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ABSTRACT

Recent development in the field of physical vapor deposition has shown a great interest

in processes that provide high level ionization of the sputtered material, enabling thus the

fabrication of dense coatings exhibiting superior material and functional characteristics. This

is particularly the case of high power pulsed magnetron sputtering (HiPIMS), recently in-

troduced to both academia and industry, that combines magnetron sputtering and pulsed

power technology. The high power dissipated on the target during each HiPIMS pulse

leads to the generation of high-density plasma and to a significant ionization of the sput-

tered target material. Hence, the HiPIMS plasma can be rich in metal ions which, in turn,

contribute to target self-sputtering.

Despite great advances in the understanding as well as in the application of this novel de-

position technique, there remain numerous open questions related to the complex dynamics of

the pulsed HiPIMS discharges, particularly if operated in the reactive gas mixtures employed

in the preparation of functional protective and optical films. For instance, there is still little

information available about the propagation of the metal-rich plasma in between the target

and the substrate during individual HiPIMS pulses, an important criterion for facilitating the

optimization of the deposition conditions. Furthermore, there exists a variety of commercial

HiPIMS power supplies exhibiting very different pulse shape-, voltage- and current charac-

teristics. However, a rigorous analysis of the respective discharges – that could identify their

particular benefits and drawbacks with respect to the deposition process – is missing.

This work addresses the issues and needs defined above. First, we perform an in-depth

investigation of the gas-phase processes during the HiPIMS pulses operated above a Cr target

in Ar, O2, N2 and in N2/Ar mixtures, mostly using optical emission emanating from different

plasma-excited species. Afterwards, we focus on the critical assessment of the two principal

types of high power pulsed discharges generated by the commercially available power supplies:

(i) a shorter (200µs) square voltage pulse generator permitting higher cathode voltage values

(denoted here as HiPIMS), and (ii) a modulated pulse power generator with longer (800 −

3000µs) custom-shaped pulses (MPPMS). We investigate these two discharges applied to a
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Nb target in the various non-reactive conditions, as well as in the reactive O2/Ar mixtures,

and compare them with the standard DC magnetron sputtering (DCMS). In addition, the

discharge monitoring by electrical and optical methods is complemented by the analysis of

the characteristics of the prepared Nb and NbOx films. The following paragraphs summarize

the main results, presented in the form of five articles at the core of this thesis.

Paper I: In the first paper, we present a new approach in the characterization of the

HiPIMS discharge evolution – time- and species-resolved plasma imaging – employing a set of

band-pass optical interference filters suitable for the isolation of the emission originating from

different species populating the plasma. We demonstrate that the introduction of such filters

can be used to distinguish different phases of the discharge, and to visualize numerous plasma

effects including background gas excitations during the discharge ignition, gas shock waves,

and expansion of metal-rich plasmas. In particular, the application of this technique is shown

on the diagnostics of the 200µs long non-reactive HiPIMS discharges using a Cr target.

Paper II: In order to gain further information about the dynamics of reactive HiPIMS

discharges, both fast plasma imaging and time- and space-resolved optical emission spec-

troscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses

operated in Ar, N2 and N2/Ar mixtures and at various pressures. It is observed that the

dense metal plasma created next to the target propagates in the reactor at a speed rang-

ing from 0.7 to 3.5 km s−1, depending on the working gas composition and the pressure. In

fact, it increases with higher N2 concentration and with lower pressure. The visible form of

the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape

extending far from the target with increasing N2 concentration, owing to the significant emis-

sion from molecular N2. Interestingly, the evidence of the target self-sputtering is found for

all investigated conditions, including pure N2 atmosphere.

Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of

the dynamics of the 200µs long HiPIMS discharges above a Cr target ignited in pure O2. It

is shown that the discharge emission is dominated solely by neutral and ionized oxygen, since

the monitored discharge is operated above a fully poisoned (oxidized) target from which only

a minimum of Cr is sputtered. No signs of self-sputtering have been detected, in contrast to

the discharges in Ar, N2 and N2/Ar mixtures previously investigated.
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Paper IV: In the fourth paper, we study different power management approaches in

HiPIMS and MPPMS and their effects on the pulsed discharge evolution, plasma composi-

tion, and metal ionization estimated by OES. It is shown that HiPIMS is the only technique

that enables the discharge operation in self-sputtering mode within the investigated range

of applied powers, resulting in a significantly higher ionization of the sputtered metal than

that reached with MPPMS. In contrast to HiPIMS, MPPMS provides a higher versatility

in adjusting the pulse shape and pulse length. This feature can be particularly beneficial,

for instance, in the discharge ignition. Nb coatings prepared by HiPIMS and MPPMS have

very similar deposition rates that are lower than in DCMS. All films prepared at p = 1 Pa

possess a dense columnar structure. Coatings deposited by the two high power pulsed dis-

charges exhibit higher compressive stress and larger out-of-plane lattice spacing than those

prepared by DC sputtering under comparable conditions. At higher pressure, p = 2 Pa,

DCMS-grown films show a tensile stress due to a porous microstructure, while films pre-

pared by HiPIMS and MPPMS are dense and in compression, most probably due to the

substantial ion bombardment.

Paper V: In the last paper, we analyze the behavior of the HiPIMS, MPPMS and DCMS

discharges in reactive O2/Ar gas mixtures and evaluate the characteristics of the fabricated

NbOx films. We demonstrate that the surface metal oxides can be effectively sputter-eroded

from the target during both HiPIMS and MPPMS pulses, and that sputtering from a partially

oxide-free target is possible even at high oxygen concentrations. This results in a hysteresis-

free deposition process which allows one to prepare optically transparent Nb2O5 coatings at

a high growth rate without the need of feedback control commonly used in reactive DCMS.

Nb2O5 coatings prepared by both reactive high power pulsed discharges exhibited a high index

of refraction, a low extinction coefficient, a near-zero internal stress, and high hardness and

Young’s modulus. The HiPIMS-deposited coatings showed the highest deposition rate and

the highest index of refraction. The latter observation was related to the higher film density.

In comparison, MPPMS exhibited the highest power-normalized deposition rate among the

three investigated deposition techniques, possibly due to the longer period that is available

for the gradual target cleaning. Finally, the cathode voltage was identified as a principal

parameter that affects the reactive discharge behavior.
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RÉSUMÉ

La tendance actuelle dans le domaine du dépôt physique en phase vapeur porte en partie

sur le développement de processus permettant une ionisation élevée du matériau pulvérisé.

Cette forte ionisation permet d’obtenir des conditions favorables à la fabrication de couches

minces très denses. C’est le cas de la pulvérisation magnétron pulsée de grande puissance

(HiPIMS), une technique de dépôt récemment introduite dans les milieux académiques et

industriels. Ainsi, une forte dissipation de puissance au niveau de la cible durant chaque

impulsion HiPIMS mène à la génération d’un plasma de haute densité et à une ionisation

considérable du matériau pulvérisé. Pour cette raison principale, la concetration en ions

métalliques d’un plasma HiPIMS peut être élevée, ce qui peut mener à une auto-pulvérisation

de la cible.

Malgré les importants progrès tant dans la compréhension que dans l’application de cette

nouvelle technique de dépôt, une multitude de questions reliées à la dynamique complexe des

décharges HiPIMS restent ouvertes. Ces questions concernent nottement les décharges opérées

dans des mélanges gazeux réactifs employés dans la préparation de revêtements protecteurs et

optiques. Ainsi, à titre d’exemple, il existe très peu d’information concernant la propagation

entre la cible et le substrat d’un plasma riche en métal lors de chaque impulsion HiPIMS. Ceci

est pourtant un critère important facilitant l’optimisation des conditions de dépôt. Ajoutons

qu’il existe plusieurs types de sources de puissance offrant des formes d’impulsion en courant

et en tension très différentes, mais qu’acune analyse rigoureuse de leur décharge respective

menant à l’identification des avantages et de s inconvénients sur le processus de dépôt n’est

disponible en ce moment.

Le but de la présente thèse consiste ainsi à répondre aux problématiques et aux besoins

définis plus-haut. En premier lieu nous menons une étude approfondie des processus en phase

gazeuse durant des impulsions HiPIMS opérées avec une cible de Cr dans des milieux de Ar,

de O2/Ar, de N2 et un mélange de N2 et Ar (N2/Ar) en utilisant primordialement l’émission

optique émanant des différentes espèces excitées par le plasma. Nous nous concentrons ensuite

sur l’évaluation critique des deux types de décharges pulsées à grande puissance générées par
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les deux sources principales disponibles sur le marché : (i) un générateur d’impulsions carrées

très courtes (200µs) permettant d’atteindre de grandes valeurs de tension cathodique (noté

ici HiPIMS), et (ii) un générateur de pulsations modulées plus longues (800 – 3000µs) aux

formes personnalisées (MPPMS). Nous examinons ces deux décharges appliquées à une cible

de Nb dans une variété de conditions non-réactives, ainsi que dans des mélanges réactifs de

O2/Ar. Par la suite, nous comparons ces dernières décharges à la pulvérisation magnétron DC

(DCMS) standard. De plus, l’observation de la décharge à travers des méthodes électriques et

optiques est complémentée par une analyse approfondie des caractéristiques des couches de

Nb et de NbOx déposées. Les paragraphes suivants résument les résultats principaux présentés

dans la thèse sous la forme de cinq articles.

Article I : Dans le premier article, nous présentons une approche innovatrice permettant la

caractérisation de l’évolution d’une décharge HiPIMS – l’imagerie de plasma résolue en temps

et en espèces atomiques – l’observation ciblée des différentes espèces du plasma est réalisée

grâce à l’utilisation d’un ensemble de filtres interférentiels passe-bande. Nous démontrons

par la suite que l’introduction de tels filtres peut être utile à la fois pour la distinction

des différentes étapes de la décharge et pour la visualisation de nombreux effets du plasma

incluant : l’excitation du gaz de travail durant l’ignition de la décharge, la présence d’ondes

de chocs gazeuses et l’expansion d’un plasma riche en métal. Nous avons démontré que cette

technique est applicable au diagnostique de pulsations HiPIMS longues de 200µs dans un

milieu non-réactif en utilisant une cible de Cr.

Article II : Dans le deuxième article, afin d’acquérir de plus amples informations concer-

nant la dynamique des décharges réactives HiPIMS, l’imagerie de plasma énergétique ainsi

que la spectroscopie optique (OES) résolue dans le temps et dans l’espace sont utilisées afin

d’étudier systématiquement des pulsations longues de 200µs opérées à diverses pressions dans

divers milieux (Ar, N2 et mélange N2/Ar). Nous remarquons ainsi que le plasma métallique

dense créé au voisinage de la cible se propage dans le réacteur à une vitesse allant de 0.7

à 3.5 km s−1 dépendamment de la composition et de la pression du gaz de travail. En effet,

cette vitesse crôıt avec l’augmentation de la concentration de N2 ainsi qu’avec une diminution

de la pression. La forme de l’onde plasma se propageant dans la chambre de dépôt varie d’une
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forme hémisphérique dans le Ar pur à une forme de goutte dans le N2 liée à l’émission consi-

dérable des molécules de N2 excitées. Il est intéressant de noter que nous avons observé la

présence d’une auto-pulvérisation de la cible et ce quelque soit la composition de gaz utilisée

(même pour N2 pur).

Article III : Dans le troisième article, nous analysons, au moyen de l’imagerie de plasma

résolue en temps et en espèce atomiques, des décharges longues de 200µs au-dessus d’une

cible de Cr dans le O2 pur. Nous observons que l’émission de la décharge est principalement

dominée par l’émission de le O2 neutre et ionisé ; Comme la cible est complètement oxydée

seulement très peu de Cr est pulvérisé. Aucun signe d’auto-pulvérisation n’a été détecté dans

le O2 contrairement aux décharges dans le Ar, le N2 et les mélanges de N2/Ar précédemment

investigués.

Article IV : Dans le quatrième article, nous étudions les différentes approches de gestion

des pulses de la puissance dans des générateurs HiPIMS et MPPMS ainsi que leurs effets

sur l’évolution de la décharge, la composition du plasma et l’ionisation métallique estimée

par l’OES. Nous démontrons que le HiPIMS est la seule technique qui permet l’obtention

d’une décharge en mode d’auto-pulvérisation dans l’intervalle de puissances étudié. Il en

résulte ainsi une ionisation du métal pulvérisé significativement plus importante que dans le

cas du MPPMS. Au contraire du HiPIMS, le générateur MPPMS présente une plus grande

versatilité dans l’ajustement de la forme et de la taille des impulsions. Cette caractéristique

peut être particulièrement avantageuse lors de l’ignition de la décharge. Les revêtements de

Nb préparés par HiPIMS et MPPMS ont des taux de dépôt très similaires mais plus faibles

que ceux obtenus par DCMS. Tous les films préparés à une pression de 1 Pa possèdent

une structure colonnaire dense. Les revêtements déposés par les deux décharges pulsées de

grande puissance présentent une contrainte en compression plus élevée et une plus grande

distance interplanaire dans la direction hors du plan de la couche que ceux préparés par la

pulvérisation DC sous des conditions comparables. À une pression plus élevée de 2 Pa, les

couches préparées par DCMS montrent une contrainte en tension due à une microstructure

poreuse tandis que celles préparées par HiPIMS et MPPMS sont denses et en compression,

probablement en raison du bombardement ionique substantiel.
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Article V : Dans le cinquième et dernier article, nous analysons le comportement des

décharges HiPIMS, MPPMS et DCMS dans des mélanges gazeux réactifs de O2/Ar, et nous

évaluons les caractéristiques des couches de NbOx déposées. Nous démontrons que les oxydes

métalliques sur la surface de la cible peuvent être effectivement pulvérisés que ce soit en

HiPIMS ou en MPPMS, et que la pulvérisation d’une cible partiellement métallique reste

possible même avec des concentrations élevées de O2. Il en résulte un processus de dépôt

sans courbe d’hystérésis ce qui permet la préparation de revêtements de Nb2O5 optiquement

transparents, à un taux de dépôt élevé, et ce sans l’utilisation d’un contrôle rétroactif fré-

quemment utilisé lors de la pulvérisation DCMS réactive. Les revêtements de Nb2O5 préparés

par les deux décharges pulsées de grande puissance manifestent également un haut indice de

réfraction, un faible coefficient d’extinction, une contrainte interne négligeable, ainsi qu’une

dureté et un module d’Young élevés. Les couches déposées par HiPIMS présentent les taux de

dépôt et les indices de réfraction les plus élevés. Cette dernière observation semble être liée à

une plus grande densité des couches. En comparaison, les couches déposées par MPPMS ont

les taux de dépôt normalisés par la puissance les plus élevés parmi les trois techniques étu-

diées. Ceci est probablement dû à un plus long nettoyage progressif de la cible. Finalement,

la tension cathodique a été identifiée comme l’un des critères les plus importants affectant le

comportement d’une décharge réactive.
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CHAPTER 1

Introduction

1.1 Importance of thin films

Thin films can be found in a vast number of applications where specific surface properties

of the materials are needed. For instance, manufacturing tools deployed in machining or

drilling are commonly coated by protective hard thin films in order to reach higher hardness,

toughness and elevated wear-, erosion- or corrosion resistance. Furthermore, the coatings

have to withstand a large range of working temperatures without delamination from the

underlying material. Such properties are also required in the automotive and aerospace

applications, where the durability of various engine, transmission and external parts exposed

to hostile environments are crucial. Moreover, the protective films are used in biomedical

applications, e.g. bio-implant coatings, where the above-mentioned properties should be

coupled with material compatibility with the biological environment.

Thin films generally possess different optical, electrical and magnetic properties than

the substrate material. They are widely used as decorative coatings, mirrors, antireflec-

tive coatings on eyewear, optical interference filters in telecommunication, or as segments

of the photovoltaic cells, just to list a few applications. Perhaps, the most commonly

known use of thin films is in the semiconductor device fabrication, in microelectronics and in

microelectromechanical systems (MEMS). In fact, it was the boom of the integrated circuit

technology in the late 1960s that started massive invasion of thin films into the commercial

applications [1]. Nowadays, both conductive and insulating films form essential parts of the

integrated circuits within various computer components, such as microprocessors. Thin fer-

romagnetic films are also used as magnetic storage medium in hard disk drives and as the

read/write devices in the hard disk heads.

It should be stressed, that the above-mentioned list of applications is limited and by far

not exhaustive. In fact, thin films are gradually expanding in many industrial domains. This

expansion is driven by the ever-increasing demand for higher production and performance ef-
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ficiency, and for lower environmental impact. For instance, the coating of the manufactur-

ing tool will extend its lifetime. In this way, both material and machining costs necessary

for the tool fabrication can be significantly diminished, as well as the off-time required for

the tool replacement.

1.2 Techniques of thin film fabrication

There are numerous ways how to prepare thin films. The most common methods used

in industry are electrodeposition and different forms of plasma enhanced chemical vapor

deposition (CVD) and physical vapor deposition (PVD) techniques. In the following para-

graphs, these deposition techniques will be briefly introduced.

Electrodeposition is widely applied for surface metallization. Its principle is based on the

reversed galvanic cell. Positive metal ions dissolved in a liquid solution are attracted to the

negatively charged part to be coated. The popularity of the electrodeposition is based on

the high metal growth rate and on its simplicity in comparison to other techniques requiring

the use of sophisticated and costly vacuum equipment. The principal disadvantages are

the limitation to single metallic elements (with an exception of brass and solder) and the

low uniformity of the resulting films, specifically on the steps or faceted surfaces. Another

drawback is the use of environmentally aggressive agents and toxic effluents.

In CVD, the film is formed from a volatile gaseous precursor which is decomposed at

the substrate surface to be coated. Typically, the precursor is activated by heat and/or by

plasma. In the latter case, the process is called Plasma Enhanced Chemical Vapor Deposition

(PECVD). The advantage of this technique is its capacity to prepare metallic, dielectric and

even organic compound coatings of well defined stoichiometry [1, 2]. Another interesting

feature is good coating coverage of the complex-shaped substrates exhibiting curved features,

holes and trenches, and even of the interior of tubes. The principal limitation of CVD is the

need for high process temperature in order to facilitate the gas-phase and surface reactions of

different film constituents. This means that coating of temperature-sensitive materials, or of

the substrates exhibiting a different thermal expansion coefficient than that of the deposited

film, is hindered. PECVD partially overcomes this obstacle since the process temperature

can be substantially lowered, down to room temperature (RT). Both CVD and PECVD also
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require vacuum system and pumps for operation.

In PVD, the deposited material is vaporized from a solid or liquid surface by thermal

or electron beam evaporation, by ion bombardment-induced sputtering or by laser ablation.

The vaporized material (mostly neutral atoms) travels in a line-of-sight manner through the

deposition chamber and subsequently condenses on the substrates that usually face the ma-

terial’s source. In the case of a reactive deposition process, condensation involves reaction of

the condensing material with a reactive gaseous species (e.g. dissociated N2, O2) in order to

create a compound. In comparison to electrodeposition and CVD techniques, no toxic efflu-

ents and pollutants are involved. A possible limitation is the necessity for rather complicated

equipment, including vacuum chamber and pumps and sophisticated power supply(ies).

In conventional (thermal) evaporation, the source material is usually positioned inside

of the crucible made from a material with a much higher melting point (e.g. W, Mo, C,

ceramic). The former one is then evaporated by resistive heating or by an intense electron

beam. The main advantage is the high deposition rate and the relative simplicity of the

process compared to other PVD techniques. Its drawbacks are low coating packing density

and moderate adhesion to the substrate. Also, the deposition of alloys is rather difficult;

This often demands the use of multiple evaporation sources [3]. In addition, the materials

exhibiting high melting temperature are difficult to evaporate.

Another variant of the evaporation technique is called cathodic arc (CA). Here, the

material in the form of a conductive cylinder or a circular plate called target is evaporated

by high currents flowing from the discharge maintained above its surface. In fact, the target

atoms are ejected from the small melting spots on its surface (cathodic spots). The deposition

of metallic and compound films by CA reach elevated deposition rates. The obtained coatings

exhibit high density and excellent adhesion [4]. CA can also be employed for substrate

cleaning for adhesion enhancement pre-treatment before the coating deposition. In such a

case, the arc discharge is used as a source of metal ions which are then accelerated towards

the substrate in order to erode its surface (plasma etching). The major limitation is the

generation of macroparticles or liquid droplets which are the by-products of microexplosions

at the cathodic spots. Their incorporation in the growing film is highly undesirable and even

unacceptable in some applications, e.g., in the fabrication of semiconductor devices or in
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optical coatings. A solution to this problem is application of sophisticated magnetic filters

for the selection of the ejected ionized material. However, such filtering adds complexity to

the deposition apparatus and it significantly reduces the deposition rate [5, 6].

Sputtering is the most flexible PVD technique that allows one to deposit a large number

of materials, including those with a high melting point, metal alloys and even dielectrics.

The target atoms are liberated from the surface by physical bombardment by energetic ions

impacting its surface (the effect called momentum transfer sputtering or simply sputtering).

These ions can be created from a separate ion source (e.g., ion beam sputtering (IBS) or

its ion-assisted version dual ion beam sputtering (DIBS)) or from the discharge maintained

directly above the sputtered target (e.g. magnetron sputtering (MS)). In the latter case, the

target serves as the driving cathode, and the substrate holder that faces the target, as well

as all the walls of the surrounding deposition chamber, act as the anode.

The principal advantage of sputtering compared to evaporation is the higher kinetic energy

of the vaporized species [3, 7]. This can result in higher packing density of the deposited

film since the condensing atoms have higher energy for surface diffusion on the underlying

material. Furthermore, the absence of the growth defects (e.g., macroparticles) and the

capacity to scale the sputtering sources (cathodes) make sputtering, and especially MS, a

suitable technique for a wide range of industrial applications; this includes large area glass

coatings, automotive and tool coatings, and microelectronics component fabrication. This

is why the popularity of this deposition technique keeps steadily increasing [7, 8]. Further

advances of the MS technique is the subject of this work.

1.3 Challenges in coating fabrication

Great progress in technology during the last years stimulated the development of novel

coating solutions based on heterostructures, such as film multilayers and nanocomposites, in

order to profit from the synergy of different properties of the individual forming materials;

Each of the constituents has different functions, such as conductivity, hardness, environmental

protection, biocompatibility, color, or their combination.

The term multilayer stands for a layered structure composed of several up to several

thousand of film layers. If the thickness of the individual layers is in the nanometer scale, the



5

Figure 1.1 Schematics of the nano-scaled multilayer coating (nanolaminate, superlattice) (a)
and of the nanocomposite coating (b) composed of two different materials deposited on a
substrate. The interface region is highlighted.

resulting structure is called nanolaminate [Fig. 1.1(a)]. Furthermore, if the constituent layers

are crystallographically matched, the resulting structure is called superlattice. In contrast,

nanocomposite coatings consist of a matrix (crystalline or amorphous) of one material in

which nanometer-size particles of a second material are embedded [Fig. 1.1(b)]. All these new

structures can provide exceptional properties (e.g., hardness, wear resistance, environmental

stability) that are difficult to achieve by single phase coatings [9].

The ever-growing requirements on the performance of the fabricated coatings implies a

need for new technological processes suitable for their production. Research is therefore

moving towards the exploration and development of new sophisticated deposition techniques

capable of synthesizing coatings with fine tuned composition and microstructure, in order

to obtain requested properties. In addition, the fabrication technique should be suitable

for tailoring the coating-substrate interface and/or interfaces in multilayer systems in order

to secure the coating durability and environmental stability. Moreover, the capacity for

coating complex-shaped substrates, which may exhibit deep trenches, holes or 3D structures

is frequently demanded.
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1.4 Ionized physical vapor deposition

One of the approaches that can be used for modification and control of the microstruc-

ture and hence the properties of the deposited films and interfaces, is to employ the ionized

sputtered-material atoms, also called film ions, in the deposition process. The film ions can

be accelerated and collimated via the electric field of the plasma sheath near the substrate.

In this way, both energy and direction control of the film-forming species are ensured simply

by applying a substrate bias. The energy conveyed locally to the place of the arriving atoms

affects the nucleation and film growth mechanisms [10]. The localized energy transfer per-

mits to lower the deposition temperature and to improve the film quality in terms of higher

density [11, 12], lower surface roughness [13, 12] and better adhesion to the underlying mate-

rial [14]. The possibility to control the direction of the arriving film ions also enables coating

of parts with complicated geometries even when using a standard planar source of material

as magnetron target [13, 15].

Among the plasma-based coating techniques generating substantial fluxes of ionized film

atoms can be classified PECVD and several advanced modifications of PVD that are referred

to as ionized physical vapor deposition (IPVD) methods. The most common IPVD technique,

which exhibits the highest vaporized material ionization is filtered CA. Unfortunately, CA has

a major drawback in generating macroparticles which have to be filtered away, as discussed

previously. However, there are numerous applications of both unfiltered and filtered CA,

such as those summarized in [4, 6].

Other IPVD techniques are mostly based on the conventional direct current magnetron

sputtering (DCMS) where the discharge plasma density is intentionally increased in order to

enhance the sputtered material ionization on its way through the plasma region towards the

substrate. This is usually done by either a specific shape of the cathode (hollow cathode [16])

or by the application of a secondary discharge within the deposition chamber, e.g., by the

radio frequency (RF)-powered inductive coils or by the microwave (MW) applicator, as sum-

marized in Ref. [17]. However, these IPVD techniques never became popular in the industry

due to the complexity of the required deposition apparatus and the consequent difficulty to

scale up to industrial-size coaters.
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Another way how to reach higher plasma density is to substantially increase the power

applied to the magnetron target. This is the basic idea behind the recently introduced

HiPIMS technique that is increasingly gaining attention from both academia and industry

and that became the “hot topic” of many conferences during the past years.

1.5 High power impulse magnetron sputtering

The origins of HiPIMS, by some referred to as high power pulsed magnetron sputtering

(HPPMS), go back to the middle of 1990s when the experiments with pulsed glow and

magnetron discharges were first reported [18, 19, 20]. However, it has not gained popularity

until 1999 when uniform filling of 1µm deep and 1µm wide trenches with a dense Cu coating

by HiPIMS was demonstrated by Kouznetsov et al. [21].

The principal difference of HiPIMS from DCMS is the use of much higher power densities

applied to the magnetron. In order to avoid target overheating, the power is applied in pulses

of short duration with a low duty cycle (ratio of pulse on-time over off-time), usually in the

range of 0.5 to 5%. In this way, power densities up to few kW·cm−2 can be reached. For illus-

tration, a typical power delivery in DCMS and HiPIMS, together with its recent modification

called modulated pulse power magnetron sputtering (MPPMS), is depicted in Fig. 1.2.

The high power dissipated on the target during each pulse leads to the generation of high-

Figure 1.2 Schematic representation of the power delivery during the pulsed discharges above
a magnetron powered by HiPIMS, MPPMS and DCMS power supplies operated at the same
average power P = 300 W. Reprinted from Paper IV (Chapter 7).
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density plasma, e.g., ne ≈ 1012 − 1013 cm−3 [22, 23, 24, 25, 26, 27]. This enables a significant

ionization of sputtered-material, which can become available to the deposition process. A

high metal ion fraction in the sputtered flux by HiPIMS, reaching up to 30% for Cr [28],

60% for Cu [29] and above 90% for Ti, has been reported [30, 31]. As well, the detection of

multiple (up to four-fold [32]) charged metal ions has been shown [33, 34]. Such observations

contrast sharply with the conventional DCMS, in which the metal ionization is very low

(ne ≈ 109 − 1011 cm−3).

The application of HiPIMS for coating non-flat and inclined substrates was demonstrated

to significantly improve film homogeneity and decrease surface roughness [13, 15]. This is

illustrated in Fig. 1.3(a) by an example of two Ta films grown on 90◦ inclined surfaces with

respect to the plane of the material source (cathode’s surface) . While the microstructure

of the film grown by DCMS shows apparently inclined columns and high surface roughness,

the HiPIMS-prepared film appears dense with a smooth surface, and the visible columns

have a perpendicular direction to the substrate. The authors of the study have also claimed

a higher packing density in the case of HiPIMS-deposited films [13]. This indicates that

HiPIMS is a suitable deposition technique for filling small trenches in microelectronics and

in MEMS fabrication, and for coating components with complex shapes (e.g. drilling bits,

turbine engine blades).

The HiPIMS discharge was found very beneficial if applied for substrate pre-treatment

(plasma etching). Films deposited on the HiPIMS pre-treated substrates exhibited an en-

hanced adhesion [14] and a substantially improved corrosion-, oxidation- and erosion-corrosion

resistance [35, 36, 37, 38, 39]. For illustration, Fig. 1.3(b) shows the interface area of the

stainless steel substrate and the deposited CrN film. No voids, lattice misalignment or other

defects can be observed. In fact, the atomic layers in both materials are visibly aligned. This

is a sign of the cube-on-cube epitaxial growth preserved throughout the substrate-coating

interface region [14]. Such interface provides the best adhesion and an excellent protection

against the harsh environment.

Protective metal nitride-based coatings prepared by HiPIMS exhibited dense droplet-free

microstructure, high hardness and low surface roughness [40, 41, 42]. Recently, HiPIMS

was also used in the preparation of advanced nanolayered [35, 36, 37, 38, 39] and nanocom-
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Figure 1.3 (a) Film morphology of a Ta coating deposited on the wall of a 1 cm wide and
2 cm deep rectangular trench prepared by HiPIMS and by DCMS. Both films were grown on
crystalline Si substrates at room temperature with a bias Ub = −250 V. Modified from [13].
(b) Cross-sectional lattice image with atomic resolution of stainless steel substrate - CrN film
interface that was pre-treated by HiPIMS with Nb ions at Ub = −1000 V. The substrate
temperature was maintained at 400◦C. Modified from [14].

posite [43, 15, 44, 45] coatings exhibiting dense microstructure and outstanding mechanical

properties (wear-, corrosion-, erosion-, or corrosion-erosion resistance, and dry milling) if

compared with other common deposition techniques. This demonstrates the capacity of this

deposition technique to synthesise advanced compound materials, while benefiting from all

advantages of the highly energetic nature of the IPVD process.

HiPIMS was also applied for the preparation of various transparent metal oxides. In

general, optical coatings deposited by HiPIMS exhibited higher packing density, higher index

of refraction, and lower surface roughness than those prepared by DCMS [46, 12, 47, 48,

49, 50]. Other studies showed a diminished resistivity of the HiPIMS-deposited transparent

conducting oxide (TCO) films in comparison to DCMS-deposited films [51, 52].

Due to the steadily growing attention that HiPIMS technique received during the first

decade of its existence, a variety of power supplies (PS) from different manufacturers and with

different pulse shape, voltage and current characteristics were introduced to the market [53,

54, 55, 56, 57]. However, among the great number of commercially available PS, one can

distinguish two principal types according to the specific form of the produced voltage pulse;

Square voltage pulse generator and modulated pulse power (MPP) generator. The former
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is commonly referred to as HiPIMS PS and the latter is often called MPPMS PS. Further

details about the principal differences between the two kinds of PS can be found in section 3.1

(Chapter 3). Moreover, several companies already offer the built-in HiPIMS PS within their

industrial-size coaters using large-scale cathodes (CemeCon [58], Hauzer [59], PLT [57]). This

demonstrates that HiPIMS is becoming a well established and popular deposition technique.

1.6 Motivation of this work

HiPIMS is truly at the cutting edge of nowadays surface engineering and functional coating

fabrication technology. Its benefits for the preparation of protective and optical coatings,

briefly summarized above, are the main motivation for this work.

Despite the great advances in the understanding as well as in the application of this novel

deposition technique, there are numerous open questions related to the dynamics of the pulsed

HiPIMS discharges, specifically when operated in the reactive gas mixtures. For instance,

there is still little information available about the discharge evolution, and particularly, about

the propagation of the metal-rich plasma in between the target and the substrates. In order

to facilitate such investigation, a convenient diagnostic approach suitable for both time- and

space-resolved monitoring of various physical processes in the gas phase of HiPIMS discharge

(e.g., gas rarefaction by sputtered material and subsequent plasma expansion) is needed.

Here, it should be stressed that the in depth characterization of the reactive HiPIMS dis-

charges is of primordial importance for the optimization of the deposition conditions suitable

for the preparation of functional protective and optical films.

The existence of the two commercially available types of HiPIMS PSs exhibiting different

power management strategies implies a need for a rigorous comparison of the respective

HiPIMS and MPPMS discharges, that would ease the coating manufacturer’s task to choose

the most suitable approach for the deposition process. An appropriate comparison with

a standard coating process used in the industry (e.g., DCMS) is also required. Such an

investigation, still missing in today’s literature, should employ both discharge diagnostics and

fabricated thin films characterization. In addition, a proper understanding of the hysteresis

behavior of HiPIMS and MPPMS discharges operated in reactive gas mixtures is necessary

for a judicious control of the corresponding deposition processes.
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Previous research in the Functional Coating and Surface Engineering Laboratory (FC-

SEL) at École Polytechnique has focused, among many other topics, on the understanding

of pulsed RF and MW plasmas. For instance, Zabeida et al. [60, 61] have studied the

dynamics of the non-reactive and reactive discharges excited by pulsed MW by the time-

resolved (TR) mass spectrometry; They have shown that different features of ion energy

distribution function (IEDF) originate from different periods of the MW pulse [60]. The

authors have also demonstrated that energy of the bombarding ions - and hence the related

plasma-surface interactions - can be selectively adjusted by modifying the duty cycle of the

pulsed MW power [61]. In another work, the modification of the duty cycle of the RF-powered

PECVD discharge was used for tailoring the characteristics of the amorphous SiNx:H alloy

coatings [62]. Pulsed dual-mode MW/RF discharges were also applied for surface treatment

of SiNx:H films in order to fabricate porous-dense multilayer structures, such as Fabry-Perot

filters [63]. The background expertise in the characterization as well as in the application of

the pulsed plasma discharges in FCSEL hence serves as a driving force and motivation for

the current work.
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1.7 Objectives

The main objective of the present thesis is to enhance understanding of the HiPIMS

process by characterizing the discharge dynamics during individual pulses with a special focus

on plasma propagation in the reactive gas mixtures. In this work, we also perform a critical

analysis of the two main types of HiPIMS discharges, namely those produced by either a

square voltage pulse generator or an MPP generator, operated under both non-reactive and

reactive conditions. This will help to identify their respective benefits and drawbacks, an

important aspect for the implementation of this technology in industry.

Specific objectives are then defined as follows:

1. Develop a diagnostic approach suitable for the visualization of the spatial evolution of

the HiPIMS discharge, and specifically, of the expanding metal plasma.

2. Characterize various physical processes in the gas phase of the HiPIMS discharge under

both non-reactive and reactive conditions.

3. Critically assess HiPIMS discharges exhibiting different pulse power management ap-

proaches and compare them to the DCMS discharge.

4. Investigate the HiPIMS process in various O2/Ar gas mixtures in terms of the hysteresis

behavior and of the properties of the deposited metal oxide coatings.

1.8 Organization of the thesis

The thesis is divided into 9 chapters. In the following Chapter 2, the theoretical back-

ground of the plasma discharges for materials processing, and the principles of sputtering and

thin film deposition are presented. Furthermore, a brief overview of the present knowledge

on HiPIMS is offered.

Chapter 3 details the characteristics of the two HiPIMS PS employed in this work, namely

the square voltage pulse generator and the MPP generator, and also the principles of the used

analytical techniques. Special attention is given to the optical monitoring of the discharge.
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The principal results of this thesis are then presented in the form of five papers, either

already published or submitted to peer-reviewed journals:

Paper I (Chapter 4) describes a novel approach in HiPIMS discharge diagnostics based

on fast plasma imaging using the bandpass filters in order to separate optical emission from

different plasma-excited species. Application of this technique is demonstrated by analyzing

the evolution of the HiPIMS discharge operated above a Cr target in Ar.

Paper II (Chapter 5) is devoted to the investigation of the gas-phase processes within the

pulsed HiPIMS discharges above a Cr target in Ar, N2 and in N2/Ar mixtures, and at various

pressures. Different phases of the HiPIMS discharge are identified and discussed.

Paper III (Chapter 6) uses the insight and methodology developed in Paper 1 for the

characterization of the HiPIMS discharge evolution in pure O2.

Paper IV (Chapter 7) offers a critical comparison of HiPIMS discharges, that are excited

by the two types of PS exhibiting different power delivery managements - square voltage

pulse generator and MPP generator - with the standard DCMS discharge. Both the discharge

characteristics and the properties of Nb coatings are evaluated.

Paper V (Chapter 8) extends the comparative study introduced in Paper 4 for discharge

diagnostics in reactive O2/Ar gas mixtures. Special attention is given to the discussion of the

hysteresis suppression observed in both HiPIMS and MPPMS discharges. In addition, opti-

cally transparent high refractive index Nb2O5 coatings are characterized and their properties

compared.

Finally, Chapter 9 offers a general discussion of the accomplished work and conclusions.

In addition, future perspectives and directions of research are summarized.

Besides the work presented in the five papers forming the heart of this thesis, the PhD

candidate was also involved in several other investigations that resulted in two other papers in

peer-reviewed journals and in one paper in conference proceedings. First of the two articles is

presented in this work as Appendix A. The list of the candidate’s publications at the moment

of the thesis submission is summarized in Table 1.1. Among the outcomes of this work are

also 11 oral and poster presentations at various international conferences and symposia, listed

in Table 1.2.
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CHAPTER 2

Theoretical background

In this chapter, the essential theoretical basis for the presented work will be offered.

In the first part, the fundamentals of plasma discharges suitable for materials processing

will be outlined, with a special focus on the magnetron discharges. In the second part, the

principal concepts of sputtering, reactive sputtering and thin film deposition will be discussed.

Finally, a brief summary of the present knowledge on the HiPIMS technique will be presented,

supported by several relevant experimental results taken from the literature.

2.1 Plasmas for materials processing

2.1.1 Plasma discharge fundamentals

Among the common examples of plasma – sometimes called a fourth state of matter –

are solar corona, aurora borealis, flame and fluorescent lights. In fact, most of the known

universe is in the plasma phase. When a solid substance is in thermal equilibrium, it can

pass into a liquid state with increasing temperature, and further into a gas. Then, at a

sufficiently high temperature, a significant amount of gas atoms or molecules release some of

their least-bonded electrons. These are then free to move independently, as well as the rest

of the original neutral atoms/molecules that are left with a positive charge. Thus, plasma

consists of freely moving positively- and negatively-charged particles and of the surrounding

atoms/molecules. In common processing plasma (glow discharge), only a few percent of the

working gas species are ionized and the rest stays neutral. In contrast, high temperature

plasma, such as that used in nuclear reactors, may be composed of only ionized species.

There are generally two principal properties of plasma that can be used for its elementary

characterization:

1. It is a quasineutral medium; The overall density of electrons together with negative

ions is equal to the density of positively charged ions. Localized imbalance between the
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two may exist but only within a very limited distance that is a function of the plasma

characteristics.

2. It exhibits a collective behavior; The charged particles in the plasma interact with one

another not only by collisions, but also by long-range electric and magnetic fields that

are themselves created by these particles.

In order to illustrate these points, we can imagine a situation where a disproportion

exists in the density of negatively and positively charged species. In such a case, the electric

field created by such charge imbalance will create Coulomb forces that will cause charge

rearrangement. Hence, plasma acts as an electrically neutral medium on macroscopic scale.

