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Khalé Ozra, Aziz, Hosein, Mohsen, Ali, Ali (Kalantarnia) and Abbas (Nasiri)

I am proud of having you ; thank you for being my real treasure.



v

RÉSUMÉ

Cette thèse de doctorat est divisée en deux parties. L’objectif de la première partie était

de développer un modèle numérique rapide et précis pour résoudre le problème électromagné-

tique de conducteurs en ruban bobinés de façon hélicöıdale. Cette méthode peut être utilisée

pour trouver la distribution de courant et les pertes AC dans des applications utilisant des

matériaux supraconducteurs à haute température critique (HTS) destinés aux réseaux élec-

triques. Dans la seconde partie du projet, le modèle développé est utilisé pour réaliser des

analyses paramètriques du comportement des pertes AC pour un agencement de rubans de

HTS disposés sur une même couche, pour différents paramétres de conception. Le principal

objectif de ces études était de minimiser les pertes AC en trouvant les paramètres optimaux

pour divers agencements de rubans.

Dans la production récente de câbles de puissance HTS, les“coated tapes”sont les conduc-

teurs privilégiés. L’épaisseur de la couche supra est d’environ 1 à 2 µm. Selon l’application,

sa largeur varie de 4 à 12 mm. Dans la conception de câbles, ces rubans sont bobinés de

façon hélicöıdale en simple couche ou couches multiples, sur une forme (support) cylindrique

central. La géométrie complexe des rubans ainsi que la non-linéarité de la résistivité de la

couche supraconductrice rendent difficiles la résolution de ce problème électromagnétique.

Dans la première partie de cette thèse, nous avons introduit une méthode numérique

pour calculer la distribution du courant et du champ dans des conducteurs minces bobinés

hélicöıdalement lorsqu’un ou plusieurs de ces conducteurs sont assemblés de façon symètrique.

D’après les considérations symétriques associées à la géométrie du problème, et en négligeant

l’épaisseur des rubans, le vrai problème 3-D peut être réduit en un problème 1-D dont le

domaine se situe sur l’axe central situé à la mi-épaisseur des rubans (suivant la largeur)

constituant le câble. La version basse fréquence de l’équation des courant de Foucault est

discrétisée dans le domaine réduit d’étude. Pour établir une relation directe entre la densité

de courant et le vecteur potentiel dans la formulation du problème, la solution de l’intégrale

de Biot-Savart est utilisée pour trouver le vecteur potentiel magnétique dans les couches de

courant.

En considérant la vraie géométrie 3-D des rubans dans la formulation du problème, le

modèle proposé devient bien plus précis que la plupart des méthodes 2-D qui ne prennent

pas en compte la configuration hélicöıdale des rubans. Par ailleurs, grâce à la symétrie utilisée

pour réduire le domaine d’étude, la méthode développée est très efficace en terme de temps

de calcul. Afin de vérifier la validité de la méthode proposée, nous avons réalisé des mesures

expérimentales de pertes AC dans des échantillons YBCO. Les résultats trouvés concordent
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parfaitement avec ceux trouvés en simulation. Dans le cas d’un conducteur prototype à une

couche et bobiné de façon solénöıdale, les résultats trouvés concordent parfaitement avec ceux

trouvés en simulation.

Dans la seconde partie de cette thèse, nous avons utilisé la technique numérique développée

dans la partie précédente pour étudier le comportement des pertes AC de câbles HTS à

couche unique. Tel que prévu par les études antérieures, les simulations ont montré que les

principales causes de pertes dans ces câbles proviennent de la présence séparations (“gaps”)

entre rubans adjacents. Ces petits séparations perturbent la distribution du champ près des

bords des rubans de sorte que dans ces régions le champ magnétique auquel les rubans

sont soumis présente une importante composante orthogonale à la surface des rubans. Avec

des séparations plus petits, les câbles présentent moins de pertes AC. Toutefois, à cause de

considérations mécaniques inévitables, il existe toujours une séparation minimale.

Afin de réduire l’effet des séparation nous avons étudié le comportement AC de trois

conceptions de câbles à couche unique, dans lesquelles les séparation sont recouverts par un

chevauchement des rubans adjacents en insérant des rubans étroits en-dessous des rubans

principaux. Les résultats des simulations montrent que ces concepts sont très efficace dans la

réduction des pertes AC des câbles HTS de puissance.
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ABSTRACT

This Ph.D. thesis consists of two successive phases. The objective of the first phase

was to develop a fast and accurate numerical model to solve the electromagnetic problem

of helically wound thin tape conductors. This method must be applicable to find current

distribution and AC losses in High Temperature Superconducting (HTS) power transmission

cables made of coated tapes. In the second phase of the project, the developed model was

used to perform parametric analysis of the AC loss behavior of single layer HTS cables

with different design schemes and design parameters. The main objective of this phase was

focused on the minimization of AC losses in HTS cables either by searching for optimal

designs parameters or alternative design schemes.

In the latest generation of HTS power cables, superconducting coated tapes are the con-

ductors of choice. The thickness of the superconducting layer of these tapes is around 1 to

2 µm, and depending on the application, their width varies from 4 to 12 mm. In the cable

design, such tapes are helically wound around cylindrical formers in single or multi-layer

arrangements. The complicated geometry of the tapes as well as the non-linear resistivity

of their superconducting layer make the accurate solution of the electromagnetic problem of

HTS cables quite challenging.

During the first phase of this thesis, we introduced a numerical method to compute current

and field distribution in helically wound thin tape conductors when one or many of them are

arranged in a symmetrical manner. According to the symmetry arguments associated with

the geometry of the problem, and neglecting the thickness of the tapes, the real 3-D problem

of helically wound tapes could be reduced to a computationally small 1-D problem whose

domain lies along the half-width of any of the constituting tapes. The low frequency version

of the eddy current equation, as the governing equation of the problem, is discretized over

this reduced dimension study domain. To establish a direct relationship between the current

density and the vector potential in the problem formulation, the solution of the Biot-Savart

integral to find the magnetic vector potential of helically wound current sheets is used.

As a consequence of considering the real 3-D geometry of the tapes in problem formulation,

the proposed model is more accurate than many previous 2-D methods that cannot take

into account the helical configuration of the tapes. On the other hand, because of using

symmetry arguments to reduce the size of the study domain, the method is very efficient in

terms of computational time. To verify the validity of the proposed method, we performed

experimental measurements of AC losses in solenoid-type cables made of a sample of YBCO-

coated conductor tape. Excellent agreement was observed between the experimental data
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and the simulation results.

In the second phase of this thesis work, we used the numerical technique developed in the

previous phase to study the AC loss behavior of single layer HTS cables. In accordance with

previous studies, simulation results revealed that, the main loss mechanism in these cables

arises from the presence of gaps between the adjacent tapes. These small gaps disturb the field

distribution near the edges of the tapes so that in these region the magnetic field experienced

by the tapes has large components perpendicular to the wide face of the tapes. With smaller

gaps, cables show lower AC losses. But due to inevitable mechanical considerations, there is

always a minimum limit for the gap size.

Aimed at undermining the gap effects, we investigated the AC loss behavior of three

different design schemes for single layer HTS cables, in which the gap regions are covered

by the overlap of the adjacent tapes or by inserting narrow tapes below the main tapes.

Simulation results showed that these designs are quite effective in reducing AC losses of HTS

power cables.
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CHAPTER 1

INTRODUCTION

High temperature superconducting (HTS) power transmission cables are one of the most

promising applications of superconductivity, which have potentials to be the power transmis-

sion technology of choice in some commercial applications. Reduced losses, reduced dimen-

sions and weight, and increased environmental compatibility are the major advantages of the

HTS cables over their conventional counterparts.

Despite their advantages, there are some standing obstacles in the way of the industrial

usage of HTS power cables. Similar to other superconducting-based technologies, the capital

cost of HTS cables is still higher than that of comparable conventional cables and transmis-

sion lines. Apart from the high cost of manufacturing HTS wires, the need for efficient and

large scale cryogenic systems, which are essential to provide the low working temperature of

superconductors, contributes to the high cost of superconducting-based equipment.

In AC applications, the conductivity of superconductors are not perfect and they exhibit

a (very small) resistivity to AC currents. This resistivity causes losses which are called AC

losses. In the HTS cables, the cryogenic system must work all along the cable length to keep

the temperature of the HTS wires below the boiling temperature of liquid Nitrogen, i.e 77 K.

To avoid temperature rise, any amount of heat produced inside the cable chamber must be

disposed. Because of the large difference between the conductors temperature and ambient

temperature, such a heat removal task causes costly loads for the cable cryogenic system.

AC losses are the main heat source inside the cable chamber. Thus, reducing these losses

results in load reduction for the cryogenic system of HTS cables. In addition, with lower AC

loss levels, the complexity of the cable cryogenic system can be relieved. Therefore, reduction

of AC losses is an important issue to reduce the capital and the operational costs of HTS

power cables.

The AC loss minimization in HTS cables, requires a comprehensive understanding of the

electromagnetic behavior of HTS conductors in cable configurations. In the latest generation

of HTS power cables, HTS coated tapes are the conductors of choice. The thickness of the

superconducting layer of this generation of HTS tapes is in order of a few micrometer. In cable

applications, such thin conductors are helically wound in single or multi-layer arrangements.

The complicated twisted geometry of the tapes, and on the other hand, the highly non-linear

resistivity of their HTS layers make the AC loss analysis of HTS cables a challenging problem.

Developing a numerical model to find field and current distribution and AC losses inside
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the tapes of single layer HTS cables is the main objective of this thesis. In this thesis work,

the developed model is used to perform parametric analysis on the AC loss behavior of single

layer cables designed with different parameters and design schemes.

This thesis is presented with the help of the journal articles we have published on the sub-

ject. In this case, these articles are inserted as chapters in the body of thesis. The organization

of the chapters is as follows :

Chapter 1 starts with a brief introduction to the main concepts of superconductivity from

a phenomenological point of view. In the second section of this chapter, the main applications

of superconductivity in power systems are briefly introduced. Since the main subject of this

thesis is dealing with HTS power cables, they are discussed in more details. The last section

of this chapter deals with AC losses in HTS power cables. In that section, previous work on

modeling AC losses in HTS cables are reviewed and alternative design schemes proposed to

reduce the AC losses in HTS cables made of coated tapes are introduced.

In Chapter 3, the hypothesis and the selected methodology to achieve the objectives of

the research work are explained. The numerical computation of current distribution and AC

losses in single-layer HTS power cables made of helically wound coated conductors is the

objective of the irst phase. Full details about the proposed method including its hypothetical

and methodological developments and the results are of its validation through experiments

are provided in Chapter 4.

The objective of the second phase of this thesis (which is defined in Chapter 3) is the

assessment of the effectiveness of the proposed design schemes (introduced in Chapter 2)

in reducing AC losses of HTS cables. To do achieve this objective, the numerical model

developed in the first phase of the project is used to perform extensive parametric studies

on the AC loss behavior of these new designs. The details of this study were published in

articles which are inserted as Chapter 5 and Chapter 6.

In Chapter 7 the general objectives of the thesis are briefly discussed and some potential

research objectives are suggested as future work on the subject. Finally, in Chapter 8 the

results of the work are summarized as conclusions.

It is worth mentioning that, all along this thesis and in the attached articles, the term

HTS power cables refers to the HTS power cables made of coated conductors.
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CHAPTER 2

BASIC CONCEPTS AND LITERATURE REVIEW

2.1 Superconductivity

Similar to many other discoveries in human history, the discovery of superconductivity

was a fortuitous result of an unexpected observation in a series of laboratory test. In 1911, a

Dutch physicist named Heike Kamerlingh Onnes tried to measure the electric resistivity of

a sample of mercury against DC currents at very low temperatures near the absolute zero.

Performing such an experiment was possible by virtue of the success he had achieved three

years earlier in liquefying helium, which allowed him to reach temperatures as low as 1 K [1].

The motivation behind this experiment was to examine two theories that existed at the

time for the resistivity of conductors at very low temperatures. By then, some scientists

believed that when the temperature is decreased, the resistivity of conductors must decrease

and tends to a minimum value caused by the presence of imperfections and impurities in

their lattice. On the other hand, according to the picture that everything, including carrier

electrons, will be frozen at sufficiently low temperatures, many other physicists expected that

any conductor must become an insulator at sufficiently low temperatures.

Surprisingly, Onnes’s observations rejected both of these predictions. What he observed

was the sudden collapse of the resistivity of the sample to immeasurable levels while the

temperature was below 4.2 K [1, 2]. He named this surprising behavior superconductivity. In

the years to follow, Onnes and others observed the similar behavior in some other elements and

it became clear that superconductivity is a state of matter that occurs at low temperatures

in most metallic elements.

2.1.1 Perfect conductivity

Figure 2.1.1 shows the DC resistivity of typical superconductors as a function of tem-

perature. As presented in this figure, below a sufficiently low temperature, the resistivity of

superconductors abruptly disappears. The temperature at which the transition to supercon-

ducting state occurs is called the critical temperature or transient temperature and is referred

to as Tc. The critical temperature is an inherent characteristic of the material and varies

from one material to the other. Niobium (Nb) with a Tc of 9.3 K has the highest critical

temperature among the elements.

Almost one year after the discovery of superconductivity, Onnes observed that, Tc is a
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Figure 2.1 The resistivity of a typical superconductor as a function of its temperature. Below
a sufficiently low temperature, i.e. Tc, transition to the superconducting state occurs. In the
superconducting state the resistivity of the superconductor is such a low that cannot be
measured even with most sensitive ohmmeters.

function of the experienced magnetic field by the sample, so that with stronger magnetic

fields, it must be kept below a lower temperature to retain the zero resistivity. This magnetic

field can be either externally applied to the superconductor or can be the self-field produced

by its own current. The latter implies that being in the superconducting state is also a

function of the current flowing in the superconductor, i.e. its transport current.

Figure 2.2 represents the boundaries of the superconducting state for a typical supercon-

ducting material as function of its temperature, experienced magnetic field and density of the

transport current. The magnetic field above which superconductors go back to the normal

state is referred to as the critical field (Hc), and in a similar way the current density at which

the same thing happens is termed the critical current density (Jc).

2.1.2 Magnetic behavior of superconductors

In 1930, namely nineteen years after the discovery of superconductivity, Meissner and

Ochenfeld discovered that, in the superconducting state superconductors prevent magnetic

flux from penetrating inside them [3]. In other words, superconductors expel out magnetic

flux due to any externally applied magnetic field not stronger than their Hc. This effect is

called the Meissner effect and implies that superconductivity is not only perfect conductivity

but also perfect diamagnetism.

Today we know that, perfect diamagnetism is not necessarily a feature of all superconduc-
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Figure 2.2 Boundaries of the superconducting state which are function of temperature, applied
magnetic field and current density. Tc, Hc and Jc are inherent characteristics of the material
and are mutually dependent.

tors. According to their behavior to applied magnetic fields, superconductors are classified

into two types. Type-I superconductors exhibit perfect diamagnetism and zero resistivity as

long as they are in the superconducting state. On the other hand, there exists type-II su-

perconductors, which can still preserve their zero resistivity while magnetic flux is partially

allowed to penetrate inside them.

For the superconductors of type-II, two critical fields are defined. As shown in figure 2.3,

Hc1 is the magnetic field below which a type-II superconductor is in the Meissner state,

i.e. there is no magnetic flux inside it. Hc2 corresponds to the magnetic field above which

transition to the normal state state occurs. Between Hc1 and Hc2, a type-II superconductor is

in the mixed state, in which it exhibits perfect conductivity, but only partial diamagnetism.

2.1.3 Theory of superconductivity

Since the discovery of superconductivity, many brilliant physicist have devoted their career

to explain and theorize this phenomenon. So far 20 Nobel prizes have been awarded for these

efforts. Nevertheless, superconductivity is not yet fully understood and it seems that more

Nobel prizes should be on the way until its complete understanding. In this section, in a very

brief way, three useful theories proposed to explain superconductivity are introduced.
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Figure 2.3 Critical fields of type-II superconductors as a function of temperature. Below Hc1,
superconductors are in the Meissner state at which they exhibit both prefect conductivity and
perfect diamagnetism. Above Hc1 and below Hc2, a type-II superconductor is in the mixed
state. In the mixed state, the magnetic field partially penetrates inside the superconductor,
while it still preserves the property of perfect conductivity.

London theory

In 1934, by proposing a complementary constraint to the Maxwell equations, the London

brothers developed a mathematical model for diamagnetic properties of superconductors [4].

In their theory, which is called the London theory, in a quite empirical way it is assumed that

there is a linear relationship between the vectors of the magnetic flux density and its laplacian

inside superconductors, i.e. ∇2B ∝ B. This simple assumption mathematically models that

magnetic flux cannot penetrate deeper than a short depth inside superconductors. There is no

formal proof for the London theory, and it was accepted because it could model the Meissner

effect in superconductors.

Ginzburg-Landau theory

One of the most useful theories proposed to examine the macroscopic properties of super-

conductivity is the Ginzburg-Landau theory [5]. In this theory based on quantum mechanics

and classical thermodynamic arguments, the behavior of the superconducting electrons is

explained by an effective wave function.

One of the useful aspect of the Ginzburg-Landau theory is the way that it explains the

field penetration inside type-II superconductors. According to this theory, in the mixed state,
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field penetration occurs by forming quantized and symmetrically distributed flux tubes, called

vortex, inside type-II superconductors. Collection of the vortices inside the superconductors

forms a vortex lattice, where the vortices are aligned with the applied magnetic field.

BCS theory

In 1957, Bardeen, Cooper and Schrieffer formulated the general microscopic theory of

superconductivity [6]. This theory, which is based on quantum mechanics, is called the BCS

theory. According to this theory, below the transient temperature, superconductors expe-

rience a phase transition and each of their free electrons gets coupled with another electron

forming electron pairs, also called Cooper pairs. Cooper pairs can flow through supercon-

ductor without collisions, and therefore current can flow without any dissipation. Based on

the available theories the emitted elastic waves by the crystal lattice are responsible for the

attractive force between the electrons of a Cooper pair (called binding force). The binding

force is weak and thermal energy of the electrons can easily break Cooper pairs. Therefore,

superconductivity is observed at low temperature where the thermal energy of the electrons

is not sufficient enough to break Cooper pairs. The binding force can be also overcome by the

interaction between the electrons and strong enough magnetic fields, and this is the reason

that above Hc, a transition to the normal state occurs.

2.1.4 The critical state model and the power law model

The resistivity of normal conductors at a given temperature is almost a constant defined

by the Ohm’s law as the slope of their E − J characteristic. In the case of superconductors,

the resistivity is highly non-linear and is a function of the current density and the applied

magnetic field.

The simplest way to model E − J characteristic of superconductors is the Bean model

[7, 8](see figure 2.4). In this model, which is also referred to as the critical state model

(CSM), it is assumed that the magnitude of the current density inside a superconductor is

either zero or equal to its critical current density, i.e. Jc. In this model, the critical current

density is assumed to be independent of the applied magnetic field. Figure 2.4 shows the E-J

characteristic according to the Bean model.

Despite its simplicity, the CSM is accurate enough to represent the nonlinear resistivity

of superconductors with sharp transition to normal state, as is the case with low Tc super-

conductors. But In the case of high Tc superconductors, which exhibit a smoother transition

between the normal and the superconducting state, CSM can just provide a rough picture of

the E − J characteristic. Based on the experimental measurements, the E − J characteristic
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Figure 2.4 The E − J characteristic corresponding to the Bean model, also called critical
state model (CSM)

of this class of superconductors is similar to what is presented in figure 2.1.4. Comparing the

E−J characteristic shown in figure 2.1.4 with one presented in figure 2.4, it is observed that,

as opposed to the CSM, Jc is not a well defined parameter anymore. Normally, Jc is defined as

the current density at which an electric field of 0.1 mV/m appears across the superconductor.

Therefore, Eo in figure 2.1.4, which is referred to as the electric field criterion (or sometimes

the critical electric field) is 0.1 mV/m, and the current density at which this electric field is

measured is defined as the critical current density of the superconductor (Jc).

This E − J characteristic can be fitted by a classical power law function, i.e.

E = aJn (2.1)

where, a and n are power law parameters which are used to model the E − J characteristic

obtained by experiments.

Equation (2.1) can be expressed in the classic form of the constitutive equation relating

E and J , i.e. E = ρJ as

E = a |J |n−1 J (2.2)

Commonly, (2.2) is expressed as

E =
Ec

Jc

∣

∣

∣

∣

J

Jc

∣

∣

∣

∣

n−1

J (2.3)

From (2.3), the specific resistivity of a superconductors is mathematically defined as
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Figure 2.5 The E−J characteristic of high Tc superconductors. This curve is sketched to show
the measured voltage drop across superconducting samples when a DC current is imposed.

ρ =
Ec

Jc

∣

∣

∣

∣

J

Jc

∣

∣

∣

∣

n−1

(2.4)

In fact, (2.4) represents the resistivity in a general form, i.e. depending on the value of

n it can describe the resistivity of normal conductors (n = 1), the resistivity of high Tc

superconductors (30 < n < 50), or the resistivity of low Tc superconductor (n >> 50)[9].

Using the power law model is a very common way to introduce the resistivity of super-

conductors in the numerical analysis of the electromagnetic behavior of superconductors. On

the other hand, the CSM is easier to handle and is the preferred choice for the analytic

approaches.

