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RÉSUMÉ 

Le concept des avions plus-électrique est une nouvelle cible technologique pour les fabricants 

d'avions. Il concerne la réduction du poids de l'avion, de la consommation de carburant et 

l'amélioration de l'efficacité de l'énergie. Tous ces éléments constituent des avantages potentiels 

importants. 

Les avions conventionnels utilisent les puissances hydraulique, mécanique, pneumatique et 

électrique en tant que sources d’énergie. Pour augmenter l’efficacité de ces systèmes, des études 

sont effectuées dans le but d’augmenter la part d’énergie électrique utilisée dans les avions pour 

la génération, la distribution et l’utilisation de la puissance électrique. Parallèle à l'augmentation 

de l'efficacité, le nombre et la qualité des études techniques relatives aux étapes de conception, 

design et essais de validation, doivent aussi être augmentés et/ou améliorées. Les modèles 

mathématiques et les outils de simulation constituent des moyens efficaces permettant de prédire 

le comportement du réseau électrique, corriger des erreurs de design, éliminer certaines étapes de 

prototypage et réduire le temps d’essai des composantes. Les outils de simulations peuvent 

augmenter la robustesse des systèmes tout en réduisant les essais dispendieux au sol et en vol. De 

plus, les outils de simulation offrent une infinité d’options pour l’étude d’un grand nombre de 

scénarios d'opération et pour l'optimisation. Les outils de simulation modernes deviennent de plus 

en plus sophistiqués et permettent, si les données sont disponibles, de créer des modèles très près 

de la réalité autant pour les composants que pour les systèmes. La simulation en temps réel 

permet de faire des essais sur des équipements réels (« hardware-in-the-loop ») pour valider des 

modèles et déterminer des paramètres. 

Ce mémoire de maîtrise présente un premier test de simulation et d’analyse pour le réseau 

électrique du Global Express de Bombardier. Les simulations sont effectuées en temps différé et 

en temps réel. Les outils utilisés sont Simulink pour la simulation en temps différé et le 

simulateur OPAL-RT basé sur Simulink pour la simulation en temps réel. Cette recherche sert à 

définir les goulots de modélisation ainsi que les besoins au niveau des données nécessaires à la 

modélisation. Ce mémoire établit aussi les besoins de validation et de mesure pour la 

modélisation d'un avion plus électrique. La simulation en temps réel est particulièrement 

contraignante et ce mémoire a permis de tester une nouvelle méthode de résolution en temps réel. 
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ABSTRACT 

Conventional aircrafts use hydraulic, mechanical, pneumatic and electrical energy sources to 

supply their systems. In order to increase the efficiency of such systems, it is needed to increase 

the penetration level of electrical systems and components in aircrafts for generating, distributing 

and utilizing electrical power. An important step is to develop numerical models for studies 

related to the conception, design and testing stages. Mathematical modeling and simulation tools 

constitute an efficient approach for predicting operational behaviour, correcting design errors, 

eliminating prototyping steps and reducing component and overall testing cycles. Simulation 

tools can increase system robustness while reducing expensive ground and flight tests on the 

actual aircraft. Moreover, simulation tools offer limitless options for studying huge numbers of 

operational scenarios and detecting failure conditions. Modern simulation tools for electrical 

circuits and systems have become very sophisticated and, if data is available, can be used to 

create extremely precise models for components and complete systems. Real-time simulation 

tools allow testing actual physical components (hardware-in-the-loop) and can be used to validate 

models and derive model parameters. 

This research presents an initial benchmark for the simulation and analysis of the Bombardier 

Global Express aircraft electrical power system. Both for off-line and real-time simulations are 

considered. The considered tools are Simulink for off-line simulations and the Opal-RT simulator 

(based on Simulink) for real-time simulations. These tools allow achieving advanced models and 

testing the aircraft system in a high scope of scenarios. The research identifies modeling 

bottlenecks and data needs, establishes validation needs and proposes measurement tests for 

qualifying component models. It is established that the real-time simulation of the developed 

power system is particularly complex. An available and new real-time simulation method is 

tested at the end and demonstrates the need for further research. 
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INTRODUCTION 

The more-electric concept is a new technological target for the aerospace manufacturers which 

involves reduction of fuel consumption, improvement of power efficiency and the eventual 

possibility of a significant reduction of aircraft weight, as some of the important potential 

benefits [1]. Conventional aircraft construction is based on hydraulic, mechanical, pneumatic and 

electrical energy sources. Therefore, in order to increase the efficiency of such systems, it is 

necessary to increase the penetration level of electrical systems and components in aircrafts for 

generating, distributing and utilizing electrical power. The goal of the all-electric aircraft concept 

is to eliminate as many hydraulic power sources and lines as possible, so that the more electric 

engine can be redesigned to produce thrust and more electrical power [2]. 

The more-electric aircraft (MEA) concept impacts significantly on aircraft electrical power 

system design, due to the fact that many functions conventionally managed by hydraulic, 

pneumatic and mechanical power are replaced by electric systems in order to reduce size and 

weight, and improve fuel efficiency [2]. This may result into a significant amount of power 

electronic converters and motor drive systems. Electrical power system design may evolve in 

many directions: AC, DC, hybrid, frequency-wild, variable voltage, together with the possibility 

of novel connectivity topologies, resulting in very large and perhaps impractical computing times 

when considering modeling and simulation [3]. 

In contrast, the increased usage of electrical power increases the power demands on the 

electrical system, placing new constraints on its dynamic performances and on power quality, so 

that new power system architectures must be designed, extensively analyzed, tested, validated 

and certified before implementation in an actual aircraft. Simulation tools must be used to 

support the more-electric concept.  

Mathematical modeling and simulation tools constitute an efficient approach for predicting 

operational behaviour, correcting design errors, and optimizing the fabrication process [4]. 

Thereby, modeling of aircraft power systems is essential to study impacts on costs and electric 

architecture modifications. Furthermore, continuing developments in aircraft power systems lead 

to studies on power distribution systems at fixed frequency [5], [6] and variable frequency [4], as 

well as on power distribution at high DC voltage [7]. Despite all these studies, many 

approximations are made, either by necessity or by lack of data. Greater efforts must be invested 
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to study more precisely the stability of new distribution architectures, as the presence of power 

electronics on aircrafts is in constant growth. Other studies on power quality, transients and faults 

must be added to the long list of design steps in aircrafts [8], [9]. 

Sophisticated modeling and simulation tools considered in this research constitute an efficient 

methodology for predicting operational behaviour, extracting specific requirements and 

developing specific techniques for applications to the more-electric aircraft technologies, so that 

the expected models and simulation results would help to clarify complex problems, support the 

decision making and the technological deployments for the strategic design process. Furthermore, 

simulation tools can increase in accuracy, so that modeling could be made as realistic as possible 

with a great level of details and complexity. 

There are off-line and real-time simulation tools. In off-line simulation tools, model accuracy 

usually takes precedence on the computational speed of the complete simulation. Real-time 

simulation tools offer the computational speed advantage and allow studying a very large number 

of operational scenarios within reduced time. In addition, such tools can provide real-time 

synchronized simulations and allow interfacing with external physical devices (hardware-in-the-

loop). Such interfacing can be used to validate physical controllers, improve designs and even 

develop models through the analysis of black-box type physical device performance waveforms.. 

Both off-line and real-time simulation tools are part of this research. 

Socio-economical context 

Currently, the specifications for the aircrafts are more or less similar depending on the 

category: commercial, business or utility. An aircraft with the important technological 

breakthrough of the more-electric concept becomes more competitive in almost all of these 

operational specifications. An extensive list of expected benefits could be drawn for the more-

electric concept over the conventional aircraft power systems. The most noticeable ones come 

from an envisioned conceptual and technical simplification of the systems [5]. 

 Reduction of: components count, empty weight, systems and components volume, life-

cycle costs, design effort, fuel consumption. 

 Improvement of: operational range, systems and engine efficiency, reliability, 

maintainability, safety, power density, system flexibility. 
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Based on a literature overview, remarkable initiatives have been developed in US and Europe 

to design more-electric aircrafts. Airplane manufacturers, such as Airbus and Boeing, have 

already applied new concepts of electric actuation within their last state-of-the-art development 

programs for Boeing 787 [10] and Airbus A380 [11]. Many manufacturers put their hopes in the 

increase of electric power usage as the solution for reducing fuel consumption and emissions 

levels. 

To accelerate the development of more-electric aircrafts, it is important to establish a tight 

collaboration between the participating manufacturers and the universities as it has been done 

during this research, which is, with the help of manufacturers, a powerful innovation path that 

can quickly result into practical developments and implementations. 

According to available economical analysis (see [12]), global commercial aviation electrical 

power systems and infrastructure market is estimated to reach $24 billion by 2017. Furthermore, 

more-electric aircraft architectures attempt to offer lower recurring costs, require less parts, 

reduce fuel consumption, improve operational performance, reduce maintenance and reduce the 

cost of operation. 

Technical context 

In a technical context, modern research and advancements in aircraft systems are in the fields 

of flight control, power generation and power control, and engine control [6]. In addition, there 

are substantial benefits in weight reduction when replacing hydraulic circuits by more-electric 

flight controls. Other benefits are in maintenance and reliability. 

To present a global picture, the conventional aircraft hydraulic systems include primary and 

secondary flight controls, landing gear and utility actuation. In the past, electrical machines did 

not provide sufficient power density to drive these loads. Recent developments in induction, 

switched reluctance and permanent magnet motors provide new design options. Moreover, the 

use of hydraulic fluid is hazardous since it could leak. By using electrically-driven pumps or even 

eliminating all hydraulic components, mechanical simplicity and increased reliability can be 

achieved. 

The increased number of electrical applications in aircrafts increases the demands on the 

aircraft electrical power generation and distribution system. Traditional aircrafts are based on the 

constant frequency generator concept, which requires extra equipment to cancel speed variations 
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within the generator. Such equipments can be eliminated through variable frequency generators. 

The Bombardier’s Global Express jet is already using a variable frequency system. 

In a conventional aircraft, electrical power generation is done by externally engine-driven 

generators. The electrical machines are connected to the engine via shafts and gearboxes. The 

goal of the more-electric approach is to integrate them into the core of the engine. 

An important aspect is power generation during emergency situations. New developments in 

fuel cells and fan-driven generators allow replacing the currently used ram air turbine (RAT) 

technology, increasing reliability, and offering supplemental power options. The feasibility of the 

more-electric concept relies on the development of lightweight and fault tolerant power 

distribution architectures. There are many design options. The primary electrical power includes 

generation and distribution to the main busses and primary loads. The electrical sources on an 

aircraft are the main generators, Auxiliary Power Unit (APU), Ram Air Turbine (RAT), battery 

and external power. 

This system could be constant frequency AC (3Φ/115 VAC/ 400 Hz), variable frequency AC 

(324 Hz to 720 Hz), high-voltage DC (270 V DC or 350 V DC) and even multiphase (5Φ, 7Φ). 

Also, these main power levels need conditioning and conversion in order to feed different loads 

inside the aircraft, such as the 28 V DC avionic busses. This is referred to the secondary electrical 

power system. The conversion can be achieved on the basis of different converter topologies. 

In the power generation and engine control aspects, the more-electric engine (MEE) plays a 

key role in the more-electric design of aircrafts [2]. The engine itself includes electric loads, such 

as electric fuel and oil pumps, active magnetic bearings and electrically actuated engine guide 

vanes. Complicated hydro-mechanical controls are replaced by digital electronics controls (see 

FADEC: full authority digital electronic engine control) [13]. The MEE incorporates smart fuel 

valves, fuel pumps and distributed control technologies for simplification of control system 

architectures. The elimination of hydraulic, mechanic and pneumatic functions in the MEE is for 

concentrating on the production of thrust and electrical power [13]. 

It is apparent that advanced aircraft power system architectures may include various levels of 

sophistication. Such architectures are based on bi-directional, DC/DC, AC/DC and DC/AC power 

converters [8]. The term Multi-converter Power Systems is used to designate such systems with 

solid state switching power converters [8]. In addition, it is required to study and coordinate 
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protection systems, so modeling and simulation is essential for the design, development and 

operational reliability of more-electric aircrafts. 

Two types of tools can be used for the simulation and analysis of aircraft power systems: off-

line and real-time. On both cases the simulation methodology encompasses electromagnetic 

transients. Steady-state initial conditions can be established using phasor domain analysis. 

Off-line tools offer the advantages of high modeling precision since such tools do not need to 

compromise for synchronized real-time interfacing with external physical devices. There are no 

time-step and network size constraints in off-line programs. The limitation is that currently off-

line simulation tools cannot be directly interfaced with external controllers. 

Real-time simulators can be applied for studying a very large number of operational scenarios 

within reduced time and for interfacing with external physical devices. Such interfacing is 

essential for validating and improving controllers and validating mathematical models.  

This project includes the development of specific models, such as power converters, AC and 

DC cables, AC and DC loads, switching controls and rotating machines. The modeling may 

become dependent on the simulation type and on the required precision for the studied electrical 

frequencies. A complete aircraft power system is developed and presented. 

The development of benchmarks for aircrafts and the setup of advanced testing facilities 

contribute to the study of various aircraft power system architectures and testing their 

performance within economical, stability and reliability constraints. 

This thesis is divided as follows: Chapter 1: Global Express Aircraft Electric Power System 

Fundamentals, Chapter 2: Global Express Aircraft Electric Power System Model, Chapter 3: 

Global Express Aircraft Electric Power System Simulation and Analysis and Chapter 4: Global 

Express Aircraft Electric Power System simulation in a Real-Time Environment. 

Main Objective 

The goal of the project is to develop and validate a first real-time bechmark in 

Matlab/Simulink [14] for the simulation, analysis and evaluation of more-electric aircrafts, 

electrical power system architectures based on the Bombardier's Global Express aircraft electric 

power system. The setup in Simulink allows both off-line and real-time simulations. Real-time 

simulations are performed using the Opal-RT system [15]. 
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Specific Objectives 

In order to achieve the main objective of the investigation, three specific objectives were 

established: 

1. Develop the MATLAB/Simulink off-line model for Bombardier's Global Express aircraft 

electric power system. 

2. Validate results using a specialized software for the simulation and analysis of transients 

in power systems named EMTP-RV (Electromagnetic Transient Program, Revised 

Version [16]), as well as real aircraft electric measurements. 

3. Convert the MATLAB/Simulink off-line model for Bombardier's Global Express aircraft 

power system into real-time using Opal-RT environment (based on Simulink) [15]. 

Methodology 

The research is divided into the following steps: 

1. Literature Review and Industrial Meetings with Bombardier for data gathering and 

acquiring knowledge on the system to be simulated. 

2. Model development and assemblage of complete electrical network. 

3. Simulations and analysis of results and data Processing. 

4. Validation with EMTP-RV and measurements. 

5. Simulation in real-time of the Global Express Aircraft Electric Power System. 

Literature review and industrial meetings 

The literature review shows the way research programs in more-electric aircrafts have been 

conducted in the past 20 years, providing a fundamental starting point for the research. Topic 

issues as the general concept of MEA ( [1], [2], and [3] ), its expected benefits and objectives, in 

addition to simulation methodologies and strategies ( [6], [17] ) and complex problems related to 

stability assessment of power electronics were studied and analyzed during this stage. 

Meetings with the industrial partners are to provide: co-supervision, data on the simulated 

aircraft systems, available measurements and test data, problematic operational cases and 

guidance on applicable standards and internal certification methods. 
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In the model development stage, the first task is to tackle the computational efficiency of the 

model. The second task addresses the precision of the model. Each time a new improvement or 

network component is introduced into the benchmark it is needed to validate efficiency, accuracy 

and stability of the model. In addition, each model is simulated as isolated from the aircraft 

electric power system and then incorporated in the entire power system model for increasing the 

accuracy of the simulations. 

Once the off-line benchmark achieves the desired objectives, it is converted into real-time 

using the Opal-RT real-time simulator. The Opal-RT simulator is based on MATLAB/Simulink 

which offers an advanced open-architecture and allows reconfigurations as needed [8]. In 

addition, there is a Simulink interface with EMTP-RV for large scale system simulations [15]. 

Validation and improvement of the real-time Global Express aircraft power system model 

Each new improvement is tested sequentially in order to compare the performance of the 

model with and without the improvement, allowing an immediate feedback and the correction of 

possible problems or errors. The obtained model is implemented into the real-time platform of 

Opal-RT Technologies Inc. and some case studies are run in this simulator. 
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CHAPITRE 1 GLOBAL EXPRESS FUNDAMENTALS 

This chapter specifies the electrical characteristics for the Global Express Aircraft Electrical 

Power System. It attempts to summarize the main lines found in technical manuals related to 

aircraft electrical architectures, specially the so called “Aircraft Type Course Technical Training 

Guide: ATA 100 Breakdown” [18]. 

