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RÉSUMÉ 

Pour améliorer la précision des études de l'impact de la génération éolienne sur les 

réseaux électriques, il est nécessaire développer des outils de simulation plus rapides et 

précis et utiliser des modèles de plus en plus sophistiqués. Les simulations sont 

généralement et traditionnellement effectuées de façon indépendante pour les 

phénomènes transitoires rapides et lents. Pour les transitoires lents, l'approche classique 

est basée sur l'utilisation de méthodes de solution simplifiées avec des approximations. 

Ces méthodes se classent dans la catégorie des transitoires électromécaniques. Les 

modèles plus sophistiqués sont basés sur la simulation détaillée de tous les composants 

d'une éolienne. Ces modèles appartiennent à la catégorie des transitoires 

électromagnétiques (EMT pour Electromagnetic Transients). Il est cependant très 

compliqué d'effectuer des simulations détaillées pour des périodes de simulation longues 

à cause des restrictions de temps de calcul. Cela est particulièrement vrai dans les 

grandes simulations d'intégration des éoliennes au réseau électrique. L'objectif et 

l'innovation de cette thèse est la simulation d'éoliennes avec une méthode de type EMT 

et un logiciel de type EMTP (Electromagnetic Transients Program) en appliquant des 

techniques de modélisation rapides et la combinaison avec des modèles détaillés. Ainsi 

les phénomènes lents et rapides peuvent être simulés dans un seul environnement de 

type EMTP. Un second objectif est la contribution de plusieurs modèles d'éoliennes pour 

les phénomènes rapides et lents. 

Cette thèse présente trois types de modèles, deux modèles à valeur moyenne et un 

modèle détaillé, dans le même environnement du logiciel EMTP-RV et en utilisant les 

mêmes méthodes numériques. Le développement des modèles de type détaillé sert 

principalement de référence pour la validation et la démonstration de précision pour les 

modèles à valeur moyenne.  

Les modèles à valeur moyenne sont à deux niveaux de précision. Au premier 

niveau l'objectif est d'obtenir des résultats suffisamment précis pour des études sur les 
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transitoires électromécaniques et au deuxième niveau les modèles servent à augmenter la 

précision et éliminer des limitations. 

Les techniques de modélisation présentées sont validées en utilisant des techniques 

de simulation comparatives basées sur les logiciels EMTP-RV et PSS/E. PSS/E est 

utilisé pour la simulation des phénomènes transitoires électromécaniques seulement. La 

thèse contribue aussi ce type de modèle avec des analyses comparatives et des 

explications sur les limitations. 

De façon générale le développement de modèles d'éoliennes est une tâche 

complexe et une contribution importante de cette thèse est l'élaboration de plusieurs 

types de modèles complets avec des améliorations au niveau des techniques 

d'initialisation, des composants des modèles, des contrôles, des méthodes d'agrégation et 

des aspects pratiques d'intégration. Le traitement dans deux environnements (PSS/E et 

EMTP-RV) différents constitue un travail complexe. Les modèles serviront aussi à des 

travaux de recherche futurs sur l'intégration des parcs d'éoliennes dans les réseaux 

électriques et sur les systèmes contrôle-commande. 

Les modèles développés dans cette thèse servent à étudier des phénomènes 

transitoires de réseau sur une large gamme de fréquences pour des problèmes 

d'intégration des éoliennes dans les réseaux: surtensions, défauts, contrôle de fréquence, 

îlotage et qualité d'onde. 
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ABSTRACT 

To improve the accuracy of wind generator grid impact studies, it is needed to 

develop faster and sophisticated models using various simulation tools. The simulations 

are usually carried out independently for fast and slow transients. Traditional slow 

transient analysis methods are based on simplified solution methods with various 

approximations. These methods fall into the category of electromechanical transients. 

More sophisticated models are based on the detailed simulation of all wind generator 

components. Such models fall into the category of electromagnetic transients (EMT). It 

is, however, complicated to run detailed simulations for long simulation periods due to 

computer time restrictions. This is especially true in large grid integration simulations. 

The objective and innovation of this thesis is the simulation of wind generators in 

EMTP-type (Electromagnetic Transients Program) programs using faster modeling 

techniques with small integration time-steps and the capability to combine with detailed 

models. This way fast and slow transients are solved in the same environment and with 

acceptable computational speed. Another objective of this thesis is the contribution of 

wind generator models for wind farm integration studies. 

This thesis presents the integration of three types of models, two mean value type 

models and one detailed EMTP-type (Electromagnetic Transients Program type), in the 

same EMTP-RV (software of EMTP-type) environment and with the same numerical 

methods. The mean value type models are distinguished by their precision levels. At the 

first level the model is demonstrated to contribute to significant reduction of computing 

time while limiting the loss of accuracy. At the second level the model provides 

precision improvement over the first level while still limiting computational efforts. 

The presented modeling techniques are validated using comparative simulation 

techniques based on EMTP-RV and PSS/E. PSS/E is only used for the simulation of 

electromechanical transients. 

Since the development of wind generator models is a complex task on its own, this 

thesis also contributes by developing various comprehensive models with appropriate 
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improvements in several aspects, such as initialization techniques, aggregation, controls, 

model components and the complicated establishment of validation and comparison of 

models in two different environments, namely PSS/E and EMTP-RV. The contributed 

models will be also used in future research works related to wind generation integration 

into power systems and related controls. 

The contributed models are of wideband type and are used for studying power 

system integration problems, such as overvoltags, undervoltages, frequency deviation, 

power quality and islanding. 
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CHAPTER 1.  INTRODUCTION 

 

1.1 Overview 

The study of wind generators is performed for various purposes in power systems. 

When wind parks are integrated into a power grid it is required to perform various 

studies such as network stability, protection, short-circuit, overvoltage and undervoltage 

conditions and power quality analysis. In addition it may be necessary to study lightning 

transients, switching transients and temporary overvoltage conditions.  

Under normal operation conditions, the current and voltage waveforms of a wind 

generator are nearly sinusoidal and the system is in steady-state. The complete network 

and wind park interconnected system may be however, submitted to various internal and 

external perturbations. Internal perturbations are commonly changes in settings and 

switching of various configuration and control devices. External perturbations are 

typically faults on transmission lines or cables and lightning effects. In wind parks 

external perturbations are also caused by changes in wind conditions and related 

reactions of the wind turbine. Transients can be generated in the wind park or in the 

power grid. A new or a previously existing steady-state may be reached after system 

transients have been damped out or eliminated by protection devices. In some cases the 

action of protection devices may cause topological changes and/or setting changes. Such 

changes may result into new operating conditions or complete isolation of a wind park. 

The commonly used tools for studying wind parks and power grids fall into two 

categories: electromechanical transients and electromagnetic transients.  

1.2 Electromechanical transients 

Electromechanical transients are studied for assessing the capability of a power 

system to reach stable steady-state after a disturbance. Such studies are also called 

power system stability studies (stability-type) and require the modeling of various 
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control systems including machine exciters, frequency controls and stabilizers. Control 

systems are usually represented through block-diagrams. 

The study of electromechanical transients is conducted for lower frequency 

transients, typically oscillations below 10 Hz. Due to the lower frequency range, such 

transients can be studied with simplified models. A widely used software package in the 

industry is PSS/E [1]. This software is used in this thesis. The basic assumptions in such 

a package are: balanced network conditions, absence of harmonics and absence of 

nonlinearities in power devices. The balanced network assumptions allow modeling the 

grid using only its positive sequence representation. The control systems are represented 

for both power grid synchronous machines and wind generators. Due to the slower 

transient assumptions many details in the modeling of devices, such as synchronous 

machines or wind generator asynchronous machines are ignored or approximated. The 

simulation waveforms are computed in RMS quantities (phasors). The numerical 

integration time-step is typically close to 8 ms for a fundamental frequency of 60 Hz. 

The study interval (time scale) can go up to minutes. 

Software packages, such as PSS/E are used to study the power system stability 

under various perturbations assuming nominal frequency phasors in the network. Such 

packages are also called stability-type packages. 

Before starting any dynamic (transient) analysis, it is required to compute the 

steady-state operating conditions of the network. This is done by setting power and 

voltage constraints on all grid busses including the bus at the interconnection point with 

the wind park. The wind park is set to control power (active and reactive) and voltage. 

Then a load-flow solution is performed for finding all phasors in the complete network. 

In PSS/E the dynamic simulation starts from the load-flow solution after initializing all 

state variables. 

1.3 Electromagnetic transients 

The electromagnetic transients are of wideband nature and require detailed 

modeling techniques. The objective is to study wind generators and power grids with all 
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possible details. Electromagnetic transients are studied with EMTP-type 

(electromagnetic transients program) software packages [2][3][4]. The software package 

used in this thesis is EMTP-RV [2][3]. Such software allows to study: 

o unbalanced multiphase networks 

o harmonics 

o nonlinear models 

o power electronics 

o control systems (block-diagram approach) 

In fact there are no assumptions on the studied system conditions and often the challenge 

is the gathering of data. The wind generator or wind energy converter (WEC) is modeled 

using the actual representation of its power electronics based converters. All 

nonlinearities, such as transformer saturation and surge arresters can be represented. It is 

a circuit level simulation approach. 

In EMTP-type methods it is possible to study both slow and fast transients. The 

waveforms are computed in actual quantities imitating oscilloscope measurements. The 

typical numerical integration time-steps are in the order of microseconds. It is usually 

not possible to exceed 250μs  without significant loss of accuracy. In the case of power 

electronics and due to the more stringent precision requirements, it is necessary to use 

much smaller time-steps, such as 20μs  or even below 10μs . The time scales of studies 

do not usually exceed a few seconds (up to 10 s, for example). 

In addition to small time-steps and the time-domain solution of all equations, 

packages such as EMTP-RV apply an iterative process for solving nonlinear equations 

due to nonlinear components, such as surge arresters and transformer saturation 

branches. Although fast convergence methods are employed, it is required to iterate 

from two to three times per time-point solution, which imposes further burdens on the 

computational speed of a simulation. The iterative procedure is required for accurate and 

simultaneous solutions of nonlinear component equations with the linear network 

equations. 
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EMTP-type studies are also started from a steady-state solution. The main program 

blocks of EMT-RV are shown in Figure 1. After grabbing the network netlist from the 

graphical user interface (GUI), EMTP-RV must first perform a load-flow solution. This 

is a nonlinear problem. The provided constraints are in the form of equations, such as 

active power equality (control) and voltage equality (control). Once the load-flow 

solution converges, it is needed to perform a steady-state solution in which all 

constraints are replaced by lumped circuit equivalents. This process is needed for 

initializing the following time-domain solution in which all network models are given 

electrical circuit equivalents or equivalent functions. The steady-state phasor solution is 

used to compute the time-domain solution at the time-point t=0. It is also used to 

initialize the numerical integration technique. 

In EMTP-RV it is possible to initialize complex systems and start the time-domain 

simulation in quasi perfect steady-state. EMTP-RV also provides means for initializing 

control systems.  

The precise initialization of the simulated network is of major importance. If the 

studied network is not initialized it will start from 0-state and the time-domain steady-

state solution will be reached only after the decay of all transients. In other words the 

complete system will first respond with its natural frequencies. In some cases it is 

possible to reach undesirable steady-state conditions. Moreover, the lack of initialization 

procedures has a tremendous impact on the computing time of the study. 

There is however, a major difficulty with the automatic initialization of power 

electronics components. This is the case in wind generators with power electronics 

converters. Since the switching patterns are not easy to predict and since the overall 

system becomes nonlinear, in most cases the best approach is to initialize only the linear 

network and start the power electronics based components from black. The waste in 

computing time can be currently minimized, but not eliminated. Some specific methods 

must be researched for the case of wind generators. 
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Figure 1: Main solution modules of EMTP-RV 
 

Although it is now possible to use EMTP-RV [4] for very accurate stability type 

studies, its computer requirements are often unaffordable specially when performing a 

large number of scenario analysis. That is why stability-type packages are still 

commonly used for assessing wind park interconnection problems in power grids. 

Usually power system utilities conduct EMTP-type studies for verification purposes and 

for reduced time scales.  

1.4 Differences between stability-type and EMTP-type simulators 

Stability-type methods can be mainly used to evaluate the performance of wind 

parks (several WECs) using an aggregation model of a number of WECs, for slow 

transients or slow dynamics. The objective is to evaluate the performance of a wind park 

connected to the grid for electromechanical transients. These are oscillations below 

10 Hz. The network equations are solved in steady-state using phasors at the 

fundamental frequency. The synchronous machine equations and the WEC equations are 

usually solved in time-domain using block-diagrams. 
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The significant drawback in stability-type methods is the reduced precision. The 

case of wind generators is particularly more complex and encounters several limitations 

when using simplified modeling approaches. This is mainly due to the presence of 

power electronics based converters and related controls. The larger time-step usage 

causes errors in the determination of some control parameters and the simplified 

representation of the converter remains inadequate for imitating its transient behaviour. 

As explained earlier, stability-type methods (PSS/E) are based on the positive-

sequence assumption, which means that the network is assumed to be balanced. This is 

not necessarily correct since in addition to unbalanced conditions due to untransposed  

lines, there could be unbalanced load conditions. Another important issue is that 

nonlinear power devices, such as transformer saturations and surge arresters, cannot be 

solved in stability type methods. Arrester models, for example, are important for the 

correct evaluation of overvoltages and related protection systems. 

On the other hand, the main limitations with EMTP-type methods are usually lack 

of data for precise component models and computing time. The reduction of computing 

time in EMTP-type methods is an important research topic. 

To conclude, it can be said that ultimately speaking, all simulations must be 

conducted with EMTP-type methods for increased precision and studies for a wideband 

of frequencies within the same environment and in a unified GUI and data approach. 

This thesis proposes solutions towards this direction. 

1.5 Real-time simulation methods 

In addition to offline EMTP-type methods, there is a family of methods capable to 

perform real-time simulations [5]. This means that the assembled network equations are 

solved synchronously with the real-time clock. If an event is observed during a given 

real-time interval, then it is simulated using the same computer time. Moreover, 

intermediate events or waveform samples are also occurring in synchronism with an 

external real-time clock. This means that such real-time simulators can be interfaced 

with external physical control systems and even power devices. The most important 
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current application is the interfacing with control devices for testing WEC controls in 

network conditions. This is an ultimate validation tool for the real control blocks of the 

WEC.  

It is obvious that real-time simulation methods offer dramatic advantages in 

computational speed. They also offer the possibility to perform parametric simulations 

for sensitivity analysis. The real-time computation process, however, currently imposes 

significant restrictions on the mathematical solution process. Such restrictions result in 

reduced precision. The current drawbacks as compared to offline EMTP-type methods 

are: one time-step delay based solution for nonlinear components, simplifications in 

models to accommodate real-time performance and availability on commonly used 

computer environments with commonly used operating systems. The setup time of real-

time simulators is also usually more complicated. 

It is understandable that real-time methods will continue to improve in precision 

and performance and the gap between offline and real-time methods will be reduced in 

the upcoming years. This is accompanied by increased needs in network studies. In some 

cases the growth of simulation and analysis needs is faster than the improvement pace in 

simulation tools.  

The methods presented in this thesis are for off-line simulation tools, but they also 

have an important impact on real-time simulation methods. This is explained by the fact 

that due to similarities in solution methods, many improvements in offline methods can 

be readily transposed into real-time methods. 

1.6 Basic concepts of a wind turbine 

The wind turbine converts the kinetic energy of wind to mechanical power applied 

to the generator. The power extracted from a wind turbine may be represented by the 

well known equation: 

 2 3

2w w pP r V C
   (1.1) 

In this equation: 
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wP  is extracted wind power (W) 

  is the air density ( 3kg / m ) 

r  is the blade radius (m) 

wV  is the wind speed (m/s) 

pC  is the performance coefficient (pu) 

The performance coefficient pC  is a function of tip-speed ratio and blade pitch angle. 

The blade pitch angle is a controlled variable. The tip-speed ration   is given by: 

 turbine

w

r

V



  (1.2) 

where   is in pu and turbine  is the turbine rotational speed in rad/s. 

The only parameter that can be controlled is the pitch angle and consequently pC .  

The performance coefficient curves may be represented as a function of the wind speed 

when the rotational speed and the pitch angle are kept constant. In this condition, from 

the peak of pC , the curves decrease when the tip-speed ratio increases (see equation 

(1.2) and Figure 2). 

Wind turbines are designed to support winds between 10 to 15.0 m/s with a power 

shutdown when the wind speed exceeds 25 m/s. 

Equation (1.1) allows calculating the mechanical torque submitted to the wind 

generator rotating machine. The remaining sophistication is related to the machine 

controls and application of power electronics. The various wind generator technologies 

are discussed in the following sections. 
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Figure 2 : pC  coefficient as a function of   and pitch angle in degrees 

1.7 Wind generator technologies 

There are currently three main types of WEC technologies: 

o Constant speed turbines based on conventional induction generator 

o Variables speed turbines: doubly-fed induction generator (DFIG) 

o Gearless turbines: slow speed conventional generator connected to the grid by a 

back-to-back frequency converter (full converter WEC, FCG) 

The permanent magnet generator, which requires no excitation, is usually used instead 

of the conventional synchronous generator in the third type of WEC.  
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1.7.1 Conventional induction generator 

In this case from a mechanical stand point the machine operates at constant speed. 

In this way, the asynchronous generator must be considered as a system that provides 

power at constant fixed speed. The overall topology is shown in Figure 3. A transformer 

is used to connect to the grid. 

 

Figure 3 : Conventional induction generator 
 

A soft starter may be used with the objective to minimise the voltage impact during 

the machine startup. Once the unit is connected to the grid it runs as a super synchronous 

induction generator. Since the frequency applied to the stator is almost constant due to 

the grid frequency, the created magnetic flux rotates at constant speed. The turbine speed 

is not always following the wind speed and thus it is not possible to extract the 

maximum wind power. In some constant speed generator applications, the stator has two 

separate windings with different number of poles. At high wind speeds it is possible to 

use the winding with the lower number of poles. At lower wind speeds the winding with 

the higher number of poles is switched on for the lowers synchronous speed. This 

scheme is for optimizing the extracted power from the wind. 
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During its operation the induction generator (as the induction motor) absorbs 

reactive power from the system. The reactive power sustains the rotating magnetic field 

in the air gap between the rotor and the stator. Utilities request manufacturers to provide 

shunt compensation to keep the power factor close to unity. 

In wind farms based on conventional induction generators connected to the 

distribution grid, a common practice is to disconnect the generators from the grid when a 

fault occurs. This practice was used due to the fact that if the machine is not 

disconnected after a fault, the mechanical torque applied during the fault condition may 

exceed the pullout torque and become unstable. 

1.7.2 Doubly fed induction generator (DFIG) 

DFIG is the more common variable speed wind turbine technology available today 

(see Figure 4.) The principle of the DFIG is that rotor windings are connected to the grid 

via slip rings and a back-to-back voltage source converter that controls both the rotor 

and the grid currents. A transformer is used to connect to the grid. The power captured 

by the wind turbine is converted into electrical power by the DFIG and transmitted to the 

grid through the stator and rotor windings.  

The back-to-back converter is divided into two components: the rotor-side 

converter and the grid-side converter. Both converters are voltage source converters 

using forced commutated power electronics devices (IGBTs) to synthesize an AC 

voltage from a DC voltage source represented by a capacitor.  

The back-to-back converter is a bi-directional frequency converter. The grid-side 

converter works at the grid frequency while the rotor-side converter can be operated at 

different frequencies, depending on the speed of the blades.  
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Figure 4 : Doubly fed induction generator (DFIG) 
 

The output power of the machine is a combination of powers circulating from the 

rotor and the stator into the grid. In steady-state conditions the power portions in stator 

and rotor circuits depend on the slip value s. The slip can be positive or negative.  At 

sub-synchronous speed the slip is positive. The power is circulating from the converter 

into the rotor. At super-synchronous speed the slip s  is negative and the power is 

circulating from the rotor into the converter and into the grid. The super-synchronous 

speed is achieved by applying a negative sequence voltage in the rotor. This 

demonstrates that the back-to-back converter is capable of operating with power 

circulating in both directions. At synchronous speed there is no power exchange through 

the converter. 

The basic power equilibrium equations with losses neglected are given by: 

 er rP s P  (1.3) 

  1m rP s P   (1.4) 
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where erP  is the power circulating in the rotor (its direction depends on the slip sign) 

and mP  is the power from the wind (turbine). The power circulating through the air-gap 

is given by rP . This power is added to the power circulating from the converter for 

negative slip and is reduced by the power entering into the converter for positive slip. 

Both rotor-side and grid-side converters have the capability of generating or 

absorbing reactive power and can be used to control the reactive power or the voltage at 

the grid terminals. Most designs tend to supply reactive power to the system through the 

machine stator by effectively changing the d-axis excitation on the rotor. 

A vector control strategy is used, where the rotor current is split into d-axis (flux 

producing) and q-axis (torque producing) components. Each component is then 

controlled separately. The d-axis component is controlled in order to regulate the 

machine power factor (effectively controlling the reactive power output of the machine). 

The q-axis component is controlled in order to keep the electrical torque of the machine 

constant.  

1.7.2.1 Low Voltage Ride Through (LVRT) 

Generally speaking, ‘fault ride through’ (FRT) or ‘low voltage ride through’ 

(LVRT) are generic terms pertaining to the various different technologies and methods 

used by manufacturers to ensure continued operation or longest connectivity of WECs 

during low voltage periods in the terminal voltage. Such low voltages are mostly due to 

fault conditions. 

Most wind turbine manufacturers now offer a low voltage ride through system. 

This is achieved by a combination of modified blade pitch control algorithms that help 

to remove the mechanical power after a fault. An uninterruptible (UPS) power supply is 

used at the turbine to keep the control systems running during the fault. In addition, 

reactive dynamic power sources may be required to provide voltage support upon fault 

clearing to ensure proper voltage recovery. 

The following common techniques are applied to ensure FRT/LVRT: 

o Switching to modified control algorithms (power to speed control, APC) 
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o Immediate blade pitching (e.g. stall control) 

o Use of converters to provide reactive power support (power-factor, voltage 

control) 

o Coordination with crowbar protection 

o Sacrificing real power in favour of reactive power to support the network 

1.7.2.2 Crowbar protection 

During a heavy fault, the DFIG current contribution will have to origin from the 

stator, directly to the grid, and from the rotor, through the converter. As a consequence 

of low voltages at machine terminals during a fault condition, the stator-side converter is 

limited in its ability to pass power to the grid. Then, the excess energy goes into the 

charging of the DC bus capacitor and thus the DC bus voltage rises rapidly. The crowbar 

protection is designed for this phenomenon. When the DC bus voltage exceeds a 

prescribed limit, the protection trips to short-circuit the capacitor and protect the 

converter power electronics components. The unit becomes disconnected from the 

system. 

1.7.3 Full converter generator (FCG) 

The concept in this case is to generate power using a conventional generator with 

DC field winding as shown in Figure 5. This approach has two basic advantages. 

It allows for a gearless design. This avoids the mechanical complexity of gear and 

hydraulics. The generator can be directly coupled with the turbine and may spin at 

whatever rotational velocity as required. The frequency of the electrical output of the 

generator is then converted by a back-to-back frequency converter to the grid frequency 

(50 or 60 Hz). However, the gearless design typically means that the generator has a 

significantly larger diameter to accommodate a large number of pole pairs (84 poles, for 

example) and thus requires a more spacious nacelle (cover housing). 

Through the use of a frequency converter the full electric output of the generator 

can be converted from a wide range of frequencies to the grid frequency. This means 
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that the wind turbine generator may operate at a wide range of speeds, thus once again 

providing the benefits of a variable speed drive unit. In addition, with the use of a 

voltage-source converter the grid side converter can independently control real and 

reactive powers. In this way the electrical grid and the generator are decoupled.  

In this type of WEC there is greater flexibility for LVRT control, voltage 

regulation and reactive power control. 

To achieve LVRT, the line side converter (or inverter) can stop gating the IGBTs if 

the voltage falls to excessively low levels and be essentially on stand-by to re-start once 

the fault clears. In addition, since the generator does not directly see the low network 

voltage during such an event, there are no important transients in rotor or stator currents 

produced in the machine. Voltage regulation is easily achieved with a voltage source 

converter through the control of the relative phase and magnitude of the voltage phasor 

produced by the voltage source converter as compared to the grid voltage phasor. This 

concept is not different from the one in a STATCOM and voltage source HVDC system. 

 

 

 Figure 5: Full converter with conventional generator  



16 
 

1.7.4 Comparisons of WEC designs 

The following criteria are applied to compare WEC designs and performance: 

o Harmonic pollution 

o Flicker level 

o Gearbox stress 

o LVRT controls 

o Reactive power capacity 

Considering that harmonic pollution is an important factor in power quality, it is 

observed that the conventional induction generator is the best for this criterion.  It does 

not use power electronics and thus does not create harmonic pollution. As for the DFIG, 

its converter is only 1/3 of the rated power and its harmonic pollution is limited. The full 

converter uses a converter dimensioned to the rated power and consequently generates 

the highest harmonic pollution level. 

For the flicker criterion, the conventional induction generator has the worst 

performance due to the fact that it has a system of fixed speed and each change in the 

wind speed will translate into a change in the turbine torque and the generator output. In 

the case of the DFIG, it is capable of applying current control to maintain a constant 

electrical torque. Rapid fluctuations in mechanical power can be temporarily ‘stored’ as 

kinetic energy. In the full converter generator, there is a decoupling condition between 

the converter line side and generator side resulting into a neglected flicker level. 

The gearbox stress criterion disadvantages the conventional induction generator. 

Due to the fixed speed, each change in the wind speed will translate into a change in the 

turbine torque. Sudden changes in torque require a more robust drive train. The DFIG is 

capable of reduced mechanical stress due to its pitch control. The full converter is 

gearless. 

When considering the LVRT criterion, the conventional induction generator is the 

worst in this field due to the fact that it basically trips after a fault because of reduced 

electrical power. This results in the turbine speeding up. Thus if the turbine is not 

disconnected after a certain time it may exceed its pullout torque and become unstable. 
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Therefore a under voltage protection is installed to disconnected the unit from the 

system during low voltage conditions. 

The DFIG uses a combination of modified blade pitch control algorithms and is 

capable to remove the mechanical power after a fault. It also uses an uninterruptible 

(UPS) power supply at the turbine to keep the control systems running during the fault. 

In the FCG, the strategy used to achieve LVRT is by controlling the line side converter. 

This converter can stop gating the IGBTs if the voltage falls to excessively low levels. 

This is a standby and restart approach once the fault clears. In addition, since the 

generator does not directly see the low network voltage, there are no large transient rotor 

or stator currents produced in the machine. 

In the reactive power capacity criterion the conventional induction generator has 

the worst performance since it can only consume reactive power. The DFIG with its 

converter size being 1/3rd of the rated power can only achieve a fraction of the total 

rating of the machine in reactive power output. The full converter with a converter at 

rated power allows a complete control of the terminal voltage. It can also perform in the 

condition without wind, with zero active power. 

