique dissection of process data to characterize operating regimes within the 

complex manufacturing environment. This approach makes it possible to analyze the 

actual cost of production processes. The resulting information also enables the 

characterization and interpretation of differences in the operating profit of individual 

products and regimes and provides a facility which can give new guidance on continuous 

improvements. 

 A systematic approach to address the process-cost impacts and implications of strategic 

retrofit projects systematically by combining real-time plant-wide process knowledge and 

advanced cost modelling based on ABC-like principles. The use of real process 

knowledge and the actual understanding it provides of the facility cost structure enables 

better forecasting of the future performance of the core business and highlights the most 

profitable product-mix options. 

On-line methodology for assessing operating profits in P&P facility. The methodology is a 

combination of PSE tools, data processing tools and existing cost accounting methods 

 Combination of several techniques, such as data processing, process state identification, 

data reconciliation and operations-driven costing are used in day-to-day process operation 

analysis, manufacturing scheduling/planning and facility strategic planning, result in a 

multidisciplinary tool that provide multiple benefits: 

o With better understanding of the process operation, equipment efficiency can be 

estimated more precisely. As a result, plant benefits such as improvement in 

maintenance both for instruments (calibration) and for equipment (cleaning) will 

emerge. 

o On-line identification of the causes of process problems will make it possible, for 

example, to locate process leaks and product losses and to detect instrument faults, 

with the possibility of tracking the origin of the problem back in time. 

o Enhanced process control will be achieved when on-line reconciliation results are 

used to update process status and overall balances. Moreover, de-noising of 

process data using wavelets can help process and control engineers to maintain the 

process closer to the optimum. 
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o Furthermore, using accurate process data in combination with business, quality, 

and environmental data will form a knowledge base for continuous improvement 

in. An operations-driven cost model will be used to assess and evaluate different 

operating regimes to select the most profitable ones.  

6.2 Future work 

Overall methodology 

The proposed methodology can be used for providing reliable data for further process integration 

applications, particularly multivariable analysis, real-time optimization, and bridge methods to 

enhance the identification of energy projects. 

 Supply chain: The use of actual product margins assessment can be exploited in margin 

centric supply chain management and planning/scheduling to improve facility and 

corporate tactical planning 

 Marginal cost of energy: marginal cost analysis based on real-data and operations-

performance analysis can be added to the framework of the developed methodology in 

order to analyse more flexible forest biorefinery retrofit designs with good strategic fit 

 Corporate strategy: the developed methodology was applied to characterise, interpret and 

guide cost savings strategies on one manufacturing facility. The framework of this 

methodology could be used to analyse all productions sites of a company, to enhance the 

corporate strategic planning 

 Process flexibility: the use of actual operating profits for individual products and their 

operating regimes in multiproduct environment could help to enhance company’s 

profitability when combined with the market price monitoring. 

 Sustainable and knowledge-based manufacturing: Identification of sustainable production 

regimes by maximizing expected profit simultaneously with minimizing environmental 

impact and still meeting the quality requirements could become possible through the 

development of real-time optimization techniques based on operations-driven 

representation of regimes. The results could lead to find improved overall process 
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efficiency, including improved production efficiency, lower costs, better quality, better 

environmental performance, and improved safety. 

 Instrumentation network: The process driven character of the proposed methodology 

could be used to study the cost associated with the lack of instrumentation. Another study 

associated with instrumentation to analyse the cost savings that could be achieved if 

certain instruments are installed (for instance fibre quality measurement) 

 Wavelet processing for process control: The study to analyze costs associated with the 

use of multiscale wavelet processing technique for process control. It is documented that 

data pre-processing using wavelet improves the accuracy of measurement of controlled 

variables 
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Abstract 

In order to derive higher value operational knowledge from raw process measurements, advanced 

techniques and methodologies needs to be exploited. In this paper a methodology for online 

steady-state detection in continuous processes is presented. It is based on a wavelet multiscale 

decomposition of the temporal signal of a measured process variable, which simultaneously 

allows for two important pre-processing tasks: filtering-out the high frequency noise via soft-

thresholding and correcting abnormalities by analysing the maximums of wavelet transform 

modulus. Wavelet features involved in the pre-processing task are simultaneously exploited in 

analysing a process trend of measured variable. The near steady state starting and ending points 

are identified by using the first and the second order of wavelet transform. Simultaneously a low 

filter with a probability density function is employed to approximate the duration of a near 

stationary condition. The method provides an improvement in the quality of steady-state data sets, 

which will directly improve the outcomes of data reconciliation and manufacturing costs. A 

comparison with other steady-state detection methods on an example of case study indicates that 

the proposed methodology is robust and suitable for online implementation. 

 

                                                 

6 Telephone +1 514 340 4711 extension 4384; fax +1 514 340 5150 

Email address:  paul.stuart@polymtl.ca 
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Nomenclature 

A  Distance between measured value and steady state average 

B  Distance between successive measurements 

Cj  Coefficient of the smoothed signal at scale j 

Dj  Coefficient of the detailed signal at scale j 

J  Selected wavelet scale for online data treatment 

G1  Filtered distance between measured value and steady state average 

G2  Filtered distance between successive measurements 

R  Ratio use to detect steady state duration 

S  Sampling time 

WT  Wavelet transform 

dt

dWT   First derivative of wavelet transform 

x   Filtered average 

1 , 2 , 3  Threshold used for steady state starting and ending point identification 

1 , 2 , 3  Filtering parameters 


jIi

ijijC


 ,,
 Smoothed or approcimated signal 

, ,

L

j k j k
k K

D


  Detailed signal 

,j i   Discretized scaling function 

,j k   Discretized wavelet function 

σ  Standard deviation 

τi   Response time associated with variable i 
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Introduction  

With the increasing use of model based techniques in continuous processes, such as process data 

reconciliation (Jiang et al, 2003a, Korbel et al (a)), plant-wide optimization (Dabros et al, 2005) 

or advanced operations-driven cost modeling (Korbel et al, 2012), identification of pseudo steady 

state operating conditions is critical. The efficiency of these applications relies on a near steady 

state quality as well as on the ability to identify the near steady state process operations. 

Unfortunately, process measurements are inherently corrupted with various sources of error 

(instrument miscalibration or malfunction, power supply fluctuation, as well as wiring and 

process noise), which can lead to misidentification of near steady state process operations. These 

problems result in process measurements not being used to their full potential.  In this paper, a 

method for online steady-state detection is proposed and its robustness is compared to two known 

methods taken from literature. Once the steady state data sets are identified and extracted, data 

reconciliation is applied in order to improve the quality of data used for plant-wide applications. 

Pre processing raw process data involves cleansing high frequency noise and elimination of 

abnormalities in measurements. This process creates operational data with better estimation 

accuracy. Wavelet de-noising utilizes the temporally redundant information of measurements so 

that random errors are reduced and denoised trends are extracted. Although these trends are 

considered to be more accurate than raw measurements they might be inconsistent with process 

model constraints, therefore reconciliation has to be employed to resolve this conflict. Since it 

can be argued that the denoised trends obtained by wavelet transform can be considered as data 

obtained by more accurate instruments (Benqliou, 2001), the inconsistency in data are due to 

process dynamics itself. Hence the weighting matrix in data reconciliation step  can be quantified 

by systematically defined engineering rules while avoiding the complications with 

variance/covariance matrix calculation (Korbel et al. a). 

The second step after data pre-processing is steady-state detection. False detection of the process 

steady state can lead to misinterpretation of true process /features, especially if the incorrect 

steady state data are subsequently reconciled. Under-estimating the true process steady state 

periods can lead to only partial correction of gross errors (Figure 1a), while over-estimating 

steady state periods can result in false input to data reconciliation (Figure 1b). 
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Figure 1: Inaccurate estimation of steady state periods 

a) Under-estimated period  b) Over-estimated period 

 

A variety of techniques for on-line process status identification have been proposed in the 

literature. Bakshi and Stephanopoulos (1993) developed a geometric approach for the description 

of process trends. Cao and Rhinehart (1995) proposed a steady state identification technique 

based on the comparison of data variances calculated in different ways. In this method, a 

weighted moving average is used to filter the sample mean. Then, the filtered mean square 

deviation from the new mean is compared with the filtered squared difference of successive data. 

This method uses a low pass filter to estimate the mean value. On the one hand, the 

computational requirements and storage are significantly reduced. On the other hand, low pass 

filters are less sensitive to the presence of abnormal measurements. Furthermore, using a 

weighted average to filter the calculated variances creates a delay in the characterization of 

process measurement frequency. These delays can cause detection problems in periods where the 

signal properties vary in real time. 
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Flehmig et al (1998) used wavelet transform features to approximate process measurements by a 

polynomial of limited degree and to identify process trends. Nounou and Bakshi (1999) used 

wavelet features to identify and to remove random and gross errors. More recently, Jiang et al 

(2003a) proposed a wavelet transform (WT) based method for the detection of near steady state 

periods. The wavelet based multi-scale data processing technique was used to eliminate random 

noise and abnormalities. Then, the process status was analyzed according to the modulus of the 

first and second order wavelet transforms.  This method can accurately analyze high frequency 

components and abnormalities. When applying the multi-scale method, the accurate choice of 

scale is critical. If the scale selected is too low, the WT will be corrupted by high frequency noise, 

i.e., process status identification is corrupted by temporal features. If the scale selected is too 

high, then process measurements are excessively smoothed, which creates distortion in the 

process signal. This creates a deviation from the true process trend and leads to an incorrect 

reflection of process status. 

Jiang et al (2003a) proposed selecting the optimal scale by taking into consideration the response 

time constants and sampling intervals. This criterion is adequate for off-line purposes, but is not 

practical for on-line treatment of real time data because on-line measurements can be corrupted 

with different high frequency features over time. Therefore, the scale choice must be known a 

priori for on-line wavelet-based treatment of real time data. Furthermore, this method uses the 

second order WT of the signal to distinguish zero-crossing points from steady state periods. The 

second WT is directly proportional to the second derivative of the smoothed signal at the sample 

cutting scale. It is adequate to represent process trends but requires great computational speed and 

storage. Finally, in the so-called direct approach, linear regression of the measured values is 

calculated over a data window, and a t-test is performed on the regression slope. This approach is 

executed over a specified time period, which is not ideal when dealing with real time 

measurements. 

In this paper, a steady state detection technique for on-line estimation of process status is 

proposed. First, by using multi-scale wavelet data processing (coupled with historical process 

data analysis in order to select the appropriate wavelet cutting scale), random noise and 

abnormalities are eliminated. Then, the process status is evaluated with a 3-step method based on 

wavelet transform and statistical theory. The steady state period starting point is identified using 

wavelet transform and its first derivative. Then the steady state duration is approximated by 
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coupling a hypothesis test with filtration. Finally, the end point of the period is identified by using 

wavelet transform features. The robustness of proposed method is addressed in two case studies. 

In the first case study, the occurrence of pseudo steady-state operation of a small scale process 

(Stock preparation for paper mill) is being investigated by different methods and compared. The 

second case study extends the pseudo steady-state assumption to different levels of process 

variability in order to capture a large scale steady-state operation. Further use of different pseudo 

steady-state data sets in production cost modeling, points out the magnitude of potential cost 

inaccuracies. 
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Multi-scale process data analysis using wavelets  

High frequency process measurement features corrupt the process trends, and have a direct 

impact on process status identification. Jiang et al (2000) proposed a multi-scale wavelet method 

for processing measurements that is effective for removing noise and detecting abnormalities in 

real time. The approach for steady state detection presented in this study builds on this multi-

scale wavelet methodology. 

Generally, the multiscale processing techniques exploit a succession of approximation functions 

of increasing scale U = {Ui} (Figure 2). At each level of approximation, the smoothed function 

(or a signal) Ui has its corresponding detail function Yj. This detailed signal is the orthogonal 

complement of approximation function Ui in its higher resolution space Ui+1, i.e. 

Ui+1 = Ui Yi,        (1) 

And therefore the multiscale methods can approximate any function by decomposing the high 

resolution function into a low resolution approximation function Vjo and a succession of detail 

functions of increasing resolution (Flehming, 1998). 

. 

 

Figure 2: Multi-scale wavelet representation of real time measurements 



  120 

 

 

The theory of wavelet transformation and its use in data processing is well documented and 

reader should refer to Flehming, 1998 or Jiang, 2002 for more details.  

Abnormality detection 

Abnormalities are defined as high amplitude peaks of short duration. In other words, they are 
errors represented as large changes at high frequency. Such changes in real time can be detected 
using the first order WT, which is proportional to the first derivative of the smoothed signal 
(Equations 2 and 3). Since the extrema of the first derivative indicate fast changes in the function 
under study, one can detect such changes in a set of measurements using the first order WT (Jiang 
et al 2003a) and remove them from the process measurements.  

For the first order WT:    

dt

td
t j

j

)(
)(


        (2) 

( ) * ( ) *(2 )( )jj
j j

d
WT f t f t f t

dt


      (3) 

 

Abnormality detection is very important task in data processing due to the fact that if pre-

processing via filters is applied the spikes will distort process trend (Shankar, 2000). Bakshi and 

Stephanopoulos (1994) proposed a wavelet based approach for multiscale extraction of trends, 

which is capable of characterizing different process features according to the corresponding 

information varying with successive scales. The method proposed by Jiang (2002) and used in 

this study is particular for identification of abnormalities at a single scale, usually at the finest 

scale.



  121 

 

 

Process data de-noising via thresholding 

Real time measurements contain noise at a higher frequency than the searched process trend. Pre-

processing raw measured data by means of trend analysis involves a de-noising of data and 

elimination of abnormal data in measurements which in turn leads to better estimation accuracy. 

Wavelet de-noising utilizes the temporally redundant information of measurements. These trends 

are theorised to be more accurate than their measurements though they are usually inconsistent 

with underlying process model, therefore reconciliation has to be employed to resolve this 

conflict. In a way, the wavelet noise elimination creates measurements obtained by more accurate 

instruments (Benqliou, 2003). It can be also argued that wavelet based trend de-noising equalises 

the uncertainty in process measurements with different standard deviations. Hence the weighting 

matrix in data reconciliation step can be quantified by systematically defined engineering rules 

instead of the complex variance/covariance expression in practical applications.  

Complete removal of the unsuitable high frequency features will be achieved if the correct cutting 

scale is employed.  According to Jiang and al (2003a), the optimal choice of scale for signal 

denoising is based on the process dynamic, which is relatively easy to approximate off-line but 

cannot be predicted in real time and thus is not useful for a real time application. The technique 

proposed in the present paper bases the scale choice on historical data, and assumes that the scale 

choice is time invariant. The inconsistencies related to that assumption will be removed by using 

a low pass filter in subsequent steps of the applied methodology. As discussed previously, 

choosing a WT scale that is too high creates a distortion of process measurements, and leads to an 

inaccurate reflection of process trends. On the other hand, choosing a scale that is too low will 

leave the smoothed signal dominated by noise and unsuitable temporal features. This second 

possibility does not affect the true process trend. At an under-evaluated scale, the process trend is 

still available, but it is corrupted with high frequency measurements. Therefore, in a subsequent 

step, the corrupted smoothed signal can be refiltered to isolate the process trend from higher 

frequency perturbations. This opportunity is not possible in the case where the scale is over-

estimated due to the distortion created in the signal. 

In order to keep the true signal properties intact, one should choose a scale that does not affect the 

process trend. By studying historical process measurements, one can investigate the optimal 
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cutting criterion for different process operations. The scale employed for on-line implementation 

can be selected in such a way that high frequency features are mostly deleted, and the true 

process trend is not affected by signal distortion. To do so, one should test the performance of the 

optimum cutting scale (for off-line data treatment) proposed by Jiang et al (2000a) on historical 

data and compare it to the previous scale (filtered data at lower frequencies). 

The theoretical formalization of threshold in the context of removing noise via thresholding 

wavelet coefficients was presented by Donoho (1995). This method estimates threshold by  

j  =  σ(2logN)1/2       (4) 

where N is the size of the wavelet coefficient arrays and σ is the noise standard deviation. The 

rationale for this choice is that the matched filter is theoretically the optimal detection filter. This 

condition is best suited only for stationary white noise. Recently, some new methods have been 

presented, which estimates threshold according to wavelet coefficients at different scales (Xu 

Qiong 2000, Jiang 2002) 
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Steady state detection based on WT features, filtering, and statistical theory 

Three-step methodology to perform steady state detection 

 

Once abnormal measurements and high frequency features are removed, on-line real time steady state 
detection can be performed. To do so, a 3-step methodology based on wavelet transform and 
statistical theory is proposed, as follows: 

1. The starting point of the steady state period is detected using WT characteristics and its first 
derivative, 

2. High frequency features of the measured signal, which were not eliminated in the first step, are 
removed by filtering and steady state duration is approximated, 

3. Finally, the steady state end point is detected through WT feature analysis. 

 

Since a multi-scale WT has already been performed on the measurement signal, the WT features 
needed in step 1 and 3 are already known. As a result of this, along with the fact that a low pass filter 
is used in the second step of the methodology, no significant calculation is necessary to perform the 
proposed detection test. 

 

 
 

Fig 3: Schematic methodology representation for online near steady-state detection of operating 
condition 

 

Step 1: Detecting the steady state starting point with WT and the first derivative 

The first order WT is proportional to the first derivative of the smoothed signal. Hence the WT 
measures variation in the smoothed signal and can be used to represent process variations (Jiang et al, 
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2003a). WT extrema indicate fast changes in the data set, while near zero values indicate the 
presence of a slow change or a zero crossing point of the WT, which corresponds to a local extremum 
of the measurement signal.  

 

 

Figure 4: Using wavelet transform features to represent process trends 

a) Slow change in process variation: 1st WT and its slope are near zero 

b) Fast change in process variation: 1st WT value is not near zero 

c) Zero-crossing point: 1st wavelet value is near zero but not the slope value 

 

Since near-zero WT values are associated with both slow change and local extrema, one can rely on 
the first derivative (slope) of the WT modulus with respect to time to determine the signal properties. 
In the first case, the WT first derivative is a near-zero value, while a non-zero value is associated 
with an extremum value of the measurement signal. Based on the above information, the steady state 
starting point can be detected when the following equations are verified for the first time following a 
transient period: 













2

1

)(

)(





dt

fdWT

fWT

(4) 

Figure 6 shows the methodology used to detect the steady state starting point by taking advantage of 
wavelet transform features. The starting point is identified when near steady state is detected in the 
measurement signals (equation 4 is verified when the first order WT and its first derivative are 
simultaneously at near-zero values). One can notice that zero-crossing points are discarded by using 
this approach. 
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Figure 5: Detection of steady state starting point by using WT and first derivative 

 

Step 2: Filtering steady state data 

As discussed previously, over a long time period, the choice of WT scale for removal of high 
frequency features must be done carefully. Since the on-line scaling choice should be executed in 
order to insure that distortion is not incorporated into the signal, at certain points in time, some high 
frequency components are not removed from process measurements. The oscillation created by this 
phenomenon can lead to false detection by the WT method. Figure 7 shows that when high frequency 
residuals exceed the minimal threshold acceptance, steady state identification is partial. Therefore, 
using the method described in the previous section is not suitable for on-line applications over a long 
time period when selecting the scale as proposed. 

To overcome this problem, the steady state period can be approximated through a hypothesis test. 
Cao and Rhinehart (1995) have proven that, when the process is at steady state and measurements are 
stationary and independent, there is a probability density function representing the ratio (R) between 
the filtered squared deviation from the mean and the filtered squared difference of successive 
measurements. According to Cao and Rhinehart (1995), if the process data mean varies, the R value 
will be greater than 1 for a period of time. In other words, divergence from the previously identified 
steady state starting point will be detected if R >1.  

The wavelet scales have previously been selected in order to minimize signal distortion, although not 
every high frequency component is eliminated in some parts of the measurement signal. Thus, an 
average value of the near steady state variable is approximated at each point in time using a 
conventional moving average filter (Equation 5). Because they can create distortion in the corrected 
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signal, such filters are not suitable for correction during transient periods, but are useful over steady 
state analysis. Therefore, a third step will be needed to precisely identify the end point of the steady 
state. 

111 )1(  iii xxx   (5) 

Figure 8 shows the basic concept behind the hypothesis test proposed to estimate the steady state 
duration. “A” represents the deviation from the mean, while “B” represents the difference between 
two successive data. To avoid corruption by high frequency features that remain in the signal, the two 
estimators are filtered (Equations 6 and 7) and their ratio is calculated and compared to the threshold 
value of 1 (Equation 8). At this step of the analysis, steady state is already detected and real time 
measurements are treated through a wavelet processing method. Therefore, all features with 
frequencies higher than a certain threshold have been eliminated, and utilization of a low pass filter 
on the estimators does not affect the steady state approximation of the average value. 

1, 2 2 1, 1(1 )i i iG A G      where 1 iii xxA  (6) 

2, 3 3 2, 1(1 )i i iG B G     where 1 iii xxB  (7) 

if 1,

2,

1i
i

i

G
R

G
  , then the process is at near steady state (8) 

 

 

Figure 6: Representation of deviation from the mean and differences between successive data points 
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Figure 7 shows that as the transient period evolves, the distance between the measured value and 
filtered average (Ai) increases considerably. A low value of 2  must be selected in order to over-
estimate the steady state period. In this way, the variation in G1 and R will be minimized. 
Consequently, the beginning of the transient period is assigned a low weight in the steady state mean 
approximation, therefore ensuring that the average value of the steady state will be affected only if 
transient periods occur over a certain time. The counterpart of this approach is that it creates a small 
over-estimation of the steady state period. In the third step of this methodology, the over-estimation 
of the steady state period will be corrected. 

 

Figure 7: Evolution of deviation from average value (A) during transient periods 

 

3.1.3 Step 3: Detecting the steady state period end point with WT  

The final step of the methodology consists in identifying the end point of the steady state period. To 
do so, the last portion of the period identified in the previous step is analyzed. The WT is used to 
detect the last moment before the process status becomes transient. Since the WT value is 
proportional to the rate of change in the measurements, one can detect, by analyzing the data 
backwards in time, the end point of the steady state period by selecting the first value of the WT 
under a certain threshold: 

3)( fWT  (9) 

Since the selected set of data is already at steady state, no analysis related to the zero-crossing is 
needed here. 

 

3.2 Selecting threshold values and filtering parameters for steady state detection 

In order to take advantage of the proposed methodology, an accurate selection of appropriate 
threshold values and filtering parameters is critical. Since the selection of these parameters is 
accomplished based on the degree of fluctuation of process measurements, threshold values and 
filtering parameters can be selected a priori based on historic measurements. 
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3.2.1 Selection of threshold values ( 1 , 2 and 3 ) 

The threshold values 1  and 2 are used to identify the steady state starting point while 3 is used in 

the detection of the period’s end point. More specifically, 1  and 2  are respectively used to ensure 

that the WT modulus and its first derivative are at near-zero values, while 3  is helpful to 

characterize process features in the WT modulus at the end of the steady state period. 

The first two threshold values are used to detect the steady state starting point. These are selected 
according to the degree of fluctuation in the WT and its first derivative. To choose 1  effectively, it 
is necessary to select successive measurements under steady state, perform the first order WT, and 
compute the standard deviation of the WT modulus ( WT ) (Jiang et al, 2003a). The selection of 2  is 

made to differentiate zero-crossing points from true steady state values. When comparing the true 
steady state WT modulus to the zero crossing point, one can notice that the steady state values are 
associated with a slow change in the WT modulus (Figure 5). Therefore, one can perform the first 
derivative on the WT and compute its standard deviation (

dt
dWT

 ). Then the threshold values are 

selected as follows: 

WT 1  (10) 

dt
dWT

 2  (11) 

Selection of 3  is based on the WT features and is used to identify significant changes in the process 

trends. To choose 3  effectively, multiple sets of different historic steady state process 

measurements are selected. Then, the first order WT and its standard deviation are computed. 
Starting with a   value of 1, the following threshold value is calculated and the efficiency of the 
method for the selected data sets is determined:  

WT 3  (12) 

If the end point of the steady state period is detected too late, then one should decrease the   value 
(around 0.1) and repeat. If it is detected too early, one should increase the   value. This process is 
repeated until a suitable solution for all steady state sets is achieved based on historical data. 

 

3.2.2. Selection of filtering parameters ( 1 , 2  and 3 ) 

Filtering parameters have a significant impact on the performance of the second step of steady state 
detection: 

 1  is useful to eliminate the presence of residual random noise in the treated measurement 
signal.  

 2  is useful to help approximate the length of the steady state period. 

 3  is useful to insure that all steady state periods are detected. 

To avoid, as much as possible, undesired results due to unexpected on-line events, the investigation 
of the optimal filtering parameter must be performed simultaneously on different historic steady state 
periods. The tuning of optimal filtering parameters should be influenced by the sampling period 
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associated with the instrument used, the response time of the selected variables, and the preliminary 
data treatment carried out on the raw measurements. In order to select the appropriate parameters, 
one should follow these steps (inspired by Bhat and Saraf, 2004) : 

1. Select a starting value for 3  (around  
mean

S


) 

2. Select a starting value for 2  (around  
long

S


) 

3. Select a starting value for 1  (around  0.05( 1)J  ) 

4. Increment 1  slowly while the filtered average is affected by the high frequency component 

5. Increment 2  slowly while every steady state period is over-estimated 

6. Increment 3  slowly while all steady state periods are detected. Return to step 5, until 

convergence is achieved for 2  and 3  
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4. Case studies 

 

4.1 Case study I: Application of the Methodology to a Paper Machine Process 

 

The robustness of the method was investigated on a simulated data set inspired by a pulp stock 
preparation system at an integrated Kraft paper mill. The plant is equipped with a process data 
management system (PI system from OsiSoft inc.) that stores the data approximately every 10 
seconds. The paper machine under study has multiple process operations associated with different 
characteristics of the process measurements and high frequency features of the signal. 

Hypothetical true process data were created in order to systematically analyze method’s performance. 
Based on historical data, a compilation of characteristics (mean and noise features) associated with 
the different process operating regimes was performed. Once those characteristics were known, 
hypothetical data sets with known errors were built according to the real process flowsheet (Figure 
10) and operations. Since no down sampling of process measurements is needed to use multi-scale 
WT for real time process measurements, the generated data are created in order to match the same 
sampling rate as the real process measurements (each 10 seconds). 

 
Figure 8: Paper machine stock approach system used to evaluate the methodology 

 

To demonstrate the representativeness of the created data sets, the system operating regimes were 
analyzed and compared to the created data over a one-week period. Identified regimes were 
reproduced and errors were added to create a hypothetical corrupted set of data (generated data). 
Figure 11 shows the results of the investigation for a particular flowrate measurement over time. 
Although the general characteristics of the two signals are the same, the hypothetical data can contain 
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more or less noise in particular regions, and some parts of the signal can be corrected to fit the overall 
mass balances around the system. 

Performance indices 

In order to investigate the efficiency of the proposed methodology, it was compared to two other 
methods used to detect steady state. The comparison was carried out by calculating, for each method, 
the type I (steady state is not detected) and type II (false detection) errors related to steady state 
detection. The hypothesis used to perform this test is:  

H0: Process is at steady state 

H1: Process is not at steady state 

The accuracy and precision of the steady state detection technique on on-line steady state data 
reconciliation was also evaluated. Accuracy was calculated for each steady state period as the relative 
error between the true process value and the reconciled measurement. Precision is defined as the 
standard deviation of such errors. Therefore, low values for those two indices indicate high accuracy 
and precision. 

 

Efficiency of the on-line steady state detection method 

The proposed methodology for on-line steady state detection was compared to 1) the method based 
on first and second order WT (Jiang et al, 2003a), and 2) the method of Cao and Rhinehart (1995). 
For the first method, WT based parameters were selected according to the description in Jiang et al 
(2003a), while optimum parameters for the second method were selected based on the approach 
proposed by Bhat and Saraf (2004). The investigation was performed on the simulated data sets, 
which represent 80 hours (sampling at 10-second intervals) of steady state operation divided into 72 
different scenarios over a one-week period. 

Figure 9 shows the quantity of type I errors related to the identification of true steady state periods 
for each sampling point in time. One can notice that, for the system under study, the application of 
the proposed method reduces considerably the incidence of type I error. This can be explained by the 
presence of a large amount of different high frequency features in the measurements. 

1. Filtering the raw measurement variance with a low pass filter can lead to misidentification of 
process trends when high frequency features undergo sudden variation 

2. Utilization of the wavelet features in a conventional way, using a single cutting scale per 
variable, can lead to under-scaling or over-scaling problems when dealing with signals 
associated with multiple frequency features 
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Figure 9: Type I errors related to on-line steady state detection 

 

In order to reconcile the steady state data, one must first identify the overall system steady state 
periods. Figure 10 shows the quantity of type II errors related to the identification of true steady state 
periods. One can notice that the effect of the chosen steady state identification method does not have 
a high impact on the type II errors related to the overall system status recognition. Since every 
variable under study must be near steady state to record the overall system steadiness, type II errors 
related to each component are diluted in the process of identifying the overall system status. 

 
Figure 10: Type II errors related to on-line steady state detection 

 

 

Impact on on-line steady state data reconciliation 

To analyze the impact of steady state detection on on-line reconciliation efficiency, the results of the 
steady state analysis by the three different methods were used to reconcile the data. Experimental 
data were reconciled by applying the exact same reconciliation method to each data set. 

 

Overall methodology for steady state data reconciliation  

To reconcile on-line steady state data, the overall methodology proposed by Bellec et al (2006) was 
used. First, to correct and filter abnormal measurements and high frequency features, data are 
analyzed based on wavelet features. Then, overall system steady state detection is performed. This 
step ensures the selection of near steady state data sets for steady state reconciliation. Finally, the 
data are reconciled using the Sigmafine software from OsiSoft Inc. 

 

Steady state data reconciliation results 

Figure 11 summarizes the improvement of the average accuracy of the steady state data before and 
after the application of the different methodologies on the simulated data sets (72 steady state 
periods). Here, the average relative error is used to represent accuracy in the data sets. Therefore, low 
values on the figure indicate a high accuracy. Equation 13 shows how the average relative error was 
calculated.  








 


alueTargeted.v

tmeasuremenalueTargeted.v
*100%%RE average  (13) 
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One should note that the results obtained from this equation and shown in Figure 11 represent an 
average improvement for each variable over the 72 steady state periods. Therefore, even a small 
improvement shown on the figure can represent a large improvement over a particular period of time. 
For example, Flow 9 was significantly corrected for 1 period containing a gross error (Figure 11) and 
was marginally corrected over the 71 other periods.  Correction for that specific period resulted in a 
87% reduction of the error, but the average improvement presented in Figure 14 is small due to the 
other period for which no steady state correction was performed.  

The choice of steady state identification method has a direct impact on the quality of the steady state 
data reconciliation results. Generally, better status identification leads to improvement in accuracy at 
the reconciliation step (see Figure 1 for details). To capture the full potential of the results presented 
in Figure 11, one should simultaneously use the results in Figures 10 and 9. By taking into 
consideration the fact that the reconciliation is performed only on periods detected as being near 
steady state, one should notice that there are more periods available for correction by applying the 
proposed methodology. However, only a small improvement is observed in Figure 11 since the 
corrections obtained for the additional periods are small due the absence of gross errors (irregularity 
in the conservation of mass around the system). 

An analysis of Figure 11 indicates that for some specific variables (cons N, level 8, and level 16), the 
relative error does not seem to be reduced by the utilization of the new method. Results on the graph 
for those variables are multiplied by factors of 10 and 100. These are small errors in the range of 
0.05%, which are more difficult to correct using data reconciliation techniques. 

 

 
Figure 11: Improvement in accuracy achieved by the application of different on-line steady state 

detection techniques 
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Conclusions to case study I 

When compared to other on-line steady state methods in a case study based on simulated data, it was 
shown that the proposed methodology reduced type I errors by at least 46 % for overall steady state 
status identification, while type II errors were also improved, but in a marginal way. In cases where 
the steady state system was characterized by an inconsistency in the conservation of mass, the 
reduction of type I errors lead to the improvement of steady state data in the problematic set of 
measurements. In fact, for several cases, the impact of using the proposed methodology in 
combination with steady state data reconciliation techniques resulted in a higher accuracy for real 
time measurements. Using this approach for steady state detection in a general online data 
reconciliation methodology could potentially lead to multiple benefits for on-line process operations. 
The advantages include efficient on-line identification of out-of-calibration instruments, improved 
process control due to the improvement of measurement accuracy, and more accurate process 
operation planning and optimization. 

 

4.2. Case Study II: Steady-state quality in large scale processes  

 

The proposed method, as shown on the case study I, shows promising results for the online 
applications applied to small scale processes. However, many plant-wide applications require steady 
state data sets across the whole plant. Due to the fact that the large scale true stationary state almost 
never occurs, practical assumptions need to be taken into account. Measurement trend error (MTE) 
can be used to quantitatively analyze the distance from the steady-state trend (Flehmig, 1998). 

The measured trend error (MTE) reflects the deviation of the de-noised measured variable yM from 
the notion of a steady-state trend: 

 
 

Where  refers to the first derivative of the measured variable yM which is determined by an 

algorithm presented by Abramovich, 1998. MTE is multivariable measure with respect to each 
measurement process variable since the time starting point and its length is the same for each. 

The large scale steady-state data set quality versus small scale is addressed. The case study process 
operation used for this purpose is thermomechanical pulping (Figure 12). The plant is divided into 
several smaller subsystems in which a multivariable steady-state of each is analyzed alongside the 
overall plant wide dynamics. If and only all subsystems are simultaneously identified to operate at 
near steady-state, the plant-wide operation is assumed to be at pseudo steady-state as well. However, 
this condition is very uncommon. The values of wavelet tuning parameters were being relaxed in 
order to allow for more pseudo steady-states being identified. The quality of each assumption is then 
carefully addressed by looking at MTE as well as analyzing the potential impact of the steady-state 
assumption to the production cost analysis. 
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Figure 12: Simplified block diagram of the thermomechanical newsprint process (showing here 

an example of plant division into seven parts, PWC1represents the firs subsystem) 

The analysis is presented on the first process subsystem PWC1 (chips pretreatment), from where 
seven measured quantities have been chosen to identify when the subsystem is assumed to be 
stationary. The time snapshot of the analysis was 630 minutes which is the time corresponding to the 
production of one product within identical process conditions (operating regime).  

From figure 13 one can understand that each variable is of different sensitivity to the steady-state 
occurrence. The Flow01 (warm process water) is at steady state 62% of the time and will increase 
only by 5% when the threshold value is changed from 0.1 to of 1.2. Further increase in alpha values 
have no influence on the frequency of steady-state identified in Flow01. On the other hand, variable 
Flow02 (low pressure process steam) and Flow03 (washed chips flow) stationary state detection 
strongly depend on the alpha values. Clearly, highest single variable steady-state occurrence creates 
the potential for multivariable steady-state detection. And therefore the goal is to understand the link 
between detecting a multivariable steady-state (MSS) and the corresponding level of relaxing steady-
state assumption by manipulating the threshold value alpha. 
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Figure 13: The difference in the rate of steady-state detection relative to the increase of threshold 

values in key-variables 
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The threshold values for the measured variables whose steady state occurrence does not influence the 
overall stationary state detection is tuned to the lowest value. For example alpha values for Flow01 
trend detection can be kept at the value =0.12 as soon as analyst decides using the first tree MSS for 
higher level analysis. If more are required, then the value is set to =0.8 for four MSS or increased to 
=2.1 for five. On the other hand, for variables that drive the state of the system, one needs higher 
values of thresholding to achieve relatively small amount of steady-state. 