1.1 Global Express Description 

The Global Express is a luxury business jet aircraft for medium and long range mission and 

multi-role applications such as flight inspection, search and rescue, SIGINT (Signal Intelligence), 

EW (Electronic Warfare) and 30 passenger transporters. The aircraft is powered by BMW/Rolls 

Royce engine BR710 and it is designed to meet the intent of the Extended Range Operation with 

Two-Engine Airplanes (ETOPS) requirements, with 180 minutes diversion time. In addition, the 

aircraft is designed to be self-sufficient and have the capability to operate without limitation or 

restriction at a 13000 ft elevation airport, as well as safely cruise at 51000 ft [19]. 

The aircraft has a 41000 ft minimum initial cruise altitude at ISA + 10°C and a 51000 ft 

maximum operating altitude. It is capable of operating from a 6000 ft runway at ISA sea level. 

The rate of climb for a heavy aircraft (91000 lbs) is 3650 ft/min. at sea level and 600 ft/min. at 

41000 ft (M 0.8). The rate of climb for a light aircraft (50000 lbs) is 7300 ft/min. at sea level and 

2400 ft/min. at 41000 ft (M 0.8). The aircraft maximum range is 6500 NM (Nautical Mile) and it 

cruises between 41000 ft and 51000 ft for approximately 14 flight hours [19]. 

1.2 Electrical Power System Characteristics 

The electrical system is separated into AC and DC system as shown in Figure 1.1. The AC 

system is a variable frequency type system, powered by four engine-driven variable frequency 

generators (VFGs). An auxiliary generator, located on the Auxiliary Power Unit, operates at a 

fixed frequency. In the event of an emergency, a Ram Air Turbine Generator is provided for 

Essential Bus feed. The generator outputs are supplied to the AC Power Centre (ACPC), which in 

turn distributes the power to the aircraft subsystems. 

The DC system power supplies consist of four Transformer Rectifier Units (TRUs) for normal 

power distribution and two NiCad batteries (a nickel-cadmium battery which is a type of 
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rechargeable battery using nickel oxide hydroxide and metallic cadmium as electrodes [19]). The 

batteries are used for initial system power-up but are then put in the standby mode for emergency 

power requirements. On the other hand, the TRUs receive power from the AC system, transforms 

and rectifies that power into DC power, which is supplied to the DC Power Centre (DCPC). The 

DCPC in turn distributes the power to the aircraft subsystems. 

 

Figure 1.1. Electrical power system [18] 
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1.2.1  Primary AC Generation System 

The AC system Variable Frequency Generators (VFGs) are rated at 115/200 VAC 3 phase 

324-596 Hz. They have a load limit of 40 kVA continuous, 60 kVA for 5 minutes and 80 kVA 

for 5 seconds. VFG 1 and VFG 2 are located on the left engine. VFG 1 is mounted on the forward 

side of the engine accessory gearbox while VFG 2 is mounted to the aft side. VFG 3 and VFG 4 

are located on the right engine. VFG 3 is mounted on the aft side of the accessory gearbox while 

VFG 4 is mounted on the forward side. Figure 1.2 illustrates what is indicated above. 

 

Figure 1.2. Variable Frequency Generator [18] 

The variable frequency generator (two per engine) is made up of three component machines 

connected in cascade as shown in Figure 1.3. These component machines consist of Pilot Exciter, 

Main Exciter, and Main Alternator. The Pilot Exciter (PE) is a permanent magnet generator, with 

the rotor constructed with cobalt magnets. The output from the PE is supplied to the GCU, which 

uses this power for its internal circuitry, as well as rectify the power to supply the Main Exciter 

of the generator. The output of the Main Exciter (ME) is fed to shaft mounted diodes that are 
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configured for three-phase full wave rectification. The DC output supplies the rotating field of the 

Main Alternator. 

The Main Alternator output is supplied to the Generator Line Contactor and Transfer 

Contactors. Each phase of the output is monitored by three toroidal current transformer 

assemblies for GCU fault protection interface. 

 

Figure 1.3. Variable Frequency Generator Block Diagram [18] 

Regarding the main terminal block, it has four stud connections designated: T1, T2, T3, G. 

The feeders to the AC Power Centre (ACPC) are connected here. The neutral is connected 

because it is required for the 115V single phase electrical loads. The studs are covered with a 

removable cover. Since the generators rotate in different directions depending on their position, 

the phase output differs. Phase sequence of generator 1 & 4 is A, B, C at T1, T2, T3. Phase 

sequence of Generator 2 & 3 is C, B, A at T1, T2, & T3 phase sequence is corrected by switching 

A and C phases of Generators 2 and 3 at the AC Power Centre (ACPC). 

Each generator supplies its own AC bus via a generator line contactor (GLC). All four GLCs 

are located in the AC Power Centre (ACPC) primary power subassembly. The GLC has two 

positions, Generator & Transfer, as shown in Figure 1.4. The Generator position allows the 
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generator to supply its own AC bus. The Transfer position allows an alternate power source 

(other VFG, APU or External) to feed the AC bus. The GLC is controlled by the Generator 

Control Unit (GCU). 

 

Figure 1.4. Generator Line Contactors [18] 

On the other hand, each generator interfaces with its respective Generator Control Unit 

(GCU). The GCU performs the following functions: 

 Monitors generator operating parameters 

 Controls generator field excitation 

 Interfaces with AC Power Centre (ACPC) via analog signals and RS 422 data bus 

 Supplies information to EICAS system via ARINC 429 data bus to the Data Acquisition 

Units 

 Interfaces with CAIMS 
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1.2.2 Auxiliary AC Power 

Auxiliary AC power is provided by the APU Generator which produces 3-phase 115 VAC. It 

is rated at 40 kVA continuous duty during flight conditions, and 45 kVA during ground 

operations. The APU generating system is very similar to the Primary AC generation system, 

therefore, only the differences are discussed. The APU generator is constructed similar to the 

engine variable frequency generators and produces power in an identical manner. The generator 

is located on the APU gearbox, which is located in the aircraft tail cone as shown in Figure 1.5. 

 

Figure 1.5. Auxiliary Power Unit (APU) Generator [18] 

A Pin programming informs the GCU installed in the APU position of the following additional 

information interface, and operating parameters listed in Table 1.1: 

Table 1.1. Operating parameters for APU control unit [18] 

Parameter Logic 

Underfrequency < 380 Hz for > 1 sec. 

Overfrequency > 430 Hz 

Overcurrent Any phase > 195 A 

Load Prediction 
Load parameters supplied to APU FADEC for load prediction 

purpose. 
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Finally, WOW Input is received by the GCU to change its load acceptance rate from 40 kVA 

to 45 kVA when on the ground. The GCU also gives load parameters to the APU Full Authority 

Digital Engine Control (FADEC) for fuel adjustments, depending on generator load. 

Concerning the operation, the APU Generator excitation and control is performed by the 

GCU. Once the APU is started and RPM is above 95%, the GCU energizes its internal Generator 

Control Relay (GCR) circuit which gives the generator its excitation voltage. Once generator 

voltage is established and within operating parameters, the GCU energizes the APU/EP line 

contactor and informs the ACPC Primary Logic Cards that the generator is available (see Table 

1.2). The Primary Logic Cards return a signal to the APU GCU if its distribution logic requires 

the APU generator. The APU generator does not supply the aircraft if more than one VFG is on-

line. Any two VFGs power all four buses. Power from the APU/EPLC is distributed to the AC 

buses via the Generator Transfer Contactors (GTC) which are controlled by the ACPC Primary 

Logic Cards. 

Table 1.2. Auxiliary AC Power management according different conditions [18] 

Condition AC Bus 1 AC Bus 2 AC BUs 3 AC Bus 4 

APU Only (On Ground) APU GEN APU GEN APU GEN APU GEN 

APU Only (Airborne) APU GEN SHED SHED APU GEN 

GEN 1 & APU GEN 1 APU GEN APU GEN GEN 1 

GEN 2 & APU GEN 2 GEN 2 APU GEN APU GEN 

GEN 3 & APU APU GEN APU GEN GEN 3 GEN 3 

GEN 4 & APU GEN 4 APU GEN APU GEN GEN 4 

The Secondary Logic Cards control the secondary distribution to allow a limited load to be 

applied to the APU generator under certain conditions. For example, with APU GEN alone, and 

the aircraft on the ground, only one electrical hydraulic pump can be powered at one time. 

1.2.3 AC Electrical Power Distribution 

The AC Electrical power distribution is contained in two areas, the AC Power Centre (ACPC), 

located in the baggage compartment, and the Cockpit Circuit Breaker Panel (CCBP), located 

behind the copilot’s seat (see Figure1.6). The ACPC contains the four primary AC buses and the 

required contactors, Solid State Power Controllers (SSPC) and Circuit Breakers to distribute the 

power from the four VFGs, the APU GEN and External Power. The Cockpit Circuit Breaker 

Panel (CCBP) contains four AC buses (AC Bus 1A, AC Bus 2A, & AC Bus 3A and the AC ESS 
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Bus), thermal circuit breakers and relays to control AC Power distribution to the forward areas of 

the aircraft. There are never two power sources feeding an AC bus at the same time. Therefore, 

bus faults are not transferred from one bus to the other. 

Meanwhile, the Ram Air Turbine (RAT) Generator only powers the AC Essential Bus. 

Thereby, remote control of all power distribution, with the exception of remote thermal circuit 

breakers, is performed via the cockpit EMS CDUs, and the Primary & Secondary Logic Cards. 

 

 

Figure 1.6.AC Electrical Power Distribution [18] 
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1.2.3.1 AC Electrical Power Distribution 

An ACPC functional block is presented in Figure 1.7 and it is made up of three sections 

starting from bottom to top: 

 Primary Power Subassembly 

 Control and Logic Subassembly 

 Secondary Power Subassembly 

 

Figure 1.7. ACPC functional block [18] 
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1.2.3.2 Cockpit Circuit Breaker Panel (CCBP) 

Located on the bulkhead behind the co-pilot’s seat (see Figure 1.8 for a CCBP's electrical 

schematic), the Cockpit Circuit Breaker Panel (CCBP) contains: 

 Thermal Breakers 

 AC Bus 3A Shed relay 

 Essential TRU Transfer Contactor (ETTC) 

 RAT Line Contactor 

The thermal circuit breakers provide distribution and protection of AC power to loads in the 

forward area of the aircraft. The AC Bus 3A Shed Relay (K1) is controlled by the DCPC when in 

the ground service mode. Thus, the Essential TRU Transfer Contactor (K2 or ETTC), is a single-

pole, double-throw relay that controls the source of power to ESS TRU 1, either AC Bus 1 or AC 

ESS. Besides, K2 is controlled by the DCPC. 

Finally, the Rat Line Contactor (K3) is a single-pole double-throw relay, controlled by the 

RAT Generator Control Unit and reset by the overhead control panel RAT Push Button 

Annunciator. It controls the source of power fed to the AC Essential Bus, either from AC Bus 4 

or the RAT Generator. 
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Figure 1.8. Cockpit Circuit Breaker Panel (CCBP) Electrical Schematic [18] 

In relation to the Cockpit Circuit Breaker Panel (CCBP) Distribution, the CCBP buses receive 

power from the ACPC Primary AC Buses. Each bus is fed from only one ACPC bus. If the 

ACPC bus becomes unpowered, then the CCBP bus is also unpowered, with the exception of the 

AC Essential Bus, which can also be powered from the RAT generator. Distribution from the 

ACPC to the CCBP is controlled by the Secondary Logic Cards. 

Power sources from the ACPC to the CCBP are listed Table 1.3: 
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Table 1.3. Power sources from the ACPC to the CCBP configuration [18] 

CCBP ACPC feed & Contactor 

AC Bus 1A AC Bus 1 via contactor K15 

AC Bus 2A AC Bus 2 via contactor K18 

AC Bus 3A AC Bus 3 via contactor K21 

AC Essential 

Bus 

AC Bus 4 via contactor K25 & RAT Generator Line Contactor K3. When the 

RAT contactor is energized power is routed directly from the RAT generator 

disconnecting the ACPC feed. 

It is noteworthy that power sources are never paralleled on a bus. Each bus is normally 

supplied from its VFG via a Generator Line Contactor (GLC). One generator can power two 

buses, if required, via its GLC and the Generator Transfer Contactors (GTCs). Buses are 

physically and electrically separated from each other so that a fault on one does not affect the 

others. If a bus fault occurs, the GCU disconnects the generator from its bus by de-energizing its 

GLC but maintaining generator excitation so that the generator is available to power other ACPC 

Primary AC Buses. 

Moreover, switching operations limit power interruptions to 50 milliseconds or less. The 

ACPC Secondary Power Logic Cards control and protect the AC distribution feeders, routed to 

the circuit breaker panel and the four electro-hydraulic pump feeders. A Variable Frequency 

Generator (VFG) powers only two AC Buses. If only one VFG is available, AC BUS 1 & 4 have 

priority (AC Bus 2 & 3 are load shed). Hence, if AC bus 1 or 4 loses its generator, the generator 

in the same position on the opposite engine powers it. If that one is not available, the other 

generator on the opposite engine powers it. If that is also unavailable, the next choice would be 

the other generator on its own engine, followed by the APU generator or external power. 

The APU generator on its own supplies all the AC Buses when on the ground, however, some 

subsystem feeds are automatically load shed (i.e. Hydraulic pumps only operate one at a time). 

When airborne, the APU generator only supplies two AC Buses and two hydraulic pumps. 

Regarding Bus Fault Protection, the GCU monitors generator loads for current draw. If an 

overcurrent occurs, the GCU de-energizes generator line contactor for that bus to the off position 

and informs the ACPC. The ACPC then configures the generator transfer contactors to isolate the 

bus. Table 1.4 summarizes what is intended to describe above. 
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Table 1.4. Bus power source logic [18] 

Power Source (s) 

Available 

AC BUS 1 PWR 

Source 

AC BUS 2 PWR 

Source 

AC BUS 3 PWR 

Source 

AC BUS 4 PWR 

Source 

VFG 1, 2, 3, & 4 VFG 1 VFG 2 VFG 3 VFG 4 

VFG 1, 2, & 3 VFG 1 VFG 2 VFG 3 VFG 1 

VFG 1, 2, & 4 VFG 1 VFG 2 VFG 2 VFG 4 

VFG 1, 3, & 4 VFG 1 VFG 3 VFG 3 VFG 4 

VGF 2, 3, & 4 VFG 4 VFG 2 VFG 3 VFG 4 

VFG 1 & 2 VFG 1 VFG 2 VFG 2 VFG 1 

VFG 1 & 3 VFG 1 VFG 3 VFG 3 VFG 1 

VFG 1 & 4 VFG 1 VFG 4 VFG 1 VFG 4 

VFG 2 & 3 VFG 3 VFG 2 VFG 3 VFG 2 

VFG 2 & 4 VFG 4 VFG 2 VFG 2 VFG 4 

VFG 3 & 4 VFG 4 VFG 3 VFG 3 VFG 4 

VFG 1 VFG1 SHED SHED VFG 1 

VFG 2 VFG 2 SHED SHED VFG 2 

VFG 3 VFG 3 SHED SHED VFG 3 

VFG 4 VFG 4 SHED SHED VFG4 

VFG 1 & APU VFG 1 APU APU VFG 1 

VFG 2 & APU VFG 2 VFG 2 APU APU 

VFG 3 & APU APU APU VFG 3 VFG 3 

VFG 4 & APU VFG 4 APU APU VFG 4 

APU GRD* APU APU APU APU 

APU FLT APU SHED SHED APU 

VFG 1 & EXT VFG 1 EXT EXT VFG 1 

VFG 2 & EXT VFG 2 VFG 2 EXT EXT 

VFG 3 & EXT EXT EXT VFG 3 VFG 3 

VFG 4 & EXT VFG 4 EXT EXT VFG 4 

EXT** EXT EXT EXT EXT 

* Some loads are shed with only APU power feeding, for example only one AC Hydraulic Pump can function at a 

time. 

** External AC can be provided with aircraft on jacks due to airborne logic requiring Weight off wheel and 90 KIAS 

(Knots Indicated Airspeed). 