The characteristic distance at which a significant charge separation may exist is called

Debye length, λD. It can be expressed as:

λD =

(
ε0 kTe

ene

)1/2

, (2.1)

where ε0 is the permittivity of vacuum, k [eV K−1] is the Boltzmann constant, Te [eV] is the

electron temperature, e is the elemental electron charge, and ne is the electron density.

Fig. 2.1 shows a schematic representation of the plasma discharge that is commonly

employed in materials processing. It illustrates the quasineutral discharge space filled with

electrons and ionized, neutral and excited working gas species (for example, Ar). In addition,

it shows a typical process geometry, including a driving electric circuit composed of a voltage

source and two electrodes: a negatively charged cathode and a grounded anode.

The majority of discharges used for materials processing and thin film fabrication are

operated in low pressure gas environment. The generated plasma is far from thermal equilib-

rium (non-thermal plasma) since the applied electric fields preferentially heat light electrons

(of mass me) as opposed to heavy ions (of mass mi), and since the frequency of their mutual

collisions is low. Mobile electrons can hence accumulate a sufficient kinetic energy to excite

or ionize the surrounding heavy particles upon collisions. In contrast, ions exchange their

energy mostly by collisions with the working gas, which is in thermal equilibrium with the

surrounding environment at the ambient temperature, T0. Consequently, Te is much higher

than the ion temperature, Ti. The ionization degree, which represents the fraction of the
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Figure 2.1 Schematics of the glow discharge and the driving electric circuit. Neutral, excited
neutral and ionized atoms, as well as free electrons, are depicted within the quasineutral bulk
plasma. UC stands for the voltage applied to the cathode by the power supply.

original neutral gas species which have become ionized, is hence an important parameter of

a plasma discharge. In a weakly ionized plasmas, sometimes referred to as low temperature

or cold plasmas, the temperature of neutrals – that largely outnumber ions – determines the

ion temperature; Ti ≈ T0.

2.1.2 Excitation and ionization processes

Collisional products of the electron-atom impacts – ionized and excited species – and their

interactions with exposed surfaces are of great importance in plasma processing of materials.

For instance, the exothermic reactions of both ions and excited species upon their collisions

with the other species significantly contribute to the chemistry of the discharge and to the

reactions on the treated surfaces/growing films. In addition, the ionized species can deliver

additional energy to the treated surfaces/growing films since they can be accelerated by the

difference between the plasma potential and the surface potential. The importance of such

energy transfer will be discussed in section 2.2.4.

Collisions between individual species can be divided into elastic and inelastic, depending

on whether the internal energy of the colliding species is preserved or not. An elastic collision

is characterized by the kinetic energy interchange, where momentum and kinetic energy

of translational motion are conserved. This is the most common interaction in electron-
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electron and even electron-ion collisions in low temperature glow discharges. During an

inelastic collision the momentum is preserved, but the kinetic energy is not. The difference

in total kinetic energy of the interacting particles before and after the collision then equals

the gain/loss in their overall potential energy that is reflected by excitation or ionization

processes. In the following paragraphs, the most important inelastic interactions in common

discharges used in materials processing will be listed. An electron will be denoted by letter e

and the atoms by capital letters A or B. An overview of these reactions with the corresponding

examples is also offered in Ref. [1]

Electron impact excitation, e + A−→A* + e, is a process where an outer-shell electron

of the atom A is elevated (excited) to a higher energy level, if the energy transfer from the

impacting free electron equals to respective excitation energy threshold, Ek. Whole atom

(neutral or ion) is then referred to as excited and denoted as A*. Usually, the lifetime

of the excited state is very short (e.g., 10−7 s - 10−8 s) and the outer-shell electron returns

spontaneously by electric dipole radiation to its original ground state, A*−→A + hν, or

to another lower-lying energy level. Here, hν stands for the energy of the specific emitted

photon. The deexcitation emission spectrum of each of the plasma-excited species (neutral or

ion, atom or neutral), formed by the emitted photons, is unique and can be used for plasma

diagnostics, such as will be discussed in section 3.2 (Chapter 3).

It should be noted that there are some energy levels from which the spontaneous electron

transition to the ground state is forbidden. In these cases, the lifetime of the excited atom

may be 10−3 s or even longer, and the principal deexcitation mechanism can become the

energy exchange with another atom/molecule via inelastic collision. Such long-lived excited

atom is referred to as metastable atom or simply a metastable. Metastables are often found

in the low-pressure discharges commonly employed in material processing.

Electron impact ionization, e + A−→A+ + 2e, is a process, where positive ion and addi-

tional electron are formed by the collision of an energetic electron and a preliminary neutral

atom. The ionization usually occurs when the energy conveyed to one of the outer-most

valence electrons exceeds the ionization energy threshold, Ei (Ei > Ek). This process is

of primary importance for sustaining the low temperature discharges, where high energy

electrons exist but where the excitation of neutrals is moderate [64].
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The rate for the two above-mentioned electron impact phenomena is given by:

∂nx

∂t
= Kean0ne, (2.2)

where nx stands for the excited atom density, n∗, or ion density, ni, n0 stands for the neutral

atom density, and Kea is the respective excitation/ionization rate coefficient defined as:

Kea =

∫
σea(E)fe(E)E1/2dE. (2.3)

Here, E is the electron energy, fe(E) is the electron energy distribution function (EEDF),

and σea(E) is the material-dependent effective excitation/ionization cross section. The latter

variable quantifies the respective interaction probability with the impacting electron and is

usually described as a function of E. σea increases rapidly above the threshold energy for

excitation (Ek) or ionization (Ei) of the impacted species. The value of σea then peaks and

decreases for E > 50 − 100 eV, as a consequence of the shortening interaction time of the

bypassing electron [65]. It should be noted, that metals have significantly lower Ek and Ei

thresholds in comparison with working gas atoms, such as Ar. An example can be found in

Table 5.1, where Ek and Ei values for Cr, Cr+, Ar and Ar+ are listed.

Another important process is charge transfer, A+ + B−→A + B+, where A and B can

be identical species. It can occur when an energetic ion passes close to a thermal neutral.

This process is an important loss mechanism for energetic ions in the sheath region of a

discharge [64].

A collision of metastable A* with ground state neutral B can cause the excitation/ionization

of the latter species, if the excitation energy of A* is greater than the excitation/ionization

energy of B. These processes, called Penning excitation, A* + B −→ A + B*, and Penning

ionization, A* + B−→A + B+ + e, can significantly contribute to the excitation and ioniza-

tion rates in plasma [66].

The common inverse processes, where electrons and ions are lost by mutual recombi-

nation, are the following: three body recombination, A+ + 2e−→A + e, where two electrons

are necessary to conserve momentum, and radiative recombination A+ + e−→A + hν, where

energy and momentum differences are balanced by the emission of a photon. However, the
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most important loss mechanism for both electrons and ions in the low pressure discharges is

diffusion towards the walls, which serve as a sink for the charge species.

If the neutral species A has a high electron affinity (e.g., F), the electron capture process

results in the generation of a negative ion, A + e−→A−.

When a discharge is operated in a reactive atmosphere, the excitation or ionization of the

reactive molecules significantly affect the discharge parameters. Molecules have numerous

accessible rotational and vibrational energy states that require much less energy in order to

be excited than single atoms. Consequently, there are much greater electron energy losses in

comparison with non-reactive discharges.

When an electron collides with a molecule AB, a number of gas-phase processes may

occur, such as:

Dissociation, e + AB−→A + B + e, and ionizing dissociation, e + AB−→A+ + B + 2e, are

electron impact fragmentations of molecules which result in the formation of neutrals, charged

chemically reactive radicals, or smaller atomic or molecular fragments.

Dissociative attachment, e + AB−→A−+ B, is a dissociation of the molecule, where the

products are a negative radical and a neutral molecular fragment. The reverse process is

called associative detachment.

Associative recombination, e + A+ + B−→AB, is an inverse process in which a molecule

is formed from the constituent radicals after the collision with an electron.

It should be pointed out that the fragments of reactive molecules are generally much more

chemically active than the parent gas molecules. They can accelerate gas-phase reactions and

can readily react with the exposed surfaces. This is the reason why plasma discharges are

often employed in fabrication of functional coatings based on nitrides, oxides, and other

chemistries. At the same time, high gas reactivity may represent a serious issue in reactive

sputtering, as it will be discussed in section 2.2.2.

2.1.3 Plasma sheath and secondary electron emission

The thermal velocity of electrons, ve, significantly differs from that of ions, vi, within low

temperature plasma discharges. This is partly due to their large mass difference, and due to

their different thermal energies given by kTe and kTi, respectively, according to:
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ve =

(
kTe

me

)1/2

, and (2.4)

vi =

(
kTi

mi

)1/2

. (2.5)

Since kTe � kTi and me � mi, it is clear that ve � vi. This disparity is responsible for

the formation of the boundary layer at the plasma edge known as plasma sheath. In fact, the

flux of the mobile electrons towards the surrounding surface exceeds the flux of slower ions. If

this surface is non-conductive or is an isolated conductor, it will promptly charge negatively

with respect to the surrounding quasineutral plasma bulk. This results in a depletion of

electrons in the adjacent sheath layer and hence in a net positive charge, i.e. ni > ne. The

created charge imbalance will generate an electric field that will slow down the electron flux.

Conversely, the flux of ions will be enhanced by the negative wall potential until it equals

that of the electrons. The potential of such an isolated surface immersed in plasma is called
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Figure 2.2 Potential distribution of the glow discharge between the cathode and the anode
(e.g., chamber wall) of the driving electric circuit. UC stands for the cathode voltage, Uf for
the floating potential and Up for the plasma potential. Working gas neutral (Ar) and ion
(Ar+), a sputtered target atom (black circle) and a secondary electron (e) released from the
target surface are schematically depicted within the cathode sheath region.
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floating potential, Uf . In case of a grounded conductive surface (such as the chamber wall),

the self-established plasma potential, Up, will be positive in order to repel the electrons and

to accelerate the ions, as illustrated on the right side of Fig. 2.2. The usual value of Up is a

few Te/e and the typical sheath thickness, s, is of the order of the Debye length [66].

In a typical glow discharge configuration, one of the plasma-exposed surfaces is negatively

charged with respect to the rest of the chamber, and serves as a cathode of the driving

electric circuit (left side of Fig. 2.2). The cathode voltage, UC, is usually in the range of

100 − 1000 V. The adjacent plasma sheath then exhibits a high potential drop equal to

|Up − UC| ≈ |UC| (since UC � Up). The corresponding current density, JC, across the high

voltage sheath is limited by the space charge. If s is significantly smaller than the ion mean

free path (λi = 1/σnnn, where σn is a collisional cross section), JC can be expressed by the

non-collisional Child-Langmuir law [66]:

JC =
4

9
ε0

(
2e

mi

)1/2
U

3/2
C

s 2
. (2.6)

It is well known, that the total ion current leaving the plasma sheath is given by:

J = enevB, (2.7)

where vB is the Bohm velocity [66]:

vB =

(
kTe

mi

)1/2

. (2.8)

By setting equal the right sides from Equations 2.6 and 2.7, one can estimate the self-

established non-collisional sheath thickness from the known values of UC, Te and λD:

s =

√
2

9
λD

(
2eUC

kTe

)3/4

. (2.9)

It should be stressed that the high potential fall is necessary for keeping the glow discharge

running; Firstly, it accelerates the heavy gas ions, entering the plasma sheath region due to

their thermal movement, towards the cathode surface. Their energetic impacts then cause

(i) cathode erosion – the phenomenon used in the sputtering process employed in the coating
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deposition – and (ii) emission of secondary electrons (SE). Secondly, SE accelerated by the

potential difference between UC and Up gain energy from the electric field, provided by the

external electric circuit, and transfer it to other particles through collisions. In fact, highly

energetic SE are of crucial importance for the generation of a number of new ion-electron

pairs due to inelastic collisions and also for the heating of other bulk electrons via elastic

collisions, which in turn can cause further (primary) electron production by gas ionization

process. Without SE, the direct current (DC) discharge would extinguish as a consequence

of the charged particle losses towards the surrounding chamber walls and via recombination

collisions described in the previous section.

For the relatively low kinetic energies used in a common DC magnetron sputtering process

(UC < 700 V), the SE emission yield, γSE, is solely a function of the potential energy of the

impacting ions (such as their ionization and/or excitation state) and of the work function of

the bombarded material, φ. This can be illustrated in Fig. 2.3, where γSE is constant for Ar

ions (Ei ≈ 15.8 eV) impacting the “clean” metal target surface (4 eV< φ < 6 eV) with kinetic
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Figure 2.3 Electron emission yield for Ar ions and Ar neutrals incident on clean (dashed
curves) and “contaminated” (e.g., oxidized or nitrided) (solid curves) metal surface versus
impacting particle energy (proportional to UC). Modified from [67].
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energies up to 700 V. The respective mechanism responsible for potential electron emission is

the two-electron Auger process [67]. At higher energies, γSE increases due to the contribution

of kinetic electron emission caused by Coulomb interactions of the impacting ions with the

target atoms [67].

In addition, γSE is largely affected, among other parameters, by the chemical composi-

tion of the target surface; “Contaminated” metal target - e.g., due to surface oxidation or

nitridation - can exhibit lower or higher γSE than the “clean” metallic target, depending on

the energy of the impacting Ar ions and neutrals [68], such as illustrated in Fig. 2.3.

Overlooking the last figure, one could conclude that the discharge operation above the

contaminated target at UC > 300 V will result in an increased γSE value, and hence in a higher

plasma density (IC). However, the situation is further complicated since some of the com-

pound materials (e.g., TiO2 or Nb2O5) are reduced under the intense ion bombardment [69].

Consequently, the composition of the upper-most layer of the bombarded surface may sig-

nificantly differ from both underlying compound and metal (e.g., suboxide may be formed).

The value of γSE for some materials can thus decrease when the surface is exposed to the

contaminant, even for UC > 300 V. This is also a common experience in reactive magnetron

discharges (operated typically at 300 V< UC < 600 V) above Nb, Ti and numerous other

target materials [69]. It should be also noted, that SE emission may be enhanced by the

impacting energetic metastables and photons.

2.1.4 Ambipolar diffusion

In the previous paragraphs the plasma sheath regions close to the chamber walls and

electrodes were discussed, while assuming that the remaining plasma volume is a homoge-

neous environment. In fact, the latter has a nonuniform distribution of ions and electrons

with a density gradient due to the existence of a source of charged particles, localized in the

proximity of the cathode. Consequent density gradients are the origin of diffusion processes

within plasma bulk. In contrast to classical particle diffusion that can be described by Fick’s

laws, ions and electrons within plasma cannot diffuse independently of each other, owing to

their mutual electromagnetic interactions which will counteract the charge separation. As a

result, both species diffuse simultaneously, albeit much higher thermal velocity of electrons.
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This type of diffusion, common for processing plasmas, is called ambipolar diffusion.

Plasma diffusion within the chamber can be affected by the magnetic fields penetrating

the plasma region. This is due to the Lorentz force acting on any charged particle that is

crossing the magnetic field lines, given by:

~F = q~v × ~B. (2.10)

The particle trajectory will hence be diverted from its original direction and it will be

forced to gyrate in the plane perpendicular to ~B, such as illustrated in Fig. 2.4(a). Its

gyration, or Larmor radius, rL, is then given by:

rL =
mv⊥
|q|B

, (2.11)

where m is a mass and q is a charge of the particle, v⊥ is the particle velocity in the plane

perpendicular to ~B, and B is the intensity of the magnetic field.

Larmor radius of electrons is usually small compared with the curvature of the magnetic

field. Consequently, the electrons readily follow the magnetic field lines. In contrast, rL

ions

electrons

m, q

v
v

direction of propagation

rL

(a)                      (b)

Figure 2.4 Schematic representation of (a) the gyration of a charged particle in a homogeneous
magnetic field, and of (b) the ion acoustic wave, a compressional wave of ions and electrons,
propagating through the plasma. Modified from [65].
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of ions is much larger due to their substantially higher mass (mi � me). Therefore, only

electrons can be entrapped in the magnetic field while the ions can more or less freely move

across the magnetic field lines. Nevertheless, the motion of ions will be bounded to that of

the electrons through the ambipolar diffusion.

It is to be mentioned that plasma environment can support several types of waves, such as

electromagnetic and ion-acoustic waves. The ion-acoustic waves are a longitudinal propaga-

tion of a disturbance in the ion density, which is swiftly followed by the electron density [66],

such as schematically shown in Fig 2.4(b). A specific type of these waves, the ion-acoustic soli-

tary waves that propagate with a fixed velocity and with a preserved shape, can be observed

in the HiPIMS discharge during the plasma expansion outwards from the cathode [70, 13].

The observation of such waves is also reported, for instance, in Chapter 5.

2.1.5 Magnetron discharge

Magnetron discharge is a variation of the glow discharge which permits one to reach

higher plasma densities at lower pressures (e.g., smaller than 1 Pa, instead of units and tens

of Pa) and at lower cathode voltages (e.g., UC ≈ 300 V) than the densities achievable with

a conventional glow discharge configuration. This is of great significance for the sputtering

process efficiency in terms of the coating’s growth rate and quality.

The principal difference from the conventional glow discharge configuration consists of

the introduction of a set of magnets behind the cathode. The generated magnetic field,

that enters and leaves through the cathode plate, is designed to be mostly parallel to the

cathode surface and perpendicular to the electric field, such as illustrated in the example of

a flat circular magnetron in Fig. 2.5(a). Such a combination of the two fields restraints the

movement of the electrons (especially SE) to the vicinity of the target surface.

SE, ejected from the cathode by the impacting ions, gain energy due to the acceleration

caused by the voltage gradient within the plasma sheath. The Lorentz force acting on these

electrons will force them to gyrate in a cycloidal-like motion with a drift in a direction per-

pendicular to both electric and magnetic field lines. The resulting movement of the gyrating

electrons creates an azimuthal electron current (called Hall current) within the toroidal re-
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Figure 2.5 (a) Structure of a planar circular magnetron similar to the one used in the presented
work, showing the cathode (target), the anode and the set of magnets. Magnetic field lines are
illustrated by the white thin lines and the azimuthal drift current due to the confined electrons
by the thick arrow. The racetrack region will be created directly under this magnetized zone.
Reproduced from [71]. (b) Photograph of the emission from a discharge in pure N2 atmosphere
above a magnetron powered by HiPIMS PS at UC ≈ 800 V. The bright emissive toroidal region
above the cathode surface marks the region of the strongest electron confinement.

gion above the cathode surface, defined by crossed magnetic and electric fields. Trapped

electrons are sometimes referred to as magnetized since they are not able to leave the torus

without collisions or plasma instabilities that would modify their gyration trajectory [66].

In general, the electron residence time within the target proximity is substantially pro-

longed and the losses to the chamber walls (anode of the external circuit) are minimized.

Consequently, the number of ionization and excitation collisions that each electron may un-

dergo with the surrounding gas neutrals (not confined by any field) is increased and the

plasma density rises. As an illustration, a bright emission originating from the region with

the highest density of magnetized electrons and excited atoms is visible in Fig. 2.5(b). Here,

it should be noted that generated ions can pass freely through the magnetized region since

their gyration radius is too large, usually on the same scale as the plasma processing cham-

ber. They can be accelerated by a large potential fall towards the cathode and, consequently,

cause its erosion. The resulting ring-shaped erosion zone that develops with time on the

target surface is called racetrack.
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Fig. 2.6 shows the two principal types of the magnetron design: balanced and unbalanced.

In the former case, magnetic field lines form closed loops above the target surface, while in

the latter case some of the lines expand into the chamber due to the different strength of

the inner and outer magnetron magnets. The balanced magnetic field configuration does

not permit the plasma to expand far from the cathode surface due to the effective electron

confinement described above, and thus only a few ions can leave the dense plasma region. In

contrast, unbalancing the magnetic field of the magnetron increases the escape probability

of the electrons that may follow the open magnetic field lines, accompanied by the ions due

to the diffusion process described previously. Plasma hence spreads further from the target

(as visible on the example of the strongly unbalanced magnetron in Fig. 2.5(b)), and the

ion fluxes towards the substrates are significantly enhanced. This may be advantageous, for

instance, in the preparation of the dense coatings as discussed in section 2.2.4.

In some specific applications, the magnetron discharge is operated in the pulsed DC

mode, also known as pulsed magnetron sputtering (PMS) discharge. If the PMS repetition

frequency, f , is lower than several kHz, the discharge fully extinguishes in between the

individual pulses. At higher frequencies, some of the long living plasma particles survive

untill the following pulse onset. Therefore, the discharge is not quenched during the “off”

period but it pulses in between the high and low density states. Frequency, pulse width, and

also pulse polarity can then be used as variables for customizing the plasma parameters and

Figure 2.6 Schematic drawing of the cross-section of the balanced (a) and unbalanced (b)
types of magnetrons. Modified from [66].
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target conditions. For instance, the possibility to apply bipolar pulses is beneficial in the

reactive sputtering where a non-conductive compound may be formed on the target surface;

Positive bias attracts the plasma electrons to neutralize any charge build-up produced during

the negative portion of the cycle. In this way, the arc formation probability is significantly

reduced or eliminated [7, 72]. This type of discharge, operated usually in the frequency

range 10 kHz < f < 200 kHz (called mid-frequency (MF) range), is hence very popular in the

coating industry.

Another common type of magnetron discharge employs alternating current (AC) RF

power instead of DC. The usual pulsing frequency is f = 13.56 MHz. At this frequency,

the ions cannot follow the potential fluctuations near the target/chamber walls due to their

high mass, and flow out of the plasma with approximately constant flux. In contrast, the

electrons can reflect these fluctuations, while maintaining the Maxwellian distribution [65].

Furthermore, the electrons can gain energy from the expanding and receding plasma sheath,

which significantly increases the high-energy tail of the EEDF [66]. The ionization prob-

ability is thus enhanced (and subsequently the plasma density), and the discharge can be

operated at lower working pressures than DCMS or PMS. This may be advantageous if the

incorporation of impurities (inherent to any background atmosphere) in the deposited film is

to be minimized.

Due to the large difference in the electron and ion mobilities, the average self-established

target potential will be negative during the majority of the RF cycle, and positive during a

short extent of time [66]. The latter period will prevent any charge built-up on the target

surface, such as in the bipolar DC pulsing. Therefore, the RF discharge can be used for

sputtering of the insulating targets. Moreover, due to the significantly higher f than that

used in MF discharges, the RF technique can effectively couple sufficient power for sputtering

to even thick insulating targets (e.g., 0.1-1 cm) [72]. This is also why RF magnetron sputtering

(RFMS) is commonly applied in the preparation of oxide films, mainly in the semiconductor

industry. A drawback of this technique is the need for the specialized RF generator and

impedance matching network, which are more costly than DC PS, and more difficult to scale

up. In addition, the obtained deposition rates are usually substantially lower than those of

DCMS and PMS.
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2.2 Sputtering and thin film deposition

2.2.1 Fundamentals of sputtering

Sputtering is the target material vaporization by momentum transfer from bombarding

atomic-sized particles. In principal, it is a statistical process which occurs as a result of a

collisional cascade initiated at the target surface by incident energetic projectile particles. In

magnetron sputtering, these particles are usually gas ions that are accelerated by the strong

electric field of the plasma sheath adjacent to the cathode.

The incident ion first impacts the surface or near-surface atoms of the solid and conveys

some of its energy to the surrounding atoms. If this energy is high enough to break the

atomic bonds and to dislodge some of the impacted atoms, one or more of these atoms may be

removed from the solid. Sputtering mechanisms can be divided into three principal categories,

depending on the kinetic energy of the impinging ion. These are (Fig. 2.7): (a) single knock-

on events where the impacting ion removes one of the target atoms from its lattice position,

which itself may then transfer its energy to the other atoms by another knock-on event, (b)

linear collisional cascades, which involve numerous subsequent knock-on events, and finally

(c) spikes, in which the bombarding particle sets in motion simultaneously many neighboring

Figure 2.7 Schematics of the three principal regimes of sputtering: (a) single knock-on (low
energy), (b) linear collisional cascade and (c) spike (high energy). The impacting working
gas ions are marked by open circles with an inscribed plus sign and target atoms by empty
open circles. Particle trajectories are highlighted. Modified from [3].
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atoms alongside its trajectory in the impacted area due to locally increased temperature.

In principle, the higher is the impacting ion energy, the higher is the amount of the dislocated

and sputtered atoms (for energies up to approx. 104 eV).

The energy distribution of the sputtered atoms, F (ε), originating in the collision cascade

initiated by the heavy ion impacting the target under normal incidence can be approximated

by Thompson formula, that can be simplified as: [73]

F (ε) ≈ Eb

(ε+ Eb)3
, (2.12)

where ε is the sputtered atom energy, and Eb is the binding energy of the target atoms.

The sputtering efficiency is determined by the sputtering yield, Y , which is defined as

the ratio of the number of emitted target atoms per incident particle. Y depends on the

elemental composition of target – particularly on its mass, density, and lattice and surface

binding energy – and on the mass, energy and angle of incidence of the bombarding projectile.

In contrast to the emission of SE, which depends mainly on the potential energy of the

impacting particle, both ions and neutrals can be used for sputtering even at low impacting

ion energies (lower than 1000 eV).

Y is usually higher when the mass of bombarding particles is of the same order of mag-

nitude or larger than that of target atoms. Hence, a selection of suitable working gas for the

plasma discharge is essential. Typically, argon (Ar) is commonly used for sputtering because

of its inertness, relatively high mass (40 amu) and low cost. Mixtures of argon with reactive

gases are commonly used for the preparation of compound materials.

The value of Y for the common metallic target materials bombarded by Ar, and for the

range of the accelerating UC used in sputter-deposition, is typically near unity and varies

within one order of magnitude. This can be illustrated by plotting Y as a function of the

impacting ion energy for several elements bombarded by Ar ions (Fig. 2.8). In contrast, Y

reaches significantly lower values if the target surface is composed of non-metallic compounds,

such as oxides or nitrides, which can be formed during the sputtering in reactive gas mixture.

It should be noted that Fig. 2.8 does not show the energetic threshold of the sputtered

material, given by its surface binding energy, which usually ranges in between 10 eV and

30 eV for metals [74].
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Figure 2.8 Sputtering yield for several target materials as a function of the energy of the
bombarding Ar+ ions, calculated using software TRIM [34]. Courtesy of J. Čapek.

Sputtering process is accompanied by numerous other phenomena, such as surface to-

pography alteration and target heating [7]. Specifically, the latter effect can represent a

serious issue which may cause target overheating and melting. Therefore, the sputtered

target needs to be effectively cooled. Target cooling also minimizes the amount of radiant

heat in a sputtering system which may be important if the treated/coated substrates are

temperature-sensitive.

2.2.2 Reactive sputtering and hysteresis

DCMS and PMS techniques are commonly used to deposit thin films of compound materi-

als by two principal ways: by sputtering either from a compound target or from an elemental

target in the reactive gas mixture. While the former approach is mainly limited to conducting

compounds, practically any material can be synthesized when sputtering the elemental target

in a partial pressure of reactive gas. Therefore, diverse compounds based on oxides, nitrides,

oxynitrides, carbides or sulphides are commonly prepared in reactive sputtering employing

mixtures of Ar with N2, O2, C2H2, H2S or their mutual mixtures.

The principal advantage of the use of reactive gases is their high chemical activity which

is further enhanced in various inelastic collisions within plasma discharge (section 2.1.2).
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Majority of the reactions occur on the exposed surfaces, where the reactive gas binds with

the sputtered material and forms a compound. These reactions are vital for the formation

of the desired coatings. On the other hand, the compounds are also formed on the cathode

surface, which may be facilitated by the higher temperature of the latter due to massive ion

bombardment. If the compound layer formation rate exceeds the sputtering rate, the target

is referred to as poisoned. This phenomenon, commonly encountered in the reactive DCMS,

is the origin of several issues.

Firstly, Y of the formed compound drops by about an order of magnitude compared to Y of

the metallic target surface, which substantially reduces the film deposition rate, r. This effect

can be illustrated by the abrupt drop in r of Nb films prepared by reactive DCMS discharge

operated above a Nb target in the O2/Ar mixture presented in Chapter 8. Secondly, the

compound layer formed on the target surface may result in positive charge accumulation due

to impacting ions, since most of the formed compounds are dielectric. Charge accumulation

may give rise to arcing and the subsequent formation of droplets. These can deteriorate the

coating in preparation. It should be highlighted that the compound may also be formed on

the sides or in the center of the cathode at lower reactive gas flows than necessary for its

complete poisoning, since these areas experience lower ion bombardment than the racetrack

area. Hence, charge build-up and the subsequent arcing may be encountered at lower reactive

gas concentrations than is the threshold necessary for target poisoning.

Fig. 2.9 illustrates an example of the evolution of UC and p with the varying oxygen

flow, Φ(O2), during a reactive DCMS discharge operated above an Al target in the O2/Ar

mixture. At Φ(O2)< 2.3 sccm, both p and UC are approximately stable, even though Φ(O2)

rises. The reactive gas is being absorbed (gettered) on the substrate surface and on the

chamber walls where it reacts with sputtered Al and forms under-stoichiometric AlOx oxide.

These suboxides are also formed on the target surface but are effectively removed by the

bombarding Ar ions.

If Φ(O2) is further increased and stoichiometric Al2O3 is formed, no more of the reactive

gas can be absorbed on the substrate and on the chamber walls. Subsequently, the compound

formation rate on the target rises and Y decreases. As a result, the partial pressure of the

unused reactive vapors in the chamber (and hence the total pressure p) increases since the
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Increase    of flow
Decrease of flow 

Figure 2.9 Hysteresis curves for the reactive sputtering discharge above Al cathode in O2/Ar
mixture. The argon pressure and the discharge current were kept constant at 0.3 Pa and at
0.3 A, respectively. Transition region between the metallic and poisoned target is highlighted.
Reproduced from [7].

supply of Al, that otherwise serves as getter of the oxygen, is reduced. This further intensifies

Al2O3 formation rate on the cathode until its full coverage. The transition in the target

composition from the metallic to the poisoned regime is also reflected by an abrupt drop in

the UC, due to the rise in γSE as discussed in section 2.1.3. Further rise in Φ(O2) is followed

by a linear growth of p while UC stays constant.

Conversion of the target back from the poisoned to the metallic state occurs at a lower

value of Φ(O2), as a consequence of the lower Y for the formed oxide layer. Thus, both curves

for UC and p follow different pathways with the increasing and decreasing Φ(O2) (Fig. 2.9).

This phenomenon is known as hysteresis and presents a real challenge for the deposition of

compound coatings by DCMS. In order to prepare a stoichiometric film at a viable deposition

rate, one has to operate the discharge at a certain critical value of the reactive gas flow that

is at the edge of the transition towards the poisoned target state. However, stabilization of
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this critical flow is not an easy task since any process instability or perturbation result in an

irreversible fall to the poisoned mode.

The outcome of the reactive process can be predicted using the so-called Berg’s model [76].

This model successfully describes the basic hysteresis behavior in sputtering discharges, even

though it is based on a simplified approximation of reactive processes on the cathode surface;

It assumes formation of a single chemisorbed compound monolayer on the target. More

recently, it has been reported that other processes, such as reactive ion implantation and

knock-on events of previously chemisorbed atoms into the target, can play an essential role

in the target poisoning since they increase its oxidation rate [77, 78, 79, 80]. For instance,

Amassian et al. have investigated ion-surface interactions at the RF-powered electrode during

O2 surface treatment in a PECVD environment [79] and during reactive sputtering [80] by in

situ real-time spectroscopic ellipsometry monitoring of the target surface, complemented by

Monte Carlo simulations. The authors have identified oxygen subplantation as responsible

mechanism for damage layer formation and target oxidation. Consequently, it has been

argued that subsurface oxidation should be taken into account even in analytical modelling of

the reactive sputtering process, in agreement with the latest findings summarized in Ref. [7].

2.2.3 Reactive sputtering control

A common way of stabilizing the deposition conditions in the transition zone of the hys-

teresis is to implement a feedback control of the reactive gas flow, based on the monitoring of

the cathode voltage, reactive gas partial pressure, or optical emission from the discharge [81].

There are also several means to reduce or even eliminate hysteresis; One approach is to sig-

nificantly increase the pumping speed, which decreases the amount of the unused reactive

gas in the chamber [82]. Other approach is to substantially decrease the size of the cathode

surface [83]. However, both of these solutions are rarely employed in industrial-sized coaters

since the price of the necessary equipment may be extremely costly.

Another approach is to use bipolar MF pulsing (PMS) in which the target is alternatively

sputtered and neutralized, as previously discussed in section 2.1.5. The pulse frequency needs

to be adjusted according to the sputtered compound composition, and more specifically, ac-

cording to its breakdown voltage threshold; The lower the threshold, the higher the frequency
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must be in order to prevent the positive charge accumulation that could result in arcing [72].

Furthermore, the pulse duty cycle should be lower than 65% if a long duration arc-free process

is to be reached, as reported in Ref. [84].

In some applications, such as architectural and automotive glass production, the AC

MF sputtering is performed in a dual cathode configuration; Here, one of the magnetrons

serves as a cathode and the second one as an anode for a half of the cycle. Afterwards,

their polarity is reversed. In this way, one of the targets is always sputter-eroded from the

compounds while the other one is neutralized. This significantly reduces the probability of

arcing and stabilizes the transition into the fully contaminated cathodes [81]. In addition,

the “disappearing anode” effect is effectively suppressed, since there is always at least one

clean anode surface, even though the chamber walls are being coated with an insulating film.

Hysteresis-free and arc-free reactive process can be reached by replacing DC by RF power,

since even thick insulating compounds (including bulk compound targets) may be sputtered

by RFMS. Reactive RFMS is thus widely employed, for instance, in the semiconductor

industry. However, the principal drawback of reactive RFMS is the low deposition rate-to-

consumed power ratio in comparison to feedback-controlled DCMS or PMS. Consequently,

RFMS is not suitable for coating applications where the resulting film thickness and the re-

spective power consumption are both crucial parameters (e.g., protective coating fabrication).

Most interestingly, the hysteresis-free sputtering may also be achieved in HiPIMS, using low

repetition frequency and low duty cycle unipolar pulses of high voltage (e.g, UC > 600 V), as

demonstrated in the example of reactive NbOx deposition in Chapter 8.

2.2.4 Energy requirements in thin film growth

The microstructure and morphology of sputter-deposited films are determined by the ele-

mentary processes of surface diffusion of condensing atoms (adatoms) and by the subsequent

film formation phenomena, such as nucleation and crystal growth. These atomistic processes

are directly affected by the energy and time available to the adatoms to move around on

the substrate before they bond to the surrounding atoms. If the supplied energy and/or the

time of diffusion are insufficient, adatoms cannot find the binding positions with the lowest

possible energy on the underlying crystalline lattice. The resultant films frequently possess
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porous columnar microstructure and tensile stress [85].

The most straightforward way how to increase the energy flux towards the forming film

is to heat the substrates during the deposition process. In addition to the enhanced surface

diffusion, the volume diffusion and the consequent recrystallization of the formed film mi-

crostructure may contribute to the desired film densification. However, film preparation at

elevated substrate temperatures is often undesirable. Therefore, deposition processes are usu-

ally performed at much lower temperatures than the melting point of the prepared material.

Another way to enhance the mobility of the film-forming adatoms is to convey the re-

quired energy locally, on an atomic scale. Some energy can be delivered directly by the

condensing species; In the sputtering deposition, the kinetic energy of vaporized target par-

ticles is typically between 2 and 7 eV [3]. However, the energy of sputtered atoms travelling

in between the target and the substrates may be substantially lowered due to collisions with

surrounding gas species, specifically at higher working gas pressures. Such a process is callled

thermalization. In order to avoid the thermalization and also the unwanted losses of sputtered

particles due to the scattering towards the chamber walls, the common deposition discharge

is operated at relatively low pressures, in the range of 0.1 < p < 1 Pa. Nevertheless, the

energy left to the condensing atoms is usually not sufficient for the desired film densification

and an additional source of energy is necessary [10, 85]. This can be arranged by assisting

bombardment of the growing film by the energetic working gas ions (e.g., Ar+). Another way

is to ionize a fraction of the condensing target atoms, whose energy (and direction) can be

tuned by the substrate bias, such as previously outlined in section 1.4 (Chapter 1).

The effect of ion bombardment can be characterized by two principal parameters; The

first one is the arriving ion’s kinetic energy, Ekin, which is an additive of the ion energy

leaving the plasma, E0, and its acceleration within the plasma sheath given by:

Ekin = E0 +Qe|Up − UC|, (2.13)

where Q is the ion charge state. The second parameter is the“ion-to-neutral” ratio, Φi

Φn
, where

Φi stands for the ion flux bombarding the growing film, and Φn stands for the condensing

film atoms (comprising also the neutralized condensing film ions).

Another parameter of interest is the energy per deposited particle, EP, that can be ap-
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Figure 2.10 Plot of critical ion/condensing particle arrival rate ratio Φi

Φn
over critical ion energy

Ei, required for film structural modification (particularly densification) of: (A) SiN1.3:H, (B)
SiO2:H, (C) a-C:H, (D) and (E) TiO2 obtained from dual MW/RF plasma. Other data points
stand for different materials obtained by various PVD techniques: in circles SiO2, in triangles
other dielectrics, in squares metals, in diamonds semiconductors. Several values of EP are
highlighted by dashed lines. Reprinted from [86].

proximated in the simplest case of non-reactive deposition process as a multiplication of the

two above-defined variables:

EP ≈ Ekin ·
Φi

Φn

. (2.14)

Fig. 2.10 shows the plot of the experimentally obtained critical Φi

Φn
vs. critical Ekin values

that are required for film structural modification for several IPVD and PECVD deposition

techniques. It should be noted that energetic conditions leading to dense films exhibiting

low internal stress and good environmental stability were usually reached for EP within the

range 1 < EP < 100 eV [86, 87]. This illustrates that a single parameter can be used for

characterization of the energetic requirements for the film structural modification due to ion

bombardment. Nevertheless, it has been demonstrated that EP is not an universal parameter

for describing effects of ion irradiation on the film microstructure. Instead, varying Ei and

Φi

Φn
lead to diverse microstructures [10, 11, 88]. It has been shown that it is desirable to keep

the ion energy at low (10− 50 eV) or intermediate levels (≤ 100 eV) while keeping high ion

fluxes, if dense good-quality films are to be fabricated [1, 10]. In this way, the atomic mixing
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at the growing surface and the consequent working gas entrapment (resulting in an increased

lattice strain) are minimized.

Unfortunately, the ion energy and ion fluxes cannot be decoupled in the majority of depo-

sition techniques, as is the case for MS. In order to permit an independent variation in Ei and

Φi

Φn
, numerous approaches have been developed; Among many others, pulsing the discharge

(PMS or pulsed PECVD), substrate biasing (DC, pulsed DC, AC RF), and application of

assisting ion beams (DIBS) are commonly used solutions [1, 7, 17]. It is also believed, that

HiPIMS technique – only recently introduced to the coating industry – has a potential to

produce high ion fluxes with low mean ion energy, as will be discussed in section 2.3.2.