Although the DFIG design is now widely used, it can be predicted that the full 

converter (FCG) approach may eventually become more popular since it is more 

attractive from the network point of view. The decoupling between machine and grid 

dynamics, and the elimination of the gearbox (when using machines of sufficient 

number of poles to be directly coupled to the turbine) make the argument for full 

converter topologies quite convincing. Particularly when one considers the maintenance 

and unavailability costs associated with gearbox repairs in the DFIG design.  

1.8 Wind turbine generator modelling challenges 

This section presents an overview on the most important WEC components to help 

to better understand the modelling challenges and the contributions in this thesis.  

The WEC model can be considered as a set of blocks (components), each block 

contributes to the static and dynamic behaviour of the WEC connected to the grid. The 
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principal (high-level) blocks are presented in Figure 6. There are two distinct categories; 

the mechanical blocks and the electrical blocks.  

The mechanical components include the wind speed model, turbine aerodynamics, 

turbine mechanical protection, turbine mechanical controls (pitch control) and shaft 

dynamic model. This is related to “Wind”, “Aerodynamic Torque” and “Mechanical 

Control” blocks shown in Figure 6. 

The group of electrical components (blocks) include the generator, the interface 

with the grid, the converter controls, protection devices, relays of under/over voltage, 

relays for under/over frequency and crowbar protection. In this presentation the power 

electronics based converter is included in the “Electrical Generator” block. The other 

functions are placed in “Grid Interface” 

 

Figure 6 : Main blocks of the WEC model 
 

The research presented in this thesis is related to component modeling, new 

modeling methods and the comparison between different modeling approaches and for 

different precision needs. Two types of WECs are considered: DFIG and FCG. 

In the component modeling aspects, the works are in the initialization approaches 

and specific devices, such as the phase locked loop (PLL). In fact each component 

creates specific modeling problems especially when approximate (stability-type) 
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solution methods and models are used. Incorrect modeling of the PLL in PSS/E, for 

example, can cause phase measuring errors and cause significant errors (20%) in the 

active power computation. 

In the field of the new modeling methods, this thesis proposes a mean-value type 

model based in an EMTP-type application, namely EMTP-RV. The advantages of such a 

model are in the capability to provide acceptable computational performance for longer 

simulation periods while maintaining acceptable precision. The more significant 

contribution is the capability to combine such models with detailed models for wind 

park performance studies. 

An important part of the simulation of a WEC is the initialization process. In 

stability-type packages the time-domain simulation starts from a load-flow solution. The 

load-flow solution provides the initialization data for the dynamic model. As discussed 

earlier in this chapter, the complete simulated system initialization is of crucial 

importance. If the initialization process is not done correctly, state variables do not start 

from steady-state conditions. In such a case it is needed to simulate until all startup 

transients have decayed to zero and an equilibrium point is reached.  This imposes 

wasted computing time and in some cases numerical instability conditions may occur or 

unacceptable operating conditions may be reached. The load-flow conditions constitute 

the basic operational requirements of the system in acceptable steady-state. 

As explained earlier, in EMTP-type simulations the level of precision and details is 

much higher than in stability-type or simplified models. One of the most complicated 

problems is the initialization of power electronics devices. This is the case for the 

converter used in both DFIG and FCG designs. Although some techniques [6] have been 

published in the literature, such techniques remain theoretical and have not been 

generalized for arbitrary settings and topological conditions. Moreover, some techniques 

may require extensive computing times which make them unpractical. The method used 

in this thesis is based on a programmed-customized initialization of control systems for 

minimizing the effect of switching devices in the delaying of the steady-state. It also 

used load-flow transposition into steady-state solution. 
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In addition to problems related to the initialization of power electronics based 

devices, WEC studies require the proper initialization of power from given wind 

conditions. This allows the computation of the torque applied on the electrical generator. 

The Aerodynamic Torque bloc of Figure 6 needs the evaluation of the pC  matrix 

presented in a previous section of this Chapter. This poses some computational 

difficulties and precision issues. 

The sophistication of modern networks and the need for optimization of 

installations and optimization of usage in energy resources, require more and more 

sophisticated studies. Sophistication implies precision. In this aspect the traditional 

usage of stability-type tools imposes many limitations. The EMTP-type simulation 

methods allow representing the actual electrical circuit of the WEC. In addition it is 

feasible to include mechanical representation: wind power development and control, 

wind effect representation and multimass representation of rotating parts. 

The main drawback with EMTP-type solutions is the computational speed. The 

simulation time with large networks and numerous generators becomes unaffordable, 2 

to 3 hours in some cases with typical time-steps below 20μs . When the simulation 

interval is extended above 5 s, then the computing time increases further and in some 

situations it is necessary to wait 6 to 10 hours. This also depends on the size of the 

network and the number of WECs. 

Wind parks can be simulated using aggregation techniques, but there are limits to 

the number of WECs in an aggregation. This is mainly due to problems in the scaling of 

the converter circuits. Also aggregation is less precise since several individual 

components, such as cables are not represented. There are also issues related to separate 

dispatching with connection point controls and more sophistication when studying wind 

impact. 

Another issue with detailed simulations is related to the availability of data. 

Sophistication requires more information on the actual WEC design and controls. Such 

details are not necessarily available. Less data is needed in stability-type modeling. 
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The solution proposed in this thesis for solving the above problems is the 

development of a mean-value modeling approach in EMTP-type simulation methods, 

more specifically in the EMTP-RV environment. Mean value type models are tagged as 

MEVA (Mean Value) models. It will be demonstrated that MEVA models can be 

combined with detailed EMTP models in the same simulation. As detailed EMTP 

models, the MEVA modeling approach is also based on three-phase representation, but 

fast dynamics are neglected. There are similarities between MEVA modeling and 

stability-type models, but the MEVA model is more precise and has the significant 

advantage it its capability to be integrated into a detailed EMTP-type solution. 

In a wide scale representation of a wind farm it may be necessary to model some 

parts with detailed EMTP models, while the WECs that are electrically far from the fault 

or perturbation location can be modeled using the MEVA approach. The combined 

simulation offers several advantages in computer timings and in modeling functions. 

Hereinafter and for simplification purposes, the detailed EMTP models that are 

used for the ultimate precision will be tagged as DEMTP-type models. 

In addition to the MEVA methodology proposed in this thesis, this thesis also 

presents another approach which is denoted hereinafter by Mean Value EMTP 

(MVEMTP). In this approach the commutation process of converters is replaced by 

controlled sources for representing an equivalent effect. This approach [7][9] is not 

completely new, but this thesis contributes new comparisons of results with the detailed 

DEMTP approach for practical wind generator models using identical control systems. 

A close match is achieved. 

1.9 Methodology and deliverables 

As a first step in this thesis it is required to develop functional WEC models. It is 

actually one of the contributions of this thesis. Such models were not readily available at 

the startup of this thesis. In fact WEC model development remains an ongoing research 

topic and encounters many complex challenges. Many contributions are required. The 

developed models in this thesis are based on generic technological information and data. 
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The models are capable of reproducing the typical behaviour of WECs under various 

simulation scenarios. Both individual models and wind parks models are considered. It 

is possible to apply aggregation techniques for the simulation of wind parks. 

Two WEC technologies are considered: DFIG and FCG. Using two types of 

models, allows concluding on the generalization aspects of the proposed methods and 

models. 

The PSS/E and EMTP-RV software packages are available at École Polytechnique. 

The development of models allows discovering the various limitations and performing 

comparisons. In addition, during this project, several research projects with wind 

generator manufacturers allowed gathering practical experience and learning the study 

requirements. It is however emphasized, that the presented models are generic and do 

not disclose any protected information and technology. 

1.9.1 PSS/E models (stability-type) 

The model developments are started with the stability-type approach using the 

PSS/E software package. This step allows establishing a basis for validating mean-value 

type models and also demonstrating the encountered difficulties. PSS/E is widely used in 

the industry for large scale power systems studies. Many utilities require the PSS/E 

model development for WECs connected to the grid. The network database is also often 

based on stability-type data or PSS/E data files. The data requirements for PSS/E studies 

are much less stringent than for EMTP-RV studies. In many cases it is not possible to 

obtain specific manufacturer details required in DEMTP-type models, whereas the 

number of specific information requirements is much less important in stability-type 

studies. 

The PSS/E simulation results are used for both load-flow and dynamic studies 

(time-domain). The load-flow results are shown as phasors. It is needed to develop and 

implement specific functions for the initialization of dynamic studies. The time-domain 

results are provided in rms quantities with separate information on phasor angles. 
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It must be emphasized that the model design and implementation efforts in PSS/E 

are significantly different from EMTP-RV. In EMTP-RV the studied systems are mainly 

designed using readily available devices in a graphical user interface (GUI). Control 

system simulations are based on block diagrams also assembled using an interconnection 

of GUI blocks. It is also possible to enter user-defined models by typing equations or 

using primitive building functions available in libraries. In PSS/E the basic approach is 

the derivation and implementation of models. The simulation of control systems requires 

programming and compiler steps. Some pre-built components, such as rotating machine 

and exciter models, are available. 

1.9.2 Mean value (MEVA) models 

The next logical step towards an increased modeling precision is the development 

of mean value models (MEVA) for DFIG and FCG technologies. The innovation is in 

this new modeling approach and implementation in an EMTP-type solver. Although the 

MEVA modeling approach is inspired from the stability-type modeling, it is more 

precise due to its 3-phase representation and interaction with 3-phase circuits. It is also 

based on detailed waveform computations in time-domain. Moreover, it allows multi-

time-frame (combined) simulations with DEMTP-type models. 

MEVA models are compared to stability-type models and validated by DEMTP-

type models. The contribution of MEVA models contributes an important milestone in 

this thesis. 

1.9.3  Detailed EMTP-type models (DEMTP-type) 

The detailed circuit-based approach uses the representation of converter circuits 

including IGBTs (insulated-gate bipolar transistor). It is based in the EMTP-RV 

software with a detailed 3-phase modeling of the surrounding grid network. Such 

modeling also allows including nonlinearities. Basically, all available details on the 

WEC circuits and controls are implementation. This is includes also specific details in 

protection systems. The rotating machine model (synchronous or asynchronous) is taken 
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directly from an EMTP-RV library of machine models. It includes fast and slow 

transients and highest precision in time-domain computations. 

The DEMTP-type approach is used to validate the MEVA approach. Due to the 

level of sophistication in WEC models the establishment of such comparisons is very 

complex. 

Model testing is based on various network study problems, such as faults, 

overvoltages, frequency control problems and islanding. 

 

1.9.4 Contributions list 

• DFIG models 
– PSS/E 
– MEVA: mean-value in EMTP 
– DEMTP: detailed EMTP 
– MVEMTP: mean-value detailed in EMTP 

• FC models 
– MEVA 
– DEMTP 
– MVEMTP 

• Comparative modeling 
• Components, improvements 

– Models (Cp matrix, PLL, generator), initialization, setup 
• Benchmarks 

– Slow and fast transients 
– Islanding 
– Power quality 
– Aggregation 

• Establishment  of basis for further research on wind generation at École 
Polytechnique de Montréal  
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CHAPTER 2.  WIND GENERATOR COMPONENTS 

 

2.1 Power computation 

The power computed from the mechanical equations of the turbine is converted 

into mechanical input torque using the rotor speed variable. This is done in both time-

domain and steady-state computations. The steady-state solution is performed for 

initialization of the WEC. 

2.1.1 Power extraction from the air stream 

Within its effective region, the rotor of a wind turbine absorbs energy from the air 

stream, and can therefore influence its velocity [10]. 

Figure 7 represents the flow that develops around a converter in an unrestricted air 

stream in response to prevailing transmission conditions, whereby the air stream is 

decelerated axially and deviated tangentially in the opposite direction to the rotation of 

the rotor. 

 

Figure 7: Air stream 
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The energy absorbed from a volume aV  of cross-section A1 and free speed of flow 

1v  far upstream of the turbine, which results in a downstream reduction of flow speed to 

3v , with a corresponding broadening of the cross-sectional area to A3, can be expressed 

as: 

 2 2
1 32w aW V ( v - v )


  (2.1) 

where   is the air density as in equation (1.1). The wind turbine power may therefore 

be expressed as: 

 w
w

dW
P =

dt
 (2.2) 

For an air volume flow in the rotor area 2 rA A : 

 a
r 2

dV
=A v

dt
 (2.3) 

which results into the quasi steady-state equation for power: 

 2 2
1 3 22w rP A ( v - v )v


  (2.4) 

The power absorption and power condition of a turbine are therefore determined by the 

effective area rA , by the wind speed, and by the changes occurring to theses quantities 

in the field of flow of the rotor.  

According to Betz [10], the maximum wind turbine power output is given by: 

 3
1

16

27 2maxw rP A v


  (2.5) 

It is achieved when: 

 2 1
2

3
v v  (2.6) 

 3 1
1

3
v v  (2.7) 

Under normal operating conditions the nominal output is: 
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 3
12o rP A v


  (2.8) 

The performance coefficient is defined under smooth flow conditions at the turbine: 

 w
p

o

P
C =

P
 (2.9) 

The above expression is based upon the assumption that tubular axial air mass transport 

only occurs from the leading side of the entry area A1, to the exit area A3. A more 

detailed examination of the turbine and rotor blades can be carried out using the 

modified blade element theory, by introducing a radial wind speed gradient and by 

taking into account angular movement of the air stream. 

The pC  coefficient can be plotted as a function of tip speed ratio and blade pitch 

angle  . The tip speed ratio is defined as: 

 
1

uv

v
   (2.10) 

where uv  is the peripheral speed and 1v  is the wind speed. 

For studies centered on transient mechanical or electrical effects in wind energy 

machines, the frequency ranges of the components to be examined take on special 

significance. For simulations that target power fluctuations in wind energy units and 

transient effects in wind farms, the time constants between the pitch setting range and 

the rotor range are decisive. The resulting frequencies vary from 0.01 Hz to 10 Hz. 

Equation (1.1) is the basic equation for determination of rotor performance. 

2.1.2 Performance coefficient representation 

The manufacturers usually provide turbine data in the form of pC  curves obtained 

through measurements or design tools. These nonlinear curves must be used in the 

modeling process for the determination of torque.  

There are several methods that can be used to represent the performance 

coefficient. The programming of this coefficient impacts the modeling precision and 
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performance. It is also a requirement for the initialization process. The methods that 

have been tested in this thesis are: 

o Transcendental function 

o Polynomial function, obtained through a fitting process 

o Exact matrix representation 

These methods are explained below. 

2.1.2.1 Classic transcendental function 

This is the classic model used in the literature [11]: 
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 (2.12) 

The parameters 1c  to 9c  are set according to wind speed variation. The parameters 

shown in Table 1 and illustrated in Figure 8 provide a better behavior when the variable 

wind speed operation is considered.  

 

 

Table 1: Variable speed parameters 

1c  2c  3c 4c 5c  
0.5 116.0 0.4 0.0 0.0 

6c  7c  8c  9c  
 

5.0 21.0 0.08 0.035  
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Figure 8: pC  transcendental equation, variable speed 

2.1.2.2 Polynomial function 

This approach is contributed in this thesis. The pC  function is two-dimensional, 

and not monotonous for both coordinates. It is difficult to interpolate. Using a matrix 

approach is inefficient since it must be processed at each simulation time-point and, in 

addition, creates initialization difficulties.  

The approach proposed in this section is to use a fitting procedure for obtaining a 

polynomial representation. The fitting has been programmed in MATLAB [12]. The 

resulting generic formulation is given by: 

 
4 4

0 0

i j
p ij

i j

C a  
 

   (2.13) 

where   is the pitch angle,   is the tip speed ratio and ija  is the polynomial coefficient. 
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2.1.2.3 Exact matrix representation 

In this approach the pC  coefficient is stored as a large matrix.  

In a generic case the matrix size is 200x25 elements. This matrix allows pitch 

variation from -2 degrees to 30 degrees and tip speed ratio variation from 0 to 20 pu. In 

this way all the operation condition are considered. 

2.1.3 Initialization procedure 

The pC  performance coefficient must be computed for initializing the WEC 

according to the scheduled output power. 

In addition to the pC  matrix, the manufacturer usually provides a table function of 

active power as a function of rotor speed. In addition it is possible to obtain an active 

power table function as a function of wind speed. The wind speed can be also entered 

manually. From the input condition of power it is thus possible to determine the tip-

speed ratio using equation (1.2). The next step is to determine the performance 

coefficient and the pitch angle. This is done through an iterative process where the pitch 

angle is calculated to verify the scheduled power within a given tolerance. 

The pitch angle steps can be determined as follows: 

 max min

step

-

N

 
   (2.14) 

where   is the pitch variation step and stepN  is the number of steps (iterations). The 

overall procedure is given by the following steps: 

1.  Input scheduled power and set the iteration counter to 0. 

2.  Set the pitch angle to min . 

3.  Advance iteration count. 

4.   Exit if the number of iterations is greater than stepN . 

5.  Calculate pC  using one of the procedures described above. Interpolation is 

used in the matrix representation. 
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6.  Calculate the extracted power using equation (1.1). 

7.  Exit if the calculated power is close to the scheduled power within a specified 

tolerance. 

8.  Advance the pitch angle to the next value. 

9.  Go to step 3. 

2.2 Wind model 

The wind speed as a function of time can be considered [13] as the sum of three 

components: a constant, a ramp and a gust evolution. The typical function presented in 

Figure 9 can be described by 

 average ramp gustV( t ) V V ( t ) V ( t )    (2.15) 

Such an equation allows testing the WEC performance due to wind perturbations. 

 Typical wind data can be found from regional information on the location of the 

wind park. 
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Figure 9: Wind speed function 
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2.3 Pitch control 

2.3.1 Wind turbine control philosophies 

Wind turbines are generally designed to deliver maximum output at wind speeds 

around 15 m/s. In case of stronger winds it is necessary to waste part of the excess 

energy of the wind in order to avoid damaging the wind turbine. According to equation 

(1.1), for a given wind speed, the only parameter that allows to control extracted power 

is the pC  parameter. This parameter depends on the type of turbine and on the type of 

design from the manufacturer. It is also a function of the pitch control. 

2.3.2 Stall for fixed wind turbines, no pitch control 

The blades are aerodynamically designed so that as the wind speed increases 

beyond a certain point the blade shape gradually begins to produce turbulence in the 

wind and thus eventually results in the blades stalling, much like an airplane that tries to 

climb to quickly at too sharp an angle of attack and thus stalls. 

An advantage of this control system is that it avoids mechanically moving parts 

and some of the control associated to the pitch control. 

Among the disadvantages is the fact that each change in the wind speed will 

translate into a change in the turbine torque and the generator output. This results into a 

more significant voltage flicker if the power system is weak. Additionally, due to the 

sudden changes of torque, it becomes necessary to build a more robust drive train for 

converting the torque into grid power. 

2.3.3 Pitch controlled turbines 

On a pitch controlled wind turbine the turbine's electronic controller checks the 

power output of the turbine several times per second. When the power output becomes 

too high, it sends an order to the blade pitch mechanism which immediately pitches 

(turns) the rotor blades slightly out of the wind. Conversely, the blades are turned back 
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into the wind whenever the wind drops again. The rotor blades thus have to be able to 

turn around their longitudinal axis. 

According to equation (1.1), one way to capture the maximum amount of wind 

energy is by keeping pC  as high as possible during the operation of the wind turbine. 

During normal operation, the power may be controlled in the range from start-up wind 

speed to shutdown wind speed of a single speed generator turbine. When the wind speed 

is between start-up wind speed and nominal wind speed, the pitch angle is adjusted to 

optimize pC .  This can be achieved by programming the turbine output as a function of 

turbine speed based on a power-speed curve that leads to maintaining a fixed tip-speed 

ratio. 

Wind turbines with no pitch control, when the wind speed is above nominal wind 

speed power output is limited to nominal power by utilizing the stall effect, and in the 

range of high wind speeds, the stall effect leads to a drop below nominal power. 

 In change wind turbines with pitch control, to get a flat power curve, constant 

nominal power in the range between nominal wind speed and shut-down wind speed, the 

pitch angle has to be adjusted accordingly.  

Figure 10 compares the stall (no pitch control) and pitch operation of a wind 

turbine. 

2.3.4 Pitch control model 

The pitch control system is the method of feedback control that uses the PID 

controller as the main tool. The basic structure of a conventional feedback control 

system is shown in the Figure 11. 
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Figure 10: Stall and pitch operation of a wind turbine 
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Figure 11: Pitch control model 
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The purpose of the control is to make the electrical power follow the set-point 

value of the power demand. To achieve this purpose, the pitch angle is changed at the 

command of the controller. 

The disturbance is the wind speed. It can produce two disturbance effects. The first 

is on the blade surface which is traduced by a disturbance effect that must be 

compensated by the pitch actuator torque during the operation of angle modification. 

The second is due to fast speed (turbulence) variation that should produce fast electric 

power change which must be filtered to avoid unnecessary pitch movement. The first 

disturbance effect is neglected considering a perfect compensation of the pitch actuator. 

In change the second effect was modeled using the turbulence model. 

The pitch inertia acts an output delays in front of an instantaneous input change 

condition. The error is the difference between the power demand and the electrical 

power output. The power controller determines first a pitch demand and then the pitch 

actuator is used to calculate the pitch angle. The variable electrical power is measured by 

the power transducer and used as input in this process. 

The actual implementation of the pitch control for MEVA, PSS/E and DEMTP 

models is shown in Figure 12.  

The pitch angle control model is a simplified version of a more complex 

electromechanical system. The pitch control function is to prevent mechanical and 

electrical damage. As consequence of high rotor speed the pitch is increased to reduce 

the generated power, by changing the operational pC curve. 

To prevent interaction with other control the pitch controller is active only the 

wind speed is higher than the wind speed threshold.  

A simplified block diagram may be integrated by three main blocks; the pitch 

actuator, the pitch control and the pitch compensator. The pitch actuator represents the 

delay associated to communication and mechanical command to change the blade angle 

and the constraints inherent to blade angle modification, such as physical limits and rate 

variation limits (± 30 to ±90 degree and ±10 degree/s). 
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The pitch actuator can be represented by a low pass filter with a variable gain 

schedule sG . The gain is linearly interpolated on pitch angle between min and max . 

Where min  and max are pitch angle limits; pT  is the time constant in low pas filter of 

pitch actuator; 
max

d

dt


 is the maximum pitch angle rate limit; 

min

d

dt


 is the minimum 

pitch angle rate limit. 

 

 min

max min

 


 





 (2.16) 

 
1

1s
min max

G
( )   


 

 (2.17) 

 

The pitch control increases the pitch angle using a classic PI controller with anti-windup 

on the pitch limits to avoid the unlimited growth of the pitch angle where ppK  is the 

proportional gain in pitch regulator, ipK  is the integrator gain in pitch regulator. The 

difference between the rotor speed r  and the reference rotor speed ref  is used as 

input. 

The pitch compensator limits to the rated value the output power during high wind 

condition, it uses a classic PI controller with anti-windup on the pitch limits to avoid the 

unlimited growth of the pitch angle; where icK  is the integrator gain in pitch 

compensator, pcK  is the proportional gain in pitch compensator; the power error is used 

as input. The difference between the power order inpP and the power reference refP is 

used as the power error of the torque control. 
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Figure 12 Pitch control model implementation, pu quantities 
 

2.4 Asynchronous machine equations for MEVA and PSS/E models 

The objective of this section is the presentation of the asynchronous machine 

model equations for dynamic simulations with PSS/E and EMTP-RV for the MEVA 

model. Contrary to built-in detailed machine models [4] in EMTP-RV, the mean value 

models presented here are not readily available and must be programmed [14] [15]. 

The simplified equivalent circuit used for the squirrel cage induction generator is 

the same as the one for the squirrel cage induction motor shown in Figure 13, with the 

only difference being the direction of currents.  
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Figure 13: Equivalent circuit of an induction machine in steady-state 
 

The equations are formulated in pu in terms of the real (d) and imaginary (q) axis, 

with respect to the network reference angle. In a synchronously rotating reference frame, 

the relations between the stator voltage V  and d and q axis voltages are given by 

  sd rv V sin    (2.18) 

  sq rv V cos   (2.19) 

where r  is the electrical phase angle between the terminal voltage and the q axis. The 

subscript s  stands for stator and r  designates the rotor. 

The stator and rotor voltages are given by 

 s
s s s

d
d s d s q

d
v r i

dt


     (2.20) 

 s
s s s

q
q s q s d

d
v r i

dt


     (2.21) 

 0 r
r r

d
r d r q

d
r i p

dt


     (2.22) 

 0 r
r r

q
r q r d

d
r i p

dt


     (2.23) 



39 
 

where   denotes flux,  sr  is the stator winding resistance, p  is 
d

dt
 operator, s  is the 

electrical frequency of the stator in rad/s and rr  is the rotor side resistance. The relation 

with the rotor angle and slip s  is given by 

 r s
r

s
p s

 





    (2.24) 

For motor action 0s   and for generator action 0s  . 

To link the stator and rotor fluxes it is needed to write 

  s s rd s m d m dL L i L i     (2.25) 

  s s rq s m q m qL L i L i     (2.26) 

  r r sd s m d m dL L i L i     (2.27) 

  r r sq s m q m qL L i L i     (2.28) 

where sL  is the stator winding inductance and mL  is the mutual inductance (see Figure 

13). 