The figure 14 illustrates the evolution of wavelet transform for each key-variables, their 
corresponding state identification with the use of binary representation (1=steady-state, 0-transient 
period) and the count of stationary variables per each period. If the count equals the number of 
variables (e.g. 7 in the case of chips washing process) then the multivariable steady-state (MSS) of a 
subsystem (PWC1) is assumed. The value of wavelet transform thresholding parameter has been 
successfully increased from starting value =0.1 to =5. The analysis corresponding to values 0.1, 
1.2 and 5 are presented on the figure 14. The alpha values were chosen based on standard deviation 
of wavelet transfer modulus of the key variables that behave dynamically. Clearly, relaxing the alpha 
values is increasing the single variable steady-state occurrence (as it is presented in figure 13) and 
inherently an increased number of MSS is achieved. It must be said that the values of alpha that 
correspond to 5 and above, represents the case where all the dynamics of the process are involved in 
steady-state assumption. This type of data is used in the classical steady-state data reconciliation 
procedures, e.g. averaging variables over a certain time period. 

This systematic approach for multivariable steady-state detection is very practical; however the 
analyst must be cautious for certain steady-state assumptions can include transient periods. In order 
to analyze the errors or uncertainties with associated steady-state assumptions, the quality of pseudo 
steady-state data sets is investigated next. 
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Figure 14: Number of steady state increases with relaxing the values of wavelets threshold (alpha). 
A: the value of threshold is set to 0.1 leading to two Multivariable Steady States (MSS) identified, B: 

the value of threshold is set to 1.2 assuming four pseudo steady-states detected (2 new MSS are 
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represented blue), C: the value of 5 for thresholding has increased stationary statutes to eight (4 new 
MSS are represented red). 

 

The value of measurement trend error (MTE) is calculated for each MSS data set and its relation to 
the occurrence of multivariable steady-state is analyzed. This information is critical in deciding the 
sufficient level of data set quality for the end application such as product cost modeling.  
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Figure 15: A: MSS occurrence as a function of MTE, B: Sensitivity analysis – the change in MSS 

occurrence as a function of threshold change 

 

The sensitivity analysis presented on the figure 15B helps to understand the dynamics of each key 
variable and hence their influence on the overall MSS detection. As one can see from the figure, the 
variables flow02 and flow03 are the most sensitive to the change in alpha.  

Since the pseudo steady-state data sets are used for cost analysis of the production, a direct link 
between the data quality and the error in cost information can be critical for decision makers. The 
figure 16 presents an example of cost sensitivity analysis of different measurement entities. The 
accuracy of calculating the product margin strongly depends on the quality of steady-state of some 
variables. The change in the values for steady-state thresholding in the case of Flow03 variable, 
affects the final results for product margin values significantly. 
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Figure 16: A, B, C – direct link between change in the product margin and the steady-state 
occurrence for variables flow02, flow03 and the whole multivariable subsystem – PWC1 

 

The above analysis has been done on a few key-variables that are assumed to control the process 
subsystem (PWC1) state of operation. However, in order to address plant-wide steady state, the 
remaining six PWCs must be analyzed. The figure 17 presents the outcome of the calculation 
analyzing the influence of the threshold value on the plant-wide multivariable steady-state (PWMSS). 
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As one can understand from the figure 17, the plant-wide steady state does not occur when the low 
values of alpha are used (green values). The first stationary period is detected when alpha is increased 
to the value =1.12 (blue values). Further increase produces more SS detected; however, it is clear 
that many transient periods are included. The decision to use such assumptions for pseudo steady-
state is questionable and the decision makers should consult sensitivity analysis for each variable and 
subsystem, such as the ones presented below on the figures 18-20.  

 
PWC1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0

PWC2 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1

PWC3 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1

PWC4 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0

PWC5 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0

PWC6 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0

PWC7 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1

PLANT 1 1 1 1 1  
Figure 17: the binary representation of the plant-wide operation state (1=pseudo stationary, 

0=transient period) 

 

The increase in alpha values increases the probability to detect a plant-wide pseudo steady-state; 
however it may lead to inaccurate cost information and bad-informed decisions. Figure 18A presents 
the relation between the MSS occurrence in each section of the operation with relation to the plant-
wide level. From the figure we can understand that the subsystem PWC3 is relatively the least 
dynamic part of the mill allowing for higher detection of steady-state. The plant-wide MSS is not 
detected at the highest accuracy of the method, the threshold must be relaxed at least to a=0.8 in 
order to identify fist MSS. If more data sets are required then the threshold must be increased to 2.1 
or 5 to reach near 20% of MSS occurrence within the analyzed time frame. 

As mentioned above, the MTE is a multivariable measure describing the offset of a subsystem or a 
whole system from the notion of a trend – a steady-state in this case. Therefore one can be interested 
in analyzing the values of MTE in relation to the increase in plant-wide steady-state occurrence 
(figure 18B). The alpha values correspond to the maximum threshold value that at least one of the 
key variables had to employ in order to reach a required number of steady-state. The increase in the 
thresholding value for some variables is necessary in order to reach at least one plant-wide steady-
state data set (figure 18A). The impact of this assumption is then analyzed by looking at the MTE of 
the system and the error of the end application that is using the assumed steady-state data set. For 
comparison, the figure 18B shows also the value obtained by the ad-hoc approach that many analysts 
are using – an average of variables within the time frame. 
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Figure 18: A- the MSS occurrence as a function of threshold values for different subsystems and 
plant-wide level. B – the relation between the MTE and MSS occurrence as well as the relation 

between the absolute change in the product margin due to error in the data set the MSS occurrence 

 

Conclusions and final remarks 

 

A robust methodology that is efficiently detecting steady state operating conditions in on-line 
applications has been proposed. The method identified when variable is at steady state using three 
signal processing steps, which reduces type I and type II errors related to the identification of steady 
state periods. The optimum WT cutting scale and parameters were pre-determined based on historical 
data. In practical applications, these properties will vary over long term periods and the 
implementation of adaptive techniques would improve the automation of the system. 

The method was used in a pragmatic analysis (case study 2) of the data sets quality when different 
parameters were relaxed. As expected, the system over and under estimate the steady-state periods to 
some extent. However if plant-wide applications are to be used, this is a very practical approach to 
extracting near or pseudo steady-state data sets. The extraction process must be done carefully and 
analyst must take into account the accuracy of his/hers assumptions. Finally, the comparison to the 
usual steady-state assumptions, via averaging data within the analyzed time period, shows that even 
the highest threshold values provide more accurate outputs from the end application, in our case, 
production cost analysis.  

The online application of this methodology can be used to automatically extract potential 
multivariable and plant-wide steady-state periods for higher level applications, for instance real-time 
optimization or production cost analysis of different operating regimes. The system can be 
implemented as a part of the information management system at the mill and hence automatically 
update a steady-state database. By doing this, the cost accounting practices could alter more towards 
process or operations driven approach which would significantly improve the daily process 
troubleshooting from a cost-process perspective. 
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Abstract 

The quality of process data in continuous-process industries significantly affects the 
performance and the profit to be gained from optimization, control, or cost modelling. 
Unfortunately, data inherently contain inaccurate information because measurements are 
obtained with imperfect instruments. In addition, the data may reflect the influence of ambient 
factors and a lack of sufficient instrumentation. Within the last couple of decades, many data-
cleaning techniques have been presented to solve this problem. The papermaking industry 
faces many challenges in implementing these techniques. These are mostly due to the 
complexity of the production processes, the unavailability of suitable sensors, and the lack of 
installed instrumentation. The variables monitored and stored to ensure mill safety and control 
are often too few for model-based data validation procedures such as data reconciliation. This 
paper presents a very practical methodology that overcomes the problem of low redundancy 
in the pulp and paper operation and helps to validate plant-wide pseudo-steady-state data sets 
for cost modelling. There are tremendous opportunities to use these data sets effectively in 
practical decision-making related to process operation or design by modelling the link 
between business and lower-level process data. By doing this, decision-makers on a 
supervisory level will gain improved knowledge of their operation from both a process and a 
cost perspective. 
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Overall goal of the paper 

The objective of this paper is to present and discuss a practical process data rectification 
methodology which gives pulp and paper mills adequate plant-wide information despite a 
lack of redundancy. The results can offer a high degree of confidence in critical parameters 
such as process yield and can enable data to be interpreted to make effective and insightful 
process decisions for cost reduction. 
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 Introduction 

 

With today’s tremendous progress in information processing and database management 
systems, the pulp and paper industry has become information-intensive. Vast amounts of data 
from multiple sources and from different layers of the business are available to mill 
personnel. To be beneficial, these data must be systematically exploited and combined into 
practical decision-making information that is useful to the right person at the right time. 
However, full and effective use of all these data is not a common practice today. Data are 
mostly used in an ad-hoc fashion for problem-solving. A low level of trust in the quality of 
the data contributes to their lack of usefulness and hence to the absence of systematic tools 
that could take advantage of good process data. The quality of data in continuous-process 
industries significantly affects the performance of optimization and control activities and the 
accuracy of cost accounting. Unfortunately, data inherently contain measurement 
inaccuracies. Imperfect instruments, the influence of ambient factors (Narasimhan, 2000), 
lack of instrumentation, and poor calibration all contribute to poor measurements and 
therefore to inaccurate data. 

In this document, a practical approach is discussed that overcomes the data-validation 
difficulties faced by the papermaking industry. The goal is to gain useful operational 
knowledge for well-informed decision-making. A wavelet-based signal processing technique 
is used to obtain a pseudo-steady-state process representation on-line. This step is carried out 
simultaneously by eliminating signal noise from raw measured variables at multiple scales 
and by identifying a pseudo-steady-state operating condition. Moreover, the quality of these 
pseudo-steady-state data sets is further enhanced using simulation-driven data reconciliation 
techniques by imposing mass and energy balances and other constraints onto them to satisfy 
conservation laws. The data reconciliation problem is an old industrial application which was 
proposed first by Kuehn and Davidson (1961) to minimize the error between measured data 
and the underlying process model. Since they first published their pilot solution to the linear 
steady-state data reconciliation problem, further studies have led to progress in this area. 
Crowe (1983) proposed to solve the nonlinear data reconciliation problem by successive 
linearization. Liebman and Edgar (1998) demonstrated that reconciliation results can be 
improved by nonlinear programming instead of successive linearization when solving the 
nonlinear data reconciliation problem. Tjoa and Biegler (1991) showed that nonlinear 
programming together with a contaminated normal (Gaussian) objective function other than 
the least-squares objective function can improve the results further. Many other developments 
in data reconciliation and gross error detection have been proposed in numerous papers 
(Johnston & Kramer, 1995, Arora & Biegler, 2001).  
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The most common estimator used for data reconciliation is the weighted least-squares 
estimator, which is very sensitive to the potential presence of systematic errors, often referred 
to as gross errors. If gross errors exist in the measurement data, the weighted least-squares 
estimator will yield incorrect estimates which will then significantly deflect reconciliation of 
other measurements. The critical task of identifying the presence of gross errors and 
estimating their values remains a challenge in practical industrial applications. Several 
methods to solve this problem have been proposed, for instance, the measurement test gross-
error detection method presented by Tamhane and Mah (1985) and the modified iterative 
measurement test gross-error detection algorithm presented by Serth and Heenan (1986). 
Other statistical approaches have also been used, such as the generalized likelihood ratio 
(Narasimhan & Mah, 1987), the maximum power test (Crowe, 1992), and the principal 
component test (Tong & Crowe, 1995). The method proposed here exploits the statistics of 
the historical measured process data. The analysis of each measured variable is compared to 
its historical values. If a change is detected, then the current systematic error is estimated, and 
the biased measurement value is corrected. Data reconciliation is then repeated with the new 
corrected value of the measurement. 

The second part of the paper summarizes the basic formulation of the data reconciliation 
problem to provide a mathematical basis for introducing the simulation-driven data 
reconciliation procedure which is covered in the third part of the paper. The fourth section is 
dedicated to a case study that uses pseudo-steady-state data sets extracted from a real thermo-
mechanical pulping process to demonstrate a practical way to bypass the lack of redundancy 
in measured variables. The insufficient number of redundant variables and the constant 
presence of systematic errors are everyday challenges for process engineers and cost 
accountants in the papermaking industry. The paper concludes with a discussion and final 
thoughts in the fifth and final section. 
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 Background: General Problem Formulation 

Measured data quality affects not only the quality of high-level tasks such as optimization and 
cost accounting, but also the quality of any estimated process model. Therefore, reliable and 
consistent measurement data play an important role in process plants. Random and gross errors 
can result in poor-quality measured data. Data processing and data reconciliation can be 
beneficial in minimizing measurement errors. The general form of data reconciliation is the 
minimization of measurement errors subject to the constraints of the physical process. Random 
errors are minimized by the use of data processing techniques and refined further in a 
reconciliation step. However, systematic errors must be identified and estimated before 
reconciliation. For a steady-state application, inconsistencies between instrument values and a 
steady-state process model are also caused by process dynamics. In this case, data reconciliation 
helps to distribute the errors caused by the steady-state assumption systematically onto the whole 
set of variables while still satisfying the underlying process model. For purposes of illustration, 
Figure 1 presents a simple data reconciliation problem around a single unit, a splitter. 

 

 

Figure 1: Example of the data reconciliation concept around a splitter. 

 

A simplified mathematical formulation of the data reconciliation approach may be written as the 
weighted least-squares minimization problem of the difference between measured/unmeasured 
and reconciled values of variables with regard to instrument and process characteristics: 
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With an assumption of normally distributed random errors with no systematic errors present, this 
constrained minimization procedure was first introduced by Kuehn and Davidson (1961). It is 
important that analytical or hardware redundancy9 of measured variables be present if data 
reconciliation is to be performed. The character of the problem represented by Equation 1 
depends on the formulation of the constraints, e.g., linear, nonlinear, or dynamic. Furthermore, 
data reconciliation not only validates and estimates measured values, but also provides estimates 
for variables that are not being measured (often referred to as a coaptation process).  

Many methods in the literature provide simplifications and solutions of the problem stated in 
Equation 1 by eliminating the unmeasured process variables from the problem statement. In 
linear data reconciliation, Crowe (1983) used a projection matrix method to decouple the 
unmeasured variables from the constraints. Other methods have also been used, such as a Gauss-
Jordan elimination procedure (Madron, 1992) and QR decomposition (Sanchez and Ramagnoli, 
1996). For nonlinear data reconciliation, the procedure is based on successive linearization of the 
constraints, and the resulting simplified problem is then solved using Crowe’s (1983) projection 
matrix (Liebman 1988, Veverka, 1997). Crowe (1986) extended his previous technique to 
nonlinear (bilinear) processes by a two-step projection matrix technique which significantly 
reduced the computational effort for bilinear systems. Many other authors have addressed the 
computational challenges of data reconciliation for particular cases. However, there is a lack of 
practical applications to the pulp and paper industry, which is to some extent due to the low 
system redundancy of the papermaking operation. Monitoring of a sufficient number of variables 
to ensure redundancy is limited by installation and maintenance costs (Jacob, 2003), inaccurate 
measurement techniques, and the current unavailability of instrumentation. Hence, reconciling 
process data in the pulp and paper mills becomes a challenging and often impossible task. 

In large-scale applications such as plant-wide optimization or cost modelling, the need for 
reliable10 and consistent11 plant-wide data sets is critical. To reconcile process data plant-wide, it 
is common practice to use a data set that consists of averaged variables over a specific, fairly 

                                                 

9 It is said that a measured variable has hardware redundancy if two instruments are used to measure its value. On 

the other hand, analytical (software or spatial) redundancy of a variable is ensured when its value can be estimated 

in two independent ways, e.g., by a measurement and by a value from a process model. 

10 “Reliable process data” refers here to estimated variable values that are close to the true values of the process 

variables. 

11 “Consistent process data” refers here to data sets that are consistent with the underlying fundamental process 

model. 
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stationary time period. However, the discrepancies in the measurements are due not only to 
random errors (assumed to be normally distributed), but to process dynamics as well. Clearly, this 
type of error does not follow the assumption of a normal distribution. Bagajewicz (2000) has 
shown that in systems with no significant hold-ups, this error can be neglected. However, a 
papermaking operation is a collection of unsteady-state manufacturing processes with many hold-
ups and recirculation loops; hence, significant error may be created if averaged process data are 
used with no systematic approach. 

A different approach to plant-wide data validation is dynamic data reconciliation, which has 
received significant attention within the last decade, although large-scale industrial applications 
still remain to be developed. Clearly, the inhibiting factor is the high computational requirements 
of these procedures. However, with today’s advances in information technology, and considering 
that processes are actually never at steady state, it may be better to consider using dynamic data 
reconciliation techniques even for near-steady-state processes (Narasimhan, 2000). On the other 
hand, from a practical perspective, for on-line applications, it would be wise to extend steady-
state reconciliation to deal with dynamic situations (Benqlilou, 2000). Process optimization and 
process control would undoubtedly benefit from dynamic data reconciliation; however, for cost 
modelling, steady-state, not dynamic, data sets are required. In fact, as mentioned by Bagajewicz 
(2000), for the time being, there are more pressing problems to resolve, for example gross error 
detection, which is closely related with the problem of data reconciliation. 

Hundreds of publications exist devoted to gross error handling, and many methodologies and 
techniques have been proposed. However, our capabilities to detect and correct gross errors are 
still limited. As for current commercial software available for gross error handling, the main 
technique used today is the serial elimination strategy. As mentioned by Bagajewicz (2000), 
vendors need to improve their strategies, for example by implementing methodologies to handle 
uncertainty and to enhance processing of gross errors in an industrial context. 

Weighting matrix estimation 

The success of data reconciliation methods generally depends on the hypothesis that the errors are 
normally distributed, and hence on the quality of estimation of the variance-covariance matrix. 
This symmetric and positive-definite matrix quantifies the uncertainties in each instrument value 
(Benqlilou, 2004). If the process is truly at steady state, the covariance matrix can be estimated by 
the direct method (Bagajewicz, 2000), which is simply a sum of standard deviations within the 
time of the true SS. The mean value can be calculated as: 

      (2) 

 and the covariance matrix can be estimated as: 

        (3) 
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where n is the duration of true steady state and y is the measurement set. This direct estimation of 
the covariance matrix helps to correct instrument values on an optimal statistical basis. Because it 
is known that the process is never at true steady state, the process of estimating the variance-
covariance matrix becomes more complex (Gedeon, 1984; Crowe, 1996; Chen, 1997). 

A highly simplified and common practice in industrial applications is to use engineering 
judgment for matrix estimation by allocating uncertainty weights to each instrument. This 
pragmatic approach, which is also used in the current study, takes into account knowledge of the 
process dynamics around each particular instrumentation sub-network as well as information 
about each instrument’s accuracy, precision, and reliability. 

Gross error handling 

Because data reconciliation is limited to the elimination of random errors, systematic errors must 
be eliminated a priori. Several methods are available to do this, ranging from pure statistics 
through neural networks to time-series screening. The efficiency and practical usefulness of the 
statistical approaches seem to be superior to the others. In the present work, historical knowledge 
about the potential locations and relative sizes of biases is used. This approach can be situated in 
the framework of measurement adjustment using statistical methods such as the measurement test 
(Mah, 1982 or Crowe, 1983). In this type of method, the data are first reconciled, and then each 
measurement point is tested for possible bias. If gross errors are present, then their values are 
estimated by solving a simple nonlinear problem (McBrayer, 1995): 

Min B(y,b) 

s.t.  f(y) = 0      (4) 

ymin < yi < ymax 

bmin < bi < bmax 

B(y,b) = (-)i-1… + [(yi – (ymi-bi))/si ]
2 + …(-)i+1 

Once the values of the gross errors are known, the biased measurement value is corrected, and the 
data reconciliation procedure is run again. The process is repeated until convergence to a 
minimum value of squared error is achieved. 

Industrial applications of data reconciliation 

Many commercial software packages for process analysis and simulation today provide integrated 
functionality for data reconciliation. All these applications are for linear steady-state data 
reconciliation. Bagajewicz and Rollins (2002) discussed the functionality of one academic and 
eight commercial packages and concluded that most of them deal with material and component 
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balances. Only a few provide the advanced possibility to connect directly to DCS systems for on-
line applications. Generally, all the packages were developed for the petrochemical industry, with 
embedded features such as phase equilibrium constraints or model libraries for some 
petrochemical process units. The most popular packages in the industry are Sigmafine (OsiSoft), 
Datacon (Invensys), and Vali (Belsim). 

Applications of any commercial software in the papermaking industry are scarce because of the 
dynamic nature of the process and its lack of measurement redundancy. The Sigmafine package 
has been used for off-line data conditioning (Jiang 2003a) and has been assessed for possible on-
line application in a recausticizing plant at a kraft paper mill. The application was limited to 
material balances because the package cannot accommodate nonlinear constraints such as energy 
balances. Another package used in papermaking is the CADSIM® Plus simulation software from 
Aurel Systems. It has been applied to on-line energy accounting for the steam utility system in a 
kraft paper mill (Wasik 2007). This practical approach uses a parallel process simulator module 
to perform a process data validation procedure, which is referred to as simulation-driven data 
rectification. A further commercial implementation of this software involves a dynamic 
application to track pulp stock from batch digesters (Rankin 2009). 
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3. Simulation-driven data rectification 

The heart of the model-based process data rectification approach proposed here is an iterative 
algorithm which alternates between process simulation and optimization modules. The discussion 
begins by presenting the overall methodology, followed by more in-depth discussions for each 
methodological step.  

Overall methodology for plant-wide process data rectification 

A sensitivity analysis of the process dynamics is performed to identify the key state variables that 
represent the process state identification. The whole set of measured raw process data is then 
extracted from the distributed control system before analog filtering. Then a data processing 
technique based on a wavelet transform and analysis is used to clean random noise and 
abnormalities from the data. Simultaneously, the processing technique analyzes the time-
frequency domain for a potential steady-state occurrence of each selected variable. When a steady 
state has been identified, an automatic check for a potential multivariable pseudo-steady state is 
performed. In this way, a plant-wide process steady state can be systematically detected and used 
as an input to the simulation-driven data rectification technique (Korbel et al., 2011).  

Raw process data

Multi-scale processing

Multivariable pseudo SS 

Data filtration 

Correction of abnormalities 

Variable SS detection

Process data rectification

Instrumentation analysis

Variable classification

Key variable selection

Process simulation

Error minimization 

Gross error detection

Iteration 
loop

Applications

Raw process data
Instrumentation statistics 
and weights

Denoised process data
Plant-wide pseudo 
steady state data sets

Denoised process data
Plant-wide pseudo 
steady state data sets

DCS, IMS

Wavelet based  
processing technique

Simulation-driven 
process data 
rectification

Advanced cost analysis for production decision making  

Figure 2: Overall methodology for plant-wide simulation-driven data rectification.  

The data rectification procedure starts with the classification of process variables into redundant, 
observable, and undeterminable. The key variables are selected from the signal processing step 
based on the process state identification. A sufficient number of key variables are required to 
make a zero-degree-of-freedom process simulation feasible. The outcomes from the simulator are 
then compared to the inputs of the measurement matrix, and a least-squares error is calculated. 
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Iterative use of the optimization module leads to a solution with a minimal least-squares error 
value. In the iterative loop, a gross error check is performed on each instrument. If an instrument 
value is identified as biased, then the simple nonlinear problem (Equation 4) discussed in the 
second section is solved. The new estimated variable value is selected as a new input for data 
rectification, and the whole iterative process is repeated until a sufficiently small least-squares 
error is achieved.  

Instrumentation performance analysis 

This is the first step, to be performed before data processing and rectification techniques can be 
applied. Instrument documentation covering calibration, accuracy, and precision is first reviewed. 
Then a variance-covariance matrix of the measurement errors is estimated according to the 
discussion in the second section of this paper. A well-informed allocation of weights to each 
instrument is of critical importance to performing data rectification correctly.  

Multi-scale data processing 

Various parameters must be defined to use a wavelet multi-scale data processing technique 
correctly. Based on historical data and the dynamics of the operation, a processing scale length is 
defined for each variable. Four critical steps must be carefully addressed: 

 Select independent and comprehensive variables for determining near-steady states; 

 Establish near-steady-state criteria for each variable and for the system as a whole;  

 Determine the minimum length of steady-state periods according to the process system delays; 

 Determine criteria for threshold values for steady-state periods (for each variable and for the system as a 
whole). 

This step requires profound engineering analysis of the underlying process dynamics to represent 
the true process trend correctly by the wavelet transformation (for more details, see Korbel et al. 
(a)) 

Process simulation  

A process model is constructed by a classical flow-sheet definition using standard building blocks 
which describe fundamental operations such as mixing or separating, but also papermaking-
specific units such as chip refiners and paper machines. The measured and simulated variables are 
reconciled by minimizing a weighted least-squares error while satisfying the model equations and 
other user-defined modelling constraints. The minimum is obtained by a simplex search 
algorithm. The solver is sequential for steady-state or dynamic and for linear or nonlinear 
systems, calculating each module in term with its output/input streams for the next module. 

 

Data rectification with the help of the parallel optimization module 
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The simulation solver is sequential, but the data rectification solver is simultaneous. First, the 
plant operators must identify (by sensitivity analysis) the number of independent measured 
variables, referred to as free variables that represent the state of the operation. The free variables 
are input to the process simulation model (Figure 3) to estimate the whole set of process 
variables. The pillar of the data rectification module is the modified version of the simplex 
optimization technique. In the first iteration, the algorithm compares the changes in the free 
simulated variables to their measured values. The simulation and iteration process repeats until 
the minimum least-squares error between the simulated variables and the measured values is 
obtained. The output of the rectification process is the set of simulated variables, including 
rectified measured values and other calculated variables not available from measurements. 

The mathematical description of the minimization problem is identical to that of a classical data 
reconciliation procedure, with the difference that the constraint of the minimization problem is 
not the underlying process model, but rather is user-defined: 

 

s.t.  f (x, z) = 0 

 g (x, z) ≥ 0 

where: 

xi = reconciled value; 

yi = measurement – free variables (FV); 

wi = weight; 

zi = non-measurement variables - computed variables (CV) 

spanxi = normal operating span for variable xi ; 

The vector x is subject to constraint equations, i.e. mass and energy conservation laws and 
specified inequality constraints. The objective function is added to the simulation to be reconciled 
using mathematical functions native to the simulator used. The iterative search for values of x is 
performed using optimization module based on a simulated annealing version of the well known 
simplex optimization algorithm. Furthermore, normalized values are used to calculate the 
objective function due to the variety of physical units met in pulp and paper operation, for 
instance volumetric flows which can be in the thousands and mass fractions which are between 0 
and 1. 



  156 

 

Minimization algorithm

Process data rectification algorithm

yi

Process 
simulator

xFV xSV

xi

Simplex algorithm

Steady-State

Free
variables

Simulated 
variables

All measured 
variables

Whole set 
of variables

Iteration loop

 

Figure 3: Iterative algorithm in simulation-driven process data rectification exploits the downhill 
simplex method to search for minim least square error.  
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4. Case study: Thermo-mechanical pulping process 

Base case definition 

The base case is an existing large-scale problem: an integrated thermo-mechanical newsprint mill 
situated in eastern Canada. Process engineers have asked the authors to provide plant-wide 
consistent data sets, to identify miscalibrated instruments, and if possible to estimate the values of 
their biases. In most newsprint mills, the thermo-mechanical pulping process (Figure 5) is a low-
redundancy system, and therefore model-driven data validation using reconciliation techniques is 
a challenging task. The use of process simulation with an optimization module helps to overcome 
this lack of redundancy, but creates a high sensitivity to the quality of the process model. 

 

 

Figure 4: Block diagram of a complex thermo-mechanical pulping process with paper mill. 

Case study objectives  

The purpose of the case study was to demonstrate that the proposed practical methodology is 
capable of producing reliable and consistent plant-wide process data sets for higher-level 
applications such as cost modelling. Figure 5 presents the methodological steps that were 
followed to address the needs of mill personnel and simultaneously to answer the following 
research questions: 

 Is it possible to apply simulation-driven data rectification to low-redundancy systems? 
o How does improved system redundancy influence the error?  

 How much does this method improve data quality, with and without data pre-processing? 
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 Is the process data quality obtained from simulation-driven data rectification equivalent to that obtained 
from classical data reconciliation in the high-redundancy sections of the mill? 

Selected measures 

To assess the problem systematically, three measures were used to compare the quality outcomes 
of both methods (Benqlilou, 2006): 

 

Classification of process variables 

The classification of process variables in the current instrumentation network is presented in 
Table 2 below, followed by a description of a potential retrofit of the network to achieve, first, 
full system observability and second, full system redundancy. 

296 variables – input/output flowrates and state variables

Existing sensor network:
59 redundant variables (29 sensors)
80 estimable variables (22 sensors)
157 not estimable variables

Retrofit sensor network:
A: Complete system observability

52 new sensors added
92 redundant (74 sensors)
122 estimable (30 sensors)

B: Complete system redundancy
98 new sensors added
296 redundant (149 sensors)  

Table 2: Variable classification and instrumentation network description. 

Case study: methodological steps  

The extracted raw process data were de-noised using a wavelet-based technique and 
simultaneously analyzed for potential pseudo-steady state. When the assumption of pseudo-
steady state is met, the very same data set is then processed further using simulation-driven data 
rectification and classical data reconciliation techniques separately. A couple of operating 
divisions have a superior level of system redundancy, and both validation techniques were 
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applied to them to assess the third research question. The system to solve is a linear problem to 
which both methods are applied. As mentioned, the raw process data were extracted from the 
information management system using an on-line steady-state detection technique based on 
wavelet transformation (Korbel et al., (a)) The quality of plant-wide multivariable and pseudo-
steady-state data sets was discussed in this work. In the current case study, process data sets with 
the lowest measurement trend error that permits pseudo-steady-state detection are used. 

 

 

Figure 5: Three different pathways analyzed in the data validation problem. 

 

To address the first question, a hypothetical steady state of the process operation was created. 
Historical information on the instrumentation network (accuracy, precision), engineering 
knowledge of the manufacturing operation, and an actual process simulation were used to create a 
hypothetical data set. After defining the problem description and measures, the methodology can 
be summed up in the four following steps: 

 Apply classical data reconciliation (DR) and simulation-driven data rectification (SDDR) 
techniques to the hypothetical steady-state data set; 

 Analyze the outcomes from both methods using the relative error reduction (RER) 
measure; 

 Gradually increase the system redundancy12, repeating steps 1 and 2; 

 Analyze and address the redundancy and the error function. 

                                                 

12 A  systematic way  to  increase  redundancy was  selected:  the  instrumentation  upgrade  algorithm  described  in 

(Bagajewicz, 2000), with the objective function being the number of instruments.   
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Results and discussion 

The information management system integrated into the thermo-mechanical pulping operation 
was used to identify a steady-state operating condition. Several candidates for steady state were 
extracted. The quality of each steady state and its distance from an idealized stationary trend were 
addressed using a multivariable measure (Korbel et al., 2011): the MTE (measurement trend 
error). Figure 6 represents one of the key variables (production rate) that were selected from a 
sensitivity analysis to identify the pseudo-steady state of the process. The mean squared error 
(MSE) of this key measured variable relative to the true process trend was calculated as 43. The 
highlighted region corresponds to the multivariable pseudo-steady-state operation that was 
selected for analysis. With this knowledge, a hypothetical steady-state process operation data set 
of all variables was created to identify the true process trend as a reference value for comparing 
methods. 
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Figure 6: Example of raw measurements for production rate with a mean squared error of 43 
and the hypothetical true trend. 

 

First, the current process operations system with the actual instrumentation layout was subjected 
to data validation using both the classical and the simulation-driven rectification techniques to 
validate the possibility of using the proposed methodology. Figure 7 shows that the relative error 
reduction (RER of pulp volumetric flow) was very similar when each of the methods was applied 
to several process subsystems with some level of redundancy (e.g., Main Refining and Main 
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Screening, Rejects Screening). In those sections of the mill where not enough instrumentation is 
available, classical data reconciliation will at best result in a data coaptation process (input = 
output model). However, because to perform the simulation-driven approach, it is sufficient to 
maintain zero degrees of freedom, the relative error reduction is significantly better (close to 62% 
error reduction in the chip pre-treatment section of the operation) than classical reconciliation 
could provide (no error reduction). It is important to note that because the iterative process of 
error minimization is taking place between simulated and measured variables, process model 
quality is of critical importance. The current case study does not analyze the impact of model 
inaccuracy, and the model is assumed to correspond to the underlying process. 
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Figure 7: Relative error reduction (RER) of production rate in different sections of the process 
operation. 

In plant-wide data validation, classical data reconciliation had reduced the error in production rate 
exiting the thermo-mechanical pulping process by approximately 10%. Comparing this to the 
simulation-driven approach that reduces error by approximately 50%, it is apparent that the 
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estimators produced by the proposed methodology are superior if the process model is correct. 
Clearly, the difference in the outcomes of the two methods is due to the fact that the simulation 
module includes more degrees of freedom because optimization is taking place outside the 
module. Furthermore, the optimization module enables more practical equality and inequality 
constraints to be implemented. These constraints are drawn from engineering judgment related to 
a particular processing unit and are in many cases impossible to express, implement, or solve 
using the optimization formulation of classical data reconciliation.  

The second part of the case study seeks to identify the relation between level of process 
redundancy and relative error reduction using either classical data reconciliation or the proposed 
method. The reference system redundancy value is that of the current operating case (19.9%). 
From the actual process data, a hypothetical steady-state data set representing the thermo-
mechanical pulping process was created for each level of increase in system redundancy. Because 
new instruments were added at each step as the redundancy was increased, the values of their 
accuracy and precision were set to vendor-supplied values so that a new hypothetical data set 
could be created. This process was continued until full observability and then full redundancy of 
the system was achieved. At every step, the relative error reduction of each method was 
calculated to analyze the impact of system redundancy on the performance of each method used.  
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Figure 8: Relative error dependence on overall system redundancy. 

 

Figure 8 presents an assessment of redundancy impact on relative error reduction for a single 
variable, pulp volumetric flow rate (production rate). A similar function can be plotted for any 
process variable of interest, thus creating a better understanding of the relationship between the 
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increase of process data set reliability and instrumentation upgrades. In the case of production 
volume, it is shown that the low-redundancy cases are favourable to the proposed methodology. 
With the implementation of new instruments, classical data reconciliation achieves an 
approximately 70% improvement in error reduction (from 10% to close to 80%). Looking at the 
application of the proposed methodology, the maximum possible improvement is 20% (from 
approximately 50% to approximately 70%) with increasing redundancy values. Clearly, this 
conclusion illustrates that model quality is of critical importance. However, in reality the 
assumption of a perfect model never holds, and hence some errors will be introduced because of 
model inaccuracy. The relative error reduction converges to approximately the same values at 
higher redundancy. The grey stripe in Figure 8 represents the region where full observability of 
the system has been achieved (SR=0.286). Even though the system is fully observable and 
approximately 30% of variables are redundant, the classical SSDR reduces relative error by only 
RER = 0.292, compared to SDDR that reduces it by RER=0.501.  