2.2.5 The film microstructure and structure zone model

The self-organized structural evolution of polycrystalline films, deposited by PVD tech-

niques at various growth conditions, have been systematically characterized during the last

five decades. The obtained model types of film microstructure were correlated to the individ-

ual deposition parameters and categorized in the so-called structure zone model (SZM) [89,

90, 91, 92, 93, 94, 95]. SZM can be considered as a “roadmap” which is conceived to facilitate

prediction of the structure and morphology of fabricated films, knowing solely the parameters

of the deposition.

A first version of SZM for evaporated films was introduced in 1969 by Movchan and

Demchishin [89]. It featured three types of possible microstructure, depending on the one

single parameter, a homologous temperature, Th, which represented the ratio of the substrate

temperature, Ts, over the melting point of the deposited material, Tm:

Th =
Ts

Tm

. (2.15)

The SZM model has been further expanded to better describe the film microstructure of

sputter-deposited films by Thornton [90], Messier et al. [91], and Kelly and Arnell [93]. In the

work of Thornton, the film microstructure was depicted as a function of Th and working gas

pressure, p, which represented the amplitude of the condensing particles’ energy (the higher

is p, the higher is the thermalization of the gas species). Instead, Messier et al. introduced
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Figure 2.11 Representation of the structure zone model (SZM) showing a cross-sectional
view of the types of the possible polycrystalline film microstructure. Borders between the
individual zones, as well as all numerical values, are only illustrative. E∗ and T ∗ scales are
logarithmic. Reproduced from [95].

the bias potential, Ub, as a second parameter to Th, which can quantify the energy of the

bombarding particles. Furthermore, Kelly and Arnell [93] included the influence of ion fluxes

by adding the Φi

Φn
parameter to the SZM specifically suggested for unbalanced MS. The

impact of the co-deposited impurities or additive species on the resulting film microstructure

was demonstrated and interpreted in the contribution of Barna and Adamik [92].

Fig. 2.11 represents the latest modification to SZM, recently introduced by A. Anders, that

is suitable for energetic plasma-based deposition processes, such as are different variations

of IPVD and PECVD techniques, including HiPIMS [95]. Here, the microstructure of the film

is depicted in a three-dimensional space. The horizontal axes represent two thermodynamical

variables: the normalized energy flux delivered by the bombarding particles, E∗, and the

generalized substrate temperature, T ∗. The third vertical axis gives an approximative idea

of the resulting thickness of the prepared film.
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E∗ can be expressed by the arriving particles’ kinetic energy defined in Eq. 2.13, normal-

ized by the deposited material’s cohesive energy, EC, and multiplied with the ratio of mass

of the arriving particles, mα, to mass of the surface atoms, ms:

E∗ =
∑
α

Ekin,α

EC

mα

ms

Jα

/∑
α

Jα. (2.16)

Here, Jα is the flux of particles α (e.g., film neutrals, film ions, assisting working gas ions).

T ∗ stands for all the thermal effects, which comprise Th introduced earlier, and a thermal

contribution from the ion’s potential energy, Epot, that was transferred to the surrounding

atoms upon its impact:

T ∗ = Th +
1

k

∑
α

Epot,α

Ndis

Jα

/∑
α

Jα, (2.17)

where Ndis is the number of the displaced atoms to which the heat was released due to ion

neutralization, and Epot is defined as:

Epot = Eb + (Ei − φ). (2.18)

Overlooking Fig. 2.11, one can recognize several zones which differ in the type of the

film microstructure and surface texture. The following paragraphs offer a brief description

of the individual film microstructures respective to each zone, classified according to the film

growth kinetics

Zone 1 Statistical roughening and self-shadowing effects are observed due to the very limited

adatom mobility [94]. The resulting film is composed of fine crystallites or textured

fibers of a small diameter, and has a high density of defects and imperfections. Films

possessing this type of microstructure are usually in tensile stress due to the relaxation

of the open grain boundaries [96].

Zone T Adatoms are able to diffuse on underlying crystallites (grains) they impinged to.

The film microstructure is typically formed by V-shaped columns that can overgrow

each other only by shadowing effects [94]. Intercolumnar porosity may still be observed.
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Zone 2 Condensing atoms can diffuse on the underlying surface. Film structure thus devel-

ops by competitive growth of differently oriented neighboring crystals [94]. The film

microstructure is dense and composed of columnar grains which can span throughout

the whole film thickness. The surface may be faceted.

Zone 3 If the energy supply is sufficiently high, the bulk atoms can participate in diffusion

processes within the film volume. Hence, the grain boundaries become mobile, resulting

in gradual coalescence and grain coarsening [94]. Final grains can thus be homogeneous

and the surface flat. The size of the grains increases with temperature [92].

Ion etching zone With the rising value of E∗, the net thickness of the deposited film de-

creases. This is due to the increasing sputtering yield of the bombarding ions. Finally,

for a certain material-dependent energy threshold situated in between 400 and 1400 eV,

the ion sputtering rate equals the film formation rate [95]. For even higher energies,

the substrates are not coated but etched.

It should be noted that the substrate etching by energetic ions is commonly used as the

pre-treatment procedure in order to sputter-clean the surface oxides and other impurities

prior to film deposition. In this way, one can achieve exceptionally smooth substrate-film

interface, such as previously illustrated in Fig. 1.3(b) (Chapter 1).
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2.3 HiPIMS

2.3.1 Principal parameters

HiPIMS discharge is a type of high-current glow discharge above a magnetron cathode

characterized by a high voltage value, typically above 500 V. The consequent power densities

can exceed by up to two orders of magnitude those used in DCMS [97, 98]. Most of the power

is dissipated in the form of heat, which can cause extensive target heating and/or melting

of the magnets within the magnetron. Thus, high power has to be applied in pulses with

low repetition frequency, f (usually 50-1000 Hz), and a low duty cycle, D (0.5-5%), in order

to enable efficient cathode cooling during the off-time. Since the thermal load of the target

is limited by the average power rather than the peak power, the latter can reach very high

values (up to several megawatt). Schematic representation of the power delivery in HiPIMS

and in MPPMS, in comparison to DCMS, is illustrated in Fig. 1.2 (Chapter 1).

A typical HiPIMS pulse has a square shape and is 50-400µs long [Fig. 2.12(a)]. In

contrast, an MPPMS pulse is much longer (400-3000µs) and can have a adjustable shape

[Fig. 2.12(b)]. Usually, it consists of two or more segments characterized by different voltage

and current levels, which are generally lower than in the HiPIMS pulse. Further discussion

on the pulse management in both HiPIMS and MPPMS will follow in section 3.1. Common

ranges of discharge parameters in HiPIMS, MPPMS and DCMS, together with the reported

plasma density values and maximum sputtered-material ionization, are shown in Table 2.1.

(a)                                         (b)

Figure 2.12 Discharge current and voltage waveforms of the HiPIMS and MPPMS pulses
operated at f = 50 Hz above a Nb target in Ar at 1 Pa. Reprinted from Paper V (Chapter 8).
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Table 2.1 Ranges of the typical discharge parameters and selected plasma characteristics
during the HiPIMS and MPPMS pulses, and during DCMS. The examples of the maximum
reported percentage of the ionized species in the sputtered flux (denoted as ionization ratio)
is also listed.

Cathode Peak Peak Plasma Ionization
voltage current density power density electron density ratio

HiPIMS 500 - 2000 V 1 - 10 A·cm−2 0.5 - 6 kW·cm−2 1012-1013 cm−3 over 90%
MPPMS 300 - 800 V 0.1 - 1 A·cm−2 100 - 500 W·cm−2 1011-1012 cm−3 N/A
DCMS 300 - 500 V 10 - 100 mA·cm−2 10-100 W·cm−2 10 9 -1011 cm−3 up to 3%

2.3.2 Plasma characteristics

In this section, several selected plasma characteristics of the HiPIMS discharges operated

above a metallic target will be summarized. Since there is yet a limited amount of work

done on the characterization of the custom-shaped MPPMS pulses, the examples presented

below are related solely to the simpler square-shaped HiPIMS pulses. An investigation of

the effects of the different power management in HiPIMS and MPPMS on the resulting dis-

charge behavior can be found in Chapter 7 (non-reactive conditions) and Chapter 8 (reactive

conditions).

In the HiPIMS discharge, the high power applied to the cathode during each pulse gen-

erates dense plasma expanding from the magnetron’s racetrack, as illustrated by the time-

and space-resolved plasma density monitoring in Ref. [23]. The maximum plasma density can

reach up to ne
∼= 1012−1013 cm−3 [22, 23, 24, 25, 26, 27], which is up to 3 orders of magnitude

higher than in the usual DCMS. The examples of the time evolution of the EEDF and of the

respective Te acquired by Langmuir probe analysis for HiPIMS discharges above a Cr target,

are plotted in Fig. 2.13 (a) and (b), respectively. Te peaks at similar values as in a conven-

tional DC magnetron discharge (up to few eV, according to the pressure, applied power and

target material) and it then decreases to much lower values (Te ≈ 1.0 eV). Such a drop can be

explained by the significant cooling of the electrons in the impact excitation and ionization

processes with the sputtered metal atoms that have significantly lower energy thresholds than

Ar. Therefore, the measured EEDF at the end of the pulse has typically a Maxwellian-like

form, exhibiting lower peak energy than commonly observed in DCMS discharges, and a

depleted high energy tail due to the inelastic collisions with sputtered metal [25, 24, 27].
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(a)             (b)

Figure 2.13 Evolution of the EEDF (a) and of the Te (b) as a function of time measured by
the Langmuir probe positioned at d = 10 cm from the Cr [and Ti (b)] target in a HiPIMS
discharge operated in Ar at 0.28 Pa with f = 100 Hz. UC = −750 V was applied to the target
during the first 70 µs. Modified from [25].

High plasma densities encountered in HiPIMS increase significantly the ionization prob-

ability of the sputtered material from the target when compared to conventional DCMS;

Firstly, the ionization mean free path decreases substantially down to several cm, which is

the scale of the high density plasma region above the target [99]. Secondly, a high quantity

of sputtered metal neutrals can accumulate during the pulse in front of the cathode [100],

as will be discussed in the following section. This results in their higher thermalization and,

consequently, in higher residence time within the most dense plasma region. Indeed, high

ionization fraction of the sputtered material reaching up to 30% for Cr [28], 60% for Cu [29]

and above 90% for Ti, has been reported [30, 31], as well as significant presence of multiply

charged metal ions [34, 32, 33]. Under special conditions, double ionized atoms can even

become predominant in the total ion flux on the substrates [33]. High sputtered material ion-

ization was also predicted by modelling [101, 102, 103, 104]. Gudmundsson [101] has shown

that the energetic electron impact ionization is the principal mechanism of the metal ion

generation during the energetic HiPIMS pulses, while the charge exchange is the dominant

process in the post-discharge.

An example of IEDF obtained using plasma sampling mass spectrometry for both working

gas and sputtered metal for a HiPIMS discharge above a Cr target is illustrated in Fig. 2.14(a).
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(a)                          (b)

Figure 2.14 (a) IEDFs of ionized Ar and Cr species recorded by mass spectrometry during the
100 µs long HiPIMS pulses (UC = 1500 V) operated at f = 50 Hz in Ar at 0.13 Pa. The probe
was positioned at d = 5.5 cm and at 10 cm from the magnetron’s center axis. Reproduced
from [105]. (b) Metal-to-gas ion ratio estimated by mass spectrometry at d = 17 cm for
several elements sputtered by 70 µs long HiPIMS pulses at f = 50 Hz and at the same peak
current density (JC = 1 A cm−2). The disparity in the ratio value for Cr and Cu at 3 Pa is
a consequence of the large variation in power during the respective discharges. Reproduced
from [34].

IEDFs for Cr+ and Cr2+ exhibit a low energy peak that is due to completely thermalized

ions, and a significant high energy tail that originates from the Thompson kinetic energy

distribution of the sputtered Cr atoms [106, 107, 108]. At certain conditions, more than 50%

of ions can have energies higher than 20 eV and the respective IEDF may expand up to 100 eV,

as shown by Bohlmark et al. for an HiPIMS discharge above a Ti target [106]. It has been

also observed that the high energy tail of IEDF grows with the rising cathode current [106,

107, 109, 33], while it decreases with higher pressure and with increasing distance from the

target as a result of the metal thermalization in collisions with the working gas [110, 111, 112].

Time-resolved measurements revealed that the high energy tail of metal ion IEDF de-

creases in both amplitude and extent with the elapsed time from the pulse onset while, at

the same time, the intensity of the low energy peak rises [110, 113]. Simultaneously, the tail

of the Ar ion IEDF increases, which gives the origin to the important high energy tail of the

averaged IEDF for both Ar+ and Ar2+ depicted in Fig. 2.14(a). These observations indicate

the collisional energy transfer from the energetic metal ions.
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It should be stressed that the mean metal ion energies (e.g., 0.3 − 5 eV for sputtered

Cr ions [107, 110, 112]) reach relatively low values, if compared to those reported with

CA, which is another deposition technique capable to generate highly ionized metal plasma

(see section 1.4 in Chapter 1). In addition, the metal ions can significantly outnumber the

working gas ions, specifically for the high-yield elements, such as shown in Fig 2.14(b). The

combination of the low ion energy and of the substantial metal ion fluxes is highly beneficial

for the growth of dense films without the unwanted defect generation [10, 17, 86]. This

makes HiPIMS a very attractive technique for the fabrication of the functional coatings.

Moreover, high metal ion content within the condensing material flux facilitates the coating

of the complex-shaped substrates, such as demonstrated in Refs. [13, 15]. A parametric

steady-state model for target material fluxes in HiPIMS discharge, originally introduced by

D.J. Christie [114], has recently been extended by Vlček and Burcalová [104].

2.3.3 Gas rarefaction and self-sputtering

In the following paragraphs, two distinct dynamic phenomena commonly observed in

HiPIMS discharges will be introduced. Fig. 2.14(b) shows that the metal-to-gas ion ratio

grows with the sputtering yield (Y ) of the metal. This is the fingerprint of the working gas

rarefaction (gas replacement by sputtered species) originating in the momentum transfer from

the energetic sputtered atoms accompanied by the collisional gas heating. The latter of the

two effects was recently documented by Vitelaru et al. [115] who reported that the working

gas temperature can rise 4 times (from 300 to 1200 K) during the HiPIMS pulse. The ampli-

tude of the gas rarefaction is a function of the instantaneous amount of sputtered material

(determined by Y ) and of its mass, such as discussed in the model presented by S.M. Ross-

nagel [116], and as illustrated for several HiPIMS-sputtered elements in Appendix A.

The gas rarefaction by sputtered metal increases progressively during the individual

HiPIMS pulses, while the reverse process (gas refill) takes place in between them. This

was demonstrated by the modelling of the volume density of the sputtered and background

neutrals by S. Kadlec [100] (Fig. 2.15), and by the experimental analysis of the plasma den-

sity distribution by Horwat and Anders [117]. In fact, the current “hump” that is usually

observed during HiPIMS pulses operated at low power levels – such as that observed for
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Figure 2.15 Simulated time evolution of Ar gas density during the 200 µs long HiPIMS pulse
above a half of the Ti cathode (positioned on the left). The scale on the right is in 1013 cm−3.
The average density of Ar prior to the pulse initiation was 4.83 · 1013 cm−3 (equivalent of
p = 0.2 Pa). Modified from [100].

HiPIMS pulses at UC < 535 V in Fig. 2.16(a) is in fact a sign of the reduction in the gas

density since the gas ion production also drops .

An important consequence of significant metal-gas collisions is the feedback that the

thermalized sputtered atoms can provide: they themselves can become part of the background

gas that subsequently slows down sputtered atoms. Hence, accumulation of the sputtered

material in front of the target results also in its higher residence time within the region

of the highest plasma density. This increases the probability of its ionization, which is

basically the main objective of the high power pulsing. A part of the ionized fraction of the

sputtered species may then be attracted back to the cathode (“recycled”) and participate in

the sputtering process, which is then referred to as self-sputtering.

In certain conditions, even self-sustained gasless sputtering can be achieved, such as earlier

demonstrated for DCMS [118] and recently also for sufficiently long HiPIMS pulses [119]. The

condition for sustained self-sputtering was defined by Hosokawa et al. as [118]:

αβYS ≥ 1, (2.19)



50

where α is the probability that the sputtered metal atoms become ionized, β is the probabil-

ity that the ionized atoms return to the target, and YS is the material self-sputtering yield.

As α < 1 and β < 1, the condition YS > 1 is necessary, but not sufficient, for sustained self-

sputtering. In particular, the secondary electron emission yield (γSE) is of crucial importance

for keeping the plasma density and hence the vaporized material ionization high [120, 121, 104].

The transition from the gas-dominated sputtering towards the self-sputtering is usually

accompanied by a significant rise in current (and power) density, such as illustrated by the

current waveforms for HiPIMS discharges operated with UC > 530 V in Fig. 2.16(a). Such

current “runaway” into a high power discharge can be observed for materials exhibiting YS

values closely above or under unity, such as Ta, Cr, Al, Ti or Nb, and even for materials

for which YS is substantially below unity, such as Si and C. This indicates that both target

and gas ions may contribute to the target sputtering during the high density discharge,

as discussed in Appendix A. The respective generalized runaway criterion is offered in the

recently submitted paper by A. Anders et al. [122].

Fig. 2.16(b) illustrates that the discharge operation well above the runaway threshold

into a high density discharge (UC > 530 V) results in an important rise in the ion current

collected at the substrates. This observation indicates excessive ion production which may

(a)                (b)

Figure 2.16 Discharge current on the cathode (a) and the ion current at the substrate at
d = 20 cm (b) as a function of UC during 400 µs long HiPIMS pulses operated at p = 1.8 Pa.
Reproduced from [120].
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break the “recycling trap” of self-sputtering. Subsequently, a large quantity of the generated

ions may escape from the target’s pre-sheath region, such as demonstrated experimentally

by Andersson and Anders [123] and confirmed by modelling by Vlček and Burcalová [104].

More details about the discharge dynamics related to the transition from the gas-dominated

towards the metal-dominated discharge can be found in Chapter 5.

2.3.4 Deposition rate

Deposition rate of the prepared films is of great concern in the coating fabrication, along-

side with their microstructure and their properties, since it affects the economics of the

production. One of the issues commonly encountered in the non-reactive HiPIMS process is

its lower deposition rate in comparison to DCMS, as illustrated for several target materials

in Fig. 2.17. The observed deposition rate reduction originates from various physical reasons.

The most important ones are: (i) less-than-linear dependence of the sputtering yield on the

energy of bombarding ions [124, 125], (ii) loss of the sputtered material via ionization and

subsequent back-attraction towards the target [104, 125], and (iii) modified target-substrate

transport geometry [104, 126]. The following paragraphs summarize the main reasons:

Effect (i): The deposition rate at the substrate is proportional to the sputtering yield

at the target. The latter quantity has a less-than-linear dependence on the impacting ion

energy, such as previously depicted on the plot of Y in Fig. 2.8. This non-linear rise of Y (and

equally of YS) with UC is an inevitable cause of the deposition rate reduction [124, 125]; Since

HiPIMS employs substantially higher values of UC than DCMS, the consequent deposition

rate reduction is also necessarily higher, even if both discharges are operated at the same

power load.

Effect (ii): A direct consequence of the self-sputtering phenomenon introduced in the

previous section is the loss of the ionized target atoms back to the target. A fraction of

sputtered material thus cannot participate in the film formation, but is recycled instead.

This recycling (determined by coefficient β from Eq. 2.19) is most significant at UC values

close above the self-sputtering runaway threshold [104, 123]. Target material recycling and

the subsequent self-sputtering also result in moderately diminished overall sputtering yield

(due to both working gas and target ions), since YS < Y [74].
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Figure 2.17 Deposition rate for several elemental target materials prepared by DCMS and
HiPIMS operated at the same conditions (P = 125 W, p = 0.67 Pa, d = 6.5 cm). The ratio of
HiPIMS and DCMS deposition rate is plotted as scattered points. Reproduced from [103].

Effect (iii): In a typical HiPIMS discharge, a large fraction of the sputtered material

flux is ionized. Since the movement of the charged species is subject to magnetic fields,

the transport of the ionized fraction of the sputtered material is largely affected by the

magnetic field configuration of the deposition system; For instance, Bohlmark et al. [127]

have demonstrated that the deposition rate of HiPIMS-deposited Al in front of the planar

target can be increased by 80% by modifying the magnetic field between the target and

substrates. Vlček et al. [29] have reported the rise in the power-normalized deposition rate

of Cu by 31% when increasing the magnetic field strength of the unbalanced magnetron. In

addition, recent investigations by Lundin et al. [126] and Brenning et al. [128] showed that

the propagation of ionized species can be largely affected by plasma instabilities, as in the

case of anomalous ion transport across the magnetic field lines. This behavior results in an

azimuthal ion transport towards the sides of the deposition chamber, and hence in a lower

deposition rate on the substrates facing the target.

In contrast to non-reactive conditions, HiPIMS operated in reactive gas mixtures may

exhibit a higher deposition rate than common DCMS operated at the same current [12, 49]

or power [129]. These observations were interpreted by additional phenomena that affect

the deposition process, such as reduced or eliminated hysteresis, and elevated erosion rate.

Further discussion on the subject of reactive HiPIMS discharges is offered in Chapter 8.
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CHAPTER 3

Experimental methodology

This chapter describes the two types of HiPIMS generators used in this work, as well as

the experimental methods and approaches for optical plasma monitoring and material char-

acterization of the fabricated films. The first part elaborates on generation of square-shaped

and modulated voltage pulses by HiPIMS and MPPMS PS, and it offers the schematics of the

respective electrical circuits. The second part introduces the principles of the Optical emission

spectroscopy (OES) technique, and it lists some of its applications for the plasma character-

ization and process monitoring. In addition, details of the experimental apparatus necessary

for OES and fast plasma imaging is offered. The last part is devoted to the description of

the diagnostic techniques applied for the evaluation of Nb and NbOx coatings’ properties.

3.1 Characteristics of HiPIMS power supplies

Growing interest in the HiPIMS technique stimulated the development of suitable PS.

At the present moment, there is a variety of PS from different producers that provide dif-

ferent pulse shapes and various levels of control over the voltage and current characteris-

tics [53, 54, 55, 56, 57]. The majority of PS on the market can be divided into two principal

categories, according to the form of the high power pulses that they produce. These are: (i)

square voltage pulse generators (HiPIMS generators), and (ii) modulated pulse power (MPP)

generators (MPPMS generators) producing longer, custom-shaped voltage pulses.

The main difference between the voltage delivery and the resulting pulse shapes for the

two types of generators used in this work is depicted in Fig. 3.1; While the HiPIMS genera-

tor (HÜTTINGER Electronic HMP2/1) produces single unipolar high-voltage pulses (usual

length 2µs - 200µs), the MPPMS generator (ZPulser Axia 180) applies to the target se-

quences (500µ - 3000µs long) of shorter pulses of fixed amplitude. These “micropulses” of

adjustable length (6µ - 18µs) and duty cycle (several tens of %) generate a “macropulse” of

modulated form on the cathode (hence modulated pulse power), as systematically illustrated
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Figure 3.1 Schematic representation of the typical voltage pulses generated by HiPIMS (a)
and MPPMS (b) power supplies. Please note that the voltage on the generator output,
Uoutput, and the resulting cathode voltage, UC, are equal in HiPIMS. In MPPMS, the pulse
shape of UC is formed by a sequence of Uoutput micropulses.

in Ref. [130]. An example of the experimentally obtained voltage and current waveforms for

typical HiPIMS and MPPMS pulses is shown in Fig. 2.12 (Chapter 2), and the schematics

of the resulting power delivery is depicted in Fig. 1.2 (Chapter 1).

It is to be noted that further details on the power management of the HiPIMS and MPPMS

generators used during the herein presented work, together with their specifications, can be

found in Chapter 7. In the following subsections, a brief description of the simplified electric

circuits and of the related pulse generation in both types of PS is offered.

3.1.1 Square voltage pulse generator (HiPIMS)

Square voltage pulse generator, used by Kouznetsov et al. [21] in their pioneer work, is

presently the most common type of HiPIMS PS on the market. It usually consists of three

units: a DC unit, which can be a specific charging circuit or a common DCMS generator,

a pulse unit that is responsible for generation of voltage pulses of defined length and stable

amplitude, and a matching unit. A simplified circuit diagram is shown in Fig. 3.2.
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The heart of the HiPIMS PS is the pulse unit. It consists of the capacitor bank C of a

large capacitance (e.g., 1µF - 50µF [131, 132, 17]) that is charged by the DC unit through

a thyristor switch. The accumulated charge is then discharged towards the external load

(cathode, anode and plasma) through an inductor L within the matching unit, once the

semiconductor switch S is closed. Thus, the length of the resulting HiPIMS pulse is set by

the period during which the switch S closes the circuit. The inductance coil of the matching

unit helps to shape the output current pulse; The higher is its inductance, the slower is the

current rise and fall.

The generated cathode voltage is in hundreds V to 2000 V (HÜTTINGER Electronic

HMP2/1). Its value should be stable during the entire pulse length (usually 50µs - 200µs).

However, if the pulse is long and the current is high (e.g., due to the large cathode surface), the

voltage amplitude can drop significantly during the pulse duration due to the diminishing

charge of the capacitor bank. This effect is depicted in Chapter 5, and also discussed in

Appendix A. The current density on the cathode reaches high values (several A cm−2), which

in turn increases the probability of arc development. In order to prevent arcing, a current

sensor is integrated within the pulse unit; If the current rises above a certain user-defined

threshold, the pulse unit is disconnected from the external circuit. Another approach in how

to detect arcing is the monitoring of an abrupt drop in the voltage amplitude. Some power

supplies can also dissipate the energy accumulated within the cables connecting the PS and

the electrodes, as a part of the arc suppression mechanism [53].

_

+

S

C
Charging
  circuit Discharge

DC unit                   Pulse unit                            Matching unit

Figure 3.2 Schematics of the electrical circuit of the HiPIMS square voltage pulse generator
connected to the discharge load.
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3.1.2 Modulated pulse power generator (MPPMS)

MPP generator is a recent modification of the HiPIMS PS, first introduced by Chistyakov

and Abraham [133, 134, 130]. The basic schematics of the circuitry is shown in Fig. 3.3(a).

DC unit of the MPP generator charges the capacitor bank C1 to a certain voltage level

(voltage load), usually up to 600 V in amplitude (ZPulser Axia 180). The solid state switch

S1 then converts the DC input towards the sequence of bipolar micropulses of defined duty

cycle and repetition frequency set by the control circuit. Subsequently, the amplitude of these

micropulses is doubled by the transformer T. The form of the micropulses on the primary

and secondary coil of the transformer is depicted in Fig. 3.3(b)(1-2). Finally, the unipolar

sequence of micropulses [Fig. 3.3(b)(3)] is formed by the LC circuit that consists of inductors

L and capacitor C2, and other circuits. MPP PS also features integrated arc control that

functions in a similar way as in HiPIMS PS. The duty cycle of the generated micropulses

ranges from 5 to 75%, and the micropulse frequency ranges from 8.4 to 62.5 kHz (ZPulser

Axia 180). The macropulse duty cycle is limited by 28%.

In contrast to HiPIMS PS, the cathode voltage (UC) does not equal the voltage on the PS

output, Uoutput, such as schematically illustrated in Fig. 3.3(b). Instead, UC oscillates around

a certain value that is set by the cathode charging and discharging rates. In addition, MPP

generator permits the use of different “micropulse recipes” (defined by the constant f and D

(a)                                    (b)

  (1)   (2)       (3)  (4)

+ 600 V    +1200 V

 - 600 V     -1200 V      -1200 V    

t [μs] U CU output

(1)       (2)      (3)          (4)

Figure 3.3 Schematics of the electrical circuit of the modulated pulse power generator con-
nected to the discharge load (a), and form of the voltage pulse sequence on different compo-
nents (1-4) of the power supply (b). Modified from [130].
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values) during a single macropulse (500µs - 3000µs), which gives the option to further mod-

ulate the resulting pulse shape. A typical MPPMS pulse can thus exhibit two or more stages

characterized by different voltage and power levels, according to the number of micropulse

recipes. An example of the two-stage MPPMS (macro-)pulse can be found in Fig. 3.1(b) or

in Fig. 2.12(b) (Chapter 2). Usually, a low power stage is used for discharge ignition and

cathode conditioning, and the high power stage is used for effective sputtering of the target

material [130, 135]. Further discussion on the power management of the MPPMS PS oper-

ated in both non-reactive and reactive conditions, accompanied with examples of numerous

experimentally obtained current waveforms, is presented in Chapters 7 and 8.

3.2 Optical emission spectroscopy

OES is a popular non-intrusive diagnostic technique suitable for analysis and monitoring

of physical and chemical processes within plasma. It is mostly used for the identification or

quantification of various gas-phase species present in the plasma. However, its judicious use

permits the estimation of Te, ne, vibrational and rotational temperatures of the molecular

species, and of other important plasma parameters. The basic advantage of OES when com-

pared with other plasma diagnostic techniques (e.g., mass spectrometry, Langmuir probes,

ion energy analysis) is its non-perturbing character, high reliability and relative simplicity in

implementation in both laboratory and manufacturing environments. It allows fast and easy

qualitative discharge monitoring, which can be performed in both time- and space-resolved

mode. However, OES is limited only to the light-emitting (excited) species. Furthermore,

the interpretation of the quantitative information can be difficult, due to the indirect relation

between the excited species’ concentration and the detected radiation intensity, and due to

the complex convolution of the measured optical signal.

3.2.1 Basics of OES

OES technique is based on the detection of the radiation originating from the de-excitation

transitions of bound electrons in atoms, ions, molecules or molecular ions; Each spontaneous

electron transition in between the higher-lying (Ek) and lower-lying (El) energy levels results
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in the emission of a photon of wavelength, λkl, given by:

λkl =
hc

Ek − El

, (3.1)

where h stands for the Plank’s constant and c for the speed of light. It should be noted

that El may or may not be the ground state from which the electron was originally excited.

The typical lifetime of the excited state is in the range 10−7 to 10−8 s (proportional to the

Einstein coefficient, Akl), which is a much shorter period than the usual time in between

the atomic/molecular collisions (e.g., ∼ 10−4 s in Ar atmosphere at p = 1 Pa) and than the

collisions with electrons (∼ 10−6 s). Therefore, the majority of the de-excitation electron

transitions in low-pressure discharges is radiative. This means that the optical emission may

be used for the TR monitoring of the excited species’ position within the discharge.

Fig. 3.4 shows several radiative electron transitions in between various energy levels of the

excited Ar atom, with the respective emitted light wavelengths/wavelength ranges. Each time

Figure 3.4 Schematic diagram of energy levels of Ar atom with several radiative transition
paths highlighted, together with the respective emitted photons’ wavelength/wavelength
ranges (1 Å= 0.1 nm). Resonance 1P1 and 3P1 energy levels are marked in dashed lines
and metastable (non-radiative) 3P0 and 3P2 levels in solid lines. Reproduced from [136].
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an excited electron spontaneously descends to a lower-lying energy level, it causes an emission

of a photon with a well defined energy (wavelength) equivalent to the energy difference of

the higher-lying and lower-lying energy level, according to Eq. 3.1. A large number of such

emitted photons can be detected as an emission peak, or emission line. The set of emission

lines emitted by the individual excited species (such as Ar) is unique, and thus can be used for

the identification of the radiating species; One needs to compare the experimentally obtained

spectral lines with the tabulated values in literature. In addition, intensities of emission lines

due to the electronic transitions originating from energy levels of various Ek may be used for

the estimation of Te [137, 138].

An example of the emission spectra from HiPIMS discharges operated with Cr target in

Ar, N2/Ar mixture, and N2 is plotted in Fig. 3.5. It is shown that the non-reactive emission

spectrum is composed of numerous Cr and Ar emission lines, which can be distinguished

with a common low resolution spectrometer [Fig. 3.5(a)]. In addition to the atomic emission

lines, both reactive spectra also exhibit the emission bands in red and near-infrared ranges

(λ > 500 nm), where strong emission from molecular N2 is situated [Fig. 3.5(b,c)]. In fact,

the observed bands are composed of a large number of emission lines which originate from

numerous electronic transitions in between various vibrational and rotational energy levels

that are superimposed to the molecular electronic states. The small energy differences be-

tween these vibrational (∆E = 1 − 5 eV) and rotational (∆E = 0.001 − 0.1 eV) states, and

the broadening of emission energies caused by the movement of emitting molecules along

with their mutual collisions, lead to an overlap of the emission lines which subsequently form

bands rather than sharp emission peaks. However, high resolution spectrometers permit dis-

tinguishing these emission lines, which can be used for the evaluation of the vibrational and

rotational energies of the particular molecular gas [139, 140].

3.2.2 Plasma characterization

A quantitative determination of the plasma species’ densities, based solely on the measured

emission intensity, is a difficult and complex task. The number of photons collected from the

investigated plasma volume is not only a function of the monitored species’ concentration,

nA, but also of the ability of plasma to excite the ground state species A into the electroni-
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Figure 3.5 Averaged emission spectra recorded at d = 10 cm from the target powered by
HiPIMS operated in Ar (a), N2/Ar (1:1) mixture (b) and N2 (c) at 1.3 Pa. The condition of
the experiments can be found in Paper II (Chapter 5). The dominant regions of atomic Cr
and Ar emission lines and molecular N2 emission bands are indicated.

cally excited emitting species A*, and of their subsequent de-excitation. For the specific case

of high density discharges (ne > 1011 cm−3), such as those generated by HiPIMS pulses, the

electron-impact excitation is the dominant excitation mechanism [141, 101]. The relation in

between the resulting radiation intensity originating from the unit volume, IA, and nA can

then be expressed simply by:

IA = αeAnA, (3.2)

where αeA is the proportionality constant for the electron excitation depending on the plasma

density, electron energy distribution, pressure, and other conditions:

αeA = Kd(E)ne

∫ ∞
0

Qe(p, ne)σeA(E)fe(E)E1/2dE. (3.3)

Here, Kd(E) is an energy-dependent response constant of the detector or the entire de-

tection system, Qe(p, ne) is the quantum yield for the photon emission from the respective

excited state for given pressure and electron density of the plasma, and σeA(E) is the energy-

dependent cross section for excitation of A by electron impact. It should be highlighted, that
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Eq. 3.2 is valid only for spontaneous radiative de-excitation from the energy levels populated

directly from the ground state with no contribution from other excitation path, e.g., stepwise

excitation via underlying metastable energy levels. However, these conditions are commonly

encountered in non-equilibrium plasmas employed in materials processing. It is also assumed

that there is no absorption of the emitted light on its way towards the detector (optically

thin plasma).

Given the complexity of the relation between the measured emission intensity and the

concentration of radiating species, it is evident that an additional analysis using another

plasma diagnostic technique may be necessary for proper determination of the latter quantity.

For instance, Langmuir probe measurements permit estimation of the average ne within the

monitored plasma volume and of the respective electron energy distribution. Nevertheless,

characterization of the electron energy distribution at higher energies, which is pertinent to

the excitation of the plasma species, is problematic even when using Langmuir probe [137].

An efficient approach how to avoid the necessity for a complicated evaluation of the coef-

ficient αeA is to compare the emission intensity of the species of interest with the intensity of

the other radiative species of known concentration. The latter species, also called actinome-

ters or “tracers”, are usually rare gases (e.g., Ne, Ar, Kr) introduced into the gas mixture in

a controlled amount, that is small enough in order not to perturb the discharge (e.g., ∼ 1%

of the total gas content). It is important to ensure that both emission lines (of species A and

of actinometer B) possess comparable excitation thresholds (Ek), and that σeA(E) and σeB(E)

have similar shapes in the monitored energy range. In this way, the differences in the energy-

dependent excitation conditions are minimized, and the ratio of the emission intensities can

be simplified as:
IA

IB

=
αeAnA

αeBnB

≈ K
nA

nB

, (3.4)

where nB is the known concentration of the actinometer and K is a constant independent of

the discharge parameters. This approach, originally introduced by Coburn and Chen [142] for

the analysis of plasma-etching discharges, is called actinometry. The addition of rare gases of

trace amounts into the discharge – approach called trace rare gases OES (TRG-OES) – can

be also used for the evaluation of Te and the electron energy distribution, such as recently

reviewed by Donnelly in Ref. [137].



62

It should be stressed that the knowledge of the exact concentrations of the gas-phase

species is often unnecessary. Even though the excitation conditions are strongly affected by

the specific plasma conditions, the emission line intensities provide a qualitative indication

of the species’ concentration in the discharge. Therefore, optical emission monitoring can be

applied for the detection of small variations in discharge operation, for instance, due to the

dissociation of the reactive gas, contamination, or vacuum leaks. OES diagnostics are thus

commonly used for judicious control of plasma processing of materials.

The most common example of the optical emission-based process monitoring is the end-

point detection in plasma etching [143, 144]; Typically, a strong emission line of the monitored

material is selected, and its intensity is empirically related to the modification in the surface

composition etched by the plasma. The removal of the etched material induces a significant

variation in plasma composition, which substantially affects the monitored emission line

intensity that serves as a triggering signal for the termination of the etching process. Another

common use of plasma emission monitoring (PEM) is in the process stabilization during

reactive DCMS [145]. In the latter case, the emission of the sputtered metal is used for the

feedback control of the reactive gas flow, as briefly discussed in section 2.2.3 (Chapter 2).

The radiation intensities from the two species of interest may also be used for the estima-

tion of their relative concentration ratio, according to Eq. 3.4, under the condition that the

respective spectral lines are positioned close to one another, and that their σeA are compa-

rable. As an illustration, the emission intensity ratio of the selected ionized and neutral Nb

emission lines was used for the relative comparison of the sputtered Nb ionization in different

types of discharges and various discharge conditions in Chapter 7.

The above-listed examples demonstrate that the OES technique is a simple and powerful

tool for qualitative monitoring of the gas-phase processes within the investigated discharge.

However, an identification of all the emitting species may be compromised by several issues.

The first one is the convolution of radiation originating from different excited species that

span over the same spectral region. For instance, the majority of Ar0 emission lines, clearly

distinguished in the emission spectra of HiPIMS discharge in pure Ar [Fig. 3.5(a)], are con-

voluted with N2 molecular bands if the HiPIMS discharge is operated in the reactive mixture

of Ar and N2 [Fig. 3.5(b)]. Similarly, some of the Cr0 lines are convoluted with N0
2 bands.
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Enhancing the spectral resolution of the spectrometer may be a possible solution, with a

drawback of a higher cost of the equipment. Nevertheless, a de-convolution of the emis-

sion signal originating from different gas-phase elements can be difficult, particularly if the

discharge is operated in the reactive gas mixture containing complex chemical compounds.

Another important issue may be the reabsorption of the emitted radiation, which is

commonly encountered in the optically thick plasmas, such as in high pressure discharges

exhibiting high plasma densities [66]. In such a case, the measured emission line intensity

may be significantly lowered, especially if the respective de-excitation transition is to the

heavily populated ground energy level. Strong reabsorption may be, however, identified from

the characteristic shape of the monitored emission lines.

Both of the above-listed shortcomings are emphasized by the fact that the emission signal

is acquired along the line of sight of the probe. Consequently, the spatial information in that

particular direction is lost. Thus, only 2D spectroscopic diagnostics of the plasma volume

is possible, in the perpendicular plane to the viewing direction. However, if the acquired

images are axially symmetric, it is possible to calculate the original emission distribution by

the reverse Abel transformation applied on these images [146].