1.2.3.3 EMS Control Display Unit 

There are two identical Electrical Management System (EMS) Control Display Units (CDU) 

conforming part of the electrical distribution system. One CDU is located on each pilot's side 

panel. The CDUs provide the operator with remote control of certain circuit breakers, distribution 

contactors and switches, and the test facility for some circuits. They operate in two modes of 

operation: Normal & Maintenance mode. 
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1.2.4 External AC System 

The External AC system has two modes of operation (see Figure 1.9), i.e. Normal mode and 

Service mode. Normal Mode allows all AC Buses to be powered by external AC while Service 

mode allows external AC to power all four ACPC AC Buses (1, 2, 3, & 4), although, their 

subsystem feeds are limited, with the exception of ACPC AC Bus 3, powering the Cockpit 

Circuit Breaker Panel (CCBP) AC Bus 3. There is one control switch for each mode of operation. 

It is to notice that Normal mode of operation has the priority over the Ground Service mode. 

 

Figure 1.9. AC External Power [18] 

1.2.5 Emergency AC Power Generation System 

The Emergency AC Power Generation System (see Figure 1.10) is provided by a Ram Air 

Turbine (RAT) driven generator which is normally stowed. The RAT is rated at 9 kVA, 115/200 

VAC, 3-phase, over the frequency range of 324 to 475 Hz. Deployment is automatic whenever 

the aircraft is airborne and a total loss of primary and auxiliary AC power occurs or loss of both 
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engines.. Automatic deployment can be time-delayed (14 seconds) depending on conditions 

during loss of power. The RAT is operational throughout the flight envelope and provides AC 

power to the AC Essential Bus within 6 seconds of deployment. 

 

Figure 1.10. AC Emergency Electrical System Power Control and Monitoring [18] 

1.2.6 DC Electrical System 

The DC supply is subdivided into two systems: Static Conversion and Battery. The static 

conversion system is supplied by four Transformer Rectifier Units (TRUs), each TRU produces 

28 VDC rated at 150 A. Meanwhile, the DC power is distributed through the DC Power Centre 

(DCPC) and Secondary Power Distribution Assemblies (SPDAs), while Battery backup power 

provides a power interrupt free system during TRU contactor switching. 

Two NiCad batteries supply their respective Battery Direct bus through fast-acting, solid-state 

power controllers (SSPCs). The APU battery is a 21-cell nickel cadmium battery with a nominal 

output of 25.2 VDC, rated at 42 ampere-hours and is located in the aft equipment bay. The 

Avionics battery is a 20-cell nickel cadmium battery with a nominal output of 24 VDC, rated at 
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25 ampere-hours and located in the nose avionics compartment. Both batteries are held on charge 

by their associated battery chargers whenever primary, auxiliary or external AC power is 

available. 

Regarding the DC power distribution, this is done by four TRUs supplying power to the 

DCPC. The DCPC is also fed by two NiCad batteries. TRU output is supplied to four primary 

DC buses called DC Bus # 1, DC Bus # 2, DC Essential Bus and the Battery Bus. Hence, the 

Battery Bus supplies the Emergency DC Bus. Also located in the DCPC is the Avionics Battery 

Direct Bus, which is connected directly to the Avionics battery output, and also powers the DC 

Emergency Bus if required. 

A schematic and physical distribution of the DC power system is presented in Figure 1.11: 

 

Figure 1.11. DC Electrical Power Generation and Distribution System [18] 
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1.2.6.1 Primary DC System 

Primary DC Power, shown in Figure 1.12, is supplied by four Transformer Rectifier Units 

(TRU), each TRU is powered by a Cockpit Circuit Breaker Panel AC Bus as described in Table 

1.5: 

Table 1.5. TRU feeding configuration [18] 

TRU AC BUS FEED 

TRU 1 AC Bus 2A 

ESS TRU 1 AC Bus 1A 

ESS TRU 1 Alternate Power Source* AC ESS Bus (via ETTC) 

ESS TRU 2 AC ESS BUS 

TRU 2 AC Bus 3A 

*Only when RAT deployed and essential TRU 2 has failed. 

Power from the four TRUs is routed to the DCPC where it is distributed to DC Bus 1, DC Bus 

2, DC Essential Bus and Battery Bus. System control is automatic but distribution or power feed 

control logic can be altered with the use of the EMS CDUs. 

 

Figure 1.12. DC Electrical Power [18] 
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1.2.7 Battery System 

The Global Express is equipped with two batteries, the APU battery and the Avionics battery, 

each battery is provided with a dedicated charger to charge and maintain it at the proper level 

during flight. Battery power is used for start-up power requirements and during emergency DC 

requirements. 

Avionics Battery is rated at 24 VDC, 20 cell of 25 Ah. Avionics battery power is fed to the 

Avionics Battery Direct Bus continuously. The Avionics Battery Direct Bus supplies the DC 

Emergency Bus when no TRUs are on line and supplies the DCPC BATT BUS via SSPC 4 

(K10) when the Battery Master switch is selected ON with no TRUs on line. Meanwhile, APU 

Battery is rated at 25.2 VDC, 21 cells 42 Ah. APU battery power is fed to the APU Battery Direct 

Bus continuously via the DC External Contactor (K1). APU Battery Direct Bus power supplies 

the APU Starter and via SSPC 5 (K3) supplies the DC Power Centre BATT BUS. 

The Avionics Battery and the APU Battery are always supplying power to their direct buses as 

long as their feed receptacle is connected to the battery. The Avionics Battery Direct Bus supplies 

the DC Emergency Bus as long as no TRUs are supplying the BATT Bus. When TRU power is 

available on the BATT Bus, the TRU power is supplied to the Emergency Bus. 

1.2.8 External DC System 

The External DC system is designed to replace the APU Battery power feed to the APU 

Battery Direct Bus (see Figure 1.13). Once selected, the APU battery is isolated from the APU 

Battery Direct bus. 
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Figure 1.13. External DC Power Schematic [18] 

Finally, a complete overview of the Global Express electric system is presented in Figure 1.14. 

The AC and DC load of Global Express are analyzed in the next chapter. 
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Figure 1.14. Electrical System Schematic [18] 
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CHAPITRE 2 GLOBAL EXPRESS AIRCRAFT ELECTRIC POWER 

SYSTEM MODEL 

The objective of this chapter is to explain the behaviour of generators, TRUs, AC and DC 

loads, AC and DC cables, switching controls and other electric elements inside the aircraft 

modeled during this research. 

The main analysis presented in this chapter is based on the baseline Global Express and meets 

the intent of MIL-E-7016F [20]. This military standard called "Analysis of Electric Load and 

Power Source Capacity", addresses the methods and analysis of electric loads and source capacity 

on military aircrafts and commercial aircrafts as well. 

2.1 Operating Conditions 

The operating conditions are as listed below with the applicable frequency. The actual 

frequency ranges for these conditions may vary according to RAE-700-103 [19]. 

Table 2.1. Operating Conditions [19] 

Reference Description Frequency [Hz] 

G1 Ground Maintenance 400 

G2 Loading and Preparation 400 

G3 Start and Warm-up 324 

G4 Taxi 380 

G5 Take-off 580 

G6 Climb 540 

G7 Cruise 500 

G8 Descent 400 

G9 Landing 430 

G10 Emergency 400 

The ground maintenance (G1) operating condition exists when electric components are being 

repaired, checked or tested, and electric power is supplied by an external power source. All AC 

and DC busses are powered. Loading and preparation (G2) is a condition between securing and 

starting. Operations performed during this period may consist of fuelling, lighting, heating, 

cooking, etc. During this period, power is supplied by the auxiliary power unit, battery or 

external source to specific service loads. 

http://en.wikipedia.org/wiki/United_States_Military_Standard
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Start and warm up (G3) is the condition from preparation for starting to taxiing. All busses are 

available. Meanwhile, Taxi (G4) is from the aircraft's first movement under its own power to the 

start of the takeoff run. It also includes from completion of landing rollout to engine shutdown. 

All busses are powered in normal electrical configuration. Takeoff (G5) is a condition 

commencing with the pilot pushing the throttle for takeoff until beginning of climb. All busses 

are powered in normal electrical configuration. 

Climb (G6) is the condition beginning with the climb and ending with the aircraft in the 

levelled-off attitude and set for cruising operation. All busses are powered in normal electrical 

configuration.  

Cruise (G7) is the condition during which the aircraft is in flight level. All busses are powered 

in normal electrical configuration.  

Descent (G8) is the condition commencing with descent run and entering into the base leg. All 

busses are powered in normal electrical configuration. 

Landing (G9) begins with the landing approach and completes at rollout. All busses are 

powered in normal electrical configuration. 

Finally Emergency (G10) is any period of flight during which the normal sources of power are 

inoperative. During such periods, all loads essential to aircraft safety of flight (under any flight 

condition) are transferred to an emergency generator driven by a ram air turbine. In this 

condition, only the Air Driven Generator (ADG), DC ESS and Battery Busses are powered from 

that emergency generator. 

2.2 AC Electrical System 

Figure 2.1 shows the schematic for the Global Express electric power system. There are four 

main AC busses, normally supplied from four 40 kVA frequency variable generators. The busses 

are titled AC Bus 1, AC Bus 2, AC Bus 3 and AC Bus 4. There is also an AC ESS BUS which 

has the essential loads connected to it. Normally the AC ESS Bus is supplied via AC Bus 4, but 

under the emergency operational mode when the RAT is deployed, power is sourced by the RAT 

generator [18]. 
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Figure 2.1. One-line diagram of aircraft electric power system 

The busses are of various priority levels, which are as follows in order of increasing priority: 

AC Bus 2 and AC Bus 3 (equal priority), AC Bus 1 and AC Bus 4 (equal priority), and AC ESS 

Bus. 

A fifth generator rated at 45 kVA (ground operation) driven by the APU (Auxiliary Power 

Unit) is also available; however, this generator is primarily intended for ground use. In addition, a 

sixth generator rated at 9 kVA, 400 Hz, 0.75 to unity power factor continuously, is driven by a 
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RAT (Ram Air Turbine) and provides power for emergency use [19]. The RAT also drives a 

hydraulic pump located at the AC BUS 4 for this operational condition. The RAT is 

automatically deployed upon loss of all other aircraft AC power supplies. The RAT is subject to 

de-rating as air speed decreases, and therefore limitations on loading may apply at low airspeeds. 

If all AC loads are off-loaded then the aircraft systems would rely on battery power. At 145 

KEAS (Knots Equivalent Air Speed) the RAT generator is off-loaded in order to ensure that 

hydraulic power can be supplied to the flight control surfaces. During flap and slat actuation 

(approximately 6.6 kVA peak), the DCPC (Direct Current Power Centre) ensures that ESS TRU 

1 and ESS TRU 2 outputs are disconnected, so that the short term loading on the RAT generator 

does not cause the RAT to stall. 

2.2.1 Variable Frequency Generators Model 

As mentioned in Chapter 1, VFGs are rated to 115/200 VAC, 3-phase, 324-596 Hz, 40 kVA. 

For the purpose of this research, VFGs are modeled using ideal voltage sources, so that Three-

Phase Programmable Voltage Sources are used instead, located in the Electrical Sources of the 

SimPowerSystems (SPS) Library [14]. These blocks generate a three-phase sinusoidal voltage 

with time-varying parameters. The time variation for the amplitude, phase, or frequency of the 

fundamental component of the source, can be programmed. In addition, two harmonics can be 

programmed and superimposed on the fundamental signal. For this research, Table 2.2 shows the 

parameters that were employed for the sources, as well as their values during simulation: 

Table 2.2. Parameters for Three-Phase Programmable Voltage Sources 

Parameter Description Value 

Positive Sequence Voltage Amplitude in Vrms phase-to-phase 200 

Positive Sequence Voltage Phase in degrees 0 

Positive Sequence Voltage Frequency in Hertz 324 - 580 

 

 

Figure 2.2 shows Three-Phase Programmable Voltage Sources as VFGs within the aircraft 

electric power system model. The implications of not modeling of VFGs as electrical machines 

are explained in Chapter 3, section 3.3. 
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Figure 2.2. VGF's block implemented in Simulink and its location in actual aircraft electric power 

system 
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2.2.2 AC Power Centre (ACPC) 

The AC system architecture is shown by Figure 2.3. A means of connecting External AC 

power is also provided. 

 

Figure 2.3. ACPC Electrical System schematic [19] 

Table 2.3 gives the AC contactor logic with APU available 
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Table 2.3. AC system contactor operation logic with APU available [19] 

POWER SOURCE STATUS BUS POWER SOURCE 

AC BUS 1 AC BUS 2 AC BUS 3 AC BUS 4 AC ESS BUS 

NORMAL VFG 1 VFG 2 VFG 3 VFG 4 VFG 4 

VFG 4 FAIL /OFF VFG 1 VFG 2 VFG 3 VFG 1 VFG 1 

VFG 3 FAIL /OFF VFG 1 VFG 2 VFG 2 VFG 4 VFG 4 

VFG 3 & 4 FAIL /OFF VFG 1 VFG 2 VFG 2 VFG 1 VFG 1 

VFG 2 FAIL /OFF VFG 1 VFG 3 VFG 3 VFG 4 VFG 4 

VFG 2 & 4 FAIL /OFF VFG 1 VFG 3 VFG 3 VFG 1 VFG 1 

VFG 2 & 3 FAIL /OFF VFG 1 VFG 4 VFG 1 VFG 4 VFG 4 

VFG 2 & 3 & 4 FAIL /OFF VFG 1 APU APU VFG 1 VFG 1 

VFG 1 FAIL /OFF VFG 4 VFG 2 VFG 3 VFG 4 VFG 4 

VFG 1 & 4 FAIL /OFF VFG 3 VFG 2 VFG 3 VFG 2 VFG 2 

VFG 1 & 3 FAIL /OFF VFG 4 VFG 2 VFG 2 VFG 4 VFG 4 

VFG 1 & 3 & 4 FAIL /OFF VFG 2 VFG2 APU APU APU 

VFG 1 & 2 FAIL /OFF VFG 4 VFG 3 VFG 3 VFG 4 VFG 4 

VFG 1 & 2 & 4 FAIL /OFF APU APU VFG 3 VFG 3 VFG 3 

VFG 1 & 2 & 3 FAIL /OFF VFG 4 APU APU VFG 4 VFG 4 

ALL VFG FAIL/OUT APU LOST LOST APU APU 

APU GEN & ALL VFG 

FAIL/OUT 
LOST LOST LOST LOST RAT 

EXTERNAL POWER EXT EXT EXT EXT EXT 

ALL VFG FAIL/OFF APU APU APU APU APU 

An implementation of the ACPC within the Simulink environment is shown in Figure 2.4. 
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Figure 2.4.ACPC implementation in Simulink 

Each switch has a 50 ms time delay which is in fact the maximum switching operation time 

for power interruptions. Figure 2.5 shows the implementation of the maximum switching time in 

Simulink. As soon as a VFG failure occurs at a specific time, the switches related to the event 

operate 50 ms after the failure. This value can be easily changed, since the time delay could be 

less than 50 ms, depending on the characteristics of the switch. 
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Figure 2.5. Maximum switching time implemented in Simulink 

It is worth noting that generators rotate in opposite directions depending on their location, as 

explained in Chapter 1, section 1.2.1. Phase sequence of generator 1 and 4 is A, B, C. Phase 

sequence of generator 2 and 3 is C, B, A. To that effect, phase sequence is corrected by switching 

A and C phases of generators 2 and 3 in the ACPC. This is implemented in the aircraft electric 

power system modeled in Simulink, as shown in Figure 2.6. Implications of not modeling this 

phase sequence are explained in Chapter 3. 
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Figure 2.6. Phase sequence of Generator 2 and 3 implemented in Simulink 

Logical controls must be validated within the detailed aircraft electric power system model. In 

this work the switches are modeled using three-phase breakers [14] and a delay is included for 

position changes, as mentioned before. When a SPDT (Single-Pole, Double-Throw) switch needs 

to go from one contact to another, the opening stage is instantaneous and there is a delay before 

closing on the second contact. On the Global Express, there are two types of contactors: Standard 

SPDTs used for architecture reconfiguration, and Solid State Power Controllers (SSPC). The 

SSPCs are faster than SPDT and are used to supply emergency DC power to buses that are not 

fed by their usual power supply. More sophisticated switch models must be used to investigate 

arcing problems causing a switch to stick during operation. The large number of switches can 

create simulation performance constraints for repetitive operation cases. 
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2.2.3 AC Switching Control Centre (ACSCC) 

The AC Switching Control Centre (ACSCC) is responsible for sending binary signals to the 

external switching time control for the ACPC switches, in order to change ON/OFF state 

positions. It is created and implemented in Simulink for the purpose of this research, so that a 

more realistic and sophisticated power system model is accomplished. 