Under steady-state conditions both sdd

dt


 and sqd

dt


 are zero. The elimination of 

rotor currents gives 

 
s s s rd s d s q s k qv r i L i L      (2.29) 

 
s s s rq s q s d s k dv r i L i L      (2.30) 
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where 
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L L
   


 (2.35) 

 m
k

r m

L
L

L L



 (2.36) 

The following change of variable can be applied for flux: 

 
r r

m
d d

r m

L

L L
  


 (2.37) 

 
r r

m
q q

r m

L

L L
  


 (2.38) 

Equations (2.31) and (2.32) are now written as 

 
2

r
r s r

d mr
d r d r q

r m r m

d Lr
r i p

dt L L L L


  

  
       

 (2.39) 

 
2

r
r s r

q mr
q r q r d

r m r m

d Lr
r i p

dt L L L L


  

  
       

 (2.40) 

Equations (2.33) and (2.34) are also converted into 

 
s s dr

s s

q s
d q

s s

v r
i i

L L

 

 


 
 

 (2.41) 

 
s s qr

s s

d s
q d

s s

v r
i i

L L

 

 


  
 

 (2.42) 

The following set of complex variables is defined using the complex operator j : 

 
r rr d qj       (2.43) 

 
s ss d qi i j i   (2.44) 

 
s ss d qe v j v   (2.45) 

 r s re j    (2.46) 
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To obtain 

 
2

mr r
r r s r r

r m r m

Ld r
r i j p

dt L L L L

   
 

       
 (2.47) 

The combination of equations (2.46) and (2.47) results into:  

 
2

mr r
r s r s r r

r m r m

Lde r
e j r i j p e

dt L L L L
 

 
       

 (2.48) 

The combination of equations (2.41), (2.42) and (2.44) results into: 

 
 s r s s s r

s s
s s s s

je r e e
i j i

L L j L r

 
  
  

  
   

 (2.49) 

and 

  s s s s rj L r i e e      (2.50) 

The open circuit time-constant oT  is defined as: 

 
1 r

o r m

r

T L L



 (2.51) 

which is combined with equation (2.35) to give 

  
2

1m
r s m

r m o

L
r L L L

L L T

 
    

 (2.52) 

Finally, equation (2.52) is replaced into equation (2.48) to give: 

  1r
r s s m s r r

o

de
e j L L L i j p e

dt T
 


           (2.53) 

The complex power entering the machine is given by 

    r r s se s d q d qS j j conj i j i       (2.54) 

From which it is possible to write the electrical torque equation: 

 
   r se

e
s s

e conj iS
T

 

      (2.55) 

This equation can be further simplified by neglecting resistances and noticing that the 

equivalent circuit of the machine gives 
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     0
s s r rs m d q s r m d qL i j i L L i j i       (2.56) 

and using equations (2.37) and (2.38) we obtain 

    r r r r r r r r r r r re s d q d q s d d d q q d q qS j j i j i j i i i j i                 (2.57) 

 
 

r r r r
e

e q d d q
s

S
T i i 




    (2.58) 

2.5 Generator/converter model for MEVA and PSS/E models 

2.5.1 Doubly fed induction generator 

In this (DFIG) model it is assumed that steady-state equations are acceptable, since 

the stator and rotor flux dynamics are fast in comparison with grid dynamics and the 

converter controls basically decouple the generator from the grid.  

The stator and rotor voltages are given by 

 s
s s s

d
d s d s q

d
v r i

dt


     (2.59) 

 s
s s s

q
q s q s d

d
v r i

dt


     (2.60) 

 r
r r r

d
d r d r q

d
v r i p

dt


     (2.61) 

 r
r r r

q
q r q r d

d
v r i p

dt


     (2.62) 

From equation (2.24) 

 1
pu

s r
r r

s
p s

 
 




     (2.63) 

The pu subscript will be dropped in the following equations to simplify presentation. In 

equations (2.59) to (2.63), the flux variations are set to zero. The flux equations are 

similar to equations (2.25)-(2.28), but with a negative sign on the right hand side due to 

generator notation. 
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From the above assumptions (using fundamental frequency reactances instead of 

inductances) it can be written in generator notation and in pu [15].  

  s s s rd s d s m q m qv r i X X i X i        (2.64) 

  s s s rq s q s m d m dv r i X X i X i        (2.65) 

    1
r r r sd r d r s m q m qv r i X X i X i          (2.66) 

    1
r r r sq r q r r m d m dv r i X X i X i          (2.67) 

Equations (2.18) and (2.19) remain applicable in this context.  

The active and reactive powers, that are shown in the Figure 14, depend on the 

stator and converter currents as follows 

  
s s s s c c c cd d q q d d q qP v i v i v i v i     (2.68) 

 
s s s s c c c cq d d q q d d qQ v i v i v i v i     (2.69) 

AC/
DC

ASM

Converters

P,Q

s sP ,Q

c cP ,Q

r rP ,Q

r rd qi j i

c cd qi j i

s sd qi j i

s sd qv j v
r rd qv j v

 
Figure 14: DFIG design 
 
where 

P is the net active power generated by the DFIG, 

Q is the net reactive power generated or absorbed by the DFIG, 

sP is the active power generated by the stator of the asynchronous machine, 
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sQ is the reactive power generated or absorbed by the stator of the asynchronous 

machine, 

cP is the active power output by the grid side converter, 

cQ is the active power output by the grid side converter, 

sdv is the d component of the stator voltage 

sqv is the q component of the stator voltage 

cdv is the d component of the terminal voltage of grid side converter, it is equal to 
sdv  

cqv is the q component of the terminal voltage of grid side converter, it is equal to 
sqv  

The converter powers, integrated in the equations (2.68) and (2.69), on the grid 

side are explicitly written as  

 
c c c cc d d q qP v i v i   (2.70) 

 
c c c cc q d d qQ v i v i   (2.71) 

whereas on the rotor side they become 

 
r r r rr d d q qP v i v i   (2.72) 

 
r r r rr q d d qQ v i v i   (2.73) 

rdv is the d component of the rotor voltage 

rqv is the q component of the rotor voltage 

rdi is the d component of the rotor current 

rqi is the q component of the rotor current 

Assuming a lossless converter model, the active power of the converter becomes equal 

to the rotor active power and the grid converter is set such as reactive power on the grid 

is equal to zero.  

   c rP P  (2.74) 

 0cQ   (2.75) 
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The active and reactive power injected into the grid can be approximated by 

neglecting stator resistance and assuming that the d-axis coincides with the maximum of 

stator flux. 

  s rP P P   (2.76) 

   sQ Q  (2.77) 

The contribution of the active power from the rotor rP , through the dc link is 

added on the grid side. It can be replaced by the increment of the current proportional to 

active power, the dc link may be neglected without changes in the dynamic performance 

of that depends the fast response of power electronics based converter. 

The maximum voltage is 90 degrees ahead and aligned on the q-axis. In this 

condition  

 0
s s sd q qv j v j v    (2.78) 

 0
s sd qv j v jV    (2.79) 

 0
s sd qj j      (2.80) 

 
s ss d qI i j i   (2.81) 

Consequently 

  s s s s sq d q q dP jQ j v i j i V i jV i      (2.82) 

With this definition, the current 
sqi  controls the active power output, while the current 

sdi  controls the reactive power output. 

Following equations (2.25), (2.26) and (2.80), and using generator notation 

  s s rs d s m d m dV X X i X i        (2.83) 

  0
s s rs q s m q m qL L i L i       (2.84) 

it becomes possible to write 

 r
s

m d
d

s m

V X i
i

X X

 



 (2.85) 
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 r
s

m q
q

s m

X i
i

X X





 (2.86) 

Equation (2.85) can be combined with equation (2.82) to give 

 
2

rm d

s m s m

X V i V
Q

X X X X
  

 
 (2.87) 

The current 
rdi  can be considered as the sum of two parts, generation and 

magnetization. It is shown in the Figure 15. 

rdirgendi

rmagdi

sr sX
rr rX

mX

 

Figure 15: Component of generation and magnetization of current 
rdi   

 
r r rgen magd d di i i   (2.88) 

To operate with unity power factor it is necessary to put  

 
rmagd

m

V
i

X


  (2.89) 

in equation (2.87). Considering that the reactive power exchange with the grid can be 

also written as 

 gen magQ Q Q   (2.90) 

the net reactive power exchange between the stator and the grid is equal to 

 
rgenm d

gen
s m

X V i
Q

X X
 


 (2.91) 
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The basic mechanical equation for the 1-mass model is given by 

 2 r
m e

d
H T T

dt


   (2.92) 

Where H  is the inertia constant in seconds and the torque mT  is the applied mechanical 

torque in pu. The electromagnetic torque equation can be written using equations (2.82) 

and (2.86) 

 
 

s rq m q
e

s s s s m

V i V X iP
T

X X  
   


 (2.93) 

In the generic case, it is possible to use a multimass model given by 

 p m mθ ω  (2.94) 

 p p  m m m m m m aJ ω D θ K θ T  (2.95) 

where the subscript m designates mechanical quantities, mJ  is the diagonal matrix of 

moments of inertia, mω  is the vector of speeds, mθ  is the vector of angular positions, 

mD  and mK  are the tridiagonal matrices of damping and stiffness coefficients 

respectively and the vector of torques is given by 

 1
T

m mi genT ... T T   aT  (2.96) 

where miT  is the mechanical torque of ith turbine section and genT  is the 

electromagnetic (see [16]) generator torque. It is also needed to account for the gearbox 

ratio as follows.  

 1
2

m
m GBR


   (2.97) 

The wind turbine mechanical system consists of a light generator with moment of 

inertia 1mJ  and its gearbox connected by a shaft of finite stiffness to a heavy turbine 

with moment of 2mJ . 
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2mT genT

12mK

12mT

1 1m mJ , D

1m
2m

12mT

2m 1m

2 2m mJ , D

Turbine Generator  

Figure 16: Drive train 
 

The tortional stiffness 12mK  defines the relationship between the torque 

transmitted 12mT  and the angular twist, 2 1m m  , between the two ends of the shaft: 

 12 12 2 1m m m mT K ( )    (2.98) 

Converter dynamics are simplified assuming that they are much faster than 

electromechanical transients. Thus the converter is modeled as an ideal current source, 

where 
rqi  and 

rdi  are used to control the rotor speed and voltage respectively. 

The converter can be modeled as a low-pass filter with the time constants 
convdT  

and 
convqT . The differentials of converter currents become 

  0

1r
r r

conv

q
q q

q

di
i i

dt T
   (2.99) 
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  0

1r
r r

conv

d
d d

d

di
i i

dt T
   (2.100) 

where 

 
 

0r
s m

q
m

X X P
i

X V


   (2.101) 

Using equations (2.88), (2.89) and (2.91) 
0rdi  can be written 

 

 
0r

gen s m
d

m m

Q ( X X ) V
i

X V X


    (2.102) 

The last equation considers with net reactive power exchange genQ  between the stator 

and the grid. 

2.5.2 Full converter generator 

In this case the generator is a permanent magnet synchronous generator whose 

block diagram in dq coordinates is shown in Figure 17. All equations are written in pu 

and in generator notation. 
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r

1

qL s

1

dL s

sr

sr

qL

dL

sqv

sdv

sq

sd

p

sqi

sdi

 

Figure 17: Permanent magnet generator diagram 
 

The steady-state model of the full converter generator, also assumes that the stator 

and rotor flux dynamics are fast when compared to grid dynamics. The converter 

controls are assumed to decouple the generator from the grid and the flux variations 

sqd

dt


 and sdd

dt


 are ignored. 

The equations (2.59) and (2.60) remain applicable. The relations between stator 

fluxes and generator currents are given by 

 
s sq q qL i    (2.103) 

 
s sd d d pL i     (2.104) 

where qL  and dL  are the q-axis and d-axis inductances, see Figure 17, and p  is the 

permanent flux. The differentials of the above fluxes are set to zero. From equations 

(2.59) and (2.60). 

 
s s sd s d r q qv r i L i    (2.105) 

  s s sq s q r d d pv r i L i      (2.106) 
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The active and reactive powers of the generator shown in Figure 18, are found 

from 

 
s s s sd d q qP v i v i   (2.107) 

 
s s s sq d d qQ v i v i   (2.108) 

The active and reactive powers injected into the grid depend only on the grid side 

currents of the converter and are given by equations (2.70) and (2.71). Here the 

converter d and q-axis voltage equations are taken from equations (2.18) and (2.19) 

  cdv V sin    (2.109) 

  cqv V cos   (2.110) 

where   is the grid voltage phase. 

If the converter is lossless and the power factor is unitary, then the output powers 

of the generator become 

 cP P  (2.111) 

 0Q   (2.112) 

 

AC/
DC

PM

Converters

P,Q c cP ,Q

c cd qi j i
s sd qi j i

s sd qv j v
c cd qv j v

 
Figure 18: Full converter design 
 
The reactive power injected into the grid is controlled by the converter current 

cdi , like 

in the equation (2.82). 

      c cc c d qP j Q V sin j cos i j i         (2.113) 

and results into 

 
     

c c
c c c c

d q
P sin Q cos( ) Q sin P cos

i j i j
V V

      
    (2.114) 
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From equation (2.111) and the real part of equation (2.114), it is found that the converter 

reactive power is controlled by the current 
cdi  

 
   1

cc dQ V i tan P
cos




   (2.115) 

The 1-mass representation is given by equation (2.92). The electromagnetic torque 

equation is given by 

 
s s s se d q q dT i i    (2.116) 

Converter dynamics are simplified since they are assumed to be much faster than 

the electromechanical transients. The converter is modeled as an ideal current source, 

where 
sqi , 

sdi  and 
cdi  are used for rotor speed control and generator reactive power 

control, and the reactive power grid converter control respectively. Considering that the 

power electronic delay may be modeled by a low pass filter with time constant, epT  is, 

eqT  is and dcT  to the currents 
sqi , 

sdi  and 
cdi respectively. The following differential 

equations are written for these currents 

 0s ss q qq

ep

i idi

dt T


  (2.117) 

 0s ss d dd

eq

i idi

dt T


  (2.118) 

 0c cc d dd

dc

i idi

dt T


  (2.119) 

where 
0sqi  is the initialization value of the q component of the stator current,  

0sdi  is the initialization value of the d component of the stator current,  

0cdi  is the initialization value of the d component of the converter current on the grid 

side. 
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If on the generator side, the maximum of the stator flux coincides with the d-axis, 

the maximum of the voltage is 90 degrees ahead and coincides with the q-axis. The 

equations (2.78) to (2.81) remain valid for voltage and current of generator. Then, if the 

stator resistances are neglected, the initialization value of the active power P may be 

calculated with equation (2.107), the reactive power Q  of the generator with equation 

(2.108) and the reactive power on the grid converter side cQ  with equation (2.115).  

  s s s sq d r p d d dQ v i L i i     (2.120) 

From (2.120) a quadratic equation may be obtained whose solution is a function of the 

reactive power of the generator 

 2 0p
ds ds

p r d

Q
i i

L L




    (2.121) 

  

 
 0

2

22 2
s

p p
d

d r dd

Q
i

L LL

 


    (2.122) 

  s s s sq q r p d d qP v i L i i     (2.123) 

 

 0

0

s

s

q

r p d d

P
i

L i 



 (2.124) 

 

 
   

0c
c

d
P sin Q cos

i
V

  
  (2.125) 

2.5.3 Generator/converter model 

The doubly fed asynchronous generator model and the full converter synchronous 

generator model, allow to simulate the generator by representing the slow mechanical 

dynamics, but neglecting the fast dynamics of the stator and rotor flux linkages 

[19][17][18]. 
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According to the DFIG equations (2.68) and (2.69) and the full converter equation  

(2.113), a generator/converter model may be represented using the block diagram of 

Figure 19. 

qi

pi

df
spllK

s


1

1 qsT

1

1 psT

maxPLL

minPLL

F

ci


V


 

Figure 19:  Generator/Converter model for MEVA and PSS/E models 
  

The above generator/converter model neglects the dynamic variation of fluxes in 

the conventional generator and transforms its algebraic equations to reflect the fast 

control action [18]. 

The current source injects to the grid a current with two components. The 

component pi  is proportional to the active power and the component qi  is proportional 

to the reactive power. Two low pass filters are used in Figure 19 (time constants qT  and 

pT ) to simulate the electronic delay.  In this way the converter is represented by two 

time constants. 

The following equations are valid taking the terminal voltage, the converter 

voltage to the FC or stator voltage in the DFIG.  

The converter d and q voltages are given by: 

  cdv V sin    (2.126) 



55 
 

  cqv V cos   (2.127) 

where   is the grid voltage phase. The converter current and voltage are given by 

 j
cv V e   (2.128) 

 j
c p qi ( i j i )e    (2.129) 

where cv  is wind generator terminal voltage, it is the same that V


, and ci  is the total 

current injected to the grid, Figure 19. The generator/converter powers on the grid side 

are explicitly written as 

 j j
c p qS (V e )conj(( i j i )e )     (2.130) 

 c p q c cS V ( i j i ) P j Q     (2.131) 

Where cP  and cQ  are initially found from  the load-flow solution. In consequence the 

initialisation values are 

 
0

c
p

P
i

V
  (2.132) 

 
0

c
q

Q
i

V
  (2.133) 

where  

ci  is the current injected into the grid by the current source of Figure 19, 

qi  is the current proportional to the reactive power, 

pi  is the current proportional to the active power,  

df is the grid frequency deviation, 

'X is the transient equivalent reactance, 

  is the terminal voltage phase angle, 

qT  is the reactive current converter time constant,  

pT  is the active current converter time constant, 

pllK  is the PLL gain, 
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minPLL  is the PLL minimum limit, 

maxPLL  is the PLL maximum limit, 

F is the built current function ci  from the components. 

The frequency deviation of the grid is reflected through the modification of the 

phase angle  . 

With the conditions given for the DFIG in the section 2.5.1, the maximum voltage 

is 90 degrees ahead and aligned on the q-axis. Equation (2.82) is used to write 

 
sq di i  (2.134) 

 
sp qi i  (2.135) 

The same equivalence is found for the full converter (section 2.5.2) model. 

The value of the transient equivalent reactance 'X  is different from the one found 

using equation (2.35) for the asynchronous machine. Experiments recommend a value of 

0.8 pu for best simulation results. 

2.6 Torque control and active power order for PSS/E, MEVA and 
DEMTP 

To control the rotor speed it is necessary to control the equilibrium between 

mechanical and electrical powers. One possible alternative is to regulate the rotor speed 

by acting on the pitch angle and the produced power by acting on the electromagnetic 

torque. In consequence, two control loops are used, one for the produced power and 

another one for the rotor speed. 
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Figure 20: Power vs Speed reference curve. 
 

The controller is operated across three different zones: low, intermediate and high 

wind speed zones (see Figure 20). In zone 1, with low wind speed, the system is 

operated at optimal rotor speed according to rotor aerodynamics in order to extract the 

maximum energy from the wind. In zone 2, with intermediate wind speed (below the 

nominal wind speed) the rotor speed is limited by a high slope ramp, to prevent a sudden 

discontinuity in the power set point between the zones 1 and 3. In zone 3, the wind speed 

is now high enough to allow nominal power production. In this zone we want to 

maintain the rotor speed and the produced power at their nominal values. 

In zone 2 to prevent adverse interactions between the power control and speed 

control the following control strategy is used. An available mechanical power threshold 



58 
 

of 0.75 pu, determined by the limit of optimal energy extraction, switches from the 

optimal energy extraction mode to the high wind speed mode with little variation in the 

rotor speed. The reference speed is kept constant for operation at nominal slip and for 

power level above power threshold. In this condition the pitch control limits the output 

power to the rated power. 

The reference speed is reduced for power levels below power threshold; it tracks 

the power changes to produce optimal energy extraction. In this condition the speed 

control is realized by means of the torque control and the output power order is sent to 

the converter control. When the available mechanical power is less than the rated power, 

the wind is below nominal wind, the pitch angle adopts the minimum value to optimize 

the mechanical power. 

The torque PI controller has upper and lower torque limits to give constant power 

operation above rated power, and to track the optimum pC  curve when operating 

between the upper and lower speed limits.  

The controller design is shown in Figure 21 for MEVA, PSS/E and DEMTP 

models. The torque control uses the speed error as input to a PI controller with anti-

windup on the power limits. The torque limitations are according to the power 

limitations.  

The active power order is the result of the torque control output by the rotor speed. 

This power is filtered by a low pass filter and limited by its rated value and the power 

rate limits, both operations are done by the washout filter. These limitations are 

according the physical limits of the generator.   

 This active power with rate limit is named inpP . It is an input of the pitch 

compensator and participates in the input of the washout filter. These washout filters 

serve to attenuate the low frequencies of the input signal that cause the output signal to 

reach its limits, while keeping the high frequency of the input signal unchanged.  

The overshoot is used as input signal to the washout. It is obtained by the 

difference between inpP  and inpP  limited in magnitude. When the input signal has only 
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low frequency components, like in steady state conditions, the washout output will be 

null and ordP  will be equal to inpP  limited in its magnitude.  During a transient, the 

input signal will have a high frequency component; this high frequency will be kept 

unchanged by the washout filter which results in an acceleration of the response without 

limit violation. 

The high frequency governs the response during a transient, but individual 

components of high frequency are of short duration; thus avoiding reaching the limits.  

The power order ordP  is the combination of the output from the washout filter with 

inpP  limited in its magnitude.  
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Figure 21: Torque Control/Power order for MEVA, PSS/E and DEMTP 
 

In the Figure 21, pcT  is the time constant of the low pas filter of the power 

regulator; ptrqK  is the proportional gain in the torque control; itrqK is the integral gain 

in the torque control; maxP  is the maximum limit of the power regulator; minP  is the 
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minimum limit of the power regulator; 
max

dP

dt
 is the maximum power rate limit; 

min

dP

dt
 

is the minimum power rate limit; wT  is the washout filter time constant; 5T  is the low 

pass filter time constant used by the ref
 
when tracking the power changes in the mode 

of optimal energy extraction; the table function (curve) ref g( P )   tracks the P  

variation to update the reference rotor speed, P is the output active power. The curve is 

obtained from the manufacturer test of the turbine running at slow speed. 

The input current pi   in Figure 19 is obtained by dividing the power ordP  by the 

terminal voltage magnitude. The current is limited by a maximum value.  

2.7 Reactive power control for PSS/E, MEVA and DEMTP 

The DFIG may exchange reactive power with the grid as shown in equation (2.87). 

The limit in the reactive power exchange is imposed by the converter capability. Based 

on the converter current limit, the unitary power factor operation of the DFIG is a way to 

reduce the converter current to only the active component. In some other designs the 

reactive power contribution to the grid is a constant quantity. The reactive power value 

is fixed manually in the field by the manufacturer to reach the terminal voltage level 

without overloading the converter. Additional shunt compensation may be necessary in 

some cases.  

The grid access code elaborated by utilities, does not distinguish the requirement 

levels between conventional thermal generation and wind generation. Both voltage 

control and power factor control are required at the interconnection point. If a wind park 

is not able to perform according to utility requirements, the solution is the application of 

FACTs devices at the interconnection point. Some manufacturers have a DFIG design 

with voltage control that permits to control the power factor as in a conventional 

generator. 

The full converter design has more capabilities for exchanging reactive power with 

the grid. The size of the converter is bigger than in the DFIG case. It is designed to 
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handle the full generator power through the converter.  The full converter, contrary to 

DFIG, permits zero power operation controlling the voltage at the interconnection point. 

Its elaborate current limiter limits the active current component permitting the reactive 

current component to rise to a desired power factor value at the interconnection point.  

The reactive power controller of Figure 22, has two inputs: terminal voltage and 

generated reactive power. The controller output is the voltage ''
qE  which is proportional 

to the reactive power generation. Finally the input current qi  in the Figure 19, is 

obtained by dividing ''
qE  by the transient reactance of the machine. 
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Figure 22: Reactive Control model 
 

The value of refQ  in Figure 22 is calculated from the load-flow condition, it 

remains constant during time-domain simulations. The reactive power limits are set 

according the converter limits. The error of reactive power, difference between refQ and 

the instantaneous value of the reactive power genQ , is integrated to update the voltage 

reference. The error on voltage, difference between the refv and termV , is integrated to 

result into the output voltage ''
qE . The voltage limits are set according to the grid 

interconnection code. The limiter operation presents different limits during the fault and 

steady-state condition. This effect is equivalent to having two different voltage gains 

viK , a high limit during faults and zero for steady-state conditions. 
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When a high value of viK  is kept during all operating conditions, it may result into 

an oscillatory recovery voltage after a fault condition. When a low value of viK  is kept 

during all operating conditions, it results into a slow and low recovery voltage after a 

fault. Voltage collapse  may occur if the voltage level is too low.  

In the Figure 22, maxQ is maximum reactive power limit in the controller, minQ  is 

minimum reactive power limit in the controller, maxV  is maximum voltage limit in the 

controller, minV  is minimum voltage limit in the controller, viK  is voltage integrator 

gain, qiK  is the reactive power integrator gain, q maxX I is the maximum limit with zero 

terminal voltage, q minX I  is the minimum limit with zero terminal voltage and termv  is 

the terminal voltage. 

2.8 Protection system for PSS/E, MEVA and DEMTP 

Three relays are used to protect the wind turbine generator, under/over frequency 

protection, under/over voltage protection and crowbar protection. The crowbar 

protection will be described only in the DEMTP modeling approach since it can be 

directly represented only in such a model. 

The under/over frequency and under/over voltage relays are protection models, that 

are located at the generator bus. In this way the WTG frequency and voltage are 

continuously monitored to send the trip signal to the breaker during an under- or over- 

frequency/voltage condition. 

These relays disconnect individual WTGs and each WTG has its own protection 

system. 

Both frequency and voltage relays are threshold relays. This is explained in Figure 

23. The operation is based on the monitoring of an electrical variable which is compared 

with a threshold. When the excursion of the electrical variable remains under the 

threshold for a duration greater than the pickup time, then after a step time delay, a trip 

signal will be sent to the breaker that will trip the generator. The breaker acting delay is 
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also included. If the excursion of an electrical variable remains below the pickup time no 

trip signal is sent to the breaker.    

Four relay models are included as delivered in this work: 

 the under voltage relay named LOVOLT; 

 the overvoltage relay named HIVOLT; 

 the under frequency relay named LOFREQl; 

 the over frequency relay named HIFREQ.  

(pu)

Time (s)

Threshold 

Pickup time

Step time

Breaker time

Trip zone

Trip time

Relay setting 

Electrical variable 

 

Figure 23: Threshold relay 
 

The settings of relays used in this document are taken from [20] and shown in 

Figure 24 and Figure 25. Both figures include a ride through zone and a trip zone. In the 

ride through zone the wind turbine generator must have the ability to remain connected 

to the grid during a transient condition that placed the electrical variable inside the ride 

through zone. Outside the ride through zone the wind generator has the right to be 

disconnected from the grid. 
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Figure 24: Under/Over Voltage protection  
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Figure 25: Under/Over Frequency protection  
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2.9 Initialization step for PSS/E and MEVA models 

An important step in all WTG simulations is the initialization step. In both PSS/E 

and MEVA models the related packages provide load-flow solution capability which 

must be used to initialize the time-domain simulation. If the initialization process is not 

done correctly, the computational time may increase dramatically before the steady-state 

is reached. Moreover, in some cases, the time-domain solution may lead into erroneous 

on undesirable steady-state conditions. 

The electrical initialization of the converter/generator block was presented for 

PSS/E and MEVA models in the section 2.5.3.  

For DEMTP modelling, initialization procedures will be presented in CHAPTER 

5. 

This section presents initialization for mechanical variables for DFIG and FC 

models. 

From the wind speed, it is necessary to calculate the initial state of the control 

blocks related to the pitch angle and the angular twist of the shaft model (see Figure 16 

and equations (2.94)-(2.98)). 

There are two options. In the first option, power allocation is determined directly 

by the load-flow solution. In the second option the initial input data is wind speed. Both 

options use the power output vs wind speed typical curve provided by the manufacturer. 

During the initialization stage and the first simulation second the wind speed is 

considered as constant.  

The initial wind speed has to verify the mechanical power produced by the turbine 

wP  (1.1) which is equal to the active power found in the load-flow solution P . 

 wP P  (2.136) 

The more direct way to determine the initial wind speed is by means of the power 

vs wind speed curve as in Figure 26. Such curves are normally provided by the 

manufacturer. 
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Figure 26: Power vs wind speed (typical manufacturer data) 
 

If P  is known from the load-flow solution then the curve of  Figure 26 gives the 

initial wind speed. The following component to be initialized is the shaft model.  