 

5. Conclusions and final thoughts 

The proposed data rectification methodology uses a multi-scaled pseudo-steady-state process data 
set to perform an iterative search for the minimal least-squares error between simulated and 
measured variables. A detailed description has been provided, and the differences between this 
approach and the classical notion of data reconciliation have been discussed. The main 
differences were identified to be in the constraints of the optimization problem. Classical data 
reconciliation is subject to the underlying process model, whereas simulation-driven data 
rectification is subject to user-defined practical constraints. Data consistency is ensured by the 
use of a process model in the simulation module, where model quality becomes even more 
critical.  

The case study has shown that the method is very practical and that its robustness coupled with 
wavelet data pre-processing is comparable to that of classical data reconciliation when high 
system redundancy is present. Only the proposed methodology can validate process data for low-
redundancy systems where at least zero degrees of freedom are present. This is particularly useful 
in the papermaking industry where low-redundancy systems are common because of poor 
instrumentation accuracy and functionality. In these low-redundancy regions, classical SSDR 
cannot be fully used because redundancy is a requirement for its application. 

The proposed technique may be computationally very expensive compared to classical methods. 
This is due to the optimization technique that iteratively searches for improved variable profiles 
among the simulation outcomes and compares them to the profile of the measured data set. 

Finally, gross error handling is a very practical approach that uses information about each 
instrument from historical data sets. After reconciliation has been performed, if the squared error 
is very high, the most commonly occurring biased measures are checked for potential systematic 
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error. The bias is estimated and corrected using the algorithm described here, and data 
reconciliation is repeated. 

It is recognized here that if the simulation model is inaccurate, the outcomes from data 
rectification may be misleading. If the reconciled data are used in this form for higher-level 
analysis such as optimization or cost analysis, error propagation will be significant. Hence, the 
analyst using the technique must recognize this drawback and systematically analyze the results 
and the validity of the model. 
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Abstract 

 

The implementation of information management systems in pulp and paper companies has 

enabled a better understanding of both business and production processes. Even though mill 

engineers and accountants have incorporated the use of real-time data into their daily practices, 

they are often limited to using these data only for ad-hoc problem solving. The critical 

information captured in the data has not yet been made visible to decision-makers. Data trends 

are studied, but information is seldom extracted from the actual measured variables. It is argued 

that if information management systems at the mill can be exploited to their full potential, 

decision-making activities will be enhanced significantly by access to new and insightful 

manufacturing information for operational, tactical or strategic decision-making. 

This paper briefly presents the structure of an operations-driven cost modeling approach that is 

then applied to a case study to assess the true profit margins of different production runs and 

operating regimes for a company’s short-term benefit. The supporting pillar of this approach is 

the use of cleansed and reconciled real-time measured data from the operation. The flow of 

information from these data sets is integrated to cost data and follows the principles of ABC-like 

cost accounting.  

The results from a case study – existing integrated newsprint mill – shows that the presented 

operations-driven approach dramatically increases the granularity and transparency of 
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manufacturing costs compared to conventional accounting techniques, while permitting 

comprehensive analysis of critical production and design parameters. For instance, understanding 

the true contribution margins of every product in the context of different manufacturing set-ups 

and recipes will improve planning and scheduling, enhance continuous improvement, and open 

the door for future margin-centric supply-chain management. 

INTRODUCTION 

Without a doubt, pulp and paper products are mature and standardized goods, many of which are 

beyond their product lifetimes. Every day, paper manufacturers are being challenged by 

diminishing market conditions. Various business strategies are being investigated to stay 

competitive in these tough market conditions. Managing the strategic level by choosing the 

number of facilities, their locations, and their capacities is currently helping pulp and paper 

companies to raise their cost curves temporarily. Managing the tactical level at the facility itself 

will not only tighten control of manufacturing costs at each mill, but will also provide critical 

information for long-term strategic planning and decision-making. However, to sustain a 

successful business in North America, these commodity products must first be manufactured at 

the lowest possible mill-level cost. Today, tactical or operating decisions are based mainly on 

information derived from mill benchmarking, home-grown cost accounting systems, or both. It is 

rare that this information is based on actual process data from information management systems.  

Several surveys have been carried out to understand the growth of information technology and 

management systems and their use in the pulp and paper industry. A review by Fadum (1996) 

points out that the use of process information systems in the industry is limited, often only for 

troubleshooting, and that these systems should be exploited more to enhance production 

profitability and product quality. Shaw’s (1999) survey points out the increased availability and 

wider use of data acquired from the process; however, no advanced use of these data was reported 

by the users surveyed (engineers, IT personnel, and mill managers). Yeager (2000) has shown 

that today’s real-time data availability promotes the development of decision-making tools which 

could enable mill personnel to react promptly to changes. A more recent detailed survey (Janssen 

et al., 2003, 2004) concluded that the interpretation of data from data management systems is 

increasing, but that the link between different types of data is generally missing. Clearly, gaps 

between the functionality of these systems and the needs of papermakers are preventing their 
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application. These gaps are mostly due to the particular nature of pulp and paper manufacturing 

processes, to inaccurate and biased measurements, and to users’ desire to maintain their 

accustomed systems.  

One of the major opportunities for exploiting information extracted from the data available from 

information management systems (IMS) in pulp and paper companies lies in the field of 

manufacturing cost accounting, where operating-cost-related efficiency improvements remain to 

be achieved. To grasp effectively the operating knowledge that resides within the cost accounting 

data, the underlying process characteristics must be integrated with the cost data. Because 

traditional cost accounting practices use top-down cost allocation per volume of production using 

weekly or monthly statements, some other approach needs to be used to account for process 

operations. Activity-based costing (ABC) and its process-based characteristics can be used for 

production cost modeling in the continuous manufacturing industries (Laflamme-Mayer et al., 

2011). ABC is an activity-driven costing system that was first developed to overcome indirect-

cost allocation difficulties when using traditional costing (Kaplan, 1989) and has since been 

successfully applied in a wide range of industries. After a decade of overcoming difficulties and 

complications with the costing framework (Turney, 2008), the ABC philosophy has been adopted 

by several researchers and practitioners for particular case-driven or company-specific purposes 

(Steen and Steensland, 1994). These descendants of Kaplan’s original work are today referred to 

as “Sons of ABC” or “ABC-like” cost accounting methodologies. Many companies, mostly in the 

discrete manufacturing industry, are saving millions of dollars due to well-informed decisions 

that are based on results from ABC and its granular view of resource consumption. In the 

continuous manufacturing industries, however, only a few implementations have been done, with 

the majority occurring within oil and petrochemical companies. These home-grown enterprise-

specific practices are often kept confidential as company know-how and are not available to the 

public. 

In recent years, a mix of ABC and standard cost-accounting frameworks and systems has been 

developed for the forestry sector (Fogelholm, 2000). In particular, the development of an 

operations-driven cost modeling framework (an ABC-like approach) has been shown to produce 

critical manufacturing cost information (Laflamme-Mayer et al., 2011). The use of lower-level 

process data together with financial data in a “bottom-up” cost accounting concept has yielded a 

better understanding of complex continuous production environments such as those found in pulp 
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and paper mills. Operations-driven cost analysis enables efficient analysis of complex cost 

relationships through an understanding of the efficiency of resource usage by activities and how 

activities are linked to final cost objects. Applications of this operations-driven framework have 

been demonstrated in several case studies aimed at production improvements relative to supply-

chain management and at improving the state of knowledge related to retrofit design decision-

making activities (Laflamme-Mayer et al., 2012; Janssen et al., 2011). In these high-level 

applications, the relatively long time scale used for cost modeling (weeks to years) is adequate. 

Further decreasing the time scale (to hours) for production cost assessment enables the tracking 

of actual and true product margins (Korbel et al., 2012), which is the focus of this paper. 

 

Literature review of cost-accounting systems 

Cost accounting is the supporting pillar of the accounting framework that provides critical 

financial information to managers for decision-making. The cost insights provided are used only 

internally to enable managers to find the optimal way to maximize the company’s profits. On the 

other hand, financial accounting is used for reporting that produces information available to the 

public. Many companies use several different cost-accounting systems for problem-solving, cost 

variance analysis, and financial reporting. Even though traditional cost-accounting practices have 

been developed to focus primarily on financial reporting, they are also being used for internal 

company cost-performance analyses (primarily in the continuous manufacturing industries). 

However, traditional costing systems are often unable to determine accurately the actual costs of 

production and of related services. This situation most likely exists because the concepts of 

traditional costing were developed early in the last century to satisfy past industry needs for 

systematic and reliable cost information (Cooper, 2000). In the labour-driven industries of the last 

century, standard costing methods could provide satisfactory cost-control strategies. The main 

focus was simply to manage and control efficiency and productivity. In this context, the standard 

level of resource consumption is evaluated by looking at the company’s past performance. Then 

the standard utilization of resources is compared to the actual usage to track and evaluate cost 

variances. Clearly, the outcomes of such a cost-control analysis are the variance values, which are 

presented as gains or losses due to productivity, volume, or cost variations from the budgeted or 

expected target (Horngren, 2006).  
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Because the commodity nature of pulp and paper manufacturing and its past needs correspond to 

the period of development of traditional costing, standard costing was adopted by the industry for 

cost control and reporting. This costing strategy enabled companies to develop standard 

manufacturing recipes for setting up the optimal process conditions for each production line and 

product, which is why this approach is still used today. For target performance evaluation, the 

actual costs that were incurred during the time period under analysis are compared to the 

expected standard recourse consumption within the given product recipe. However this simplified 

representation of the production environment is not sufficient to provide good information on 

how costs are generated within the mill (Laflamme-Mayer, 2011). Clearly, the simplicity of 

traditional cost systems is achieved with the loss of some functionality. Furthermore, the cost 

distortion that occurs due to arbitrary allocation of indirect costs became significant as industries 

were transformed more and more into automated systems, magnifying the ratio of indirect to 

direct costs. At this time, ABC concepts were developed to enable better overhead allocation. 

However, the pulp and paper sector did not adopt these advances in cost control and did not 

modernize its cost management tools.  

Activity-based cost accounting  

ABC accounting is a relatively new approach to cost control that was developed in the 1980s in 

response to cost discrepancies resulting from inaccurate overhead allocation (Kaplan, 1988). By 

simply adding an activity as a link between resource consumption and a cost object, the 

knowledge of costs incurred in the organization is improved significantly. The activity becomes a 

fundamental cost object whose value can be directly traced to cost objects such as services, 

products, or customers. Different opinions about the accuracy of these methods exist and no 

absolute measure of the validity of product costs based on any costing approach is available. 

Cooper and Kaplan (1988) describe ABC as a more correct means for product costing in today’s 

industry setting (large companies) where expenses covering marketing, distribution and support 

are a significantly increased proportion of the total costs compared to traditional direct labor and 

material costs. 
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Figure 1: Activity-based costing and traditional costing. 

The process-oriented character of ABC (Figure 1) shows cost generation in two logical stages, 

while volume- or structure-oriented traditional costs are generated in one. This fundamental 

principle accounts for the difference in visibility of cost data when ABC principles are used 

(Drucker, 2008); the traditional approach cannot encompass the critical link between actual 

causes and associated costs. Furthermore, advanced ABC has recently evolved into multistage 

systems in which individual activities can be consumed by other activities before being consumed 

by final cost objects, thus improving the accuracy of cost modeling even more (Emblemsvåg and 

Bras, 2001). 

The use of the original ABC approach in the discrete-parts industry is advanced compared to the 

situation in continuous process environments (Horngren, 2006; Kaplan, 2004; Steen and 

Steensland, 1994). There is little discussion in the literature of applications of advanced costing 

strategies for continuous process operations (Steen and Steensland, 1994; Yeager, 1999; 

Fogelholm, 2000; Janssen, 2011; Laflamme-Mayer, 2011). Fogelholm (2000) discussed the 

difficulties of assessing product costs in the forest industry. However, standard costing principles 

are still being used there. The application described by Fogelholm seeks to anticipate the resource 

requirements for upcoming customer orders based on the dimensions, raw material content, and 

quantities of the product (Fogelholm, 2004). Steen and Steensland (1994) present the potential 

benefits from implementing advanced cost-accounting systems based on ABC principles for real-

time product cost calculation. They argue that the necessary requirements for such successful 

costing systems must incorporate bottom-up cost and process data integration, measured process 

data reconciliation, system flexibility, and common data-base structures. However, the details of 

the proposed framework were not presented, which would clearly be necessary if the proposed 
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costing system were to be used. Nevertheless, discussion of the needs of the continuous 

manufacturing industry for advanced costing systems is of critical importance. For example, an 

explicit relationship between operating conditions and resource consumption, which is missing in 

current systems, is essential for analyzing direct manufacturing costs in continuous industries. 

This situation arose mostly because the main focus in the late 1990s was on cost applications to 

address the indirect-cost allocation dilemma, and no attention was given to tracking direct 

manufacturing costs in these industries. Especially in the P&P industry, resolving this issue is 

essential because all direct costs are arbitrarily traced to the product based on standard measures, 

which provide no explanation of how and why these costs have actually been incurred. Therefore, 

a holistic costing approach is needed that would link financial information with process operating 

data to provide an in-depth sophisticated view of resource consumption at the process and unit 

levels.  

Operations-driven cost modeling 

Laflamme-Mayer et al. (2011) developed an operations-driven cost-modeling framework that 

exploits the link between financial data and the knowledge that can be captured from the vast 

amount of data collected by an IMS. They argue that the particular production needs of a given 

operation must be understood to develop cost-accounting tools adapted to a particular production 

environment. The effective use of cost-management systems must involve both the process 

operations and the product perspectives, which is the main difference from discrete-parts 

manufacturing. Two distinct perspectives must be assumed in a continuous manufacturing 

environment:  

 The process perspective on costs incurred is necessary for the mainline manufacturing 
operations to explain actual cost generation correctly.  

 The product perspective is necessary for the finishing operations (e.g., packaging) where a 
large amount of product diversity is created.  

The combination of both process and product perspectives is required for many cost explanations, 

for instance, an in-depth process perspective for transition-cost calculation for a batch-level 

production facility. In this framework, the process perspective is described by two distinct 

factors: the given production process (design) and the operating conditions.  
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 The production process corresponds to the activity within a part of a manufacturing 
process. It is described by the configuration of the process, the type of processes involved 
(reaction, heating), and other relevant information.  

 The second factor is of critical importance because the rate of resource consumption alters 
with changes in operating conditions. Traditional costing does not include tracing of these 
changes and assumes product homogeneity (Kaplan, 1988), and the corresponding costs 
are calculated based on recipes (Laflamme-Mayer, 2011).  

The strength of this costing framework has been demonstrated on case studies which have 

provided information on retrofit design decision-making (Janssen et al., 2011). Another case 

study involving supply-chain management shows that the information provided by operations-

driven grade-cost assessment breaks up the time period under analysis into segments 

corresponding to campaign runs. From the results, it is clear that the cost of manufacturing the 

same product varies significantly from one campaign to another, a fact which can be exploited in 

planning and scheduling for margin-centric supply-chain management (Laflamme-Mayer et al., 

2012). 

Operations-driven cost modeling for true product margins assessment  

Campaign costs can be broken down to assess the running and transient production cost of 

different operating regimes and to capture the true product margins of a grade. As mentioned 

earlier, current mill IMS can accommodate such analysis if the measured process data are 

accurate. However, this is often not the case, which makes direct use of the data inappropriate or 

in some cases impossible. Many tools have been developed to help address this task in the 

processing industries (Bagajewicz, 2000); however, pulp and paper mills are a special case 

because of their manufacturing nature and instrumentation availability (Korbel et al. (b)). For 

these purposes, only plant-wide process data can be used under pseudo-steady-state conditions. 

To achieve a certain level of pseudo-steady-state data quality, advanced processing techniques 

must be used, which is the supporting pillar of this costing approach. In a nutshell, a wavelet-

based multiscale method is used to identify the pseudo-steady-state of the operation. The 

elimination of random noise and abnormalities is carried out simultaneously. The second step is 

data reconciliation, which improves further the accuracy and plant-wide completeness of process 

data. For further information, refer to Jiang (2003) and Korbel et al. (b). 
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The data dissection and cost-modelling vision used in this approach can be understood from 

Figure 2. Traditional cost-accounting systems, as discussed earlier, permit some ad-hoc 

profitability analysis of different products. To go further and to comprehend the true 

manufacturing costs from an engineering perspective, process knowledge must be integrated to 

assess the operating costs of each manufacturing regime. At this level, the information can be 

used by decision-makers to avoid costly operating regimes and to try to keep the process inside 

the most profitable operating region. 

 

 

 

 

Figure 2: Smart data dissection for operations-driven cost modeling approach (Korbel and Stuart, 

2012). 

OBJECTIVE 

The overall objective of this study was to develop a methodology which would enable the 

calculation of true product margins from a process perspective with process interpretation 

capabilities. The necessary data processing tools that are a prerequisite for cost analysis have 

been presented and discussed in the literature (Korbel et al. (a) and (b); Korbel and Stuart, 2012). 

The main goal of this paper is to demonstrate the value of this approach through an application to 

a case study at an integrated newsprint mill. The results are presented in comparison to outcomes 
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from traditional standard costing to evaluate the methodology. The specific objectives addressed 

in this paper are: 

1. to assess and characterize the manufacturing costs of a newsprint mill using this approach, 
2. to demonstrate the inclusion of reconciled measured process data in smart data dissection 

for operations-driven cost analysis of manufacturing regimes to identify and interpret cost 
variances based on operational knowledge, and 

3. to discuss the inclusion of the proposed method in supervisory decision-making activities 
for short-term benefits to the company. 

CASE STUDY DESCRIPTION 

The mill under analysis is an integrated thermo-mechanical newsprint mill. The manufacturing 

process incorporates the classical thermo-mechanical process steps, including chip pre-treatment 

in two atmospheric vessels followed by impregnation units, three-stage chip refining, and rejects 

refining. The “dirty steam” from the refiners is sent to the recovery unit for recovery, and 

additional steam if needed (in winter periods) is produced in three available boilers (fueled by 

natural gas, oil, or electricity). The thermo-mechanical facility produces a pulp quality based on 

paper mill demand and specifications, with its throughput being matched to that of the paper mill. 

Two basis weights of newsprint products are produced: 48 g.m-2 and 45 g.m-2.  

The company is highly competitive in newsprint (in the first quartile of manufacturers), and 

hence its manufacturing cost efficiency is a critical issue to stay competitive under North 

American market conditions. 

OPERATIONS-DRIVEN COST ANALYSIS 

The focus of cost-model development was first to characterize the direct and indirect 

manufacturing costs of a newsprint mill to identify the most profitable and most costly operating 

regimes. This information was then interpreted to define cost variances and was then used in 

support of decision-making activities related to process operating improvements for the short-

term benefit of the company.  

The five methodological steps for cost model development and analysis are (Figure 3): 

1. Cost objectives definition 
The first important step is to clearly define the scope and the objectives of the cost 
analysis procedure. It is necessary to develop guidelines for identifying relevant cost items 
and for characterizing the desired cost behaviour for use in decision-making. 
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2. System and data dissection 
The production system is divided into smaller subsystems to enable the qualification and 
quantification of different types of cost drivers. This step increases the in-depth cost 
analysis capabilities of the system. The separate subsystems are called Process Work 
Centers (PWCs) and are further divided into individual Processing Units for increased 
cost-tracking transparency. The system division step is usually based on rules derived 
from process data redundancy analysis (Korbel et al. (b)). Then, individual production 
runs of a given grade can be dissected into operating regimes at this stage (if this was not 
done in the data processing phase before cost analysis), or additional production regimes 
can be identified and added to the cost analysis. 

3. Driver description phase 
This step involves intensive discussion with mill personnel to identify the cost drivers. 
This phase is of critical importance because it structures the shape of the cost model and 
the characterization and interpretation of the results. 

o Resource drivers: The characterization and measurement of the resource 
consumption rates of processing units and process activities are based on process 
data. For instance, flow measurement is a resource driver for a given flow 
medium. 

o Process activity drivers: These drivers characterize the linkage between operating 
conditions and the consumption of a resource driver. This phase identifies what 
information is necessary to characterize the intensity of a process activity within a 
process work center. For instance, the pressure in a vessel will characterize the 
required rate of steam flow to be input. 

o Process work center drivers: The boundaries of each PWC are defined in the 
second phase of the methodology. The interpretation must be intuitive to capture 
the cost-insight capabilities of the method clearly in a graphic user interface. The 
aim is to explain cost generation better at a mill-wide level. One of the important 
cost centers is the overhead work center, where the drivers must be clearly defined 
to achieve indirect-cost transparency throughout all mill departments. For instance, 
the work center driver for maintenance is the head count for a given subsystem of 
the operation. 

4. Cost model development 
The model development follows the operations-driven cost modeling framework 
presented in Laflamme-Mayer et al. (2011). The supporting pillar is the integration of 
process and financial information based on ABC-like principles. The systematic 
consideration and cost aggregation of individual production processes and their operating 
condition into the plant-wide manufacturing operation are essential principles of this 
stage.  

5. Characterization phase 
The last phase involves the characterization of the costs incurred and the interpretation of 
the results based on the objectives defined in phase one. Process understanding is the key 
element at this stage. Therefore, interaction with mill personnel is necessary to interpret 
the results. Sometimes, steps 2-4 will need to be repeated to arrive at a satisfactory level 
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of in-depth cost understanding. The results of this stage, when validated, can be clearly 
visualized and used for decision-making support. 

 

Operating Regimes Definition
Definition and selection of distinctive 
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Figure 3: Overall methodological framework for true product margin assessment.  

CASE STUDY METHODOLOGY 

After the operations-driven cost model has been developed (including grade run campaigns and 

operating regime selection), the methodology used for a single manufacturing time period and a 

single newsprint product consists of the following four steps: 

1. Production cost assessment using traditional standard costing rules 
2. Production cost assessment of grade campaign runs using operations-driven cost analysis 

(Laflamme-Mayer, 2011) 
3. Production cost assessment of operating regimes (Korbel, 2012) within individual 

campaign runs 
4. Results interpretation from a process perspective. 
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RESULTS AND DISCUSSION 

The advantages of operations-driven cost analysis can be presented by characterizing the mill cost 

of manufacturing and showing that the interpretation capabilities of the proposed method are 

superior to those of traditional cost-volume variance analysis. Significant inferences can be made 

from the results of the case-study application to achieve potential cost savings. Because the case 

study is a real thermo-mechanical pulping operation, the data are presented as values normalized 

to the standard cost estimates.  

Campaign runs and operating regimes 

When production campaign under analysis is run, its corresponding manufacturing costs are 

determined using the weighted average (based on probability of occurrence) of operating regimes 

and the accumulated costs during non-steady-state conditions that occurred during the run. The 

cost of individual operating regimes is determined based on operations-driven cost analysis. In 

the case of a newsprint mill, the operating regimes are characterized first by a group of seven 

essential process control setpoints throughout the TMP process that correspond to a given pulp 

freeness and pulp quality requested by the paper mill. The other parameters used to characterize 

regimes are the type and age of the refiner plates used in the primary, secondary, and rejects 

refiners. The regime definition is in the hands of the analyst and is specified at the start of the 

project. Because the test case mill is a simple integrated newsprint mill, the definition of regimes 

is limited to different operating settings. 

Mill production cost characterization  

The direct and indirect manufacturing costs for one of the newsprint products (48.8 g.m2) are 

presented in Figure 4. The production costs of the grade runs and grade operating regimes are 

assessed by the operations-driven costing method. The results are compared to the standard costs 

provided by the mill accounting systems, which are based on the monthly statements within the 

time period analyzed. Each bar of the graph is divided by resource costs. The diamond sign 

within the bar corresponds to the length (in hours) of the campaign run. Clearly, the longer the 

campaign run, the more near-steady-states corresponding to operating regimes can be detected 

and analyzed, which provides more certainty about the cost information for a given production 

run. It is clear from Figure 4 that this approach to cost analysis provides a novel perspective on 

manufacturing costs compared to traditional accounting practices. These results provide further 
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analytical granularity to the original work of Laflamme-Mayer et al. (2011) because of their 

extended in-depth view on resource consumptions for each different operating regime, as is clear 

from Figure 5. 
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Figure 4: Manufacturing costs of a 48.8 g.m-2 newsprint product during the winter season time 

frame analyzed (production campaign runs) 

The bar corresponding to standard costs (Figure 4) indicates how resources should have been 

consumed for the given production recipe of the given product grade. When drilling down to 

different operating regimes (Figure 5), the cost variance within individual campaign runs became 

visible and confirming that standard costing is an ad-hoc measure, even though for this particular 

time period, the variability in process running conditions are relatively small. The visibility of 

cost variances between different runs of manufacturing the same product, and then broken down 

into variances between operating regimes enhances cost characterisation of mill’s production 

processes. As can be deduced from these two figures (4 and 5), cost analysis using operations-

driven costing is more consistent with the process operation than traditional approaches. This 

kind of analysis can be performed in order to compare the costs from different operating runs, and 

analyze the impact of avoiding costly regimes within individual runs, thus providing guidance to 

continuous mill improvements. The difference in production costs for different operating regimes 

were mostly due to several factors: 

 variances in specific electricity on primary, secondary and reject refiners  
 the change in unit price of steam due to different factors (recovery unit efficiency, the 

amount of low-steam produced, the overall steam demand) 
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 change in chips quality (or chips ratio when new recipes for the same operating regimes 
were under trial periods) 

 the use of chemicals (bleaching) 

 overhead costs due to the change in allocation base 

 maintenance costs (change in indirect cost driver due to increased/decreased maintenance 
hours within various campaign runs) 
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Figure 5: Manufacturing costs of a 48.8 g.m-2 newsprint product during the campaign-cost time 

frame analyzed and its corresponding operating regimes. 

Figure 6 shows the results of the same production cost analysis for the summer period. Only six 

campaigns occurred within the time period under analysis. It is clear that the difference between 

standard costs and operations-driven cost values becomes even more apparent in the summer 

months. After closer analysis it was found that the increase in manufacturing costs for campaign 

run 2 and 5 was due to the increase demand of steam. In a common summer manufacturing 

period, recovered steam from the process is sufficient for the need of the paper mill (and the rest 

of the facility). However, during the campaign run 2 (and 5), additional high-pressure steam had 

to be produced, thus increasing unit price of steam significantly. The cause of this difference was 

found to be due to the unplanned maintenance of recovery unit at the energy island of the facility.  
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Figure 6: Manufacturing costs of a 48.8g.m-2 newsprint product during the summer season time 

frame analyzed. 

The information derived from this cost analysis will have an essential impact on mill cost 

improvement strategies. Traditional costing does not look at these operations-driven cost drivers, 

which does not enable well-informed operating decisions. On the other hand, systematically 

looking at each individual product’s true margin within each individual operating regime as well 

as at the complete set of operating regimes will guarantee that managers can make well-informed 

decisions.  

Mill production cost interpretation 

Operations-driven cost modeling not only provides a sophisticated view of manufacturing costs 

incurred, but also enables direct engineering interpretation of the acquired cost of manufacturing. 

These interpretations are based on the ability of the costing approach to drill down into a 

measured-data-driven characterization of the operation. As shown in Figure 7, process engineers 

and accountants can drill down from product-level costs through campaign and regime costs to 

the actual true costs of the production work centers and the corresponding rate of resource 

consumption by the process activities and processing units. This versatility helps to understand 

and interpret the cost variances that arise from changes in the rates of resource consumption due 

to process operations. 
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Figure 7: Production costs of different operating regimes divided into Process Work Centres and 

both types of costs – direct and overhead costs 

Figure 7 presents the cost for each process work center during run 3 and operating regime 03 

while producing the 48.8 g.m-2 newsprint grade. This cost information can be used and compared 

to the other cost results corresponding to the same operating regime. The interpretations of the 

cost variances can then be addressed by the process engineers and accountants at the mill. As also 

shown in Figure 5, the difference in manufacturing costs for the same grade is different based on 

operating regime chosen. Another level of analysis is an interpretation of essential causes of cost 

variances within the same operating regime. This information can provide well informed, process 

troubleshooting analysis by benchmarking the cost of individual regime:  

 Manufacturing costs of the same operating regime, but within different campaign runs, 
can vary significantly (e.g. operating regime09 in campaign runs 1, 2 and 9) 

o This variance was identified to be caused by the increase in the use of bleaching 
chemicals as well as the increase in electricity consumption on primary refinery. 
The disturbance was caused by the change in the raw material characteristics. 
After further analysis it was identified that the reason was the instrumentation 
miss-calibration that measured slightly higher production throughput than was 
actually being produced (the difference in chips humidity parameter). This biased 
measurement caused the specific energy to be not in the optimal level, creating 
higher level energy consumption 
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o The drop in steam unit price was caused by the increased rate of steam recovered, 
thus minimizing the need to produce high-pressure steam.  

 Operating Regime11 cost variance between runs 6 and 7 is mainly due to unit steam price. 
This variance was identified to be due to excess production of high-pressure steam due to 
low efficiency of steam recovery unit due to mechanical cause: the microfibers present in 
the dirty steam coming from high consistency refiners, caused clogging of the recovery 
unit. This problem has not been identified for the next couple of days causing significant 
profit loses. One can noticed that the unit steam price fell back to its optimal values 
(regime09 and regime02 of runs 8 and 9). 

When looking at the higher-level analysis of campaign run costs, the variance in the costs due to 

raw material change is not visible, making the costs of runs 1, 3, 4, and 8 look identical. When 

drilling down to operating regimes, clearly it is not the case that the individual process activities 

correspond to the trend given by the aggregated campaign level. Clearly, a distortion due to 

process dynamics is introduced at the level of campaign costs, making the differences in resource 

consumption for particular running conditions invisible.  

This clear process-operation visibility provides a better understanding of the mill’s cost structure. 

Furthermore, because process operating regimes are defined based on process conditions, the 

manufacturing costs of the same product can be addressed in multiple ways, making the cost 

distribution of a given product grade available for the first time in pulp and paper mills. Figure 8 

shows the manufacturing information covering the whole set of operating regimes for the 48.8 

g.m-2 product during the winter period analyzed. Each regime is labelled by its corresponding 

total production cost and its probability of occurrence. The width of the bar corresponds to the 

cost range of the regime due to the use of multiple steady-state data sets for regime costing. The 

thick line inside each of the bars represents the weighted average of near-steady-state cost 

regimes. The colors in the red spectrum indicate costly operating regimes, whereas the bars with 

green colors represent more profitable regimes. The grey ones represent approximately average 

values. It is clear from this figure that producing the same grade under different operating 

regimes does create a significant variance in product margin (~$22 per ton of paper). 
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Figure 8: Wide range of product profit margins for a 48.8 g.m-2 product for one month of 

operation. 

The R11 operating regime was in effect for nearly 13% of the near-steady-state operating periods 

(which represent only a small fraction of the overall dynamic operation). An analysis of variance 

of regime R11 with respect to the average value is presented in Figure 8b and indicates that the 

electricity costs within the primary and reject refining areas are higher than average and that the 

steam cost credits are also higher due to production of dirty steam from both refiners. 

Furthermore, a variance associated with material usage in sheet formation was also detected due 

to the higher use of bleaching material. After closer analysis, it was deduced that operating 

regime R11 corresponds to the operating situation in which the TMP mill is sequentially moving 

its control setpoints towards lower values of pulp freeness. This period is followed by campaigns 

for another grade (45 g.cm-2). Higher values of pulp freeness correspond to higher electricity 

demand while producing more steam at each refiner. 

Some costly operating regimes simply cannot be avoided due to process or raw material 

constraints. In particular, the costly regime R12, which is due to different raw material 

characteristics (chip ratio or chip size differences), could potentially be discarded if operators had 

this particular information. Operating conditions in regime R11, which is due to a scheduled 
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process shift towards different pulp properties, cannot be avoided completely, but the regime 

duration can probably be minimized. Some other costly regimes are a reaction to a sudden need 

for process reconfiguration due to unknown causes or an unexpected and sudden change in raw 

material properties. These however, are unavoidable because process safety takes priority over 

profitability. Other options could possibly be explored to cope with similar situations. 

In general, if the company could avoid operating regimes R9–R12, the potential cost savings 

could be business savers. The cost analysis based on the process regimes identified using data-

processing tools provides the possibility of analyzing the cost efficiency of mill operating 

subsystems. These cost results, analyses, and interpretations are not possible using traditional 

costing methods. 

 

CONCLUSIONS AND IMPLICATIONS 

Data management systems at pulp and paper mills today are not fully exploited. Companies now 

have the opportunity to use these data to develop tools and methodologies to understand their 

production processes better. The methodology proposed here uses real-time process data that are 

gathered and stored by these systems. Data cleansing must take place before these raw data can 

be used for advanced cost analysis. After the pseudo-steady-state conditions of plant-wide 

operations have been identified, the data sets are ready to be used as an input into the operations-

driven cost analysis framework presented here. This framework is based on activity-based costing 

principles which, if implemented, will help forestry managers to improve company profits. The 

use of lower-level measured process data from information management systems helps to 

improve the understanding of manufacturing cost variability due to its cost-process nature. The 

advantages of this approach have been demonstrated in a case study at an integrated thermo-

mechanical newsprint mill. Improved understanding and visibility of the mill cost structure 

permitted process-based interpretation of cost variances between the summer and winter periods 

and helping to identify costs associated to operating changes. For instance, it was found that, the 

shutdown of recovery unit have a large cost impact on production costs in summer periods. The 

impact of the change in feedstock properties has manifested as the variance in steam, electricity 

and chemicals consumptions. Furthermore, it was found that, significant cost variance occurred, 
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when operating in regime that corresponds to a different product grade. This manufacturing 

scenario is occurring during scheduled grade production change.  

It can be concluded that pulp and paper mills should implement such systems today to improve 

their current cost-saving strategies. Such an approach could be used as a knowledge-based 

operational decision-making support tool for reducing the cost of production and helping with 

process troubleshooting. Furthermore, the knowledge provided will certainly help the company in 

its strategic decision-making activities, which will be investigated in a follow-up study.  
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Abstract 

Information management systems in pulp and paper mills enable the development of advanced 

methodologies that assist the forestry sector in better controlling costs and improving profits. 