The current implementation of reconfiguration switching controls is based on truth tables 

representing Global Express reconfiguration logic [18]. The switch states vary depending on a 

game of events regarding loss of VFGs and TRUs, so that the AC system architecture alternates 

to provide electrical power to every bus, as indicated in Table 2.3. The amount of logical controls 

is vast and implementing all of them is not the goal of this research. Only basic architecture 

reconfiguration according to VFG and TRU status is implemented in the power system presented 

here. Figure 2.7 shows a flowchart of the ACSSC logic switching signal command. 

 

Figure 2.7. Flowchart of the ACSSC logic switching signal command 
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For the functionality of the ACSSC, a subsystem named "Measurements" is created for the 

purpose of capturing phase-to-ground voltage and current measurements for every source of 

energy (VFGs, APU, EXT AC and RAT GEN), AC busses, AC loads and DC loads as shown in 

Figure 2.8 and Figure 2.9. It calculates EHP active and reactive power and captures the rotor 

speed, and electromagnetic and mechanical torque signal from the ASM model. Every signal 

within the "Measurements" subsystem is sent to the workspace for further treatment. The 

"Measurements" subsystem divides data to workspace in sources, bus 1 (AC Bus 1), bus 2 (AC 

Bus 2), bus 3 (AC Bus 3), bus 4 (AC Bus 4), ehp (EHP) and dc (DC Bus1, DC ESS Bus, DC 

Emergency Bus, DC APU Battery, Avionic Battery, and Battery Bus). 

 

Figure 2.8. "Measurements" subsystem architecture of signal processing (first part) 
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ACSCC takes phase-to-ground voltage data from "Measurements" and then separates voltage 

data for each phase, so that VA, VB and VC are separately converted in RMS values by the 

Discrete RMS Value block from SPS library, which computes the true RMS value (including 

fundamental, harmonic, and DC components) of input voltage signal. The RMS value is 

calculated over a running window of one cycle of the specified frequency. 

 

Figure 2.9. "Measurements" subsystem architecture of signal processing (second part) 

Once a voltage signal is converted into RMS, each phase value passes through a dead zone 

block. It outputs zero then the input is within the dead zone (starting at 126.5 Vphase, RMS 

which is the RMS nominal voltage plus 10%). If the input signal exceeds 126.5V RMS, an 

ehp

To Workspace_ehp

dc

To Workspace_dc

bus4

To Workspace_bus4

bus3

To Workspace_bus3

Vdc_EmerBus

Idc_EssBus

Idc_BattBus

Vdc_BattBus

Idc_AvionBat

Vdc_AvionBat

Idc_Bus1

Vdc_Bus1

Vdc_EssBus

Idc_APUBat

Vdc_APUBat

Iabc_EssBus

Vabc_EssBus

Iabc_EHP

Vabc_EHP

Iabc_Bus4Load

Vabc_Bus4Load

Iabc_Bus4A

Vabc_Bus4A

Idc_Bus2

Iabc_Bus4

Vabc_Bus4

Iabc_Bus3Load

Vabc_Bus3Load

Iabc_Bus3A

Vabc_Bus3A

Iabc_Bus3

Vabc_Bus3

[Tm]

[wm]

[Te]

Idc_EmerBus

Vdc_Bus2

V

I

Mag_V_I

P_Q



41 

 

overvoltage occurs and a zero signal is sent to the ACPC, for network reconfiguration in 

accordance with Table 2.3. If the input signal is outside the dead zone, that is less than 10 VRMS, 

a failure occurs and a zero signal is again sent to ACPC, for automatic network reconfiguration. 

The logic command is able to detect any loss of any phase of VFGs by summing each output 

(after dead zone) and adding a switch block at the end of the sum. If the sum is greater than or 

equal to two (indicating the loss of two phases), logic command interprets it as a failure, so that 

ACPC automatically reconfigures the aircraft electric power system. Otherwise, if the sum is less 

than two (indicating the loss of just one phase), logic command does not interpret this as a 

failure, therefore no automatic reconfiguration is performed. Finally if the input signal is within 

10 V RMS and 126.5 V RMS, the electric power system is operating under normal voltage 

conditions and no reconfiguration is needed. In addition when an RMS voltage measurement is 

within the dead zone, the ACSCC sends a one signal, indicating normal operation. 

Figure 2.10 shows the first part of the ACSCC. This part is in charge of detecting any single 

loss of VFGs and then sending binary signals to the external switching time control for the ACPC 

switches K5, K7, K10 and K13, according to VFGs' failures. 

 

Figure 2.10. Schematic of the ACSCC implemented in Simulink (first part) 
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A second part is show in Figure 2.11. This part detects when two or more VFG fail and then 

sends binary signals to the external switching time control for the ACPC switches (K2, K3, K4, 

K6, K8, K9, K11, K12), according to VFGs' failures. As shown in Figure 2.9, on the left side, a 

logic command is presented when two VFGs fail, meanwhile at the center, the logic command is 

for the case of three VFGs failing. Finally, on the right side, when there is a global failure, the 

RAT supply is activated. 

 

Figure 2.11. Schematic of the ACSCC implemented in Simulink (second part) 
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parameters based on [21], which presents impedance data compiled by the authors for use in 
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Figure 2.12. Cross-section of a nickel coated copper cable linking AC BUS 1 to AC BUS 1A [19] 

It also presents, tabulated impedance data for a number of typical configurations using 

multiple wire feeders in 0.5 inch flat spacing and laced three-phase groups. In addition, the 

authors in [21] calculate positive sequence data directly from the geometry of the wire 

configurations, while zero sequence data is dependent upon the particular ground return circuit 

employed and modified by an empirically determined skin correction term. The latter correction 

must be carefully reviewed with respect to the current practices in aircraft design, but this is out 

of the scope of the current project. Figure 2.13 presents the implementation of the AC cables in 

Simulink. 

 

Figure 2.13. AC Cable Block implementation in Simulink 

The Authors in [21] explain that the fact of working "only with laced three-phase groups and 

three-phase groups in 0.5 inch flat-spacing", is because "these configurations are considered the 
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most likely to be used in present designs" [21]. They also indicate the following statements in 

order to clarify the use of the tabulated data: 

1. The positive sequence impedance data are all calculated values based on AN-J-C-48a 

wire specifications and on the 400 Hz resistance information in "General Electric Data 

Folder #63004", from General Electric Company. Hence, " the data is not affected by the 

type of body structure or whether or not the wires are run in non-magnetic conduit" [21]. 

2. The zero sequence data is assembled by "calculating the theoretical impedance assuming 

an infinite perfect skin return circuit and then applying empirical corrections terms to 

account for the actual skin structure" [21] for a fixed frequency of 400 Hz. 

3. The zero sequence reactance is read directly from the curves for the proper size, elevation 

and group separation. Hence, "the zero-sequence resistance is obtained by adding the 

value ROC from the table in each figure to the value of RS from the RS curve for the 

proper group separation" [21]. 

4. All resistances are calculated at 20°C. 

Returning to the AC cable model block, implemented in Simulink, both zero and positive 

(negative sequence impedance is assumed to be equal to the positive sequence impedance) are 

presented in Table 2.4. 

Table 2.4. Positive and Negative Sequence Impedance for 400 Hz at 20°C [21] 

AWG Size 

Positive and Negative sequence Impedances for  

400 Hz at 20°C (Ohms/1000 ft) 

Max 150°C (tin plating)  Max 200°C (silver plating)  

20 10.18+j0.304 9.47+j0.304 

18 6.42+j0.289 5.96+j0.289 

16 4.95+j0.278 4.66+j0.278 

14 3.15+j0.264 2.97+j0.264 

12 2.08+j0.247 1.96+j0.247 

10 1.30+j0.228 1.23+j0.228 

8 0.722+j0.226 0.678+j0.226 

6 0.458+j0.221 0.431+j0.221 

4 0.288+j0.212 0.272+j0.212 

2 0.188+j0.206 0.175+j0.206 

0 0.119+j0.04 0.111+j0.204 
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Due to the fact that the impedances presented in Table 2.4 were calculated for 400 Hz, so that 

an extrapolation was performed in order to get impedance values for the entire range of operation 

frequencies. As it remains at low frequencies, this cable model should work properly for steady-

state simulations, but it only fits a given operational frequency. When there is a frequency content 

that is different from the base frequency in time, the model must be revised, as its frequency 

behaviour depends on how Simulink converts the inductance value. For the resistance, there may 

be a slight correction, but it is not critical here. The impedance could be calculated very easily by 

finite elements, if there were access to an actual section of the cable. However, this is beyond the 

scope of the project. 

Meanwhile, zero sequence impedance is given by: 

            (2.1) 

where    is the zero sequence resistance. The calculated value of zero sequence resistance 

assuming a perfect ground plane ("skin" in Figure 2.13) is found by finding the parallel resistance 

of the conductor configuration above the skin [21]. 

           (2.2) 

The value of the skin correction term    and the related zero sequence inductance    is found 

by interpolating the lower curves of Figure 2.14 for h equal to 10.16 cm. 
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Figure 2.14. Zero sequence Impedance for one laced group at 400 Hz [21]. 

Furthermore, the zero sequence resistance     is given in Table 2.5. 

Table 2.5. Zero Sequence Resistance assuming a perfect ground plane at 20°C and 400 Hz [21] 

AWG Size 
R0C at 20°C and 400 Hz (Ohms/1000 ft) 

Max 150°C (tin plating)  Max 200°C (silver plating)  

20 10.18 9.47 

18 6.42 5.96 

16 4.95 4.66 

14 3.15 2.97 

12 2.08 1.96 

10 1.30 1.23 

8 0.722 0.678 

6 0.458 0.431 

4 0.288 0.272 

2 0.188 0.175 

0 0.119 0.111 
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A sequence impedance matrix is formed by wire sizes from 12 AWG to 00 AWG (an 

extrapolation is performed in order to find values after 0 AWG wire size). Phase domain cable 

impedance parameters are found using the Clarke transformation matrix T: 

 [    (         )]  [ ]  [    (         )]  [ ]
   (2.3) 

The result of (2.3) gives a matrix where     [   ]    ,     [   ]    ,     [   ]    . 

Finally, a decoupled-RL model depending on the frequency, length and wire size (AWG) is fully 

implemented. Figure 2.14 shows the initialization commands for the AC cable block in Simulink, 

where   is the frequency of operation and      is the wire size in AWG. All values are taken 

from Table 2.4, Table 2.5 and Figure 2.15. These values result when using equations (2.1), (2.2) 

and (2.3). 

Figure 2.15. Initialization commands for the AC cable block 

The cable lengths presented in Table 2.6 are derived approximately using the aircraft 

geometry, where the longest cable is approximately 20.63 m. Capacitive effects are ignored. 

 

if Size == 12      %% AWG Size 

    R  =  0.0067;  %% 3-phase resistance [Ohm/length] 

    XL =  (3.888888889e-04)/(2*pi*f);  %% 3-phase inductance [Ohm/length] 

else 

    if Size == 8      %% AWG Size 

        R  = 0.0025;  %% 3-phase resistance [Ohm/length] 

        XL = (3.518518519e-04)/(2*pi*f);  %% 3-phase inductance [Ohm/length] 

    else 

        if Size == 4      %% AWG Size 

            R  = 0.0011;  %% 3-phase resistance [Ohm/length] 

            XL = (0.0003)/(2*pi*f);  %% 3-phase inductance [Ohm/length] 

        else 

            if Size == 00          %% AWG Size 

                R  = 0.4018*1e-03; %% 3-phase resistance [Ohm/length] 

                XL = (0.2457*1e-03)/(2*pi*f);  %% 3-phase inductance [Ohm/length] 

            end 

        end 

    end 

end 
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Table 2.6. AC Cable length estimation 

    
Estimation Real 

Idem Power From To Straight (m) Reserve (%) Length (m) Length (m) 

1 AC - 3Φ VFG1 ACPC 4.50 75% 7.88 
 

2 AC - 3Φ VFG2 ACPC 4.50 75% 7.88 
 

3 AC - 3Φ EXTAC ACPC 2.50 75% 4.38 4.8768 

3 AC - 3Φ EXTAC ACPC 2.50 75% 4.38 6.096 

3 AC - 3Φ EXTAC ACPC 2.50 75% 4.38 4.191 

4 AC - 3Φ APU GEN ACPC 7.00 50% 10.50 
 

5 AC - 3Φ VFG3 ACPC 4.00 75% 7.00 
 

6 AC - 3Φ VFG4 ACPC 3.00 75% 5.25 
 

7 AC - 3Φ RAT GEN ACPC 16.50 25% 20.63 
 

8 AC - 3Φ ACPC CCBP 14.00 25% 17.50 17.653 

9 AC - 3Φ ACPC CCBP 14.00 25% 17.50 17.7292 

10 AC - 3Φ ACPC CCBP 14.00 25% 17.50 18.415 

11 AC - 3Φ ACPC CCBP 14.00 25% 17.50 17.5768 

12 AC - 3Φ CCBP ESS TRU1 3.50 75% 6.13 
 

13 AC - 3Φ CCBP TRU1 3.50 75% 6.13 
 

14 AC - 3Φ CCBP TRU2 3.50 75% 6.13 
 

15 AC - 3Φ CCBP CCBP 1.00 25% 1.25 
 

16 AC - 3Φ CCBP ESS TRU2 3.50 75% 6.13 
 

The reserve percentage varies from 25% to 75%. The 75% is added for short lengths (0-5m) if 

they travel in a non-straight path. The 50% is for medium lengths (5 -10m) if non-straight path is 

taken. Finally, the 25% is for long lengths (>10m). 

Table 2.7 summarizes AC impedance values obtained with the AC block calculations. No 

frequency dependency of resistance is taken into account due to a lack of information in the 

aircraft design process. The values presented in Table 2.7 are in fact the self impedance values 

for different wire sizes and frequency of operation, since the mutual values are to small and can 

be neglected.  

Table 2.7. Self impedance values for AC Cables in the aircraft electric power system 

 
Cable's Self impedances (Ohm/m) 

AWG 
Zcable 

@324Hz 

Zcable 

@380Hz 

Zcable 

@400Hz 

Zcable 

@430Hz 

Zcable 

@500Hz 

Zcable 

@540Hz 

Zcable 

@580Hz 

12 
0.0067 + 

j0.00216 

0.0067 + 

j0.00253 

0.0067 + 

j0.00267 

0.0067 + 

j0.0028 

0.0067 + 

j0.00333 

0.0067 + 

j0.0036 

0.0067 + 

j0.00387 

8 
0.0025 + 

j0.0019 

0.0025 + 

j0.0022 

0.0025 + 

j0.0024 

0.0025 + 

j0.0025 

0.0025 + 

j0.0029 

0.0025 + 

j0.0032 

0.0025 + 

j0.0034 

4 
0.0011 + 

j0.0017 

0.0011 + 

j0.0020 

0.0011 + 

j0.0021 

0.0011 + 

j0.0023 

0.0011 + 

j0.0026 

0.0011 + 

j0.0028 

0.0011 + 

j0.0031 

00 
0.0004 + 

j0.0013 

0.0004 + 

j0.0016 

0.0004 + 

j0.0016 

0.0004 + 

j0.0018 

0.0004 + 

j0.0020 

0.0004 + 

j0.0022 

0.0004 + 

j0.0024 
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It is worth noting that more sophisticated models must be developed to account for higher 

frequency transients. It might be also necessary to account for temperature and altitude effects 

using dynamic functions. 

2.2.5 AC Loads 

Both passive and dynamic AC loads are considered in the modeled Global Express aircraft 

electric power system. Passive loads are modeled as constant impedance unbalanced loads using 

the nominal active and reactive power data provided by Bombardier [19] and listed in the Annexe 

I. 

Figure 2.16 shows the location of the AC loads, within the dotted red lines, modeling using 

Simulink. 
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Figure 2.16. Location of the AC loads in the Global Express one-line diagram 

In order to simulate real ac load distribution, an AC unbalanced load model block was 

implemented in Simulink (see Figure 2.17) and based on the parallel RLC load block, which 
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implements a linear load as a parallel combination of RLC elements [14]. At the specified 

frequency, the load exhibits constant impedance. The active and reactive powers absorbed by the 

load are proportional to the square of the applied voltage. 