2.1.5 Dissipative mechanisms and AC losses

According to the Ginzburg-Landau theory, in the mixed state, magnetic fields partially

penetrate into type-II superconductors in the form of regularly distributed quantized flux

lines or vortices. The vortices formed by the self-field are generally perpendicular to the

transport current. As a consequence of the interaction with the transport current, each vortex

experiences a Lorentz force which is perpendicular to the transport current and vortex lattice.

This force put the vortices in movement, which in turn results in energy losses.

The dissipation of vortices in motion is prevented by fixing the position of vortices through

a mechanism called flux pinning. The pinning is done by creating some energetically favorable

zones in the material by different techniques. As long as, the Lorentz force between the vortices
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and the transport current is lower than the maximum pinning force, they do not move and

no dissipation occurs.

Although the pinning force prevents the dissipation mechanism arising from the movement

of vortices, it results in the irreversibility of the magnetic properties of type-II superconduc-

tors. As a results of this irreversibility, in the case of AC transport currents (and/or AC

magnetic field), the vortex are redistributed each cycle in a different geometrical equilibrium.

This redistribution takes energy from the field and/or current source and is a dissipative me-

chanism. The losses associated with the redistribution of vortices, due to the time variation

of the applied field and/or the transport current, are called AC losses.

To establish a simple and intuitive insight into the AC losses in superconductors, here we

use the Bean model to find the field and current profiles inside a superconducting slab due

to an externally applied magnetic field. As sketched in figure 2.6, the slab dimensions in two

directions (for instance, here y and z) are infinite. The applied magnetic field is uniform and

parallel to the wide face of the slab along the y direction.

Figure 2.7 shows the current and field distributions along the thickness of the slab (along

the x axis). To find the field and current profiles we start with Amper’s law

∇×H = J (2.5)

For the case of the semi-infinite slab, H has only the y-directional component. Then,

according to (2.5) and the limitation of values that J can hold (CSM), dHy

dx
can only have

values −Jc, 0 or Jc. Therefore, the H profile inside the slab is in the form of straight lines

with the slope of ±Jc.

When the applied magnetic field is zero, there is no field and current inside the slab.

As the magnitude of the applied magnetic field starts to increase, screening currents are

induced (near the edges) to prevent field penetration inside the slab (see figure 2.7(a)). As

the magnitude of the applied field increases, the current will further penetrate until it reaches

the middle of the slab. In this case, as shown in figure 2.7(b), the applied field is equal to

the penetration field (Hp). In this situation, half of the slab carries −Jc and the other half

carries +Jc.

If the magnitude of the applied field is increased again, current distribution remains

unchanged, but the field profile must shift up to satisfy both (2.5) and the continuity of the

field at the side faces of the slab (see figure 2.7(c)).

At this point, if the magnitude of the applied filed starts to decreases, the induced currents

near the edges of the slab will change of sign to oppose the field variation, while in the middle

parts of the slab the current profile remains unchanged (see figure 2.7(d)).

As shown in figure 2.7(e), when the magnitude of the applied field is reduced to zero,
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there are still induced currents and trapped field inside the slab. This indicates the history

dependent behavior of the magnetization characteristic of superconductors (type-II). If we

increase the magnitude of the applied field, this time in the opposite direction (i.e. −y), the

reversed current profiles penetrate up to the center of the slab (figure 2.7(f)).

The shown magnetic behavior of the superconductors, which as mentioned is a conse-

quence of vortex pinning, is responsible for the hysteretic AC losses in type-II superconduc-

tors.

2.1.6 High temperature superconductors

Until the middle of 1980’s, superconductivity had been observed in most of metallic ele-

ments and their alloys. Among these metallic superconductors, MgB2 with Tc = 39 K, has

the record of the highest transient temperature [10]. This class of superconductors, has low

critical temperatures, which can be achieved only in liquid helium (or in some cases with

liquid hydrogen).

In 1986, superconductivity was observed in some ceramic materials at much higher tempe-

ratures, higher than the boiling temperature of liquid nitrogen (77 K). This class of materials,

which are of type-II, are called High Temperature Superconductors (HTS). On the other hand,

the class of materials whose Tc is lower than the critical temperature of liquid nitrogen are

called Low Temperature Superconductors (LTS).

One of the major obstacles in the way of the practical applications of LTS material

was (and still is) the expensive capital and operational costs associated with the cryogenic

systems required to keep their temperature below Tc. The only choice for the coolant material

for these class of superconductors was liquid helium. Apart from the fact that liquid helium

is expensive in itself, the cost associated with helium-based cryogenic system is also very

high. On the other hand, nitrogen is the most abundant element on earth and liquefying

it is much easier than helium and can be done at quite lower expenses. Besides, since the

boiling temperature of liquid nitrogen is more than 70 K closer to the ambient temperature

than that of liquid helium, the capital and the operational cost of nitrogen-based cryogenic

system are much lower (around 50 times) than those of helium-based systems [11]. Therefore,

the discovery of HTS materials, whose high critical temperatures can be reached by liquid

nitrogen, prompted the interest in practical application of superconductors and was a very

important step towards the commercial applications of superconductivity.

In March 2011, superconductors.org reported the observation of superconductivity at

18◦ C in a copper oxide compound (T l5Pb2Ba2MgCu10O17+). This promising claim means

that superconductivity is likely to exist at room temperature. Room temperature supercon-

ductors would not need to be kept cool down to low temperatures and this would remove
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the need for the cryogenic system, which now is an essential (and one of the most costly)

component of superconducting devices. The discovery of room temperature superconductors

would be a giant step, not only in the history of superconductivity but also in the history of

science and engineering and would substantially change the architecture of many engineering

system and devices. Maybe the 21th century be the witness of the revolutionary discovery of

room temperature superconductors.

2.2 Power application of superconductors

Since the early years after the discovery of superconductivity, its application in power

electric systems attracted huge attention. Thanks to their high current carrying capacity

and low transport losses, superconductors can be used to devise more efficient electric power

equipment at lower weights and smaller size as compared to existing systems which are

based on the technology of conventional conductors. In power applications, due to the large

amount of energy involved, even slight improvements in the efficiency can be translated to

huge money savings. On the other hand, most of power electric equipment, especially at high

power ratings, have large dimensions and heavy weight, so reducing their volume and weight

is highly desirable.

The discovery of HTS materials in 1986 prompted renewed interest in the application

of superconductors in power systems. At the moment, there are several ongoing and instal-

led projects on superconducting electric equipment worldwide [12]. With the further deve-

lopments in the technology of fabricating HTS conductors, superconducting power electric

equipment will become more economically competitive with respect to their conventional

counterparts. In this section, we briefly introduce most important applications of supercon-

ductivity in power engineering. Since HTS power transmission cables are the main subject of

this thesis, we start with them and they are discussed in more details.

2.2.1 HTS Power Transmission Cables

One of the most brilliant features of electric energy is the fact that it can be transferred

more easily and more efficiently than any other forms of energy. However, power transmission

is still one of the most important and challenging issues in power systems. Power is transferred

from power plants to the consumers through the transmission and distribution networks by

overhead lines and power cables.

Although overhead lines are cheaper and easier to install, power cables have some exclusive

advantages over them. In power cables conductors are covered by layers of insulators, therefore

they can be laid in underground tunnels or below the water surface (sea, rivers). This feature
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makes them more reliable in the case of natural disasters such as earthquakes, thunderstorms,

and tsunamis. In some cases, power cables are the only viable options to transfer electricity,

e.g. when the power must be transmitted to off shore sites, or when in the heart of cities

there is no way to use overhead systems.

In power cables, conductors at different voltage levels (phase and ground) are packed

close to each other, while in the overhead lines because of insulation considerations lines

are positioned relatively far from each other. Therefore, the inductances of the conductors

(self and mutual) in power cables are quite lower than the inductances of the overhead lines,

and consequently they exhibit better electrical performances in terms of voltage regulation,

system stability and so on.

Power transmission cables are one of the most promising commercial applications for

superconductors. The idea of using superconductors to make power cables goes back to the

early 80’s, before the discovery of high temperature superconductors. A notable effort was a

project on a high voltage 200-m-long AC cable at the Brookhaven National Laboratory, Long

island, NY, in 1986 [13]. Projects on LTS superconducting power cables never resulted in any

site installation. The main reason could be the high costs associated with their helium-based

cryogenic system. After the discovery of HTS material, similar to many other application

of superconductors, new projects on superconducting power cables started, this time using

high temperature superconducting wires as the conductors and liquid nitrogen as the coolant

of the cryogenic system. The development of HTS power cables has significantly improved

over the last decade so that today there are many installed and ongoing projects on this

application throughout the world [12, 14].

Design

In the latest design of HTS power transmission cables, the second generation of HTS tapes

(2G) are the conductors of choice. These tapes are manufactured by coating a thin layer of

YBCO 1 as the HTS conductor on layers of buffer materials and substrates through advanced

deposition techniques [15]. The architecture of 2G tapes is sketched in figure 3.1. In addition

to the buffer and substrate layers (which are required for the deposition of the YBCO layer),

there exist two or more metallic (silver or copper) layers, called stabilization layers. The main

task of the stabilization layers is to provide alternative paths for the transport current in case

the HTS layer quenches (i.e. suddenly becomes normal). In such situations, the conductivity

of the superconducting layer abruptly decreases, and the transport current will flow in the

stabilization layers.

1. An HTS material composed of Yttirum, Barium and Copper Oxide
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Source : The website of the National High Magnetic Field Laboratory http://www.magnet.fsu.edu

Figure 2.8 The architecture of the second generation of HTS tapes (2G tapes). The stacking
shown in this figure is not to scale. According to the dimensions shown in the figure, the
overall tape thickness is dominated by the substrate and the stabilization layers.

In the typical design of HTS power cables, HTS tapes are helically wound around cylin-

drical formers in single or multi-layer arrangements. Similar to conventional cables, insulation

layers are used to prevent electric contact between conducting layers. Also, shielding layers

are included to confine the magnetic field (produced by the transport current) inside the

cable. Figure 3.2 shows a schematic view of a single-layer HTS cable.

The helical configuration of the tapes is beneficial in terms of mechanical and electrical

considerations. With this configuration, the cable is mechanically more stable and flexible.

In adition, the mutual inductance between the conducting layers are highly dependent on

their winding angle. Therefore, by choosing proper winding angles the transport current of

the cable can be divided between the layers in an optimized way.

In a design called the Triad design, three single phase cables are put together in a common

Source : The website of the Oak Ridge National Laboratory http://www.http://www.ornl.gov

Figure 2.9 A single-layer HTS cable
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cryostat to build a three phase cable (see figure 3.3). Since each phase assembly is shielded

from the other phases, from the electromagnetic point of view there is no difference between

the Triad design and the single phase design.

In another design scheme, which is referred to as the Tri-Axial design, conductors of all

the three phases are arranged concentrically in a single cryostat. Figure 3.4 shows a three

phase HTS cable with the Tri-Axial design.

Since with the Tri-Axial design the magnetic field of all the three phases cancel out each

others, there is no need to have a HTS shield layer to confine the magnetic field of the cable.

As a direct consequence, with the Tri-Axial design, the required amount of HTS tapes to

transport the same level of energy is almost reduced by a factor of 2 as compared with the

Triad design [16]. In addition, with the Tri-Axial design, the cross-section of the cable is

reduced as compared with the Triad design, which results in reducing the size of the cable

and increases the efficiency of the cryogenic system.

HTS cables versus conventional cables

HTS power cables have number of advantages over their conventional counterparts as

follows :

– Reduced dimensions : Thanks to the high current capacity of HTS coated tapes,

for the same transport currents, HTS cables occupy 9 to 10 times less space than

conventional copper-based cables. This feature is very important, when due to various

constraints the available space for the power transmission purpose is limited.

– Higher efficiency : In the case of DC currents, HTS cables are almost lossless, and

in the case of AC currents, the amount of AC losses in the HTS cables is quite lower

than that of conventional power cables.

Source : The website of SuperPower Inc. http://www.superpower-inc.com

Figure 2.10 An HTS cable with the Triad design. In this design, three identical single phase
cables are put together in a common cryostat.
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Source : http://www.supercable.com

Figure 2.11 Multi-layer HTS cable

– More environmental compatibility : Because of the superconducting shield layer,

the magnetic field due to the transport current of the cable is confined inside the cable.

Therefore, HTS cables do not produce stray magnetic fields and do not cause any

electromagnetic interference problem with any other neighboring systems.

– Extended operational time : Since the working temperature of HTS power cable is

kept fixed at quite low temperatures, i.e. 77 K, they are not subjected to the physical

aging caused by thermal stresses. Therefore, it is expected that their insulation system

will have a longer life time compared with that of conventional cables.

– Possibility of transmission of power at lower voltages : Again thanks to the high

current carrying capacity of HTS materials, HTS cables can transfer energy at higher

currents and lower voltage levels, while on the other hand, due to the limited current

capacity and Ohmic losses, conventional cables exhibit lower efficiencies in low voltage

systems.

Despite all the mentioned advantages, HTS power cables are still more expensive than

conventional cables. The high costs associated with the manufacturing of HTS tapes and

required cryogenic systems contribute to the high capital cost of HTS power cables. On the

other hand, the technology of conventional power cables is commercially quite mature. Hun-

dreds of kilometers of these cables have been installed around the world and in average each

year 75 km new cable lines are installed [17]. Although the competition with such an efficient

technology is quite difficult, with the continued reduction in the price of superconductors and

the improvements in the performances of HTS wires, HTS cables are economically getting

more competitive against conventional cables in certain applications.

2.2.2 Superconducting Fault Current Limiters SFCL

During fault conditions, power systems and their components are subjected to fault cur-

rents, which can be up to 50 times their nominal current. To prevent damages to the com-

ponents of the power system, the fault current must be limited below a safe level. To limit

the fault current, power systems need protective components which should be invisible to the
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network in the normal operation mode and very fast must exhibit large impedances to limit

fault currents. Fuses and recloser switches are known to be the simplest and most effective

devices to do this task. But such components cannot operate at high voltage levels so that in

the transmission level there is not any industrialized fault current limiting devices [13, 18].

The very sharp transition between the superconducting and normal states makes super-

conductors very suitable material to be used as smart switches. Superconducting fault current

limiters (SFCL) are current limiting devices which are connected to the power network in

series. Under healthy conditions, when the current levels in the protected network is within

the safety limits, SFCLs act almost as a short circuit and are invisible to the network. As

soon as the protected current exceeds the safety level, the superconducting component of

SFCLs switches to the normal state and provides a large enough impedance to limit the fault

current.

There are two kinds of SFCLs, resistive and inductive. In the resistive type, a short length

of superconducting wire is connected in series with the power line. The critical current of the

superconducting element determines the maximum permitted current level. The length of

the superconducting wire must be sufficient to withstand the voltage of the network and the

power that must be dissipated during fault conditions.

Inductive type SFCLs are mostly of shielded core type, which is similar in design to a

transformer whose secondary winding is replaced with a superconducting hollow cylinder (or

recently a short-circuited coil made of coated conductors). This superconducting cylinder

is placed between a winding made of copper wires and a magnetic core. Under the normal

operation of the network, the SFCL is designed so that circulating currents in the supercon-

ducting cylinder shield the magnetic core against magnetic flux lines produced by the primary

winding, connected in series with the power line. Therefore, because of the shield effect, the

flux generated by the primary winding is limited to the leakage flux in the space between

the primary coil and the HTS hollow cylinder, which makes the SFCL almost invisible to the

power network. As soon as the network current exceeds the threshold level, the current indu-

ced in the superconducting cylinder exceeds its critical current and the superconducting core

transits to the normal state and provides no more shielding for the magnetic core. Therefore,

during fault conditions, the magnetic core with its high permeability becomes visible to the

winding of the SFCL, and as a consequence, the inductance of the SFCL abruptly increases

and limits the fault current.

SFCLs are among those applications of superconductors which do not have conventional

counterparts. They are very fast, as fast as transition between the normal and superconduc-

ting states. An exclusive feature of SFCLs is this fact that the action of detecting and limiting

the fault current are done by the same component almost instantaneously in a fully passive
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manner. Therefore, SFCLs do not need any relay to detect fault current and do not need

any control circuit to provide open and close actions signals. Although circuit breakers must

still cut the short-circuit current eventually, but since the latter is reduced by the limiter, the

required breakers can be chosen smaller. SFCLs, especially resistive types, are very promising

application of superconductivity which are predicted to be introduced in power networks in

a near future.

2.2.3 HTS Transformers

Since superconductors have quite higher current carrying capacity than that of copper,

they can be used for the windings in a transformer, which leads to a reduction in the weight

and size of the windings. With the reduction in winding dimensions, the size of the magnetic

core is also reduced. Therefore, by using HTS wires, the overall weight and size of transformers

can be reduced.

The amount of AC losses in the winding of HTS transformers is lower than the Ohmic

losses in the winding of conventional transformers. In addition, because of the reduced size

of the iron core, HTS transformers have lower iron losses compared with their conventional

competitors. Therefore, the efficiency of HTS transformers is higher than that of conventional

ones.

Liquid nitrogen happens to be a good insulator, therefore in HTS transformers it is used

both as the coolant and the insulator. Replacing toxic and flammable transformer oils with

liquid nitrogen, which is an environmental friendly gas, makes HTS transformers appealing

in terms of environmental impacts.

Since the working temperature of HTS transformers is quite lower than that of conventio-

nal transformers, the ageing phenomena associated with thermal stresses do not affect their

operational life and they are expected to have longer life times. In addition, superconducting

transformers can exhibit better overload capabilities.

The idea of fault current limiting characteristics of superconducting materials can be

merged with HTS transformers. High Temperature Superconducting Fault Current Limiting

Transformers (SFCLT) are superconducting transformers that exhibit the fault current limi-

ting capability [19, 20]. This exclusive characteristic is very important to increase the chance

of superconducting transformers to compete with conventional transformers.

2.2.4 HTS Motors and Generators

In large synchronous electric machines, the required magneto motive force (mmf) is pro-

duced by passing DC currents through excitation coils, which are wound of many turns
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of copper wires. The number of turns and the current of the exciting coils determine the

strength of the mmf of the machines. Working at higher mmf increases the power density of

the machine and in turn reduces its size for a given power rating [21].

By using HTS wires as the conductors of the exciting circuit of synchronous motors and

generators, more mmf can be generated with quite lower losses as compared with copper-

based exciting coils. With strong enough mmf, there is no need for low reluctance paths for

the magnetic flux, and the iron core can be eliminated from the structure of the machine.

Therefore, the operating flux density of the machine can be improved without any limitation

imposed by the saturation of the magnetic core.

Compared with conventional machines, the elimination of the iron core results in reduc-

tions of weight, and working at higher flux density leads to reductions in size. Therefore, HTS

motors and generators are smaller and more compact than their conventional counterparts.

In addition, the efficiency of HTS motors/generators are higher than that of comparable

conventional copper/iron based machines. The reason for the higher efficiency of the HTS

machines mostly comes from the elimination of the iron losses.

Another advantage for HTS generators, which again comes from the elimination of the

iron core, is their small synchronous reactance, i.e. Xd. A smaller Xd permits generators to

work at smaller load angles, and in consequence results in improved performances in terms

of dynamic response, stability, voltage regulation, overload capability and reactive power

compensation [22, 23]. It is worth mentioning that the transient and sub-transient reactance

of a HTS generator are in the range of similar conventional units [24]. Therefore, in case of

replacing a conventional generator with a HTS one, the previous monitoring and protection

systems can still be used.

2.2.5 Superconduting Magnetic Energy Storage (SMES)

The idea of a SMES can be simply explained as a very large inductor with zero resistance.

If a DC current circulates in such a short-circuited inductor, the energy can be stored in its

magnetic field permanently without decay.

A SMES system consists of four main components as follows :

– Superconducting coil : This component is a large coil made of superconducting wires.

Energy is stored in the magnetic field produced by a DC current circulating in the coil.

The amount of the energy that can be stored in the coil is determined by its inductance

and its current level. Since the energy stored in an inductance is proportional to the

square of the magnetic field, increasing the operating field results in higher storage

capacity. LTS material can remain in superconducting state with higher magnetic fields

compared with HTS materials. Therefore, so far, in most practical units, wires made of
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LTS materials have been used to wind SMES coils [13].

– Cryogenic system : Similar to the other superconducting-based equipment, an ela-

borate cryogenic system is necessary to provide the low working temperature for the

superconducting wires used in the SMES units. Because of using LTS wires, liquid

helium is used as the coolant in the cryogenic system of SMES units.

– AC/DC power converters : As electric storage systems, SMES units interact with

AC networks during charge and discharge periods. Therefore, in SMES units, AC/DC

converters are needed for interfacing with the power network.

– Control circuit : The task of the control circuit is to provide the required signals for

managing the components of the system.

The efficiency of the SMES units depends on their capacity. For large scale units, the

efficiency can go up to 95% (considering the AC/DC converters and the cooling system).

SMES units can be built at different capacities. In large and medium capacities, they can be

used in utility power system as a short term storage station for power quality and stability

purposes. At smaller capacities, SMES systems can be used as uninterrupted power supply

units (UPS) for special purposes. Due to the fast dynamic response of SMES systems, they

have been proposed for applications where very fast power pulses are required, e.g. shipboard

electric systems and some military applications [12, 13].