These systems are of especially critical importance for commodity producers such as newsprint 

mills, where low production costs are essential for business survivability. This paper presents the 

application of operations-driven cost analysis to characterize manufacturing costs in an existing 

newsprint mill and to use this information to analyze the cost impact of different retrofit design 

scenarios. This work does not aim to evaluate capital spending opportunities, but rather seeks to 

examine critical operating variants after integration of a new production line. The pillar of the 

methodology is the ABC-like operations-driven cost accounting, for which the use of reconciled 

real-time process data to characterise manufacturing operation is essential. The methodology is 

demonstrated using a case study considering three retrofit biorefinery implementations into 

integrated newsprint mill. The results show that the operational profitability of new integrated 

production lines strongly depends on the operational differences in current manufacturing 

regimes of core business products.  These differences in manufacturing costs can be visible from 

a process perspective and enables assessment of individual product margins. This information is 

essential for margin centric supply chain of the enterprise and for exploring process flexibility to 

achieve an optimal product profile according to market conditions. 
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INTRODUCTION 

Actual product margin assessment 

Pulp and paper companies produce multiple commodity products with individual specifications to 

satisfy multiple customers. Understanding individual product margins becomes essential to 

determine the optimal unit prices, thus revealing the true profitability of production. Current cost 

accounting systems and practices provide only ad-hoc assessment of these values. The common 

assumption of product homogeneity creates distortion to the real costs that are incurred in the 

time frame under analysis (Laflamme-Mayer, 2011). Standard costing methods based on standard 

recipes can serve only as a mill benchmark for performance evaluation. On the other hand, actual 

cost calculations using traditional methods provide only aggregated costs that are assessed in a 

top-down manner. The division of such aggregated costs into cost pools corresponding to 

individual products is usually volume-based and therefore incorporates various changes in 

process operation due to process dynamics, raw material disturbances, or both. For this reason, 

this assumption is often far from reality, making the estimated costs unreliable for determining 

the true product profitability that is critically important for decision-making. Mill personnel 

(accountants and engineers) recognize that the rate at which each mill generates costs may vary 

significantly, even when the mills are manufacturing the very same product. Determining the true 

contribution margins of products is clearly a challenging task for accountants in the processing 

industry, because both process and cost data are biased. A survey by Ernst & Young (2003) 

shows that 98% of respondents claim that financial reporting is distorted, with indirect costs and 

overhead allocation being the main areas of biased information. Almost 40% believe that the 

production cost data they receive are significantly inaccurate and unreliable. 

With recent advances in information management systems, it is possible today to replace the ad-

hoc cost information currently used with the true individual product margin values (Korbel and 

Stuart (c)). To gain these knowledgeable insights, process and financial information must be 

integrated into a single system. The source of process knowledge lies within the measured data, 

which are inherently corrupted by different types of errors. Therefore data-cleansing techniques 

must be used before these data are entered into higher-level analyses (Steen, 1994; Korbel et al. 

(b)). The modeling of this link between cost and process information will provide granular 
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knowledge of production processes and therefore of contribution margins by assessing the costs 

of various operating regimes (Laflamme-Mayer et al., 2011; Korbel and Stuart (c)). 

The knowledge gained from operations-driven costing systems is essential in a complex 

multiproduct manufacturing environment. Because of current market conditions, the forestry 

sector is exploring different strategies for potential business transformation, which will shift 

traditional commodity thinking into a multiproduct environment. Hence, production cost 

visibility and understanding will become even more crucial. 

Retrofit cost-impact analysis 

The assessment of manufacturing cost for retrofit operations is usually driven by traditional 

costing practices. This information is sufficient for many evaluation objectives; however, the 

operational details that are often needed to evaluate carefully the impact of a retrofit on the core 

business are lacking. 

In recent years, several studies that address the involvement of process characteristics in the cost 

of production have been published (Greenwood and Reeve, 1992; Steen, 1994; Janssen, 2011; 

Laflamme-Mayer 2011; Korbel and Stuart (c)). Greenwood and Reeve have enhanced their 

earlier work on ABC-like costing to take better account of the appropriate cost-activity structure, 

product attributes, and process-based drivers. Steen discussed the needs of an efficient process-

based model. The case-study-driven applications presented by Laflamme-Mayer, Janssen, Korbel, 

and Hytonen, which describe various operations-driven cost analysis frameworks for improved 

granularity and new insights into operations with different implications for operation, design, and 

supply chain management, provide more discussions of ABC and ABC-like analyses. 

Clearly, the understanding of individual product margins in a multiproduct environment will 

improve the performance of planning and scheduling tasks. Simultaneously, it will provide 

process flexibility which can be exploited in selecting the optimal product mix based on market 

conditions. This new information would create a knowledge-based manufacturing plant, opening 

up the possibility of margin-centric supply-chain implementation for a company’s long-term 

benefit. If this system were implemented today in a mill operation, mill personnel would benefit 

from the most well-informed decision-making information available for their future planning 

efforts. 
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OBJECTIVES 

This paper is the second in a series describing an operations-driven cost modeling approach to 

assessing product margins for short-term (Korbel and Stuart (c)) and long-term benefits. The 

overall objective of this work was to develop a methodology that would enable the assessment of 

true product margins based on real-time process data and would also provide interpretation and 

tracking capabilities.  

This work does not aim to evaluate capital spending opportunities, but rather seeks to examine 

critical operating-cost variants after integration of a new production line into a core business. The 

main goal of this second paper is to demonstrate the application of the operations-driven cost 

modeling approach and to evaluate the cost impacts of a retrofit design using the structure of an 

ABC-like cost accounting system. The results are presented in comparison to outcomes from a 

traditional standard costing system to validate and visualize the values of the proposed 

methodology. The specific objectives addressed in this paper are: 

4. to characterize the current core-business production costs of a newsprint mill using 
operations-driven cost analysis of various operating regimes. 

5. to characterize and interpret the cost impact of integrating new production lines into the 
current core business. 

6. to discuss the implications of this method for both operational and strategic decision-
making activities for a company’s long-term benefit. 

EXISTING MILL AND RETROFIT DESIGN ALTERNATIVES 

The base-case mill is an existing integrated newsprint mill. The thermo-mechanical facility 

produces different pulp qualities based on paper mill demand and specifications, with the 

throughput matched to that of the paper mill. Two newsprint products with different basis 

weights, 48 g.m-2 and 45g.m-2, are produced.  

The case mill under analysis is a highly competitive newsprint mill (in the first quartile of 

manufacturers) with limited access to biomass. Hence, they have chosen to investigate a 

biorefinery strategy that could be integrated into their existing operations.  

Existing mill configuration 

The following manufacturing steps are involved in the base-case mill: 
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 1 newsprint machine with a total average production of 680 tonnes/day of newsprint, 

 1 TMP line with a total average production of 680 tonnes/day of pulp. 

The following supporting processes are also part of the base-case mill configuration: 

 A wastewater treatment plant processing 30,000 m3/day 

 A boiler plant producing 2500 GJ/day of steam 

 A steam recovery unit in the TMP line, producing 3000 GJ/day of steam. 

Forest biorefinery retrofit alternatives 

Three major forest biorefinery retrofit options at an integrated newsprint mill were selected for 

production cost analysis:  

 Cellulosic ethanol production: ~3000 empirical gallons per day ethanol production from 

hemicelluloses extracted before pulping 

 PLA production: 11.5 tons per day of polylactic acid (PLA) production from lactic acid 

extracted from hemicelluloses before pulping 

 Biocomposite production: 80 tons per day of biocomposite pellets produced from the 
blending of TMP fibres and polypropylene.  

The first two retrofit options are based on the sugar platform, i.e., sugars are the feedstock for 

production of these biochemicals. Ethanol and PLA products share the same process design up to 

the fermentation unit (Figures 1 and 2). 

 

 

Figure 1: Simplified flowsheet of ethanol production. 
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Figure 2: Simplified flowsheet of PLA production. 

Fermentable sugars are extracted from the hemicelluloses which were extracted before the 

pulping process. This step is performed at the chip impregnation stage using the VPP (Value 

Prior-to-Pulping) concept (Van Heiningen et al., 2010; Huang et al., 2008). At this phase, the 

washed and steamed wood chips are treated with an oxalic acid solution (Houtman et al., 2011; 

Meyer-Pinson et al., 2004). As a result, this process is able to extract an amount of hemicellulose 

sugars corresponding to 3% of the incoming wood mass. The core production line must stay 

intact, and therefore the flow of chips supplied to the TMP line has been increased to account for 

the fibre losses in the new process line. The benefits of hemicellulose extraction are a decrease of 

approximately 25% in the specific energy in the refining (Houtman et al., 2011; Kenealy et al., 

2007), because the mechanical properties of the treated chips have been altered. However, by 

decreasing TMP power consumption, the production of steam from the TMP recovery unit is also 

reduced. More clean steam must be produced in the boiler to compensate for these losses.  

A hemicellulose stream is recovered after chip-liquid separation and will be prepared for the best-

suited fermentation process. The sugar content of this stream should be increased through 

removal of water by evaporation. Polysaccharide sugars should be hydrolyzed into C5 or C6 

monosaccharides, for example by addition of a strong acid. If fermentation inhibitors such as 

phenolic compounds are present, they should be removed, for example by lime addition (if lime is 

added, gypsum is made as a by-product and needs to be sold or disposed of). 

The fermentable sugar stream is sent to the fermentation tanks, where a cocktail of the 

appropriate enzymes or microbes is used to convert both the C5 and C6 sugars into ethanol (or 

lactic acid depending on the end product required). 
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At this stage, ethanol (or lactic acid) will be concentrated and purified to meet customer 

requirements. For ethanol, distillation columns are used to reach the azeotropic point, and then a 

molecular sieve is used to purify the ethanol product to 99% purity.  

For PLA production, lactic acid acts as a building block. At the exit of the fermentation process, a 

low-consistency lactate solution (the alkaline form of lactic acid) is produced. A poly-acid-lactic 

polymer is made by condensation of lactide. Several steps before polymerization are needed, 

including lactic-acid recovery, lactide formation, and separation of lactide isomers. This process 

has already been illustrated at commercial scale using Purac’s technology, which uses lactic acid 

produced from starch. This process has a high capital cost. Isomer management before 

polymerization is critical for PLA quality. 

The last forest biorefinery alternative is based on mechanical blending of TMP fibres with a 

plastic matrix to create a biocomposite material. 

 

 

 

Figure 3: Simplified flow-sheet of biocomposite production. 

Biocomposites are made from the blending of bio-fillers with a plastic (bio-based or otherwise). 

The most commonly used bio-fillers are hemp and flax fibres, wood flour, and medium-density 

wood fibres. The main advantage of this alternative is the sharing of the TMP asset to provide 

both newsprint pulp and fibres for biocomposite production. Because the base-case throughput 

must be maintained, increased chip input is required in the TMP refiners. Because of the increase 

in TMP production, steam production from the TMP plant is also increased. Pulp dedicated to 
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biocomposite production requires drying before it can be properly blended with a polymeric 

matrix by extrusion. This stage of the process will consume steam. A pelletizing unit is then 

added before packaging. 

METHODOLOGY 

Using operations-driven cost modeling and plant-wide real-time data sets corresponding to near-

steady-state operation, costs for each operating regime were calculated. For simplicity of 

illustration, only the three most common operating regimes were selected for further cost 

analysis. The probability of occurrence for each of these three regimes within the same set of 

product specifications was between 20% and 30%. The six operating regimes analyzed, which 

describe six manufacturing states for producing two distinct paper grades, are labelled as 48-

1(2,3) and 45-1(2,3). The methodology described below was then used to perform a cost 

estimation of the retrofit operation (Figure 4): 

5. Calculation of current core-business production costs for the three selected operating 
regimes was performedfor each product within the time period analyzed (March 2009). 

6. A process simulation (material and energy balances) of a retrofit biorefinery option was 
integrated into the actual newsprint process using CADSim software. The simulation was 
performed for each operating regime for individual paper grades. 

7. Operations-driven cost modeling and analysis using real-time and simulated process data 
were carried out for each retrofit scenario. 

8. The outcomes and results were analyzed and presented with a clear and logical 
interpretation from an engineering perspective. 
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Figure 4: Overall methodology comparing traditional and operations-driven costing 

information (from Korbel and Stuart, 2012). 

OPERATIONS-DRIVEN COST ANALYSIS 

This part of the paper presents in a nutshell the necessary steps for operations-driven cost model 

development. A detailed in-depth discussion on model development can be found in a previous 

paper on operations-driven costing for short-term company benefit (Korbel and Stuart (c)). 

The following five steps are required for cost model development and analysis: 

6. Cost objectives definition - Clear objectives of the cost analysis are defined.  
7. System and data dissection - The production system is divided into smaller subsystems 

called Process Work Centers (PWCs) in the context of an ABC-like framework. 
8. Driver description phase – Various levels of drivers are defined: 

o Resource drivers 
o Process activity drivers 
o Process work center drivers 

9. Cost model development 
The model development follows the operations-driven cost modeling framework 
presented in Korbel and Stuart (c). The basis of the method is the integration of process 
and cost information based on ABC-like principles 

10. Characterization phase - The characterization, interpretation, and validation of results for 
decision-making are performed. 

The cleansed real-time process data that represent near-steady-state operation were used as inputs 

for the operations-driven cost model described in (Korbel et al. (b)). Step two of cost modeling 
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divides the mill into several activity centers, or PWCs. The mill burden was calculated in an 

overhead cost-center pool called the Overheads Work Centre (OWC). This division ensures the 

availability of detailed information about the indirect production costs for each PWC. The 

activity driver for the overheads center varies from one indirect cost pool to another. For instance, 

maintenance costs were allocated based on headcount to the PWC where the actual maintenance 

was carried out. Figure 4 presents the mill division into PWCs and support activity centers 

(OWC).  

The manufacturing costs evaluated for each alternative do not account for depreciation of the new 

process line. This element was omitted for the sake of simplicity and because of the need to focus 

on understanding the impact of the new process on the core business processes using the same 

level of overhead cost pools. 

 

Figure 5: Mill division into PWCs and OWC. 

RESULTS AND DISCUSSION 

Current core-business cost analysis 

This section of the study seeks to characterize and interpret the direct and indirect manufacturing 

costs of a base-case newsprint mill to identify the most profitable and cost-efficient operating 

regimes. Significant implications can be drawn from the results of the case-study application for 

potential cost savings for short-term benefits, which were presented in the first paper of this series 

(Korbel and Stuart c).  

The period for analysis was chosen during the winter season (March). The process operation was 

analyzed and operating regimes selected. For simplicity in presenting the results of the cost 

analysis, three operating regimes were selected (Figure 6). Normalized results from production 
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analysis using an operations-driven cost model were generated for the selected regimes. 

Comparisons were made with actual costs and with standard costs generated according to 

traditional standard costing practices. Figure 6 shows that the transparency and granularity of the 

cost results from the proposed method are superior (in terms of actual operating-cost visibility) 

because of the ABC-like principles used. The rates of resource consumption within each process 

work center are the core of the mill cost-generation procedure. When this method looks at 

standard costs or even calculated actual costs, it can deduce that the lack of process involvement 

is due to the top-down approach used, where resource cost generation is performed for the whole 

mill instead of for individual process units. The standard costs, which are the manufacturing costs 

adjusted to reflect grade recipes, do not, however, reflect reality. This information is commonly 

used for production cost calculation in investment design evaluation. It was found that the cost 

variance between operating regime is significant. The ability of the method to drill down to the 

process level, allows for interpretation of these differences (Korbel and Stuart (c)). Operating 

profit margin 45-2 (EBITDA) of a given grade (45.2 g.cm-2) is twice as large as the one predicted 

by standard recipe. Whereas operating regime R45-1 is close to 3. This difference is visible also 

from the second part of the Figure (Figure 6) representing production costs (dissected to different 

cost items). The relatively low production rate of regime R45-2 is responsible for higher overhead 

contribution, higher electricity consumption (slightly increase in specific electricity of refiners as 

well as increase in indirect part of electricity costs (demand peak)). Furthermore, it was found 

that during the manufacturing period corresponding to operating regime R45-1, the bleaching 

material cost was significantly lower, when compared to R45-2, and less significant when R45-3 

is considered. After further analysis, this cost variance was explained to be due to different 

feedstock usage (different inventory piles of the same type of chip feedstock) throughout the 

month. 

On the other hand, the cost variance between regimes R48-1 and R48-3 (when manufacturing 

product grade of 48.8 g.cm-2), is mainly due to the change in feedstock ratio. The portion of hard 

wood (cheaper price of feedstock fibre) was increased marginally (from usual recipe of 3% to 

4%). The impact to the cost of furnish however was only marginal. On the other hand, the cost 

impact due to electricity consumption has caused a significant increase in the overall product 

cost. The electricity variance due to the increase reject throughput ratio (as a difference between 

operating regime R48-1 and R48-3) is due to the difference in specific electricity of reject pulp 
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refining. The electricity impact was slightly compensated by the decrease in steam unit price due 

to the increase in recovery steam production; however, the net cost impact was negative to the 

product grade contribution margin (when operating in regime R48-1, the product margin is 4 

times higher than the estimate by standard costing, whereas when operating in regime R48-3 the 

margin is decreased by near 1.2).  
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Figure 6: Operating regime selection based on frequency of occurrence (three regimes for each 

product were selected) for production cost analysis. The costs are compared to standard and 

actual costs. 

Production costs and profitability assessment for biorefinery scenarios  

The advantages of using operations-driven cost analysis over classical costing techniques for 

retrofit production cost analysis are presented by modelling the costs of manufacturing for each 

biorefinery scenario. The interpretation capabilities of the proposed operations-driven costing 

method are shown to be superior to traditional cost-volume variance analysis. Because the base 

case is an actual newsprint operation, the results are presented again as values normalized to 

standard costing outcomes. 
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The manufacturing costs of each design alternative have been divided into direct and indirect 

costs. These cost pools are specified based on resource drivers in PWC and OWC. Figure 7 

shows the outcome from operations-driven cost analysis of a PLA strategy. The bars represent the 

manufacturing costs of core products in the base-case scenario and the manufacturing cost of 

operating regimes during and after the retrofit, including PLA. The costs are segmented into 

different resources. Because the production volume of PLA is very low compared to that of the 

paper grades (only ~1.6 % of chip throughput), the distribution of overhead from core products 

has a significant impact on PLA costs. The indirect costs are allocated based on the maintenance 

costs and the headcount for each department. Clearly, the cost impacts of the new process 

integration are due mainly to electricity savings (the chip pre-treatment strategy), steam price, and 

overhead allocation: 

 The steam unit price is increased because of the lower production of recovery steam from 
primary high consistency pulp refiner (from 28.3 t/h to 22.1 t/h).  

 The higher production costs of PLA within the second operating regime R45-2 are due to 
simultaneous production of grade 45.2, which lowers the production rate of PLA, 
increasing the ratio of indirect costs to allocation base and other operational causes 
discussed during the current facility characterisation.  

 The highest operating margin of PLA occurs for simultaneous production of PLA and 
grade 45 in operating regime R45-3. The favourable production costs in operating regime 
R45-3, is mainly due higher production rate of PLA when compared to the other regime 
options. On the other hand, when looking at the current core business, this operating 
regime is not a favourable option of 45 grade production (Figure 9). This contra intuitive 
information about PLA scenario impact onto core business can be explained based on the 
different usage of raw material, the variance in the main pulp line production throughput 
and the difference in overhead allocation. 
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Figure 7: Production costs of the PLA option within the biorefinery scenario (paper grades and 

PLA) for each operating regime. 

An overall summary of all three projects is presented in Figure 8. It was further found; that for all 

three biorefinery retrofit scenarios under consideration the impact was different in some cases. 

The impact of current product-cost differences (expressed within the operating regimes) on the 

new product line in each scenario is due mainly to steam price, electricity and overhead 

allocation: 

 The integrated biocomposite scenario marginally influences the cost of the core business 
products, when compared to the base case. Capturing the cost impact is done by the use of 
ABC-like costing. Activity sharing, such as chips pre-treatment and primary refining is 
the main cause of this variance, when compared with the two VPP options (these scenario 
share only PWC1 activity – chips pre-treatment, whereas biocomposite option shares 
PWC1 and PWC2 – main pulp refining cost activity). The small change that is visible 
represents the increase in the price of steam per ton due to the increase in process demand. 
The increase in pulp throughput, from the pre-treatment step to the secondary high-
consistency refiners, to enable production of 80 tons per day of biocomposite pellets 
increases the production of low-pressure steam recovered from the primary refiner. This 
production increase reduces the specific energy in the primary refiner (from 998 
kWh/ODMT to 940 kWh/ODMT), which has but small impact on the overall electricity 
consumption. These process changes and cost impacts on core business products are 
minimal in the case of the biocomposites scenario.  

 On the other hand, the pre-treatment of chips using acetic acid, which is common to the 
ethanol and PLA production biorefinery scenarios, provides significant cost savings for 
the core products (Figure 7).  



  207 

 

0

0.5

1

45 48 45 48 45 48 45 48 45 48 45 48 45 48 45 48 45 48 45 48

Base case  Bio‐Ethnaol PLA Bio‐
composites

Bio‐Ethnaol PLA Bio‐
composites

Bio‐Ethnaol PLA Bio‐
composites

Standard 
costs

Operating regime 45‐1 and 48‐1 Operating regime 45‐2 and 48‐2 Operating regime 45‐3and 48‐3

P
ro
du
ct
io
n
 c
os
t 
no
rm

al
is
e
d
 t
o
 b
a
se
 c
a
se
 

st
a
nd
a
rd
 e
st
im

a
te
 o
f 
gr
a
de

 4
5
)

The cost impact of integrating new scenario into the core business

Overheads

Direct Labour

Direct Material

Steam costs

Electricity 

Furnish

Figure 8: Comparison of the cost impact on core products for each scenario (grades 45 and 48). 

Figure 7 presents the direct and indirect manufacturing costs obtained for the existing mill and for 

each alternative considered. The level of impact of different scenarios becomes visible when the 

production cost of each core product is compared for all three scenarios. From the paper products 

cost savings, it can be deduced that the ethanol and PLA production biorefinery options become 

more attractive or favourable. The increases in product margin due to the individual retrofit 

options are presented in Figure 9. However, the order of overall project profitability is reversed, 

making ethanol and PLA production uneconomical for the facility (Figure 10). The overall 

company’s gross margin can be calculated over monthly or yearly time periods. 
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Figure 9: Contribution margins of each core product (paper grade) in different biorefinery 

scenarios. 

From Figure 9 we can understand that the unchanged and in one case decreased margin of core 

product grade 45, the biocomposite option may not look attractive to decision-makers when 

compared to the 40% to 100% increase seen under the other scenarios. However, the overall 

operating margin (expressed as EBIDTA) of the whole company is the main priority of the 

business, and therefore the biocomposite option is the one recommended. Clearly, the simple 

production line of the biocomposite scenario creates significant financial value to enhance the 

company’s overall profitability. This is due to the favourable market conditions for biocomposite 

only. However, when looking from core business perspective on the manufacturing cost-impact, 

this option has neutral or in some cases negative impact on the operating margins of individual 

grades. The commodity character of bio-ethanol and PLA products, and very low production 

capacities assumed, do not provide the facility with significant increase in monthly operating 

profits. 
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Figure 10: Overall manufacturing profitability expressed as EBIDTA (broken down by product) 

of each scenario under consideration. 

 

The proposed methodology for obtaining new insights into and understanding of operating costs 

can be used for investment decision-making. Other financial measures, such as ROCE or IRR, 
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must be taken into account for similar strategic company decisions. These measures can be 

evaluated with the knowledge derived from the ABC-like methodology presented here, and the 

favoured profitable scenario option can be identified for further detailed analysis. Because the 

chosen scenario has been analyzed using operations-driven cost analysis of various operating 

regimes, process flexibility considerations can be explored. For instance, information based on 

process flexibility and market conditions can be used to achieve further increases in company 

profitability. Moreover, knowledge of the true product margins can be exploited to improve mill 

planning and scheduling activities and to provide critical information to enable margin-centric 

supply-chain management.  

 

CONCLUSIONS AND IMPLICATIONS 

Today, the pulp and paper facilities are facing difficult times and require a systematic approach to 

finding an optimal path towards a more sustainable future through potential business 

transformation. To manage this transformation optimally, managers and decision-makers need to 

explore the powerful and robust cost-accounting systems that are today waiting to be 

implemented in practice. Use of lower-level process data improves the understanding of 

manufacturing-cost variability under different operating regimes for current and future products. 

The aim of this paper has been to better quantify the process-cost impacts and implications of 

several retrofit design alternatives for increased mill profitability in the future. For each design 

alternative, mass and energy balances were calculated using a simulation model linked with the 

core business manufacturing knowledge that was based on real-time process data. It was found 

that the proposed methodology provides transparent characterisation and interpretation of 

process-cost impacts due to retrofit projects. The unfavourable operating regimes of current core 

business products have shown to be potentially the most favourable options, when manufacturing 

two simultaneous products in the futuristic forest biorefinery scenario. These findings however, 

are not applicable for all the retrofit projects that were studied. Interpretation of different core 

operating strategies and their impact on producing parallel products in the future were presented. 

The essential knowledge gained from these granular cost results can be exploited in company’s 

strategic planning activities to enhance decision making information and provide optimal option 

for complex multi-product manufacturing environment. Furthermore, the actual cost knowledge 
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of individual operating regime can be used, in combination with the biorefinery process 

flexibility knowledge, and market conditions, to enhance mills profitability in the future. 
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Abstract 

It is of critical importance for commodity producers to manufacture goods with the lowest cost 
possible in order to stay competitive in the current global market conditions. Knowing individual 
product margins becomes essential to determine the optimal unit prices, thus uncovering the 
actual operating profitability of manufacturing. This paper presents a new methodology for on-
line manufacturing cost analysis using real-time process and cost data available from information 
management systems and process systems engineering tools, that is capable to provide this 
information. This methodology consists of three main steps. First, a signal processing technique 
based on multiscale wavelet transformation and filtering is used to analyze every segment of the 
plant-wide instrumentation network simultaneously. This step also cleans high-frequency noise 
and abnormalities from measured data and seeks to identify when manufacturing processes are 
operating near steady-state conditions. The second step further improves process data quality by 
reconciling the set of variables to the underlying fundamental process model. The plant-wide 
manufacturing information is updated by coaptation and correction of biased measurements. 
Third, this operational knowledge is integrated with financial data in an operations-driven cost 
model to calculate and analyze the production costs of operating regimes for the short- and long-
term benefit of the company. A case study demonstrates that this methodology provides visible 
and transparent manufacturing-cost knowledge of a current business environment, enhancing 
multiple opportunities for short and long term company’s benefits. This methodology can be used 
as a tool in day-to-day operations that would assist mill personal on multiple aspects of the 
organisation, such as practical process and instrumentation troubleshooting, cost-control, 
continuous improvements, planning and scheduling and enhance knowledge for strategic decision 
making activities. 
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Introduction 

The competitive advantage of commodity producers in the market is their ability to produce 

goods at the lowest possible manufacturing cost. The North American newsprint market is a very 

competitive environment because of many factors such as globalization, increases in energy and 

raw material prices, and fluctuations in paper prices. Therefore, papermaking companies are 

being challenged every day to stay in business. Information management systems (IMS), which 

have long been integrated with production processes, could help in the fight for business 

survivability. It has been shown that the use of IMS has increased insight into the business and 

production processes at many pulp and paper mills (Janssen, 2004). This survey concluded, 

however, that the current use of these systems is mostly for ad-hoc process and cost analysis. 

This can provide benefits only by benchmarking process trends, rather than exploiting the real 

and absolute values of process measurements. To derive higher-value manufacturing knowledge 

from these real-time measurements, advanced techniques and methodologies must be used.  

The benefits of using ABC-like cost accounting for characterizing and interpreting the 

manufacturing costs of an operating business have been presented by Korbel and Stuart (c). A 

later work by the same authors explored the benefits of using the process dimension of cost 

information to address the future process cost impact of various integrated forest biorefinery 

retrofit options. This paper presents the overall framework of the multidisciplinary methodology 

and further details its implications for process and instrumentation troubleshooting, as well as for 

cost analysis and modelling of current and future production processes.  

First, a brief literature review of previous work in ABC-like costing for continuous industries and 

in real-time data cleansing is provided. Next, current mill manufacturing practices are described, 

along with the forest biorefinery retrofit scenarios that were considered for future 

implementation. A detailed description of the multidisciplinary methodology for on-line 

operations-driven cost assessment of various operating regimes is presented using real-time 

process data. Finally, the results of a case study application of the methodology are discussed, 

followed by conclusions. 
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Manufacturing cost analysis 

Current cost-control strategies using cost-variance analysis are generally based on traditional cost 

accounting practices. The actual causes of this variance are very challenging to determine using 

only top-down cost information (Steen, 1994; Janssen, 2011). Nevertheless, papermaking 

companies are still using traditional thinking and practices to evaluate and control their monthly 

costs, even though these practices were developed primarily for financial reporting (Laflamme-

Mayer, 2011). Each company is using home-grown, mill-specific cost accounting methods to try 

to perform this task as optimally as possible. The process-based nature of activity-based costing 

(ABC) is being successfully exploited in other continuous manufacturing industries for this 

purpose, thus improving product cost visibility and hence cost-control strategies (Kaplan, 2004). 

ABC is an activity-driven cost accounting approach which was first developed in the 1990s in 

response to the increasing level of manufacturing automation to improve tracking of indirect 

costs. (Kaplan, 1989; Turney, 2008; Steen, 1994). In recent years, a combination of traditional 

and ABC accounting principles has been developed for the forestry sector (Fogelholm, 2000). In 

particular, the use of process knowledge in an operations-driven cost modeling framework has 

been shown to capture essential manufacturing information (Janssen, 2011; Laflamme-Mayer et 

al., 2011). The use of measured process data with financial data in a “bottom-up” cost accounting 

concept has yielded an improved understanding of complex pulp and paper manufacturing 

operations. Several applications to case studies have been presented to provide granular 

production cost information for supply-chain management optimization (Laflamme-Mayer et al., 

2012) and retrofit design decision-making activities (Janssen et al., 2011). In these mill tactical 

and strategic applications, only long time-scale analyses (months to years) were performed. By 

reducing the cost-analysis time scale to hours, challenges related to process data quality will 

emerge. However, using cost assessment at these small scales will enable access to currently 

invisible actual product margins and their variances resulting from changes in operating strategies 

(Korbel and Stuart (b) and (c)). The ABC-like cost assessment of operating regimes provides 

transparent and granular insights into complex cost relationships by creating an understanding of 

the efficiency of resource usage by process cost activity and final cost object. Ultimately, the rate 

of resource consumption is defined by the measured process data stored in the IMS. However, 

these data are biased and corrupted with different types of errors. Furthermore, in the 
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papermaking industry, the sensor network is insufficient to provide accurate information about 

plant-wide operation because of the lack of instrumentation and the high prevalence of sensor 

inaccuracy (Jacob, 2003). Therefore methodology that would make these data sets available must 

be used (Narasimhan, 2000; Korbel, (b)).  

Process data reconciliation 

The problem of reconciling data in the industrial applications was first presented by Kuehn and 

Davidson (1961) to minimize the error between measurements and outputs from first-principle 

process models. Many researchers built on this pilot data-reconciliation work to improve the 

robustness of the optimization algorithm (Crowe, 1983; Liebman and Edgar, 1988; Tjoa and 

Biegler, 1991;  Arora and Biegler, 2001). To apply these classical reconciliation methods, the 

system under consideration must be overestimated. This necessary condition for the data-

reconciliation optimization formulation ultimately enables measurements to be crosschecked and 

adjusted to the underlying process-model values. Weighted least-squares minimization is the 

most common estimator in the optimization algorithms presented in the literature. If gross errors 

exist in the measurements, the estimator will provide incorrect outcomes and thereby propagate 

errors to higher-level tasks such as cost analysis. The on-line detection of biased measurements is 

a challenge in practical industrial applications. Several approaches have been presented in the 

literature, for instance, the measurement test gross-error detection method (Tamhane and Mah, 

1985) and the modified iterative measurement test gross-error detection algorithm (Serth and 

Heenan, 1986). Other statistically based techniques, such as the generalized likelihood ratio 

(Narasimhan and Mah, 1987), the maximum power test (Crowe, 1992), and the principal 

component test (Tong and Crowe, 1995), have shown better results.  

In summary, the extensive work reported in the literature has focussed on improvements in 

algorithm efficiencies over the whole optimization spectrum: linear, bilinear, non-linear, and 

dynamic data reconciliation problems. These applications are well suited to the small, highly 

redundant industrial sub-systems commonly found in the chemical and petrochemical, 

pharmaceutical, and in some cases mining industries. However, plant-wide applications are 

challenging as an industrial concept because of the process dynamics involved (Bagajewicz, 

2001). Dynamic data reconciliation is very computationally expensive for on-line industrial 

applications (Benqlilou, 2000), and plant-wide steady-state data reconciliation creates errors due 
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to process dynamics. The papermaking industry is a special manufacturing environment which is 

characterized by both these types of challenges: low redundancy in measurements and highly 

dynamic processes. To the authors’ knowledge, a methodology that would provide plant-wide 

steady-state data sets in low-redundancy systems has not yet been developed (Korbel, (a)). 

Signal processing 

To generate near-steady-state data set candidates from real-time measurements, signal processing 

techniques must be used. Several methods for on-line process status identification based on 

statistics or filtering have been presented in the literature (Cao and Rhinehart, 1995; Bakshi and 

Stephanopoulos, 1993), but these create data distortions when abnormalities are present. With the 

advent of wavelet transform theory, the signal processing field has evolved towards 

multidimensional analysis of trends, which enables accurate multiscale representation of 

functions. Flehmig et al. (1998) explored the features of wavelet transforms to approximate 

process measurements. Nounou and Bakshi (1999) used wavelet features to identify and remove 

random and gross errors. Recently, Jiang et al. (2003a) proposed a wavelet method for detection 

of near-steady-state periods. These methods are used for off-line signal representation. Wavelet 

data processing can be used to eliminate random noise and abnormalities efficiently and 

simultaneously to analyze a trend for steady-state occurrences. If implemented carefully and 

systematically, the multiscale features of wavelet transform analysis can be exploited on-line for 

plant-wide applications (Korbel et al. (b)).  