 

Figure 2.17. AC Unbalanced Load implementation in Simulink 

2.2.5.1 Electric Hydraulic Pump (EHP) 

Some significant hydraulic loads (like the Electrical Hydraulic Pump, EHP) are simulated 

using 20 kVA three-phase asynchronous machines (ASM) with torque control. The EHPs for 

electro-hydro mechanical actuation are connected to the 115/200 V, variable frequency main AC 

bus, and they are designed for 400 Hz operation even if it is supposed to work for all range of 

operating frequencies. In addition, the motors are loaded with variable load torque [19] based on 

rotor speed. Machine parameters are determined using frequency dependent steady-state input 

active and reactive powers, transient inrush current and stator resistance, all provided by the 

manufacturer. Despite the information provided by Bombardier, some assumptions found in [22] 

are used, in order to obtain a model for the EHP. The rest of the parameters are calculated as from 

this hypothesis.  
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The assumptions are listed in Table 2.8. Once the model is elaborated considering these 

assumptions, a little variation in the mutual inductance from the model in Simulink is performed, 

in order to reach the same behaviour shown in EMTP-RV.  

Table 2.8. Assumption during EHP's modeling 

Parameter Value 

Frequency of operation 400 Hz 

Voltage of operation 115 VAC 

Stator Resistance per phase 0.077 Ω 

Nominal slip [22] 3% 

Relationship between Stator and Rotor 

Resistance [22] 
   

 

 
   

Start-up current 280 A 

Figure 2.18 presents the EHP model implemented in Simulink, using the Asynchronous 

Machine [14]. 

 

Figure 2.18. EHP implementation in Simulink 

It is worth noting that in the model, a small parasitic resistive load is added in the model, 

connected at the machine terminals, in order to avoid numerical oscillations [14]. In order to 

validate the EHP model in Simulink with real measurements and the EHP model implemented in 

EMTP-RV, Table 2.9 shows the parameters employed, as well as their values during simulation. 
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Table 2.9. Parameters for Asynchronous Machine block 

 

Resistance Inductance Mutual Inductance Inertia Friction Number 

of 

Poles Value 

Stator 

Rs (Ohm) 

Rotor 

R'r (Ohm) 

Stator 

Lls (H) 

Rotor 

Ll'r (H) 
Lm (H) J(kg.m^2) factor F(N.m.s) 

Simulink 0.1488 0.029131 0.0000904 0.000136 0.002921 0,000575 0 4 

EMTP-RV 0.1488 0.029131 0.0000904 0.000136 0.004494 0,000575 0 4 

In addition, the variable frequency steady-state performance should be revised as well as the 

machine model equations, in order to account for changes in parameters. 

The definition of all loads is not currently available. Moreover, the information provided is 

limited and does not allow characterizing the transient performance. It should become a 

mandatory requirement that component manufacturers provide specific measurements and data 

for characterizing more precisely aircraft's loads for both steady-state and transient performances. 

Load certification is an important issue for MEA designs. Standards must be defined for load 

integration according to the performance requirements of aircraft manufacturers. This idea is 

similar to a grid code practice used in power systems. Such standards must also define the type of 

studies that should be performed when integrating loads in the aircraft electric power system. 

2.2.6 Transformer Rectifier Unit (TRU) 

The DC supply is subdivided into two systems: Static Conversion and Battery. The static 

conversion system is supplied by four Transformer Rectifier Units (TRUs). Each TRU produces 

unregulated 28 VDC and is rated at 150 A [3]. Furthermore, a battery system is used to maintain 

the DC system voltage constant under transient conditions, to supply power for short term heavy 

loads and under emergency conditions. 

For this reason, TRUs are essential parts for the power distribution systems, in order to supply 

power to all kinds of DC loads from a variable frequency AC bus. Such systems are required to 

have low volume, high reliability, ability to carry overcurrent and present low current harmonics 

[23]. 

The conventional TRU system uses mainly passive rectifiers as shown in Figure 2.19, because 

its operating frequency causes the power density to be quite high. It consists of diodes and some 

filtering components, and hence is very robust, although passive converter systems with 

approximately sinusoidal input currents like the 12-pulse rectifier, are typically used in mid- and 
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high-power applications [23]. Such passive systems do not require control electronics and are 

therefore characterized by a very low realization effort and high reliability. 

 

Figure 2.19. Schematic diagram of a typical TRU [23] 

Figure 2.20 shows the location of the four TRUs linking AC and DC part of the electric power 

system, within the dotted red lines, modeling using Simulink. 
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Figure 2.20. Location of the TRUs within the Global Express one-line diagram 

A simplified model similar to [24] was created in Simulink. In order to eliminate the low-

frequency output current harmonics of the generator and to convert 3-phase 115 VAC to 28 

VDC, the TRU is designed with a passive 24-pulse converter. However, a 12-pulse power 

converter [24], [25] is used in this study. For further power quality studies, the actual 24-pulse 

converter should be modeled in order to get more accurate results. The TRU provides inherent 

high power factor and low harmonic distortion. 

Power diodes are used in the TRU to eliminate switching and achieve significant reduction in 

losses and, hence, improved efficiency and power quality. The rectifier part of the TRU is 

implemented using the Universal Bridge block, which is a universal three-phase power converter 

that consists of up to six power switches connected in a bridge configuration [14]. The Universal 

Bridge block allows simulation of converters using naturally commutated (or line-commutated) 

power electronic devices. In addition, RC snubber circuits are connected in parallel with each 

switch device. Table 2.10 shows the universal bridge parameters. 
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Table 2.10. Parameters of the Universal Bridge 

Parameter Description Value 

Number of bridge arms 3 

Snubber resistance RS (Ohm) 1830 

Snubber capacitance CS (F) 5.47e-08 

Power Electronic device Diodes 

Ron (Ohm) 1e-03 

Lon (H) 0 

Forward voltage Vf (V) 0.8 

The D/Y transformer in the aircraft power system provides the necessary phase shift of 30° for 

the 12-pulse operation feeding into the main 28 VDC bus. It is implemented using the Three-

Phase Transformer (Two Windings) block, which consist of a three-phase transformer made from 

three single-phase transformers. The model takes into account the winding resistances and the 

leakage inductances, as well as the magnetizing characteristics of the core [14]. Table 2.11 shows 

the main transformer parameters used, as well as their values during simulation. 

Table 2.11. Parameters for Three-Phase Transformer (Two Windings) Block 

Parameter Description Value 

Nominal power Pn(VA) 5500 

Winding 1 Vph-ph (Vrms) 200 

Winding 1 Resistance R1 (pu) 0.004 

Winding 1 Inductance L1 (pu) 0.02 

Winding 2 Vph-ph (Vrms) 24.45 

Winding 2 Resistance R2 (pu) 0.004 

Winding 2 Inductance L2 (pu) 0.02 

Magnetization Resistance Rm (pu) 200 

Magnetization Inductance Lm (pu) 200 

In addition, a 200 μH inductor and 5000 μF capacitor are connected at the output of the power 

converter to smooth out the DC voltage. 

The TRU model implemented in Simulink is presented in Figure 2.21. The parameters of the 

input and output filters are those provided by the manufacturer, while typical values are used for 

other parameters. To develop a model as accurate as possible, the power system military standard 

MIL-STD-704f [26] is used in order to meet basic steady-state and transient output requirements. 

A generic magnetization curve is used to obtain a more realistic behaviour of the TRU. 

Transformers output characteristics are set using TRU steady-state output requirements (28 VDC 
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with a 12-pulse ripple). Interphase inductance parameters are determined using transient 

characteristics found in [26] regarding envelope of normal voltage transients for 28 volts DC 

system [26]. The performance of the TRU model is presented in the next chapter. 

 

Figure 2.21. TRU model in Simulink 

2.3 DC Electrical System 

2.3.1 DC Cables 

Regarding the modeling of DC cables, a block was created, edited and scripted in Simulink to 

generate DC cable resistance parameters for Global Express aircraft electrical system based on 

[21] and manufacturer datasheets. Inductive effects are taken into account as there are calculated 

directly from the analytical equations assuming that the DC cables are coaxial. It is important to 

consider them in order to account for transient behaviour. 

Figure 2.22 shows a cross-section of a tin coated copper cable used inside the aircraft for 

linking ESS TRU and DC ESS BUS. A is for the conductor material (tin coated copper), B is for 

the primary insulation (radiation cross linked, extruded, modified, ETFE), and C for the jacket 

(radiation cross linked, extruded, modified, ETFE). 

 

Figure 2.22. Cross-section of a tin coated copper cable used for linking ESS TRU and DC ESS 
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Meanwhile, Figure 2.23 shows the DC cable user interface developed in Simulink. 

 

Figure 2.23. DC Cable Block implemented in Simulink 

Table 2.12 shows manufacturer resistance DC values for 20°C for different wire sizes 

presented in the aircraft. Inductive effects are included assuming a coaxial cable. 

Table 2.12. DC resistance and inductance values for the aircraft power system [21] 

AWG R@20°C (Ohm/m) L (µH/m) 

10 0.004068241 0.2937 

8 0.002299869 0.4166 

6 0.001459974 0.4209 

4 0.000902231 0.4210 

0 0.000370735 0.3362 

00 0.000291995 0.3516 

The DC resistance values are given in Ohm/m and should vary with temperature as follows 

[21]. 

                 [     (        )] (2.2) 
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where,     is the copper resistivity,     is the temperature of operation,           is the resistance 

value in Table 2.12. A resistive model depending on the temperature of operation, length and 

wire size (AWG) is fully implemented. The temperature parameter is static. 

In addition, the DC inductance values are given in µH/m and they are calculated as follows 

[21]: 

                    (
 

 
) (2.2) 

where,   is the outer conductor and   is inner conductor. The constant value is related to the 

permeability. Finally, an impedance model depending on the temperature of operation, length, 

wire size (AWG) and the geometry of the conductor is fully implemented. The temperature 

parameter is static. 

The cable lengths presented in Table 2.13 are derived approximately using the aircraft 

geometry, where the longest cable is approximately 24 m. In addition, the AC cable length 

reserve percentage criteria was also used for the DC cable length. 

Table 2.13. DC Cable length estimation 

  
  

Estimation Real 

Idem Power From To Straight (m) Reserve (%) Length (m) Length (m) 

17 DC TRU1 DCPC 2.50 75% 4.38   

18 DC ESS TRU1 DCPC 2.50 75% 4.38   

19 DC ESS TRU2 DCPC 2.50 75% 4.38   

20 DC TRU2 DCPC 2.50 75% 4.38   

25 DC ASCA DCPC 19.20 25% 24.00 24.64 

32 DC AV BATT DCPC 2.50 75% 4.38   

21a DC DCPC SPDA# 1.00 75% 1.75   

21b DC DCPC SPDA# 4.50 75% 7.88 7.9248 

21c DC DCPC SPDA# 6.50 50% 9.75 9.144 

21d DC DCPC SPDA# 2.00 75% 3.50 3.2512 
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Figure 2.24 presents the initialization commands for the DC cable block in Simulink, where   

is the temperature of operation and      is the wire size in AWG. According to the wire size 

selected by the user and the temperature of operation, the script calculates  , which is the 

resistance per length for the DC cables. After that, the model multiplies this value by the length 

introduced by the user and distributes this value to both resistance presented in the Simulink 

model. 

 

Figure 2.24. Initialization commands for the DC cable block 

if Size == 10   %% AWG Size 

    R  = 0.004068241 * (1 + 0.00393 * (T-20));                       %% [Ohm/m] 

    H  = 4.593 * log (0.113/0.106);                                  %% [µH/m] 

else 

    if Size == 8   %% AWG Size 

        R  = 0.002276903 * (1 + 0.00393 * (T-20));                   %% [Ohm/m] 

        H  = 4.593 * log (0.173/0.158);                              %% [µH/m] 

    else  

        if Size == 6   %% AWG Size 

            R  = 0.001430446 * (1 + 0.00393 * (T-20));               %% [Ohm/m] 

            H  = 4.593 * log (0.212/0.198);                          %% [µH/m] 

        else  

            if Size == 4   %% AWG Size 

                R  = 0.000902231 * (1 + 0.00393 * (T-20));           %% [Ohm/m] 

                H  = 4.593 * log (0.274/0.250);                      %% [µH/m] 

            else 

                if Size == 0  %% AWG Size 

                    R  = 0.000370735 * (1 + 0.00393 * (T-20));       %% [Ohm/m] 

                    H  = 4.593 * log (0.425/0.395);                  %% [µH/m]  

                else 

                    if Size == 00  %% AWG Size 

                        R  = 0.000291995 * (1 + 0.00393 * (T-20));   %% [Ohm/m] 

                        H  = 4.593 * log (0.475/0.440);              %% [µH/m] 

                    end 

                end 

            end 

        end 

    end 

end 
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As for AC cables, more sophisticated cable models must be developed to account for higher 

frequency transients. It may be also needed to account for temperature and altitude effects using 

dynamic functions. 

2.3.2 DC Loads 

The DC loads are distributed throughout the aircraft and used for various purposes, including 

heating services, actuation, subsystem controllers and Avionic systems [18]. The large amount of 

different types of loads increases the load model development and validation efforts. There are 

three levels of DC power sources operating at different voltage levels: TRUs at 28 VDC and 

NiCad batteries at 24 VDC and 25.2 VDC. In the proposed aircraft electric power system model, 

DC loads were assumed to be constant impedance loads, drawing a specific current at 28 VDC, 

as mentioned in Electrical Load Analysis (ELA) [19] provided by Bombardier for certification 

purposes and listed in the Annexe. NiCad batteries are modeled using simple ideal DC sources. 

Improved battery models including charge and discharge curves and respective chargers must be 

modeled in further studies of the complete electric power system model. 

Even if DC loads are simulated as resistances, efforts are required in order to meet their real 

DC load behaviour, and therefore take into account variable input voltages and temperature 

effects. They can affect both steady-state and transient load behaviour. In addition, more accurate 

models must be developed in order to demonstrate the limited use of ELA in certification 

processes. In fact, traditional ELA does not give detailed information about load behaviour. 

Manufacturers should provide required information to ease aircraft certification process while 

preventing over-design erroneous evaluations of transients. 

2.3.3  DC Switching Control Centre (DCSCC) 

The DC Switching Control Centre (DCSCC) is responsible for sending binary signals to the 

external switching time control for the SSPC blocks, in order to change ON/OFF state positions. 

While breakers need 50 ms to switch, SSPCs can switch within 2 ms. Hence, DCSCC commands 

the closure of the SSPC needed for supplying battery power to a specific bus. Once AC system 

reconfiguration is over, SSPCs switch off and disconnect the battery from the bus. It was created 

and implemented in Simulink for the purpose of this research, so that a more realist and 

sophisticated operating electric power system model can be obtained. 
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The current implementation of the reconfiguration switching controls is based on truth tables 

representing Global Express reconfiguration logic [18]. The switch states vary depending on a 

game of events regarding loss of VFGs and TRUs, so that DC loads can be supplied while AC 

system architecture changes to provide electrical power to every bus. Figure 2.25 shows the 

DCSCC subsystem implementation in Simulink. 

 

Figure 2.25. DCSCC implemented in Simulink 

DCSCC detects any single loss of VFGs by using external switching time control for the 

ACPC switches K5, K7, K10 and K13, and then sends binary signals, according to failure of the 

VFG. The binary signals are sent to the external switching time control for the SSPC blocks, 

which are in fact single 25 VDC ideal sources. The idea is to provide 25VDC to the DC busses, 2 

ms after failure within the 50 ms time delay for the ACPC breakers. Once ACPC reconfigures the 

power supply, the SSPC stops to operate. 

 

1

1

1

1

0

0

0

0

control

K7b

control

K5b

control

K13b

control

K10b

SSPC_BattBus

SSPC_Bus2

SSPC_Bus1

SSPC_ESS

ctl_K5a

ctl_K13a

ctl_K10a

ctl_K7a



62 

CHAPITRE 3 GLOBAL EXPRESS AIRCRAFT ELECTRIC POWER 

SYSTEM SIMULATION AND ANALYSIS 

The objective of this chapter is to summarize the implementation and validation tests executed 

on the Global Express aircraft electric power system model. Figure 3.1 shows the first part of the 

schematic for the Global Express electric power system, including the AC part of the system. 

 

Figure 3.1. Complete aircraft electric system implementation in Simulink (first part) 
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Figure 3.2 shows the second part of the schematic for the Global Express electric power 

system, including the DC part of the system. 

 

Figure 3.2. Complete aircraft electric system implementation in Simulink (second part) 
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of the model implemented in EMTP-RV is not presented here. However, it is based on the Figure 

2.1 as same as the model implemented in Simulink. 

The electrical system is separated into AC and DC systems. The AC system is a variable 

frequency type system, powered by four engine-driven variable frequency generators (VFGs). An 

auxiliary generator, called Auxiliary Power Unit (APU), operates at a fixed frequency. In the 

event of an emergency, a Ram Air Turbine Generator (RAT) is provided for Essential Bus feed. 

The generator outputs are supplied to the AC Power Center (ACPC), which in turn distributes the 

power to the aircraft subsystems [18]. 