In steady-state conditions it is possible to write  (see equations (2.94)-(2.98)) 

 2 12 12 2 1m gen m m m mT T T K ( )      (2.137) 

Where 2mT  is the mechanical torque of turbine, 12mT  is the transmitted mechanical 

torque and genT  is the electromagnetic, 2 1m m( )   is the difference of the angular 

positions between the two mass, 12mK  is the stiffness coefficient. 

To determine the initial torque and the initial twist angle we need to first solve for 

the rotor speed and the synchronous speed using the curve output power vs rotor speed 

shown in Figure 27.  
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Figure 27:  Power vs rotor speed (rpm), (typical manufacturer data) 
 

From the RPM (rotations per minute) speed 
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where pP  is the number of pole pairs, GBR  is the gear box ratio, 2m  mechanical 

speed, s synchronous speed, s  is initial slip, 2 1m m( )   is initial twist angle. 

The pitch angle is found using the iterative process described in section 2.1.3. 
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CHAPTER 3.  PSS/E model, DFIG 

 
This chapter describes the simulation model of a DFIG of 1.5 MW. It is a generic 

model used in the evaluation of wind power impact on power systems, see also [21]. 

The implementation of this model in the PSS/E software is related to the available 

numerical methods, options and limitations. It is a complex task. The simulation is 

performed in two steps: first the load-flow, then the dynamic simulations. 

This model is for positive sequence studies of electromechanical transients. It is 

not suitable for fast transients. As previously explained, fast dynamics have been 

simplified or eliminated from model equations. To include this model into the PSS/E 

environment, it is necessary to develop two programs written in languages supported in 

PSS/E. These languages (program modules) are FLEX and IPLAN. Differential 

equations are written using FLEX (it resembles FORTRAN) and IPLAN is used for 

various preparation procedures and automations in studies. It includes all input and 

output management functions. 

In addition to the solution of differential equations, the FLEX program calculates 

all variables and prepares the necessary updates during the time domain simulations.  

The FLEX module includes a function that generates the wind input perturbations 

as shown in Figure 9. The model of the turbine is represented by the equation (1.1) with 

a pC  function of the turbine rotor speed, the pitch angle and its geometry that verifies 

the information of the manufacturer (see section 2.1.2.2. and Figure 2).  

The representation of pitch control is shown in Figure 12, torque control is 

conformal to Figure 21, the reactive power control is from Figure 22  and the protection 

functions are presented in Figure 24 and Figure 25. The converter generator model is 

shown in the Figure 19 and the PLL model will be described below in the following 

section 3.1.2.  

The complete model block diagrams are shown in Figure 28 part 1 and Figure 29 

part 2. 
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The drive train model described by equations (2.95)-(2.98) includes the option of 

single and double mass modeling.  

The model setup through IPLAN offers to allocate power using wind speed or load 

flow solution. The allocation may be based on an unlimited number of generators, as in a 

full scale wind park. 
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Figure 28: PSS/E DFIG block diagram (Part 1) 
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Figure 29: PSS/E DFIG block diagram (Part 2)  
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3.1 Phase-locked loop (PLL) for PSS/E, MEVA and DEMTP 

The DFIG (and FC) models have converter controls based on a phase-locked loop. 

The phase-locked loop in the DFIG synchronizes the generator rotor with the stator and 

in the full converter case, the inverter with the grid. 

The converter PLL has the effect of establishing a reference frame for the WTG 

voltages and currents, shown as the D and Q  axis in the phasor diagram of Figure 30. 
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Figure 30: Reference frame 
 

In steady-state conditions, the D -axis is aligned with V


 (see Figure 19), in 

consequence the phase angles   and   are equal. During transients the angle   can 

change instantaneously (system disturbances), but the rate of change of   is limited by 

the PLL logic.  



73 
 

The maximum voltage is at zero degree and aligned on the d-axis. In this condition 

 0
s sd qV v j v V j   


 (3.1) 

 
c cc d qi i j i 


 (3.2) 

Consequently (see also equation (2.82), (2.113) and (2.131)). 

  s s s s sd d q d qP jQ v i j i V i jV i      (3.3) 

With this definition, the current 
dspi i  controls the active power output, while the 

current 
sq qi i  controls the reactive power output. 

3.1.1 PLL implementation in PSS/E  

The phase variation in synchronous machine is obtained using the integral of the 

machine speed deviation, so it is related to the mechanical equations of the machine, 

(2.94) and (2.95).  

In grids with only conventional generators with prime mover controlling their 

speeds, the phase angle deviation may be calculated from the speed variation (2.94) and 

the machine pair of poles. In this case the dynamic responses of the speed deviation and 

the phase angle deviation are influenced by the inertia of the machine and the speed 

response of the prime mover found on the mechanical power. 

Many assumptions commonly used in stability type programs, such as PSS/E, are 

becoming less valid with the presence of power electronics in power systems. The more 

relevant assumptions in relation with wind generation are: the stator flux distribution is 

considered always sinusoidal, the iron losses and part of the copper losses are neglected, 

stator voltage and current are sinusoidal at the fundamental frequency, and the magnetic 

saturations of transformer and asynchronous machine are neglected. When the wind 

generation includes a power electronic converter it is considered as a linear device, such 

as its behavior at rated condition is extended to the fault condition. The only frequency 

present in the rotor current of the asynchronous machine is given the product of the slip 
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by the nominal frequency and the variation of machine flux is neglected due to the fast 

control action of the electronic switching devices. 

In the case of wind generation the way to remain in synchronism with the grid is 

by means of a PLL. The PLL is an electronic device available to calculate the terminal 

voltage phase angle. As a first approach to the PLL model in PSS/E, the frequency 

deviation of the grid is calculated using an internal PSS/E function named BSFREQ. 

The BSFREQ function calculates the frequency deviation at each bus of the network. 

Thus the frequency deviation df  of the grid is translated into a phase angle modification 

in the current source (see Figure 19). The last step is using an integrator circuit 

combined with a limiter to avoid the jumps.  The block diagram of the generator-

converter model of Figure 19 includes this first PLL model. 

A second approach, shown in Figure 31 is inspired from the detailed PLL model 

used in EMTP-RV. It presents a PLL based on the DQ frame theory. The instantaneous 

to polar transformation uses as input the RMS value of the terminal voltage. The polar 

output is rotated and the imaginary component of the phasor (equivalent to the Q 

component) is calculated to become the input of the PI controller. The PI controller 

output is proportional to the frequency deviation, which is integrated and scaled to give 

the phase angle   of Figure 30. 

The variables used in Figure 31 are defined as follows: 

t  is the PLL phase angle at the instant t, 

1t   is the PLL phase angle at the instant t-1, 

  is instantaneous phase angle of the terminal voltage, 

pllK  is the integral gain of the PLL in pu, 

maxPLL  is the maximum limit of the PLL in pu, 

minPLL  is the minimum limit of the PLL in pu, 

s  is the electrical frequency in rad/s. 
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The phase angle   defines the stationary position of D axis relative to the real 

axis. Both angles   and   are equal in steady-state conditions, but during transients the 

angle   can change instantaneously. After the transient the PLL must align the terminal 

voltage phasor with the D-axis to verify equation (3.1) and  supply the active and 

reactive powers given by equation (3.3). The way to reach this objective is by nullifying 

the Q component of the terminal voltage (3.1).  
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Figure 31: PLL dq0 in PSS/E   

3.1.2 PLL problems and solutions in PSS/E 

In both of the above PLL models implemented in PSS/E, the problem is the lack of 

ability to track the correct phase angle during transient events present in large 

transmission systems, such as loss of dynamic stability or tripping of high voltage lines.  

To understand the wrong PLL behaviour, let us consider a large transmission 

system after a fault. It is known that when the power system stability is reached without 

load shedding or machine tripping, the active power output of each machine of the 

system should remain at the dispatch value as a consequence of the combined actions of 

the prime mover and excitation systems.  

In the wind generation case, the synchronization with the grid is produced by PLL 

action. With a wrong phase voltage angle, still with the correct value of the current 

control, the active power output will be wrong. In consequence when the large 

transmission scenario includes wind power and the PLL of the WTG has a wrong 

operation, two problems occur, in the first one the WTG increases or decreases the 

active power output without modification in the mechanical power input and in the 
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second one the active power mismatch produced by the WTG is absorbed by the 

conventional system machines.  

To evaluate the impact of a transient event on the PLL behavior lest us define an 

active power difference P  as the mismatch between the initial steady state and the 

final state. The Figure 32 and Figure 33 show important mismatches with P  of 20 and 

29% respectively. These mismatches were caused by a jump of phase angle. The first 

jump of phase was caused by a far three-phase-fault followed by a trip of line. The 

second jump is caused by a swing of the equivalent generator after a 6 cycle three-phase-

fault near a far hydro plant.  

The phase mismatch results from the combination of two factors, the usage of a 

simplified version of the PLL and the typically large integration time-step used in 

PSS/E, typically half cycle of the fundamental system period. 

 

Figure 32: 3-phase fault and line trip case, active power output of WTG, P =20% 
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Figure 33: Active power output of WTG, with jump of phase, P =29% 
 

The solution proposed in this work is a PLL based in the correction of the phase 

angle using an instantaneous logic dependent on the active power. This strategy is based 

on the concept used in the representation of power electronics, where the fast dynamics 

may be represented as algebraic equations or on/off logic and that the slow dynamics 

may be represented by the motion equation. Thus the solution of the problem is a PLL 

model that combines both concepts. 

The primitive PLL representation in PSS/E was based on the principle of 

integration of the bus frequency deviation ( df ) obtained from the internal PSS/E 

function BSFREQ. That is done by means of the knowledge of the index associated to 

the bus number. The instantaneous variation is obtained after a low pass filter with a 

time constant defined in the PSS/E parameters.  

Based on the testing of various cases, two different behaviors were found to limit 

the application of the internal function BSFREQ. When wind gust speed variation is 

simulated, the frequency deviation remains limited, below 0.1 Hz, and no phase error 

was produced. On the other hand, the three phase-fault case followed by the trip of a line 
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produces instability of the terminal voltage and phase angle, with large phase error and 

terminal voltage oscillations in the WTG. Using a logic to detect these two situations, it 

is possible to decide when the phase angle correction is necessary.  

The logic will be enabled as a combination of voltage level and 
df

dt
 used to 

distinguish the far fault condition. The enabling condition can be set to generator voltage 

over 0.7 pu and a 
df

dt
  greater than 0.1 pu and stops when any one of these two 

conditions are not reached. The process lasts 300 ms (empirical value used for most 

cases) or stops if the output power reaches the minimum error condition, with a 

tolerance of 1%.  

Considering the power transmission through a reactance X, the phase angle must 

increase or decrease according to the target variation of the output active power as 

follows 

 s s sV E θ   (3.4) 

 r r rV E θ   (3.5) 
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s s r s r
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E .E π
P = cos(θ -θ + )

X 2
 (3.7) 

 s r
s s r

E .E
P = sin(θ -θ )

X
 (3.8) 

Let us define old sP =P  , initial steady state value of active power and the tolerance 

ε , 

 max oldP =(1+ε)P  (3.9) 

 min oldP =(1-ε)P  (3.10) 

After a perturbation the instantaneous active power output is P  and considering a 

sΔθ >0, if min maxP P P   no additional phase compensation is needed. If  minP P  
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 s r
new s s r new

E .E
P = sin(θ +Δθ -θ ) P P

X
   (3.11) 

If  maxP P : 

 s r
new s s r new

E .E
P = sin(θ -Δθ -θ ) P P

X
   (3.12) 

If the active power is lower than the accepted minimum value then the phase angle 

must be increased using a ramp function. If the active power is greater than the 

maximum value then the phase angle must be decreased by a ramp function. 

The process is detailed below: 

1) calculate the phase variation using only the BSFREQ function; 

2) compare the output active power with the tolerance range 

3) phase compensation: 

if the output active power is in the range no correction is necessary, 

if the output active power is lower than the minimum value then the phase 

variation is increased by a constant value, 

if the output active power is greater than the maximum value then the phase 

variation is decreased by a constant value. 

4) the phase variation is limited between minPLL  and maxPLL ; 

5) the phase variation is integrated to obtain the phase angle. 

This process is repeated at each simulation time-point to compensate the phase 

angle according to the output active power. 

The new PLL was used to repeat the simulation shown in the Figure 32. The result 

is shown in Figure 34.  
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Figure 34: Active power WTG with improved PLL model 
 

3.2 PSS/E DFIG model benchmark 

 

Figure 35: First benchmark, PSS/E DFIG model test 
 

Two benchmarks are used to test the PSS/E DFIG model, the first one is shown in 

Figure 35 and the second one in Figure 36. The benchmark data files to run load flow 

and dynamics are in Appendix A. The load flow solutions shown in both figures are 

used as initial conditions to the time domain simulation. 
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The first benchmark represents a distribution system of a wind farm section which 

is connected to the grid equivalent with a short circuit power equal to ten times the wind 

farm generation. Typical short circuit impedance values are 5.5% for the wind generator 

transformer, 10% for the step up transformer (high voltage) and 10% for the cable 

feeder.   

The first benchmark was designed to test the control response to a near fault and 

other local perturbations, such as voltage steps and wind profiles. This benchmark 

avoids problems present in large transmission systems, such as oscillation modes, loss of 

dynamic stability or the trip of high voltage lines that may stress the PLL calculation 

problems outlined in section 3.1.2.  

Several types of different perturbations, such as fault, step of reference and wind 

profiles, were applied on the first benchmark to test the model response using single 

mass and double mass models for the generator shaft. The Tests 1 to 5 are performed 

using a single mass for the WTG and the Tests 6 and 7 use a double mass model for the 

WTG. 

The second benchmark shown in Figure 36 (see Appendix A for complete PSS/E 

data) was used to test the aggregation degree which is described below in Test 8. The 

aggregation test considers two cases with 500 MW of power generation, the first one 

with a single machine  and the second one with 15 machines.  

The following tests are used to validate the performance of the model developed 

for this thesis. The performance verifies normal behaviour based on experiments on such 

models and comparisons with detailed models based in EMTP-RV.  
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Figure 36: PSS/E DFIG model, aggregation test benchmark 

BUS1000

BUS1001 

BUS1601 
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3.2.1.1 Test 1, Small perturbation 

The Test 1 consists in the application of a small perturbation. The perturbation is a 

step change of ±5% on the terminal voltage of the equivalent with the objective of 

obtaining a linear response of the controls. 

 

Figure 37: Test 1; Voltage, BUS1000, BUS1001 and BUS1601. 
 

The voltage step was applied to the Grid voltage on BUS1000. At the beginning 

the WTG terminal voltage (BUS1601) tracks the grid voltage but finally the WTG 

terminal voltage is controlled at its reference value. The Figure 37 also shows the 

voltage at the intermediate BUS1001. 

BUS1601

BUS1001

BUS1000
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Figure 38: Test 1; Reactive power, BUS1601-BUS1501 and BUS1001-BUS1000.  
 

The Figure 38 shows a voltage step applied to the Grid voltage on BUS1000. The 

reactive power of the WTG on BUS1601 rises when the voltage step lowers and drops 

when the voltage step rises, but it does not reach neither the maximum limit nor the 

minimum limit of the reactive power. 

 

Q BUS1001-1000

Q BUS1601-1501
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Figure 39: Test 1; Active power, BUS1601-BUS1501 and BUS1001-BUS1000. 
 

The mechanical power remains constant since the wind is constant. In consequence 

the active power injected by the WTG on the BUS1601 will remain constant in the final 

steady-state after perturbation. This trend is shown in the Figure 39. 

The transient peaks of the active power shown in the Figure 39 are related to the  

delay introduced by the low pass filter on the controlled current (see Figure 28). The 

pitch angle remains constant with the step voltage change. 

3.2.1.2 Test 2, Large perturbation 

The Test 2 is an application of a large perturbation of ±30% on the terminal 

voltage on BUS1000. The objective is to reach a limit condition on the control. The 

voltages are shown in Figure 40. 

 

P BUS1001-1000

P BUS1601-1501
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Figure 40: Test 2; Voltage, BUS1601, BUS1000 and BUS1001. 
 

The voltage step was applied to the Grid voltage BUS1000. At the beginning the 

WTG terminal voltage on BUS1601 tracks the grid voltage but finally the WTG terminal 

voltage is not controlled and remains far from its reference value, that is the 

consequence of the saturation of the reactive power limits of the WTG. 

BUS1000

BUS1001

BUS1601
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Figure 41: Test 2; Reactive power, BUS 1601-1501 and BUS 1001-1000. 
 

The voltage step was applied to the Grid voltage at BUS1000, the reactive power 

of the WTG in the direction BUS1601-1501, rises when the voltage step lowers and 

drops when the voltage step rises. 

The maximum and minimum limits of the reactive power are reached. In 

consequence the terminal voltage will not be controlled in its reference value.  

The mechanical power is constant since the wind is constant, but the active current 

limit limI  was reached (see Figure 28). After the perturbation the active power returns 

into its linear zone and becomes constant as shown in Figure 42. 

The transient peaks of the active power shown in Figure 42 are related to the  delay 

introduced by the low pass filter of the controlled current shown in Figure 28. 

The pitch remains constant with the step voltage change. 

 

Q BUS1001-1000

Q BUS1601-1501
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Figure 42: Test 2; Active power, BUS1601-BUS1501 and BUS1001-BUS1000. 
 

3.2.1.3 Test 3, Three phase fault 

The Test 3 consists of a three phase fault applied at the interconnection point 

BUS1001, through a fault resistance of 150 Ohms during 100 ms. 

In Figure 43 the voltage drops near 0.15 pu during the time of fault at the 

interconnection BUS1001. This voltage does not reach zero due to the fault resistance of 

150 ohms. After the fault is cleared a small voltage overshoot happens as a result of the 

fast voltage control. 

P BUS1001-1000

P BUS1601-1501
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Figure 43: Test 3; Voltage, BUS1601, BUS1000 and BUS1001. 

 

Figure 44: Test 3; Reactive powers, BUS1601-BUS1501 and BUS1001-BUS1000. 
 

BUS1000

BUS1601

BUS1001

Q BUS1001-1000

Q BUS1601-1501
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According to Figure 44, both generators on BUS1601 and BUS1000, contribute 

with reactive power to the fault. 

 

Figure 45: Test 3; Active power, BUS1601-1501 and BUS1001-1000. 
 

The active powers are shown in Figure 45. The active power of the WTG, on 

BUS1601-BUS1501, tracks the voltage waveform. Due to the reduced voltage, the 

control current is raised and reaches the current upper limit, see limI in Figure 28. 

The pitch angle changes to control the over-speed and overload during the fault 

duration (see Figure 46). 

P BUS1001-1000

P BUS1601-1501
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Figure 46: Test 3; Pitch and wind speed, BUS1601. 

3.2.1.4 Test 4, Wind gust simulation 

The Test 4 consists in the application of two wind perturbations. The first one is a 

wind gust. The second perturbation is a wind gust followed by a wind ramp. Results of 

the first perturbation are shown in Figure 47 to Figure 50. Results of the second 

perturbation are shown in Figure 51 to Figure 54. 

The wind perturbation affects the generated active power. Due to the active power 

variation the voltage may change and affect the reactive power. The pitch angle controls 

the power variation accurately, in consequence the voltage doesn’t change significantly 

and that is shown in Figure 47. The reactive  power variation is light due to the light 

voltage variation shown in Figure 48. The pitch action controls accurately the over speed 

and only a small change of the active power occurs (see Figure 49). The wind gust is 

tracked by the pitch angle control to avoid the over speed and the possible overload (see 

Figure 50). 

Pitch angle 

Wind speed  
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The pitch angle controls the power variation accurately, in consequence the voltage 

does not modify significantly from the initial values as shown Figure 51. 

 

Figure 47: Test 4; Voltage with gust, BUS1601, BUS1000 and BUS1001. 

 

Figure 48: Test 4; Reactive power with gust, BUS1601-1501 and BUS1001-1000. 

BUS1601

BUS1000 BUS1001

Q BUS1001-1000

Q BUS1601-1501
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Figure 49: Test 4; Active power with gust, BUS1601-1501 and BUS1001-1000. 

 

Figure 50: Test 4; Pitch and wind speed with gust, BUS1601 and BUS1001. 

P BUS1001-1000

P BUS1601-1501

Pitch angle 

Wind speed  
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Figure 51: Test 4; Voltage with gust and ramp, BUS1601, BUS1000 and BUS1001. 

 

Figure 52: Test 4; Reactive power with gust and ramp, BUS1601-1501 and 
BUS1001-1000. 

BUS1601

BUS1000 BUS1001

Q BUS1001-1000

Q BUS1601-1501
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The reactive power variation is light due to the light voltage variation (see Figure 

52). The pitch angle action controls accurately the over speed and over load. Only a little 

change of the active power occurs as seen in Figure 53. 

The wind gust and ramp are tracked by the pitch angle control to avoid the over 

speed and possible overload (see Figure 54). 

 

Figure 53: Test 4; Active power with gust and ramp, BUS1601-1501 and BUS1001-
1000. 

P BUS1001-1000

P BUS1601-1501
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Figure 54: Test 4; Pitch and wind speed with gust and ramp, BUS1601 and 
BUS1001. 

3.2.1.5 Test 5, Single phase fault 

The Test 5 simulates the application of  single phase fault during 100 ms at the 

interconnection point, BUS1001, with a fault resistance of zero ohm. 

Figure 55 shows the voltage drop during the duration of fault, but the voltage does 

not reach zero due to the single phase fault. After the fault is cleared a little overshoot 

occurs as a result of the fast voltage control. 

Pitch angle 

Wind speed  
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Figure 55: Test 5; Voltage, BUS1601, BUS1000 and BUS1001. 

 

Figure 56: Test 5; Reactive power, BUS1601-1501 and BUS1001-1000. 
 

BUS1000

BUS1601

BUS1001

Q BUS1001-1000

Q BUS1601-1501
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Both generators on (BUS1000 and BUS1601) are shown  in Figure 56 to contribute 

with reactive power to the fault. 

 

Figure 57: Test 5; Active power, BUS1601-1501 and BUS1001-1000. 
 

The Figure 57 shows that the active power tracks the voltage waveform in the 

same way as the three phase fault test. 

No pitch action was necessary to control the overspeed nor the overload of active 

power. 

3.2.1.6 Test 6, Three phase fault with double mass model 

The Test 6 compares the single and double mass models of the drive train for a 

three phase fault with 100 ms of duration applied at the interconnection point BUS1001 

with fault resistance of 150 Ohms.  

The same electrical and mechanical variables are presented to compare both 

models. The electrical variables that present the oscillatory effect correspond to the 

P BUS1001-1000

P BUS1601-1501
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double mass model. This is due to the fact that the first torsional mode of the shaft was 

excited by the three phase fault.  

 

Figure 58: Test 6; Active power, Single vs double mass, BUS1001-1000 
 

Figure 58 shows the comparison of the active power generated by WTG. The 

double mass model presents an oscillation due to the fact that the first torsional mode of 

the shaft was excited by the three phase fault. The oscillation mode may be seen in the 

pitch angle of the double mass model, shown in Figure 59. 

The light generator (WG) mass has a larger speed oscillation amplitude than the 

heavy turbine (WT). This difference on speed oscillation amplitudes is shown in Figure 

60. 



100 
 

 

Figure 59: Test 6; Pitch angle, Single vs double mass, BUS1601 

 

Figure 60: Test 6; Speed deviation two mass model, BUS1601 
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3.2.1.7 Test 7, Wind gust with double mass model 

The Test 7 compares the simulations with wind gust of Figure 63 for single and 

double mass models of the shaft. Figure 61 presents the differences of amplitude of the 

pitch angle oscillation introduced for the mutual damping of the double mass model. The 

mutual damping is null in the single mass model. 

Figure 62 presents the difference of amplitude of the speed deviation introduced 

for the mutual damping of the double mass model. The mutual damping is null in single 

mass model. 

 

Figure 61: Test 7; Pitch angle, Single vs double mass, BUS 1601  
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Figure 62: Test 7; Speed deviation, Single vs double mass, BUS 1601 
 

 

Figure 63: Test 7; Wind speed to single and double mass, BUS 1601 
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3.2.1.8 Test 8, Three phase fault to aggregation degree test. 

The Test 8 considers a three phase fault simulation to perform aggregation degree 

test. The fault was applied during 100 ms at the interconnection point (BUS1001), with a 

fault resistance of zero ohm. The same simulation fault is repeated two times. The first 

one with 15 machines of 33 MW to complete a total of 500 MW is shown in Figure 64 

and the second one with only one machine equivalent of 500 MW is shown in Figure 65.  

The Figure 64 and Figure 65 show a perfect match of the active power of the 

generator of BUS1000. Also Figure 64 includes the generation of BUS1601 of 33 MW 

and Figure 65 includes the generation of BUS1600 of 500 MW. In this case, except for a 

scale factor of 15 the power variation is the same. 

 

Figure 64: Test 8; Active Power at 1000 and 1600 (15x33MW) 

P BUS1001-1000

P BUS1601-1501
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Figure 65: Test 8; Active Power at 1000 and 1601 (1x500MW) 
 

P BUS1001-1000

P BUS1601-1501
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3.3 PSS/E DFIG model validation for torque computations 

The purpose of this section is to compare simulation results from the Wind Turbine 

Generator (WTG) model in the PSS/E software to an equivalent case setup in the GH 

Bladed [22]. The presented WTG  is again of 1.5 MW (DFIG). The objective is the 

validation of the mechanical behaviour of the PSS/E model using the Bladed program. It 

also inherently validates the computation of torque for the other models in this thesis. 

GH Bladed is used by wind turbine and component manufacturers, certification 

agencies, design consultants and research organizations across the world. A number of 

modules are available, covering steady state analysis, dynamic load simulations, analysis 

of loads and energy capture, batch processing and automated report generation, 

interaction with the electrical network and model linearization for control design. 

Bladed is a program used by wind generator designers and includes a detailed wind 

generator model that makes possible the accurate representation of the real unit with its 

mechanical and electrical control devices. Random wind component, wind turbulence 

and shadow effects are taken into account in this program. 

The simulation results with Bladed presented in this document were performed by 

a wind generator manufacturer. 

3.3.1.1 Test case setup 

The PSS/E benchmark is setup to reproduce the same study conditions as in 

Bladed. It is based on a 2 bus grid that represents a single generator machine of 1.5 MW 

at 0.69 kV of terminal voltage with its unit transformer and an equivalent generator on 

the 34.5 kV side. The benchmark diagram is shown in Figure 66.  

The DFIG operates in the vicinity of rated power at 2096 RPM, at 116% speed or -

16% slip. The generator speed range is between 1200 and 2400 rpm, and the 

synchronous speed is 1800 rpm, that means the rotor speed can be controlled over a  

range of ±33%. 
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From 20 RPM at the turbine, the generator runs with constant torque. This results 

in a constant load of the complete systems. The acceleration of the turbine beyond a 

certain limit is avoided by sufficient pitching. At maximum power, 1150 kW of active 

power comes from the stator and 350 kW from the rotor. For this reason the DFIG 

produces fewer harmonics compared to a variable speed machine with an asynchronous 

motor where the power is all fed though the converter. 