3.2.3 Experimental apparatus

A typical apparatus for OES diagnostics is formed by several components, as illustrated

in the example of the experimental setup used in the present work in Fig. 3.6(a). Firstly,

the emitted light has to be collected by an optical probe, that is often introduced within

the deposition chamber in order to permit the space-resolved discharge analysis. For that

reason, the probe can be positioned on the movable feedthrough, rod or other mechanism.

The collected light is then transmitted by the fiber optic cable into the monochromator,

where it is dispersed. Finally, the obtained spectrum, or its selected portion, is recorded by

a photomultiplier, an optical multichannel analyzer or a camera. The detection element may

also be implemented together with the monochromator within one spectrometer body. This

is the case of the portable spectrometer (Ocean Optics USB2000) that was employed for the

low-resolution time-averaged discharge monitoring presented in Chapters 7 and 8.
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Figure 3.6 A schematic diagram of the two experimental arrangements used in this work: (a)
OES setup using the monochromator with rotable triple grating turret and with the camera
mounted on its ouput, and (b) Imaging setup using the camera with an objective overlooking
the content of the deposition chamber through a transparent window, with a position of the
optional optical filter highlighted.

High-resolution monochromator

A typical high-resolution monochromator designed for plasma spectroscopy contains a col-

limating mirror that reflects the incoming light into a parallel beam, which is then diffracted

on the reflection grating, and focused by another mirror towards the exit slit with an ad-

justable thickness. The resulting spectral resolution (ability to distinguish two emission lines)

is determined by the monochromator’s focal length and by the density of the diffraction grat-

ing; The higher the focal length and/or groove density is, the better is the achieved resolution

on the monochromator’s focal plane, where the detector is situated. However, the increase

in the resolution results also in the smaller spectral range that can be projected at once.

The monochromator used in this work (PI Acton SpectraPro 2750) has a focal length of

750 mm and three holographic gratings of different groove densities, mounted on a rotable

triangular turret. In this way, the user has an option to choose which grating he wants to

use, and thus an option to select the monochromator’s spectral resolution and the wavelength

range that can pass through the exit slit. These three gratings have 150 grooves mm−1, 1200

grooves mm−1 and 2400 grooves mm−1, respectively. For the most dense 2400 grooves mm−1

grating, the spectral resolution is better than 0.1 nm and the width of the spectral range
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detectable at the exit slit lies within 2 nm - 20 nm, depending on the central wavelength. An

example of the high-resolution spectra recorded by the fast camera at different times from

the initiation of the investigated HiPIMS pulse is presented in Fig. 5.2 (Chapter 5).

Light detector

The light detector serves to measure the incoming radiation intensity, typically limited

to the visible and near ultraviolet (UV) spectral range. Light can be recorded in a narrow

range of wavelength by the photomultiplier tube or photomultiplier tube arrays, providing

extreme sensitivity and speed of detection (<1 ns). However, the most common detector used

in nowadays plasma spectroscopy is the charge coupled device (CCD), comprising numerous

pixels arranged in a linear or 2D array (chip). In the latter configuration, all the vertical pixels

are usually binned in order to obtain spectral intensity versus wavelength. The advantage of

CCD to the photomultiplier tube is its capacity to accumulate the information over a period

of time and over a large range of wavelengths (e.g., 200 nm - 900 nm). Even though a common

CCD has its sensitivity depending on the incoming light wavelength (energy), this does not

represent a substantial problem for qualitative discharge monitoring. Furthermore, recent

development of intensified CCD (ICCD) greatly enhanced the sensitivity of such devices,

while enabling fast and electronically-controlled triggering suitable for TR analysis. The

2D configuration of CCD chips also permits convenient and fast 2D imaging, as illustrated

in Chapters 4, 5 and 6.

A schematic representation of the ICCD used in this work (Princeton Instruments PI-

MAX2 camera), together with the example of the typical light path, are shown in Fig. 3.7.

The number of incoming photons is first multiplied by an electronic amplifier composed of

a photocathode, a micro-channel plate (MCP) and a fluorescent screen [147]. At first, the

incident photons strike the photocathode surface that releases electrons. These are then

accelerated by the adjustable potential difference between the two charged plates in the front

and at the back of the MCP; The higher the positive potential on the output of the MCP is

(600 V - 900 V in Fig. 3.7), the higher the gain of additional electrons will be. Subsequently,

the electrons leaving the MCP are further accelerated towards the fluorescent screen which

– due to the electron gain – emits more photons compared with their original number at the
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Figure 3.7 Schematics of the internal components of the ICCD intensifier of the PI Acton
SpectraPro 2750 high-speed camera used in this work. Reproduced from [147].

photocathode. These photons are finally transferred by the fiber optic bundle towards the

1024× 1024 pixels CCD chip (Kodak KAI-1003). The resulting charge, generated on each of

the CCD pixels due to the accumulation of the incoming photons, will then undergo a 16-bit

digitization process.

Gating and synchronization

The intensifier of the high speed camera can act as a shutter to the incoming light.

In comparison to mechanical shutters, gating is performed electronically by modifying the

potential that is applied to the photocathode; If the photocathode has its potential negative

with respect to the MCP input (as depicted in the example given in Fig. 3.7), the generated

electrons are attracted to enter the MCP, and consequently, the CCD chip receives light. On

the contrary, the positive potential on the photocathode inhibits the electrons to enter the

MCP and the CCD chip to detect light. The process of turning the intensifier electronically

“on” and “off’, in a processs called gating, can be repeated very quickly, and with extremely

precise timing (on a ns timescale) [147]. Moreover, the gating can be synchronized with
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an internal or external source of pulsing, such as a pulsed power generator. Details of such

synchronization, applied for the TR analysis of the gas-phase processes during HiPIMS pulses,

can be found in section 5.2 (Chapter 5).

It should be noted, that the light accumulated on the CCD during a typical HiPIMS pulse

or during its portion of interest (e.g., period 0 - 5µs from the pulse initiation) may not be

sufficient for obtaining a strong enough signal for further data analysis. In such a case, an

accumulation of the light originating from several pulses (typically 5 to 100) is necessary for

enhancing the signal-to-noise ratio. Once the desired number of repetitions is reached, the

accumulated charge on the CCD is “read” by the camera electronics, and the whole process

may be repeated for another integration interval (e.g., 5 - 10µs period). However, reading and

digitizing of this charge can take up to 250 ms, before the CCD and the related circuits are

ready for a new acquisition [147]. Therefore, it is possible that a significant number of pulses

can pass before another measurement is made. Thus, the TR spectra are never acquired from

a single pulse or from several consecutive pulses. Instead, a typical set of TR measurements,

such as that presented in Fig. 5.2 (Chapter 5), represents the discharge emission from selected

periods of the pulse, averaged over a predetermined number of pulses.

3.2.4 Plasma imaging

Cameras equipped with a sensitive CCD chip are convenient non-perturbing tools for 2D

discharge mapping, which – in combination with a set of suitable optical filters – can replace

lengthy space-resolved analyses by OES. The gating capacity of modern ICCD cameras also

enabled the analysis of the evolution of the investigated discharges, with a time-resolution

down to tens of ns [148]. Fast imaging thus became a valuable tool for plasma diagnostics,

as demonstrated in a number of studies related to different types of discharges (for instance,

Refs. [149, 150, 151, 152, 153]). Moreover, fast imaging performed through custom-made

optical interference filters allows the monitoring of the time- and space-evolution of the se-

lected plasma-excited species. This can be advantageous for the observation of various plasma

effects, specifically during the highly dynamic pulsed discharges. An example of such inves-

tigation can be found in Fig. 3.8. Characterization of the HiPIMS discharge dynamics will

be discussed in Chapters 4, 5 and 6.
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The experimental setup for fast plasma imaging employed in this work is shown in

Fig. 3.6(b) (Chapter 5). The camera is positioned on a tripod, with its line of sight per-

pendicular to the plane of the transparent feedthrough window of the plasma-containing

reactor. It may either overlook the discharge through a pinhole [152], or it may be equipped

with a focusing lens [149] or a commercial camera objective [150] (the latter being used in

the present work). An optical interference filter, usually positioned in between the focus-

ing element and the source of radiation, can be a highpass, a lowpass or a bandpass filter,

depending on the monitored spectral range. In some specific cases – if the spectral region,

where the selected emission lines of interest are situated, has also abundant emission orig-

inating from other plasma-excited species – a narrow bandpass filter may be necessary to

efficiently filter all parasitic radiations. However, a longer integration period may then be

required to accumulate a sufficient number of photons. More details on the filter design, suit-

able for monitoring of different working gas and sputtered metal species within the HiPIMS

discharges, together with the demonstration of such diagnostics, can be found in Chapter 4.

Figure 3.8 Example of ultrafast imaging of the first 150 ns of a pulsed high-pressure (400 Pa)
discharge in between two plane electrodes highlighted by the white lines. The images are
acquired from the UV-visible continuum without any filter (a), and with a set of filters
suitable for monitoring of the UV excimer Ar*2 molecular emission at 126 nm (b) and for
Ar* emission in the red part of the spectrum (c). Reproduced from [152].
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3.3 Film characterization techniques

3.3.1 Stylus profilometry

The thickness of the fabricated coating is an important parameter since some of the

film properties may depend on its amplitude (e.g., internal stress level). The most common

way to determine film thickness is the stylus profilometry, which is highly suitable for the

measurement of the step height from the substrate to the film surface and for the evaluation

of the surface topography. This technique consists in measuring the mechanical movement of

a stylus in a vertical direction as it is moved horizontally (scanned) on the sample’s surface.

The position of the stylus, terminated by a diamond needle with a tip radius of several µm,

is monitored by the piezoelectric sensor.

The stylus profilometer used in this work (Veeco Dektak 3030ST) is equipped with a

conical diamond stylus. Its instrumental horizontal and vertical position resolution is less

than 0.2µm and less than 1 nm, specifically. Nevertheless, the precision of the measurement

is additionally affected by the step geometry and other parameters, such as roughness and

curvature of the substrate or background vibrations. The length of a scan can be adjusted

according to the lateral size of the measured feature.

3.3.2 Internal stress evaluation

The evaluation of the residual internal stress level of the prepared coating is of crucial

importance for the characterization of the coating environmental stability and of its adhesion

to the underlying substrate. The total internal stress is a sum of the thermally-induced stress

due to the difference in thermal expansion coefficients between the substrate and the film, and

of the intrinsic microstructural stress originating in growth defects (e.g., interstitial atoms

or voids) and other phenomena. Stress may also be induced by the phase transformation,

recrystallization or other processes following the film deposition, namely when the latter was

performed at elevated temperatures.

Total stress, σ, can be evaluated from the measured film thickness, tf , and the substrate

curvature caused by the deposition of a stressed thin film, R, if the specific properties of the

substrate are known, such as its thickness, ts, Young’s modulus, Es, and Poisson’s ratio, νs.



70

The internal stress value of the deposited film is then obtained from the Stoney equation [154]:

σ =
Es

1− νs

ts
2

6tf

1

R
. (3.5)

R can be determined experimentally by measuring the curvature of the substrate before

and after the film deposition. In the present work, these curvatures were evaluated by laser

scanning (Tencor FLX-2900 instrument) while using rectangular Si stripes with approxima-

tive dimensions of 10 × 50 × 0.43 mm3 as substrates. The evaluation precision is usually

related to the systematic measurement errors (such as those originating from uneven position-

ing of the substrates on the laser scanning apparatus), but also to the thickness uniformity

of prepared films. A typical measurement uncertainty was in the range ∆σ = 30− 50 MPa.

3.3.3 X-ray diffraction

X-ray diffraction (XRD) is a sensitive non-destructive technique commonly applied for

material characterization of thin films with a thickness as little as few atomic planes. It is

based on the analysis of the X-ray radiation reflected from the investigated sample under a

defined incidence angle. If the atoms are arranged in a periodic fashion, as in a crystalline

lattice, the diffracted X-rays will generate sharp interference maxima which reflect the sym-

metry of the lattice atoms, as predicted from the Bragg’s law. Thus, the analysis of the

obtained diffraction pattern can be used for a deduction of the atomic distribution within

the studied material, from which the crystalline structure, the lattice spacing and the residual

stress level can be determined. In addition, diffraction line broadening can be used for the

estimation of the crystallite (grain) size and of the lattice strain. Grazing incidence XRD

measurements permit the evaluation of the thickness, roughness, and density of the film.

In the present work, the XRD diagnostic was performed in the θ–2θ configuration using

Cu Kα (λ = 0.15406 nm) radiation in a Philips X’PERT instrument. Specifically, XRD was

employed to analyze the out-of-plane lattice spacing of the fabricated Nb films (Chapter 7).
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3.3.4 Scanning electron microscopy

Scanning electron microscopy (SEM) is a popular technique for the film’s surface and/or

substrate-film interface imaging that can reach nanometer resolution. Typically, a specimen

to be investigated is rastered by a beam of highly energetic electrons (e.g., energy of units

to tens kV) created by an electron gun. This electron beam is focused on the sample by a

system of electromagnetic lenses, which also serve for its deflection necessary for rastering.

The electrons bombarding the specimen are partly recoiled and partly absorbed within the

subsurface region. In addition, their impacts cause the emission of SE that carry information

about the topography and composition of the surface. The emitted SE and/or backscattered

electrons are then collected by the respective detectors positioned in the sample vicinity.

Hereby generated signal is used for the intensity modulation of the other electron beam of

the cathode ray tube (CRT) – projecting the magnified surface under examination – that

has its movement synchronized with the beam that probes the sample. The magnification

of the resulting image is determined by the ratio of the CRT screen size to the size of the

investigated area rastered by the electron beam. The images of Nb films’ microstructure

presented in Chapter 7 were obtained by Hitachi FB2000A SEM.

3.3.5 Depth-sensing nanoindentation

Depth-sensing nanoindentation is a dynamic test that allows one to evaluate the me-

chanical properties of thin films, such as hardness, H, and reduced Young’s modulus, Er.

It is based on the measurement of the vertical position of the indenting stylus during its

displacement into and from the examined sample, caused by the variable load applied upon.

The values of H and Er of the indented specimen can then be calculated analytically from

the obtained load vs. displacement curve, according to the Oliver-Pharr method [155]. This

approach was applied during the characterization of H and Er of the NbOx films, while using

the data generated by a Hysitron TI 900 triboindenter equipped with a Berkovich pyramidal

tip (presented in Chapter 8).

It should be noted that there are several important issues related to the determination

of the hardness value when examining a thin film. For instance, the size of the indenter,

as well as its penetration depth, strongly affect the measured value of H [156]. It is also of
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great importance for the accuracy of the measurement that the stylus has a precisely defined

geometry (i.e., it is not worn by an excessive use), and that the nanoindentation apparatus is

well calibrated before each experiment. Furthermore, the evaluation of the indentation of thin

films deposited on the soft substrates may be difficult or even impossible if the deformation of

the latter cannot be avoided. Therefore, a proper use and interpretation of the depth-sensing

nanoindentation analysis requires a particular caution and expertise.

3.3.6 Ellipsometry

Ellipsometry is a non-intrusive diagnostic technique that allows the determination of

optoelectronic properties of metallic and dielectric materials, such as their dielectric or optical

constants. The principal advantages are high speed and precision of the measurement, and

the ability to evaluate even ultrathin films of several atomic layers in thickness. Moreover,

the ellipsometry can be performed in situ during the film deposition or plasma processing,

as illustrated in Ref. [79].

The examination of the sample is based on the evaluation of the changes in light polar-

ization between the incoming light beam and the beam reflected from the sample surface.

Due to the light-material interaction on the sample, the reflected light beam will possess

different polarization state than before the impact; This change can be characterized by

the two ellipsometric angles Ψ and ∆, which are related to the amplitude and the phase of

the polarized light, respectively. The examined film quantities, such as the film thickness

and the optical constants may then be deduced from the values of Ψ and ∆ by a model

analysis [157]. However, the development of the model that accurately describes the entire

coating + substrate system can be a lengthy and difficult task. The precision of the obtained

values strongly depends on the accuracy of such model.

The optical properties of the NbOx films were examined by a J. A. Woollam RC2-DI

multi-functional variable-angle spectroscopic ellipsometer, and their optical characteristics

were modelled using the CompleteEASE software (J. A. Woollam), as specified in Chapter 8.
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CHAPTER 4

Paper I: Time- and species-resolved plasma imaging as a new

diagnostic approach for HiPIMS discharge characterization

Authors: M. Hála, O. Zabeida, B. Baloukas, J.E. Klemberg-Sapieha, L. Martinu

Article published: IEEE Transactions on plasma science, vol. 38, no. 11, pp. 3035 - 3039,

Nov. 2010.

Comment: This paper is a part of the special issue: HIPIMS and High Power Glow Discharges

Abstract: We present a novel approach in fast imaging of HiPIMS discharges in which band-

pass optical interference filters are used to isolate the optical emission signal originating

from different species populating the plasma. In this work, we describe the methodology

of the proposed diagnostics and discuss its application. In particular, we demonstrate the

use of this technique for the time-resolved analysis of HiPIMS discharges operated with a

chromium cathode in argon at 4 Pa. Two optical filters were designed and fabricated: (i)

one for neutral chromium emission lines (400 to 540 nm), and (ii) the other one for neutral

working gas emission lines and bands (above 750 nm). The introduction of such filters is

used to distinguish different phases of the discharge, and to reveal numerous plasma effects

including background gas excitations during the discharge ignition, gas shock waves, and

expansion of metal-rich plasmas.
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4.1 Introduction

High-power impulse magnetron sputtering (HiPIMS) is a rapidly developing deposition

technique based on pulsed DC magnetron sputtering: High-power unipolar pulses are applied

to a target with a low (usually 0.5% – 5%) duty cycle. In this way, high-density plasmas with

peak power densities in the kW cm−2 range and a high degree of ionization of the sputtered

material are obtained [22, 28, 108]. These characteristics have been shown to be beneficial

in deposition of high-density films with low surface roughness [40, 158] and homogeneous

coating of complex-shaped substrates [159, 15]. Moreover, HiPIMS has been demonstrated

as a powerful tool for adhesion pre-treatment in protective coating preparation due to the

high metal-ion fluxes available at the substrate [14].

Understanding the plasma processes within a HiPIMS discharge is necessary in order to

develop and optimize the deposition process. HiPIMS pulses can be characterized by several

diagnostic techniques, such as mass spectrometry that permit monitoring of the ion flux

composition [160] and of ion energies [110, 109], and by Langmuir probe diagnostics suitable

for electron density and temperature determination [27]. Another diagnostic approach is

to study the optical emission originating from the discharge in order to extract valuable

information about the plasma composition [161] and/or about the excited species’ spatial

distribution and dynamics [162]. A comprehensive summary of HiPIMS discharge dynamics

is given in reference [98].

In this work, we demonstrate the application of time- and species-resolved plasma imaging

using optical interference filters specifically fabricated for the monitoring of different excited

species. First, we discuss the design of the suitable band-pass filters. Second, we show how the

time evolution of different plasma processes within the HiPIMS pulse can be characterized and

how the transport of the sputtered material can be visualized. Finally, we discuss a possible

application of this diagnostic approach for the optimization of the deposition process.

4.2 Experimental details

The experiments were carried out using a magnetron with a 5 cm diameter Cr cathode

in pure Ar and in reactive gas mixtures of Ar with N2. HiPIMS pulses with a peak cathode



75

voltage of UC = −2000 V and a duration of 200µs were applied to the target with a repetition

rate of 50 Hz. The substrate holder facing the target at a distance of 10 cm was biased by

an RF power supply with a -100 V DC voltage in between the pulses in order to maintain

background plasma for faster HiPIMS discharge ignition. This bias voltage dropped during

each HiPIMS pulse to values around -10 V.

The voltage and current waveforms were recorded using a Tektronix TDS2014B digital

oscilloscope equipped with a Tektronix P6015A voltage probe and a Pearson 301X current

probe. The optical emission of the discharges was monitored by optical emission spectroscopy

(OES) using an optical fiber probe mounted within the deposition chamber, a SpectraPro

2750 spectrometer (PI Acton) with a holographic grating (150 grooves mm−1) and a high-

speed PI-MAX2 camera (Princeton Instruments).

During time-resolved imaging of the discharge the high-speed camera was placed outside

of the deposition chamber, recording a series of images through the viewing port. The camera

was gated using a pulse synchronized with the onset of the HiPIMS voltage pulse. Each image

was recorded during a 5µs period following a pre-set delay from the initiation of the voltage

pulse, and summed over 10 pulses. More details about our experimental system and the data

acquisition can be found in [162].

4.3 Filter design and characterization

In order to distinguish the optical signal originating from excited sputtered material and

working gas species during the plasma imaging, a set of band-pass optical filters is required.

These filters should be designed to maximize the transmission within a specific spectral range

in which the emission of the selected species to be monitored is high. Simultaneously, the

filter transmission outside of the selected range of wavelengths should be minimized.

The first step in the design of suitable optical filters is to determine the wavelength ranges

in which the emissions from different excited species do not overlap. Fig. 4.1 shows the optical

emission spectra of the HiPIMS discharges recorded above the Cr target sputtered in (a) pure

Ar and in (b) N2/Ar (1:1) reactive mixture at 4 Pa. It can be observed that specific regions

in which the emission from the sputtered metal and the working gases are isolated can be

identified for both non-reactive and reactive discharges. These are the regions of interest
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Figure 4.1 Emission spectra of the HiPIMS discharges operated with a Cr cathode in (a) Ar
and (b) N2/Ar (1:1) reactive mixture at 4 Pa, recorded at a target-probe distance of d = 6 cm.
The spectral regions specific for the emission originating from individual excited species are
indicated, as well as the spectral regions of the intended interference filters applied in this
work (white area). Note that the Cr0 emission line at 520 nm is saturated.

for which two band-pass filters have been considered in this work (the regions highlighted in

white with respect to the grey background).

The filters used in this study were designed using the OpenFilters sofware [163] and

optimized for the wavelength range from 350 nm (camera objective glass cut-off) to 900 nm

(sensitivity maximum of the camera’s CCD). Filter A consists of 56 alternating layers of SiO2

(n = 1.49 @ 550 nm) and Nb2O5 (n = 2.28 @ 550 nm) with a total thickness of 4.7µm, and

filter B consists of 40 alternating layers of SiO2 and Ta2O5 (n = 2.14 @ 550 nm) with a total

thickness of 3.4µm. The latter filter also includes an antireflective coating on the backside

of the substrate.

Both filters were deposited on B270 glass in a pilot dual ion beam sputtering (DIBS)

system (Spector II by Veeco-Ion Tech) equipped with two Kaufman gridded ion sources. The

primary 16 cm diameter beam was used to sputter Nb, Ta or SiO2 targets while the second

ion beam served for film densification and additional oxidation.

The optical transmission spectra of the fabricated filters are plotted in Fig. 4.2. The first

filter (A) has a transmission band between 400 and 540 nm, and is suitable for monitoring the

neutral emission lines originating from excited atoms of transition metals, such as chromium.
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Figure 4.2 Transmission functions of band-pass interference filters designed for observation of
neutral Cr emission lines (dashed curve - stack of filters A) and neutral working gas emission
lines such as Ar0 (dotted curve - stack of filters B). The emission spectrum of the HiPIMS
discharge operated with a Cr cathode in Ar at 4 Pa convoluted with the transmission functions
of these filters is plotted in solid black (arbitrary units scale).

The average transmission outside of this region is below 0.4%. In all our experiments, a pair

of filters A were stacked in order to futher eliminate this parasitic transmission. The second

filter (B) is a high-pass filter with a cut-off wavelength at approximately 750 nm, allowing

observation of the emission lines and bands from excited working gases, such as Ar, N2 or

dissociated O2. Its transmission outside the high-transmission region was in average below

2.7%. Once again, a pair of filters B were stacked in all experiments, and the resulting average

parasitic transmission was below 0.1%.

It is important to note that an appropriate set of filters can be prepared for any combi-

nation of sputtered material and working gas with a necessary condition that the emission

regions from the sputtered metal and working gas stay well separated within the spectral

sensitivity range of the imaging system. Furthermore, specific filters can be designed to

distinguish the emission from neutral and ionized metal atoms. However, one should bear

in mind that the ionized transition-metal emission lines, such as Cr1+ in Fig. 4.1, are often

situated in the near UV. Unfortunately, their monitoring may be inhibited by the limitations

imposed by the individual imaging components. For instance, the absorption threshold of the

camera objective glass used in our experiments limits detection to wavelengths above 350 nm.
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4.4 Results and discussion

In this section, we will demonstrate the application of the set of fabricated optical filters

for the diagnostics of the HiPIMS discharge operated in pure Ar at 4 Pa. The current and

voltage waveforms of the examined 200-µs HiPIMS pulses are illustrated in Fig. 4.3. After

the discharge ignition, following the application of the voltage pulse, a stable high-current

discharge is reached, indicating the metal-dominated phase of the discharge as previously

discussed in [162].

Please note that a movie depicting the discharge evolution during the first 400 µs from

the voltage pulse application can be downloaded at http://ieeexplore.ieee.org. The movie is

composed of two series of images, each recorded using one of the two band-pass filters.

Three series of images obtained during the first 75µs of the HiPIMS pulse are shown

in Fig. 5.8. Each row represents the instantaneous discharge emission recorded at different

times after the initiation of the voltage pulse (indicated in grey in Fig. 4.3). The unfiltered

discharge emission is illustrated in the first column, while the second and the third columns

depict the experiments with the two band-pass filters A and B described above. In the

following, we will analyze and interpret these images.

The first row of images depicts the ignition phase during which fast secondary electrons

excite the working gas. This is illustrated by the absence of the emission recorded with the

”Cr” filter A, while the bright light detected without any filter and with the ”Ar” filter B is

Figure 4.3 Current and voltage waveforms recorded during a 200-µs HiPIMS pulse operated
with a Cr cathode in Ar at 4 Pa. Four time intervals, during which the discharge emission
depicted in Fig. 5.8 was recorded, are indicated in grey. The peak power density on the target
was 2 kW cm−2.
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essentially the same. This observation provides evidence of the working gas excitation by

high-energy electrons originating from the cathode and escaping the magnetic confinment of

the unbalanced magnetron. Similar observations made by OES and Langmuir probe diag-

nostics were reported in ref. [22]. The form and the emission intensity distribution from the

excited gas partly follow the magnetron’s magnetic field lines. The small fraction of light

originating from excited metal, confined to the closest target proximity, is the manifestation

of the onset of the target sputtering.

Figure 4.4 Images taken during 200-µs HiPIMS discharge pulses in pure Ar at 4 Pa with no
filter on the camera objective (left column), and with an optical band-pass filter specific for
emission from neutral Ar (middle column - filter B), and from neutral Cr (right column -
filter A). The images were recorded at different times after the pulse initiation as indicated
in Fig. 4.3. For clarity purposes, different colors are assigned to different emission intensities,
according to the scale depicted in the upper right image. The position of the Cr emission
wavefront is highlighted by a dashed line.
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The three other rows of images illustrate the development of a dense-plasma region close

to the target during the metal-dominated high-current phase of the HiPIMS discharge. In

contrast to the ignition phase, the light distribution in the images recorded without any filter

and with filter A is similar. The emission intensity from the excited Cr prevails over that

of the working gas with increasing time. Simultaneously, its wavefront, of a hemispherical

shape, visibly propagates outwards from the target at a constant speed (vCr ≈ 0.8 km s−1),

as highlighted by the dashed line in Fig. 5.8. On the contrary, the working gas emission con-

tinuously diminishes in both intensity and spatial extent, until it is confined to the proximity

of the sputtered cathode. Furthermore, a discrete emissive region visibly detaches from the

target vicinity and travels towards the substrate holder at a speed which is conformal to that

of the excited-metal emission wavefront.

Based on these observations, several conclusions can be made. The advancing emission

wavefront from neutral Cr indicates the expansion of a dense plasma rich in sputtered metal.

This assumption is supported by our previous findings of the simultaneous propagation of

both neutral and ionized Cr emission peaks [162]. The plasma wavefront travels towards the

deposition chamber at a constant speed with a hemispherical shape, confirming the existence

of the ion-acoustic solitary wave expanding away from a HiPIMS-powered cathode [70]. Take

note that the travelling speed of this wave, calculated from the propagation of the ionized Cr

emission signal, is pressure- and gas-dependent [162].

The drop in light intensity from the excited working gas with rising discharge current

suggests two effects: (1) Working gas rarefaction due to the increasing amount of sputtered

metal, and (2) electron energy quenching due to lower excitation and ionization tresholds of

the metal atoms in comparison to those of the working gas [27]. The fact that the inten-

sity of excited Ar remains high close to the magnetron is due to the high-energy electron

accumulation in the magnetized region above its racetrack.

Another important observation is the apparent working gas emission region travelling

outwards from the target synchronized with the propagation of the metal emission wavefront

(for clarity, refer to the colored electronic version of Fig. 4). This is most probably an envelope

of excited Ar that precedes the expanding metal-rich plasma as a consequence of momentum

transfer from the energetic sputtered metal to the much colder working gas atoms. This
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visual observation seems to confirm the existence of the working gas shock wave originally

reported by Kadlec [100].

It should be underlined that the current plasma diagnostics approach presented here can

be performed with the same set of filters in different gases or working gas mixtures such as

N2/Ar and O2/Ar. Related discharge dynamics, not shown in this paper, in the case of N2

and Ar mixtures was reported earlier [162].

The ability to provide direct information about the gas and metal transport within the

deposition chamber makes time- and species-resolved plasma imaging an attractive technique

for optimization of the deposition process. For example, it could be used to minimize unde-

sired working gas incorporation into the growing film. In fact, inert Ar atoms may occupy

interstitial positions within the film lattice which can lead to a higher internal stress that

can compromise coating’s durability. Furthermore, incorporation of Ar atoms within the

substrate-coating interface can weaken adhesion due to increased lattice strain [14].

In combination with pulsed substrate biasing, the information about the discharge evolu-

tion would enable the operator to selectively choose the kind of ionized species to be incor-

porated within the growing film. This could be performed by the application of a negative

bias during the time period when the metal species reach the substrate. A positive bias, pre-

venting incorporation of the working gas ions into the substrate, such as during the ignition

phase, could also be applied. The bias power supply could then be triggered by the onset of

the applied cathode voltage with a set delay selected by the operator.

4.5 Conclusion

Time- and species-resolved plasma imaging permits the visualization of different plasma

processes within the HiPIMS pulse evolution. These processes include background gas fast-

electron excitations during the discharge ignition, gas shock waves, and metal-rich plasma

expansion in the form of ion-sound waves. Such diagnostics can be performed in both non-

reactive and reactive discharges. The principal advantage of this non-intrusive diagnostic

approach is its ability to provide direct information about the sputtered material spatial dis-

tribution and about its transport between the target and the substrate. This can be particu-

larly helpful if combined with pulsed substrate biasing synchronized with the HiPIMS pulse.
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CHAPTER 5

Paper II: Dynamics of reactive high-power impulse magnetron sputtering

discharge studied by time- and space-resolved optical emission spectroscopy

and fast imaging

Authors: M. Hala, N. Viau, O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu

Article published: Journal of Applied Physics, vol. 107, p. 043305, Feb. 2010.

Abstract: Time- and space-resolved optical emission spectroscopy (OES) and fast imaging

were used for the investigation of the plasma dynamics of high-power impulse magnetron

sputtering (HiPIMS) discharges. 200-µs pulses with a 50-Hz repetition frequency were applied

to a Cr target in Ar, N2 and N2/Ar mixtures and in a pressure range from 0.7 to 2.66 Pa.

The power density peaked at 1.2-4 kW cm−2. Evidence of dominating self-sputtering was

found for all investigated conditions. Up to four different discharge phases within each pulse

were identified: (i) the ignition phase, (ii) the high-current metal-dominated phase, (iii) the

transient phase, and (iv) the low-current gas-dominated phase. The emission of working gas

excited by fast electrons penetrating the space in-between the electrodes during the ignition

phase spread far outwards from the target at a speed of 24 km s−1 in 1.3 Pa of Ar and

at 7.5 km s−1 in 1.3 Pa of N2. The dense metal plasma created next to the target propagated

in the reactor at a speed ranging from 0.7 to 3.5 km s−1, depending on the working gas

composition and the pressure. In fact, it increased with higher N2 concentration and lower

pressure. The form of the propagating plasma wave changed from a hemispherical shape in

Ar, to a drop-like shape extending far from the target in N2. An important N2 emission rise

in the latter case was detected during the transition at the end of the metal-dominated phase.
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5.1 Introduction

High-power impulse magnetron sputtering (HiPIMS) is a deposition technique capable

of creating very dense metal plasmas by means of high-power unipolar pulses applied to a

magnetron target. This enables a significant degree of ionization of the sputtered material.

A high ionization fraction of the sputtered material reaching up to 30% for Cr, 60% for Cu

and 60% for Ti has been reported [28, 29, 30], as well as the detection of multiply (up to four-

fold [32]) charged metal ions. A high number of metal ions in the deposition flux was found

to be beneficial, for instance, in the substrate pre-treatment for adhesion improvement [14],

and in the fabrication of dense, defect-free coatings with low surface roughness [40]. In order

to understand the properties of the HiPIMS discharge and to optimize the deposition process,

numerous systematic studies of discharge dynamics have been conducted in the last several

years [28, 22, 100, 164, 161, 160, 165, 25, 120, 166, 126, 167, 13, 70, 168, 169, 170, 26]. In the

following, we summarize some of the major findings.

During the discharge ignition, a significant amount of fast electrons accelerated outwards

from the target penetrate the space in-between the electrodes and causes a significant ex-

citation and ionization of the working gas [22]. The amount of sputtered metal atoms in

the region close to the target increases with rising current. Consequently, the working gas

in front of the target is rarefacted due to the energy transfer from the increasing amount of

sputtered metal neutrals as in the case of conventional direct current magnetron sputtering

(DCMS) discharges [116]. Since the current and the flux of sputtered atoms are higher in

HiPIMS than in DCMS, the rarefaction effect is more pronounced. This phenomena has

been supported by Monte Carlo simulations of the neutral particle flows in HiPIMS [100] and

demonstrated, for instance, in the case of HiPIMS discharges using a Cu cathode in Ar [164].

The gradual change in the discharge composition due to the injection of the sputtered metal

was observed by optical emission spectroscopy (OES) [22, 28, 161] and time-of-flight mass

spectrometry [160]. The subsequent drop of the electron temperature measured by Langmuir

probes [165, 25] can be interpreted as being electron cooling in collisions with metal atoms

replacing the working gas. This is due to the fact that metals have their first ionization and

excitation threshold energies below that of non-reactive working gas atoms (such as Ar).
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As metal atoms gradually replace the working gas near the target, a growing amount of

the sputtered metal neutrals is thermalized and ionized in the established plasma. If the

plasma density (power density) is high enough, a significant fraction of the target current is

consequently due to metal ions which are attracted back to the target (self-sputtering, SS).

SS can even become self-sustained, without the participation of the working gas ions, as was

demonstrated by Andersson and Anders[119]. The sustainability of SS depends on numerous

parameters, such as the self-sputtering yield of the target material, the secondary electron

emission yield [121], the applied cathode voltage [120], the magnetic field strength of the

magnetron, and the working gas used [160]. In general, this phase of the discharge may

be defined as metal-dominated since the gas ions are still expected to contribute to target

sputtering, combined with the metal ions; Such behavior is expected for transition metal

targets (like Cr), with low self-sputtering yields. The transition in composition for different

HiPIMS discharges has been reported, for instance, in [28, 120, 166, 126, 167]. However,

information about the development of reactive discharges in nitrogen, commonly used in the

preparation of hard and protective coatings, is still missing.

Sputtered target atoms represent a particle supply, creating a density gradient and a

directional momentum which forces both neutral and ionized metal to diffuse away from the

target. Moreover, the high-density plasma close to the target generates a high local plasma

pressure. It was shown that metal ions may propagate in the ballistic regime [161] or via

ambipolar diffusion [165], in dependence on the working pressure and phase of the discharge.

In addition, some authors have reported on ion acoustic solitary waves reflecting off the

chamber walls [13, 70].

Since the propagation of ions is bound to electrons in order to maintain the quasi-

neutrality, the strength and the shape of the magnetron’s magnetic field confining the move-

ment of the electrons play an important role in plasma transport towards the substrate [29].

To further complicate the matter, this magnetic field is altered by large azimuthal currents

close to the racetrack region as demonstrated in [168]. In fact, the plasma propagation and

sputtered material transport towards the substrate are complex problems that are not yet well

understood. Furthermore, open questions remain regarding the propagation of both ionized

and neutral species in reactive gases, in which the complexity of plasma phenomena increases.
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In this work, we apply time- and space-resolved high-resolution OES to analyze the evo-

lution of both non-reactive and reactive HiPIMS discharges, in pure Ar, pure N2, and the

N2/Ar (1:1) mixture. In addition, time-resolved discharge imaging was performed to bet-

ter understand the propagation of individual excited species within the deposition chamber.

Specifically, we identify several development stages of HiPIMS pulses. Furthermore, we show

the development of the dense metal plasma close to the target and its expansion into the

reactor. Finally, we determine the relationship between the plasma propagation, the working

gas composition and pressure.

5.2 Experimental details

An unbalanced magnetron with a 100-mm diameter Cr target was powered by an HMP2/1

power supply (HUTTINGER Electronics) with a peak power capability of 2 MW. The ini-

tial cathode voltage, UC, was set to −900 V. However, the actual UC decreased during the

individual pulses owing to high currents drawn by the discharge under investigation and

to power supply limitations. The HiPIMS discharges were ignited at a frequency of 50 Hz

and a duty cycle of 1%. The voltage and current waveforms were measured by a Tektronix

P6015A voltage probe and a Pearson 301X current monitor, respectively, and recorded by

a Tektronix TDS2014B digital oscilloscope. The base pressure in the deposition chamber

prior to experiments was less than 5 10−4 Pa. The HiPIMS discharges were operated in three

different working gas compositions, namely in pure Ar, N2/Ar mixture with a 1:1 partial

pressure ratio, and in pure N2, using a total pressure of 0.7, 1.3 and 2.66 Pa. The peak power

density on the target ranged from 1.2 to 4 kW cm−2, depending on the gas composition and

working pressure.

Time-averaged and time-resolved (TR) OES of the discharge plasma were performed using

a system comprising a SpectraPro 2750 spectrometer (PI Acton) with a holographic grating

(2400 grooves mm−1) connected to a high-speed PI-MAX2 camera (Princeton Instruments).

In time-resolved measurements, an optical signal was recorded during a 5-µs period, after a

set delay from the initiation of the voltage pulse (see Fig. 5.1(a)). The signal was averaged

over 5 to 50 pulses, depending on its intensity. Subsequently, the process was repeated for

the following 5-µs interval, corresponding to the next data point. Exceptionally, 1-µs long
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Figure 5.1 The principle of time-resolved (TR) gating for data acquisition (a) and two modes
of TR measurements: spectroscopy (b) and imaging (c).

intervals were used in order to increase the precision of the speed estimation of the excited

neutral Ar during the ignition phase.

TR mesurements were performed in two modes: spectroscopy and imaging. In the first

case, the camera was mounted in front of the spectrometer output aperture, as illustrated

in Fig. 5.1(b), to record high-resolution (better than 0.1 nm) spectra. The light emitted by

the plasma was collected using a probe mounted within the deposition chamber at different

distances from the target, d, ranging from 1 to 20 cm. The line of sight of the probe was

parallel to the target surface and the diameter of the light cone from which the light was

collected did not exceed 1 cm. In the imaging mode, the camera was placed outside of the

deposition chamber, and it recorded sets of images through the viewing port as depicted in

Fig. 5.1(c).