2.3 AC losses in superconducting power cables

One of the most challenging issues in the development of HTS power cables (in AC ap-

plications) is the reduction of AC losses occurring in their tapes. Although these losses are

quite lower than the classical Ohmic losses in conventional cables, they cause a costly load

for the cryogenic system of the cable. The temperature of the cable chamber must be kept

cool (below the boiling point of liquid nitrogen), therefore any produced heat due to AC

losses must be removed from the cable. Because of the large difference between the ambient

temperature and conductor’s temperature, this heat removal is a costly and challenging task

for the cryostat of the cable, so that each Watt of AC losses act like as 10 Watt load for

a cryogenic system with the cryogen of liquid nitrogen [11]. The long length, which is the

nature of the cables, adds more difficulty to the cable cryogenic system and makes it more

challenging compared with the cooling system of other applications of superconductors. The-

refore, reduction of AC losses is one of the key factors in determining the operational and

capital cost of HTS power cables, and consequently it is a very important factor to deter-

mine the level of the commercial application of HTS power cables in the future of the power

transmission industry.
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In general, AC losses in HTS cables include all the losses that occur in the conductors

of the cable. These losses can be divided into two categories ; classical electromagnetic losses

and superconducting losses. Classical electromagnetic losses in the conductors of HTS power

cables made of coated conductors include the Ohmic and eddy current losses in the stabilizer

layer (copper and/or silver) of the tapes and the ferromagnetic losses occurring in the sub-

strate layers. Ferromagnetic losses exist only when the substrate layer of the tapes is made of

ferromagnetic materials, as in the case of RABiTS 2 tapes. If these magnetic substrates are

exposed to AC magnetic fields, the ferromagnetic losses will correspond to the area of the

hysteresis loop of the substrate B −H curve. Under normal working conditions, Ohmic and

eddy current losses are quite negligible compared to the total AC losses. On the other hand,

in HTS cables the ferromagnetic losses dominate at low transport currents (below 40− 50 %

of the critical current of the cable) and at higher transport currents these losses become less

important compared to the total AC losses of the cable [25, 26].

As explained in earlier, the mechanism through which losses occur in HTS materials is

quite different from classical electric and ferromagnetic losses. The superconducting losses

occur when HTS materials carry time varying currents or are exposed to time varying ma-

gnetic fields, e.g. AC currents and fields. These losses are derived from the magnetic field

distribution inside and on the surface boundaries of the conductors. Therefore, the geometry

of the conductors (e.g. tapes in the case of HTS power cables) and their relative positioning

change the field distribution and consequently affect the AC losses.

The edge effect is the loss mechanism which dominantly contributes to the AC losses in

the tapes of single-layer HTS cables. The associated losses with the edge effects arise from

the presence of a gap between adjacent tapes, which disturbs the field distribution near the

edges of the tapes. Because of these gaps, the magnetic field presents high perpendicular

components near the gap region, which results in large field penetration from the edges of

the tapes. As a direct consequence this field penetrations, tapes carry more current near their

edges and this results in higher losses.

Another loss mechanism which is considered in most of AC loss analysis of HTS power

cable comes from the polygonal configuration of the tapes in the 2D cross-section of a cable

(see figure 2.12). Such a polygonal configuration disturbs the circumferential magnetic field

along the width of the tapes and contributes to magnifying the perpendicular components of

the magnetic field within the tapes.

Since in HTS power cables, tapes are helically wound around cylindrical formers, the wide

face of the tapes must be conformed to the former. So as an inevitable consequence of their

helical configuration, as shown in figure 2.13 tapes must have bent shapes conformed to the

2. Rolling Assisted Biaxially Textured Substrates
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Figure 2.12 Polygonal arrangement of the tape in the 2-D cross-section of the cable, when
tapes are not conformed to the cable former

former in the 2-D cross-section of the cable. Therefore, we believed that there must be no loss

associated to the polygonal configuration of the tape. Therefore considering losses associated

with the polygonal configuration of the tapes results in the overestimation of the AC losses.

This in turn could lead to wrong conclusions for the AC loss reduction in HTS cables. For

example, in some research work [27–29], it is concluded that, by increasing the number of

the tapes,and due this fact that the contribution of the polygonal losses is decreased, the AC

losses of the cable are reduced. But since the real configuration of the tapes in the cross-

section of the cable is more similar to that presented in figure 2.13 (rather than figure 2.12),

increasing the number of tapes does not reduce the AC losses. On the other hand, with

increasing the number of tapes the number of gaps is automatically increased and in turn

the contribution of the edge effect to the AC losses is increased.

AC loss mechanisms in HTS power cables made of coated tapes are discussed in more

details in Chapter 6.

2.3.1 Computation of current distribution and AC losses in HTS power cables

For the optimal design of superconducting cables, the precise prediction of their AC losses

is an important issue. AC losses can be measured experimentally, or can be calculated by

analytical or numerical methods. The accurate measurement of AC losses in many practical

applications, including power cables, is a challenging issue which requires elaborate techniques

and instruments [30]. On the other hand, the extremely non-linear resistivity of superconduc-

ting materials and the sensitivity of their characteristics to external magnetic fields narrow

the availability of analytical solutions down to a few simple geometries. In this context, nu-
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Figure 2.13 Cross-sectional view of a single-layer HTS cable (typical design), when tapes are
conformed to the cable former

merical techniques are of utmost interest as efficient tools to predict current distributions and

AC losses inside superconducting wires in various applications. Numerical techniques can be

used to study the electromagnetic behavior of superconducting materials and help resear-

chers and design engineers to get a better understanding of the electromagnetic behavior of

superconducting materials in different applications.

2.3.2 Literature review

Analytical approaches

Due to the non-linear resistivity of superconducting materials, even for simple geometries,

analytical computation of their AC losses is rarely possible. Most of the proposed analytical

approaches to find AC losses of HTS cables are based on Norris’ work [31, 32]. Norris calcu-

lated analytically the AC losses for a few simple geometries such as : infinite slabs, infinite

thin strips and round wires.

Norris used his developments for the AC loss calculation inside infinitely thin strips to

find the AC losses in HTS power cables made of superconducting tapes. In his models, the

helical configuration of the tapes is neglected and the problem is considered as a 2-D one.

In Norris’ model, the superconducting characteristic of the tapes is introduced by the Bean

model, and losses are scaled as the square of the gap and the fourth power of the applied

field.

The main drawbacks of such analytical approaches are as follows. First of all, coupling

losses due to the electromagnetic interaction between the tapes of different layers is not consi-

dered. Therefore, this model is applicable only for single-layer cables. Second, similar to other
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2-D approaches, the helical configuration of the tapes is neglected and they are considered

as straight conductors forming a polygonal configuration in the cross-section of the cable.

Since in such polygonal configuration tapes experience larger perpendicular components of

the magnetic field, these approaches result in the overestimation of AC losses. Recently, Ma-

watari et al. [33] have extended the Norris model for the cases in which the cross-section of

the tapes has a bent shape conformed with the former cylinder of the cable.

Neglecting the gap between the tapes and considering each layer of the cable as a super-

conducting hollow cylinder, Vellego and Metra [34] proposed an analytic approach to find

AC losses of HTS cables, which is referred to as the Monoblock model. With this model, the

magnetic field is assumed to be purely tangential to the tapes, and the only considered loss

mechanism is the penetration of the magnetic field from the wide face of the tapes.

The current distribution between the layers of the superconducting multi-layer cable has

been widely analyzed by electric circuit models. The idea is to use a simple electrical model

based on the self and mutual inductances of densely wound helical coils. In such approaches,

the cable is described from a macroscopic point of view. Since the internal structure of the

HTS tapes is not taken into account, these models cannot be used directly for computing the

AC losses. In many proposed models, the idea of such equivalent circuits has been combined

with the analytical approach for the AC losses in infinite slabs, developed by Norris or Carr

[35], to find AC losses in HTS cables [36–48]. The main drawback of these models is the fact

that AC loss calculation is done regardless of the current distribution inside the tapes. In

such approaches the solution of the magnetic field is obtained by the classical expressions

for the magnetic field of densely wound helical coils, i.e. the non-linear behavior of the HTS

tapes and the adjacent gaps between them is not considered in the solution of the magnetic

field (or in the estimation of elements of the equivalent circuit of the cable).

Numerical approaches

Based on various numerical techniques, many numerical models have been proposed to

address the problem of finding AC losses and current distributions in the conductors of HTS

cables. Many of these models are based on the Finite Element Method (FEM), which is

known to be a powerful numerical technique to tackle problems with complicated geometries.

However, with the currently available technology of computers, it seems that it is still quite

difficult to model the real geometry of HTS power cables with FEM, as modeling thin tapes

in helical configurations leads to very large number of degrees of freedoms. Therefore solving

the electromagnetic problem of HTS cables, faithful to their real geometry, requires ultra fast

computers with an enormous amount of memory.

Up to now all the FEM based model proposed to simulate the HTS power cables have
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come with major simplification of the real geometry of the problem. Neglecting the helical

configuration of the tapes and converting the problem to a 2-D one, many researchers have

used FEM models, either on home-made [49–52] or commercial codes [53–55], to simulate

the electromagnetic problem of HTS cables. One of the successful FEM model to find 2-D

field and current distributions in superconductors is based on the first-order edge element

formulation [56, 57]. This model has been widely used in the electromagnetic modeling and

the AC loss analysis of HTS materials [58–60]. Another notable example of FEM approaches

for AC loss analysis of HTS cables is the model developed by Amemiya et al. [51, 61]. In this

model, the thickness of the HTS tapes is neglected and only the perpendicular component of

the magnetic field to the wide face of the tapes is considered.

By neglecting the gap between the tapes of each layer of the cables and considering

the whole tapes of each layer in the form of very thin hollow cylinder, Honjo et al. [62]

proposed a 3-D FEM model to simulate the electromagnetic behavior of multi-layer HTS

power cables. In this approach, the helical configuration of the tape is physically introduced

by defining an anisotropic conductivity for each layer. In such approaches, existing gaps

between superconducting tapes of each layer are neglected. These gaps cause the increase of

inductance which, in turn, affects the balanced current distribution among the layers. The

gaps also produce magnetic fields perpendicular to the tape surfaces, which results in an

important contribution to the AC losses of the cable. Therefore, using this method leads to

underestimation of the AC losses.

The electromagnetic solution of HTS cables has been approached also with other nu-

merical techniques. Based on an integral-type model proposed by Brandt [63] to solve the

electromagnetic problems involving superconducting materials, some numerical models have

been developed for the simulation of HTS power cables. In these models, with the help of the

direct relationship between the current density and the magnetic vector potential (obtaining

from the Biot-Savart integral), the eddy current equation is formulated in terms of current

density over the conducting regions of the problem. Since the problem is solved directly to

find the current density, as opposed to FEM approaches, there is no need to mesh the air

region around the tapes and it is enough to just discretize the problem over the conducting

regions. This feature reduces the number of degrees of freedom of the problem and makes it

more efficient in terms of computational time and memory requirements (when the number of

degrees of freedom is below a certain value [64]). Fukui et al. [27, 65] have used this method

to find the AC losses of HTS power cables when the helical configuration of tapes is neglec-

ted. In their approach, similar to many other 2-D approaches, the tapes of the cable form a

polygonal configuration in the cross-section of the cable, which leads to the overestimation

of the AC losses as discussed earlier.
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Using an analytic expression in the form of infinite series for the mutual and self in-

ductances of helically wound thin conductors to formulate the circuit equation, a numerical

model has been introduced in [66] to find current distribution and AC losses in single-layer

HTS cables. However, as mentioned by the author, this method is very slow and needs to be

improved for practical cases.

The Minimum Magnetic Energy Variation (MMEV) method is another numerical ap-

proach based on CSM to find current distribution in thin superconducting tapes. In this

method, current distribution is found by searching for solution which results in minimiza-

tion of the stored magnetic energy. The idea is to find new CSM type current distribution

which leads to smallest change in magnetic energy and satisfies certain constraints (such as

applied field and/or net imposed current). This method has been used in the AC loss study

of superconducting coils with 2−D (plane and axial symmetry) [67, 68].

2.3.3 Reduction of AC losses in HTS power transmission cables

Reduction of AC losses is a key technical issue in the development of HTS power cables.

With lower AC losses, the initial and the operational costs of HTS power cables are remar-

kably reduced and this allows them to be in a better position to compete with conventional

power cables. Therefore, the reduction of AC losses is one of the most important factors

for the commercial application of HTS power cables in the future of the power transmission

industry.

AC losses can be reduced in two different ways. One approach, which is the task of

material scientists rather than engineers, is to produce HTS conductors with improved su-

perconducting performances, i.e. higher critical current, higher critical field and higher critical

temperature. In addition, for a given superconducting characteristics of the tapes, AC losses

in HTS cables can be minimized by choosing optimal design parameters or by proposing

alternative design schemes, other than the typical designs.

2.3.4 Alternative design schemes to reduce the AC losses in HTS cables

According to the arguments that ideally no loss due to the polygonal configuration contri-

butes to the AC losses of HTS cables, the edge effect is the most important loss mechanism

to determine the AC losses in single-layer HTS cables made of non-ferromagnetic substrates.

With smaller gaps between the tapes, the edge effect is undermined so that when these gaps

are close AC losses are minimized. But due to the mechanical consideration (the winding

process and the mechanical flexibility of the cable), there is a minimum size for the gap (∼
0.6− 0.8 mm) in the typical design of HTS power cables [33].
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Through experimental trials to reduce the AC losses in HTS coils and as an attemept

to further close the gap, engineers of SuperPower observed that when the adjacent tapes

overlap each other, the AC losses of the HTS coils are reduced. Based on their experimental

observations, they proposed two overlapped design schemes for reducing AC losses in HTS

coils and cables which have been registered as an US patent [69].

In one of these designs, which we called cyclic overlapped design, the adjacent tapes of

the cable periodically overlap each other up to a certain distance (∼ 1− 2 mm). Figure 2.14

shows the cross-section of a cable whose tapes periodically overlap each other.

In another design, shown in figure 2.15, the adjacent tapes can be alternatively arranged

so that both edges of one tape overlap the adjacent tapes and therefore the edges of the next

tape are overlapped by the edges of the two adjacent tapes. We called this design scheme

anticyclic overlapped design.
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Figure 2.14 Cross-section view of a HTS cable when tapes are arranged according to the
cyclic overlapped design ; with this design the adjacent tapes periodically overlap each other
up to a certain distance (1− 2 mm)

Figure 2.15 Cross-section view of a HTS cable when tapes are arranged according to the
anticyclic overlapped design ; with this design both edges of one tape overlap the adjacent
tapes and the edges of the next tape are overlapped by the edges of its two adjacent tapes
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CHAPTER 3

RESEARCH OBJECTIVES AND METHODOLOGY

3.1 First phase

3.1.1 Research objective

The objective of the first phase of this thesis work is to develop a fast numerical method for

the accurate computation of the current distribution and AC losses in single-layer assembly

of helically wound thin tape conductors. The exact helical configuration of the tapes must be

considered, and the non-linear resistivity of HTS materials must also be taken into account.

Since the model is supposed to be used to perform parametric simulations, it should be

efficient in terms of computational time.

3.1.2 Hypotheses

The proposed approach to reach the objective of the thesis is based on the following

hypotheses :

1. As shown in figure 3.1, even if the tapes are not identical (physically or geometrically),

when they are wound with the same winding angle their relative position (with respect

to each other) remains unchanged along the length of the cable. Therefore, thanks to

the geometrical symmetry associated with the helical configurations of the problem, as

long as all the tapes are wound with the same winding angle, the governing equations

of the full 3-D problem can be formulated over a 2-D cross-section of the cable.

2. The numerical method of choice is an integral-type method, which is similar to the

Brandt method. In this case, the governing equations of the problem are established

to solve directly for the current density inside the conductors. Therefore, the problem

formulation is done just over the conducting regions in the cross-section of the cable.

3. Since in HTS cables, all the tapes (of each layer) are identical and are arranged in a

symmetrical way, the study domain can be reduced to the half width of one of them

(see figure 3.2).

4. The thickness of the superconducting layer of the HTS tapes is between 0.5 to 2 µm,

while in the cable application tapes width varies from 4 to 10 mm. Therefore, the aspect

ratio of the tapes are in the order of thousands. Because of the high aspect ratio of the

tapes, their thickness can be neglected and tapes are treated as helically wound current
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Figure 3.1 As long as tapes have the same wining angle, their relative position (with respect
to each other) does not change along the cable length. This symmetrical argument implies
that the problem can be formulated in the cross-section of the cable.

sheets. Therefore, the final study domain of the problem is a 1-D line defined along the

cross-section of one of the tapes of the cable.

5. The resistivity of the non-superconducting layers of the HTS tapes is much larger than

the AC resistivity of the superconducting layer of the tapes. Therefore in this model,

just the superconducting layer of the tapes is considered. This assumption is highly

accurate in the case of HTS tapes with non-ferromagnetic substrates (such as IBAD

tapes), but not in the case of tapes with ferromagnetic substrates (such as RABiTS

tapes). Therefore, this hypothesis limits the application of the method to HTS tapes

with non-ferromagnetic substrates. In the Chapter 5, the validity of this assumption

is examined and it is shown that the losses in the non-superconducting layer are quite

negligible compared with the AC losses in the superconducting layer of the tapes.

6. As a consequence of the current sheet assumption, and due to this fact that all the tapes

are wound with the same winding angle, the current can flow only in the direction of the

helical trajectory of the tape (deviation of the current from the helical trajectory of the

tape violates the symmetry arguments associated with the geometry of the problem).

7. The non-linear resistivity of the HTS layer of the tapes is introduced in the form of the

power law model (see Chapter 1 equation (2.4)).
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(b)(a)

(c) (d)

(b)

Figure 3.2 Successive reduction of the study domain in the proposed hypothesis (tapes di-
mensions not drawn to scale). (a) Real 3D geometry, (b) 2D cross-section of the tapes, (c)
Reduction of study domain to half of a tape, (d) Final study domain in the form of discretized
interconnected 1D strips (straight lines) along half width of one tape.

3.1.3 Method limitations

As one of the main hypotheses of the model, it is assumed that the vector of the current

density in all the elements of the study domain has only one component aligned with the

helical trajectory of the tapes. This assumption is true, as long as all the tapes are wound

with the same winding angle. Therefore, the proposed model is applicable to solve the elec-

tromagnetic problem of helically wound tapes as long as they have the same winding angle.

This means that the model can be extended to multi-layer cables, only when all the layers

are wound with the same winding angle.

In our model, we just consider the HTS layer of the tapes, and all the other layers are

neglected. In the case of HTS tapes with non-ferromagnetic substrates, this assumption is

highly accurate. But, for the case of HTS tapes with ferromagnetic substrates, the problem

formulation must be extended to cover these layers. In this case, the effect of the magnetiza-

tion (induced by the transport current of the HTS layer) must be considered in the problem

formulation. In addition, ferromagnetic losses occurring at the substrate layer must be consi-

dered in the AC loss computation.
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3.1.4 Methodology

Mathematical formulation

In the proposed approach the governing equation of the problem is the eddy current

equation, i.e.

~E = −∂ ~A

∂t
− ~∇V (3.1)

where, ~E, ~A and ~∇V are respectively the electric field, magnetic potential and electric po-

tential gradient.

The eddy current equation is derived from the combination of the differential form of

Faraday’s law, i.e.

∇× ~E = −∂ ~B

∂t
(3.2)

and, the definition of the magnetic vector potential, i.e.

∇× ~A = ~B. (3.3)

Replacing ~B with (3.3) on the right-hand side of (3.2), we have

∇× ~E = −∂(∇× ~A)

∂t
(3.4)

or

∇× ( ~E +
∂ ~A

∂t
) = 0. (3.5)

We know that a curl free vector can be expressed as the gradient of a scalar, therefore

the argument of the curl operator in (3.5) can be expressed as the gradient of a scalar field.

This scalar field can be chosen to be the same scalar electric potential defined in electrostatic.

Therefore, we have

~E +
∂ ~A

∂t
= −~∇V , (3.6)

which is equivalent to (3.1).

As explained in the previous section, due to the symmetry of the problem and considering

the tapes as infinitely thin current sheets, it is assumed that ~E has only components aligned

with the helical trajectory of the tapes. Therefore, (3.1) can revert to a scalar form as



34

Eh = −∂Ah

∂t
−∇V h (3.7)

where Eh, Ah and ∇V h are the components of ~E, ~A, and ~∇V aligned with the helical

trajectory of the tapes. For the sake of simplicity, in what follows, we omit their index

notation.

To prepare (3.7) to be solved directly for the current density (J), E and A must be

expressed in terms of J . To do so, first E in the left side of (3.7) is replaced with the E − J

constitutive equation, i.e.

E = ρJ (3.8)

where, ρ represents the intrinsic resistivity of the tapes. In its general case, ρ can be a function

of other electromagnetic variables, such as J and B (magnetic flux density) as is the case

with superconductors. In our approach ρ is defined in the form of the power law expression

(see (2.4)).

On the right-hand side of (3.7), A also must be expressed in terms of J . The relationship

between A and J is obtained from the Biot-Savart potential integral, i. e.