 

Scope of the work 

The scope of the work described in this paper includes: 

 The development of a novel methodology for production-regime cost analyses based on 

ABC-like principles (the use of real-time process data from information management 

systems coupled with company financial information) 

 A demonstration of the application of this methodology to improve process and 

instrumentation troubleshooting, as well as to improve manufacturing cost visibility and 

to quantify the cost variability of different operating regimes  
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 The application of this methodology to identify the most profitable operating regions in 

the current business environment and to evaluate possible future retrofit scenarios with 

individual product portfolio considerations 

Overall Methodology  

The proposed novel methodology can be divided into several main steps (Figure 1). Each step 

consists of several tasks as described below: 

Operating Regimes Definition
Definition and selection of distinctive 
operating practices/regimes for each 

individual product

Pseudo-Steady-State Operation
Process data cleansing
Near steady state process plant-wide
Data uncertainty for steady assumptions

Plant-wide data rectification
Systematic error analysis
Further data quality improvement
Overall process data uncertainty 
assessment 

Steady-state 
accuracy 
acception

No

YES

Cost Analysis
Operations-driven cost modeling
Synthesis and process modeling
Financial measure assessment

Operating regimes for cost evaluation

Decision making information
Operation & instrumentation 
troubleshooting process
Continuous improvements – selection of 
profitable regimes
Selection of best production and 
marginal costs retrofit options

Short and Long term benefits  

Figure 1: Overall methodology of the new production cost approach. 
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Operating regime definition 

In this initial step, the aim is to characterize the operating differences that occur while producing 

the same product, thus defining the notion of an operating regime. These differences may be due 

to process design changes, use of different equipment, changes in production volume, or changes 

in control setpoint strategies. An illustrative example of a change in process regimes is presented 

in Figure 2. A thermo-mechanical process (operating in regime 48-01) producing a given pulp 

quality needs to respond to the requirement of the paper machine for a change in pulp 

specifications (for instance, due to frequent paper breaks). This is achieved by lowering the 

freeness value of the pulp using manipulated control variables STP1–STP6. These adjustments 

cause transient periods before the process reaches the final required freeness value (regime 48-

02). 
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Figure 2: Change in operating regime due to required change in pulp quality. 
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Pseudo-steady-state operation 

First, the process measurements within the time frame under analysis (corresponding to the length 

of the operating regime) are extracted from the IMS as a noisy signal (Figure 3). The optimal 

wavelet-transform parameters are adjusted iteratively to achieve optimal performance of the 

method (optimal data pre-processing and accurate steady-state detection). After applying a 

wavelet transform at the chosen scale, Gaussian noise along with abnormalities are extracted 

from the process trend. The de-noised signal is then analyzed for potential steady-state 

occurrences using a three-step simultaneous metrology (Korbel et al. (a)): 

 The starting point of the steady-state period is detected using WT characteristics and its 

first derivative (values of the predetermined alpha parameter). 

 High-frequency features of the measured signal which were not eliminated in the first step 

are removed by filtering, and steady-state duration is approximated. 

 Finally, the steady-state end point is detected through WT feature analysis. 

The multivariable near-steady state is then identified by comparing the whole set of variable 

states over time. 

 

Figure 3: Methodology for steady-state detection and plant-wide simulation-driven data 

rectification (Korbel et al. (b)). 
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Plant-wide data rectification  

The aim of the third step of the overall methodology is to guarantee process data validity 

compared to the underlying process model. During this procedure, biased measurements can also 

be identified. Figure 3 presents the series of steps used to apply raw data rectification to plant-

wide data sets representing near-steady-state operation (Korbel et al. (b)). The principle of the 

method is to exploit the adaptive features of the CADSim software in the context of the 

papermaking industry. The additional mathematical characterization of the various processing 

units that are unique to pulp and paper mills creates more degrees of freedom for the data 

reconciliation problem. Furthermore, the real-time nature of this software makes it possible to 

unify wavelet signal processing and data reconciliation into one on-line methodology providing 

plant-wide data sets representing near-steady-state operation. 

Gross error handling 

The method presented here exploits the statistics of historical process data. The on-line analysis 

of each individual measurement is then compared to its historical values. When a change in 

measurement values is detected, the biased value is estimated, and the measurement is corrected. 

The data-reconciliation procedure is repeated by updating this new corrected measurement value. 

 

Cost analysis: operations-driven costing 

The fourth step of the methodology is to perform an ABC-like cost analysis, using the 

manufacturing information which was acquired using signal processing and data rectification 

techniques, to the real-time data for a given operating regime. The pillar of this methodology—

the operations-driven cost model—was then developed to explore this novel and unique insight 

into papermaking production for the short- and long-term benefit of the company. 

The operations-driven cost modelling approach consists of these four steps (Korbel and Stuart 

(c)) and was implemented using the Impact: EDCTM software: 

 Characterization of the process operation based on real-time process data. The data are 

dissected to describe multiple operating regimes for manufacturing products in the core 

business and in various biorefinery retrofit scenarios 
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 Defining and organizing cost data and cost drivers into matrices that correspond to 

underlying fundamental (mass and energy) equations 

 Modeling and calculation of manufacturing costs for operating regimes and biorefinery 

design alternatives 

 Analysis, interpretation, and evaluation of the cost-model outcomes. 

The core of the methodology for producing a manufacturing-cost assessment of operating 

regimes and the associated product-cost distribution is the ABC-like philosophy. The model was 

developed in the necessary detail to extract complex cost information on operating and design 

changes and was used to assess the production costs per tonne of a newsprint grade (as a cost 

object). The individual cost activities, referred to as process or overhead work centres (PWC and 

OWC respectively), are defined to capture and represent the production chain in the form of 

manufacturing sub-systems (in some cases mill departments). The direct costs are linked to these 

activities based on the process model and the real-time data, whereas the indirect or overhead 

costs are linked based on predetermined allocation rules and drivers. The PWCs consist of the 

following essential elements: 

 The process operating criteria and characteristics describing the process regime or the 

retrofit design alternative 

 The integration of cost with mass and energy flow along the manufacturing operation 

 Specific calculations (cost-related or simply unit conversion-related) for individual PWCs  

 The allocation (or assignment) of indirect and overhead costs, and 

 The core ABC-like engine, with its operations-driven cost calculation. 

With the use of operations-driven cost modeling and plant-wide real-time data sets corresponding 

to near-steady-state operation, costs can be calculated for each operating regime. The tracing and 

allocation of different types of costs within the costing framework is presented in Figure 4.  

. 
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Figure 4: Definition of the process and overhead work centres which capture various cost 

categories within the current business base-case mill. 

 

Operational and design problem statement  

Current mill operation: definition of production regimes 

The base-case mill is an existing integrated newsprint mill. The thermo-mechanical facility 

produces different pulp qualities based on paper mill demand and specifications, with the 

throughput matched to that of the paper mill. Two basis weights of newsprint products are being 

produced: 48 g.m-2 and 45 g.m-2.  

The following manufacturing steps are involved in the base-case mill: 

 1 newsprint machine with a total average production of 680 tonnes/day of newsprint, 

 1 TMP line with a total average production of 680 tonnes/day of pulp. 

Furthermore, the following supporting processes are part of the base-case mill configuration: 

 A wastewater treatment plant processing 30,000 m3/day 

 A boiler plant producing 2500 GJ/day of steam 
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 A steam recovery unit in the TMP line, producing 3000 GJ/day of steam. 

For simplicity of illustration, only the three most common operating regimes were selected to 

characterize the operating problem. This is justified because the probability of occurrence for 

each of the three regimes within the same product grade is between 20% and 30%. The six 

operating regimes describe six manufacturing states producing two distinct paper grades and are 

labelled as 48-1(2,3) and 45-1(2,3). The parameters used to describe the operating regime (Figure 

2) are production volume, the type and age of the refiner plates, and the control setpoint strategy 

used for a given pulp freeness. 

Forest biorefinery retrofit scenarios 

The base-case is a competitive newsprint mill with generally limited access to chips. For this 

reason, the company was interested to see the impact of a forest biorefinery strategy that could be 

integrated into their current operations. Three distinct forest biorefinery scenarios for an 

integrated newsprint mill were chosen for production-cost analysis:  

 Cellulosic ethanol production: 120 gallons per day ethanol production from 

hemicelluloses extracted before pulping 

 PLA production: 11.5 tons per day of polylactic acid (PLA) production from lactic acid 

from hemicelluloses extracted before pulping 

 Biocomposite production: 80 tons per day of biocomposite pellets produced from a blend 

of TMP fibres and polypropylene.  

. 
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Results and discussion 

Signal processing and data reconciliation 

The outcomes from applying the first two steps of the methodology to the signals extracted from 

the IMS indicated that the proposed wavelet method is robust and provides significant 

improvements to the accuracy of individual measured variables. The overall accuracy of near-

steady-state detection for both small and large industrial systems is improved compared to other 

techniques. Several measurements were identified as having biased values. This information was 

provided to the mill personnel, and calibration of each malfunctioning instrument was performed. 

Figure 4 shows one of the corrected measurements. The method was able to identify when the 

plant-wide operation reached near-steady-state conditions. It was concluded that the base case 

under study is a relatively stable production system, and multiple near-steady-state data sets were 

extracted for each operating regime. For instance, operating regime R45-2 was characterized by 

14 identified steady-state snapshots of the plant-wide operation. The error, expressed as the 

standard deviation of key variables, was relatively low, as shown in Figure 5. This was the case 

because the manufacturing process was exceptionally stable during the month analyzed.  

 

Figure 4: Example of a corrected biased measurement.  
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Figure 5: Variability in one of the operating regimes characterized (R45-2). 

The variance in production volume has the highest impact on manufacturing costs, even though 

the net impact is very marginal on the variable costs. However, the impact of fixed and overhead 

costs can be significant because of the change in allocation base. When looking separately at each 

near-steady-state snapshot, it can be noted that in some data sets, the individual standard 

deviation for each variable is smaller, e.g., by comparing SS01 to SS05. Therefore careful 

analysis of each near-steady-state operation was carried out using least-squares error values (the 

results from the data reconciliation step), and the data sets that showed high variance were 

omitted from the cost calculations. This variance is mainly due to changes in raw material quality 

and the resulting changes in measured values. An analysis using several near-steady-state 

operating conditions provides a statistical representation of the costs, thus allows for validating 

the manufacturing costs. 

Current core-business cost analysis 

Using the operations-cost model, direct and overhead production costs were calculated for each 

PWC, for each process regime (Figure 5), and for various retrofit alternatives (Figure 6). The 

second type of costs that cannot be traced (but allocated) by traditional accounting was directly 

associated with each individual PWC based on allocation information. This association makes 

indirect costs behave similarly to direct costs by introducing the link between overhead cost pools 
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and cost objects (newsprint or future FBR products) using PWCs. The costs presented were 

obtained by averaging the cost output of several steady-state data sets representing individual 

operating regimes. The error associated with each operating regime was relatively small when 

compared to the cost variations between individual operating regimes.  
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Figure 5: Production costs of different operating regimes divided into process work centres and 

for both types of costs (direct and overhead costs). 

The three operating regimes analyzed are characterized by pulp quality and production volume, 

and hence the “free” steam production from refining high-consistency pulp varies among them. 

The main variance in costs between different products or operating regimes was interpreted as 

follows:  

 The cost difference between two grades is mostly due to changes in pulp quality and 

production throughput in the paper mill. This difference causes an increase in steam 

demand, and therefore more high-pressure steam must be produced from the boilers 

(using natural gas, electricity, or oil fuels), which changes the internal unit price of steam. 

The unit price of steam is calculated iteratively as a ratio of high-pressure steam 

production price and recovered-steam production price. This iteration step is necessary 

because the recovered-steam price depends on interactions among multiple PWCs.  
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 The electricity cost variation is mainly due to the specific energy difference between 

operating regimes, the production rate, the ratio of reject volumetric rate to mainline 

production rate, and potentially changes in refiner plate characteristics. However, 

generally the mill uses the same types of plates for long time periods, and therefore the 

impact of this factor was not addressed.  

 The electricity variance associated with the change in reject-line ratio (the difference 

between operating regimes R48-1 and R48-3) is due to the difference in specific 

electricity of reject pulp refining.  

 The cost of fibre remains fairly constant, with slight variations due to small yield 

fluctuations, which becomes essential when comparing different grade recipes (e.g., when 

comparing the productions of 48.8 g.m-2 and 45.1 g.m-2 grades).  

The cost increases due to steam price and its dependence on the interrelation of process activities, 

as well as the electricity cost increases, can be captured and interpreted only because of the 

operations-driven nature of the cost model. The cost model has therefore integrated the resources 

consumed and their related costs into the process activities in each PWC and has brought process 

and financial knowledge closer together. This type of analysis demonstrates that the operations-

driven cost model presented here is able to unify the flows of cost and process information to 

increase the transparency of production costs. This kind of characterization of production costs 

and interpretation of variances using lower-level real-time process data has never been done 

before in the pulp and paper industry. Hence, the opportunity to use this approach for continuous 

mill improvement can be expected to minimize manufacturing costs and to increase the 

company’s cash flow, thus providing essential competitive advantages 

FBR retrofit design scenario cost analysis 

For each design alternative, mass and energy balances were calculated using a simulation model 

and real-time process data for each scenario. The impact of process costs on the core paper 

products was analyzed using the proposed methodology. The results provide granular cost 

information for manufacturing, as represented by the different regimes (Figure 6). The various 

findings from using the proposed methodology to analyze the cost impacts can be summarized as 

follows: 
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 PLA production costs are increased when producing newsprint grades of 45 basis weight. 

These cost differences were identified as being due mainly to steam and overhead costs. 

 The steam unit price was found to be lower because of the increased demand for high-

pressure steam when producing grades of 48 basis weight. However, the specific steam 

usage per ton of PLA changed only marginally because the increase in the internal steam 

price had caused overall steam costs to increase.  

 The R45-3 operating regime is the most profitable operating scenario for simultaneous 

PLA and 45-basis-weight grade production (the absolute cost difference is more visible 

from Figure 7). The advantage of the R45-3 operating regime is due mainly to the higher 

rate of PLA production, which can be attributed to the higher rate of parallel production of 

paper grade 45.  
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Figure 6: Production costs of the PLA option within the FBR scenario for each operating regime 

(paper grade costs are normalized to standard costing for grade 45, while PLA costs are 

normalized to PLA standard costs to make the comparison of results more visible) (Korbel and 

Stuart (d)). 

 The majority of the variance can be observed to be due to overhead costs because the 

allocation base (tons of PLA produced) had increased. The specific use of steam and 

electricity changed only marginally due to the corresponding increase in steam demand 

and hence in unit steam price. 

 Similarly, the R48-1 operating regime was identified to be the most profitable for parallel 

PLA and grade-48 production. The manufacturing costs of this scenario were significantly 
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lower than for any option with parallel 45-grade production. This difference is due to the 

increase in PLA production, thus increasing the allocation base (tons of PLA produced).  

The variations in the different scenarios become even more apparent when looking at the 

contribution (operational) margin of each product for different scenarios characterized by 

operating regime (Figure 7). The values of the changes in actual or true product margins 

(normalized to the base case calculated by standard costing) provide information which can be 

explored in strategic decision-making. The near-zero or negative margin increase compared to the 

base case for simultaneous biocomposite production in regime R45-3 indicates that this 

biocomposite option may not be very attractive. PLA production appears very attractive when 

looking at only this potential decision-making parameter; in some cases, the margin increases by 

over 200% (PLA and grade-45 production under R45-1 and R45-3 regimes). However, analysis 

of the overall EBIDTA per month of each project indicated that the biocomposite option is far 

more attractive (twice as much cash flow per month as any of the VPP options). 
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Figure 7: Contribution margins of each core product (paper grade) under different biorefinery 

scenarios (Korbel and Stuart (d)).
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CONCLUSIONS AND IMPLICATIONS 

Individual pulp and paper mills have tremendous opportunities to increase their level of 

competitive advantage by developing tools and methodologies to exploit their information 

management systems. These systems have gathered vast amounts of process and cost data which 

are not now fully exploited. The use of the activity-based costing philosophy and its variations 

could help managers improve forest-company profits based on these valuable data. This paper 

presented ABC-like methodology for on-line manufacturing cost assessment that is based on 

using this real-time process and cost data from information management systems. The supporting 

pillar of the method is an on-line technique that is able to detect near-steady-state operation and 

to establish that the steady-state data sets are relatively accurate. The accuracy and validity of the 

operating-regime representation with the use of near-steady-state data increases with the number 

of near-steady states identified. When wavelet signal processing is combined with a data 

reconciliation method, the analysis can provide a complete set of plant-wide reconciled data 

representing operating regimes. 

It was found that this methodology provides visible and transparent manufacturing-cost 

knowledge of a current business environment, enhancing multiple opportunities for short and 

long term company’s benefits. This methodology can be used as a tool in day-to-day operations 

that would assist mill personal on multiple aspects of the organisation. The strategy of continuous 

mill improvement can benefit from this information, process flexibility can be explored when 

tracking paper prices, a margin-centric supply chain will benefit from providing actual product 

margins for each operating regime, process-driven explanation of cost variances on a daily basis 

will enhance cost-control practices, and outcomes from signal and data processing will provide 

enhanced instrumentation and process troubleshooting. These are but a few essential examples of 

the potential implications of the proposed method for short-term facility’s benefits. Furthermore, 

the analysis of potential retrofit design scenarios would benefit from having an operations-driven 

cost model based on ABC-like principles in place, providing systematic integration of process 

and cost data. The model focuses on process costs instead of only on product cost assessment and 

is able to analyze the implications of operating regimes for future retrofit design options. This 

leads to the identification of profitable operating conditions in both current and future 
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manufacturing environments and makes possible increased profitability of retrofit design 

alternatives. 
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Abstract 

In today‘s competitive global market, the corporate strategy is to improve the cost curve by 
shutting down unprofitable facilities and constantly cutting manufacturing costs. However, to 
survive and stay competitive, it is of crucial importance that the papermaking and forest 
industries exploit the other side—the revenue side—of the profit picture. Improving profit 
margins through cost reduction has its limits, whereas revenue growth tends to compound 
over time. Today the forest industry has a tremendous opportunity to enhance mill revenues by 
introducing sustainable alternatives for manufacturing bulk and fine chemicals to their core 
business. 

The cost-reduction strategy certainly helps short-term business survival and should be exploited to 
its limits. By knowing and understanding the true profit margins, both cost-cutting strategies and 
critical decision-making will be enhanced. To do this, the current cost structure and cost 
accounting practices must be refined to account for operational knowledge and resource 
consumptions. Activity-based costing (ABC) has become widely accepted as the standard 
approach to providing a complete picture of how the organization‘s resources are consumed. 
Even though the implementation of an ABC strategy in the processing industries is a laborious 
and challenging task, the pulp and paper sector would benefit significantly. This is especially true 
with an operations-driven costing approach—the “son of ABC” that exploits lower-level 
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process data to assess resource consumption by different manufacturing activities. By 
understanding costs from a process perspective, the everyday knowledge of product margins 
would be visible to decision makers for critical decisions. This manufacturing information could be 
then exploited to analyze the optimal pathways towards enhancing the revenue side by looking at 
retrofit design options. 

Chapter Objective: The overall goal is to discuss the state of the art in cost methodologies for 
discrete and continuous industries, focusing on forestry: how can we exploit cost information to 
address a biorefinery implementation more effectively. A case study example demonstrates 
the importance of these advanced cost integration methodologies. 
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1. Introduction 

In today‘s global environment, manufacturing companies, especially commodity manufacturers, 
are being challenged to define new business strategies to sustain their competitive position in 
the market. In recent years, the most common strategy for the North American forest industry 
has been the unpopular closure of unprofitable operations. This arguably straightens up 
enterprise-level cost curves to some extent, but will probably not sustain the company’s future. 
Another common and yet critical strategy over the short term is to minimize production costs, 
for instance through continuous improvements. This exercise is typically carried out by process 
engineers who set up benchmarking performance parameters for individual processes or for the 
whole mill. Undoubtedly, well-defined process-based benchmarking is helping many mills to 
improve process efficiency and hence to tighten up their monthly spending. On the other 
hand, cost-based performance measures, generally established by mill cost accountants, assist 
in evaluating the difference between current production costs and their expected values, which are 
the budget values. The cause of this variance is difficult if not impossible to determine from only 
cost information. Obviously, each mill has developed its own particular cost accounting 
practices, and some may even claim that a certain level of process information is involved in 
their cost analyses. From practical experience, it is evident that the communication link between 
cost accountants and process engineers is generally missing. 

The ultimate goal of both cost variance analyses and process benchmarking is to achieve better 
control of a company’s costs and hence to maximize its product margins. The task of determining 
true or actual profit-margin values for all products is rather difficult, especially in a multi-
product environment where this information becomes crucial. In the forest industry, most 
accountants are using the traditional way of determining these values, which typically provides 
monthly or weekly volume-based valuations. This result, however, incorporates a wide range of 
operating practices and production recipes, mill interruptions, and paper machine breaks. 
Therefore, traditional costing is a somewhat ad hoc procedure and should be used with caution in 
decision-making activities. Ideally, values corresponding to each operating situation in the mill 
would be accessible. To capture such information, mill personnel must integrate financial and 
process knowledge into one costing system, for instance using an operations-driven costing 
approach (Janssen and Laflamme-Mayer, 2006). In practice, this would enable operators to 
avoid expensive operating regimes or accountants to understand their product margins and cost 
variances from a process perspective. The pillar of this approach is the principles of activity-based 
costing (ABC), which are generally accompanied by a certain level of complexity when setting up 
the system. This is one of the reasons why forest products companies do not yet recognize similar 
costing systems for problem-solving as an addition to their current traditional system used for 
financial reporting. 

“One cost system isn’t enough.” Robert S. Kaplan, 1988 
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The short-term values of operations-driven (ABC-like) cost accounting practice would help 
companies to understand and interpret their resource consumption, hence to minimize their current 
core business production costs. Moreover, the understanding of individual product margins in 
multi-product environment will improve planning/scheduling tasks and simultaneously will 
provide an input to identify the optimal product mix ratio. This new information would create a 
knowledge-based manufacturing opening the possibility towards margin-centric supply chain 
implementation for long-term company benefits. If potential business transformation is being 
considered, the mill personal would benefit from the most well informed decision-making 
information at hand. 

This chapter deals briefly with the state of the art in today’s cost accounting practice, focusing 
on the continuous manufacturing environment. The first part of the chapter seeks to introduce the 
reader briefly to cost accounting principles. With this basic knowledge, the current state of the art 
in cost accounting practices in processing industries can then be presented. Next, the integration 
of academic knowledge about costing with process engineering knowledge will be discussed, 
and the first part of the chapter finishes with a discussion of how the current forest products 
industry would benefit from such integration. To provide the reader with a full understanding 
of the problem, the last part of the chapter provides a concrete case study example comparing 
current and leading-edge costing strategies. 
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2. Understanding Production Costs 

2.1. Current cost accounting practices and what we are missing 

Cost accounting is the heart of the accounting framework that provides valuable financial insight to 
decision makers. The information provided is confidential and is used only internally to help 
managers find the optimal way to maximize the company’s profits. The environment and the 
outcome of decision-making activities is the cost accounting system. Various companies may 
use several different cost accounting systems for problem-solving. Considering that the limits of 
practice are entirely within the company’s control, the prepared cost reports can be based on 
whatever rules, standards, or rational bases are chosen. Cost accounting information is commonly 
used in the second pillar of an accounting framework, financial accounting. This branch of 
accounting deals with public corporate information used solely for a company’s financial 
statements, and its preparation must follow generally accepted accounting principles (GAAP). 

The general elements of cost accounting can be divided into three pools: material, labor, and 
overhead costs. Direct material and labor costs are generally variable costs and are a function of 
the number of units manufactured or sold. Overhead costs, on the other hand, are fixed costs 
that do not change with the level of production. For instance, management salaries, rent, or 
depreciation expenses do not vary from month to month, even though the rate of production is 
never the same. The ability to track these various cost elements accurately determines the value 
of the accounting system to final decision-making activities. In the early 20th century, this task 
was not difficult because overhead costs were negligible compared to material and labor. 
However, it became more complex to account correctly for indirect and overhead costs once 
the face of manufacturing had shifted from a labor-intensive to a machine-intensive 
environment. 

The ultimate focus in every organization is to control costs. Often a company chooses to use only 
one costing system, even though there are several approaches available. The most commonly used 
in today‘s industrial practice are: 

 Cost-volume-profit (CVP) analysis, 
 Standard cost accounting, 

 Throughput accounting, 
 Lean accounting, 
 Resource consumption accounting (RCA), and 
 Activity-based costing. 
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The first two systems, cost-volume-profit and standard costing, are often referred to as 
traditional or normal costing and are used extensively in the pulp and paper sector. This 
traditional approach was created for the needs of the early industrial era when the total costs 
were dominated by variable elements. The overhead and other indirect costs are accounted for 
based on simple volume-based measures such as labor or machine hours. Therefore, a product 
with a low level of labor hours is allocated less overhead cost. However, the actual costs may 
be very different if this product requires special attention or testing. The resulting unit production 
cost becomes even more distorted when overhead and other indirect costs begin to dominate 
overall manufacturing costs. Then it is strongly recommended that other supplementary costing 
systems be used. 

The four principles stated below are relatively new in management accounting. Throughput 
accounting was developed for the enterprise-wide level, to help identify factors that limit the 
enterprise in achieving its established goals (Eliyahu 1992). In lean accounting, the essential 
philosophy is to preserve value with less work. This approach was developed for the car industry 
which was aiming to eliminate waste while simultaneously minimizing production costs and time, 
using techniques such as poka-yoke (Robinson 1997) or value-stream mapping (Rother 1999). 
Resource consumption accounting (RCA) is a fully integrated and complex managerial approach 
that uses available state-of-the-art methods. The combination of the German 
Grenzplankostenrechnung (GPK) cost management system and activity-based costing principles 
create a system that can be used and interpreted by non-accountants. An extensive discussion of 
each approach is beyond the scope of this chapter; the interested reader is referred to, for 
example, Horngren (2006). The pertinent activity-based costing principles are discussed in 
more detail later in this chapter. 

As mentioned earlier, forest industry accounting practices are dominated by traditional costing 
because of its simplicity and the wide understanding of this approach among accountants. An 
important part of standard costing is a variance analysis. By breaking down the overall variance 
into the three pools listed below, this analysis helps managers identify where the difference 
between actual and budgeted costs has occurred: 

 Labor-cost variation 
 Material-cost variation 
 Volume variation. 

This information helps managers to identify the source of the overall cost variance, but not the 
cause of it. For instance, if the variance is largely due to material-cost variation, accountants with 
the help of process engineers need to drill down into historical process data to interpret the 
variance and take appropriate action. 

The problem is that traditional costing considers all costs as variable with regard to production 
volume. This often creates inaccuracy in fixed costs whenever the volume of production changes. 
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Furthermore, arbitrary rather than cause-and-effect overhead allocation makes the traditional 
approach highly inappropriate in a multiproduct environment. Another problem in the current 
general accounting profession, not only in the forestry sector, is the emphasis on financial 
accounting. Most of the time, decision-makers must create their own cost analysis based on 
financial accounting reports. However, these statements contain aggregated and distorted costs 
with no activity data incorporated, leading to poorly informed decisions. There are a few existing 
advanced systems at the academic level or already being used by advanced processing industries 
such as the petrochemical sector. The pillar of these approaches is the principles of activity-based 
costing, which is briefly discussed in the following section. 

2.2. Cost allocation and activity based costing 

Activity-based costing (ABC) is a relatively new philosophy that emerged in the 1980s in 
response to overhead allocation discrepancies (Kaplan 1989). By simply adding an activity as a 
link between resource consumption and a cost object, the knowledge of costs incurred in the 
organization is improved significantly. The activity becomes a fundamental cost item whose 
value is directly assigned to the final cost objects such as products and customers. In other words, 
the rate of resource spending is traced to an activity, and the activity is then traced to the product, 
as shown in Figure 2.2.1. 

 

Figure 2.2.1: Resources Consumed by Activities and then by Cost Objects. 

The ultimate advantage of using ABC is that it attempts to assign all costs to final cost objects, 
including marketing, engineering, and administrative costs. This added ability to trace indirect 
costs directly enables accountants to track overheads rationally and as closely as they track direct 
costs. This is done by making use of so-called drivers. As shown in Figure 2.2.1, resources are 
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linked to activities by resource drivers, and similarly activities are linked to cost objects by cost 
drivers. According to this definition, resource drivers determine the amount of a resource 
consumed by each activity, while activity drivers specify how different cost objects (products, 
customers) consume these activity costs. Labor hours, kWh, and number of shipments are 
examples of resource drivers, whereas number of customers and number of products are 
examples of the second stage, the activity driver. The difference between these drivers is that the 
former focuses on why things happen and the latter on what happens (Emblemsvåg and Bras 
2001). The implementation of an ABC system may be a complex and expensive task, and 
therefore it is important to determine the minimum number of appropriate drivers that will meet 
accounting objectives. 

As shown in Figure 2.2.2, the process-oriented character of ABC means that it is implemented in 
two simple and logical stages, while structure-oriented traditional costing is implemented in one. 
This fundamental principle is the basis for increasing the accuracy of the cost data (Drucker, 
1996). Traditional costing cannot encompass this critical linkage between actual causes and 
associated costs. Furthermore, advanced ABC has recently evolved into multistage systems 
where individual activities can be used by other activities before being used by final cost objects, 
thus enhancing even more the accuracy of cost modeling (Emblemsvåg and Bras, 2001). 

 

Figure 2.2.2: Activity-based costing and traditional costing (Korbel and Stuart (c)). 

In a continuous manufacturing context, the process-oriented character of an ABC system and the 
causal relationships between cost drivers and activities make the method highly suitable for 
modeling and analyzing costs. The availability of real-time cost and process data from 
information management systems (IMS) makes ABC easier to implement. It must be made clear 
that ABC is a cost accounting system that can help managers understand their actual costs and 
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improve their profits efficiently. Traditional methods are complementary to the financial reporting 
prepared according to GAAP. 

 

ABC-like cost accounting 

 

A cost accounting system that is used by a wide spectrum of industries is the resource 
consumption accounting (RCA), whose development has been strongly influenced by German 
cost accounting and ABC principles. The structure is very close to variable costing, a well-
documented method discussed in cost accounting textbooks, but rarely used by industry. RCA 
and its variations are extensively used by advanced processing industries such as mining, 
petrochemicals, and chemicals. Often their costing methods are confidential and inaccessible to 
the public or to researchers. In general, RCA is based on three fundamental pillars (for further 
details, the reader should refer to Friedl (2005) or David (1999)): 

 View of resources: The use of a high volume of cost pools establishes a clear linkage 
between resource spending and a company’s costs and revenues; 

 Quantity-based model: The value of the costing system is created in this pillar by the 
use of operations data and models. Traditional costing uses the output of variance 
analysis with dollar values, creating a fixed-costs bias. By contrast, RCA exploits 
causal operational relationships; 

 Cost behavior: Understanding the nature of costs is a very important aspect of the third 
pillar of RCA. The clear distinction between direct, indirect, variable, and fixed costs is 
based on aggregating pools. 

 

There have been significant changes in recent years, although not well documented; some 
forestry companies are approaching now ABC-like costing for improved decision-making 
activities. For example, Fogelholm (2000) has discussed the difficulties of product costing in the 
paper making industry and its potential industrial application. This approach is now a pillar of 
Metso Automation's MetsoDNA (Dynamic Network of Applications) that some companies are 
presently using for product-customer decision making as well as it helps their budgeting 
activities. The application seek to anticipate and determine the resource requirements for the next 
individual customer orders based on current raw material content, dimensions and quantities of 
the paper product (Fogelholm, 2004). 

Some academic cost accounting frameworks have been developed based on ABC philosophy with 
potential industrial applications. For example, an approach that integrates ABC principles with 
environmental metrics to perform analytical economic and environmental assessment for 
decision-making activities was developed by Emblemsvåg and Bras (2001). Their activity-based 
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cost and environmental management (ABCEM) system is extensively discussed in their 2001 
paper. The use of an uncertainty variable introduces extra complexity and versatility into the 
system. The ABCEM has been applied to a wide range of industries including furniture, 
carpets, and supply vessels, where it has provided insights and highlighted potential areas for 
improvement.  

Lastly, a sophisticated ABC-like approach that integrates process and cost information into one 
system, operations-driven costing (Janssen and Laflamme-Mayer 2006), is the core of this chapter. 
This method will be used for cost assessment in the case study part, and its results will be 
compared to the outcomes from traditional costing. The basis of this approach is in making a 
link between costs and process operations data using principles similar to those of activity-based 
costing. This approach is similar to RCA in some aspects, but is more versatile because it 
includes an in-depth engineering understanding of the process operation. The following section 
discusses this approach in more detail. 

2.3. Operations-driven costing approach 

The operations-driven costing approach (ODCA) is an interdisciplinary approach developed by 
accountants and process engineers in the pulp and paper industry. Understanding the cost of 
process performance is a critical success factor for paper mills. Chemical and process engineers 
are concerned with developing systematic tools and methodologies for both optimal design and 
optimal process operation (Figure 2.3.1). These procedures range from nano to industrial scales 
(Puigjaner, 2006). The concept can be understood from the supply chain 
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point of view, where on the one hand, product quality is determined on the nano or micro scales, 
and on the other hand, the desired product properties are determined by its functionality and 
structure. 

In the pulp and paper industry, fiber micro properties influence the quality of pulp and paper 
products. On the macro industrial scale, a reflection of the micro complexity of the fiber structure 
can be brought to light using information extracted from real-time data through IMS. The most 
practical way of doing this in the pulp and paper industry is to develop tools and methodologies 
for macro or mega scale applications that are based on real-time data and that reflect the meso and 
micro scales according to the general chemical-engineering definition of complexity levels. 

 

 

Figure 2.3.1: From micro scale to macro scale complexity or the “chemical supply” chain. (Grossmann, 2005) 

Actual product margins 

Paper producers have multiple products satisfying numerous customers with different needs and 
corresponding product specifications and prices. It is therefore crucial to understand individual 
product margins; however, current cost practices and systems provide only approximate values 
that are based on time-framed (usually monthly) spending information. As discussed earlier, 
current practice involves the use of conventional accounting systems that aggregate costs over 
the manufacturing period and uses a standard recipe, e.g. it is based on experience from the 
process operation. This overall cost information incorporates various changes in process 
operation due to mechanical (process) or raw material disturbances. Engineers and accountants 
recognize that within the manufacturing period, the generation of cost differs from one product 
to another as well as within the production process for the same product. However, it is not a 
simple task to determine these cost variances. First, current accounting practices cannot 
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accommodate cost information from a process perspective, and second, the discrepancies in the 
current cost data are significant. In 2003, a survey by Ernst & Young and the Institute of 
Management Accountants indicate that 98% of respondents claim that cost reporting is distorted, 
with indirect costs and overhead allocation being the main biases reported, and almost 40% 
believe that the cost data they receive are significantly inaccurate. 

With the current state of academic knowledge, it is possible to replace the current inaccurate 
margin information by the true values of product margins. However, to implement this change, 
actual operating knowledge must be involved. The use of IMS becomes pertinent to extracting 
process measurement data that provide knowledge about the underlying process. However, the 
lack of reliability in certain measurements as well as the lack of instrumentation on site makes 
this task very challenging. Many older mills have these difficulties plus a lack of process data 
redundancy16; however, in these cases, there are certain ways to create redundancy and proceed 
with ODCA (Korbel et al. 2011). 

 

Operations-driven cost modeling framework 

Janssen and Laflamme-Mayer (2006) developed an operations-driven cost modeling framework to 
provide in-depth understanding of resource consumption by integrating process and cost data. The 
bottom-up structure (Figure 2.3.2) provides mutual communication between different business 
levels. The resulting generic framework can be used to enhance the understanding of 
manufacturing processes both for design and for operational decision support. 

 

 

                                                 

16 Redundant measurement data points offer some level of possibility of crosschecking for potential measurement 

biases. 
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Figure 2.3.2: Overview of the bottom-up process-based approach (from Laflamme-Mayer, 2011). 

 

Later, Laflamme-Mayer (2008) presented in his thesis an application of operations-driven cost 
modeling to assess the production costs for different product campaigns. This information was 
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then used for planning and scheduling and optimization of high-level supply-chain analysis. The 
understanding and differentiation of product margins for each campaign can be used to enhance 
the current ad hoc representations of product margins. This versatile view of manufacturing costs 
in the paper industry is revolutionary and has tremendous value for reducing production costs. 