For a given set of discharge conditions, emission lines of the same species (in wavelengths

ranging from 230 to 820 nm) followed similar time-resolved development. This is illustrated

in the TR emission spectra in Fig. 5.2 in which the time variation of the two Ar1+ emission

lines is the same, while the Cr0 emission lines behave differently. Furthermore, the latter lines

also have similar time development. The specific lines chosen for this study may therefore be

considered to be general representatives of the excited species’ behavior.
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Figure 5.2 Time-evolution of optical emission spectra within a pulse period at a target-probe
distance of d = 1 cm. Discharge was operated in Ar at 1.3 Pa. Several emission lines of Ar+

and Cr0 are indicated.

The list of the monitored emission lines for different neutral and ionized species with the

corresponding excitation energies, Ek, and ionization energies, Ei, is given in Table. 5.1. The

N0
2 is represented by the (B3Πg → A3Σ+

u )(6-2) band of the first positive system, and the

N1+
2 by the (B2Σ+

u → X2Σ+
g )(0-0) band of the first negative system. Neither of the selected

Cr emission lines are due to radiative de-excitation to the energy ground level, hence the

self-absorption effect can be considered as negligible. Also, all of these lines have a transition

probability higher than 4·10−7 s−1. Since corresponding de-excitation times are much shorter

than the time scale of the plasma propagation, the emission of these species indicates their

presence at specific target-probe distances.

Table 5.1 List of the monitored OES lines with corresponding wavelengths, λ, excitation
energies of the upper excited states, Ek, and of ionization energies, Ei. The values of Ek for
ionized species are for electron excitations from the ion ground state. The values of Ek and
Ei for molecular nitrogen are only approximative since the exact values depend on the actual
vibrational state.

OES line Cr0 Cr1+ Cr2+ Ar0 Ar1+ N0
2 N1+

2

λ [nm] 492.22 267.72 231.91 800.62 442.6 660.3 391.44
Ek [eV] 5.62 6.18 12.38 13.17 19.55 7.3 3.3
Ei [eV] 6.77 16.50 – 15.76 – 15.58 –
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5.3 Results and discussion

5.3.1 Current monitoring

In the first section we present the evolution of HiPIMS pulses in dependence on nitrogen

concentration in the N2/Ar mixture at 1.3 Pa analyzed by TR current monitoring. One of the

major differences between the reactive and non-reactive discharges is the rise of the discharge

current during each pulse as illustrated in Fig. 5.3. For instance, the maximum current

increases by a factor of three in the case of discharges in pure N2 (IC = 320 A) compared

to that in pure Ar (IC = 100 A). In fact, this rise is gradual with the addition of N2 into

the working atmosphere. This increase may be explained by a higher compound electron-

impact ionization cross section for N2 and dissociated N when compared with that of Ar, for

high-energy electrons. In such a case, the overall amount of working gas ions would increase

together with nitrogen concentration in the gas mixture, assuming abundant electrons with

energies higher than, for instance, 100 eV in the magnetized region as suggested in [169].

However, at this moment it is difficult to obtain reliable cross section values for both gases

in order to compare both cases.

Figure 5.3 Time-resolved current pulse waveforms produced by HIPIMS using a Cr target at
different nitrogen concentrations C in the N2/Ar mixture at 1.3 Pa.
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It is to be noted that the current during each pulse is not stable in any of the studied

discharges. High currents (peaking at IC = 320 A in N2) result in an important reduction

of the charge stored in the pulse unit capacitors of the HiPIMS power supply. This causes

a drop of the cathode voltage and, consequently, further fall of the current. The origin of a

significant current fall at the end of the pulse at higher N2 concentrations will be discussed

in the following section.

The time lag between the voltage pulse application and the rise of the discharge current

grows with higher nitrogen content. In addition, the initial current increases more slowly than

in pure Ar (Fig. 5.3). The latter two effects are indication of delayed gas breakdown due to

the energy loss of fast electrons to the excitation of N2 molecules. When compared to atomic

Ar, molecular nitrogen has numerous vibrational and rotational excitation levels accessible

for energy absorption. Moreover, the electron energy can also be lost in N2 dissociation

(Edis = 24.3 eV). For instance, a significant presence of atomic N1+ was detected in HiPIMS

discharges in pure N2 close to the Cr cathode by time-of-flight spectrometry in [160]. However,

we could not detect any atomic nitrogen emission lines due to strong chromium emission

within the accessible wavelength range.

5.3.2 Discharge evolution close to the target

An important part of this work was to analyze the magnetized plasma region by TR

OES at a target-probe distance of d = 1 cm. The waveforms of the time-resolved current

and voltage and of emission line intensities of both metal and gas species in Ar, N2/Ar (1:1)

mixture and N2 are presented in figures 5.4, 5.5 and 5.6, respectively. It was observed that the

emission intensity waveforms measured at 0.7 Pa and 2.66 Pa exhibited only minor differences

from those at 1.3 Pa presented here. For instance, both current and individual emission line

intensities increased faster and achieved higher values when using higher working pressure.

Based on the analysis of the current and the emission intensity waveforms, we have divided

the investigated HiPIMS pulses into several subsequent stages. In general, the discharges de-

velop through the ignition phase (I), followed by the high-current metal-dominated phase

(M). Moreover, a transient phase (T) towards a high-voltage DCMS-like gas-dominated dis-

charge (G) characterized by a significant drop in current and discharge emission was detected
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in reactive discharges. These phases can be described in more detail below.

Ignition phase (I): The first detected emission is that from neutral working gas excited

by quickly diffusing fast electrons which could be divided into two categories depending on

their origin. The first ones are the electrons created by electron impact with gas molecules

in the collisional cascades due to the high potential difference between the magnetron and

the chamber walls during the gas breakdown. The second kind of energetic electrons are sec-

ondary electrons produced on the target by impacting ions and accelerated in the developing

sheath. A few microseconds after the Ar0 and/or N0
2 emission rise, the emission intensity of

Ar1+ and/or N1+
2 increases as working gas atoms are ionized in collisions with these energetic

electrons. Simultaneously, the rising emission intensities of Cr0, Cr1+ and Cr2+ indicate the

Figure 5.4 Time evolution of the target current, IC, and the target negative voltage, UC,
(a) and of OES line intensities of metal species (b) and of working gas species (c) during a
HiPIMS pulse using a Cr target and the initial cathode voltage UC = −900 V. The discharge
was operated in Ar at 1.3 Pa. The ignition phase (I) and the metal-dominated phase (M)
are indicated.
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injection of metal into the discharge after having been sputtered by working gas ions. The

subsequent decrease of Ar0, Ar1+ and N1+
2 emission intensity is a sign of electron cooling in

electron-metal collisions and of local working gas rarefaction. However, in reactive discharges,

the N0
2 line intensity follows the current waveform. This may be explained by its relatively

low excitation energy threshold (Ek,N2 = 7.3 eV) and, perhaps, higher electron temperature.

Metal-dominated phase (M): The intense emission from neutral and ionized metal dom-

inates the discharge emission. The intensity waveforms of Cr1+ and Cr2+ emission lines

approximately follow the evolution of the current amplitude during the whole pulse, while

ionized working gas emission is significantly diminished after the termination of the igni-

tion phase. This indicates that Cr1+ ions are actually the principal component of the dis-

charge current. Furthermore, the relatively strong emission of Cr2+ points to a possibility of

sustainable SS process [121].

Figure 5.5 Time evolution of the HiPIMS pulse as described in Fig. 5.4. The discharge was
operated in N2/Ar (1:1) mixture at 1.3 Pa. The ignition phase (I), the metal-dominated
phase (M) and the transient phase (T) are indicated.
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The current during Phase M is not stable in any of the discharges as would be expected

for a sustained SS process [120]. This is an artefact due to the power supply limitations

as discussed in section 5.3.1. In addition, the current might also be diminishing due to

decreasing contribution of working gas ions to the sputtering process. In fact, the high

pressure-independent currents during this phase of the discharge and the similarity of the

HiPIMS pulse spectroscopic development in figures 5.4, 5.5 and 5.6 suggest that the SS

process with a possible gas-ion contribution can be initiated and sustained (up to 185 µs

for 200-µs pulses) in both non-reactive and reactive atmospheres, including pure nitrogen.

This seems to be in disagreement with the recently published claim that sustaining the high-

voltage, high-current HiPIMS regime using a Cr cathode is not possible over a longer period

of time (e.g. higher than 100 µs), and that the transition to DCMS-like discharge is inevitable

due to depletion of the sputtering gas [171]. We believe, that the authors were limited in

Figure 5.6 Time evolution of the HiPIMS pulse as described in Fig. 5.4. The discharge
was operated in N2 at 1.3 Pa. The ignition phase (I), the metal-dominated phase (M), the
transient phase (T) and the gas-dominated DCMS-like phase (G) are indicated.
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their study by the cathode voltage (UC = 700 V), which was most probably lower than the

required threshold for sustained SS.

It may be noted that neutral Cr emission generally rises during phase M even though the

current drops. This rise is more pronounced with lower working pressure. This phenomenon

was observed previously [22, 28, 161] but no satisfactory explanation has been offered so far.

For instance, Vasina et al. [161] proposed that the rise in neutral metal emission may be

caused by an increase of metal density in the case of 10-µs long HiPIMS pulses using a Cu

cathode in pressures ranging from 0.7 to 9 Pa. In this case, the Cr0 emission signal growing

throughout the Phase M would imply the accumulation of Cr atoms close to the target.

Another possible explanation is that the surface temperature of the ion-heated target

grows during the pulse duration. Substantial heating of the cathode surface could enhance

the ion-induced sublimation, as suggested by Vlcek et al. [172]. In their work, the HiPIMS

deposition rate increased dramatically when the target cooling was reduced. However, our

preliminary numerical simulations suggested that the target cooling, which is most efficient

between HiPIMS pulses, is sufficient to maintain the temperature of the cathode surface

stable. More investigations are necessary in order to explain this phenomenon.

Transient phase (T): When the cathode voltage drops under a certain threshold (UC ≈ 720 V

in N2 discharges), the system undergoes a transition from a high-voltage, high-current metal-

dominated HiPIMS discharge to a high-voltage, low-current DCMS-like discharge dominated

by gas-ion sputtering since the SS process is no more the principal sputtering process. The

onset of this transition can be identified by a kink in the decreasing region of the current

amplitude and a sudden fall of the emission signal of all metal species including the neutral

Cr (Fig. 5.5 and 5.6) This kind of transition was also observed in HiPIMS discharges in Ar

and different N2/Ar mixtures if the voltage dropped under a certain value, which diminishes

with decreasing N2 content in the working gas.

Gas-dominated discharge (G): The subsequent high-voltage DCMS-like discharge may

be characterized by pressure-dependent, low current levels (IC ≈ 10 A) and significantly

diminished plasma emission. Also, Cr2+ emission decreases under the detection limit and

neutral Cr with neutral working gas emission lines dominate the discharge emission, as in

the conventional DCMS.



95

5.3.3 Discharge spatial evolution

In this section, we focus on the spatial evolution of the plasma during the HiPIMS pulse.

Fig. 5.7 shows the time-resolved space distributions of emitted light by the three types of HiP-

IMS discharges as recorded by a high-speed camera. The upper three images of each discharge

illustrate the instantaneous discharge emission during the ignition phase (I), and the lower

three images depict the metal-dominated phase (M). In addition, movies composed of the

images representing a 5-µs intervals for the three investigated discharges can be downloaded

on the journal’s webpage at http://dx.doi.org/10.1063/1.3305319 (movies 5.8, 5.9 and 5.10).

During the ignition phase, neutral working gas emission dominates the developing dis-

charge due to collisional excitations by fast electrons emitted from the cathode. However,

the spatial emission distribution and the time scale differ depending on the working gas

composition. In Ar discharges, a ”blast” of light appears to develop rapidly during the first

microseconds after the plasma breakdown, spreading far from the cathode into the reactor

(Fig. 5.7 and movie 5.8). This strong emission due to excited working gas indicates the fast

electrons released from the target by impacting ions and accelerated in the developing sheath

to energies high enough to escape the magnetic confinement of the unbalanced magnetron. As

the discharge current grows, plasma density rises, and an increasing amount of these electrons

is trapped in the vicinity of the target as a consequence of numerous collisions with other

electrons and ions. This phenomenon agrees with time- and space-resolved Langmuir probe

measurements in a HiPIMS discharge using a Ti0.5Al0.5 cathode and Ar atmosphere [22].

The authors reported on fast-propagating ion-current peak due to ionized Ar accompanied

by neutral Ar emission, preceding the metal ions propagating outwards from the target later

during the pulse.
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Figure 5.7 Images taken during the 200-µs HiPIMS discharge pulses in Ar (a), N2/Ar (1:1)
mixture (b) and N2 (c) at 1.3 Pa at different times of the pulse. The three upper rows
of images show the ignition phase (I) and the three lower rows show the metal-dominated
phase (M). For the sake of clarity, different colors are assigned to different emission intensities
(arbitrary units) as indicated in the upper picture of each column. The intensity scales of
the lower three images of Ar discharge during the Phase M are shifted in order to make the
advancing plasma emission more visible.
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Figure 5.8 Movie depicting the emission evolution of the 200-µs HiPIMS pulse recorded
through the viewing port by a high-speed camera (enhanced online). The discharge was
operated at 1.3 Pa of Ar.

Figure 5.9 Movie depicting the emission evolution of the 200-µs HiPIMS pulse recorded
through the viewing port by a high-speed camera (enhanced online). The discharge was
operated at 1.3 Pa of the N2/Ar (1:1) mixture.

Figure 5.10 Movie depicting the emission evolution ofthe 200-µs HiPIMS pulse recorded
through the viewing port by a high-speed camera (enhanced online). The discharge was
operated at 1.3 Pa of N2.
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With the introduction of nitrogen into the working gas mixture, the time needed for the

establishment of a stable discharge is extended, and so is the time of fast electron-induced

gas excitations (movies 5.9 and 5.10). Furthermore, the working gas emission drifts at a

significantly lower speed than in Ar discharges. This is illustrated by a position-time plot

in Fig. 5.11 in which the target-probe distances of the emission maximum for the different

monitored species were plotted as a function of their detection time from the pulse initiation.

For instance, the N0
2 emission peak propagates at a speed of vN2 ≈ 7.5 km s−1 in N2 at

1.3 Pa, while the speed of the Ar0 emission peak reach vAr ≈ 25 km s−1 in Ar at 1.3 Pa.

In general, the speed of the advancing electron-induced gas excitation wave decreases with

higher nitrogen content, as it does with increasing working gas pressure. This feature can

possibly be attributed to the aforementioned losses of electron energy in a larger number of

inelastic collisions with molecular N2. In addition, the shape of the working gas emission

spreading away from the target modifies from a conical shape in Ar into an emissive ”blob”

in N2. The intensity of this emission rises with increasing working pressure and current.

Interestingly, a zone of diminished emission intensity in the high-emission region can be

observed in most of the images during the ignition phase (Fig. 5.7, movies 5.9 and 5.10).

This low-emission zone might be a region of near-zero-magnetic-field that might have been

displaced from its original position at d = 3.5 cm along the magnetron’s axis due to the

superimposed magnetic field induced by the strong azimuthal current above the cathode. It

is well known that the azimuthal current in magnetron discharges is higher than the discharge

current. The magnetic induction of this strong current may modify the magnetic field far from

the target as shown by Bohlmark et al. [168]. The authors have experimentally demonstrated

that these modifications are on the order of units of milliteslas even at large distances from

the target, where the magnetron’s magnetic field is of the same order of magnitude. Changes

in magnetic confinement may alter the number of inelastic collisions, hence the emission

intensity from the excited background gas. Further analysis by complementary techniques,

such as Langmuir probe, should be performed in order to understand this feature.

In the metal-dominated phase, the dense plasma region generated close to the target

diffuses outwards from the target zone as shown in the three lower rows of Fig. 5.7. Plasma

expansion is constant with time and its speed increases with decreasing gas pressure as listed
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Table 5.2 Speed of metal plasma wavefront, vCr+, calculated from the advancing Cr1+ line
emission wavefront for nine different working conditions.

Pressure [Pa] 0.7 1.3 2.66

vCr+ [km/s]
Ar 1.3 1.1 0.7
N2/Ar (1:1) 2.0 1.4 1.1
N2 3.5 1.9 1.7

in Table 5.2. The speed of the metal plasma wavefront was estimated by recording the

Cr1+ emission intensity resolved in time at different target-probe distances as illustrated in

Fig. 5.12 for discharges in Ar and N2. The propagation of the Cr1+ peak was then plotted

in the position-time dependence in Fig. 5.11. The speed of the ionized Cr emission peak in

pure Ar at 1.3 Pa is vCr+ ≈ 1.1 km s−1. This value is close to the speed of Ti ions in an

Ar discharge at 1.3 Pa (vTi+ ≈ 1.15 km s−1 [170]) and to the speeds of ion-acoustic waves

reported for HiPIMS discharges in Ar at 2.66 Pa using a Ta cathode (vTa+ ≈ 1.1 km s−1 [13])

or a Ti cathode (vTi+ ≈ 1.1 km s−1 [70]). Table 5.2 illustrates that the Cr-ion propagation

speed increases with higher nitrogen content. For example, it reaches vCr+ ≈ 1.9 km s−1 at

1.3 Pa in N2. Such a significant rise may be possibly related to a higher plasma density which

may facilitate the transport of charged particles within the reactor in a similar way as if using

additional plasma [170]. Since the current amplitude grows with the introduction of nitrogen

in the discharge, the plasma density predictably increases. In support of this claim we have

reported a rise in chromium ion-to-neutral OES ratios with increasing nitrogen concentrations

in different N2/Ar mixtures using the same discharge conditions (e.g. the same initial cathode

voltage) [173].

In Ar discharges, the emission intensity peaks of Cr0 and Ar1+ propagate at the same

speed as that of diffusing Cr1+ (Fig. 5.11(a)). Also, the Cr0 emission waveforms (not shown)

follow those of Cr1+, suggesting that the diffusion of Cr neutrals follows the Cr plasma.

In contrast, Ar1+ emission reaches its maximum ahead of the metal plasma wavefront and

subsequently drops. Similar observations for the propagating Ar0 emission peak were made

by fast plasma imaging with the use of custom-made optical filters, which will be discussed

in a separate study. This confirms the existence of a gas shock wave closely preceding the
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Figure 5.11 Distance from the target of the emission intensity peak versus time from pulse
initiation for different emitting species in Ar (a) and N2 (b) discharges at 1.3 Pa. The solid
lines represent the linear regressions for Cr1+, Ar0, N0

2 and N1+
2 emission intensity peaks used

for the estimation of the propagation speed .

expanding metal plasma as previously simulated by the Monte Carlo method by Kadlec [100].

Ar atoms traveling in front of the expanding metal plasma may then be ionized and excited

by energetic electrons leaving its wavefront. However, the emission from excited N1+
2 follows

the N0
2 emission in the N2/Ar mixtures, propagating at a speed close to that of N0

2 (vN2+ ≈ 8.5

km s−1 in N2 at 1.3 Pa). This is illustrated in Fig. 5.13, in which the TR N0
2 and N1+

2 emission

intensities are plotted for different values of distance d.

The wavefront of expanding plasma propagates along the magnetron’s axis outward from

the target due to electron confinement by the magnetic field of the unbalanced magnetron.

Interestingly, the introduction of nitrogen into the working gas modifies, in addition to the

different propagation speed, the apparent form of the propagating plasma. In Ar discharges,

the emission of the propagating plasma had a hemispherical shape and was confined to the

vicinity of the target. In reactive mixtures, the plasma wavefront changed during the pulse

from hemispherical to conical and finally to a drop-like shape extending far into the reactor.

The plasma emission separates into two distinct emission regions at the end of the metal-

dominated phase and during the transient phase in reactive discharges. For example, the
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Figure 5.12 Time evolution of the Cr1+ line emission intensity for 4 different target-probe
distances d in a HiPIMS pulse in Ar (a) and N2 (b) at 1.3 Pa. Intensities at d = 1 cm were
divided by a factor of 10. The early emission rise (succeeding the pulse initiation) in N2

atmosphere at d ≥ 10 cm is an artifact due to the reflection of the very bright Cr1+ emission
close to the target.

bottom images of Fig. 5.7(b,c) show these two regions which may be described as follows:

The discharge close to the target is dominated by Cr1+ emission while the drop-like-shaped

plasma shines predominantly due to excited N0
2. The latter emission region is depicted in

Fig. 5.13(a) as a pronounced secondary peak at d = 15 cm. The strong emission originat-

ing from N2(B3Πg) excited states may result from the transfer of the internal energy from

metastable N2(A3Σ+
u ) states during the collisions in-between nitrogen molecules. This energy

transfer is a dominant excitation mechanism in post-discharges, where the electron-induced

excitation mechanism is negligible.
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Figure 5.13 Time evolution of the N0
2 (a) and N1+

2 (b) line emission intensities for 5 different
target-probe distances d in a HiPIMS pulse in N2 at 1.3 Pa. The intensity for the N1+

2

emission line at d = 1 cm was divided by a factor of 10. The dashed lines represent the
data from experiments with a circular gas distributor mounted at d = 11 cm and a grounded
substrate holder facing the target at d = 16 cm .

The N0
2 emission at the end of Phase M was stronger when a circular gas distributor

located at d = 11 cm and a grounded substrate holder at d = 16 cm were mounted within the

reactor facing the cathode. In such a configuration, the N0
2 peak was also accompanied by an

important N1+
2 emission peak (Fig. 5.13(b), in dashed line). It is also worth noting that the

intensities of both the N0
2 and N1+

2 secondary peaks rose significantly when higher discharge

currents were used. This was achieved by using a magnetron with a stronger magnetic field

or by increasing the working gas pressure. The working gas is efficiently rarefacted by the

large amount of sputtered Cr, proportional to the cathode current, in the region in front of
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the target. In contrast, N2 density may locally rise in the proximity of the gas distributor and

specifically in-between the distributor and the substrate holder. For instance, the localized

increase in the working gas density at the substrate holder was previously discussed in the

case of a HiPIMS discharge in Ar [100]. A higher amount of working gas might then be

excited (ionized) by energetic electrons travelling outwards from the target alongside the

magnetic lines of the unbalanced magnetron.

The nitrogen-emission region located far from the target, depicted in Fig. 5(b,c), extin-

guishes during the transient period. In the subsequent gas-dominated phase, the discharge

emission, dominated by Cr0 and N0
2, is confined close to the target (d < 7 cm) in the same

way as in DCMS discharges (see movie 5.10).

It is important to highlight that the OES technique and imaging are both limited by the

excitations conditions of emitting species. Hence, we were only able to study the discharge

dynamics within the pulse period during which the energetic electrons are produced. However,

long-lived plasma comprising mostly thermalized metal ions was reported in HiPIMS post-

discharges using TR optical absorption spectroscopy [165], mass spectroscopy and Langmuir

probe diagnostics [174].

5.4 Conclusions

Non-reactive and reactive HIPIMS discharges operated in Ar, N2/Ar (1:1) mixtures and

N2 were systematically investigated by a combination of time- and space-resolved OES and

fast imaging. This approach represents a powerful tool for discharge dynamics analysis in

complement with other analytical techniques, such as Langmuir probe diagnostics and mass

spectrometry.

The individual phases of discharge evolution were identified: (i) The ignition phase, char-

acteristized by bright working gas emission and the development of a dense-plasma region

close to the target, followed by (ii) the metal-dominated high-current phase, characterized by

the self-sputtering process with a possible gas-ion sputtering contribution, during which the

metal plasma expands outwards from the target. Furthermore, (iii) the transient period and

subsequent (iv) high-voltage DCMS-like gas-dominated phase, characterized by a significantly

lower current and plasma emission intensity, was detected at the end of the reactive HiPIMS
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pulses as a consequence of the voltage drop caused by limitations of the power supply.

The effects observed during individual HiPIMS pulses significantly differed depending on

the working atmosphere used. During the discharge ignition, the light emitted by excited gas

due to fast electrons penetrating the space in between the electrodes changed from a conical

shape, propagating at a speed of 24 km s−1 in 1.3 Pa of Ar, to an emissive blob, traveling at

a much lower speed of 7.5 km s−1 in 1.3 Pa of N2. A region of remarkably decreased working

gas emission intensity was observed during the ignition period in all investigated discharges.

The speed of plasma propagation during the metal-dominated phase ranged from 0.7 to

3.5 km s−1. It was found that this speed rose with increasing N2 concentration and decreasing

working gas pressure. Moreover, the form and the emission intensity of the expanding plasma

were modified with nitrogen introduction into the working atmosphere. In Ar discharges, the

propagating plasma wave visible due to strong emission from Cr0 and Cr1+ had a hemispher-

ical shape, with ionized and excited working gas on its wavefront. In reactive mixtures, the

plasma wavefront changed during the pulse from hemispherical through conical to a drop-like

shape, extending far into the reactor, and visibly detaching from the dense plasma region

close to the target during the transition into the low-current DCMS-like discharge. The dis-

charge in the proximity of the target was still dominated by Cr0 and Cr1+ emissions while the

drop-like-shaped plasma at higher target-probe distances (d = 15− 20 cm) shined predomi-

nantly due to strong emission from excited N0
2. An important rise in nitrogen emission in the

latter region was detected at the end of the metal-dominated phase, especially when the gas

distributor and the substrate holder faced the target and when higher discharge currents were

used. Many of the observed phenomena confirm previous findings made by both modeling

and other analytical techniques.
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CHAPTER 6

Paper III: Dynamics of HiPIMS discharge operated in oxygen

Authors: M. Hála, O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu

Article published: IEEE Transactions on plasma science, vol. 39, no. 11, p. 2582, Nov.

2011

Comment: This paper is a part of the 6th triennial special issue: Images in plasma science

Abstract: We report on time- and species-resolved plasma imaging analysis of high-power

impulse magnetron sputtering discharge operated above a Cr target in pure oxygen. It was

found, that the discharge emission is dominated by oxygen species. No metal-dominated

sputtering has been detected, in contrast to the discharges in Ar, N2 and N2/Ar mixtures

investigated previously.
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6.1 Published paper

High-power impulse magnetron sputtering (HiPIMS) is a novel PVD deposition technique

in which a high-density plasma (densities in the kW cm−2 range) is reached by applying

short high-voltage unipolar pulses (600 to 2000 V) to a target using a low duty cycle (usually

0.5% – 5%). In this way, high fluxes of ionized sputtered material are available for coating

deposition [98].

HiPIMS technology has been applied for the fabrication of hard coatings, and more re-

cently of optical coatings [98]. In addition to our earlier work on the discharges using Ar

and N2 [175, 162], the latter application stimulated our interest to understand the HiPIMS

dynamics in O2/Ar mixtures. In this context, a time-resolved optical investigation of the

discharge above a Cr target was performed in pure O2, in order to gain a better insight into

individual plasma-phase processes within the reactive plasmas.

The experiments were carried out in O2 at 1.7 Pa, using a magnetron with a 5 cm diameter

Cr target powered by an HMP2/1 power supply (HUTTINGER Electronik). The substrate

holder, mounted at a distance of 10 cm, was biased to -100 V by a RF power supply in order

to facilitate the discharge ignition. HiPIMS pulses with a peak voltage of UC = −700 V and

a duration of 200µs were applied to the target with a repetition rate of 50 Hz. The discharge

current density, Id, peaked at t = 25 s, and then stabilized at Id ≈ 6 A cm−2, compared to

Id ≈ 0.5 A cm−2 in pure Ar at the same voltage and pressure. Such a high current density is

caused by the high secondary electron emission yield of the oxidized target surface at high

voltages [68].

Time- and species-resolved plasma imaging diagnostics [175] of the discharge was per-

formed using a high-speed PI-MAX2 camera (Princeton Instruments) overlooking the depo-

sition chamber through a viewing port. Each image was recorded during 5µs after a set delay

from the initiation of the voltage pulse, and summed over 5 pulses. In order to select the

optical signal originating from different excited species, a set of band-pass optical interference

filters were placed in front of the camera. More information about the experimental appara-

tus and a detailed discussion of the design of the suitable band-pass filters can be found in

Ref. [175].
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The emission spectra of the HiPIMS discharge were also recorded by a USB2000 spec-

trometer (Ocean Optics) at various target-probe distances (not shown). Close to the target,

the spectra were dominated by the emission lines originating from atomic oxygen, while only

few chromium emission lines could be identified. This is in contrast to the HiPIMS discharges

operated in Ar, N2/Ar mixtures, and even pure N2, where the emission from sputtered Cr

was predominant [175, 162]. In fact, only a limited amount of Cr appears to be released

from the target in the pure O2 atmosphere, mainly due to the fact that there are no heavy

ions available for sputtering (such as Ar+), and that the target surface is covered by Cr-O

compounds exhibiting a low ion-impact sputtering yield.

Fig. 6.1 shows instantaneous images of the discharge at different times from the initiation

of the HiPIMS pulse, as recorded by the high-speed camera through two different filters A

and B. Filter A is a pass-band filter with a high-transmission region between 400 and 540 nm.

In this spectral range the strongest emission originates from the O+ lines at the proximity

of the target, while at distances higher to 5 cm from the target the emission intensity from

the O+
2 lines (first negative system) prevails. The lack of molecular oxygen emission closer

to the target indicates a high rate of oxygen dissociation by energetic electrons. Filter B is

a high-pass filter with a cut-off wavelength of approx. 750 nm, permitting the monitoring of

the two O0 emission triplets centered at 777.4 and 844.6 nm.

Early after the plasma breakdown (t = 3 s) the fast electrons penetrate the space in front

of the cathode, giving rise to the neutral dissociated oxygen emission visible with filter B.

The establishment of a dense plasma region in the target proximity can be observed within

a short delay (t = 8 s) due to the emission from O+ (filter A). Images taken at t = 13 to 33 s

illustrate a developing discharge during the current peak. Note that a travelling emissive

region of excited O0 indicates plasma expansion outwards from the target racetrack. Images

at t = 83 s represent a stabilized discharge at 50 s< t < 170 s.

The apparently reduced O0 emission in the proximity of the target may be explained

by the high degree of oxygen ionization within the magnetized plasma region. Indeed, the

area of the strongest magnetic field confinement is filled with bright O+ emission. A similar

observation was recently reported for Ar and Ar+ emissions in the case of HiPIMS discharges

operated in argon above an Al-doped Zn target [176].
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Figure 6.1 High-speed camera images taken during 200-µs HiPIMS pulses in O2 at 1.7 Pa
above a Cr target with an optical bandpass filter specific for emission from ionized oxygen
(left column, filter A), and from neutral oxygen lines (right column, filter B). The images
were taken at different times from the pulse initiation as displayed on the left side of each
row. Different colors are assigned to different emission intensities, according to the linear
scale depicted in the upper-most right image.
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The oxygen discharge dynamics significantly differs from those in Ar, N2 and N2/Ar mix-

tures operated in the metal-dominated sputtering mode. In the latter case, the discharge

development is largely affected by the sputtered metal accumulating close to the target and

expanding outwards [162]. The emission from excited Cr then gives the discharge an ap-

parent hemispherical shape, such as illustrated in Fig. 6.2(a). In contrast, very little metal

is sputterred from the poisoned target in O2. The optical emission is thus dominated by

dissociated ionized oxygen concentrated above the magnetron racetrack region, copying the

form of the magnetic field configuration of the magnetron (Fig. 6.2(b)).

In conclusion, we found that the HiPIMS discharge operated in pure O2 is dominated

by oxygen species, and that no metal-dominated sputtering period has been detected. This

can help to better understand the HiPIMS deposition process of metal oxide optical films in

O2/Ar mixtures.

Figure 6.2 Photographs of the HiPIMS discharges operated at an average power of P = 1 kW
above a Cr target in pure Ar (a) and in pure O2 (b), recorded by a conventional digital
camera over many pulses. Please note that the yellow color in the proximity of the RF-
powered substrate holder on the right of the image (b) originates from excited O+

2 .



110

6.2 Waveforms and emission spectra pertaining to the O2 discharge

The published paper presented above had a limited length imposed by the publisher.

However, the following results further complete the time-resolved measurements, and they

are shown here for completeness.

Fig. 6.3 shows the averaged discharge current and voltage waveforms during the 200-µs

HiPIMS pulses applied to a Cr target in O2 at 1.7 Pa. Please note the elevated average

value of IC to which the high frequency oscillations are superimposed. The respective optical

emission spectra, depicted in Fig. 6.4, illustrate that the emitted light is dominated by the

working gas ions, specifically in the nearest proximity of the target. This contrasts with

the spectrum of the non-reactive HiPIMS discharge operated at the comparable conditions

in pure Ar (Fig. 4.1 in Chapter 4 [175]). The two latter observations (high pulse currents

accompanied by an important emission from ionized working gas) suggest a steady-state

high density discharge in which not the metal ions but the working gas ions are the dominant

sputtering species, as discussed in Appendix A [177] and detailed in Ref. [122].

Figure 6.3 Current and voltage waveforms recorded during a 200-µs HiPIMS pulse operated
with a Cr cathode in O2 at 1.7 Pa. Both waveforms were averaged over 64 pulses.
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Figure 6.4 The emission spectra of the HiPIMS discharges operated above the Cr target in
O2 at 1.7 Pa recorded at three target-probe distances d = 1 (a), 5 (b) and 9 cm (c). Spectral
intensities at d = 1 cm were divided by a factor of 25. The spectral regions specific for
the emission originating from individual excited species are indicated, as well as the high-
transmission regions of the two band-pass interference filters (white area). It is to be noted
that the O0 emission line at 777.5 nm is saturated at d = 5 and 9 cm.
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CHAPTER 7

Paper IV: Pulse management in high power pulsed magnetron sputtering of

niobium

Authors: M. Hála, J. Čapek, O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu

Article submitted: Surf. Coat. Technol. (Dec. 2011)

Abstract: High power pulsed magnetron sputtering is being extensively explored as a very

promising approach for the fabrication of functional coatings with enhanced performance.

However, a direct comparison of the results obtained in different systems is complicated given

the variety of pulse power supplies with different pulse shape, voltage and current character-

istics. In this study, we systematically investigate and compare sputtering processes above a

model niobium target operated in the same reactor using two commercially available power

supplies: (i) a shorter (200µs) square voltage pulse generator permitting higher cathode

voltage values, and (ii) a modulated pulse power generator with longer (800 − 3000µs)

custom-shaped pulses. In addition, target sputtering using a conventional DC power supply

is also analyzed for comparison purposes. The pulsed discharges are characterized by time-

resolved current and voltage probes and optical emission spectroscopy. The deposition rate,

the microstructure, and the mechanical stress of the fabricated Nb coatings are evaluated

and compared. Finally, the effect of the power delivery management is discussed in terms of

discharge characteristics and coatings properties.
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7.1 Introduction

Recent developments in the field of physical vapour deposition has generated a great

interest in processes that provide high ionization of the sputtered material. One of the

most promising techniques, recently introduced to both academia and industry, combines

magnetron sputtering and pulsed power technology. The application of short duration high

power pulses to a metallic target mounted on a magnetron head can generate high density

plasma (up to 1013 cm−3) and high fluxes of sputtered metal ions available for the deposition

process [21, 98, 104].

It was demonstrated that such a technique, called “high power pulsed magnetron sputter-

ing” (HPPMS) or “high power impulse magnetron sputtering” (HiPIMS), can be beneficial in

coating and interface engineering [158, 14], in coating of complex-shaped substrates [21, 15],

and in tailoring the film properties [97, 98]. The transfer of this technology from academia and

R&D departments towards industrial applications has already started and several companies

have now implemented it into production [178, 179, 180].

The growth in attention related to high power pulsed sputtering also stimulated the de-

velopment of suitable power supplies (PS) with different pulse shape, voltage and current

characteristics, offered from a variety of producers. Therefore, there is a need for a rigorous

comparison of the available PS capacities and limitations in order to facilitate the manu-

facturer’s choice for a specific deposition process. Furthermore, a detailed comparison with

standard DC magnetron sputtering (DCMS) is required as well.

Commercially available PS can be divided into two principal categories according to the

type of the high power magnetron discharge they can produce: (i) square voltage pulse

generators allowing one to reach high cathode voltage values, which we will label in this

study as HiPIMS PS, and (ii) custom-shaped voltage generators producing longer pulses of

lower amplitude, applied for “modulated pulse power magnetron sputtering” (MPPMS). The

shapes of the pulses generated by the two types of PS, compared to DCMS power delivery,

are illustrated in figure 7.1.

In this work, we systematically investigate HiPIMS and MPPMS discharges using a Nb

target sputtered in Ar, and compare them with conventional DCMS discharges. Nb is a
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Figure 7.1 Schematic representation of the power delivery during the pulsed discharges above
a magnetron powered by HiPIMS, MPPMS and DCMS power supply operated at the same
average power P = 300 W.

highly interesting transition metal that exhibits superconducting properties and that forms

an attractive high refractive index oxide when sputtered in reactive oxygen-containing gas

mixtures. Firstly, we discuss the effect of the different power management strategies on

discharge current waveforms, plasma characteristics, and on sputtered material ionization

evaluated by optical emission spectroscopy (OES). Subsequently, we rigorously characterize

the deposition rate, the microstructure and the internal mechanical stress of Nb coatings

prepared by HiPIMS, MPPMS and DCMS at various discharge powers, and at two different

Ar pressures.

7.2 Experimental details

The experiments were performed in the system shown in figure 7.2, consisting of a

turbomolecularly pumped stainless steel chamber, an unbalanced magnetron and a sub-

strate holder. The magnetron with a 5 cm diameter Nb target was powered by either

(i) HÜTTINGER Electronic HMP2/1 HiPIMS PS, (ii) ZPulser Axia 180 MPPMS PS, or

(iii) Advanced Energy MDX 1K DCMS PS. The specifications of these PS are summarized in

table 7.1. The duration of the HiPIMS and MPPMS pulses was fixed at 200µs and 1500µs

respectively, unless otherwise specified. The pulse repetition frequency was fixed at f = 50 Hz

in both cases.
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Figure 7.2 Schematic diagram of the experimental setup. A 5 cm diameter magnetron with
a Nb target can be powered by either a HiPIMS, MPPMS or DCMS power supply. The
substrate holder, positioned at a distance of 10 cm from the target, is biased by an RF
generator. The optical fiber has its line of sight parallel to the target surface at a distance
d ≈ 1 cm.

Waveforms of the cathode voltage, UC, and of the cathode current, IC, were measured by

a Tektronix P6015A voltage probe and a Pearson 301X current monitor, respectively, and

recorded by a Tektronix TDS2014B digital oscilloscope. The average discharge power, P ,

was then calculated as:

P = f

∫ T

0

UC(t)IC(t) dt, (7.1)

where t stands for time and T for the pulse duration during which the cathode current has

a non-zero value.

The optical emission from the discharge was recorded by an optical fiber with its line

of sight parallel with the target surface at a distance d ≈ 1 cm. Time-averaged measure-

ments were analyzed by an Ocean Optics USB2000 spectrometer. For the time-resolved

(TR) diagnostics, and for the estimation of the metal ion-to-neutral intensity ratio, a PI

Acton SpectraPro 2750 monochromator with a holographic grating (2400 grooves mm−1) was

used in combination with a high speed Princeton Instruments PI-MAX2 camera. The list
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Table 7.1 Specifications of the HiPIMS, MPPMS and DCMS power supplies used in this
study.