A =
µ0

4π

ˆ

J

| r− r′ |dΩ (3.9)

where here Ω represents the surface occupied by the tape in a 3-D space, and r and r′, are

the position vectors of the observation and source points, respectively. The solution of this

equation for helically wound current sheets is used to establish a direct relationship between

A and J in all the elements of the study domain in a matrix form as

[A]k×1 = [MA]k×k[J]k×1 (3.10)

where, k is the number of the discretized elements, and [A] and [J] contain the magnetic

potential and the current density of each element of the study domain. [MA] is a k by k

matrix which relates A in each element to the J of all the elements.

In its final form, the problem is formulated as

diag[ρ(Ji)]k×k[J]k = − ∂

∂t
([MA]k×k[J]k×1)− [∇V]k×1 (3.11)

where diag[ρ(Ji)] represents a k by k matrix whose diagonal entries correspond to the

resistivity of each element i, obtained by the power law model. All the entries of [∇V ], which

represent the voltage per unit length of the tape, are identical. When a voltage is applied

across the cable, ∇V is known and J in all the elements constitute the k unknowns of the
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problem. In the case of imposing a known current to the tapes, ∇V is unknown. In this case,

as the (k + 1)th equation, we use a current constraint equation, i.e.

I = s
k

∑

i=1

Ji (3.12)

where, I is the injected current into the tape and s is the area of each element.

At this stage, by using a proper time transient integration algorithm, (3.11) is solved for

[J]. Once the values of J in all the elements of the study domain are known, the AC losses

of the cable (expressed in Watts per meter of tape) are obtained through

Q = 2N

1/f
ˆ

0

dt

w/2
ˆ

0

ρJ2dl (3.13)

where, f is the frequency of the applied current, w is the width of the tapes and N is the

number of tapes.

Since with this approach we solve for J , we do not automatically have access to the

solution of the magnetic field. But the magnetic field at given observation points can be

computed by establishing suitable matrices (with the help of the Biot-Savart field formula),

which relate the components of the magnetic field at those points to the current density of

all the elements of the study domain. Therefore, if the solution of the magnetic field is of

interest, the field at given observation points can be computed as a postprocessing step.

Method validation

In the absence of any other available model to compute the AC losses of helically wound

HTS tapes (to establish a benchmark), the only feasible way to assess the validity of the

proposed model was comparing its prediction of AC losses with the results of experimental

measurements. Since performing AC loss measurements requires elaborate instruments which

at the time were not available in our laboratory, the experimental measurements to verify the

validity of the model were done by our collaborators (Dr. Doan N. Nguyen and Dr. Stepen P.

Ashworth) in the Superconductivity Technology Center (STC) of the Los Alamos National

Laboratory.

Excellent agreements were observed between the numerical prediction and the results of

the experimental measurements for AC losses of a helically wound HTS coated tapes with

different geometrical parameters. Full details about the method, including its mathematics

and hypothetical developments and the results of the experimental verification have been

publish in [70]. This paper is inserted as Chapter 4 of this thesis.
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We used this method to perform a parametric study on the AC losses of single-layer HTS

cables with different geometrical parameters. Among the simulation results it was observed

that, for a fixed former radius and a given number of tapes, tapes twisted with smaller pitches

show lower AC losses per unit length of the cable. The results of this parametric study were

published in [71] which is inserted as Appendix C of this thesis.

3.2 Second phase

3.2.1 Research objective

Since there were no quantitative data and detailed analysis available about the loss reduc-

tion in HTS cables by the overlapped designs, the objective of the second phase of this thesis

was defined to assess the effectiveness of these designs in reducing AC losses in single-layer

HTS power cables.

3.2.2 Methodology

We started with the cyclic overlapped design, and through an extensive parametric simu-

lation we compared the AC loss behavior of this design against the typical design of HTS

cables. At this stage, we neglected the helical configuration of the tapes. A 2-D version of the

integral-type method developed in the first phase of this thesis was employed to perform the

simulations. Through the simulation results AC losses and the field and current distribution

inside the tapes of a single-layer HTS cable, were compared for both the cyclic overlapped

design and the typical design. The accuracy of the simulation results were verified with the

help of 2-D FEM simulations. Simulation results revealed that, by overlapping the tapes AC

losses can be reduced up to 5 times compared with the minimum AC losses that can be

achieved with the optimum typical design. The detailed results of this study were published

in [72], which is inserted Chapter 5 of this thesis.

As the next step, we used the 3-D version of our developed method to investigate the

effect of the helical configuration on the performance of the overlapped designs. In this step,

through parametric numerical simulations, the AC loss behavior of the cyclic and anticy-

clic overlapped designs were compared against the typical design for different geometrical

parameters, including the winding angle of the tapes.

In addition to the overlapped designs proposed by SuperPower, we investigated the idea

of putting narrow HTS tapes bellow the main tapes under the gap regions (see figure 3.3).

The motivation behind this idea is to use the magnetic field produced by the narrow tapes

to undermine the edge effect in the main tapes. It is expected that the current flowing in the

narrow tapes shield the flux lines so they cannot enter in the gap region.
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Figure 3.3 Cross-section view of a cable when narrow tapes are symmetrically placed below
the gap region

The detailed results about the AC loss behavior of the overlapped designs, and the effec-

tiveness of the idea of inserting narrow tapes have been published in [73], which is inserted

Chapter 6 of this thesis work. According to the results of this study, the idea of overlapping

the tapes and putting narrow tapes under the gap regions are quite effective in reducing AC

losses of single-layer HTS cables made of coated tapes, so that with realistic design parameters

AC losses can be reduced up to 70%.
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CHAPTER 4

FAST NUMERICAL COMPUTATION OF CURRENT DISTRIBUTION AND

AC LOSSES IN HELICALLY WOUND THIN TAPE CONDUCTORS :

SINGLE-LAYER COAXIAL ARRANGEMENT

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 20, NO. 6,

DECEMBER 2010 1

Majid Siahrang*, Frédéric Sirois*, Doan N. Nguyen+, Slobodan Babic*, and Stephen P.

Ashworth+

*École Polytechnique de Montréal
+Superconductivity Technology Center, Los Alamos National Laboratory

Abstract

In this paper, we introduce a very fast method to compute the current distribution in

helically wound thin conductors, when one or many of them are arranged in a symmetrical

manner to form a single-layer power cable. The method relies on two different approaches

to find the magnetic vector potential due to helically wound current sheets. By invoking

relevant symmetry arguments associated with the geometry of the problem, and neglecting

the thickness of the tape conductors, we show that this 3-D problem can be reduced to a

computationally small 1-D problem, whose domain lies along the half-width of any of the

constituting conductor. As a consequence, the proposed method is very efficient in terms of

computational time, and it is more accurate than many previous 2-D methods that cannot

take into account the twist pitch. Since the non-linear resistivity of superconducting material

can easily be treated with this method, it can be used to find current and field distributions,

as well as AC losses in HTS coils and cables made of coated tapes. To verify the validity of

the proposed method, we performed experimental measurements of AC losses in two configu-

rations of solenoid-type cables made of a sample of YBCO coated conductor tape. Excellent

agreement was observed between the experimental data and simulation results.

1. Manuscript Submitted May 24, 2010 ; revised August 23, 2010 ; accepted September 9, 2010. Date of
publication October 21, 2010. Digital Object Identifier 10.1109/TASC.2010.2078813
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4.1 Introduction

To make High Temperature Superconductor (HTS) coils and cables economically more

competitive, computational tools that make it possible to predict the current distribution

and power AC losses in helically wound thin conductors is of ultimate importance. With such

tools, the analysis and design stages could be coupled with optimization tools to achieve the

best possible configurations for given technical requirements.

The conductors of choice in the latest generation of HTS power transmission cables are

YBCO coated tapes. The thickness of the superconducting layer in these tapes is about

1 µm, while the typical width varies from 4 to 12 mm. Many such tapes are helically wound

in coaxial arrangements to constitute HTS power cables, due to both mechanical and electri-

cal considerations. This results in a fairly complicated geometry to model, and numerically

speaking, the problem is highly challenging to tackle with conventional approaches. Even

the Finite Element Method (FEM), which is recognized as one of the most powerful tech-

niques for dealing with complicated geometries, requires an enormous amount of memory to

mesh this kind of geometry, where such thin conductors are involved. In addition, the highly

non-linear resistivity of the HTS materials adds another level of complexity to this already

challenging problem.

To circumvent the geometric modeling challenge, most of the previous approaches for

solving cable problems simplified the real geometry using various approximations. In most

cases, the first simplification is to neglect the twisted configuration of the tapes so thatthey

can be considered as straight parallel conductors [27, 50, 51, 65]. While providing useful

information, these approaches cannot be used to optimize cable designs, since the twist angle

is actually a very important parameter. In other proposed approaches, the cable layers are

considered as thin hollow tubular conductors. In these methods, the current can be forced

to flow along the helical trajectory of the tapes by defining the conductivity of the cylinder

as an anisotropic tensor [62, 74, 75]. Although this approach partially takes into account

the twisted configuration of the tapes, the tape-to-tape gaps are neglected, whereas they are

shown here to play a dominant role in determining AC losses. It has been reported that this

approximation leads to a significant underestimation of AC losses [62]. Using an analytic

expression in the form of infinite series for mutual and self inductance of helically wound thin

conductors to formulate the circuit equation, another method has been recently introduced

in [66] to solve this problem. However as mentioned by the author, this method is very slow

and needs to be improved for practical cases.

To find current distribution and AC losses in single-layer HTS cables, in this paper we

propose a fast and accurate numerical technique that is applicable to the twisted configuration
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of each individual tape. The method avoids meshing the whole cable domain by using an

integral formulation, and exploits both the helical symmetry of the problem and the very

small thickness of the tapes to reduce it to a computationally small 1-D problem, involving

only a few hundred of unknowns. The electromagnetic problem is solved in terms of J ,

the current density, which is itself related to the vector potential (and field components,

if necessary) through Biot-Savart integrals evaluated on the real helical trajectory of the

tapes. The results are obtained in a significantly reduced time as compared with all previous

methods, while being much closer to the reality. No magnetic materials are considered at this

stage, such as when superconducting layers are deposited on a ferromagnetic substrate.

This paper is organized as follows : First, two methods to solve the Biot-Savart potential

integrals for helical current sheets are presented. Second, using these methods together with

symmetry arguments, the governing equations of the problem are formulated over a properly

defined study domain. Finally, the accuracy of the method is confirmed by comparing the

simulation results to AC loss experimental data.

4.2 Magnetic potential due to helical current sheets

In this section, we introduce two different methods to find the magnetic potential asso-

ciated with current carrying helical sheets. Both of these methods are based on the solution

of Biot-Savart potential integrals. In the first method, the integrals are solved numerically,

whereas in the second method, we use a semianalytic approach.

4.2.1 Reduced dimension numerical integration

This first approach constitutes an important part of the novelty proposed in this paper,

and it is the basic building block entering the mathematical formulation of the problem. In

the forthcoming developments, we assume that the HTS tapes have a negligible thickness,

and therefore behave as infinitely thin current sheets. We also assume that the cross-section

of each twisted tape can be approximated by a straight line (parallel to the v̂ axis, see

figure 4.1). Although this is not exactly true (the tapes are actually slightly curved on the

former), it becomes a very good approximation when we subdivide the real tape into many

narrow sub-tapes. Therefore, each tape is modeled by extruding this straight line along a

helical trajectory, which is defined by :

~c = R cos (2πu+ φ0) x̂+R sin (2πu+ φ0) ŷ + Lu ẑ , (4.1)

where, R, L and u, are respectively the radius, the pitch length and parameter of the

helix, and φ0 is an offset angle that determines position of the tape around the former (see
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Figure 4.1 Helically wound thin conductor geometry and associated notations considered in
this paper.

figure 4.1). In what follows, we restrict our developments to a single reference tape of width

2a, whose center line passes through (0, 0, 0) ; thus we can set φ0 = 0. We can determine the

vector potential ~A associated to a sheet current density ~j flowing into this tape at any point

~r = (x, y, z) in space from the the Biot-Savart law, i.e.

~A(~r) =
µ0

4π

ˆ

Ω

~j

|~r−~r ′| dΩ , (4.2)

where Ω represents the surface occupied by the tape in a 3-D space, as shown in figure 4.1.

When considering the actual tape width (2a), and supposing that the sheet current density

|~j| = j A/m is uniform and flows along the helical path only, we obtain the following integral

(see Appendix A for the detailed procedure) :

~A(x, y, z) =
µ0aℓj

4π

np/2
ˆ

−np/2

du û

1
ˆ

−1

dv
√

d2x + d2y + d2z
, (4.3)

where np is the number of twisted pitches considered in the integral, i.e.−np/2 < u < np/2

(half of the number of pitches above and below the plane z = 0), v is a parameter used to

define the strip width, and the remaining notations are defined as follows :
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ℓ =

√

(2πR)2 + L2 ,

û =
2πR

ℓ

[

− sin (2πu) x̂+ cos (2πu) ŷ +
L

2πR
ẑ

]

,

dx = x−R cos (2πu)− avL

ℓ
sin (2πu) ,

dy = y −R sin (2πu) +
avL

ℓ
cos (2πu) ,

dz = z − Lu− 2πavR

ℓ
. (4.4)

Defining B and K as

B = − 2

aℓ

{

L
[

x sin(2πu)− y cos(2πu)
]

+ 2πR(z − Lu)
}

,

K =
1

a2

{

[

x−R cos(2πu)
]2

+
[

y −R sin(2πu)
]2

+
[

z − Lu
]2
}

, (4.5)

one can rewrite (4.3) as

~A =
µ0ℓj

4π

np/2
ˆ

−np/2

du û

1
ˆ

−1

dv√
v2 + Bv +K

, (4.6)

where the rightmost integration in (4.6) can be solved analytically. The result is

I0 =

1
ˆ

−1

dv√
v2 + Bv +K

= ln

(

B + 2 + 2
√
1 + B +K

B − 2 + 2
√
1−B +K

)

. (4.7)

Despite the compact notation, one must not forget that I0 is a function of u. By inserting

this analytic solution in (4.6), the order of integrations to find ~A is reduced to one. Therefore,

after substituting û from (4.4), ~A can be decomposed into its components, in the Cartesian
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coordinate system, as three simple integrals, i.e.,

Ax =
µ0Rj

2

np/2
ˆ

−np/2

sin(2πu)I0(u) du ,

Ay =
µ0Rj

2

np/2
ˆ

−np/2

cos(2πu)I0(u) du ,

Az =
µ0Lj

4π

np/2
ˆ

−np/2

I0(u) du . (4.8)

These 1-D integrals, although not analytically tractable, can numerically be solved much

faster and more easily than the 2-D version shown in (4.6). However, some care must be

taken since potential integrals diverge when the observation point ~r = (x, y, z) lies in the

integration domain, namely, the tape surface. In this case, I0 diverges at ~r
′ = ~r, although the

integral does not. In principle, this can be addressed by using special quadrature integration

techniques, but these are not easy at all to implement in a robust way. Another approach

that avoid dealing with singularities is to revert to analytical approximations in this part of

the integral, as shown in next section.

4.2.2 Semianalytic approach

In this approach, the helical current sheet is assumed to be constructed by the intercon-

nection of tiny rectangular elements, as shown in figure 4.2. By doing this, the geometry is no

longer the exact geometry (presence of a discontinuity between each element), but it makes

it possible to develop analytic expressions for the vector potential.

Figure 4.3 shows one of these elements in a local coordinate system (x, y, z). In this figure,

w and h are the width and height of the element, respectively. For the sake of simplicity, we

consider that the z axis of the local coordinate system is aligned with the helical path ~c, as

defined in (4.1), whereas the y axis is normal to the surface of the tape. Therefore, when

the current flows along the helical trajectory of the tape, a sheet current of j (in amper per

meter) flows in the element along the z axis (still in the local coordinate system). Under

these conditions, the contribution to the vector potential at any desired observation point

~r = (x, y, z) of the local coordinate system has a unique component oriented along z (colinear

with the sheet current) that can be determined from the following potential integral :
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Figure 4.2 Thin helical conductor constructed by interconnection of tiny rectangular elements.

Az(x, y, z) =
µ0j

4π

w
2
ˆ

−w
2

h
2
ˆ

−h
2

dz′dx′

P
, (4.9)

where P =
√

X2 + y2 + Z2 (always positive), X = x− x′ and Z = z − z′. An analytic result

is easily found for this double integral, i.e.,

Az =
µ0j

4π

{

z′ + y

[

arctan

(

Z

y

)

− arctan

(

ZX

yP

)]

+ Z ln (X + P )

+X ln (Z + P )

}

∣

∣

∣

∣

∣

x′=w
2

x′=−
w
2

∣

∣

∣

∣

∣

z′=h
2

z′=−
h
2

(4.10)

where arctan terms return a value between −π/2 and π/2.

The total vector potential at any observation point is obtained by superimposing the

contribution of all the rectangular current sheets in a global coordinate system, which requires

applying a different rotation matrix to each element. The minimum number of elements

required to achieve a given accuracy depends on the radius and pitch length of the helix, and

can be determined after a few manual iterations.

4.2.3 Comparison between numerical and semianalytic methods

From the point of view of computational performances, numerical integration is faster than

the presented semianalytic method. On the other hand, the semi-analytic approach handles

the singularities of the potential integrals much more easily than the numerical approach. To
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Figure 4.3 An elementary rectangular current sheet in its local coordinate system (x, y, z).

exploit the advantages of both methods, we did use numerical integration as often as possible,

except for singular cases, which we treated with the semianalytic method. This explains why

we introduced the two methods in detail in this paper.

4.3 Formulation of the electromagnetic problem

4.3.1 Assumptions

As shown in figure 4.4, we assumed a symmetrical arrangement of tapes helically wound

around a cylindrical former, so they all have the same twist pitch. In the rest of this paper,

this configuration is referred to as “single-layer cable” or simply “cable.” In addition the term

“tape” is used to refer to each of its constituting thin conductors.

On the modeling side, the only geometrical approximation used for the cable was to

consider the tapes as infinitely thin conductors (current sheet approximation) to be consistent

with the formulas previously derived.

In addition, from the preceding assumptions, one can deduce the following statements :

– As long as the cable length is long enough, the current distribution along the cross-

section of any tapes is the same at any position along the length of the cable.

– As long as all tapes are identical (geometrically and physically) and symmetrically

positioned, their current distributions are identical.

– The current in each tape always flows along its helical trajectory and the current density

vector (i.e., ~J) is always tangential to this path.

– The current distribution in the tapes must necessarily exhibit an even symmetry along

their width.

Based on the preceding statements and in the absence of any magnetic material, the formu-

lation of the problem to find ~J can be established over a 1-D study domain defined along the
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Figure 4.4 Helically wound thin conductors in single-layer coaxial arrangement.

half-width of one tape. This line domain, which is actually a bent line tangential to the tape

wide face and normal to its edge, is shown in figure 4.5.

A particular feature of this model is that finding ~J along this 1-D domain is sufficient to

find the current distribution and power dissipation in the whole cable. In addition, we already

know from symmetry considerations, that ~J only has a component oriented along the helical

path of the tape, i.e., ~J = J ĥ (see figure 4.5). Therefore, in the rest of the paper, we will

drop the vector notation and use J to express the unknowns of our problem, knowing that J

actually corresponds to the helical component of the current density in the tapes.

To solve for J , the 1-D study domain has to be discretized first. This is done by redefining

this slightly curved domain as a set of interconnected straight lines. From figure 4.5, each of

these straight lines is parallel to t̂. These straight lines constitute the discretized “elements”

of the numerical problem. To each of these elements, we associate an unknown helical current

density J , as previously mentioned. Therefore, the total number of unknowns (or “degrees

of freedom”) of the problem will be simply equal to the number of elements used in the

discretized study domain.

4.3.2 Matrix formulation of the electromagnetic problem

To find the distribution of the helical current density J , we start from the electric field ~E

equation expressed in its local form, in the low frequency approximation, i.e.,

~E = −∂ ~A

∂t
−∇φ , (4.11)

where, ~E, ~A and ∇φ are, respectively, the electric field, the magnetic vector potential and
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Figure 4.5 One-dimensional study domain defined over the cross-section of one tape, shown
with the local coordinate system of one of its elements (t̂ : vector tangential to tape surface
and parallel to cross-section, ĥ : helical vector, also tangential to tape surface, n̂ : vector
normal to tape surface).

the electric potential gradient. This equation directly relates each component of ~E with those

of ~A and ∇φ. Since we only need to compute the helical component of J , we can revert to

the scalar form of (4.11), i.e.,

Eh = −∂Ah

∂t
−∇V , (4.12)

where Eh and Ah are the helical components of ~E and ~A, and ∇V is a constant represen-

ting the voltage per unit length of tape, which drives the desired helical current in each tape.

One should note that ∇V is different from ∇φ since the former has only a helical component,

whereas the later may also have a transverse component, which we do not need to evaluate

explicitly. In what follows, we drop the “h” index denoting the helical components.

To obtain an equation in terms of J , we first use the classical E−J constitutive equation

(in its scalar form), i.e.,

E = ρJ , (4.13)

where, ρ represents the intrinsic resistivity of the tapes. In its general case, ρ can be a

constant (i.e. metallic conductors) or a function of other electromagnetic variables, such as ~J

or ~B (the magnetic flux density), such as in superconductors.