 

Figure 2.3.3: Comparison of standard cost, actual grade cost, and operations-driven grade costing 
(from Laflamme-Mayer, 2011) 

Figure 2.3.3 compares standard costing with actual and operations-driven costing information. 
Standard costs represent how the resources should have been used to manufacture a particular 
grade; actual grade costs are the true resource consumptions at the end of the three-month 
period. The operations-driven grade-cost assessment breaks up the three-month period into 
segments corresponding to campaign runs. From these results, it is clear that manufacturing 
the same product varies significantly from one campaign to another. 

Cost assessment of operating regimes 

With the use of advanced data processing tools and methodologies, campaign costs can be broken 
down further to assess the cost of different operating strategies. Every paper product is 
manufactured according to its production recipe. However, within this recipe, different operating 
strategies can be followed by operator choice or as a result of natural process-material 
interactions. These strategies, referred here as operating regimes, are driven by the process design 
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characteristics and operating practices. For instance, the use of different chip-refining plates, the 
control setpoint strategy for freeness control, and the open or closed nature of process loops and 
units are examples of operating regimes. Recent advances in plantwide acquisition systems, which 
capture real-time data from the pulp and paper operation, provide an opportunity for creative 
ideas to improve knowledge-based manufacturing and to support decision-making activities. In 
this context, it is proposed to exploit the operations-driven cost modeling framework to assess the 
costs of different operating regimes (Korbel, 2007). 

The overall structure of this cost-modeling vision can be understood from Figure 2.3.5. 
Traditional cost accounting procedures permit ad hoc profitability analysis of different products 
(grades). To go further and to understand the actual costs incurred from a chemical engineering 
perspective, a process model should be used to assess the profitability of individual operating 
regimes with the probability of occurrence of each regime. At this level, the information can 
already be used by decision-makers to choose the most profitable operating regimes and to 
eliminate costly ones. 

 

Figure 3.3.4: Smart data dissection for operations-driven cost modeling approach. 

For these purposes, it is important to use a plant-wide process data set that is extracted from the 
operation under near-steady-state conditions. Furthermore, the process operation must stay close 
to steady state for a satisfactory time period to guarantee reliable and accurate information. To 
achieve a satisfactory level of data quality, advanced cleansing techniques must be used. The 
mathematics of these methods is beyond the scope of this chapter; interested readers should refer 
to Jiang (2003) and Bagajewicz (2001). Briefly, these data cleansing techniques improve the 
accuracy, reliability, and completeness of a given measurement data set by correcting 
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different types of errors. First, a wavelet-based processing technique is used to identify the state 
of the process. When the system is at pseudo-steady-state, elimination of random white noise and 
abnormalities is carried out. The second step is data reconciliation, which helps to improve further 
the accuracy and completeness of the data and the level of compatibility of the data set with 
the process operation. There are many challenges in carrying out such an analysis in the pulp and 
paper industry, but they can be overcome using a smart and highly practical approach (Korbel, 
2007). 

Because pulp and paper facilities operate in an item-based or order-driven manufacturing 
environment, the use of a regime costing system would create sustainable value for the 
corporation. Not only would savings in manufacturing costs be achieved, but also high-value 
supply-chain modeling and potential transformation of the business to a biorefinery would benefit 
from these valuable insights into production knowledge. What kind of information a company can 
access through these methods is described in a real case-study example in the next section of this 
chapter. 
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3. A case study: Integrated newsprint mill and its business 
transformation 

3.1. Problem statement 

The objective of this case study is to compare the accounting practices currently in use with 
others awaiting industry implementation. This will make it possible to understand the value in 
using operations-driven cost modeling on an everyday basis to improve the cost knowledge of 
today’s core business (short-term values) as well as to help assess the potential business 
transformation of the forestry sector and its margin-centric supply chain (long-term values). To 
clarify the differences in the two costing approaches and their consequences, a concrete example 
is needed. A cost analysis by conventional and operations-driven cost accounting was performed 
on a real single-line newsprint mill situated in Canada. 

3.1.1 Case study description 
Current core business 

The current business is a simple single-line integrated thermomechanical newsprint production 
facility located in Canada. Figure 3.1.1 shows a simplified block diagram of the base-case 
process operation, including various manufacturing steps such as chip refining, pulp screening, 
and bleaching before papermaking. 

 

Figure 3.1.1: Block diagram of the base-case TMP pulp and paper process. 
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The process first heats chips by process steam in an atmospheric vessel at approximately 110°C, 
after which the pretreated chips are washed in hot circulating water from elsewhere in the plant. 
The softened warm chips are fed by a plug screw feeder into a pressurized preheater with 
relatively low pressure and temperature. After the preheater, the chips pass through a second plug 
screw feeder on their way into the first refiner, which operates at relatively high pressure and 
temperature. After first-stage refining, the pulp is driven to a steam separator, from which it is fed 
to the secondary refiner, which operates under approximately the same conditions as the first 
stage refiner. Then the pulp is again being separated from the steam in the second separator. After 
the pulp passes through the plug screw feeder at the bottom of the second separator, it falls down 
into a pulper for removal of latency. Screening and reject refining follow, then bleaching before 
storage and transport to the paper mill (Sundbolm, 1999). The paper mill produces two types of 
products: 48 g.cm2 and 45g.cm2 newsprint. 

Business transformation:– PLA production 

The studied company is highly competitive newsprint (in the first quartile manufacturer) and has 
a limited access to the biomass. Hence, they have elected to go for a biorefinery strategy that 
integrates into their existing processes. Thus with the relatively low amounts of hemicellulose at 
hand and using VPP (value prior to pulping) process, the mill could develop a robust business 
model by manufacturing a higher added value product, such as PLA (polylactic acid). Therefore 
the potential business transformation was inspired by the combination of VPP and Purac 
technologies, e.g. the well-established cellulosic technology from Biopulping International (BPI) 
to extract organic chains from pulp is assumed to be integrated with Purac technology to produce 
a specialty product, polylactic acid (PLA). 
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It is assumed that a mass corresponding to 3% of the incoming dry chips by weight is extracted 
before pulping, while paper production is kept unchanged with respect to the current core 
business. This means that the yield of paper production drops to 95% from its current 98% value. 
The new process design is depicted by the simplified process flow diagram in Figure 3.1.2. The 
new process flow design can be summed up17 in point form as follows: 

 The thermomechanical pulping and newsprint production lines are unchanged; 

 Before entering the TMP process, wood chips are subjected to an oxalic acid 
pretreatment in an impregnator, producing a solution of oligomers by the preferential 
extraction of hemicellulose and other wood constituents from chips; 

 The extracted and separated sugars are then fed into a simultaneous saccharification 
and cofermentation (SSCF) unit. In this processing step, enzymatic hydrolysis of the 
extractives takes place together with fermentation. Acetic acid is also produced as a 
byproduct of the extraction process (The efficiency of conversion is greater than 95% 
on carbohydrate substrate, Datta et al., 1995).. 

 The flow of lactic acid is then brought to the synthesis unit where etherification and 
catalytic synthesis of lactic acid into cyclic ester (Lactide) is carried out 

 The granules of Lactide are then brought to the synthesis unit, where the process of 
catalytic and thermolytic ring-opening polymerization of lactide to polylactide takes 

                                                 

17 For more details on the BPI and PURAC technologies, the reader should refer to Hunt, 2004 and Gruber & 

O’Brien, 2002 respectively 
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place. 

 After the finishing and granulation steps, the final product, polylactic acid, is extracted 
and stored, ready for shipping to customers. 

 As shown in Figure 3.1.2, the BPI-PURAG-TMP process model also incorporates the 
TMP process shown in Figure 3.1.1. However, with the introduction of VPP, some TMP 
operating parameters may require adjustment. For example, VPP chip pretreatment may 
result in reduced energy requirements for TMP refining. 

 

Table 3.1.1.— List of assumptions 

Unchanged core b siness prod ction 650 t/d
VPP

E t ti (C5 C6 CX ) 865 k /h
Energ sa ings ass mption at 25%

PURAC
PLA prod ction ol me 799 4 kg/hr
Fermentation efficienc 95%
P ifi ti ffi i i 98%
Ass med PLA market price 2 0 $/kg

 

It is also recognized that different wood species yield different amount of extractives and 
consequently different quantities of carbon chains from the impregnating unit. Current mill 
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furnish consists of high- and low-density chips from black or white spruce respectively. 
Furthermore, a small amount of hardwood is added to the final furnish. These information must be 
carefully monitored since the chips ratio used can influence manufacturing costs significantly.  

 

 

Figure 3.1.2: Block diagram for the potential business transformation of a current newsprints 
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3.2. Overall Methodology:– from low-level data to smart decisions 

 

The overall methodology consists of two parallel blocks of activities aiming to assess the
production cost and profit margin of the same products and to compare the outcomes. The first 
block represents the use of traditional accounting practices, whereas the second block 
represents the multidisciplinary union of process and accounting tools which make up the 
ODCA method. Figure 3.2.1 presents the methodological steps that make up each block. 
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Figure 3.2.1: Overall methodology comparing traditional and operations-driven costing 
information 

The first block: Traditional current practice 

Traditional practices, as discussed to some extent throughout the first part of this chapter, follow 
a so-called top-down approach. One can simply state that the traditional cost of a product is an 
aggregation of liabilities and bills that the company receives with regard to the inventory state, 
divided by the total production within the period analyzed. 

In this phase, actual costing will be used to represent the traditional way of assessing 
individual product margins. The following methodological steps were followed: 

1. Aggregate all costs incurred during the manufacturing period to be analyzed (one month) 
2. Gather information about the tonnage of production 
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3. Allocate all costs to the level of production.  

The second block: Operations-driven cost modeling 

Operations-driven cost modeling fully exploits low-level process data in a bottom-up fashion. 
Consistent plant-wide process data sets are integrated with business data in a model whose 
structure was inspired by an activity-based costing philosophy. The construction procedure for 
this model involves the identification of multiple parameters in the steps shown in Figure 3.2.2. 

 

Figure 3.2.2: The ODCA modeling strategy. 

The definition of activities involves the division of an operation into a final number of operating 
activities (cost centers), each of which is an aggregation of various processing units. Each of the 
cost centers is characterized by two key parameters: the design layout characteristics and the 
operating-state knowledge. The flow and combination of information is presented in Figure 3.2.3. 
The resource, activity, and cost drivers are defined by operating knowledge corresponding to 
resource consumption rate, activity performance, and individual cost-center contributions 
respectively. The integration of cost and process data is done within the cost center and is 
simply defined as a step-by-step cost-calculation recipe. Similarly, overhead costs are treated in 
a separate cost center which accurately traces them to different operating activities and to the 
final cost object. Finally, the sum of the cost activities represents total millwide operating costs. 
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Figure 3.2.3: Work center structure within the operations-based cost model (from Laflamme- 
Mayer, 2011) 

The following section describes the two main phases and their corresponding steps in the 
operations-driven activity costing block (Figure 3.2.4): 

Plant-wide consistent manufacturing information 

The second-block analysis starts by defining the set of operating regimes that are used to 
manufacture a given product. The criteria for distinguishing a regime are given by changes in 
process design characteristics (type/age of refining disk, opening/closing valves) as well as by 
variations in operating characteristics (different control setpoints or strategy, production rate). 
Within each defined operating regime, pseudo-steady-state data sets are identified for subsequent 
plantwide data reconciliation. This phase of the methodology provides profound understanding of 
the underlying manufacturing processes in the form of reconciled near-steady-state data sets 
(Korbel et al(a)). 

 

Operations-driven production costs 

The definition of relevant cost information for a given analysis is an important step to facilitate 

cost calculation and improve cost transparency18. The process data sets from previous phase are 

                                                 

18 All cost items identified as irrelevant at this step were excluded from the first-block activities as well. 
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used to calculate the product cost simply as the sum of all production activities (cost centers) 

across the plant. Precision and validity of the production costs are ensured by running the same 

cost model with different process data sets19. The output of the analysis is a product cost 

distribution for a given operating regime. 

 

Figure 3.2.4: Step-by-step activities within the methodology to address individual product 

margins (Korbel et al (c)). 

                                                                                                                                                                 

 

 

 

19 These data sets were extracted during production of the same product within one operating regime. 
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3.3. Traditional costing and ODCM: economic results and discussion 

The economic results of the case study are presented and discussed in two phases. In the first 
phase, the familiar cost picture based on traditional practices is compared to the operations- 
driven results for a current papermaking process. The second phase goes through a similar type 
of analysis, but with respect to a more complex production environment—the business 
transformation. The comparison of results, interpretation of the data, and potential improvement 
strategies are discussed at the end of each phase. With this in mind, let us proceed to the first 
phase. 

3.3.1 Analysis of the current core business 

The first bar in Figure 3.3.1 presents the monthly aggregated resource spending as calculated 
using traditional costing. This enables cost accountants to understand and differentiate the 
resource contributors to the total product cost. A predetermined (based on standard costing) 
volume-based parameter is often used to multiply this overall production costs to differentiate 
individual product profit margins (second and third bars). This operation ultimately distorts the 
results. Another approach may be to use standard costing, although the cost variance must be 
properly prorated to inventories or cost of goods sold to meet GAAP requirements. This ad-hoc 
approach to distinguishing actual costs for each product in a continuous-process industry is 
inaccurate and can lead to wrong decisions. 

 

Figure 3.3.1: Traditional cost analysis results for a current core business. 
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The same accounting period was analyzed using operations-driven cost modeling, as shown in 
Figure 3.3.2. For the sake of simplicity, only three (the most common) operating regimes are 
presented per product. However, the number of different regimes that the mill operates in within 
a single month is significantly larger20. The outcomes of the cost model are normalized to the 
values acquired by traditional costing (the first bar in Figure 3.3.2). The cost of each product 
(second and third bars) is calculated as the weighted average21 of a corresponding set of operating 
regimes (bars 4–9). The traditional costs represent a monthly aggregation of costs, while the 
operating-regime costs represent the actual running costs. 

 

 

Figure 3.3.2: Operations-driven cost analysis of production activities (base-case scenario). 

It is clear from Figures 3.3.2 and 3.3.3 that the knowledge acquired from operations-driven cost 
analysis can have a tremendous impact on mill improvement strategies. The information about 
each product’s actual margin within each operating regime as well as over the complete set of 
operating regimes will guarantee that managers can make well-informed decisions. For 
interpretation purposes, one can simply drill down from product costs through regime costs to 

                                                 

20 For this case study, twelve and seventeen operating regimes were identified for products of 48.8 and 42.5 g.cm-2 

respectively. However, the production time in most of these regimes was less than 1% of the total production time 

21 The weighting factor used is the ratio between the time that the mill operates in a given regime and the total 

operating hours. 
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the actual cost of manufacturing activities and their corresponding resource consumptions by 
individual processing units (Figure 3.3.3). This functionality helps understand and interpret the 
cost variances that arise from changes in resources consumption rates. The variance analysis that 
a cost accountant usually performs can now be well interpreted without the need to dig into data 
storage systems and search for answers in piles of data. 
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Figure 3.3.3: Operations-driven cost analysis of a current core business producing a 48.8 g.cm-2 
grade in operating regime R3. 

As has been briefly outlined in the context of the chapter, the apparent process improvement 
which can be gained from these results is to avoid operating in regimes R3 and R5 when 
producing grades 45.2 g.cm-2 and 48.8 g.cm-2 respectively. This possibility could be explored 
further by analyzing what would be the potential impact of this improvement on the whole 
business cash flow (Figure 3.3.4). However, it must be recognized that some operating regimes 
possibly cannot be bypassed due to inherent process-material characteristic interactions. Figure 
3.3.4 presents a tree of possible future scenarios and their interpretations in the matrix. Each of 
these scenarios has been analyzed under the following assumptions: 

 Constant amount of paper products sold to customers, 
 Yearly increase in production efficiency due to operational improvements, 
 Yearly labor and raw material cost increases, 
 Selling price for scenario 1 and the base case is taken from predictions by RPA (2001–

2020); the selling price is held constant for scenario 2. 

The results show that, solely by avoiding mill operation in regime R3 (the process from base case 
to scenario 1), an increase of 15.2% in total cash within the analyzed business period may be 
achieved. Furthermore, the product margin of the 48.8 g.cm-2 grade is increased by nearly 7%, 
enabling newsprint production to continue more than 22 months longer than in the base case 
(under the assumptions listed above). 
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Figure 3.3.4: EBID TA forecast and the potential impact of regime costing on product margin 
and total cash (Korbel and Stuart (c)) 

 

To provide a complete understanding of the complexity of cost modeling, Figure 3.3.5 shows the 
manufacturing information covering the whole set of operating regimes for the 48.8 g.cm-2 
product during the period analyzed. Each regime is labeled by its corresponding total production 
cost and its probability of occurrence. The width of the bar represents the cost range of the 
regime due to the use of multiple steady-state data sets for regime costing. The thick line inside 
each bar represents the weighted average of plantwide steady-state cost snapshots. 
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Figure 4.3.5: Wide range of product profit margins for a product 48.8 g.cm-2 within a month of 

operation (Korbel and Stuart (b)) 

 

 

4.3.2. Analysis of a potential business transformation: a multi product environment 

The second phase of the case study involves assessing the individual profit margins and the 
potential changes in their values after retrofit design. The level of newsprint sales is assumed to 
stay constant. However, after the new business integration, the profit margin is significantly 
modified for each grade, as will be seen from the results. It is worth reminding the reader that by 
introducing the polylactic acid product into the business model, the simple production 
environment has shifted towards a more complex, simultaneous multiproduct environment. 
Traditional costing fails to assess actual product margins in a multiproduct industry. 
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An accountant using traditional costing tools would predict the cost of each product by using 
standard costing similar to the analysis of a current core business (Figure 3.3.1). This 
information has always been sufficient for providing investors with various financial criteria, 
such as ROCE or IRR. With these values, more complex economic analyses can be performed to 
predict the potential future business cash flow. However, the internal cause-and-effect 
relationships due to technology integration cannot be understood with traditional thinking about 
aggregated production costs. 

An accountant using the ODCM toolbox would try to understand the cost and process impacts 
of the new business integration on existing core business products. With the use of current 
manufacturing knowledge from a process-cost perspective and a simulation of the new process 
operation, this impact can be analyzed efficiently. The results shown in Figure 3.3.7 are 
normalized to the traditional cost values for easy comparison. The first two bars represent the 
impact of business transformation by means of a traditional cost comparison of core newsprint 
products. It is clear that the main impact on production arises from electricity savings and 
overhead sharing with the new facility. The ODCA results offer a robust and complex cost 
analysis of future production with an understanding of cost-process impacts on core production 
during different operating regimes. The interpretation of the base-case –retrofit variance can be 
understood by drilling down into the actual cost items and resource consumptions within 
operating activities. For instance, the production costs in operating regime R2 have been 
reduced due to significant electricity savings; however, steam costs were increased due to the 
reduced steam recuperation rate. 
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Figure 3.3.7: Operations-driven cost analysis of production activities: cost impact on a core 
business after business transformation. 

Figure 3.3.8 illustrates the actual production costs of each product, including PLA, for different 
operating regimes. The cost of PLA can vary significantly from one operating regime to another. 
The energy (steam costs) and material usage are the items that to some extent cause the variance 
in production costs. After closer analysis, it became apparent that this variance is largely due to 
the more expensive unit steam price when manufacturing the 48.8 g.cm-2 grade in operating 
regime R2 because of refiner plate-gap differences. Ultimately, this production state should be 
avoided in the future. Similarly to the first part of the case study, the EBITDA forecast can be 
used to assess different future scenarios and their impact on PLA production cost and total cash 
flow. 



  275 

 

0

1

2

45.2 48.8 45.2 48.8 PLA 45.2 48.8 PLA 45.2 48.8 PLA

Base case Retrofit Regime 1 Retrofit Regime 2 Retrofit Regime 3

P
ro
d
u
ct
io
n
 C
o
st
s 
$
/t
  (
no
rm

al
iz
ed

 to
 

ba
se
 c
a
se
 tr
ad
it
io
na
l v
al
ue
) 

Overheads

Direct Labour

Direct Material

Steam

Electricity

Furnish

0

1

Base case VPP retrofit

M
o
n
tl
h
y 
E
B
IT
D
A
 c
o
m
p
a
ri
so
n
  

(n
o
rm

a
liz
e
d
 t
o
 b
a
se
 c
a
se
) 

EBITDA PLA

EBITDA 48.8

EBITDA 45.2

 

Figure 3.3.8: ODCM: The production cost of every product within a tree of operating regimes 
after business transformation and EBITDA comparison to a base case. 

 

The assumptions for predicting EBITDA over time are identical to those used in Section 4.3.1, 
except that the price of newsprint is held constant in scenario 1 and is set equal to that predicted 
by the RPA (Figure 3.3.9) in scenarios 2 and 3. The assumption of constant newsprint price after 
biorefinery implementation shows a business cash flow increase of more than 165% compared to 
that of the current business. This will make the new business model break-even in more than 15.3 
years from the present (8 years more than the base case). 
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Figure 3.3.9: EBID TA forecast and the potential impact of regime costing on product margin,  

total cash, and retirement age of a business. 
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3.4. Concluding remarks 

The work presented in this chapter seek to provide information to the reader about 
advances in cost accounting systems and the potential benefits of using new approaches 
instead of the current old-fashioned systems for decision making activities. Today, the 
forestry sector faces difficult times and requires a systematic approach to finding an 
optimal path towards a more sustainable future through potential business 
transformation. To manage this transformation optimally, managers and decision 
makers need to explore the powerful and robust cost accounting systems that are today 
waiting to be implemented in practice. Other industries, such as petrochemical 
companies or automobile manufacturers, are far more advanced in their costing 
systems. The use of the activity-based costing philosophy and its variations could help 
managers improve forestry company profits throughout the world. One particular 
approach that has been developed and designed to help the forestry sector is operations-
driven cost modeling. The use of lower-level process data improves the understanding 
of manufacturing-cost variability due to different operating regimes for current and 
future products. The idea has been presented throughout the chapter that forestry 
companies should implement ODCA systems today to enhance their current cost-
savings strategies as well as to identify and sustain the best operating scenarios in the 
future multiple-product environment. 
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ABSTRACT 

 Knowledge-based data processing in the pulp and paper industry will become increasingly critical 

in the coming years for mills to remain competitive.  For example, mills will make process change 

decisions (design and/or operations) based on plant-wide optimization, and real-time optimization will 

become increasingly common. In order to successfully implement such advanced knowledge-based 

decision making systems, it is essential to have reliable process and business data. 

 Pulp and paper processes have a highly dynamic character but despite this, the representation of 

pulp & paper processes can be based on steady-state conditions and this information used in optimization 

models. Obtaining a reliable steady-state process representation is not straightforward.  Measured data must 

be processed in order to eliminate signal noise so that steady-state identification can be performed. Data 

reconciliation techniques can then be used to detect gross errors, eliminate measurement bias, and reduce 

random errors associated with raw measurements by imposing mass and energy balance constraints to 

satisfy conservation laws.  This study describes techniques that have been reported to make plant-wide 

process data more reliable, and the use of this data for performing plant-wide real-time optimization 

through coupling with business models.  Linking reconciled process data with business data as an input into 

a process-based business modeling framework provides mills with a valuable tool for operating decision 

support.  The paper reviews how these tools might be applied to optimize mill operations. 
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INTRODUCTION 

Increased global competition as well as continual increase in energy and raw material costs is currently 

forcing pulp and paper sector to continuously improve operation efficiencies, define new business and technology 

strategies, while keeping producing high quality products. One set of possible applications that deliver on these 

needs is the development of techniques and methodologies to obtain business information captured in the process 

and cost data tagged and stored by the Plant Information Management Systems (PIMS).  

It has been few decades since various processing plants have integrated their plant information management 

systems (PIMS) into operation and they are today commonly used on a daily basis by different users in the 

enterprise. PIMS are both information management system and hierarchical database supporting high transaction 

volume and real time processing capabilities. Oil and gas refineries were among the first to adopt and take advantage 

of PIMS by developing various methodologies and applications to gain a profound understanding and knowledge on 

their daily operation. The use of PIMS extended rapidly to various manufacturing branches, e.g. chemical and food 

industry, metallurgical and mining facilities, pharmaceutical production and others. Pulp and paper industry followed 

the trend and nowadays most of the pulp & paper mills in North America leverage the capabilities of these 

information management systems providing mill personnel with critical information of the whole plant complex.  

The use of real-time plant-wide data has found its benefit in many fields as it simplifies and improves data 

accessibility, therefore opening new opportunities to improve process operation, to detect  process problems faster as 

well as to identify more profitable process conditions. It has been adopted by the pulp and paper industry for 

relatively long time and yet its potential has not yet been fully exploited. Good examples are the integration real time 

process data for business process analysis or supply chain management which are both overlooked or even unknown 

to pulp and paper mills managers [1] [2]. 

Focus should be given not only on the basic continuous improvements in production and maintenance, but 

as well on in-depth process optimization approaches. For example, the development of methodologies such as 

business process modeling based on the coupling of process and business data could provide an eligible and flexible 

tool to decision makers for a real time decision making. Moreover there is an opportunity to use PIMS by developing 

inter-organizational systems that would improve the communication in the supply chain [3]. 

Since efficiency of such process-driven applications strongly depends on data quality as well as data 

availability, there is a need to ensure a steady supply of reliable and accurate data into the business models. However 

raw process data often carry different errors and inconsistencies (instrument miscalibration or malfunction, power 

supply fluctuation, process noise, etc.), that limits usability. Numerous data cleansing techniques are available to 

improve data quality. Jiang [4] [5] and [6] developed a robust data processing technique consisting of a 4-steps 

methodology (detection of abnormalities, data filtration, steady-state detection, and data reconciliation) and adapted 

it to on-line steady-state identification using wavelet transforms. Bellec [6] [7] further improved the technique using 

statistical theories and showed promising results in increasing the data accuracy. This method is also useful for 

process state estimation and subsequently resolving and reconciling inconsistencies among different data sources. 

Since plant-wide steady-state operating condition detection is very challenging, the use of this technique is still 
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limited to specific sections of the plant, where different steady-state operating regimes can be identified and 

reconciled. 

Due to the highly dynamic character of the pulp & paper processes and the numerous interactions between 

its manufacturing processes, it is a real challenge to improve the operation performance in a real-time. Therefore 

most of the representation of pulp & paper processes usually assumes steady-state conditions. These conditions are 

used in simulations and optimization models. Today, and to comply with  such an assumption, data inputs into 

reconciliation systems for plant-wide applications (real-time optimization),  are in the form of average values over 

certain time period, for example 24 hours span to generate daily accounting reports, hence no real-time insight into 

cost spending by production facilities. 

This paper aims to introduce the idea behind on-line plant-wide process and cost data reconciliation and 

how it might be applied to optimize in real-time mill operations.  

 

BACKGROUND 

Pre-processing and Reconciliation of Data 

One of the most crucial challenges in processing plants today is to deliver meaningful plant-wide material 

and energy balances being in agreement with instrumentation values. This is highly due to various errors present in 

measurement values including random errors and inconsistencies caused by diverse irregular events. In order to 

obtain decent steady-state data, measured data need to be processed before steady-state identification can be 

performed. There are various techniques available for data processing and steady-state detection. Most of them are 

based on recurrent statistical and regression analysis over a predefined time window which is not always appropriate 

for on-line use. 

A new wavelet-based process steady state detection method [4] elaborated for on-line application [5] has 

been used for real-time data denoising and steady-state identification in order to resolve more accurate discrepancies 

among data by reconciliation techniques. The core of this technique is based on wavelet multi-scale analysis and data 

filtering. 

In this proposed methodology wavelet denoising and trend analysis is implemented as a first step before 

reconciling identified steady-state dataset. Furthermore this data pre-processing not only enhances data reconciliation 

performance, but ensures that reconciliation itself can be carried out independently of the data sampling time. A 

commercial product, Sigmafine from Osisoft was used for data validation and reconciliation. 

 

Bottom-up cost accounting 

Process-driven decision making can be improved by making use of process integration techniques. Process 

integration emphasizes the functional relation between individual process units and the enterprise as a whole. Mills 

adopting advanced methodologies such as bottom-up operations-driven business models based on integrating process 
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and accounting data would gain insight into their daily cost spending. With this new view on the process, mills 

would be capable of identifying new opportunities to make improvements in their operations. 

The process-based business framework [4] integrates process and cost information. The advantage of 

linking these different data sources lies in improving data consistency between plant floor operations and accounting 

therefore improving the costing system itself. 

Usually cost management systems perform cost allocation from aggregated level to detailed level which can 

easily misrepresent the actual cost figures. In contrast, the scope of this methodology is based on a so-called bottom-

up approach, where the relationships between detailed-level process data from the plant floor and accounting data are 

modeled. The information management system supplies the real time process data. Likewise, general ledger or other 

accounting systems are the source for cost information. This information based on in-depth resource consumption is 

then used for the cost calculation. Furthermore the manner in this approach for tracking resource consumption and 

cost allocation employs multi-level activity based costing system with the functionality that closely coupled process 

cost centers are connected together to form fluid business process analysis. 

 

Industry application 

 Today refineries have implemented the reconciliation systems to be performed before further process data 

use, for example: yield and performance evaluation, planning and scheduling, process optimization and advanced 

process control. The execution of data reconciliation is usually tailored for daily, hourly or even minute time period 

with the use of updated averaged values from the previous time window. However, the use of such packages is 

limited to stable processing plants with high degree of redundancy.  

The use of such systems in pulp and paper industry is very limited due to not enough redundant 

measurements present as well as its high process dynamic nature. The work of Jacob and Paris [8] [9] deals with data 

reconciliation and highlight data collection challenges in pulp and paper mills. Lately Stettler [10] applied the 

reconciliation techniques to sulfite wood pulping process for energy utilization with subsequent techno-economic 

evaluation. Where the use of utility system data reconciliation with the process models decreases the need of plant 

measurements. 

Plant-wide real-time data reconciliation and cost analysis have not yet been implemented by the pulp and 

paper mills. If data from PIMS should be used for further applications in pulp and paper industry, there is a high 

demand on developing new techniques in order to ensure the quality of data.  

 

OBJECTIVES 

The principal goal of this study is to develop a practical methodology for making available on-line reconciled 

process and business data in a form suitable for advanced decision making. In reaching for this goal, the following 

challenges need to be overcome: 
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 Process data analysis level: need to define a methodology integrating on-line process trend wavelet analysis 
method with data reconciliation techniques for real-time plant wide process data validation / estimation, 

 Cost data quality: Define strategy for business data reconciliation in order to ensure consistency in cost data 
among different cost sources.  

 Business data analysis level: Process-based business framework is used to evaluate actual costs of reconciled 
process work centers (snapshots of the mill). The challenge is to know how to use the output information to real-
time plant-wide process optimization, 

 

PROCESS DATA TREATMENT 

Before on-line process measurements can be used for further analysis, they have to be treated by diverse 

techniques in order to improve their accuracy. In this study wavelets are used in both denoising of measured process 

data and in extracting the refined process trend. The identified steady-state data set is then used by reconciliation 

procedure to make this data set corresponding to its process model. 

 

Process trend extraction using wavelet analysis 

The recent strike of continuous wavelet transform (WT) into time series analysis has revealed its benefit 

also for process trend estimation in industry. WT decomposes a one-dimensional time series into two-dimensional 

time-frequency space, in other words, the observable process signal f(t) (defined by measurement values) comprises 

two unobservable components, the desired process trend T(t) and process noise N(t) (stochastic component). 

f (t) = T(t) + N(t) 

The wavelet-based multi-scale analysis method developed by Jiang [4] is very efficient for abnormality 

detection and denoising the real-time process data thanks to dividing the real-time process signal into diverse 

frequency components at different scales, e.g. it uses the fundamental idea to represent the series of measurements as 

limit successive approaches at different frequencies (Jiang et al 2000): 

f (t) = f (0) =  
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 jIi ijijc ,,  is the smoothed signal representing the low frequency part of the original signal with so-called 

mother coefficients cj,i and  
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Individual isolated components are then analyzed and modified by altering its coefficients cj,i, dj,i to c’j,i, d’j,I. By 

thresholding, the coefficients below given threshold value are removed. The validated ones then serve for process 

trend reconstruction using the inverse wavelet transformation. The figure 1 shows an example of trend 

decomposition by this technique. For more information refer to Jiang [4] or Mallat and Hwang [11]. 
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Figure 1: Multi-scale decomposition of real-time measurements 

 

On-line application 

On-line denoising and steady-state detection technique presented in the study by Bellec [6] taking the 

advantages of 1st and 2nd WT features, consists of 4 simultaneous segments as follows: 

 Using WT features, abnormalities and high frequency noise are removed, 

 The starting point of steady-state is detected using the WT properties and its first derivative, 

 Steady-state duration is estimated by law pass filter based on historical data analysis for probability function, 

 The end point or a drift from the steady-state period is determined by WT analysis as well. 

Since all the segments of the method are performed simultaneously (the steps 1, 2 and 4 use the same features), 

there is no need for extensive computation which demonstrates the robustness and on-line application of proposed 

methodology. 

 

 

Figure 2: General methodology for on-line data correction (from Bellec [7]) 
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De-noised extracted trends are expectedly more accurate than the measurement values. However their 

values might not be in agreement with process model constraints. Data reconciliation techniques are used to resolve 

such discrepancies. 

 

Data Reconciliation 

Data reconciliation is a well-established subject not only in the data processing field. By employing 

redundancy of process data, it is simply an approach to adjust values of process measurements to their process 

constraints. In other words, data reconciliation technique assumes that process variables are linked through a 

connectivity model, usually through material and energy balances. To formulate the data reconciliation approach one 

can write the problem as follows 

2

1

/









 K

i i

ii

tolerance

reconciledunmeasuredmeasured
Min  

Subject to: Mass, Heat, Component Balances 

With a normal distribution of measurement errors being assumed diverse methods were published to 

simplify the issue above in order to eliminate unmeasured process values from the problem statement: Projection 

matrix method [12] Gauss-Jordan elimination procedure [13], QR decomposition [14], nonlinear DR using 

successive linearization [15] [16] [17], and many others. Obviously numerous studies have been done on linear or 

non-linear steady-state DR, but there is far less dealing with dynamic data reconciliation. This is mostly due to high 

computational effort which is thought to be impractical for engineering practice. However, with the advance in the 

information technology and given that processes are actually never at steady-state, it is better to consider applying 

dynamic data reconciliation even for “steady-state” processes [18]. On the other hand, from the perspective of 

minimizing the computational effort for on-line applications it is wise to extend steady-state DR to deal with 

dynamic situations [19]. In fact as mentioned by Bagajewicz [20] for the time being there are more pressing 

problems to resolve, for example gross error detection which is in close relation with the problem of data 

reconciliation. 

