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DÉPARTEMENT DE GÉNIE MÉCANIQUE
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RÉSUMÉ

Dans les dernières années, les systèmes singuliers des équations différentielles ont carré-

ment explosé puisqu’on les trouve dans plusieurs champs d’applications allant des systèmes

électromécaniques en passant par des circuits électroniques, réacteurs chimiques et/ou bi-

ologiques ainsi que les systèmes d’écoulement des fluides. Dans cette thèse, deux classes des

systèmes singuliers non linéaires seront considérer, en l’occurrence : (i) systèmes singuliers

perturbés, (ii) systèmes généralisés ou systèmes algébro-différentielles. Les techniques H2 et

H∞ pour l’estimation de l’état de ces classes seront développés ainsi que des conditions suff-

isantes pour la résolution des problèmes en termes des équations d’Hamilton-Jacobi seront

présentés. Deux systèmes, temps-continu et discrets, seront considérés et, pour plus de

viabilité des résultats, des exemples pratiques seront présentés et résolus.



vi

ABSTRACT

Singular systems of differential equations arise in many areas of science and technology,

including electro-mechanical systems, electronic circuits, chemical and biological reactors,

and fluid flow systems. In this thesis, two classes of singular nonlinear systems are considered;

namely, (i) singularly perturbed systems, and (ii) generalized systems, or descriptor, or

differential-algebraic systems. H2 and H∞ techniques for state estimation of these classes of

systems are developed, and sufficient conditions for the solvability of the problems in terms of

Hamilton-Jacobi equations are presented. Both continuous-time and discrete-time systems

are considered, and examples are presented to show the usefulness of the results.
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CHAPTER 1

INTRODUCTION

The problem of determining the internal behavior or “state” of a system from noisy measure-

ments is known as “state estimation” or “filtering”. Linear estimation dates back to Gauss

(1795) and the development of the method of “least-squares”. A very good account of the

subject can be found in the following references (Anderson, 1979), (Grewal, 1993), (Sorenson,

1985). However, since the turn of the century, the work of Nobert Wiener and of Kalman

R. E. have dominated the subject. They pioneered the application of statistical ideas which

started with the work of Wiener and Kolmogorov (Wiener, 1949), (Kolmogorov, 1949) to

filtering problems. A review of these two approaches are given at a later section. Nonlinear

filtering theory however, is a more recent and evolving subject, and is still a challenging

research area because it is richer and more involved than linear filtering.

Following the fundamental work of Kalman and Bucy (Kalman, 1960), (Kalman, 1961) in

linear filtering theory in 1960-1961, a host of publications appeared, formally deriving various

approaches to linear filtering algorithms using “least-squares” or “minimum mean-squares”,

“maximum-likelihood”, and other Bayesian and classical statistical methods. These statistical

methods were also formally applied to the nonlinear estimation problem using linearization

of one sort or another and Kalman-like algorithms. This also led to the development of the

extended Kalman-filter (EKF). These works received great financial support and impetus

from the aerospace industries as well as the Navy and Air-force offices of scientific research

in the USA. These industries and research organizations also spear-headed the application

of these techniques to submarine and aircraft navigation, space flight (including the Ranger,

Mariner and Apollo missions), as well as satellite orbit determination and navigation.

Furthermore, while Kalman and Bucy were formulating the statistical linear filtering theory

in the United States, Stratonovich (Stratonovich, 1960) was developing the probabilistic ap-

proach to discrete-time nonlinear filtering theory in Russia. Later Kushner (Kushner, 1967a),
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(Kushner, 1964a) and Wonham (Wonham, 1963) indepedently developed the contnuous-time

theory, and subsequently, Ho and Lee (Ho, 1964) and Jazwinski (Jazwinski, 1998) applied

the probabilistic theory to discrete-time problems. Thereafter, most of the developments in

the nonlinear theory were made by Kushner (Kushner, 1967b)-(Kushner, 1970).

In this Dissertation, we shall focus on the H2 and H∞ filtering techniques for nonlinear

singular systems. Even though H2 and H∞ filtering techniques have been applied to linear

singular systems by many authors (see Chapter 2 for a review), to the best of our knowledge,

the nonlinear problem has not received any attention. Therefore, we propose to discuss

these problems in this Dissertation. We shall present new results for H2 and H∞ filtering

for nonlinear singular systems, and also specialize these results to the linear case.

Singular systems are classified into two main classes; namely, (i) singularly perturbed sys-

tems, and (ii) differential-algebraic systems, descriptor or generalized state-space systems.

They are characterized by a singular parameter or matrix on the left hand side of the sys-

tem differential or difference equation. Therefore their analysis and control becomes more

complicated than regular systems.

The Dissertation is organized as follows. In the remainder of this chapter, we shall introduce

notations and then give a review of the classical (deterministic, statistical and probabilistic)

approaches to linear and nonlinear filtering theory as applied to dynamic systems. Then,

in Chapter 2, we present a literature review of deterministic finite-dimensional, mainly H2

and H∞ filtering theory for linear singular systems. This is followed by a presentation of our

research objectives. Our research contribution starts in Chapter 3, where we shall present

new results on H2-filtering for both continuous-time and discrete-time nonlinear singularly-

perturbed systems. This is followed in Chapter 4 with a counterpart solution to the H∞

problem for the same class of systems, and in both continuous-time and discrete-time. Then

in Chapters 5 and 6, we present similar solutions to the H2 and H∞ filtering problems

for nonlinear descriptor nonlinear systems respectively, and in both continuous-time and

discrete-time. Finally, we give a brief conclusion in Chapter 7.

The notation is fairly standard except where otherwise stated. Moreover, ‖(.)‖, will denote
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the Euclidean vector norm on �n, while E{.} and p(.) will denote respectively the math-

ematical expectation operator and probability measure. Other notations will be defined

accordingly.

1.1 Review of Classical Estimation Theory

In this Section, we give a review of classical static estimation theory beginning with the

least-squares method. Then in Section 1.2, we discuss the extensions of the above methods

to linear dynamic systems including the Wiener-Kolmogorov theory and Kalman filtering

theory. Finally, in Section 1.3, we review some of the statistical approaches to nonlinear

filtering theory and the Stratonovich-Kushner theory.

1.1.1 Least-Squares Estimation

The earliest motivations for the development of estimation theory apparently originated from

astronomical studies in which planet and comet motion was studied using telescopic mea-

surements. The motion of these bodies can be completely characterized by six parameters,

and to determine these parameters, telescopic measurements are taken. The problem then

was to estimate the values of these parameters from these measurements. To solve this prob-

lem, a young revolutionary, Karl Friedrich Gauss, then 18 years old, developed the method

of least squares in 1795. This method which was published in his book “Theoria Motus Cor-

porum Coelestium” or the “Theory of the Motion of the Heavenly Bodies Moving about the

Sun in Conic Sections (Crassidis, 2004)” in 1809, is very simple and intuitive. However, the

method was also independently discovered by Legendre in 1806 and he published his results

in his book “Nouvelles méthodes pour la determination des orbites des cométes. The delay

in Gauss’s publication of his results is what led to the controversy of the original inventor.

Gauss also predicted the maximum-likehood method which was later discovered by R. A.

Fisher in 1912.

To review the least squares method, consider an ensemble Y of observations, or time mea-
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surements of a variable y(t) given by

Y = {y(t1), y(t2), . . . , y(tm)}

where y(t) is a linear function of another variable x(t). Denoting now the emsemble Y by a

vector y ∈ �m, and assuming that y is linearly related to x by the relation

y = Hx, H ∈ �m×n,

where x denotes the vector of values of x(t). The problem then is: find an estimate x̂ of x

from the ensemble Y such that, the sum of squares of the total errors

J1 =
1

2

n∑
i=1

(yi − ŷi)
T (yi − ŷi)

Δ
=

1

2
(y −Hx̂)T (y −Hx̂)

Δ
=

1

2
‖e‖2 (1.1)

is minimized, where e = (e1, . . . , en)
T = y − Hx̂ is the error vector. The solution to this

problem is obtained by applying the necessary principle of optimality:

∇J1,x̂ = −HT (y −Hx̂) = 0 ⇒ x̂ = (HTH)−1HTy. (1.2)

The above basic algorithm can also be modified by including weights on the measurements,

especially if they are made with unequal precision. By modifying the cost function (1.1) as

J2 =
n∑

i=1

(yi −Hx̂i)
TW (yi −Hx̂i), (1.3)

where W ∈ �m×m is a weighting matrix, the result is the following modified algorithm

x̂ = (HTWH)−1HTWy, (1.4)

which is also called the weighted least-squares method. Similarly, other variants of the

algorithm including constrained least-squares, nonlinear least-squares, and the Levenberg-

Marquard method also exist (Crassidis, 2004).
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1.1.2 Minimum-Variance Estimation

This method is an enhancement of the method of Least-squares by introducing probability

concepts in it. Minimum-variance gives the “best way” (in a probabilistic sense) to find an

optimal estimate. Consider as in the previous subsection the linear observation model

y(t) = Hx(t) + v(t) (1.5)

for the variable x(t) ∈ �n, where v(t) ∈ �n is the measurement error vector. We can concieve

of an estimate for x(t) defined by

x̂(t) = My(t) + ν(t) (1.6)

where M ∈ �n×m, ν(t) ∈ �n are suitable weighting parameters. The objective is then to

minimize the variance of each of the components xi, i = 1, . . . , n of x(t), i.e.,

Ji =
1

2
E{(xi − x̂i)

2}, i = 1, . . . , n. (1.7)

It follows that, if the measurement errors v(t) = 0, then x = x̂ and from (1.5), (1.6), we have

x̂ = MHx+ ν.

This implies that M and ν should satisfy

MH = I, ν = 0 (1.8)

and the desired estimator has the form

x̂ = My. (1.9)
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Let us now define the error covariance matrix for an unbiased estimator as

P = E{(x− x̂)(x− x̂)T}. (1.10)

Then the objective J =
∑

i Ji above, can be redefined as the augmented cost function

J = Tr
[
E{(x− x̂)(x− x̂)T}]+ Tr [Λ(I −MH)] , (1.11)

where Λ is a Lagrange multiplier matrix. Now using parallel axis theorem (for unbiased

estimate)

E{(x̂− x)(x̂− x)T} = E{x̂x̂T } − E{x}E{x}T

and substituting (1.6) in (1.9), we get using E{v} = 0,

E{x̂} = E{My} = E{MHx+Mv} = MHx. (1.12)

Similarly, using E{vvT} = R and the assumption that x and v are uncorrelated, i.e.,

E{xvT} = E{vxT} = 0, we obtain

E{x̂x̂T } = MHxxTHTMT +MRMT , (1.13)

and

J =
1

2
Tr[MRMT ] + Tr[Λ(I −MH)].

Then, using the matrix derivative-identities

∂

∂X
Tr(AXB) = ATBT ,

∂

∂X
Tr(XAXT ) = X(A+ AT ),

and applying the necessary conditions for optimality of J with respect to M and Λ, we get

ΛT = (HTR−1H)−1 (1.14)

M = ΛTHTR−1 = (HTR−1H)−1HTR−1. (1.15)
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Finally, using (1.9) we obtain the optimal unbiased estimate

x̂ = (HTR−1H)−1HTR−1y, (1.16)

which is referred to as the Gauss-Markov Theorem.

Remark 1.1.1. The minimum-variance estimator is an unbiased estimator, i.e. E{x̂} = x.

This can be shown as follows. x̂ = My = MHx +Mv. Then, using the fact that MH = I,

E{v} = 0, and taking expectations, the result follows. If on the other hand, x̂ is biased, then

the difference E{x̂} − x is the bias in x̂.

The above algorithm can be refined to obtain improved estimates if a priori estimate x̂a ∈ �n

of the variable x and covariance matrix Q are available. As in the previous case, we assume

a linear model of the form

y = Hx+ v (1.17)

where v is zero-mean with covariance

Cov{v} = E{vvT} = R,

and assume the true state x is related to the a priori estimate as

x̂a = x+ w, (1.18)

where w is also zero-mean random vector with covariance

Cov{w} = E{wwT} = Q.

Similarly, we also assume that the measurement errors v and the a priori errors w are

uncorrelated so that E{wvT} = 0. Moreover, the objective is to estimate x as a linear

combination of the measurements y and the a priori estimate x̂a as

x̂ = My +Nx̂a + ν (1.19)
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where M ∈ �n×m, N ∈ �n×n, and ν ∈ �n are design parameters, and are selected such that

the variances of the estimates x̂i, i = 1, . . . , n from their true values x

J̃i =
1

2
E
{
(x̂i − xi)

2
}
, i = 1, . . . , n

are minimized.

Again, if x̂ = x, then we should have from (1.17)

y = Hx, v = 0.

Moreover, if in addition the a priori estimates are also perfect, i.e. x̂a = x, then w = 0 and

(1.19) yields

x = MHx+Nx+ ν = (MH +N)x+ ν,

which implies

MH +N = I, ν = 0.

Thus, the desired estimator (1.19) has the form

x̂ = My +Nx̂a. (1.20)

Similarly, we can define the following augmented cost function as

J̃ =
1

2
Tr[E{(x− x̂)(x− x̂)T}] + Tr[Λ̃(I −MH −N)], (1.21)

where again Λ̃ is a Lagrangian multiplier. Then, using (1.18),(1.17) in (1.20), we have

x̂ = (MH +N)x+Mv +Nw. (1.22)

Further, if we assume as before that x and v, w are uncorrelated with each other, (1.21)

becomes

J̃ =
1

2
Tr[MRMT +NQNT ] + Tr[Λ̃(I −MH −N)]. (1.23)
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Applying now the necessary conditions for optimality of M , N and Λ̃, we have

MR − Λ̃THT = 0,

NQ− Λ̃T = 0,

I −MH −N = 0.

Finally, solving the above three equations for Λ̃, M , N , we get

Λ̃T = (HTR−1H +Q−1)−1 (1.24)

M = (HTR−1H +Q−1)−1HTR−1 (1.25)

N = (HTR−1H +Q−1)−1Q−1. (1.26)

1.1.3 Maximum Likelihood Estimation (MLE)

This method was invented by R. A. Fisher, a geneticist, in 1912. It yields estimates for the

unknown quantities which maximize the probability of obtaining the observed set of data.

Without loss of generality, one may consider the following Gaussian density function as a

likelihood function

f(y; x) =

(
1

2πσ2

)m/2

exp

[
−

m∑
i=1

(yi − μ)2/(2σ2)

]
(1.27)

where y ∈ �m represents the measurement data, while x ∈ �n represents the estimated

variable. However, it is often conveneint to deal with the logarithm of the above likelihood

function in the form

ln[f(y; x)] = −m

2
ln
(
2πσ2

)− 1

2σ2

m∑
i=1

(yi − μ)2. (1.28)

Then, given the measurement information y, the problem is to find an estimate x̂ which

maximizes f(y; x). The likelihood-loss function is also a probability density function (pdf),
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or a joint-density function, given by

L(y; x) = Πm
i=1fi(y; x). (1.29)

Thus, the goal of the method is to find x̂ such that the probability of obtaining the observa-

tions y is maximized. Moreover, since ln[L(y; x)] is a monotone function of L(y; x), finding

the x to maximize ln[L(y; x)] is equivalent to maximizing L(y; x). Therefore, the necessary

and sufficient conditions for the optimal estimate are respectively

{
∂

∂x
ln[L(y; x)]

}∣∣∣∣
x̂

= 0 (1.30)

∂2

∂x∂xT
ln[L(y; x)] < 0. (1.31)

Equation (1.30) is usually referred to as the likelihood equation. The method is best illustrated

with an example.

Example 1.1.1. Consider the Gaussian density function (1.27) and the problem of estimat-

ing x = (μ, σ2) from measuremets y that is related to x by the pdf f(y; x). Then, a natural

choice for L(y; x) in this case is L(y; x) = f(y; x), and therefore ln[L(y; x)] is given by (1.28).

Applying now the maximum-likelihood condition (1.30) for μ and σ2, we obtain

{
∂
∂μ

ln[L(y; x)]
}∣∣∣

μ̂
= 1

σ2

∑m
i=1(yi − μ̂)2 = 0

=⇒ μ̂ = 1
m

∑m
i=1 yi (1.32){

∂
∂σ2 ln[L(y; x)]

}∣∣
σ̂2 = − m

2σ̂2 + 1
2σ̂4

∑m
i=1(yi − μ̂)2 = 0

=⇒ σ̂2 = 1
m

∑m
i=1(yi − μ)2. (1.33)

Maximum likelihood estimation has several advantages, including firstly, the invariance prin-

ciple, i.e., if x̂ is a maximum likelihood estimate of x, then for any function φ(x), the

maximum likelihood estimate of φ, is φ(x̂). Secondly, the estimation errors in a maximum

likelihood estimate can be shown to be asymptotically Gaussian, regardless of the density

function used.
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1.1.4 Bayesian Estimation

In Bayesian estimation, the parameters to be estimated in the vector x are assumed to be

random variables with some a priori probability distribution. This a priori information is

combined with the measurement information y using a conditional density function which

is known as the “a posteriori distribution” and Baye’s rule to estimate the parameters. The

conditional density is then given by

f(x|y) = f(y|x)f(x)
f(y)

, (1.34)

and thus both f(y|x) and f(x) must be known in order to use the method. Moreover, since

y is known, f(y) is a normalization for f(x|y) in the above equation (1.34), and

f(y) =

∫ ∞

−∞
f(y|x)f(x)dx.

If the above integral exists, then the a posterior density function f(x|y) is said to be proper;

otherwise it is said to be improper, and in this case, f(y) is set to f(y) = 1.

The estimate x̂ which maximizes the conditional density (1.34) is known as the maximum a

posteriori (MAP) estimator. Since f(y) is known, the above problem can be represented in

logarithmic terms as that of maximizing the objective function

JMAP = ln[f(y|x̂)] + ln[f(x̂)] = ln[L(y|x̂)] + ln[f(x̂)] (1.35)

where L(y|x̂) = f(y|x̂) is a likelihood function. Thus, MAP is closely related to MLE in the

following respect:

(a) if the a priori distribution f(x̂) is uniform, then MAP is equivalent to MLE;

(b) MAP estimation has the same asymptotic consistency and efficiency of MLE;

(c) the MAP estimator converges to the MLE for large samples; and

(d) the MAP estimator also satisfies the invariance principle.
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1.2 Linear Filtering for Dynamic Systems

In this section, we review some classical estimation techniques for linear dynamic systems

defined by state-space models. Many of the methods are extensions of the static methods

discussed in the previous section. For example, the Kalman filter is the dynamic version of

the least-squares method and is also a minimum-variance estimator. We also review some of

the historical developments in linear filtering in the early 20th century. As already mentioned,

R. A. Fisher in 1912-1920 introduced the method of maximum-likelihood estimation which

provided incentives for subsequent developments that culminated with the discovery of the

Kalman filter.

1.2.1 Wiener-Kolmogorov Theory

Thereafter, Kolmogorov in 1941 (Kolmogorov, 1949) and Wiener (Wiener, 1949) in 1942

independently developed a linear minimum mean-square estimation technique that received

considerable attention and provided the foundation for the Kalman filter theory. Historically,

Wiener was led to develop his linear theory from the desire to find a rational design for

fire control systems. To discuss the approach, consider a vector stochastic process y(t) ∈
�m, t ∈ (t0, t1) ⊂ �, observed over an interval (t0, t1), and it is desired to estimate from

these observations another process x(t) ∈ �n, t ∈ (t0, t1), which is related to y(t) linearly.

Wiener’s work (Wiener, 1949) assumed that x(t) and y(t) are jointly wide-sense stationary

ergodic processes with t0 = −∞ and n = m = 1. The result of this investigation led to

the specification of the minimum-variance unbiased estimate x̂ of x by its weighting function

w(τ) in the form of the convolution

x̂(t) =

∫ t

−∞
w(t− s)y(s)ds, (1.36)

where w(.) satisfies the Wiener-Hopf integral equation

E{x(t)yT (τ)} = E{x̂(t)yT (τ)}. (1.37)
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Wiener used Fourier transform methods and spectral-factorization to solve this equation.

Further, at about the same time that Wiener was developing his continuous-time linear the-

ory, Kolmogorov was developing an analogous discrete-time theory (Kolmogorov, 1949). To

review the approach, consider the problem of estimating a signal xk, k ∈ Z, which is possi-

bly time-varying, from measurement data (y0, y1, . . . , yn) where xk and yi, i ∈ Z are linearly

related by some cross-cerrelation function. Denote the estimate of xk using measurements

up to yk by x̂k/k. Then, Kolmogorov used the discrete convolution

x̂k/k =

k∑
i=0

Hk,iyi, (1.38)

where Hk,i are the filter gains (or coefficients) which are to be chosen so that the mean-square

errors are minimized, i.e., Hk,i are chosen such that

Jk = E[(xk − x̂k/k)
T (xk − x̂k/k)] (1.39)

is minimized for k = 0, . . . ,. A necessary and sufficient condition for the existence of such

minimizers is that the estimation error or innovation ek/k = xk − x̂k/k is orthogonal to the

measurement data, i.e.,

E[ek/ky
T
i ] = 0, i = 0, 1, . . . , k, (1.40)

holds. The above is the discrete Wiener-Hopf equation which is usually written as

E[xky
T
i ] =

k∑
j=0

Hk,jE[yjy
T
i ], i = 0, 1, . . . , k. (1.41)

This equation must be solved for the filter coefficients Hk,j, and can be represented in ma-

trix form, whose solution should be straight-forward. However, the matrix inversion that is

required becomes computationally impractical when k is large. To circumvent this, Wiener

and Kolmogorov assumed k0 = −∞ instead of k0 = 0, and the system to be stationary. The

resulting equations can then be solved using spectral factorization. Unfortunately, the appli-

cation of the Wiener-Kolmogorov theory was very limited, because the problem of synthesis
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remained practically unresolved. However, in the 1950’s many investigators generalized the

Wiener-Hopf equations to scalar nonstationary processes and finite observations intervals.

They also introduced shaping filters in (1.41) in order to help the solvability of the equation.

Similarly, since a new solution for the weighting coefficients for the filter must be gener-

ated for each k, J. W. Folin suggested a recursive approach for generating xk/k given a new

measurement. Nevertheless, the main restrictions and drawbacks of the Wiener-Kolmogorov

theory are the following:

(a) the processes must be stationary and ergodic;

(b) t0 = −∞;

(c) the spectral factorization solution of the Wiener-Hopf equation is not amenable to

numerical computation even for rational spectra;

(d) the measurements or observations must be scalar processes, otherwise factorization of

matrices must be considered; and finally,

(e) the physical realization of the processor determined by the filter coefficients, is far from

trivial.

1.2.2 Minimum-Variance (Kalman Filtering) for Linear Dynamic Systems

Subsequently, in 1960, Kalman published his work on the discrete-time version of the Kalman

filter (Kalman, 1960). But prior to this, Peter Swerling had published at the RAND Corpo-

ration a Memo in 1958 about a recursive procedure for orbit determination (Sorenson, 1985).

Therefore, there was a squabble between Kalman and Swerling similar to the Gauss-Legendre

squabble about who was first to discover the Kalman filter, with the former prevailing. Sim-

ilarly, Stratonovich (Stratonovich, 1960) in the USSR also published at about the same time

results that are equivalent to Kalman’s work. But next, Kalman and Bucy together pub-

lished the second paper (Kalman, 1961) on the continuous-time version of the theory and a

complete solution to the linear filtering and prediction problem.
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The Kalman-Bucy theory provided explicit synthesis of the minimum-variance unbiased es-

timate of the state of the signal x(t) by showing that it satisfies a stochastic differential

equation which is driven by the observations. The central idea of the theory was to replace

the problem of solving the Wiener-Hopf equation with that of solving a matrix Riccati equa-

tion which is considerably simpler. Moreover, the solution of this matrix Riccati equation

is the error covariance matrix of the optimal estimate, and with the advent of digital com-

puters, the theory was applied successfully to countless problems in guidance, navigation,

and orbit determination. These applications include also some of the most challenging space

programs of that time, including the Mariner, the Ranger, Apollo, and the ill-fated Voyager.

Other applications also included submarine detection, fire control, and practical schemes for

detection (Sorenson, 1985).

At this point, we summarize the main results of the Kalman-Bucy solution to the Wiener

filtering problem in discrete-time. Consider the linear state equations given by

Σldk :

⎧⎨⎩ xk+1 = Ak+1,kxk + wk, x(0) = x0

yk = Hkxk + vk
(1.42)

where x ∈ �n, y ∈ �m, {wk}, {vk} are independent white-noise processes with zero-mean

and second-order statistics given by

E{vivTj } = Riδij, E{wiw
T
j } = Qiδij , E{viwT

j } = 0 for all i, j. (1.43)

Similarly, the initial condition x0 is also assumed to be a random vector with mean value

x̂0|−1, covariance matrix P0|−1 and uncorrelated with vk and wk respectively. An estimate

x̂k/k for xk is to be determined from the measurements {yk} and possibly previous estimates,

to minimize the mean-square error of the estimates, i.e,

Jk = E[(xk − x̂k)
T (xk − x̂k)], k = 1, . . . (1.44)

A sequential estimator which operates in a recursive manner combining new measurement

information yk and the best previous estimate x̂k−1/k−1 is also desired. The solution to this
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problem can be determined from the orthogonality principle (1.40). It is also very intuitive

at this point to conjecture an estimator of the form

xk/k = Ak/k−1x̂k−1/k−1 +Kk[yk −HkAk/k−1x̂k−1/k−1] (1.45)

which is a linear combination of the predicted estimate in the absence of new data, and the

residuals or innovation rk = yk − Hkxk/k−1. The gain matrix Kk is chosen to minimize Jk

and is given by

Kk = Pk/k−1H
T
k (HkPk/k−1H

T
k +Rk)

−1, (1.46)

where the matrix Pk/k−1 is the covariance of the error in the predicted estimate and is given

by

Pk/k−1 = E[(xk − x̂k/k−1)(xk − x̂k/k−1)
T ] = Ak/k−1Pk−1/k−1A

T
k/k−1 +Qk−1, (1.47)

while Pk/k is the covariance of the error in the estimate x̂k/k, and is given by

Pk/k = E[(xk − x̂k/k)(xk − x̂k/k)
T ] = Pk/k−1 −KkHkPk/k−1. (1.48)

These equations (1.45)-(1.48) represent the discrete-time Kalman filter equations and the

solution to the filtering problem.

1.2.3 Maximum Likelihood Estimation for Linear Dynamic Systems

In this subsection, we review an approach to the maximum likelihood method (Rauch, 1965)

for estimating the state of a linear dynamic system. We reconsider the model (1.42), (1.43)

with Ri positive definite, and in addition, the initial condition x0 is assumed to be a Gaussian

distributed random vector with

E{x0} = x̄0, E{x0x
T
0 ) = P̄0.
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The problem is to find an estimate x̂k/N , k = 0, . . . , K of xk from the observations {y0, . . . , yN}
so as to minimize the following objective functional

JML =
K∑
k=0

l(x0, x̂0/N ; x1, x̂1/N . . . , xK , x̂K/N), (1.49)

for some loss function l(.) of the variables. The problem is called (i) filtering, if K = N ;

(ii) prediction, if K ≥ N ; and (iii) smoothing if K ≤ N . We shall present a solution to the

filtering and prediction problems. In order to solve the problem, the distribution of interest

is the joint distribution of x0, . . . , xK conditioned on y0, . . . , yN defined by

p(x0, . . . , xK/y0, . . . , yN).

If the loss function l(.) is zero near xk = x̂k/k for k = 0, . . . , K, and very large otherwise,

then the optimum procedure is to use the joint maximum likelihood function or the logarithm

of the above probability distribution. If on the other hand, the objective functional (1.49)

above has the special form

JML =
K∑
k=0

lk(xk, x̂k/N), (1.50)

then the distribution of interest is the marginal distribution of xk conditioned on {y0, . . . , yN},
i.e.,

p(xk/y0, . . . , yN),

which can be obtained from p(x0, . . . , xK/y0, . . . , yN) by summing out xj , j �= k. Moreover, if

lk(xk, x̂k/N) is zero near xk = x̂k/N and very large otherwise, then the optimum procedure to

use is the marginal maximum likelihood function, or the logarithm of the above distribution.

We shall employ this for determining the solution to the filtering and prediction problems.

Let Yk
Δ
= {y0, . . . , yk} and the estimate based on this data by x̂k/k. This is to be obtained

by maximizing the density function p(xk/Yk), which is equivalent to maximizing

L(xk, Yk) = log p(xk/Yk) = log p(xk, Yk)− log p(Yk). (1.51)
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Using the fact that vk are independent, we have

p(xk, Yk) = p(yk/xk, Yk−1)p(xk, Yk−1) = p(yk/xk)p(xk, Yk−1)p(Yk−1). (1.52)

Next, let x̂k−1/k−1, x̂k/k−1 be the estimates of xk−1, xk given Yk−1 respectively, and let

ek−1/k−1, ek/k−1 be the corresponding estimation errors. In addition, define

Cov{xk−1/k−1} = Pk−1/k−1, Cov{xk/k−1} = Pk/k−1.

Since vk, k = 1, . . . , N are independent, then

x̂k/k−1 = Ak,k−1x̂k−1/k−1 (1.53)

Pk/k−1 = Ak,k−1Pk−1/k−1A
T
k,k−1 +Qk−1 (1.54)

give a solution of the prediction problem. Further, using (1.42), (1.43), it follows that the

conditional random vector xk given Yk−1 has mean and covariance

E{xk/Yk−1} = x̂k/k−1, Cov{xk/Yk−1} = Pk/k−1, (1.55)

while the conditional vector yk given xk has

E{yk/xk} = Hkxk, Cov{yk/xk} = Rk. (1.56)

Substituting (1.55), (1.56) in (1.52) and using the fact that all the vectors are normally

distributed, we have

p(xk, Yk) =
1√

(2π)m|Rk|
exp

{
−1/2‖yk −Hkxk‖2R−1

k

}
|Pk/k−1|−1/2 ×

exp

{
−1/2‖xk − x̂k/k−1‖2P−1

k/k−1

}
p(Yk−1). (1.57)

Further, substituting (1.57) in (1.52) and separating the terms in L(.) that depend on xk,

and defining the marginal maximum likelihood estimation (MLE) objective function in terms
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of these terms, we get

JMLE = ‖yk −Hkxk‖2R−1
k

+ ‖xk − x̂k/k−1‖2P−1
k/k−1

. (1.58)

Finally, applying the necessary condition for the optimal estimate, ∂JMLE

∂xk

∣∣∣
x̂k/k

= 0, yields

x̂k/k = (HT
k R

−1
k Hk + P−1

k/k−1)(H
T
k R

−1
k yk + P−1

k/k−1x̂k/k−1), (1.59)

which is the solution of the filtering problem. An alternative representation of this solution

can be given by using the following matrix-inversion lemma.

Lemma 1.2.1. Suppose S−1
k+1 = S−1

k + HT
k R

−1
k Hk where Sk and Rk are symmetric and

positive definite. Then Sk+1 exists and is given

Sk+1 = Sk − SkH
T
k (HkSkH

T
k +Rk)

−1HkSk. ♦

Using the above lemma in (1.59), we have the following more computationally efficient rep-

resentation

x̂k/k = x̂k/k−1 +Bk(yk −Hkx̂k/k−1) = Ak,k−1x̂k−1/k−1 +Bk(yk −HkAk/k−1x̂k−1/k−1) (1.60)

where

Bk = Pk/k−1H
T
k (HkPk/k−1H

T
k +Rk)

−1.

Similarly, substituting (1.42) in (1.60) yields the error equation

ek/k = (I −BkHk)[Ak,k−1ek−1/k−1 + wk−1]−Bkvk. (1.61)

Moreover, since ek−1/k−1, vk and wk−1 are independent, it follows that

Pk/k = Cov{ek/k} = (I − BkHk)Pk/k−1. (1.62)
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Equations (1.60)-(1.62) are the same as those derived by Kalman and presented in the

previous section with x̂0/−1 = x̄0 and P0/−1 = P̄0.

1.2.4 Bayesian Estimation for Linear Dynamic Systems

In this subsection we review an approach to Bayesian state estimation for linear dynamic

systems (Ho, 1964). We consider the following linear time-invariant system model

Σld :

⎧⎨⎩ xk+1 = Axk +Bwk, x(0) = x0

yk = Hkxk + vk
(1.63)

where x ∈ �n, y ∈ �m, and w and v are independent white Gaussian random sequences with

E{vk} = E{wk} = 0, Cov{vk+1} = R, Cov{wk} = Q.

Let Yk+1 = {y0, . . . , yk+1} be a set of discrete measurements, and suppose

p(xk/Yk) is Gaussian,

Cov{xk/Yk} = Pk,

p(wk, vk+1/xk, Yk) = p(wk)p(vk+1),

are known. The problem is to find the best estimate x̂k+1 of xk from Yk+1 in some optimal

sense which will be defined later. The Bayesian solution can be obtained in the following

steps:

1. Evaluate p(xk+1/xk); this can be done either experimentally or analytically from knowl-

edge of p(wk, vk+1/xk), p(xk/Yk) and (1.63).

2. Evaluate p(yk+1/xk, xk+1); this is is also derived from p(wk, vk+1/xk) and (1.63).
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3. Evaluate

p(xk+1, yk+1/Yk) =

∫
p(yk+1/Yk, xk+1)p(xk+1/xk)p(xk/Yk)dxk. (1.64)

From this, the marginal density functions p(xk+1/Yk) and p(yk+1/Yk) can be directly

evaluated.

4. Evaluate

p(xk+1/Yk+1) =
p(xk+1, yk+1/Yk)

p(yk+1/Yk)

=

∫
p(yk+1/Yk, xk+1)p(xk+1/xk)p(xk/Yk)dxk∫ ∫

p(yk+1/Yk, xk+1)p(xk+1/xk)p(xk/Yk)dxk+1dxk

(1.65)

from (1.64). Equation (1.65) is a functional-integral-difference equation governing the

evolution of the a posteriori density function of the state.

5. Estimate of xk+1 can then be obtained from p(xk+1/Yk+1).

Applying the above steps 1-5 to the model (1.63), we have since wk, vk+1 are not dependent

on the state, (1.65) simplifies to

p(xk+1/Yk+1) =
p(yk+1/xk+1)

p(xk+1/Yk)
p(xk+1/Yk). (1.66)

By assumption, p(xk+1/Yk) is Gaussian and independent of vk+1. Hence,

E{xk+1/Yk} = Ax̂k

Cov{xk+1/Yk} = APkA
T +BQBT Δ

= Pk+1.

⎫⎬⎭ (1.67)

Similarly, p(yk+1/Yk) is Gaussian and

E{yk+1/Yk} = HAx̂k

Cov{yk+1/Yk} = HPk+1H
T +R.

⎫⎬⎭ (1.68)
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Finally, p(yk+1/Yk) is also Gaussian

p(yk+1/xk+1} = Hxk+1

Cov{yk+1/xk+1} = R.

⎫⎬⎭ (1.69)

Combining (1.67)-(1.69) and using (1.66) one gets

p(xk+1/Yk+1) =
|HMk+1H

T +R|1/2
(2π)n/2|R|1/2|Mk+1|1/2 exp

{
−1/2[(xk+1 − Ax̂k)

TMT
k+1(xk+1 −

Ax̂k) + (yk+1 −Hxk+1)
TR−1(yk+1 −Hxk+1)− (yk+1 −

HAx̂k+1)
T (HMk+1H

T +R)−1(yk+1 −HAx̂k+1)]
}
. (1.70)

Completing the squares in the terms in {.}, we get

p(xk+1/Yk+1) =
|HMk+1H

T +R|1/2
(2π)n/2|R|1/2|Mk+1|1/2 exp

{
−1/2(xk+1− x̂k+1)

TP−1
k+1(xk+1− x̂k+1)

}
, (1.71)

where

x̂k+1 = Ax̂k +Mk+1H
T (HMk+1H

T +R)−1(yk+1 −HAx̂k), (1.72)

P−1
k+1 = M−1

k+1 +HTR−1H, (1.73)

or equivalently

Pk+1 = Mk+1 −Mk+1H
T (HMk+1H

T +R)−1HMk+1, (1.74)

and

Mk+1 = APkA
T +BQBT . (1.75)

Equations (1.72)-(1.75) are exactly the same as the Kalman filter equations presented in the

previous subsection.
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1.3 Nonlinear Filtering

In this section, we review briefly the history of nonlinear filtering and present some well-

known approaches. Most of the results we present in this section will be in continuous-time,

by virtue of the nature of the original publications.

The theory of nonlinear filtering also started in the early 1960s, and was originally devel-

oped by Stratonovich. He formally obtained the random partial differential equation for the

conditional density p(xt|observation up to time t) of the signal xt given the observations yt

for the Ito model:

Σan
1 :

⎧⎨⎩ dxt = f(xt)dt+ g(x)dvt, x(t0) = x0

dyt = h(xt)dt+ dwt,
(1.76)

where xt ∈ �n, with x0 a random vector, is a continuous-time process, {vt, t ≥ t0} is an

r-dimensional standard Brownian motion, f : �n → �n, g : � → �n×r is the diffusion

coefficient, yt ∈ �m, h : �n → �m is a known observation function, and {wt, t ≥ t0} is an

m-dimensional standard Brownian motion which is independent of vt and the initial state x0.

Let Fy
t = B(ys, s ≤ t) be the filtration produced by the observation process yt, where B(.)

is the completion of the smallest σ-algebra generated by yt. With the correction supplied by

Kushner (Kushner, 1964a), Stratonovich obtained the following equation

dp(xt|Fy
t ) = Ãp(xt|Fy

t ) + (h− ĥ)R−1(dzt), (1.77)

with

Ã = − ∂

∂x
f +

1

2
Tr

(
gQgT

∂2

∂x∂x

)
,

E{vtvTτ } = Q(τ)δt,τ , E{wtw
T
τ } = R(τ)δt,τ , ĥ = E{h(xt|Fy

t )},

and zt is the innovation process satisfying

dzt = (h− ĥ)dt+ dwt. (1.78)
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Later, Kushner (Kushner, 1964a), (Kushner, 1964b) in 1964 presented his own solution to

the filtering problem and obtained an equation for the conditional density and conditional

expectation of the observation. Consider a more general nonlinear possibly time-varying

model of the form

Σan
2 :

⎧⎨⎩ dxt = f(xt, t)dt+ g(xt, t)dvt x(t0) = x0

dyt = h(xt, t)dt+
√
Rtdwt,

(1.79)

where f : �n → �n,g : � → �n×r, h : �n → �m. Then, he obtained an equation for the

conditional density and conditional expectation of the observation given by

dp(xt|Fy
t ) = Lp(xt|Fy

t )dt+ p(xt|Fy
t )R

−1
t (dyt − ĥtdt), (1.80)

where

L = − ∂

∂x
f +

1

2
Tr

(
ggT

∂2

∂x∂x

)
, ĥt = E{h(xt, t)|Fy

t )}.

Similarly, M. Zakai (Wong, 1965), (Zakai, 1969) in 1969 presented a simpler equation than

Kushner’s in terms of the unnormalized conditional density P (xt|Fy
t ) (and linear in it) given

by:

dP (xt|Fy
t ) = LP (xt|Fy

t )dt+R−1
t h(xt, t)P (xt|Fy

t )dyt. (1.81)

However, only for the linear Gaussian case and certain class of nonlinearities, can the Zakai

equation be solved explicitly. Most of the efforts in this direction have gone into developing

numerical schemes for solving both the Kushner and the Zakai equations, which hitherto are

neither recursive nor computationally efficient.

1.3.1 Extended Kalman Filters (EKFs) and Unscented Kalman Filters (UKF)

The Kalman filter theory applies to linear-Gaussian problems, but most real-life applications

are nonlinear and/or non-Gaussian. Therefore, following the Kalman-Bucy pioneering work,

a nonlinear version of the Kalman filter was also developed (the “Extended Kalman Filter”

(EKF)) and was actually first derived by Peter Swirling in 1958. The EKF simply approxi-
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mates the nonlinear model by its first-order Taylor series evaluated at the current estimate.

For the system model

Σan
3 :

⎧⎨⎩ ẋ(t) = f(x, t) +G(t)v(t), x(t0) = x0

y(t) = h(x, t) + w(t)
(1.82)

where x ∈ �n is the state vector, y ∈ �m is the measurement or observation vector, w ∈ �m,

v ∈ R
r are Gaussian noise processes with

E{v(t)vT (τ)} = R(t)δ(t− τ), E{w(t)wT (τ)} = Q(t)δ(t− τ),

E{v(t)w(τ)} = 0 for all t, τ ∈ [0,∞),

f : �n × � → �n, G : R → �n×r, h : �n × � → �m. The EKF is given by

˙̂x(t) = f(x̂(t), t) +K(t)[y(t)− h(x̂(t))], x̂(t0) = E{x0} (1.83)

where

K(t) = P (t)HT (x̂(t), t)R−1(t)

and

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F T (x̂(t), t)−
P (t)HT (x̂(t), t)R−1(t)H(x̂(t), t)P (t) +G(t)Q(t)GT (t),

P0 = E{x0x
T
0 }, F (x̂(t), t) =

∂f

∂x

∣∣∣∣
x̂

, H(x̂(t), t) =
∂h

∂x

∣∣∣∣
x̂

.

The EKF, which is suboptimal, has been successfully applied to numerous nonlinear estima-

tion problems (Sorenson, 1985). However, for highly nonlinear problems with large initial

errors, divergence may occur. Consequently, the filter must always be initialized in a suffi-

ciently close neighborhood of the initial estimate in order to guarantee convergence.

Furthermore, different EKFs have been derived using various approaches (Daum 2005) such

as, (i) different coordinate systems; (ii) different factorization of the covariance matrix; and
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(iii) second-order or higher-order Taylor series corrections to the state vector prediction

and/or measurement update, etc. Nevertheless, and although the EKFs are widely used, their

inaccuracies and limitations have been recognized in the tracking and control communities.

Indeed, there is a general consensus that they are: (i) difficult to implement; (ii) difficult

to tune; and (iii) only reliable for systems that are almost linear on the time scale of the

update interval (Julier, 2000). Consequently, a significant improvement to these EKFs came

about with the development of the unscented Kalman-filter (UKF) (Julier, 2000). While

the EKFs use a simple linear or first-order Taylor approximation, the UKF uses a more

accurate approximation, “called the unscented transform” (to evaluate the multidimensional

distribution integrals). We summarize the main results of the UKF here. We consider the

following nonlinear discrete-time system model

Σdn
1 :

⎧⎨⎩ xk+1 = f(x(k), u(k), v(k), k), x(0) = x0

yk = h(x(k), u(k), k) + w(k)
(1.84)

where x(k) ∈ �n is the state vector, u(k) is the input vector, v(k) is the system noise vector,

while w(k) is the measurement noise vector, and y(k) ∈ �m is the observation vector each

at time-step k. The noise vectors v(k), w(k) are assumed to have

E{v(i)vT (j)} = Q(i)δij , E{w(i)wT (j)} = R(i)δij , E{v(i)w(j)} = 0 for all i, j. (1.85)

The objective is to find the minimum mean-squared error (MMSE) estimate of the state

vector conditioned on the observations, or the conditional mean, i.e., x̂(i|j) which is given

by

x̂(i|j) = E[xi|Y j],

where Y j = {y(1), . . . , y(j)}. The covariance of the estimate is also denoted by P (i|j). The
UKF approximates a nonlinear function by generating a set of points whose sample mean and

sample covariance are x̂(k|k), P (k|k) respectively. The nonlinear function is then applied to

each of these points inturn to yield a transformed sample. Finally, the predicted mean and

covariance are calculated from the transformed sample.
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The n-dimensional random state vector x(k) with mean x̂(k|k) and covariance P (k|k) is
approximated by 2n+ 1 weighted samples or sigma points selected by the algorithm

S :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0(k|k) = x̂(k|k)
W0 = κ/n+ κ)

Xi(k|k) = x̂(k|k) +
(√

(n+ κ)P (k|k)
)

Wi = 1/2(n+ κ)

Xi+n(k|k) = x̂(k|k)−
(√

(n+ κ)P (k|k)
)

Wi+n = 1/2(n+ κ).

(1.86)

where κ is a real number,
(√

(n+ κ)P (k|k)
)
is the i-th row or i-th column1 of the matrix

square-root of (n + κ)P (k|k), and Wi is the weight that is associated with the i-th point.

It can then be proven that, the set of samples S chosen by (1.86) have the same sample

mean, covariance and all higher odd-ordered central moments as the distribution of x(k). In

addition, the matrix square-root and κ affect the fourth and higher-order moments of the

sigma points.

Given the set of samples S generated by (1.86), the prediction steps are as follows.

Algorithm

1. Each sigma point is applied to the process model to obtain the transformed samples

Xi(k + 1|k) = f(Xi(k|k), u(k), k).

2. The predicted mean is computed as

x̂(k + 1|k) =
2n∑
i=0

WiXi(k + 1|k).

3. The predicted covariance is similarly computed as

P (k + 1|k) =
2n∑
i=0

Wi{Xi(k + 1|k)− x̂(k + 1|k)}Xi(k + 1|k)− x̂(k + 1|k)}T .

1If P is of the form P = ATA, then the sigma points are formed from the rows of A. On the other hand,
if P = AAT , then the sigma points are formed from the columns of A.
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Consequently, the computations of the mean and covariance in the UKF involve only vector

and matrix operations, and does not involve the computation of the Jacobian as in the EKF.

It also yields more accurate predictions than those of the EKFs.

1.3.2 Maximum Likelihood Recursive Nonlinear Filtering

In 1968 Mortensen R. E. considered a variational approach to the nonlinear filtering problem

using a maximum likelihood function. For the model

Σan
4 :

⎧⎨⎩ ẋ(t) = f(x, t) + v(t)

y(t) = h(x, t) + w(t),
(1.87)

where all the variables have their previous meanings and dimensions, he obtained the follow-

ing filter

˙̂x(t) = f(x̂(t), t) + Π−1(x̂, t;μ, t0)hx(x̂(t), t)Q
−1(t)[y(t)− h(x̂(t), t)];

x̂(t0) = μ = E{x0}, (1.88)

where Π−1(t, t0) satisfies a matrix Riccati differential equation with Π−1(t0, t0) = Λ (known)

for the suboptimal solution. The optimal solution involves the solution of the following

Hamilton-Jacobi-Bellman equation

∂V

∂t
(x, t;μ; t0) +H�[x,∇xV (x, t;μ, t0), t] = 0, V (x, t0;μ; t0) =

1

2
(x− μ)TΛ−1(x− μ) (1.89)

and

H�(x, p, τ) = −1

2
pTR(τ)p + pTf(x, τ) +

1

2
[y(τ)− h(x, τ)]TQ−1[y(τ)− h(x, τ)].

It is possible to show that Π−1(x̂, t;μ, t0) satisfies a matrix Riccati differential equation by

computing the total time derivative of (Π)ij = ∂2V (x, t;μ, t0)/∂xi∂xj . However, in addition,
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one needs to know the components

[∂2V (x, t;μ, t0)/∂xi∂xj∂xk]
∣∣
x=x̂(t)

(1.90)

of a tensor of rank 3 along the trajectory x̂(t). Thus, computing the optimal solution is

indeed a difficult task.

An alternative possible approximation is to assume that the quantities in (1.90) and the

higher derivatives of V (x, t;μ, t0) evaluated along x̂ are negligible. This is equivalent to

assuming that V is quadratic with kernel matrix Π(x, t;μ, t0). This then leads to the matrix

Riccati differential equation for Π−1(t, t0), with appropriate initial condition Π−1(t0, t0) = Λ.

1.3.3 Bayesian Nonlinear Filtering and Particle Filters (PFs)

Bayesian methods provide a rigorous general framework for dynamic state estimation prob-

lems. The Baysian approach is to construct the PDF of the state based on all the available

information. Bayesian nonlinear estimation (Ho, 1964) follows exactly the same procedure as

the linear theory outlined in the previous section. Given a set of measurements {y1, . . . , yk}
of an observation function

y = h(x, v), (1.91)

where y ∈ �m is related to the variable of interest x ∈ �n, that is corrupted by a noise

process v ∈ �r. Suppose also the joint density function p(x, v) is assumed to be known. The

problem is then to find a best estimate x̂ of x from this data.

Using the joint density p(x, v), the marginal densities p(x) and p(v) can be readily obtained.

Then the Bayesian solution can be determined in the following steps.

1. Evaluate p(y): this can be achieved analytically (in principle) or experimentally by

Monte-Carlo methods.

2. Evaluate either (a) p(x, y) or (b) p(x/y) in the following way:
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(a) p(x, y) can be obtained analytically if v is of the same dimension as y and one can

obtain the functional relationship v = h�(x, y) from (1.91). Then using p(x, y) we

have

p(x, y) = p(x, v = h�(x, y)) = h�(x, y)J

where J is the Jacobian matrix J = det
(

∂h�(x,y)
∂y

)
.

(b) p(x/y) can also be obtained either analytically or experimentally from y = h(x, v)

and p(x, v).

3. Evaluate p(x/y) using either of the following relationships:

(a) Following step 2(a) above,

p(x/y) =
p(x, y)

p(y)
.

(b) Following step 2(b) above, one uses Bayes’ rule to get

p(x/y) =
p(y/x)p(x)

p(y)
.

The above step may be easy or difficult depending on the distribution one has assumed

for or obtained for p(x, v), p(y), p(y/x).

4. The “a posteriori” density function p(x/y) contains all the information necessary for

the estimation of x. One can use several criterion functions for estimating x̂ from

p(x/y):

(a) Maximize J1 = {prob(x̂ = x)}. The solution is x̂ = Mode of p(x/y), and is also

known as the most probable estimate. When the a priori density function p(x) is

uniform, this estimate coincides with the classical maximum likelihood estimate.

(b) Minimize J2 =
∫ ‖x− x̂‖2p(x/y)dx. The solution is x̂ = E{x/y} and is known as

the conditional mean estimate.

(c) Minmax J3 = |x− x̂|. The solution is x̂ = Median of p(x/y), and is known as the

minimax estimate.
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Other criterion functions could also be used. References (Arasaratnam, 2007a), (Arasarat-

nam, 2009) also present latest approaches to the Bayesian approach for discrete-time non-

linear systems.

However, an important class of Bayesian filters that were developed as improvements over

the EKF are called “particle filters (PFs)” (Gordon, 1993). For linear Gaussian estimation,

the required PDF remains Gaussian at every iteration of the filter. However, for nonlinear or

non-Gaussian problems, there is no general analytic (closed-form) expression for the required

PDF. Thus, the central idea behind PFs is to represent the required PDF as a set of random

samples, rather than as a function over the state-space. Moreover, as the number of samples

become large, they effectively provide an exact equivalent representation of the required PDF.

Similarly, estimates of the moments (such as mean and covariance) of the state vector PDF

and its functional representation can be obtained or constructed directly from the samples.

A recursive weighted bootstrap algorithm which is based on Baye’s rule is used to update the

samples. The samples are naturally concentrated in the regions of high probability density.

They also have the great advantage of being able to handle any functional nonlinearity, as

well as system and measurement noise of any distribution. To review the approach, we first

consider the following general discrete-time nonlinear system

Σdn
3 :

⎧⎨⎩ xk+1 = fk(xk, wk), x(0) = x0

yk = hk(xk, vk)
(1.92)

where fk : �n × �m → �n, k = 1, . . . , is the system transition function, hk : �n × �r, k =

1, . . . , is the measurement function, and wk, vk are uncorrelated zero-mean white noise

sequences of known PDF. It is assumed that the initial PDF of the state vectors p(x1|D0) ≡
p(x1) is available, where Dk = {y0, . . . , yk} is the measurement information at time k.

The objective is to construct the PDF of the current state xk given all the available infor-

mation, p(xk|Dk). This can theoretically be obtained in two steps: a prediction step, and

an update step. For if we suppose p(xk−1|Dk−1) is available at step k − 1. Then p(xk|Dk−1)
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can be obtained as

p(xk|Dk−1) =

∫
p(xk|xk−1)p(xk−1|Dk−1)dxk−1 —Prediction equation (1.93)

The state transition probabilities p(xk|xk−1), which are assumed to be Markovian, are defined

by the systems equations and the known statistics of wk−1

p(xk|xk−1) =

∫
p(xk|xk−1, wk−1)p(wk−1|xk−1)dwk−1, (1.94)

and since by assumption p(wk|xk−1) = p(wk−1), we have

p(xk|xk−1) =

∫
δ(xk − fk−1(xk−1, wk−1))p(wk−1)dwk−1. (1.95)

If now at time step k, a measurement yk becomes available, then (1.93) can be updated as

p(xk|Dk) =
p(yk|xk)p(xk|Dk−1)∫
p(yk|xk)p(xk|Dk−1)dxk

—Update equation, (1.96)

where again the conditional PDF p(yk|xk) is defined by the measurement model and the

known statistics of vk,

p(yk|xk) =

∫
δ(yk − hk(xk, vk))p(vk)dvk. (1.97)

The above steps summarize the theoretical Bayesian estimation algorithm. However, analyt-

ical solutions to this problem are only available for a relatively small and restrictive choice

of systems and measurement models, e.g. the Kalman filter, where fk and hk are linear,

while wk and vk are additive Gaussian of known variance. In reality, these assumptions are

unreasonable for many applications, and hence the need to modify the approach to conform

with more realistic situations.