HiPIMS MPPMS DCMS

Power regulation by Voltage Capacitors’ charge Voltage
Micropulse duty cycle Current

Pulse length Pulse length Power
Pulse shape programming no yes —
Maximum mean power 2 kW 5 kW 1 kW
Maximum peak power 2000 kW 330 kW 1 kW
Maximum cathode voltage 2000 V 900 V 1000 V
Maximum current 1000 A 550 A 1 A
Maximum pulse length 200 µs 3000 µs —
Maximum frequency 500 Hz 400 Hz —
Maximum duty cycle 10 % 28 % —

of the monitored emission lines representing different neutral and ionized species with their

corresponding higher and lower excitation energy levels is given in table 7.2.

In TR OES analysis, each optical signal was recorded during a 5µs period, following

a preset delay from the initiation of the voltage pulse. The signal was averaged over 10

to 50 pulses, depending on its intensity. Subsequently, the acquisition and averaging was

repeated for the following 5µs interval. Such a process was iterated until the pulsed discharge

extinction.

The experiments were carried out in pure Ar at two working gas pressures, p = 1 Pa and

p = 2 Pa. The Ar flow rate was kept constant at 44 sccm, and the total pressure was adjusted

by the throttling valve. Nb coatings were prepared on Si(100) substrates kept at ambient tem-

perature, positioned at a distance d = 10 cm from the target. The substrate holder was biased

to −20 V by an Advanced Energy RF 600 PS in order to facilitate the discharge ignition.

Table 7.2 List of the monitored OES lines with corresponding wavelengths, λ, excitation
energies of the upper excited states, Ek, and of the lower excited states, El. The emission
lines used for the estimation of the metal ion-to-neutral ratio are highlighted by an asterisk
(?). The values of Ek and El for Nb and O are taken from [181], and for Ar from [182].

Nb0 Nb0? Nb+? Nb2+ Ar0 Ar+

λ [nm] 466.38 466.62 313.08 245.70 811.53 442.60
Ek [eV] 2.85 4.05 4.40 — 13.08 19.55
El [eV] 0.20 1.39 0.44 — 11.55 16.75



117

The thickness of the fabricated films was determined by a Veeco Dektak 3030ST Pro-

filometer equipped with a conical diamond stylus. The internal stress of the films was eval-

uated before and after film deposition by measuring the curvature of rectangular Si stripe

(10 x 50 mm2) using a Tencor FLX-2900 stress measurement instrument. The value of the

internal stress was then calculated from the Stoney relation [154]. The crystal structure was

studied by X-ray diffractometry (XRD) in θ − 2θ configuration using Cu Kα (λ = 0.15406 nm)

radiation in a Philips X’PERT instrument. The film microstructure was characterized by field

emission gun scanning electron microscopy (FEG SEM) using a Hitachi FB2000A.

7.3 Results and discussion

7.3.1 Characterization of HiPIMS and MPPMS discharges

In this section, we describe the power management of the two pulsed PS and analyze their

respective discharge characteristics by OES diagnostics.

Power management

The effect of the different power adjustments in HiPIMS and MPPMS generators on

the discharge current waveforms recorded at various power loads is shown in figure 7.3.

The HiPIMS PS is a constant voltage generator that produces single square-shaped voltage

pulses of adjustable length (10–200µs) and amplitude. Hence, one has a direct control

over UC that may reach, in our case, values up to 2000 V in amplitude. Maintaining UC

above a certain threshold during a sufficiently long period results in a transition from gas-

ion dominated sputtering towards metal-ion dominated sputtering in which the sputtered

material ions contribute to the target sputtering process. The presence of the latter process

can be distinguished by a steady high current level, that is independent of the working gas

pressure [120, 71]. Such a transition from a low current “DC”-like discharge towards a steady

high current“metal-dominated”discharge is indeed observed in figure 7.3(a), when the voltage

amplitude is higher than UC ≈ 650 V.
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Figure 7.3 Effect of the increasing power load on the current waveforms for HiPIMS (a) and
MPPMS (b)-(d) pulses operated with a Nb cathode in Ar at p = 1 Pa. The applied power was
modified either by varying the HiPIMS cathode voltage (a), the voltage load of the MPPMS
capacitors (b), the duty cycle of the micropulses during the high power stage of the MPPMS
pulse (c), or by adjusting the MPPMS pulse length (d). The pulse frequency was kept
constant at f = 50 Hz. All waveforms were averaged over 64 pulses. Note the modification
in the current waveforms of the HiPIMS discharges when the cathode voltage approaches the
threshold for metal-dominated sputtering, indicated by the colour change in (a).
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In contrast to the square-shaped HiPIMS pulses, the MPPMS PS generates a sequence of

short duration voltage micropulses (length of several µs to several tens of µs). Its application

to the cathode results in an oscillating UC, such as shown in figure 8.1(d). The amplitude of

these voltage oscillations can be controlled by (i) the “voltage load” of the PS capacitors, and

(ii) the combination of the micropulse recipes using variable on and off times (hence “duty

cycle”, D) [130, 135]. A typical MPPMS pulse (length up to a few ms) is much longer than

any HiPIMS pulse (length of tens or hundreds of µs) and consists of two or more segments

characterized by its specific micropulse recipe, resulting in a different power output. In the

present experiments, the on/off time of the applied micropulses is modified after the first

400µs from 10µs/40µs (D = 20 %, used during the low power ignition stage) to 12µs/45µs

(D = 45 %, used during the high power stage producing a high density plasma).

The effect of the varying voltage load on the resulting discharge current waveforms is

illustrated in figure 7.3(b). At elevated voltage load values, both amplitude and period of the

current oscillations increase. However, a steady metal-dominated sputtering regime cannot

be achieved even at an applied power which is twice as high as that used in the HiPIMS

discharge operated at a maximum voltage (UC = 2000 V).

Figure 7.3(c) shows the current waveforms representing MPPMS pulses with various mi-

cropulse duty cycles during the high power stage of the MPPMS pulse. One can see, that

the resulting effect on the current waveform is similar to that of the varying voltage load.

For this reason, the duty cycle during the high power stage was fixed at 45 % in all other

experiments, and the voltage load was used as the principal variable for discharge power mod-

ification. Figure 7.3(d) illustrates MPPMS pulses composed of the same micropulse recipes

but with a different length of the high power segment.

Figures 8.1(a) and 7.3(d) illustrate the TR evolution of the discharge current and voltage

of typical HiPIMS and MPPMS pulses respectively. It is shown that the HiPIMS PS applies

a maximum UC instantly at the beginning of the pulse, followed by a high current rise. The

combination of the high instantaneous voltage and current values increases the probability of

arcing, which in turn can limit the deposition process. In contrast, both UC and IC increase

gradually at the beginning of the MPPMS pulse, and reach substantially lower values than

in the case of HiPIMS (when operated at the same P ). This behaviour significantly reduces
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the probability of arc development [14]. Furthermore, if no current is drawn (discharge not

ignited), MPPMS PS progressively increases UC until discharge breakdown conditions (or

the maximum UC value) are met. This feature is illustrated by an example of an MPPMS

discharge operated in a O2/Ar mixture [figure 4(d) in [184]]. The resulting long pre-ignition

period can be beneficial at low pressures or under reactive conditions in which the time-lag of

the current onset behind the voltage application may be larger than the duration of the pulse

itself (e.g. 200µs in HiPIMS). Therefore, the use of MPPMS pulses of long duration allows

one to operate a discharge in conditions in which a HiPIMS discharge would be difficult to

ignite or would be prone to arcing.

Optical diagnostics

In order to gain information about pulsed discharge dynamics, plasma composition and

sputtered material ionization, the OES diagnostics was performed in both time-averaged and

time-resolved modes. The evolution of the optical emission intensity from selected metallic

and working gas excited species during typical HiPIMS and MPPMS pulses is shown in

figures 8.1(b-c) and 8.1(e-f), respectively. We first discuss the evolution of the HiPIMS pulse,

and then we follow up with an analysis of the MPPMS pulse.

HiPIMS discharge breakdown is characterized by an appearance of the emission peak of

Ar0 excited by the energetic electrons. Onset of the target sputtering is marked by a rise of

Ar+ and of both neutral and ionized Nb emissions [figures 8.1(c) and 8.1(b)]. A large number

of sputtered metal atoms then enter in collision with the working gas and causes its localized

heating and rarefaction [116, 100, 117]. Furthermore, the injection of the sputtered metal

into the plasma zone results in significant electron cooling due to inelastic electron-metal

collisions. The latter effect is the principal origin of the drop in the emission intensities of

Ar+ and also of the metallic emission lines, following their peak at t = 20µs. The observed

delay between the current peak and the emission intensity maxima of Ar+ and of the metallic

species may be ascribed to the travelling time of the expanding high density plasma towards

the probe position [162].

For the rest of the pulse, t > 75µs, the emission intensities of all Nb lines are approxi-

mately steady, such as UC and IC values are. The peaking Ar0 emission following the end
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Figure 7.4 Time evolution of the discharge current IC and the cathode voltage UC (a,d), and
of the optical emission intensities originating from the excited metal species (b,e) and working
gas species (c,f), recorded during a 200µs HiPIMS pulse (a,b,c) and a 1000µs MPPMS pulse
(d,e,f). Both discharges were operated in Ar at p = 1 Pa. The low power (i) and the high
power (ii) segments of the MPPMS pulse are highlighted in (d). The acquisition time for
different monitored species was not normalized.

of the pulse suggests a presence of high energy electrons escaping the magnetic confinement

close to the cathode due to the abrupt drop in the discharge current [26]. More detailed

information about the relevant discharge dynamics can be found in [71] and [162].

In the MPPMS discharge, both UC and IC oscillate with a period equal to that of the

driving voltage micropulses [130]. Figures 8.1(d) and 8.1(f) show that the emission intensities

of all the monitored emission lines also reflect these oscillations due to the varied current

amplitude, and hence the plasma density [185].

The transition into the high power stage of the MPPMS pulse (after the first 400µs from

the pulse onset) is followed by a significant rise in the metal emission intensity. In contrast,
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Ar0 emission stabilizes at an intensity level comparable to the one during the low power pulse

stage. The only possible explanation of this observation is the gas rarefaction by the large

amount of the sputtered metal injected into the monitored plasma region, such as previously

reported for other high density discharges [100, 117]. It is to be noted that the emission

intensity from both Nb+ and Nb2+ increased several times during this transition, while the

Nb0 signal only doubled. Such an observation suggests a significant rise in metal ionization.

However, the average ion-to-neutral ratio in MPPMS discharges is lower than in the HiPIMS

discharges operated at the same average power, as will be shown below.

The averaged optical emission spectra of HiPIMS, MPPMS and DCMS discharges ob-

tained at P = 300 W are displayed in figure 7.5. It should be stressed that all the three

spectra were normalized to the same acquisition time. The HiPIMS spectrum is dominated

by an intense emission from Nb+. Furthermore, strong Nb0 and even Nb2+ emission lines

can be identified. The high emission from the ionized Nb species can serve as an indication

that the HiPIMS discharge is operated in the metal-dominated sputtering regime, such as

previously shown in [177]. The MPPMS spectrum shows an important emission from Nb+,

but the strongest emission originates from Nb0. This observation suggests a lower ionization

of the sputtered metal in MPPMS than in HiPIMS discharges operated at the same power

Figure 7.5 Normalized optical emission spectra recorded at d = 1 cm from the Nb target
powered by HiPIMS, MPPMS and DCMS in Ar at p = 1 Pa and at the average power
P = 300 W.
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load. In contrast to both pulsed discharges, only neutral Nb lines can be identified in the

DCMS spectra. In addition, Ar0 emission lines in DCMS have a notably stronger intensity

than in HiPIMS and MPPMS. This may be another indication of working gas rarefaction by

the sputtered Nb and of subsequent electron cooling in both pulsed discharges.

Figure 7.6 shows the power-dependence of the emission intensity ratio, I(Nb+)/I(Nb0),

of two selected Nb+ and Nb0 lines listed in table 7.2. These particular emission lines were

chosen because they are both formed by transitions for which the upper level energies are

similar. Assuming that both of these emitting species are only populated by electron impact

excitation from the ground state, and only depleted by a pure radiative process, their emission

line intensity ratio can be used as a qualitative measure of the ion-to-neutral density ratio.

The I(Nb+)/I(Nb0) ratio appears much higher in both high power pulsed discharges in

comparison with DCMS. For instance, at P = 300 W its amplitude was 19 times higher in

HiPIMS and 7 times higher in MPPMS. This observation indicates that both high power

pulsed discharges produce plasmas with a significantly higher metal ionization than the

Figure 7.6 Optical emission intensity ratio I(Nb+)/I(Nb0) measured at d = 1 cm, as a func-
tion of the power load P on the target. The power was modified by changing the cathode
voltage in DCMS, HiPIMS, and in MPPMS by either adjusting the voltage load (MPPMS)
or the length of the pulse (MPPMS length). All discharges were operated in Ar at p = 1 Pa.
The maximum in the HiPIMS emission intensity ratio represents a transition from a gas-
dominated to a metal-dominated discharge.
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DCMS discharge operated at the same power. Moreover, it identifies HiPIMS as the most

suitable technique for deposition processes where maximum metal ionization is required.

It is also to be mentioned that the I(Nb+)/I(Nb0) ratio exhibits a turning point in

HiPIMS, while it constantly increases with P in DCMS and MPPMS. For P < 150 W, the

ratio for HiPIMS rises, while for P > 150 W, it drops. This is a consequence of the transition

into the metal-dominated sputtering in HiPIMS at P ≈ 125 W (when UC ≈ 650 V). In

fact, it is the substantial rise in the emission intensity from Nb0 for P > 125 W that is

the cause of the diminishing I(Nb+)/I(Nb0) ratio at higher powers. We have previously

observed a similar development of ion-to-neutral intensity ratio in optical diagnostics of the

HiPIMS discharges operated with a Cr target (unpublished results). The decreasing ion-to-

neutral density ratio may indicate that an increasing portion of the metal ions escapes the

magnetized plasma region, such as reported by Andersson and Anders [123] and confirmed

by modelling by Vlček and Burcalová [104]. The latter effect can be due to the existence

of the potential gradient within the bulk HiPIMS plasma suggested by Brenning et al. [128]

and experimentally validated by Horwat and Anders [186].

7.3.2 Characterization of Nb coatings

In the previous section, the effect of the power management on the high power pulsed dis-

charge behaviour and characteristics was discussed. In this section, we explore the properties

of the fabricated Nb coatings.

Nb films were deposited at two Ar pressures (1 and 2 Pa) under the following four power

regulation conditions:

(i) HiPIMS discharges using different cathode voltage amplitudes during the pulse [such as

shown in figure 7.3(a)],

(ii) MPPMS discharges using different voltage loads of the PS capacitors [figure 7.3(b)],

(iii) MPPMS discharges using different lengths of the high power pulse segment (“MPPMS length”)

[figure 7.3(d)], and

(iv) DCMS discharges using different cathode voltage levels.
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Table 7.3 specifies the ranges of the average UC values during the pulses (or during the

high power stage of the MPPMS pulses), and of the used pulse duration, together with the

respective average powers and peak power densities. All of the deposited Nb films were 700

to 900 nm thick.

Table 7.3 Type of power regulation and ranges of the discharge parameters used in the
preparation of four series of Nb coatings. In order to permit the power density evaluation, the
effective sputtering area of the target was estimated from the racetrack surface measurement
as S = 12.5 cm2.

HiPIMS MPPMS MPPMS length DCMS
Type of power regulation Cathode voltage Voltage load Pulse length Cathode voltage
Cathode voltage [V] 550 – 1600 470 – 670 650 (1 Pa) / 500 (2 Pa) 290 – 390
Pulse duration [µs] 200 1500 880 – 1830 —
Average power [W] 45 – 345 100 – 345 105 – 320 38 – 310
Peak power density [W/cm2] 700 – 3200 140 – 540 400 3 – 25

Deposition rate

The dependence of the Nb deposition rate, r, on the average discharge power is shown

in figure 7.7(a). It demonstrates that for all pulsed discharges r is lower than for DCMS

discharge. For instance, r for HiPIMS and MPPMS is about 55% of rDCMS at P = 300 W.

Moreover, the difference between rHiPIMS (p = 1 Pa), rMPPMS and rDCMS further increases

with rising power. This phenomenon is also illustrated by the power-normalized deposition

rate, rn, plotted in figure 7.7(b). One can see that rn,MPPMS and rn,HiPIMS (p = 1 Pa) drop

considerably with growing power, while rn,DCMS and rn,MPPMS length are almost constant.

There are several effects that may be responsible for the observed deposition rate re-

duction in high power pulsed discharges. The most important ones are: (i) less-than-linear

dependence of the sputtering yield on the energy of bombarding ions [124, 125], (ii) loss

of the sputtered material via ionization and subsequent back-attraction towards the tar-

get [104, 125], and (iii) modified target-substrate transport geometry [126, 104]. As will

be illustrated below, the effect (i) can be recognized as the principal origin of the power-

dependent deposition rate reduction in the investigated experiments.

It is well known that the sputtering yield, Y , does not scale proportionally with the energy

of bombarding ions (∼ UC) within the here-discussed energy range (300 - 1600 eV). Instead,
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it can be approximated by [187, 125, 124]:

Y ≈ U 0.5
C . (7.2)

Because of this less-than-linear dependence of Y on UC, discharges operated at a same average

power, but with a different combination of UC and IC, cannot reach an identical deposition

rate. Thus, high power pulsed discharges that use higher UC than DC discharges have to

exhibit lower r in comparison with DCMS, unless other phenomena than sputtering (e.g.

evaporation) are considered.

Anders [125] has shown that the theoretical deposition rate achievable by HiPIMS, r HiPIMS,

can be related to that of DCMS operated at a same P , rDCMS, and to their respective UC

ratio through a simple relation:

r?HiPIMS

rDCMS

≈
(
UC,HiPIMS

UC,DCMS

)−0.5

. (7.3)

Figure 7.7(a) shows an estimation of the maximum HiPIMS deposition rate defined by

equation 7.3, r?HiPIMS, calculated with the experimental voltage values UC,HiPIMS and UC,DCMS,

and with the measured rDCMS. One can see that r?HiPIMS approximately coincides with the

measured rHiPIMS. Such finding suggests that the effect (i) is a crucial phenomenon that

could explain the observed deposition rate reduction.

It should be stressed that the herein presented results were obtained in experiments

with a relatively little eroded Nb target. A further drop in the deposition rate of Nb films

prepared by HiPIMS was observed with the increasing target erosion (not shown here). More

specifically, the progressing depth of the target erosion zone, and consequently the increased

magnetic field strength above its surface, resulted in significantly higher discharge currents

and in further reduction of rn,HiPIMS in comparison with rn,DCMS. This observation indicates

the influence of other effects, such as the metal back-attraction (ii) and modified material

transport (iii). In-depth analysis of the importance of these phenomena on the deposition

rate reduction will be presented elsewhere.

The evaluation of the theoretical deposition rate reduction for MPPMS is rather com-

plicated because UC varies greatly during individual MPPMS pulses. Since UC is generally
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Figure 7.7 Deposition rate r (a) and deposition rate normalized to power rn (b) for Nb
coatings prepared at two Ar pressures, p = 1 Pa (full symbols) and 2 Pa (open symbols), as
a function of the average applied power P . The coatings were deposited by DCMS, HiPIMS,
and MPPMS at different cathode voltages and by MPPMS using different pulse lengths (see
table 7.3). The linear approximations of rDCMS, rn,DCMS, rn,MPPMS length and the theoretical
deposition rate limitation for HiPIMS, r?HiPIMS, are highlighted by dashed lines.

lower in MPPMS than in HiPIMS operated at a same P , rn,MPPMS can reach higher values

than rn,HiPIMS, as also confirmed in figure 7.7(b).

It is to be noted that rn,MPPMS length is smaller than rn,DCMS at all investigated powers, such

as highlighted by the two dashed lines in figure 7.7(b). This contradicts with the findings

reported by Lin et al. [188] who observed that rMPPMS for Cr films had exceeded rDCMS

at target power densities higher than 15 W cm−2, which are comparable to the values used

in the present study (for P > 190 W). Their results might indicate an enhanced sputter-

assisted evaporation/sublimation caused by the increased target surface temperature due to

insufficient cathode cooling, such as reported by Vlček et al. [172].

Figure 7.7(b) also illustrates that rn,DCMS and rn,MPPMS are comparable at both Ar pres-

sures. In contrast, rn,HiPIMS at p = 2 Pa is significantly lower than at p = 1 Pa for P < 350 W.
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This effect might originate from the rapid change in the material transport between the target

and the sample holder during and immediately after short (200µs) HiPIMS pulses. Metal

atoms released from the target within a short sputtering period have to first make their way

through the zone of background gas atoms, which may deflect them from their original di-

rection towards the substrate. As opposed to DCMS, the instantaneous quantity of these

atoms and the related amount of metal-gas collisions are substantially higher in the HiPIMS

process. Furthermore, it has been documented that the consequent gas rarefaction takes

place on a time scale comparable to the HiPIMS pulse duration, and that the speed of the

expanding sputtered metal wavefront decreases with rising gas pressure [162, 117]. Therefore,

the background gas rarefaction by sputtered material during a HiPIMS pulse can indeed play

a significant role in the transport of sputtered species within the deposition chamber, such

as recently demonstrated in [112].

Film characteristics

In section 7.3.1, we have witnessed significant differences in the discharge behaviour and

plasma emission related to pulse and power management. It is therefore expected that the

plasma characteristics, especially the plasma density, and the ion flux and ion energy would

affect the growth of Nb films and their properties. In the following study, we particularly focus

on the evolution of the residual stress and its relation to the corresponding microstructural

features.

The analysis of the residual mechanical stress, σ, of coatings deposited at p = 1 Pa and

2 Pa is presented in figures 7.8(a) and (b), respectively. HiPIMS- and MPPMS-deposited

coatings prepared at p = 2 Pa exhibit a low compressive stress, while the films prepared by

DCMS are in tension. All Nb coatings prepared at p = 1 Pa are in compression, includ-

ing DCMS-deposited films (σ ≈ −0.6 GPa ). The compressive stress of pulsed discharge-

deposited samples increased by ∆σ = 0.3− 0.8 GPa in comparison with the respective stress

values at p = 2 Pa. The highest compressive stress was detected in HiPIMS-deposited films,

while the lowest one was found in the DCMS-prepared coatings.

XRD investigation revealed that all Nb films have a strongly textured body centered cubic

(bcc) structure, suggested by the significant (110) and (220) reflections. The position of the
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Figure 7.8 Residual mechanical stress σ of Nb coatings (a,b) and the calculated (110) lattice
spacing in perpendicular direction to the coating plane d (110) (c,d) as a function of the average
applied power P . The investigated coatings were prepared in Ar at p = 1 Pa (a,c) and at
p = 2 Pa (b,d) by DCMS, HiPIMS, and MPPMS at different cathode voltages and by MPPMS
using different pulse lengths (see table 7.3). The zero stress level and the tabulated value of
d (110) for Nb bulk are indicated by a dashed line.

Nb (110) diffraction peak was used for the evaluation of the out-of-plane lattice spacing,

d (110), that is presented in figures 7.8(c) and (d). We observe that all coatings prepared at

p = 1 Pa possess larger d (110) than its tabulated bulk value. HiPIMS coatings show the largest

d (110) value, while DCMS coatings exhibit the smallest one. Films deposited at p = 2 Pa have

a smaller d (110) in comparison with p = 1 Pa, and DCMS films have even lower values of d (110)

than Nb bulk.

It should be noted that the results presented in figure 7.8 suggest a close correlation

between the in-plane mechanical stress and the out-of-plane lattice spacing. In fact, the

compression/enlargement of the crystalline lattice due to the residual in-plane stress results
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in a lattice extension/contraction in a perpendicular direction to the coating plane, such as

described by the Poisson effect.

XRD results help to explain the stress characteristics such as those obtained at p = 2 Pa

(σ is compressive for HiPIMS and MPPMS, while it is tensile for DCMS). Specifically, the

out-of-plane lattice spacing for the pulsed plasma-deposited Nb films is higher than its bulk

value, in contrast to DCMS. These findings suggest film densification due to interstitial lattice

atoms originating from the ion bombardment-induced knock-on events. Indeed, the optical

emission diagnostics discussed in section 7.3.1 revealed high metal ion production in both

pulsed discharges, suggesting elevated Nb+ fluxes available for the deposition process. In

support of such an interpretation, significant ion fluxes at the substrate level were previously

reported for both HiPIMS [108, 111] and MPPMS [135, 188].

The observation of the highest compressive stress and of the largest d (110) parameter in

films deposited by HiPIMS at both Ar pressures indicates the largest amount of interstitial

Nb due to the energetic condensation. This supports the finding of higher ion generation by

HiPIMS in comparison with MPPMS (and DCMS) presented in section 7.3.1.

The analyses of the lattice spacing and of the in-plane residual stress are further supported

by FEG SEM examinations of selected Nb films. Figure 7.9 shows the cross-sectional images

of coatings prepared at the same power (P = 300 W) by HiPIMS, MPPMS and DCMS, and

at the two Ar pressures of p = 1 Pa and p = 2 Pa. Films deposited by both high power pulsed

techniques have a columnar structure with a smooth surface. No visible defects, such as voids

or incorporated macroparticles, can be identified. Identical film morphology can also be found

in the case of Nb films prepared by DCMS at p = 1 Pa. In contrast, the DCMS-deposited

coating prepared at a higher pressure, p = 2 Pa, exhibits a rough columnar morphology with

visible intercolumnar voids and with columns terminated by considerable pointed tops. It

is the film porosity that is the origin of the observed tensile stress and out-of-plane lattice

contraction.
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Figure 7.9 FEG SEM micrographs of Nb coatings prepared by HiPIMS, MPPMS and DCMS
in Ar at p = 1 Pa and 2 Pa, using an average power P = 300 W.

7.4 Conclusions

We studied different power management approaches in HiPIMS and MPPMS, operated

above a Nb target, and their effects on the pulsed discharge evolution, plasma composition,

and metal ionization estimated by OES. It was shown that HiPIMS is the only technique

that enables the discharge operation in self-sputtering mode within the investigated range

of applied powers, resulting in a significantly higher ionization of the sputtered metal than

that reached with MPPMS. In contrast to HiPIMS, MPPMS provides a higher versatility in

adjusting the pulse shape and pulse length. This feature can be particularly beneficial, for

instance, in the discharge ignition.

Nb coatings prepared by HiPIMS and MPPMS have very similar deposition rates that

are lower than in DCMS, e.g. by about 45% at p = 1 Pa and at P = 300 W. The disparity

in the deposition rate between DCMS and pulsed discharges was found to increase with

rising power due to the non-linear dependence of the sputtering yield on the impacting

ion energy and due to other phenomena. All films prepared at p = 1 Pa possess a dense

columnar structure. Coatings deposited by the two high power pulsed discharges exhibit

higher compressive stress and larger out-of-plane lattice spacing than those prepared by DC

sputtering under comparable conditions. At higher pressure, p = 2 Pa, DCMS-grown films

show a tensile stress due to a porous microstructure, while films prepared by HiPIMS and

MPPMS are dense and in compression, most probably due to the higher ion bombardment.



132

Acknowledgments

The authors wish to thank Mr. Francis Turcot and Mr. Sébastien Chenard for their
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CHAPTER 8

Paper V: Hysteresis-free deposition of niobium oxide films by HiPIMS using

different pulse management strategies
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Abstract:

We systematically investigate reactive behaviour of two types of high power pulsed mag-

netron discharges above a Nb target using either square voltage pulses (denoted as HiPIMS)

or custom-shaped pulses (denoted MPPMS), and compare it to that of a DC magnetron

sputtering (DCMS) discharge. We demonstrate that the surface metal oxides can be effec-

tively sputter-eroded from the target during both HiPIMS and MPPMS pulses operated in

reactive O2/Ar gas mixtures, and that sputtering from a partially oxide-free target is possible

even at high oxygen concentrations. This results in a hysteresis-free deposition process which

allows one to prepare optically transparent high refractive index Nb2O5 coatings exhibiting

an elevated deposition rate without the need of feedback control commonly used in reactive

DCMS. The cathode voltage was identified as the principal parameter that affects the reactive

discharge behaviour.
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8.1 Introduction

High power impulse magnetron sputtering (HiPIMS) represents the state-of-the-art sur-

face engineering and functional coating fabrication technology, as recently summarized in [98].

For illustration, HiPIMS discharges were shown to be beneficial in the deposition of single-

layer, multilayer and nanocomposite protective coatings [40, 189, 15], and in substrate pre-

treatment for adhesion enhancement [14]. More recently, HiPIMS has also been applied in the

preparation of various transparent metal oxides, e.g. TiO2 [46, 12, 190, 47, 48], ZrO2 [49, 33]

and HfO2 [50], and of transparent conductive oxides (TCO), such as indium tin oxide, Al-

doped ZnO [51, 52], and RuO2 [167]. It has been reported that higher film density, higher

index of refraction, and lower surface roughness can be obtained for the optical coatings

deposited by HiPIMS in comparison with those prepared by DCMS [46, 12]. Other studies

have also shown a lower resistivity of the HiPIMS-deposited TCO films than that of their

DCMS-counterparts [51, 52].

These promising results stimulated the development of power supplies (PS) suitable for

the HiPIMS deposition process. Presently, there are numerous PS on the market that provide

different pulse shapes and various levels of control over the voltage and current characteris-

tics [53, 54, 55, 56, 57]. The majority of these PS can be divided into two principal categories

according to the form of the high power pulses that they produce. These are: (i) shorter

(10 − 200µs) square voltage pulse generators allowing one to reach higher cathode voltage

values, which we label in this study as HiPIMS PS, and (ii) modulated pulse power (MPP)

generators producing longer (800− 3000µs), custom-shaped voltage pulses. The application

of the latter type of PS for the “modulated pulse power magnetron sputtering” (MPPMS) has

been demonstrated, for instance, in the fabrication of protective coatings based on transition

metal nitrides; CrN films deposited by MPPMS were shown to possess a denser microstruc-

ture, a lower surface roughness, and improved mechanical and tribological properties as

compared to films prepared by DCMS or pulsed DCMS [191].

Despite the demonstrated capacity of both HiPIMS and MPPMS discharges to prepare

high-quality coatings based on nitrides and oxides, numerous open questions remain regarding

the stability and control of the reactive deposition process. Specifically, there are ambiguous
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reports concerning the hysteresis effect in HiPIMS discharges ignited in reactive mixtures

of Ar and O2. Some authors highlight the need for feedback control in order to circumvent

hysteresis [81, 192], while some others report on hysteresis reduction [49, 193], and even its

suppression [129, 167, 194]. Moreover, only limited information concerning the hysteresis

behaviour in reactive MPPMS exists at the present time [135]. Therefore, there is a need for

a rigorous analysis of both high power pulsed discharges in reactive conditions.

In the present work, HiPIMS and MPPMS discharges operated in reactive O2/Ar mixtures

above a niobium target are systematically characterized and compared to the standard DCMS

process. The choice of the target material was made for the following two reasons: Firstly,

Nb is a highly reactive metal when exposed to oxygen and hence can serve as a model target

material that commonly exhibits a hysteresis effect if sputtered in reactive gas mixtures.

Secondly, the fabricated Nb2O5 is an attractive high refractive index oxide suitable for the

fabrication of optical interference filters. This also motivated us to analyze the characteristics

of the prepared NbOx coatings.

In the first part, we employ current and voltage waveform monitoring to study the dis-

charge behaviour in different O2/Ar gas mixtures. Simultaneously, thin NbOx films are

prepared and their deposition rate is evaluated. In the second part, the plasma is moni-

tored by optical emission spectroscopy (OES) in order to gain further understanding of the

discharge time evolution within individual pulses and to estimate the plasma composition.

The origins of the effective target cleaning from the surface oxides, observed in both HiPIMS

and MPPMS, are then summarized, and the principal parameters affecting the hysteresis be-

haviour are defined. Finally, the optical and mechanical properties of the deposited transpar-

ent Nb2O5 coatings prepared by HiPIMS, MPPMS and DCMS are presented and discussed.

8.2 Experimental details

The experiments were performed in a system consisting of a turbomolecularly pumped

stainless steel chamber, an unbalanced magnetron and a substrate holder. The magnetron

with a 5 cm diameter Nb target was powered by one of the following power supplies (PS): (1)

HÜTTINGER Electronic HMP2/1 HiPIMS PS, (ii) ZPulser Axia 180 MPPMS PS, or (iii)

Advanced Energy MDX 1K DCMS PS.
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HiPIMS PS used in this study produces single square-shaped voltage pulses of adjustable

length (10–200µs) and amplitude (0–2000 V). Hence, one had a direct control over the cathode

voltage, UC. For illustration, the experimentally obtained voltage and current waveforms

of a HiPIMS pulse operated in pure Ar at an average power P = 320 W are depicted in

figure 8.1(a). In contrast to single HiPIMS pulses, MPPMS PS generates a sequence of short

duration voltage micropulses (length of several µs to several tens of µs). Their application on

the target results in an oscillating UC, such as shown in figure 8.1(b). The amplitude of these

voltage oscillations can be controlled by the “voltage load” (0–600 V) of the PS capacitors,

and by the combination of the micropulse recipes using variable on and off times (hence duty

cycle) [130, 135]. A typical MPPMS pulse (length of several hundreds of µs up to few ms)

is much longer than any HiPIMS pulse (length of tens or hundreds of µs) and it consists of

two or more segments characterized by its specific micropulse recipe, leading to a different

instantaneous power output.

In the present experiments, the voltage load of the MPPMS PS capacitors was kept at

400 V while the duty cycle, D, of the applied micropulses was modified after the first 400µs

from D = 20 % (on/off time 10µs/40µs, used during the low power (L) ignition segment) to

D = 45 % (on/off time 12µs/15µs, used during the high power (H) segment). The resulting

UC, depicted in figure 8.1(b), oscillated within 450 V< UC < 530 V during the (L) segment,

and within 550 V< UC < 600 V during the (H) segment of the MPPMS pulses operated in Ar.

Figure 8.1 Time evolution of the discharge current IC and the cathode voltage UC recorded
during a 200µs HiPIMS pulse (a) and a 1000µs MPPMS pulse (b). Both discharges were
operated in Ar at p = 1 Pa. The low power (L) and the high power (H) segments of the
MPPMS pulse are highlighted in (b).
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The length of theses macropulses was fixed to 1000µs for the time-resolved OES diagnostics,

and to 1500µs in other experiments. The pulse repetition frequency, f , was fixed to 50 Hz for

both HiPIMS and MPPMS, unless otherwise specified. It should be noted that HiPIMS and

DCMS PS were used as constant voltage generators. The value of UC was set to either 1200 V,

during 200µs HiPIMS pulses, or to 360 V in DCMS. This set of experimental parameters was

chosen to assure the same average power delivery by the three generators when operating

in pure Ar atmosphere (P = 320 W), and in order to avoid magnetron overheating in the

reactive gas mixtures when the power may rise notably, as discussed in the following sections.

The Ar flow rate, Φ(Ar), was fixed at 44 sccm during all experiments in order to obtain

a working pressure, p, of 1 Pa. The O2 flow rate, Φ(O2), was then varied between 0 sccm

and 15 sccm, resulting in a maximum pressure of 1.25 Pa. The substrate holder, mounted

at a distance d = 10 cm, was biased to −100 V by an additional RF power supply in order

to maintain the background plasma which facilitates the ignition of the high power pulsed

discharges. Nevertheless, the instantaneous bias value, Ub, rapidly decreased during HiPIMS

and MPPMS pulses (50 V> |Ub| > 10 V) due to rapid changes in the plasma impedance.

Waveforms of UC and of the cathode current, IC, were measured by a Tektronix P6015A

voltage probe and a Pearson 301X current monitor, respectively, and recorded by a Tektronix

TDS2014B digital oscilloscope. The average discharge power, P , was then calculated as:

P = f

∫ T

0

UC(t)IC(t) dt, (8.1)

where t stands for time and T stands for the pulse duration during which IC has a non-

zero value.

Table 8.1 List of the monitored OES lines with corresponding wavelengths, λ, excitation
energies of the upper excited states, Ek, and of the lower excited states, El. The values of
Ek and El for Nb and O are taken from [181] and for Ar from [182], respectively.

Nb0 Nb+ Nb2+ Ar0 Ar+ O0

λ [nm] 466.38 313.08 245.70 811.53 442.60 777.54
Ek [eV] 2.85 4.40 — 13.08 19.55 10.74
El [eV] 0.20 0.44 — 11.55 16.75 9.15



138

The discharge emission was sampled by an optical fiber mounted within the deposition

chamber with its line of sight parallel with the target surface at a distance d ≈ 1 cm. Time-

averaged measurements were analyzed by an Ocean Optics USB2000 spectrometer. For the

time-resolved (TR) diagnostics, a PI Acton SpectraPro 2750 monochromator with a holo-

graphic grating (2400 grooves mm−1) was used in combination with a high speed Princeton

Instruments PI-MAX2 camera. The list of the monitored emission lines representing different

neutral and ionized species with their corresponding higher and lower excitation energy levels

is given in table 8.1.

In TR OES analysis, each optical signal was recorded during a 5µs period, following a pre-

set delay from the initiation of the voltage pulse. The signal was averaged over 10 to 50 pulses,

depending on its intensity. Subsequently, the acquisition and averaging was repeated for the

following 5µs interval. Such a process was iterated until the pulsed discharge extinction.

NbOx films were deposited at ambient temperature on Si(100) and on BK7 glass substrates

for mechanical and optical characterization, respectively. The thickness of the fabricated films

was determined by a Veeco DEKTAK profilometer equipped with a conical diamond stylus.

The structure of the selected films was evaluated by X-ray diffractometry (XRD) in θ − 2θ

configuration using Cu Kα radiation in a Philips X’PERT instrument.

The optical properties of the NbOx films were examined by a J. A. Woollam RC2-DI multi-

functional variable-angle spectroscopic ellipsometer. The data acquired by the spectroscopic

ellipsometer (Ψ and ∆, as well as the reflectivity) at four angles of incidence (45◦, 55◦, 65◦ and

75◦) were combined with normal-incidence transmission analysis (190 nm < λ < 1690 nm)

in order to enhance the measurement accuracy. The optical characteristics of the NbOx

films (Eg, n and k) were then obtained by CompleteEASE software using the Cody-Lorentz

dispersion model.

The film’s internal stress was estimated by measuring the curvature of a rectangular Si

stripe (5 x 50 mm2) before and after film deposition using a Tencor Flexus FLX-2900 laser de-

flection system. The value of the internal stress was calculated from the Stoney formula [195].

The mechanical properties of the NbOx films were determined by depth sensing nanoindenta-

tion using a Hysitron TI 900 triboindenter equipped with a Berkovich pyramidal tip. Selected

samples were indented 25 times with a maximum load varying from 100 to 2000 mN. The
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hardness and reduced Young’s modulus were calculated by analyzing the load-displacement

curve according to the Oliver-Pharr method [155].