Inserting (4.13) into (4.12), and applying a simple point collocation technique to obtain

a discrete set of equations in which the helical current density Ji and the resistivity ρ(Ji) are

assumed piecewise constant by element (but not necessarily linear), we obtain

Ei = ρ(Ji)Ji = −∂Ai

∂t
−∇V , (4.14)

where, i corresponds to the ith element (1 < i < n), and n denotes the total number ele-
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ments in the discretized domain. For convenience, we assume that all Ji and Ai are evaluated

at the center point of each element.

The above equations are now expressed in matrix form, i.e.,

diag[ρ(Ji)]n×n[J]n = − ∂

∂t
[A]n×1 − [∇V]n×1 , (4.15)

where diag[ρ(Ji)] represents an n by n matrix whose diagonal entries corresponds to

the resistivity of each element i. In addition, [J] and [A] are respectively the column vector

representation of the helical components of the current density and magnetic potential in all

elements of the problem, i.e., the components tangential to the helical trajectory of the tapes.

Finally, we emphasize that all n entries of [∇V] are identical, since ∇V is a constant when

all tapes are identical, symmetrically arranged and carry the same transport current.

As a last step towards an equation expressed only in terms of [J], results of the second

section of this paper are employed to provide a direct relationship between [A] and [J], i.e.,

[A]n×1 = [MA]n×n[J]n×1 , (4.16)

where the each helical sheet current densities j required in (4.8) or (4.10) is related to the

preceding J through ji = d Ji, where d is the actual thickness of the tapes. Within this

paper, we used a combination of both methods proposed in the second section to determine

these coefficients, i.e., the semianalytic approach was used to find the helical component of
~A when the observation point was located within or close to the source element, (singular

or nearly singular points), and the numerical integration was used otherwise. Although this

procedure proved to be relatively fast, it could further be optimized. To model a long cable,

the contribution of each twisted strip has to be considered over a sufficient number of pitches

(np). An adequate figure seems to be around np & 20L/R.

In the general case, the generation of the [MA] matrix takes a long time. However, due

to the particular helical symmetry encountered here, and since we assume the same current

distribution in each tape, [MA] can be fully generated with the computation of its first row

only, by using a cyclic permutation of the coefficients. In addition, since the determination of

[MA] depends only on the geometrical data of the problem, it can be generated only once for

a given geometry and reused multiple times to perform parametric analysis involving other

non-geometric parameters, such as varying the transport current, the resistivity, and so on.

To obtain our final equation, we insert (4.16) into (4.15), which results in the following

equation :

diag[ρ(Ji)]n×n[J]n = − ∂

∂t
([MA]n×n[J]n×1)− [∇V]n×1 . (4.17)
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To obtain our final equation, we insert (4.16) into (4.15), which results in the following

equation :

diag[ρ(Ji)]n×n[J]n = − ∂

∂t
([MA]n×n[J]n×1)− [∇V]n×1 . (4.18)

This equation can be used to solve both voltage driven or current driven problems. In the

first case, ∇V is supposed as known, and correspond to a voltage source expressed per unit

length. In the second case, ∇V is unknown, and one must write an additional equation to

impose a given transport current in one tape. The way to do this was already described in

details in [76], so it is not repeated here.

Regarding the time derivative appearing in (4.18), it can be dealt with differently depen-

ding on the nature of the resistivity. If the later is linear and the excitation is periodic, a

simple time-harmonic solution can be used (J and ∇V are then complex) and yield to solu-

tions quickly. However, if the resistivity is non-linear, such as with superconductors, one need

a full solution to the time transient problem, and a proper time integration algorithm must

be used (e.g. Euler, Runge-Kutta, etc.). To improve the convergence of the solution process,

it is highly recommended to use adaptive time transient solvers, such as “ode45” or “ode15s”

available in Matlab [77], or even more sophisticated solvers such as “DASSL” or “DASPK”

[78, 79], available in various public code distributions, such as the Sundials solver suite [80],

which was used here. Further details about how we formulated the final equations in order

to use Sundials can be found in [64].

Finally, since we solve for J , we do not automatically have access to the magnetic field

or flux density components. If these quantities are of interest, they can be computed with

the help of the analytic formulas proposed in [81] for thin rectangular current sheets (see

Appendix B), in a similar way to the semi-analytic method proposed in the second section of

this paper. Unless the resistivity of the tapes depends on ~B, these computations can be done

only as a post-processing step. Indeed, if one wishes to know the field at given observation

points (say m points), suffices to evaluate the following matrix-vector products for obtaining

either the helical (ĥ), tangential (t̂) or normal (n̂) component of ~B (see figure 4.5), i.e.

[Bh]m×1 = [MBh
]m×n[J]n×1 ,

[Bt]m×1 = [MBt
]m×n[J]n×1 ,

[Bn]m×1 = [MBn
]m×n[J]n×1 . (4.19)

If we choose to compute the field at the center of each element, we have m = n, and we also

end up with a significant economy in computation time, since by symmetry, only the first

row of [MB] needs to be computed (similarly to the case of [MA]).
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4.4 Validation of the numerical method

4.4.1 Experimental benchmark

To assess the validity of the method previously presented, we performed experimental

measurements on samples made of HTS tapes. We chose HTS tapes for two major reasons.

First, the main purpose of the method is to determine the current distribution and AC

losses in HTS coils and cables. Second, although the current distribution cannot be measured

experimentally, we can measure the AC losses under a sinusoidal transport current. Due to

the mechanism by which these losses occur, the value of the AC losses is very sensitive to

the field and current distributions inside the superconducting sample. Therefore, obtaining

a good prediction of AC losses under various experimental conditions (different transport

currents and helical configurations of the HTS tapes) should be a sufficient condition to

consider the numerical results as valid.

The selected HTS conductor used to perform the experiments was an IBAD (Ion Beam

Assisted Deposition) YBCO coated conductor tape, manufactured by SuperPower. The tape

width was 12 mm, and the thickness of its superconducting YBCO layer was 1 µm. To assess

the reliability of the numerical method for a diversified range of geometrical parameter,

simulation and experimental results were compared when the tape is not twisted (isolated

straight tape) and when the tape is helically wound with two different twist pitches (solenoid-

type cable). The solenoidal configuration has the advantage of ensuring that the total current

is the same in every tape section, a condition that would be difficult to satisfy experimentally

for short cable samples made of multiple tapes.

In our cable samples, the 12 mm tape was wound around a cylindrical former of 11.26 mm

of radius. The two pitch lengths chosen were of 15.4 mm and 13.3 mm, resulting in respective

gaps of 3 mm and 1 mm between two adjacent turns of the coil. To ensure that the prototypes

Figure 4.6 Solenoid-type cable made of 12 mm wide HTS YBCO tape helically wound on a
former of 11.26 mm of radius. This cable was used to obtain experimental AC loss values,
required to validate the numerical method introduced in this paper.
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behave as “long” cables, the tape was wound over np = 16 pitches. Figure 4.6 shows the first

solenoidal cable prototype, i.e., the one with a pitch length of 15.4 mm and a gap of 3 mm.

In all three experimental scenarios considered, a series of 50 Hz sinusoidal transport

currents were imposed in the tape. The peak value of the imposed current was progressively

increased from ≈ 15% to 90% of the critical current of the tape (Ic = 320 A), whereas the

losses were measured over the 2 middle turns. The results are presented in the next section.

4.4.2 Numerical simulations

In the numerical simulations, the tape was discretized into 150 elements along its half-

width. The non-linear resistivity of the YBCO tape was modeled with a classical power law

characteristic, which is known to be quite representative of the HTS behavior when J is in

the range of Jc, i.e.,

ρ =
Ec

Jc

∣

∣

∣

∣

J

Jc

∣

∣

∣

∣

p−1

(4.20)

where Ec is the electric field criterion (Ec = 10−4 V/m), p is the power law exponent

(p = 50), and Jc is the local critical current density. In what follows, Jc was chosen as to be

non-uniform across the width of the sample, i.e. Jc = f(x), where f(x) is shown in figure 4.7.

This choice follows from good fits obtained between simulation and experimental results

published previously for the same type of HTS tape [82]. In this paper, we used a value of

Jc0 = 2.8 × 106 A/cm2, corresponding the critical current value of Ic = 320 A mentioned

previously.

The [MA] matrices required for each simulation case (straight tape, and two helical cables

with different twist pitches) were generated in less than 40 s. They were generated only once,

and re-used for each simulation scenario. Regarding the simulation times themselves, for each

transport current imposed in the tape, the solver converged and provided the AC loss results

within a few seconds (most often less than 10 s). This is a significant reduction in computation

time if we compare to the closest procedure found in literature, where simulation times in

the range of hours or even days were reported [66].
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Figure 4.7 Model of the critical current distribution in the YBCO tape used in the proto-
type cable. This Jc(x) function was taken from [82], where it was shown to fit well with
experimental measurements.

4.4.3 Comparison of numerical and experimental results

The AC losses can be computed from the J profiles obtained by numerical simulation

with the help of the following formula :

Q = 2

1/f
ˆ

0

dt

w/2
ˆ

0

ρJ2dl . (4.21)

One should note that this formula gives the AC losses per unit length of tape, not per unit

length of cable. The AC losses per meter of tape provide a better comparison of the intrinsic

losses, especially in this case, since all cable samples were made with a single tape.

The AC loss results obtained by simulation are shown in figure 4.8, together with the

experimental values, for the three cases considered in this paper. As expected, the losses

decrease as the gap size decreases (highest losses for the isolated tape). In all cases, we

observe an excellent agreement between the predicted values and the measured ones, which

supports the validity of the numerical simulations.

In figure 4.9, the field and current distributions along the cross-section of the helical

tape are shown for the two twisted cables above, corresponding to gaps of 1 mm and 3 mm

respectively. The profiles shown correspond to the maximum of a peak transport current

of 220 A, i.e. ≈ 0.7Ic. Although the current distribution was obtained directly from the

numerical computations, the field components were obtained as post-processed quantities

derived with the help of (4.19). Still, in figure 4.9, we observe that the normal component of

the field (Bn) is higher near the edges of the tape and penetrates further towards its center

when the gap is larger. We also observe that the tangential component of the field (Bt) is

in the same range of values as Bn (even slightly higher near the edges), and even increases
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Figure 4.8 Measurements (squares) and simulations (lines) of AC losses per unit length of
tape for a straight and helically wound HTS tape as a function of the transport current. The
same 12 mm wide tape sample was used for all three experiments.

at the center when the gap is larger. The helical field component (Bh), corresponding to the

component parallel to J , is the smallest one (roughly 5 times less than Bn). It decreases

as the gap size increases, and is nearly independent of the position along the tape width.

This was intuitively predictable since this component must tend towards zero as the gap size

increases, meaning that the solenoid-type cable tends to be a straight tape. As a consequence

of these field distributions, it is observed that, for small gaps, the current tends to distribute

itself more uniformly within the tape, with reduced peaks near the edges, and thus reduced

losses.

Although relatively convincing, these simulations did not allow us to clearly identify the

important parameters for optimizing AC losses in HTS cables made of multiple conductors.

This important question is more complicated than it appears at first sight. For instance,

one could reasonably suppose that the AC losses are dominated by the penetration of the

magnetic field at the edges of the tapes, which is itself strongly related to the gap size.

Therefore, we might think that a simple 2-D simulation of the cable cross-section could in

principle be sufficient to get quantitative data about the impact of the gap size. However, for a

given combination of twist pitch, tape width and gap size, the former radius is automatically

fixed. A 2-D analysis (no twist pitch) using the same parameters therefore implies that the

former radius must change, and then the problem is no longer the same as before. One could
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think about adding tapes to keep the former radius constant, but then the total current

carrying capability of the cable increases, increasing the magnitude of the field components,

and consequently the AC losses. Therefore, it does not seem possible to neglect the twist

pitch and simply use 2-D simulations for the purpose of properly optimizing a cable design,

and this issue will inevitably get more complicated for multi-layer cables.

A comprehensive parametric analysis of single-layer cable layouts requires a different

methodology than what was presented here, it will be addressed in a separate publication.

4.5 Conclusion

In this paper, we have presented a new numerical approach to finding the current distribu-

tion and the field components in helically wound thin conductors, such as HTS YBCO tapes.

The method is particularly well suited for solving problems where one or many of such thin

conductors are symmetrically positioned with respect to each other, in a coaxial arrangement.

The method does consider the real helical configuration of the tapes, and approximates their

geometry as infinitely thin strips. The approach relies on symmetry arguments to formulate

the discrete problem with a minimum number of degrees of freedoms. Since the non-linear

resistivity of the HTS material can be easily inserted in the model, the method can be applied

to analyze single layer power cables made of twisted HTS coated conductors. The accuracy

of the method was verified by comparing the AC losses obtained by simulation with expe-

rimental results. An excellent agreement was found for the three different cases considered

in this paper. The typical computation time required to solve a problem is in the range of

seconds, which is a significant improvement over existing methods. This method could be

used to determine the optimal geometric parameters to devise low-loss HTS power cables.
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transport current of 220 A, corresponding to ≈ 0.7Ic.
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CHAPTER 5

REDUCTION OF AC LOSSES IN HTS POWER TRANSMISSION CABLES

MADE OF COATED CONDUCTORS BY OVERLAPPING THE TAPES

SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, 24 (2011) 015004 1

Majid Siahrang and Frédéric Sirois

École Polytechnique de Montréal

Abstract

In this paper, we investigate the effectiveness of an alternative design scheme to reduce the

AC losses in HTS power transmission cables made of non-ferromagnetic HTS coated conduc-

tors. With this design, the adjacent tapes of each layer of the cable overlap each other up to a

certain distance from their edges, typically 1 or 2 mm. Using two different numerical methods,

an integral technique and a finite element method, we performed a parametric investigation

of the idea of overlapping the tapes in the case of a single-layer HTS power cable. Through

the simulation results, we show that overlapping the tape leads to an important reduction

in the AC losses of the cable (typically two to five times), mostly due to an advantageous

redistribution of the current in tapes.

5.1 Introduction

Transmission of power through High Temperature Superconducting (HTS) cables is one

of the most promising industrial application of HTS materials for commercialization in the

near future. The reduction of electric power dissipation due to alternating current flow in

HTS conductors, commonly called AC losses, is a key technical issue in the development of

HTS cables. Although these losses are relatively small as compared to the range of power

dissipated in copper cables, the generated heat must be extracted from the cryostat to the

ambient environment in order to keep the temperature of the superconductor below the

critical temperature. Because of the large difference between the conductor’s temperature

and the ambient temperature, heat removal requires a bulk and costly cryogenic system.

1. Manuscript Submitted September 15, 2010 ; revised October 19, 2010 ; Date of publication December
3, 2010. Digital Object Identifier 10.1088/0953-2048/24/1/015004
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Reduction of the AC losses therefore contributes to a significant reduction in the capital and

operational costs of HTS cables and makes them more competitive with respect to other

technologies.

In the latest generation of HTS power cables, YBCO coated tapes are the conductors of

choice. In the typical design of HTS power transmission cables, these tapes are helically wound

around cylindrical formers in single or multi-layer coaxial arrangements. Figure 5.1 shows a

cross-sectional view of a single-layer HTS power cable made of eight coated conductors. Due

to the helical configuration, the wide face of the tapes are curved along the surface of the

cylindrical former around which the tapes are wound. With this design scheme, small gaps

separate the adjacent tapes of each layer. From a pure electromagnetic point of view, the

most favorable design to achieve minimum losses occurs when these gaps are completely

closed [33, 70, 71]. But the minimum size of the gap is inevitably limited by the need for

mechanical flexibility and by the winding process of the cable. In the current design of HTS

cables, the minimum size of the gap is limited to ≈ 0.6 to 0.8 mm [33].

In this paper, we investigate a new design scheme for HTS power transmission cables

made of coated tapes. This design has been already suggested in a patent by Superpower [69],

but there are no quantitative effectiveness data and detailed analysis of the electromagnetic

behavior for this design in literature. In this design, the adjacent tapes of a given layer overlap

each other over a certain distance from their edges. Through simulation results, we show that

this design leads to a considerable reduction in AC losses in HTS power transmission cables.

In addition, this design seems realizable in practice and would not prevent the cable from

being bent, as required in a field installation.

This paper is organized as follows : firstly, we introduce the new design in more details.

Secondly, we introduce two different numerical models that were used to perform parametric

simulations to assess the effectiveness of the new design on AC loss reduction in the case of a

single-layer, untwisted HTS power cable. Finally, we discuss the reasons for the reduced AC

losses obtained with this design.

5.2 Overlapped design

In the proposed overlapped design, the constituting tapes of each layer of the cable are

symmetrically positioned around a cylindrical former, similar to the typical design. However,

instead of having a gap between the tapes, the adjacent tapes of each layer periodically

overlap each other over a certain distance from their edges, as shown in figure 5.2.

To mathematically define the overlapped design in the 2-D cross-section of the cable, we

assumed that, unlike in the typical design, the edges of the constituting tapes are located at



58

Figure 5.1 Cross-sectional view of a single-layer HTS cable (typical design).

Figure 5.2 Cross-sectional view of a single-layer HTS cable (Overlapped design)



59

two different distances from the center of the former. As shown in figure 5.3, let us consider

R1 as the radius of this cylinder. If, for instances, the rightmost edge of each tape is located

on the former circumference, the leftmost edge must be positioned at a distance of R2 meter

from the center point of the former. To complete the definition of the overlapped design

without any ambiguity about the positioning of the tapes, we assume that the wide face

of the tape is conformed with a cylinder of radius of R3 (illustrated by the dashed lines in

figure 5.3), where R3 is the average of R1 and R2 (i.e. R3 = (R1 +R2)/2).

As shown in figure 5.4, in the overlapped design, two geometric parameters are introduced :

– The vertical gap, which is defined as the vertical distance between the bottom of the

adjacent tapes.

– The overlap distance, which is the distance along which the adjacent tapes overlap each

other.

5.3 Overlapped design vs typical design

5.3.1 Numerical methods

To assess the effectiveness of the overlapped design, we used two different numerical

methods to perform a parametric study on the AC loss behavior of a single-layer HTS cable

made of coated conductors. Since these methods are quite different in nature, they were used

to validate each other. In both of these methods, the helical configuration of the tapes was

neglected. Therefore, due to the invariance of the physical quantity along the length of the

cable, the problem could be formulated in the 2-D cross-section of the cable.

Integral method (IM)

In this method, we used a point collocation method (Brandt-type formulation) for solving

the electric field equation at low frequency [63, 76], on a 2-D cross-section of the cable, i.e.

E = −∂A

∂t
−∇V (5.1)

where E, A and ∇V are the z components of the vectors of the electric field, magnetic

potential and potential gradient, respectively. Since we consider each tape identical, the

electromagnetic problem can be entirely solved over a domain consisting in a single tape.

In this model, we considered only the superconducting layer of the tapes, and no magnetic

material is involved. To obtain a discrete system of equations from (5.1), the HTS layer of

the tape was discretized into many interconnected line elements along its width. In order to

consider the current distribution across the thickness of the tapes, the discretization is done
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Figure 5.3 Mathematical introduction of the overlapped design

Vertical gap
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Figure 5.4 Geometrical parameters of the overlapped design
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along three parallel 1-D domains, which divide the tape into three identical sub-domains as

shown in figure 5.5.

Since we are interested in solving (5.1) to obtain J in each element, where J is the z

component of the current density vector inside the tapes, we have to rewrite A and E in (5.1)

in term of J .

To establish a relationship between J and A in (5.1) for all the elements of the study

domain, we used the analytical solution of the Biot-Savart potential integral for an infinitely

long straight current sheet of j A/m (shown in 5.3.1). This analytical solution is

Az(x, y) =
µ0j

8π

{

8a+ 4y

(

arctan

(

D

2y

)

+ arctan

(

C

2y

))

+D ln

(

y2 +
D2

4

)

+ C ln

(

y2 +
C2

4

)

}

, (5.2)

where C = 2(a − x), D = 2(a + x), 2a is the width of the current sheet, and (x, y) is the

coordinate of the observation point.

Using (5.2) we introduce an n by n matrix [MA], which provides a direct relationship

between J and A in all the n elements of the study domain, i.e.

[A]n×1 = [MA]n×n[J ]n×1 . (5.3)

To find the entries of [MA], we inject a sheet current density of j = 1 A/m into each

element of the study domain and compute A at the middle point of all the elements with

the help of (5.2). The computed values of A must be divided by the thickness of each line

element, i.e. one third of the thickness of the HTS layer, to obtain dimensionally correct

entries in [MA]. It is worth mentioning that, although the problem is formulated inside only

one tape, the contribution of all the other constituting tapes must also be taken into account

to set up the [MA].

In order to write E in the left side of (5.1) in term of J , we use the E − J constitutive

equation, i.e. :

Figure 5.5 Discretization of the superconducting layer of one tape into magnetically coupled
line elements in the IM model. Although it is pictured as a straight line, the domain is actually
curved.
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Figure 5.6 2-D cross-section of an infinitely long current sheet of width 2a.