Consequently, the “bootstrap filter” is developed to address some of the above concerns.

Suppose a set of random samples {xk−1(i) : i = 1, . . . , N} from the PDF p(xk−1|Dk−1) are

available. The algorithm propagates and updates these samples to obtain a set of new values
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{xk(i) : i = 1, . . . , N}, which are approximately distributed as p(xk|Dk).

Bootstrap Filter Algorithm:

• Prediction: The system state equations (1.92) is applied on each sample to obtain new

values as

x�
k(i) = fk−1(xk−1(i), wk−1(i)), i = 1, . . . , N,

where wk−1(i), i = 1, . . . , N is drawn from the assumed PDF of wk−1.

• Update: On receipt of a new measurement yk, evaluate the likelihood of each prior

sample to obtain a normalized weight for each sample

qi =
p(yk|x�

k(i))∑N
j=1 p(yk|x�

k(j)
, i = 1, . . . , N.

In this way, a discrete distribution over {x�
k(i) : i = 1, . . . , N} with probability mass

qi associated with each sample i is defined. Next, resample N times from the discrete

distribution to generate samples {xk(i) : i = 1, . . . , N} so that for any j, Pr{xk(j) =

x�
k(i)} = qi.

The above steps form a single iteration of the recursive filter algorithm. To initialize the algo-

rithm, N samples x�
k(i) are drawn from the known prior p(x1), and are then applied directly

to the update step of the algorithm. The claim is that the samples xk(i) are approximately

distributed as the required PDF of p(xk|Dk).

The above basic algorithm is simple and easy to program. The only requirements are

(a) p(x1) is available for sampling;

(b) p(yk|xk) is a known functional form;

(c) p(wk) is available for sampling.
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The output of the algorithm as a set of samples of the required posterior density is also

convenient for many applications. In addition, it is straightforward to obtain estimates of

the mean and covariance of the state, and indeed any function of the state.

1.4 Conclusion

In this chapter, we have reviewed the historical development of estimation theory from

Gauss’s least squares method to the Kalman-Bucy theory and finally the Stratonovich-

Kushner theory. We have summarized most of the major approaches that have been de-

veloped for linear dynamic systems, including the minimum-variance method, the maximum

likelihood method and the Bayesian approaches. Finally, we have also discussed the exten-

sions of the above approaches to nonlinear dynamic systems including the extended Kalman

filter (EKF), the Stratonovich and Kushner filters, as well as the maximum likelihood recur-

sive nonlinear filters and Bayesian nonlinear filters. In the next chapter, we focus on linear

singular systems.
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CHAPTER 2

LITERATURE REVIEW

Singular systems are classified into two types; namely, (i) singularly-perturbed systems; and

(ii) differential-algebraic systems, descriptor or generalized state-space systems. The two

groups are also related as the second group can be obtained from the first by asymptotically

allowing the pertubation parameter to go zero.

Singularly perturbed systems are that class of systems that are characterized by a discontin-

uous dependence of the system properties on a small perturbation parameter ε. They arise

in many physical systems such as electrical power systems and electrical machines (e.g. an

asynchronous generator, a dc motor, electrical converters), electronic systems (e.g. oscilla-

tors) mechanical systems (e.g. fighter aircrafts), bilogical systems (eg. bacterial-yeast-virus

cultures, heart) and also economic systems with various competing sectors. This class of sys-

tems has two time-scales; namely, a “fast” and a “slow” dynamics. This makes their analysis

and control more complicated than regular systems. Nevertheless, they have been studied

extensively (Khalil, 1985), (Kokotovic, 1986).

The filtering problem for linear singularly perturbed systems in both continuous-time (Assaw-

inchaichote, 2004a)-(Assawinchaichote, 2007), (Gajic, 1994), (Haddad, 1976)-(Hong, 2008),

(Lim, 2000), (Mukaidani, 2003), (Prljaca, 2008), (Sebald, 1978), (Shen, 1993), (Shen, 1996),

(Yang, 2008) and discrete-time (Kim 2002), (Lim, 1996), (Sadjadi, 1990) has been considered

by many authors. Various types of filters have been proposed, including composite (Haddad,

1976), (Haddad, 1977), (Sebald, 1978), (Shen, 1993) and reduced-order filters (Gajic, 1994),

(Sebald, 1978), (Shen, 1993).

On the other hand, descriptor, differential or generalized state-space systems provide a more

generalized description of dynamic systems including possible constraints conditions on the

states and the effect of small parameter perturbation (or singular-perturbation) in the model.
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They are also encountered in chemical and minerals industries, mechanical and aerospace

systems, as well as electronic and electrical circuits. Because of the incorporation of the

constraints conditions in the state equations, the state-variables are usually referred to as

semistate variables (Newcomb, 1981a).

Similarly, various authors have considered the observer design and filtering problems for lin-

ear descriptor systems in both continuous-time (Dai, 1989), (Dai 1989), (Darouach, 1995)-

(Darouach, 1997), (El-Tohami, 1984), (Fahmy, 1989), (Gao, 2004), (Hou, 1995), (Ishihara,

2009), (Koenig, 1995), (Minamide, 1989), (Paraskevopoulos, 1992), (Sun, 2007), (Uetake,

1989), (Zhou, 2008) and discrete-time (Dai 1988), (Darouach, 2009), (Boulkroune, 2010), (El-

Tohami, 1987)-(El-Tohami, 1983), (Ishihara, 2006), (Nikoukhah, 1999), (Nikoukhah, 1992),

(Zhou, 2008). Kalman - Luenberger type full-order and reduced-order observers have exten-

sively been studied, and necessary and sufficient conditions for the solvability of the problem

have been presented. On the other hand, only recently has there been some attention on

the design of observers and filters for nonlinear descriptor systems (Darouach, 2008). This is

probably because of the complexity of this class of systems. Similarly, the output observation

design problem for nonlinear systems has also been considered in (Zimmer, 1997). But to

the best of our knowledge, the filtering problem for more general affine nonlinear descriptor

systems has not been discussed in any reference.

In this chapter, we review some of the methods for both the H2 and H∞ filtering problems

and for both linear singularly perturbed and linear descriptor systems respectively. But

only the continuous time results will be presented. The chapter is organized as follows. In

section 2.1 we discuss theH2 filtering problem for the linear singularly perturbed case. While

in Section 2.2, we discuss the H∞ problem. Then in Sections 2.3 and 2.4, we discuss the

corresponding linear descriptor problems respectively.
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2.1 Review of Kalman (H2)-Filtering for Linear Singularly-Perturbed Systems

In this section, we review Kalman (or H2) filtering results for linear singularly-perturbed

systems and in the subsequent section, we consider the H∞ problem. The results presented

here are mainly from (Haddad, 1976).

We consider the following linear (possibly time-varying) (LTV) singularly-perturbed system

Σl
1,μ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = A1(t)x1 + A12(t)x2 +B1(t)w, x1(t0, ε) = x10

μẋ2 = A21(t)x1 + A2x2 +B2(t)w, x2(t0, ε) = x20

y = C1(t)x1 + C2(t)x2 + v

(2.1)

where x1 ∈ �n1 is the slow state vector, x2 ∈ �n2 is the fast state vector, while y ∈ �m is the

output measurement vector. The vectors w, v are uncorrelated white noise processes with

covariances given by

E{w(t)wT (τ)} = Q(t)δ(t− τ), E{v(t)vT (τ)} = R(t)δ(t− τ),

while the matrices A1(t), A21(t), A12(t), A2(t) are continuous with respect to t and have

appropriate dimensions, and μ is a small parameter. It is also assumed that A2(t) is stable,

nonsingular, and has bounded first derivative.

Applying the Chang (Chang, 1972) transformation, the above system (2.1) can be trans-

formed to the following decomposed system

Σ̃l
2,μ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η̇ = A0(t)η +B0(t)w, η(t0, ε) = η0

μξ̇ = A2(t)ξ +B2(t)w, ξ(t0, ε) = ξ0

y = C0(t)η0 + C2(t)ξ + v, t ≥ t0

(2.2)

where again η ∈ �n1 is the slow state vector, ξ ∈ �n2 is the fast state vector, while all other

variables retain their previous meanings,

A0(t) = A1(t)− A12(t)L(t) +O(μ)
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B0(t) = B1(t)− μH(t)L(t)B1(t)− H(t)B2(t) = B1(t)− A12(t)A
−1
2 (t)B2 +O(μ)

C0(t) = C1(t)− C2(t)L(t) = C1(t)− C2(t)A
−1
2 (t)A21(t) +O(μ)

μL̇(t) = A2(t)L(t)−A21(t)− μL(t)(A1(t)− A12(t)L(t))

μḢ(t) = −H(t)(A2(t) + μL(t)A12(t)) + A12(t) + μ(A1(t)− A12(t)L(t))H(t)

and all matrices have appropriate dimensions. The problem is to find the best estimates η̂, ξ̂

of η, ξ from the measurements y(t), that minimize the mean-squared errors E{‖η(t)−η̂(t)‖2},
E{‖ξ(t)− ξ̂(t)‖2} and to investigate the behavior of the resulting filters as μ → 0.

It can be shown that (Haddad, 1976) the solution to the above problem is given by the

following filter

Fl
1,μ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̂η(t) = A0(t)η̂ + (P1(t)C
T
0 (t) + P12(t)C

T
2 (t))R

−1(t)(y − C0(t)η̂(t)− C2ξ̂(t));

η̂(t0) = E{η0}
μ
˙̂
ξ(t) = A2(t)ξ̂(t) + (μP12(t)C

T
0 (t) + P2(t)C

T
2 (t))R

−1(t)(y(t)− C0(t)η̂(t)−
C2(t)ξ̂(t)), ξ̂(t0) = E{η0}

(2.3)

where

Ṗ1(t) = A0(t)P1(t) + P1(t)A
T
0 (t) +B0(t)Q(t)BT

0 (t)− (P1(t)C
T
0 (t) +

P12(t)C
T
0 (t))R

−1(t)(C0(t)P1(t) + C2(t)P12(t)), P1(t0) = Cov{η0} (2.4)

μṖ12(t) = μA0(t)P12(t) + P12(t)A
T
2 (t) +B0(t)Q(t)BT

0 (t)− (P1(t)C
T
0 (t) +

P12(t)C
T
2 (t))R

−1(t)(μC0(t)P12(t) + C2(t)P2(t)), P12(t0) = Cov{η0, ξ0}(2.5)

and

P1(t) = E{‖η(t)− η̂(t)‖2}, P2(t)/μ = E{‖ξ(t)− ξ̂(t)‖2}, P2(t0) = μCov{ξ0}. (2.6)

The limiting behaviors of the above Riccati equations (2.4)-(2.6) as μ → 0 can be obtained

by expressing each of the matrices P2(t) and P12(t) as a sum of a steady-state term and a
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boundary layer term up to order O(μ) as

P2(t) = P̄2(t) + P̃2(t) +O(μ), t ≥ t0 (2.7)

P12(t) = P̄12(t) + P̃12(t) +O(μ), t ≥ t0 (2.8)

respectively. The steady-state terms P̄2(t), P̄12(t) are obtained by setting μ = 0 in (2.5) to

get

A2(t)P̄2(t) + P̄2(t)A
T
2 (t) +B2(t)Q(t)BT

2 (t)− P̄2(t)C
T
2 (t)R

−1(t)C2(t)P̄2(t) = 0, (2.9)

P̄12(t) = −[B0(t)Q(t)BT
2 (t)− P1(t)C

T
0 (t)R

−1(t)C2(t)P̄2(t)]Ā
−1
2 (t), (2.10)

where

Ā2(t) = A2(t)− P̄2(t)C
T
2 (t)R

−1(t)C2(t),

and P̄2(t) is chosen as the positive semidefinite solution of (2.9). Whereas the boundary-layer

terms P̃2(t), P̃12(t) are obtained as the solutions to the following differential equations in the

stretched time variable τ = (t− t0)/μ as

d

dτ
P̃2(τ) = Ā2(t0)P̃2(τ) + P̃2(τ)Ā

T
2 (t0)− P̃2(τ)C

T
2 (t0)R

−1C2(t0)P̃2(τ) +O(μ),

P̃2(0) = μCov{ξ0} − P̄2(t0), τ ≥ 0, (2.11)

d

dτ
P̃12(τ) = P̃12(τ)[Ā

T
2 (t0)− CT

2 (t)R
−1(t)C2(t)P̃2(τ)]− [P1(t0)C

T
0 (t) +

P̃12(t0)C
T
2 (t)]R

−1C2(t)P̃2(τ), P̃12(τ) = Cov{η0, ξ0)− P̄12(t0), τ ≥ 0.(2.12)

Since A2(t) is stable and P̄2 ≥ 0, it implies that Ā2(t) is also a stable matrix. Consequently,

both P̃2(τ) and P̃12(τ) tend to zero as τ → ∞ and μ → 0. The limiting behavior of P1(t)

also follows from (2.4) as

Ṗ1(t) = A0(t)P1(t) + P1(t)A
T
0 (t) +B0(t)Q(t)BT

0 (t)− (P1(t)C
T
0 (t) +

P̄12(t)C
T
0 (t))R

−1(t)(C0(t)P1(t) + C2(t)P̄12(t)) +O(μ),

P1(t0) = Cov{η0}, t ≥ t0. (2.13)
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The limiting behaviors of the filters can also be studied. For the fast mode filter in the

stretched time parameter τ , the effect of P̃2(t) can be neglected and for t2 ≥ t ≥ t1 ≥ t0 + ε,

ε > 0 arbitrary,

d

dτ
ξ̂ = Ā2(t1)ξ̂2(t) + P̄2(t1)C

T
2 R

−1(y − C0η̂) +O(μ
1
2 ), τ ≥ 0. (2.14)

However, near the initial estimation interval ε ≥ (t− t0) ≥ 0 the above filter (2.14) needs to

be modified by adding P̃2(τ) to P̄2(τ).

Similarly, for the slow-mode filter, we have

˙̂η = A0(t)η̂ +K1(t)(y(t)− C0(t)η̂) +O(μ
1
2 ), (2.15)

where

K1(t) = (P1(t)C
T
0 (t) +B0(t)Q(t)DT

0 (t))R
−1
0 (t),

with

R0(t) = (R(t) +D0Q(t)DT
0 (t)), D0(t) = C2(t)A

−1
2 (t)B2(t).

The reduced-order filter can also be obtained by setting μ = 0 in (2.2) to get

ξ̄ = −A−1
2 (t)B2(t)w,

which yields

ȳ(t) = C0(t)η − C2(t)A
−1
2 (t)B2(t)w + v = C0(t)η +D0(t)w + v.

The reduced filter can then be constructed as

˙̂η = A0(t)η +K0(t)[ȳ − C0(t)η], η̂(t0) = E{η0}, (2.16)

where

K0(t) = (P0(t)C
T
0 (t) +B0(t)Q(t)DT

0 (t))R
−1
0 ,
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R0(t) = (R(t) +D0Q(t)DT
0 ),

and

Ṗ0(t) = A0(t)P0(t) + P0(t)A
T
0 (t) +B0(t)Q(t)BT

0 (t)−
(P0(t)C

T
0 (t) +B0(t)Q(t)DT

0 (t))R
−1
0 (t)(C0(t)P0(t) +D0(t)Q(t)BT

0 (t)),

P0(t0) = Cov{η0}. (2.17)

Next, we consider the time-invariant case in which the system matrices in (2.1) are constant,

i.e.,

Σl
3μ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = A1x1 + A12x2 +B1w, x1(t0, ε) = x10

μẋ2 = A21x1 + A2x2 +B2w, x2(t0, ε) = x20

y = C1x1 + C2x2 + v.

(2.18)

In addition, x1(t0), x2(t0) are also assumed to be random vectors with mean values E{x1} =

x̄1, E{x2} = x̄2, and the covariances are also positive-definite constant matrices

E{w(t)wT (τ)} = Qδ(t− τ), E{v(t)vT (τ)} = Rδ(t− τ).

A time-invariant aggregate filter can be constructed for the system (Gajic, 1994) as

Fl
2,μ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̂x1 = A1x̂1 + A12x̂2 +K1e, x̂1(t0) = x̄10

μ ˙̂x2 = A21x̂1 + A2x̂2 +K2e, x̂2(t0) = x̄20

e = y − C1x̂1 + C2x̂2,

(2.19)

where, the optimal filter gains K1, K2 are obtained from (Khalil, 1984) as

K1 = (P1C
T
1 + P12C

T
2 )R

−1, (2.20)

K2 = (μP T
12C

T
1 + P2C

T
2 )R

−1, (2.21)
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with the matrices P1, P12, and P2 representing the positive semidefinite stabilizing solution

of the filter algebraic Riccati equation (ARE):

AP + PAT + PSP +BQBT = 0, (2.22)

where

A =

⎡⎣ A1 A12

1
μ
A21

1
μ
A2

⎤⎦ , B =

⎡⎣ B1

1
μ
B2

⎤⎦ , P =

⎡⎣ P1 P12

P T
12

1
μ
P2

⎤⎦ ,

C = [C1 C2], S = CTR−1C.

The above filter (2.19) can also be decomposed using the Chang transformation (Gajic, 1994)

⎡⎣ η̂1

η̂1

⎤⎦ =

⎡⎣ I − μHL −μH

L I

⎤⎦⎡⎣ x̂1

x̂2

⎤⎦ , (2.23)

where L and H satisfy the algebraic equations

A2L− A21 − μL(A1 − A12L) = 0

−HA2 + A12 − μHLA12 + μ(A1 − A12L)H = 0

to get

Fl
3,μ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̂η1 = (A1 − A12L)η̂1 + (K1 − HK2 − μHLK1)e, η̂1(t0) = η̄10

μ ˙̂η2 = (A2 + μLA12)η̂2 + (K2 + μLK1)e, η̂2(t0) = η̄20

e = y − (C1 − C2L)η̂1 − [C2 + μ(C1 − C2L)H)]η̂2.

(2.24)

2.2 Review of (H∞)-Filtering for Linear Singularly-Perturbed Systems

In this section, we present some results from (Lim, 2000), (Shen, 1996) on the H∞ filtering

problem for linear singularly-perturbed systems. We reconsider the LTI model of the system

(2.18), and where w, v ∈ L2[t0,∞). It is desired to design an estimator of the form (2.19) to
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estimate the states of the system so that the following objective is achieved:

supw,vJ = supw,v

∫∞
t0

‖z(t)− ẑ(t)‖2R∫∞
t0
(‖w(t)‖2W−1 + ‖v(t)‖2)dt ≤ γ2 (2.25)

for some weighting matrices R ≥ 0, W > 0, a prescribed number γ > 0, and where the

penalty variable z is a linear combination of the states defined as

z = G1x1 +G2x2.

As in the H2 problem presented in the previous section, the aggregate H∞ filter solution is

given by the following gains

K1 = P̃1C
T
1 + P̃2C

T
2 , K2 = μP̃ T

2 C
T
1 + P̃3C

T
2 (2.26)

with the matrices P̃1, P̃2, and P̃3 representing the positive semidefinite stabilizing solution

of the filter algebraic-Riccati-equation (ARE):

AP̃ + P̃AT − P̃

(
CTC − 1

γ2
GTRG

)
P̃ +BWBT = 0, (2.27)

where

P̃ =

⎡⎣ P̃1 P̃2

P̃ T
2

1
μ
P̃3

⎤⎦ , G = [G1 G2],

and all the other matrices are as defined before.

A more numerically efficient and well-conditioned decomposition filter comprising of a sepa-

rate pure-slow and pure-fast independent filters directly driven by the innovation signal can

also be obtained. Accordingly, consider the optimal closed-loop filter equations (2.19), (2.26)

Fl
4,μ :

⎧⎨⎩ ˙̂x1 = (A1 −K1C1)x̂1 + (A12 −K1C2)x̂2 +K1y,

μ ˙̂x2 = (A21 −K2C1)x̂1 + (A2 −K2C2)x̂2 +K2y.
(2.28)
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Then, there exists a nonsingular transformation T and a change of coordinates⎡⎣ ζs

ζf

⎤⎦ = T

⎡⎣ x1

x2

⎤⎦
which transforms the above filter (2.28) into

Fl
5,μ :

⎧⎨⎩
⎡⎣ ˙̂

ζs
˙̂
ζf

⎤⎦ =

⎡⎣ as 0

0 1
μ
af

⎤⎦⎡⎣ ζ̂s

ζ̂f

⎤⎦+

⎡⎣ Ks

1
μ
Kf

⎤⎦ y (2.29)

To proceed, we make the folowing assumption.

Assumption 2.2.1. The triple (A2, C2, B2) is controllable and observable.

Then, define the following transformation matrices

T1 =

⎡⎣ AT
1 −

(
CT

1 C1 − 1
γ2G

T
1RG1

)
−B1WBT

1 −A1

⎤⎦ ,

T2 =

⎡⎣ AT
21 −

(
CT

1 C2 − 1
γ2G

T
1RG2

)
−B1WBT

2 −A12

⎤⎦ ,

T3 =

⎡⎣ AT
12 −

(
CT

2 C1 − 1
γ2G

T
2RG1

)
−B2WBT

1 −A21

⎤⎦ ,

T4 =

⎡⎣ AT
2 −

(
CT

2 C2 − 1
γ2G

T
2RG2

)
−B2WBT

2 −A2

⎤⎦ .

Then, it can be shown that Ti, i = 1, . . . , 4 are components of the Hamiltonian matrix of the

system defined as ⎡⎢⎢⎢⎢⎢⎢⎣
ẋ1

ṗ1

ẋ2

ṗ2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎣ T1 T2

1
μ
T3

1
μ
T4

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

x1

p1

x2

p2

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.30)
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where p1, p2 are the corresponding costate vectors. The slow-fast decomposition of the above

aggregate filter can then be achieved by again using the Chang transformation

T =

⎡⎣ I − μNM −μN

M I

⎤⎦ ,

for some matrices M , N satisfying simultaneously the pair of algebraic equations

T4M − T3 − μM(T1 − T2M) = 0 (2.31)

−N(T4 + μMT2) + T2 + μ(T1 − T2M)N = 0. (2.32)

Note that Assumption 2.2.1 guarantees that T4 is nonsingular and there exists a solution to

the above algebraic equations. This is guaranteed by the Implicit-function theorem, and can

be obtained by using iterative methods, e.g. the Newton’s method with initial conditions

M (0) = M + O(μ) = T−1
4 T3, N

(0) = N + O(μ) = T2T
−1
4 . Then, using similar results as in

(Gajic, 1994), the solution of the ARE (2.27) can be related to the solutions of the pure-slow

and pure-fast AREs as

P =

⎛⎝Ω3 + Ω4

⎡⎣ Ps 0

0 Pf

⎤⎦⎞⎠⎛⎝Ω1 + Ω2

⎡⎣ Ps 0

0 Pf

⎤⎦⎞⎠−1

(2.33)

where Ps, Pf satisfy the AREs

Psa1 − a4Ps − a3 + Psa2Ps = 0, (2.34)

Pfb1 − b4Pf − b3 + pfb2pf = 0, (2.35)

with ⎡⎣ a1 a2

a3 a4

⎤⎦ = T1 − T2M,

⎡⎣ b1 b2

b3 b4

⎤⎦ = T4 + μMT2,
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while the matrices Ωi, i = 1, . . . , 4 are given by⎡⎣ Ω1 Ω2

Ω3 Ω4

⎤⎦ = E−1
1 T−1E2 = E−1

1

⎡⎣ I μN

−M I − μNM

⎤⎦E2,

with the permutation matrices E1, E2 given by⎡⎢⎢⎢⎢⎢⎢⎣
In1 0 0 0

0 0 In1 0

0 1
μ
In2 0 0

0 0 0 In2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
In1 0 0 0

0 0 In1 0

0 In2 0 0

0 0 0 In2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now, since⎡⎣ a1 a2

a3 a4

⎤⎦ = T1 − T2(M
(0) +O(μ)) = T1 − T2T

−1
4 T3 +O(μ)

Δ
= Ts +O(μ) =

⎡⎣ AT
s −

(
CT

s Cs − 1
γ2G

T
s RsGs

)
−BsWsB

T
s −As

⎤⎦+O(μ),(2.36)

⎡⎣ b1 b2

b3 b4

⎤⎦ = T4 + μMT2 = T4 +O(μ)

=

⎡⎣ AT
2 −

(
CT

2 C2 − 1
γ2G

T
2RG2

)
−B2WBT

2 −A2

⎤⎦ , (2.37)

then it follows by perturbing the coefficients of the AREs (2.34), (2.35), we get the following

H∞ symmetric filter AREs:

AsP̃
(0)
s + P̃ (0)

s AT
s − P̃ (0)

s

(
CT

s Cs − 1

γ2
GT

s RsGs

)
P̃ (0)
s +BsWsB

T
s = 0, (2.38)

A2P̃
(0)
f + P̃

(0)
f AT

2 − P̃
(0)
f

(
CT

2 C2 − 1

γ2
GT

2RG2

)
P̃

(0)
f +B2WBT

2 = 0. (2.39)

Assumption 2.2.1 is sufficient to guarantee the existence of a numerically convergent iterative

solution to the ARE (2.39). Similarly, the following assumption is sufficient to guarantee the
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existence of a numerically convergent positive-definite stabilizing solution of the ARE (2.38).

Assumption 2.2.2. The triple (As, Cs,
√
BsWsBT

s ) is controllable and observable.

Next, we consider the decomposition of the filter (2.28). We apply again the Chang decou-

pling transformation

TF =

⎡⎣ I − μHL −μH

L I

⎤⎦ , T−1
F =

⎡⎣ I μH

−L I − μHL

⎤⎦ ,

for some mtrices H and L on the closed-loop filter matrix⎡⎣ (A1 −K1C1) (A12 −K1C2)

1
μ
(A21 −K2C1)

1
μ
(A2 −K2C2)

⎤⎦
to obtain the decoupling equations

(A2 −K2C2)L− (A21 −K2 −K2C1)− μ[(A1 −K1C1)− (A12 −K1C2)L] = 0,(2.40)

−H(A2 −K2C2) + (A12 −K1C2)− μHL(A12 −K1C2) + μ[(A1 −K1C1)−
(A12 −K1C2)L]H = 0. (2.41)

The unique solution of the above algebraic equations exists under the assumption that the

matrix (A2 − K2C2) is nonsingular. This solution can also be obtained by using Newton’s

method starting with the following initial conditions:

L(0) = (A2 −K2C2)
−1(A21 −K2C1),

M (0) = (A12 −K1C2)(A2 −K2C2)
−1.
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Thus, application of T−1
F to (2.28) results in the following decomposed filter equations

Fl
6,μ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣ ˙̂
ζs
˙̂
ζf

⎤⎦ = T−1
F

⎡⎣ (A1 −K1C1) (A12 −K1C2)

1
μ
(A21 −K2C1)

1
μ
(A2 −K2C2)

⎤⎦TF

⎡⎣ ζ̂s

ζ̂f

⎤⎦+

T−1
F

⎡⎣ K1

1
μ
K2

⎤⎦ y

Δ
=

⎡⎣ as 0

0 1
μ
af

⎤⎦⎡⎣ ζ̂s

ζ̂f

⎤⎦+

⎡⎣ Ks

1
μ
Kf

⎤⎦ y.

The filter coefficients and gain matrices are also related to the aggregate ones (2.26) by

as = (A1 −K1C1)− (A12 −K1C2)L

af = (A2 −K2C1) + μL(A12 −K1C2)

Ks = K1 −HK2 − μHLK1

Kf = K2 + μLK1.

The above represent the independent pure-slow and pure-fast filters. Due to complete in-

dependence, the slow and fast signals can be processed with different sampling rates in

contrast with the original full-order filter (2.19), (2.28) which requires the fast sampling rate

for processing of both.

2.3 Review of H2 Filtering for Linear Descriptor Systems

In this section, we review corresponding Kalman or H2 filtering results for linear descriptor

or singular systems. The results presented here are mainly from (Darouach, 1997). We

consider the following LTI singular system

Σl
des :

⎧⎨⎩ Eẋ = Ax+Bu+ w, x(t0) = x0

y = Cx+ v,
(2.42)
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where E ∈ �r×n, with rank(E) = q ≤ n, A ∈ �r×n, B ∈ �r×p, C ∈ �m×n, and all the

variables have their previous meanings. Moreover, w and v are zero-mean Gaussian white

noise processes with joint covariance matrices

E

⎧⎨⎩
⎡⎣ w(t)

v(t)

⎤⎦ [wT (τ) vT (τ)]

⎫⎬⎭ =

⎡⎣ Q S

ST R

⎤⎦ δ(t− τ). (2.43)

In addition, we assume the initial condition x0 is also a Gaussian random variable with

E{x0} = x̄0, E{x0x
T
0 } = P0.

The following assumptions will also be required in the sequel.

Assumption 2.3.1. We assume the following on the system matrices

(i)

rank

⎡⎢⎢⎢⎣
E A

0 E

0 C

⎤⎥⎥⎥⎦− rank E = n, (2.44)

(ii)

rank

⎡⎢⎢⎢⎢⎢⎢⎣
E A Q S

0 C ST R

0 E 0 0

0 0 ET 0

⎤⎥⎥⎥⎥⎥⎥⎦ = r +m+ 2q, (2.45)

(iii) rank(sE − A) = r for almost all s ∈ C.

Assumption 2.3.1 (i) is necessary for the Y -observability of the system (if E is square).

Whereas Assumption (ii) generalizes the condition R > 0 for a standard system (with E = I),

and finally Assumption (iii) guarantees the system (2.42) is impulse-free.
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Since rank(E) = q, there exist two nonsingular matrices U and V of appropriate dimensions

such that Uw =

⎡⎣ w1

w2

⎤⎦, x = V

⎡⎣ x1

x2

⎤⎦,

UEV =

⎡⎣ Iq 0

0 0

⎤⎦ , UAV =

⎡⎣ A1 A2

A3 A4

⎤⎦ , UB =

⎡⎣ B1

B2

⎤⎦ , CV = [C1 C2],

and the system (2.42) can be represented in this new coordinates as

Σl
des :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = A1x1 + A2x2 +B1u+ w1

0 = A3x1 + A4x2 +B2u+ w2

y = C1x1 + C2x2 + v.

(2.46)

Next, under Assumption 2.3.1 (ii), there exists (Darouach, 1997) a nonsingular transforma-

tion Γ ∈ �(r−q+m)×(r−q+m) such that

Γ

⎡⎣ A4

C2

⎤⎦ =

⎡⎣ Ψ1

Ψ2

⎤⎦ (2.47)

where Ψ1 ∈ �(n−q)×(n−q) is nonsingular. Define also the following nonsingular matrix

T =

⎡⎣ T1

T2

⎤⎦ =

⎡⎣ Ψ−1
1 − ΩΨ2Ψ

−1
1 Ω

−Ψ2Ψ
−1
1 Ir+p−n

⎤⎦ (2.48)

where Ω is an arbitrary matrix of appropriate dimension, which must be chosen so that the

error covariance matrix of the algebraic model is minimized. Then, premultiplying (2.46)(ii)

and (iii) by the nonsingular matrix TΓ and substituting x2 into (2.46)(i), we obtain the

following equivalent system

Σ̄l
des

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = Φx1 + B̄ū+G1ω

x2 = H̄x1 + D̄ū+G2ω

ȳ = C̄x1 +G3ω,

(2.49)
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where

H̄ = −T1Γ

⎡⎣ A3

C1

⎤⎦ , C̄ = T2Γ

⎡⎣ A3

C1

⎤⎦ , ū =

⎡⎣ u

y

⎤⎦ , ω =

⎡⎢⎢⎢⎣
w1

w2

v

⎤⎥⎥⎥⎦ ,

D̄ = T1Γ

⎡⎣ −B2 0

0 Ip

⎤⎦ , Φ = A1 + A2H̄, G1 = [Iq −A2T1Γ],

G2 = [0 − T1Γ], B̄ = B̄1 + A2D̄, G3 = [0 T2Γ],

ȳ = T2Γ

⎡⎣ −B2u

y

⎤⎦ , B̄1 = [B1 0],

and

E{ω(t)ωT (τ)} =

⎡⎣ U 0

0 Ip

⎤⎦⎡⎣ Q S

ST R

⎤⎦⎡⎣ UT 0

0 Ip

⎤⎦ δ(t− τ) = Πδ(t− τ). (2.50)

Equation (2.50) indicates that the noise terms are correlated. For simplicity, we would find an

equivalent representation in which they are uncorrelated using a sequence of transformations.

Accordingly, define

Λ = E{ω(t)(G3ω(τ))
T} = ΠGT

3 δ(t− τ), R̄ = G3ΠG
T
3 .

Then the following result can be proven (Darouach, 1997)

Lemma 2.3.1. Under Assumption 2.3.1 (i), (iii), the matrix R̄ is positive definite.

Further, define

Ā = Φ−G1ΛR̄
−1C̄,

η = (G1 −G1ΛR̄
−1G3)ω.
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Then

E{η(t)η(τ)T} = (G1 −G1ΛR̄
−1G3)Π((G1 −G1ΛR̄

−1G3)
T δ(t− τ) = Q̄δ(t− τ), (2.51)

and the system (2.46) becomes equivalently

Σ̃l
des

⎧⎨⎩ ẋ1 = Āx1 + B̄ū+G1ΛR̄
−1ȳ + η

ȳ = C̄x1 +G3ω,
(2.52)

with η and G3ω uncorrelated.

The filter can now be designed based on the classical Kalman filtering theory for uncorrelated

noise terms. Accordingly, consider the following configuration

Fl
des4 :

{
˙̂x1 = Āx̂1 + B̄ū+G1ΛR̄

−1ȳ +K(ȳ − C̄x̂1), (2.53)

where the gain K is given by

K = P1C̄
T R̄−1

and P1 satisfies the Riccati ordinary differential-equation

Ṗ1(t) = ĀP1(t) + P1(t)Ā
T + Q̄− P1(t)C̄

T R̄−1C̄P1(t). (2.54)

Then, an unbiased estimate for x2 is determined from (2.49) as

x̂2 = E{x2} = H̄x̂1 + D̄ū (2.55)

with error covariance

P2 = H̄P1H̄
T +G2ΠG

T
2 . (2.56)

This estimate is optimal if the “trace” of the error covariance P2 above is minimal. Further,

it can be shown that (Darouach, 2008), the result above is independent of Ω and hence the

transformation T1.
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In addition, the steady-state filter gain K̄ is obtained as the limiting value of the gain K

which inturn is determined by the limiting value P̄1 = limt→∞ P1(t). This limit if it exists,

must satisfy the ARE

ĀP̄1 + P̄1Ā
T + Q̄− P̄1C̄

T R̄−1C̄P̄1 = 0. (2.57)

It can then be shown that, under the conditions of Assumption 2.3.1 and some additional

structural assumptions, the above ARE has a positive definite stabilizing solution. The

following results have been established (Darouach, 2008).

Lemma 2.3.2. The pair (Ā, C̄) is detectable if and only if

rank

⎡⎣ sE − A

C

⎤⎦ = n, ∀s ∈ C, Real(s) ≥ 0. (2.58)

The following theorem gives necessary and sufficient conditions for the convergence and

stability of the filter. They are based on the concept of strong and stabilizing solutions of

the ARE (2.57). Briefly, a positive definite solution of the ARE is a strong solution if it

is such that the transition matrix of (Ā − P̄1C̄
T R̄−1C̄) has all its eigenvalues λ satisfying

�(λ) ≤ 0, and it is a stabilizing solution if (Ā−P̄1C̄
T R̄−1C̄) has all its eigenvalues σ satisfying

Re(σ) < 0.

Theorem 2.3.1. Under Assumption 2.3.1, the following hold:

(i) The ARE (2.57) has a unique strong solution if and only if (2.58) is satisfied.

(ii) The strong solution is the only nonnegative definite solution of the ARE if and only if

(2.58) is satisfied, and the pencil

⎡⎣ A− λE

C

⎡⎣ Q S

ST R

⎤⎦1/2
⎤⎥⎦ has full-row rank for all

finite complex λ satisfying �(λ) ≥ 0.

(iii) The strong solution of the ARE is stabilizing if and only if (2.58) is satisfied, and the

pencil

⎡⎣ A− λE

C

⎡⎣ Q S

ST R

⎤⎦1/2
⎤⎥⎦ has full-row rank for all finite complex λ satisfying
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�(λ) = 0. If in addition this rank condition is satisfied, for �(λ) < 0, then the strong

solution is also positive definite.

Theorem 2.3.2. Suppose:

(i) P1(0)− P̄1 ≥ 0, then limt→∞ P1(t) = P̄1, if and only if (2.58) is satisfied;

(ii) P1(0) > 0, then limt→∞ P1(t) = P̄1 exponentially fast, if and only if, (2.58) is satisfied

and the pencil

⎡⎣ A− λE

C

⎡⎣ Q S

ST R

⎤⎦1/2
⎤⎥⎦ has full-row rank for all finite complex λ

satisfying Real(λ) = 0.

In the next section, we discuss the H∞ problem.

2.4 Review of H∞ Filtering for Linear Descriptor Systems

In this section, we review some results on the H∞ filtering probblem for linear descriptor

systems (Xu, 2003b). We consider the following descriptor system

Σl
des :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Eẋ = Ax+Bw, x(t0) = x0

y = Cx+Dw

z = Lx,

(2.59)

where x ∈ �n is the system state vector, y ∈ �m is the measured output, z ∈ �s is the

controlled output or penalty variable, w ∈ L2([t0,∞),�r) is the noise/disturbance vector,

E ∈ �n×n and rank(E) = q ≤ n is the singular matrix of the system, while A, B, C, D and

L are real constant matrices of appropriate dimensions. To proceed, we adopt the following

definition.

Assumption 2.4.1. The disturbance-free system Eẋ = Ax is admissible, i.e., the following

hold:

1. the system is regular, i.e., det(sE − A) �≡ 0 identically;



55

2. the system is impulse-free, i.e., deg(det(sE − A)) = rank(E) ∀s ∈ C;

3. the system is stable or (E,A) is Hurwitz., i.e., the roots of det(sE − A) = 0 have

negative real parts.

The following Lemmas will be required in the sequel.

Lemma 2.4.1. (Xu, 2003b) Consider the system (2.59) and let the transfer function from

w to z be Gzw(s) = L(sE − A)−1B. Then, the following statements are equivalent;

(S1) the system with w ≡ 0 is sdmissible and ‖G(s)‖∞ < γ;

(S2) there exists a matrix P satisfying the following LMIs:

ETP = P TE ≥ 0 (2.60)⎡⎢⎢⎢⎣
ATP + P TA P TB LT

BTP −γ2I 0

L 0 −I

⎤⎥⎥⎥⎦ < 0. (2.61)

Lemma 2.4.2. (Boyd, 1994) (Schur complements for nonstrict LMI). The matrix inequality

⎡⎣ Z1 Z2

ZT
2 Z3

⎤⎦ ≥ 0

holds if and only if

Z3 ≥ 0, Z1 − Z2Z
+
3 Z

T
2 ≥ 0, Z2(I − Z3Z

+
3 ) = 0.

We consider the following filter for the system

Σl
desf :

⎧⎨⎩ E ˙̂x = Af x̂+Bfy

ẑ = Cf x̂
(2.62)

where x̂ ∈ �n̄ is the filter state, ẑ ∈ �s̄ is the estimated output of the filter, while Af , Bf ,

Cf , are real constant filter matrices of appropriate dimensions which are to be determined.
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Letting

e = [xT x̂T ]T , z̃ = z − ẑ,

the combined closed-loop system (2.59), (2.62) can be represented as

Σ̃l
desc :

⎧⎨⎩ Ecė = Ace+Bcw

z̃ = Lce
(2.63)

where

Ec =

⎡⎣ E 0

0 Ef

⎤⎦ , Ac =

⎡⎣ A 0

BfC Af

⎤⎦ , Bc =

⎡⎣ B

BfD

⎤⎦ , Lc = [L − Cf ].

The problem can then be stated as follows. For a given γ > 0, find the filter matrices

Af , Bf and Cf such that the system (2.63) is admissible and the H∞ norm of the system

transfer function from w to z̃, denoted as Tz̃w, satisfies the constraint ‖Tz̃w‖∞ < γ for all

w ∈ L2[t0,∞).

The following result then gives a solution to the problem.

Theorem 2.4.1. Consider the systems (2.59) and suppose that it satisfies Assumption 2.4.1.

Then there exists a filter of the form Σl
desf that solves the H∞ filtering problem for the system

if and only if, there exists matrices X, Y , Φ, Ψ and Υ such that the following LMIs are

satisfied

ETX = XTE ≥ 0 (2.64)

ETY = Y TE ≥ 0 (2.65)

ET (X − Y ) ≥ 0 (2.66)
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⎡⎢⎢⎢⎢⎢⎢⎣
ATY + Y TA ATX + Y TA+ CTΨT +ΦT Y TB LT −ΥT

XTA+ATY +ΨC +Φ XTA+ATX +ΨC + CTΦT XTB +ΨD LT

BTY BTX +DTΨT −γ2I 0

L−Υ L 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦ < 0. (2.67)

Moreover, in this case, there exist nonsingular matrices S, S̃, W , and W̃ such that

ET Ŝ = STE (2.68)

EW = W̃ET (2.69)

XY −1 = I − S̃W (2.70)

Y −1X = I − W̃S, (2.71)

and the filter matrices are given by

Ef = E, Af = S−TΦY −1W−1, Bf = S−TΨ, Cf = ΥY −1W−1

Proof: We only give the proof of sufficiency of the Theorem. The necessity part can be

found in (Xu, 2003b). (Sufficiency:) Suppose (2.64)-(2.67) hold. Then, we show that there

always exist nonsingular matrices S, S̃, W , and W̃ such that (2.68)-(2.71) hold. Accordingly,

we first show that the matrix Y satisfying (2.65)-(2.67) is nonsingular. Otherwise, ∃η �= 0

such that Y η = 0, and therefore ηT (ATY + Y TA)η = 0. But this contradicts the fact that

(2.67) implies ATY +Y TA < 0. Furthermore, we may assume also without loss of generality

that Y − X is nonsingular. Otherwise, we can choose Ŷ = (1 − α)Y , α > 0 a sufficiently

small number that is not an eigenvalue of I − XY −1 and such that Ŷ is nonsingular and

satisfies (2.67). Then it follows that (2.65), (2.66) are also satisfied by this Ŷ and Ŷ − X

is nonsingular. Thus, we conclude that, we can aways find a nonsingular Y that satisfies

(2.65)-(2.67). Moreover, this also implies that I−XY −1 and I−Y −1X are also nonsingular.
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Next, choose two nonsingular matrices M and N such that

E = M

⎡⎣ I 0

0 0

⎤⎦ .

Then, X and Y in (2.64, (2.65) can be written as

X = M−T

⎡⎣ X1 0

X2 X3

⎤⎦N, Y = M−T

⎡⎣ Y1 0

Y2 Y3

⎤⎦N,

where X1 = XT
1 ≥ 0, Y1 = Y T

1 > 0. Moreover,

Y −1 = N−1

⎡⎣ Ŷ1 0

Ŷ2 Ŷ3

⎤⎦MT ,

where Ŷ1 = Ŷ T
1 = Y −1

1 > 0. Now set

S = M−T

⎡⎣ S1 0

S2 S3

⎤⎦N, S̃ = M−T

⎡⎣ S̃1 0

S̃2 S̃3

⎤⎦N, (2.72)

W = N−1

⎡⎣ W1 0

W2 W3

⎤⎦MT , W̃ = N−1

⎡⎣ W̃1 0

W̃2 W̃3

⎤⎦MT , (2.73)

and where the matrices Si, S̃i, Wi, W̃i, i = 1, 2, 3 are selected to satisfy

ST
1 = S̃1, W1 = W̃ T

1 , (2.74)⎡⎣ S̃1W1 0

S̃2W1 + S̃3W2 S̃3W3

⎤⎦ =

⎡⎣ I −X1Ŷ1 0

−X2Ŷ1 −X3Ŷ2 I −X3Ŷ3

⎤⎦ , (2.75)

⎡⎣ W1S̃1 0

W̃2S1 + W̃3S2 Ŵ3S3

⎤⎦ =

⎡⎣ I − Ŷ1X1 0

−Ŷ2X1 − Ŷ3X3 I − Ŷ3X3

⎤⎦ . (2.76)

Using these equations, it can be verified that S, S̃, W and W̃ given by (2.72), (2.73) satisfy

((2.68)-(2.71). Moreover, the nonsingularity of I − XY −1 and I − Ŷ −1X implies that the

matrices S, S̃, W and W̃ are nonsingular too.
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Next, we show that the error systems Σ̃l
desc is admissible and the filter Σl

desf is also admissible

with ‖Tz̃w‖∞ < γ for all w ∈ L2[t0,∞).

Define

Π1 =

⎡⎣ Ȳ I

W 0

⎤⎦ , Π2 =

⎡⎣ I X

0 S

⎤⎦ ,

where Ȳ = Y −1. Then, clearly, both Π1 and Π2 are nonsingular. Also, setting

P̂ = Π2Π
−1
1

Δ
=

⎡⎣ X S̃

S −Γ

⎤⎦ ,

where Γ = SȲ W−1, we see that P̂ is nonsingular as well. Moreover, from (2.68)-(2.71), we

have

ETΓ = ETSȲ W−1 = W−T (W TETSȲ )W−1 = W−TEW̃SȲ W−1

= W−TE(I − Ȳ X)Ȳ W−1 = W−TE(Ȳ − Ȳ XȲ )W−1

= W−TEȲ (Y −X)Ȳ W−1 = W−T Ȳ T [ET (Y −X)]Ȳ W−1.

Next, by (2.64)-(2.66), we have

ETΓ = ΓTE ≤ 0, (2.77)

and therefore

ÊT P̂ = P̂ Ê, (2.78)

where Ê = diag{E,E}. Now, noting that Γ is nonsingular, and using (2.77), (2.68), (2.70),

we have

ETX + ET S̃Γ−1(Γ−TET )+Γ−TETS = ETX + STEΓ−1(Γ−TET )+Γ−TETS

= ETX + STΓ−TET (Γ−TET )+Γ−TETS

= ETX + STΓ−T (Γ−TET )+Γ−TETS

= ETX + STΓ−TETS = ETX + STEΓ−1S

= ETX + ET S̃Γ−1S = ET (X + S̃Γ−1S)



60

= ET (X + S̃WY ) = ET [X + (I −XȲ )Y ]

= ETY ≥ 0. (2.79)

Furthermore, since EΓ−1 is symmetric, we obtain

ET S̃Γ−1[I − (−Γ−TET )(−Γ−TET )+] = STEΓ−1[I − (EΓ−1)T ((EΓ−1)+)T ]

= STEΓ−1[I − (
(EΓ−1)+(EΓ−1)

)T
]

= STEΓ−1[I − (EΓ−1)+(EΓ−1)]

= ST [EΓ−1 − (EΓ−1)(EΓ−1)+(EΓ−1)]

= 0. (2.80)

By (2.79), (2.80) and Lemma 2.4.2, we deduce that

⎡⎣ ETX ET S̃Γ−1

Γ−TETS −Γ−TET

⎤⎦ ≥ 0. (2.81)

Premultiplying (2.81) by diag{I,ΓT} and postmultiplying by diag{I,Γ}, gives
⎡⎣ ETX ET S̃

ETS −ETΓ

⎤⎦ ≥ 0. (2.82)

Noting (2.78), (2.82) can be written as

ÊT P̂ = P̂ T Ê ≥ 0. (2.83)

On the other hand, pre-multiplying (2.67) by diag{Ȳ T , I, I, I} and post-multiplying by

diag{Ȳ , I, I, I}, we have

⎡⎢⎢⎢⎢⎢⎢⎣
Ȳ TAT +AȲ Ȳ TATX +A+ Ȳ TCTΨT + Ȳ TΦT B

XTAȲ +AT +ΨCȲ +ΦȲ XTA+ATX +ΨC + CTΨT XTB +ΨD

BT BTX +DTΨT −γ2I

LȲ −ΥȲ L 0
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Ȳ TLT − Ȳ TΥT

LT

0

−I

⎤⎥⎥⎥⎥⎥⎥⎦ < 0. (2.84)

The above inequality can also be rewritten as⎡⎢⎢⎢⎣
ΠT

1A
T
c P̂Π1 +ΠT

1 P̂
TAcΠ1 ΠT

1 P̂
TBc ΠT

1L
T
c

BT
c P̂Π1 −γ2I 0

LcΠ1 0 −I

⎤⎥⎥⎥⎦ < 0. (2.85)

Again, pre-multiplying (2.85) by diag{Π−T , I, I} and post-multiplying by diag{Π−1, I, I},
we obtain ⎡⎢⎢⎢⎣

AT cP̂ + P̂ TAc P̂ TBc LT
c

BT
c P̂ −γ2I 0

Lc 0 −I

⎤⎥⎥⎥⎦ < 0. (2.86)

Combining (2.86), (2.83) and using Lemma 2.4.1 the result follow. �

2.5 Motivations and Research Objectives

As mentioned in the Introduction and discussed in the previous sections, the filtering problem

for linear singularly-perturbed systems has been considered by many authors, and various

types of filters have been proposed; including, composite, decomposition and reduced-order

filters. However, to the best of our knowledge, the problem for affine nonlinear singularly-

perturbed systems has not been considered by any authors. Although, the dynamic output-

feedback problem for a class of systems has been considered by a handful of authors (As-

sawinchaichote, 2004b), and the same authors have also considered the filtering problem

for a class of stochastic Tagaki-sugeno fuzzy nonlinear systems (Assawinchaichote, 2004a).

Therefore, in this section, we outline as part of our research objectives to discuss the above

problem for both continuous-time and discrete-time nonlinear singularly-perturbed systems.



62

Similarly, as mentioned in the Introduction and reviewed in the previous sections, various

authors have also considered the observer design problem for linear descriptor systems (Dai

1989), (Dai 1988), (Darouach, 1995)-(Darouach, 2008), (El-Tohami, 1987)-(Fahmy, 1989),

(Hou, 1995), (Koenig, 1995), (Minamide, 1989), (Paraskevopoulos, 1992), (Sun, 2007), (Ue-

take, 1989), (Zhou, 2008). Kalman-Luenberger type full-order and reduced-order observers

have extensively been studied, and necessary and sufficient conditions for the solvability of

the problem have been presented. On the other hand, only recently has there been some

attention on the design of observers and filters for nonlinear descriptor systems (Darouach,

2008). In addition, to the observer design problem for linear systems studied in the refer-

ences above, the Kalman filtering problem has also been discussed (Dai, 1989), (Nikoukhah,

1999), (Nikoukhah, 1992), (Zhou, 2008). Similarly, the output observation design problem

for nonlinear systems has also been considered in (Zimmer, 1997), but to the best of our

knowledge, the H2 and H∞ filtering problems for more general affine nonlinear descriptor

systems has not been discussed in any reference. Therefore, we include this problem also as

part of our research objectives.