8.3 Results and discussion

8.3.1 Characterization of the reactive sputtering process

In this section, we explore the reactive sputtering process behaviour in terms of the

current amplitude and pulse shape, the dissipated average power, the hysteresis effect and

the deposition rate of the prepared NbOx films.

Figures 8.2(a) and 8.2(b) illustrate the effect of an increasing oxygen flow on the pulse

current waveforms of typical 200µs HiPIMS pulses and 1500µs MPPMS pulses. The cathode

current significantly rises in HiPIMS discharges. For instance, the IC maximum grows from 27

to 77 A when Φ(O2) is increased from 0 to 15 sccm. MPPMS discharges in O2/Ar mixtures

exhibit a different behaviour; IC increases only at the beginning of the high power pulse

segment when large amplitude oscillations start to develop. These are then damped and

succeeded by low amplitude oscillations of the same frequency as the IC oscillations during

the MPPMS discharge in pure Ar.

The observed current rise in both high power pulsed techniques can be related to either

target surface phenomena, or gas-phase phenomena. In order to better distinguish the effect

of these two, we performed experiments at different repetition frequencies while keeping

the gas composition fixed [Φ(Ar) = 44 sccm, Φ(O2) = 5 sccm]. Figures 8.2(c) and 8.2(d)

illustrate the resulting current waveforms. It can be noticed that the peak current values

in HiPIMS, as well as the number of periods and the duration of large amplitude current

oscillations in MPPMS, increase with the decreasing f (longer pulse off-time) in a similar

way as with the rising Φ(Ar). Here, it should be highlighted that the modification in IC with

varying f cannot be ascribed to the gas rarefaction and gas refill phenomena illustrated in

references [193, 71]; The time scale of the latter effects is in the hundreds of µs (order of

magnitude estimation), while the delay in between the pulses in the present experiments is

in the tens of ms. Hence, the observation of a similar pulse current evolution due to the

variation in Φ(O2) and f excludes the gas-phase “volume” processes as a primary origin of
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Figure 8.2 Effect of the oxygen flow Φ(O2) in O2/Ar mixture (f = 50 Hz, Φ(O2) varied)
(a,b) and of the pulse repetition frequency f (f varied, Φ(O2) = 5 sccm) (c,d) on the pulse
current waveforms of the HiPIMS (a,c) and MPPMS (b,d) discharges. All the waveforms
were averaged over 64 pulses.

the observed current growth.

Besides the pressure and nature of the gas, the target surface composition is an important

parameter affecting the current level in reactive discharges. As it will be discussed below,

the current rise can be related to an increase of the ion-induced secondary electron emission

(ISEE) due to target surface oxidation. The current amplitude dependence on f is a proof

that this surface oxidation takes place not only during the high power pulses but mostly in

between them: The longer periods between the individual pulses are, the longer is the time

available for target oxidation.

Phelps and Petrovic [68] have shown that the ISEE of the target surface increases with

the energy of the impacting Ar ions. Moreover, the ISEE of an oxidized target surface rises at

a higher pace than the ISEE of a clean metal surface for energies higher than approximately
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300 eV [68]. This means that the ISEE of the compound target may be higher or lower than

that of the elemental target material, depending on the instantaneous value of UC. Therefore,

UC is an important parameter in the secondary electron production, and consequently, in the

resulting plasma density and IC.

The HiPIMS PS delivers square-shaped voltage pulses with UC ≈ 1200 V. When the target

surface biased by such a high voltage is oxidized, the ISEE significantly increases and hence

does IC [figure 8.2(a)]. Another important effect is the transition from the metal-dominated to

the gas-dominated sputtering regime which accompanies the progressing target oxidation, as

will be discussed in section 8.3.2. It should be stressed that similar behaviour [rising IC during

the pulse with the increasing Φ(O2)] was also observed for HiPIMS discharges above 5 cm

and 10 cm diameter Cr, Ta and V targets sputtered in O2/Ar mixtures (unpublished results),

as well as for HiPIMS discharge above a 10 cm Cr target sputtered in N2/Ar mixtures [162].

During the MPPMS pulse, UC is not steady but it oscillates between 450 < UC < 600 V

[figure 8.1(b)]. The ISEE for this range of voltages is lower than in HiPIMS, but also higher

than in DCMS. The resulting current rise is visible at the beginning of the MPPMS pulse high

power stage (t ≈ 500µs), as documented by the peaks of the several first IC oscillations [see

figures 8.2(b) and (d)]. It is most probable, that the current increase would be higher if the

micro-pulse power management of the MPPMS PS was capable to maintain a steady voltage

and power delivery. The large amplitude current oscillations observed at the beginning of the

MPPMS pulses are later replaced by the low amplitude oscillations reaching lower peak values.

Such a current evolution cannot be easily interpreted without considering the target surface

composition variation during the MPPMS pulses. Further discussion of this phenomenon will

follow in section 8.3.2.

The evolution of the average discharge power with the increasing or decreasing oxygen

content within the O2/Ar mixture is shown in figure 8.3(a). Before oxygen is introduced to

the reactor, the discharge power was set to P = 320 W (at Φ(O2) = 0 sccm). It should be

noted that an important reduction in P , observed for DCMS discharges at Φ(O2)≈ 5 sccm,

indicates a critical O2 flow at which the target gets fully covered by surface metal oxide

(“target poisoning”). This sudden power drop is caused by a diminished ISEE of the surface

compounds sputtered at low UC [196]. In addition, the evolution of P follows different path-
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Figure 8.3 Average discharge power P (a), deposition rate r (b), and power-normalized
deposition rate rn (c) for NbOx coatings prepared by DCMS, HiPIMS, and MPPMS, as a
function of oxygen flow Φ(O2) in the O2/Ar mixture (f = 50 Hz, Φ(O2) varied). The solid
and dashed lines in (a) stand for experiments with increasing and decreasing oxygen flows,
respectively. Data for absorbing coatings are marked by full symbols and for transparent
coatings by open symbols.

ways with the increasing and decreasing Φ(O2). This shows the well-known hysteresis effect,

which is a consequence of the significantly lower sputtering yield of the surface compounds,

as opposed to the elemental target material [82].

Contrary to DCMS, HiPIMS and MPPMS discharges exhibit a gradual power variation

following an overlapping pathway with both increasing and decreasing Φ(O2). Furthermore,
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the two discharges reach a steady operation at high oxygen flows. These observations indicate

that the abrupt transition to the poisoned target state (at Φ(O2) ≈ 5 sccm) is inhibited and

the subsequent hysteresis is suppressed. In fact, MPPMS discharge characteristics were stable

even at Φ(O2)= 50 sccm (O2/Ar≈ 1/1, not shown). In contrast, HiPIMS discharges exhibited

instabilities and arcing at Φ(O2)> 15 sccm. However, the onset of these instabilities has been

shifted to higher Φ(O2) with increasing target erosion (racetrack surface).

In order to verify the deposition process efficiency of the investigated reactive discharges,

NbOx coatings were prepared at different Φ(O2), ranging from 0 sccm to 15 sccm with a step

∆Φ(O2) = 3 sccm. The obtained deposition rate, r, and the deposition rate normalized to the

average power at Φ(O2) = 0 sccm (P = 320 W), rn, are plotted as a function of Φ(O2) in

figures 8.3(b) and 8.3(c), respectively. It is to be noted that r for Nb films prepared by both

pulsed techniques in pure Ar (Φ(O2) = 0 sccm) equal only 55% of rn obtained by DCMS.

Figure 8.3(b) shows a notable drop in r for DCMS at Φ(O2) = 5 sccm, which is a con-

sequence of target poisoning and discharge operation at very low powers. Such a transition

was not observed for coatings prepared by the two pulsed processes. Instead, r remained

high even for optically transparent NbOx films (Φ(O2) > 9 sccm). In fact, r of NbOx coat-

ings prepared by HiPIMS reached even higher values than r of pure Nb, albeit at elevated

powers. A moderate drop in r was observed for MPPMS-deposited films as a consequence

of the diminished powers. It should be mentioned that a very similar observation of the

hysteresis-free deposition process of AlOx coatings by HiPIMS was also reported by Wallin

and Helmersson [129].

Figure 8.3(c) displays the values of rn, which may be used as an indicator of the deposition

process efficiency. For all transparent NbOx films prepared by HiPIMS and MPPMS, rn

reaches notably higher values in comparison with DCMS operated above a poisoned target.

Furthermore, rn for optically transparent NbOx prepared by MPPMS exhibits up to 2.5 times

higher values than rn of the HiPIMS-deposited films. These results demonstrate that optically

transparent NbOx films with technologically interesting r and rn values can be reached by

the two pulsed techniques within a broad range of Φ(O2). Hence, the need for a reactive gas

control employing a sophisticated feedback system based on, for instance, the reactive gas

partial pressure [81] or optical plasma emission monitoring [197], can be avoided.
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8.3.2 Plasma emission diagnostics

The main goal of this section is to interpret the reactive high power pulsed discharge

development during the individual pulses and to evaluate the plasma composition with respect

to the state of the target surface and to the dominant sputtering regime. In the following, we

apply TR current-voltage and spectroscopic monitoring of the different emission lines to study

the evolution of 200µs long HiPIMS pulses and 1000µs long MPPMS pulses operated in an

O2/Ar mixture with an oxygen flow corresponding to the DCMS target poisoning threshold,

Φ(O2) = 5 sccm.

Figure 8.4(a) shows an example of the current and voltage waveforms recorded during

the HiPIMS pulses. IC rises shortly after the high voltage application, saturates at t =

35µs after the pulse onset, and gradually decreases with time. The respective evolution of

selected optical emission lines from excited sputtered metal and gas species is presented in

figures 8.4(b) and (c), respectively. Peaking emission from excited Ar0 marks the discharge

breakdown, succeeded by the establishment of a dense plasma indicated by the rising emission

intensity from ionized Ar, dissociated atomic O, and both neutral and ionized Nb. Following

the initial intensity maximum, all the emission signals decrease significantly for 25µs< t <

50µs, despite little variation in IC during this period.

For the rest of the pulse, t > 50µs, the emission intensities of all the excited species di-

minish, in accordance with the falling IC. The only exception is the emission from the neutral

Nb atoms that grows in intensity, despite a decreasing plasma density (IC). Similar behaviour

was also found for several other monitored Nb0 emission lines with different excitation en-

ergy thresholds, underlining the fact that it cannot be explained by the modified excitation

conditions for each particular line. Instead, it may indicate a growing concentration of Nb

atoms within the monitored plasma region in front of the target. It should be stressed that

the Nb0 emission line exhibited a steady intensity level during the HiPIMS pulses operated

in pure Ar (not shown here), such as did the discharge current amplitude [figure 8.1(a)]. In

the subsequent text, a possible interpretation of the related reactive discharge dynamics will

be offered, based on the presented optical emission analysis summarized above, and on the

findings of the HiPIMS discharge diagnostics discussed in [162].
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Figure 8.4 Time evolution of the discharge current IC and of the cathode voltage UC (a,d), and
of the optical emission intensities originating from the excited metal species (b,e) and working
gas species (c,f), recorded during a 200µs HiPIMS pulse (a,b,c) and a 1000µs MPPMS pulse
(d,e,f). Both discharges were operated in the O2/Ar mixture with Φ(O2) = 5 sccm. The
acquisition time for different monitored species was not normalized. Nb2+ and Ar+ emission
lines were not monitored in the case of the MPPMS discharge because of their weak intensity.

Following the HiPIMS discharge ignition, both argon and oxygen ions start to bombard

the oxidized target surface. If target sputter-erosion prevails over surface oxidation and

over sub-surface oxygen implantation, the compound layer is progressively removed from the

target. Consequently, the target sputtering yield rises, since the pure metal has a lower

binding energy than the surface compounds. This is indicated by the growing emission

intensity from all Nb species for 5µs< t < 25µs. The injection of the sputtered metal into

the examined plasma region then lowers the mean electron energy, due to the lower excitation

and ionization energy thresholds of Nb in comparison with Ar. Furthermore, the growing

amount of sputtered metal causes working gas rarefaction in front of the target [100, 117].
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For these two reasons, all emission signals decrease substantially, in spite of the stable IC

at 25µs< t < 50µs. Due to the highest current density, the region expected to be first

“cleaned” is the center of the target’s racetrack that is defined by the magnetron’s magnetic

field configuration.

The decreasing IC value and the rising Nb0 emission intensity for t > 50µs suggest a grad-

ual modification of the target surface composition from predominantly oxidized towards more

metallic during the individual HiPIMS pulses; The ISEE from the oxide-free area decreases,

which lowers the plasma density and hence the current amplitude, as supported by the results

discussed in section 8.3.1. On the contrary, the Nb sputtering yield from the larger metallic

surface increases, which should result in a higher metal concentration in the discharge. This

is a rather preliminary conclusion which would require a proper TR analysis of the racetrack

surface composition, or perhaps TR absorption spectroscopic monitoring of Nb that would

allow one to estimate the sputtered material density. Nevertheless, the elevated r and rn of

NbOx films presented in figure 8.3 support this interpretation.

Figures 8.4(d), (e) and (f) present the characteristics of the reactive MPPMS discharge.

The TR optical emission analysis shows that all the monitored emission lines follow the

development of IC. The MPPMS discharge breakdown is significantly delayed behind the

onset of the voltage pulse in comparison with HiPIMS. This is due to the successive rise of UC

as a consequence of the MPPMS PS power management [130, 198]. Following the discharge

ignition, notable IC oscillations develop that are characterized by a large amplitude and a

period equal to several micro-pulse cycles. However, these oscillations cease after only several

periods at t ≈ 700µs. The subsequent IC oscillations exhibit a much smaller amplitude and

period equal to that of the driving voltage micro-pulses, such as the current oscillations

observed in the non-reactive MPPMS pulses [figure 8.1(b)]. Moreover, figure 8.2(b) shows

that the average value of IC at the end of the reactive MPPMS pulses approaches the IC

level of the non-reactive MPPMS. Such an observation indicates that the discharge may be

operated above a metallic target racetrack that is cleaned from the metal oxide compounds.

In such a case, the transition from the high amplitude to the low amplitude current oscillations

would mark the moment when a significant part of the racetrack surface becomes metallic.

In support of the above hypothesis, it is observed that the proportion of the large ampli-
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tude and of the low amplitude oscillations depends on Φ(O2) or f [figures 8.2(b) or 8.2(d)].

In other words, this behaviour is a function of the surface compound thickness that increases

with either the oxygen content in the O2/Ar gas mixture, or with the time lag in between

the pulses. Therefore, the duration of the high amplitude oscillations can be related to the

time necessary for the racetrack cleaning from the oxides, and the duration of the low ampli-

tude oscillations to the portion of the MPPMS pulse during which the sputtering from the

metallic racetrack takes place. As a matter of fact, higher rn values for NbOx films compared

to the other two investigated techniques [as indicated in figure 8.3(c)] can hardly be inter-

preted without considering the important rise in the Nb sputtering yield. Sputtering from

the oxide-free surface for a portion of the MPPMS pulse can explain such an observation.

In order to gain additional information about the plasma composition in discharges op-

erated in Ar and in O2/Ar mixtures, the averaged emission spectra were also recorded and

analyzed. Figures 8.5(a) and (b) illustrate the emission spectra from HiPIMS, MPPMS and

DCMS discharges obtained at Φ(O2) = 0 sccm and at Φ(O2) = 12 sccm, respectively. It should

be stressed that all the presented spectra were normalized to the same acquisition time and

power (P = 320 W), even if the actual power was different in the reactive gas mixture.

The HiPIMS spectrum at Φ(O2) = 0 sccm is dominated by an intense emission from Nb+.

Furthermore, strong Nb0 and even Nb2+ emission lines can be identified. The high emission

from the ionized species may serve as an indication that the HiPIMS discharge is operated in

the metal-dominated sputtering regime, in which the self-sputtering mechanism significantly

contributes to target sputtering [177]. The MPPMS spectrum at Φ(O2) = 0 sccm shows

an important emission from Nb+, but the strongest emission originates from Nb0. Such an

observation indicates a lower ionization of the sputtered metal in MPPMS when compared

to HiPIMS operated at the same power load. In fact, the form of this spectrum is very

similar to that of the HiPIMS discharges using a comparable average voltage (UC ≈ 500 V,

presented elsewhere [177]), which is lower than the threshold value for self-sputtering. One

can hence conclude that the examined MPPMS discharge is operated in the gas-dominated

sputtering mode since the cathode voltage is insufficient for the initiation of self-sputtering.

Contrary to both pulsed discharges, only neutral Nb lines can be identified in the non-

reactive DCMS spectra.
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Figure 8.5 Optical emission intensities from discharges operated by HiPIMS, MPPMS and
DCMS above a Nb target in pure Ar (Φ(O2) = 0 sccm) (a) and in O2/Ar mixture (Φ(O2)
= 12 sccm) (b), normalized to the same integration time and the same average power of
P = 320 W. For the sake of clarity, the intensities of reactive spectra were multiplied/divided
by a specific factor, as indicated.

The spectra from the HiPIMS and MPPMS discharges at Φ(O2) = 12 sccm show intense

metal emission lines, even though of a much lower intensity than those in pure Ar. This

observation confirms significant metal sputtering at a high oxygen content in the O2/Ar

mixture. This sharply contrasts with the reactive DCMS spectrum which does not exhibit

any Nb lines at Φ(O2) = 12 sccm. In the latter case, the only detected emission lines are

those of the excited working gas. Strong Ar emission indicates the elevated mean electron

energy due to a negligible amount of Nb that may be sputtered from the target fully covered

by metal oxide compounds.



149

The reactive HiPIMS spectrum [figure 8.5(b)] exhibits a substantially diminished emission

from Nb0 and Nb+ lines (about 6 times in comparison to the Ar discharge) but nearly an

unchanged emission intensity from Nb2+ lines. In addition, strong Ar+ lines appear in the

spectrum from the O2/Ar mixture, accompanied by a moderate rise of Ar0. In fact, Ar+,

Ar0 and Nb2+ emission lines possess higher ionization and excitation energy thresholds in

comparison with the other monitored species (Nb0 and Nb+). Thus, such an observation

suggests an increase in the mean electron energy in the reactive discharges.

It is important to note that the HiPIMS discharge emission close to the cathode shows

significant emission lines from ionized Ar, in contrast to the non-reactive discharge operated

above a clean Nb surface. This, in fact, indicates a transition in the sputtering regime. In

order to better understand the origin of such a change, one has to first consider a modification

in the target surface composition in a reactive atmosphere; The oxidized portion of the

target’s surface has a higher binding energy than the pure metal. Consequently, the target

oxidation (progressing with the increasing Φ(O2) or decreasing f) inevitably results in a

drop in the sputtering yield and hence in a smaller amount of sputtered metal that may be

ionized and possibly back-attracted towards the cathode. Subsequently, the decreased metal

concentration in front of the target leads to a lower background gas rarefaction, resulting in

a higher Ar ion bombardment of the target. This in turn further enhances the secondary

electron production (and IC) along with target oxidation.

In conclusion, the high currents observed during HiPIMS discharges above a partially

poisoned target cannot be simply attributed to self-sputtering (that is common for non-

reactive discharge at elevated cathode voltages), but to gas sputtering. A similar observation

of high pulse currents accompanied by an important emission from ionized Ar was reported

by Čapek et al. [177] for HiPIMS discharges operated above target materials with a low

sputtering yield, such as carbon. In the latter case, the occurence of the high currents was

interpreted by a gas recycling mechanism [122], which may also play an important role in the

reactive HiPIMS discharge studied in this work.

The general shape of the MPPMS spectra [figure 8.5(b)], containing the working gas

and the metal vapour emission lines, appears to be fairly unaffected by the high oxygen

flow, except for the substantially diminished emission intensity (about 3 times lower than



150

in pure Ar). The apparent similarity between the reactive and the non-reactive MPPMS

spectra suggests that the sputtering regime, the plasma composition and the excitation con-

ditions are comparable. This observation thus supports the previously made assumption that

the (gas-dominated) sputtering from the oxide-free racetrack takes place during a consider-

able part of the MPPMS pulse, even at high oxygen flows.

8.3.3 Discussion on the origins of the high target cleaning efficiency

The above-presented TR optical diagnostics of the discharge evolution and of the reactive

plasma composition confirms the high instantaneous sputter-erosion of the surface metal

oxides during both HiPIMS and MPPMS pulses. This results in the stabilization of the

deposition process, in the elimination of hysteresis, and in the elevated r and rn values of the

prepared NbOx coatings reported in section 8.3.1. In this section, we will elaborate on the

importance of UC for such behaviour and also on the origins of the substantial difference in

rn of the optically transparent coatings prepared by HiPIMS and MPPMS.

High instantaneous value of UC can be identified as the principal parameter that deter-

mines the superior target cleaning in high power pulsed discharges: Firstly, ISEE of the

oxidized target surface substantially increases with the energy of the impacting ions [68], as

discussed previously in section 8.3.1. High emission of secondary electrons then sustains the

high plasma density. Secondly, the sputtering yield of the bombarded metallic or oxidized

surface scales with the energy of the impacting ions [74, 199]. Consequently, the simultaneous

effect of the elevated ion fluxes (due to the high plasma density) and of the increased sput-

tering yield (due to the higher impacting ion energy) results in an efficient sputter-erosion

of niobium oxide compounds in both high power pulsed discharges, such as demonstrated by

high r and rn values in the presented experiments.

It should be noted that MPPMS exhibits a notably higher rn in comparison with HiPIMS

[figure 8.3(c)], albeit both UC and P reach substantially lower instantaneous values. This

observation indicates a higher target cleaning efficiency of the MPPMS technique. In the

following paragraphs, three hypotheses on the origins of such a disparity are offered:
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(i) Longer pulse duration; The application of longer pulses provides more time for surface

compound removal. Therefore, the ability of the MPPMS PS to deliver pulses of long duration

(e.g., up to 3000µs) allows one to reach oxide-free racetrack area even at high Φ(O2), as

discussed in section 8.3.2. It is hence suggested that rn may be further increased by the use

of longer MPPMS or HiPIMS pulses if compared to the results presented here.

(ii) Lower ion implantation; There are generally two principal processes responsible for

the oxidation of the sputtered target: chemisorption, resulting in the surface compound

growth, and ion implantation, leading to the subsurface compound formation. It has been

reported that the latter process plays an essential role in the target poisoning mechanism,

which has been taken into account even in analytical modelling of the reactive sputtering

process [77, 78]. As a matter of fact, several studies have demonstrated that the depth of

the reactive ion subplantation within the target can exceed the thickness of the adsorbed

compound layer [77, 78, 79]. Thus, it is obvious that the oxygen implantation and the

subsequent sub-surface oxidation can substantially enhance the overall compound growth

rate during the high power pulse. As a result, the compound removal efficiency by impacting

working gas ions may be compromised.

An increased generation of reactive O ions (Ei = 13.61 eV) may be expected in the reactive

HiPIMS discharges since the mean electron energy may be higher than in MPPMS, such as

indicated in figure 8.5 by the elevated emission intensity from the ionized Ar (Ei = 15.76 eV)

that has high excitation energy thresholds (e.g., Ek = 19.55 eV for the 442.6 nm emission

line). Furthermore, UC applied in HiPIMS reaches about twice as high values as in MPPMS.

Hence, the penetration depth of the impacting O+ is expected to be larger as well. For these

two reasons, the overall compound formation rate can be significantly higher in HiPIMS in

comparison with MPPMS.

(iii) Higher preferential sputtering of oxygen; Kubart et al. [200] have reported that the

large mass difference between Nb and O atoms is responsible for the enhanced preferential

sputtering of oxygen from the surface formed by NbOx compounds bombarded by working

gas ions, and hence for the surface oxide reduction. It was also shown that the preferential

oxygen sputtering from the oxidized surface is more pronounced at lower energies of the
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impacting Ar ions [200, 201]. In such a case, the use of lower cathode voltages (UC ≈ 600 V

used in MPPMS as opposed to UC ≈ 1200 V in HiPIMS) should facilitate the oxygen removal

from the top-most compound layer, hence allowing faster target cleaning.

It can be summarized that the combination of the longer pulse duration (providing more

time for the gradual compound removal) and of the used range of UC (resulting in the lower

subsurface oxidation and/or the faster oxide sputtering ) allows the MPPMS discharge to

operate in the non-poisoned mode during a part of its pulse. It should be stressed that the

here-presented hypotheses and conclusions are probably not exhaustive. Further investiga-

tions including different magnetron configurations, target materials and discharge conditions,

as well as modelling, are needed to obtain a more detailed insight.

8.3.4 Nb2O5 coatings characterization

The NbOx samples prepared at 9, 12 and 15 sccm were amorphous (as verified by XRD)

and optically transparent. In this section, the comparison of the optical and mechanical

properties of coatings prepared by HiPIMS, MPPMS and DCMS is then performed for the

specific case of Φ(O2) = 12 sccm.

Figure 8.6 shows the optical characteristics evaluated by spectroscopic ellipsometry com-

bined with reflection and transmission analyses. The bandgap is found to be at 369 nm (Eg =

4.37 eV), and the value of the extinction coefficient, k, is considered negligible (k < 1× 10−4,

which is the sensitivity of the measurement) in the entire visible and near infrared spectrum.

This indicates a good transparency of the analyzed coatings. The obtained index of refrac-

tion, n, at 550 nm for the three coatings is also listed in Figure 8.6. It is to be noted that

these values are comparable (DCMS, MPPMS) or even moderately higher (HiPIMS) to the

values reported for the stoichiometric amorphous Nb2O5 prepared by the ion beam sputtering

(IBS) [202] and by the dual ion beam sputtering techniques (DIBS) [203].

Slightly higher index of refraction of the HiPIMS-deposited Nb2O5 may be interpreted

by an increased coating density induced by the intense ion bombardment during the film

growth [10]. For instance, the elevated n of the HiPIMS-grown TiOx coatings, in comparison

with those deposited by DCMS, was associated with an increased coating density due to
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Figure 8.6 Spectral dependence of the index of refraction n and of the extinction coefficient
k of the Nb2O5 coatings prepared by HiPIMS, MPPMS and DCMS at Φ(O2) = 12 sccm and
p = 1.2 Pa. The values of n and k for a wavelength λ = 550 nm are displayed.

the higher Ti+ fluxes in [12]. In fact, high metal ion fluxes can be expected in the reactive

HiPIMS discharges, as indicated by the notable emission from the excited Nb+ detected at

Φ(O2) = 12 sccm [figure 8.5(b)].

The surface roughness estimated using ellipsometry analysis was about 2 nm for the Nb2O5

coatings prepared by HiPIMS and MPPMS, and 4 nm for those prepared by DCMS. The re-

sults of internal stress evaluation, σ, and of the nanoindentation analysis are presented in

table 8.2, together with measured thickness of the investigated films. HiPIMS and MPPMS-

deposited coatings exhibited near-zero in-plane stress, in contrast to the moderate compres-

sive stress of the DCMS coating. The reduction of the compressive stress level in high

power pulsed discharges may be explained by the ion bombardment discussed previously.

For instance, Çetinörgü et al. [203] observed the in-plane stress relaxation of the DIBS-

prepared Nb2O5 films, from σ = −240 MPa (obtained without the ion bombardment) to

σ = −140 MPa, with the increasing energy of the assisting bombarding ions (up to 550 V).

The theoretical interpretation for the coating stress relaxation due to the ion bombardment

at moderately elevated ion energies (hundreds of eV) can be found in [204].
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Table 8.2 Thickness, tf , in-plane stress, σ, hardness, H, and reduced Young’s modulus, E,
of Nb2O5 coatings deposited by HiPIMS, MPPMS and DCMS at Φ(O2) = 12 sccm and at
p = 1.2 Pa. The film prepared by DCMS in the conditions of the poisoned target was very
thin, which made the evaluation of σ difficult, and of H and E unreliable.

tf [nm] σ [MPa] ∆σ [MPa] H [GPa] ∆H [GPa] Er [GPa] ∆E [GPa]
HiPIMS 755 50 50 6.2 0.2 140 5
MPPMS 960 -90 50 5.8 0.1 136 5
DCMS 77 -330 150 — — — —

Hardness, H, and reduced Young’s modulus, Er, of the HiPIMS- and MPPMS-deposited

coatings correspond to those reported by Çetinörgü et al. [203] for films obtained by DIBS.

The authors demonstrated that H of the dense Nb2O5 coatings varied from 5.5 to 6.5 GPa

and Er from 118 to 130 GPa, in dependence on the flux and energy of the bombarding ions

produced by the secondary ion source. It is to be stressed that in the current experiments

no external ion beam assistance has been provided. Yet, a comparable H and a moderately

higher Er values are detected. The slightly higher hardness of the HiPIMS-deposited coating

compared to that of the MPPMS-deposited coating is probably also a consequence of higher

film density, such as suggested by the higher value of n.

The presented coating characterization shows that both pulsed techniques can produce

dense optical films suitable for optical filter applications. The absence of a hysteresis and

stabilization of the deposition process in both reactive HiPIMS and MPPMS discharges

provide a great versatility of the deposition conditions at which optically transparent Nb2O5

coatings can be obtained. This opens a possibility to further tailor the deposition process,

and hence, the coating properties.

8.4 Conclusions

The present study has demonstrated that the two investigated high power pulsed dis-

charges above a Nb cathode in O2/Ar mixtures can be operated in a hysteresis-free mode

between the metallic and the poisoned target state. The current waveform monitoring and

the TR optical emission diagnostics indicated that the surface oxide layer, created on the

Nb target in between the pulses, was progressively sputter-eroded during both HiPIMS and
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MPPMS pulses. This behaviour permits deposition of optically transparent Nb2O5 films

exhibiting a technologically interesting deposition rate at a large range of the oxygen flows.

Moreover, stable deposition conditions can be obtained by reactive gas flow control with no

need of a feedback system, commonly used in reactive DCMS.

The differences between pulse power management in HiPIMS and MPPMS were found to

significantly affect the sputtering regime and the reactive discharge behaviour. The cathode

voltage was identified as the principal parameter defining the discharge current amplitude and

the target cleaning efficiency, since ISEE, the sputtering yield, and the oxygen implantation

depth are all functions of the impacting ion energy. The pulse duration is another important

variable because it represents the time available for the gradual target cleaning.

Nb2O5 coatings prepared by both reactive high power pulsed discharges exhibited a high

index of refraction, a low extinction coefficient, a near-zero internal stress, low surface rough-

ness and high hardness and Young’s modulus. These characteristics are compatible with op-

tical coating technology requirements. The HiPIMS-deposited coatings showed the highest

deposition rate. In comparison, MPPMS exhibited the highest power-normalized deposition

rate among the three deposition techniques.
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CHAPTER 9

General discussion, conclusions and perspectives

This chapter offers a brief recapitulation of the most important results obtained during

the presented work and highlights the main contributions to the field. It should also serve

as a confirmation that the objectives defined in Chapter 1 have been attained. At first,

the principal findings of the optical diagnostics of HiPIMS discharges operated under both

non-reactive and reactive conditions will be summarized, together with the description of the

methodology developed during this work. Afterwards, the main conclusions resulting from

the critical comparison of the two power management approaches in high power sputtering

will be outlined. Finally, the perspectives and suggestions of the future work that should

follow this work will be presented.

9.1 Diagnostics of HiPIMS discharge evolution

One of the primary objectives of this work was to gain an in-depth understanding of the

physical processes within pulsed HiPIMS discharges operated under both non-reactive and

reactive conditions. In order to achieve this goal, we have applied two methodological ap-

proaches based on the optical emission emanating from the plasma. The first one is the fast

plasma imaging, employing the custom-made optical interference filters used to isolate the

optical emission signal originating from different species populating the plasma. In Chapter 4,

we have discussed the necessary steps for the design of appropriate filters, as well as their prac-

tical use for species-resolved plasma imaging suitable for the characterization of the spatial

evolution of pulsed HiPIMS discharges. Subsequently, we have demonstrated the application

of this diagnostic approach for the visualization of different plasma-phase processes, such as

background gas excitations by energetic electrons appearing during the discharge ignition,

and the expansion of the dense plasma region outwards from the target preceded by the gas

shock wave. The understanding of these effects can be beneficial in the optimization of the

coating deposition, specifically if combined with the generator-synchronized pulsed biasing
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of the substrates that would permit to selectively choose the kind of ionized species to be

incorporated within the growing film.

Species-resolved plasma imaging can be used for the monitoring of HiPIMS discharges

operated in both non-reactive and reactive conditions, such as shown in the analyses of the

200 µs long square-shaped voltage pulses applied to a Cr target in pure Ar (Chapter 4)

and in pure O2 (Chapter 6). In the former case, the investigated discharge was operated in

metal-dominated sputtering mode, while in the latter case, the discharge was operated above

a fully poisoned (oxidized) Cr cathode from which only a minimum of the target material is

sputtered.

In order to gain further information about the dynamics of HiPIMS discharges, we have

carried out a systematic investigation of the 200 µs long square-shaped HiPIMS pulses

operated in Ar, N2 and N2/Ar mixtures, and at various pressures ranging within 0.7 Pa< p <

2.66 Pa (Chapter 5). In this study, we have used the combination of fast plasma imaging and

time- and space-resolved OES, together with the current waveform monitoring. This ap-

proach enabled characterization of the propagation velocity of the fast electron-induced gas

excitations at the beginning of the pulse and of the metal-rich plasma generated during the

metal-dominated phase of the discharge, as a function of the composition and pressure of

the working gas. It was found, that the speed of the plasma wavefront varied in the range

from 0.7 to 3.5 km s−1; It increased with higher nitrogen concentration within the reactive gas

mixture and/or with decreasing pressure. The expanding plasma region had a hemispherical

shape in pure Ar, predominantly due to the bright emission from the excited sputtered Cr.

In the reactive atmosphere, the apparent form of the travelling plasma wavefront evolved

from a hemispherical into a droplike shape extending far from the target, mostly due to the

significant emission from molecular N2.

We were able to identify up to four different phases during a single HiPIMS pulse, namely

(i) the ignition phase, (ii) the high current metal-dominated phase, (iii) the transient phase,

and (iv) the low current gas-dominated phase. The transition in between the metal-dominated

and the gas-dominated discharge was found to depend on the cathode voltage amplitude,

alongside with other parameters, such as the magnetron’s magnetic field configuration. Here,

it should be pointed out that the magnetic field strength can be optimized in such a way that
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the high current discharge – also denoted as the high density discharge – can be stabilized dur-

ing the entire duration of the HiPIMS pulse, as discussed and demonstrated in Appendix A.

The observation of the high density discharge – characterized by high amplitude pressure-

independent currents – during HiPIMS pulses operated in N2, and the similarity of the respec-

tive spectroscopic evolution to that of the non-reactive discharges, manifested the presence

of self-sputtering mechanism in the reactive HiPIMS discharges. This finding was further

supported by the observation of the high deposition rate of CrN coatings (r = 2.5µm h−1)

prepared in pure N2 at comparable conditions (IC ≈ 1.1 A, p = 1.3 Pa), using the same

experimental setup [173].

9.2 Characterization of different pulse power management strategies in HiPIMS

From the understanding developed in Chapter 5, and using a similar methodology (time-

averaged and time-resolved OES combined with current waveform monitoring), we extended

our investigation to the characterization of pulsed discharge evolution, plasma composition

and metal ionization during the high power pulsed discharges exhibiting different pulse

shapes: square voltage pulses (HiPIMS) and modulated custom-shaped pulses (MPPMS).

This was complemented by the critical analyses of the deposition rate, the microstructure

and the internal mechanical stress of the prepared Nb coatings. Moreover, we explored the

behavior of both HiPIMS and MPPMS discharges in reactive O2/Ar gas mixtures and eval-

uated the material, mechanical and optical properties of the deposited NbOx films. All the

monitored discharge and coating characteristics were also compared to those obtained by the

benchmark DCMS technique. Such a rigorous comparison study is of great importance for

the coating manufacturers seeking an optimal approach for their specific deposition process.

In Chapter 7, we have characterized HiPIMS, MPPMS and DCMS discharges operated

above a 5-cm Nb target at various powers (0 W - 450 W) and at two Ar pressures (1 and 2 Pa).

Firstly, we have compared the different types of power regulation and evaluated the related

discharge parameters. We have shown that the HiPIMS technique is the only one that enables

the discharge operation in the metal-dominated sputtering mode within the investigated range

of powers, resulting in a significantly higher ionization of the sputtered metal than that

reached with MPPMS and DCMS. This identifies HiPIMS as the most suitable technique for
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deposition processes where maximum metal ionization is required. However, the 200µs long

HiPIMS pulses were found to be difficult to ignite or were prone to arcing at low pressures

and under reactive conditions. In these situations, the use of the MPPMS pulses of long

duration (up to few ms) was found advantageous, particularly due to the gradual rise of the

power applied by the MPPMS PS. Thus, the versatility that the modulated pulse power

generator offers, together with the substantial metal ionization, makes MPPMS an attractive

alternative to HiPIMS.

Both HiPIMS and MPPMS exhibited similar Nb deposition rates, which were lower than

with DC sputtering, due to the non-linear dependence of the sputtering yield on the impacting

ion energy and due to other phenomena. Coatings deposited by the two high power pulsed

discharges at p = 1 Pa were in higher compressive stress and had a larger out-of-plane lattice

spacing than those prepared by DCMS, even though all the films possessed an apparently

dense columnar structure. At higher pressure (p = 2 Pa), the DC-sputtered films showed

a tensile stress and a porous microstructure, while films prepared by HiPIMS and MPPMS

were dense and in compression. These observations were interpreted by a film densification

due to the significant ion fluxes generated by both pulsed techniques.

Finally, in Chapter 8, we have shown that both HiPIMS and MPPMS discharges operated

in the constant voltage-/voltage load mode above a Nb cathode in O2/Ar mixtures can be

operated in a hysteresis-free mode. It was suggested that the surface oxide layer, created

on the Nb target in between the pulses, can be progressively sputter-eroded during the in-

dividual HiPIMS and MPPMS pulses. Consequently, the partially oxide-free target can be

reached even at high oxygen concentrations (substantially higher than the threshold neces-

sary for target poisoning in the DCMS discharge), which results in the stabilization of the

deposition process and the hysteresis elimination. Therefore, stable deposition conditions

can be obtained by reactive gas flow control with no need of a feedback system, commonly

used in reactive DCMS. This behavior is particularly beneficial for the deposition of optically

transparent films, such as demonstrated on the example of the prepared Nb2O5 exhibiting a

technologically interesting deposition rate at a large range of the oxygen flows.

Nb2O5 coatings prepared by both high power pulsed discharges exhibited a high index

of refraction, a low extinction coefficient, a near-zero internal stress, and high hardness and
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Young’s modulus. These characteristics are compatible with optical coating technology re-

quirements. The observation of the highest index of refraction in the HiPIMS-deposited

coatings was attributed to the higher film density. It should be noted that the highest

power-normalized deposition rate among the three investigated deposition techniques was

reached by reactive MPPMS. We have argued that the latter observation may be caused by

the much longer period that is available for the gradual target cleaning during the MPPMS

pulses (1500µs), than during the much shorter HiPIMS pulses (200µs). At the very end, we

have offered an explanation for the high target cleaning efficiency during both HiPIMS and

MPPMS pulses, and identified the cathode voltage as the key parameter for the resulting

reactive discharge behavior.
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9.3 Perspectives and future work

This thesis represents the first systematic work related to the investigation and imple-

mentation of the high power pulsed technology in the FCSEL laboratory. It is focused mainly

on the optical and electrical characterization of the principal types of the HiPIMS discharges

operated in the various working gas compositions and pressures. However, this work also

reports on the fabrication and characterization of the model metal and metal oxide coatings

in a great variety of conditions. Such a systematic study established a solid background for

further directions of research that will be outlined in the following sections.