 

 

Figure 66: Validation Benchmark 

 

The validation of the mechanical behaviour of the PSS/E model using the Bladed 

program is based here on the simulation of 2 wind speed perturbations: gust and gust-

ramp. Amplitude and duration are shown in Figure 67 and Figure 71 respectively.  

Validation results are shown in the following figures. 

Figure 67 shows the average wind gust applied to the WTG. The Bladed simulator 

has an additional  random wind component to represent turbulence. 

Figure 68 shows the pitch angle response to the wind gust application. The curve 

offset is due to the differences in the CP matrix, resulting in a different initial pitch 

angle. This little difference in the initial pitch angle does not modify the dynamic 

behaviour of the average value. 
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Figure 69 shows that the average wind gust applied to the PSS/E model and the 

average wind gust augmented with a random wind component applied in Bladed, will 

both produce similar mechanical turbine torques. The same conclusion is valid for the 

rotor speed  shown in Figure 70. 

The assumptions made here for the PSS/E model mechanics are thus verified with  

more advanced representation for mechanical perturbation details. This is also providing 

us validation for Torque equations used in all models in this thesis. 
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Figure 67: Wind speed (m/s), validation with Bladed, Wind Gust test 
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Figure 68: Pitch angle in degrees, validation with Bladed, Wind Gust test 
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Figure 69: Wind torque (Nm), validation with Bladed, Wind Gust test 
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Figure 70: Speed deviation in pu, validation with Bladed, Wind Gust test 
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Figure 71: Wind speed (m/s), validation with Bladed, Wind Gust and Ramp test 
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Figure 71 shows the average wind gust followed by a ramp applied to the WTG. 

The Bladed simulator includes also a random wind component to represent turbulence. 

Figure 72 shows that the model of the pitch angle in PSS/E tracks the response to 

the wind gust and ramp applications using Bladed with only an offset of 2 or 3 degrees. 

The Figure 73 shows a mechanical turbine torque which validates again the PSS/E 

model. The ramp presence is remarked by the oscillation of the mechanical torque of the 

PSS/E model near 45 seconds. 

The Figure 74 shows the rotor speed deviation validation. The ramp presence is 

remarked by the oscillation of the mechanical rotor speed deviation of the PSS/E model 

near 45 seconds. 
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Figure 72: Pitch angle in degrees, validation with Bladed, Wind Gust and Ramp 
test 
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Figure 73: Wind torque (Nm), validation with Bladed, Wind Gust and Ramp test 
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Figure 74: Speed deviation in pu, validation with Bladed, Wind Gust and Ramp 
test 
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CHAPTER 4.  MEVA model, DFIG and FC 

 

4.1 DFIG MEVA MODEL 

The top level view of the DFIG MEVA model in EMTP-RV with its initialization 

devices is shown in the Figure 75. The DFIG_WTG, mean value model, device is a 

subnetwork with several subnetworks for its various modeling function and control 

systems. 

Almost all parameters of the device can be modified through its mask. There are 

two external interfacings points (pins). The right pin is a 3-phase pin allowing to connect 

the DFIG_WTG device to the 3-phase network. The left pin is used for providing the 

random variation of the wind speed. The mean wind speed is found inside the top level 

mask as parameter. 

Each DFIG_WTG device can represent one or more generators, or include an 

entire park. 

Since the model must be initialized it is need to perform a Load flow solution 

followed by a steady-state solution. In EMTP-RV this is achieved using separate layers 

of components for the different solution modules. As show in Figure 75, each 

DFIG_WTG device is paired with a Load-Flow constraint device (LF device) and a ideal 

voltage source. The LF device is used in the Load-Flow solution layer. It provides the 

PQ constraints of the DFIG_WTG. The LF device is used in the load flow solution and 

together with other LF devices, it allows calculation the Load-Flow solution phasor for 

the complete network. 

The steady-state and the following time-domain solution can be started from the 

Load-Flow solution. 

This is a two step process: the first step is the Load-Flow solution and the second 

steps is the steady-state solution automatically followed by the time domain solution. 

In the steady-state solution the ideal voltage source is used to provide the phasors 

found in the Load-Flow solution. The voltage source is disconnected before the first 
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time point computation in the time domain solution, but allows to initialize the state 

variables of the simulated network. At the same time the DFIG_WTG is turned on and 

starts controlling its internal source for the rest of simulation. It is also noticed that the 

DFIG_WTG must provide the same PQ constraints and must be given Load-Flow 

solution voltage and phase angle at its terminal. To reproduce this same behaviour with 

the DFIG_WTG model, the values of Pschedule, Qschedule and Vschedule must be 

included in the main mask of the DFIG_WTG device. In this way and according to the 

method described in the section  4.1.1, the initialization of the MEVA model is fast and 

accurate.  

4.1.1 Model mask 

When the DFIG_WTG device is double clicked it opens a subcircuit mask with a 

collection of parameters. Each device can be given a separate set of parameters for the 

same subnetwork contents. Most parameters are physical parameters for the 

representation of the machine model. Only a few parameters must be adjusted to 

represent various operation conditions and match available simulation results.  

Basically the parameters that must be adjusted are in the Generator Data and 

Scheduled Data of the main mask model. 

Generator Data: 

Nmachines = Number of machines 

S_rated = Aparent rated power in (VA) per machine 

V_rated = RMSLL Terminal voltage in (V) 

f_rated = Rated frequency in (Hz) 

 

Scheduled Data: 

Vschedule = Terminal voltage in pu, value from the load flow solution 

Pschedule = Active power in pu, value from the load flow solution 

Qschedule = Reactive power in pu, value from the load flow solution 
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Figure 75: Top level device view of the DFIG_WTG  
 

The initialization of the mechanical variables  (wind speed, pitch angle and slip) is 

obtained using the method described in section 2.1.3 and by running a MATLAB script.  

The Mask window with all initialization procedures is shown in Figure 76. 

Additional values which are found in the initial condition values window. 
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Figure 76: Initial value window 

4.1.2 DFIG block components.  

The subnetwork found under the symbol of DFIG_WTG shown in the Figure 75 is 

shown in the Figure 77. The MEVA modelling approach shares the same PSS/E model 

blocks defined in CHAPTER 2, in consequence the blocks contents in Figure 77 are 

directly related. 

o For the wind block Vent2 in Figure 75, see the section 2.2. 

Basic parameters to change 
the allocation condition and 
to Initialize the MEVA model 
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o For the mechanical turbine model, Wind power in Figure 77, see the section 

2.1.2.3. 

o For the pitch control, Turbine control in Figure 77, see the section 2.3.4. 

o For the rotor model, Rotor in Figure 77, see the section 2.5.1. 

o For the reactive control, Q control in Figure 77, see the section 2.7. 

o For the torque and power control, Turbine control and converter current limiter 

in the Figure 77, see the section 2.6. 

o For the protection block model, Protections in Figure 77, see the section 2.8. 

 

A new trend from power utilities is to demand the WTG contribution to frequency 

regulation. The MEVA model includes an additional component as compared the PSS/E 

model, for the active power control implemented into the converter current limiter block. 

Additionally, a new PLL without time step limitation problems (described in the section 

3.1.2) is included into the converter generator model. 
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Figure 77: Model block components 
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4.1.2.1 Active power control 

The grid access code, elaborated by power utilities, does not distinguish the 

requirement levels between conventional thermal generation and wind generation. In this 

context when the utility requirements surpass the wind generator performance, the wind 

generator manufacturer solution is often the addition of an active power control (APC) 

system with the following objectives: 

o enforce a maximum wind farm power output; 

o provide a specified power margin by generating less power than available; 

o enforce a farm power ramp rate limit; 

o respond to the system frequency excursions. 

In normal conditions with near nominal system frequency, the control is either 

enforcing a maximum wind farm output or providing a specific margin by generating 

less power than is available from the wind, e.g. 95% of the available power. This is 

illustrated in the Figure 78. 

In response to frequency excursions, the control switches into another mode and 

calculates a farm power order as a function of the system frequency. This path requires a 

higher than usual power order for the low frequency events and lower than usual power 

order for the high frequency events. Thus the wind farm will generate additional power 

in response to the loss of other generating facilities or less power in response of the loss 

of load by load shedding relays. Each WTG should have an active power control with 

the power order signal provided by the wind farm control.  
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Figure 78: Active power control. 
 

4.1.2.2 Generator/converter control model 

This model is the equivalent between the generator and the field converter and 

provides the interface between the WTG and the network. Its mechanical states are 

represented in the turbine model blocks. 

Unlike a conventional generator model, all of the flux dynamics have been 

eliminated to reflect the rapid response to the high level commands from the electric 

control through the converter. The net result is a controlled three phase current source 

that computes the required injected currents into the network in response to the flux and 

the active current command from the electrical control model. These controlled sources 

also incorporate the fast acting converter control to mitigate the overvoltage by reducing 

current output. It is shown in the Figure 79. 
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Figure 79: Generator/converter MEVA model 
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 The two low-pass filters are simple approximations to the complex fast electronic 

control system. The converter control includes a PLL to syncrhonize the generator rotor 

currents with the stator. The PLL has the effect of establishing a reference frame to the 

WTG voltage and current. As shown in section 3.1 a new PLL model is used in the 

MEVA approach. 

4.1.2.3 The PLL for the MEVA model 

The MEVA approach consists in the development of a reduced order three phase 

DFIG model using the EMTP-RV program, without the network simplifications used in 

the stability type programs, such as PSS/E. The generator/converter model has a three 

phase current source where the phase angle is determined by a PLL based on the 

transformation from time domain to phasor domain. The phase angle of the terminal 

voltage, calculated from the transformation considers a fixed period associated to the 

fundamental frequency. 

The PLL model presented here is based on the initial idea presented in [23]. It is 

integrated to the MEVA model. The proposed method is described in the context of 

modulation theory. It is restated and rearranged here in the context of the model 

proposed in this thesis. 

 Let x  be continuous, real valued, not necessary periodic function. Assume further 

that a finite T >0 is given. For every s R  define an associated time limited function. 

One may view s
wx  as a windowed version of the original function x . The window being 

of length T  and centered about s .   

 s
w

T T
x :[s- ,s+ ] R

2 2
  (4.1) 

 s
w

T T
x(t); t [s- ,s+ ]

x (t) 2 2
0 otherwise

 



 (4.2) 

With s
wx (t)  it is possible define a periodic function s

px (t)by appropriately patching 

together the windowing function s
wx (t) . 
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With each center point s R  we associate a periodic function s
px (t) . Another way 

should be, for a given value of the parameter T , every continuous real valued, induce a 

family of periodic function s
px (t) , indexed by the centered point s . The Fourier series 

that responds to the periodic function s
px (t)  is given by  

 s
p

k

x (t) ck(s).exp(jkwt)



   (4.3) 

Thus the complex coefficient ck(s)  as instantaneous Fourier coefficient or 

instantaneous phasor associated with a given function x  and a window length T . 

 

T
s+

2

T
s-

2

1
ck(s)= x(t).exp(-jkwt).dt

T   (4.4) 

 w=2π/T  (4.5) 

Given that the Fourier coefficient are complex numbers, the phase angle is 

calculated as a function of the real and imaginary components of each coefficient. 

 δ=arctan(y,x)  (4.6) 

The phase angle obtained in this way and using a typical EMTP time step of 250 µs, has 

shown to eliminate problems found in the PLL representation in PSS/E.  

4.1.3 Model Tests 

The benchmark of Figure 80 is used to test the DFIG MEVA model representing a 

wind farm integrated by an equivalent generator type DFIG of 20 machines (33.4 MVA) 

dispatched with P=30 MW. All benchmark data is included in the Appendix B. 

Several types of different perturbations, such as three phase bus fault, different 

wind profiles and change of voltage order, were applied on the first benchmark to test 

the model response using a single mass model for the shaft. 

The numerical time-step is 250 µs 
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Figure 80: DFIG MEVA benchmark 
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o  Test 1, Small perturbation of ±5% on the terminal voltage of the equivalent 

was applied with the objective of obtain a linear response of the controls. 

o Test 2, Three phase fault on the interconnection point through  a fault resistance 

of 30 Ohms is applied during 100 ms. 

o Test 3, Wind ramp simulation. 

 

When Figure 80 the results are compared to the PSS/E results (see Figure 35) it is 

concluded that PSS/E is able to reproduce approximately MEVA modelling results. 

PSS/E is however less precise due to its large numerical integration time-step and 

approximation in the network model. 

The higher accuracy of the MEVA model is confirmed by the detailed DEMTP 

reference. 

4.1.3.1 Test 1, Voltage perturbation 
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Figure 81: Active power injected from the wind farm. 
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The mechanical power remains constant since the wind is constant. In consequence 

the active power injected by the WTG at the bus WINDLV1, will remain constant in the 

final steady-state after perturbation. This trend is shown in Figure 81. 

The wind speed is constant and equal to 11.5 m/s. The pitch angle is also constant 

and equal to zero. The Figure 82 show the reactive power of the WTG measured at PQ1. 

It rises when the voltage step lowers and drops when the voltage step increases but it 

does not reach the limits of reactive power. 

The perturbation is a step change of ±5% on the Grid voltage on bus EG. The 

Figure 83 shows the terminal voltage of the WTG at the bus WINDLV1. This voltage 

tracks the grid voltage but finally the WTG Terminal voltage is controlled at its 

reference value. 
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Figure 82: Reactive power injected from the wind farm. 
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Figure 83: Voltage at terminal bus of wind generator. 
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4.1.3.2 Test 2, Three phase fault 
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Figure 84: Active power injected from the wind farm 
 

The active power of WTG is shown in Figure 84. The active power measured at 

PQ1 tracks the voltage waveform. Due to the reduced voltage, the control current is 

raised and reaches the current upper limit. 

The Figure 85 shows as the reactive power injected by the WTG at the bus 

WINDLV1. It contributes with reactive power to the fault. 

The Figure 86 shows the terminal voltage drops near 0.4 pu during the time of fault 

at the interconnection bus WINDHV1. This voltage does not reach zero due to the fault 

resistance of 150 Ohms. After the fault is cleared a small voltage overshoot is observed 

as result of the fast voltage control. 

The pitch angle changes by only few degrees to control the over-speed and 

overload during the fault duration (see Figure 87). The wind speed is constant and equal 

to 11.5 m/s. 
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Figure 85: Reactive power injected from the wind generator 
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Figure 86: Voltage at terminal bus of wind generator. 
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Figure 87: Pitch angle of wind generator. 

4.1.3.3 Test 3, Wind Ramp 

The Figure 88 shows the wind ramp applied to the WTG at the bus WINDLV1. 

The pitch action controlled accurately the over speed and only a small change of the 

active power of WTG occurs (see Figure 89). 

The wind ramp is tracked by the pitch angle control to avoid the over speed and the 

possible overload (see Figure 90). 
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Figure 88: Wind speed. 
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Figure 89: Active power injected from the wind farm. 
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Figure 90: Pitch angle of the wind generator. 
 

4.2 Full converter MEVA model 

The top level view of the Full Converter (FC) MEVA model with its initialization 

devices is shown in Figure 91.  

The FC MEVA has a bigger converter than the DFIG version and allows a better 

voltage control and reactive power control. Since the generator is completely decoupled 

from the grid, the active power control is more accurate.  

The FC_WTG device shown in Figure 91 is a subnetwork with several 

subnetworks for its various modeling functions and control systems. 

Almost all parameters of the device can be modified through its mask. There are 

two external interfacings points (pins). The right pin is a 3-phase pin allowing to connect 

the FC_WTG device to the 3-phase network. The left pin is used for providing the 

random variation of the wind speed. The mean wind speed is found inside the top level 

mask as parameter. 
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Each FC_WTG device can represent one or more generators and include a 

complete wind farm. 

Since the model must be initialized it is need to perform a Load flow solution 

followed by a steady-state solution. The LF device provides the PQ constraints of the 

FC_WTG. The LF device is used in the load flow solution and together with other LF 

devices, it allows the calculation the Load-Flow solution phasor for the complete 

network. The steady-state and the following time-domain solutions can be started from 

the Load-Flow solution. 

In the steady-state solution the ideal voltage source is used to provide the phasor 

found in the Load-Flow solution. The voltage source is disconnected before the first 

time point computation in the time domain solution, but allows to initialize the state 

variables of the simulated network. At the same time the FC_WTG is turned on and 

starts controlling its internal source for the rest of simulation. It is also noticed that the 

FC_WTG must provide the same PQ constraints and must be given Load-Flow solution 

voltage at its terminal. To reproduce this same behaviour with the FC_WTG model, the 

values of Pschedule, Qschedule and Vschedule must be included in the main mask of the 

FC_WTG device. In this way and according to the method described in the section 2.9, 

the initialization of the MEVA model is fast and accurate.  

The contents of the breaker connecting the FC_WTG to its network are shown in 

Figure 91.  

4.2.1 Model mask 

When the FC_WTG device is double clicked it opens a subcircuit mask with a 

collection of parameters. Each device can be given a separate set of parameters for the 

same subnetwork contents. Most parameters are physical parameters for the 

representation of the machine model. Only a few parameters must be adjusted to 

represent various operation conditions and match available simulation results. 

Basically the parameters that must be adjusted are found in the Generator Data and 

Schedule Data of the main mask model. 
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Generator Data: 

Nmachines = Number of machines 

S_rated = Aparent rated power in (VA) per machine 

V_rated = RMSLL Terminal voltage in (V) 

f_rated = Rated frequency in (Hz) 

Scheduled Data: 

Vschedule = Terminal voltage in pu, value from the load flow solution 

Pschedule = Active power in pu, value from the load flow solution 

Qschedule = Reactive power in pu, value from the load flow solution 
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1 2

0.69/34.5
 

LF

Phase:0

P=17.5MW
Q=-2.3MVAR

FC1_init
+

SW_LF1

 

 

-1/1E-15/0

+

0.69kVRMSLL /_24
BUS:  

FC1_init

PQ1

ini1

Vw

FC_WTG

Vw

Vent1

WINDLV1

0.97/_24.5

 

Figure 91: Top level device view of the FC_WTG and Initialization switches for 
connecting the FC WTG in the time-domain solution 
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Additional parameter values which are found in the initial condition values 

window, Figure 92, it divide in sections Rotor Mechanical model, Turbine Control, 

Active Power Control, Reactive Power Control, Dynamic Breaker Resistor, Low 

Voltage Power Logic, Converter Current Limit, Protection. 

The Normal operation is defined by default parameters values. There are also some 

optional parameters, such as: 

o Activation or desactivation of the active power control. 

o To select the alternative of reactive power control and priority selection. 

The initialization of the mechanical variables; wind speed, pitch angle and slip; are 

obtained using the method described in section 2.1.3 (through a MATLAB script). The 

wind speed is introduced into the wind block and the initial pitch angle into the main 

mask.  

 

Figure 92: Initial value window for the MEVA model 
 

4.2.2 Full converter block components.  

The FC model components are found in Figure 93. 

Basic parameters to change 
the allocation condition and 
to Initialize the MEVA model 
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The MEVA modelling approach shares the same PSS/E model blocks defined in 

CHAPTER 2, in consequence the blocks presented in Figure 93 are directly related: 

o For the wind block, vent1 of the in the Figure 91, see the section 2.2, 

o For the mechanical turbine model, Wind power in the Figure 93, see the section 

2.1.2.3, 

o For the pitch control, Turbine control in Figure 93, see the section 2.3.4, 

o For the rotor model, Rotor in the Figure 93, see the section 2.5.1, 

o For the reactive control, Q control in Figure 93, see the section 2.7, 

o For the torque and power control, Turbine control and converter current limiter 

in Figure 93, see the section 2.6, 

o For the protection block model, Protections in Figure 93, see the section 2.8. 

The MEVA model includes additional components in addition to the PSS/E model 

blocks, all included into the current converter limit block of Figure 93: 

o Converter Current Limit (CCL), 

o Dynamic Breaker Resistor (BR), 

o Low Voltage Power Logic (LVPL), 

o LVRT voltage support (VS) 

o Priority selector of P or Q in the current limit (PS). 

A complete description of each  function is given in the subsections below. 
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Figure 93: Model block components 
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4.2.2.1 Current converter limiter control block 

This block is essentially the same as the current converter limiter shown in Figure 

28, it additionally includes the new characteristic associated with FC CCL-BR-LVPL-Q 

Priority and LVRT support, which modify the original block connection. It is shown in  

Figure 94. This model calculates the active and reactive powers to be delivered to the 

system based over inputs from the turbine model, Pord from the power/torque control 

model shown in Figure 21, and the supervisory var controller, Qord. Qord can also be 

held constant or determined by a power factor regulator. 

The electrical control is a simplified representation of the converter control system. 

This model monitors the generator reactive power and the terminal voltage to compute 

the command currents IQcmd and IPcmd shown in Figure 94 and equation (3.2). The 

voltage error is multiplied by a gain and integrated to compute the current command. 

The magnitude of the gain determines the effective time constant associated with the 

voltage control loop. The IQcmd is limited due to the hardware constraints. 

The active current command is computed by dividing the active power order, from 

the wind turbine model, by the generator terminal voltage. The active current command 

is limited to the short term active current capability of the converter. 

The primary structural change to the model was to generate the reactive current 

command rather than a flux command. Additional functions include a dynamic breaking 

resistor, low voltage power logic, converter current limit and LVRT voltage support will 

be developed in the follow section. 
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Figure 94: Current converter limiter 
 

4.2.2.2 Dynamic breaking resistor 

The objective of the dynamic breaking resistor is to minimize the WTG response to 

the large system disturbances, such as extended periods of low voltage. This is 

accomplishing by absorbing energy in the breaking resistor when the power order is 

significantly greater than the electric power delivered to the grid. In this model (Figure 

95) the power order is compared with the actual electric power to determine the power 

absorbed by the breaker resistor, Pdbr. This is integrated to determine the resulting 

energy to the breaker resistor, E_dbr, shown in Figure 95. As long as the energy level is 

less than the threshold, Ebst of 0.2 pu, no other actions occurs. When the energy level 

exceeds the threshold the resulting error signal is greather than zero and the amount the 

power absorbed by the dynamic breaker resistor is reduced. This ensures that the energy 

capability of the resistor is respected. 
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Figure 95: Dynamic breaker resistor 

4.2.2.3 Low voltage power logic 

The low voltage power logic reduces the system stress during the fault, due to 

ramping down effect, and immediately following faults, due to ramping up.  

When the terminal voltage falls below a given threshold, Vdown in Figure 96, the 

power order ramps down and then when the terminal voltage recovers to a level above a 

different threshold, Vup in Figure 96, the power order ramps up. In general the ramp up 

will be at a slower rate than the ramp down. Again, this is intended to reduce system 

stress. 
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Figure 96: Low voltage power logic 
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4.2.2.4 LVRT voltage support 

A LVRT voltage support function is available in the FC model. The voltage 

function show the reactive current output as a function of the terminal voltage reduction. 

The Figure 97 shows that for faults that results in more than 50% of reduction in the 

voltage, this function provides 100% of the reactive current output. For a fault that 

results in less than 10% of reduction in the voltage, no action beyond that of the other 

control is taken. For a fault that results between 10% and 50% of reduction in the 

voltage, the reactive current output varies as it is shown in the figure below. 
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Figure 97: LVRT function 
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4.2.2.5 Priority of P or Q 

The objective of this function is to prevent the combination of active and reactive 

currents to exceed converter capability. Flag selector determines the operation condition 

to the priority of P or Q. 

 

4.2.3 Model tests 

The benchmark of Figure 98 is used to test the FC MEVA model. The benchmark 

represents a wind farm with three equivalent generators of 21MVA, 9MVA and 

27MVA. The scopes obtained during the simulation are always for FC_WTG_1. The 

benchmark data is given the Appendix C. 
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Figure 98: Full converter benchmark, MEVA FC model 
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The perturbation used in this test include the three phase Bus Fault limited by a 

resistance. The light fault resistance was of 215 Ohms and the heavy fault resistance was 

of 38 Ohms. Additionally different Wind Profiles, change of power order and change of 

frequency were applied. The following tests are performed: 

o Test 1: simulation with decreasing wind speed ramp. Figure 99 to Figure 101 

show the behaviour for decreasing wind speed ramp. The turbine decreases its 

speed in 11 s, the rotor speed, the electrical power and mechanical power are 

zero after 11 s. 

o Test 2: simulation with increasing wind speed ramp. Figure 102 to Figure 104 

show the behaviour for decreasing wind speed ramp. At 16 s the wind speed 

passes the wind speed limit of 25 m/s. At 19 s the turbine trips. 

o Test 3: response with low voltage power logic to heavy fault at the 

interconnection point bus Windhv1 (Figure 105 to Figure 108). The fault has 

been applied at 1 s, the voltage at the bus Windhv1 drops to 0.15 pu during 0.5 

s. The power logic was activated during the heavy fault event. 

o Test 4: response for a fault at the bus Windhv1. These simulation results are 

shown in Figure 109 to Figure 111. The fault has been applied at 1 s, the 

voltage at the bus drops to 0.7 pu during 0.5 s. The power logic is not activated 

in light fault events. 

o Test 5: converter current limit reduction with Q priority. This test shows the 

response to the test of converter current limit reduction, ImaxTD, with Q 

priority. The ImaxTD step down is generated by a signal generator (see Figure 

112) and applied to the FC_WTG control. At 1 s the reduction has been applied, 

the current has been limited from 1.7 to 0.8 pu (see Figure 112 to Figure 116). 

o Test 6: response of the active power control to the frequency rise starting at 1 s. 