 

Gross error detection 

Data reconciliation techniques are based on the hypothesis that data are corrupted only with random errors 

excluding any potential systematic errors present. If the reconciliation is carried out on the measurement data set 

where gross error is present, the results will lead to inaccurate value estimations. The source of such systematic 

errors may be due to instrument miscalibration, drifting, biases or total failure of the instrument. Additionally, 

inconsistencies related to inaccurate formulation of process models can produce similar outcome as wrong 

instrument performance. 
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There are generally two principal issues linked to gross error (GE) handling, e.g. the gross error detection and its 

value estimation. Furthermore in any proper GE detection technique, the four following points should always be 

addressed: 

 GE detection – possibility to identify the existence of one and/or multiple GEs in the measurements, 

 GE location – possibility to locate one or multiple gross errors. 

 GE identification – possibility to determine the GE type, 

 GE estimation – possibility to estimate the magnitude of GE.  

The gross error handling problem is well documented in the literature. Many methodologies and techniques have 

been proposed in order to satisfy the four above requirements. For more background on GE refer for example to [18] 

[20]. 

With regard to the current commercial software available for gross errors handling, the main technique used 

today is serial elimination strategy. As mentioned in [20] the vendors could improve their strategies by, for example, 

implementing methodologies to handle uncertainties in order to enhance industrial gross errors treatment. 

 

On-line Plant-wide Data Reconciliation 

Although there is a vast amount of publications on data reconciliation, there are just a few that focus on the 

large plant-wide applications and none of them, in our knowledge, for pulp and paper industry. All of the commercial 

softwares available today are based on steady-state DR, namely Sigmafine from OsiSoft, Adviser from Aspentech, 

Datacon from Simsci, and Recon from ChemPlant. The use of these software packages is therefore limited to stable 

plants (in plant-wide application). 

In order to perform plant-wide steady-state process data reconciliation, available reconciliation systems use 

averaged values of process measurements over a certain time period in order to satisfy their “steady-state” 

assumption. Since the averaged process data carry not only random errors, but also errors from process variations, 

the results may lead to incorrect conclusions. However, the study by Bagajewicz [20] proved that in systems with no 

hold-ups this error can be negligible. Furthermore, by making use of averaged values one cannot really perform data 

reconciliation in real time with high precision. Hence, the applications of wavelet transform features for on-line data 

denoising and steady-state identification in combination with data reconciliation techniques could reform the 

accuracy in real-time process data. 

Challenges in data reconciliation 

Mostly DR studies have been focused on the specific particular unit or on a small process subsystem in a 

steady state or a dynamic way. Although there are several that deal with plant-wide data reconciliation and 

optimization problems, they are just under quasi-steady-state hypothesis. 

There are three rational possible ways to put plant-wide steady-state data reconciliation into practice:  

 Reconcile averaged process measurement values, 
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 Identify plant-wide steady-state operating regime to perform reconciliation, 

 Identify steady-state regimes on a smaller segments of the processing plant, 

The first option using averaged values is limited to linear systems with no hold-ups. Furthermore, the execution 

can be performed only in specific time periods. The second option is obviously inaccessible for pulp and paper 

industry due to its high dynamic nature. The last alternative is being investigated and examined for its application 

and suitability for pulp and paper mills. We seek to define methodology starting with TMP integrated mill.  

In our knowledge, there is virtually no existing study that would address hierarchical decomposition of a process 

plant into different subsystems with on-line process state identification, and that would deal with the challenge of 

defining the potential “bridge” between separate reconciled subsystems to ensure plant-wide consistency in measured 

process values.  

 

COST ACCOUNTING SYSTEMS 

Business managers, to make the best possible decisions for their mill, need accurate information which is 

provided by management accounting systems. In present complex business environment cost accounting plays a key 

role in making business decisions focusing on long term profitability. 

Both financial and cost accounting is part of the financial management systems in the enterprise. Whereas 

financial accounting reports organization’s financial statements to investors, regulators, suppliers, banks and other 

outside parties, the cost accounting determines and reports financial and other types of information relating to the 

cost of resources to help managers in meeting their goals. Furthermore, financial accounting focuses only on the 

past-oriented performance reports, while the future-oriented character of cost accounting plays an important role in 

planned continuous reduction of costs. 

It is quite appropriate here to define some terms that will be used: 

 Cost object can be an activity, a customer, part of the process, a product, a service or anything for which 
management needs a separate measure and accumulation of costs, 

 Manufacturing costs can be assigned to the cost object either direct or indirect way, 

o Direct manufacturing costs are directly linked to the cost object and are traced in a cost-effective 
manner, for example using mass and energy balances, 

o Indirect manufacturing costs are not easily traced in a cost-effective manner due to their indirect 
relationship to the cost object. They have to be allocated to the cost object using cost allocation method 
specifying some formula-relationship, also called basis of allocation (overhead costs), 

 Non-manufacturing costs have the weakest relationship with a cost object and have to be assigned arbitrary 
(overhead costs), 

 Basis of allocation methodically links non-manufacturing costs, an indirect costs or indirect cost pools to the 
same cost object. It can have a financial character, like the direct manufacturing labour costs or a nonfinancial 
one like the kilograms of chips used, 

 Cost pool is an accumulation of costs with one or more mutual characteristics. Costs from cost pools are 
assigned to different cost objects or even cost pool as a whole can be assigned to the cost object. 
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Traditional Cost Accounting Practice 

Today, despite the known disadvantages, many companies are still using traditional cost accounting systems 

(TCA) in their business organization. Actually, it started when cost accountants in order to allow the indirect cost to 

be accounted, were arbitrarily adding a rough percentage into the direct costs. However, when the proportion of 

overhead costs had grown (mostly due to industry automation), this method became improper. Therefore one of the 

most highlighted disadvantages of traditional cost accounting system is that it uses only one allocation base. In this 

way all overhead costs are allocated in the same way to all cost objects despite the potential variance in its resource 

consumption. Furthermore, administration, financing or marketing costs are summed up in cost pools and assigned to 

a specific time period and not allocated or assigned to any cost object. 

There are several approaches of TCA. The two most used types of traditional costing systems are 

direct/variable and full absorption costing systems. Where indirect manufacturing costs are allocated to cost object 

on the basis of production volume related measurements. In other words, in TCA systems, direct material and direct 

labour costs are directly charged to the cost object, whereas overheads are handled as indirect costs and are allocated 

usually with a single, plant-wide, predetermined overhead driver (direct labour). Since the direct labour does not 

drive the production costs anymore, it is quite inadequate to employ TCA in modern companies with the intention to 

accurately trace the factual cost of the cost object. Consequently, managers are often making decisions based on 

inaccurate information. Despite the above facts, TCA is still used and quite appropriate to perform costing in firms, 

where the manual labour significantly dictates final product cost. 

In order to ascertain the true value of the cost object, there was a need to define a new cost management 

system. Activity based costing emerged in manufacturing sector of the United States in the late 70s, in order to 

improve enterprise costing systems by tracing costs more effectively. 

 

Activity-Based Costing 

Activity based costing (ABC) is relatively new philosophy for cost accounting introducing activities as a 

link between resources and a cost objects. It clarifies more accurate the costs incurred in the organization by focusing 

on a single activity as the fundamental cost object. Then using this activity cost as a basis to assign costs to other cost 

objects, such as products and customers. In doing so, ABC systems intent to assort indirect costs and indirect pools 

as direct ones which gives more in-depth understanding on the costs incurred. In other words costs are traced to 

activities and these costs, in a second phase, are traced to the products that use these activities as it is shown in the 

figure 3. 
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Figure 3: Resources consumed by Activities consumed by Cost Object. 

 

Another advantage of ABC over TCA methods is that it attempts to assign all costs to cost object including 

marketing, engineering, administrative costs, etc. To do such cost tracking, ABC introduces assignment of costs 

additionally to traditional cost allocation and direct cost attribution options. This cost assignment ability allows 

accountants to rationally track overheads incurred (traditionally arbitrary allocated) as nearly as direct costs. This is 

done by making use of so called drivers. As it is shown in figure 3, resources are linked to activities by resource 

drivers and similarly activities are linked to cost object by use of cost drivers. Per definition, resource drivers 

determine the amount of a resource consumed by each activity, while activity drivers specify how different cost 

objects (product, customer) consume these activity costs. Labour hours, kWh and number of shipments is an example 

of resource driver, whereas number of customers and number of products is an example of the second stage driver or 

activity driver. For the sake of simplicity, it is always important to determine the right amount of appropriate drivers 

that would meet the accounting objective.  

The key is to define appropriate cost pools and drivers for different types of cost. Before implementing 

ABC method in the enterprise, both drivers are often specified by a survey of managers or other mill personnel who 

have subject matter expertise. With a smart driver selection, accountants are now able to better track overhead costs. 

The result is elaborated and consistent cost allocation. Besides, ABC method gives appropriate information on 

resource consumption to decision makers in order to reduce more efficiently their operational cots. 

As shown in Figure 4, the process oriented cost assignment using ABC is performed in two stages, while 

structure-oriented TCA in one. Furthermore, today advanced ABC have evolved into multi-stage systems where 

individual activities can be used by another activities before being used by final cost object enhancing even more the 

accuracy of cost modeling.  

The advantages of ABC philosophy found its use also in the real time cost monitoring application proposed 

by Steen [21]. This cost model uses bottom-up concept for consumption of resources with the feature to track and 

analyze the cost variances by attributing production cost to production and quality. This method was applied to paper 

manufacturing example with the emphasis on data quality. 
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Figure 4: ABC versus TCA 

 

Operation-driven cost accounting 

Cost information in pulp and paper mills is mostly evaluated at the end of each month, what doesn’t give 

any flexibility to managers to analyze the potential causes of cost variance. Hence operation-driven cost and process 

analysis tool such as process-based business modeling [3] [22] brings substantial benefits to this area. This model 

combines process engineering and cost accounting principles which creates new, in-depth representation of 

manufacturing processes. 

The emphasis is on the cost modeling of continues processes, where knowledge from both process design 

and operating conditions are considered together in an element called Process Work Center (PWC). Process design 

defines the physical side of PWC which comprises the specification of all process units used within, whereas 

operating condition describes the activity performed by PWC. Operating conditions are determined by detailed-level 

information (process measurements such as temperature, flow rate, consistency, etc.). Subsequently, given amount of 

well defined interconnected PWCs can easily embody and formulate a whole processing plant. 

In order to model production overhead and non-manufacturing costs more accurate, the proposed business 

model framework exploits activity based costing principles. It introduces Overhead Work Center (OWC) which has 

similar attributes to PWC. In a nutshell, cost calculations and analysis are accomplished in every PWC separately 

including potential OWC contribution. Consequently the calculated costs flow between neighbors PWCs 

accumulating in the Overall Cost Object, which determines the desired final cost object. 

The term operation-driven cost accounting is due to the fact that both operating conditions and process 

design dictate the cost accounting procedure using ABC principles. 

 

Cost data reconciliation 

Since cost information for business model may come from different sources, the term of cost reconciliation 

has emerged because of inconsistencies present between them (usually between manufacturing account and general 
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ledger account). The variance in cost data might be also due to the variation between estimated and actual costs or 

between “costs accounted for” and “costs to be accounted for” for the next time period in general ledger. However, 

these differences are generally easily corrected by using weighted-average method.  

The reconciliation process is carrying out on a regular basis ending with a final reconciliation for each 

period in order to prepare consistent financial reports. The possibilities of identifying coherent and more frequent 

cost reconciliation procedures are being analyzed in order to acquire the quality in combining process and cost data. 

 

PROPOSED OVERALL METHODOLOGY 

In order to address and investigate the potential applications of proposed methodology the following 

challenges and overall steps are of concern: 

Define approach for on-line plant-wide process data reconciliation: 

 Divide the process operation into subsystems in a way suitable for steady-state identification, 

 For each process subsystem perform: 

o Process data denoising and process trend extraction using wavelet-based multi-scale data processing 
technique, 

o By steady-state detection technique determine possible operating regimes, 

o Perform steady-state data reconciliation and gross error detection to ensure data consistency, 

 Define the approach to merge reconciled process data to plant-wide level in order to eliminate discrepancies in 
process measurements, 

Define the approach for systematic cost data reconciliation 

 Recognize the different sources of cost data in order to analyze the potential discrepancies among them, 

Employ the reconciled process and cost data in process-based business model: 

 The well elaborated process-based business framework is used to assess and evaluate the costs of each process 
subsystems (PWCs) for further analysis, 

 Since business model unifies the process and cost information, it forms a good basis for reconciliation of 
different information. Relationship between process and cost data as well as between PWCs for different plant-
wide process conditions can then be modeled and analyzed. 

 

POSSIBLE BENEFITS AND APPLICATIONS 

The possible applications and further benefits associated with real-time plant-wide application of proposed 

methodology are here outlined: 

 With better understanding of the process operation, the equipment efficiency can be estimated more precisely. 
Then plant benefits such as improvement in maintenance for both instruments (calibration) and equipment 
(cleaning) will emerge, 

 Improved instant identification of the cause of the process problems, for example localizing process leaks, 
product loss and instrument fault detection. With the possibility to tract the origin of the problem back in time, 
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 Enhanced process control will be achieved when on-line reconciliation results are used to update process status 
and overall balances. Moreover, denoising of process data using wavelets can help process/control engineers in 
maintaining process closer to the optimum,  

 Once steady-state regime is identified, its information such as: occurrence, duration and the transient period 
between them can be stored and analyzed. This valuable information can be then used for on-line applications, 
for example to tune up cutting scale parameters for wavelets as well as to help identify correct operating 
conditions, 

 Furthermore, using such accurate process data in combination with business, quality and environmental data will 
form a knowledge base for continues improvements in production process. Process-based business model could 
be used to assess and evaluate different operating regimes in order to select the most profitable ones, 

 This technique would provide reliable data for further process integration applications, particularly variability 
analysis and real-time optimization. Maximizing expected profit simultaneously with minimizing the 
environmental impact and still meeting the quality requirements would be improved by developing real-time 
optimization techniques based on business model framework. The results would lead to improved overall 
process efficiency, such as: improved production efficiency, costs, quality, environmental as well as safety,  

 If continuously used, the knowledge from process operation history might be used to predict cost of the 
following PWCi+1 based on the former PWCi cost analysis. This followed up understanding might be very useful 
in further applications, 

 If such a methodology were to be developed  as a potential real-time plant-wide application for pulp and paper 
industry, the decision making procedures and so mill profits would be enhanced significantly. 

 

CONCLUSION 

Pulp and paper mills seek to improve their operation performance in order to increase production and 

reduce costs while still meeting the quality requirements. Developing tools and methodologies to extract the relevant 

knowledge from information management system could be one way of doing it. In spite of today’s power in data 

acquisition, it is still quite difficult to implement functional online data validation system. This is due to various 

errors present in process and business data that have to be removed since the effectiveness of plant-wide applications 

depends distinctly on data quality. Integration of on-line multi-scale wavelet analysis for process trend extraction 

with on-line steady-state data reconciliation could potentially evolve to real-time plant-wide data validation tool. 

Which can be further applied to process-based business model to better represent a complex pulp and paper dynamic 

environment from both cost and process perspectives. This could bring a new resource for decision makers as well as 

for real-time optimization of pulp and paper mills. 
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APPENDIX H – INSTRUMENTATION NETWORK IN THE NEWSPRINT 

MILLS 

Although the design of an instrumentation network in the pulp and paper industry is constrained by the 

costs, and is focused mainly on monitoring the controlled variables, also some secondary variables are 

measured. And contrary, some necessary controlled variables are not measured directly in certain mill 

areas lack monitoring system completely. This is typical for the pulp and paper industry since some 

properties/variables are very hard or even impossible to measure. 

The main goals of the instrumentation network in the newsprint processes are usually to monitor: 

 the quality of the product (pulp freeness and consistency, paper characteristics) 

 the environmental impacts (emissions monitoring, effluent treatment system) 

 the operation safety (fault occurrence) 

 the performance for the boiler or steam turbine in order to detect gradual changes 

 the rate of production for production accounting 

The key parameters affecting the process performance and pulp quality are the specific energy 

consumption and the refining intensity. On the figure 2.5 it is shown how these key parameters of the 

TMP refining interact. It is very challenging to estimate these parameters based on monitoring variables. 

The refining intensity is increased when the refiner gap clearance is reduced causing the increase of 

energy input of single impacts on refining, which is not difficult to control. The second parameter - the 

specific energy consumption is the major factor influencing process performance and pulp quality. Its 

value is determined by the motor load and by the production rate of fibres through refiner. The rate of 

production is a difficult parameter to measure and control because the plug screw feeder (the chip feeding 

equipment), is based on volumetric feed of material into the refining line. If an accurate measurement of 

the chip flow is to be determined, the combination of the given volumetric feed rate with an accurate 

measurement of the bulk density as well as the chip moisture is essential. However, accurate and reliable 

instruments for moisture and bulk density measurements of chips are not available. Furthermore, the 

measurement of the production rate based on a pulp consistency and the pulp mass flow after the 

secondary or tertiary refining is characterized by similar problem, since the consistency measurement is 

very sensitive to pulp quality (fibre size distribution), air content and temperature. 
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Figure 1: Interaction of the key parameters of TMP refining 

Control of refining operation 

The basic goal of the refiner controls is to balance the effect of change in raw material properties. This 

procedure is affected by the accuracy and precision of measured variables which makes the control a 

difficult task. Typical controlled and manipulated variables are summarised in the figure 2. Generally, 

there is no common control strategy for all TMP plants due to different operating strategies, process 

equipments and raw materials (Sundbolm, 1999).  

Manipulated variables 

1. Plate Gap 
2. Chip feed speed (throughput) 
3. Dilution rates 

Controlled variables 

1. Consistency 
2. Specific energy consumption  
3. Freeness 
4. Long fiber content 

 

Figure 2: A typical controlled and manipulated variables for TMP refining 
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APPENDIX I – ADDITIONAL METHOD DESCRIPTION 

 

Objectives of this section:  

 To describe the method with output and input variables between calculation steps. 

 To present a clear description of methodology within each calculation step. 

 

The overall method presentation is described according to the methodological steps that are 

shown in Figure 1. The knowledge acquired from process understanding serves to optimally 

select a set of key variables from the whole measurement data set that represent an operating 

condition of the plant-wide production. The case study process model is presented in detail as 

flow sheet diagrams (Figures 2 to 11 of this section), highlighting the measured variables and 

those that are selected as key variables. This set of key-variables is utilized in the second step 

of the method, to identify a near steady-state condition that represents the given production 

regime using the wavelet processing technique. With the identified near steady-state periods, 

the whole measurement data set is processed using wavelet transform, in order to eliminate 

random noise and abnormalities and improve the performance of process data reconciliation 

step. The terms and mathematical formulation of the data reconciliation (error minimization) 

problem are presented (section. The whole measurement data set is presented by classifying 

variables into redundant, estimable and non-estimable groups respectively. The final stage of 

the reconciliation model presentation is a discussion of the solver functionality followed by 

an example. 

The use of relatively complex data treatment procedure is justified by acquiring novel cost 

information on various production regimes. Several cost items that were used to assess 

production knowledge are classified into two groups: direct and indirect cost items. The 

operations-driven cost model is discussed further to clarify the ABC-like character of the 

approach and to discuss the necessity to use indirect costs allocation.  

The overall method presentation is finalized by discussing its valuable implications for new 

types of decision making, for short and long term company’s benefits. 
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Process analysis and simulation

Signal processing Wavelet parameters tuning

Steady-state selection

Data pre-processing

Process data rectification

Problem formulation

Constraints selection

Solver discussion

Production cost assessment

Decision making activities 

Key variable selection

Data extraction

Process analysis

Process simulation

Variable classification

ABC-like model description

Cost items definition

Method implications
 

Figure 1: Overall method presentation 

 

Process analysis and simulation 

Process analysis 

It is necessary to comprehend the production processes by analyzing process flow sheets, PID 

diagrams and production practices prior to developing the simulation model and applying the 

proposed method. According to the acquired knowledge a first version of the simulation model 

was developed using WinGEMS software, later, it was then transferred over to CADSIM 

software for further development.  
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 Data extraction and Process Simulation 

The process simulation was built using CADSIM software with the possibility to reconcile 

process data. For better visualization purposes, simulation charts from Metso Process Simulator 

(Metso WinGEMS 5.3 ©) are presented in the following section. The plant-wide operation was 

divided into six process work centers. This dissection of production processes provides in-depth 

tracking of resource consumption to different parts of mill. 

The flow-sheets presented contain large amounts of information including names and types of 

units within the process, as well as numerical values of corresponding process streams. These 

actual values are irrelevant for the purpose of model presentation; however they have been 

included as a part of the model visualization. 
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Figure 2 Process flow diagram - chips pretreatment 
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Figure 3 Process flow diagram - Main refining line 
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Figure 4 Process flow diagram - Screening 
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Figure 5 Process flow diagram – Reject refining line 
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Figure 6 Process flow diagram - paper machine 
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Figure7: Process flow diagram - chips pretreatment 
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Figure 8: Process flow diagram - paper machine 
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Figure 9 Process flow diagram - Energy Island 
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Figure 11 Process flow diagram - Energy Island 
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Figure 12 Legend 
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Key variable selection  

The large-scale and complexity of processing plants challenges the occurrence of a steady-state 

condition. The process state representation is performed by using monitored variables. However, 

the use of the whole set of measured variables makes it challenging to actually identify the near 

steady-state period of a large scale process. Thus it is essential to select a subset of measurement 

variables to represent a state of the process. In practice, this is overcome by using knowledge of 

the process operation, i.e., an analyst has pre-selected a set of variables that represent the process 

state. This pre-selection is based on the precept that not all variables are equally important; 

certain variables contain more information about the process state than others and are hence more 

useful for a given purpose. The key variables are assumed to be non-correlated and should cover 

the system as completely as possible. In this work, such variables are referred to as key variables. 

There is no unique way to select the set of key variables that characterize process states. In this 

work the selection was carried out with the use of engineering judgment about the underlying 

production processes and process variables. The judgment is drawn from understanding of the 

process dynamics involved with the particular process under study. These key variables provide 

direct information about the state of a process. Processing plants are commonly operated in 

multiple states and frequently switch between them. A fundamental precept in this work is that 

measured key -variables depend on the operating state of the process. For instance, when 

considering a thermomechanical pulping process, the measurement of production-rate is critical, 

and should be selected as a key variable since  changes in the pulp flow will inherently result in 

process changes (specific energy of refining). The process of selection of key variables for 

thermomechanical newsprint process has taken into account following measurements: 

 Main line pulp flow and consistency indicators 

 Measurements of level in various pulp tanks 

 Paper machine speed 

 Steam volume rate 

The summary of the selected key variables is listed in the table 5.1. The type of Process Work 

Center (PWC) and Input / Output processing units correspond to the simulation model 

presentation in flow-sheets (Figure 2-10 of this Appendix I). 
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Table 1: List of selected key variables for steady-state detection 

No 
Key variable for steady state detection PWCi

Output 
unit Input unit 

1 Production volume (chips throughput)  PWC1 PWC1-1 PWC1-2 

2 Level Silo 1 PWC1 PWC1-2 - 

3 Level Silo 2 PWC1 PWC1-5 - 

4 Production volume (chips throughput)  PWC1 PWC1-5 PWC1-7 

5 Production volume (chips throughput)  PWC2 PWC2-1 PWC2-2 

6 Production volume (chips throughput)  PWC2 PWC2-5 PWC2-7 

7 Consistency measure PWC2 PWC2-7 - 

8 Stem flow rate PWC2 PWC2-7 PWC2-6 

9 Production volume (pulp throughput)  PWC2 PWC2-11 PWC2-12 

10 Level transfer chest PWC2 PWC2-16 - 

11 Production volume (pulp throughput)  PWC3 PWC2-16 PWC3-1 

12 Production volume (pulp throughput)  PWC3 PWC2-16 PWC3-2 

13 Production volume (pulp throughput)  PWC3 PWC2-16 PWC3-3 

14 Consistency measure PWC3 PWC2-16 - 

15 Level measure - Latency chest PWC3 PWC3-4 - 

16 Production volume (pulp throughput)  PWC3 PWC3-10 PWC3-11 

17 Level measure - pulp tower PWC3 PWC3-15 - 

18 Level measure -reject storage PWC4 PWC4-1 - 

19 Production volume (pulp throughput)  PWC4 PWC4-2 PWC4-3 

20 Level measure - latency chest PWC4 PWC4-8 - 

21 Production volume (pulp throughput)  PWC4 PWC4-11 PWC3-11 

22 Production volume PWC5 PWC3-16 PWC5-1 

23 Consistency measure PWC5 PWC3-16 - 

24 Production volume (paper production) PWC5 PWC5-19 PWC5-24 

25 Steam flow PWC5 PWC5-24 PWC5-26 

26 Steam flow PWC6 PWC6-1 PWC6-2 

27 Steam flow PWC6 PWC6-2 PWC6-5 

28 Steam flow PWC6 PWC6-11 PWC6-14 
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Signal Processing 

This part of the thesis revision document discusses further the functionality of signal processing 

step of the method. 

The first block of activity of the method is careful cleansing of real-time process data from high-

frequency noise, abnormalities and identification of when the process is near steady-state 

operation. The technique used involves multi-scale wavelet decomposition of measurement 

trends. Two essential steps are required to initialize the wavelet technique: 

 Gathering of information on each individual measurement point and analysis of its 
historical values to identify the optimum wavelet transform (WT) cutting scale for each 
variable, and 

 Analysis of historical data to determine the optimal steady-state values of the detection 
parameters (alpha parameters). 

According to the two steps described above, the sensor network at the case mill was analyzed, 

and each measurement point was characterized by its accuracy and precision values. Multiple 

decomposition trials and tests of each measured variable trend were carried out to identify the 

two essential scaling and parameter values.  

Only the selected key variables that represent the process state are first processed to cleanse 

random and abnormal errors. Simultaneously, the processing technique analyzes the time-

frequency domain for a potential steady-state occurrence of each selected variable. When a 

steady state has been identified, an automatic check for a potential multivariable pseudo-steady 

state is performed. In this way, a plant-wide process steady state can be systematically detected 

and used as an input to the simulation-driven data rectification technique. Within the identified 

steady-state period, the whole set of measured raw process data is extracted from the information 

management system (non-compressed data sets). Then a wavelet data based processing technique 

is used to clean random noise and abnormalities from the set of data. 

The two simultaneous tasks of data pre-processing and pseudo-steady-state detection and tuning 

corresponding parameters are discussed further in the following section. 
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Wavelet parameter tuning for data pre-processing and steady-state detection 

The measurement data is extracted from the information management system (IMS) as a noisy 

signal. The process of extracting measurement values must include the uncompressing of data 

from storage. The optimal WT scale is analyzed using an iterative procedure to find the optimal 

values. After applying a wavelet transform of the chosen scale (data pre-processing), Gaussian 

noise and other abnormalities are discarded from the process trend (Figure 5.13). The process 

status should be estimated at the proper scale. If the scale is too small, the WT representation of 

the signal is dominated by noise and temporal features and thus distinct trends in process 

measurements are difficult to distinguish. On the other hand when the scale is too large, the 

measurement trends will be smoothed too much creating distortion, and the steady-state detection 

may not sharply reflect the variation of the process. 

For illustration purposes, a process trend wavelet representation of a steam measurement is 

shown on the Figure 5.12. The analyst must be careful to not distort the true signal, and at the 

same time, must extract as many random errors as possible. Hence the scale choice of 4 is 

selected because the trade-off between scarcity of the detailed signal and distortion of process 

trend. 

An example of a time period between 300-350 hours of the presented trend is analyzed for tuning 

the steady-state parameters. According to the extensive definition in Appendix A of this thesis, 

several parameters must be tuned for steady-state detection of each measured key variable. The 

three critical parameters (α1, α2 and α3) are determined according to the degree of fluctuation of 

the measurements as well as the sensitivity of key variables to process operation. For practical 

industrial applications, they can be selected from the historical knowledge of the measurements 

as follows: 

 Select successive measurement under steady-state  

 Perform multi-scale WT and second order WT 

 Compute the standard deviation of the WT (w) 

 Compute the median of the second order WT (ww) 

Then the threshold values for steady-state detection are calculated as follows: 

α1 = w
 

α2 = ww
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α3 = w
 

where  is an adjustable parameter whose value is around 1.0, and is determined according to the 

variability of the measurements and their sensitivity to the operation. 

 

 Data pre-processing 

Within the identified steady-state period, each measured variable is pre-processed. The 

knowledge from historical data (from information management systems at the mill) is used to 

tune appropriate thresholding parameters. Thresholding is the process of discarding values that 

are below a threshold and keeping values over the threshold, which is often used in data 

compression or image processing. This process of tuning is done by applying the wavelet 

algorithm to each measurement separately. The detection of the optimal parameters is described 

in Appendix A. In this work the thresholding for noise removal is based on the algorithm 

presented by Jiang et al. (2000). 
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Figure 13: Wavelet decomposition of a steam measurement (scale 1-4) 
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 Process data reconciliation  

 

This third section of the overall method presentation discusses the second pillar of the method: 

steady-state data reconciliation using a simulation driven solver. The need to apply a data 

reconciliation step is justified by the imbalanced nature of monitored variables. It is important 

that a balanced set of process data is used to represent the operating condition since the state of a 

pulp and paper process at any given time can be, in principle, described by the values of a 

number of parameters such as stream properties (flow rates, concentrations, temperatures, etc) 

and equipment operating parameters (dilution rates, separation efficiencies, retention in the paper 

machine, etc). Those parameter values must satisfy the equations of mass and energy 

conservation. However, in practice, the true values of these variables are unknown, only 

measured values of some of those parameters are known. The measured values are not equal to 

the true process parameters values because of imprecision or inaccuracy of monitoring and 

recording devices, instrument disfunction or poor sampling techniques. Furthermore, since a 

manufacturing pulp and paper process is never at rigorous steady-state because of a variety of 

disturbances and since measurements are not taken instantly, they do not represent a single 

process state. Among frequent process disturbances are, for example, feedstock variability, 

equipment instability, sheet breaks in the paper machine, equipment change over, etc. As a 

consequence, measured process variables and parameter values do not constitute a coherent set of 

data, i.e. a set of data satisfying the conservation equations. This is a major obstacle when trying 

to represent real process operation for analysis purposes. In practice, it is assumed that the 

reconciled data constitutes a reliable approximation of the real process and can therefore be 

safely used to represent a process operation under study. 

The first part of this section describes the general problem formulation of data reconciliation. The 

discussion and presentation of the system under study is then explained in more detail, i.e. 

selection of values for weighting matrix assessment, variable classification, constraint selection 

and finally the solver presentation. 
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Problem formulation 

 

In general, the optimal estimates for process variables by data reconciliation are solutions to a 

constrained least-squares or maximum likelihood objective function, where the measurement 

errors are minimized with process model constraints. With the assumption of normally 

distributed measurements, a least-squares objective function is conventionally formulated for the 

data reconciliation problem.  At process steady state, the reconciled data are obtained by: 

 

Miny (J) 

Subject to 

 

where 

y is an M1 vector of raw measurements for M process variables, 

     is an M1 vector of estimates (reconciled values) for the M process variables, 

     is an N1 vector of estimates for unmeasured process variables, z,  

V  is an M M weighting matrix of the measurements, 

f  is a C1 vector describing the functional form of model equality constraints, 

g is a D1 vector describing the functional form of model inequality constraints which include 

simple upper and lower bounds. 

The models employed in data reconciliation represent variable relationships of the physical 

system of the process. The reconciled data takes information from both the measurements and the 

models. In reconciling steady-state measurements, the model constraints are algebraic equations.  

 

Weighting matrix  

In data reconciliation theory, the weighting matrix is expressed as a standard deviation of each 

measurement variable. This is justified when only random errors with normal distribution corrupt 

Tˆ ˆ ˆ ˆ( , ) ( ) ( )J   1y z y y V y y

ˆ ˆ ( , ) f y z 0
ˆ ˆ ( , ) g y z 0

ŷ

ẑ
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the measured variable. However, in reality the errors are not only random noise but also 

systematic errors that are caused by dynamic nature of process operation. These small biases 

must be reconciled in order to satisfy material and energy balances. On the other hand, large 

biases in measurement that are caused by incorrect instrument readings must be identified and 

corrected before they can be used in data reconciliation. 

Another approach that is a common practice in industrial applications is to use engineering 

judgment for matrix estimation by allocating uncertainty weights to each instrument (Narasimhan 

and Jordache, 2000). This pragmatic approach, which is also used in the current study, takes into 

account knowledge of the process dynamics around each particular instrumentation sub-network 

as well as information about each instrument’s accuracy, precision, and reliability. The weighting 

aspect enables the analyst to provide levels of confidence between various measurements, i.e. the 

expert can specify that some measurements are likely to be more reliable than others. 

 

Process Variable classification  

 

In order to better assess input and output variables going to and coming from the data 

reconciliation model, it is important to clarify the concept of variable classification in data 

reconciliation techniques. Measured variables are classified as redundant and non-redundant, 

whereas unmeasured variables are classified as observable and non-observable. The general 

classification of process variables is shown in Figure 13 followed by the classification of case 

study process variables. 
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Figure 13: Classification of process variables 

Definitions: 

 A redundant variable is a measured variable that can be estimated by other measured 
variables via process models, in addition to its measurement. 

  A non-redundant variable is a measured variable that cannot be estimated other than by 
its own measurement. 

  An observable variable is an unmeasured variable that can be estimated from measured 
variables through physical models. 

  A non-observable variable is a variable for which no information is available. 

 

 

Table 2: Case study - classified variables 

  
Variables Measured Redundant

Non-
redundant Observable 

Non-
observable 

TOTAL  1261 386 67 319 639 236 

Streams 786 212 54 158 445 129 

Temperatures 394 155 13 142 157 82 

Consistencies 81 19 0 19 37 25 
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Constraint selection 

 

Two types of constraints are specified in the  data reconciliation procedure:  

 Equations of process units in simulator 
o mass and energy conservation laws 
o unit specific equations (screener ratio of reject and accept flows, steam generation 

from high consistency refiners, etc) 

 Lower and upper boundaries of each measured variable 

Equations specific to processing units: 

First, main equations and unit specific equations are computed by the simulator for each type of 

unit: 

 Splitter (process unit that splits production streams) 

 Silo vessels (chips pretreatment by process low pressure steam) 

 Heat exchangers 

 Impregnation unit (chips pretreatment) 

 Cyclone (separation of fibers) 

 Disk filter (separation of fines from main pulp line) 

 Boiler (high pressure steam generation unit) 

 Recovery unit (recovery and cleaning of process low pressure steam) 

 High consistency refining  

 Low consistency refining  

 Screeners 

 Pumps  

 Paper machine – forming section 

 Paper machine – press section 

 Paper machine – drier section 

 

Solver description 

 

In this work, data reconciliation was performed using commercial software (CADSIM Plus 

academic version 2.4). The simulation solver is sequential, but the data rectification solver is 
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simultaneous. First, the analyst selects a number of independent measured variables, referred to 

as free variables that satisfy system’s zero-degrees of freedom. The free variables are inputed into 

the process simulation model to estimate the whole set of process variables. The pillar of the data 

rectification module is a modified version of the simplex optimization technique. In the first 

iteration, the algorithm compares the changes in the free simulated variables to their measured 

values. The simulation and iteration process repeats until the minimum least-squares error 

between the simulated variables and the measured values is obtained. The output of the 

rectification process is the set of reconciled measured values and other calculated variables not 

available from measurements. 