E = ρJ, (5.4)

where, ρ represents the intrinsic resistivity of the conductor. To introduce the non-linear

resistivity of the HTS layer of the tapes in (5.4), we used the classical power law model, i.e. :

ρ =
Ec

Jc

∣

∣

∣

∣

J

Jc

∣

∣

∣

∣

k−1

, (5.5)

where, Ec is the electric field criterion (1 × 10−4 V/m), Jc is the critical current density

of the HTS material, and k is the power law index.

With the help of (5.2), (5.4) and (5.5) to eliminate A and E, (5.1) can be expressed in

term of J as :

diag[ρ(Ji)]n×n[J ]n = − ∂

∂t
([MA]n×n[J ]n×1)− [∇V ]n×1 , (5.6)

where diag[ρ(Ji)] represents an n by n matrix whose diagonal entries correspond to the

resistivity of each element i, obtained by (5.5). All the entries of [∇V ], which represent the

voltage per unit length of the tape, are identical. When a voltage is applied across the cable,

∇V is known and J in all the elements constitute the n unknowns of the problem. In the

case of imposing a known current to the tapes, ∇V is unknown. In this case, as the (n+1)th

equation, we use a current constraint equation, i.e.

I = s

n
∑

i=1

Ji (5.7)

where, I is the injected current into the tape and s is the area of each element.

Due to the strongly non-linear resistivity of HTS materials, a proper time integration
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algorithm must be used (e.g. Euler, Runge-Kutta, etc.) (5.6). In order to speed up the so-

lution process, we used the DASPK algorithm [78, 79] which is available in various public

code distributions, such as the Sundials solver suite [80]. More details about the problem

formulation and using Sundials to solve it can be found in [76].

To solve (5.6) we assume that J is constant within each element. When the J values in

all the elements of the study domain are known, the AC losses (expressed in W/m/tape) are

obtained through

Q =
s

npc

npc
∑

i=1

n
∑

j=1

ρi,j J
2
i,j , (5.8)

where npc is the number of points per cycle in the solution vector, and s is the cross-section

of each element (assumed uniform over the domain).

Finite element method with edge element formulation

This method is a finite element method (FEM) which is based on the first-order edge

element formulation [57]. This model has been widely used in electromagnetic modeling and

AC loss analysis of HTS materials [56, 71, 82].

As shown in figure 6, thanks to the symmetry, the study domain of the problem can be

defined inside a triangular area, while cyclic periodic boundary conditions must be applied

to edges OA and OB, and a regular Neumann boundary condition is used on edge AB

(i.e. the normal flux is zero on the outer boundary). Since this method is based on the

numerical solution of partial differential equations, we have to mesh the surrounding air

region in addition to the tape domains, as opposed to the IM method introduced previously.

As a consequence, the number of degrees of freedom of the FEM model is much larger

than that of the IM model. Although this could be seen as a disadvantage, we will take

O

A

B

Figure 5.7 Illustration of the study domain in the FEM model
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it as an opportunity to model all the constituting layers of the IBAD coated conductors

considered in this investigation (shown in figure 5.8). However, in order to be able to mesh

all the constituting layers of the HTS tape with a reasonable number of elements, we used

a “mapped mesh” (i.e. quadrilateral elements), which allowed us to mesh the YBCO layer to

its real thickness of 1 µm (no scaling of the geometry, as in most work found in literature).

In this paper, we used the IM model for all parametric analysis, because it was much

faster, and we restricted the use of the FEM model for the field analysis and verifying the

results obtained with the IM model for some specific cases only.

5.3.2 Simulation scenarios

The HTS cable model considered in this paper consisted of eight identical 10 mm wide

YBCO coated conductors (IBAD-type, no ferromagnetic substrate). These two parameters

were kept constant throughout all simulations, as well as the critical current density per tape,

which means that the current rating of the cable remained the same in all the simulated cases.

We started the simulations by considering the typical cable design. The size of the gap

was gradually reduced from 1 mm until it was completely closed (gap=0). Then, for the

overlapped design, we considered two different vertical gaps (0.15 and 0.25 mm), and we

gradually overlapped the adjacent tapes up to 2 mm from their edges. Since the number of

the tapes and their width were kept constant throughout all simulations, the radius of the

cable followed directly from the choice of parameters, i.e. it was a function of the gap in

the typical design, and a function of both the vertical gap and the overlap distance in the

overlapped design.

Regarding the critical current density of the tapes, we considered both of the following

cases :

– A critical current density (Jc) that is uniformly distributed along the width of the tapes

– A non-uniform Jc, which is lower near the edges of the tapes and uniform in the middle

Figure 5.8 Layers of IBAD YBCO coated conductors considered in the FEM model (IBAD :
Ion Bean Assisted Deposition). The electrical properties at 77 K were taken in [83].
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part (resulting from the slitting process)

In all cases, the critical current of each tape was 270 A. This means Jc = 2.7e10 A/m2

when the critical current density is uniform. In the non-uniform case, we used the Jc(x)

pattern presented in figure 5.9, resulting in Jc0 = 2.87e10 A/m2. This pattern has been used

in previous work and has shown a good agreement between the experimental and simulation

results in [82] and it has been verified again in [70]. In all the above cases, a 50 Hz sinusoidal

transport current with an amplitude of 190 A (0.7Ic) was injected into each tape, and the

AC loss per tape was computed as a function of the geometrical parameters.

In addition to this, we also investigated the AC losses resulting from the overlapped design

over a wide range of transport currents, i.e. 0.1Ic < I < Ic, with an overlap distance of 0.5 mm

and a vertical gap of 0.15 mm. For the same range of transport currents, these results were

compared with the AC losses resulting from a typical cable design, considering that the gap

had the optimistic size of 0.5 mm.

To verify the accuracy of the results obtained with the IM method, we employed the

FEM model to obtain the AC losses in one of the simulated cases. To do so, we chose the

overlapped design when the vertical gap and the overlap distance were 0.15 mm and 1 mm,

respectively. Figure 5.10 shows the meshed geometry used for the FEM simulations.

The simulation parameters used with both the IM and the FEM models are presented in

table 5.1.

5.3.3 Simulation results

Figure 5.11 and 5.12 show the AC losses (per unit length of tape) in one tape of the cable

as a function of the gap size (typical cable design), and for two different vertical gaps as a

function of the overlap distance (overlapped cable design). Figure 5.11 shows the case with

uniform Jc, and figure 5.12 corresponds to the Jc(x) pattern illustrated in figure 5.9.

Table 5.1 Simulation patameters used in numerical simulations

Parameter IM model FEM model
Critical current of the tape (A) 270 270
Peak of the imposed current (A) 190 190
Power law index (k) 50 50
Frequency (Hz) 50 50
Gap (typical design) 0 :0.05 :1 -
Overlap distance (mm) 0 :0.05 :2 1
Vertical gap (mm) 0.15 and 0.25 0.15
Number of degrees of freedom 3×300 21059
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Figure 5.9 Pattern used to define the non-uniform distribution of Jc in IBAD YBCO tapes.

Figure 5.10 Meshed geometry in the FEM model
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We can observe in figure 5.11 and 5.12 that, for the typical design, when the size of the gap

decreases, the AC losses decrease and reach the minimum value when the gap is completely

closed. However, as mentioned previously, due to practical considerations, the lower limit of

the gap can not be much smaller than 0.6−0.8 mm. As an optimistic reference case, we took

the case corresponding to a gap size of 0.5 mm as a comparison threshold with the overlapped

design, shown as dashed lines in figures 5.11 and 5.12. In these two figures, one can see that

the overlapped design can provide lower losses than the minimum possible losses achievable

with a typical practical design. In particular, if we consider the case of a non-uniform Jc

(figure 5.12), we observe that the overlapped design provide lower losses than the typical

design even if the gap is completely closed in the typical design. That is to say that the lower

Jc at the edge of the tapes acts as a “virtual gap” that cannot be closed mechanically, unless

we accept to overlap the tapes.

Still in figures 5.11 and 5.12, one can see that the AC loss behavior of the overlapped

design is very sensitive to the vertical gap size. As can be observed, the smaller the vertical

gap is, the lower are the AC losses. However, similarly as for the gap size in the typical design,

there might be a lower limit for the vertical gap in the overlapped design.

In figures 5.13 and 5.14, the AC loss behavior of the overlapped design (vertical gap of

0.15 mm ; overlap distance of 0.5 mm) is compared with the typical design (gap of 0.5 mm)

as a function of the transport current. In figure 5.13, Jc is assumed to be uniform, while

in figure 5.14, we considered the Jc(x) distribution shown in figure 5.9. In figure 5.13, it is

observed that, unless the amplitude of the imposed current is very close to the critical current

of the tapes, lower AC losses can be achieved with the overlapped design. Figure 5.14 shows

that the overlapped design always provides lower losses as compared with the typical design,

regardless of the amplitude of the transport current. The best improvement is observed near

I/Ic = 0.9, where we have a reduction of AC losses by a factor of 7.

In order to verify the simulation results, we used the FEM model to simulate a cable

with the overlapped design when the vertical gap and the overlap distance were 0.15 mm and

1 mm respectively. Figures 5.15 and 5.16 show the instantaneous losses obtained with the

IM and FEM methods, respectively, for the second cycle of the sinusoidal transport current,

for uniform and non-uniform Jc distributions. In these figures, very good agreements are

observed between the results obtained with both methods.

Since in the FEM model we considered all the constituting layers of the tapes ( see fi-

gure 5.8), it was possible to determine the losses in each of these layers. As an example, the

AC losses in all the constituting layers of one tape of the cable are presented in table 5.2,

corresponding to the case of a vertical gap and an overlap distance of 0.15 and 1 mm respec-

tively. As expected, the losses in the HTS layer are noticeably higher than in the other layers,
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Figure 5.11 AC losses in one tape of the cable as a function of the geometric parameters, when
Jc is uniformly distributed along the tape width. The dashed line corresponds approximately
to the minimum losses achievable with a typical design (gap of 0.5 mm).
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Figure 5.12 AC losses in one tape of the cable as a function of the geometrical parameters,
when we considered a non-uniform Jc distribution along the tape width (see figure 5.9 for
Jc(x) pattern). In this case, the overlapped design always lead to lower losses than practical
typical cable design (dashed line).
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Figure 5.13 AC losses as a function of the normalized transport current, when Jc is uniform
in the tapes.
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Figure 5.14 AC losses as a function of the normalized transport current, when a non-uniform
distribution of Jc is considered
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and one can neglect the losses in the other layers in comparison with those of the HTS layer.

The agreement observed between the FEM model and the IM model in figure 5.15 and 5.16

and table 2 suggest that we can trust the results obtained by the IM method all along this

paper.

5.3.4 Discussion

In order to get a better understanding of the mechanisms through which the overlapped

design results in AC loss reduction over the typical design, we compared the current dis-

tribution along the width of the tapes in both cases. For the overlapped design, we chose

0.15 mm and 1 mm for the vertical gap and the overlap distance, respectively, and for the

typical design, we chose a gap of 0.5 mm. To find the current profiles, the average value of

J computed with the IM in the three layers shown in figure 5.5 was plotted as a function of

the position along the width of the tape. These results are shown in figure 5.17.

In this figure, we clearly see that the current distribution inside the tapes is not symme-

trical along their width in the case of the overlapped design. In particular, in the overlapped

edge (rightmost part of the curve), the current density is very low (or even zero). In the case

of a uniformly distributed Jc, this region is even almost empty of current. Another important

observation is that, the current penetration in the overlapped design is also slightly lower

in comparison with the typical design. Therefore, it can be deduced that, current in the

overlapped design tends to flow with higher density in the middle part of the tapes.

This behavior can be explained as follows. Because of the overlap between the neighboring

tapes, the system behaves almost as a continuous layer, resulting in a mostly tangential field

aligned with the circumference of the cable. In the overlap region though, the top edge will

still see a perpendicular field component, as shown in figure 5.18, whereas the bottom edge

sees no field at all (thus no field gradient), which explains the absence of current density

in that region, since ~J = ∇ × ~H. In the typical design, the current distribution behaves

symmetrically, and a perpendicular component of ~H (as well as a steep gradient of this

perpendicular component) is seen both on the left and on the right edges of the tapes,

producing a large current density in this region. These currents are responsible for the well

known “edge losses”.

Table 5.2 AC losses in one of the tapes of the cable

FEM results (W/m) IM results (W/m

Substrate Upper stabilizer Bottom stabilizer Silver overlayer HTS layer HTS layer

Uniform Jc 2.14× 10−10 7.22× 10−6 2.43× 10−8 1.03× 10−8 8.27× 10−4 8.12× 10−4

Jc(x) 2.17× 10−9 1.62× 10−6 2.44× 10−7 9.28× 10−8 2.39× 10−3 2.44× 10−3
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Figure 5.15 Instantaneous losses obtained with the IM and FEM methods, when Jc is uniform
in the tapes.
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Figure 5.16 Instantaneous losses obtained with the IM and FEM methods, when a non-
uniform distribution of Jc is considered.
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At first sight, it might appear disadvantageous not to use the whole tape to carry the

transport current, although it ends up being highly advantageous for two reasons :

1. The current that doesn’t flow in the overlapped edge and also the reduced current at

the overlapping edge, must flow somewhere else, and it happens that it is redistributed

evenly all along the tape’s width

2. The losses in coated conductors are known to be dominated by the “edge losses”, and

in the overlapped design, we reduce these losses since only half of the edges actually

carry a current with even lower density.

These advantages are general and do not depend on the exact Jc(x) distribution in the tapes,

although as soon as there is a significant reduction of Jc at the edges of the tapes (for instance

due to manufacturing processes), these advantages of the overlapped design over the typical

design become significant.

5.4 Conclusion

In this paper, we introduced a new design scheme for HTS power transmission cables

made of coated conductors. This so-called “overlapped design” was developed with the aim

of reducing the level of AC losses encountered in more “classical” HTS power transmission

cables, i.e. when a small gap is present between adjacent tapes. The major difference between

the typical and the overlapped designs is that the adjacent tapes are allowed to overlap each

other up to a certain distance from their edges, typically 1 or 2 mm.

With the help of numerical simulations, it was shown that the new overlapped design

leads to a significant reduction of AC losses, typically 2 to 5 times lower than the best

practical configurations of typically design cables (i.e. cables with a gap between the tape at

its minimum size of 0.5 mm or so). In particular, when we consider a reduced current density

at the edges of the tapes, due to the slitting effect or other any manufacturing process, the

AC loss reduction is even more effective.

The validity of the simulations used to draw the above conclusions (based on integral

equations) was verified through the use of a second numerical technique (finite element me-

thod). The very good agreement between the results obtained either way suggests that the

conclusions are reliable.

Despite these promising results, future work will have to explore the impact of the actual

helical configuration of the tapes (the current conclusions are based on straight tapes), as

well as how this AC loss reduction trend extrapolates to multi-layer and three-phase cables.

Also, the results could be significantly different if we considered coated conductors with a fer-

romagnetic substrate. The practical limitations of the various geometric parameters involved
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in a cable design should also be determined with the help of HTS cable manufacturers.

5.5 Acknowledgment

This work was supported by the Natural Science and Engineering Research Council of

Canada (NSERC) and by the Mathematics of Information Technology and Complex Systems

(MITACS). The authors would also like to acknowledge Mr Drew Hazelton from Superpower

for initial discussions about the concept of overlapping the tapes, and Dr Francesco Grilli for

helpful hints on the 2D FEM model.



75

CHAPTER 6

ASSESSMENT OF ALTERNATIVE DESIGN SCHEMES TO REDUCE THE

EDGES LOSSES IN HTS POWER TRANSMISSION CABLES MADE OF

COATED CONDUCTORS

SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, 25 (2012) 014001 (8pp) 1

Majid Siahrang*, Frédéric Sirois*, Doan N. Nguyen+, and Stephen P. Ashworth+
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Abstract

In this paper, we investigate the effectiveness of alternative designs to reduce the AC

losses of HTS power transmission cables. The idea behind these designs is to undermine the

edge effect, which is one of the main factors contributing to AC losses in HTS power cables

made of coated tapes. The edge effect, which arises from the presence of gaps between the

tapes, results in large normal components of magnetic field near the edges of the tapes and

in turns leads to a current distribution with higher density near the edges. To perform our

investigation we use a numerical technique developed in our previous work, which allows us

to consider the helical configuration of the tapes. Through numerical simulations we asses the

effectiveness of two overlapped designs, i.e. cyclic overalpped design and anticyclic overalpped

design in reduction of AC losses in single-layer HTS power cables made of coated tapes.

Simulation results show that AC losses can be reduced by about 70 % as compared with a

typical single-layer cable.

6.1 Introduction

With lower AC losses, the initial and the operational costs of HTS power cables can be

remarkably reduced, and this allows them to be in a better position in the competition with

conventional power cables. Therefore, the reduction of AC losses is one of the most important

factors to determine the level of the commercial application of HTS power cables in the future

of the power transmission industry.

1. Manuscript Submitted July 6, 2011 ; revised August 12, 2011 ; Date of publication December 1, 2011.
Digital Object Identifier 10.1088/0953-2048/25/1/014001
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In general, AC losses in HTS cables include all the losses that occur in the conductors of

the cable. These losses can be divided into two categories ; classical electromagnetic losses and

superconducting losses. Classical electromagnetic losses in the conductors of HTS power cables

made of coated conductors include the Ohmic and eddy current losses in the stabilizer layer

(copper and/or silver) of the tapes and the ferromagnetic losses occurring in the substrate

layer of the tapes. Ferromagnetic losses exist only when the substrate layer of the tapes is

made of ferromagnetic materials, as in the case of RABiTS tape. If these magnetic substrates

are exposed to AC magnetic fields, the ferromagnetic losses will correspond to the area of the

hysteresis loop of the substrate B –H curve. Under normal working conditions, Ohmic and

eddy current losses are quite negligible compared to the total AC losses. On the other hand,

In HTS cables, the ferromagnetic losses dominate at low transport currents (below 40 − 50

% of the critical current of the cable) and at higher transport currents, these losses become

less important compared to the total AC losses of the cable [25, 26, 60].

The mechanism through which losses occur in HTS material is quite different from clas-

sical electric and ferromagnetic losses. The superconducting losses are developed when HTS

materials carry time varying currents or are exposed to time varying magnetic fields, e.g.

AC currents and fields. These losses are derived from the magnetic field distribution inside

and on the surface boundaries of the conductors. Therefore, the geometry of the conductors

(e.g. tapes in the case of HTS power cables) and their relative positioning change the field

distribution and consequently affect the AC losses.

To provide a more intuitive insight into the superconducting loss mechanisms in HTS

power cables made of coated tapes, it is useful to categorize these losses into different types.

This categorization is very useful to give us a better conceptual understanding of the AC

losses and can be used to provide helpful hints for the loss minimization task. In what follows

we start from work done in [84] by Clem and Malozemoff to categorize the losses.

The first loss mechanism called“surface Bean losses” is responsible for the losses resulting

from the field penetration from the wide faces of the tapes. These losses which are also

referred to as “top/bottom losses” [85] can also be interpreted as the result of the variation

of current distribution across the thickness of the tapes. The existence of these losses in the

HTS coated tapes is not yet obvious. Based on physical assumptions that the vortex line

dimension is larger than the thickness of the coated conductors (or at least they are in the

same dimensions) and is not enough to build a critical state and move the flux lines [86] such

losses might simply not exist in coated tapes. Even if such losses exist, their value can only

be very low since the HTS layer of coated conductors is extremely thin, and therefore the

surface Bean losses are likely to be negligible in HTS power cables.

The edge effect is another loss mechanism which makes a dominant contribution to the
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AC losses in the tapes of HTS cables. The associated losses with the edge effects arise from

the presence of a gap between adjacent tapes, which disturbs the field distribution near the

edges of the tapes. Because of these gaps, the magnetic field presents high perpendicular

components near the gap region, which results in large field penetration from the edges of

the tapes. As a direct consequence of this field penetration, tapes carry more current near

their edges which results in higher losses.

Another loss mechanism which is considered in most of AC loss analysis of HTS power

cable comes from the polygonal configuration of the tapes in the 2D cross-section of a cable

(see figure 6.1). Such a polygonal configuration disturbs the circumferential magnetic field

along the width of the tapes and contributes to magnify the perpendicular components of

the magnetic field wihtin the tapes.

In multilayer HTS cables, there is another loss mechanism which arises when the transport

current of each phase is not equally shared between the layers. However, because of the helical

configuration of the tapes in HTS power cables and since this current sharing highly depends

on the mutual inductance between the layers, it is easy to choose proper winding angles to

insure equal current sharing between the layers.

In addition to the above mentioned mechanisms, there is another loss mechanism which is

called“flux-cutting loss”. These losses are rooted in the collision of flux fronts form orientations

[87]. This loss mechanism is not well understood and is not expected to be large in HTS power

cables [84] or at least not distinguishable from the other loss mechanisms.

In the typical design of HTS power transmission cables, HTS tapes are helically wound

around cylindrical formers. As shown in figure 6.2, when thin tape conductors are helically

wound around a cylindrical former, their wide face must be conformed to the former. As a

consequence, in the cross-section of the cable, the tapes must have a bent shape conformed to

the former (as shown on the right side of figure 6.2) . Therefore, there should be no losses due

to the polygonal configuration of the tapes as shown in figure 6.1, as long as the HTS cable is

made of helically wound tapes. This means that in the case of single-layer HTS power cable

made of tapes with non-ferromagnetic substrates, and by neglecting the top/bottom losses

(should they exist), the only important AC loss mechanism is the edge effect. As explained,

the edge losses arise from the presence of the small gaps between the adjacent tapes (shown

in figure 2). Therefore, the minimum AC losses with a typical design of single-layer HTS

cables is achieved when these gaps are completely closed [33, 71]. But due to mechanical

considerations, there is a minimum size for the gap (.6− .8 mm)[33].