The frequency ramp (see  Figure 117) is generated by a signal generator and 

applied to the FC_WTG control. The frequency ramp increases from 1.0 pu to 

1.02 pu. As result of the control function Active Power Control a power 

reduction occurs. Simulation results are shown in Figure 117 to Figure 119. 
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Figure 99: Wind speed applied to FC_WTGs, Test 1 
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Figure 100: Mechanical power of the FC_WTG_1 turbine, Test 1 
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Figure 101: Electrical power output of the FC_WTG_1, Test 1 
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Figure 102: Wind speed applied to the FC_WTGs, Test 2 
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Figure 103: Electric power output of FC_WTG_1, Test 2 
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Figure 104: Turbine rotor speed in pu of FC_WTG_1, Test 2 
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Figure 105: Electric power output of the FC_WTG_1, Test 3 
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Figure 106: Reactive power output of the FC_WTG_1, Test 3 
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Figure 107: Voltage at bus WINDHV1, Test 3 
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Figure 108: Mechanical power of the FC_WTG_1 turbine, Test 3 
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Figure 109: Electric power output of the FC_WTG_1, Test 4 
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Figure 110: Reactive power output of the FC_WTG_1, Test 4 
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Figure 111: Voltage at bus WINDHV1, Test 4 
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Figure 112: Current limit reduction ImaxTD applied to the current converter 
limiter block of the FC_WTG_1, Test 5. 
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Figure 113: Electric power output of the FC_WTG_1, Test 5. 
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Figure 114: Mechanical power output of the FC_WTG_1, Test 5. 
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The following two figures show the breaker resistance operation, the energy and 

the power absorbed. 
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Figure 115: Dynamic resistor, absorbed energy (see Figure 95), Test 5 
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Figure 116: Dynamic resistor, absorbed power, Pdbr (see Figure 95), Test 5. 
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Figure 117: Frequency in pu at the terminal bus WINDLV1, Test 6 
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Figure 118: Electric power output of the FC_WTG_1, Test 6. 
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Figure 119: Mechanical power of the FC_WTG_1 turbine, Test 6. 
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CHAPTER 5.  DEMTP Model, DFIG and FC 

 

5.1 DFIG DEMTP model 

The detailed EMTP (DEMTP) model presented in this section is an EMTP type 

model implemented in EMTP-RV. The model can be initialized and connected to any 

EMTP-RV network. It constitutes a detailed wound rotor asynchronous generator with a 

converter connected between the stator and rotor of the machine. This model is based on 

the vector control theory that allows the decoupled control of the active and reactive 

powers. The active power is determined from the controls associated to the mechanical 

equation of the WTG. The reactive component is associated to the voltage control at the 

WTG terminals or the reactive power constraints. 

The top level view of the DFIG_WTG with its initialization devices is shown in  

Figure 120. The DFIG_WTG device is a subnetwork with several subnetworks for its 

various modeling functions and control systems. 

Almost all parameters of the device can be modified through its mask. There are 

two external interfacings points (pins). The right pin is a 3-phase pin allowing to connect 

the DFIG_WTG device to the 3-phase network. The left pin is used for providing the 

random variation of the wind speed. The mean wind speed is given inside the top level 

mask as a parameter. Each DFIG_WTG device can represent one or more generators and 

include a wind farm. 

Since the model must be initialized it is needed to perform a load flow solution 

followed by a steady-state solution. In EMTP-RV  this is achieved using separate layers 

of components for the different solution modules. As shown in Figure 120 each 

DFIG_WTG device is paired with a load-flow constraint device (LF device) and an ideal 

voltage source. The LF device is used in the load-flow solution layer. It provides the PQ 

constraints of the DFIG_WTG. The LF device is used in the load-flow solution and 

together with other LF devices, it allows the calculation of the load-flow solution phasor 

for the complete network. 
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The steady-state and the following time-domain solutions can be started from the 

load-flow solution. This is a two step process: the first step is the load-flow solution and 

the second step is the steady-state solution automatically followed by the time domain 

solution. In the steady-state solution the ideal voltage source is used to provide the 

phasors found in the load-flow solution. The voltage source is disconnected before the 

first time point computation in the time domain solution, but allows to initialize the state 

variables of the simulated network. At the same time the DFIG_WTG is turned on and 

starts controlling its internal source for the rest of the simulation. It is also noticed that 

the DFIG_WTG must provide the same PQ constraints and must be given the load-flow 

solution voltage at its terminal. To reproduce this same behaviour with the DFIG_WTG 

model, a MATLAB script calculates from the results of the LF device the converter 

reference voltages and currents. 

The contents of the breaker connecting the DFIG_WTG to its network are shown 

in Figure 121. An artificial device is set to avoid EMTP_RV warning messages on 

floating conditions in the steady-state solution and before its connection in the time-

domain solution. 
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Figure 120: Top level device view of the DFIG_WTG 
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Figure 121: Initialization switches for connecting the WTG in the time-domain 
solution 

 



158 
 

5.1.1 Model initialization 

The initialization script is presented in the section 5.1.8. The MATLAB script 

produces an output file named IC_DFIG.txt which is copied and pasted inside the main 

mask of the DFIG_WTG model in the section of initial values (Figure 122). 

 

Figure 122: DFIG_WTG mask, DEMTP model. 
 

5.1.2 Top level circuit 

The top level circuit of the DFIG_WTG shown in Figure 123. I, is composed of 

functional blocks for various model sections. 
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Figure 123: Top level circuit block of the DFIG_WTG. 
 

The model is built using EMTP-RV control devices and implements the control 

functions according the manufacture information. 

The various top level functions are also composed of one or more subcircuits. The 

subcircuits include comments and references about the operation or the simulation 

options. The following sections are used to provide a quick description of each top level 

function mainly for providing a simple reference. All parameters are defined inside the 

DFIG_WTG top level mask. 

The DEMTP modelling approach shares the same PSS/E model blocks defined in 

the CHAPTER 2. The following references can be used:  

o For the wind block, see the section 2.2, 

o For the mechanical turbine model, see the section 2.1.2.3, 

o For the pitch control, see the section 2.3.4, 

o For the rotor model, see the section 2.5.1, 

o For the reactive control, see the section 2.7, 

o For the torque and power control, see the section 2.6, 

o For the protection block model, see the section 2.8. 
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The DEMTP model includes additional components and new characteristics as 

compared to the PSS/E and MEVA model blocks. These are the current limiter and the 

firing control of converters. They are described below. 

5.1.2.1 DFIG_ASM 

The double feed asynchronous generator utilizes a wound-rotor induction generator 

with an ac-dc-ac converter, dc link, between the stator and the rotor terminals and two 

IGBT bridges. The wind generator arrangements are shown in Figure 124. 

Additionally a input filter Lchoke, Rchoke and Cshunt on the line converter side, 

two measurement points, several points of input/output signals are used in different 

control blocks, LVRT protections and crowbar protection. 
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Figure 124: Top level circuit block 
 

5.1.2.2 IGBT bridge 

The IGBT bridge on the line converter side is one of the two bridges that operates 

with the PWM command signals (s1 to s6). There are inductances and resistances 

belonging to the bridge (Rpont and Lpont). It is shown in Figure 125. 
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Figure 125: Switch bridge on the line converter side. 

 

Figure 126: IGBT model 
 

The IGBT is modeled according to the diagram of Figure 126. It is a combination 

of an ideal controlled switch, nonlinear resistance for the classical diode equation and a 

snubber (RLC branch). 
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5.1.2.3 Measurement system on the rotor side circuit 

On the rotor circuit there is a measurement block (Mes_Rotor, Figure 124). The 

frequency on the rotor side is variable with the rotor speed. The nominal power is 

reached with a slip of -16%, in consequence taking the initial slip equal to -16%, the 

mean frequency must be near 9.6 Hz, since 60Hz times 0.16. 

To perform a measurement without errors it is needed to extract the fundamental 

component of the rotor frequency. This is done using two filters centered at 9.6 Hz. 

These two filters are used to measure the phase current and line-to-line voltage to finally 

calculate the instant active power. 

5.1.2.4 Crowbar protection 

The crowbar protection model is located at the rotor side, this protection is 

continuously monitoring the dc bus voltage and triggering a short circuit switch on the 

rotor in the case of an abnormal operation condition. The abnormal conditions are 

defined as the under/over dc voltage outside the band of ±10% around the rated value. It 

is shown in Figure 127. 
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The crow bar protection acts according 
the Vdc level, opening the dc link and 
connecting short circuit resistance on the rotor.
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Figure 127: Crowbar Protection 
 

5.1.3 DFIG Control 

The top level circuit of the DFIG Control is composed of the common blocks 

described in the CHAPTER 2 and section 5.1.2 that defined the mechanical control and 

the slow electrical controls. 

Figure 128 shows the complete set of the line side and the rotor side controls. The 

torque regulator and volt/var regulator belong to the category of slow control, developed 

in Figure 28, and the rest belongs to the category of fast control that will be developed in 

following section.  
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Figure 128: Line and rotor side control 
 

5.1.3.1 Synchronizing function, PLL in DEMTP model 

The synchronizing function is illustrated in Figure 129. This consists of a PLL 

based upon measured terminal voltage and the rotor angle from a position sensor on the 

shaft. The line side converter uses the PLL angle reference directly, while the rotor 

converter shifts the angle reference by the rotor position. 

-
+

Rotor angle 
from sensor

PLL
Ref. Angle 
line conv.

Terminal 
voltage

Ref. Angle 
rotor conv.

 

Figure 129: Synchronization function 
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Figure 130 shows the detailed version of the PLL model implemented in EMTP-

RV. The PLL inputs are the three phase instantaneous voltages and the base voltage.  

The outputs are the phase angle, its sin and cos functions, and the instantaneous 

frequency.  

The three instantaneous voltages are transformed in pu by dividing by Vbase. 

These three pu signals are projected according to the dqo frame reference. Given the 

Park transformation matrix 

 t   (5.1) 

 

2 2

3 3
2 2 2

3 3 3
1 1 1

2 2 2

dqo

cos( ) cos( ) cos( )

P sin( ) sin( ) sin( )

   

   

   
 
       
 
 
  

 (5.2) 

The transformation of the stator voltages gives 

 
d a

q dqo b

co

v v

v P v

vv

   
      
     

 (5.3) 

Figure 130 shows that the q component of the terminal voltage is integrated during 

an average period, as result of this process, it obtains a null value during steady state 

condition. 

The integration during an average period is calculated by means of two functions, 

the first function calculates the integral value over a sliding period and the second one 

calculates the average value over the sliding period. 

In the transient condition the previous value is the input of the PI controller which 

has as output the instantaneous frequency variation in rad/s. Dividing by a scale factor of 

2 , after a filter and limiter blocks  the frequency in Hz is calculated. 
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Figure 130: PLL implementation in EMTP-RV. 
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The instantaneous phase angle is obtained by the integration of the instantaneous 

frequency variation in rad/s. The variable .t  is updated continually. 

5.1.3.2 Line and rotor converter firing control 

The PWM principle consists in controlling by means of a switching operation a 

given mean voltage value from a constant direct voltage. Then, the pulse-width 

modulation uses a square wave whose pulse width is modulated resulting in the variation 

of the average value of the waveform. An oscillator is used to generate a triangle or 

sawtooth waveform and a control set the level of the steady reference voltage, see Figure 

131.  A comparator compares the sawtooth voltage with the reference voltage. When the 

sawtooth voltage rises above the reference voltage, a power electronic switch is switched 

on. As it falls below the reference, it is switched off. This gives a square wave output. 

If we consider a square waveform Y  with a low value of zero, a high value maxY  

and a duty cycle D , the average value of the waveform is given by: 

 maxY=D  Y  (5.4) 

From this, it is obvious that the average value of the signal is directly dependent on 

the duty cycle D . 

For both converters the carrier waveform generated by the signal generator has a 

unitary amplitude at 3000 Hz and three reference waveforms are used for phases a, b and 

c. The phase and frequency are given by the PLL angle and the dq voltage fast controller 

on line and rotor side using the park transformation. 

The three reference waveforms are scaled for dcV  (se equations (5.5) and (5.6)) 

and compared with the carrier resulting into the switch signals to the IGBT bridge. The 

Figure 132 shows six signals divided in three columns; s1-s4 , s2-s5 and s3-s6; to 

control the IGBT bridge. In each column a control signal is sent to the upper switch and 

the complementary signal to the lower switch. 
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Figure 131: PWM principle 
 

 

One common method of generating the PWM pulses uses comparison of the output 

voltage to synthesize (60 Hz in this case) with a triangular wave at the switching 

frequency (1080 Hz in this case). This is the method implemented in this work. 

In the 3-Phase PWM, the line-to-line RMS output voltage is a function of the DC 

input voltage and of the modulation index m as given by the following equation [24] 

 
3

2 2rmsLL dc
m

V V  (5.5) 

 

In consequence, the required value for the modulation index to obtain 1 pu 

generated voltage by the converter is 
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Figure 132: PWM implementation 
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2 2 3nom

dc

V /
m

V
  (5.6) 

where nomV  is the RMS line-to-line nominal voltage of the line side converter or the 

nominal voltage of the rotor in the rotor side converter. In Figure 132, it is shown that 

the nominal value nomV  is replaced by the load-flow voltage scheduleV  to match better 

during the initialization process. 

5.1.4 Current limiter 

Before reaching the PWM control, both currents used for the slow control (see d 

and q currents in Figure 28) are limited using the current maximum of the stator and 

rotor. The limiter works with active power preference in front to the reactive power, it 

calculate the active current limits and reactive currents limits. It is shown in Figure 133. 

 

Figure 133: Current limiter 
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5.1.5 Rotor reference voltage for the PWM controller  

The DFIG control includes two types of control processes; the slow control, similar 

to the control of the active and reactive power in the CHAPTER 3 of PSS/E and 

CHAPTER 4 of MEVA model, and fast control used to control the PWM switching 

strategy. Basically the rotor side control considers two PI controllers, one of them is 

proportional to the active power and the other is proportional to the reactive power. 

The error signal in each controller is determined by the difference between the dq 

rotor currents measured and the dq currents reference. The dq current references are 

obtained by the sum of two components, the first component came from the initialization 

process, Id_ref and Iq_ref, and the other current components, IQ and IP, that result of the 

current output of the slow controllers, volt/var defined in the section 2.7 and torque 

controllers defined in the section 2.6 respectively. In the Figure 28 part 1 the control 

currents qi and pi  are equivalents to the control currents IQ and IP shown in Figure 134. 

Given that the reference current is calculated on the stator frame reference, the 

measured rotor current must be projected on the same reference frame. In this way, it is 

necessary first to calculate the dq0 rotor components and after that to rotate by an angle 

ψ  (the slip angle from the rotor axis to the stator axis frame reference). This angle is the 

negative of the rotor angle due to the negative clockwise rotation reference.  

This process is executed in two steps. First using the Park transformation matrix 

 
r r

r r

r r

d a

q dqo b

o c

i i

i P i

i i

   
   

   
   
      

 (5.7) 

and the rotation matrix 

 

cos(ψ) -sin(ψ) 0

R= sin(ψ) cos(ψ) 0

0 0 1

 
 
 
  

 (5.8) 

we obtain 
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r r

r r

r r

d

q

o o

i i

i R i

i i





   
   

   
   
      

 (5.9) 

 

Now it is possible to compare both currents, the reference current and the 

measured rotor current, since they are expressed on the same reference frame, and 

obtaining the error signal.  

The voltage output signal in the stator reference frame is the sum of the 

initialization rotor voltages (Vd_ref and Vq_ref) and  the output from the PI controller, 

Vrd and Vrq, as shown in Figure 134. 

Finally to get the three-phase sinusoidal reference signals for the converter firing 

control, the voltage signals must be rotated using the R-1 transformation, to pass from the 

stator to the rotor, and finally the 1
0dqP   transformation to pass from dq0 to abc phase 

components: 

 1
cos(ψ) sin(ψ) 0

R = -sin(ψ) cos(ψ) 0

0 0 1


 
 
 
  

 (5.10) 

 
d α

-1
q β

o o

v v

v =R v

v v

   
   
   
   
   

 (5.11) 

 1
0

1

1

1

dq

cos( ) -sin( )

2π 2π
P = cos( - ) -sin( - )

3 3
2π 2π

cos( + ) -sin( + )
3 3

 

 

 



 
 
 
 
 
 
 
 

 (5.12) 

 1
0

a d

b dq q

c o

v v

v =P v

v v


  
  
  
     

 (5.13) 
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where   is the phase calculated from the frequency dictated by the PLL.  
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Figure 134: Rotor side PWM controller 
 

5.1.6 Line reference voltage for PWM controller 

By means of a current regulator shown in Figure 135 it is possible to obtain the dq 

voltage outputs in pu, which enter line side PWM block from two PI controllers that act 

separately on the dq current components. The line side PWM controller is shown in 

Figure 135. The measured current on the line side of the converter branch must be scaled 

for the current base to obtain a pu value and after using the Park transformation result 

the dq current components used as input of the current regulator.  

The id_ref current reference is the output of the output of the dc voltage controller. 

The iq_ref current reference is a constant calculated during the initialization 

process. 
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Figure 135: Line side controller 
 

As it is shown in the top level circuit of Figure 135, to get the reference voltage 

according to the dq axis, it is need to consider the difference between the terminal 

voltage and the voltage on the converter filter impedance ( chokeZ ): 

 
refd choke d choke q dv r i l i v     (5.14) 

 
refq choke q choke d qv r i l i v     (5.15) 

 

5.1.7 DEMTP mechanical initialization 

Due to the fact that harmonics are present in the injected rotor current, a transient 

condition is created only fundamental frequency is used. The time constant of this 

phenomenon is limited to 0.5 s, the minimum time to reach the steady state condition. 

The strategy to accelerate the convergence of the electric variables to their values 

corresponding to the load-flow solution is reached when during this period the wind 
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speed is considered constant. After the period of 0.5 s is elapsed, the wind speed is a 

again considered as variable.   

5.1.8 DEMTP electrical initialization 

Without the initialization process presented in this thesis for calculating the rotor 

voltage and current references, the time to reach the steady state, represented by a load 

flow solution, should be in the order of 6 to 8 s of simulation time (see Figure 141). In 

addition the steady-state powers may be different from the load-flow conditions. The 

initialization process is a guaranty for matching the P, Q and V constraints given by the 

load-flow solution. The initialization procedure reduces the computing time for reaching 

the steady-state in the time-domain solution. 

The controllers in the DEMTP model are divided into slow controllers and fast 

controllers. The slow controllers are similar to the PSS/E and MEVA cases, with the 

difference that before they were acting directly on the generator/converter model and 

now their outputs are the references for the fast controllers. The fast controllers act on 

the PWM device. 

The fundamental frequency of the current  injected in the rotor of the asynchronous 

machine is given by the slip for the system frequency. When this current component is 

injected into the rotor, the result is a perfect initialization. In the contrary case an 

initialization transient will occur when harmonics are present in the injected current. 

This fact translates into a flux transient. The time constant of this phenomenon is limited 

to 0.5 s, which is the minimum time to reach the steady state condition. Due to this 

limitation, during the initialization process the integrators are closed during the short 

period of 0.5 s. This strategy has the effect of accelerate the convergence of the electric 

variables to their values corresponding to the load flow solution.   

The following equations are programmed in the auxiliary script to help in the 

initialization task. P  is the total active power generated in W, Q  is the total reactive 

power generated in vars, V is the voltage (line-to-neutral) in V,   is the voltage phase 

angle in degrees, sr  is the stator resistance in pu, sX is the stator reactance in pu, rX is 
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the magnetisation inductance in pu, rr  is the rotor resistance in pu, rX is the rotor 

reactance in pu, s is the initial slip of ASM in pu, nV is the rated terminal voltage in V, 

nS  is the rated complex power in VA, sP is the active power generated by the stator of 

the asynchronous machine, sQ is the reactive power generated or absorbed by the stator 

of the asynchronous machine, cP is the active power output by the grid side converter, 

cQ is the active power output by the grid side converter. Then 
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1 5

c
c

s

S
I conj( )

. V



  (5.30) 

Using .t   and Park's transformation 

 
r r

r r

r r
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q dqo b
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v v

v P v
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   
   
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 (5.31) 
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q dqo b

o c

i i

i P i

i i

   
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   
   
      

 (5.33) 

where 
rdv is the d component of the rotor voltage, 

rqv is the q component of the rotor 

voltage, 
rdi is the d component of the rotor current, 

rqi  is the q component of the rotor 

current, 
cdi is the d component of grid side converter current and 

cqi is the q component 

of grid side converter current. These last three equations give the reference values to the 

controllers on the rotor side and grid side.   

5.1.9 MVEMTP DFIG model 

The alternative between the MEVA model and the DEMTP model is the 

MVEMTP. This model approach only changes the dc link of the DEMTP model with 

control sources keeping both the slow and fast controls used in the DEMTP model. The 

IGBT bridges are eliminated. The dc link block is shown in Figure 136. 
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Figure 136: DC link block, MVEMTP model 
 

Figure 137 shows the controlled sources [25][26] connected  on the line side and 

rotor side.  

The control signals of the sources are generated from the PWM implementation, 

(Figure 132), by suppressing the comparison part shown in Figure 138, and adding a 

gain to change from pu values to physical values. 
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Figure 137: Controlled sources of DC link, MVEMTP model 
 

 

Figure 138: Control signals, in pu. 
 

Neglecting the converter losses, the direct voltage dcv  on the main capacitor C  

terminal is obtained according to equations (5.34) and (5.35). The current source dci is 

controlled with the equation (5.34). 
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where lineP  is the active power measured on the line side, rotorP  is the active power 

measured on the rotor side and 
inidcv is the initial value of the direct voltage. 

The MEVA model only considers in its response the fundamental component of 

the electrical variables, in addition the wind speed must be approximately constant and 

equal to the mean value. It cannot contain higher frequencies. The advantage of the 

MVEMTP modeling approach in comparison with MEVA model is that it admits a 

variable wind speed with increased computation time. In consequence the voltage 

evaluation with absence of harmonic component due to the real wind speed measured or 

the wind speed extended model, develop in the section 5.1.10, may be calculated. 

The DEMTP model includes all the harmonics in its response due to the IGBT 

bridges controlled by the PWM method. The MVEMTP model considers in its response 

only the fundamental component on the converter side. It is limited to lower frequency 

transients. On the other hand this modeling approach saves significantly on computation 

time with a good match of results. The MEVA model is the fastest and gives the best 

computational performance. 

5.1.10 Extended Wind model 

This section is complementary to the wind model section 2.2. The extended wind 

model is essential for obtaining realistic simulations for the power fluctuations during 

the continuous operation of a wind farm. The wind model combines the stochastic 

effects caused by the turbulence and deterministic effects caused by the tower shadow.  

The stochastic part includes the coherence between the wind speeds at different 

wind turbines in a wind farm as well as the effects of rotational sampling, which is 

known [27] to move energy to multiples (3P) of the rotor speed from the lower 

frequencies. The wind farm scale model may include the effects of wakes from the wind 

turbines, by means of  the modification of the wind speed and turbulence intensity. 

Equivalent Wind  

Active and reactive power fluctuations generated by the wind turbines cause 

voltage fluctuations or flicker. Active power fluctuation may be caused by terrain 
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roughness effect, tower shadow effect (3P), wind turbulence, wake of the towers and 

fluctuations in the control system 

Except for control system fluctuations, the other effects may be included in the 

equivalent wind speed model. Equivalent wind speed produced by our model takes into 

account four main effects: mean wind speed, tower shadow, turbulence and wake.  

Mean wind speed 

The wind power equation considers that the wind speed distribution on the rotor 

area is constant. In reality wind speed profiles result in different wind speeds at the 

blades nearest to the ground level compared to those at the top of the blade travel, which 

in turn produce corresponding flow and power effect on the entire rotor at the same 

instant. For wind speeds that lie in the operational range of the turbine and exceed about 

4m/s, the wind speed at a given height can be found from the relation [28]. 

 a
w 10

10

h
v (h)=v ( )

h
 (5.36) 

Where a  is the Hellman exponent, where 0.14<a<0.17; 10v is the wind speed for a 

height of h10 m; 10h is the height of 10 m. The mean wind speed is measured for 10 m 

and it is converted from its measuring level to the wind turbine hub level. 

Tower shadow 

Towers are obstacles to the free wind and modify the wind flow. When the rotor 

blade crosses the tower, a drop in the aerodynamic torque is occurred. The variation in 

the power or torque can be found from the performance characteristic [29] 

 u o w
1

M=M - [M (z.ω t)]
z

 (5.37) 

where the uM  represents the undisturbed wind distribution at the rotor and oM  is the 

oscillating component. The effect on the shaft is inversely proportional on the number of 

blades z and has a recurrence frequency wz.ω . 
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Turbulence 

Turbulence decreases the possibility of using the energy in the wind effectively for 

a wind turbine. The turbulence effect may be described by means of the Kaimal 

spectrum, K(f ) [27] 

 
2 5/3

f.XL
f.K(f) Uo=

f.XLσ (1+1.5 ( ))
Uo


 (5.38) 

where K(f ) is the spectral density function, f is the frequency of the turbulence,  is 

the standard deviation, XL is the turbulence length scale and Uo  is the average wind 

speed, all in the upwind direction. 

The length scale is dependent on the surface roughness, z0, as well as the height 

above ground, z. For the wind speed longitudinal component the standard deviation   is 

approximately constant with height. The standard deviation depends on the turbulence 

intensity and the average wind speed, it is given by I / Uo . 

 

Wake Effect 

Since a wind turbine generates electricity from the energy in the wind, the wind 

leaving the turbine must have a lower energy content than the wind arriving in front of 

the turbine. In fact, there will be a wake behind the turbine, a long trail of wind which is 

quite turbulent and slowed down, when compared to the wind arriving in front of the 

turbine. In the the wake effect, each wind turbine will slow down the wind behind it as it 

pulls energy out of the wind and converts it to electricity. Typically, energy loss from 

the Park Effect will be somewhere around 5 per cent [30]. 

 

5.1.11 Power quality parameters 

This section defines the power quality parameters such as total harmonic 

distortion, instantaneous flicker level, short term flicker and the flicker meter function. 

These concepts are use to test the model with fast wind speed variation. 
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The currently existing power quality standard for wind turbines, issued by the 

International Electrotechnical Commission (IEC), IEC61400-21[31], defines the 

parameters that are characteristic of the wind turbine behavior in terms of the quality of 

power and also provides recommendations to carry out measurements and assess the 

power quality characteristics of grid connected wind turbines.  

Two parameters are of remarkable importance: the flicker and the harmonic 

distortion.  

Voltage fluctuations. 

Active power fluctuations generated by the wind turbines cause voltage 

fluctuations or flicker. Turbulence and tower shadow effect are the reasons for these 

fluctuations. Measurements of the short duration flicker sensation (Pst) [32] has be 

performed inside the turbulence intensity range of 8-16%.The short duration flicker 

sensation is limited to Pst<=1. The Pst is based on observation times of ten minutes. 

However other norms demand a reduced observation time. To evaluate the Pst a flicker 

meter was developed in EMTP-RV. 

 

Total harmonic distortion (THD).  

The THD will be calculated directly using a probe included in EMTP-RV. The 

harmonic distortion limit for the voltage is THD <=8% . 

 

Flicker meter.  

The dependency between voltage fluctuation and flicker level must simulate a 

combining effect of human eye’s response to light, response characteristic of 

luminescent device and type of voltage fluctuation. The most popular flicker meter 

corresponds to UIE standard [33]. 

The whole measuring chain is a sequential combination of 5 blocks, the block 1 is 

a normalizing transducer (voltage adapter); the block 2 is the demodulator in the form of 

squaring transducer and low pass filter with cut-off frequency 35 Hz; the block 3 is a 
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weighting filter in accordance with UIE rule; the block 4 is a squaring transducer, low 

pass filter whose time constant equals to 300 ms; the block 5 is a statistic process. 

The flicker meter input V / V may be obtained by means of a demodulation 

process or measuring the V / V  at the collector bus using the relation   

 
V

r P x Q
V


     (5.39) 

Where r (resistance) and x  (inductance) are known from the grid data and the 

active and reactive powers are measured and expressed in pu. 