Notwithstanding the above motivations that we have mentioned, the following are even

stronger reasons why we undertake this investigation:

1. Statistical nonlinear filtering techniques developed using minimum-variance, maximum

likehood, bayesian methods lead to infinite-dimensional filters that require the solution

of evolution equations such as the Stratonovich equation, the Kushner equation and the

Wong-and-Zakai equation that are known to have no explicit analytical solution and

neither any tractable numerical solutions;

2. The extended-Kalman filter (EKF) is known to be inaccurate for highly nonlinear

systems and is difficult to tune and implement;

3. Unscented Kalman filters (UKF) and Particle filters (PFs) are still computationally

cumbersome;

4. The methods we develop are simple and utilize the full nonlinear system dynamics as
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opposed to local linearization. They rely on finding smooth solutions to Hamilton-

Jacobi equations (HJEs) that can be found using polynomial approximation or other

methods;

5. The methods we develop are the first successful application of Hamilton-Jacobi theory

to nonlinear filtering - earlier not too successful methods include the following

(i) Mortenson R. E. (Mortenson, 1968): “Maximum likelihood recucursive nonlinear

filtering,” leads to a highly complicated HJE that involves a rank 3 tensor;

(ii) Berman N. & Shaked U. (Berman, 1996) and Shaked & Berman (Shaked, 1995):

“H∞ nonlinear filtering,” lead to a filter in which the gain matrix depends on the

original state and hence is practically not implementable except for linear systems;

(iii) Nguang S. K. & FuM. (Nguang, 1996): “RobustH∞ nonlinear filtering,”also leads

to filter whose gain matrix depends on the original state and hence is practically

not implementable except for linear systems;

Therefore, we itemize our research objectives as follows:

1. To solve the H2 continuous-time and discrete-time filtering problem for affine nonlinear

singularly perturbed systems;

2. To solve the H2 continuous-time and discrete-time filtering problem for affine nonlinear

descriptor systems;

3. To solve theH∞ continuous-time and discrete-time filtering problem for affine nonlinear

singularly-perturbed systems;

4. To solve theH∞ continuous-time and discrete-time filtering problem for affine nonlinear

descriptor systems.
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2.6 Conclusion

In this chapter, we have reviewed the literature on Kalman andH∞ filtering for linear singular

systems; both singularly-perturbed and descriptor systems. However, only continuous-time

results have been discussed, while the discrete-time results can be found in the references

cited. We have also outlined our motivation and research objectives for the Dissertation.

Moreover, in the subsequent chapters, we shall present results on our initial attempts to the

solution to the problems outlined in the research objectives.
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CHAPTER 3

H2 FILTERING FOR SINGULARLY-PERTURBED NONLINEAR SYSTEMS

In this chapter, we discuss the H2 or Kalman filtering problem for affine singularly perturbed

nolinear systems. The extended Kalman-filter (EKF) (or nonlinear H2-filter) is by far the

most widely used tool in this area because of its simplicity and near optimal performance.

However, it still suffers from the problem of local linearization and is derived from the basic

assumption that the measurement noise signal is white Gaussian. This is however seldom

the case. Thus, in this chapter, we present alternative approaches to the EKF in which we

consider the full system dynamics. Moreover, H2 techniques are useful when the system and

measurement noise are known to be approximately Gaussian distributed.

Two types of filters will be discussed, and sufficient conditions for the solvability of the

problem in terms of Hamilton-Jacobi-Bellman equations (HJBEs) will be presented. Both the

continuous-time and the discrete-time problems will be considered. The chapter is organized

as follows. In section 2, we discuss the continuous-time problem while in section 3, we discuss

the discrete-time problem. Finally, in Section 4, a brief conclusion is given. Moreover, in

each section we also give problem definition and other preliminaries. Then, the solution

to the problem using decomposition filters and then using aggregate filters are presented

in subsequent subsections respectively. Examples are then presented to demonstrate the

approach.

3.1 H2 Filtering for Continuous-Time Systems

In this section, we present preliminary results on the H2 filtering problem for continuous-

time affine nonlinear systems, while in the next section we present the discrete-time results.

We begin with the problem definition and other preliminary definitions.
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3.1.1 Problem Definition and Preliminaries

The general set-up for studying H2 filtering problems is shown in Fig. 3.1, where P is the

plant, while F is the filter. The noise signal w ∈ S is in general a bounded spectral-signal

(e.g. a Gaussian white-noise signal) which belongs to the set S of bounded spectral-signals,

while z̃ ∈ P, is a bounded power signal or L2 signal, which belongs to the space of bounded

power-signals. Thus, the induced norm from w to z̃ (the penalty variable to be defined later)

is the L2-norm of the interconnected system F ◦P, i.e.,

‖F ◦P‖L2

Δ
= sup0�=w∈S

‖z̃‖P
‖w‖S , (3.1)

and is defined as the H2-norm of the system for stable plant-filter pair F ◦P, where

P Δ
= {w(t) : w ∈ L∞, Rww(τ), Sww(jω) exist for all τ and all ω resp., ‖w‖P < ∞},

S Δ
= {w(t) : w ∈ L∞, Rww(τ), Sww(jω) exist for all τ and all ω resp., ‖Sww(jω)‖∞ < ∞},

‖z‖2P Δ
= lim

T→∞
1

2T

∫ T

−T

‖z(t)‖2dt,

‖w‖2S = ‖Sww(jω)‖∞,

and Rww(τ), Sww(jω) are the autocorrelation and power-spectral density matrices of w(t)

respectively. Notice also that, ‖(.)‖P and ‖(.)‖S are seminorms.

At the outset, we consider the following affine nonlinear causal state-space model of the plant

which is defined on a manifold X ⊆ �n1+n2 with zero control input:

Pa
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x1, x2) + g11(x1, x2)w; x1(t0, ε) = x10

εẋ2 = f2(x1, x2) + g21(x1, x2)w; x2(t0, ε) = x20

y = h21(x1) + h22(x2) + k21(x1, x2)w,

(3.2)

where x =

⎛⎝ x1

x2

⎞⎠ ∈ X is the state vector with x1 the slow state which is n1-dimensional,

and x2 the fast, which is n2-dimensional; w ∈ W ⊆ �m is an unknown disturbance (or



67

F
P+

ẑ

z

yz~
w

−

Figure 3.1 Set-up for H2 Filtering

noise) signal, which belongs to the set W of admissible exogenous inputs; y ∈ Y ⊂ �m is

the measured output (or observation) of the system, and belongs to Y , the set of admissible

measured-outputs; while ε > 0 is a small perturbation parameter.

The functions

⎛⎝ f1

f2

⎞⎠ : X → TX ⊆ �2(n1+n2) 1, g11 : X → Mn1×m(X ), g21 : X →

Mn2×m(X ), h21, h22 : X → �m, and k21 : X → Mm×m(X ), where Mi×j is the ring of i× j

smooth matrices over X , are real C∞ functions of x. Furthermore, we assume without any

loss of generality that the system (3.2) has an isolated equilibrium-point at (xT
1 , x

T
2 ) = (0, 0)

such that f1(0, 0) = 0, f2(0, 0) = 0, h21(0, 0) = h22(0, 0) = 0. We also assume that there

exists a unique solution x(t, t0, x0, w, ε) ∀t ∈ � for the system for all initial conditions

x(t0)
Δ
= x0 = (xT

10, x
T
20)

T , for all w ∈ W, and all ε ∈ �.

The standard H2 local filtering/ state estimation problem is defined as follows.

Definition 3.1.1. (Standard H2 Local State Estimation (Filtering) Problem). Find a filter,

F, for estimating the state x(t) or a function of it, z = h1(x), from observations Yt
Δ
= {y(τ) :

τ ≤ t} of y(τ) up to time t, to obtain the estimate

x̂(t) = F(Yt),

such that, the H2-norm from the input w to some suitable penalty function z̃ is locally

minimized for all initial conditions x0 ∈ O ⊂ X , for all w ∈ W ⊂ S. Moreover, if the filter

solves the problem for all x0 ∈ X , we say the problem is solved globally.

We shall adopt the following definition of local zero-input observability.

1For a manifold M , TM and T �M are the tangent and cotangent bundles of M .
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Definition 3.1.2. For the nonlinear system Pa
sp, we say that it is locally zero-input observ-

able, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0,

y(t; x1, w) ≡ y(t; x2, w) =⇒ x1 = x2,

where y(., xi, w), i = 1, 2 is the output of the system with the initial condition x(t0) = xi.

Moreover, the system is said to be zero-input observable if it is locally observable at each

x0 ∈ X or U = X .

3.1.2 Decomposition Filters

In this subsection, we present a decomposition approach to the H2 state estimation prob-

lem defined in the previous section, while in the next subsection, we present an aggregate

approach. For this purpose, we assume that the noise signal w ∈ W ⊂ S is a zero-mean

Gaussian white-noise process, i.e.,

E{w(t)} = 0, E{w(t)wT (τ)} = Wδ(t− τ).

Also, the initial conditions x1(t0, ε) = x10, x2(t0, ε) = x20 are assumed to be Gaussian

distributed random variables with means given by

E{x10} = x̄10, E{x20} = x̄20.

We construct two-time scale filters corresponding to the decomposition of the system into a

“fast” and “slow” subsystems. As in the linear case (Chang, 1972), (Gajic, 1994), (Haddad,

1976), we first assume that there exists locally a smooth invertible coordinate transformation

(a diffeomorphism)

ξ1 = ϕ1(x), ϕ1(0) = 0, ξ2 = ϕ2(x), ϕ2(0) = 0, ξ1 ∈ �n1, ξ2 ∈ �n2, (3.3)
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such that the system (3.2) is locally decomposed into the form

P̃a
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̇1 = f̃1(ξ1) + g̃11(ξ)w, ξ1(t0) = ϕ1(x0)

εξ̇2 = f̃2(ξ2) + g̃21(ξ)w; ξ2(t0) = ϕ2(x0)

y = h̃21(ξ1) + h̃22(ξ2) + k̃21(ξ)w.

(3.4)

Necessary conditions that such a transformation must satisfy are given by the following

proposition.

Proposition 3.1.1. Consider the nonlinear system (3.2) defined on X . Let (U1, x), (U2, ξ),

U1, U2 ⊂ X containing the origin, be two coordinate neighborhoods on X , and consider the

problem of finding a local diffeomorphism2 ϕ : U1 → U2, ξ = ϕ(x) so that the system is

transformed into the partially decoupled form (3.4) by this coordinate change. Then, the

necessary conditions that such a transformation must satisfy are given by the following:

(i) ϕ∗ is locally an isomorphism;

(ii) 〈
∂

∂ξj
, d

(
ϕ−1∗〈f1 ∂

∂x1
+

1

ε
f2

∂

∂x2
, dϕi〉

)〉
= 0, i, j = 1, 2, i �= j; (3.5)

(iii) 〈
∂

∂ξj
, ϕ−1∗dh2i

〉
= 0, i, j = 1, 2, i �= j, (3.6)

where “(∗)” , “(∗)” are the push-forward and pull-back operators (Boothby, 1975) respec-

tively;

(iv) the following diagrams commute

TU1
ϕ∗−−−→ TU2-⏐⏐

⎛
⎜⎜⎜⎝

f1

1
ε
f2

⎞
⎟⎟⎟⎠

-⏐⏐
⎛
⎜⎜⎜⎝

f̃1

1
ε
f̃2

⎞
⎟⎟⎟⎠

U1
ϕ−−−→ U2

�m I−−−→ �m-⏐⏐h21

-⏐⏐h̃21

U1
ϕ−−−→ U2⏐⏐/h22

⏐⏐/h̃22

�m I−−−→ �m

2see Ref. (Boothby, 1975) for most of the terminology here.
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Proof: Conditions (i), (ii) and (iii) can be rewritten respectively as

det

⎡⎣ ∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ2

∂x1

∂ϕ2

∂x2

⎤⎦ (0) �= 0 (3.7)

∂

∂ξ2

(
∂ϕ1

∂x1
f1(x1, x2) +

1

ε

∂ϕ1

∂x2
f2(x1, x2)

)
◦ ϕ−1(ξ) = 0 (3.8)

∂

∂ξ1

(
∂ϕ2

∂x1

f1(x1, x2) +
1

ε

∂ϕ2

∂x2

f2(x1, x2)

)
◦ ϕ−1(ξ) = 0 (3.9)

∂

∂ξ2
h21 ◦ ϕ−1(ξ) = 0 (3.10)

∂

∂ξ1
h22 ◦ ϕ−1(ξ) = 0. (3.11)

Then, equation (3.7) which corresponds to (i), guarantees that the transformation ϕ is locally

invertible and satisfies the requirements of the Inverse-function Theorem (Sastry, 1999).

While equations (3.8), (3.9) and equations (3.10), (3.11) which correspond to conditions (ii),

(iii) respectively, guarantee that {f̃1(ξ1), h̃21(ξ1)}, and {f̃2(ξ2), h̃22(ξ2)} are independent of ξ2,

ξ1 respectively. Finally, (iv) follows by integrating equations (3.8)-(3.11), and since ϕ(0) = 0,

h21(0, 0) = 0, h22(0, 0) = 0, we get

(
∂ϕ1

∂x1

f1(x1, x2) +
1

ε

∂ϕ1

∂x2

f2(x1, x2)

)
◦ ϕ−1(ξ) = f̃1(ξ1) (3.12)(

∂ϕ2

∂x1
f1(x1, x2) +

1

ε

∂ϕ2

∂x2
f2(x1, x2)

)
◦ ϕ−1(ξ) = f̃2(ξ2) (3.13)

h21 ◦ ϕ−1(ξ) = h̃21(ξ1) (3.14)

h22 ◦ ϕ−1(ξ) = h̃22(ξ2). � (3.15)

We consider an example.

Example 3.1.1. Consider the following system defined on �2 \ {x1 = 0},

ẋ1 = −x1 − x2
2

x1
+ w0

εẋ2 = −x2 + x2w0
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y = x1 + x2 + w0.

where w0 is a zero-mean Gaussian white noise process. The system has an equilibrium point

at x = 0, but is not defined on the x1 = 0 axis. Therefore, it cannot approach x = 0 along

this axis. The transformation

ξ1 = ϕ1(x) =
x1

x2
, ξ2 = ϕ2(x) = −x2,

on U1 = �2 \ {x2 = 0}, is a local diffeomorphism for the system, and transforms it to

ξ̇1 = −ξ−1
1 + (− 1

ξ2
− ξ1)w0

εξ̇2 = −ξ2 − ξ2w0

y = −ξ1ξ2 − ξ2 + w0.

Similarly, for the set U2 = {x2 = 0}, we can use the local diffeomorphism

ξ1 = ϕ̃1(x) = x1, ξ2 = ϕ̃2(x) = x2,

which transforms it to

ξ̇1 = −ξ1 + w0

εξ̇2 = 0

y = ξ1 + w0.

Remark 3.1.1. Based on the above example, and since it is too stringent to find a transfor-

mation such that h̃2j = h̃2j(ξj), j = 1, 2, condition (3.6) equivalently, (3.10), (3.11) can be

relaxed or eliminated from the necessary conditions.

The filter is then designed based on this transformed model with E{w} = 0. Accordingly,
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we propose the following composite filter

Fa
1c :

⎧⎨⎩
˙̂
ξ1 = f̃1(ξ̂1) + L̂1(ξ̂, y)[y − h̃21(ξ̂1)− h̃22(ξ̂2)]; ξ̂1(t0) = E{ϕ1(x0)}
ε
˙̂
ξ2 = f̃2(ξ̂2) + L̂2(ξ̂, y)[y − h̃21(ξ̂1)− h̃22(ξ̂2)]; ξ̂2(t0) = E{ϕ2(x0)}.

(3.16)

where ξ̂ ∈ X is the filter state, L̂1 ∈ �n1×m, L̂2 ∈ �n2×m are the filter gains, while all the

other variables have their corresponding previous meanings and dimensions. We can then

define the penalty variable or estimation error as

z̃ = y − h̃21(ξ̂1)− h̃22(ξ̂2). (3.17)

The problem can then be formulated as a dynamic optimization problem with the following

cost functional

min

L̂1, L̂2 ∈ �n×m,

w ∈ S, x0 = 0

Ĵ(L̂1, L̂2, w) = E

{
1

2

∫ ∞

t0

{‖z̃‖2W}dt
}

=
1

2

{
‖Fa

1c ◦ P̃a
sp‖2H2

}
W

(3.18)

s.t. (3.16) and with w = 0, lim
t→∞

{ξ̂(t)− ξ(t)} = 0.

To solve the above problem, we form the averaged Hamiltonian function H : T �X × T �Y ×
W ×�n1×m × �n2×m → �:

H(ξ̂, y, w, L̂1, L̂2, V̂
T
ξ̂
, V̂y) = V̂ξ̂1

(ξ̂, y)[f̃1(ξ̂1) + L̂1(ξ̂, y)[y − h̃21(ξ̂1)− h22(ξ̂2))] +

1

ε
V̂ξ̂2

(ξ̂, y)[f̃2(ξ̂2) + L̂2(ξ̂, y)[y − h̃21(ξ̂1)− h22(ξ̂2))] +

V̂y(ξ̂, y)ẏ +
1

2
‖z̃‖2W , (3.19)

for some C1 function V̂ : X × Y → �, and where the costate vector (pT1 pT2 )
T is set equal

to (pT1 pT2 )
T = (V̂ξ̂ V̂y)

T . Moreover, here and subsequently, V̂ξ̂, V̂y represent row vectors of

partial derivatives with respect to ξ̂ and y respectively. Completing the squares now for L̂1
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and L̂2 in the above expression (3.19), we have

H(ξ̂, y, w, L̂1, L̂2, V̂
T
ξ̂
, V̂y) = V̂ξ̂1

(ξ̂, y)f̃1(ξ̂1) +
1

ε
V̂ξ̂2

(ξ̂, y)f̃2(ξ̂2) + V̂y(ξ̂, y)ẏ +

1

2

∥∥∥L̂T
1 (ξ̂, y)V̂ξ̂1

(ξ̂, y) + (y − h̃21(ξ̂1)− h̃22(ξ̂2))
∥∥∥2 −

1

2

∥∥∥(y − h̃21(ξ̂1)− h̃22(ξ̂2))
∥∥∥2 −

1

2
V̂ξ̂1

(ξ̂, y)L̂1(ξ̂, y)L̂
T
1 (ξ̂, y)V

T
ξ1
(ξ̂, y) +

1

2

∥∥∥∥1εL̂T
2 (ξ̂, y)V̂ξ̂2

(ξ̂, y) + (y − h̃21(ξ̂1)− h̃22(ξ̂2))

∥∥∥∥2 −
1

2
‖(y − h̃21(ξ̂1)− h̃22(ξ̂2))‖2 −
1

2ε2
V̂ξ̂2

(ξ̂, y)L̂2(ξ̂, y)L̂
T
2 (ξ̂, y)V̂

T
ξ̂2
(ξ̂, y) +

1

2
‖z‖2W .

Thus, setting the optimal gains L̂�
1(ξ̂, y), L̂

�
2(ξ̂, y) as

V̂ξ̂1
(ξ̂, y)L̂�

1(ξ̂, y) = −(y − h̃21(ξ̂1)− h̃22(ξ̂2))
T (3.20)

V̂ξ̂2
(ξ̂, y)L̂�

2(ξ̂, y) = −ε(y − h̃21(ξ̂1)− h̃22(ξ̂2))
T (3.21)

minimizes the Hamiltonian (3.19). Finally, setting

H(ξ̂, y, w, L̂�
1, L̂

�
2, V̂

T
ξ̂
, V̂y) = 0,

results in the following Hamilton-Jacobi-Bellman equation (HJBE):

V̂ξ̂1
(ξ̂, y)f̃1(ξ̂1) +

1
ε
V̂ξ̂2

(ξ̂, y)f̃2(ξ̂2) + V̂y(ξ̂, y)ẏ − 1
2
V̂ξ̂1

(ξ̂, y)L̂1(ξ̂, y)L̂
T
1 (ξ̂, y)V̂

T
ξ̂1
(ξ̂, y)−

1
2ε2

V̂ξ̂2
(ξ̂, y)L̂2(ξ̂, y)L̂

T
2 (ξ̂, y)V̂

T
ξ̂2
(ξ̂, y) + 1

2
(y − h̃21(ξ̂1)−

h̃22(ξ̂2))
T (W − 2I)(y − h̃21(ξ̂1)− h̃22(ξ̂2)) = 0, V̂ (0, 0) = 0, (3.22)

or equivalently the HJBE

V̂ξ̂1
(ξ̂, y)f̃1(ξ̂1) +

1
ε
V̂ξ̂2

(ξ̂, y)f̃2(ξ̂2) + V̂y(ξ̂, y)ẏ +
1
2
(y − h̃21(ξ̂1)−

h̃22(ξ̂2))
T (W − 4I)(y − h̃21(ξ̂1)− h̃22(ξ̂2)) = 0, V̂ (0, 0) = 0. (3.23)
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But notice from (3.4), with the measurement noise set to zero,

ẏ = Lf̃1(ξ1)+g̃11(ξ)w
h̃21(ξ1) + Lf̃2(ξ2)+g̃21(ξ)w

h̃22(ξ2),

where L is the Lie-derivative operator (Vidyasagar, 1993). Then, under certainty-equivalence

and with E{w} = 0, we have

ẏ = Lf̃1(ξ̂1)
h̃21(ξ̂1) + Lf̃2(ξ̂2)

h̃22(ξ̂2) = ∇ξ̂1
h21(ξ̂1)f̃1(ξ̂1) +∇ξ̂2

h22(ξ̂2)f̃2(ξ̂2).

Substituting this now in the HJBE (3.23), we have the following HJBE

V̂ξ̂1
(ξ̂, y)f̃1(ξ̂1) +

1
ε
V̂ξ̂2

(ξ̂, y)f̃2(ξ̂2) + V̂y(ξ̂, y)[∇ξ̂1
h21(ξ̂1)f̃1(ξ̂1) +∇ξ̂2

h22(ξ̂2)f̃2(ξ̂2)]+

1
2
(y − h̃21(ξ̂1)− h̃22(ξ̂2))

T (W − 4I)(y − h̃21(ξ̂1)− h̃22(ξ̂2)) = 0, V̂ (0, 0) = 0. (3.24)

We then have the following result.

Proposition 3.1.2. Consider the nonlinear system (3.2) and the H2 filtering problem for

this system. Suppose the plant Pa
sp is locally asymptotically stable about the equilibrium-

point x = 0 and zero-input observable. Further, suppose there exist a local diffeomorphism ϕ

that transforms the system to the partially decoupled form (3.4), a C1 positive-semidefinite

function V̂ : N̂ × Υ̂ → �+ locally defined in a neighborhood N̂ × Υ̂ ⊂ X × Y of the origin

(ξ̂, y) = (0, 0), and matrix functions L̂i : N̂ × Υ̂ → �ni×m, i = 1, 2, satisfying the HJBE

(3.24) together with the side-conditions (3.20), (3.21). Then the filter Fa
1c solves the H2

filtering problem for the system locally in N̂ .

Proof: The optimality of the filter gains L̂�
1, L̂

�
2 has already been shown above. It remains

to prove asymptotic convergence of the estimation error vector. Accordingly, let V̂ ≥ 0 be

a C1 solution of the HJBE (3.22) or equivalently (3.23). Then, differentiating this solution

along a trajectory of (3.16), with L̂1 = L̂�
1, L2 = L̂�

2, we get

˙̂
V = V̂ξ̂1

(ξ̂, y)[f̃1(ξ̂1) + L̂�
1(ξ̂, y)(y − h̃21(ξ̂1)− h̃22(ξ̂2))] +

1

ε
V̂ξ̂2

(ξ̂, y)[f̃2(ξ̂2) +
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L̂�
2(ξ̂, y)(y − h̃21(ξ̂1)− h̃22(ξ̂2))] + V̂y(ξ̂, y)ẏ

= −1

2
‖z‖2W ,

where the last equality follows from using the HJBE (3.22). Therefore, the filter dynamics

is stable, and V̂ (ξ̂, y) is non-increasing along a trajectory of (3.16). Further, the condition

that
˙̂
V (ξ̂(t), y(t)) ≡ 0 ∀t ≥ ts implies that z ≡ 0, which further implies that y = h̃21(ξ̂1) +

h̃22(ξ̂2) ∀t ≥ ts. By the zero-input observability of the system, this implies that ξ̂ = ξ.

Finally, since ϕ is invertible and ϕ(0) = 0, ξ̂ = ξ implies x̂ = ϕ−1(ξ̂) = ϕ−1(ξ) = x. �

Next, we consider the limiting behavior of the filter (3.16) and the corresponding HJBE

(3.23). Letting ε ↓ 0, we obtain from (3.16), and since the vector-field f̃2 is locally asymp-

totically stable, we have in the steady-state, the reduced-order filter

F̄a
1r :

{
˙̂
ξ1 = f̃1(ξ̂1) + L̂1(ξ̂1, y)[y − h̃21(ξ̂1)] +O(ε), (3.25)

ξ̂2 → 0 and Vξ̂2
(ξ̂, y)L̂2(ξ̂, y) → 0. While (3.23) reduces to the Lyapunov-inequality

V̄ξ̂2
(ξ̂, y)f̃2(ξ̂, y) ≤ 0, V̄ (0, 0) = 0. (3.26)

Note also that, since we are dealing with an infinite-horizon situation, a boundary-layer term

does not exist. Moreover, we can then represent the solution of (3.23) locally about ξ̂ = 0 as

V̂ (ξ̂, y) = V̄ (ξ̂, y) +O(ε).

To relate the above result with the linear theory (Gajic, 1994), (Haddad, 1976), (Haddad,

1977), (Sebald, 1978), we consider the following linear singularly-perturbed system (LSPS):

Pl
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = A1x1 + A12x2 +B11w; x1(t0) = x10

εẋ2 = A21x1 + A2x2 +B21w; x2(t0) = x20

y = C21x1 + C22x2 + w,

(3.27)

where A1 ∈ �n1×n1 , A12 ∈ �n1×n2, A21 ∈ �n2×n1, A2 ∈ �n2×n2 , B11 ∈ �n1×m, and B21 ∈
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�n2×m, while the other matrices have compatible dimensions. Then, an explicit form of the

required transformation ϕ above is given by the Chang transformation (Chang, 1972):

⎡⎣ ξ1

ξ2

⎤⎦ =

⎡⎣ In1 − εHL −εH

L In2

⎤⎦⎡⎣ x1

x2

⎤⎦ , (3.28)

where the matrices L and H satisfy the equations

0 = A2L− A21 − εL(A1 −A12L),

= −H(A2 + εLA12) + A12 + ε(A1 − A12L)H.

The system is then represented in the new coordinates by

P̃l
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̇1 = Ã1ξ1 + B̃11w; ξ1(t0) = ξ10

εξ̇2 = Ã2ξ2 + B̃21w; ξ2(t0) = ξ20

y = C̃21ξ1 + C̃22ξ2 + w,

(3.29)

where

Ã1 = A1 − A12L = A1 − A12A
−1
2 A21 +O(ε)

B̃11 = B11 − εHLB11 − HB21 = B11 −A12A
−1
2 B21 +O(ε)

Ã2 = A2 + εLA12 = A2 +O(ε)

B̃21 = B21 + εLB11 = B21 +O(ε)

C̃21 = C21 − C22L = C21 − C22A
−1
2 A21 +O(ε)

C̃22 = C22 + ε(C21 − C22)H = C22 +O(ε).

Adapting the filter (3.16) to the system (3.29) yields the following filter

Fl
1c :

⎧⎨⎩
˙̂
ξ1 = Ã1ξ̂1 + L̂1(y − C̃21ξ̂1 − C̃22ξ̂2)

ε
˙̂
ξ2 = Ã2ξ̂2 + L̂2(y − C̃21ξ̂1 − C̃22ξ̂2).

(3.30)
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Consequently, we have the following Corollary to Proposition 3.1.2. We may assume for

simplicity and without loss of generality that the covariance of the noise is W = I.

Corollary 3.1.1. Consider the linear system (3.27) and the H2 filtering problem for this

system. Suppose the plant Pl
sp is asymptotically stable about the equilibrium-point x = 0 and

observable. Suppose further, it is transformable to the form (3.29), and there exist positive-

semidefinite matrices P1 ∈ �n1×n1, P2 ∈ �n2×n2, Q ∈ �m×m, and matrices L̂1, L̂2 ∈ �n×m,

satisfying the linear-matrix-inequalities (LMIs)

⎡⎢⎢⎢⎢⎢⎢⎣
ÃT

1 P̂1 + P̂1Ã1 − 3C̃T
21C̃21 −C̃T

22C̃21 3C̃T
21 0

−C̃T
21C̃22

1
ε
ÃT

2 P̂2 +
1
ε
P̂2Ã2 − 3C̃T

22C̃22 3C̃T
22 0

3C̃21 3C̃22 −3I Q

0 0 QT 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (3.31)

⎡⎢⎢⎢⎣
0 0 1

2
(P̂1L1 − C̃T

21)

0 0 −1
2
C̃T

22

1
2
(P̂1L1 − C̃T

21)
T −1

2
C̃T

22 (1− μ1)I

⎤⎥⎥⎥⎦ ≤ 0 (3.32)

⎡⎢⎢⎢⎣
0 0 −1

2
C̃T

21

0 0 1
2ε
(P̂2L2 − C̃T

22)

−1
2
C̃21

1
2ε
(P̂2L2 − C̃T

22)
T (1− μ2)I

⎤⎥⎥⎥⎦ ≤ 0 (3.33)

for some numbers μ1, μ2 ≥ 1. Then the filter Fl
1c solves the H2 filtering problem for the

system.

Proof: Take

V̂ (ξ̂, y) =
1

2
(ξ̂T1 P1ξ̂1 + ξ̂T2 P2ξ̂2 + yTQy)

and apply the result of the Proposition. �

Moreover, the limiting behavior of the filter (3.30) is the reduced-order filter

F̄l
1r :

{
˙̂
ξ1 = Ã1ξ̂1 + L̂1(y − C̃21ξ̂1) +O(ε), (3.34)
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and the limiting behavior of (3.32) as ε ↓ 0 is P̄2 satisfies the Lyapunov inequality

ÃT
2 P̄2 + P̄2Ã2 ≤ 0. (3.35)

Proposition 3.1.2 has not yet exploited the benefit of the coordinate transformation in de-

signing the filter (3.16) for the system (3.4). We shall now design separate reduced-order

filters for the decomposed subsystems which should be more efficient than the previous one.

For this purpose, we let ε ↓ 0 in (3.4) and obtain the following reduced system model:

P̃a
r :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̇1 = f̃1(ξ1) + g̃11(ξ)w

0 = f̃2(ξ2) + g̃21(ξ)w

y = h̃21(ξ1) + h̃22(ξ2) + k̃21(ξ)w.

(3.36)

Then, we assume the following (Khalil, 1985), (Kokotovic, 1986).

Assumption 3.1.1. The system (3.2), (3.36) is in the “standard form”, i.e., the equation

0 = f̃2(ξ2) + g̃21(ξ)w (3.37)

has l ≥ 1 distinct roots, we can denote any one of these solutions by

ξ̄2 = q(ξ1, w). (3.38)

Under Assumption 3.1.1, we obtain the reduced-order slow subsystem

Pa
r :

⎧⎨⎩ ξ̇1 = f̃1(ξ1) + g̃11(ξ1, q(ξ1, w))w +O(ε)

y = h̃21(ξ1) + h̃22(q(ξ1, w)) + k̃21(ξ1, q(ξ1, w))w +O(ε)
(3.39)

and a boundary-layer (or quasi-steady-state) subsystem as

dξ̄2
dτ

= f̃2(ξ̄2(τ)) + g̃21(ξ1, ξ̄2(τ))w, (3.40)
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where τ = t/ε is a stretched-time parameter. It can be shown that there exists ε� > 0 such

that the subsystem is locally asymptotically stable for all ε ≥ ε� (see Theorem 8.2 in Ref.

(Khalil, 1985)) if the original system (3.2) is locally asymptotically stable.

We can therefore proceed to redesign the filter in (3.16) for the composite system (3.39),

(3.40) separately as

F̃a
2c :

⎧⎨⎩
˙̆
ξ1 = f̃1(ξ̆1) + L̆1(ξ̆1, y)[y − h̃21(ξ̆1)− h22(q(ξ̆1, 0))]

ε
˙̆
ξ2 = f̃2(ξ̆2) + L̆2(ξ̆2, y)[y − h̃21(ξ̆1)− h̃22(ξ̆2)].

(3.41)

Notice that ξ2 cannot be estimated from (3.38) since this is a “quasi-steady-state” approxi-

mation.

The following theorem then summaries this design approach.

Theorem 3.1.1. Consider the nonlinear system (3.2) and the H2 estimation problem for

this system. Suppose the plant Pa
sp is locally asymptotically stable about the equilibrium-point

x = 0 and zero-input observable. Further, suppose there exist a local diffeomorphism ϕ that

transforms the system to the partially decoupled form (3.4), and Assumption 3.1.1 holds. In

addition, suppose there exist C1 positive-semidefinite functions V̆i : N̆i × Ῠi → �+, i = 1, 2,

locally defined in neighborhoods N̆i × Ῠi ⊂ X × Y of the origin (ξ̆i, y) = (0, 0), i = 1, 2

respectively, and matrix functions L̆i : N̆i × Ῠi → �ni×m, i = 1, 2 satisfying the HJBEs:

V̆1ξ̆1
(ξ̆1, y)f̃1(ξ̆1) + V̆1y(ξ̆1, y)[∇ξ̂1

h̃21(ξ̆1)f̃1(ξ̆1) +∇ξ̆1
h̃22(q(ξ̆1, 0))f̃1(ξ̆1)] +

1
2(y − h̃21(ξ̆1)−

h̃22(q(ξ̆1, 0))
T (W − 2I)(y − h̃21(ξ̆1)− h̃22(q(ξ̆1, 0))) = 0, V̆1(0, 0) = 0 (3.42)

1
ε V̆2ξ̆2

(ξ̆2, y)f̃2(ξ̆2) + V̆2y(ξ̆2, y)[∇ξ̂1
h̃21(ξ̆1)f̃1(ξ̆1) +∇ξ̆2

h̃22(ξ̆2)f̃2(ξ̆2)]+

1
2 (y − h̃21(ξ̆1)− h̃22(ξ̆2))

T (W − 2I)(y − h̃21(ξ̆1)− h̃22(ξ̆2)) = 0, V̆2(0, 0) = 0, (3.43)

together with the side-conditions

V̆1ξ̆1
(ξ̆1, y)L̆1(ξ̆1, y) = −(y − h̃21(ξ̆1)− h̃22(q(ξ̆1, 0)))

T , (3.44)

V̆2ξ̆2
(ξ̆2, y)L̆2(ξ̆, y) = −ε(y − h̃21(ξ̆1)− h̃22(ξ̆2))

T . (3.45)
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Then the filter F̃a
2c solves the H2 filtering problem for the system locally in ∪N̆i.

Proof: We define separately two Hamiltonian functions Hi : T
�X×W×�ni×m → �, i = 1, 2

for each of the two separate components of the filter (3.41). Then, the rest of the proof follows

along the same lines as Proposition 3.1.2. �

Again, we have the limiting behavior of filter F̃a
2c and associated HJBEs (3.42), (3.43) as

ε ↓ 0:

F̄a
2r :

⎧⎨⎩
˙̆
ξ1 = f̃(ξ̆1) + L̆1(ξ̆1, y)[y − h̃21(ξ̂1)]

ξ̆2 → 0,
(3.46)

V̆1ξ̆1
(ξ̆1, y)f̃1(ξ̆1) + V̆1y(ξ̆, y)[∇ξ̂1

h̃21(ξ̆1)f̃1(ξ̆1) +∇ξ̆1
h̃22(q(ξ̆1, 0))f̃1(ξ̆1)] +

1

2
(y − h̃21(ξ̆1))

T (W − 2I)(y − h̃21(ξ̆1)) = 0, V̆1(0, 0) = 0 (3.47)

V̆2ξ̆2
(ξ̆2, y)f̃2(ξ̆1) ≤ 0, (3.48)

together with the side-conditions

V̆1ξ̆1
(ξ̆1, y)L̆1(ξ̆, y) = −(y − h̃21(ξ̆1))

T , (3.49)

V̆2ξ̆2
(ξ̆, y)L̆2(ξ̆, y) → 0. (3.50)

Similarly, specializing the result of Theorem 3.1.1 to the linear system (3.27), we obtain the

filter

Fl
2c :

⎧⎨⎩
˙̆
ξ1 = Ã1ξ̆1 + L̆1(y − C̃21ξ̆1)

ε
˙̆
ξ2 = Ã2ξ̆2 + L̆2(y − C̃21ξ̆1 − C̃22ξ̆2).

(3.51)

The following corollary summarizes this development if we assume W = I without loss of

generality.

Corollary 3.1.2. Consider the linear system (3.27) and the H2 filtering problem for this

system. Suppose the plant Pl
sp is asymptotically stable about the equilibrium-point x = 0 and
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observable. Suppose further, it is transformable to the form (3.29) and A2 is nonsingular.

In addition, suppose there exist positive-semidefinite matrices P̆1 ∈ �n1×n1, P̆2 ∈ �n2×n2,

Q̆1, Q̆2 ∈ �m×m and matrices L̆1 ∈ �n1×m ,L̆2 ∈ �n2×m, satisfying the linear-matrix-

inequalities (LMIs)

⎡⎢⎢⎢⎣
ÃT

1 P̆1 + P̆1Ã1 − C̃T
21C̃21 C̃T

21 P̆1

C̃T
21 −I Q̆1

0 Q̆1 0

⎤⎥⎥⎥⎦ ≤ 0 (3.52)

⎡⎢⎢⎢⎢⎢⎢⎣
0 −C̃T

21C̃22 C̃T
21 0

−C̃T
22C̃21

1
ε
(ÃT

2 P̆2 + P̆2Ã2)− C̃T
22C̃21 C̃T

22 Q̆2

C̃21 C̃22 −I 0

0 Q̆2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (3.53)

⎡⎢⎢⎢⎣
0 0 1

2
(P̆1L̆1 − C̃T

21)

0 0 0

1
2
(P̆1L̆1 − C̃T

21)
T 0 (1− δ1)I

⎤⎥⎥⎥⎦ ≤ 0 (3.54)

⎡⎢⎢⎢⎣
0 0 −1

2
C̃T

21

0 0 1
2ε
(P̆2L̆2 − C̃T

22)

−1
2
C̃21

1
2ε
(P̆2L̆2 − C̃T

22)
T (1− δ2)I

⎤⎥⎥⎥⎦ ≤ 0 (3.55)

for some numbers δ1, δ2 ≥ 1. Then the filter Fl
2c solves the H2 filtering problem for the

system.

Proof: Take

V̆1(ξ̆1, y) =
1

2
(ξ̆T1 P̆1ξ̆1 + yT Q̆1y)

V̆2(ξ̆2, y) =
1

2
(ξ̆T2 P̆2ξ̆2 + yT Q̆2y)

and apply the result of the Theorem. Moreover, the nonsingularity of A2 guarantees that a

reduced-order subsystem exists. �
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3.1.3 Aggregate Filters

In the absence of the coordinate transformation, ϕ, discussed in the previous section, a filter

has to be designed to solve the problem for the aggregate system (3.2). We discuss this class

of filters in this section. Accordingly, consider the following class of filters:

Fa
3ag :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̀x1 = f1(x̀) + L̀1(x̀, y)[y − h21(x̀1)− h22(x̀2)]; x̀1(t0) = x̄10

ε ˙̀x2 = f2(x̀) + L̀2(x̀, y)(y − h21(x̀1)− h22(x̀2)); x̀2(t0) = x̄20

z̀ = y − h21(x̀1)− h22(x̀2),

(3.56)

where L̀1 ∈ �n1×m, L̀2 ∈ �n2×m are the filter gains, and z̀ is the new penalty variable. We

can repeat the same kind of derivation above to arrive at the following result.

Theorem 3.1.2. Consider the nonlinear system (3.2) and the H2 estimation problem for

this system. Suppose the plant Pa
sp is locally asymptotically stable about the equilibrium-point

x = 0, and zero-input observable. Further, suppose there exists a C1 positive-semidefinite

function V̀ : Ǹ × Ὺ → �+, locally defined in a neighborhood Ǹ × Ὺ ⊂ X × Y of the origin

(x̀1, x̀2, y) = (0, 0, 0), and matrix functions L̀i : Ǹ × Ὺ → �ni×m, i = 1, 2, satisfying the

HJBE:

V̀x̀1(x̀, y)f1(x̀) +
1
ε V̀x̀2(x̀, y)f2(x̀) + V̀y(x̀, y)[∇x̀1h21(x̀1)f1(x̀) +∇x̀2h22(x̀2)f2(x̀)] +

1
2(y − h21(x̀1)− h22(x̀2))

T (W − 2I)(y − h21(x̀1)− h22(x̀2)) = 0, V̀ (0, 0) = 0 (3.57)

together with the side-conditions

V̀x̀1(x̀, y)L̀1(x̀, y) = −(y − h21(x̀1)− h22(x̀2))
T (3.58)

V̀x̀2(x̀, y)L̀2(x̀, y) = −ε(y − h21(x̀1)− h22(x̀2))
T . (3.59)

Then, the filter Fa
3ag solves the H2-filtering problem for the system locally in Ǹ .

Proof: Proof follows along the same lines as Proposition 3.1.2.

The result of Theorem 3.1.2 can similarly be specialized to the linear system Pl
sp. Moreover,
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we also have the limiting behavior of the filter Fa
3ag as ε ↓ 0

F̄a
3ag :

⎧⎨⎩ ˙̀x1 = f1(x̀) + L̀1(x̀, y)[y − h21(x̀1)]; x̀1(t0) = x̄10

x̀2 → 0
(3.60)

V̀x̀2(x̀, y)f2(x̀) ≤ 0, (3.61)

together with the side-conditions

V̀x̀1(x̀, y)L̀1(x̀, y) = −(y − h21(x̀1))
T (3.62)

V̀x̀2(x̀, y)L̀2(x̀, y) → 0. (3.63)

Remark 3.1.2. Also, comparing the accuracy of the filters Fa
1c, F

a
2c, F

a
3ga, we see that the

order of the accuracy is Fa
2c � Fa

1c � Fa
3ag by virtue of the decomposition, where the relational

operator “�” implies better.

3.1.4 Push-Pull Configuration

Finally, in this subsection, we present a “push-pull” configuration for the aggregate filter

presented in the above section. Since the dynamics of the second subsystem is fast, we can

afford to reduce the gain of the filter for this subsystem to avoid instability, while for the

slow subsystem, we can afford to increase the gain. Therefore, we consider the following

filter configuration

Fa
4ag :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ

1 = f1(x


) + (L

1 + L


2)(x

, y)[y − h21(x



1)− h22(x



2)]; x



1(t0) = x̄10

εẋ

2 = f2(x


) + (L

1 − L


2)(x

, y)[y − h21(x



1)− h22(x



2)]; x



2(t0) = x̄20

z
 = y − h21(x


1)− h22(x



2),

(3.64)

where x
 ∈ X is the filter state, L

1 ∈ �n1×m, L


2 ∈ �n2×m are the filter gains, while all the

other variables have their corresponding previous meanings and dimensions.

Consequently, going through similar manipulations as in Proposition 3.1.2 we can arrive at
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the following result.

Proposition 3.1.3. Consider the nonlinear system (3.2) and the H2 estimation problem for

this system. Suppose the plant Pa
sp is locally asymptotically stable about the equilibrium-point

x = 0, and zero-input observable. Further, suppose there exist a C1 positive-semidefinite

function V 
 : N 
×Υ
 → �+, locally defined in a neighborhood N 
×Υ
 ⊂ X ×Y of the origin

(x

1, x



2, y) = (0, 0, 0), and matrix functions L


1 ∈ �n1×m, L

2 :∈ �n2×m, satisfying the HJBE:

V 

x�
1
(x
, y)f1(x


) + 1
ε
V 

x�
2
(x
, y)f2(x



1) + V 


y (x

, y)[∇x�

1
h21(x



1)f1(x


) +∇x�
2
h22(x



2)f2(x


)] +

1
2
(y − h21(x



1)− h22(x



2))

T (W − 2I)(y − h21(x


1)− h22(x



2)) = 0, V 
(0, 0) = 0 (3.65)

together with the side-conditions

(V 

x�
1
+ V 


x�
2
)(x
, y)L


1(x

, y) = −(y − h21(x



1)− h22(x



2))

T (3.66)

(V 

x�
1
− V 


x�
2
)(x
, y)L


2(x

, y) = −ε(y − h21(x



1)− h22(x



2))

T . (3.67)

Then, the filter Fa
4ag solves the H2 filtering problem for the system localy in N 
.

Remark 3.1.3. If the nonlinear system (3.2) is in the standard form, i.e., the equivalent of

Assumption 3.1.1 is satisfied, and there exists at least one root x̄2 = σ(x1, w) to the equation

0 = f2(x1, x2) + g21(x1, x2)w,

then reduced-order filters can also be constructed for the system similar to the result of Section

3.2.3 and Theorem 3.1.1. Such filters would take the following form

Fa
5agr :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̌x1 = f1(x̌1, σ(x̌1, 0)) + Ľ1(x̌1, y)(y − h21(x̌1)− h22(σ(x̌1, 0))); x̌1(t0) = x̄10

ε ˙̌x2 = f2(x̌) + Ľ2(x̌, y)(y − h21(x̌1)− h22(x̌2)); x̌2(t0) = x̄20

ž = y − h21(x̌1)− h22(x̌2).

(3.68)

However, these filters would fall into the class of decomposition filters, rather than aggregate,

and because of this, we shall not discuss them further in this section.



85

In the next section, we consider some examples.

3.1.5 Examples

We consider a few simple examples in this subsection. The first example is designed to

illustrate how the use of a transformation and a decomposition of the system can simplify

the filter design.

Example 3.1.2. We reconsider Example 3.1.1 to design a decomposed filter for the system.

The system is transformed to the following two systems locally over U1 and U2 respectively:

ξ̇1 = −ξ−1
1 + (

1

ξ2
− ξ1)w0

εξ̇2 = −ξ2 − ξ2w0

y = −ξ1ξ2 − ξ2 + w0.

defined on Ũ1 = �2 \ {ξ2 = 0}, and

ξ̇1 = −ξ1 + w0

εξ̇2 = 0

y = ξ1 + w0.

which is defined for Ũ2 = {ξ2 = 0}. We design the filter (3.16) for each of the subsystems.

Accordingly, it can be checked that, the functions V̂1(ξ̂) =
1
2
(ξ̂−2

1 + εξ̂22), V̂2(ξ̂) =
1
2
(ξ̂21 + εξ̂22)

solve the HJBE (3.23) for the filter and for the two subsystems respectively. Therefore, the

filter gains can be calculated from (3.20), (3.21) for the two subsystems respectively as

L̂1(ξ̂, y) = ξ̂31(y + ξ̂1ξ̂2 + ξ̂2), L̂2(ξ̂, y) = −(y + ξ̂1ξ̂2 + ξ̂2)

ξ̂2
,

and

L̂1(ξ̂, y) = −(y − ξ̂1)

ξ̂1
, L̂2(ξ̂, y) = 0.
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Moreover, the gains L̂1, L̂2 are set to zero if |ξ̂1| < ε, |ξ̂2| < ε (small) respectively to avoid

the singularity at the origin ξ̂1 = ξ̂2 = 0.

Example 3.1.3. Consider now the following singularly perturbed nonlinear system

ẋ1 = −x3
1 + x2 + x2

1w0

εẋ2 = −x1 − x2 + sin(x2)w0

y = x1 + x2 + w0.

where w0 is a zero-mean Gaussian white noise process with W = I, ε ≥ 0. We construct

the aggregate filter Fa
3ag presented in the previous section for the above system. It can be

checked that the system is locally observable, and the function V̀ (x̀) = 1
2
(x̀2

1+ εx̀2
2), solves the

inequality form of the HJBE (3.57) corresponding to the system. Subsequently, we calculate

the gains of the filter as

L̀1(x̀, y) = −(y − x̀1 − x̀2)

x̀1
, L̀2(x̀, y) = −ε(y − x̀1 − x̀2)

x̀2
, (3.69)

where again the gains L̀1, L̀2 are set equal to zero if |x̀1| < ε (small), |x̀2| < ε (small) to

avoid the singularity at x̀1 = x̀2 = 0.

Similarly, we can construct the push-pull filter gains for the above system since the HJBEs

(3.57) and (3.65) are identical as

L

1(x


, y) = −(y − x

1 − x


2)

(x

1 + x


2)
, L


2(x

, y) = −ε(y − x


1 − x

2)

(x

1 + x


2)
, (3.70)

and again, we set the gains L

1, L



2 to zero if |x


1 + x

2| < ε (small) to avoid the singularity at

x

1 + x


2 = 0.
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3.2 H2 Filtering for Discrete-time Systems

In this section, we discuss the counterpart discrete-time results for the H2 local filtering

problem for affine nonlinear singularly-perturbed systems. Two types of filters, namely, (i)

decomposition, and (ii) aggregate filters will similarly be considered, and sufficient conditions

for the solvability of the problem in terms of discrete-time Hamilton-Jacobi-Isaacs equations

(DHJIEs) will be presented. We begin with the problem definition and other preliminaries.

3.2.1 Problem Definition and Preliminaries

Figure 3.2 shows the equivalent set-up for the disrete-time problem, where Pk is the plant,

while Fk is the filter. The noise signal w0 ∈ S ′ is similarly a bounded spectral signal (e.g. a

Gaussian white-noise signal) which belongs to the set S ′ of bounded spectral signals, while

z̃ ∈ P ′, is a bounded power signal or �2 signal, which belongs to the space of bounded power

signals. Thus, the induced norm from w0 to z̃ (the penalty variable to be defined later) is

the �2-norm of the interconnected system Fk ◦Pk, i.e.,

‖Fk ◦Pk‖�2 Δ
= sup0�=w0∈S′

‖z̃‖P ′

‖w0‖S′
, (3.71)

where “◦′′ denote operator composition,

P ′ Δ
= {w : w ∈ �∞, Rww(k), Sww(jω) exist for all k and all ω resp., ‖w‖P ′ < ∞}

S ′ Δ
= {w : w ∈ �∞, Rww(k), Sww(jω) exist for all k and all ω resp., ‖Sww(jω)‖∞ < ∞}

‖z‖2P ′
Δ
= lim

K→∞
1

2K

K∑
k=−K

‖zk‖2

‖w0‖S′ =
√

‖Sw0w0(jω)‖∞ =
√
supw‖Sw0w0(jω)‖,

and Rww, Sww(jω)) are the autocorrelation and power spectral-density matrices of w. Notice

also that, ‖(.)‖P ′ and ‖(.)‖S′ are seminorms. In addition, if the plant is stable, we replace

the induced �2-norm above by the equivalent H2-subspace norms.
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F
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Figure 3.2 Set-up for discrete-time H2 filtering

At the outset, we consider the following singularly-perturbed affine nonlinear causal discrete-

time state-space model of the plant which is defined on X ⊆ �n1+n2 with zero control input:

Pda
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = f1(x1,k, x2,k) + g11(x1,k, x2,k)wk; x1(k0, ε) = x10

εx2,k+1 = f2(x1,k, x2,k, ε) + g21(x1,k, x2,k)wk; x2(k0, ε) = x20

yk = h21(x1,k) + h22(x2,k) + k21(x1,k, x2,k)wk,

(3.72)

where x =

⎛⎝ x1

x2

⎞⎠ ∈ X is the state vector with x1 the slow state which is n1-dimensional

and x2 the fast, which is n2-dimensional; w ∈ W ⊆ �r is an unknown disturbance (or noise)

signal, which belongs to the set W of admissible exogenous inputs; y ∈ Y ⊂ �m is the

measured output (or observation) of the system, and belongs to Y , the set of admissible

measured-outputs; while ε is a small perturbation parameter.

The functions f1 : X → X ⊆ �n1, f2 : X × � → X , g11 : X → Mn1×m(X ), g21 : X →
Mn2×m(X ), where Mi×j is the ring of i × j smooth matrices over X , h21, h22 : X → �m,

and k21 : X → Mm×m(X ) are real C∞ functions of x. More explicitly, f2 is of the form

f2(x1,k, x2,k, ε) = (εx2,k + f̄2(x1,k, x2,k)) for some function f̄ : X → �n2 . Furthermore, we

assume without any loss of generality that the system (3.72) has an isolated equilibrium-

point at (xT
1 , x

T
2 ) = (0, 0) such that f1(0, 0) = 0, f2(0, 0) = 0, h21(0, 0) = h22(0, 0) = 0. We

also assume that there exists a unique solution x(k, k0, x0, w, ε) ∀k ∈ Z for the system, for

all initial conditions x(k0)
Δ
= x0 = (x10T , x20T )T , for all w ∈ W, and all ε ∈ �.

The standard discrete-time H2 local filtering/state estimation problem is defined as follows.

Definition 3.2.1. (Standard H2 Local State Estimation (Filtering) Problem). Find a filter,

Fk, for estimating the state xk or a function of it, zk = h1(xk), from observations Yk
Δ
= {yi :
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i ≤ k} of yi up to time k, to obtain the estimate

x̂k = Fk(Yk),

such that, the H2-norm from the input w to some suitable penalty function z̃ is locally

minimized for all initial conditions x0 ∈ O ⊂ X , for all w ∈ W ⊂ S ′. Moreover, if the filter

solves the problem for all x0 ∈ X , we say the problem is solved globally.