In an attempt to undermine the gap effect and reduce the perpendicular components of the

magnetic fields near the edge of the tapes, an alternative overlapped design has been already

proposed by SuperPower [69]. In our previous work [72], neglecting the helical configuration of
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Figure 6.1 Polygonal arrangement of the tape in the 2-D cross-section of the cable, when
tapes are not conformed to the cable former.

Gap'

Y

XZX

Y

Figure 6.2 Typical design of one layer of a HTS power cable. In this design, there is a small
gap between two adjacent tapes. The Gap′ is the projection of the gap onto the 2-D cross-
section of the cable, i.e, Gap′ = Gap

cos(wa)
, where Gap is the physical gap between the tapes and

wa is the winding angle of the tapes.
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the tapes, we investigated the AC loss behavior of this design. With this design, the adjacent

tapes of the cable periodically overlap each other up to a certain distance. In this previous

work [72], we showed that by overlapping the tapes, AC losses can be reduced up to 5 times

compare with the typical design. The reason that this new design leads to reduced losses

is due to an advantageous redistribution of the current inside the tapes, so that near the

overlapped edges, tapes do not carry much current and practically there were no edge effects

in the overlapped edges (bottom edges).

In this paper, for the same number of tapes with the same characteristics used in [72],

we investigate the impact of the helical configuration of the tapes on the AC loss behavior of

the idea of overlapping the tapes. To consider the helical configuration of the tapes, we use

a numerical model developed in our previous work [70, 71] to find current distribution and

AC losses in helically wound thin tape conductors. In addition to the previously introduced

overlapped design (which here is renamed as cyclic overlapped design) we propose two other

alternative overlap designs to reduce the edge losses in HTS power cable. Through parametric

numerical simulations, we assess the effectiveness of these designs to reduce the AC losses in

HTS power transmission cables made of coated tapes with non-ferromagnetic substrates.

6.2 Numerical model

To perform the simulations we used an integral-type numerical model developed for the

electromagnetic analysis of single-layer assemblies of helically wound thin conductors. In this

method, which is a point collocation method (Brandt-like formulation[63]), the integral rela-

tionship between the current density and the magnetic vector potential, i.e. the Biot-Savart

integral, is used to formulated the eddy current equation over a descretized 1-D geometry

along the width of a conductor of the cable. With this model, the non-linear resistivity of

superconductors can be easily incorporated in the form of a classical power law model, i.e.,

ρ =
Ec

Jc

∣

∣

∣

∣

J

Jc

∣

∣

∣

∣

k−1

, (6.1)

where Ec is the electric field criterion (1 × 10−4 V/m), Jc is the critical current density

of the HTS material, and k is the power law index. The vector of current density is assumed

to be tangential to the helical trajectory of the tapes. In this model, we do not consider

the non-superconducting layers of the tapes, and the superconductor layer is modelled as an

infinitely thin current sheet. This method is explained in detail in [70] and its accuracy has

been verified by comparisions with experiments [70].
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6.3 Cyclic overlapped design

In an alternative design scheme, which has been proposed in a patent by SuperPower [69],

the adjacent tapes of the cable are allowed to periodically overlap each other up to a certain

distance (1 − 2 mm). As shown in figure 6.3, two new geometric parameters are introduced

in this design, i.e. the overlap distance and the vertical gap.

In our previous work [72], the helical configuration of the cable was neglected and by

numerical simulations we showed that this design can effectively reduce the AC losses in

single-layer HTS cables. In the current paper, we investigate the effect of the helical configu-

ration of the tapes on the AC loss behavior of this design scheme. By varying the different

simulation parameters presented in table 6.1, we performed a parametric study on the AC

loss behavior of a single-layer cable consisting of eight identical IBAD coated conductors, each

10 mm wide. Keeping fixed the number of the tapes, the radius of the cable is determined

by its winding angle and the gap (in a typical design) or the vertical gap and the overlap

distance (in an cyclic overlapped design). Therefore in each case, the cables have a different

radius.

Figure 6.4 represents the AC losses in one tape of the cable for different winding angles

as functions of the gap (typical design) or the overlap distance (cyclic overlapped design with

a vertical gap of 0.15 mm). In this figure, the AC losses are expressed per unit length of the

tapes, rather than per unit length of the cable. This allows us to remove the effect of different

lengths of the tapes per unit length of the cable for different winding angles. Therefore in

this figure, the current distribution inside the tapes is the only responsible for the AC loss

behavior of the cable.

According to the left-hand side of figure 6.4, as it was already known [33, 71] , with the

typical design the AC losses decrease as the size of the gap decreases. In this figure, it is

Table 6.1 Simulation parameters used in numerical simulations

Critical current of the tapes (A) 266
Critical current of the cable (A) 8×266
Peak of the imposed current (A) 186
Width of the tape (mm) 10
Power law index (k) 50
Frequency (Hz) 50
Gap (typical design) (mm) 1-0
Overlap distance (mm) 0-2
Vertical gap (mm) 0.1-0.5
Winding angle (deg) 0-75
Thickness of the HTS layer of the tapes (µm) 1
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Figure 6.3 cyclic overlapped design of single-layer HTS power cables. The Vertical gap is
the vertical distance between the adjacent tapes over the overlapped region, and the overlap
is defined as the distance along which the tapes overlap each other. The Overlap′ is the
projection of the overlap distance onto the 2-D cross-section of the cable, i.e. Overlap′ =
Overlap
cos(wa)
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Figure 6.4 AC losses in one tape of the cable at a peak of its transport current (.7Ic) as
functions of its the geometric parameters. For the overlapped design the value of the vertical
gap is .15 mm. The dashed line corresponds approximately to the minimum losses achievable
with the typical design (gap of 0.5 mm).
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observed that, for a given gap, the AC losses remain the same regardless of the winding

angle of the cable. This means that with the typical design, the current distribution inside

the tapes is independent of the winding angle and is solely determined by the gap. Since

for a given gap, with different winding angles the cable has different radius, it can be also

concluded that, the radius of the cable does not affect the current distribution inside the

tapes. In figure 6.4, we have used a horizontal dashed line to represent the value of AC losses

when the gap is 0.5 mm, i.e. an optimistic lower limit. Therefore, the dashed lines represent

the minimum possible AC losses that can be achieved with the typical design.

The right sides of figure 6.4 represents the AC loss behavior of the cyclic overlapped design

(with a vertical gap of .15 mm) as functions of the overlap distance for different winding

angles. If one compares the AC losses of cyclic overlapped design with the dashed lines, it is

observed that with this design the AC losses of the cable are lower than the minimum possible

losses that can be achived with the typical design. Figure 6.4 reveals that, as opposed to the

typical design, the AC loss behavior of the cyclic overlapped design is highly dependent on

the winding angle of the tapes so that with higher winding angle, this design shows a quite

better performance in reducing AC losses.

Figure 6.5 shows the AC loss behavior of the cable as a function of its winding angle,

when the overlap distance is 1 mm and the vertical gap is 0.15 mm. This figure shows that

there is an optimum winding angle at which the AC losses are minimum. For the simulated

cable, this optimum winding angle is around 55 degree. In other words, by increasing the

winding angle, the AC losses decrease and reach a minimum value when the winding angle is

around 55. By further increasing the winding angle the AC losses increase, but remain lower

than the AC losses with zero winding angle.

Figure 6.6 shows the AC loss behavior of the cable as a function of the vertical gap, when

the overlap distance is 1 mm and the winding angle is 45 degree. In this figure one can see

that with smaller vertical gaps, we can design cables with lower AC losses. The minimum

possible vertical gap is equal to the thickness of the tapes (0.1 to 0.15 mm for the IBAD tapes

manufactured by Superpower), but due to mechanical considerations the minimum achievable

vertical gap will be larger than this value.

As mentioned, since the AC losses in figure 6.4 are expressed per unit length of the tape,

the only responsible for the difference in losses is the current distribution inside the tapes.

Therefore, with the cyclic overlapped design, where the AC losses are highly dependent on

the winding angle, the way that current is distributed inside the tapes must be a function of

the winding angle.

Figure 6.7 shows the current distribution along the width of the tapes for different winding

angles when the overlap distance and the vertical gap are kept fixed at 1 and 0.15 mm
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Figure 6.5 AC loss behavior of the cable as a function of its winding angle, while the overlap
and the vertical gap are 1 and 0.15 mm respectively and Jc is assumed to be uniform inside
the tapes. The peak of the transport current is 0.7Ic.
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Figure 6.6 AC losses behavior of the cable as a function of the vertical gap when the overlap
is 1 mm and the winding angle is 45 degree while the peak of the transport current is 0.7Ic.
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respectively. These current profiles are plotted at the peak of the transport current (0.7Ic).

In these figures, one can see that for straight tapes, i.e. zero winding angle, the current density

near the overlapped edge (bottom edge) is very low, while the overlapping edge (top edge)

experiences the maximum current density. This behavior has been already observed in [72]

and was interpreted as the reason for the favorable behavior of the cycilc overlapped design in

terms of AC loss reduction for single-layer cables composed of non-twisted tapes (reduction

by a factor of 5 when compared to the minimum possible losses with typical design cables).

As observed in figure 6.7, by increasing the winding angle, the current density at the

bottom edge starts to increase and at the same time, the current density at the top edge

start to decrease. When the winding angle is around 55 degree, the current distribution

inside the tape is almost symmetrical, i.e., the value of the current density at the top and

the bottom edges are the same, and they are at their minimum values. Therefore as already

observed in figure 5, this situation corresponds to minimum AC losses. By further increasing

the winding angle, the bottom edges experience more current density than the top edges

and AC losses start to increase. Therefore it seems that with combination of the overlapped

design and the helical configuration of the tapes the edges effects near both edges tapes can

be undermined so that the middle part of the tapes carries more current than the edges. In

turn this leads to a better performance of the cyclic overlapped design in AC loss reduction.

For instance in the case of the simulated cable in this research, with the optimum wining

angle, i.e 55 degree, the vertical gap of 0.15 mm and the overlap of 1 mm, when the cable

transports 70% of its critical current, the cyclic overlapped design leads to around 30 times

less AC losses when compared to the minimum possible value of AC losses with the typical

design.

Unfortunately, despite the interesting electromagnetic performance of the cyclic overlap-

ped design, it has a big mechanical drawback. With this design each point along the width of

the tapes is located at a different distance from the center of the cable. Therefore, if the tapes

are wound along a helical path, the radius of the helix gradually increases from the bottom

edge to the top edge along their width. As a consequence, for a given winding angle, the local

pitch length along the cross-section of the tapes is not the same and must gradually increase

from the bottom edges to the top edges. Therefore, with typical coated tapes whose wide face

are rectangular (the top tape in figure 6.8) it is not possible to have the cyclic overlapped

design and a helical configuration at the same time. To realize the cyclic overlapped design

with helically wound tapes, the wide face of the tapes must has a bent shape such as the

lower tape presented in figure 6.8. The arc radius of such bent tapes is a function of the

geometrical parameters of the cable, for instance for the case of a cyclic overlapped design

when 8 tapes overlap each other up to 1 mm with the vertical gap of 0.15 mm, the bending
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Figure 6.7 Current distribution along the width of the tape for different values of winding
angle while the overlap and the vertical gap are 1 and 0.15 mm respectively and Jc is assumed
to be uniform inside the tapes. The peak of the transport current is 0.7Ic.

radius of the wide face of the tapes must be 1.19 m. In figure 6.8 such a tape with a bent

wide face is compared with a regular tape.

6.4 Anticyclic overlapped design

As another alternative overlapped configuration (shown in figure 6.9) the adjacent tapes

can be alternatively arranged so that both edges of one tape overlap its adjacent tapes and

therefore the edges of the next tape are overlapped by the edges of the two adjacent tapes.

Similar to the cyclic overlapped design, the vertical gap and the overlapped distance must be

defined as shown in figure 6.9. With this design, which we named it the anticyclic overlapped

design, any points within the tapes have the same winding radius, therefore it can easily be

realized with regular HTS tapes.

Figure 6.10 shows the AC loss behavior of this design scheme as a function of the overlap

distance for a vertical gap of 0.15 mm, when the peak of the transport current of the cable

is 70 % of its critical current. Compared with the minimum possible AC losses that can

be achieved with the typical design (the dashed line represents the AC losses of the typical

design with a gap of 0.5 mm), figure 6.10 shows that similar to the cyclic overlapped design,

the anticyclic overlapped design is also effective to reduce the AC losses in single layer HTS

cables. The AC losses in this figure are presented per unit length of the tapes. Both for the
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Figure 6.8 Top : The wide face view of the typical HTS coated tapes. Bottom : The wide
face view of required HTS tapes to realized the cyclic overlapped design with 8 tapes when
the winding angle is 55 degree and the overlap and the vertical gap are 1 mm and 15 mm
respectively.

Vertical gap

Overlap

Y

X

Figure 6.9 Anticyclic overlapped design ; with this design both edges of one tape overlap its
adjacent tapes and the edges of the next tape are overlapped by the edges of its two adjacent
tapes.
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typical design and the anticyclic overlapped design the losses are independent of the winding

angle of the tapes. Therefore, as opposed to the cyclic overlapped design, it seems that the

winding angle does not have any effect on the current distribution inside the tapes.

Figure 6.11 compares the AC loss behavior of the typical design (gap=0.5 mm) with that

of the anticyclic overlapped design (overlap=0.5 mm, vertical gap=0.15 mm) as a function of

the transport current. It is observed that for the whole current range, it is possible to achieve

lower AC losses with the anticylic overlapped design compared to the minimum possible

losses of the typical design.

Figure 6.12 represents the current distribution inside the tapes at a peak value of the

transport currents of 0.75 Ic for both designs. As it can be observed, no edge effect can be

observed in the bottom tapes (overlapped tapes), and the edge effect in the top tapes (over-

lapping tapes) are slightly undermined compared with the case of a typical design (dashed

curve).

6.5 Typical design with cushion tapes

As another attempt to undermine the edge effect, we investigated the idea of putting

narrow HTS tapes bellow the main tapes under the gap regions. As shown in figure 6.13,

with this design narrow tapes symmetrically cover the gap regions under the main tapes. It

is expected that the current flowing in the narrow tapes will undermine the perpendicular

components of the magnetic field near the edges of the main tapes. Since the narrow tapes

act as magnetic cushions for the main tapes, we called them cushion tapes. By adding the

cushion tapes the critical current of the cable, and in turn, the nominal current rating of the

cable, are increased.

Figure 6.14 shows the AC losses of this design as a function of the gap between the main

tapes, when the width of the cushion tapes is 2 mm, and the vertical gap is 0.15 mm. As it

is observed, in the presence of the cushion tapes, larger gaps between the main tapes result

in lower AC losses. The reason for such a behavior can be explained as follows. To keep the

configuration shown in figure 6.13 along the whole length of the cable, both the main and

cushion tapes must be wound with the same winding angle. Therefore, the current share

of the cushion tapes can not be adjusted by a proper winding angle. In such a two layer

configuration, the current tends to flow in the tapes which are wound with larger radius, i.e.

main tapes. Therefore, it is expected that just bellow the gap region the current flows in the

cushion tapes. With larger gaps more current can flow in the cushion tapes and the current

capacity of the these tapes is used more effectively. Therefore, when the size of the gap is in

the range of the cushion tapes, the cable is expected to show a better AC loss performance.
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Figure 6.14 AC loss behavior of the typical design with the cushion tape as a function of the
gap between the main tapes. The width of the main and the cushion tapes are 10and 2 mm
respectively.

In figure 6.15 we compare the AC loss behavior of the cable with and without the cushion

tapes, as function of the transport current. For the typical case, the gap size is 0.5 mm, and

for the cable with cushion tapes the gap size is 2 mm, the vertical gap between the cushion

and main tapes is 0.15 mm and the width of the cushion tapes is 2 mm. As it is observed,

despite the fact that the cable with the cushion tapes carries 20 % more current (assuming

the same Jc for the main and cushion tapes), its AC losses is lower than the cable without

cushion tapes.

Figure 6.16 represents the current distribution inside the main and cushion tapes (gap=1

mm, vertical gap=0.15 mm) at the peak value of the transport current (0.75Ic). On the right

side of figure 6.16, the current distribution in the main tape is compared with the current

distribution in the tapes of the cable without cushion tapes (gap=0.5 mm).As it is observed,

because of the presence of the cushion tapes, the current penetration at the edge of the main

tapes is slightly lower than the current penetration in the tapes of the cable without cushion

tapes. It is also observed that, with the cushion tapes, the current tends to flow with more

density in the middle parts of the main tapes.

The left side of figure 6.16 shows the current distribution inside the cushion tapes. As it

can be observed, the current flows in the middle part of the cushion tapes, and almost half

of the cushion tapes (near to the edges) is empty of current. As one can observes, at the

I/Ic = 0.75 the maximum current density in the cushion tapes is less than 65 % of its critical



91

20 30 40 50 60 70 80 90 100
10

−5

10
−4

10
−3

10
−2

10
−1

I/I
c
  (%)

A
C

 lo
ss

es
 (

W
/m

/ta
pe

)

 

 

Gap=0.5 mm (without cushion tapes)
Gap=1 mm, Width of cushion tapes=2 mm

I
c
 without cushion tapes= 266 A

I
c
 with cushion tapes = 320 A

Figure 6.15 AC losses of the cables (with and without suchions tapes) as a function of the
transport current

current density.

6.6 Conclusion

In this paper, through parametric numerical simulations, we compared the AC loss be-

havior of a single-layer HTS power cable when its tapes are wound according to a typical

design against three alternative designs in which the gap regions are covered by the adjacent

tapes or additional ones. In this research, we took into consideration the helical configuration

of the tapes. Simulation results revealed that, except for the case where the adjacent tapes

periodically overlapped each other (the cyclic overlapped design), regardless of the winding

angle for a given geometrical parameters the current distribution inside the tapes remain

unchanged. On the other hand, with the cyclic overlapped design the current distribution

inside the tapes, and in consequence the AC losses of the cable are highly dependent on

the winding angle of the cable so that with a proper winding angle the edge effect in the

edges of each tape can be remarkably undermined. This advantageous behavior results in

lower AC losses compared with the minimum possible losses that can be achieved with the

typical design (up to 30 times lower). Unfortunately, since with the cyclic overlpped design

the winding radius of the tapes is not constant along their cross-section, this design requires

HTS tapes with a bent wide face and is not feasible with regular HTS tapes. However, the

anticyclic overlapped design and the idea of adding narrow tapes bellow the gap regions are

practically feasible with rgular HTS tapes. Simulation results showed that, these two latter
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Figure 6.16 Current distribution inside main and cushion tapes at a peak of the transport
current (0.75Ic). Width of the main and cushion tapes are 10 and 2 mm respectively. The
size of the gap is 0.5 mm with the typical design and 1 mm with the cushion tape design.

designs are also effective to reduce the edge losses in HTS power cables so that the AC losses

can be reduced by more than 70 % compared with the minimum losses with a typical design.
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CHAPTER 7

GENERAL DISCUSSION

Within the framework of the first phase of this thesis, a numerical tool to solve the elec-

tromagnetic problem of helically wound thin conductors was developed. The main application

of this model is to find current distributions and AC losses in HTS coils and cables. The per-

formance of the developed model, in terms of computational time and accuracy, is superior

to the previously proposed models. Using this model, which its accuracy has been validated

by experiments, can provide researchers and engineers with a useful tool to study the elec-

tromagnetic behavior of superconducting coils and cables. In this context, the model can be

used to find optimal design parameters with respect to desired objectives, e.g. minimum AC

losses.

The proposed model is developed for the case of cables made of HTS tapes with non-

ferromagnetic substrates. Extending the method for cables made of HTS tapes with magnetic

substrates can be proposed as the further developments of the current work. In this case, the

study domain of the problem must be extended to consider the effect of magnetization in

magnetic substrates. This model will be helpful to assess the effectiveness of the overlapped

designs in the AC loss behavior of HTS cables made of tapes with magnetic substrates

The developed model can be applied to coils and cables consisting of HTS tapes wound

along helical paths with the same winding angle. This implies that, the method can be applied

for AC loss analysis of multi-layer cables as long as all the layers have a same wining angle.

In practice, to reach a optimum current sharing between the layers, each layer is wound with

a different winding angle. The only practical configuration for a multi-layer HTS cable whose

layers have the same wining angle, could happened in a three-phase cable with three layers

(each phase has a one layer). In this case since the imposed current is directly applied to the

tapes of each layer, the total current share of each layer is equal to the phase currents which

is almost independent of the wining angle of the tapes. Therefore, layers can have the same

winding angle.