The flicker meter is represented by a voltage adapter block and three block more 

where each name block is according with its function.  

i o

BP_Filter

i o

EYE

i o

Brain

SQRT1   100
 

 

Figure 139. : Flicker meter blocks 
 

In the case of short term flicker evaluation, the action of the fifth block can be 

performed after the simulation has finished through the previous storage of IF points ( 

IFL is Instantaneous Flicker level). After that, using the process indicated in the standard 

[33] we calculate the percentile and finally with the following equation to calculate the 

short term flicker Pst  

 0.1 1 3 10 50Pst= 0.0314P +0.0525P +0.0657P +0.28P +0.08P  (5.40) 

The percentile notation used in the standards is slightly confusing, since the 

percentiles Pi correspond to percentage of samples for which levels are exceeded rather 

than to cumulative numbers of samples at lower levels. For example, 0.1P  corresponds 

to the level exceeded by 0.1% of the example. This level is more conventionally referred 

to as the percentile 99.9. The curves of IFL and PST values are obtained running a 

statistical process. 
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5.1.12 MEVA, MVEMTP and DEMTP Comparison 

This section compares the mean value models MEVA and MVEMTP with the 

detailed DEMTP model of DFIG.  

The MEVA model is the faster model approach but has limitations in the maximal 

time step, due to accuracy to calculate its phasors in the time domain solution. For the 

MEVA DFIG case the maximum time step is 250 µs. This maximum allows to maintain 

accuracy in the steady state condition and during a fault event (see Figure 143 to Figure 

150) . This model may be used for electromechanical transient studies with large 

frequency variations and voltage variations, such as islanding studies (see Figure 151 to 

Figure 156). The main limitations in this approach are the neglected flux dynamics of 

the generator and the absence of the dc link. This model not may be used for power 

quality studies such as flicker and harmonic. The MEVA model operates with wind 

variation such as gust or ramp with good results but when a real time series of wind 

speed is modeled the results are not sufficiently accurate. Then it is preferred to use the 

model with only constant wind speed. The absence of the dc link model makes it 

impossible to represent the crowbar simulation. The voltage protection acts tripping the 

model during heavy faults on the ac side, no dc protection is included. 

 The DEMTP model has a typical time step of 20 µs to 50 µs. It has been found 

that the MEVA model is at least 15 times faster than the DEMTP model. Its typical 

time-step is  near 200 µs. 

The MVEMTP modeling approach is the second fastest approach. This modeling 

approach includes a dc link model replacing the switching elements by controlled 

sources, as a consequence it is possible to trigger the crow bar protection, see Figure 

186. The possibility to run with variable wind speed (see Figure 179) make it possible to 

perform flicker studies, but the absence of harmonic production makes it impossible to 

study harmonic distortion (see Figure 181) . It has been found that when compared to the 

DEMTP model, the MVEMTP model is at least 7 times faster.  The typical MVEMTP 

time-step is near 100 µs. 
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The DEMTP model is taken as reference to all the studies specially for fast 

transients. The following studies are presented: total harmonic distortion (see Figure 

163); insulation coordination (see Figure 158), protection setting studies, (see Figure 

169) and flicker of short duration (see Figure 165 and Figure 166).  

5.1.13 DFIG DEMTP model tests 

This section presents several benchmarks to test specific aspects of the DFIG 

modelling. The tests are described below. 

o Test 1, initialization: for comparing the CPU timing with and without 

initialization method. 

o Test 2, combines modelling: for showing the similarities in the dynamic 

behaviour between the MEVA and DEMTP modelling approaches as in the 

radial benchmark as in islanding scenario.  

o Test 3, power Quality: a DEMTP model including a wind speed model with the 

ability to simulate turbulence and tower shadow effects with the objective of 

calculating total harmonic distortion and flicker level.  

o Test 4, full scale park: a wind speed model that includes wake effect and 

random initial blade angle together with four equivalent machines for wind park 

representation were used to evaluate the differences in the flicker and harmonic 

results. 

o Test 5, fast transient: the transient analysis for reproducing the finest details that 

could have influence on the development of the overvoltage phenomenon. The 

results of the analysis will be used to evaluate a strategy for limiting the 

overvoltage phenomenon. 

o Test 6, performance coefficient pC comparison: it shows the similarities in the 

dynamic behaviour before and after fault between two equivalent machines 

with the DEMTP model. Three pC  matrix representations are compared. The 

polynomial version is contributed in this thesis and it is the most efficient. 
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o Test 7, mean value comparison: using the same radial benchmark of Test 2, but 

with different nominal terminal voltages and separated simulation, it shows the 

similarities in the dynamic behaviour between the MVEMTP and DEMTP 

modelling approaches considering variable wind speed during the simulation.  

5.1.13.1 Test 1, initialization 

The correct initialization of the reference voltages and currents of the power 

electronics controls allows an important gain of computing time. To show the advantage 

of the method of initialization of the reference sources, a computationally intensive 

benchmark, a wind park section with 16 machines (DFIG) was simulated. The 

benchmark includes an equivalent system of 230 kV, a Zig-Zag grounding transformer, 

the substation transformer 230kV/34.5kV of 125 MVA Xcc=11.75% with saturation 

curve, an underground cable distribution grid in 34.5kV of 29 km of length, 16 DFIG 

generators of 1.5MW with their unit transformers of 34.5kV/0.575kV of 1.75MVA 

Xcc=5.7% with saturation and ZnO arresters on the 34.5kV side.  

This benchmark, shown in Figure 140, was used to evaluate the overvoltage 

produced after the main switch opens due to a single phase to ground fault near the wind 

generator number 8. When the main switch opens, it leaves the distribution system in 

neutral isolated condition, triggering a ferroresonance phenomena between the cable grid 

and the transformer unit nonlinear inductance.   

The minimum total simulation time is 3 s: 1 s is needed to reach the steady state 

condition and at least 2 s of simulation are needed after the fault condition. In the 

simulation of a wind farm section with 16 machines, with a required time step of 10μsec, 

each second of simulation (Intel reference processor) consumes 2.4 hours.  

A reduction of the simulation time period to reach the steady state condition from 

5-8 s to 0.5-1 s delivers a gain of 10 in computing time. This time gain becomes more 

important and significant when individual machines are represented with the DEMTP 

model.  

 



189 
 

 

Figure 140: Benchmark of 16 WECs 
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Figure 141: Results with and without initialization 

5.1.13.2 Test 2, combined modelling 

To test the combined model for a small perturbation, a three phase fault and 

islanding event were applied to two benchmarks, the radial benchmark shown in Figure 

142 and  the islanding benchmark shown in Figure 151. 

The radial benchmark represents a wind farm wit by two equivalent generators 

(DFIG) of 10 machines as shown in Figure 142. The benchmark includes the 

transformer with 6% of short circuit impedance in its self base, the cable collector with 

2% of impedance in 100 MVA base, the station transformer of 10% of short circuit 

impedance in its self base and the system equivalent with 10% of short circuit 

impedance in its self base.  
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Figure 142: Combined MEVA and DEMTP models for DFIG benchmark 
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The benchmark shown in Figure 142 was used to test the model by applying a 

small perturbation and  a three phase fault event.  

o Test A, small perturbation: a change of ±5% on the terminal voltage of the 

equivalent was applied with the objective of obtaining a linear response of the 

controls. 

o Test B, three phase fault: at the interconnection point, a three-phase fault with a 

fault impedance applied during 100 ms to obtain the voltage drop below 0.7 pu 

at the terminal and out of the linear range of the converter operation. 

 

A change of ±5% on the terminal voltage of the network equivalent was applied 

with the objective of obtain a linear response of the controls for MEVA and DEMTP 

models with limited mismatch between results. 

The voltage step was applied to the Grid voltage bus EG. At the beginning the WTG 

Terminal voltage tracks the grid voltage but finally the WTG Terminal voltage is 

controlled in its reference value (see Figure 143). 

A response to the change of ±5% on the terminal voltage of the equivalent allows 

to compare reactive power outputs of MEVA and DEMTP models. Both responses 

match well with limited differences in the reactive power values. It is observed that the 

differences are small and increase near the new steady state.  

The Figure 144 shows the reactive power of the WTGs measured at PQ1 and PQ2, 

raises when the voltage step lowers and drops when the voltage step lowers but it does 

not reach neither the maximum limit nor the minimum limit of the reactive power. 

The active power are compared next. Both response matches well with limited 

differences in the active power values. The mechanical power remains constant since the 

wind is constant. In consequence the active power produced by the WTGs, will remain 

constant in the final steady-state after perturbation. This trend is shown in Figure 145. 
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Figure 143: Voltage, small perturbation, Test A. 
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Figure 144: Reactive power, Test A. 
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Figure 145: Active power, Test A. 
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Figure 146: Active power DEMTP model: Grid, Rotor (inst), Line (inst) and Stator, 
Test A. 
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The last Figure 146 shows the Grid, Rotor, Line and Stator active powers. The 

negative values indicate power  direction entering the converter.  
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Figure 147: Voltage, Test B 
 

As response of the three phase fault with fault impedance at the interconnection 

point, the terminal voltage of the DFIG drops near 0.65 pu during the time of fault. This 

is shown for both DEMTP and MEVA models in Figure 147. After the fault was cleared 

the terminal voltage remains controlled. 

The reactive power contributions to the fault are compared in Figure 148. Both 

response matches well with limited differences in the reactive power values. It is 

observed that the differences are small during the variation and increase near the new 

steady state. 

The active power comparisons for Test B are shown in  Figure 149. The significant 

mismatch between both waveforms is shown during the fault duration, as  a consequence 

of converter non linearity in the DEMTP model. This mismatch will be compared with 

the result obtained in the MVEMTP model where the simplification only reaches to the 

dc link keeping the other model components identical to the DEMTP model. 
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The active powers for the three phase fault with a fault impedance are shown in 

Figure 150. 
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Figure 148: Reactive power, Test B 
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Figure 149: Active power, Test B 
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Figure 150: Active power DEMTP model, Test B: Grid, Rotor (inst), Line (inst) 
and Stator, Test B. 

 

The numerical stability limit in the MEVA model is for a time-step of 2380 µs but 

using this time step creates an inacceptable error in both the steady state conditions and 

during the fault period. In consequence it must be reduced to match with results obtained 

with a DEMTP model in same scenario. This target is reached with a time step of 250 µs 

or lower. There is no sufficient gain in precision when using lesser values. 

The time step used in the above simulations was 20µs for the DEMTP model and 

250µs for the MEVA model. The CPU time after 2 s of simulation time are 10 s and 153 

s respectively. That results into an acceleration factor of 15.3 times. 

The Test C is an islanding event generated by a three phase fault and tripping the 

line 104-125. The islanding benchmark shown in Figure 151 was used to test the 

combined model with an importing islanding scenario. There are six synchronous 

machines with exciter and prime mover; an equivalent WTGs of 15MW with DEMTP 

model and others of similar power with the MEVA model, three voltage levels of 315 
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kV, 33kV, 13.2kV and 0.69kV, two power system areas linked by a 300 km line, system 

light load condition with 450 MW and import area condition of 28 MW. A realistic 

scenario of light load condition with a local generation of 145 MW, power imported of 

28MW and a wind power penetration of 20% was considered.  

To test the PLL performance for the MEVA model, an important frequency and 

voltage variation is needed. These variations are associated with an islanding event when 

the isolated area has a high degree of WTG penetration and with an import condition.  

 

As a response of the islanding event, Figure 152  shows the active power outputs 

of MEVA and DEMTP models. The wind farms do not contribute to the frequency and 

their active power outputs remain unchanged. All the active power contributions are 

produced by the conventional generators (see Figure 155).  

The reactive power comparisons are shown in Figure 153 with a good match. 

The terminal voltages of MEVA and DEMTP models in the stable island with 

wind power generator  are shown in Figure 154. 

As response of the islanding event it is shown in that the active power outputs of 

conventional generation G4, G5 and G6 must rise (see Figure 155). 

The frequency excursion on the island with conventional generation is shown in 

Figure 156. 
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Figure 151: Islanding benchmark, Test C 
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Figure 152: Active power of WTG, Test C 
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Figure 153: Reactive power of WTGs, Test C 
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Figure 154: Terminal voltage, Test C 
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Figure 155: Conventional generation into the island, Test C 
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Figure 156: Island frequency, Test C 
 

5.1.13.3 Test 3, Power Quality 

The benchmark of Figure 157 represents a wind farm integrated by only one 

equivalent generator for 20 DFIG type generators. The unique machine representation is 

pessimist, and could be known as a superior limit of the Pst and THD, since the negative 

effect of the wind perturbation and harmonic amplitude are added directly. A full scale 

wind farm representation could be considered as a more realistic condition, due to the 

compensation effect that is considered with the multiple machine representation.   

The unique machine test results in a Pst overestimation of 36% taking as reference 

the  full scale test. The Pst of unique machine is 0.42896 while the full scale is 0.31519. 

 

 The benchmark includes a transformer with 6% of short circuit impedance in its 

self base, the cable collector with 2% of impedance on 100 MVA base, the station 

transformer of 10% of short circuit impedance on its self base and the system equivalent 

with a 10% of short circuit impedance on its self base.  
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With the target to consider the influence on the power quality parameters THD and 

Pst defined in the section 5.1.11, a special wind speed model is used and includes the 

wind turbulence effect defined in [30], the 3P effect and drop of torque produced by the 

blade passing in front of the tower. These effects were explained in the section 5.1.10. 
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Figure 157: Power Quality DFIG benchmark, DEMTP model 
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Figure 158: IFL computation at collector bus for  
 

From the points obtained from Figure 158 to for IFL it is possible to use equation 

(5.40) to calculate Pst shown in Figure 159. The mechanical torque results of the 

application of the wind speed waveform are shown in Figure 160. 
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Figure 159: Pst computation at collector bus 
 

The corresponding wind speed is given in Figure 161. Figure 162 shows the active 

power output variations at the collector bus. 

Figure 163 shows the THD measured at the collector bus. 
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Figure 160: Torque resulting from wind speed fluctuations 
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Figure 161: Wind speed variations 
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Figure 162: Active power variations at the collector bus for wind fluctuations 
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Figure 163: THD computation at the collector bus 
 

 

5.1.13.4 Test 4, Full scale 

The benchmark has 3 voltage levels, 230kV, 34.5kV and 0.69kV. The constant 

voltage source in 230kV and all the WTG of the wind farm are connected to the 

collector bus by the unit transformer of 5% Zcc. 

The DFIG EMTP detailed model, include the converter detailed with IGBT bridge 

and fast controllers. Additionally the blocks to represent turbulence, tower shadow, 

wake effect and terrain roughness effect were included. 

The benchmark was built considering a minimal short circuit power relation, equal 

to 5. Habitual wtg manufacture consider in its installation short circuit power relation 

equal to 50 in relation with the wind farm project. 

The flicker measure point is the collector bus, it is the worst point because of P, Q, 

R and X have the values that more contribute to the ΔV/V. 
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Figure 164: Benchmark to harmonic and flicker simulations 
 

The values of the R and X from the fix 230 kV equivalent source to the measure 

point are 0.05 and 0.53 pu respectively, taken as Sbase=150MVA. Once obtain the time 

variation  ΔV/V, it will be filtered according the process descript in the IEC norm about 

flicker to get the IFL and finally a statistic analysis of IFL will be require to determine 

the Pst value. The period of time used in the Pst in each simulation isn’t according with 

the IEC norm, but the Pst continue being a good indication of the flicker of short 

duration rank. 

The simulation considers the following characteristics: 

Real wind turbulence and Kaimal turbulence of 10% 

Random initial angle to deterministic shadow tower effect 

Drop of torque of 30% (shadow tower effect). 

Drop of torque duration 50 ms.   
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Wind speed travel time to the next wind turbine line of 10 s. 

Decay of the magnitude of the longitudinal component 5% (wake effect). 

To consider in a random way the initial blade angle with the tower an uniform 

distribution was used. This model considers that the 120 mechanical degree are divided 

in 10 different position shift 12 degree each one. Zero degree or 120 degree represents a 

division. 

The Figure 165 shows the instantaneous flicker level, IFL, obtains to the output of 

flickermeter block diagram of the Figure 139. After 10 second of time simulation with 

the application of the variable wind speed considering the full scale wind conditions.  

From the point obtains from the Figure 165 to the instantaneous flicker level, IFL, 

using the statistic process to calculate the percentile demanded in the equation  (5.40) 

finally the short term flicker, Pst, is obtained to the full scale case.  

The Figure 167 shows mechanical torque applied to the four turbines results of the 

application of wind speed wave form considering the turbulence and 3P effect 

components and random initial angle of blades. 
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Figure 165: IFL 
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Figure 166: Pst 

0 1 2 3 4 5 6 7 8 9 10
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
x 10

4

[N
m

]

[s]

 

 

G1

G2

G3

G4

 

Figure 167: Torque 
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5.1.13.5 Test 5, Fast transient 

A wind farm is a microgrid with equipment capable of generating a wide variety of 

transient phenomenon. A special focus for research is the synergy of phenomenon due to 

the particular topology of the microgrid and the distributed generation (DG). 

The transient analysis allows to reproduce to the finest details overvoltage 

conditions. The results of the analysis will be used to evaluate strategies for more 

efficient overvoltage limitation. Overvoltages can damage equipment and are an 

important factor in power system analysis and design. 

Figure 168 shows an actual wind farm section which has been represented using 

the EMTP-RV. The DEMTP model is used for all WTGs. All modeling details for 

components are included for switching transient analysis. If key components, such as 

surge arresters, are not modeled correctly, overvoltage calculations will contain 

important errors. 
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Figure 168: Fast transient DFIG benchmark 
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The main network components are: an equivalent system of 230 kV, a Zig-Zag 

grounding transformer, the substation transformer 230kV/34.5kV of 125 MVA 

Xcc=11.75%, underground cable distribution grid in 34.5kV, 3 double-fed asynchronous 

generator of 15 MW with unit transformers of 34.5kV/0.69kV of 17.5MVA Xcc=5.7% 

and ZnO Arresters on the 34.5kV side. The arrester has a TOV 36.3 kV to 10 s and the 

energy absorption capability is 7 kJ/kV.  

The connection group of the substation transformer has influence on the grounding 

on the 230kV and 34.5 kV sides and consequently on the overvoltages. On the delta side 

of the substation transformer a grounding transformer is connected to the west switch 

terminal with the mission of detecting the ground fault and limiting the associated 

overvoltage. 

The unit transformer connection has its influence on the grounding on the 34.5 kV 

side and harmonic pollution. The delta winding traps harmonic multiples of three times 

the fundamental frequency. 

Finally, the arrester on the 34.5 kV side has decisive influence on the overvoltage 

reached on the delta side of the unit transformers. 

The overvoltages are due to the feed-back of the wind generators over an isolated 

neutral grid during a fault condition. A ground fault on the cable grid triggers a series 

resonance phenomenon among the zero sequence capacitances of 34.5 kV cables with 

the induction machine and the transformer impedances. 

The arrester absorbed energy is shown in Figure 172. The trip operation, by means 

of the over voltage protection, prevents an early arrester destruction, the arrester should 

be destroyed in several seconds if the overvoltage condition is maintained. 

The overvoltage is particularly severe in the DFIG machines because of the 

increase of the external impedance. In the wound machine the presence of the power 

electronic circuit makes the increased impedance seen from the stator. The rise of the 

impedance seen from the stator creates a Ferro resonance. The Ferro resonance is a 

phenomenon of series resonance associated to  a very high voltage across the elements 
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of the series LC circuit when it is exciting at or near its natural frequency. The 

inductance involved in this phenomenon has an iron core.  

Ferroresonance overvoltages can occur on the wye-delta transformer of a wind 

generator. They are related to the transformer size and length of lateral cable. 

Three alternative solution to the overvoltage problem were considered: change the 

arresters, add additional grounding transformer installation on the fault side or add a 

high speed grounding switch after the main switch opens. 

In  the author’s opinion the best solution is the high speed grounding switch. It is a 

technique widely used in high voltage lines and now begins to be recommended to the 

distribution level. Another positive aspect is its minimum cost alternative. 

 
Figure 169 shows the terminal voltage waveform on the DFIG side of the switch, 

and the trip signal of the protection of crowbar and overvoltage after the main switch 

opens. 

The Figure 170 shows that the active and reactive powers are null after the voltage 

protection trips. 

The overvoltages shown in Figure 171 are due to the feed-back of the wind 

generators over an isolated neutral grid during the fault condition. 

The arrester energies are shown in Figure 172 remains within the limits. The 

generator trip operation, by means of the overvoltage protection, prevents arrester 

destruction. The arrester should be destructed in the case of no operation of protection 

system.  
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Figure 169: Terminal voltage and protection signals 
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Figure 170: Active and reactive powers 
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Figure 171: Voltage at point m1 
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Figure 172: Arrester evaluated Energy 
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5.1.13.6 Test 6, Performance coefficient comparison 

The benchmark represents a wind farm integrated by two equivalent generators 

(DFIG) of 10 machines (see Figure 173). The benchmark includes a transformer with 

6% of short circuit impedance in its self base, the cable collector with 2% of impedance 

in 100 MVA of base, the station transformer of 10% of short circuit impedance in its self 

base and the system equivalent with 10% of short circuit impedance in its self base  

 

The Figure 174 shows a fault event and differences in the active power output 

when different performance coefficient representations are used. The different 

performances between matrix representation and polynomial representation are little and 

more evident with regard to general transcendent function representation. In the last case 

the mismatch is 5%. 
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Figure 173: Performance coefficient DFIG benchmark 
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Figure 174: Active power comparison 
 

5.1.13.7 Test 7, MVEMTP and DEMTP comparisons 

The benchmark represented in Figure 175 is a single 1.5 MW machine with a 

terminal voltage of 575 V. The rest of the benchmark data is the same as the benchmark 

in Test 2.  
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Figure 175: Mean value benchmark 
 
 

The following tests of the DFIG WTG were performed: 

o Test A: variable wind speed without fault. 
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o Test B: three phase fault and variable wind speed. At the interconnection point, 

a three-phase fault with a fault impedance id applied during 100 ms to obtain a 

terminal voltage drop of 0.5 pu and to operate out of linear range of converter.  

The wind speed is considered variable according to real measurements. 

 

The active power movement, shows in Figure 176 , is according to the wind speed 

variation in Figure 179. The reactive power comparison is given in Figure 177. The 

transient variation of the reactive power shown in Figure 177 is related to the variation 

of the terminal voltage of the Figure 178. 

Figure 179 shows the wind speed variation applied to the turbine. 
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Figure 176: Active power of DFIG DEMTP and MVEMTP models, Test A 
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Figure 177: Reactive power of DFIG DEMTP and MVEMTP, Test A 
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Figure 178: Terminal voltage of DFIG DEMTP and MVEMTP, Test A 
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Figure 179: Wind speed applied to DFIG DEMTP and MVEMTP, Test A 
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Figure 180: Speed in pu of DFIG DEMTP and MVEMTP, Test A 
 

The speed variation, shown in Figure 180 is is according to the wind speed 

variation in Figure 179. 
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The DC link voltage shown in Figure 181 compares the responses obtained with 

the DEMTP and MVEMTP models. The MVEMTP model does not represent 

harmonics. 

According to the previous figures the simulation results obtained using the 

MVEMTP approach match with those of the DEMTP model. The step time used in the 

simulation was 20µs for the DEMTP model and 100µs for MVEMTP model. The CPU 

times after 12 s of simulation were 930 s and 120 s respectively. That results into a 

factor of 7.75 times. 
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Figure 181: DC link voltage of DFIG DEMTP and MVEMTP, Test A 
 

The active powers, shown in the Figure 182, track the voltage drop waveform. The 

mismatch during the fault obtained with the MVEMTP model has a better performance 

than the MEVA model that shows an improvement during the fault operation of the 

converter model in MVEMTP approach. The mismatch shown in the Figure 182 during 

the fault could be consequence of the IGBT model in the DEMTP approach. The IGBT 

is modeled according to the diagram of Figure 126. It is a combination of an ideal 

controlled switch, nonlinear resistance for the classical diode equation and a snubber 
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(RLC branch). The snubber and the nonlinear resistance have shown their influence in 

the converter losses.    

The Figure 183 shows that the differences in the reactive power are very small 

during all the simulation time. As a response to the three fault with a fault impedance at 

the interconnection point,  the terminal voltage of the DFIG drops to 0.5 pu during the 

time of fault, is shown in Figure 184. After the fault was cleared the terminal voltage 

remains controlled. 
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Figure 182: Active powers of DFIG DEMTP and MVEMTP models, Test B 
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Figure 183: Reactive power of DFIG DEMTP and MVEMTP models, Test B 
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Figure 184: Terminal voltages with DEMTP and MVEMTP models, Test B 
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Figure 185: Wind speed applied to DFIG DEMTP and MVEMTP, Test B 
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Figure 186: DC link voltage, DEMTP and MVEMTP models, Test B. 
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The DC link voltage shown in Figure 186 compares the responses obtain with the 

DEMTP and MVEMTP models. Once again the overall match in responses between 

these two modeling approaches is very good. 

The time-step used in the simulation was 20µs for the DEMTP model and 100µs 

for the MVEMTP model. The CPU times after 2 s of simulation were 21 s and 153 s 

respectively. That results into a factor of 7.28 times. 
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5.2 EMTP-RV FC 

The FC (Full Converter) WTG model presented in this section is an EMTP-type 

model implemented in EMTP-RV. The model can be initialized and connected to any 

EMTP-RV network. It consists of a detailed synchronous generator with a converter 

connected between the grid and the  stator of the machine. This model is based on the 

vector control theory that admits to decouple the active and reactive powers controlling 

the voltage and current of the dc link. 

The active power is determined from the controls associated to the mechanical 

equation of the WTG. The reactive component is associated to the voltage control at the 

WTG terminals or the reactive power constraints. 

5.2.1 Model usage 

The top level view of the FC WTG with its initialization devices is shown in 

Figure 187. The FC_WTG device is a subnetwork with several subnetworks for its 

various modeling functions and control systems. 

Almost all parameters of the device can be modified through its mask. There are 

two external interfacings points (pins). The right pin is a 3-phase pin allowing to connect 

the FC_WTG device to a 3-phase network. The left pin is used for providing the random 

variation of the wind speed. The mean wind speed is found inside the top level mask as a 

parameter. Each FC_WTG device can represent one or more generators a include an 

entire wind park. 

Since the model must be initialized it is need to perform a load flow solution 

followed by a steady-state solution. In EMTP-RV  this is achieved using separate layers 

of components for the different solution modules. As show in Figure 187 each FC_WTG 

device is paired with a Load-Flow constraint device (LF device) and a ideal voltage 

source. The LF device is used in the Load-Flow solution layer. It provides the PQ 

constraints of the FC_WTG. The LF device is used in the load flow solution and 
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together with other LF devices, it allows calculation the Load-Flow solution phasor for 

the complete network. 