We shall adopt the following definition of local observability.

Definition 3.2.2. For the nonlinear system Pda
sp , we say that it is locally zero-input observ-

able, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0,

y(k; x1, w) ≡ y(k; x2, w) =⇒ x1 = x2,

where y(., xi, w), i = 1, 2 is the output of the system with the initial condition xk0 = xi.

Moreover, the system is said to be zero-input observable if it is locally observable at each

x0 ∈ X or U = X .

3.2.2 Discrete Decomposition Filters

In this section, we present a decomposition approach to the H2 estimation problem defined

in the previous section, while in the next section, we present an aggregate approach. For this

purpose, we assume that the noise signal w ∈ W ⊂ S ′ is a zero-mean Gaussian white-noise

process, i.e.,

E{wk} = 0, E{wkw
T
j } = Wδkj.

Also, the initial conditions x1(k0, ε) = x10, x2(k0, ε) = x20 are assumed to be Gaussian

distributed random variables with means given by

E{x10} = x̄10, E{x20} = x̄20.
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We construct two-time scale filters corresponding to the decomposition of the system into

a “fast” and a “slow” subsystems. As in the linear case (Chang, 1972), (Aganovic, 1996),

(Kim 2002), (Lim, 1996), (Sadjadi, 1990), we first similarly assume that there exists locally

a smooth invertible coordinate transformation (a diffeomorphism) ϕ : x �→ ξ, i.e.,

ξ1 = ϕ1(x, ε), ϕ1(0, ε) = 0, ξ2 = ϕ2(x, ε), ϕ2(0, ε) = 0, ξ1 ∈ �n1 , ξ2 ∈ �n2 , (3.73)

such that the system (3.72) is locally decomposed into the form

P̃da
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1,k+1 = f̃1(ξ1,k, ε) + g̃11(ξk, ε)wk, ξ1(k0) = ϕ1(x

0, ε)

εξ2,k+1 = f̃2(ξ2,k, ε) + g̃21(ξk, ε)wk; ξ2(k0) = ϕ2(x
0, ε)

yk = h̃21(ξ1,k, ξ2,k, ε) + h̃22(ξ1,k, ξ2,k, ε) + k̃21(ξk, ε)w.

(3.74)

Necessary conditions that such a transformation must satisfy are given in Proposition 3.1.1.

A local version of that result can be derived for the discrete-time case. In most cases, this

local version would also be sufficient. Moreover, if such a coordinate transformation exists,

the functions f̃1, f̃2, g̃11, g̃21 will be some nonlinear functions of f1,f2, g11, g21 since

ξ1,k+1 = ϕ1

⎛⎝ f1(xk) + g11(xk)wk

f2(xk, ε) + g̃21(xk)wk,

⎞⎠ ◦ ϕ−1(ξk, ε), ξ1(k0) = ϕ1(x
0, ε)

εξ2,k+1 = ϕ2

⎛⎝ f1(xk) + g11(xk)wk

f2(xk, ε) + g̃21(xk)wk,

⎞⎠ ◦ ϕ−1(ξk, ε), ξ2(k0) = ϕ2(x
0, ε)

yk = h21(ϕ̃1(ξk, ε)) + h22(ϕ̃2(ξk, ε)) + k21(ϕ
−1(ξk, ε))wk.

where ϕ̃i = Πi ◦ ϕ−1, i =, 1, 2, Πi : x �→ xi is the natural projection onto the i-th coordinate,

and x0 = (x10T , x20T )T .

The following result gives local conditions that ϕ must satisfy.

Proposition 3.2.1. Consider the nonlinear system (3.72) defined on X . Let (U1, x), (U2, ξ),

U1, U2 ⊂ X containing the origin, be two coordinate neighborhoods on X , and consider the
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problem of finding a local diffeomorphism3 ϕ : U1 → U2, ξ = ϕ(x, ε) so that the system is

transformed into the partially decoupled form (3.74) by this coordinate change. Then, the

necessary conditions that such a transformation must satisfy are given by the following:

(i) ϕ∗ is locally an isomorphism;

(ii)

〈
∂

∂ξj
, d

⎛⎝ϕ−1∗

⎛⎝ f1

f2

⎞⎠∗

ϕi

⎞⎠〉 =

〈
∂

∂ξj
, d

⎛⎝⎛⎝⎛⎝ f1

f2

⎞⎠ ◦ ϕ−1

⎞⎠∗

ϕi

⎞⎠〉 = 0, (3.75)

i, j = 1, 2, i �= j, and where “(∗)” , “(∗)” are the push-forward and pull-back operators

(Boothby, 1975) respectively.

Proof: Conditions (i), (ii) can be rewritten respectively as

det

⎡⎣ ∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ2

∂x1

∂ϕ2

∂x2

⎤⎦ (0) �= 0 (3.76)

∂

∂ξ2

⎛⎝ϕ1

⎛⎝ f1(x1, x2)

f2(x1, x2)

⎞⎠ ◦ ϕ−1(ξ, ε)

⎞⎠ = 0 (3.77)

∂

∂ξ1

⎛⎝ϕ2

⎛⎝ f1(x1, x2)

f2(x1, x2)

⎞⎠ ◦ ϕ−1(ξ, ε)

⎞⎠ = 0 (3.78)

Then, equation (3.76) which corresponds to (i), guarantees that the transformation ϕ is lo-

cally invertible and satisfies the conditions of the inverse-function Theorem (Sastry, 1999).

While equations (3.77) and (3.9) which correspond to (ii) follow from (3.75), (3.75) re-

spectively by setting w = 0, and guarantee that f̃1(ξ1), f̃2(ξ2) are independent of ξ2, ξ1

respectively. �

Remark 3.2.1. It is virtually impossible to find a coordinate transformation such that

h̃2j = h̃2j(ξj), j = 1, 2. Thus, we have made the more practical assumption that h̃2j =

h̃2j(ξ1, ξ2), j = 1, 2.

3see Ref. (Boothby, 1975) for most of the terminology here.
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The filter is then designed based on this transformed model with the optimal noise level set

as w� = E{w} = 0, and accordingly, we propose the following composite filter

Fda
1c :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξ̂1,k+1 = f̃1(ξ̂1,k, ε) + L1(ξ̂k, yk, ε)[yk − h̃21(ξ̂k, ε)− h̃22(ξ̂k, ε)];

ξ̂1(k0) = E{ϕ1(x
0, ε)}

εξ̂2,k+1 = f̃2(ξ̂2,k, ε) + L2(ξ̂k, yk, ε)[yk − h̃21(ξ̂k, ε)− h̃22(ξ̂k, ε)];

ξ̂2(k0) = E{ϕ2(x
0, ε)}.

(3.79)

where ξ̂ ∈ X is the filter state, L1 ∈ �n1×m, L2 ∈ �n2×m are the filter gains, while all the

other variables have their corresponding previous meanings and dimensions. We can then

define the penalty variable or estimation error at each instant k as

z̃k = yk − h̃21(ξ̂k)− h̃22(ξ̂k). (3.80)

The problem can then be similarly formulated as a dynamic optimization problem with the

following cost functional

min

L1 ∈ �n×m, L2 ∈ �n2×m,

w ∈ S ′, ξ̂(k0) = 0

J1(L1, L2, w) = E

{
1

2

∞∑
k0

‖z̃k‖2W
}

=
1

2

{
‖Fda

1c ◦ P̃da
sp ‖2H2

}
W

s.t. (3.79) and with w = 0, lim
k→∞

{ξ̂k − ξk} = 0;

(3.81)

Therefore, to solve it, we consider the expected Hamiltonian function defined as H : X ×
Y × �n1×m ×�n2×m × � → �:

H(ξ̂, y, L1, L2, V, ε) = V
(
f̃1(ξ̂1, ε) + L1(ξ̂, y, ε)(y − h̃21(ξ̂1, ε)− h22(ξ̂2, ε)),

1

ε
f̃2(ξ̂2, ε) +

1

ε
L2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h̃22(ξ̂, ε)), y

)
−

V (ξ̂, yk−1) +
1

2
‖z̃‖2W (3.82)
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for some C1 positive-semidefinite function V : X × Y → �+ and where ξ̂1 = ξ̂1,k, ξ̂2 =

ξ̂2,k y = yk, z = zk. Then the optimal gains L�
1 and L�

2 can be obtained by minimizing

H(., ., L1, L2, ., .) with respect to L1 and L2 in the above expression (3.82), as

[L�
1, L�

2] = arg min
L1,L2

H(ξ̂, y, L1, L2, V, ε). (3.83)

Because the Hamiltonian function (3.82) is not a linear or quadratic function of the gains

L1, L2, only implicit solutions can be obtained by solving the equations

∂V (λ, μ, y)

∂λ

∣∣∣∣
λ=λ�,μ=μ�

= 0

∂V (λ, μ, y)

∂μ

∣∣∣∣
λ=λ�,μ=μ�

= 0

for L�
1(ξ̂, y), L

�
2(ξ̂, y) simultaneously, where

λ = f̃1(ξ̂1) + L1(ξ̂, y)(y − h̃21(ξ̂1)− h22(ξ̂2)),

μ =
1

ε
(f̃1(ξ̂1) + L2(ξ̂, y)(y − h̃21(ξ̂1)− h22(ξ̂2))),

∂V/∂λ, ∂V/∂μ are the row vectors of first-order partial derivatives of V with respect to λ and

μ respectively, and V solves the discrete-time Hamilton-Jacobi-Bellman equation (DHJBE)

Ĥ(ξ̂, y, L�
1, L

�
2, V, ε) = 0, V (0, 0, 0) = 0, (3.84)

with
∂2V

∂λ2

∣∣∣∣
λ=λ�,μ=μ�

≥ 0,
∂2V

∂μ2

∣∣∣∣
λ=λ�,μ=μ�

≥ 0.

Thus, the only way to obtain an explicit solution is to use an approximate scheme. Intuitively,

a first-order Taylor series expansion of the Hamiltonian about (f̃1(ξ̂1),

1
ε
f̃2(ξ̂2), y) in the direction of the state vectors (ξ̂1, ξ̂2), would capture most if not all of the
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system dynamics. This approximate Hamiltonian is then given by

Ĥ(ξ̂, y, L̂1, L̂2, V̂ , ε) = V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +

V̂ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂1(ξ̂, y, ε)[y − h̃21(ξ̂, ε)− h22(ξ̂, ε)] +

1

ε
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)L̂2(ξ̂, y, ε)[y − h̃21(ξ̂, ε)− h22(ξ̂, ε)] +

1

2
‖z̃‖2W +O(‖ξ̂‖2), (3.85)

where V̂ , L̂1, L̂2 are the corresponding approximate functions, and V̂ξ̂1
, V̂ξ̂2

are the row

vectors of first-partial derivatives of V̂ with respect to ξ̂1, ξ̂2 respectively. Completing the

squares now for L̂1(ξ̂, y) and L̂2(ξ̂, y) in the above expression (3.85), we get

Ĥ(ξ̂, y, L̂1, L̂2, V̂ , ε) = V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2ε), y)− V̂ (ξ̂, yk−1) +

1

2

∥∥∥∥L̂T
1 (ξ̂, y, ε)V̂

T
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) + (y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

∥∥∥∥2 +
1

2

∥∥∥∥1εL̂T
2 (ξ̂, y, ε)V̂

T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) + (y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

∥∥∥∥2 −
1

2
V̂ξ̂1

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)L̂1(ξ̂, y, ε)L̂

T
1 (ξ̂, y, ε)V̂

T
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)−

1

2ε2
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)L̂2(ξ̂, y, ε)L̂

T
2 (ξ̂, y)V̂

T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) +

1

2
‖z̃‖2(W−2I)

Therefore, taking the filter gains as

V̂ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂

�
1(ξ̂, y, ε) = −(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T , (3.86)

V̂ T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂

�
2(ξ̂, y, ε) = −ε(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T , (3.87)

minimizes Ĥ(., ., L̂1, L̂2, ., .). Next, substituting the above optimal gains in (3.86) and setting

Ĥ(ξ̂, y, L̂�
1, L̂

�
2, V̂ , ε) = 0,
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results in the following DHJE

V̂ (f̃1(ξ̂1, ε),
1
ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +

1
2
(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T×
(W − 4I)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)) = 0, V̂ (0, 0, 0) = 0. (3.88)

We then have the following result.

Proposition 3.2.2. Consider the nonlinear discrete system (3.72) and the H2 filtering

problem for this system. Suppose the plant Pda
sp is locally asymptotically stable about the

equilibrium-point x = 0 and zero-input observable. Further, suppose there exist a local diffeo-

morphism ϕ that transforms the system to the partially decoupled form (3.74), a C1 positive-

semidefinite function V̂ : N̂ × Υ̂ → �+ locally defined in a neighborhood N̂ × Υ̂ ⊂ X ×Y of

the origin (ξ̂, y) = (0, 0), and matrix functions L̂i : N̂ × Υ̂ → �ni×m, i = 1, 2, satisfying the

DHJBE (3.88) together with the side-conditions (3.86), (3.87). Then the filter Fda
1c solves

the H2 filtering problem for the system locally in N̂ .

Proof: The optimality of the filter gains L̂�
1, L̂

�
2 has already been shown above. It remains

to prove asymptotic convergence of the estimation error vector. Accordingly, let V̂ ≥ 0 be a

C2 solution of the DHJBE (3.88). Then, consider the time-variation of V̂ along a trajectory

of (3.79), with L̂1 = L̂�
1, L2 = L̂�

2, we get

V̂ (ξ̂1,k+1, ξ̂2,k+1, y) ≈ V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y) +

V̂ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂1(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)) +

V̂ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂

�
2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

= V̂ (ξ̂1,k, ξ̂2,k, yk−1)− 1

2
‖z̃k‖2W ,

where we have used the first-order Taylor approximation in the above, and the last equality

follows from using the DHJBE (3.88). Moreover, the last equality also implies

V̂ (ξ̂1,k+1, ξ̂2,k+1, y)− V̂ (ξ̂1,k, ξ̂2,k, yk−1) = −1

2
‖z̃k‖2W .
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Therefore, the filter dynamics is stable, and V (ξ̂, y) is non-increasing along a trajectory of

(3.79). Further, the condition that V̂ (ξ̂1,k+1, ξ̂2,k+1, y) ≡ V̂ (ξ̂1,k, ξ̂2,k, yk−1) ∀k ≥ ks implies

that z̃k ≡ 0, which further implies that yk = h̃21(ξ̂1,k) + h̃22(ξ̂2,k) ∀k ≥ ks. By the zero-

input observability of the system, this implies that ξ̂ = ξ. Finally, since ϕ is invertible and

ϕ(0) = 0, ξ̂ = ξ implies x̂ = ϕ−1(ξ̂, ε) = ϕ−1(ξ, ε) = x. �

Next, we consider the limiting behavior of the filter (3.79) and the corresponding DHJBE

(3.88). Letting ε ↓ 0, we obtain from (3.79),

0 = f̃2(ξ̂2,k) + L2(ξ̂k, yk)(yk − h̃21(ξ̂k)− h̃22(ξ̂k))

and since f̃2(.) is asymptotically stable, we have ξ̂2 → 0. Therefore H(., ., ., ., .) in (3.82)

becomes

H0(ξ̂, y, L1, L2, V, 0) = V
(
f̃1(ξ̂1) + L1(ξ̂, y)(y − h̃21(ξ̂1)− h22(ξ̂2)), 0, y

)
− V (ξ̂, yk−1) +

1

2
‖z‖2W . (3.89)

A first-order Taylor approximation of this Hamiltonian about (f̃1(ξ̂1), 0, y) similarly yields

Ĥ0(ξ̂, y, L̂1, L̂2, V̄ , 0) = V̄ (f̃1(ξ̂1), 0, y) + V̄ξ̂1
(f̃1(ξ̂1), 0, y)L̂

T
1 (ξ̂, y)(y − h̃21(ξ̂)− h22(ξ̂))−

V̄ (ξ̂, yk−1) +
1

2
‖z̃‖2W + O(‖ξ̂‖3). (3.90)

for some corresponding C1-function V̄ : N̄ × Ȳ → �+, N̄ × Ȳ ⊂ X × Y . Minimizing again

this Hamiltonian, we obtain the optimal gain L̂�
10 given by

V̄ξ̂1
(f̃1(ξ̂1), 0, y)L̂

�
10(ξ̂, y) = −(y − h̃21(ξ̂)− h22(ξ̂))

T , (3.91)

where V̄ satisfies the reduced-order DHJBE

V̄ (f̃1(ξ̂1), 0, y)− V̄ (ξ̂, yk−1) +
1

2
(y − h̃21(ξ̂)− h22(ξ̂))

T (W − 2I)(y − h̃21(ξ̂)− h22(ξ̂)) = 0,

V̄ (0, 0, 0) = 0. (3.92)
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The corresponding reduced-order filter is given by

F̄da
1r :

{
˙̂
ξ1 = f̃1(ξ̂1) + L̂�

10(ξ̂1, y)[y − h̃21(ξ̂)− h̃22(ξ̂)] +O(ε). (3.93)

Moreover, since the gain L̂�
10 is such that the estimation error ek = yk− h̃21(ξ̂k)− h̃22(ξ̂k) → 0,

and the vector-field f̃2(ξ̂2) is locally asymptotically stable, we have L̂�
2(ξ̂k, yk) → 0 as ε ↓ 0.

Correspondingly, the solution V̄ of the DHJBE (3.92) can be represented as the asymptotic

limit of the solution of the DHJBE (3.88) as ε ↓ 0, i.e.,

V̂ (ξ̂, y) = V̄ (ξ̂1, y) +O(ε).

We can also specialize the result of Proposition 3.2.2 to the following discrete-time linear

singularly-perturbed system (DLSPS) (Aganovic, 1996), (Kim 2002), (Lim, 1996), (Sadjadi,

1990) in the slow coordinate:

Pl
dsp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = A1x1,k + A12x2,k +B11wk; x1(k0) = x10

εx2,k+1 = A21x1,k + (εIn2 + A2)x2,k +B21wk; x2(k0) = x20

yk = C21x1,k + C22x2,k + wk

(3.94)

where A1 ∈ �n1×n1 , A12 ∈ �n1×n2, A21 ∈ �n2×n1, A2 ∈ �n2×n2, B11 ∈ �n1×s, and B21 ∈
�n2×s, while the other matrices have compatible dimensions. Then, an explicit form of the

required transformation ϕ above is given by the Chang transformation (Chang, 1972):

⎡⎣ ξ1

ξ2

⎤⎦ =

⎡⎣ In1 − εHL −εH

L In2

⎤⎦⎡⎣ x1

x2

⎤⎦ , (3.95)

where the matrices L and H satisfy the equations

0 = (εIn2 + A2)L− A21 − εL(A1 −A12L)

0 = −H[(εIn2 + A2) + εLA12] + A12 + ε(A1 − A12L)H.
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The system is then represented in the new coordinates by

P̃l
dsp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1,k+1 = Ã1ξ1,k + B̃11wk; ξ1(k0) = ξ10

εξ2,k+1 = Ã2ξ2,k + B̃21wk; ξ2(k0) = ξ20

yk = C̃21x1,k + C̃22x2,k + wk,

(3.96)

where

Ã1 = A1 − A12L = A1 − A12(εIn2 + A2)
−1A21 +O(ε)

B̃11 = B11 − εHLB11 − HB21 = B11 −A12A
−1
2 B21 +O(ε)

Ã2 = (εIn2 + A2) + εLA12 = A2 +O(ε)

B̃21 = B21 + εLB11 = B21 +O(ε)

C̃21 = C21 − C22L = C21 − C22(εIn2 + A2)
−1A21 +O(ε)

C̃22 = C22 + ε(C21 − C22)H = C22 +O(ε).

Adapting the filter (3.79) to the system (3.96) yields the following filter

Fdl
1c :

⎧⎨⎩ ξ̂1,k+1 = Ã1ξ̂1,k + L̂1(yk − C̃21ξ̂1,k − C̃22ξ̂2,k)

εξ̂2,k+1 = Ã2ξ̂2,k + L̂2(yk − C̃21ξ̂1,k − C̃22ξ̂2,k).
(3.97)

Taking

V̂ (ξ̂, y) =
1

2
(ξ̂T1 P̂1ξ̂1 + ξ̂T2 P̂2ξ̂2 + yT Q̂y),

for some symmetric positive-definite matrices P̂1, P̂2, Q̂, the DHJBE (3.88). Consequently, we

have the following Corollary to Proposition 3.2.2. We may assume without loss of generality

that the covariance of the noise W = I.

Corollary 3.2.1. Consider the DLSPS (3.94) and the H2 filtering problem for this system.

Suppose the plant Pl
sp is locally asymptotically stable about the equilibrium-point x = 0

and observable. Suppose further, it is transformable to the form (3.96), and there exist

symmetric positive-definite matrices P̂1 ∈ �n1×n1, P̂2 ∈ �n2×n2, and Q̂ ∈ �m×m and matrices
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L̂1 ∈ �n1×m, L̂2 ∈ �n2×m satisfying the LMIs⎡⎢⎢⎢⎢⎢⎢⎣
ÃT

1 P̂1Ã1 − P̂1 − 3C̃T
21C̃21 −C̃T

22C̃21 3C̃T
21 0

−C̃T
21C̃22

1
ε2
ÃT

2 P̂2Ã2 − P̂2 − 3C̃T
22C̃22 3C̃T

22 0

3C̃21 3C̃22 −3I Q

0 0 QT 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (3.98)

⎡⎢⎢⎢⎣
0 0 1

2
(ÃT

1 P̂1L1 − C̃T
21)

0 0 −1
2
C̃T

22

1
2
(ÃT

1 P̂1L1 − C̃T
21)

T −1
2
C̃T

22 (1− δ1)I

⎤⎥⎥⎥⎦ ≤ 0 (3.99)

⎡⎢⎢⎢⎣
0 0 −1

2
C̃T

21

0 0 1
2ε
(ÃT

2 P̂2L2 − C̃T
22)

−1
2
C̃21

1
2ε
(ÃT

2 P̂2L2 − C̃T
22)

T (1− δ2)I

⎤⎥⎥⎥⎦ ≤ 0 (3.100)

for some numbers δ1, δ2 ≥ 1. Then the filter Fdl
1c solves the H2 filtering problem for the

system.

Similarly, for the reduced-order filter (3.93) and the DHJBE (3.92), we have respectively

Fdl
1r :

{
ξ̂1,k+1 = Ã1ξ̂1,k + L̂�

10(yk − C̃21ξ̂1,k − C̃22ξ̂2,k), (3.101)

⎡⎢⎢⎢⎢⎢⎢⎣
ÃT

1 P̂10Ã1 − P̂10 − 3C̃T
21C̃21 −C̃T

22C̃21 3C̃T
21 0

−C̃T
21C̃22

1
ε2
ÃT

2 P̂20Ã2 − P̂20 − 3C̃T
22C̃22 3C̃T

22 0

3C̃21 3C̃22 −3I Q̂10

0 0 Q̂T
10 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (3.102)

⎡⎢⎢⎢⎣
0 0 1

2 (Ã
T
1 P̂10L1 − C̃T

21)

0 0 −1
2C̃

T
22

1
2 (Ã

T
1 P̂10L1 − C̃T

21)
T −1

2C̃
T
22 (1− δ10)I

⎤⎥⎥⎥⎦ ≤ 0, (3.103)
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for some symmetric positive-definite matrices P̂10, Q̂10, gain matrix L̂10 and some number

δ10 ≥ 1.

Proposition 3.2.2 has not yet exploited the benefit of the coordinate transformation in de-

signing the filter (3.79) for the system (3.74). We shall now design separate reduced-order

filters for the decomposed subsystems which should be more efficient than the previous one.

If we let ε ↓ 0 in (3.74) and obtain the following reduced system model:

P̃a
r :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1,k+1 = f̃1(ξ1,k) + g̃11(ξk)wk

0 = f̃2(ξ2,k) + g̃21(ξk)wk

y = h̃21(ξk) + h̃22(ξk) + k̃21(ξk)wk.

(3.104)

Then, we assume the following (Khalil, 1985), (Kokotovic, 1986).

Assumption 3.2.1. The system (3.72), (3.104) is in the “standard form”, i.e., the equation

0 = f̃2(ξ2) + g̃21(ξ)w (3.105)

has l ≥ 1 distinct roots, we can denote any one of these solutions by

ξ̄2 = q(ξ1, w). (3.106)

for some C1 function q : X ×W → X .

Under Assumption 3.2.1, we obtain the reduced-order slow subsystem

Pa
r :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1,k+1 = f̃1(ξ1,k) + g̃11(ξ1,k, q(ξ1,k, wk))wk +O(ε)

yk = h̃21(ξ1,k, q(ξ1,k, wk)) + h̃22(ξ1,k, q(ξ1,k, wk))+

k̃21(ξ1,k, q(ξ1,k, wk))wk +O(ε)

(3.107)

and a boundary-layer (or quasi steady-state) subsystem as

ξ̄2,m+1 = f̃2(ξ̄2,m, ε) + g̃21(ξ1,m, ξ̄2,m)wm (3.108)
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where m = �k/ε� is a stretched-time parameter. This subsystem is guaranteed to be asymp-

totically stable for 0 < ε < ε� (see Theorem 8.2 in Ref. (Khalil, 1985)) if the original system

(3.72) is asymptotically stable.

We can then proceed to redesign the filter (3.79) for the composite system (3.107), (3.108)

separately as

F̃da
3c :

⎧⎨⎩ ξ̆1,k+1 = f̃1(ξ̆1,k) + L̆1(ξ̆1,k, yk)[yk − h̃21(ξ̆1,k)− h̃22(ξ̆1,k)]

ε
˙̆
ξ2,k+1 = f̃2(ξ̆2,k, ε) + L̆2(ξ̆2,k, yk, ε)[yk − h̃21(ξ̆k)− h̃22(ξ̆k)],

(3.109)

where

h̃21(ξ̆1,k) = h̃21(ξ̆1,k, q(ξ̆1,k, 0)), h̃22(ξ̆1,k) = h̃21(ξ̆1,k, q(ξ̆1,k, 0)).

Notice also that ξ2 cannot be estimated from (3.106) since this is a “quasi-steady-state”

approximation. Then, using a similar approximation procedure as in Proposition 3.2.2 we

arrive at the following result.

Theorem 3.2.1. Consider the nonlinear system (3.72) and the H2 estimation problem for

this system. Suppose the plant Pda
sp is locally asymptotically stable about the equilibrium-point

x = 0 and zero-input observable. Further, suppose there exists a local diffeomorphism ϕ that

transforms the system to the partially decoupled form (3.74), and Assumption 3.2.1 holds.

In addition, suppose there exist C1 positive-definite functions V̆i : N̆i × Ῠi → �+, i = 1, 2,

locally defined in neighborhoods N̆i × Ῠi ⊂ X × Y of the origin (ξ̆i, y) = (0, 0), i = 1, 2

respectively, and matrix functions L̆i : N̆i × Ῠi → �ni×m, i = 1, 2 satisfying the DHJBEs:

V̆1(f̃1(ξ̆1), y)− V̆1(ξ̆1, yk−1) +
1

2
(y − h̃21(ξ̆1)− h̃22(ξ̆1))

T (W − 4I)(y − h̃21(ξ̆1)−
h̃22(ξ̆1)) = 0, V̆1(0, 0) = 0, (3.110)

V̆2(
1

ε
f̃2(ξ̆2, ε), y)− V̆2(ξ̆2, yk−1) +

1

2
(y − h̃21(ξ̆)− h22(ξ̆))

T (W − 4I)(y − h̃21(ξ̆)−
h̃22(ξ̆)) = 0, V̆2(0, 0) = 0, (3.111)

together with the side-conditions

V̂1,ξ̂1
(f̃1(ξ̆1), y)L̆

�
1(ξ̆1, y) = −(y − h̃21(ξ̆1)− h̃22(ξ̂))

T (3.112)
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V̆2,ξ̆2
(
1

ε
f̃2(ξ̆2, ε), y)L̆

�
2(ξ̆2, y, ε) = −ε(y − h̃21(ξ̆)− h̃22(ξ̆))

T . (3.113)

Then the filter F̃da
3c solves the H2 filtering problem for the system locally in ∪N̆i.

Proof: We define separately two Hamiltonian functionsHi : X×Y×�ni×m×� → �, i = 1, 2

for each of the two separate components of the filter (3.109). Then, the rest of the proof

follows along the same lines as Proposition 3.2.2. �

Remark 3.2.2. Comparing (3.112), (3.110) and (3.91), (3.92), we see that the two reduced-

order filters approximations are similar. Notice also that ξ̆1 appearing in (3.113), (3.110) is

not considered as an additional variable, because it is assumed to be known from (3.109a),

and therefore is regarded as a parameter.

3.2.3 Discrete-time Aggregate Filters

Similarly, in the absence of the coordinate transformation, ϕ, discussed in the previous

section, a filter has to be designed to solve the problem for the aggregate system (3.72). We

discuss this class of filters in this section. Accordingly, consider the following class of filters:

Fda
3ag :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̀1,k+1 = f1(x̀k) + L̀1(x̀k, yk, ε)[yk − h21(x̀1,k)− h22(x̀2,k)];

x̀1(k0) = x̄10

εx̀2,k+1 = f2(x̀k, ε) + L̀2(x̀k, yk, ε)[yk − h21(x̀1,k)− h22(x̀2,k)];

x̀2(k0) = x̄20

z̀k = yk − h21(x̀1,k)− h22(x̀2,k)

(3.114)

where L̀1, L̀2 ∈ �n×m are the filter gains, and z̀ is the new penalty variable. We can repeat

the same kind of derivation above to arrive at the following.

Theorem 3.2.2. Consider the nonlinear system (3.72) and the H2 estimation problem for

this system. Suppose the plant Pda
sp is locally asymptotically stable about the equilibrium-

point x = 0, and zero-input observable. Further, suppose there exist a C1 positive-definite

function V̀ : Ǹ × Ὺ → �+, locally defined in a neighborhood Ǹ × Ὺ ⊂ X × Y of the origin



103

(x̀1, x̀2, y) = (0, 0, 0), and matrix functions L̀i : Ǹ × Ὺ → �ni×m, i = 1, 2, satisfying the

DHJBE:

V̀ (f1(x̀),
1

ε
f2(x̀, ε), y)− V̀ (x̀, yk−1) +

1

2
(y − h21(x̀1)− h22(x̀2))

T (W − 4I)(y −
h22(x̀2)) = 0, V̀ (0, 0, 0) = 0, (3.115)

together with the side-conditions

V̂x̀1(f1(x̀),
1

ε
f2(x̀, ε), y)L̀

�
1(x̀, y, ε) = −(y − h21(x̀1)− h22(x̀2))

T , (3.116)

V̀x̀2(f1(x̀),
1

ε
f2(x̀, ε), y)L̀

�
2(x̀, y, ε) = −ε(y − h21(x̀1)− h22(x̀2))

T . (3.117)

Then, the filter Fa
3ag solves the H2 filtering problem for the system locally in Ǹ .

Proof: Proof follows along the same lines as Proposition 3.2.2. �

The result of Theorem 3.2.2 can similarly be specialized to the linear systems Pdl
sp in the

following Corollary. Again we may assume without loss of generality that W = I.

Corollary 3.2.2. Consider the DLSPS (3.94) and the H2 filtering problem for this system.

Suppose the plant Pl
dsp is locally asymptotically stable about the equilibrium-point x = 0

and zero-input observable. Suppose further, there exist symmetric positive-definite matrices

P̀1 ∈ �n1×n1, P̀2 ∈ �n2×n2, Q̀, R̀ ∈ �m×m, and matrices L̀1 ∈ �n1×m, L̀2 ∈ �n2×m satisfying

the following LMIs⎡⎢⎢⎢⎢⎢⎢⎣
AT

1 P̀1A1 +
1
ε2
AT

21P̀2A21 − P̀1 − 3CT
21C21 AT

1 P̀1A12 +
1
ε2
AT

21P̀2Ā2 − 3CT
22C21

AT
12P̀1A1 +

1
ε2
ĀT

2 P̀2A21 − 3CT
21C22 AT

12P̀1A12 +
1
ε2
ĀT

2 P̀2Ā2 − P̀2 − 3CT
22C22

3C21 3C22

0 0

3CT
21 0

3CT
22 0

−3I Q

QT 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (3.118)
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⎡⎢⎢⎢⎣
0 0 1

2
(AT

1 P̀1L̀1 − CT
21)

0 0 −1
2
CT

22

1
2
(AT

1 P̀1L̀1 − CT
21)

T −1
2
CT

22 (1− μ1)I

⎤⎥⎥⎥⎦ ≤ 0 (3.119)

⎡⎢⎢⎢⎣
0 0 −1

2
CT

21

0 0 1
2ε
(ĀT

2 P̀2L̀2 − CT
22)

−1
2
C21

1
2ε
(ĀT

2 P̀2L̀2 − CT
22)

T (1− μ2)I

⎤⎥⎥⎥⎦ ≤ 0. (3.120)

Then the filter

Fdl
1ag :

⎧⎨⎩ x̀1,k+1 = A1x̀1,k + A12x̀2,k + L̀1(yk − C21x̀1,k − C22x̀2,k)

εx̀2,k+1 = A21x̀1,k + Ā2x̀2,k + L̀2(yk − C21x̀1,k − C22x̀2,k),
(3.121)

where Ā2 = (εIn2 + A2) solves the H2 filtering problem for the system.

We also have the limiting behavior of the filter Fda
3ag as ε ↓ 0

F̄da
5ag :

⎧⎨⎩ x̀1,k+1 = f1(x̀k) + L̀1(x̀k, yk)[yk − h21(x̀1,k)]; x̀1(k0) = x̄10

x̀2,k → 0,
(3.122)

and the DHJBE (3.115) reduces to the DHJBE

V̀ (f1(x̀), y)− V̀ (x̀, yk−1)+
1

2
(y−h21(x̀1))

T (W −2I)(y−h21(x̀1)) = 0, V̀ (0, 0) = 0, (3.123)

together with the side-conditions

V̀x̀1(f1(x̀), y)L̀
�
1(x̀, y) = −(y − h21(x̀1)− h22(x̀2))

T (3.124)

L̀2(x̀, y) → 0. (3.125)

3.2.4 Discrete-time Push-Pull Configuration

Finally, in this subsection, we present similarly a “push-pull” configuration for the discrete

aggregate filter presented in the above section. Since the dynamics of the second subsystem
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is fast, we can afford to reduce the gain of the filter for this subsystem to avoid instability,

while for the slow subsystem, we can afford to increase the gain. Therefore, we consider the

following filter configuration

Fda
7ag :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

1,k+1 = f1(x



k) + (L


1 + L

2)(x



k, yk, ε)(yk − h21(x



1,k)− h22(x



2,k)];

x

1(k0) = x̄10

εx

2,k+1 = f2(x



k, ε) + (L


1 − L

2)(x



k, yk, ε)[yk − h21(x



1,k)−

h22(x


2,k)]; x


2(k0) = x̄20

z
 = yk − h21(x


1,k)− h22(x



2,k),

(3.126)

where x
 ∈ X is the filter state, L

1 ∈ �n1×m, L


2 ∈ �n2×m are the filter gains, while all the

other variables have their corresponding previous meanings and dimensions.

Consequently, going through similar manipulations as in Proposition 3.2.2 we can give a

corresponding result to Theorem 3.2.2 for the push-pull configuration.

Proposition 3.2.3. Consider the nonlinear system (3.72) and the H2 estimation problem for

this system. Suppose the plant Pda
sp is locally asymptotically stable about the equilibrium-point

x = 0, and zero-input observable. Further, suppose there exist a C1 positive-semidefinite

function V 
 : N 
 × Υ
 → �+, locally defined in a neighborhood N 
 × Υ
 ⊂ X × Y of the

origin (x

1, x



2, y) = (0, 0, 0), and matrix functions L


1 ∈ �n1×m, L

2 :∈ �n2×m, satisfying the

DHJBE (3.115) together with the side-conditions

[V 

x�
1
(f1(x


),
1

ε
f2(x


, ε)) + εV 

x�
2
(f1(x


),
1

ε
f2(x


, ε))]L

1(x


, y, ε) =

−(y − h21(x


1)− h22(x



2))

T (3.127)

[V 

x�
1
(f̃1(x


),
1

ε
f2(x


, ε))− εV 

x�
2
(f1(x


),
1

ε
f2(x


, ε))]L

2(x


, y, ε) =

−(y − h21(x


1)− h22(x



2))

T . (3.128)

Then, the filter Fa
7ag solves the H2 filtering problem for the system locally in N 
.

Remark 3.2.3. If the nonlinear system (3.72) is in the standard form, i.e., the equivalent of
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Assumption 3.2.1 is satisfied, and there exists at least one root x̄2 = σ(x1, w) to the equation

0 = f2(x1, x2) + g21(x1, x2)w,

then reduced-order filters can also be constructed for the system similar to the result of Subec-

tion 3.2.2 and Theorem 3.2.1. Such filters would take the following form

Fda
8agr :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̌1,k+1 = f1(x̌1,k, σ(x̌1, 0)) + Ľ1(x̌1,k, yk)[yk − h21(x̌1,k)−
h22(σ(x̌1, 0))]; x̌1(k0) = x̄10

εx̌2,k+1 = f2(x̌k, ε) + Ľ2(x̌k, yk, ε)[yk − h21(x̌1,k)− h22(x̌2,k)];

x̌2(k0) = x̄20

žk = yk − h21(x̌1,k)− h22(x̌2,k).

However, this filter would fall into the class of decomposition filters, rather than aggregate,

and because of this, we shall not discuss it further in this section.

In the next subsection, we consider an examples.

3.3 Examples

We consider some simple examples in this section, because of the difficulty of solving the

HJBE.

Example 3.3.1. Consider the following singularly-perturbed nonlinear system

x1,k+1 = x
1
3
1,k + x

1
5
2 + x1,kw0,k

εx2,k+1 = −x
2
3
2,k − x

2
5
2,k + sin(x2,k)w0,k

yk = x1,k + x2,k + w0.

where w0 is a zero-mean Gaussian white noise process with covariance W = I, ε > 0. We

construct the aggregate filter Fa
3ag presented in the previous section for the above system. It

can be checked that the system is locally observable, and the function V̆ (x̆) = 1
2
(x̆2

1 + εx̆2
2),
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Figure 3.3 Tunnel-diode circuit.

solves the inequality form of the DHJBE (3.115) corresponding to system. Subsequently, we

calculate the gains of the filter as

L̆1(x̆, y) = −(y − x̆1 − x̆2)

x̆
1
3
1 + x̆

1
5
2

, L̆2(x̆, y) = −ε(y − x̆1 − x̆2)

x̆
1
3
1 + x̆

1
5
2

, (3.129)

where the gains L̆1, L̆2 are set equal to zero if |x̆
1
3
1 + x̆

1
5
2 | < ε (small) to avoid a singularity.

Next, we consider the tunnel-diode example considered in (Assawinchaichote, 2004b), (Hong,

2008).

Example 3.3.2. Consider the tunnel diode circuit example in (Assawinchaichote, 2004b),

(Hong, 2008) and shown in Fig. 3.3. Suppose also the doping of the diode is such that the

diode current in the circuit is given by

iD(t) = 0.01vD(t) + 0.05v
1/3
D (t)

with the parasitic inductance defined by εL and the state variables x1(t) = vC(t), x2(t) = iL(t),

we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cẋ1(t) = −0.01x1(t)− 0.05x

1/3
1 (t) + x2(t) + 0.1w(t)

εLẋ2(t) = −x1(t)− Rx2(t)

y(t) = Sx(t) + w(t).
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Figure 3.4 Actual state and state estimate for Reduced aggregate H2 filter with unknown
initial condition and noise variance 0.1.
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and noise variance 0.1.
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If we choose C = 1F and R = 0.4Ω, εL = εH = 0.01H, S = [1 1], then the discrete-time

approximation of the above cicuit with sampling width 1 is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = x1,k − 0.05x

1/3
1,k + x2,k + wk

εLx2,k+1 = −x1,k − 0.4x2,k

yk = x1,k + x2,k + wk.

(3.130)

Suppose also that we are only interested in estimating the output voltage across the diode and

capacitor vD(t) = x1(t). Then, we can consider the reduced-order filter F̄da
5ag for the system

defined by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̀1,k+1 = −1.5x1,k − 0.05x

1/3
1,k+

l̀1(x̀k, yk)(yk + 1.5(x̀1,k));

x̀1(k0) = x̄10

We can take as a local approximate solution to the DHJBE (3.115) for the above system as

V̀ (x̀) = 1
2
(x̀1 + εLx2)

2. Using this solution, we calculate the filter gain from (3.125) as

l̀1(x̀) =
−(y + 1.5x̀1)

−1.5x1 − 0.05x̀
1/3
1

Notice that in this example, it is easier to find an approximate solution of the DHJBE (3.115)

than of (3.123).

The results of the simulation with the above filter are shown on Figs. 3.4,3.5. The noise

signals w1 are assumed to be zero mean Guassian white noises with variances 0.1. The initial

condition for the system is also assumed to be unknown in the simulations. The results of the

simulation are reasonably good, considering the fact that we are using only an approximate

solution to the DHJBE.
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3.4 Conclusion

In this Chapter, we have presented a solution to the H2 filtering problem for affine nonlinear

singularly-perturbed systems. Three types of filters have been presented, and sufficient

conditions for the solvability of the problem using each filter have been given in terms of

HJBEs. Both continuous-time and the discrete-time systems have been considered, and the

results have also been specialized to linear systems, in which case the conditions reduce to

a system of LMIs which are computationally efficient to solve. Examples have also been

presented to illustrate the approach.

However, efforts would still have to be made in finding an explicit form for the coordinate

transformation discussed in Subsections 2.2, and 3.2, and also in developing computationally

efficient algorithms for solving the HJIEs.
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CHAPTER 4

H∞ FILTERING FOR SINGULARLY-PERTURBED NONLINEAR SYSTEMS

In this chapter, we discuss the H∞ filtering problem for affine nonlinear singularly-perturbed

systems. The H2 techniques discussed in the previous chapter suffer from the lack of robust-

ness towards L2 bounded disturbances and other types of noise that are nonGaussian. On

the other hand, the H∞ filter is the optimal worst-case filter for all L2-bounded noise sig-

nals and is also robust against unmodelled system dynamics or uncertainties. Furthermore,

H∞ filtering techniques have been applied to linear and nonlinear singularly-perturbed sys-

tems by some authors (Assawinchaichote, 2004a), (Assawinchaichote, 2004b), (Lim, 1996),

(Yang, 2008). In particular the references (Assawinchaichote, 2004a), (Assawinchaichote,

2004b), (Yang, 2008) have considered fuzzy T-S nonlinear singularly-perturbed systems and

have used linear-matrix-inequalities (LMIs) for the filter design, which make the approach

computationally very attractive. However, to the best of our knowledge, the general affine

nonlinear problem has not been considered by any authors. Therefore, we propose to discss

this problem in this chapter. Three types of filters will similarly be considered, and sufficient

conditions for the solvability of the problem in terms of Hamilton-Jacobi-Isaacs equations

(HJIEs) will be presented. An upper bound ε� on the singular parameter ε for the stability

of the nonlinear filters is also obtained using the local linearization of the nonlinear models.

In addition, there has been alot of progress in the application of nonlinear H∞ techniques

in control and filtering as efficient computational algorithms for solving HJIEs are being

developed (Aliyu, 2003)-(Abukhalaf, 2006), (Feng, 2009), (Huang, 1999), (Sakamoto, 2008).

The advantages of using the nonlinear H∞ approach is that, the full nonlinear system model

is utilized in determining a solution to the problem, and solutions obtained are optimal

(or suboptimal) over the domain of validity of the solution to the HJIE. Hence they are

more reliable, plus the additional benefit of robustness to modeling errors and disturbances.

Moreover, by specializing the results developed to linear systems, we get a local approximate
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solution to the problem corresponding to the linearization of the system around an operating

point. Indeed, using this local linarization, an upper bound ε� on the singular parameter ε for

the stability of the nonlinear filters can also be obtained. This in itself is an added motivation

for considering the nonlinear techniques. But the problem also deserves consideration in its

own right. Both the continuous-time and the discrete-time problems will be discussed. The

Chapter is organized as follows.

4.1 H∞ Filtering for Continuous-time Systems

In this Section we discuss the H∞ filtering problem for continuous-time singularly-perturbed

affine nonlinear systems, and in the next section, we discuss the corresponding discrete-time

results. Under each section, we discuss decomposition, reduced and aggregate filters

4.1.1 Problem Definition and Preliminaries

The general set-up for studying H∞ filtering problems is shown in Fig. 4.1, where P is the

plant, while F is the filter. The noise signal w ∈ P is in general a bounded power signal (or

L2 signal) which belongs to the set P of bounded power signals, and similarly the output

z̃ ∈ P is a bounded power signal. Thus, the induced norm from w to z̃ (the penalty variable

to be defined later) is the L∞-norm of the interconnected system F ◦P, i.e.,

‖F ◦P‖L∞
Δ
= sup0�=w∈S

‖z̃‖P
‖w‖P , (4.1)

and is defined as the H∞-norm of the system for stable plant-filter pair F ◦P, where

P Δ
= {w(t) : w ∈ L∞, Rww(τ), Sww(jω) exist for all τ and all ω resp., ‖w‖P < ∞},

‖z‖2P Δ
= lim

T→∞
1

2T

∫ T

−T

‖z(t)‖2dt.

At the outset, we consider the following affine nonlinear causal state-space model of the plant
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Figure 4.1 Set-up for H∞ Filtering

which is defined on a manifold X ⊆ �n1+n2 with zero control input:

Pa
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x1, x2) + g11(x1, x2)w; x1(t0, ε) = x10

εẋ2 = f2(x1, x2) + g21(x1, x2)w; x2(t0, ε) = x20

y = h21(x1) + h22(x2) + k21(x1, x2)w,

(4.2)

where x =

⎛⎝ x1

x2

⎞⎠ ∈ X is the state vector with x1 the slow state which is n1-dimensional and

x2 the fast, which is n2-dimensional; w ∈ W ⊆ L2([t0,∞),�r) is an unknown disturbance

(or noise) signal, which belongs to the set W of admissible exogenous inputs; y ∈ Y ⊂ �m is

the measured output (or observation) of the system, and belongs to Y , the set of admissible

measured-outputs; while ε > 0 is a small perturbation parameter.

The functions

⎛⎝ f1

f2

⎞⎠ : X → TX ⊆ �2(n1+n2) 1, g11 : X → Mn1×r(X ), g21 : X →

Mn2×r(X ), where Mi×j is the ring of i × j smooth matrices over X , h21, h22 : X → �m,

and k21 : X → Mm×r(X ) are real C∞ functions of x. Furthermore, we assume without any

loss of generality that the system (4.2) has an isolated equilibrium-point at (x1, x2) = (0, 0)

and such that f1(0, 0) = 0, f2(0, 0) = 0, h21(0, 0) = h22(0, 0) = 0. We also assume that there

exists a unique solution x(t, t0, x0, w, ε) ∀t ∈ � for the system for all initial conditions x0,

for all w ∈ W, and all ε ∈ �.

Moreover, to guarantee local asymptotic stability of the system (4.2) with w = 0, we assume

that (4.2) satisfies the conditions of Theorem 8.2, (Khalil, 1985), i.e., there exists an ε� > 0

such that (4.2) is locally asymptotic stable about x = 0 for all ε ∈ [0, ε�).

1For a manifold M , TM and T �M are the tangent and cotangent bundles of M .
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The H∞-suboptimal local filtering/state estimation problem is defined as follows.

Definition 4.1.1. (H∞-Suboptimal Local Filtering/State Estimation Problem). Find a filter,

F, for estimating the state x(t) or a function of it, z = h1(x), from observations Yt
Δ
= {y(τ) :

τ ≤ t} of y(τ) up to time t, to obtain the estimate

x̂(t) = F(Yt),

such that, the H∞-norm from the input w to some suitable penalty function z̃ is rendered

less or equal to a given number γ > 0, i.e.,

∫ ∞

t0

‖z̃(τ)‖2dt ≤ γ2

∫ ∞

t0

‖w(τ)‖2dt, ∀w ∈ W, (4.3)

for all initial conditions x0 ∈ O ⊂ X . Moreover, if the filter solves the problem for all

x0 ∈ X , we say the problem is solved globally.

We shall adopt the following notion of local observability.

Definition 4.1.2. For the nonlinear system Pa
sp, we say that it is locally zero-input observ-

able, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0

y(t; x1, w) ≡ y(t; x2, w) =⇒ x1 = x2,

where y(., xi, w), i = 1, 2 is the output of the system with the initial condition x(t0) = xi.

Moreover, the system is said to be zero-input observable if it is locally zero-input observable

at each x0 ∈ X or U = X .

4.1.2 Solution to the H∞ Filtering Problem Using Decomposition Filters

In this section, we present a decompostion approach to the H∞ state estimation problem.

We construct two time-scale filters corresponding to the decomposition of the system into a

“fast” and “slow” subsystems. As in the linear case (Chang, 1972), (Gajic, 1994), (Haddad,
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1976), we assume that, there exists locally a smooth invertible coordinate transformation (a

diffeomorphism), ϕ : x �→ ξ, i.e.,

ξ1 = ϕ1(x), ϕ1(0) = 0, ξ2 = ϕ2(x), ϕ2(0) = 0, ξ1 ∈ �n1, ξ2 ∈ �n2, (4.4)

such that the system (4.2) can be decomposed in the form

P̃a
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̇1 = f̃1(ξ1) + g̃11(ξ)w, ξ1(t0) = ϕ1(x0)

εξ̇2 = f̃2(ξ2) + g̃21(ξ)w; ξ2(t0) = ϕ2(x0)

y = h̃21(ξ1) + h̃22(ξ2) + k̃21(ξ)w.

(4.5)

Necessary conditions that such a transformation has to satisfy are given in (Aliyu, 2011c)

and in Chapter 3. Then, we can proceed to design the filter based on this transformed model

(4.5) with the systems states partially decoupled. Accordingly, we propose the following

composite “certainty-equivalent” filter

Fa
1c :

⎧⎨⎩
˙̂
ξ1 = f̃1(ξ̂1) + g̃11(ξ̂)ŵ

� + L̂1(ξ̂, y)(y − h̃21(ξ̂1)− h̃22(ξ̂2)); ξ̂1(t0) = ϕ1(0)

ε
˙̂
ξ2 = f̃2(ξ̂2) + g̃21(ξ̂)ŵ

� + L̂2(ξ̂, y)(y − h̃21(ξ̂1)− h̃22(ξ̂2)) ξ̂2(t0) = ϕ2(0)
(4.6)

where ξ̂ ∈ X is the filter state, ŵ� is the certainty-equivalent worst-case noise, L̂1 ∈ �n1×m,

L̂2 ∈ �n2×m are the filter gains, while all the other variables have their corresponding previous

meanings and dimensions. We can then define the penalty variable or estimation error as

z = y − h̃21(ξ̂1)− h̃22(ξ̂2). (4.7)

The problem can then be formulated as a dynamic optimization problem (or zero-sum dif-

ferential game) with the following cost functional (Basar, 1995):

min
L1∈�n1×m,L2∈�n2×m

supw∈W Ĵ1(L̂1, L̂2, w) =
1

2

∫ ∞

t0

(‖z‖2 − γ2‖w‖2)dt, s.t. (4.6),

and with w = 0, lim
t→∞

{ξ̂(t)− ξ(t)} = 0.(4.8)
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A “saddle-point solution” (Basar, 1995) to the above game is said to exist, if we can find a

pair of strategies ([L�
1, L

�
2], w

�) such that the following conditions are satisfied

Ĵ1([L̂
�
1, L̂

�
2], w) ≤ Ĵ1([L̂

�
1, L̂

�
2], w

�) ≤ Ĵ1([L̂1, L̂2], w
�), ∀L̂1 ∈ �n1×m, L̂2 ∈ �n2×m, ∀w ∈ W.(4.9)

To solve the above problem, we form the Hamiltonian function Ĥ : T �X × T �Y × W ×
�n1×m × �n2×m → �:

Ĥ(ξ̂, y, w, L̂1, L̂2, V̂
T
ξ̂
, V̂ T

y ) = V̂ξ̂1
(ξ̂, y)[f̃1(ξ̂1) + g̃11(ξ̂)w + L̂1(ξ̂, y)(y − h̃21(ξ̂1)− h22(ξ̂2))] +

1

ε
V̂ξ̂2

(ξ̂, y)[f̃2(ξ̂2) + g̃21(ξ)w + L̂2(ξ̂, y)(y − h̃21(ξ̂1)− h22(ξ̂2))] +

V̂y(ξ̂, y)ẏ +
1

2
(‖z‖2 − γ2‖w‖2) (4.10)

for some C1 function V̂ : X × Y → �. Then, applying the necessary condition for the

worst-case noise, we have

∂Ĥ

∂w

∣∣∣∣∣
w=ŵ�

= 0 =⇒ ŵ� =
1

γ2
[g̃T11(ξ̂)V̂

T
ξ̂1
(ξ̂, y) +

1

ε
g̃T21(ξ̂)V̂

T
ξ̂2
(ξ̂, y)]. (4.11)

Moreover,

∂2Ĥ

∂w2
= −γ2I =⇒ Ĥ(ξ̂, y, w, L̂1, L̂2, V̂

T
ξ̂
, V̂ T

y ) ≤ Ĥ(ξ̂, y, ŵ�, L̂1, L̂2, V̂
T
ξ , V̂ T

y ) ∀w ∈ W.