Simulation context 

Process simulation refers to the process of solving a system of nonlinear equations that represent 

the process operation under the fundamental laws of mass and energy conservation. One can 

represent a process using a set of “m” equations with “n” unknowns, with the difference “n-m=d” 

representing the “d” degrees of freedom of the system (DOF). The simulator can find a solution 

when d = 0. Generally, two types of solving procedures exist: simultaneous or sequential. 

In the case of simultaneous simulation, the solution can only occur when “d” over “n” 

combinations of unknown variables are specified. The analyst must specify the “d” variables 

according to knowledge about the operation. In practice some combinations of specified variables 

will lead to a very difficult system to be solved, sometimes even impossible to resolve. 

As sequential simulation is of concern, the large problem is reduced into a set of smaller sub-

systems being defined by the equations describing a single operating unit of the whole process. 

Conceptually the global set of “m” equations is broken down to “p” smaller local sets of 

equations. Hence in sequential simulation the choice of which of the combinations is to be used 

provides better chances of finding a solution. 

Since the simulator in this work is a sequential solver for data reconciliation, the notion of 

sequential versus simultaneous procedure becomes critical since it dictates which variables are to 

be specified. It is possible to draw an analogy between the notion of observability of a system as 

defined by the choice of its measured variables and the notion of degrees of freedom (DOF) of a 

simulated system defined by the choice of its specified variables. Since a simulation engine can 

solve only when the DOF are zero, it is possible to assume that a simulation is always 
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“observable”. The CADSIM simulator requires a set of “d” variables to be specified (free 

variables, FV) and computes the remaining “n-d” variables (computed variables, CV) using first 

principle equations. When using data reconciliation terminology and assuming the values 

provided for the free variables come from process measurements, the simulation can be assumed 

to bea non-redundant system. 

For a data reconciliation procedure, an analyst must choose from the whole set of measured 

variables, a set of redundant measured variables. Since the simulation is “observable” the system 

will then have the flexibility to associate these redundant measurements on any combination of 

FV or CV in a simulation. If these measurements are attached to only some of the FV in the 

simulation, the data reconciliation problem can be classified as “redundant” for every such 

measurement. If the set of measurements is associated to combinations of the FV and CV in the 

simulation, then the data reconciliation problem is “redundant” if the CV measurements have a 

functional relationship with some of the FV measurements.  Finally if the measurements are 

attached to only some of the CV in the simulation, then the data reconciliation problem is “non-

redundant” for every such measurement. 

 

Reconciliation strategy  

Within the framework of the method implementation, a minimization of the weighted square 

error between the simulated values, which are necessarily balanced, and the corresponding 

measured variables, which are inherently unbalanced is carried out: 

 

s.t.  f (x, z) = 0 

 g (x, z) ≥ 0 

where: 

xi = reconciled value; 

yi = measurement – free variables (FV); 



  326 

 

wi = weight; 

zi = non-measurement variables - computed variables (CV) 

spanxi = normal operating span for variable xi ; 

The vector x is subject to constraint equations, i.e. mass and energy conservation laws and 

specified inequality constraints. The objective function is added to the simulation to be reconciled 

using mathematical functions native to the simulator used. The iterative search for values of x is 

performed using optimization module based on a simulated annealing version of the well known 

simplex optimization algorithm. Furthermore, normalized values are used to calculate the 

objective function due to the variety of physical units met in pulp and paper operation, for 

instance volumetric flows which can be in the thousands and mass fractions which are between 0 

and 1.  

 

Downhill Simplex Method 

The downhill simplex method is an optimization algorithm created by Nelder and Mead (1965). 

This heuristic method does not make any assumption on the objective function to minimize. In 

particular, the objective function must not satisfy any condition of differentiability. It relies on 

the use of simplices, i.e. polytopes of dimension n+1. For instance, in two dimensions, a simplex 

is a polytope with 3 vertices, most commonly known as a triangle. In three dimensions, a simplex 

is tetrahedron.  

The fundamental mechanism of the downhill simplex method is the following: The algorithm 

starts from an initial simplex. Each step of the method consists in an update of the current 

simplex. These updates are carried out using four operations: reflection, expansion, contraction, 

and multiple contractions. To be more precise, by successive iterations, the process involves the 

evaluation of the simplex point where the objective function is maximal in order to substitute this 

by reflection with respect of gravity centre of N other points. If the value of the objective 

function is lower than the value of other points, the simplex is expanded in this direction. If the 

value of the objective function is higher, the local minimum function is supposed to be closer , 

and the simplex is reduced. Figure 14 shows the four fundamental operations on a 3-simplex (two 
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dimensions plus one dimension for objective function), where x1 is the simplex point 

corresponding to the maximum value of the function. 

  

 

 

 

Figure 16: Illustration in 2 dimensions of the four fundamental operations applied to the current 

simplex by the downhill simplex method: (a) reflection and expansion, (b) contraction, and (c) 

multiple contractions. 

 

Let f: Rn -> R, be the function to minimize and let {x0, … , xn} be the current simplex (xi   Rn  

Rn for all i  [0, n]). Let h  [0, n] be the index of the `worst vertex', i.e. the value h = arg maxi 

f(xi) and l  [0, n]) be the index of the `worst vertex', i.e. the value l = arg min f(xi).  The 

downhill simplex method is detailed in the following algorithm.  
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The stopping criterion is defined by:  

 

With f(xi) the average of the values, and a predefined constant. This criterion has the advantage 

of linking the size of the simplex with an approximation of the local curvature of the objective 

function.  

As can be seen in figure below, implementation of the optimizer is achieved with the use of a 

programmatic interface enabling the design of custom computational modules to be executed 

within the commercial software, CADSIM Plus (Wasik, 2002 ). 

 

 

 

 

 

 

 

 

 

 

 

Cadsim Plus 

Simulation Engine 

Dynamic Load 

Modules 

Optimizer C++ code 
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Compile and Link 

Optimizer Module 

Xi

Result

Integration of optimizer module into CADSIM Plus simulation software 

Figure 15: Integration of optimizer module into CADSIM Plus simulator 

software 
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Advantages of the solver approach  

 General use.  
 Simplicity.  
 Efficiency for non differentiable function.  
 Geometrical interpretation.  
 Certainty for a set of decreasing values.  

Inconvenient of the solver approach  

 Difficulty if the minimum is close to a border.  
 Arbitrary choice of initial simplex.  
 Decrease in performance when number of dimensions increases.  
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Production cost assessment  

 

The third pillar of the overall method is operations-driven cost modeling framework for product 

costing. A three-step analysis sequence is applied in the development of the cost models of the 

current and retrofit design alternatives:  

o Development of the base case model,  
o Validation of the base case model using process data and financial statements and 

reports, and  
o Development of the cost models of the retrofit cases. 

Steady-state process simulation models – either existing process simulation models of the current 

facility, or new/modified models based on the flowsheet synthesis – provide the cost models with 

resource and activity drivers that are based on the mass and energy balances. The integrated 

designs’ mass and energy balances and flowsheets provide utility demands and constraint 

information of the current systems needed in the retrofit scenarios. 

The mass and energy flows between defined cost model activities represented by the steady-state 

simulation model are transferred to the cost models using driver and production rate tables. These 

cost models were developed in this work using Impact: EDC™ from 3C Software Inc1.  

The two inputs into the cost model are the resource consumption rates provided by reconciled 

process data and cost items (resource unit prices). The cost items are divided into direct and 

indirect costs, where for the later one a table of allocation rules is specified. The following 

section defines various financial inputs into cost model in more details. The cost model 

presentation is then finalized in the second section by presenting the functionality and calculation 

engine of the model. 

 

                                                 

1 http://www.3csoftware.com 
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 Cost items definitions 

The first part of cost-model development is to characterize the direct and indirect manufacturing 

costs of the studied facility. The steady-state process simulation model and real-time data are 

used to define resource and activity drivers of the cost model for current business and for the 

forest biorefinery options. 

The cost items are divided into two categories: 

 Direct costs (rate of consumption is tracked by process data), and  

 Indirect costs (rate of consumption is calculated based on allocation rules) 

 

Most of the indirect costs allocation rules are chosen to be on the basis of head count (number of 

direct labor per departments). The only difference in the basis of indirect cost allocation is a 

maintenance cost (maintenance labor and material). This was done in order to associate 

maintenance cost to departments that require more maintenance hours than others. It must be 

mentioned here that changes to indirect cost allocation rules will not result in a change in the total 

indirect cost of product. These rules of allocation were chosen from discussions and practices of 

current accounting procedures at the case mill. This way the communication and validation 

process of cost results with mill accountant was improved. It is recognized that there are several 

other allocation options for indirect costs, for instance based on machine hours, direct labor 

hours, or indirect cost items could be not included in the cost model. The choice of allocation 

basis does not influence the goal of this work which is to analyze the performance of the 

production processes within different operating practices.  
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Table 3: List of cost items input into the cost model 

Bleaching Aid Maintenance labour 

Retention Aid Wages -Misc. 

Machine fabrics Training 

Machine clothing Maintenance materials 

Wrappers and Heads Operating Supplies 

Cores Major maintenance 

Finishing/shipping 

supplies Salaries 

Production supplies Benefits 

Refiner plates Company pension 

Sludge disposal Insurance 

Chemicals -Effluent Property taxes 

Other chemicals Salary contingency 

Oil for Steam Variable pay 

Gas for steam Process control 

Electricity for steam Professional Services 

Electricity General Overhead 

Other energy 

 

 

The use of all mill indirect cost items were chosen in order to represent the production costs on 

the same basis as it is currently being practiced at the mill for validation purposes. The selection 

depends on the analyst's judgment and hence some of the cost items could be omitted if desired. 

For instance, such a situation can occur if the direct cost is analyzed only in relation to process 
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performance. On the other hand the use of indirect cost allocation points indirectly to the capacity 

utilization of the process. This way the difference between running operating conditions and shut 

downs of the production (or part of it) can be understood, i.e. the portion of indirect costs when 

operating at full capacity is smaller than when during shutdown of TMP line.  

In summary the use of indirect items better represent the actual production costs with the ability, 

for instance to track maintenance costs to different departments based on actual maintenance 

hours. The indirect costs are calculated in the process work center that is called Overhead Work 

Center. Figure 16 represents the classification of cost items used in this work and their relation to 

process work centers at the case mill. 
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Figure 16: Definition of the process and overhead work centers which capture various cost 

categories within the current business base-case mill (from thesis page 74). 
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Operations-driven cost model 

The costing framework in this work is inspired by the activity based costing principles. Many of 

the resource drivers and cost object activity-drivers (activity consumption by cost objects) in 

chemical processes are based on continuous material flows. The ABC-type definition of them can 

be defined similar to the classical ABC accounting: 

 In classical ABC accounting the main focus is on improving indirect costs tracking in 

order to capture different levels of activities requirements for different types of cost 

objects.  

 In the operations-driven costing, the ABC-like approach is an analogy to indirect cost 

tracking (by the classical ABC principles) with the direct costs. The activity in the 

processing plants is defined by two key aspects: the process design (material and energy 

balances) and the operating condition (actual values of resource consumption), i.e. the 

same processing units will result in different rate of resource consumption when operating 

conditions change.  

 The results of an operations-driven cost model are product costs and activity costs. These 

can be further used in performance analysis of the production by identifying more 

profitable regimes of operation. 

Cost assessment within process work centers: 

Various drivers used in the cost calculation come from reconciled process data (resource drivers 

for direct costs) or from allocation table (indirect costs drivers). The general equations for 

calculating costs within each process work center can be summed up as follows: 

Product cost ($/t or $/hr) =  

where PWCi is cost of a process work center, and it is calculated  

 PWCi =  

where DC and OH are direct costs and overhead costs respectively 

DCPWCi =  
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OHPWCi =  

Where RDi and UCi are resource driver and unit price of resource for given direct cost 

respectively; OHj and ABj are an over head item (indirect cost item) and its allocation rule 

respectively. 

An example of cost calculation of a sub activity (primary refiner) within a process work center is 

illustrated on Figure 17 The resource driver is the electricity consumption and electricity load 

with their associated unit costs. The results of this calculation is the cost of electricity consumed 

by primary refinery for a given production regime. 

 

Process information
# Work center: Main refining
# Sub activity: 1st Refining stage
# Reference flow: 48R12SS032: 27.52 t/h
# TAG ID: 38JI4320.PNT
# Process value: 26.81 MW
# conversion unit 3600

Cost information
# resource ID: Electricity Consumption
# resource unit cost: 0.02910 $/kWh
# 

Process information
# Work center: PWC2 - Main refining
# Sub activity: 1st Refining stage
# Reference flow: 48R12SS032: 27.52 t/h
# TAG ID: 38JI4320.PNT
# Process value: 26.81 MW
# conversion factor: 1000

Resource cost for activity

Cost information
# resource ID: Electricity Consumption
# resource unit cost: 0.029 $/kW 
# resource ID: Electricity Load
# resource unit cost: 8934.41 $/MW 

Primary ref iner  

Figure 17: Illustrative example of cost calculation (electricity) for an activity - Primary refining 
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Decision making 

 

The characterization of operating conditions by cleansed real-time processed data is used to 

enhance instrumentation and process troubleshooting: 

1. Operational decision making based on near steady-state data occurrence: 

a. Piles of preprocessed data sets corresponding to a near steady-state condition can 

be used to characterize the duration of stable and unstable operating conditions 

that are caused by external perturbations (change in raw material characteristics). 

This characterization can enhance the understanding of chip quality impact into 

operating performance, i.e. how often these perturbations occur and what are the 

associated causes of change in quality of raw materials. 

2. Operational decision making driven by reconciled steady-state data sets 

a. Reconciled near steady-state data sets are used to identify biased instruments. This 

process helps with the instrumentation maintenance to calibrate individual sensors 

to measure accurately. The use of reconciled data sets can be exploited to identify 

unwanted “product leaks” within process activities if they occur.  

3. Operational decision-making based on cost of operating regimes: 

The assessment and interpretation of operating costs for individual operating regimes can 

be used to identify costly regimes. This unique knowledge provides an opportunity to 

avoid producing in this costly operation if possible. Thus several operational decisions 

can be made: 

a. Identification of profitable operating regimes: The need to change operating 

parameters due to shift in planned internal product quality requirements (pulp 

freeness).  

b. Process troubleshooting:  Manufacturing cost of a given operating regime is set as 

a benchmark. When production cost is significantly changed for the same 

operating parameters, the variance can be analyzed and interpreted from a process 

perspective and thus indentify process problems. 

4. Strategic decision making for future operation performance evaluation 
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a. The cost model for assessing regime operating costs can be used to compare 

operating costs of retrofit scenarios and thus help selecting the best option and 

best operating practice in the new business strategy. 

b. The use of EBITDA forecast of the new business strategy provides new decision-

making insights by amplifying the difference in cash flow due to variance in cost 

of operating regimes. 

5. Operational decision making driven by cost distribution of operating regime  

a. The cost distribution for a given product within accounting period can enhance 

understanding of cost variances due to operating efficiency.  

b. Continuous improvements:  The cost analysis of operating regimes allows 

identifying the best operating practices for given product. The best operating 

practice can be used as a method that has consistently shown results superior to 

those achieved with other means, and that is used as a benchmark. In addition, a 

"best" practice can evolve to become better as further improvements are 

discovered. Best practice is a feature of accredited management standards such as 

ISO 9000 and ISO 140013 
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APPENDIX J –METHOD VALIDATION AND TESTING 

The process of testing of the overall method consists of four parts: process simulation, signal 

processing, data reconciliation and cost model testing. Individual tests are essential parts of the 

model development process since every model only approximates reality in the face of scientific 

uncertainties. 

 

Simulation model testing 

The validity of the developed process simulation model has been tested during the course of this 

work. The simulation was built in two commercial software packages: WinGEMS and CADSIM 

Plus.  

The state-of-the-art methodology to develop a valid simulation should include following steps2: 

 Formulate the problem, including objectives 

 Interview appropriate subject matter experts  

 Interact with the decision-maker on a regular basis - to ensure that the correct problem is 

being solved and to promote simulation credibility 

 Validate components of the simulation – using quantitative techniques 

Document the conceptual model – critical for current and future applications of the simulation  

 Perform a structured walk-through of the conceptual model – for a nonexistent system; 

this may be the single most-important validation technique 

 Perform sensitivity analyses to determine important simulation factors and risks 

 Validate simulation results – analyzing simulation output data using various techniques 

 

                                                 

2 http://vva.msco.mil - Verification, validation and accreditation Recommended Practices Guide (The purpose of 

VV&A is to assure development of correct and valid simulations and to provide simulation users with sufficient 

information to determine if the simulation can meet their needs.) 
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The following steps for the validation of the TMP simulation model have been carried out: 

description of the objectives; meetings on a regular basis with the production engineer, the 

control engineer and a process engineer of the mill to check principles of operation, process flow 

diagrams, unit operations, equations and calibration of parameters, specifications and results from 

simulation. Sensitivity analysis has been performed with engineers even though this is not 

reported in a formal document. Several mill engineers reviewed simulation output for 

reasonableness. In the near future, the complete documentation about simulation model will be 

provided to the mill with the technology transfer process. 

 

The use of statistical tests 

A number of statistical tests have been suggested in the validation literature for comparing the 

output data from a stochastic simulation with those from the corresponding real-world system 

[Shannon, 1975, p. 208].  However, the comparison is not as simple as it might appear, since the 

output processes of almost all real-world systems and simulations are non-stationary (the 

distributions of the successive observations change over time) and auto-correlated (the 

observations in the process are correlated with each other).  Thus, classical statistical tests based 

on independent, identically distributed observations are not directly applicable.  Furthermore, it is 

questionable whether hypothesis tests, as compared with constructing confidence intervals for 

differences, are even the appropriate statistical approach.  Since the simulation only approximates 

the actual system, a null hypothesis that the system and simulation are the “same” is clearly false.  

It is more useful to ask whether or not the differences between the system and the simulation are 

significant enough to affect any conclusions derived from the simulation.   

Several statistical tests could however be performed, based on the analysis of variance and 

concepts of quality control.  

A documented statistical test to check the validity of the TMP model and confirm the literature 

(Bagajewitcz, 2000) about the relevancy of identifying steady states for data reconciliation is 

proposed here. 

This test would involve following steps: 
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 Register data from PI system, one set of data corresponding to one set of operation 

conditions for one period. Filter and average each set of data.  

 Evaluate the standard deviations of relative errors between measured and simulated 

variables. Evaluate a function resulting from the sum of all the variances. 

 Check model relations linking variables with higher standard deviations. Modify 

eventually these relations. Reevaluate the function after the change. 

 Compare the function value with the result from reconciliation of data selected at steady 

state. Function value resulting from data selected at steady state should be lower than that 

resulting from data average for a set of operation conditions. 

 

An informal test to check the relevancy of identifying steady states and selecting the 

corresponding data for reconciliation, instead of just averaging variables linked through non 

linear equations and tank hold-ups, has been performed during this study, although this has not 

been documented. 

 

Signal processing 

Several tests have been done informally during the execution of this work in order to analyze the 

method's ability to de-noise signal as well as to identify near steady-state conditions. 

 

 Optimal scale of wavelet decomposition  

The performance of denoising by wavelet transform can be assessed by calculating the mean-

square error (MSE) between the raw data and the processed signal. Since the process signal is a 

representation by wavelet (the inverse of detailed signal over the wavelet coefficients – 

discussion on the subject is in Appendix A, page 121-123), the MSE will be decreased with the 

increase in scale of decomposition. However, at a certain scale this process will remove not only 

noise but also trend features of the signal which will clearly increase the value of MSE. Hence 

the optimal scale can be found mathematically by selecting the first minimum of MSE reached. 

Mathematically, the different steps to find the optimal scale are as follow (Benqlilou, 2004): 
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1. The scaling and wavelet coefficients, and respectively, at various scales  and 

dilatation  are obtained by taking of the DWT over . 

2. The approximation component, , at each scale is reconstructed through:  

  (1) 

3. The power  contained in the difference between  and at each scale   is 

calculated through, Eq. (2). 

 (2) 

 

4. The variation of power, Eq. (2), between successive scales is computed using Eq. (3). As 

the dyadic scale increases the power due to the noise calculated in Eq. (2), decreases 

rapidly until it reaches a first minimum. The optimal scale corresponds to the first 

minimum encountered 

 (3) 

 

5. At this scale  a first thresholding based on setting to zero all the  greater than  is 

performed. Then, a second thresholding over the remaining coefficients is performed 

through Visushrink methods reported by Nounou and Bakshi (1999). 

6. The de-noised signal is obtained by taking the inverse of DWT as shown in Eq. (4). 

 (4) 

In the course of this work the tests of choosing different wavelet scale were not conducted. It was 

assumed that the best performance of data reconciliation step will be achieved if optimal scale is 

selected for each variable. However in future work, the following procedure can analyze the 

impact of scale selection on reconciliation results: 

1. Create a hypothetical data set of with known random, systematic errors and known 

steady-state periods. 
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2. For given set of independent variables perform wavelet transform with an optimal scale 

choice (Selected according to the discussion above) 

3. Analyze the set of variables for steady-state occurrence and evaluate the performance by 

Error I and II testing (discussion in Appendix A of thesis). 

4. Evaluate the impact on data reconciliation outcomes by comparing the size of error from 

true values. 

5. Repeat points 2-4 with different scale of wavelet transform for each independent variable. 

 

Data reconciliation 

Testing of the data reconciliation model involves sensitivity and scenario analysis of critical 

parameters used in the model. A change in the value of certain parameters of the reconciliation 

procedure affects how the variation (uncertainty) in the output of the model can be attributed to 

different changes in the inputs of the model. The focus of test analysis of the reconciliation model 

can be divided into three categories: 

1. The impact of model parameters on reconciliation output 

2. The impact of independent variables choice 

3. The impact of weighting choices 

More details on how this must be addressed is given in the following sections: 

The impact of model parameters on reconciliation output 

Various model parameters must be tested in order to assure the overall model validity when 

performing data reconciliation to represent an operating regime as close to reality as possible. 

Parameters such as ratio of steam generation from high consistency refiners to the electricity 

load, were analyzed for each operating regime during within this study. The design test for 

statistically summarizing parameter validation over each operating regime is envisioned as a five-

step procedure:  

1. Select a single data set representing near steady-state operation within the regime.  

2. Select a value of the parameter from its range (for instance, real values of ratio of steam to 

electricity load are in the range of 0.8-1.2). 

3. Perform a data reconciliation and plot normalized mean square error. 
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4. Repeat steps 1 through 3. 

5. Detect which value of the selected parameter has the lowest computed NMSE value and 

which parameters have NMSE values that are significantly different from the optimal 

value. 
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Figure 18: sensitivity analysis of model parameters - Steam ratio in primary refiner 

 

Figure 1 shows an output of a single parameter sensitivity analysis to the reconciliation outcome. 

The value of the parameter that yields to the lowest NMSE is selected. In the case presented in 

Figure 6.1 for a given operating regime, the ratio of steam generation in primary refinery was set 

to 1.03. Various parameters that are specific to the processing units in the simulation model were 

similarly analyzed for different operating regimes. Hence it can be assumed that this process has 

ensured the validation of the reconciliation model. Additional tests could be performed in order to 

select the best reconciliation strategies. 

 

Scenario testing of independent variable choice 

As discussed in the model presentation section of this document, selection of subset of measured 

free variables is carried out by an analyst, and utilizing the expertise concerning the underlying 

process and monitored variables. In the course of this work a fixed set of measured variables 



  345 

 

were associated to the model to create a maximum redundancy of the system as possible. The 

process of variable selection was however limited to the lack of measurements and thus many of 

the sensor associations could not be altered to perform sensitivity test with experimental results. 

For future work, the following test of the choice of variables is presented: 

1. Create a hypothetical data set that represent a real steady-state operating condition. 

2. For a given set of measurement variables, identify independent variables based on the 

accuracy of the instruments. 

3. Perform a data reconciliation step and evaluate results by the least square value and 

relative error measure. 

a. Since the output of reconciliation can vary, this step will should be performed 

several times for assuring adequate justification of results on statistical basis.  

b. The results can be presented on several critical variables (significant from a cost 

perspective – see Table 1 bellow), i.e. production volume, steam flow, electricity 

consumption. 

4. Set different independent variables based on engineering judgment and repeat tasks 2-3. 

5. Identify the best performance option of the reconciliation model with corresponding 

choice of independent variables and interpret/justify the outcomes. 

 

Table 4: The relative error improvement by data reconciliation from the first choice of 

independent variables (based on instruments accuracies) 

True value Measured value Reconciled value Relative error (measurement) Relative error (reconciled)

Production (Primary refiner) t/hr 689 631 685 8.42% 0.58%

Production (Reject refiner) t/hr 376 340 375 9.57% 0.27%

Specific energy (primary refiner) kwhr/t 970 940 969 3.09% 0.10%

Stem flow (reject refiner) t/hr 9.43 11.45 9.51 21.42% 0.85%  
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The impact of weighting choices 

The choice in measured variables comes down to the analyst's judgment of the process and 

instrumentation network. The expert of the system specifies the best (to his knowledge) 

individual values. The selection of initial weights to represent uncertainty in individual 

measurement was based on calculating of coefficient of variation. This coefficient is the standard 

deviation normalized to the mean (σ/μ) which reduces the possibility of inputs that take on large 

values were given undue importance (Cullen and Frey, 1999). This process has served as 

preliminary screening tools without additional model iterations while indicating proportionate 

contributions to output uncertainty. During the course of this work, these values were adjusted as 

a learning experience by understanding the process operation. Currently, the final matrix of 

weights reflects the uncertainty in each instrument reading, as well as the uncertainty caused by 

the natural process dynamics. 

To support the choice of weights, a sensitivity analysis was carried out on every measurement. 

For illustration purpose the results are presented in the tables (2 to 5). The sensitivity analysis of 

the weighting choice has followed a four-step procedure: 

1. Selection of a single data set representing near steady-state operating conditions of a 

production regime. 

2. For given set of measurement variables, define a weighting matrix based on the accuracy 

of the instruments (classical selection of members of covariance matrix)  

3. Performance of a data reconciliation step and evaluation of results by relative error. 

4. Set different values of weights to selected key variable and repeat step 3. 
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Table 5: Output from data reconciliation process 

Variable 
Tag 

Name 
Value Meas. Recon. Weight RE Contr. Information 

Prod costs Comp. 283.5 - - -       

Volume 

flow FIC4318   28.37 28.99 0.90 
0.022 15.4% Steam recovery 

Volume 

flow FIC4114   43.12 43.33 0.95 
0.005 3.5% Boiler steam 

Mass 

Flow 138-221   645.34 614.18 0.05 
0.051 36.1% Primary refiner 

Mass 

Flow 138-243   612.98 613.30 0.8 
0.001 0.4% Sec Refiner 

Mass 

Flow 138-261   232.98 229.60 0.65 
0.015 10.5% Reject refiner 

Electricity  JI4320   26.67 26.78 0.85 0.004 2.9% Primary refiner 

Electricity  JI4720   16.45 17.09 0.8 0.038 26.8% Sec Refiner 

Electricity  XIC4967   84.70 85.23 0.9 0.006 4.4% Tertiary refiners 

 

Table 2 summarizes the outcomes of data reconciliation with selected weighting values for each 

measurement. Sensitivity analysis reveals how the accuracy of some estimates could be 

improved. For instance, table 2 shows the sensitivity analysis results for the production costs 

calculation in the pulping line (the presented value is only an illustration of an actual value). The 

first line in the table reports the measured value, and reconciled accuracy of this variable. The 

next rows in the table identify the measurements that have a significant influence on the validated 

value of production costs. For instance, 36.1% of the uncertainty on production costs comes from 

the uncertainty of variable 138-221 – mass flow of pulp prior to primary refining stage. The 

contribution of uncertainty from each variable is based on relative error for sensitivity analysis of 
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weighting choice. In order to capture the actual contribution of individual variable to cost 

uncertainty, the measurement variance  due to process dynamics must be included (Figure 4). 

In Table 3, the sensitivity output from varying trust in the pulp mass flow measure, is 

summarized and presented for three variables. The sensitivity is illustrated as an impact of weight 

selection to the level of spread of uncertainty across other variables. For instance the change of 

weight from 0.05 (wrong measurement) to 0.5 would increase the uncertainty of steam measure 

(flow FIC4318) among others that aren’t presented in the table. However, the true sensitivity of 

variable must include the impact of process variability as well as cost sensitivity. This is 

discussed and presented in a similar example in the cost model testing section (section 4).
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Table 6: Weighting choice and the sensitivity to the output uncertainty 

Variable 
Tag 

Name 
Value Meas. Recon. Weight RE Contr. Info 

Prod costs Comp. 283.467 - - - - - 

Volume 
flow FIC4318 28.37 28.99 0.90 

0.022 15.4% Steam recovery 

Volume 
flow FIC4114 43.12 43.33 0.95 

0.005 3.4% Boiler steam 

Mass 
Flow 138-221 645.34 614.18 0.05 

0.051 36.3% Primary refiner 

Variable 
Tag 

Name 
Value Meas. Recon. Weight RE Contr. Info 

Prod costs Comp. 283.467 - - - - - 

Volume 
flow FIC4318 28.37 28.99 0.90 

0.022 19.4% Steam recovery 

Volume 
flow FIC4114 43.12 43.33 0.95 

0.005 4.3% Boiler steam 

Mass 
Flow 138-221 645.34 631.22 0.50 

0.022 20.0% Primary refiner 

Variable 
Tag 

Name Value Meas. Recon. Weight RE Contr. 
Info 

Prod costs Comp. 283.467 - - - - - 

Volume 
flow FIC4318 28.37 28.99 0.90 

0.022 22.8% Steam recovery 

Volume 
flow FIC4114 43.12 43.33 0.95 

0.005 5.1% Boiler steam 

Mass 
Flow 138-221 645.34 642.11 1.00 

0.005 5.3% Primary refiner 
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The impact of steady-state assumption using average variables 

 

The test of steady state assumption is presented in the thesis (Executive summary section – signal 

processing, page 64-66 and Appendix A). In summary the following steps were executed: 

1. Identify near steady-state data set and  

2. Perform data reconciliation and evaluate relative errors 

3. Relaxing the steady-state assumption - Set steady-state detection parameters to 

include process dynamics in the stationary assumption 

4. Perform data reconciliation and evaluate relative errors 

5. Repeat 3-4 for different values of steady-state parameters  

6. Average values of measurements within the analyzed time frame 

7. Perform data reconciliation and evaluate relative errors  

8. Evaluate the outcomes from different procedures and discuss the impact on cost 

analysis 

However extended analysis could be performed to capture the plant wide operation. Furthermore, 

the use of different data sets with more dynamic trends than it was used would potentially 

highlight further the necessity to select a data set that correspond to near steady state condition as 

close as possible.   
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Operations driven model  

 

According to the suggested guidance for sensitivity testing of complex models, the analyst should 

first apply non-intensive analysis methods to understand and select only inputs that create the 

most sensitivity. The application of more intensive techniques should then be applied to this 

smaller subset of inputs.  

 

Variable sensitivity analysis 

Simple sensitivity analysis of each of the variables used for calculating production costs was 

carried out by the following procedure: 

 Step change in input of analyzed variable 

 Analyze the output of the model 

 Create sensitivity outcome – ratio of change in input variable to change in model output  

The outcome from the analysis is the sensitivity relationship of each measurement variable to the 

outcome of the model. These functional relationships are linear (Figure 2). For instance a small 

change in electricity resource (main refining line) will create larger change in the outcome of the 

model than process or boiler steam resources. On the other hand, a change in production rate 

(near 20%) will result in the change of 10% in the output (cost of production). 
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Figure 2: Simple sensitivity analysis of four variables, production rate, electricity (main 

refining), process steam (outlet of recovery unit) and boiler steam (outlet of boilers) 

The second step of the sensitivity analysis of the overall method involves the combination of 

uncertainties due to several types of errors (due to measurement procedures, process dynamics, 

external causes, etc): 

 WT of each measurement represents variation from steady state due to process dynamic. 

It is expressed as the variance of preprocessed signal by wavelet transform. 

 RE – relative error of raw measurement to its reconciled value. 

 The total error within each variable can be expressed as a combination of both type of 

errors and it is calculated as the square root of the sum of squares of both errors: 

tot =  

 The final sensitivity value is expressed as a Variance = S.tot, which is a multiplication of 

variable sensitivity with the total error of variable. 

 Contribution of variable error to the uncertainty of the outcome can be then calculated for 

each variable as Variance (i) / Sum (variances). 

Table 6.4 summarizes the outcomes of the sensitivity analysis. When compared to the sensitivity 

analysis of the reconciliation model using only relative error, it can be noticed that electricity 
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resource becomes the most significant. For instance, 46% of the uncertainty on production costs 

comes from the uncertainty of variable JI4320 (electricity consumption at primary refining). 

 

Table 7: Sensitivity analysis of production costs 

Variable Tag Name Value Meas. Recon. WT RE Sen. Tot Var. Contr. Info 

Prod. 

costs 
Comp. 283.5 - - -    - -  -  -    

Volume 

flow 
FIC4318 

  28.365 28.992 
0.67 0.022 0.32 1.09 0.35 6.79% 

Steam 

recovery 

Volume 

flow 
FIC4114   43.120 43.330 

1.10 0.005 
0.22 

0.91 0.20 3.90% Boiler steam 

Mass Flow 138-221 
  

645.341 614.178 18.61 0.051 0.41 0.05 0.02 0.43% 
Primary 

refiner 

Mass Flow 138-243   612.982 613.298 7.98 0.001 0.40 0.13 0.05 0.98% Sec Refiner 

Mass Flow 138-261 
  

232.980 229.601 3.38 0.015 0.14 0.30 0.04 0.81% 
Reject 

refiner 

Electricity  JI4320 
  

26.671 26.781 0.33 0.004 0.79 3.02 2.39 46.56% 
Primary 

refiner 

Electricity  JI4720   16.445 17.088 0.24 0.038 0.42 4.15 1.74 34.01% Sec Refiner 

Electricity  XIC4967 
  

84.701 85.228 0.33 0.006 0.11 3.04 0.33 6.52% 
Tertiary 

refiners 

 

Resource price testing  

Another test that could be performed is is the sensitivity of resource prices. This may or may not 

be relevant according to the decisions based on the proposed method. Two levels of decision 

making are of focus: 

1. Operational decision making to evaluate cost-process performance analysis 

In this case the selection of price was taken from historical knowledge. Only comparison of 

process efficiency is made and hence the difference choice would not influence the comparison 

process.    
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2. Strategic decision making based on futuristic operational performance  

In the case of strategic decision making, the prices of the future resources may play an important 

role when comparing various processes design alternatives. In the presented results the prices 

were taken based on RPA (2001-2020)3 

 

 

 

                                                 

3 Renewable Resources Planning (RPA) which include long-term projections for forest product 
consumption 
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