The steady-state and the following time-domain solution can be started from the 

Load-Flow solution. The procedure is similar to the one used for the DFIG model 

presented in the previous section (see also Figure 187 and Figure 188). The initialization 

script was developed in the section 5.1.8. 
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Figure 187: Top level device view of the FC_WTG 
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Figure 188: Initialization switches for connecting the WTG in the time-domain 
solution 

5.2.2 Top level circuit 

The top level circuit of the FC_WTG shown in Figure 189. It is composed of 

functional blocks for various model sections. 
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Figure 189: Top level circuit block of the FC_WTG. 
 

DEMTP modelling approach shares the same PSS/E model blocks defined in the 

CHAPTER 2. The references are: 

o for the wind block see section 2.2, 
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o For the mechanical turbine model, see the section 2.1.2.3, 

o for the pitch control, see the section 2.3.4, 

o for the rotor model, see the section 2.5.1, 

o for the reactive control, see the section 2.7, 

o for the torque and power controls, see the section 2.6, 

o for the protection block model, see the section 2.8. 

The FC DEMTP model includes additional components described below. 

5.2.2.1 FC_SM 

The full converter utilizes a synchronous generator with an ac-dc-ac converter 

between the generator and the grid. The wind generator arrangements are shown in 

Figure 190. 
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Figure 190.: Top level circuit block 

5.2.3 FC Control 

Essentially the FC model has the same slow controls as the DFIG EMTP model. 

The main difference in the line side is that the output of slow control, current IPcmd and 

IQcmd, based on the FC MEVA model (Figure 94), are used as reference current fast 

controller of the Figure 135. In this way id_ref=IPcmd and iq_ref=IQcmd. 

The other important difference in the generator side is that the reference angle used 

in the firing control is the rotor machine angle. In the absence of slip angle in the 

synchronous machine, the fast controller on the generator side was modified, since no 

rotation is necessary now. The final controller configuration is shown in Figure 191. 
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Figure 191: Converter control generator side 
 

5.2.4  FC DEMTP model tests 

The benchmark used here represents a wind farm. The equivalent generator has 20 

machines. The benchmark includes a transformer with 6% of short circuit impedance in 

its self base , the cable collector with 2% of impedance in 100 MVA of base, the station 

transformer of 10% of short circuit impedance in its self base and a system equivalent 

with 10% of short circuit impedance in its self base.  
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Figure 192: Benchmark 30 MW, FC DEMTP model. 
 

The following tests were performed: 

o Test A, variable wind speed without fault 

o Test B, heavy fault at the interconnection point, 

o Test C, zero power ramp down. 

o Test D, light fault at the interconnection point without reactive current limiter. 

The above tests demonstrate the correct behaviour of the model. 

The tests B, C and D were simulated with a constant wind speed of 11.57 m/s. In 

Test 4 the reactive current limiter is disconnected to show the linear response of the 

model. 

Figure 193 shows active power outputs without fault with wind speed variation. 

Figure 194 shows the reactive power output with only wind speed variation. The 

terminal voltage is not perturbated. Figure 195 shows the mechanical speed variation. 

The measured (realistic) wind waveform is the one shown in Figure 196.  
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Figure 193: Active powers FC DEMTP model, Test A 
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Figure 194: Reactive power, Test A 
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Figure 195: Machine speed, Omega in pu, Test A 
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Figure 196: Wind speed in m/s, Test A 
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Figure 197: Torque in pu, Test A 
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Figure 198: Active powers, Test B 
 

Figure 198 shows the response to the heavy fault at the bus WINDHV1. The power 

logic was activated during the heavy fault event. Figure 199 shows the reactive power 

output variation. Figure 200 shows that the fault has been applied at 1 s, the terminal 

voltage drops to 0.5 pu, while the voltage at the bus WINDHV1 drops to approximately 
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0.15 pu during 0.5 s. The mechanical speed variation due to the application of wind 

speed variation is the same that in the Test A.  
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Figure 199: Reactive power, Test B 
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Figure 200: Terminal voltage, Test B 
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Figure 201: Active power from the generator side of FC WTG, Test C.  
 

Figure 201 shows the behaviour for decreasing wind speed ramp of the active 

power output. The turbine decreases its speed at 10 second, the rotor speed, the electrical 

power and mechanical power are null.  

The Figure 202 shows the behaviour to decreasing wind speed ramp of the reactive 

power output. While the electrical power changes to zero, the reactive power remains 

with its initial value. 

The decreasing wind speed ramp doesn’t change the terminal voltage. While the 

electrical power decreases to null, the voltage remains without changes. 

The Figure 203 shows the behaviour to decreasing wind speed ramp of the 

mechanical speed. 

The Figure 204 shows the behaviour to decreasing wind speed ramp 
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Figure 202: Reactive power, Test C 
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Figure 203: Omega in pu, Test C  
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Figure 204: Wind speed in m/s, Test C  
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Figure 205: Torque, in pu, Test C 
 

The Figure 205 shows the behaviour to decreasing wind speed ramp of the 

mechanical torque output.  
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Figure 206: Active power from the generator side of FC WTG, Test D. 
 

The Figure 206 shows the active power output as response to the light fault at bus 

POI. The power logic is not activated in light fault events. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5
x 10

7

[V
A

r]

[s]

 

 

Reactive power grid side

 

Figure 207: Reactive power at terminal of FC WTG, Test D. 
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The Figure 207 shows reactive power output of FC with light fault and wind speed 

variation 
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Figure 208: Voltage at terminal of FC WTG, Test D. 
 

The Figure 208 shows the terminal voltage when the fault has been applied at 1 

second, the terminal voltage drops to 0.75 pu while the voltage at POI bus fell 

approximately 0.7 pu during 0.5 seconds. 

The wind speed modeled applied to the turbine is the same that Test A, in 

consequence, the mechanical torque applied is the same. 

The above simulation results demonstrate the correct performance of the FC model 

presented in the thesis. 
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Conclusion 

The integration of wind farms into existing power systems requires to conduct 

extensive studies on operational conditions, protection and control. Such studies are 

conducted with modern simulation tools and using numerical models. Wind farms can 

impact on power system stability. The interaction between wind farms and the power 

grid can cause various transients in the grid and the wind farm. This implies a wide 

spectrum of frequencies in the related transient waveforms. The phenomenon ranges 

from electromechanical to electromagnetic transients.  

The traditional approach in power systems is to use phasor domain tools for 

studying electromechanical transients and time-domain tools for studying 

electromagnetic transients. Phasor domain tools, such as PSS/E make the assumption 

that the involved transients are of low frequency and calculate the dynamic phasors 

using a steady-state network solution. Such tools are targeting mainly the study of 

electromechanical transients for large scale systems where frequency perturbations are 

strongly coupled. Performance is achieved through various simplifications, but as shown 

in this thesis such simplifications have a significant impact on the precision of the 

models specially when involving unbalanced conditions, harmonics and power 

electronics based component. Modern wind generators are based on power electronics. 

The simulation of electromagnetic transients encompasses the simulation of 

electromechanical, but deteriorates computational performance. This thesis proposed 

solutions to optimize precision and performance through a single environment for the 

simulation of all types of transients. This is a new research trend and it is expected to 

impact on the simulation and analysis technology of modern power systems by 

providing the most efficient and precise simulation models. 

The first difficulty level and an important constituent of this work is the 

development of wind generator models. This task, as such, requires significant efforts. 

This thesis delivers several models and benchmarks based on realistic wind generator 
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and wind farm models. It contributes significantly to this research in this field. The 

models allow studying electromechanical transients, power quality problems, 

overvoltage and undervoltage conditions and electromagnetic transients in general. The 

benchmarks are realistic and can be reused for conducting research on mitigation and 

protection techniques in addition to new control algorithms for wind generators. 

Aggregation or individual wind generators can be used to model complete wind parks. 

On the second level this thesis contributed the unified simulation of wind 

generators using the time-domain approach and circuit based power system 

representation. This approach allows studying wind generators for a wide range of 

frequencies with optimized precision and performance. It also eliminates limitations and 

approximations used in traditional packages for electromechanical transients. 

The development of a basic first model in a stability type package (PSS/E) has 

been used to demonstrate limitations and establish the development of a mean value 

model (MEVA) in an EMTP-type package (EMTP-RV). This model is a new realization 

that can perform in a multiphase circuit based environment. It has been demonstrated 

that this type of model can be combined with a detailed (DEMTP) modeling approach in 

the same system study. The MEVA modeling is applicable for the study of slow (or 

electromechanical) transients. It benefits from the time-domain capabilities of EMTP-

RV and can use reduced time-steps as compared to a stability type package. It, however, 

allows using significantly larger time-steps than the DEMTP modeling approach and 

provides a significant increase in computational speed. The MEVA approach has been 

demonstrated for both FC and DFIG wind generator technologies. 

The detailed IGBT based modeling approach DEMTP has been used to create two 

models, FC and DFIG technologies. A byproduct is the development of another mean 

value modeling approach (MVEMTP). It is more precise than the MEVA approach, but 

requires smaller time-steps and becomes slower. It eliminates the IGBT models through 

controlled sources which imitate the effects of switch commutations.  

The mean value models are more appropriate for slower transients and provide 

sufficient precision for network side events. The detailed modeling offered by the 
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DEMTP approach offers the ultimate precision and it has been demonstrated that the 

establishment of an appropriate initialization method allows to reduce dramatically the 

computational effort spent during the decay of natural startup transients. 

 This thesis has also contributed to the correction of various problems related to 

wind generator models, such as PLL performance in the PSS/E model. This thesis also 

proposed an alternative to the performance coefficient matrix representation for 

increased accuracy. 

The advanced benchmarks delivered in this thesis constitute an important basis for 

further research in the field of wind farm integration into power systems. They can be 

used for research on mitigation techniques for overvoltage and undervoltage studies and 

for studying various electromagnetic and electromechanical transients in the general 

sense. 

The future research will take into account the improvement of the following items: 

1. Improvements to the MEVA model for extending its application range 

2. Improvements to converter models in DEMPT 

3. Improvements to MVEMTP approach for better dc side representation 
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APPENDIX A 

 

Benchmark data 

Benchmark 1: data files Load Flow and dynamics. 

 
RAW FILE : TEST.RAW 
 
0,   100.00          / PSS/E-30.1    WED, DEC 13 2006  19:45 
TEST GRID 
 
  1000,'            ', 230.0000,3,     0.000,     0.000,   1,   1,1.02000,   0.0000,   1 
  1001,'            ', 230.0000,1,     0.000,     0.000,   1,   1,1.02753,  10.8054,   1 
  1500,'            ',  34.5000,1,     0.000,     0.000,   1,   1,1.02569,  16.1307,   1 
  1501,'            ',  34.5000,1,     0.000,     0.000,   1,   1,1.03631,  17.6990,   1 
  1601,'            ',   0.6900,2,     0.000,     0.000,   1,   1,1.04000,  20.3227,   1 
0 / END OF BUS DATA, BEGIN LOAD DATA 
0 / END OF LOAD DATA, BEGIN GENERATOR DATA 
  1000,'1 ',   -28.289,     7.352,   100.000,   -30.000,1.02000,     0,   100.000,   
0.00000,   0.00100,   0.00000,   0.00000,1.00000,1,  100.0,   100.000,  -100.000,   
1,1.0000 
  1601,'1 ',    29.640,     2.986,     9.860,   -14.520,1.04000,     0,    33.000,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,1,  100.0,    30.000,     0.000,   
1,1.0000 
0 / END OF GENERATOR DATA, BEGIN BRANCH DATA 
  1000,   1001,'1 ',   0.13300,   0.66000,   0.00000,   30.00,   30.00,   30.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1500,   1501,'1 ',   0.03300,   0.10000,   0.00000,   30.00,   30.00,   30.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
0 / END OF BRANCH DATA, BEGIN TRANSFORMER DATA 
  1500,  1001,     0,'1 ',1,1,1,   0.00000,   0.00000,1,'            ',1,   1,1.0000 
   0.00000,   0.33300,   100.00 
1.00000,   0.000,   0.000,   100.00,   100.00,   100.00, 0,      0, 1.10000, 0.90000, 
1.10000, 0.90000,  33, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1601,  1501,     0,'1 ',1,1,1,   0.00000,   0.00000,1,'            ',1,   1,1.0000 
   0.00000,   0.16650,   100.00 
1.00000,   0.000,   0.000,    30.00,    30.00,    30.00, 0,      0, 1.10000, 0.90000, 
1.10000, 0.90000,  33, 0, 0.00000, 0.00000 
1.00000,   0.000 
0 / END OF TRANSFORMER DATA, BEGIN AREA DATA 
   1,  1000,     0.000,     0.000,'            ' 
0 / END OF AREA DATA, BEGIN TWO-TERMINAL DC DATA 
0 / END OF TWO-TERMINAL DC DATA, BEGIN VSC DC LINE DATA 
0 / END OF VSC DC LINE DATA, BEGIN SWITCHED SHUNT DATA 
0 / END OF SWITCHED SHUNT DATA, BEGIN IMPEDANCE CORRECTION DATA 
0 / END OF IMPEDANCE CORRECTION DATA, BEGIN MULTI-TERMINAL DC DATA 
0 / END OF MULTI-TERMINAL DC DATA, BEGIN MULTI-SECTION LINE DATA 
0 / END OF MULTI-SECTION LINE DATA, BEGIN ZONE DATA 
0 / END OF ZONE DATA, BEGIN INTER-AREA TRANSFER DATA 
0 / END OF INTER-AREA TRANSFER DATA, BEGIN OWNER DATA 
0 / END OF OWNER DATA, BEGIN FACTS DEVICE DATA 
0 / END OF FACTS DEVICE DATA 
 
DYRE FILE : TEST.DYR 
   
   1000 'GENCLS'  1     50.0  0.0/ 
  1601    'USRMDL'  1 'FUWI' 1 0 0 68 17 29 
  0.8     0.87    0.0     0.02    0.02    2.0     0.1     -0.1    1.0     0.05 
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  3.0     0.60    1.01    0.09    0.296   -0.436  1.11    0.      0.45    -0.45 
  5.0     0.1     0.9     1.1     40.     -0.5    0.4     0.0     0.05    1 
  1.000   5.00    3.00    101.0   106.0   3.00    3.400   1.520   5.19    2 
  0       12.0    4.0     29.0    0.0     0.0     1.225   35.00   90.0    1800. 
  1500.   1.67    0.3     150.    25.     3.00    30.0    0.      29.     -9. 
  9.      0.91      8.990000 -0.0038732  14.000000  -0.194950   0.898204   0.090481/ 
   
 

 
Benchmark 2 data file. Load Flow and dynamics 
 
RAW FILE :  
 
0,   100.00          / PSS/E-30.1    THU, JAN 03 2008  14:21 
RéSEAU éQUIVALENT 
ANALYSE DES MODèLES D'éOLIENNES 
  1000,'SWING       ', 315.0000,3,     0.000,     0.000,   1,   1,1.00000,   0.0000,   1 
  1001,'TR_HT01     ', 315.0000,1,     0.000,     0.000,   1,   1,0.99127,  29.2419,   1 
  1500,'TR_MT01     ',  34.5000,1,     0.000,    60.000,   1,   1,1.00000,  39.6771,   1 
  1501,'EOLMT01     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1502,'EOLMT02     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1503,'EOLMT03     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1504,'EOLMT04     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1505,'EOLMT05     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02291,  42.3695,   1 
  1510,'TR_MT02     ',  34.5000,1,     0.000,    60.000,   1,   1,1.00000,  39.6771,   1 
  1511,'EOLMT06     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1512,'EOLMT07     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1513,'EOLMT08     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1514,'EOLMT09     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1515,'EOLMT10     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02291,  42.3695,   1 
  1520,'TR_MT03     ',  34.5000,1,     0.000,    60.000,   1,   1,1.00000,  39.6771,   1 
  1521,'EOLMT11     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1522,'EOLMT12     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1523,'EOLMT13     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1524,'EOLMT14     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02290,  42.3696,   1 
  1525,'EOLMT15     ',  34.5000,1,     0.000,     0.000,   1,   1,1.02291,  42.3695,   1 
  1600,'EOLBT       ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1601,'EOLBT01     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1602,'EOLBT02     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1603,'EOLBT03     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1604,'EOLBT04     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1605,'EOLBT05     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1606,'EOLBT06     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1607,'EOLBT07     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1608,'EOLBT08     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1609,'EOLBT09     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1610,'EOLBT10     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1611,'EOLBT11     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1612,'EOLBT12     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1613,'EOLBT13     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1614,'EOLBT14     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
  1615,'EOLBT15     ',   0.6900,2,     0.000,     0.000,   1,   1,1.02994,  45.4188,   1 
0 / END OF BUS DATA, BEGIN LOAD DATA 
  1000,'1 ',1,  15, 102, 27965.000,  5592.000,     0.000,     0.000,     0.000,     
0.000,   1 
0 / END OF LOAD DATA, BEGIN GENERATOR DATA 
  1000,'1 ', 27483.660,  5736.683,  9999.000, -9999.000,1.00000,     0, 27865.000,   
0.00000,   0.18000,   0.00000,   0.00000,1.00000,1,  100.0,  1000.000, -1000.000,   
1,1.0000 
  1600,'1 ',   499.000,    67.649,   165.000,  -242.400,1.00000,  1510,   551.000,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,1,  100.0,   500.000,     0.000,   
1,1.0000 
  1601,'1 ',    33.000,    10.846,    10.846,   -15.972,1.00000,  1500,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
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  1602,'1 ',    33.000,     9.415,    10.846,   -15.972,1.00000,  1500,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1603,'1 ',    33.000,     3.451,    10.846,   -15.972,1.00000,  1500,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1604,'1 ',    33.000,     3.451,    10.846,   -15.972,1.00000,  1500,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1605,'1 ',    34.500,     3.451,    11.339,   -16.698,1.00000,  1500,    37.950,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    34.500,     0.000,   
1,1.0000 
  1606,'1 ',    33.000,     0.000,    10.846,   -15.972,1.00000,  1510,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1607,'1 ',    33.000,   -18.492,    10.846,   -15.972,1.00000,  1510,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1608,'1 ',    33.000,   -18.492,    10.846,   -15.972,1.00000,  1510,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1609,'1 ',    33.000,   -51.236,    10.846,   -15.972,1.00000,  1510,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1610,'1 ',    34.500,   -51.236,    11.339,   -16.698,1.00000,  1510,    37.950,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    34.500,     0.000,   
1,1.0000 
  1611,'1 ',    33.000,     0.000,    10.846,   -15.972,1.00000,  1520,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1612,'1 ',    33.000,   -32.756,    10.846,   -15.972,1.00000,  1520,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1613,'1 ',    33.000,   -32.756,    10.846,   -15.972,1.00000,  1520,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1614,'1 ',    33.000,   -32.756,    10.846,   -15.972,1.00000,  1520,    36.300,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    33.000,     0.000,   
1,1.0000 
  1615,'1 ',    34.500,  -142.488,    11.339,   -16.698,1.00000,  1520,    37.950,   
0.00000,   0.80000,   0.00000,   0.00000,1.00000,0,  100.0,    34.500,     0.000,   
1,1.0000 
0 / END OF GENERATOR DATA, BEGIN BRANCH DATA 
  1000,   1001,'1 ',   0.00200,   0.10000,   0.00000,  500.00,  500.00,  500.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,  20.00,   1,1.0000 
  1500,   1501,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1500,   1502,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1500,   1503,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1500,   1504,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1500,   1505,'1 ',   0.05800,   0.14490,   0.00690,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1510,   1511,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1510,   1512,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1510,   1513,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1510,   1514,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1510,   1515,'1 ',   0.05800,   0.14490,   0.00690,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
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  1520,   1521,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1520,   1522,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1520,   1523,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1520,   1524,'1 ',   0.06060,   0.15150,   0.00660,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1520,   1525,'1 ',   0.05800,   0.14490,   0.00690,   35.00,   35.00,   35.00,  
0.00000,  0.00000,  0.00000,  0.00000,1, 999.00,   1,1.0000 
  1600,   1601,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1602,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1603,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1604,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1605,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1606,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1607,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1608,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1609,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1610,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1611,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1612,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1613,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1614,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
  1600,   1615,'1 ',   0.00000,   0.00010,   0.00000,   35.00,    0.00,    0.00,  
0.00000,  0.00000,  0.00000,  0.00000,1,   0.00,   1,1.0000 
0 / END OF BRANCH DATA, BEGIN TRANSFORMER DATA 
  1001,  1500,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00370,   0.14760,   140.00 
1.05625,   0.000,   0.000,   140.00,   140.00,   140.00, 1,   1001, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1001,  1510,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00370,   0.14760,   140.00 
1.05625,   0.000,   0.000,   140.00,   140.00,   140.00, 1,   1001, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1001,  1520,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00370,   0.14760,   140.00 
1.05625,   0.000,   0.000,   140.00,   140.00,   140.00, 1,   1001, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1501,  1601,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1502,  1602,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
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  1503,  1603,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1504,  1604,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1505,  1605,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    36.80 
1.00000,   0.000,   0.000,    36.80,    36.80,    36.80, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1511,  1606,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1512,  1607,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1513,  1608,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1514,  1609,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1515,  1610,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    36.80 
1.00000,   0.000,   0.000,    36.80,    36.80,    36.80, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1521,  1611,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1522,  1612,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1523,  1613,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1524,  1614,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    35.20 
1.00000,   0.000,   0.000,    35.20,    35.20,    35.20, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
  1525,  1615,     0,'1 ',1,2,1,   0.00000,   0.00000,2,'            ',1,   1,1.0000 
   0.00120,   0.06000,    36.80 
1.00000,   0.000,   0.000,    36.80,    36.80,    36.80, 0,      0, 1.15000, 0.85000, 
1.02000, 0.98000,  17, 0, 0.00000, 0.00000 
1.00000,   0.000 
0 / END OF TRANSFORMER DATA, BEGIN AREA DATA 
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0 / END OF AREA DATA, BEGIN TWO-TERMINAL DC DATA 
0 / END OF TWO-TERMINAL DC DATA, BEGIN VSC DC LINE DATA 
0 / END OF VSC DC LINE DATA, BEGIN SWITCHED SHUNT DATA 
0 / END OF SWITCHED SHUNT DATA, BEGIN IMPEDANCE CORRECTION DATA 
0 / END OF IMPEDANCE CORRECTION DATA, BEGIN MULTI-TERMINAL DC DATA 
0 / END OF MULTI-TERMINAL DC DATA, BEGIN MULTI-SECTION LINE DATA 
0 / END OF MULTI-SECTION LINE DATA, BEGIN ZONE DATA 
0 / END OF ZONE DATA, BEGIN INTER-AREA TRANSFER DATA 
0 / END OF INTER-AREA TRANSFER DATA, BEGIN OWNER DATA 
0 / END OF OWNER DATA, BEGIN FACTS DEVICE DATA 
0 / END OF FACTS DEVICE DATA 
 
 
DYRE FILE :  
 
1000 'GENSAL'  1     
       7.4100   0.0700   0.0700   3.1000   0.0000   1.0270 
       0.5590   0.3400   0.1800   0.1500   0.0860   0.2930   / 
1600    'USRMDL'  1 'FUWI' 1 0 0 68 17 29 
0.8     0.87    0.0     0.02    0.02    2.0     99      -99     1.0     0.05 
3.0     0.60    1.01    0.09    0.296   -0.436  1.11    1.      0.45    -0.45 
5.0     0.05    0.95    1.05    0.001   -0.07   0.07    0.0     0.05    1 
61.000  65.00   1.00    101.0   106.0   1.00    3.400   1.520   5.19    2 
1       12.0    4.0     29.0    0.0     0.0     1.225   35.00   90.0    1800. 
1500.   1.67    0.3     150.    25.     3.00    30.0    0.      29.     -9. 
9.      0.91      4.631300 -0.0081631  12.000000  -0.194950   0.905626   0.122774/ 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.00    0.15    0.08    / 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.01    0.175   0.08    / 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.03    0.25    0.08    / 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.10    0.5     0.08    / 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.14    0.625   0.08    / 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.16    0.7     0.08    / 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.25    1.0     0.08    / 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.75    2.0     0.08    / 
0 'USRMDL' 0 'LOVOLT' 8 0 2 3 0 5 1600     1  0.85    30.     0.08    / 
0 'USRMDL' 0 'HIVOLT' 8 0 2 3 0 5 1600     1  1.15    300.    0.08    / 
0 'USRMDL' 0 'HIVOLT' 8 0 2 3 0 5 1600     1  1.20    30.0    0.08    / 
0 'USRMDL' 0 'HIVOLT' 8 0 2 3 0 5 1600     1  1.25    2.0     0.08    / 
0 'USRMDL' 0 'HIVOLT' 8 0 2 3 0 5 1600     1  1.40    0.10    0.08    / 
0 'USRMDL' 0 'HIVOLT' 8 0 2 3 0 5 1600     1  1.80    0.03    0.08    / 
0 'USRMDL' 0 'LOFREQ' 8 0 2 3 0 5 1600     1  55.5    0.35    0.08    / 
0 'USRMDL' 0 'LOFREQ' 8 0 2 3 0 5 1600     1  56.5     2.     0.08    / 
0 'USRMDL' 0 'LOFREQ' 8 0 2 3 0 5 1600     1  57.0    10.     0.08    / 
0 'USRMDL' 0 'LOFREQ' 8 0 2 3 0 5 1600     1  57.5    90.     0.08    / 
0 'USRMDL' 0 'LOFREQ' 8 0 2 3 0 5 1600     1  58.5    660.    0.08    / 
0 'USRMDL' 0 'HIFREQ' 8 0 2 3 0 5 1600     1  61.5    660.    0.08    / 
[0] 'USRMDL' 0 'HIFREQ' 8 0 2 3 0 5 1600     1  61.7    90.     0.08    / 
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APPENDIX B 

 

DFIG MEVA Benchmark data 

Wind generator number 20 machines of 1.67MVA  

Transformer unit ratio; power 0.69 kV/34.5 kV; 35 MVA 

Transformer unit impedance 5.5% 

Transformer unit connection YnD 

Feeder impedance R=0.0793Ω; XL=0.238Ω; YC=33.5µS 

Substation transformer ratio; power 34.5 kV / 230 kV; 50 MVA 

Substation transformer impedance 10% 

Substation transformer connection YnYn 

Grid short circuit impedance Rcc=14.11Ω, Xcc=70.53Ω 
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APPENDIX C 

 

FC MEVA Benchmark data 

 

Wind generators number 7,3,10 machines of 1.67MVA 

Transformer unit ratio; power 0.69 kV/34.5 kV; 31, 9 and 30 MVA 

Transformer unit impedance 6.0% 

Transformer unit connection YnD 

Feeder impedance R=0.0793Ω; XL=0.238Ω; YC=33.5µS 

Substation transformer ratio; power 34.5 kV / 230 kV; 50 MVA 

Substation transformer impedance 10% 

Substation transformer connection YnYn 

Grid short circuit impedance Rcc=100.76Ω, Xcc=251.9Ω 

 