Substituting now ŵ� in (4.10) and completing the squares for L̂1 and L̂2, we have

Ĥ(ξ̂, y, ŵ�, L̂1, L̂2, V̂
T
ξ̂
, V̂ T

y ) = V̂ξ̂1
(ξ̂, y)f̃1(ξ̂1) +

1

ε
V̂ξ̂2

(ξ̂, y)f̃2(ξ̂2) + V̂y(ξ̂, y)ẏ +

1

2γ2
[V̂ξ̂1

(ξ̂, y)g̃11(ξ̂)g̃
T
11(ξ̂)V̂

T
ξ̂1
(ξ̂, y) +

1

ε
V̂ξ̂1

(ξ̂, y)g̃11(ξ)g̃
T
21(ξ̂)V̂

T
ξ̂1
(ξ̂, y) +

1

ε
V̂ξ̂2

(ξ̂, y)g̃21(ξ)g̃
T
11(ξ̂)V̂

T
ξ̂1
(ξ̂, y) +

1

ε2
V̂ξ̂2

(ξ̂, y)g̃21(ξ̂)g̃
T
21(ξ̂)V̂

T
ξ̂2
(ξ̂, y)] +

1

2
‖L̂T

1 (ξ̂, y)V̂
T
ξ̂1
(ξ̂, y) + (y − h̃21(ξ̂1)− h̃22(ξ̂2))‖2 −

1

2
‖(y − h̃21(ξ̂1)− h̃22(ξ̂2))‖2 − 1

2
V̂ξ̂1

(ξ̂, y)L̂1(ξ̂, y)L̂
T
1 (ξ̂, y)V

T
ξ̂1
(ξ̂, y) +
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1

2

∥∥∥∥1εL̂T
2 (ξ̂, y)V̂

T
ξ̂2
(ξ̂, y) + (y − h̃21(ξ̂1)− h̃22(ξ̂2))

∥∥∥∥2 + 1

2
‖z‖2 −

1

2
‖(y − h̃21(ξ̂1)− h̃22(ξ̂2))‖2 − 1

2ε2
V̂ξ̂2

(ξ̂, y)L̂2(ξ̂, y)L̂
T
2 (ξ̂, y)V̂

T
ξ̂2
(ξ̂, y).

Thus, setting the optimal gains L̂�
1(ξ̂, y), L̂

�
2(ξ̂, y) as

V̂ξ̂1
(ξ̂, y)L̂�

1(ξ̂, y) = −(y − h̃21(ξ̂1)− h̃22(ξ̂2))
T , (4.12)

V̂ξ̂2
(ξ̂, y)L̂�

2(ξ̂, y) = −ε(y − h̃21(ξ̂1)− h̃22(ξ̂2))
T , (4.13)

minimizes the Hamiltonian (4.10) and implies that the saddle-point condition

Ĥ(ξ̂, y, ŵ�, L̂�
1, L̂

�
2, V̂

T
ξ̂
, V̂ T

y ) ≤ Ĥ(ξ̂, y, ŵ�, L̂1, L̂2, V̂
T
ξ̂
) (4.14)

is satisfied.

Similarly, as in Chapter 3, we can obtain the corresponding analytical expression for ẏ from

(4.5) with the measurement noise set to zero, as

ẏ = Lf̃1+g̃11w
h̃21 + Lf̃2+g̃21w

h̃22,

which under certainty-equivalence and in the presence of ŵ�, results in

ẏ = Lf̃1(ξ̂1)++g̃11(ξ̂)ŵ�h̃21(ξ̂1) + L 1
ε
f̃2(ξ̂2)+

1
ε
g̃21(ξ̂)ŵ�h̃22(ξ̂2),

= ∇ξ̂1
h21(ξ̂1)[f̃1(ξ̂1) +

1

γ2
g̃11(ξ̂)g̃

T
11(ξ̂)V̂

T
ξ̂1
(ξ̂, y) +

1

γ2ε
g̃11(ξ̂)g̃

T
21(ξ̂)V̂

T
ξ̂2
(ξ̂, y)] +

∇ξ̂2
h22(ξ̂2)[

1

ε
f̃2(ξ̂2)) +

1

γ2ε
g̃21(ξ̂)g̃

T
11(ξ̂)V̂

T
ξ̂1
(ξ̂, y) +

1

γ2ε2
g̃21(ξ̂)g̃

T
21(ξ̂)V̂

T
ξ̂2
(ξ̂, y)](4.15)

Finally, setting

Ĥ(ξ̂, y, ŵ�, L̂�
1, L̂

�
2, V̂

T
ξ̂
, V̂ T

y ) = 0

and using the above expression (4.15) for ẏ results in the following Hamilton-Jacobi-Isaacs



118

equation (HJIE):

V̂ξ̂1
(ξ̂, y)f̃1(ξ̂1) +

1
ε
V̂ξ̂2

(ξ̂, y)f̃2(ξ̂2) + V̂y(ξ̂, y)[∇ξ̂1
h21(ξ̂1)f̃1(ξ̂1) +

1
ε
∇ξ̂2

h22(ξ̂2)f̃2(ξ̂2)]+

1
2γ2 [V̂ξ̂1

(ξ̂, y) + 2V̂y(ξ̂, y)∇ξ̂1
h21(ξ̂1) V̂ξ̂2

(ξ̂, y) + 2V̂y(ξ̂, y)∇ξ̂2
h22(ξ̂2)]×⎡⎣ g̃11(ξ̂)g̃

T
11(ξ̂)

1
ε
g̃11(ξ̂)g̃

T
21(ξ̂)

1
ε
g̃21(ξ̂)g̃

T
11(ξ̂)

1
ε2
g̃21(ξ̂)g̃

T
21(ξ̂)

⎤⎦⎡⎣ V̂ T
ξ̂1
(ξ̂, y)

V̂ T
ξ̂2
(ξ̂, y)

⎤⎦−

1
2
V̂ξ̂1

(ξ̂, y)L̂1(ξ̂, y)L̂
T
1 (ξ̂, y)V̂

T
ξ̂1
(ξ̂, y)− 1

2ε2
V̂ξ̂2

(ξ̂, y)L̂2(ξ̂, y)L̂
T
2 (ξ̂, y)V̂

T
ξ̂2
(ξ̂, y)−

1
2
(y − h̃21(ξ̂1)− h̃22(ξ̂2))

T (y − h̃21(ξ̂1)− h̃22(ξ̂2)) = 0, V̂ (0, 0) = 0, (4.16)

or equivalently the HJIE

V̂ξ̂1
(ξ̂, y)f̃1(ξ̂1) +

1
ε
V̂ξ̂2

(ξ̂, y)f̃2(ξ̂2) + V̂y(ξ̂, y)[∇ξ̂1
h21(ξ̂1)f̃1(ξ̂1) +

1
ε
∇ξ̂2

h22(ξ̂2)f̃2(ξ̂2)]+

1
2γ2 [V̂ξ̂1

(ξ̂, y) + 2V̂y(ξ̂, y)∇ξ̂1
h21(ξ̂1) V̂ξ̂2

(ξ̂, y) + 2V̂y(ξ̂, y)∇ξ̂2
h22(ξ̂2)]×⎡⎣ g̃11(ξ̂)g̃

T
11(ξ̂)

1
ε
g̃11(ξ̂)g̃

T
21(ξ̂)

1
ε
g̃21(ξ̂)g̃

T
11(ξ̂)

1
ε2
g̃21(ξ̂)g̃

T
21(ξ̂)

⎤⎦⎡⎣ V̂ T
ξ̂1
(ξ̂, y)

V̂ T
ξ̂2
(ξ̂, y)

⎤⎦−

3
2
(y − h̃21(ξ̂1)− h̃22(ξ̂2))

T (y − h̃21(ξ̂1)− h̃22(ξ̂2)) = 0, V̂ (0, 0) = 0. (4.17)

Moreover, from (4.10), we have

Ĥ(ξ̂, y, w, L̂�
1, L̂

�
2, V̂

T
ξ̂
, V̂ T

y ) = V̂ξ̂1
(ξ̂, y)f̃1(ξ̂1) +

1

ε
V̂ξ̂2

(ξ̂, y)f̃2(ξ̂2) + V̂y(ξ̂, y)ẏ −
γ2

2
‖w − w�‖2 + γ2

2
‖w�‖2 − 3

2
‖z‖2

= Ĥ(ξ̂, y, w�, L̂�
1, L̂

�
2, V̂

T
ξ̂
, V̂ T

y )− γ2

2
‖w − w�‖2.

Thus,

Ĥ(ξ̂, y, w, L̂�
1, L̂

�
2, V̂

T
ξ̂
, V̂ T

y ) ≤ Ĥ(ξ̂, y, w�, L̂�
1, L̂

�
2, V̂

T
ξ̂
, V̂ T

y ). (4.18)

Combining now (4.14) and (4.18), we have that the saddle-point conditions (4.9) are satis-

fied and the pair ([L̂�
1, L̂

�
2], w

�) constitutes a saddle-point solution to the game (4.8). Conse-

quently, we have the following result.
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Proposition 4.1.1. Consider the nonlinear system (4.2) and the H∞ local filtering problem

for this system. Suppose the plant Pa
sp is locally asymptotically stable about the equilibrium-

point x = 0 and zero-input observable for all ε ∈ [0, ε�). Further, suppose there exist a local

diffeomorphism ϕ that transforms the system to the partially decoupled form (4.5), a C1

positive-semidefinite function V̂ : N̂ × Υ̂ → �+ locally defined in a neighborhood N̂ × Υ̂ ⊂
X × Y of the origin (ξ̂, y) = (0, 0), and matrix functions L̂i : N̂ × Υ̂ → �ni×m, i = 1, 2,

satisfying the HJIE (4.16) together with the side-conditions (4.12), (4.13) for some γ > 0

and ε < ε� (that guarantees asymptotic stability of the system). Then, the filter Fa
1c solves

the local H∞ filtering problem for the system.

Proof: The optimality of the filter gains L̂�
1, L̂

�
2 has already been shown above. It remains

to prove asymptotic convergence of the estimation error vector. Accordingly, let V̂ ≥ 0 be

a C1 solution of the HJIE (4.16) or equivalently (4.17). Then, differentiating this solution

along a trajectory of (4.6) with L̂1 = L̂�
1, L2 = L̂�

2, and any w ∈ W inplace of ŵ�, we get

˙̂
V = V̂ξ̂1

(ξ̂, y)[f̃1(ξ̂1) + g̃11(ξ̂)w + L̂�
1(ξ̂, y)(y − h̃21(ξ̂1)− h̃22(ξ̂2))] +

1

ε
V̂ξ̂2

(ξ̂, y)[f̃2(ξ̂2) + g̃21(ξ̂)w + L̂�
2(ξ̂, y)(y − h̃21(ξ̂1)− h̃22(ξ̂2))] + V̂y(ξ̂, y)ẏ

= −γ2

2
‖w − ŵ�‖2 + 1

2
γ2‖w‖2 − 1

2
‖z‖2

≤ 1

2
γ2‖w‖2 − 1

2
‖z‖2,

where the last equality follows from using the HJIE (4.16). Integrating the above inequality

from t = t0 to t = ∞ and since the system is asymptotically stable, implies that the L2-gain

condition (4.3) is satisfied.

Moreover, setting w = 0 in the above inequality implies that
˙̂
V (ξ̂(t), y(t)) ≤ −1

2
‖z‖2. There-

fore, the filter dynamics is stable, and V̂ (ξ̂(t), y(t)) is non-increasing along a trajectory of

(4.6). Further, the condition that
˙̂
V (ξ̂(t), y(t)) ≡ 0 ∀t ≥ ts implies that z ≡ 0, which

further implies that y = h̃21(ξ̂1) + h̃22(ξ̂2) ∀t ≥ ts. By the zero-input observability of the

system, this implies that ξ̂ = ξ. Finally, since ϕ is invertible and ϕ(0) = 0, ξ̂ = ξ implies

x̂ = ϕ−1(ξ̂) = ϕ−1(ξ) = x. �
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Remark 4.1.1. Note that, we have not included the term k21(ξ̂)ŵ
� as part of the innovation

variable (or estimation error), e = y − h21(ξ̂1) − h22(ξ̂2), in the filter design (4.6) only to

simplify the design. Moreover, the benefit of including it is very marginal.

Remark 4.1.2. An estimation of the upper-bound ε∗ of the singular perturbation parameter

ε that guarantees the asymptotic stability of the filter (4.6) and the satisfaction of the L2-gain

condition (4.3) can be made from a local linearization about ξ̂ = 0 and a linear analysis of

the filter (4.6). This will be discussed after Corollary 4.1.1.

To relate the above result to the linear theory (Gajic, 1994), (Haddad, 1976), we consider

the following linear singularly-perturbed system (LSPS):

Pl
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = A1x1 + A12x2 +B11w; x1(t0) = x10

εẋ2 = A21x1 + A2x2 +B21w; x2(t0) = x20

y = C21x1 + C22x2 + w

(4.19)

where A1 ∈ �n1×n1 , A12 ∈ �n1×n2, A21 ∈ �n2×n1, A2 ∈ �n2×n2, B11 ∈ �n1×s, and B21 ∈
�n2×s, while the other matrices have compatible dimensions. Then, an explicit form of the

required transformation ϕ above is given by the Chang transformation (Chang, 1972):

⎡⎣ ξ1

ξ2

⎤⎦ =

⎡⎣ In1 − εHL −εH

L In2

⎤⎦⎡⎣ x1

x2

⎤⎦ (4.20)

where the matrices L and H satisfy the equations

0 = A2L− A21 − εL(A1 −A12L)

0 = −H(A2 + εLA12) + A12 + ε(A1 − A12L)H.

The system is then represented in the new coordinates by

P̃l
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̇1 = Ã1ξ1 + B̃11w; ξ1(t0) = ξ10

εξ̇2 = Ã2ξ2 + B̃21w; ξ2(t0) = ξ20

y = C̃21ξ1 + C̃22ξ2 + w

(4.21)
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where

Ã1 = A1 − A12L = A1 − A12A
−1
2 A21 +O(ε)

B̃11 = B11 − εHLB11 − HB21 = B11 −A12A
−1
2 B21 +O(ε)

Ã2 = A2 + εLA12 = A2 +O(ε)

B̃21 = B21 + εLB11 = B21 +O(ε)

C̃21 = C21 − C22L = C21 − C22A
−1
2 A21 +O(ε)

C̃22 = C22 + ε(C21 − C22)H = C22 +O(ε).

Adapting the filter (4.6) to the system (4.21) then yields the following filter

Fl
1c :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̂
ξ1 = (Ã1 +

1
γ2 B̃11B̃

T
11P̂1)ξ̂1 +

1
γ2ε

B̃11B̃
T
21P̂2ξ̂2 + L̂1(y − C̃21ξ̂1 − C̃22ξ̂2),

ξ̂1(t0) = 0

ε
˙̂
ξ2 = (Ã2 +

1
γ2ε

B̃21B̃
T
21P̂2)ξ̂2 +

1
γ2 B̃21B̃

T
11P̂1ξ̂1 + L̂2(y − C̃21ξ̂1 − C̃22ξ̂2),

ξ̂2(t0) = 0,

(4.22)

where P̂1, P̂2, L̂1, L̂2 satisfy the following matrix inequalities:⎡⎢⎢⎢⎢⎢⎢⎣
ÃT

1 P̂1 + P̂1Ã1 +
1
γ2 P̂1B̃11B̃

T
11P̂1 − 3C̃T

21C̃21

1
γ2ε

P̂2B̃21B̃
T
11P̂1 + 3C̃T

22C̃21

3C̃21

0

1
γ2ε

P̂1B̃11B̃
T
21P̂2 + 3C̃T

21C̃22 3C̃T
21 0

ÃT
2 P̂2 + P̂2Ã2 +

1
γ2ε

P̂2B̃21B̃
T
21P̂2 − 3C̃T

22C̃22 3C̃T
22 0

3C̃22 −3I 1
2
Q

0 1
2
Q 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0, (4.23)

⎡⎢⎢⎢⎣
0 0 1

2
(P̂1L̂1 − C̃T

21)

0 0 −1
2
C̃T

22

1
2
(P̂1L̂1 − C̃T

21)
T −1

2
C̃T

22 (1− μ1)I

⎤⎥⎥⎥⎦ ≤ 0, (4.24)
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⎡⎢⎢⎢⎣
0 0 −1

2
C̃T

21

0 0 1
2ε
(P̂2L̂2 − C̃T

22)

−1
2
C̃21

1
2ε
(P̂2L̂2 − C̃T

22)
T (1− μ2)I

⎤⎥⎥⎥⎦ ≤ 0, (4.25)

for some symmetric matrix Q ∈ �m×m ≥ 0, and numbers μ1, μ2 ≥ 1. Consequently, we have

the following Corollary to Proposition 4.1.1.

Corollary 4.1.1. Consider the linear system (4.19) and the H∞ filtering problem for this

system. Suppose the plant Pl
sp is locally asymptotically stable about the equilibrium-point

x = 0 and observable for all ε ∈ [0, ε�). Suppose further, it is transformable to the form

(4.21), and there exist positive-semidefinite matrices P̂1 ∈ �n1×n1, P̂2 ∈ �n2×n2, Q ∈ �m×m,

and matrices L̂1, L̂2 ∈ �n×m, satisfying the matrix-inequalities (MIs) (4.23)-(4.25) for some

γ > 0 and ε < ε�. Then the filter Fl
1c solves the H∞ filtering problem for the system.

Proof: Take

V̂ (ξ̂, y) =
1

2
(ξ̂T1 P1ξ̂1 + ξ̂T2 P2ξ̂2 + yTQy)

and apply the result of the Proposition. �

Furthermore, to estimate an upper-bound ε∗ on the singular perturbation parameter ε that

guarantees the asymptotic stability of the filter (4.6) and the satisfaction of the L2-gain

condition (4.3), the result of the above Corollary 4.1.1 can be utitilized to formulate an

optimization problem. By assuming that the model (4.19), is a local linearization about

x = 0 of the nonlinear model (4.2) in the sense that,

A1 =
∂f1
∂x1

∣∣∣
x=0

(x1, x2), A12 = ∂f1
∂x2

∣∣∣
x=0

(x1, x2), B11 = g11(0, 0),

A21 =
∂f2
∂x1

∣∣∣
x=0

(x1, x2), A2 =
∂f2
∂x2

∣∣∣
x=0

(x1, x2), B21 = g21(0, 0),

C21 =
∂h21
∂x1

∣∣∣
x=0

(x1, x2), C22 =
∂h22
∂x2

∣∣∣
x=0

(x1, x2), k21(0, 0) = I,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.26)

we can then state the following corollary.

Corollary 4.1.2. Consider the nonlinear system (4.2) and the H∞ filtering problem for this

system. Let (4.26) be a local linearization of the system, and suppose the system is locally

asymptotically stable about the equilibrium-point x = 0 for all ε ∈ [0, ε�) and zero-input
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observable. Suppose further, it is transformable to the form (4.21), and there exist positive-

semidefinite matrices P̂1 ∈ �n1×n1, P̂2 ∈ �n2×n2, Q ∈ �m×m, matrices L̂1, L̂2 ∈ �n×m, and

numbers γ∗, ε∗ that solve the optimization problem:

min γ − ε s.t. (4.23)− (4.25). (4.27)

Then, the filter Fl
1c solves the H∞ filtering problem for the system locally. Moreover, γ∗ is

the minimum achievable disturbance attenuation level for the filter, and ε∗ is an upper-bound

of the parameter ε for asymptotic stability of the filter.

Remark 4.1.3. Notice, in the above Corollary 4.1.2, it is possible to have ε∗ ≥ ε�.

Proposition 4.1.1 has not yet exploited the benefit of the coordinate transformation in design-

ing the filter (4.6) for the system (4.5). Moreover, for the linear system (4.19), the resulting

governing equations (4.23)-(4.25) are not linear in the unknown variables P̂1, P̂2. Thus, we

shall now design separate reduced-order filters for the decomposed subsystems which should

be more efficient than the previous one. For this purpose, we let ε ↓ 0 in (4.5) and obtain

the following reduced system model:

P̃a
r :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̇1 = f̃1(ξ1) + g̃11(ξ)w

0 = f̃2(ξ2) + g̃21(ξ)w

y = h̃21(ξ1) + h̃22(ξ2) + k̃21(ξ)w.

(4.28)

Then we assume the following.

Assumption 4.1.1. The system (4.2), (4.28) is in the “standard form”, i.e., the equation

0 = f̃2(ξ2) + g̃21(ξ)w (4.29)

has l ≥ 1 isolated roots, we can denote any one of these solutions by

ξ̄2 = q(ξ1, w). (4.30)

for some smooth function q : X ×W → X .
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Under Assumption 4.1.1, we obtain the reduced-order slow subsystem

Pa
r :

⎧⎨⎩ ξ̇1 = f̃1(ξ1) + g̃11(ξ1, q(ξ1, w))w +O(ε)

y = h̃21(ξ1) + h̃22(q(ξ1, w)) + k̃21(ξ1, q(ξ1, w))w +O(ε)
(4.31)

and a boundary-layer (or quasi-steady-state) subsystem as

dξ̄2
dτ

= f̃2(ξ̄2(τ)) + g̃21(ξ1, ξ̄2(τ))w (4.32)

where τ = t/ε is a stretched-time parameter. It can be shown that there exists an ε� > 0,

such that this subsystem is asymptotically stable for all ε ∈ (0, ε�) (see Theorem 8.2 in Ref.

(Khalil, 1985)) if the original system (4.2) is asymptotically stable.

We can therefore proceed to redesign the filter in (4.6) for the composite system (4.31), (4.32)

separately as

F̃a
2c :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̆
ξ1 = f̃1(ξ̆1) + g̃11(ξ̆1, q(ξ̆1, w̆

�
1))w̆

�
1 + L̆1(ξ̆1, y)(y − h̃21(ξ̆1)−

h22(q(ξ̆1, w̆
�
1))), ξ̆1(t0) = 0

ε
˙̆
ξ2 = f̃2(ξ̆2) + g̃21(ξ̆)w

�
2 + L̆2(ξ̆2, y)(y − h̃21(ξ̆1)− h̃22(ξ̆2)), ξ̆2(t0) = 0.

z̆ = y − h̃21(ξ̆1)− h̃22(ξ̆2),

(4.33)

where we have decomposed w into two components w1 and w2 for convenience, and w̆�
i is

predetermined with ξ̆j constant (Chow, 1976), i �= j, i, j = 1, 2. Notice also that, ξ2 cannot

be estimated from (4.30) since this is a “quasi-steady-state” approximation.

The following theorem then summaries this design approach.

Theorem 4.1.1. Consider the nonlinear system (4.2) and the H∞ local filtering problem

for this system. Suppose the plant Pa
sp is locally asymptotically stable about the equilibrium-

point x = 0 and zero-input observable for all ε ∈ [0, ε�). Further, suppose there exist a

local diffeomorphism ϕ that transforms the system to the partially decoupled form (4.5), and

Assumption 4.1.1 holds. In addition, suppose for some γ > 0 and ε ∈ [0, ε�), there exist C1

positive-semidefinite functions V̆i : N̆i × Ῠi → �+, i = 1, 2, locally defined in neighborhoods
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N̆i × Ῠi ⊂ X × Y of the origin (ξ̆i, y) = (0, 0), i = 1, 2 respectively, and matrix functions

L̆i : N̆i × Ῠi → �ni×m, i = 1, 2 satisfying the HJIEs:

V̆1ξ̆1
(ξ̆1, y)f̃1(ξ̆1) +

1
2γ2 V̆1ξ̆1

(ξ̆1, y)g̃11(ξ̆1, q(ξ̆1, w̆
�
1))g̃

T
11(ξ̆1, q(ξ̆1, w̆

�
1))V̆

T
1ξ̆1

(ξ̆1, y)+

V̆1y(ξ̆1, y)[∇ξ̆1
h̃21(ξ̆1) +∇ξ̆1

h̃22(q(ξ̆1, w̆
�
1))]

(
f̃1(ξ̆1)+

1
γ2 g̃11(ξ̆1, q(ξ̆1, w̆

�
1))g̃

T
11(ξ̆1, q(ξ̆1, w̆

�
1))V̆

T
1ξ̆1

(ξ̆1, y)
)
− 1

2
(y − h̃21(ξ̆1)−

h̃22(q(ξ̆1, w̆
�
1))

T (y − h̃21(ξ̆1)− h̃22(q(ξ̆1, w̆
�
1))) = 0, V̆1(0, 0) = 0 (4.34)

1
ε
V̆2ξ̆2

(ξ̆, y)f̃2(ξ̆2) +
1

2γ2ε2
V̆2ξ̆2

(ξ̆, y)g̃21(ξ̆)g̃
T
21(ξ̆)V̆

T
2ξ̆2

(ξ̆, y)+

V̆2y(ξ̆2, y)
(
[1
ε
∇ξ̆2

h̃22(ξ̆2)f̃2(ξ̆2) +
1

γ2ε2
g̃21(ξ̆)g̃

T
21(ξ̆)V̆

T
2ξ̆2

(ξ̆, y)]+

[∇ξ̆1
h̃21(ξ̆1)f̃1(ξ̆1) +

1
γ2 g̃11(ξ̆1, q(ξ̆1, w̆

�
1))g̃

T
11(ξ̆1, q(ξ̆1, w̆

�
1))V̆

T
1ξ̆1

(ξ̆1, y)]
)
−

1
2
(y − h̃21(ξ̆1)− h̃22(ξ̆2))

T (y − h̃21(ξ̆1)− h̃22(ξ̆2)) = 0, V̆2(0, 0) = 0 (4.35)

and where

w̆�
1 =

1

γ2
g̃T11(ξ̆1, ξ̄2)V̆

T
1ξ̆1

(ξ̆1, y),

together with the side-conditions

V̆1ξ̆1
(ξ̆1, y)L̆1(ξ̆1, y) = −(y − h̃21(ξ̆1)− h̃22(q(ξ̆1, w̆

�
1)))

T (4.36)

V̆2ξ̆2
(ξ̆, y)L̆2(ξ̆, y) = −ε(y − h̃21(ξ̆1)− h̃22(ξ̆2))

T . (4.37)

Then, the filter F̃a
2c solves the local H∞ filtering problem for the system.

Proof: (Sketch). We define separately two Hamiltonian functions H̆i : T
�X ×W×�ni×m →

�, i = 1, 2 with respect to the cost-functional (4.8) for each of the two separate components

of the filter (4.33) as

H̆1(ξ̆1, y, w1, L̆1, L̆2, V̆
T
ξ̆1
, V̆ T

y ) = V̆1ξ̆1
(ξ̆1, y)[f̃1(ξ̆1) + g̃11(ξ̆1, ξ̄2)w1 + L̆1(ξ̆1, y)(y −

h̃21(ξ̆1)− h22(ξ̄2))] +
1

2
(‖z‖2 − γ2‖w1‖2) (4.38)
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H̆2(ξ̆, y, w2, L̆1, L̆2, V̆
T
ξ̆
, V̆ T

y ) =
1

ε
V̆2ξ̆2

(ξ̆, y)[f̃2(ξ̆2) + g̃21(ξ̆)w2 + L̆2(ξ̆, y)(y − h̃21(ξ̆1)−

h̃22(ξ̆2))] +
1

2
(‖z‖2 − γ2‖w2‖2) (4.39)

for some smooth functions V̆i : X × Y → �, i = 1, 2. Then, we can determine w̆�
1, w̆

�
2 by

applying the necessary conditions for the worst-case noise as

w̆�
1 =

1

γ2
g̃T11(ξ̆1, ξ̄2)V̆

T
1ξ̆1

(ξ̆1, y)

w̆�
2 =

1

εγ2
g̃T12(ξ̆)V̆

T
2ξ̆2

(ξ̆, y)

where w̆�
1 is determined with ξ̄2 fixed. The rest of the proof follows along the same lines as

Proposition 4.1.1. �

The limiting behavior of the filter (4.33) as ε ↓ 0 corresponds to the reduced-order filter

F̃a
2r :

⎧⎨⎩
˙̆
ξ1 = f̃1(ξ̆1) + g̃11(ξ̆1, q(ξ̆1, w̆

�
1))w̆

�
1 + L̆1(ξ̆1, y)[y − h̃21(ξ̆1)−

h22(q(ξ̆1, w̆
�
1))], ξ̆1(t0) = 0,

(4.40)

which is governed by the HJIE (4.34).

Similarly, specializing the result of Theorem 4.1.1 to the linear system (4.19). Assuming A2

is nonsingular (Assumption 4.1.1), we have

ξ̄2 = −A−1
2 B21w,

and hence we obtain the composite filter

Fl
2c :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̆
ξ1 = Ã1ξ̆1 +

1
γ2 B̃11B̃

T
11P̆1ξ̆1 + L̆1(y − C̃21ξ̆1 +

1
γ2 C̃22Ã

−1
2 B̃21B̃

T
11P̆1ξ̆1),

ξ̆1(t0) = 0

ε
˙̆
ξ2 = Ã2ξ̆2 +

1
γ2ε

B̃21B̃
T
21P̆2ξ2 + L̆2(y − C̃21ξ̆1 − C̃22ξ̆2),

ξ̆2(t0) = 0.

(4.41)

The following corollary summarizes this development.
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Corollary 4.1.3. Consider the linear system (4.19) and the H∞ filtering problem for this

system. Suppose the plant Pl
sp is locally asymptotically stable about the equilibrium-point

x = 0 and observable for all ε ∈ [0, ε�). Suppose further, it is transformable to the form

(4.21) and Assumption 4.1.1 holds or A2 is nonsingular. In addition, suppose for some γ > 0

and ε ∈ [0, ε�), there exist positive-semidefinite matrices P̆1 ∈ �n1×n1, P̆2 ∈ �n2×n2, Q̆1,

Q̆2 ∈ �m×m and matrices L̆1 ∈ �n1×m, L̆2 ∈ �n2×m, satisfying the linear-matrix-inequalities

(LMIs)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ ÃT
1 P̆1 + P̆1Ã1 − C̃T

21C̃21 +
1
γ2 C̃

T
21C̃22Ã

−1
2 B̃21B̃

T
11P̆1+

1
γ2 P̆1B̃11B̃

T
21Ã

−T
2 C̃T

22C̃21

⎞⎠ P̆1B̃11

B̃T
11P̆1 −γ−2I

P̆1B̃11B̃
T
21Ã

−T
2 C̃T

22 0

C̃21 − 1
γ2 C̃22Ã

−1
2 B̃21B̃

T
11P̆1 0

0 0

1
γ2 C̃22Ã

−1
2 B̃21B̃

T
11P̆1 C̃T

21 − 1
γ2 P̆1B̃11B̃

T
21Ã

−T
2 C̃T

22 0

0 0 0

−γ−2I 0 0

0 −I Q̆1

0 Q̆1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (4.42)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−C̃T
21C̃21 −C̃T

21C̃22 0 C̃T
21 0

−C̃T
22C̃21

1
ε
(ÃT

2 P̆2 + P̆2Ã2)− C̃T
22C̃21 P̆2B̃21 C̃T

22 0

0 B̃T
21P̆2 −ε−2γ−2I 0 0

C̃21 C̃22 0 −I Q̆2

0 0 0 Q̆2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (4.43)
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⎡⎢⎢⎢⎢⎢⎢⎣
0

⎛⎝ 1
2
(P̆1L̆1 − C̃T

21+

1
γ2 P̆1B̃11B̃21Ã

−T
2 C̃T

22)

⎞⎠⎛⎝ 1
2
(P̆1L̆1 − C̃T

21+

1
γ2 P̆1B̃11B̃21Ã

−T
2 C̃T

22)
T

⎞⎠ (1− δ1)I

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (4.44)

⎡⎢⎢⎢⎣
0 0 −1

2
C̃T

21

0 0 1
2
(1
ε
P̆2L̆2 − C̃T

22)

−1
2
C̃21

1
2
(1
ε
P̆2L̆2 − C̃T

22)
T (1− δ2)I

⎤⎥⎥⎥⎦ ≤ 0 (4.45)

for some numbers δ1, δ2 ≥ 1. Then the filter Fl
2c solves the H∞ filtering problem for the

system.

Proof: Take

V̆1(ξ̆1, y) =
1

2
(ξ̆T1 P̆1ξ̆1 + yT Q̆1y)

V̆2(ξ̆2, y) =
1

2
(ξ̆T2 P̆2ξ̆2 + yT Q̆2y)

and apply the result of the Theorem. Moreover, the nonsingularity of A2 guarantees that a

reduced-order subsystem exists. �

Remark 4.1.4. A similar result to Corollary 4.1.2 can be obtained for the filter (4.33) in

terms of the a local linearization about x = 0 represented by the filter (4.41) and based on the

result of Corollary 4.1.2, to obtain an upper ε∗ and lower bound γ∗ for ε and γ respectively.

4.1.3 Aggregate H∞ Filters

In the absence of the coordinate transformation, ϕ, discussed in the previous Subsection, a

filter has to be designed to solve the problem for the aggregate system (4.2). We discuss this
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class of filters in this subsection. Accordingly, consider the following class of filters:

Fa
3ag :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̀x1 = f1(x̀1, x̀2) + g11(x̀1, x̀2)ẁ
� + L̀1(x̀, y)(y − h21(x̀1) + h22(x̀2));

x̀1(t0) = 0

ε ˙̀x2 = f2(x̀1, x̀2) + g12(x̀1, x̀2)ẁ
� + L̀2(x̀, y)(y − h21(x̀1) + h22(x̀2));

x̀2(t0) = 0

z̀ = y − h21(x̀1) + h22(x̀2),

(4.46)

where L̀1 ∈ �n1×m, L̀2 ∈ �n2×m are the filter gains, and z̀ is the new penalty variable. We

can repeat the same kind of derivation above to arrive at the following.

Theorem 4.1.2. Consider the nonlinear system (4.2) and the H∞ local filtering problem for

this system. Suppose the plant Pa
sp is locally asymptotically stable about the equilibrium-point

x = 0 and zero-input observable for all ε ∈ [0, ε�). Further, suppose for some γ > 0 and

ε ∈ [0, ε�), there exist a C1 positive-semidefinite function V̀ : Ǹ × Ὺ → �+, locally defined

in a neighborhood Ǹ × Ὺ ⊂ X × Y of the origin (x̀1, x̀2, y) = (0, 0, 0), and matrix functions

L̀i : Ǹ × Ὺ → �ni×m, i = 1, 2, satisfying the HJIE:

V̀x̀1(x̀, y)f1(x̀1, x̀2) +
1
ε
V̀x̀2(x̀, y)f2(x̀1, x̀2) + V̀y(x̀, y)[∇x̀1h21(x̀1)f1(x̀) +

1
ε
∇x̀2h22(x̀2)f2(x̀)]

+ 1
2γ2 [V̀x̀1(x̀, y) + 2V̀y(x̀, y)(∇x̀1h21(x̀1) V̀x̀2(x̀, y) + 2∇x̀2h22(x̀2)]×⎡⎣ g11(x̀)g

T
11(x̀)

1
ε
g11(x̀)g

T
21(x̀)

1
ε
g21(x̀)g

T
11(x̀)

1
ε2
g21(x̀)g

T
21(x̀)

⎤⎦⎡⎣ V̀ T
x̀1
(x̀, y)

V̀ T
x̀2
(x̀, y)

⎤⎦
−3

2
(y − h21(x̀1)− h22(x̀2))

T (y − h21(x̀1)− h22(x̀2)) = 0, V̀ (0, 0) = 0, (4.47)

together with the side-conditions

V̀x̀1(x̀, y)L̀1(x̀, y) = −(y − h21(x̀1)− h22(x̀2))
T (4.48)

Vx̀2(x̀, y)L̀2(x̀, y) = −ε(y − h21(x̀1)− h22(x̀2))
T . (4.49)

Then, the filter Fa
3ag with

ẁ� =
1

γ2
[gT11(x̀)V̀

T
x̀1
(x̀, y) +

1

ε
gT21(x̀)V̀

T
x̀2
(x̀, y)]
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solves the H∞ local filtering problem for the system.

Proof: Proof follows along the same lines as Proposition 4.1.1. �

The result of Theorem 4.1.2 can similarly be specialized to the linear system Pl
sp. Also,

based on a local linearization of the system, bounds on ε and γ can be obtained similar to

the result of Corollary 4.1.2.

Remark 4.1.5. Also, comparing the accuracy of the filters Fa
1c, F

a
2c, F

a
3ga, we see that the

order of the accuracy is Fa
2c � Fa

1c � Fa
3ag by virtue of the decomposition, where the relational

operator “ �′′ implies better.

To obtain the limiting filter (4.46) as ε ↓ 0, we must obtain the reduced-order model of the

system (4.2), since ẁ� is unbounded as ε ↓ 0. Using Assumption 4.1.1, i.e., the equation

0 = f2(x1, x2) + g̃21(x1, x2)w (4.50)

has k ≥ 1 isolated roots, we can denote any one of these roots by

x̄2 = p(x1, w), (4.51)

for some smooth function p : X ×W → X . Then, we have the reduced-order system

Pa
spr :

⎧⎨⎩ ẋ1 = f1(x1, x̄2) + g11(x1, x̄2)w; x1(t0) = x10

y = h21(x1) + h22(x̄2) + k21(x1, x̄2)w,
(4.52)

and the corresponding reduced-order filter is given by

Fa
3agr :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙́x1 = f1(x́1, p(x́1, ẃ

�)) + g11(x́1, p(x́1, ẃ
�))ẃ�+

Ĺ1(x́, y)(y − h21(x́1) + h22(p(x́1, ẃ
�)); x́1(t0) = 0

ź = y − h21(x́1) + h22(p(x́1, ẃ
�)),

(4.53)
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where all the variables have their corresponding previous meanings and dimensions, while

ẃ� =
1

γ2
gT11(x́)V́

T
x́1
(x́, y),

V́x́1(x́, y)Ĺ1(x́, y) = −(y − h21(x̀1)− h22(p(x́1, ẃ
�))T ,

with V́ satisfying the following HJIE:

V́x́1(x́, y)f1(x́1, p(x́1, ẃ
�)) + V́y(x́1, y)∇x̀1h21(x́1)f1(x́1, p(x́1, ẃ

�))+

1
2γ2 [V́x́1(x́1, y) + 2V́y(x́1, y)∇x̀1h21(x́1)]g11(x́, p(x́1, ẃ

�))gT11(x́, p(x́1, ẃ
�))V́ T

x́1
(x́1, y)−

1
2
(y − h21(x́1)− h22(p(x́1, ẃ

�))T (y − h21(x́1)− h22(p(x́1, ẃ
�)) = 0, V́ (0, 0) = 0. (4.54)

4.1.4 Push-Pull Configuration

Finally, in this subsection, we present a “push-pull” configuration for the aggregate filter

presented in the above section. Since the dynamics of the second subsystem is fast, we can

afford to reduce the gain of the filter for this subsystem to avoid instability, while for the

slow subsystem, we can afford to increase the gain. Therefore, we consider the following

filter configuration

Fa
4ag :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̌x1 = f1(x̌) + g11(x̌1, x̌2)w̌
� + (Ľ1 + Ľ2)(x̌, y)(y − h21(x̌1) + h22(x̌2));

x̌1(t0) = 0

ε ˙̌x2 = f2(x̌) + g11(x̌1, x̌2)w̌
� + (Ľ1 − Ľ2)(x̌, y)(y − h21(x̌1) + h22(x̌2));

x̌2(t0) = 0

ž = y − h21(x̌1) + h22(x̌2),

(4.55)

where x̌ ∈ X is the filter state, Ľ1 ∈ �n1×m, Ľ2 ∈ �n2×m are the filter gains, while all the

other variables have their corresponding previous meanings and dimensions.

Again, going through similar manipulations as in Proposition 4.1.1 we can arrive at the

following result.
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Proposition 4.1.2. Consider the nonlinear system (4.2) and the H∞ local filtering problem

for this system. Suppose the plant Pa
sp is locally asymptotically stable about the equilibrium-

point x = 0 and zero-input observable for all ε ∈ [0, ε�). Further, suppose for some γ > 0 and

ε ∈ [0, ε�), there exist a C1 positive-semidefinite function V̌ : Ň × Υ̌ → �+, locally defined

in a neighborhood Ň × Υ̌ ⊂ X × Y of the origin (x̌1, x̌2, y) = (0, 0, 0), and matrix functions

Ľ1 ∈ �n1×m, Ľ2 :∈ �n2×m, satisfying the HJIE (4.47) together with the side-conditions

(V̌x̌1 + V̌x̌2)(x̌, y)Ľ1(x̌, y) = −(y − h21(x̌1)− h22(x̌2))
T (4.56)

(V̌x̌1 − V̌x̌2)(x̌, y)Ľ2(x̌, y) = −ε(y − h21(x̌1)− h22(x̌2))
T . (4.57)

Then, the filter Fa
4ag solves the H∞ local filtering problem for the system.

In the next section, we consider some examples.

4.1.5 Examples

Consider the following singularly-perturbed nonlinear system

ẋ1 = −x3
1 + x2

εẋ2 = −x1 − x2 + w

y = x1 + x2 + w,

where w ∈ L2[0,∞), ε ≥ 0. We construct the aggregate filter Fa
3ag presented in the previous

section for the above system. It can be checked that the system is locally observable, and

the function V̀ (x̀) = 1
2
(x̀2

1+εx̀2
2), solves the inequality form of the HJIE (4.47) corresponding

to the system. Subsequently, we calculate the gains of the aggregate filter as

L̀1(x̀, y) = −(y − x̀1 − x̀2)

x̀1

, L̀2(x̀, y) = −ε(y − x̀1 − x̀2)

x̀2

, (4.58)

where L̀1(x̀, y), L̀2(x̀, y) are set equal to zero if |x̀1| < ε (small), |x̀2| < ε (small) respectively

to avoid the singularity at x̀ = 0.
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Similarly, we can construct the push-pull filter gains for the above system as

Ľ1(x̌, y) = −(y − x̌1 − x

2)

x̌1 + x̌2
, Ľ2(x̌, y) = −ε(y − x̌1 − x̌2)

x̌1 + x̌2
. (4.59)

4.2 H∞ Filtering for Discrete-time Systems

In this section, we discuss the corresponding H∞ filtering results for discrete-time singularly-

perturbed affine nonlinear systems. We similarly discuss decomposition, aggregate and

reduced-order filters.

4.2.1 Problem Definition and Preliminaries

The general set-up for studying discrete-time H∞ filtering problems is shown in Fig. 4.2,

where Pk is the plant, while Fk is the filter. The noise signal w ∈ P ′ is in general a bounded

power signal (e.g. a Gaussian white-noise signal) which belongs to the set P ′ of bounded

spectral signals, and similarly z̃ ∈ P ′, is also a bounded power signal or �2 signal. Thus, the

induced norm from w to z̃ (the penalty variable to be defined later) is the �∞-norm of the

interconnected system Fk ◦Pk, i.e., i.e.,

‖Fk ◦Pk‖�∞ Δ
= sup0�=w∈S′

‖z̃‖P ′

‖w‖P ′
, (4.60)

where

P ′ Δ
= {w : w ∈ �∞, Rww(k), Sww(jω) exist for all k and all ω resp., ‖w‖P ′ < ∞}

‖z‖2P ′
Δ
= lim

K→∞
1

2K

K∑
k=−K

‖zk‖2,

and Rww, Sww(jω) are the autocorrelation and power spectral density matrices of w. Notice

also that, ‖(.)‖P ′ is a seminorm. In addition, if the plant is stable, we replace the induced

�∞-norm above by the equivalent H∞ subspace norms.
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Figure 4.2 Set-up for discrete-time H∞ filtering

At the outset, we consider the following singularly-perturbed affine nonlinear causal discrete-

time state-space model of the plant which is defined on X ⊆ �n1+n2 with zero control input:

Pda
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = f1(x1,k, x2,k, ε) + g11(x1,k, x2,k)wk; x1(k0, ε) = x10

εx2,k+1 = f2(x1,k, x2,k) + g21(x1,k, x2,k)wk; x2(k0, ε) = x20

yk = h21(x1,k) + h22(x2,k) + k21(x1,k, x2,k)wk,

(4.61)

where x =

⎛⎝ x1

x2

⎞⎠ ∈ X is the state vector with x1 the slow state which is n1-dimensional

and x2 the fast, which is n2-dimensional; w ∈ W ⊆ �r is an unknown disturbance (or

noise) signal, which belongs to the set W ⊂ �2[k0,∞) ⊂ P ′ of admissible exogenous inputs;

y ∈ Y ⊂ �m is the measured output (or observation) of the system, and belongs to Y , the

set of admissible measured-outputs; while ε is a small perturbation parameter.

The functions f1 : X → �n1 , X ⊂ �n1+n2, f2 : X × � → �n2, g11 : X → Mn1×r(X ), g21 :

X → Mn2×r(X ), where Mi×j is the ring of i×j smooth matrices over X , h21, h22 : X → �m,

and k21 : X → Mm×r(X ) are real C∞ functions of x. More specifically, f2 is of the form

f2(x1,k, x2,k, ε) = (εx2,k+ f̄2(x1,k, x2.k) for some smooth function f̄2 : X → �n2 . Furthermore,

we assume without any loss of generality that the system (4.61) has an isolated equilibrium-

point at (xT
1 , x

T
2 ) = (0, 0) such that f1(0, 0) = 0, f2(0, 0) = 0, h21(0, 0) = h22(0, 0) = 0. We

also assume that there exists a unique solution x(k, k0, x0, w, ε) ∀k ∈ Z for the system, for

all initial conditions x(k0)
Δ
= x0 = (x10T , x20T )T , for all w ∈ W, and all ε ∈ �.

The suboptimal H∞ local filtering/state estimation problem is defined as follows.

Definition 4.2.1. (Sub-optimal H∞ Local State Estimation (Filtering) Problem). Find a

filter, Fk, for estimating the state xk or a function of it, zk = h1(xk), from observations



135

Yk
Δ
= {yi : i ≤ k} of yi up to time k, to obtain the estimate

x̂k = Fk(Yk),

such that, the H∞-norm from the input w ∈ W to some suitable penalty function z is locally

rendered less than or equal to a given number γ for all initial conditions x0 ∈ O ⊂ X , for

all w ∈ W ⊂ �2([k0,∞),�r). Moreover, if the filter solves the problem for all x0 ∈ X , we

say the problem is solved globally.

In the above definition, the condition that the H∞-norm is less than or equal to γ, is more

correctly referred to as the �2-gain condition

∞∑
k0

‖zk‖2 ≤ γ2

∞∑
k0

‖wk‖2, x0 ∈ O ⊂ X , ∀w ∈ W. (4.62)

We shall adopt the following notion of local observability.

Definition 4.2.2. For the nonlinear system Pa
sp, we say that, it is locally zero-input observ-

able, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0

y(k; x1, w) ≡ y(k; x2, w) =⇒ x1 = x2,

where y(., xi, w), i = 1, 2 is the output of the system with the initial condition xk0 = xi.

Moreover, the system is said to be zero-input observable if it is locally zero-input observable

at each x0 ∈ X or U = X .

4.2.2 Solution to the Discrete-time H∞ Filtering Problem Using Decomposition

Filters

In this section, we present a decomposition approach to the H∞ estimation problem defined

in the previous section, while in the next section, we present an aggregate approach.
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We construct two time-scale filters corresponding to the decomposition of the system into

a “fast” and “slow” subsystems. As in the linear case (Aganovic, 1996), (Chang, 1972),

(Kim 2002), (Lim, 1996), (Sadjadi, 1990), we first assume that there exists locally a smooth

invertible coordinate transformation (a diffeomorphism) ϕ : x �→ ξ, i.e.,

ξ1 = ϕ1(x, ε), ϕ1(0, ε) = 0, ξ2 = ϕ2(x, ε), ϕ2(0, ε) = 0, ξ1 ∈ �n1 , ξ2 ∈ �n2 , (4.63)

such that the system (4.61) is locally decomposed into the form

P̃da
sp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1,k+1 = f̃1(ξ1,k, ε) + g̃11(ξk, ε)wk, ξ1(k0) = ϕ1(x

0, ε)

εξ2,k+1 = f̃2(ξ2,k, ε) + g̃21(ξk, ε)wk; ξ2(k0) = ϕ2(x
0, ε)

yk = h̃21(ξ1,k, ξ2,k, ε) + h̃22(ξ1,k, ξ2,k, ε) + k̃21(ξk, ε)w.

(4.64)

Remark 4.2.1. It is virtually impossible to find a coordinate transformation such that

h̃2j = h̃2j(ξj), j = 1, 2. Thus, we have made the more practical assumption that h̃2j =

h̃2j(ξ1, ξ2), j = 1, 2.

Necessary conditions that such a transformation must satisfy are given in (Aliyu, 2011a).