The DC power system supply consists of four Transformer Rectifier Units (TRUs) for normal 

power distribution and two NiCad batteries (a nickel-cadmium battery). The batteries are used for 

initial system power-up but are then put in the standby mode for emergency power requirements. 

On the other hand, the TRUs receive power from the AC system, transform and rectify that 

power into DC power, which is supplied to the DC Power Center (DCPC). The DCPC in turn 

distributes the power to the aircraft subsystems. 

Due to the fact that Global Express has ten different operating conditions listed in Table 2.1 of 

Chapter 2, ten different models were created to allow studying all operating conditions. The 

differences between the models reside in the operating frequency and both AC and DC loads. 

This chapter summarizes only the results and analysis obtained for the G7 operating mode at 500 

Hz. 

Each simulation is performed using a discrete fixed-step solver with a fixed-step size 

(fundamental sample time) of 50e-06 s. The simulations were executed on a Intel (R) Core(TM) 2 

Duo processor (T9600, 2.80 GHz, 2.80 GHz), 64-bit operating system, where 2 s of simulation 

represents an elapsed CPU time of 199.2190 s. 

3.1 Voltage Frequency Generators (VFGs) and phase sequence 

Figure 3.3 presents voltage waveform simulation results taken from each VFG bus when the 

aircraft presents maximum loading and there is no failure condition. All buses maintain a voltage 

of 115 V RMS phase-to-ground during the whole simulation period of 0.5 s. 



65 

 

a) 

 

b) 

 

Figure 3.3. a) Voltage simulation results from VFG busses and b) VGF busses location 
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Figure 3.4 presents current measurements taken from each VFG bus. Figure 3.4 shows the 

presence of an unbalanced power system, since every bus has different load values. In addition, 

every phase of a respective AC bus has different load values as well, where the busses served by 

VFG2 and VFG3 are the most loaded busses. There is some distortion at the beginning due to the 

start-up of the EHP. 

 

Figure 3.4. Current simulation results from VFG busses 

Figure 3.5 presents a FFT analysis performed on the current measurements. Results meet the 

MIL-E-7016F requirements [20], in which at higher frequencies, the THD of the generator 
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Figure 3.5. FFT analysis of current simulation results from VFG busses 

As it is explained in section 2.2.2, generators rotate in opposite directions depending on their 

location. The phase sequence of generators 1 and 4 is A, B, C. The phase sequence of generators 

2 and 3 is C, B, A. This is implemented in the aircraft electric power system modeled in 

Simulink. Implications of not modeling this phase sequence are presented in Figure 3.6. 
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Figure 3.6. Effect of phase sequence in ACPC network reconfiguration 
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Therefore, this voltage spike observed in phases A and C is related to the time where the 

switch is changing its state instead of the fact of modeling the phase sequence. In addition, phase 

sequence is implemented since the generators are designed to rotate in either direction. This is a 

design criteria to support the installation where one generator is installed on either side of the 

gearbox, so that this phenomena is just a mechanic design criteria. 

3.2 AC Busses 

Figure 3.7 presents voltage simulation results taken from each AC bus. Every bus reaches 

around 115 VRMS phase-to-ground during all the simulation time of 0.5 s. 
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a) 

 

b) 

 

Figure 3.7. a) Voltage simulation results from AC busses and b) Busses location 
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Figure 3.8. Current simulation results from AC busses 

Figure 3.9 presents a FFT analysis performed to the current measurements. Results meet the 
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TRU, since the magnetizing characteristics of the core (saturable core) is taken into account. 

Finally, the motor implemented for modeling the EHP, uses variable load torque based on rotor 

speed, so that it can introduce zero sequence harmonics, commonly called "Triplens" (There are 
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Figure 3.9. FFT analysis of current simulation results from VFG busses 

3.3 Electric Hydraulic Pump (EHP) 

Regarding EHP loads, available measurements on the steady-state performance of these 

machines allow the validation of the developed models when EHP is connected to the entire 

electric network. Concerning the start-up performance, the measurements present what appears to 

be noise. There is no description of the state of the aircraft electric system when these 

measurements were taken. Figure 3.10 only shows the first 0.040 s from the beginning of the 

measurements. The only information available is the operation frequency of 320 Hz. It is not 
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clear if the given measurements begin from the EHP start-up or from the steady-state 

performance. 

In addition, the ASMs should account for variable frequency even if it is designed for 400 Hz. 

Figure 3.10 shows current and voltage validation between the Simulink model and available 

measurements when connected to the network. Differences between both current and voltage 

waveforms can be explained by the applied torque model and the network representation to 

which the ASM is connected. Accurate models of hydraulic loads must be implemented through 

the analysis of mechanical performance equations. 

 

Figure 3.10. Voltage and current measurements between Simulink model and available data 

A possible explanation for the growing mismatch between voltage waveforms is related to the 

modeling of the feeding VFGs. The inclusion of VFG controls and model details should improve 
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as both models show similarities in their dynamic behaviour. Differences before the first 100ms 

of simulation can be found due to the way Simulink resolves internal equations of the 

asynchronous machine model. 

 

Figure 3.11. EHP comparison between Simulink and EMTP-RV 

Figure 3.12 shows the current waveforms when EHP starts-up and it is connected into the 

network. 
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Figure 3.12. Waveforms of the EHP current's start-up 

3.4 Transformer Rectifier Unit (TRU) 

Figure 3.13 shows the TRU model output of 28 VDC voltage steady-state value for an 

operation at 500Hz operation, when simulating within the entire network. 
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a) 

 

b) 

 

Figure 3.13. a) TRU steady-state voltage behaviour and b) TRUs location 
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The transient at the beginning is due to start-up of the EHP connected to its respective AC bus 

serving the TRU, which links the AC part and the DC part of the system and the inrush current 

from the three-phase transformers. In addition, Figure 3.14 shows that the voltage ripple within 

0.6 ms at the DC busses is less than 5% of the nominal voltage. This is within the military 

standard MIL-STD-704F [26]. 

 

Figure 3.14. TRU voltage ripple 
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is detected by the controls implemented in Simulink for triggering the closure of the SSPC in 2 

ms, in order to supply battery power to the DC bus. In addition, the minimum voltage sag reaches 

14.31 VDC in less than 2 ms, while the maximum overvoltage reaches 43.06 VDC during 2.95 

ms. Both voltage levels are within the requirements of MIL-STD-704F [26] as shown in Figure 

3.15. 

 

Figure 3.15. TRU voltage transient behaviour during VFG4 failure 

3.5 DC Busses 

Figure 3.16 presents voltage and current simulations taken from each DC bus. All busses reach 
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

45

Time (s)

V
o
lt
a
g
e
 (

V
D

C
)

BATT Bus

43.06 VDC

14.31 VDC

18.7 VDC

29.4 VDC 29.11 VDC

VFG 4 failure

(off)

SSPC supplies 

25.08 VDC

VFG 1 supplies

 AC Bus 4

VFG 4 on

(28.01 VDC)

SSPC supplies

25.08 VDC



79 

 

Table 3.1. Comparison between theoretical and simulated values from DC busses  

DC BUS VOLTAGE CURRENT 

Measured 

(VDC) [16] 

Simulated 

(VDC) 

Error 

(%) 

Measured 

(ADC) [16] 

Simulated 

(ADC) 

Error 

(%) 

DC ESS 28.00 28.00 0.00 46.36 46.38 0.04 

DC BUS 1 28.00 28.00 0.00 137.00 137.00 0.00 

DC BUS 2 28.00 28.01 0.04 140.04 140.10 0.04 

BATT BUS 28.00 28.00 0.00 51.41 51.57 0.31 

Figure 3.16 shows the transient at the beginning due to start-up of the EHP connected to the 

AC bus serving the TRU, and the inrush current from the three-phase transformers of the TRU. 
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a) 

 

b) 

 

Figure 3.16. a) DC voltage and current steady-state simulation results and b) DC busses location 
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3.6 Switching Time Delay 

As it is explained in Chapter 2, each switch has a 50 ms time delay which is in fact the 

maximum switching operation time for power interruptions, so that as soon as a VFG failure 

occurs at a specific time, the switches related to the event operate 50 ms after the failure. This 

value can be easily changed, since the time delay could be less than 50 ms, depending on the 

characteristics of the switch. Figure 3.17 shows the implications, on the DC ESS bus voltage, 

when changing the switching time delay from 50 ms to 30 ms and to 10 ms. In this case VFG1 

fails at 200 ms, so that VFG4 supplies energy to AC BUS1 which supplies energy to DC ESS 

Bus as indicated in [18]. After 100 ms, VFG1 returns in operation and restores the power supply 

to AC BUS1. 

 

Figure 3.17. Effects of changing the switching time delay on the DC ESS bus voltage 
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The study of switching time delay impacts can be performed using statistical analysis 

methods. The control architecture implemented in the Simulink model allows the switching time 

delay to be easily modified within the simulation. As in EMPT-RV, a random data law can be 

added to the switch operation time, so that both the switch closing and opening times become 

randomized. In Figure 3.18, when the switching time delay is set to 50 ms, a voltage transient is 

observed when the switch recloses. This is due to the switch closes at a time other than as the 

voltage waveform crosses zero, so that a sudden “jump” or discontinuity in the voltage and 

current waveforms on the load side of the switch is presented. This is not observed when the 

switching time delay is set to 30 ms or even 10 ms. The different stages observed in Figure 3.18 

are due to network reconfiguration performed by the ACPC. 

 

Figure 3.18. Effects of changing the switching time delay on the VFG1 bus RMS voltage 
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3.7 Case Study 1: VFG4 fails at 200 ms and restores operation at 300 ms 

In this case, VFG4 fails at 200 ms of simulation, so that ACPC reconfigures itself to transfer 

energy from VFG1 to AC BUS4 as indicated in [19]. After 100 ms, VFG4 returns in operation 

and ACPC restores the power supply between VFG4 and AC BUS4, as AC BUS4 power supply 

is no longer provided by VFG1. This causes VFG1 to supply more current during VFG's failure 

(100 ms). Due to the 50 ms delay in switching operations, VFG1 supplies energy to AC BUS4 at 

250 ms and VFG4 restores power supply at 350 ms. All the current outputs of the VFG busses 

supply nominal loads. Figure 3.18 summarizes what is stated above. 
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Figure 3.19. VFGs supplying AC busses in case study 1 

Figure 3.20 shows current simulation results for all VFG busses. It is observed that VFG1 

supplies more current when VFG 4 is off. In addition, ACPC transfers and restores 

communication between VFG4 and AC BUS4 within the 50 ms delay. 
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Figure 3.20. Current simulation results from VFG busses when VFG4 fails at 200 ms 
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Modifications in VFG1 currents related to switching operation are clearly presented in both 

models. 

 

Figure 3.21. VFG1 Bus current waveforms from Simulink and EMTP-RV 
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Figure 3.22. DC voltages when VFG4 fails 
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The Simulink model shows a less oscillatory behaviour while the switch closes as well as a 

less voltage spike, due to how the magnetizing characteristics of the core are modeled in both 

platforms. In addition, the model in EMTP-RV does not reach 28 VDC in fact it reaches 27.19 

VDC, even though, it is within the voltage lower limit established in [18], this can be easily 

adjusted by increasing the secondary winding voltage in the EMTP-RV model. In addition, it is 

important to mention that when the EMTP-RV model works with the SSPC DC back-up the 

voltage is 22.58VDC, which must be increased in order to reach the 25 VDC according to the 

requirements expressed by Bombardier. 

It is worth noticing that these tests constitute a preliminary attempt to compare both models, 

but some little variations concerning how some elements are modeled, prevent a better analysis. 

 

Figure 3.23. BATT Bus voltage in Simulink and EMTP-RV during VFG4 failure 
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3.8 Case Study 2: VFG1 and VFG4 fail at 200 ms and restores operation at 

300 ms 

In this case, VFG1 and VFG4 fail at 200 ms of simulation, so that ACPC reconfigures itself to 

transfer energy from VFG3 to AC BUS1, and from VFG2 to AC BUS4 as indicated in [18]. After 

100 ms, VFG1 and VFG4 return to operation and ACPC restores the power supply between 

VFGs and AC Busses, as AC BUS1 power supply is no longer provided by VFG3 and AC BUS4 

is no longer provided by AC BUS4. This causes VFG2 and VFG3 to supply more current during 

VFG's failure (100 ms). Due to the 50 ms delay in switching operations, VFG3 supplies energy to 

AC BUS1 at 250 ms, as well as VFG2 supplies ACBUS 4 at the same time. Both VFG1 and 

VFG4 restores power supply at 350 ms. Figure 3.24 summarizes what is stated above. 
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Figure 3.24. VFGs supplying AC busses in case study 2 

Figure 3.25 shows current simulation results for all VFG busses. VFG3 supplies more current 

when VFG1 is off. Same case when VFG2 supplies AC BUS 4 when VFG2 is off. 
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Figure 3.25. Current simulation results from VFG busses when VFG1 and VFG4 fail at 200 ms 

Figure 3.26 shows AC busses during the time of VFG1 and VFG4 fail. It also shows how AC 

Bus 2 currents are affected when VFG3 stops to supply AC BUS 1 (at 300 ms), so that phase A 

and phase C suffer a power quality event due to the uncontrolled closing. It is important to reduce 

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

-100

-50

0

50

100

C
u
rr

e
n
t 

(A
A

C
)

AC BUS 2

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

-100

-50

0

50

100

C
u
rr

e
n
t 

(A
A

C
)

AC BUS 3

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
-100

-50

0

50

100

C
u
rr

e
n
t 

(A
A

C
)

AC BUS 1

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

-100

-50

0

50

100

Time (s)

C
u
rr

e
n
t 

(A
A

C
)

AC BUS 4

 

 

Phase A

Phase B

Phase C



90 

 

this issue since a scenario of fault clearing and unsuccessful reclose due to the switching 

transient, may cause system swing from a VFG to another. In addition, the study of is type of 

event can be useful when designing the VFG's protective equipment. 

 

Figure 3.26. Zoom in to the current simulation results from VFG busses 
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voltage do not drop down to zero when VFG1 and VFG4 fail respectively. During the 50 ms 

delay, the DC ESS Bus reaches 25,85 VDC, while the BATT Bus reaches 25.08 VDC. 

 

Figure 3.27. DC voltage simulation results when VFG1 and VFG4 fails at 200 ms 
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Figure 3.28 zooms the period when the fault occurs. Since two phases of the VFG4 are OFF, 

ACSC sends a fault signal to the ACPC in order to command VFG1 to supply AC BUS 4. 

Therefore, AC Bus 1 shows an overcurrent when failure occurs. In addition, a transient in AC 

BUS 4 is observed at 250 ms when ACPC tries to restore the power supply. 

 

Figure 3.28. Zoom in to the current simulation results from VFG busses in case study 3 
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On the other hand, DC BATT Bus does work on battery back-up during failure, since two 

phases are OFF and DCSCC interprets it as a failure. Both DC voltages reach steady-state values 

before and after transients. 

Figure 3.29 shows the DC voltages from DC ESS Bus and BATT Bus under the conditions 

stated above. 

 

Figure 3.29. DC voltages simulation results when a malfunction occurs while switching 
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CHAPITRE 4 GLOBAL EXPRESS AIRCRAFT ELECTRIC POWER 

SYSTEM IN A REAL-TIME ENVIRONMENT 

The goal of this chapter is to test the Simulink model of the Global Express aircraft presented 

in the previous sections in the real-time environment of the Opal-RT real-time simulator [15]. 

The objective is to explain how the electric power system is regrouped into subsystems for 

real-time execution and to study various constraints and limitations discovered during the real-

time conversion. In addition, the selection of time step, results and analysis as well as potential 

practical application are also developed. 

4.1 Real-time Simulation Fundamentals 

In a real-time system, the time-step is a predetermined parameter, for example           or 

     . Inside this time-step, the processor has to read input signals, such as sensors, to perform 

all necessary calculations, such as control algorithms, and to write all outputs, such as control 

actuators. For that reason, one of the most important issues in real-time simulations is how to 

define a time step. Decreasing the time step increases the accuracy of the results while increasing 

the time required for simulating the system. A simple rule is to use 10 samples for the highest 

frequency period of simulated system transients. This frequency is the highest frequency content 

in the simulated waveforms. 

Due to the fact that digital simulations are performed, a simulation with discrete-time and 

constant step is assumed. During discrete-time simulation, time moves forward in steps of equal 

duration, which is commonly known as fixed time-step simulation. It is worth noticing that other 

solving techniques exist that use variable time-steps. Such techniques are used for solving high 

frequency dynamics and non-linear systems, but are unsuitable for real-time simulation [15]. 