The model can be extended to consider HTS cables with two different winding angles. In

this case, instead of a 1-D study domain, problem must be formulated in 2-D study domains

defined over sufficient portions of the wide face of tapes. In this case, the assumption that

the current density has only one component which is aligned with the helical trajectory of

the tapes, is no longer valid and the current of tapes can deviate from the helical path of the

tapes.
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The second objective of this thesis was to use this model to examine the performance of

alternative design schemes proposed to reduce the AC losses in HTS cables. In these designs

the adjacent tapes of the cable overlap each other up to a certain distance from their edges.

The results of the effectiveness study on the performance of the idea of overlapping the tapes

have been published in [72, 73] which are inserted as Chapter 5 and Chapter 6. According

to the obtained results, these design are effective to reduce the AC losses of single-layer HTS

cables. The reason behind this loss reduction is to undermine the current penetration near

the edges of the tapes. In this case, the edge effect, which is the dominant loss mechanism in

single-layer cable is undermined near the overlapped edges.

Although the results of our study confirm the effectiveness of overlapping the tapes in

single-layer cables, the performance of overlapping the tapes in the case of multi-layer cable

has not yet been studied. In the case of multi-layer cables, tapes of each layer are subjected

to the field produced by the current of inner layers. With the typical design, i.e. tapes do not

overlap each other and their wide face are conformed with cylindrical formers, the magnetic

field produced by inner layers are mostly parallel to the wide face of the outer layers. Accor-

ding to the picture that, overlapping a layer other than the most inner layer, may expose the

tapes of that layer to magnetic fields with normal components (produced by the inner layers)

to their wide face and this could lead to increase of AC losses in the tapes of that layer, it

can be concluded that the idea of overlapping the tape should be applied only to the first

layer of the cable.
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CHAPTER 8

CONCLUSION

This thesis had two phases. The objective of the first phase was to develop a numerical

approach to solve the electromagnetic problem of helically wound thin tape conductors in

single layer coaxial arrangements. The main application of this model was to find current and

field distributions, and AC losses in single layer HTS power transmission cables. To achieve

this goal, an integral-type numerical method was developed. In this method, the inherent

geometrical symmetry of the problem is used to formulate the electric voltage equation along

the cross-section of one of the conductors of the cables.

The proposed model is faithful to the real helical geometry of each conductor and the

only simplifying approximation in the hypothesis of the model is neglecting the thickness of

the tapes, so that they are approximated as infinitely thin current sheets. Because of the very

high aspect ratio of the HTS coated tapes, this approximation seems to be quite accurate

and is not expected to influence the final solution. The accuracy of the developed model was

validated through some experimental trials. The experimental measurements were carried

out by the collaborators of the project at the Los Alamos National Laboratory in the Unites

States.

The second phase of this research work was defined with the objective of assessing al-

ternative design schemes to reduce the AC losses of HTS power transmission cables. In this

phase, the effectiveness of three alternative design schemes proposed to reduce the edge losses

in single layer HTS cables were investigated. In these designs, aimed at undermining the edge

effect, the gap regions are covered by the overlap of the adjacent tapes or by inserting nar-

row tapes below the main tapes. Through extensive parametric numerical simulations, it was

observed that these new designs are effective in reducing the AC losses in single layer cables.

When considering realistic design parameters, the AC losses in HTS cables can be reduced

by up to 30 − 70 % compared with minimum possible losses that can be achieved by the

typical design.
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APPENDIX A

Derivation of equation (4.3)

Referring to figure 4.1, we can define a tangential vector to the helical trajectory ~c of the

tape as follows :

d~ℓ =
d~c

du
du = [−2πR sin(2πu x̂+ 2πR cos(2πu) ŷ + L ẑ] du ,

where ~c, u, R and L are defined in (4.1) and the paragraph below, and where φ0 has been

set to 0 to shorten the expressions. From d~ℓ, we define a unit vector û that is tangential to

~c, i.e. û = d~ℓ/|d~ℓ|, where |d~ℓ| ≡ ℓ =
√

(2πR)2 + L2 (ℓ is actually the length of tape required

to wind a full pitch). We therefore obtain

û =
2πR

ℓ

[

− sin (2πu) x̂+ cos (2πu) ŷ +
L

2πR
ẑ

]

. (A.1)

We can also define a unit vector n̂ normal to the face of the strip as

n̂ = cos (2πu) x̂+ sin (2πu) ŷ , (A.2)

which allows us to define a third unit vector, i.e. v̂, that is parallel to the cross-section of the

strip, i.e. v̂ = n̂× û. After some algebra, we obtain

v̂ =
L

ℓ

[

sin (2πu) x̂− cos (2πu) ŷ +
2πR

L
ẑ

]

. (A.3)

Assuming that the tape surface is not curved (which is strictly true only if its width tends

towards 0, but almost true when we considered narrow sections, such as in the discretized

problem), the û and v̂ vectors allow us to parameterize the strip surface in a 3-D space. Let’s

denote as ~r ′ any point belonging to the strip surface. According to the above notation, we

can write

~r ′ = ~c(u) + a v v̂ , (A.4)

where a is the strip half-width, and u and v are the parameters defining the strip surface. As

written above, one must have −1 ≤ v ≤ 1. In the case of u, its value is proportional to the

number of twist pitches (np) of the tape.

Let’s consider ~r = (x, y, z) as the observation point at which we want to evaluate the
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vector potential ~A(~r), and let’s use the potential version of the Biot-Savart law, i.e.

~A(~r) =
µ0

4π

ˆ

Ω

~j

|~r−~r ′| dΩ , (A.5)

in which ~j = j û, and dΩ = (ℓ du)(a dv). After some algebra, we can express |~r−~r ′| as

|~r−~r ′| =
√

d2x + d2y + d2z , (A.6)

where dx, dy and dz were defined in (4.4). After inserting the above developments in (A.5),

we obtain

~A(x, y, z) =
µ0aℓj

4π

np/2
ˆ

−np/2

du û

1
ˆ

−1

dv
√

d2x + d2y + d2z
, (A.7)

which is the final form of equation (4.3).
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APPENDIX B

Analytic expressions relating ~B and ~J for rectangular strips

Using the analytic expressions developed in [81], the components of the flux density ge-

nerated by a rectangular sheet current as that shown in figure 4.3 at any observation point

~r = (x, y, z) of the local system of coordinates can be evaluated, i.e.,

Bx =
µ0j

4π

2
∑

i=1

2
∑

j=1

(−1)i+j+1 arctan

(

γiλj

y rij

)

,

By =
µ0j

4π

2
∑

i=1

2
∑

j=1

(−1)i+j sinh−1

(

λj

αi

)

, (B.1)

where

γ1,2 = ∓w

2
− x ,

λ1,2 = ∓h

2
− z ,

rij =
√

γ2
i + y2 + λ2

j ,

αi =
√

γ2
i + y2 . (B.2)

The arctan function should be bounded between −π/2 and π/2, so the classical “atan” func-

tion of Matlab can be used without any concern.
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APPENDIX C

A new numerical approach to find current distribution and AC losses in coaxial

assembly of twisted HTS tapes in single layer arrangement
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Abstract. This paper presents a novel technique for evaluating AC losses and current
distribution in single layer assemblies of coaxially wound thin conductors, such as YBCO coated
conductors. The proposed approach takes into account the twisted geometry of the individual
superconducting tapes by considering the integral relation between the magnetic vector potential
and the current density in the tapes (Biot-Savart formula). The integrals are solved numerically
and semi-analytically, and the results are used to generate a discretized system of equations
based on the magnetic flux diffusion equation (eddy current problem). The latter is solved using
an efficient time transient solver (DASPK). It is assumed that, due to the helical symmetry of
the problem, it is sufficient to solve for the current distribution in half of a single tape cross-
section, even if many tapes are present, which allows a drastic reduction of the 3-D problem to
a simple 1-D domain. The method was used to evaluate the AC losses of a HTS cable made
of coated conductors, and it was observed that for a given radius of the former and number of
tapes, twisted tapes with smaller pitch have lower AC losses.

1. Introduction

Numerical computation of AC losses is an important technical issue for commercial application
of second generation high-temperature superconductor (HTS) cables and it has been the subject
of numerous research works in the area of applied superconductivity. In addition to the strongly
nonlinear resistivity inherent to HTS materials, the complex geometry of the cable (involving
twisted tapes with very high aspect ratio assembled in multi-layer arrangement) adds more
difficulties to the accurate computation of AC losses 1.

In order to make the problem easier to solve, the numerical techniques used to investigate the
behavior of HTS cables usually do not take into account the real geometry. Several 2D methods
neglecting the twisted configuration have been proposed for computing AC losses in HTS cables
[1-4]. While providing useful information on the AC losses, these methods cannot be used for
designing purposes, where finding the optimal twist design is an important issue.

1 The paper investigates the behavior of coated conductor HTS cables. For sake of simplicity, in the paper we
use the term “HTS cable” to refer to cables made of coated conductor
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Other methods simulating the cable as a HTS cylinder and using an anisotropic conductivity
to take the twist into account have been developed, both with FEM (finite-element method) and
non-FEM techniques [5, 6]. Although the twisted geometry is considered by these methods, the
tape-to-tape gaps in each layer are omitted; it has been reported that this approximation leads
to an underestimation of the AC losses [5].

In this paper, we propose a new and efficient technique for computing AC losses and current
distribution in HTS cables. The technique is based on the formulation of the eddy current
equation, it uses the integral relationship between current density and vector potential, and can
directly take into account twisted geometries.

The paper is organized as follows. Firstly, we describe the mathematical formulation of the
method; secondly, we compare the results with those obtained with a FEM model for the case
of straight tapes; then we apply the method to the case of single-layer HTS cable with twisted
tapes and we discuss the influence of the twist pitch on the current distribution and AC losses;
finally, we summarize our results in the conclusion.

2. Numerical Method

The model proposed in this paper, which we call IM (Integral Method) hereafter, is based on the
solution of eddy current equations discretized over a proper study domain in a 2D cross section of
the cable. With this formulation, the state variable, current density 𝐽 is related to the magnetic
vector potential 𝐴 by means of Biot-Savart law. Due to the use of this integral relation and the
absence of any magnetic material, the study domain of the problem is confined to the current
carrying superconducting layer of the tapes. This drastically decreases the number of degrees
of freedom (DOF) of the problem compared to FEM simulations, where the area surrounding
the tapes has to be considered and meshed. As a consequence, our method is more efficient in
terms of memory requirements and computation time than classical FEM methods.

For sufficiently long cables, due to the symmetry of the helically wound tapes, knowing the
current distribution over any 2D cross section of the cable is sufficient to accurately determine
the AC losses. In addition, if the tapes are assembled in a symmetrical arrangement around the
circumference of the former cylinder (as is the case of HTS cables), the study domain can be
reduced to half of one tape. Finally, due to the high aspect ratio of the superconducting layer of
the YBCO tapes, the study domain can be even more reduced and assimilated to a 1D straight
line. These study domain reduction steps, from the real 3D geometry to a straight discretized
line are shown in figure 1.

Once the study domain is established in the form of finite interconnected straight lines (figure
1d), the eddy current equation is formulated for each element 𝑖 as 𝐸𝑖 = −∂𝐴𝑖/∂𝑡−∇𝑉 , where 𝐸
and 𝐴 are the electric field and the magnetic vector potential, respectively. ∇𝑉 represents the
potential gradient, which is constant over the tape cross-section. Using 𝐸 = 𝜌𝐽 as constitutive
equation, the electric field is substituted with a function of the current density. In the case of
HTS tapes, the power-law model 𝜌 = 𝐸𝑐/𝐽𝑐∣𝐽/𝐽𝑐∣𝑛−1 was used to define the nonlinear resistivity
of the HTS material. Based on the symmetry arguments specific to this kind of geometry, it is
intuitive that the current flowing inside the tapes can not deviate from the helical path along
which the tapes are wound. Therefore, the current density (which is assumed to be constant
within each elements) is aligned with the helical trajectory of the tapes. The relation between
𝐽 and 𝐴 is addressed by introducing an 𝑘 by 𝑘 matrix as [𝐴]𝑘×1 = [𝑀 ]𝑘×𝑘[𝐽 ]𝑘×1, where 𝑘 is the
number of discretized elements, which determines number of DOFs of the problem.

Although the governing equation of the problem is formulated over a reduced 1D study
domain, the exact 3D twisted geometry of each individual tape is taken into account to establish
the 𝑀 matrix. Each entry of 𝑀 is obtained from the solution of the 3D Biot-Savart potential
integral applied to helically wound strips. The width of each elementary strip is 2×𝑘 times
smaller than the width of an individual tape and carries a sheet current density of 1 A/m.
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(a) (b)

(c) (d)

Figure 1. Successive reduction of study domain in the proposed hypothesis (tapes dimensions
not drawn to scale). (a) Real 3D geometry, (b) 2D cross-section of the tapes, (c) Reduction of
study domain to half of a tape, (d) Final study domain in the form of discretized interconnected
1D strips (straight lines) along half width of one tape.

As mentioned earlier, the magnetic solution for 𝐴 is obtained by solving the Biot-Savart
integral. Like all Biot-Savart type integrations, the denominator of the integrand tends towards
zero when both the source and field points are the same or are located very close to each
other. This will lead to inaccurate results at these singular or near singular points if using
direct numerical integration. Since computation of 𝐴 in these singular points will determine the
diagonal entries of the 𝑀 matrix, this inaccuracy is not acceptable here.

In order to get rid of the singularity problem, we proposed an alternative semi-analytic
solution to solve the Biot-Savart integration for helically wound tapes. In this approach each
tape is discretized along its longitudinal helical path while being discretized along its width.
Then each obtained element is approximated with a rectangular infinitely thin sheet. In other
words, each tape is approximated by a series of tiny interconnected rectangular elements. Thanks
to the indefinite integration tools of the 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 software, the analytical solution of
the Biot-Savart integral for such a rectangular element can easily be obtained. In the semi-
analytic approach, this analytical solution will be used to find 𝐴 at desired observation points
by superposition of the contribution of all the elements. Since an analytic expression is used as
the kernel of this method, therefore no singularities will be encountered even if the observation
points are located within the tapes.
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Figure 2. A twisted tape constructed by interconnecting many finite rectangular elements.

To set up the 𝑀 matrix, a combination of both numerical integration and this semi-analytic
approach was used. The semi-analytic method, which is more accurate at singular or near
singular points, is used to consider the contribution of the parts of the tapes that are close to
the observation points. An adaptive numerical integration, which is faster, was employed to
model the remaining portion of the tapes. To model a long cable, this integration has to be
done over a long enough length of the tapes. More details about both of these methods will be
provided in a forthcoming publication.

Once the governing equations of the problem are formulated in their discretized version, an
adaptive time transient solver with a sophisticated error estimator is used to solve it. One of
these algorithms, called DASPK was already used in our previous works [7, 8], and is used
here to solve the obtained system of differential algebraic equations(DAE). Finally, after 𝐽(𝑡) is
known in all the elements, AC losses are computed using the following formula

𝑄 = 2𝑓𝑁 × ∫ 𝜌𝐽2𝑑𝑙 (1)

where 𝑁 denotes the number of tapes and 𝑓 is the frequency of the transport current. This
integration has to be carried out over the length of the study domain (half width of one tape).

3. Validation methodology

Since at the present time we do not have access to experimental loss data for a single-layer HTS
cable, nor have we developed a fully 3D FEM model for twisted tapes, we limited the validation
of our model to the case of straight tapes. Therefore, in particular, we performed a 2D FEM
simulation and computed the current distribution and the AC losses in an infinitely long cable
with a former radius of 12.62 mm and composed of 16 straight tapes. For the FEM simulations,
we used the edge-element model described in [9]. The tape parameters are listed in table 1.
In the FEM simulations, a thickness of 5 𝜇m (instead of 1 𝜇m) was used, in order to keep the
number of DOFs at an acceptable level.

The transport current is 70% of the critical current and the frequency is 50 Hz. Considering a
large value for pitch length, we launched the IM model to solve the same problem. The meshed
FEM study domain is shown in figure 2. The number of DOFs in FEM simulation was 122935,
against 50 only with the IM. As mentioned earlier, the large number of DOFs in the FEM
model comes from the necessity of meshing a tape with a very high aspect ratio as well as the
surrounding air region.
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Table 1. Cable and tape properties.

Tape width 4 mm
Tape thickness 1 𝜇m
Former radius 12.7 mm
N (number of tapes 1 to 16
𝐽𝑐 1010 A/m2

n (power-law index) 25
Frequency 50 Hz

Figure 3. Meshed study domain in FEM simulation.

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Normalized position along tape half width 

N
or

m
al

iz
ed

 c
ur

re
nt

 d
en

si
ty

IM
FEM

N=16
I/I

c
=0.7

Figure 4. Current density distribution along the tape width for a transport current amplitude
of 0.7𝐼𝑐 and 𝑁=16 straight tapes, computed with IM and FEM.

The AC loss value computed by IM model is just 2.5% smaller than that computed by FEM.
Also the computed current density distributions are very similar, as displayed in figure 4. Note
that FEM simulation took more than 3 days to be solved while overall computation time of IM
(included the 𝑀 matrix generation) was less than an hour.

In addition, we applied the IM model to find the current distribution inside the tape in one
of the cases simulated in [3] (N=8 and tape width=10 mm), and we got exactly the same results
(not shown here).
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4. Application of the IM to analysis of single layer twisted tapes

Since the twisted geometry of each individual tape is taken into account in the integral method
proposed here, it can be applied to precisely determine the electrical performance of a single-layer
arrangement of coaxially wound twisted tapes. Many geometrical parameters can be varied: in
our simulations we kept the former radius fixed (12.7 mm), and we varied the number of tapes
and the pitch length.

For different pitch lengths figure 5 presents the computed AC losses in each constituting tape
per unit length of the cable as a function of N for a transport current equal to 70% of 𝐼𝑐. As
expected, the AC losses decrease as the number of tapes increases. This is due to the fact that
when the number of tapes increases the gap between the tapes decreases and for smaller gaps
each tape experiences a magnetic field which is predominantly parallel to its width, whereas the
perpendicular component near its edges tends to be smaller. The same observation has been
reported in previous studies [2, 3].
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Figure 5. AC losses of a tape per cable length unit as a function of the number of tapes for
different pitch lengths.
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Figure 6. AC losses of a tape per cable length unit as a function of the twist pitch length.
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Figure 7. Current density distribution along the tape width for different twist pitch lengths.
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Figure 8. AC losses of a tape per cable length unit as a function of the transport current for
different twist pitch lengths.

Since the former radius is fixed, for a given number of tapes 𝑁 a smaller pitch length (i.e.
a larger winding angle) results in a smaller tape-to-tape gap, which tends to reduce the losses,
as discussed above. On the other hand, however, a smaller pitch length implies a longer tape
per cable length unit, which ultimately results in higher losses. With figure 5 as reference, the
following is observed:

∙ For 𝑁 smaller than 9 tapes the tape-to-tape gap is large, so that the cancellation of most of
the perpendicular field component at the tape’s edge is not very effective; in this case the
effect of a longer tape per cable length unit is dominant and the shorter the pitch length
the higher the losses.

∙ For 𝑁 greater than 9 tapes the tape-to-tape gap is small, the cancellation of the
perpendicular field component is more effective and the consequent AC loss reduction is
more important; in this case the shorter the pitch length the smaller the losses, because the
loss reduction caused by placing the tapes closer to each other is more significant than the
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loss increase caused by using a shorter pitch length.

Figure 6 shows the losses as a function of the pitch length for 𝑁=16 and 𝐼/𝐼𝑐=0.7. It can be
observed that as the pitch length decreases from 1 m the AC losses first decrease slowly, then
more rapidly, when the tape-to-tape gaps tend to close more rapidly.

From the discussion carried out so far one can expect less current penetration inside the tapes
wound with a smaller pitches. This is confirmed by figure 7, which shows (always for the case
𝑁=16 and 𝐼/𝐼𝑐=0.7) the current density distribution (normalized to 𝐽𝑐) along the tape’s width
for different pitch lengths. Also current in twisted tapes tends to be more uniformly distributed
inside the tapes and maximum of current density at the sides of the tapes decrease as the pitch
decreases.

Figure 8 shows the AC losses as a function of the normalized transport current for three
different pitch lengths. The figure extends the results mentioned above to different values of
the transport currents. In addition, it can be observed that twisted tapes can transport higher
current with lower losses than straight tapes. For example, the AC loss of a twisted tape with
pitch length equal to 0.11 m at 𝐼/𝐼𝑐=0.9 is still smaller than the loss in a straight tape at
𝐼/𝐼𝑐=0.5.

5. Conclusion

A new numerical technique to solve the electromagnetic problem of a single-layer coaxial
assembly of twisted thin conductors was presented in this paper. The non-linear resistivity of
HTS materials can be easily inserted and it can be used to compute the electrical performance
of a single-layer HTS cable made of YBCO twisted tapes. After having been tested against
a FEM model for straight tapes, the proposed method was applied to find the current density
distribution and the AC losses of single-layer HTS cable with different twist pitch length. Among
the simulation results it was observed that, for a fixed former radius and a given number of
tapes, tapes twisted with smaller pitches shows lower AC losses per cable length unit. This
happens in spite of the longer effective length of the superconductor, because the suppression
of the perpendicular field component caused by packing the tapes more closely is the dominant
effect. The method can be extended to the case of multi-layer cables. This extension as well as
the verification of the results with 3D FEM and experimental results will be the subject of a
forthcoming publication.
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