The filter is then designed based on this transformed model as follows

Fda
1c :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξ̂1,k+1 = f̃1(ξ̂1,k, ε) + g̃11(ξ̂k, ε)w
�
k + L1(ξ̂k, yk, ε)[yk − h̃21(ξ̂k, ε)− h̃22(ξ̂k, ε)];

ξ̂1(k0, ε) = 0

εξ̂2,k+1 = f̃2(ξ̂2,k, ε) + g̃21(ξ̂k, ε)w
�
k + L2(ξ̂k, yk, ε)[yk − h̃21(ξ̂k, ε)− h̃22(ξ̂k, ε)];

ξ̂2(k0, ε) = 0,

(4.65)

where ξ̂ ∈ X is the filter state, L1 ∈ �n1×m, L2 ∈ �n2×m are the filter gains, and w� is the

worst-case noise, while all the other variables have their corresponding previous meanings

and dimensions. We can then define the penalty variable or estimation error at each instant

k as

z̃k = yk − h̃21(ξ̂k)− h̃22(ξ̂k). (4.66)

The problem can then be formulated as a dynamic optimization problem with the following
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cost functional

min
L1∈�n1×m,L2∈�n2×m

supw∈WJ1(L1, L2, w) =
1

2

∞∑
k=k0

{‖z̃k‖2 − γ2‖wk‖2
}
, s.t. (4.65),

and with w = 0, lim
k→∞

{ξ̂k − ξk} = 0. (4.67)

To solve the problem, we form the Hamiltonian function H : X ×W×Y ×�n1×m×�n2×m×
� → �:

H(ξ̂, w, y, L1, L2, V, ε) = V
(
f̃1(ξ̂1, ε) + g̃11(ξ̂, ε)w + L1(ξ̂, y, ε)(y − h̃21(ξ̂1, ε)−

h22(ξ̂2, ε)),
1

ε
f̃2(ξ̂2, ε) + g̃21(ξ̂, ε)w +

1

ε
L2(ξ̂, y, ε)(y −

h̃21(ξ̂, ε)− h̃22(ξ̂, ε)), y
)
− V (ξ̂, yk−1) +

1

2
(‖z̃‖2 − γ2‖w‖2) (4.68)

for some C1 positive-definite function V : X ×Y → �+ and where ξ̂1 = ξ̂1,k, ξ̂2 = ξ̂2,k y = yk,

z = {zk}, w = {wk}. We then determine the worst-case noise w� and the optimal gains L̂�
1

and L̂�
2 by maximizing and minimizing H with respect to w and L1, L2 respectively in the

above expression (4.68), as

w� = arg supwH(ξ̂, w, y, L1, L2, V, ε) (4.69)

[L�
1, L

�
2] = arg min

L1,L2

H(ξ̂, w�, y, L1, L2, V, ε). (4.70)

However, because the Hamiltonian function (4.68) is not a linear or quadratic function of w

and L1, L2, only implicit solutions may be obtained (Aliyu, 2011a). Thus, the only way to

obtain an explicit solution is to use an approximate scheme. In (Aliyu, 2011a) we have used

a second-order Taylor series approximationn of the Hamiltonian about (f̃1(ξ̂1),
1
ε
f̃2(ξ̂2), y) in

the direction of the state vectors (ξ̂1, ξ̂2). It is believed that, this would capture most, if not

all, of the system dynamics. However, for the H∞ problem at hand, such an approximation

becomes too messy and the solution becomes more involved. Therefore, instead we would
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rather use a first-order Taylor approximation which is given by

Ĥ(ξ̂, ŵ, y, L̂1, L̂2, V̂ , ε) = V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +

V̂ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)[g̃11(ξ̂, ε)ŵ +

L̂1(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)] +

1

ε
V̂ξ̂2,ε

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)[g̃21(ξ̂, ε)ŵ +

L̂2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)] +

1

2
(‖z̃‖2 − γ2‖ŵ‖2) +O(‖ξ̂‖2) (4.71)

where V̂ , ŵ, L̂1, L̂2 are the corresponding approximate functions, and V̂ξ̂1
, V̂ξ̂2

are the row

vectors of first-partial derivatives of V̂ with respect to ξ̂1, ξ̂2 respectively. We can now obtain

w� as

ŵ� =
1

γ2
[g̃T11(ξ̂, ε)V̂

T
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) +

1

ε
g̃T21(ξ̂, ε)V̂

T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)) (4.72)

Then, substituting ŵ = ŵ� in (4.71), we have

Ĥ(ξ̂, ŵ�, y, L̂1, L̂2, V̂ , ε) ≈ V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +

1

2γ2

[
V̂ξ̂1

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)g̃11(ξ̂, ε)g̃

T
11(ξ̂, ε)V̂

T
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) +

1

ε
V̂ξ̂1

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)g̃11(ξ̂, ε)g̃

T
21(ξ̂, ε)V̂

T
ξ̂2,ε

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)

]
+

V̂ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂1(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)) +

1

2γ2

[1
ε
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2), y)g̃21(ξ̂, ε)g̃

T
11(ξ̂, ε)V̂

T
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) +

1

ε2
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)g̃21(ξ̂)g̃

T
21(ξ̂)V̂

T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

]
+

1

ε
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)L̂2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)) +

1

2
‖z̃‖2. (4.73)

Completing the squares now for L̂1(ξ̂, y) and L̂2(ξ̂, y) in (4.73), we get

Ĥ(ξ̂, ŵ�, y, L̂1, L̂2, V̂ , ε) ≈ V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1)
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+
1

2γ2

[
V̂ξ̂1

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)g̃11(ξ̂, ε)g̃

T
11(ξ̂, ε)V̂

T
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

+
1

ε
V̂ξ̂1

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)g̃11(ξ̂, ε)g̃

T
21(ξ̂, ε)V̂

T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

]
+
1

2

∥∥∥∥L̂T
1 (ξ̂, y)V̂

T
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) + (y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

∥∥∥∥2 +
1

2γ2

[1
ε
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)g̃21(ξ̂, ε)g̃

T
11(ξ̂, ε)V̂

T
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

+
1

ε2
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2), y)g̃21(ξ̂)g̃

T
21(ξ̂)V̂

T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

]
−

1

2
V̂ξ̂1

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2), y)L̂1(ξ̂, y, ε)L̂

T
1 (ξ̂, y, ε)V̂ξ̂1

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)−

1

2ε2
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)L̂2(ξ̂, y, ε)L̂

T
2 (ξ̂, y, ε)V̂

T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

+
1

2

∥∥∥∥1εL̂T
2 (ξ̂, y, ε)V̂

T
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) + (y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

∥∥∥∥2 −
1

2
‖z‖2. (4.74)

Hence, setting the optimal gains as

V̂ξ̂1,ε
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂

�
1(ξ̂, y, ε) = −(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T (4.75)

V̂ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂

�
2(ξ̂, y, ε) = −ε(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T (4.76)

minimizes the Hamiltonian Ĥ(., ., L̂1, L̂2, ., .) and guarantees that the saddle-point condition

(Basar, 1982)

Ĥ(., ŵ�, L̂�
1, L̂

�
2, ., .) ≤ Ĥ(., ŵ�, L̂1, L̂2, ., .) ∀L̂1 ∈ �n1×m, L̂2 ∈ �n2×m (4.77)

is satisfied. Finally, substituting the above optimal gains in (4.71) and setting

Ĥ(ξ̂, w�, y, L̂�
1, L̂

�
2, V̂ , ε) = 0,

results in the following discrete Hamilton-Jacobi-Isaacs equation (DHJIE):

V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +
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1

2γ2
[ V̂ξ̂1

(f̃1(ξ̂1, ε),
1
ε
f̃2(ξ̂2, ε), y) V̂ξ̂2

(f̃1(ξ̂1, ε),
1
ε
f̃2(ξ̂2, ε), y) ]×⎡⎣ g̃11(ξ̂)g̃

T
11(ξ̂, ε)

1
ε
g̃11(ξ̂, ε)g̃

T
21(ξ̂, ε)

1
ε
g̃21(ξ̂, ε)g̃

T
11(ξ̂, ε)

1
ε2
g̃21(ξ̂, ε)g̃

T
21(ξ̂, ε)

⎤⎦⎡⎣ V̂ T
ξ̂1
(f̃1(ξ̂1, ε),

1
ε
f̃2(ξ̂2, ε), y)

V̂ T
ξ̂2
(f̃1(ξ̂1, ε),

1
ε
f̃2(ξ̂2, ε), y)

⎤⎦−

3

2
(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T (y − h̃21(ξ̂, ε)− h22(ξ̂, ε)) = 0 V̂ (0, 0, 0) = 0. (4.78)

We then have the following result.

Proposition 4.2.1. Consider the nonlinear discrete system (4.61) and the H∞-filtering

problem for this system. Suppose the plant Pda
sp is locally asymptotically stable about the

equilibrium-point x = 0 and zero-input observable. Further, suppose there exist a local diffeo-

morphism ϕ that transforms the system to the partially decoupled form (4.64), a C1 positive-

semidefinite function V̂ : N̂ × Υ̂ → �+ locally defined in a neighborhood N̂ × Υ̂ ⊂ X × Y
of the origin (ξ̂, y) = (0, 0), and matrix functions L̂i : N̂ × Υ̂ → �ni×m, i = 1, 2, satisfying

the DHJIE (4.78) together with the side-conditions (4.75), (4.76) for some γ > 0. Then, the

filter Fda
1c solves the H∞ filtering problem for the system locally in N̂ .

Proof: The optimality of the filter gains L̂�
1, L̂

�
2 has already been shown above. It remains

to show that the sadle-point conditions (Basar, 1982)

Ĥ(., ŵ, L̂�
1, L̂

�
2, ., .) ≤ Ĥ(., ŵ�, L̂�

1, L̂
�
2, ., .) ≤ Ĥ(., ŵ�, L̂1, L̂2, ., .),

∀L̂1 ∈ �n1×m, L̂2 ∈ �n2×m, ∀w ∈ �2[k0,∞), (4.79)

and the �2-gain condition (4.62) hold for all w ∈ W. In addition, it is required aklso to show

that there is asymptotic convergence of the estimation error vector.

Now, the right-hand-side of the above inequality (4.79) has already been shown. It remains

to show that the left hand side also holds. Accordingly, it can be shown from (4.71), (4.78)

that

Ĥ(ξ̂, ŵ, L̂�
1, L̂

�
2, V̂ , ε) = Ĥ(ξ̂, ŵ�, L̂�

1, L̂
�
2, V̂ , ε)− 1

2
γ2‖ŵ − ŵ�‖2

Therefore, we also have the left-hand side of (4.79) satisfied, and the pair (ŵ�, [L̂�
1, L

�
2])

constitute a saddle-point solution to the dynamic game (4.67), (4.65).
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Next, let V̂ ≥ 0 be a C1 solution of the DHJIE (4.78). Then, consider the time-variation of

V̂ along a trajectory of (4.65), with L̂1 = L̂�
1, L2 = L̂�

2, and w ∈ W, to get

V̂ (ξ̂1,k+1, ξ̂2,k+1, y) ≈ V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y) +

V̂ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)[g̃11(ξ̂, ε)ŵ + L̂�

1(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))] +

1

ε
V̂ξ̂2

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)[g̃21(ξ̂, ε)w + L̂�

2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))]

= V̂ (ξ̂, yk−1)− γ2

2
‖ŵ − ŵ�‖2 + 1

2
(γ2‖ŵ‖2 − ‖z̃‖2) ∀ŵ ∈ W

≤ V̂ (ξ̂, yk−1) +
1

2
(γ2‖ŵ‖2 − ‖z̃‖2) ∀ŵ ∈ W (4.80)

where we have used the first-order Taylor approximation in the above, and the last inequality

follows from using the DHJIE (4.78). Moreover, the last inequality is the discrete-time

dissipation-inequality (Guillard, 1996), which also implies that the �2-gain inequality (4.62)

is satisfied.

In addition, setting ŵ = 0 in (4.80) implies that

V̂ (ξ̂1,k+1, ξ̂2,k+1, y)− V̂ (ξ̂1,k, ξ̂2,k, yk−1) = −1

2
‖zk‖2.

Therefore, the filter dynamics is stable, and V̂ (ξ̂, y) is non-increasing along a trajectory of

(4.65). Further, the condition that V̂ (ξ̂1,k+1, ξ̂2,k+1, y) ≡ V̂ (ξ̂1,k, ξ̂2,k, yk−1) ∀k ≥ ks (say!)

implies that zk ≡ 0, which further implies that yk = h̃21(ξ̂k) + h̃22(ξ̂k) ∀k ≥ ks. By the

zero-input observability of the system, this implies that ξ̂ = ξ. Finally, since ϕ is invertible

and ϕ(0, ε) = 0, ξ̂ = ξ implies x̂ = ϕ−1(ξ̂, ε) = ϕ−1(ξ, ε) = x. �

Next, we consider the limiting behavior of the filter (4.65) and the corresponding DHJIE

(4.78). Letting ε ↓ 0, we obtain from (4.65),

0 = f̃2(ξ̂2,k) + L2(ξ̂k, yk)(yk − h̃21(ξ̂k)− h̃22(ξ̂k)) ∀k,

and since f̃2(.) is asymptotically stable, we have ξ̂2 → 0. Therefore, H(., ., ., ., .) in (4.68)
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becomes

H0(ξ̂, w, y, L1, L2, V, 0) = V
(
f̃1(ξ̂1) + g̃11(ξ̂)w + L1(ξ̂, y)(y − h̃21(ξ̂1)− h22(ξ̂2)), 0, y

)
−

V (ξ̂, yk−1) +
1

2
(‖z‖2 − γ2‖w‖2). (4.81)

A first-order Taylor approximation of this Hamiltonian about (f̃1(ξ̂1), 0, y) similarly yields

Ĥ0(ξ̂, ŵ, y, L̂10, V̄ , 0) = V̄ (f̃1(ξ̂1), 0, y) + V̄ξ̂1
(f̃1(ξ̂1), 0, y)L̂

T
10(ξ̂, y)(y − h̃21(ξ̂)− h22(ξ̂)) +

V̄ξ̂1
(f̃1(ξ̂1), 0, y)g̃11(ξ̂)w − V̄ (ξ̂, yk−1) +

1

2
(‖z‖2 − γ2‖ŵ‖2) +

O(‖ξ̂‖2) (4.82)

for some corresponding positive-definite function V̄ : X × Y → �, and gain matrix L̂10.

Minimizing again this Hamiltonian, we obtain the worst-case noise w�
10 and optimal gain

matrix L̂�
10 given by

ŵ�
10 = −g̃T11(ξ̂)V̄

T
ξ̂1
(f̃1(ξ̂1), 0, y), (4.83)

V̄ξ̂1
(f̃1(ξ̂1), 0, y)L̂

�
10(ξ̂, y) = −(y − h̃21(ξ̂)− h22(ξ̂))

T , (4.84)

where V̄ satisfies the reduced-order DHJIE

V̄ (f̃1(ξ̂1), 0, y) +
1

2γ2 V̄ξ̂1
(f̃1(ξ̂1), 0, y)g̃11(ξ̂)g̃

T
11(ξ̂)V̄

T
ξ̂1
(f̃1(ξ̂1), 0, y)− V̄ (ξ̂1, 0, yk−1)−

3
2
(y − h̃21(ξ̂)− h22(ξ̂))

T )(y − h̃21(ξ̂)− h22(ξ̂)) = 0, V̄ (0, 0, 0) = 0. (4.85)

The corresponding reduced-order filter is given by

F̄da
1r :

{
˙̂
ξ1 = f̃1(ξ̂1) + L̂�

10(ξ̂1, y)(y − h̃21(ξ̂)− h̃22(ξ̂)) +O(ε). (4.86)

Moreover, since the gain L̂�
10 is such that the estimation error ek = yk− h̃21(ξ̂k)− h̃22(ξ̂k) → 0,

and the vector-field f̃2(ξ̂2) is locally asymptotically stable, we have L̂�
2(ξ̂k, yk) → 0 as ε ↓ 0.

Correspondingly, the solution V̄ of the DHJIE (4.85) can be represented as the asymptotic
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limit of the solution of the DHJIE (4.78) as ε ↓ 0, i.e.,

V̂ (ξ̂, y) = V̄ (ξ̂1, y) +O(ε).

We can specialize the result of Proposition 4.2.1 to the following discrete-time linear singularly-

perturbed system (DLSPS) (Aganovic, 1996), (Kim 2002), (Lim, 1996), (Sadjadi, 1990) in

the slow coordinate:

Pl
dsp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = A1x1,k + A12x2,k +B11wk; x1(k0) = x10

εx2,k+1 = A21x1,k + (εIn2 + A2)x2,k +B21wk; x2(k0) = x20

yk = C21x1,k + C22x2,k + wk

(4.87)

where A1 ∈ �n1×n1 , A12 ∈ �n1×n2, A21 ∈ �n2×n1, A2 ∈ �n2×n2, B11 ∈ �n1×s, and B21 ∈
�n2×s, while the other matrices have compatible dimensions. Then, an explicit form of the

required transformation ϕ above is given by the Chang transformation (Chang, 1972):

⎡⎣ ξ1

ξ2

⎤⎦ =

⎡⎣ In1 − εHL −εH

L In2

⎤⎦⎡⎣ x1

x2

⎤⎦ , (4.88)

where the matrices L and H satisfy the equations

0 = (εIn2 + A2)L− A21 − εL(A1 −A12L)

0 = −H[(εIn2 + A2) + εLA12] + A12 + ε(A1 − A12L)H.

The system is then represented in the new coordinates by

P̃l
dsp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1,k+1 = Ã1ξ1,k + B̃11wk; ξ1(k0) = ξ10

εξ2,k+1 = Ã2ξ2,k + B̃21wk; ξ2(k0) = ξ20

yk = C̃21ξ1,k + C̃22ξ2,k + wk,

(4.89)
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where

Ã1 = A1 − A12L = A1 − A12(εIn2 + A2)
−1A21 +O(ε)

B̃11 = B11 − εHLB11 − HB21 = B11 −A12A
−1
2 B21 +O(ε)

Ã2 = (εIn2 + A2) + εLA12 = A2 +O(ε)

B̃21 = B21 + εLB11 = B21 +O(ε)

C̃21 = C21 − C22L = C21 − C22(εIn2 + A2)
−1A21 +O(ε)

C̃22 = C22 + ε(C21 − C22)H = C22 +O(ε).

Adapting the filter (4.65) to the system (4.89) yields the following filter

Fdl
1c :

⎧⎨⎩ ξ̂1,k+1 = Ã1ξ̂1,k + B̃11w
�
k + L̂1(yk − C̃21ξ̂1,k − C̃22ξ̂2,k)

εξ̂2,k+1 = Ã2ξ̂2,k + B̃21w
�
k + L̂2(yk − C̃21ξ̂1,k − C̃22ξ̂2,k).

(4.90)

Taking

V̂ (ξ̂, y) =
1

2
(ξ̂T1 P̂1ξ̂1 + ξ̂T2 P̂2ξ̂2 + yT Q̂y),

for some symmetric positive-definite matrices P̂1, P̂2, Q̂, the DHJIE (4.78) reduces to the

following algebraic equation

(ξ̂T1 Ã
T
1 P̂1Ã1ξ̂1 +

1

ε2
ξ̂T2 Ã

T
2 P̂2Ã

T
2 ξ̂2 + yT Q̂y)− (ξ̂T1 P̂1ξ̂1 + ξ̂T2 P̂2ξ̂2 + yTk−1Q̂yk−1) +

1

γ2

[
ξ̂T1 Ã

T
1 P̂1B̃11B̃

T
11P̂1Ã1ξ̂1 +

1

ε2
ξ̂T2 Ã

T
2 P̂2B̃21B̃

T
11P̂1Ã1ξ̂1 +

1

ε2
ξ̂T1 Ã

T
1 P̂1B̃11B̃

T
21P̂2Ã2ξ̂2

+
1

ε4
ξ̂T2 Ã

T
2 P̂2B̃21B̃

T
21P̂2Ã2ξ̂2

]
− 3(yTy − ξ̂T1 C̃

T
21y − yT C̃T

21ξ̂1 − yT C̃T
22ξ̂1 − yT C̃T

22ξ̂2 −
ξ̂T2 C̃

T
22y + ξ̂T1 C̃

T
21C̃21ξ̂1 + ξ̂T1 C̃

T
21C̃22ξ̂2 + ξ̂T2 C̃

T
22C̃21ξ̂1 + ξ̂T2 C̃

T
22C̃22ξ̂2) = 0. (4.91)

Subtracting now 1
2
yT R̂y for some symmetric matrix R̂ > 0 from the left-hand side of the
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above equation (and absorbing R̂ in Q̂), we have the following matrix-inequality

⎡⎢⎢⎢⎢⎢⎢⎣
ÃT

1 P̂1A1 − P̂1 +
1
γ2 Ã

T
1 P̂1B̃11B̃

T
11P̂1Ã1 − 3C̃T

21C̃21

1
γ2ε2 Ã

T
2 P̂2B̃21B̃

T
11P̂1Ã1 + 3C̃T

22C̃21

3C̃21

0

1
γ2ε2

ÃT
1 P̂1B̃11B̃

T
21P̂2Ã2 + 3C̃T

21C̃22 3C̃T
21 0

1
ε2
ÃT

2 P̂2Ã2 − P̂2 +
1

γ2ε4
ÃT

2 P̂2B̃21B̃
T
21P̂2Ã2 − 3C̃T

22C̃22 3C̃T
22 0

3C̃22 Q̂− 3I 0

0 0 −Q̂

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0, (4.92)

while the side conditions (4.75), (4.76) reduce to the following LMIs

⎡⎢⎢⎢⎣
0 0 1

2
(ÃT

1 P̂1L̂1 − C̃T
21)

0 0 −1
2
C̃T

22

1
2
(ÃT

1 P̂1L̂1 − C̃T
21)

T −1
2
C̃T

22 (1− δ1)I

⎤⎥⎥⎥⎦ ≤ 0 (4.93)

⎡⎢⎢⎢⎣
0 0 −1

2
C̃T

21

0 0 1
2ε2

(ÃT
2 P̂2L̂2 − C̃T

22)

−1
2
C̃21

1
2ε2

(ÃT
2 P̂2L̂2 − C̃T

22)
T (1− δ2)I

⎤⎥⎥⎥⎦ ≤ 0 (4.94)

respectively, for some numbers δ1, δ2 ≥ 1. The above matrix inequality (4.23) can be further

simplified using Schur’s complements, but cannot be made linear because of the off-diagonal

and coupling terms. This is primarily because the assumed transformation ϕ can only achieve

a partial decoupling of the original system, and a complete decoupling of the states will

require more stringent assumptions and conditions.

Consequently, we have the following Corollary to Proposition 4.2.1.

Corollary 4.2.1. Consider the DLSPS (4.87) and the H∞ filtering problem for this system.

Suppose the plant Pl
sp is locally asymptotically stable about the equilibrium-point x = 0

and observable. Suppose further, it is transformable to the form (4.89), and there exist

symmetric positive-definite matrices P̂1 ∈ �n1×n1, P̂2 ∈ �n2×n2, Q̂ ∈ �m×m, and matrices

L̂1 ∈ �n1×m, L̂2 ∈ �n2×m, satisfying the matrix inequalities (4.92), (4.93), (4.94) for some
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numbers δ1, δ2 ≥ 1 and γ > 0. Then, the filter Fdl
1c solves the H∞ filtering problem for the

system.

Similarly, for the reduced-order filter (4.86) and the DHJIE (4.85), we have respectively

Fdl
1r :

{
ξ̂1,k+1 = Ã1ξ̂1,k + L̂�

10(yk − C̃21ξ̂1,k − C̃22ξ̂2,k) (4.95)

⎡⎢⎢⎢⎢⎢⎢⎣
ÃT

1 P̂10Ã1 − P̂10 − 3C̃T
21C̃21 ÃT

1 P̂10B̃11 3C̃21 0

B̃T
11P̂10Ã1 −γ−2I 0 0

3C̃T
21 0 Q̂− 3I 0

0 0 0 Q̂

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (4.96)

⎡⎢⎢⎢⎣
0 0 1

2
(ÃT

1 P̂10L̂10 − C̃T
21)

0 0 −1
2
C̃T

22

1
2
(ÃT

1 P̂10L̂10 − C̃T
21)

T −1
2
C̃T

22 (1− δ10)I

⎤⎥⎥⎥⎦ ≤ 0 (4.97)

for some symmetric positive-definite matrices P̂10, Q̂10, gain matrix L̂10 and some number

δ10 > 1.

Similarly, Proposition 4.2.1 has not yet exploited the benefit of the coordinate transformation

in designing the filter (4.65) for the system (4.64). We shall now design separate reduced-

order filters for the decomposed subsystems which should be more efficient than the previous

one. If we let ε ↓ 0 in (4.64) and obtain the following reduced system model:

P̃a
r :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1,k+1 = f̃1(ξ1) + g̃11(ξ)w

0 = f̃2(ξ2) + g̃21(ξ)w

yk = h̃21(ξ) + h̃22(ξ) + k̃21(ξ)w.

(4.98)

Then, we assume the following (Khalil, 1985), (Kokotovic, 1986).
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Assumption 4.2.1. The system (4.61), (4.98) is in the “standard form”, i.e., the equation

0 = f̃2(ξ2) + g̃21(ξ)w (4.99)

has l ≥ 1 isolated roots, we can denote any one of these solutions by

ξ̄2 = q(ξ1, w) (4.100)

for some C1 function q : X ×W → X .

Under Assumption 4.2.1, we obtain the reduced-order slow-subsystem

Pa
r :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1,k+1 = f̃1(ξ1,k) + g̃11(ξ1,k, q(ξ1,k, wk))wk +O(ε)

yk = h̃21(ξ1,k, q(ξ1,k, wk)) + h̃22(ξ1,k, q(ξ1,k, wk))+

k̃21(ξ1,k, q(ξ1,k, wk))wk +O(ε),

(4.101)

and a boundary-layer (or quasi steady-state) subsystem as

ξ̄2,m+1 = f̃2(ξ̄2,m, ε) + g̃21(ξ1,m, ξ̄2,m, ε)wm (4.102)

where m = �k/ε� is a stretched-time parameter. This subsystem is guaranteed to be asymp-

totically stable for 0 < ε < ε� (see Theorem 8.2 in Ref. (Khalil, 1985)) if the original system

(4.61) is asymptotically stable.

We can then proceed to redesign the filter (4.65) for the composite system (4.101), (4.102)

separately as

F̃da
2c :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̆1,k+1 = f̃1(ξ̆1,k) + g̃11(ξ̆1,k)w̆

�
1,k + L̆1(ξ̆1,k, yk)(yk − h̃21(ξ̆1,k)− h̃22(ξ̆1,k))

εξ̆2,k+1 = f̃2(ξ̆2,k, ε) + g̃21(ξ̂k, ε)w̆
�
2,k + L̆2(ξ̆2,k, yk, ε)(yk − h̃21(ξ̆k, ε)−

h̃22(ξ̆k, ε)),

(4.103)

where

h̃21(ξ̆1,k) = h̃21(ξ̆1,k, q(ξ̆1,k, ŵ
�
1,k)), h̃22(ξ̆1,k) = h̃21(ξ̆1,k, q(ξ̆1,k, ŵ

�
2,k)).
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Notice also that, ξ2 cannot be estimated from (4.100) since this is a “quasi-steady-state”

approximation. Then, using a similar approximation procedure as in Proposition 4.2.1, we

arrive at the following result.

Theorem 4.2.1. Consider the nonlinear system (4.61) and the H∞ estimation problem for

this system. Suppose the plant Pda
sp is locally asymptotically stable about the equilibrium-point

x = 0 and zero-input observable. Further, suppose there exists a local diffeomorphism ϕ that

transforms the system to the partially decoupled form (4.64), and Assumption 4.2.1 holds.

In addition, suppose for some γ > 0, there exist C2 positive-definite functions V̆i : N̆i× Ῠi →
�+, i = 1, 2, locally defined in neighborhoods N̆i×Ῠi ⊂ X×Y of the origin (ξ̆i, y) = (0, 0) i =

1, 2 respectively, and matrix functions L̆i : N̆i × Ῠi → �ni×m, Ῠi ⊂ Y , i = 1, 2 satisfying the

pair of DHJIEs:

V̆1(f̃1(ξ̆1), y) +
1

2γ2
V̆1,ξ̆1

(f̃1(ξ̆1), y)g̃11(ξ̆1, q(ξ̆1, w̆
�
1))g̃

T
11(ξ̆1, q(ξ̆1, w̆

�
1))V̆

T
1,ξ̆1

(f̃1(ξ̆1), y)−

V̄1(ξ̆1, yk−1)− 3

2
(y − h̃21(ξ̆1))− h̃22(ξ̆1))

T (y − h̃21(ξ̆1)− h̃22(ξ̆1)) = 0,

V̆1(0, 0) = 0, (4.104)

V̆2(
1

ε
f̃2(ξ̆2, ε), y) +

1

2γ2
V̄2,ξ̆2

(
1

ε
f̃2(ξ̆2, ε), y)g̃21(ξ̂, ε)g̃

T
21(ξ̆, ε)V̆

T
2,ξ̆2

(
1

ε
f̃2(ξ̆2, ε), y)−

V̆2(ξ̆2, yk−1)− 3

2
(y − h̃21(ξ̆, ε)− h̃22(ξ̆, ε))

T (y − h̃21(ξ̆, ε)− h22(ξ̆, ε)) = 0,

V̆2(0, 0) = 0 (4.105)

together with the side-conditions

w̆�
1 =

1

γ2
g̃T11(ξ̆1, q(ξ1, w̆

�
1))V̆

T
1,ξ̆1

(f̃1(ξ̆1), y) (4.106)

w̆�
2 =

1

γ2
g̃T21(ξ̆, ε)V̆

T
2,ξ̂2

(
1

ε
f̃2(ξ̆2, ε), y) (4.107)

V̂1,ξ̂1
(f̃1(ξ̆1))L̆

�
1(ξ̆1, y, ε) = −(y − h̃21(ξ̆1, ε)− h̃22(ξ̆, ε))

T (4.108)

V̆ T
2,ξ̆2

(
1

ε
f̃2(ξ̆2, ε), y)L̆

�
2(ξ̆, y, ε) = −ε(y − h̃21(ξ̆, ε)− h̃22(ξ̆))

T (4.109)

Then the filter F̃da
2c solves the H∞ filtering problem for the system locally in ∪N̆i.

Proof: We define separately two Hamiltonian functions Hi : X × W × Y × �ni×m × � →
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�, i = 1, 2 for each of the two separate components of the filter (4.103). Then, the rest of

the proof follows along the same lines as Proposition 4.2.1. �

Remark 4.2.2. Comparing (4.104), (4.108) with (4.84), (4.85), we see that the two reduced-

order filter approximations are similar. Moreover, notice that ξ̆1 appearing in (4.109),

(4.105) is not considered as an additional variable, because it is assumed to be known from

(4.103a),(4.108) respectively, and is therefore regarded as a parameter. In addition, we ob-

serve that, the DHJIE (4.104) is implicit in w̆�
1, and therefore, some sort of approximation

is required in order to obtain an explicit solution.

Remark 4.2.3. Notice also that, in the determination of w̆�
1, we assume ξ̄2 = q(ξ1, w) is

frozen in the Hamiltonian H2, and therefore the contribution to w̆�
1 from g̃11(., .), h̃21(., .) is

neglected.

We can similarly specialize the result of Theorem 4.2.1 to the discrete-time linear system

(4.87) in the following corollary.

Corollary 4.2.2. Consider the DLSPS (4.87) and the H∞ filtering problem for this system.

Suppose the plant Pl
sp is locally asymptotically stable about the equilibrium-point x = 0 and

observable. Suppose further, it is transformable to the form (4.89) and Assumption 4.2.1 is

satisfied, i.e., Ã2 is nonsingular. In addition, suppose for some γ > 0 there exist symmetric

positive-definite matrices P̆i ∈ �ni×ni, Q̆i ∈ �m×m, and matrix L̆i ∈ �ni×m, i = 1, 2 satisfying

the following LMIs ⎡⎢⎢⎢⎢⎢⎢⎣
ÃT

1 P̆1Ã1 − P̆1 − 3C̃T
21C̃21 ÃT

1 P̆1B̃11 3C̃T
21 0

B̃T
11P̆1Ã1 −γ2I 0 0

3C̃21 0 Q̆1 − 3I 0

0 0 0 −Q̆

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3C̃T
21C̃21 −3C̃T

21C̃22 0 3C̃T
21 0

−3C̃T
22C̃21 ÃT

2 P̆2Ã2 − P̆2 − 3C̃T
22C̃22 ÃT

2 P̆2B̃21 3C̃T
22 0

0 B̃T
21P̆2Ã2 γ2ε2I 0 0

3C̃21 3C̃22 0 Q̆2 − 3I − R̆2 0

0 0 0 0 −Q̆2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0
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⎡⎣ 0 1
2
(ÃT

1 P̆1L̆1 − C̃T
21)

1
2
(ÃT

1 P̂1L̆1 − C̃T
21)

T (1− δ3)I

⎤⎦ ≤ 0

⎡⎢⎢⎢⎣
0 0 −1

2
C̃T

21

0 0 1
2ε2

(ÃT
2 P̆2L̆2 − C̃T

22)

−1
2
C̃21

1
2ε2

(ÃT
2 P̆2L̆2 − C̃T

22)
T (1− δ4)I

⎤⎥⎥⎥⎦ ≤ 0

for some numbers δ3, δ4 > 0 and where

B̃11 = B̃11 + C̃22Ã
−1
2 B̃21, C̃21 = C̃21 − 1

γ2
C̃22Ã

−1
2 B̃21B̃

T
11P̆1Ã1.

Then, the filter Fdl
2c solves the H∞ filtering problem for the system.

Proof: We take similarly,

V̆1(ξ̂1, y) =
1

2
(ξ̆T1 P̆1ξ̆1 + yT Q̆1y)

V̆2(ξ̂2, y) =
1

2
(ξ̆T2 P̆2ξ̆2 + yT Q̆2y)

and apply the result of the Theorem. �

4.2.3 Discrete-time Aggregate H∞ Filters

Similarly, in the absence of the coordinate transformation, ϕ, discussed in the previous

subsection, a filter has to be designed to solve the problem for the aggregate system (4.61).

We discuss this class of filters in this subsection. Accordingly, consider the following class of

filters:

Fda
3ag :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̀1,k+1 = f1(x̀k) + g11(x̀k)ẁ
�
k + L̀1(x̀k, yk, ε)[yk−

h21(x̀1,k)− h22(x̀2,k)]; x̀1(k0) = x̄10

εx̀2,k+1 = f2(x̀k, ε) + g21(x̀k)ẁ
�
k + L̀2(x̀k, yk, ε)[yk−

h21(x̀1,k)− h22(x̀2,k)]; x̀2(k0) = x̄20

z̀k = yk − h21(x̀1,k)− h22(x̀2,k),

(4.110)
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where L̀1, L̀2 ∈ �n×m are the filter gains, and z̀ is the new penalty variable. We can repeat

the same kind of derivation above to arrive at the following.

Theorem 4.2.2. Consider the nonlinear system (4.61) and the H∞ estimation problem for

this system. Suppose the plant Pda
sp is locally asymptotically stable about the equilibrium-

point x = 0, and zero-input observable. Further, suppose there exist a C1 positive-definite

function V̀ : Ǹ × Ὺ → �+, locally defined in a neighborhood Ǹ × Ὺ ⊂ X × Y of the origin

(x̀1, x̀2, y) = (0, 0, 0), and matrix functions L̀i : Ǹ × Ὺ → �ni×m, i = 1, 2, satisfying the

DHJIE:

V̀ (f1(x̀),
1

ε
f2(x̀, ε), y) − V̀ (x̀, yk−1) +

1

2γ2
[ V̀x̀1(f1(x̀),

1
εf2(x, ε), y) V̀x̀2(f1(x̀),

1
εf2(x̀, ε), y) ]×⎡⎣ g11(x̀)g

T
11(x̀)

1
εg11(x̀)g

T
21(x̀)

1
εg21(x̀)g

T
11(x̀)

1
ε2
g21(x̀)g

T
21(x̀)

⎤⎦⎡⎣ V̀ T
x̀1
(f1(x̀),

1
εf2(x̀, ε), y)

V̀ T
x̀2
(f1(x̀),

1
εf2(x̀, ε), y)

⎤⎦−

3

2
(y − h21(x̀1)− h22(x̀2))

T (y − h21(x̀1)− h22(x̀2)) = 0, V̂ (0, 0) = 0, (4.111)

together with the side-conditions

V̀x̀1(f1(x̀),
1

ε
f2(x̀, ε), y)L̀

�
1(x̀, y) = −(y − h21(x̀1)− h22(x̀2))

T , (4.112)

V̀x̀2(f1(x̀),
1

ε
f2(x̀, ε), y)L̀

�
2(x̀, y) = −ε(y − h21(x̀1)− h22(x̀2)). (4.113)

Then, the filter Fa
3ag solves the H∞ filtering problem for the system locally in Ǹ .

Proof: Proof follows along the same lines as Proposition 4.2.1. �

For the DLSPS (4.87), the Chang transformation ϕ is always available as given by (4.88).

Moreover, the result of Theorem 4.2.2 specialized to the DLSPS is horrendous, in the sense

that, the resulting inequalities are not linear and too involved. Thus, it is more useful to

consider the reduced-order filter which will be introduced shortly as a special case.

Using similar procedure as outlined in the previous section, we can obtain the limiting
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behavior of the filter Fa
3ag as ε ↓ 0

F̄da
5ag :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̀1,k+1 = f1(x̀k) + g11(x̀k)ẁ

�
10,k + L̀10(x̀k, yk)(yk − h21(x̀1,k));

x̀1(k0) = x̄10

x̀2,k → 0,

(4.114)

with

ẁ�
10 =

1

γ2
gT11(x̀)V̀

T
x̀1
(f1(x̀)),

and the DHJIE (4.111) reduces to the DHJIE

V̀ (f1(x̀1), y) +
1

2γ2
V̄x̀1(f1(x̀1), y)g11(x̀)g

T
11(x̀)V̀

T
x̀1,y

(f1(x̀))− V̀ (x̀1, yk−1)−
3

2
(y − h21(x̀1))

T (y − h21(x̀1)) = 0, V̀ (0, 0) = 0, (4.115)

together with the side-conditions

V̀x̀1(f1(x̀1))L̀
�
10(x̀, y) = −(y − h21(x̀1))

T (4.116)

L̀2(x̀, y) → 0. (4.117)

Similarly, specializing the above result to the DLSPS (4.87), we obtain the following reduced-

order filter

Fdl
6agr :

{
x̀1,k+1 = A1x̀1,k +B11ẁ

�
10,k + L̀�

10(yk − C̃21x̀1,k), (4.118)

with

ẁ�
10 =

1

γ2
BT

11P̀1A1x̀1
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and the DHJIE (4.115) reduces to the LMI

⎡⎢⎢⎢⎢⎢⎢⎣
AT

1 P̀10Ã1 − P̀10 − 3CT
21C21 AT

1 P̀10B11 3CT
21 0

BT
11P̀10A1 −γ2I 0 0

3C21 0 Q̀1 − 3I 0

0 0 0 −Q̀

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (4.119)

⎡⎣ 0 1
2
(AT

1 P̀10L̀10 − CT
21)

1
2
(AT

1 P̀10L̀10 − CT
21)

T (1− δ5)I

⎤⎦ ≤ 0 (4.120)

for some symmetric positive-definite matrices P̀10, Q̀10, gain matrix L̀10 and some number

δ5 > 1.

Remark 4.2.4. If the nonlinear system (4.61) is in the standard form, i.e., the equivalent of

Assumption 4.2.1 is satisfied, and there exists at least one root x̄2 = σ(x1, w) to the equation

0 = f2(x1, x2) + g21(x1, x2)w,

then reduced-order filters can also be constructed for the system similar to the result of Subec-

tion 4.3.3 and Theorem 4.2.1. Such filters would take the following form

Fa
7agr :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̌1,k+1 = f1(x̌1,k, σ(x̌1, w̌
�
1,k)) + g11(x̌1, σ(x̌1, w̌

�
1,k))w̌

�
1,k+

Ľ1(x̌1,k, yk, ε)(yk − h21(x̌1,k)− h22(σ(x̌1, w̌
�
1,k)); x̌1(k0) = x̄10

εx̌2,k+1 = f2(x̌k, ε) + g21(x̌1, x̌2)w̌
�
2,k+

Ľ2(x̌k, yk, ε)(yk − h21(x̌1,k)− h22(x̌2,k)); x̌2(k0) = x̄20

žk = yk − h21(x̌1,k)− h22(x̌2,k).

(4.121)

However, this filter would fall into the class of decomposition filters, rather than aggregate,

and because of this, we shall not discuss it further in this subsection.

In the next section, we consider an example.
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4.2.4 Examples

Consider the following singularly-perturbed nonlinear system

x1,k+1 = x
1
3

1,k + x
1
2

2,k + w

εx2,k+1 = −x
1
2
2,k − x

1
3
2,k

yk = x1,k + x2,k + w.

where w ∈ �2[0,∞) is a noise process, ε ≥ 0. We construct the aggregate filter Fa
3ag presented

in the previous section for the above system. It can be checked that the system is locally

observable, and with γ = 1, the function V̆ (x̀) = 1
2
(x̀2

1 + εx̀2
2), solves the inequality form of

the DHJIE (4.111) corresponding to the system. Subsequently, we calculate the gains of the

filter as

L̀1(x̀, y) = −(y − x̀1 − x̀2)

x̀
1
3
1 + x̀

1
2
2

, L̀2(x̀, y) = ε
(y − x̀1 − x̀2)

x̀
1
2
2 + x̀

1
3
2

, (4.122)

where the gains L̀1, L̀2 are set equal to zero if |x̀
1
3
1 + x̀

1
2 | < ε (small), |x̀

1
2
2 + x̀

1
3
2 | < ε (small)

to avoid the singularity at the origin x̀ = 0.

4.3 Conclusion

In this chapter, we have presented a solution to the H∞ local filtering problem for affine non-

linear singularly-perturbed systems in both continuous-time and discrete-time. Two main

types of filters, namely, decomposition and aggregate filters have been presented, and suf-

ficient conditions for the solvability of the problem using each filter are given in terms of

HJIEs. Moreover, for the continuous-time problem and the decomposition filters, the solution

to the mixed H2/H∞ filtering problem has also been presented. While for the discrete-time

problem, first-order approximate solutions have been derived.

Furthermore, for each type of filter, reduced-order filters have also been derived as limiting

cases of the above filters as the singular parameter ε ↓ 0. The results have also been
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specialized to linear systems, in which case the conditions reduce to a system of matrix-

inequalities(MI) and LMIs which are computationally efficient to solve. Moreover, it has

been shown that, based on the local linear approximation of the nonlinear models, it is

possible to find the minimum disturbance attenuation levels γ∗ and upper bounds ε∗ on the

singular parameter ε which guarantee the asymptotic stability of the filters. In addition,

examples have been presented to illustrate the approach.

Future efforts would concentrate in finding explicit form for the coordinate transformation

discussed in Section 3, and developing computationally efficient algorithms for solving the

HJIEs.
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CHAPTER 5

H2 FILTERING FOR NONLINEAR DESCRIPTOR SYSTEMS

In this chapter, we discuss the H2 or Kalman filtering problem for affine nonlinear de-

scriptor systems. The linear problem has been discussed in several references (Dai, 1989),

(Nikoukhah, 1999), (Nikoukhah, 1992), (Zhou, 2008), however, to the best of our knowl-

edge, the filtering problem for more general affine nonlinear descriptor systems has not been

discussed in any reference. Therefore, in this chapter we propose to discuss this problem

for both continuous-time and discrete-time systems. Two classes of filters will be presented;

namely, (i) singular type, and (ii) normal type filters. Moreover, H2 filtering techniques

are useful when the system noise and measurement noise are known to be approximately

Gaussian distributed, and are superior to H∞ techniques in such applications.

In addition, while the extended Kalman-filter has remained the most popular tool used in

this area, it still suffers from the problem of local linearization around the previous estimate,

and as such, the convergence of the estimates cannot be guaranteed either empirically or

theoretically. On the other hand, the result that we present in this chapter employ the full

nonlinear system dynamics, and proof of asymptotic convergence can be established. The

chapter is organized as follows. In Section 5.1, we present results for the continuous-time

problem, while in Section 5.3, we present corresponding results for the discrete-time problem.

Finally, in Section 5.4, we present a short conclusion.

5.1 H2 Filtering for Continuous-time Nonlinear Descriptor Systems

In this section, we discuss the filtering problem for continuous-time systems, while in the

next section, we discuss the corresponding results for discrete-time systems. We begin with

the problem definition.
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5.1.1 Problem Definition and Preliminaries

The general set-up for studying H2 filtering problems is shown in Fig. 5.1, where P is the

plant, while F is the filter. The noise signal w ∈ S is in general a bounded spectral signal

(e.g. a Gaussian white-noise signal), which belongs to the set S of bounded spectral signals,

while z̃ ∈ P is a bounded power signal or L2 signal, which belongs to the space of bounded

power signals. Thus, the induced norm from w to z̃ (the penalty variable to be defined later)

is the L2-norm of the interconnected system F ◦P, i.e.,

‖F ◦P‖L2

Δ
= sup0�=w∈S

‖z̃‖P
‖w‖S , (5.1)

and is defined as the H2-norm of the system for stable plant-filter pair F ◦ P, where the

operator ◦ implies composition of input-output maps. At the outset, we consider the following

affine nonlinear causal descriptor model of the plant which is defined on a manifold X ⊆ �n

with zero control input:

Pa
D :

⎧⎨⎩ Eẋ = f(x) + g1(x)w; x(t0) = x0

y = h2(x) + k21(x)w
(5.2)

where x ∈ X is the semistate vector; w ∈ W ⊂ �m is an unknown disturbance (or noise)

signal, which belongs to the set W of admissible exogenous inputs; y ∈ Y ⊂ �m is the

measured output (or observation) of the system, and belongs to Y , the set of admissible

measured-outputs.

The functions f : X → TX 1, g1 : X → Mn1×m(X ), where Mi×j is the ring of i× j smooth

matrices over X , h2 : X → �m, and k21 : X → Mm×m(X ) are real C∞ functions of x,

while E ∈ �n×n is a constant singular matrix. Furthermore, we assume without any loss of

generality that the system (5.2) has an isolated equilibrium-point at x = 0 such that f(0) = 0,

h2(0) = 0. We also assume that there exists at least one solution x(t, t0, Ex0, w) ∀t ∈ �
for the system for all admissible initial conditions Ex0, for all w ∈ W. Further, the initial

1For a manifold M , TM and T �M are the tangent and cotangent bundles of M .



158

F
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ẑ
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yz~
w

−

Figure 5.1 Set-up for H2 Filtering

condition Ex0 is said to be admissible, if the solution x(t) is unique, impulse-free and smooth

for all [t0,∞).

In addition, the following standing assumptions will be made on the system.

Assumption 5.1.1. Let x̄ ∈ O ⊂ X , A = ∂f
∂x
(x̄). Then, the system (5.2) is admissible

implies the following hold:

1. the system is locally regular at each x̄ ∈ O and hence locally solvable, i.e, det(sE−A) �≡
0;

2. the system is locally impulse-free at each x̄ ∈ O, i.e., deg(det(sE−A)) = rank(E) for

all x̄ ∈ O and al most all s ∈ C;

3. the system is locally asymptotically stable, i.e., (E,A) is Hurwitz at each x̄ ∈ O.

The standard H2 local filtering/state-estimation problem is defined as follows.

Definition 5.1.1. (Standard H2 Local State Estimation or Filtering Problem). Find a filter,

F, for estimating the state x(t) or a function of it, z = h1(x), from observations Yt
Δ
= {y(τ) :

τ ≤ t}, of y(τ) up to time t, to obtain the estimate

x̂(t) = F(Yt),

such that, the H2-norm from the input w to some suitable penalty function z̃ is locally

minimized for all admissible initial conditions Ex0 ∈ O ⊂ X . Moreover, if the filter solves

the problem for all admissible Ex0 ∈ X , we say the problem is solved globally.

We shall adopt the following definition of observability (Ozcaldiran, 1992).
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Definition 5.1.2. For the nonlinear system Pa
D, we say that it is locally weakly zero-input

observable, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0, t > t0

y(t;Ex1(t0−), w) ≡ y(t;Ex2(t0−), w) =⇒ Ex1(t0) = Ex2(t0); (5.3)

the system is said to be locally zero-input observable if

y(t;Ex1(t0−), w) ≡ y(t;Ex2(t0−), w) =⇒ x1(t0) = x2(t0); (5.4)

where y(., Exi(t0−), w), i = 1, 2 is the output of the system with the initial condition

Exi(t0−); and the system is said to be locally strongly zero-input observable if

y(t;Ex1(t0−), w) ≡ y(t;Ex2(t0−), w) =⇒ x1(t0−) = x2(t0−). (5.5)

Moreover, the system is said to be globally (weakly, strongly) zero-input observable, if it is

locally (weakly, strongly) zero-input observable at each x0 ∈ X or U = X .

In the sequel, we shall not distinguish between zero-input observability and strong zero-input

observability.

5.1.2 H2 Singular Filters

In this subsection, we discuss singular filters for the H2 state estimation problem defined in

the previous section. We then discuss normal filters in the next subsection. For this purpose,

we assume that the noise signal w ∈ W ⊂ S is a zero-mean Gaussian white-noise process,

i.e.,

E{w(t)} = 0, E{w(t)wT (τ)} = Wδ(t− τ).

We then consider the following class of singular filters for the system with the optimal noise
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level set at ŵ� = Ew = 0 in the usual Kalman-Luenberger type structure:

Fa
DS1

⎧⎨⎩ E ˙̂x = f(x̂) + L̂(x̂, y)(y − h2(x̂)); x̂(t0) = 0

z̃ = y − h2(x̂)
(5.6)

where x̂ ∈ X is the filter state, L̂ : X × Y → �n×m is the gain matrix of the filter, and

z̃ ∈ �m is the penalty variable or estimation error.

The problem can then be formulated as a dynamic optimization problem with the following

cost functional

min
L̂∈�n×m,w∈S,x0=0

Ĵ(L̂, w) = E

{
1

2

∫ ∞

t0

{‖z̃‖2W}dt
}

=
1

2

{‖Fa
S ◦Pa

D‖2H2

}
W

(5.7)

s.t. (5.6), and with w = 0, lim
t→∞

{x̂(t)− x(t)} = 0.

To solve the above problem, we form the Hamiltonian functionH : T �X×T �Y×W×�n×m →
�:

H(x̂, y, w, L̂, V̂ T
Ex̂, V̂

T
y ) = V̂Ex̂(Ex̂, y)[f(x̂) + L̂(x̂, y)(y − h2(x̂))] + V̂y(Ex̂, y)ẏ + (5.8)

1

2
‖z̃‖2W (5.9)

for some C1 function V̂ : X × Y → �, and where V̂Ex̂ is the row vector of first partial

derivatives of V̂ with respect to Ex̂.

Completing the squares now for L̂ in the above expression (5.9), we have

H(x̂, y, w, L̂, V̂ T
Ex̂, V̂

T
y ) = V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)ẏ +

1

2
‖L̂T (x̂, y)V̂ T

Ex̂(Ex̂, y) + (y − h2(x̂))‖2 −
1

2
V̂Ex̂(Ex̂, y)L̂(x̂, y)L̂T (x̂, y)V̂ T

Ex̂(Ex̂, y) +
1

2
‖z̃‖2(W−I).
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Thus, setting the optimal gain L̂�(x̂, y) as

V̂Ex̂(Ex̂, y)L̂�(x̂, y) = −(y − h2(x̂))
T , (5.10)

minimizes the Hamiltonian (5.9). Finally, setting

H(x̂, y, w, L̂, V̂ T
Ex̂, V̂

T
y ) = 0

results in the following Hamilton-Jacobi-Bellman equation (HJBE):

V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)ẏ − 1

2
V̂Ex̂(Ex̂, y)L̂(x̂, y)L̂T (x̂, y)V̂ T

Ex̂(Ex̂, y) +

1

2
(y − h2(x̂))

T (W − I)(y − h2(x̂)) = 0, V̂ (0, 0) = 0, (5.11)

or equivalently the HJBE

V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)ẏ+
1

2
(y−h2(x̂))

T (W − 2I)(y− h2(x̂)) = 0, V̂ (0, 0) = 0. (5.12)

But notice from (5.2), with the measurement noise set at zero,

ẏ = L̃f+gwh2,

where L̃ is the Lie-derivative operator (Sastry, 1999) in coordinates Ex. Moreover, under

certainty-equivalence and with ŵ� = E{w} = 0, we have

ẏ = L̃f(x̂)h2(x̂) = ∇Ex̂h2(x̂)f(x̂).

Substituting now the above expression in the HJBE (5.12), results in the following formal

form of the equation

V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)∇Ex̂h2(x̂)f(x̂) +
1

2
(y − h2(x̂))

T (W − 2I)(y − h2(x̂)) = 0,

V̂ (0, 0) = 0. (5.13)
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Consequently, we then have the following result.

Proposition 5.1.1. Consider the nonlinear system (5.2) and the H2 filtering problem for

this system. Suppose the plant Pa
D is locally asymptotically stable about the equilibrium-point

x = 0 and zero-input observable. Further, suppose there exist a C1 positive-semidefinite

function V̂ : N̂ × Υ̂ → �+ locally defined in a neighborhood N̂ × Υ̂ ⊂ X × Y of the origin

(ξ̂, y) = (0, 0), and a matrix function L̂ : N̂×Υ̂ → �n×m, satisfying the HJBE (5.13) together

with the side-condition (5.10). Then the filter Fa
DS1 solves the H2 filtering problem for the

system locally in N̂ .

Proof: The optimality of the filter gain L̂� has already been shown above. It remains to

prove asymptotic convergence of the estimation error vector. Accordingly, let V̂ ≥ 0 be a C1

solution of the HJBE (5.11) or equivalently (5.12). Then, differentiating this solution along

a trajectory of (5.6), with L̂ = L̂�, we get

˙̂
V = V̂Ex̂(Ex̂, y)[f(x̂) + L̂�(x̂, y)(y − h2(x̂))] + V̂y(Ex̂, y)ẏ

= −1

2
‖z‖2W ,

where the last equality follows from using the HJBE (5.12). Therefore, the filter dynamics is

stable, and V (Ex̂, y) is non-increasing along a trajectory of (5.6). Further, the condition that

˙̂
V (Ex̂(t), y(t)) ≡ 0 ∀t ≥ ts implies that z ≡ 0, which further implies that y = h2(x̂) ∀t ≥ ts.

By the zero-input observability of the system, this implies that x̂ = x ∀t ≥ ts. �

The result of the theorem can be specialized to the linear descriptor system

Pl
D :

⎧⎨⎩ Eẋ = Ax+B1w; Ex(t0) = Ex0

y = C2x+D21w
(5.14)

where E ∈ �n×n, A ∈ �n×n, B1 ∈ �n×m, C2 ∈ �m×n, D21 ∈ �m×r. Assuming without loss

of generality that W = I, we have the following result.