9.3.1 Discharge characterization

As it was clearly demonstrated in the present work, the optical emission from the plasma

can be used as a powerful and versatile diagnostic tool for the characterization and hence

optimization of the high power pulsed discharges. However, the emission signal from the

plasma-excited species is unfortunately highly convoluted, since it also carries the information

about ne, Te, etc. Therefore, this work should be complemented by the Langmuir probe

measurements that would permit determination of these parameters in the studied discharges,

specifically those operated in reactive gas mixtures. One could also employ actinometry in

order to quantify the density of the selected species, as discussed in Chapter 3.

The species-resolved plasma imaging technique for HiPIMS discharge monitoring, ad-

dressed in Chapter 4, can be enhanced by a separate detection of the emission of spectral

lines originating from either neutral or ionized plasma-excited species. For that purpose, one

may use a set of narrow bandpass filters which would enable the monitoring of emission lines

otherwise indistinguishable by the optical filters used in this work. An independent anal-

ysis of neutral and ionized fluxes would facilitate a proper understanding of the discharge

dynamics and hence of the respective film growth conditions.

In order to improve the spatial resolution of the plasma imaging, it is recommended to

process the acquired images by the reverse Abel transformation. This transformation is used

for the calculation of axially symmetric emission distributions, given its projection to the
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plane of observation (e.g., the image obtained by the fast camera) [146]. The combination

of the species-resolved plasma imaging and the image processing by Abel inversion would

provide a better accuracy in this diagnostic approach and an easier interpretation of the

results. Such an analysis could also supply the data suitable for time-dependent modelling

of neutral and ionized material fluxes in HiPIMS pulses, that could replace the current

parametric steady-state models [114, 102, 104].

In the Appendix A, we discuss the application of the paramagnetic spacers in between

the target and the magnetron head in order to decrease the magnetic field strength and

hence to customize the resulting cathode current. It would be interesting to complement this

study by the diagnostics of the discharge evolution using species-resolved plasma imaging

at the different magnetic field configurations. Such an investigation would enable better

understanding of the effect of the magnetic field on the pulsed discharge evolution, and

more specifically, on the transport of the sputtered species. Furthermore, the presented

approach is highly suitable for the in-depth analysis of the magnetic field perturbations –

particularly visible due to the modified working gas emission during the discharge ignition,

as depicted in Chapter 5 – that originate in the abrupt changes in the cathode current

amplitude encountered during the HiPIMS pulses [168].

The hysteresis-free reactive sputtering in the O2/Ar mixtures was demonstrated for the

HiPIMS and MPPMS discharges operated above a Nb target (Chapter 8), but also above

Ta and Cr targets. In contrast, both types of discharges did exhibit hysteresis when using

a Ti target. In order to better understand this variable behavior, it is first necessary to

determine the limiting conditions (e.g., cathode voltage amplitude, magnetic field strength,

size of the cathode) at which the hysteresis is suppressed, for each of the target material

of interest. Therefore, further investigation of the reactive HiPIMS and MPPMS discharges

should follow under a variety of experimental conditions, and for different target materials.

The distinct feature of HiPIMS is a highly ionized flux of sputtered material towards the

substrate. The monitoring of the metal plasma propagation (Chapter 5) and the estimation

of the sputtered material ionization (Chapter 7), using solely the emission line intensities,

should be supplemented by a rigorous characterization of the ion fluxes reaching the substrates



163

(e.g., flux intensity, flux composition, IEDF). FCSEL possesses extensive experience in using

the retarding field ion energy analyser and the mass spectrometer [61, 60, 205], which are

both highly complementary diagnostic approaches to OES. The quantification of the ion

flux characteristics by these two techniques, in combination with the expertise regarding the

plasma–surface interactions previously developed in FCSEL [63, 62, 79, 80], would enable a

judicious control over the thin film growth process, and hence its optimization.

9.3.2 Functional coating fabrication

The ultimate goal of the present work, devoted mainly to the characterization of the

various HiPIMS discharges operated in a multitude of conditions, is to facilitate the imple-

mentation of this promising, yet emerging, technology for the fabrication of high quality

functional coatings.

In Chapter 8, we have presented the high refractive index Nb2O5 coatings exhibiting char-

acteristics fulfilling the optical coating requirements. In the next step of this project, Nb2O5

– or other high index oxide, such as Ta2O5 – should be combined with a low index material –

for instance, SiO2 – in the multilayer coatings, in order to prepare model interference optical

filters. This can be performed in a dual magnetron set-up, where the substrate is recursively

moving in between the two cathodes (e.g., Nb and Si) sputtered in the reactive O2/Ar mix-

ture to create the requested number of layers. The total number as well as the thicknesses

of the individual layers can be designed using the OpenFilters sofware [163], developed in

FCSEL.

It would be interesting to investigate the influence of Ar incorporation within the HiPIMS-

deposited films on the stress-induced coating deterioration. The latter relation could be

examined, for example, by the wear-, corrosion- and erosion-resistance testing, in which

FCSEL has an extensive expertise [206, 207, 208, 209, 210, 211, 212, 203]. Both species-

resolved plasma imaging and time- and space-resolved OES monitoring permit the evaluation

of the travelling time of the working gas ions and of the expanding metal-rich plasma in

between the target and the substrate. This opens a possibility to employ an appropriate

substrate biasing scheme that would favor the acceleration of the arriving metal ions relatively
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to the working gas ions. As suggested in Chapter 4, the substrate could be biased by a

pulsed PS that is synchronized with the generator powering the sputtered cathode, with a

set delay selected by the operator. The most recent bias HiPIMS generators available on the

market already enable such synchronization. Furthermore, a positive bias, preventing the

incorporation of the working gas ions into the substrate, such as during the ignition phase,

could also be applied.

The HiPIMS discharge operation in the metal-dominated sputtering in the pure N2 at-

mosphere (Chapter 5) demonstrated that the high-quality protective coatings can be fab-

ricated with no Ar-related defects, and at the same time, with no drawback of the de-

creased deposition rate (Ref. [173]). This broadens the possibilities for the fabrication

of high-quality nitride-based protective coatings, including the nanoscale multilayers and

nanocomposites. Many years of experience and expertise that FCSEL possesses in this do-

main [213, 207, 208, 209, 210, 211, 212, 214] can serve as a driving force for such investigation.

9.3.3 Final remark

HiPIMS - that combines the advantages of the IPVD technique and the flexibility of

the well-established magnetron sputtering with a relative ease of implementation and scale-

up in the industrial process – can be considered as the current state-of-the-art deposition

technology that has a great potential to outperform other commonly used coating fabrica-

tion techniques. The number of research laboratories and manufacturers investigating its

capacities and limitations, as well as the number of examples demonstrating its successful

application in coating preparation, are constantly growing. This huge interest from the coat-

ing community confirms that HiPIMS is a very promising technology that is definitely worth

the efforts for further exploration. It is the humble believe of this candidate, that the herein

presented results contribute to the general understanding of this technique and hence to its

future development.
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[198] M. Hála, J. Čapek, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Pulse man-
agement in high power pulsed magnetron sputtering of niobium,” Surf. Coat. Technol.,
submitted, 2011.

[199] M. Seah and T. Nunney, “Sputtering yields of compounds using argon ions,”
J. Phys. D: Appl. Phys., vol. 43, no. 25, p. 253001 (13 pp.), 2010. [Online]. Available:
http://dx.doi.org/10.1088/0022-3727/43/25/253001

[200] T. Kubart, T. Nyberg, and S. Berg, “Modelling of low energy ion sputtering from
oxide surfaces,” J. Phys. D: Appl. Phys., vol. 43, no. 20, p. 205204 (6pp.), 2010.
[Online]. Available: http://dx.doi.org/10.1088/0022-3727/43/20/205204

[201] E. Taglauer and W. Heiland, “Mass and energy dependence of the equilibrium surface
composition of sputtered tantalum oxide,” Appl. Phys. Lett., vol. 33, no. 11, pp.
950–952, 1978. [Online]. Available: http://link.aip.org/link/?APL/33/950/1

[202] C. C. Lee, C. L. Tien, and J. C. Hsu, “Internal stress and optical properties of Nb2O5

thin films deposited by ion-beam sputtering,” Appl. Opt., vol. 41, no. 10, pp. 2043–2047,
2002. [Online]. Available: http://ao.osa.org/abstract.cfm?URI=ao-41-10-2043
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Abstract:

High power impulse magnetron sputtering (HiPIMS) is a pulsed DC sputtering technique

utilizing high power density peaks of typically more than 100 W cm−2. The discharge op-

eration at such elevated powers can be hindered by the magnetron configuration (size and

magnetic field) and/or the target conditions (e.g. material and thickness). In addition, target

erosion is an important issue significantly affecting process reproducibility. In the present

work, we propose a simple approach for the stabilization of the HiPIMS discharge by con-

trolling the target magnetic field using paramagnetic spacers with different thicknesses in

between the magnetron surface and the target. We demonstrate a straightforward discharge

optimization, while using various target materials, such as Nb, Ta, Cr, Al, Ti, Si, and even

C (graphite). The existence of a steady state high density discharge above the graphite target

and the other targets in general is discussed in terms of the magnetic field configuration and

the gas rarefaction effect.
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A.1 Introduction

High power impulse magnetron sputtering (HiPIMS) is a pulsed DC sputtering technique

utilizing high power density peaks of typically more than 100 W cm−2 at a sufficiently low

time-averaged power density in order to avoid target overheating. This results in a high

density discharge and, consequently, in a high degree of ionization of the sputtered material.

This makes HiPIMS a very attractive deposition technique for enhancing and tailoring coating

properties.[1, 2]

Recently, Anders at al. described[3] that specific conditions have to be met in order to

reach a high density (HD) discharge. Probably, the most important criterion is the sufficiently

high pulse voltage value, Uc. If Uc is lower than a certain threshold, Uth, a low density

(LD) discharge is observed [see Fig. A.1 (dotted line)], such as in DC magnetron sputtering

(DCMS).

At time t = 0 µs, the target is surrounded only by Ar atoms at a preset pressure, thus

the initial current density growth can be mostly attributed to Ar ions impacting on the target.

However, the sputtered atoms transfer their momentum through collisions to the surrounding

gas. This results in heating and consequently in rarefaction of the Ar atoms.[4] It is to be

noted that a similar effect can also be caused by an elevated temperature of the target

surface.[5] Since Ar ions are the principle particles generating secondary electrons (SE) in

the LD plasma (due to their high potential energy[3]), the discharge current density starts

to decrease at some point to a steady state value reached after several tens of microseconds.

The resulting current density is mainly determined by the reduced concentration of Ar atoms

close to the target surface.[6]

For Uc higher than Uth [Fig. A.1 (solid line)] the number and the energy of SE are suf-

ficient to ionize an important fraction of the sputtered atoms. The target ions can then

be attracted back to the target by the large potential fall across the plasma (pre)sheath.

Although the rarefaction of the working gas is even more pronounced at higher powers,

the back-attracted excited target ions, and especially the doubly ionized target atoms, are

able to partially substitute the role of Ar ions in the generation of the SE.[7, 8] The lat-

ter process is crucial for sustaining the HD discharge. As a consequence, the HD discharge
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reaches a steady state, which is characterized by a substantially higher value of the current

density compared to the LD case.

In some specific conditions, the ions of the sputtered material are able to take over

the role of the Ar ions completely, thus the background Ar gas can be omitted without

loosing the HD discharge regime.[9, 10, 11] The condition for such a mode, termed “sustained

self sputtering”, or “gasless sputtering”, was originally introduced by Hosokawa[12] at al. as

Π ≡ αβ γss = 1, (A.1)

where, α is the probability that a sputtered atom becomes ionized, β is the probability

that the newly formed ion returns to the target, and, γss is the self sputtering yield. Since

α < 1 and β < 1, it is necessary that γss > 1. One of the advantages of such a HD

discharge is the deposition of dense coatings without any contamination by the working gas.

Figure A.1 Schematic waveforms of the pulse voltage Uc and the target current density, Jc,
for a case that Uc < Uth (dotted line) and Uc > Uth (solid line), where Uth is a threshold for
the high density plasma (dashed line).
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However, an additional source of metal ions (e.g., pulsed cathodic arc[11]) is needed to initiate

the discharge at every high voltage pulse.

Despite of the effort that has been devoted to the understanding of the HiPIMS processes

in the last years, its practical implementation may be complicated due to several types

of problems: (i) HiPIMS power supply overloading, (ii) excessive arcing, and (iii) strong

effect of target erosion. In the present work, we discuss in more detail on the above issues,

and we propose a straightforward solution based on the magnetron’s magnetic field control.

In addition, we demonstrate the significance of the gas rarefaction effect on the HiPIMS

discharges by providing the experimental evidence for various target materials, including

those with a low sputtering yield such as carbon (graphite).

A.2 Experimental setup

All experiments were performed in a vacuum deposition system illustrated in Fig. A.2

using a grounded stainless steel chamber, in a pure Ar atmosphere, and a pressure, p = 1 Pa.

An unbalanced magnetron (5 cm in diameter unless otherwise specified) was powered by

a HÜTTINGER Electronics HMP2/1 power supply (2 kW maximum average power) working

in the frequency range from 2 to 500 Hz, at a voltage pulse duration between 1 and 200 µs

and with a maximum voltage and peak current of 2 kV and 1000 A, respectively. A repetition

Figure A.2 Schematic diagram of the experimental setup.
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frequency fr = 50 Hz and a pulse duration tp = 200 µs were used in order to be able to

reach a steady state HD discharge without overheating the magnetron. We intentionally

used such a small-size magnetron since it allowed us to achieve very high power densities

during the pulses at lower total (average) powers.

The magnetron’s magnetic field is shown in Fig. A.3. This measurement of the field dis-

tribution was performed by a home-made mapping system where the position of a LakeShore

HMNT-4E04-VR Hall probe was controlled by a x–y movable stage. More details concern-

ing the measurement and properties of the magnetic field are presented in Appendix AA.

The substrate holder (surface area ∼50 cm2; target-to-substrate distance d = 10 cm) was

biased at a low power (∼10 W) to obtain a negative bias voltage of −20 V by an additional

RF power supply in order to facilitate the discharge ignition.

In this work, different target materials have been tested; this includes: Ta, Nb, Cr, Ti, Al

(6.35 mm thick), n-doped Si (total thickness 3.18 mm Si + 3.18 mm copper bonding), and C–

graphite (3.18 mm thick). Copper spacers placed in between the target and the magnetron

head were used to modify the magnetic field strength. The thickness, ds, of the spacers was

Figure A.3 Magnetic field lines (solid lines) and contours of the magnetic field, |B|, (dashed
lines) corresponding to the magnetic field of the 50 mm diameter unbalanced magnetron used
in this work.
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in the range of 0 to 5 mm. The target erosion was measured as a ratio between the depth of

the race track and the thickness of a new target.

Waveforms of the cathode voltage and discharge current were measured by a Tektronix

P6015A voltage probe and a Pearson 301X current monitor, respectively, and recorded by

a Tektronix TDS2014B digital oscilloscope.

Optical emission from the discharge was collected by an optical fibre probe mounted within

the reactor overlooking the discharge at a distance of d ≈ 1 cm parallel with the target surface.

The time-averaged optical spectra were analyzed by Ocean Optics USB2000 spectrometer.

A.3 Common issues in the HiPIMS process implementation

In this section we discuss various general problems related to the implementation of

a HiPIMS discharge in deposition systems; this includes HiPIMS power supply overloading,

excessive arcing, and the strong effect of target erosion. Possible solutions are also outlined.

A.3.1 HiPIMS power supply overloading

The steady state HD discharge (depicted in Fig. A.1) can be reached only in the case when

the HiPIMS power supply can sustain a constant voltage (Uc > Uth) during the whole pulse.

If the resulting HD discharge current value is too high (due to a large target surface, a strong

magnetron’s magnetic field or a high emission of SE from the target) the steady state cannot

be reached. Instead, a peak-shaped current waveform is observed (as exemplified Fig. A.4).

Here, high current values at the beginning of the pulse significantly reduce the charge

stored in the pulse unit capacitors of the HiPIMS power supply. As a consequence, the Uc

starts to decrease at t1 = 30 µs (as indicated by the time line no. 1 in Fig. A.4), followed

by the Uc maximum, and consequently by the drop of the HD current. Moreover, beyond

t2 = 130 µs (time line no. 2) an even more rapid fall of the current is observed. The latter effect

is caused by a voltage drop below the voltage threshold for the sustained HD discharge.[13]

It should be highlighted that due to the power supply overloading neither the voltage nor

the current levels are stable. This complicates understanding and modeling of the discharge.
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Figure A.4 Waveforms of the magnetron voltage Uc and the target current, Ic, for a Ti
target. The line no. 1 denotes the time at which the pulse voltage starts to decrease because
of insufficient charge stored in the pulse unit capacitors of the HiPIMS power supply. The line
no. 2 represents the time at which the HD discharge is lost due to the drop of the voltage
under a threshold for HD plasma.

A.3.2 Excessive arcing

The number and the energy of the emitted SE are very important discharge parameters.

Furthermore, the production mechanism of the SE is crucial as well. A typical discharge

in plasma processing is operated in a glow or an abnormal glow discharge regime where

the SE are individually emitted by the impacting ions. However, the HiPIMS process is

characterized by a high target ion current density, Jci, that narrows the sheath thickness, xc,

accordingly to the Child’s law. For instance, the collisionless Child’s law results in a sheath

thickness xc,DCMS = 300 µm for a typical DCMS discharge (Jci = 50 mA cm−2, Uc = 0.3 kV)

and xc,HiPIMS = 45 µm for a typical HiPIMS discharge (Jci = 4 A cm−2, Uc = 0.6 kV) above

a Nb target. The thinner sheath significantly increases the electrical field intensity, E, close

to the target surface from EDCMS = 1.0 × 106 V m−1 to EHiPIMS = 1.3 × 107 V m−1. Such

a rise in E may substantially enhance the probability of electron field emission at target
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defects (i.e. grain boundaries, inclusions).[14] Hence, HiPIMS discharge is much more prone

to a transition to the collective field and thermal electron emission regimes. In such a case,

the large scale discharge collapses into a small cathodic spot through which a high current

density may flow. The latter discharge is known as an arc.

Arcing during the deposition process is a serious issue. Despite the fact that arc handling

is now a standard feature of commercial HiPIMS power supplies, there can be some residual

energy in the discharge circuit even after the arc detection. This may lead to the ejection of

macroparticles from the sputtered target, and thus to a possible deterioration of the coating

quality.

A.3.3 Strong effect of target erosion

Figure A.5 shows the steady state current as a function of the pulse voltage for differ-

ent erosion states (6 and 80 %) of a Nb target. Transition from the LD to the HD dis-

charge is characterized by a jump in the current, and consequently by a change in the curve

slope.[15, 16] Interestingly, a zero or even a negative slope can be observed during the HD dis-

charge for some combinations of the magnetron’s magnetic field configuration and the target

material (see Fig. A.5). One possible explanation of the observed flattening of the I–V

curve is a lower SE confinement by the magnetic field of the magnetron at elevated volt-

age values.[17, 15] As a result, a significant portion of these electrons will be lost without

contributing to the plasma density. This effect may be further enhanced by an increased

magnetic deconfinement due to the rise of the Hall current upon a transition from the LD to

the HD regime.[18, 19]

This phenomenon is not a problem by itself, but it will negatively affect the long-term

reproducibility (e.g. the constant deposition rate) of the deposition process. As illustrated in

Figure A.5, the progressing target erosion can result in a substantial rise of the HD current

level. In such a situation, it is impossible to reach the original (low level) current without

a loss of the HD discharge. Consequently, the deposition conditions are irreversibly altered.
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Figure A.5 Current–voltage characteristics corresponding to different erosion states (6 and
80 %) of the Nb target.

A.3.4 Possible solutions

The difficulties with the application and implementation of the HiPIMS described above

indicate a need for process optimization. An adequate solution should permit: (i) to sustain

the HD discharge during most of the duration of the HiPIMS pulse, (ii) to minimize arcing,

and (iii) to enhance the process reproducibility.

A possible answer to the above requirements is the ability to adjust the current level dur-

ing the HD discharge. This may be performed by modifying the magnetron’s magnetic field

by one of the following approaches: (i) use of a magnetron equipped by electromagnets,[10]

(ii) replacement of the permanent magnets inside the magnetron,[20] (iii) application of an ex-

ternal magnetic field (i.e. additional coil[21] or permanent magnets[22]), or (iv) adjustment

of the distance between the target surface and the permanent magnets.[23] In this work, we

utilize the latter approach by inserting paramagnetic (copper) spacers of different thicknesses

between the target and the magnetron head.

A.4 Optimization of the high density discharge

In this section we study the effect of target erosion on the HiPIMS discharge character-

istics above a Nb target for the case when the HD current level is independent of the pulse

voltage. We then demonstrate application of the copper spacers for the control of the mag-
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netic field and the consequent steady state HD discharge optimization. Finally, we present

model examples of the optimized HiPIMS discharge for Ta, Cr, Al, Ti, Si, and C targets.

A.4.1 Control of the HiPIMS discharge through the optimization

of the magnetic field

The HiPIMS discharge characteristics in front of the Nb target depend on the level of

target erosion and on the thickness of the inserted spacer. The distribution of the radial

component, |Bρ|, of the magnetic field around the Nb target at different stages of erosion is

illustrated in Fig. A.6. The corresponding current waveforms for various preset voltages are

shown in Figure A.7 (a – c).

For a low target erosion of 6 %, a radial magnetic field at the target surface Bρ = 550 G

(Fig. A.6) and a racetrack area Ar = 9.3 cm2 lead to a typical LD discharge for pulse voltages

Uc < Uth = 0.7 kV [Fig. A.7 (a)]. Pulse voltages higher than this Uth threshold result in

a steady state HD discharge at a maximum current value of approximately 20 A at Uc = 1 kV.

Surprisingly, the HD current does not rise even for very high voltages (e.g. Uc > 1 kV).

Instead, we observe a slow decrease of the steady state HD current level to 14 A at Uc = 2 kV,

such as previously illustrated in Fig. A.5. This behavior can probably be attributed to

an enhanced energy of the SE at these voltages, as previously discussed in section A.3.3.

Figure A.6 Niobium target profiles at different erosion states (6, 37, and 80 %) presented
together with the absolute values of the radial component |Bρ| of the magnetron’s magnetic
field (in Gauss).
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Figure A.7 Waveforms of the target current Ic as a function of a preset HiPIMS pulse volt-
age applied to a Nb target at different erosion states: 6 % (a), 37 % (b), and 80 % (c),
and at 80 % of erosion state but for different thicknesses of spacers: 1.7 mm (d), 3.4 mm (e),
and 5.0 mm (f).
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The discharge behavior at a target erosion of 37 % [Fig. A.7 (b)] is similar to the previous

case. Clearly, a stronger magnetic field Bρ = 750 G (Fig. A.6) and a larger surface of

the racetrack Ar = 11.9 cm2 lead to a higher current level. For instance, the steady state

value of the HD discharge current at Uc = 1.0 kV is 53 A in this case. Moreover, the HD

plasma threshold Uth decreases from 0.7 to 0.6 kV. In these experiments, voltages higher than

1.4 kV cannot be used in order to avoid overheating the magnetron.

For a high target erosion of 80 % the magnetic field is about two times stronger (Bρ =

1200 G in Fig. A.6) and the surface area 50% larger (Ar = 15.1 cm2) as compared to a new

target. These conditions lead to a low voltage threshold Uth = 0.5 kV and give rise to large

HD current peaks reaching a maximum value of up to 215 A at Uc = 0.6 kV (the maximum

voltage that can be applied without the magnetron overheating) [Fig. A.7 (c)]. These ele-

vated discharge current values lead to power supply overloading and a higher probability of

arc development (section A.3). It should also be mentioned that the HD current above a pro-

gressively eroded target may be affected by additional phenomena, such as possible change in

the sputtered material angular distribution towards the substrate.[24, 25] However, this effect

is beyond the scope of this paper.

Since the high density current is independent of the pulse voltage it is necessary to de-

crease the magnetic field strength in order to reproduce the desired steady state HD discharge.

This has been accomplished by the introduction of a metallic (Cu) spacer in between the tar-

get and the magnetron that allows one to effectively compensate the effects of the stronger

magnetic field and the larger surface area of the racetrack. As an example, the modifi-

cation of the discharge characteristics for the highly eroded target (80 %) is demonstrated

with the application of three different spacers with thicknesses ds = 1.7, 3.4, and 5.0 mm

[Fig. A.7 (d)–(f)].

For ds = 1.7 and 3.4 mm, a stable HD discharge is obtained even for a highly eroded

target. It should be stressed that the HD discharge currents for ds = 3.4 mm are similar to

the current levels obtained for a new or slightly eroded target. However, some minor differ-

ences in the shape of the current waveforms can be noted, particularly during the first 20 µs

of the pulse. This effect may be explained by the modified surface and shape of the racetrack

(erosion state 80 % vs 6 %), and the related gas dynamics. When the resulting magnetic field
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Figure A.8 Waveforms of the target current Ic at constant pulse voltage Uc = 0.8 kV as
a function of the copper spacer thickness ds positioned in between the Nb target (80 % of
target erosion) and the magnetron head (a). The corresponding steady state current values
Ic [at t = 200 µs, as highlighted by solid symbols in (a)] are plotted as a function of the spacer
thickness ds, and various discharge modes are indicated (b).

is too weak (spacer thickness ds = 5.0 mm) the transition to the HD discharge is inhibited

due to a low SE confinement.

Figure A.8 shows the obtained steady state current for a fixed Uc = 0.8 kV as a function

of the magnetic field strength (spacer thickness). The decreasing current level illustrates

the strong effect of the magnetic field on the HD discharge current [Fig. A.8 (a)]. Subse-

quently, different discharge regimes (e.g. “Stable HD discharge”, “Transition to LD discharge”,

and “Stable LD discharge”) can be identified as illustrated in Fig. A.8 (b).

One can clearly see that the HD discharge current can be adjusted within a large range

of values spanning from 105 A down to 14 A. This demonstrates the possibility to operate
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Figure A.9 Threshold Uth and corresponding minimum power Pth for the HD discharge as
a function of the copper spacer thickness ds positioned in between the Nb target (80 % of
target erosion) and the magnetron head.

the HD discharge at low currents, and hence to eliminate and avoid the problems discussed

in section A.3.

In addition, the voltage threshold Uth simultaneously increases with the decreasing mag-

netic field, such as demonstrated in Fig. A.9. Since the HD current (Fig. A.8) is more sensitive

to the magnetic field strength alteration than is Uth (Fig. A.9), one has an option to effec-

tively minimize the HD discharge power threshold, Pth, as well (see Fig. A.9). This feature

allows one to avoid magnetron overheating at a given pulse length and repetition frequency.

A.4.2 Optimization of the HiPIMS discharge for various target materials

In the above section we have described the importance of the magnetic field on the steady

state HD discharge for the specific case of a Nb target. In this section, we extend this work

for the sputtering other target materials.

Figure A.10 shows current waveforms of the HD discharges operated above various target

materials: Ta, Cr, Al, Ti, Si, and C (∼ 5 % of target erosion) for which the HD discharge

current was minimized through the control of the magnetic field. The shape of the corre-

sponding current waveforms varies significantly from one material to another, which indicates

differences in the discharge dynamics.
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Figure A.10 Waveforms of the target current Ic as a function of the preset HiPIMS pulse
voltage applied to different target materials: Ta (a), Cr (b), Al (c), Ti (d), Si (e), and C (f).

The rectangular-shape current waveforms of the discharges above the Ta and Cr targets

[Fig. A.10 (a) and (b)] are very similar to those of the discharges above the Nb target

[Fig. A.7 (a)]. In these three cases, the optimization process was fairly simple and often

unnecessary; for instance, for a new target, for which the steady state HD discharge currents

were already low (e.g., 20 A). In contrast, the HD discharge above the Al, and especially

the Ti targets [Fig. A.10 (c) and (d)], requires a longer time (∼ 100 µs) to stabilize and

reach steady state conditions. Moreover, the discharge optimization was more difficult, i.e.,

the reached minimum HD currents were ≈ 25 A and ≈ 35 A for the Al and the Ti targets,

respectively. Surprisingly, the discharges above the Si and even the C targets [Fig. A.10 (e)

and (f)] were also operated in the steady state HD discharge, even though with a significant

delay (t ≈ 50 µs) of the HD current at the beginning of the pulse. In fact, for both of these

materials, contrary to the previously discussed targets, it is essentially impossible to reach

conditions for sustained self sputtering [Eq. (A.1)]. This is due to the low sputtering yield

of these materials, for which γss = 0.71 for Si and γss = 0.27 for C targets at an ion energy

of 1 keV.[26] Here, let us note that the optimization process of these two discharges was

the most complicated and the least effective. Particularly, the C target required a very low

magnetic field strength in order to avoid arc occurrences. Even then, the resulting minimum

steady state HD current was still relatively high (≈ 65 A).
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A.5 High density discharge and gas rarefaction effect

In the previous section we have demonstrated the optimization of a steady state HiPIMS

discharge through the control of the magnetic field for various target materials. In this

section we discuss in more detail the importance of the magnetic field configuration and

the gas rarefaction effect on the HD discharge current level.

In order to better understand the HD discharges operated above the C target, and

the other target materials in general, the plasma composition was investigated using optical

emission spectroscopy (OES). Figure A.11 shows the OES spectra recorded from the LD

and HD discharges operated above Nb and C targets. The plasma emission is dominated by

sputtered species in the case of Nb discharges. In addition, the HD spectra exhibit a substan-

tially higher emission from the ionized Nb lines than the LD spectra, and also a much lower

intensity of the Ar emission lines. This is a consequence of the significant Ar (39.95 amu)

rarefaction by the high fluxes of heavy Nb atoms (92.91 amu), and of the self sputtering

mechanism during which an important fraction of the sputtered material gets ionized.

In contrast, the spectra of the LD discharge above the C target exhibit only neutral

Ar emission lines. The transition to the HD regime is then accompanied by a significant rise

of the emission from the ionized Ar atoms. This observation provides evidence that Ar atoms

play a dominant role in both LD and HD discharges. The above results can be interpreted by

the low sputtering yield and the low mass of C atoms (12.01 amu) that result in a lower level

of working gas rarefaction as compared to heavier elements with a high sputtering yield.[4] It

should be noted that a similar observation of the dominant Ar ions emission was also detected

in the steady state HiPIMS discharges operated above highly poisoned metal targets.[27]

Generally, a steady state discharge governed by Ar species can be described as follows:

Πg ≡ γse κe-g βg = 1, (A.2)

where γse is the ion induced yield of SE, κe-g is the number of ionization collisions per one

emitted SE, and βg is the probability that the newly formed Ar ion is attracted towards

the target. Since γse ≈ 0.1 (for metals[28]) and βg < 1, it is necessary that κe-g ≈ 10.
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Figure A.11 Optical emission intensities from steady state LD (upper curves) and HD (lower
curves) discharges operated above Nb (a) and C (b) targets. The optical emission probe was
situated at d = 1 cm from the target.

The quantity κe-g can be further expressed in terms of specific discharge characteristics:

κe-g = ng σe-g(Ee) l(B), (A.3)

where ng is the concentration of neutral Ar atoms close to the target surface, σe-g is the cross

section for ionization of the Ar atom by an impacting SE (function of the electron energy,

Ee), and l is the length of a lifetime trajectory of a SE (function of the magnetic field B).

In principle, condition κe-g ≥ 10 is not difficult to attain since l can be substantially increased

by a suitable magnetic field configuration of the magnetron.[29] Nevertheless, the working gas

rarefaction lowers ng in front of the target. In addition, the discharge current reduces average l
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due to the superimposed Hall current that modifies the magnetic field configuration[18, 19] in

such a way that the most energetic electrons are no longer confined. As will be discussed below

for the specific case of the HD discharges, these two effects limit the resulting steady state

current. The transition from the LD to the HD discharge is governed by several phenomena,

e.g. generation of multiply ionized gas atoms and/or gas recycling mechanism.[30]

It has already been discussed in section A.4.2 that the optimization (minimization) of

the HD current through the control of the magnetic field was more difficult for some target

materials. This observation indicates that the effect of the magnetic field on the SE confine-

ment is accompanied by another important effect that influences the final value of the steady

state HD current. The latter phenomenon can be related to the atomic mass and sputtering

yield of the target material, which are, in fact, the two fundamental parameters in Ar gas

rarefaction by the flux of sputtered material. In order to illustrate this assumption, the min-

imized steady state HD current was plotted in Fig. A.12 as a function of the normalized

Ar gas density, K, which is defined as

K =
nr

n0

, (A.4)

where nr is the reduced density of gas atoms close to the target surface, and n0 is the density

of gas atoms close to the wall of the system. The former quantity was calculated according

to the model of Rossnagel,[4] as specified in detail in Appendix AB.

The HD discharge current is largely affected by nr, mainly due to the substantially higher

coefficient of SE emission of Ar ions, as compared to the majority of the sputtered material

ions.[8] This means that a higher value of nr, and a consequent higher working gas ionization,

result in an elevated discharge current. The correlation of the HD current level and of nr (il-

lustrated in Fig. A.12) can thus be interpreted by the Ar gas rarefaction effect: For low values

of K (< 0.07), the Ar gas is highly diluted by the flux of the sputtered material, and an almost

pure self sputtering discharge can be reached (Nb, Ta). When K is increased, the contribu-

tion of Ar ions to the resulting current is more significant, and the sputtering mechanism of

the HD discharge is gradually transformed from the self sputtering mode to the gas sputtering

mode (Si, C). This observation confirms that Ar gas rarefaction by the sputtered particles is
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Figure A.12 Minimized steady state HD current at Uc = 1.2 kV as a function of the normalized
density of the Ar gas in front of the target by sputtered particles of various materials (Ta,
Nb, Cr, Al, Ti, Si, and C). The prevalent sputtering mechanisms are indicated.

an important material-dependent phenomenon which governs the HD current level. It should

be also noted that an elevated target surface temperature during the high power pulse may

also cause the Ar gas density rarefaction.[5] Nevertheless, this effect was neglected during

the presented calculation of the reduced Ar gas density.

It has been already mentioned in Section A.1 that in the HD discharge a portion of

the sputtered target atoms is ionized, attracted back to the target, and they eventually (if

their potential energy is sufficiently high[8]) produce SE as well. Hence, the decrease in

the SE production by the bombarding Ar ions can be partially or even completely compen-

sated by the back-attracted ions, especially for the high sputtering yield target materials.

Consequently, the measured HD current may be higher than the predicted theoretical value

corresponding to the Ar ion fluxes.[6]

In a general case, the contribution of both gas sputtering and self sputtering mechanisms

to the resulting HD discharge should be considered. Therefore, the condition for the steady

state HD discharge dominated by Ar ions (Eq. A.2) is not complete by itself, and it should

be combined with the condition for the self sputtering mode (Eq. A.1). In complement to

our present work, a general criterion for a transition from the LD to the HD discharge is

presented and discussed in more detail in a separate publication.[30]
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A.6 Summary and Conclusions

In this paper, we discussed the concept of the optimization of HiPIMS discharges operated

above different elemental targets [Ta, Nb, Cr, Al, Ti, Si, and C (graphite)]. First, we de-

scribed various problems related to the HiPIMS discharge implementation in the deposition

systems, such as (i) HiPIMS power supply overloading, (ii) excessive arcing, and (iii) strong

effect of target erosion. Second, we proposed a simple approach for the HiPIMS discharge

optimization based on the application of copper (paramagnetic) spacers in between the mag-

netron and the target. This technique was demonstrated by an example of the HD discharge

above a 80 % eroded Nb target; It was shown that the level of the steady state HD current

can be controlled in a large range of 14 – 105 A. Furthermore, we have shown successful sta-

bilization of the HD mode at the lowest accessible discharge current for different materials,

including Si and C. The observation of a steady high current level above the C target, sup-

ported by optical emission spectroscopy monitoring, indicated the dominant role of Ar ions

in HD discharges above low yield target materials. Finally, we offered a correlation between

the gas rarefaction effect and the HD discharge current value.
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Appendix AA Assessment of the magnetic field in front of the target

The axial (Bz) and radial (Bρ) components of the magnetic field B (Fig. A.3) were mea-

sured in the central plane in front of the magnetron head assuming that the magnetic field is

axisymmetrical. The magnetron magnetic field was also simulated by using the finite element

software package FEMM[31] and the resulting map was fitted to the experimental data of B.

This approach enables one to calculate the magnetic vector potential, A, defined as:

B = ∇×A (A.5)

and consequently, the magnetic field in an arbitrary point. In the general 3D case, A is

a vector with three components. However, in the 2D planar and axisymmetric case, two of

these three components are zero, leaving just one none-zero component in the “out of the

page” direction. In such case, magnetic field lines can be plotted as contours of the magnetic

potential A or of the quantity, A∗, where:

A∗ =
A√
|A|

(A.6)

for a more detailed representation of a decaying magnetic field (e.g. close to the substrate

holder).

The maximum radial magnetic field component Bρ at the surface of a new 6.35 mm thick

target reached a value of 550 G at a distance of 12.0 mm from the center, and the axial

component Bz changed its direction at a distance Z0 = 13.1 mm from the target surface.

The level of unbalancing of the magnetron’s magnetic field can be expressed by the unbalance

coefficient, K, of the magnetron[32], defined as:

K =
Φo

Φi

, (A.7)

where Φi and Φo denote magnetic fluxes from the inner and outer magnets on the target

surface. In our case K = 4.8, while K = 1 for a perfectly balanced magnetron.
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Appendix AB Determination of gas atom density close to the target surface

According to the model of Rossnagel,[4] the reduced Ar gas density nr in front of the target

caused by the flux of the sputtered material can be expressed as a function of the HD discharge

current Ic as

nr =
−T0 + (T 2

0 + βIc)
1/2

γIc

, (A.8)

where

β =
EaY σn0T0

πKgfe
(A.9)

and

γ =
EaY σ

2πKgfe
. (A.10)

Here, n0 and T0 are the gas concentration and the gas temperature close to the chamber wall,

Ea is the average energy of the sputtered particles, Y is the sputtering yield, σ is the col-

lision cross section for momentum transfer, e is the elementary charge, Kg is the thermal

conductivity of the gas, and f is a constant.

In order to calculate nr from Eq. (A.8), the steady state HD current value correspond-

ing to Uc = 1.2 kV was used as an input parameter for the investigated target materi-

als. A simplified assumption was used that the sputtering process is performed only by Ar

ions. Furthermore, the cross section for momentum transfer σ was estimated by considering

the “hard-sphere model” as

σ = π(as + ag)2, (A.11)

where as and ag are atomic diameters of sputtered and gas particles.[33] The sputtering

yield Y and the average energy of sputtered atoms Ea were calculated using the TRIM

computer program.[34] The value of the constant f was supposed to be 3, the wall temperature

was 300 K, the thermal conductivity of Ar gasKg was 1.79×10−2 W K−1 m−1, and the pressure

was 1 Pa.
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