As mentioned before, real-time digital simulation is based on discrete time-steps where the 

simulator solves model equations successively. Proper time-step duration must be determined to 

accurately represent system frequency response up to the fastest transient of interest. Simulation 

results can be validated when the simulator achieves real-time without overruns [15]. In addition, 

for each time-step, the simulator first read inputs and generates outputs, and then it solves model 
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equations, exchanges results with other simulation nodes. Finally, the simulator waits for the start 

of the next step. 

A real-time model in Opal-RT can only run in Fixed-Step mode. The Fixed-Step size 

(fundamental sample time) must be chosen carefully regarding the needs of the simulation, the 

dynamics of the model and must take into account the software/hardware capabilities [27]. In 

addition, in a real-time system, when a predetermined time step is too short and could not have 

enough time to perform inputs, model calculations and outputs, there is an overrun. When an 

overrun occurs, one time-step will be omitted, so that the next computation will be performed at 

the next time step [27]. 

The main use of real-time simulators is for testing physical devices interfaced with a 

simulation model. It is possible, for example, to test actual physical control systems submitted to 

measurements and activating various switches in the real-time simulator network. Real-time 

simulation can be also used to identify model parameters through actual waveforms extracted 

physical external devices submitted to the network model solved in real-time mode. 

Another important advantage for performing real-time simulations is the ability of lowering 

costs for testing a new device under real operational conditions. Real-time simulators allow 

testing in real-time a very large number of cases. This offers dramatic computational speed 

advantages. 

4.2 From Simulink to Real-Time: Global Express Electric Power System 

Real-Time Modeling 

In order to use a Simulink model in real-time with Opal-RT’s software and hardware, some 

modeling concepts must be followed when building the application. One of the most important 

concepts in real-time simulation using Opal-RT is regrouping the model into subsystems, so that 

the real-time model can be computed on multiple cores for achieving real-time performance. 

Each top-level subsystem created by the user will be computed on one core, except the Console 

Subsystem (SC, in Opal-RT nomenclature). 

In a Simulink model that is to be used with RT-LAB [27], no mathematical content can be 

found in the top-level of the model. Therefore, subsystems are needed. A prefix must be added to 

all the top-level subsystems, in order to allow RT-LAB to manage them. There are 3 types of 
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subsystems: the Master Subsystem (SM, in Opal-RT nomenclature), the Slave Subsystem (SS) 

and the Console Subsystem (SC). Figure 4.1 presents the Global Express aircraft electric power 

system regrouped in one SM and several SSs. 
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Figure 4.1. Separation of the Global Express electric power system for real-time environmental 

Figure 4.2 shows the implementation of the model for real-time purposes. It takes into account 

the fact that the AC power system and its DC branches form a radial network, as the generators 

feeds independent circuits. This is the case in the real-time model. Each AC bus, its related load, 

its related TRU and DC load are regrouping in a single subsystem SS, in order to improve 

efficiency and achieve real-time. In addition, each subsystem is computed on a different 

computation node in the simulator hardware. No Goto/From tags are allowed between top-level 
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subsystems to exchange data, only “wires”. In terms of the DC backup, it is implemented as a 

separated subsystem in order to facilitate the manipulation of the model. 

 

Figure 4.2. Global Express aircraft electric power system for real-time simulation 
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generators must be placed. That is the reason for adding the VFG’s, the APU GEN, the EXT 

GEN, the RAT GEN and the ACPC to the SM. Meanwhile, there is no limit on the number of SS. 

This subsystem is needed only if the computational elements must be distributed across multiple 

nodes. In order to improve real-time modeling accuracy and to achieve real-time performance, 

the Global Express aircraft electric power system is regrouping into seven SSs. Finally there is 

only one SC and it contains all user interface blocks (scopes, displays, switches, controls, etc.). 

This is the only subsystem that is available to the user during execution, so that the user can 

control some parameter of its model as well as observe the waveforms or data that is generated 

while executing. In other words, SC enables the user to interact with the system while it is 

running. The console runs asynchronously from the other subsystems. It is also the only 

subsystem that is not linked to a computation node (core) [27]. Therefore, there must be no signal 

generation or important mathematical operations included in this subsystem. 

4.2.1 SM_Master Subsystem 

Figure 4.3 shows all the elements of the SM. It includes the seven generators (four VFGs, 

APU GEN, EXT GEN and RAT GEN) of Global Express, thirty-six three-phase breakers 

(twenty-six three-phase breakers inside the ACPC and ten other three-phase breakers), seven stub 

lines and more than fifty signals going from SM to SC and SSs. The main aspects of the SM are 

listed next: 

1. SC sends switching time control signals to each generator breaker, in order to simulate 

any fault or loss of operation. 

2. SS_ACSCC subsystem sends to the ACPC, control signals for power system 

reconfiguration due to failure simulation as shown in Figure 4.2. 

3. SM sends voltages and currents for all busses to SS_ACSCC in order to send binary 

signals to the external switching time control for the ACPC switches, and SC_Console 

for user manipulation. 

4. SM sends control signals from ACPC to SS_DCSCC, which is responsible for sending 

binary signals to the external switching time control for the SSPC blocks, that 

commands the closure of the SSPC needed for supplying battery power to a specific 

DC bus (DC Backup subsystem). 
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Figure 4.3. SM_Master subsystem model for real-time simulation 
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through an OpComm block before any operation associated with the input signals. In general, 

only one OpComm block must be used even if there are multiple inputs in one subsystem. 

However, there is a set of rules to be followed when placing the OpComm blocks [27]. 

 In the real-time subsystems (SM or SS): One OpComm receives real-time-synchronized 

signals from other real-time subsystems, and one OpComm receives asynchronous signals 

from the SC. 

 In the console subsystem (SC): One or more OpComm blocks may be inserted to receive 

signals from the real-time subsystems. Multiple OpComm blocks define unique 

“acquisition groups” with their own data acquisition parameters. 

Finally, Figure 4.4 summarizes what is stated above. There is one OpComm for the Switching 

Time signals at the SM_Master subsystem, receiving real-time asynchronous signals from the 

CS, while there is one OpComm for the ACPC switching control signals, receiving real-time 

synchronized signals from SS_ACSCC. 
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Figure 4.4. OpComm implementation according to subsystem type 

On the other hand, RT-LAB maximizes parallelism when computation nodes exchange only 

priority signals. For this, real-time subsystems (SM and SS) must be computed and must send 

their outputs before they read their inputs (within the same time-step), so that the state must be 

identified in order to enable parallel subsystem computation [27]. Examples of blocks which 

introduce a state are the integrator and the memory blocks. For that reason, models are separated 

in order to exchange only priority signals between real-time subsystems, so that is why a memory 

blocks is added at every real-time subsystem's outputs. Careful placement of delay blocks can 

eliminate algebraic loops; however delay blocks must be handled with care because they can alter 

model dynamics. Figure 4.5 shows DC voltage measurements from the DC ESS Bus after a 

switching operation, before and after adding the memory blocks. The results are compared in 

order to make sure that the impact of the delay is acceptable, that is, the effect of adding the 

memory block should be negligible, as it is the case in Figure 4.5. 
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Figure 4.5. Effect of adding the memory blocks to real-time subsystem outputs 

Another element important to consider is the addition of the stub lines, which are part of the 

ARTEMiS library [28]. ARTEMiS is a suite of fixed-step solvers and algorithms that optimize 

Simulink models of elecromechanical systems, created using the SimPowerSystems (SPS), for 

real-time execution
1
. 

The uses and benefits when using ARTEMiS are listed next [28]: 

1. ARTEMiS takes advantage of the sparse matrix properties to optimize the computation 

time, so that in SPS and ARTEMiS, each independent sub-circuit has its own smaller set 

of ABCD state-space equations. This allows a faster iteration since SPS S-functions are 

not sparsely-optimized, so that the switches located on different sub-networks are pre-

computed independently. 

2. ARTEMiS can pre-compute circuit topologies and store them in memory. In other words, 

while SPS re-computes system matrix in the real-time loop each time a switch change 
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conduction state (On/Off), ARTEMiS pre-computes all system matrix for all possibilities 

of switch conduction states before the beginning of the real-time loop. This allows 

performing a real-time simulation with no overruns during real-time execution. 

3. ARTEMIS solvers have intrinsic immunity to numerical oscillations produced by 

inductive circuit opening. In addition, ARTEMiS solvers are designed to improve the 

accuracy of simulation of power system at large time steps. 

4. ARTEMiS applies unique interpolation techniques, such as Inlined Thyristor Valve 

Compensation (ITVC), Inlined Voltage Inverter Compensation (IVIC) and Impulse Event 

Detection. In addition, ARTEMiS provides special tools to decouple a large/complex 

circuit, and enable parallel computation through PC clusters  

5. ARTEMiS adapts a few blocks from the SPS library from real-time simulation, such as 

Switched Linear-Segment MOV, Transformers with Switched Saturable Core. 

One of the powerful elements presented in the ARTEMiS Library are the ARTEMiS Lines. 

The ARTEMiS lines are the standard Bergeron line model with lumped losses
2
. An element of 

the ARTEMis lines is the so called Stubline, which is the same model as the ARTEMiS line 

except that the transmission delay is set exactly to 1 simulation step to permit subsystem 

decoupling [28]. In the ARTEMiS Distributed Parameter line, the user selects RLC, and then the 

model computes the transmission delay. In the stubline, the user selects RL and the transmission 

delay is set to the model time step, then the equivalent line capacitance is computed internally. 

Moreover, the stublines implemented in the real-time model are used for artificial decoupling 

of power system equations. In general, the sizes of state-space matrices dramatically increase if 

the number of states, or if the number of inputs and outputs becomes larger. For large electric 

networks, either interconnected or in radial structure, there could be many inputs and outputs for 

each state space, as it is the case in the Global Express aircraft power system. In addition, for 

transient simulation of power systems, the number of circuit breakers required to create faults or 

                                                 

2
 The model is based on the Bergeron's travelling wave method used by the Electromagnetic Transient Program 

(EMTP), which is based on the paper called “Digital Computer Solution of Electromagnetic Transients in Single and 

Multiple Networks” by Herman W. Dommel (April, 1969). 
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load disturbances is also counted into the total number of states. This can cause that the memory 

may overflow with a large state-space matrix, which results in an error at compilation. 

The best solution is to use a proper decoupling tool from the ARTEMiS Library [28] to 

decouple the model. The decoupled model has a few smaller state-space matrices instead of a 

single one, so that it is easier and faster to compute in real-time. There are many tools for 

decoupling presented in the ARTEMiS Library2. One of the tools is called ARTEMiS Lines [28]. 

When physical modelling signals are transmitted between two subsystems at the root level of the 

model (SM and SS or SS and SS), ARTEMiS Lines are used to link the physical modelling 

connectors at the root level of the block diagram [28]. No connection between ARTEMiS Lines 

is allowed at the root level, though the connection can be done by route the line connector into 

the subsystems and connected inside the subsystems. If the lines are not long enough for 

decoupling the stub lines can be used to simulate the resistance and inductance, while it 

decouples the state-space equation of the networks at both sides of the line. Basically, a stub line 

is a N-phase (1-6) distributed parameter line model with one time-step propagation delay [28]. 

Since the inductance and resistance can be specified by either absolute values or per-unit value, 

the stub lines implemented in this model, takes into account the resistance and inductance values 

calculated from the AC Cable and DC Cable model block from the off-line model. Extra 

capacitance value is added automatically based on the equation [28], were Ts is the fundamental 

sample period. 

        √    (4.1) 

The capacitance value resulting from (4.1) must be carefully observed, since it depends of the 

time step and the cable inductance, so that if the inductance is too small, the capacitance is too 

high. This can create stability issues while simulating in real-time. That is why the system 

dynamic responses must be compared before and after using the ARTEMiS Stub lines to make 

sure its impact is acceptable. 

Returning to the number of three-phase breakers and the implications that can be presented 

while simulating in real-time, a State-Space Nodal method (SSN) [29] appears to be the perfect 

solution for that constraint. The rule of thumb is to have around 5 three-phase breakers per 

subsystem, but in the case of the SM, this number goes up to 30, so that SSN method is the most 
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practical way to eliminate one of the principal constraints discovered during this research, while 

converting the off-line model to real-time. 

Basically, the SSN method is a solver that uses arbitrary size state-space equations to create 

clusters of electrical elements and combines them into the nodal admittance matrix using a nodal 

method [29]. The discrete state-space solvers are inefficient for handling switching events, 

especially in real-time applications, where pre-calculation methods must be used. The massive 

pre-calculation of state-space matrix sets for all switch combinations becomes problematic in 

terms of required memory for large numbers of coupled switches [29]. While extending the state-

space solver, the real-time simulation can support a very large number of switching devices, 

including Simulink three-phase breakers, giving the opportunity to manage the large number of 

breakers presented in the SM. 

Moreover, SSN enables the coupling of complex nodal-based models, such as frequency-

dependent lines into a state-space solver and can be used to split a large model on multiple CPUs 

that does not contain long transmission lines without artificial delays [29]. 

A description of the SSN algorithm is listed next. From the step 1 to the step 4, SSN performs 

a state-space analysis formulation while from the step 5 to 8, a nodal analysis is executed. There 

is a loop inside the algorithm, once he arrives to the step 8, he returns to the step 2 and he 

continues with the next steps. 

1. Pre-calculation of discrete state-space matrices and admittance for all switch permutations 

in each group and initial conditions of states. 

2. Update switch position in each group. 

3. Select discrete state-space matrix for the switch positions in each group. 

4. Compute group nodal injection from past states and known sources. 

5. Build global injection vector and global admittance matrix. 

6. Solve the nodal equation YV=I. 

7. Update state equation of each block from the nodal solution. 

8. Output Solutions. 
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In fact, SSN provides several advantages over the state-space method. The reduction of the 

size and complexity in the automatic generation of state-space equations for each group is 

achieved by the clustering approach. In addition, the groups can be solved in parallel and the 

number of pre-calculated matrix sets for switching topologies can become substantially reduced 

[29]. 

Figure 4.6 shows how the SSN blocks are implemented inside the ACPC in the Global 

Express real-time model. They are used between the SM and each SS_Bus#. The SSN Interface 

blocks are chosen at a node that decouples the state-space groups of the model, so that instead of 

having up to 30 three-phase breakers in a subsystem, SSN creates a small group of 6 three-phase 

breakers. 

 

Figure 4.6. SSN Interface blocks implementation in Global Express electric power system real-

time model 
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4.2.2 SS_ACSCC Subsystem 

Figure 4.7 shows all the elements of the SS_ACSCC subsystem. It includes the main AC 

switching control, responsible for sending binary signals to the external switching time control 

for the ACPC switches, in order to change ON/OFF state positions. 

In addition, it includes the secondary AC switching control, which detects when two or more 

VFG fails and then sends binary signals to the external switching time control for the ACPC 

switches (K2, K3, K4, K6, K8, K9, K11, K12), according to VFG's failure. Furthermore, it 

receives voltage measurements from the generator busses VFG 1, VFG 2, VFG 3, VFG 4 and 

APU GEN. On the other hand, the SS_ACSCC subsystem sends ACPC control signals to the 

SC_Console for user observation (scopes) and manipulation, and then closes the loop, sending 

ACPC control signals to the SM for ACPC reconfiguration based on truth tables representing 

Global Express reconfiguration logic (see Chapter 2 on section 2.2.2). The switch states vary 

depending on a game of events regarding loss of VFGs and TRUs, so that the AC system 

architecture alternates to provide electrical power to every bus. 
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Figure 4.7. SS_ACSCC subsystem model for real-time simulation 
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Once AC system reconfiguration is over, SSPCs switch off and disconnect the battery from the 

bus. 

 

Figure 4.8. SS_DCSCC subsystem model for real-time simulation 

4.2.4 SS_BUS1 Subsystem 

Figure 4.9 shows all the elements of the SS_BUS1 subsystem. It includes the AC and DC load 

blocks, as well as the TRU block for AC/DC conversion. It is worth noting that the models 

mentioned above, are not modified from their off-line versions. Moreover, it presents a stub line 

linking SM, SSN Interface block and the DC part of the SS_BUS1. It receives SS_DCSCC 

switching control signals for SSPC actuation. The DCSCC commands the closure of the SSPC 

needed for supplying battery power to a specific bus when a failure is occurring. It sends to the 
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SC_Console, voltage and current measurements for every AC and DC bus presented in the 

subsystem. Finally, it is connected to the SS_Backup for DC reconfiguration when needed. 