Corollary 5.1.1. Consider the linear descriptor system (5.14) and the H2 filtering problem

for this system. Suppose the plant Pl
D is locally asymptotically stable about the equilibrium-
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point x = 0 and observable. Suppose further, there exist symmetric positive-semidefinite

matrices P̂ ∈ �n×n, Q̂ ∈ �m×m, and a matrix L̂ ∈ �n×m, satisfying the linear matrix-

inequalities ⎡⎢⎢⎢⎣
ET P̂A + AT P̂E − CT

2 C2 CT
2 0

C2 −I Q̂

0 Q̂T 0

⎤⎥⎥⎥⎦ ≤ 0 (5.15)

⎡⎣ 0 1
2
(ET P̂ L̂− CT

2 )

1
2
(ET P̂ L̂− CT

2 )
T (1− δ1)I

⎤⎦ ≤ 0 (5.16)

for some number δ1 ≥ 1. Then the filter

Fl
DS1 :

⎧⎨⎩ E ˙̂x = Ax̂+ L̂(y − C2x̂); Ex̂(t0) = 0

ẑ = C2x̂
(5.17)

solves the H2 estimation problem for the system.

Proof: Take

V̂ =
1

2
(x̂TET P̂Ex̂+ yT Q̂y), P̂ > 0

and apply the result of the Proposition. �

Notice however, since the system is inherently constrained, the steady-state error of the

estimates may be improved by using a proportional-integral (PI) filter configuration (Gao,

2004), (Koenig, 1995). Thus, we consider the following class of filters:

Fa
DS2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E ˙̌x = f(x̌) + Ľ1(x̌, ξ, y)(y − h2(x̌)) + Ľ2(x̌, ξ, y)ξ

ξ̇ = y − h2(x̌)

ž = y − h2(x̌)

(5.18)

where x̌ ∈ X is the filter state, ξ ∈ �m×� is the integrator state, and Ľ1, Ľ2 : X×Y → �n×m

are the proportional and integral gain matrices of the filter respectively. Similarly, using

manipulations as in Proposition 5.1.1, we can arrive at the following result.
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Theorem 5.1.1. Consider the nonlinear system (5.2) and the H2 filtering problem for this

system. Suppose the plant Pa
D is locally asymptotically stable about the equilibrium-point

x = 0 and zero-input observable. Further, suppose there exists a C1 positive-semidefinite

function V̌ : Ň × Ξ̌× Υ̌ → �+ locally defined in a neighborhood Ň × Ξ̌× Υ̂ ⊂ X ×Y ×�×Y
of the origin (x̌, ξ, y) = (0, 0, 0), and matrix functions Ľ1, Ľ2 : Ň× Ξ̌× Υ̌ → �n×m, satisfying

the HJBE

V̌Ex̌(Ex̌, ξ, y)f(x̌) + V̌y(Ex̌, ξ, y)∇Ex̌h2(x̌)f(x̌) + V̌ξ(Ex̌, ξ, y)(y − h2(x̌))− ξT ξ+

1
2
(y − h2(x̌))

T (W − 2I)(y − h2(x̌)) = 0, V̌ (0, 0, 0) = 0. (5.19)

together with the side-conditions

V̌Ex̌(Ex̌, ξ, y)Ľ1(x̌, ξ, y) = −(y − h2(x̌))
T (5.20)

V̌Ex̌(Ex̌, ξ, y)Ľ2(x̌, ξ, y) = −ξT . (5.21)

Then the filter Fa
DS2 solves the H2 filtering problem for the system locally in Ň .

In the next section, we consider the design of normal filters for the system.

5.1.3 H2 Normal Filters

In this subsection, we discuss normal filters for the system (5.2). We shall consider the design

of both full-order and reduced-order filters. We start with the full-order filter first, and in

this regard, without any loss of generality, we can assume that E is of the form

E =

⎛⎝ Iq×q 0

0 0

⎞⎠ .

This follows from matrix theory and can easily be proven using the singular-value decompo-

sition (SVD) of E. It follows that, the system can be represented in the canonical form of a
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differential-algebraic system

P̄a
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x) + g11(x)w; x(t0) = x0

0 = f2(x) + g21(x)w

y = h2(x) + k21(x)w

(5.22)

where dim(x1) = q, f1(0) = 0, f2(0) = 0. Then, if we define

ẋ2 = f2(x) + g21(x)w,

where ẋ2 is a fictitious state vector, and dim(x2) = n−q, the system (5.22) can be represented

by a normal state-space system as

P̃a
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x) + g11(x)w; x1(t0) = x10

ẋ2 = f2(x) + g21(x)w; x2(t0) = x20

y = h2(x) + k21(x)w.

(5.23)

Now define the set

Ωo = {(x1, x2) ∈ X | ẋ2 ≡ 0}. (5.24)

Then, we have the following system equivalence

P̃a
D|Ωo = P̄a

D. (5.25)

Therefore, to estimate the states of the system (5.22), we need to stabilize the system (5.23)

about Ωo and then design a filter for the resulting system. For this purpose, we consider the

following class of filters with E{w} = 0:

Fa
DN3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̀x1 = f1(x̀) + L̀1(x̀, y)(y − h2(x̀))

˙̀x2 = f2(x̀) + g̃22(x)α2(x̀) + L̀2(x̀, y)(y − h2(x̀))

z̀ = y − h2(x̀),

(5.26)
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where x̀ ∈ X is the filter state, L̀1 : X × Y → �q×m, L̀2 : X × Y → �n−q×m are the

filter gain matrices, and g22 : X → M(n−q)×p is a gain matrix for the artificial control input

u = α2(x) ∈ �p required to stabilize the dynamics ẋ2 about Ωo. Accordingly, we make the

following assumption.

Assumption 5.1.2. The pair {f2, g22} is stabilizable, i.e., ∃ a control-Lyapunov-function

(CLF), V̄ > 0, such that V̄x2(x)(f2(x)− g22(x)g
T
22(x)V̄

T
x2
(x)) < 0.

Thus, if Assumption 5.1.2 holds, then we can set α2(x̀) = −1
ε
gT22(x̀)V̄

T
x̀2
(x̀), where ε > 0 is

small, a high-gain feedback (Young, 1977) to constrain the dynamics on Ωo as fast as possible.

Then, we proceed to design the gain matrices L̀1, L̀2 to estimate the states. Consequently,

we have the following result.

Proposition 5.1.2. Consider the nonlinear system (5.22) and the H2 estimation problem

for this system. Suppose the plant P̄a
D is locally asymptotically stable about the equilibrium-

point x = 0, is zero-input observable and satisfies Assumption 5.1.2. Further, suppose there

exists a C1 positive-semidefinite function V̀ : Ǹ × Ὺ → �+, locally defined in a neighborhood

Ǹ×Ὺ ⊂ X ×Y of the origin (x̀1, x̀2, y) = (0, 0, 0), and matrix functions L̀1 : Ǹ×Ὺ → �q×m,

L̀2 : Ǹ × Ὺ → �n−q×m, satisfying the HJBE:

V̀x̀1(x̀, y)f1(x̀) + V̀x̀2(x̀, y)f2(x̀) + V̀x̀2(x̀, y)g22(x̀)α2(x̀) + V̀y(x̀, y)∇Ex̀h2(x̀)f(x̀)+

1
2
(y − h2(x̀))

T (W − 4I)(y − h2(x̀)) = 0, V̀ (0, 0) = 0 (5.27)

together with the side-conditions

V̀x̀1(x̀, y)L̀1(x̀, y) = −(y − h2(x̀))
T (5.28)

V̀x̀2(x̀, y)L̀2(x̀, y) = −(y − h2(x̀))
T . (5.29)

Then, the filter Fa
DN3 solves the H2-filtering problem for the system locally in Ǹ .

Proof: Follows along same lines as Proposition 5.1.1.
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Remark 5.1.1. Notice the addition of the high-gain feedback u = α2(x̀), transforms the filter

Fa
DN3 to a singularly-perturbed system (Young, 1977) with a slow subsystem governed by the

dynamics ẋ1, and a fast subsystem governed by the x2-dynamics. This design philosophy

is not a coincidence, since descriptor systems are intimately related to singularly-perturbed

system. This also suggests an alternative approach to the filter design problem, by considering

a singularly-perturbed model of the system (5.22) as

P̃a
εD :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x) + g11(x)w; x(t0) = x0

εẋ2 = f2(x) + g21(x)w,

y = h2(x) + k21(x)w,

(5.30)

where ε > 0 is a small parameter, and designing a normal filter for this equivalent system

(Aliyu, 2011a). Notice in this case, as ε ↓ 0, the model (5.30) reduces to the original model

(5.22).

Remark 5.1.2. A common HJBE-CLF can also be utilized in the above design procedure.

This can be achieved optimally if we take

α2(x̀) = −1

ε
gT22(x̀)V̄

T
x̀2
(x̀, y),

V̄x̀1(x̀, y)L̀1(x̀, y) = −(y − h2(x̀))
T ,

V̄x̀2(x̀, y)L̀2(x̀, y) = −(y − h2(x̀))
T ,

where V̄ is a C1 solution of the following HJBE

V̄x̀1(x̀, y)f1(x̀) + V̄x̀2(x̀, y)f2(x̀)− 1
ε
V̄x̀2(x̀, y)g22(x̀)g

T
22(x̀)V̄

T
x̀2
(x̀, y)+

V̀y(x̀, y)∇Ex̀h2(x̀)f(x̀) +
1
2
(y − h2(x̀))

T (W − 4I)(y − h2(x̀)) = 0, V̄ (0, 0) = 0.

Next, we consider a reduced-order normal filter design. Accordingly, partition the state-

vector x comformably with rank(E) = q as x = (xT
1 xT

2 )
T with dim(x1) = q, dim(x2) = n−q
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and the state equations as

P̆a
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x1, x2) + g11(x1, x2)w; x1(t0) = x10

0 = f2(x1, x2) + g21(x1, x2)w; x2(t0) = x20

y = h2(x) + k21(x)w.

(5.31)

Then we make the following assumption.

Assumption 5.1.3. The system is in the standard-form, i.e., the Jacobian matrix f2,x2(x1, x2)

is nonsigular in an open neighborhood Ũ of (0, 0) and g21(0, 0) �= 0.

If Assumption 5.1.3 holds, then by the Implicit-function Theorem (Sastry, 1999), there exists

a unique C1 function φ : �q ×W → �n−q and a solution

x̄2 = φ(x1, w)

to equation (5.31b). Thus, the system can be locally represented in Ũ as the reduced-order

system

P̄a
rD :

⎧⎨⎩ ẋ1 = f1(x1, φ(x1, w)) + g11(x1, φ(x1, w))w; x1(t0) = x10

y = h2(x1, φ(x1, w)) + k21(x1, φ(x1, w))w.
(5.32)

We can then design a normal filter of the form

Fa
DrN4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̌x1 = f1(x̆1, φ(x̆1, 0)) + L̆(x̆1, φ(x̆1, 0), y)(y − h2(x̆1, φ(x̆1, 0)));

x̆1(t0) = E{x10}
z̆ = y − h2(x̆1, φ(x̆1, 0))

(5.33)

for the system, and consequently, we have the following result.

Theorem 5.1.2. Consider the nonlinear system (5.22) and the H2 filtering problem for

this system. Suppose for the plant P̄a
D is locally asymptotically stable about the equilibrium-

point x = 0, zero-input observable and Assumption 5.1.3 holds for the system. Further,

suppose there exists a C1 positive-semidefinite function V̆ : N̆ × Ῠ → �+, locally defined
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in a neighborhood N̆ × Ῠ ⊂ Ũ × Y of the origin (x̆1, y) = (0, 0), and a matrix function

L̆ : N̆ × Ῠ → �q×m, satisfying the HJBE:

V̆x̆1(x̆1, y)f1(x̆1, φ(x̆1, 0)) + V̆y(x̆1, y)∇Ex̆h2(x̆1, φ(x̆1, 0))f1(x̆1, φ(x̆1, 0))+

1
2
(y − h2(x̆1, φ(x̆1, 0)))

T (W − 2I)(y − h2(x̆1, φ(x̆1, 0))) = 0, V̆ (0, 0) = 0, (5.34)

together with the side-condition

V̆x̆1(x̆, y)L̆(x̆1, y) = −(y − h2(x̆1, φ(x̆1, 0)))
T . (5.35)

Then, the filter Fa
DrN4 solves the H2 filtering problem for the system locally in N̆ .

Proof: Follows along same lines as Proposition 5.1.1.

Similarly, we can specialize the result of Theorem 5.1.2 to the linear system (5.14). The

system can be rewritten in the form (5.22) as

Pl
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = A1x1 + A12x2 +B11w; x1(t0) = x10

0 = A21x1 + A2x2 +B21w; x2(t0) = x20

y = C21x1 + C22x2 +D21w.

(5.36)

Then, if A2 is nonsingular (Assumption 5.1.3) we can solve for x2 in equation (5.36(b)) to

get

x̄2 = −A−1
2 (A21x1 +B21w),

and the filter (5.33) takes the following form

Fl
DrN4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̆x1 = (A1 − A−1

2 A21)x̆1 + L̆[y − (C21 − C22A
−1
2 A21)x̆1];

x̆1(t0) = E{x10}
z̆ = y − (C21 − C22A

−1
2 A21)x̆1.

(5.37)

Then, we have the following corollary if we again assume that W = I without loss of

generality.
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Corollary 5.1.2. Consider the linear descriptor system (5.14) and the H2-filtering problem

for this system. Suppose the plant Pl
D is locally asymptotically stable about the equilibrium-

point x = 0, Assumption 5.1.3 holds and the plant is zero-input observable. Suppose further,

there exist symmetric positive-semidefinite matrices P̆ ∈ �q×q, Q̆ ∈ �m×m, and a matrix

L̆ ∈ �n×m, satisfying the LMIs:⎡⎢⎢⎢⎣
ÃT

1 P̆ + P̆ Ã1 − C̃T
2 C̃

T
2 C̃T

2 0

C̃2 −I Q̆

0 Q̆ 0

⎤⎥⎥⎥⎦ ≤ 0 (5.38)

⎡⎣ 0 1
2
(P̆ L̆− C̃T

2 )

1
2
(P̆ L̆− C̃T

2 )
T (1− δ3)I

⎤⎦ ≤ 0 (5.39)

for some δ3 ≥ 1, where Ã1 = (A1 − A−1
2 A21), C̃2 = (C21 − C22A

−1
2 A21). Then, the filter

(5.37) solves the H2-filtering problem for the system.

Proof Take

V̆ (x̆) =
1

2
(x̆T

1 P̆ x̆1 + yT Q̆y)

and apply the result of the Theorem. �

5.1.4 The General case

In this subsection, we consider the filtering problem for the more general class of affine

descriptor systems in which E = E(x) ∈ Mn×n(X ) is a matrix function of x, and can be

represented as

Pa
DG :

⎧⎨⎩ E(x)ẋ = f(x) + g1(x)w; x(t0) = x0

y = h2(x) + k21(x)w,
(5.40)

where minimum rank(E(x)) = q for all x ∈ X , E(0) = 0, and all the other variables and

functions have their previous meanings and dimensions. We also have the following modified

definition of regularity for the system (Zimmer, 1997).
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Definition 5.1.3. The system (5.40) is regular if and only if, there exists an embedded

submanifold (Boothby, 1975) N ⊂ X and a vector-field f# such that, every solution of

ẋ = f#(x), x ∈ N , is also a solution of (5.40), and vice-versa.

We first consider the design of a singular filter for the above system. Accordingly, consider

a filter of the form (5.6) for the system defined as

Fa
DS5

⎧⎨⎩ E(x
)ẋ
 = f(x
) + L
(x
, y)(y − h2(x

))

z
 = y − h2(x

),

(5.41)

where L
 ∈ �n×m is the gain of the filter. Suppose also the following assumption holds.

Assumption 5.1.4. There exists a vector-field e(x) = (e1(x), . . . , en(x))
T such that

E(x) =
∂e

∂x
(x), e(0) = 0.

Remark 5.1.3. Notice that, e(x) cannot in general be obtained by line-integration of the

rows of E(x).

Then we have the following result.

Theorem 5.1.3. Consider the nonlinear system (5.32) and the H2 state estimation prob-

lem for this system. Suppose for the plant Pa
DG is locally asymptotically stable about the

equilibrium-point x = 0, and zero-input observable. Further, suppose Assumption 2.4.1 holds,

there exists a C1 positive-semidefinite function V 
 : TN 
 × Υ
 → �+, locally defined in a

neighborhood TN 
 × Υ
 ⊂ TX × Y of the origin (e(x), y) = (0, 0), and a matrix function

L
 : N 
 ×Υ
 → �n×m, satisfying the HJBE:

V 

e(x�)(e(x


), y)f(x
) + V 

y (e(x


), y)∇e(x�)h2(x

)f(x
) +

1

2
(y − h2(x


))T (W − 2I)(y − h2(x

)) = 0, V 
(0, 0) = 0, (5.42)
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together with the side-conditions

V 

e(x�)(e(x


), y)L
(x
, y) = −(y − h2(x

))T . (5.43)

Then, the filter Fa
DS5 solves the H2 local filtering problem for the system in N 
.

Proof: Let V 
 ≥ 0 be a solution of the HJBE (5.34), and consider the time-derivative of

this function along a trajectory of (5.41)

V̇ 
 = V 

e(x�)(e(x


), y)E(x
)ẋ
 + V 

y (e(x


), y)ẏ

= V 

e(x�)(e(x


), y)[f(x
) + L
(x
, y)(y − h2(x

))] + V 


y (e(x

), y)ẏ

= −1

2
‖z
‖2W

where the last equality follows from using the HJBE (5.34). The rest of the proof then follows

along the same lines as Proposition 5.1.1. �

A normal filter for the system can also be designed. If rank(E(x)) = q is constant for

all x ∈ Υ̃ ⊂ X . Then, it can be shown (Zimmer, 1997) that, there exists a nonsingular

transformation T : Υ̃ → Mn×n(X ) such that

T (x)E(x) =

⎛⎝ E1(x)

0

⎞⎠ , T (x)f(x) =

⎛⎝ f̃1(x)

f̃2(x)

⎞⎠ ,

where E1 ∈ Mq×q(Υ̃) is nonsigular on Υ̃, and the system (5.40) can similarly be represented

in this coordinates as

P̃a
DG :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = E−1

1 (x)f̃1(x1, x2) + E−1
1 (x)g̃11(x1, x2)w; x1(t0) = x0

0 = f̃2(x1, x2) + g̃21(x1, x2)w; x2(t0) = x20

y = h2(x) + k21(x)w,

(5.44)

where

⎛⎝ g̃11(x)

g̃21(x)

⎞⎠ = T (x)g1(x). Then, a normal filter can be designed for the above system
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using the procedure outlined in Subsection 5.1.3 and Proposition 5.1.2. Similarly, a reduced-

order filter for the system can also be designed as in Theorem 5.1.2 if the equivalent of

Assumption 5.1.3 is satisfied for the system. This would also circumvent the problem of

satisfying Assumption 5.1.4.

In the next section, we consider an example.

5.1.5 Examples

Consider the following simple nonlinear differential-algebraic system

ẋ1 = −x3
1 + x2 + x2

1w0 (5.45)

0 = −x1 − x2 + sin(x1)w0 (5.46)

y = x1 + x2 + w, (5.47)

where w0 is a uniformly distributed noise process. We find the gain for the singular filter

Fa
DS1 presented in Subsection 2.2. It can be checked that the system is locally observable,

and the function V̂ (x̂) = 1
2
x̂2
1, solves the inequality form of the HJBE (5.12) for the system.

Subsequently, we calculate the gain of the filter as

L̂(x̀1, y) = −(y − x̂1 − x̂2)

x̂1

,

where L̂ is set equal zero if |x̂1| < ε (ε small) to avoid the singularity at x̂ = 0.

Figures 5.2 and 5.3 show the result of the simulation with the above filter. In Figure 5.2,

the noise variance was set to 0.2 while in Figure 5.3 it was set to 0.5. The result of the

simulations show good convergence with unknown system initial condition.

Similarly, we can determine the reduced-order filter gain (5.33) for the above system. Notice

that the system also satisfies Assumption 5.1.3, thus we can solve equation (5.47) for x2 to
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get x̄2 = −x1 + sin(x1)w0, and substituting in (5.45), we get the reduced system

ẋ1 = −x3
1 − x1 − sin(x1)w0 + x2

1w0

which is locally asymptotically stable about x = 0. Then, it can be checked that, the function

V̆ (x) = 1
2
x̆2
1 solves the HJBE (5.34), and consequently, we have the filter gain

L̆1(x̀1, y) = − y

x̆1

,

where again L̆(x̆1, y) is set equal to zero if |x1| < ε small. The result of the simulation with

this normal or reduced-order filter is very much the same as the singular filter shown above,

and hence it is omitted.

5.2 H2 Filtering for Discrete-time Descriptor Systems

In this section, we present the discrete-time counterpart H2 filtering results presented in

the previous section for affine nonlinear descriptor systems. We shall similarly present two

classes of filters, namely, (i) singular; and (ii) normal filters.

5.2.1 Problem Definition and Preliminaries

Again, the set-up for this case is shown in Fig. 5.4, where Pk is the plant, while Fk is the

filter. The noise signal w ∈ S ′ is in general a bounded spectral signal (e.g. a Gaussian

white-noise signal) which belongs to the set S ′ of bounded spectral signals, while z̃ ∈ P ′,

is a bounded power signal or �2 signal. Thus, the induced norm from w to z̃ (the penalty

variable to be defined later) is the �2-norm of the interconnected system Fk ◦Pk, where the

operator ◦ implies composition of input-output maps, i.e.,

‖Fk ◦Pk‖�2 Δ
= sup0�=w∈S′

‖z̃‖P ′

‖w‖S′
, (5.48)



176

P ′ Δ
= {w : w ∈ �∞, Rww(k), Sww(jω) exist for all k and all ω resp., ‖w‖P ′ < ∞},

S ′ Δ
= {w : w ∈ �∞, Rww(k), Sww(jω) exist for all k and all ω resp., ‖Sww(jω)‖∞ < ∞},

‖z‖2P ′
Δ
= lim

K→∞
1

2K

K∑
k=−K

‖zk‖2,

‖w‖S′ =
√

‖Sww(jω)‖∞ =
√

supw‖Sww(jω)‖,

and Rww, Sww(jω) are the autocorrelation and power spectral density matrices of w. Notice

also that, ‖(.)‖P ′ is a seminorm. In addition, if the plant is stable, we replace the induced

�∞-norm above by the equivalent H∞ subspace norms.

At the outset, we consider the following affine nonlinear causal descriptor model of the plant

which is defined on X ⊆ �n with zero control input:

Pad
D :

⎧⎨⎩ Exk+1 = f(xk) + g1(xk)wk; x(k0) = x0

yk = h2(xk) + k21(xk)wk,
(5.49)

where x ∈ X is the semistate vector; w ∈ W ⊂ �m is an unknown disturbance (or noise)

signal, which belongs to the set W of admissible exogenous inputs; y ∈ Y ⊂ �m is the

measured output (or observation) of the system, and belongs to Y , the set of admissible

measured-outputs.

The functions f : X → X , g1 : X → Mn×m(X ), where Mi×j is the ring of i × j smooth

matrices over X , h2 : X → �m, and k21 : X → Mm×m(X ) are real C∞ functions of

x, while E ∈ �n×n is a constant but singular matrix. Furthermore, we assume without

any loss of generality that the system (5.49) has an isolated equilibrium-point at x = 0

such that f(0) = 0, h2(0) = 0. We also assume that there exists at least one solution

x(k, k0, Ex0, w) ∀k ∈ Z for the system, for all admissible initial conditions Ex0, for all

w ∈ W. The initial condition Ex0 is said to be admissible if the solution xk is unique,

impulse-free and smooth for all k ∈ [k0,∞).

In addition, the following standing assumptions will be made on the system.
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Figure 5.4 Set-up for H2 Filtering

Assumption 5.2.1. Let A = ∂f
∂x
(x0), x0 ∈ O ⊂ X , then the system (5.49) is admissible

implies the following hold:

1. the system is locally regular at each point x0 ∈ O and hence solvable, i.e, det(zE−A) �≡
0 for all z ∈ C;

2. the system is locally impulse-free at each x0 ∈ O, i.e., deg(det(zE−A)) = rank(E) ∀z ∈
C;

3. the system is locally asymptotically stable, i.e., (E,A) is Hurwitz at x0 = 0.

The standard H2 local filtering/state-estimation problem is defined as follows.

Definition 5.2.1. (Standard H2 Local State Estimation or Filtering Problem). Find a filter,

F, for estimating the state x(t) or a function of it, zk = h1(xk), from observations Yk
Δ
=

{y(i) : i ≤ k}, of y(i) up to time k, to obtain the estimate

x̂k = F(Yk),

such that, the H2-norm from the input w to some suitable penalty function z̃ is locally

minimized for all admissible initial conditions Ex0 ∈ O ⊂ X . Moreover, if the filter solves

the problem for all admissible Ex0 ∈ X , we say the problem is solved globally.

We shall adopt the following definition of local zero-input observability which we coined from

(Ozcaldiran, 1992), (Vidyasagar, 1993).

Definition 5.2.2. For the nonlinear system Pda
D , we say that, it is locally weakly zero-input
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observable, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0, k > k0

y(k;Ex1(k0−), w) ≡ y(k;Ex2(k0−), w) =⇒ Ex1(k0) = Ex2(k0); (5.50)

the system is said to be locally zero-input observable if

y(k;Ex1(k0−), w) ≡ y(k;Ex2(k0−), w) =⇒ x1(k0) = x2(k0); (5.51)

where y(., Exi(k0−), w), i = 1, 2 is the output of the system with the initial condition

Exi(t0−); and the system is said to be locally strongly zero-input observable if

y(k;Ex1(k0−), w) ≡ y(k;Ex2(k0−), w) =⇒ x1(k0−) = x2(t0−). (5.52)

Moreover, the system is said to be globally (weakly, strongly) zero-input observable, if it is

locally (weakly, strongly)-observable at each x(k0) ∈ X or U = X .

In the sequel, we shall not distinguish between local observability and strong local observ-

ability.

5.2.2 Solution to the H2 Filtering Problem Using Singular Filters

In this section, we discuss singular filters for the H2 state estimation problem defined in the

previous section, and we discuss normal filters in the next subsection. For this purpose, we

assume that the noise signal w ∈ W ⊂ S ′ is a zero-mean Gaussian white-noise vector process

with

E{w(k)} = 0, E{w(k)wT (j)} = Wδ(k − j), i, j, k ∈ Z.

The system’s initial condition is also assumed to be Gaussian distributed random vector with

mean

E{x0} = x̄0.

We consider full-orderH2 singular filters for the system with the certainty-equivalent optimal



179

noise w� = Ew = 0 in the usual Kalman-Luenberger type structure:

Fad
DS1

⎧⎨⎩ Ex̂k+1 = f(x̂k) + L(x̂k, yk)(yk − h2(x̂k)), x̂(k0) = x̄0

z̃k = yk − h2(x̂k),
(5.53)

where x̂ ∈ X is the filter state and L̂ : X ×Y → �n×m is the gain matrix of the filter, z̃ ∈ �m

is the penalty variable or estimation error.

The problem can then be formulated as a dynamic optimization problem with the following

cost functional

min
L̂∈�n×m,w∈S′

J(L,w) = E

{
1

2

∞∑
k=k0

‖z̃k‖2W
}

=
1

2

{‖Fda
S ◦Pda

D ‖2H2

}
W
, (5.54)

s.t. (5.53), and with w = 0, lim
t→∞

{x̂− x} = 0;

To solve the above problem, we form the Hamiltonian function2 H : X ×Y ×�n×m×� → �
(Wang, 2008):

H(x̂, y, L, V ) = V (E(f(x̂) + L(x̂, y)(y − h2(x̂))), y)− V (Ex̂, yk−1) +
1

2
‖z̃‖2W (5.55)

for some C2 function V : X × Y → � and where x = xk, y = yk, z̃ = z̃k. Notice also here

that, we are only using yk−1 in the above expression (5.55) to distinguish between yk = y

and yk−1. Otherwise, (5.55) holds for all y and is smooth in all its arguments.

Then, the optimal gain L� can be obtained by minimizing H with respect to L in the above

expression (5.55), as

L� = argmin
L̂

H(x̂, y, L, V ). (5.56)

Because the Hamiltonian function (5.55) is not a linear or quadratic function of the gain L,

2Our definition is slightly different from Reference (Wang, 2008) in order to maintain the symmetry of
the Hamiltonian



180

only implicit solutions can be obtained by solving the equations

∂V (λ, y)

∂λ

∣∣∣∣
λ=λ�

= 0 (5.57)

for L�(x̂, y), where λ = E(f(x̂) + L(x̂, y)(y − h̃2(x̂))), ∂V/∂λ is the row vector of first-order

partial derivatives of V with respect to λ, and V solves the discrete-time Hamilton-Jacobi-

Bellman equation (DHJBE)

H(x̂, y, L�, V ) = 0, V (0, 0) = 0, (5.58)

with
∂2V

∂λ2

∣∣∣∣
λ=λ�

> 0.

Thus, the only way to obtain an explicit solution is to use an approximate scheme. Accord-

ingly, consider a second-order quadratic approximation of the Hamiltonian function (5.55)

about (Ef(x̂), y) and in the direction of the estimator state vector Ex̂, denoted by Ĥ:

Ĥ(x̂, y, L̂, V̂ ) = V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)[E(f(x̂) + L̂(x̂, y)(y − h2(x̂)))] +

1

2
(y − h2(x̂))

T L̂T (x̂, y)ET V̂Ex̂Ex̂(Ef(x̂), y)EL̂(x̂, y)(y − h2(x̂))−

V̂ (Ex̂, yk−1) +
1

2
‖z̃‖2W +O(‖x̂‖3), (5.59)

where V̂ , L̂, are the corresponding approximate functions with V̂ positive-definite, and V̂Ex̂Ex̂

is the Hessian matrix of V̂ with respect to Ex̂. Then, differentiating Ĥ(., ., L̂, .) with respect

to u = EL̂(x̂, y)(y − h2(x̂)) and applying the necessary optimality conditions, i.e., ∂Ĥ
∂u

= 0,

we get

EL̂�(x̂, y)(y − h2(x̂)) = −[V̂Ex̂Ex̂(Ef(x̂), y)]−1V̂ T
Ex̂(Ef(x̂), y). (5.60)

Finally, substituting the above expression for L̂� in (5.59) and setting

Ĥ(x̂, y, L̂�, V̂ ) = 0,
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results in the following DHJBE:

V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)Ef(x̂)− V̂ (Ex̂, yk−1)−
1
2
V̂Ex̂(Ef(x̂), y)[V̂Ex̂Ex̂(Ef(x̂), y)]−1V̂ T

Ex̂(Ef(x̂), y)+

1
2
(y − h2(x̂))

TW (y − h2(x̂)) = 0, V̂ (0, 0) = 0. (5.61)

We then have the following result.

Theorem 5.2.1. Consider the nonlinear system (5.49) and the H2 filtering problem for this

system. Suppose the plant Pad
D is locally asymptotically stable about the equilibrium-point

x = 0 and zero-input observable. Further, suppose there exist a C2 positive-definite function

V̂ : N̂×Υ̂ → �+ locally defined in a neighborhood N̂×Υ̂ ⊂ X×Y of the origin (x̂, y) = (0, 0),

and a matrix function L̂ : N̂ × Υ̂ → �n×m, satisfying the DHJBE (5.61) together with the

side-condition (5.60). Then, the filter Fad
DS1 solves the H2 filtering problem for the system

locally in N̂ .

Proof: The optimality of the filter gain L̂� has already been shown above. It remains to

prove asymptotic convergence of the estimation error vector. Accordingly, let V̂ (Ex̂, y) ≥ 0

be a C1 solution of the DHJBE (5.61). Then, taking the time variation of V̂ along a trajectory

of (5.53), with L̂ = L̂�, we get

V̂ (Ex̂k+1, yk) ≈ V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)[E(f(x̂) + L̂(x̂, y)(y − h2(x̂)))] +

1

2
(y − h2(x̂))

T L̂T (x̂, y)ET V̂Ex̂Ex̂(Ef(x̂), y)EL̂(x̂, y)(y − h2(x̂))

= V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)Ef(x̂)−
1

2
V̂Ex̂(Ef(x̂), y)[V̂Ex̂Ex̂(Ef(x̂), y)]−1V̂ T

Ex̂(Ef(x̂), y)

= V̂ (Ex̂, yk−1)− 1

2
(y − h2(x̂))

TW (y − h2(x̂))

where use has been made of the quadratic Taylor approximation above, and the last equality
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follows from using the DHJBE (5.61). Therefore,

V̂ (Ex̂k+1, yk)− V̂ (Ex̂, yk−1) = −1

2
‖z̃k‖2W

and by Lyapunov’s theorem, the filter dynamics is stable, i.e., V̂ (Ex̂, y) is non-increasing

along a trajectory of (5.53). Further, the condition that V̂ (Ex̂k+1, yk) ≡ V̂ (Ex̂, yk−1) ∀k ≥
ks, for some ks, implies that z̃k ≡ 0, which further implies that yk = h2(x̂k) ∀k ≥ ks. By the

zero-input observability of the system, this implies that x̂k = xk ∀k ≥ ks. �

The result of the theorem can be specialized to the linear descriptor system

Pdl
D :

⎧⎨⎩ Exk+1 = Axk +B1wk; Ex(k0) = Ex0

yk = C2xk +D21wk

(5.62)

where E ∈ �n×n, A ∈ �n×n, B1 ∈ �n×m, C2 ∈ �m×n, D21 ∈ �m×m. Assuming without loss

of generality that W = I, we have the following result.

Corollary 5.2.1. Consider the linear descriptor system (5.62) and the H2 filtering problem

for this system. Suppose the plant Pdl
D is locally asymptotically stable about the equilibrium-

point x = 0 and observable. Suppose further, there exist symmetric positive-semidefinite

matrices P̂ ∈ �n×n, Q̂, R̂ ∈ �m×m, and a matrix L̂ ∈ �n×m, satisfying the linear matrix-

inequalities (LMIs)

⎡⎢⎢⎢⎣
ATET P̂EA+ ET P̂E + 1

2
CT

2 C2 −1
2
CT

2 0

−1
2
C2 −1

2
(Q̂− R̂) 0

0 0 −1
2
Q̂

⎤⎥⎥⎥⎦ ≤ 0 (5.63)

⎡⎣ E(A− L̂C2)
1
2
EL̂

1
2
L̂TET −δ1I

⎤⎦ ≤ 0 (5.64)

for some number δ1 ≥ 0. Then the filter

Fdl
DS1 :

⎧⎨⎩ E ˙̂x = Ax̂+ L̂(y − C2x̂); Ex̂(k0) = Ex̄0

ẑ = C2x̂
(5.65)
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solves the H2 estimation problem for the system.

Proof: Take

V̂ (Ex̂, y) =
1

2
(x̂TET P̂Ex̂+ yT Q̂y), P̂ > 0

and apply the result of the Theorem. �

Notice that the DHJIE (5.61) is a second-order PDE, and hence there is an increased com-

putational burden in finding its solution. Thus, alternatively, the results of Proposition 5.2.1

can be rederived using a first-order Taylor-series approximation of the Hamiltonian (5.55),

which can be obtained from (5.59) by neglecting the quadratic term, as

Ĥ1(x̂, y, L̂, V̂ ) = V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)[E(f(x̂) + L̂(x̂, y)(y − h2(x̂)))]−
V̂ (Ex̂, yk−1) +

1

2
‖z̃‖2 +O(‖x̂‖2). (5.66)

Then, repeating the optimization as previously, we can arrive at the following first-order

counterpart of Proposition 5.2.1

Proposition 5.2.1. Consider the nonlinear system (5.49) and the H2 filtering problem for

this system. Suppose the plant Pad
D is locally asymptotically stable about the equilibrium-point

x = 0 and zero-input observable. Further, suppose there exist a C1 positive-semidefinite

function Ŷ : N̂1× Υ̂1 → �+ locally defined in a neighborhood N̂1× Υ̂1 ⊂ X ×Y of the origin

(x̂, y) = (0, 0), and a matrix function L̂ : N̆1×Ῠ1 → �n×m, satisfying the DHJBE (Lyapunov

equation)

Ŷ (Ef(x̂), y) + ŶEx̂(Ef(x̂), y)Ef(x̂)− Ŷ (Ex̂, yk−1) +

1

2
(y − h2(x̂))

T (W − 2I)(y − h2(x̂)) = 0, Ŷ (0, 0) = 0, (5.67)

together with the side-condition

ŶEx̂(Ef(x̂), y)EL̂�(x̂, y) = −(y − h2(x̂))
T . (5.68)

Then, the filter Fad
DS1 solves the H2 filtering problem for the system locally in N̂1.
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Proof: Proof follows along same lines as Theorem 5.2.1. �

In the next section, we consider the design of normal filters for the system.

5.2.3 Discrete-time H2 Normal Filters

In this subsection, we discuss normal filters for the system (5.49). We shall consider the

design of both full-order and reduced-order filters. We start with the full-order filter first,

and in this regard, without any loss of generality, we can assume that E is of the form

E =

⎛⎝ Iq×q 0

0 0

⎞⎠ .

This follows from matrix theory and can easily be proven using the singular-value decompo-

sition (SVD) of E. It follows that, the system can be represented in the canonical form of a

differential-algebraic system

P̄ad
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = f1(xk) + g11(xk)wk; x(k0) = x0

0 = f2(xk) + g21(xk)wk

y = h2(xk) + k21(xk)wk,

(5.69)

where dim(x1) = q, f1(0) = 0, f2(0) = 0. Then, if we define

x2,k+1 = f2(xk) + g21(xk)wk,

where x2,k+1 is a fictitious state vector, and dim(x2) = n − q, the system (5.69) can be

represented by a normal state-space system as

P̃ad
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = f1(xk) + g11(xk)wk; x1(k0) = x10

x2,k+1 = f2(xk) + g21(xk)wk; x2(k0) = x20

y = h2(xk) + k21(xk)wk.

(5.70)
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Now define the following set Ωo ⊂ X

Ωo = {(x1, x2) ∈ X | x2,k+1 ≡ 0}. (5.71)

Then, we have the following system equivalence

P̃ad
D |Ωo = P̄ad

D . (5.72)

Therefore, to estimate the states of the system (5.69), we need to stabilize the system (5.70)

about Ωo, and then design a filter for the resulting system. For this purpose, we consider

the following class of filters with ẁ� = E{w} = 0

Fad
DN3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̀1,k+1 = f1(x̀k) + L̀1(x̀k, yk)(yk − h2(x̀k))

x̀2,k+1 = f2(x̀k) + g22(xk)α2(x̀k) + L̀2(x̀k, yk)(yk − h2(x̀k))

z̀k = yk − h2(x̀k),

(5.73)

where x̀ ∈ X is the filter state, L̀1 : X × Y → �q×m, L̀2 : X × Y → �n−q×m are the

filter gain matrices, and g̃22 : X → M(n−q)×p is a gain matrix for the artificial control input

u = α2(x̀) ∈ �p required to stabilize the dynamics x2,k+1 about Ωo. Accordingly, we make

the following assumption.

Assumption 5.2.2. The pair {f2, g̃22} is locally stabilizable, i.e., ∃ a control law α2(x̀2) and

a Lyapunov-function (LF), V̄ > 0, such that V̄ (f2(x̀)−g̃22(x̀)α2(x̀))−V̄ (x̀) < 0 ∀x̀ ∈ Ǹ ⊂ X .

Thus, if Assumption 5.2.2 holds, then we can make α2 = α2(x̀, ε), where ε > 0 is small,

a high-gain feedback (Young, 1977) to constrain the dynamics on Ωo as fast as possible.

Then, we proceed to design the gain matrices L̀1, L̀2 to estimate the states using similar

approximations as in the previous section. Using the first-order Taylor approximation, we

have the following result.

Proposition 5.2.2. Consider the nonlinear system (5.69) and the H2 estimation problem for

this system. Suppose the plant P̄ad
D is locally asymptotically stable about the equilibrium-point

x = 0, and zero-input observable. Further, suppose there exist a C1 positive-semidefinite
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function V̀ : Ǹ × Ὺ → �+, locally defined in a neighborhood Ǹ × Ὺ ⊂ X × Y of the origin

(x̀1, x̀2, y) = (0, 0, 0), and matrix functions L̀1 : Ǹ × Ὺ → �q×m, L̀2 : Ǹ × Ὺ → �n−q×m,

satisfying the DHJBE:

V̀ (f1(x̀), f2(x̀), y)− V̀ (x̀1, x̀2, yk−1) + V̀x̀2(f1(x̀), f2(x̀), y)g22(x̀)α2(x̀, ε) +

1

2
(y − h2(x̀))

T (W − 4I)(y − h2(x̀)) = 0, V̀ (0, 0, 0) = 0, (5.74)

together with the side-conditions

V̀x̀1(f1(x̀), f2(x̀), y)L̀1(x̀1, x̀2, y) = −(y − h2(x̀))
T , (5.75)

V̀x̀2(f1(x̀), f2(x̀), y)L̀2(x̀1, x̀2, y) = −(y − h2(x̀))
T . (5.76)

Then, the filter Fda
DN3 solves the H2-filtering problem for the system locally in Ǹ .

Proof: Follows along same lines as Theorem 5.2.1.

A common DHJBE for both the stabilization and filter design can also be utilized in the

above design procedure. This can be achieved optimally if we take

α2(x̀, ε) = −1

ε
gT22(x̀)V̄

T
x̀2
(f1(x̀), f2(x̀), y),

V̄x̀1(f1(x̀), f2(x̀), y)L̀1(x̀, y) = −(y − h2(x̀))
T ,

V̄x̀2(f1(x̀), f2(x̀), y)L̀2(x̀, y) = −(y − h2(x̀))
T ,

where V̄ ≥ 0 is a C1 solution of the following DHJBE

V̄ (f1(x̀), f2(x̀), y)− 1

ε
V̄x̀2(f1(x̀), f2(x̀), y)g22(x̀)g

T
22(x̀)V̄

T
x̀2
(f1(x̀), f2(x̀), y)−

V̄ (x̀1, x̀2, yk−1) +
1

2
(y − h2(x̀))

T (W − 4I)(y − h2(x̀)) = 0, V̄ (0, 0, 0) = 0.

Next, we consider a reduced-order normal filter design. Accordingly, partition the state-

vector x comformably with rank(E) = q as x = (xT
1 xT

2 )
T with dim(x1) = q, dim(x2) = n−q
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and the state equations as

P̆ad
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = f1(x1,k, x2,k) + g11(x1,k, x2,k)wk; x1(k0) = x10

0 = f2(x1,k, x2,k) + g21(x1,k, x2,k)wk; x2(k0) = x20

yk = h2(xk) + k21(xk)wk.

(5.77)

Then we make the following assumption.

Assumption 5.2.3. The system is in the standard-form, i.e., the Jacobian matrix f2,x2(x1, x2)

is nonsigular in an open neighborhood Ũ of (0, 0) and g21(0, 0) �= 0.

If Assumption 5.2.3 holds, then by the Implicit-function Theorem (Sastry, 1999), there exists

a unique C1 function φ : �q ×W → �n−q and a solution

x̄2 = φ(x1, w)

to equation (5.77b). Thus, the system can be locally represented in Ũ as the reduced-order

system

P̄ad
rD :

⎧⎨⎩ x1,k+1 = f1(x1,k, φ(x1,k, wk)) + g11(x1,k, φ(x1,k, wk))wk; x1(k0) = x10

yk = h2(x1,k, φ(x1,k, wk)) + k21(x1,k, φ(x1,k, wk))wk.
(5.78)

We can then design a normal filter of the form

Fad
DrN4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̆1,k+1 = f1(x̆1,k, φ(x̆1,k, 0)) + L̆(x̆1,k, φ(x̆1,k, 0), yk)[y−

h2(x̆1,k, φ(x̆1,k, 0))]; x̆1(k0) = x̄10

z̆k = yk − h2(x̆1,k, φ(x̆1,k, 0))

(5.79)

for the system, and consequently, we have the following result.

Theorem 5.2.2. Consider the nonlinear system (5.69) and the H2 filtering problem for

this system. Suppose the plant P̄ad
D is locally asymptotically stable about the equilibrium-

point x = 0, zero-input observable and Assumption 5.2.3 holds for the system. Further,

suppose there exists a C1 positive-semidefinite function V̆ : N̆ × Ῠ → �+, locally defined
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in a neighborhood N̆ × Ῠ ⊂ Ũ × Y of the origin (x̆1, y) = (0, 0), and a matrix function

L̆ : N̆ × Ῠ → �q×m, satisfying the DHJBE:

V̆ (f1(x̆1, φ(x̆1, 0), y) + V̆x̆1(f1(x̆1, φ(x̆1, 0), y)f1(x̆1, φ(x̆1, 0))− V̆ (x̆1, yk−1) +

1

2
(y − h2(x̆1, φ(x̆1, 0)))

T (W − 2I)(y − h2(x̆1, φ(x̆1, 0))) = 0, V̆ (0, 0) = 0, (5.80)

together with the side-condition

V̆x̆1(f1(x̆1, φ(x̆1, 0), y)L̆(x̆1, y) = −(y − h2(x̆1, φ(x̆1, 0)))
T . (5.81)

Then, the filter Fad
DrN4 solves the H2 local filtering problem for the system in N̆ .

Proof: Follows along same lines as Theorem 5.2.2.

Similarly, we can specialize the result of Theorem 5.2.2 to the linear system (5.62). The

system can be rewritten in the form (5.69) as

Pld
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk+1 = A1x1,k + A12x2,k +B11wk; x1(k0) = x10

0 = A21x1,k + A2x2,k +B21wk; x2(k0) = x20

yk = C21x1,k + C22x2,k +D21wk.

(5.82)

Then, if A2 is nonsingular (Assumption 5.2.3) we can solve for x2 in equation (5.82(b)) to

get

x̄2 = −A−1
2 (A21x1 +B21w)

and the filter (5.79) takes the following form

Fld
DrN4

⎧⎨⎩ x̆1,k+1 = (A1 − A−1
2 A21)x̆1,k + L̆(yk − (C21 − C22A

−1
2 A21)x̆1,k); x̆1(k0) = x̄10

z̆k = yk − (C21 − C22A
−1
2 A21)x̆1,k.

(5.83)

Moreover, if we assume without loss of generality W = I, we have the following corollary.

Corollary 5.2.2. Consider the linear descriptor system (5.62) and the H2-filtering problem
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for this system. Suppose the plant Pld
D is locally asymptotically stable about the equilibrium-

point x = 0, Assumption 5.2.3 holds, and the plant is observable. Suppose further, there exist

symmetric positive-semidefinite matrices P̆ ∈ �q×q, Q̆ ∈ �m×m, and a matrix L̆ ∈ �n×m,

satisfying the LMIs: ⎡⎢⎢⎢⎣
3ÃT

1 P̆ Ã1 − P̆ − C̃T
2 C̃

T
2 C̃T

2 0

C̃2 Q̆− I 0

0 0 −Q̆

⎤⎥⎥⎥⎦ ≤ 0 (5.84)

⎡⎣ 0 1
2
(ÃT

1 P̆ L̆− C̃T
2 )

1
2
(ÃT

1 P̆ L̆− C̃T
2 )

T (1− δ3)I

⎤⎦ ≤ 0 (5.85)

for some number δ3 ≥ 1, where Ã1 = (A1 − A−1
2 A21), C̃2 = (C21 − C22A

−1
2 A21). Then, the

filter (5.83) solves the H2-filtering problem for the system.

Proof: Take

V̆ (x̆) =
1

2
(x̆T

1 P̆ x̆1 + yT Q̆y)

and apply the result of the Theorem. �

5.2.4 The General Discrete-time case

In this section, we consider the filtering problem for the more general class of affine descriptor

systems in which E = E(x) ∈ Mn×n(X ) is a matrix function of x, and can be represented

as

Pad
DG :

⎧⎨⎩ E(xk)xk+1 = f(xk) + g1(xk)wk; x(k0) = x0

yk = h2(xk) + k21(xk)wk

(5.86)

where minimum rank(E(x)) = q for all x ∈ X , E(0) = 0, and all the other variables and

functions have their previous meanings and dimensions.

We first consider the design of a singular filter for the above system. Accordingly, consider
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a filter of the form (5.53) for the system defined as

Fad
DS5

⎧⎨⎩ E(x̌k)x̌k+1 = f(x̌k) + Ľ(x̌k, yk)(yk − h2(x̌k))

žk = yk − h2(x̌k),
(5.87)

where Ľ ∈ �n×m is the gain of the filter. Suppose also the following assumption holds.

Assumption 5.2.4. There exists a vector-field e(x) = (e1(x), . . . , en(x))
T such that

E(x) =
∂e

∂x
(x), e(0) = 0.

Remark 5.2.1. Notice that, e(x) cannot in general be obtained by line-integration of the

rows of E(x).

Then we have the following result.

Theorem 5.2.3. Consider the nonlinear system (5.78) and the H2 state estimation prob-

lem for this system. Suppose for the plant Pad
DG is locally asymptotically stable about the

equilibrium-point x = 0, and zero-input observable. Further, suppose Assumption 5.2.4 holds,

there exists a C1 positive-semidefinite function Y̌ : Ň×Υ̌ → �+, locally defined in a neighbor-

hood Ň×Υ̌ ⊂ X×Y of the origin (e(x), y) = (0, 0), and a matrix function Ľ : Ň×Υ̌ → �n×m,

satisfying the DHJBE:

Y̌ (E(x̌)f(x̌), y) + Y̌e(x̌)(E(x)f(x̌), y)E(x̌)f(x̌)− Y̌ (e(x̌), yk−1) +

1

2
(y − h2(x̌))

T (W − 2I)(y − h2(x̌)) = 0, Y̌ (0, 0) = 0 (5.88)

together with the side-condition

Y̌e(x̌)(E(x̌)f(x̌), y)E(x̌)Ľ�(x̌, y) = −(y − h2(x̌))
T . (5.89)

Then, the filter Fad
DS5 solves the H2 local filtering problem for the system in Ň .

Proof: Let Y̌ ≥ 0 be a C1 solution of the DHJBE (5.80), and consider the time-variation
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of this function along a trajectory of (5.87) with Ľ(x̌, y) = Ľ�(x̌, y)

Y̌ (E(x̌)x̌k+1, y) ≈ Y̌ (E(x̌)f(x̌), y) + Y̌e(x̌)(E(x)f(x̌), y)E(x̌)f(x̌) +

Y̌e(x̌)(E(x̌)f(x̌), y)E(x̌)Ľ�(x̌, y)(y − h2(x̌))

= Y̌ (e(x̌), yk−1)− 1

2
‖ž‖2W ,

where in the above manipulations, we have used the first-order Taylor approximation, and

the last equality follows from the DHJBE (5.88). Thus, again by Lyapunov’s Theorem, the

estimator dynamics is stable. The rest of the proof then follows along the same lines as

Theorem 5.2.2. �

A normal filter for the system can also be designed. If rank(E(x)) = q is constant for

all x ∈ Υ̃ ⊂ X , then, it can be shown (Zimmer, 1997) that, there exists a nonsingular

transformation T : Υ̃ → Mn×n(X ) such that

T (x)E(x) =

⎛⎝ E1(x)

0

⎞⎠ , T (x)f(x) =

⎛⎝ f̃1(x)

f̃2(x)

⎞⎠ ,

where E1 ∈ Mq×q(Υ̃) is nonsigular on Υ̃. The system (5.86) can then be similarly represented

in this coordinates as

P̃a
DG :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = E−1

1 (xk)f̃1(x1,k, x2,k) + E−1
1 (xk)g̃11(x1,k, x2,k)wk; x1(k0) = x10

0 = f̃2(x1,k, x2,k) + g̃21(x1,k, x2,k)wk; x2(k0) = x20

yk = h2(xk) + k21(xk)wk,

(5.90)

where

⎛⎝ g̃11(x)

g̃21(x)

⎞⎠ = T (x)g1(x). A normal filter can now be designed for the above trans-

formed system using the procedure outlined in Subsection 5.2.3 and Proposition 5.2.2. Sim-

ilarly, a reduced-order filter for the system can also be designed as in Theorem 5.2.2 if the

equivalent of Assumption 5.2.2 is satisfied for the system. This would also circumvent the

problem of satisfying Assumption 5.2.4.
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5.2.5 Examples

Consider the following simple nonlinear differential-algebraic system:

x1,k+1 = x
1/3
1,k + x

1/5
2,k + sin(x1,k)w0,k (5.91)

0 = x1,k + x2,k (5.92)

yk = x1,k + x2,k + w0,k. (5.93)

where w0 is a zero-mean Gaussian white-noise process with unit variance. A singular filter

of the form Fa
DS1 (5.53) presented in Subsection 5.2.2 can be designed. It can be checked

that, the system is locally zero-input observable, and the function V̂ (x̂) = 1
2
(x̂2

1 + x̂2
2 + y2),

solves the DHJBE (5.67) for the system. Subsequently, we calculate the gain of the filter as

l̂1(x̂k, yk) = −(yk − x̂1,k − x̂2,k)

x̂
1/3
1,k + x̂

1/5
2,k

,

where l̂1 is set equal zero if |x̂1/3
1,k + x̂

1/5
2,k | < ε (ε small) to avoid a singularity. Thus, x1,k can

be estimated with the filter, while x2,k can be estimated from x̂2,k = −x̂1,k.