 

 

Figure 4.9. SS_BUS1 subsystem model for real-time simulation 

4.2.5 SS_BUS2 Subsystem 

Figure 4.10 shows all the elements of the SS_BUS2 subsystem. It includes the AC and DC 

load blocks, as well as the TRU block for AC/DC conversion. Again as in 4.2.4, the models are 

not adjusted from their off-line versions. A stub line, for network decoupling, links the SM, SSN 

Interface block and the DC part of the SS_BUS2. It receives from SS_DCSCC, the switching 

control signals needed for SSPC actuation. Hence, DCSCC commands the closure of the SSPC in 

order to supply battery power to a specific bus when a failure occurs. It sends to the SC_Console, 

voltage and current measurements for every AC and DC bus presented in the subsystem. Finally, 

it is connected to the SS_Backup for DC reconfiguration when needed. 
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Figure 4.10. SS_BUS2 subsystem model for real-time simulation 

4.2.6 SS_BUS3 Subsystem 

Figure 4.11 shows all the elements of the SS_BUS3 subsystem. It includes the AC and DC 

load blocks, as well as the TRU block for AC/DC conversion. Again, the models are not adjusted 

from their off-line versions. A stub line, for network decoupling, links the SM, SSN Interface 

block and the DC part of the SS_BUS2. It receives from SS_DCSCC, the switching control 

signals needed for SSPC actuation. The DCSCC commands the closure of the SSPC in order to 

supply battery power from APU Battery, to a specific bus when a failure occurs, so that 

SS_BUS3 is not connected to the SS_Backup, because it requires a special back-up supply 

provided by the APU Battery. Finally, it sends to the SC_Console, voltage and current 

measurements for every AC and DC bus presented in the subsystem. 
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Figure 4.11. SS_BUS3 subsystem model for real-time simulation 

4.2.7 SS_BUS4 Subsystem 

Figure 4.12 shows all the elements of the SS_BUS4 subsystem. It includes the AC and DC 

load blocks, as well as the TRU block for AC/DC conversion. A stub line used for network 

decoupling, links the SM, SSN Interface block and the DC part of the SS_BUS2. It is worth 

noting, that some AC loads as well as the DC part of the subsystem, present double AC back-up, 

so that one or more supplies are available (AC ESS BUS receives energy fromVFG4 and RAT 

GEN. In the event of an emergency, RAT GEN is provided for Essential Bus (AC ESS BUS) 

feed. The generator outputs are supplied to the AC Power Centre (ACPC), which in turn 

distributes the power to the aircraft subsystems. SS_BUS4 receives from SS_DCSCC, the 

switching control signals needed for SSPC actuation. The DCSCC commands the closure of the 

SSPC in order to supply battery power to a specific bus when a failure occurs. It sends to the 

SC_Console, voltage and current measurements for every AC and DC bus presented in the 

subsystem. Finally, it is connected to the SS_Backup for DC reconfiguration when needed. 
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Figure 4.12. SS_BUS4 subsystem model for real-time simulation 

4.2.8 SS_DCBackup Subsystem 

Figure 4.13 shows all the elements of the SS_DCBackup subsystem. It includes the DC 

Emergency Bus which is supplied by the Battery Bus and the Avionics Battery Bus, powering the 

DC Emergency Bus when no TRUs are on-line and supplies the DCPC BATT Bus when the 

Battery Master switch is selected ON with no TRUs on-line. In addition, the Avionics Battery 

and the APU Battery are always supplying power to their direct buses as long as their feed 

receptacles are connected to the battery. 

Stub lines link the SSs, SSN Interface block with SS_DCBackup. The goal of the block is to 

supply energy to critical DC busses when a failure occurs. It sends to the SC_Console, voltage 

and current measurements for every AC and DC bus presented in the subsystem. Finally, it is 

connected to the SS_Bus1, SS_Bus2 and SS_Bus4 for DC reconfiguration when needed. 
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Figure 4.13. SS_DCBackup subsystem model for real-time simulation 

4.2.9 SS_Console Subsystem 

Figure 4.14 presents the elements of the SC subsystem. It includes the AC voltage and current 

measurements from all VFG busses, SS_BUS1, SS_BUS2, SS_BUS3 and SS_BUS4, for user's 

manipulation while real-time execution. In addition, it includes all the switching control signals 

from SS_ACSCC and SS_DCSCC. The signals mentioned above arrive to one OpComm block, 

so that only one acquisition group is set. 

In addition SC sends switching time control signals to each generator breaker in the SM 

subsystem, by using the Control Signal Generator, in order to simulate any fault or loss of 

operation. It generates an OFF/ON switching external control signal changing at specified times. 

If a signal value is not specified at time zero, the output is kept at 0 until the first specified 

transition time. 
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Figure 4.14. SC_Console subsystem model for real-time simulation (first part) 
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Figure 4.15 presents the rest of elements of the SC subsystem. It includes the DC voltage and 

current measurements from SS_BUS1, SS_BUS2, SS_BUS3, SS_BUS4 and SS_DCBackup for 

user's manipulation while real-time execution. 

 

Figure 4.15. SC_Console subsystem model for real-time simulation (second part) 
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Figure 4.16 shows the implementation of the Control Signals Generation for real-time 

simulation. 

 

Figure 4.16. Switching Signal Generator subsystem model for real-time simulation 

4.3 Testing the Real-Time Model 

One of the first aspects is to study the simulation error as a function of the increasing time-step 

during a real-time simulation. 

In this case, VFG1 fails at 200 ms of simulation, so that ACPC reconfigures itself to transfer 

energy from VFG4 to AC BUS1 as indicated in [18]. After 100 ms, VFG1 returns in operate and 

ACPC restores the power supply between VFG1 and AC BUS1, as AC BUS1 power supply is no 

longer provided by VFG4. This causes VFG4 to supply more current during VFG's failure (100 

ms) and SSPCs to operate. In addition, there is a 50 ms delay between switching operation caused 

by the commutation times of protective devices found on the aircraft, so that VFG4 supplies 

energy to AC BUS1 at 250 ms, and VFG1 restores power supply at 350 ms. This can be observed 

in Figure 4.17 a). It also shows how DC ESS Bus voltage behaves during these events for 

different time steps. It is worth noting that the behaviour of the model shown in Figure 4.17 when 

the time step is higher than 1 µs is very unstable and the voltage value is higher than 28 VDC. 

This can be related to the high equivalent line impedance from the stubline model, since the 
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transmission delay is set to the model time step and the cable’s reactance affects the transient 

behaviour of the model. 

 

Figure 4.17. DC ESS Bus voltage for different time steps using stublines 

Meanwhile, Figure 4.18 shows the same behaviour than in Figure 4.17. The difference is the 

addition of the SSN blocks causing a little ripple in DC voltages. However, these values are 
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For 100 µs, the voltage reaches out of the lower limit established in [26]. Meanwhile, in 

Figure 4.17 the waveforms for 1 µs and 25 µs present similar and stable behaviour while 

the waveforms for 50 µs, 70 µs and 100 µs present an inacceptable behaviour. 

2. The voltage spike in Figure 4.17 is up to 55 VDC while in Figure 4.18 the addition of the 

SSN blocks allows to have a voltage spike less of 30 VDC in all the waveforms. 
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3. In Figure 4.18, all waveforms present a little ripple after the transient, which is more 

evident once the time step is increased. This ripple can be observed until the end of the 

simulation. Meanwhile, Figure 4.17 does not present the same type of ripple and even for 

1 µs and 25 µs the ripple is no longer observed 25 after the transient. However, more tests 

are needed in order to relate this ripple to the addition of the SSN blocks. 

4. In Figure 4.17 only the voltage when the time step is set to 1 µs is within the established 

in [26], while in Figure 4.18 only the voltage when the time step is 100 µs is without the 

limits in [26]. The rise of the DC voltage in Figure 4.17 can be related to the capacitance 

values of the stublines. 

 

Figure 4.18. DC ESS Bus voltage for different time steps using SSN blocks 
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time step is increased, the results when using stublines are not acceptables. Again it is important 

to model the capacitance of the AC and DC cables, in order to achieve better and accurate results. 

 

DC ESS Bus for real-time and off-line simulations 

Meanwhile, Table 4.1 shows the error in simulation results as the time step is increased. It 
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In addition, Figure 4.20 shows the real-time AC current simulation results of the VFG1 bus for 

1 μs and 70 μs. It shows the current results right before ACPC restore communication betwen 

VFG1 and AC BUS 1. Despite the differences betwen the time step, both simulations present 

similar behaviour. 

 

Figure 4.19. VFG1 Bus phase A current for 1 μs and 70 μs 
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According to M.Dufour
3
 some tests at Opal-RT Technologies “have revealed that the high 

time step may be caused by inneficient coding of the LU part of the SSN solver”. In addition, he 

mentions that “work is underway to optimise the coding of the LU part of the SSN solver 

(factorisation and forward-Backward solution) using optimal ordering of the system nodes” based 

on [30]. 

Figure 4.21 shows current simulation results for all VFG busses when VFG1 fails at 200 ms 

and restores operation at 300 ms, as in Case Study 1 (section 3.7) . It is observed that VFG4 

supplies more current when VFG1 is off. In addition, ACPC transfers and restores the power 

supply between VFG1 and AC BUS1 within the 50 ms delay for switching operation. The real-

time simulation results show same behaviour as the results presented in the off-line simulation. 

 

Figure 4.20. Zoom in to the current simulation results from VFG busses when VFG1 fails 

                                                 

3
 M. Dufour is the lead researcher in electric system simulation software for RT-LAB and he is one of the members 

of the jury of this thesis. 
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Figure 4.20 shows the DC ESS Bus and the BATT Bus achieve a constant near 28 VDC 

voltage when VFG1 and VFG2 fail at 200 ms and restore operation at 300, as in section 3.8. In 

addition, SSPCs switch within 2 ms, so that the DC ESS Bus and the BATT BUS voltage do not 

drop down to zero when VFG1 and VFG4 fail respectively. During the 50 ms delay, the DC ESS 

Bus reaches 24.59 VDC, while the BATT Bus reaches 25.53 VDC. In addition, there is a voltage 

ripple of 0.27 VDC while using SSN solver. Although, this ripple is within the requirements of 

[26]. 

 

Figure 4.21. DC bus voltages results for DC ESS Bus and BATT Bus 
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that reason, the proposed real-time model in Figure 4.2 is the one used during simulations, since 

the way it is divided makes easier the transition from the off-line model to the real-time model. 

Moreover, the fact that each AC bus is a subsystem separated from the rest of the AC busses, 

makes it easier to output test signals in case of an HIL testing. These tests can be of great benefit 

while designing and integrating the electric system of the aircraft, since failures can be 

determined at an early stage of the aircraft's conception, helping significantly to reduce the test 

time and costs. In addition, HIL systems typically have the ability to automatically run through 

tests automatically by using a script, so that testing can be done without damaging equipment or 

endangering lives, and potentially damaging conditions can be detect and reported. Or even 

better, an electric abnormal behaviour inside the aircraft can be easily recreated and simulated 

with a specific protective or control device using HIL. 

One of the applications for real-time simulation of the Global Express power system is that the 

appropriate protection settings can be determined before building the aircraft. 
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CONCLUSION 

This research presented an initial attempt to model the Global Express aircraft electric power 

system in steady state and transient behaviours for both off-line and real-time simulations. The 

model was developed in Simulink and validated with EMTP-RV and available measurements. It 

was used to demonstrate the capability to study system performance under given operating 

conditions and potential benefits of conducting real-time simulations. In addition, the 

development of this research contributes to the study of various aircraft power system 

architectures and testing their performance within economical and reliability constraints. 

Given the limitations in terms of system data found during the development of the presented 

research and given the necessity to create model blocks adequately representing the electrical 

characteristics of the actual aircraft, it was shown that the implementation achieved in this 

project, could be evaluated using the same tests founded in the literature, but using elements that 

better adjust to the reality of Global Express. This can be easily used in design and test stages of 

an aircraft. 

Some important results are summarized for off-line simulations: 

1. According to the literature, many simplifications and assumptions are generally made 

when simulating aircraft electric power system behaviour (often modeled as a single bus 

system). However, loads on more-electric aircrafts grow and diversify continuously and 

the ability of generators to deliver additional power will quickly become limited, so that 

transient performance analysis is becoming an important issue. 

2. Even if DC loads are simulated as resistances and AC loads as RLC branches, efforts 

should be made to meet their real load behaviour, in order to take into account variable 

input voltages and temperature effects. They can affect both steady-state and transient 

performance behaviour. Component manufacturers should provide required information 

to ease aircraft certification process preventing over-design for certain cases and transient 

problems in others. 

3. In terms of AC and DC cables, the latter correction must be carefully reviewed with 

respect to the current practices in aircraft design. More sophisticated models must be 

developed to account for higher frequency transients and for temperature and altitude 
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effects. In addition, the only reference when designing AC and DC cables dates from the 

early 50's, so that research on this topic must be conducted to account for new 

technological trends. 

4. Logical controls must be validated within the detailed aircraft electric power system 

model, so that more sophisticated switch models can be used to investigate arcing 

problems causing a switch to stick during operation. 

Some of the aspects listed above, are part of further research to be conducted in following 

projects. 

Considering real-time simulations presented in this document: 

1. SSN solver methodology is the most practical way to eliminate one of the principal 

constraints presented during the research, while converting off-line model to real-time. 

Although, there are some limitations in terms of memory related to the implementation of 

the solver within the aircraft electric power system, that must be checked to account for 

better time steps, since the model presents a large amount of three-phase switches. 

2. A time step of 70 μs allows the Global Express power system to be simulated in real-time 

environment within the acceptable error percentages. This can results in the possibility to 

perform HIL simulations for control and protective device tests using the model 

developed in Simulink. The large amount of switches can create simulation performance 

constraints for repetitive operation cases or reduce memory capacity for real-time 

simulation using SSN solver methods. 

3. Decreasing the time step of the real-time simulations, improving the amount of switches 

and performing HIL tests are part of the further research to be conducted in following 

projects. 

Finally, the increased usage of electrical power in more-electric aircrafts increases the power 

demands on the electrical system, placing new constraints on its dynamic performance and on 

power quality. Any new concept or design must be extensively analyzed, tested, validated and 

certified before its implementation in an actual aircraft, so that research on simulation methods 

for aircraft power systems contributes to the creation of a model-based certification process. 
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ANNEXES 

ANNEXE 1. AC Load Analysis Chart, Flight Phase G7 Cruise (500 Hz) [19] 

    
AC  Bus 1 

    
A-N B-N C-N 

DESCRIPTION WATTS VAR WATTS VAR WATTS VAR 

ESS TRU 1 (A) 509 167 509 167 509 167 

ELECTRO-HYDRAULIC PUMP #3B 0 0 0 0 0 0 

REST OF THE CHARGES (PQ EQUIVALENT) 3513 1038 4054 312 3874 1764 

TOTAL 4022 1205 4563 479 4383 1931 

    
AC  Bus 2 

    
A-N B-N C-N 

DESCRIPTION WATTS VAR WATTS VAR WATTS VAR 

TRU 1 1504 494 1504 440 1504 440 

ELECTRO-HYDRAULIC PUMP #2B 0 0 0 0 0 0 

REST OF THE CHARGES (PQ EQUIVALENT) 3827 2093 4210 2147 4394 2147 

TOTAL 5331 2587 5714 2587 5898 2587 

    
AC  Bus 3 

    
A-N B-N C-N 

DESCRIPTION WATTS VAR WATTS VAR WATTS VAR 

TRU 3 1538 505 1538 505 1538 505 

ELECTRO-HYDRAULIC PUMP #1B 0 0 0 0 0 0 

REST OF THE CHARGES (PQ EQUIVALENT) 3983 1962 4875 1236 4875 2688 

TOTAL 5521 2467 6413 1741 6413 3193 

    
AC  Bus 4 

    
A-N B-N C-N 

DESCRIPTION WATTS VAR WATTS VAR WATTS VAR 

AC ESS BUS FEED 2184 186 1150 186 1435 186 

ELECTRO-HYDRAULIC PUMP 3A 1580 1193 1580 1193 1580 1193 

REST OF THE CHARGES (PQ EQUIVALENT) 2447 1018 2152 1018 2307 1018 

TOTAL 6211 2397 4882 2397 5322 2397 

    
AC ESS Bus 

    
A-N B-N C-N 

DESCRIPTION WATTS VAR WATTS VAR WATTS VAR 

ESS TRU 2 565 186 565 186 565 186 

REST OF THE CHARGES (PQ EQUIVALENT) 1619 0 585 0 870 0 

TOTAL 2184 186 1150 186 1435 186 

 