Similarly, a normal filter of the form (5.79) can be designed. It can be checked that, As-

sumption 5.2.3 is satisfied, and the function V̆ (x̆) = 1
2
(x̆2

1 + y2) solves the DHJBE (5.77) for

the system. Consequently, we can also calculate the filter gain as

l̆1(x̆k, yk) = −(yk − x̂1,k − x̆2,k)

x̆
1/3
1,k + x̆

1/5
1,k

and again l̆1 is set equal zero if |x̆1/3
1,k + x̆

1/5
2,k | < ε (ε small) to avoid the singularity.

5.3 Conclusion

In this Chapter, we have presented a solution to the H2 filtering problem for affine nonlinear

descriptor systems in both continuous-time and discrete-time. Two types of filters have been
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presented; namely, singular and normal filters. Reduced-order normal filters have also been

presented for the case of standard systems. Sufficient conditions for the solvability of the

problem using each type of filter are given in terms of HJBEs and DHJBEs, and the results

have also been specialized to linear systems, in which case the conditions reduce to a system

of LMIs which are computationally efficient to solve. The problem for a nonconstant singular

derivative matrix has also been discussed. Examples and simulation results have also been

presented to illustrate the approach.
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CHAPTER 6

H∞ FILTERING FOR DESCRIPTOR NONLINEAR SYSTEMS

In this chapter, we discuss the solution to the H∞ filtering problem for affine nonlinear

descriptor systems. The corresponding H2 solution has been discussed in Chapter 5. This

approach is useful when the disturbances/measurement noise in the system are known to be

Gaussian. However, in the presence of nonGaussian noise and possibly L2-bounded distur-

bances, the H∞ methods that we discuss in this chapter are more effective.

The chapter is organized as follows. In Section 2, we present a solution to the continuous-

time problem. Two classes of filters, namely, (i) singular; and (ii) normal filters, are similarly

considered. The general problem of a nonconstant derivative matrix is also considered.

Examples are then presented to demonstrate the approach. Then in Section 3, we present

the corresponding solution for discrete-time systems. Finally in Section 4, we give a short

conclusion.

6.1 H∞ Filtering for Continuous-time Systems

In this section, we present a solution to the continuous-time filtering problem using singular

and normal filters. We begin with the problem definition and other preliminaries.

6.1.1 Problem Definition and Preliminaries

The general set-up for studying H∞ filtering problems is shown in Fig. 6.1, where P is the

plant, while F is the filter. The noise signal w ∈ P is in general a bounded power signal

(or L2 signal) which belongs to the set P of bounded power signals, and similarly z̃ ∈ P, is

a bounded power signal. Thus, the induced norm from w to z̃ (the penalty variable to be
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defined later) is the H∞-norm (or L2-gain) of the interconnected system F ◦P, i.e.,

‖F ◦P‖H∞
Δ
= sup0�=w∈L2

‖z̃‖L2

‖w‖L2

. (6.1)

At the outset, we consider the following affine nonlinear causal descriptor model of the plant,

which is defined on a manifold X ⊆ �n with zero control input:

Pa
D :

⎧⎨⎩ Eẋ = f(x) + g1(x)w; x(t0) = x0

y = h2(x) + k21(x)w,
(6.2)

where x ∈ X is the semistate vector; w ∈ W ⊂ �r is an unknown disturbance (or noise)

signal, which belongs to the set W of admissible exogenous inputs; y ∈ Y ⊂ �m is the

measured output (or observation) of the system, and belongs to Y , the set of admissible

measured-outputs.

The functions f : X → TX 1, g1 : X → Mn1×r(X ), where Mi×j is the ring of i × j

smooth matrices over X , h2 : X → �m, and k21 : X → Mm×r(X ) are real C∞ functions

of x, while E ∈ �q×n is a constant but generally singular matrix. Furthermore, we assume

without any loss of generality that the system (6.2) has an isolated equilibrium-point at

x = 0 such that f(0) = 0, h2(0) = 0. We also assume that there exists at least one solution

x(t, t0, Ex0, w) ∀t ∈ � for the system for all admissible initial conditions Ex0, for all w ∈ W.

The initial condition Ex0 is said to be admissible if the solution x(t) is unique, impulse-free

and smooth for all [t0,∞). In addition, the following standing assumptions will be made on

the system.

For simplicity we also make the following assumptions on the plant.

Assumption 6.1.1. The system matrices are such that

k21(x)g
T
1 (x) = 0,

k21(x)k
T
21(x) = I.

1For a manifold M , TM and T �M are the tangent and cotangent bundles of M .



196

F
P+

ẑ

z

yz~
w

−

Figure 6.1 Set-up for H∞ Filtering

Assumption 6.1.2. Let x̄ ∈ O ⊂ X a neighborhood of x = 0, A = ∂f
∂x
(x̄). Then, the system

(6.2) is locally admissible, implies the following hold:

1. the system is locally regular at each x̄ ∈ O and hence locally solvable, i.e, det(sE−A) �≡
0 for all s ∈ C;

2. the system is locally impulse-free at each X̄ ∈ O, i.e., deg(det(sE − A)) = rank(E)

for all x̄ ∈ O and al most all s ∈ C;

3. the system is locally asymptotically stable, i.e., (E,A) is Hurwitz for all x̄ ∈ O.

The suboptimal H∞ local filtering/state-estimation problem is defined as follows.

Definition 6.1.1. (Suboptimal H∞ Local State Estimation or Filtering Problem). Find a

filter, F, for estimating the state x(t) or a function of it, z = h1(x), from observations

Yt
Δ
= {y(τ) : τ ≤ t} of y(τ) up to time t, to obtain the estimate

x̂(t) = F(Yt),

such that, the H∞-norm (or L2-gain) from the input w to some suitable penalty function z̃

is locally less or equal to some given desired number γ > 0 for all initial conditions Ex0 ∈
O ⊂ X . Moreover, if the filter solves the problem for all admissible Ex0 ∈ X , we say the

problem is solved globally.

We shall adopt the following definition of local zero-input observability (Ozcaldiran, 1992).

Definition 6.1.2. For the nonlinear system Pa
D, we say that it is locally weakly zero-input
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observable, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0, t > t0

y(t;Ex1(t0−), w) ≡ y(t;Ex2(t0−), w) =⇒ Ex1(t0) = Ex2(t0); (6.3)

the system is said to be locally zero-input observable if

y(t;Ex1(t0−), w) ≡ y(t;Ex2(t0−), w) =⇒ x1(t0) = x2(t0); (6.4)

where y(., Exi(t0−), w), i = 1, 2 is the output of the system with the initial condition

Exi(t0−); and the system is said to be locally strongly zero-input observable if

y(t;Ex1(t0−), w) ≡ y(t;Ex2(t0−), w) =⇒ x1(t0−) = x2(t0−). (6.5)

Moreover, the system is said to be globally (weakly, strongly) zer-input observable, if it is

locally (weakly, strongly) zero-input observable at each x0 ∈ X or U = X .

In the sequel, we shall not distinguish between observability and strong observability. More-

over, we shall also assume throughout that the noise signal w ∈ W ⊂ L2([t0,∞);�r).

6.1.2 H∞ Singular Filters

In this subsection, we discuss full-order H∞ singular filters for the system in the usual

Kalman-Luenberger type structure:

Fa
DS1

⎧⎨⎩ E ˙̂x = f(x̂) + g1(x̂)ŵ
� + L̂(x̂, y)(y − h2(x̂)− k21(x̂)ŵ

�)

z̃ = y − h2(x̂)
(6.6)

where x̂ ∈ X is the filter state, ŵ� is the worst-case estimated system noise (or certainty-

equivalent noise), L̂ : X × Y → �n×m is the gain matrix of the filter, z̃ ∈ �m is the penalty

variable, or innovation variable, or estimation error. The problem can then be formulated
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as a dynamic optimization problem (Basar, 1995) with the following cost functional

min
L̂∈�n×m

supw∈W Ĵ(L̂, w) =
1

2

∫ ∞

t0

(‖z̃(t)‖2 − γ2‖w(t)‖)dt, s.t. (6.6)

and with w = 0, lim
t→∞

{x̂(t)− x(t)} = 0. (6.7)

To solve the above problem, we form the Hamiltonian functionH : T �X×T �Y×W×�n×m →
�:

H(x̂, y, w, L̂, V̂ T
Ex̂, V̂

T
y ) = V̂Ex̂(Ex̂, y)[f(x̂) + g1(x̂)w + L̂(x̂, y)(y − h2(x̂)− k21(x̂)w) +

V̂y(Ex̂, y)ẏ +
1

2
(‖z̃‖2 − γ2‖w‖2) (6.8)

for some C1 function V̂ : X × Y → �, and where V̂Ex̂ is the row vector of first partial-

derivatives of V̂ with respect to Ex̂. Applying then the necessary condition for the worst-case

noise/disturbance, ∂H
∂w

∣∣
w=ŵ� = 0, we get

ŵ� =
1

γ2
[gT1 (x̂)− kT

21(x̂)L̂
T (x̂, y)]V̂ T

Ex̂(Ex̂, y),

and substituting ŵ� in (6.8), we get

H(x̂, y, ŵ�, L̂, V̂ T
Ex̂, V̂

T
y ) = V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)ẏ +

1

2γ2
V̂Ex̂(Ex̂, y)g1(x̂)g

T
1 (x̂)V̂

T
Ex̂(Ex̂, y) +

V̂Ex̂(Ex̂, y)L̂(x̂, y)(y − h2(x̂)) +

1

2γ2
V̂Ex̂(Ex̂, y)L̂(x̂, y)L̂T (x̂, y)V̂ T

Ex̂(Ex̂, y) +
1

2
‖z̃‖2.

Completing the squares now for L̂ in the above expression (6.8), we have

H(x̂, y, ŵ�, L̂, V̂ T
Ex̂, V̂

T
y ) = V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)ẏ +

1

2γ2
V̂Ex̂(Ex̂, y)g1(x̂)g

T
1 (x̂)V̂

T
Ex̂(Ex̂, y)

+
1

2γ2
‖L̂T (x̂, y)V̂ T

Ex̂(Ex̂, y) + γ2(y − h2(x̂))‖2 + (1− γ2)

2
‖z̃‖2.



199

Thus, setting the optimal gain L̂�(x̂, y) as

V̂Ex̂(Ex̂, y)L̂�(x̂, y) = −γ2(y − h2(x̂))
T , (6.9)

minimizes the Hamiltonian (6.8) and ensures that the saddle-point condition (Basar, 1995)

H(., ., ŵ�, L̂�, ., .) ≤ H(., ., ŵ�, L̂, ., .) (6.10)

is satisfied.

In addition, notice similarly as in Chapter 5, from (6.2) and with the measurement noise set

at zero,

ẏ = L̃f+gwh2,

where L̃ is the Lie-derivative operator (Sastry, 1999) in coordinates Ex. Moreover, under

certainty-equivalence and using the expression for ŵ� as defined above, we have

ẏ = L̃f(x̂)+g1(x̂)ŵ�h2(x̂) = ∇Ex̂h2(x̂)[f(x̂) +
1

γ2
g1(x̂)g

T
1 (x̂)V̂

T
Ex̂(Ex̂, y)].

Finally, setting

H(x̂, y, ŵ�, L̂�, V̂ T
Ex̂, V̂

T
y ) = 0

results in the following Hamilton-Jacobi-Isaac’s equation (HJIE):

V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)∇Ex̂h2(x̂)f(x̂)+

1
γ2 V̂y(Ex̂, y)∇Ex̂h2(x̂)g1(x̂)g

T
1 (x̂)V̂

T
Ex̂(Ex̂, y)+

1
2γ2 V̂Ex̂(Ex̂, y)g1(x̂)g

T
1 (x̂)V̂

T
Ex̂(Ex̂, y)+

(1−γ2)
2

(y − h2(x̂))
T (y − h2(x̂)) = 0, V̂ (0, 0) = 0. (6.11)

We then have the following result.

Proposition 6.1.1. Consider the nonlinear system (6.2) and the local H∞ filtering problem

for this system. Suppose the plant Pa
D satisfies Assumption 6.1.1, is locally asymptotically
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stable about the equilibrium-point x = 0, and zero-input observable. Further, suppose for

some γ > 0, there exist a C1 positive-semidefinite function V̂ : N̂ × Υ̂ → �+ locally defined

in a neighborhood N̂ × Υ̂ ⊂ X × Y of the origin (x̂, y) = (0, 0), and a matrix function

L̂ : N̂ × Υ̂ → �n×m, satisfying the HJIE (6.11) together with the side-condition (6.9). Then

the filter Fa
DS1 solves the local H∞ filtering problem for the system.

Proof: To complete the proof, we need to show that (ŵ�, L�) constitute a saddle-point

solution to the optimization problem (6.7), i.e,

H(., ., w, L̂�, ., .) ≤ H(., ., ŵ�, L̂�, ., .) ≤ H(., ., ŵ�, L̂, ., .) (6.12)

hold, and the L2-gain condition

‖z̃‖L2 ≤ γ2‖w‖L2 (6.13)

is satisfied with L = L̂�.

First, note from (6.8) and (6.11)

H(x̂, y, w, L̂�, V̂ T
x̂ , V̂ T

y ) =
{
V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)ẏ +

1

2γ2
V̂Ex̂(Ex̂, y)g1(x̂)g

T
1 (x̂)V̂

T
Ex̂(Ex̂, y) +

(1− γ2)

2
‖z̃‖2

}
−

γ2

2
‖w − ŵ�‖2

= H(x̂, y, ŵ�, L̂�, V̂ T
x̂ , V̂ T

y )− γ2

2
‖w − ŵ�‖2.

Therefore,

H(x̂, y, ŵ, L̂�, V̂ T
x̂ , V̂ T

y ) ≤ H(x̂, y, ŵ�, L̂�, V̂ T
x̂ , V̂ T

y ). (6.14)

Hence, combining (6.10) and (6.14), we have that the sadle-point conditions (6.12) are sat-

isfied.

Next, let V̂ ≥ 0 be a C1 solution of the HJIE (6.11). Then, differentiating this solution along
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a trajectory of (6.6), with L̂ = L̂�, we get

˙̂
V = V̂Ex̂(Ex̂, y)[f(x̂) + g1(x̂)w + L̂�(x̂, y)(y − h̃2(x̂))] + V̂y(Ex̂, y)ẏ

=
{
V̂Ex̂(Ex̂, y)f(x̂) + V̂y(Ex̂, y)ẏ +

1

2γ2
V̂Ex̂(Ex̂, y)g1(x̂)g

T
1 (x̂)V̂

T
Ex̂(Ex̂, y) +

(1− γ2)

2
‖z̃‖2

}
− γ2

2
‖w − ŵ�‖2 + γ2

2
‖w‖2 − 1

2
‖z̃‖2

≤ γ2

2
‖w‖2 − 1

2
‖z̃‖2,

where the last inequality follows from using the HJIE (6.11). Moreover, setting w = 0 in the

above inequality we get
˙̂
V ≤ −1

2
‖z̃‖2. Therefore, the filter dynamics is stable, and V̂ (Ex̂, y)

is non-increasing along a trajectory of (6.6). Further, the condition that
˙̂
V (Ex̂(t), y(t)) ≡

0 ∀t ≥ ts implies that z̃ ≡ 0, which further implies that y = h2(x̂) ∀t ≥ ts. By the zero-input

observability of the system, this implies that x̂ = x ∀t ≥ ts.

Finally, integrating the above inequality (6.15) from t = t0 to t = ∞, and since V̂ (Ex̂(∞), y(∞)) <

∞, we get that the L2-gain condition (6.13) is satisfied. �

The result of the theorem can be specialized to the linear descriptor system

Pl
D :

⎧⎨⎩ Eẋ = Ax+B1w; Ex(t0) = Ex0

y = C2x+D21w,
(6.15)

where E ∈ �n×n, A ∈ �n×n, B1 ∈ �n×r, C2 ∈ �m×n, D21 ∈ �m×r.

Corollary 6.1.1. Consider the linear descriptor system (6.15) and the H∞ filtering problem

for this system. Suppose the plant Pl
D is locally asymptotically stable about the equilibrium-

point x = 0 and observable. Suppose further, for some γ > 0, there exist symmetric positive-

semidefinite matrices P̂ ∈ �n×n, Q̂ ∈ �m×m, and a matrix L̂ ∈ �n×m, satisfying the LMIs⎡⎢⎢⎢⎢⎢⎢⎣
ET P̂A+ AT P̂E + (1− γ2)CT

2 C2 ET P̂B1 (1− γ2)CT
2 0

BT
1 P̂E −γ2I 0 0

(1− γ2)C2 0 −I Q̂

0 0 Q̂T 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (6.16)
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⎡⎣ 0 1
2
(ET P̂ L̂− γ2CT

2 )

1
2
(ET P̂ L̂− γ2CT

2 )
T (1− δ1)I

⎤⎦ ≤ 0 (6.17)

for some number δ1 > 1. Then the filter

Fl
DS1 :

⎧⎨⎩ E ˙̂x = (A + 1
γ2B1B

T
1 P̂E + 1

γ2 L̂L̂
T P̂E)x̂+ L̂(y − C2x̂); Ex̂(t0) = 0

ẑ = C2x̂
(6.18)

solves the H∞ estimation problem for the system.

Proof: Take V̂ = 1
2
(x̂TET P̂Ex+ yT Q̂y) and apply the result of the Proposition. �

Furthermore, to improve the steady-state estimation error, we propose in addition a proportional-

integral (PI) filter configuaration (Gao, 2004), (Koenig, 1995):

Fa
DS2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E ˙̌x = f(x̌) + g1(x̌)w̌
� + Ľ1(Ex̌, ξ, y)(y − h2(x̌)− k21(x̌)w̌

�)+

Ľ2(Ex̌, ξ, y)ξ, Ex̌(t0) = 0

ξ̇ = y − h2(x̌)

ž = y − h2(x̌)

(6.19)

where x̌ ∈ X is the filter state, ξ ∈ �m×� is the integrator state, and Ľ1, Ľ2 : X×Y → �n×m

are the proportional and integral gain matrices of the filter respectively. Similarly, using

manipulations as in Proposition 6.1.1, we can arrive at the following result.

Theorem 6.1.1. Consider the nonlinear system (6.2) and the local H∞ filtering problem

for this system. Suppose the plant Pa
D is locally asymptotically stable about the equilibrium-

point x = 0 and zero-input observable. Further, suppose for some γ > 0, there exist a

C1 positive-semidefinite function V̌ : Ň × Ξ̌ × Υ̌ → �+ locally defined in a neighborhood

Ň × Ξ̌ × Υ̂ ⊂ X × Y × � × Y of the origin (x̌, ξ, y) = (0, 0, 0), and matrix functions

Ľ1, Ľ2 : Ň × Ξ̌× Υ̌ → �n×m, satisfying the HJIE

V̌Ex̌(Ex̌, ξ, y)f(x̌) + V̌y(Ex̌, ξ, y)∇Ex̌h2(x̌)f(x̌)+

1
γ2 V̌y(Ex̌, ξ, y)∇Ex̌h2(x̌)g1(x̌)g

T
1 (x̌)V̌

T
Ex̌(Ex̌, y))+
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1
2γ2 V̌Ex̌(Ex̌, ξ, y)g1(x̌)g

T
1 (x̌)V̌

T
Ex̌(Ex̌, ξ, y)+

V̌ξ(Ex̌, ξ, y)(y − h2(x̂))− ξT ξ+

(1−γ2)
2

(y − h2(x̌))
T (y − h2(x̌)) = 0, V̌ (0, 0, 0) = 0, (6.20)

together with the side-conditions

V̌Ex̌(Ex̌, ξ, y)Ľ1(Ex̌, ξ, y) = −γ2(y − h2(x̌))
T , (6.21)

V̌Ex̌(Ex̌, ξ, y)Ľ2(Ex̌, ξ, y) = −ξT . (6.22)

Then, the filter Fa
DS2 solves the H∞ local filtering problem for the system.

In the next section, we consider the design of normal filters for the system.

6.1.3 H∞ Normal Filters

In this subsection, we discuss normal filters for the system (6.2). We shall consider the design

of both full-order and reduced-order filters. We start with the full-order filter first, and in

this regard, without any loss of generality, we can assume that E is of the form

E =

⎛⎝ Iq×q 0

0 0

⎞⎠ .

This follows from matrix theory and can easily be proven using the singular-value decompo-

sition (SVD) of E. It follows that, the system can be represented in the canonical form of a

differential-algebraic system

P̄a
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x) + g11(x)w; x(t0) = x0

0 = f2(x) + g21(x)w

y = h2(x) + k21(x)w,

(6.23)
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where dim(x1) = q, f1(0) = 0, f2(0) = 0. Then, if we define

ẋ2 = f2(x) + g21(x)w,

where ẋ2 is a fictitious state vector, and dim(x2) = n−q, the system (6.23) can be represented

by a normal state-space system as

P̃a
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x) + g11(x)w; x1(t0) = x10

ẋ2 = f2(x) + g21(x)w; x2(t0) = x20

y = h2(x) + k21(x)w.

(6.24)

Now define the set

Ωo = {(x1, x2) ∈ X | ẋ2 = 0}. (6.25)

Then, we have the following system equivalence

P̃a
D|Ωo = P̄a

D. (6.26)

Therefore, to estimate the states of the system (6.23), we need to stabilize the system (6.24)

about Ωo and then design a filter for the resulting system. For this purpose, we consider the

following class of filters

Fa
DN3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̀x1 = f1(x̀) + g11(x̀)ẁ

� + L̀1(x̀, y)[y − h2(x̀)− k21(x̀)ẁ
�]

˙̀x2 = f2(x̀) + g21(x̀)ẁ
� + g22(x)α2(x̀) + L̀2(x̀, y)[y − h2(x̀)− k21(x̀)ẁ

�]

z̀ = y − h2(x̀),

(6.27)

where x̀ ∈ X is the filter state, ẁ� is the estimated worst-case system noise, L̀1 : X × Y →
�q×m, L̀2 : X × Y → �n−q×m are the filter gain matrices, and g22 : X → M(n−q)×p is a gain

matrix for the artificial control input u = α2(x) ∈ �p required to stabilize the dynamics ẋ2

about Ωo. Accordingly, we make the following assumption.

Assumption 6.1.3. The pair {f2, g22} is stabilizable, i.e., ∃ a control-Lyapunov-function

(CLF), V̄ > 0, such that V̄x2(x)(f2(x)− g22(x)g
T
22(x)V̄

T
x2
(x)) < 0.
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Similarly, for simplicity in the derivation of the results, we also make the following assumption

on the plant P̄a
D.

Assumption 6.1.4. The system matrices are such that

k21(x)[g
T
11(x) gT21(x)] = 0,

k21(x)k
T
21(x) = I.

Thus, if Assumption 6.1.3 holds, then we can set α2(x̀) = −1
ε
gT22(x̀)V̄

T
x̀2
(x̀), where ε > 0 is

small, a high-gain feedback (Young, 1977) to constrain the dynamics on Ωo as fast as possible.

Then we proceed to design the gain matrices L̀1, L̀2 to estimate the states. Moreover, a

common HJI-CLF can also be utilized in the above design procedure for both the stabilization

and the filtering. Consequently, we have the following result.

Proposition 6.1.2. Consider the nonlinear system (6.23) and the local H∞ filtering problem

for this system. Suppose the plant P̄a
D satisfies Assumptions 6.1.3, 6.1.4, is locally asymptot-

ically stable about the equilibrium-point x = 0, and zero-input observable. Further, suppose

for some γ > 0, there exist a C1 positive-semidefinite function V̀ : Ǹ × Ὺ → �+, locally

defined in a neighborhood Ǹ × Ὺ ⊂ X × Y of the origin (x̀1, x̀2, y) = (0, 0, 0), and matrix

functions L̀1 : Ǹ × Ὺ → �q×m, L̀2 : Ǹ × Ὺ → �n−q×m, satisfying the HJIE:

V̀x̀1(x̀, y)f1(x̀) + V̀x̀2(x̀, y)f2(x̀) + V̀y(x̀, y)∇x̀1h2(x̀)f1(x̀) +

1
γ2 V̀y(x̀, y)∇x̀1h2(x̀)[g11(x̀)g

T
11(x̀)V̀

T
x̀1
(x̀, y) + g11(x̀)g

T
21(x̀)V̀

T
x̀2
(x̀, y)]+

1
2γ2 V̀x̀1(x̀, y)g11(x̀)g

T
11(x̀)V̀

T
x̀1
(x̀, y) + 1

γ2 V̀x̀1(x̀, y)g11(x̀)g
T
21(x̀)V̀

T
x̀2
(x̀, y)+

1
2γ2 V̀x̀2(x̀, y)g21(x̀)g

T
21(x̀)V̄

T
x̀2
(x̀, y)− 1

ε
V̀x̀2(x̀, y)g22(x̀)g

T
22(x̀)V̀

T
x̀2
(x̀, y)+

(1−γ2)
2

(y − h2(x̀))
T (y − h2(x̀)) = 0, V̀ (0, 0) = 0, (6.28)

together with the side-conditions

V̀x̀1(x̀, y)L̀1(x̀, y) + V̀x̀2(x̀, y)L̀2(x̀, y) = −γ2(y − h2(x̀))
T . (6.29)
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Then, the filter Fa
DN3 solves the local H∞-filtering problem for the system.

Proof: Follows along same lines as Proposition 6.1.1.

Remark 6.1.1. Notice the addition of the high-gain feedback u = α2(x̀), transforms the

filter Fa
DN3 to a singularly-perturbed system (Young, 1977) with a slow subsystem governed

by the dynamics ẋ1, and a fast subsystem governed by the x2-dynamics. This also suggests

an alternative approach to the filter design problem, by considering a singularly-perturbed

model of the system (6.23) as

P̃a
εD :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x) + g11(x)w; x(t0) = x0

εẋ2 = f2(x) + g21(x)w,

y = h2(x) + k21(x)w,

(6.30)

where ε > 0 is a small parameter, and designing a normal filter for this equivalent system

(Aliyu, 2011b). Notice in this case, as ε → 0, the model (6.30) reduces to the original model

(6.23).

Similarly, a normal PI-filter for the system (6.23) can also be designed. However, next

we consider a reduced-order normal filter design. Accordingly, partition the state-vector x

comformably with rank(E) = q as x = (xT
1 xT

2 )
T with dim(x1) = q, dim(x2) = n − q and

the state equations as

P̆a
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = f1(x1, x2) + g11(x1, x2)w; x1(t0) = x10

0 = f2(x1, x2) + g21(x1, x2)w; x2(t0) = x20

y = h2(x) + k21(x)w.

(6.31)

Then we make the following assumption.

Assumption 6.1.5. The system is in the standard-form, i.e., the Jacobian matrix f2,x2(x1, x2)

is nonsigular in an open neighborhood Ũ of (0, 0) and g21(0, 0) �= 0.

If Assumption 6.1.5 holds, then by the Implicit-function Theorem (Sastry, 1999), there exists
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a unique C1 function φ : �q ×W → �n−q and a solution

x̄2 = φ(x1, w)

to equation (6.31b). Therefore, the system can be locally reprsented in Ũ as the reduced-

order system

P̄a
rD :

⎧⎨⎩ ẋ1 = f1(x1, φ(x1, w)) + g11(x1, φ(x1, w))w; x1(t0) = x10

y = h2(x1, φ(x1, w)) + k21(x1, φ(x1, w))w.
(6.32)

We can then design a normal filter of the form

Fa
DrN4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̌x1 = f1(x̆1, φ(x̆1, w̆

�)) + g11(x̆1, x̆2)w̆
� + L̆(x̆1, φ(x̆1, w̆

�), y)[y−
h2(x̆1, φ(x̆1, w̆

�))− k21(x̆1, φ(x̆1, w̆
�))]; x̆1(t0) = 0

z̆ = y − h2(x̆1, φ(x̆1, w̆
�))

(6.33)

for the system, and consequently, we have the following result.

Theorem 6.1.2. Consider the nonlinear system (6.23) and the H∞ filtering problem for this

system. Suppose the plant P̄a
D satisfies Assumptions 6.1.3, 6.1.5, is locally asymptotically

stable about the equilibrium-point x = 0, and zero-input observable. Further, suppose for

some γ > 0, there exists a C1 positive-semidefinite function V̆ : N̆× Ῠ → �+, locally defined

in a neighborhood N̆ × Ῠ ⊂ Ũ × Y of the origin (x̆1, y) = (0, 0), and a matrix function

L̆ : N̆ × Ῠ → �q×m, satisfying the HJIE:

V̆x̆1(x̆1, y)f1(x̆1, ϕ(x̆1, w̆
�)) + V̀y(x̀, y)∇x̀1h2(x̆1, ϕ(x̆1, w̆

�))f1(x̆1, ϕ(x̆1, w̆
�))+

1
2γ2 V̆x̆1(x̆1, y)g11(x̆1, ϕ(x̆1, w̆

�))gT11(x̆1, ϕ(x̆1, w̆
�)V̆ T

x̆1
(x̆1, y)+

1
γ2 V̆y(x̀, y)∇x̀1h2(x̆1, ϕ(x̆1, w̆

�))g11(x̆1, ϕ(x̆1, w̆
�)))gT11(x̆1, ϕ(x̆1, w̆

�))V̆ T
x̆1
(x̆1, y)+

(1−γ2)
2

(y − h2(x̆1, ϕ(x̆1, w̆
�)))T (y − h2(x̆1, ϕ(x̆1, w̆

�))) = 0, V̆ (0, 0) = 0, (6.34)

together with the side-conditions

w̆� =
1

γ2
[gT11(x̆1, ϕ(x̆1, w̆

�))− kT
21(x̆1, ϕ(x̆1, w̆

�))L̆T (x̆1, ϕ(x̆1, w̆
�)]V̆ T

x̆1
(x̆1, y),



208

V̆x̆1(x̆1, y)L̆(x̆1, y) = −γ2(y − h2(x̆1, ϕ(x̆1, w̆
�))T . (6.35)

Then, the filter Fa
DrN4 solves the local H∞-filtering problem for the system.

Proof: Follows along same lines as Proposition 6.1.1.

Remark 6.1.2. Notice in the above Theorem 6.1.2, w̆� is given implicitly, and so is the

HJIE (6.34) given in terms of w̆�. Thus, we can only find an approximate solution to the

filtering problem.

Similarly, we can specialize the result of Theorem 6.1.2 to the linear system (6.15). The

system can be rewritten in the form (6.23) as

Pl
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = A1x1 + A12x2 +B11w; x1(t0) = x10

0 = A21x1 + A2x2 +B21w; x2(t0) = x20

y = C21x1 + C22x2 +D21w

(6.36)

Then, if A2 is nonsingular, (Assumption 6.1.5) we can solve for x2 in equation (6.36(b)) to

get

x̄2 = −A−1
2 (A21x1 +B21w),

and the filter (6.33) takes the following form

Fl
DrN4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̆x1 = (A1 −A12A

−1
2 A21)x̆1 + (B11 − A12A

−1
2 B21)w̆

�+

L̆[y − (C21 − C22A
−1
2 A21)x̆1 −D21w̆

�]; x̆1(t0) = 0

z̆ = y − (C21 − C22A
−1
2 A21)x̆1.

(6.37)

Then, we have the following corollary.

Corollary 6.1.2. Consider the linear descriptor system (6.15) and the H∞-filtering problem

for this system. Suppose the plant Pl
D is locally asymptotically stable about the equilibrium-

point x = 0, Assumption 6.1.5 holds and the plant is observable. Further, suppose for some

γ > 0, there exist symmetric positive-semidefinite matrices P̆ ∈ �q×q, Q̆ ∈ �m×m, and a
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matrix L̆ ∈ �n×m, satisfying the LMIs:⎡⎢⎢⎢⎢⎢⎢⎣
ĂT

1 P̆ + P̆ Ă1 + (1− γ2)C̆T
2 C̆

T
2 P̆ B̆1 γ2C̆T

2 0

B̆T
1 P̆ −γ2I 0 0

γ2C̆2 0 −I Q̆

0 0 Q̆ 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (6.38)

⎡⎣ 0 1
2
(P̆ L̆− γ2C̆T

2 )

1
2
(P̆ L̆− γ2C̆T

2 )
T (1− δ3)I

⎤⎦ ≤ 0 (6.39)

for some δ3 ≥ 1, where Ă1 = (A1 − A12A
−1
2 A21), B̆1 = (B11 − A12A

−1
2 B21), C̆2 = (C21 −

C22A
−1
2 A21), and w̆� = 1

γ2 (B̆
T
1 − DT

12L̆
T )P̆ . Then the filter (6.37) solves the H∞-filtering

problem for the system.

Proof TakeV̆ (x̆) = 1
2
(x̆T

1 P̆ x̆1 + yT Q̆y) and apply the result of the Theorem. �

In the next section, we consider a simple example due to the difficulty of solving the HJIE.

6.2 Examples

In this section, we consider a few simple examples due to space limitation.

Example 6.2.1. Consider the following example of a nonlinear voltage controlled capacitor

(Example III-2, (Newcomb, 1981b)) with C = 1F :

ẋ1 = −x3

0 = −x1 − x2 + w

0 = −x1 + 3x3 + x3
3

y = x2.
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Eliminating the second equation, the above system can be represented as

ẋ1 = −x3

0 = −x1 + 3x3 + x3
3

y = −x1 + w.

It can then be checked that for γ = 1, the function V̂ (x̂) = 1
2
x̂2
1 solves the inequality form

of the HJIE (6.11), where the right-hand-side the HJIE reduces to V̂Ex̂(Ex̂)f(x̂) = −x̂1x̂3 =

−3x̂2
3 − x̂4

3 ≤ 0. Hence we can calculate the gain of the singular filter Fa
DS1 as l̂1 = − (y+x̂1)

x̂1
.

Example 6.2.2. Consider now a modified version of the voltage controlled capacitor of

Example 6.2.1:

ẋ1 = −x3
1 + x2 (6.40)

0 = −x1 − x2 (6.41)

y = 2x1 + x2 + w (6.42)

We find the gain for the singular filter Fa
DS1 presented in subsection 6.1.2. It can be checked

that the system is locally observable, and the function V̂ (x̂) = 1
2
x̂2
1, solves the inequality form

of the HJIE (6.11) for the system. Then, we calculate the gain of the filter as

L̂(x̂, y) = −(y − 2x̂1 − x̂2)

x̂1
,

where L̂ is set equal zero if |x̂1| < ε (ε small) to avoid the singularity at x̂1 = 0.

Figures 6.2 and 6.3 show the result of the simulation with the above filter. In Figure 6.2,

the noise is a uniformly distributed noise with variance of 0.2, while in Figure 6.3 we have

w(t) = e−0.2t sin(0.5πt) is an L2-bounded disturbance. The result of the simulations show

good convergence with unknown system initial conditions.

Similarly, we can determine the reduced-order filter gain (6.35) for the above system. Notice

that the system also satisfies Assumption 6.1.5, thus we can solve equation (6.41) for x2 to



211

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

st
at

e 
x1

Hinf Filter Estimates

0 2 4 6 8 10

−8

−6

−4

−2

0

2

4

6

8

Time

Hinf Estimation Error

Figure 6.2 H∞ singular filter performance with unknown initial condition and uniformly
distributed noise with variance 0.2
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Figure 6.3 H∞ singular filter performance with unknown initial condition and L2-bounded
disturbance
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get x̄2 = −x1, and substituting in (6.40), we get the reduced system

ẋ1 = −x3
1 − x1

which is locally asymptotically stable about x = 0. Then, it can be checked that, the function

V̆ (x) = 1
2
x̆2
1 solves the HJIE (6.34), and consequently, we have the filter gain

L̆(x̆1, y) = −y − x̆1

x̆1

,

where again L̆(x̆1, y) is set equal to zero if |x̆1| < ε small. The result of the simulation is the

same as for the singular filter above.

6.3 H∞ Filtering for Discrete-time Systems

In this section, we present the counterpart H∞ filtering results for discrete-time nonlinear

descriptor systems. We similarly present solutions using singular and normal filters, and

examples are also presented to demonstrate the results. We begin with the problem definition

and other preliminaries.

6.3.1 Problem Definition and Preliminaries

The general set-up for studying H∞ filtering problems is shown in Fig. 6.4, where Pk is the

plant, while Fk is the filter. The noise signal w ∈ S ′ is in general a bounded power signal

(e.g. an �2 signal) which belongs to the set P ′ of bounded power signals, and z̃ ∈ P ′, is also

a bounded power signal. Thus, the induced norm from w to z̃ (the penalty variable to be

defined later) is the �∞-norm of the interconnected system Fk ◦ Pk (where the operator “◦”
implies composition of input-output maps), i.e.,

‖Fk ◦Pk‖�∞ Δ
= sup0�=w∈P ′

‖z̃‖P ′

‖w‖P ′
, (6.43)
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ẑ
k

k

wPk k

Figure 6.4 Set-up for Discrete-time H∞ Filtering

P ′ Δ
= {w : w ∈ �∞, Rww(k), Sww(jω) exist for all k and all ω resp., ‖w‖P ′ < ∞}

‖z‖2P ′
Δ
= lim

K→∞
1

2K

K∑
k=−K

‖zk‖2,

and Rww, Sww(jω) are the autocorrelation and power spectral density matrices of w. Notice

also that, ‖(.)‖P ′ is a seminorm. In addition, if the plant-filter pair is stable, we replace the

induced �∞-norm above by the equivalent H∞ subspace norm.

At the outset, we consider the following affine nonlinear causal descriptor model of the plant

which is defined on X ⊆ �n with zero control input:

Pad
D :

⎧⎨⎩ Exk+1 = f(xk) + g1(xk)wk; x(k0) = x0

yk = h2(xk) + k21(xk)wk,
(6.44)

where x ∈ X is the semistate vector; w ∈ W ⊂ �r is an unknown disturbance (or noise)

signal, which belongs to the set W of admissible exogenous inputs; y ∈ Y ⊂ �m is the

measured output (or observation) of the system, and belongs to Y , the set of admissible

measured-outputs.

The functions f : X → X , g1 : X → Mn1×r(X ), where Mi×j is the ring of i × j smooth

matrices over X , h2 : X → �m, and k21 : X → Mm×r(X ) are real C∞ functions of x,

while E ∈ �n×n is a constant but singular matrix. Furthermore, we assume without any

loss of generality that the system (6.44) has an isolated equilibrium-point at x = 0 which is

admissible and is such that f(0) = 0, h2(0) = 0. We also assume that there exists at least

one solution x(k, k0, x
0, w) ∀k ∈ Z for the system, for all admissible initial conditions x0, for

all w ∈ W. The initial condition x0 is said to be admissible if the solution xk is unique and

impulse-free for all k ∈ [k0,∞). For simplicity we also make the following assumptions on
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the plant.

Assumption 6.3.1. The system matrices are such that

k21(x)g
T
1 (x) = 0,

k21(x)k
T
21(x) = I.

In addition, the following standing assumptions will be made on the system.

Assumption 6.3.2. Let A = ∂f
∂x
(x̄), x̄ ∈ O ⊂ X . Then, the system (6.44) is locally

admissible, implies the following hold:

1. the system is locally regular at each x̄ ∈ O and hence locally solvable, i.e, det(zE−A) �≡
0 for all z ∈ C;

2. the system is locally impulse-free at each x̄ ∈ O, i.e., deg(det(zE−A)) = rank(E) ∀z ∈
C;

3. the system is locally asymptotically stable, i.e., (E,A) is Hurwitz at x̄ = 0.

The suboptimal H∞ local filtering/state-estimation problem is defined as follows.

Definition 6.3.1. (Suboptimal H∞ Local State Estimation or Filtering Problem). Find a

filter, Fk, for estimating the state xk or a function of it, zk = h1(xk), from observations

Yk
Δ
= {y(i) : i ≤ k}, of y(i) up to time k, to obtain the estimate

x̂k = Fk(Yk),

such that, the �2-gain from the input w to some suitable penalty function z̃ is rendered less

or equal to some desired number γ > 0, i.e.

∞∑
k=k0

‖z̃k‖2 ≤ γ2

∞∑
k=k0

‖wk‖2 (6.45)
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for all admissible initial conditions x0 ∈ O ⊂ X for all w ∈ �2[k0,∞). Moreover, if the filter

solves the problem for all admissible x0 ∈ X , we say the problem is solved globally.

We shall adopt the following definition of local zero-input observability which we coined from

(Ozcaldiran, 1992), (Vidyasagar, 1993).

Definition 6.3.2. For the nonlinear system Pda
D , we say that, it is locally weakly zero-input

observable, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0, k > k0

y(k;Ex1(k0−), w) ≡ y(k;Ex2(k0−), w) =⇒ Ex1(k0) = Ex2(k0); (6.46)

the system is said to be locally zero-input observable if

y(k;Ex1(k0−), w) ≡ y(k;Ex2(k0−), w) =⇒ x1(k0) = x2(k0); (6.47)

where y(., Exi(k0−), w), i = 1, 2 is the output of the system with the initial condition

Exi(t0−); and the system is said to be locally strongly zero-input observable if

y(k;Ex1(k0−), w) ≡ y(k;Ex2(k0−), w) =⇒ x1(k0−) = x2(t0−). (6.48)

Moreover, the system is said to be globally (weakly, strongly) zero-input observable, if it is

locally (weakly, strongly)-observable at each x(k0) ∈ X or U = X .

In the sequel, we shall not distinguish between local observability and strong local observ-

ability. Moreover, in the next two subsections, we discuss singular and normal filters for the

H∞ state estimation problem defined above. For this purpose, we assume throughout that

the noise signal w ∈ W ⊂ �2[k0,∞).
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6.3.2 Discrete-time H∞ Singular Filters

In this subsection, we discuss full-order H∞ singular filters for the system in the usual

Kalman-Luenberger type structure:

Fad
DS1

⎧⎨⎩ Ex̂k+1 = f(x̂k) + g1(x̂k)ŵ
�
k + L(x̂k, yk)[yk − h2(x̂k − k21(x̂k)ŵ

�
k], x̂(k0) = 0

z̃k = yk − h2(x̂k)
(6.49)

where x̂ ∈ X is the filter state and L̂ : X ×Y → �n×m is the gain matrix of the filter, z̃ ∈ �m

is the penalty variable or estimation error, and ŵ� is the estimated certainty-equivalent worst

system noise. Notice also here that, we are not including the term k12w in the filter design,

because its effect on ŵ� is negligible, and to simplify the presentation.

The problem can then be formulated as a dynamic optimization problem with the following

cost functional:

min
L̂∈�n×m

supw∈WJ(L̂, w) =
1

2

∞∑
k=k0

[‖z̃k‖2 − γ2‖wk‖2], s.t. (6.49),

and with w = 0, lim
k→∞

{x̂k − xk} = 0. (6.50)

To solve the above problem, we form the Hamiltonian function2 H : X ×Y ×�n×m×� → �
(Wang, 2008):

H(x̂, y, w, L, V ) = V (E(f(x̂) + g1(x̂)w + L(x̂, y)(y − h2(x̂))− k21(x̂)ŵ
�), y)−

V (Ex̂, yk−1) +
1

2
(‖z̃‖2 − γ2‖w‖2) (6.51)

for some C2 function V : X ×Y → � and where x = xk, y = yk, z̃ = {z̃k}, w = {wk}. Notice
also here that, we are only using yk−1 in the above expression (6.51) to distinguish between

yk = y and yk−1. Otherwise, (6.51) holds for all y and is C1 in all its arguments. Then, the

optimal gain L� can be obtained by minimizing H with respect to L in the above expression

2Our definition is slightly different from Reference (Wang, 2008) in order to maintain the symmetry of
the Hamiltonian
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(6.51), as

ŵ� =
1

γ2
gT1 (x̂)

∂V (λ, y)

∂λ

∣∣∣∣
λ=E(f(x̂)+g1(x̂)w+L(x̂,y)(y−h2(x̂)−k21(x̂)w),w=w�

(6.52)

L� = argmin
L

H(x̂, w�, y, L, V ). (6.53)

where ∂V/∂λ is the row vector of first-order partial derivatives of V with respect to λ.

Because the Hamiltonian function (6.51) is not a linear or quadratic function of the gain

L, only implicit solutions can be obtained by solving the above equations. Thus, the only

way to obtain an explicit solution, is to use an approximate scheme. Accordingly, consider

a first-order Taylor approximation of the Hamiltonian function (6.51) about (Ef(x̂), y) and

in the direction of the estimator state vector Ex̂, denoted by Ĥ:

Ĥ(x̂, y, w, L̂, V̂ ) = V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)[E(f(x̂) + g1(x̂)w + L̂(x̂, y)(y − h2(x̂)−
k21(x̂)w)]− V̂ (Ex̂, yk−1) +

1

2
(‖z̃‖2 − γ2‖w‖2) +O(‖x̂‖2), (6.54)

where V̂ , L̂ are the corresponding approximate functions. Applying the necessary condition

for the worst-case noise, we get

∂Ĥ

∂w

∣∣∣∣∣
w=ŵ�

= 0 =⇒ ŵ� =
1

γ2
[gT1 (x̂)− kT

21(x̂)L̂
T (x̂, y)]EV̂ T

Ex̂(Ef(x̂), y). (6.55)

Substituting ŵ� in (6.54) and completing the squares in EL̂, we get

Ĥ(x̂, y, ŵ�, L̂, V̂ ) = V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)Ef(x̂)− V̂ (Ex̂, yk−1) +

1

2γ2

∥∥∥L̂T (x̂, y)ET V̂Ex̂(Ef(x̂), y) + γ2(y − h2(x̂))
∥∥∥2 +

1

2γ2
V̂Ex̂(Ef(x̂), y)Eg1(x̂)(x̂)g

T
1 (x̂)E

T V̂ T
Ex̂(Ef(x̂), y) +

(1− γ2)

2
‖z̃‖2. (6.56)

Thus, setting

V̂Ex̂(Ef(x̂), y)EL̂�(x̂, y) = −γ2(y − h2(x̂))
T (6.57)
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minimizes Ĥ(., ., ŵ�, L̂, .) and guarantees that the saddle-point condition (Basar, 1982)

Ĥ(x̂, y, ŵ�, L̂�, V̂ ) ≤ Ĥ(x̂, y, ŵ�, L̂, V̂ ) ∀L̂ ∈ �n×m (6.58)

is satisfied. Finally, substituting the above expression for L̂� in (6.56) and setting

Ĥ(x̂, y, ŵ�, L̂�, V̂ ) = 0

yields the following DHJIE:

V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)Ef(x̂) + 1
2γ2 V̂Ex̂(Ef(x̂), y)Eg1(x̂)(x̂)g

T
1 (x̂)E

T V̂ T
Ex̂(Ef(x̂), y)−

V̂ (Ex̂, yk−1) +
(1−γ2)

2
(y − h2(x̂))

T (y − h2(x̂)) = 0, V̂ (0, 0) = 0. (6.59)

Moreover, from (6.54), (6.59), we can write

Ĥ(x̂, y, ŵ, L̂�, V̂ ) = Ĥ(x̂, y, ŵ�, L̂�, V̂ )− 1

2
γ2‖w − ŵ�‖2, (6.60)

and hence,

Ĥ(x̂, y, ŵ, L̂�, V̂ ) ≤ Ĥ(x̂, y, ŵ�, L̂�, V̂ ). (6.61)

Thus, combining (6.58) and (6.61), we see that the saddle-point conditions (Basar, 1982)

Ĥ(x̂, y, ŵ, L̂�, V̂ ) ≤ Ĥ(x̂, y, ŵ�, L̂�, V̂ ) ≤ Ĥ(x̂, y, ŵ�, L̂, V̂ ) (6.62)

are satisfied, and the pair (ŵ�, L̂�) constitutes a saddle-point solution to the dynamic game

(6.50), (6.44). Consequently, we have the following result.

Proposition 6.3.1. Consider the nonlinear system (6.44) and the H∞ filtering problem for

this system. Suppose the plant Pad
D satisfies Assumptions 6.3.1, locally asymptotically stable

about the equilibrium-point x = 0, and zero-input observable. Further, suppose for some

γ > 0, there exist a C1 positive-semidefinite function V̂ : N̂ × Υ̂ → �+ locally defined

in a neighborhood N̂ × Υ̂ ⊂ X × Y of the origin (x̂, y) = (0, 0), and a matrix function
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L̂ : N̂ × Υ̂ → �n×m, satisfying the DHJIE (6.59) together with the side-condition (6.57).

Then, the filter Fad
DS1 solves the H∞ filtering problem for the system locally in N̂ .

Proof: The optimality of the filter gain L̂� has already been shown above. It remains to

prove that the �2-gain condition (6.45) is satisfied, and there is asymptotic convergence of

the estimation error to zero. Accordingly, let V̂ (Ex̂, y) ≥ 0 be a C1 solution of the DHJIE

(6.59). Then, taking the time variation of V̂ along a trajectory of (6.49) with L̂ = L̂�, we

get

V̂ (Ex̂k+1, y) ≈ V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)[E(f(x̂) + g1(x̂)w +

L̂�(x̂, y)(y − h2(x̂)− k21(x̂)w)]

=
{
V̂ (Ef(x̂), y) + V̂Ex̂(Ef(x̂), y)Ef(x̂) +

(1− γ2)

2
‖z̃‖2 +

1

2γ2
V̂Ex̂(Ef(x̂), y)Eg1(x̂)(x̂)g

T
1 (x̂)E

T V̂ T
Ex̂(Ef(x̂), y)

}
−

1

2
γ2‖w − ŵ�‖2 + 1

2
γ2‖w‖2 − 1

2
‖z̃‖2

≤ V̂ (Ex̂, yk−1) +
1

2
γ2‖w‖2 − 1

2
‖z̃‖2, (6.63)

where use has been made of the first-order Taylor approximation above, and the last inequal-

ity (6.63) follows from using the DHJIE (6.59). Summing the above inequality from k = k0

to ∞ we get that

V̂ (x∞, y∞)− V̂ (k0, yk0−1) ≤ 1

2

∞∑
k=k0

(γ2‖wk‖2 − ‖z̃k‖2),

and therefore the �2-gain condition (6.45) is satisfied. In addition, setting w = 0 in the

inequality (6.63), we have

V̂ (Ex̂k+1, yk)− V̂ (Ex̂k, yk−1) ≤ −1

2
‖z̃k‖2,

and by Lyapunov’s theorem, the filter dynamics is stable, i.e., V (Ex̂, y) is non-increasing

along a trajectory of (6.49). Further, the condition that V̂ (Ex̂k+1, yk) ≡ V̂ (Ex̂, yk−1) ∀k ≥
ks, for some ks, implies that z̃k ≡ 0, which further implies that yk = h2(x̂k) ∀k ≥ ks. By the
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zero-input observability of the system, this implies that x̂k = xk ∀k ≥ ks. �

The result of the theorem can be specialized to the linear descriptor system

Pdl
D :

⎧⎨⎩ Exk+1 = Axk +B1wk; x(k0) = x0

yk = C2xk +D21wk, DT
21B1 = 0, D21D

T
21 = I,

(6.64)

where E ∈ �n×n, A ∈ �n×n, B1 ∈ �n×r, C2 ∈ �m×n, D21 ∈ �m×r.

Corollary 6.3.1. Consider the linear descriptor system (6.64) and the H∞ filtering problem

for this system. Suppose the plant Pdl
D is locally asymptotically stable about the equilibrium-

point x = 0 and observable. Suppose further, there exist symmetric positive-semidefinite

matrices P̂ ∈ �n×n, Q̂ ∈ �m×m, and a matrix L̂ ∈ �n×m, satisfying the linear matrix-

inequalities (LMIs)

⎡⎢⎢⎢⎢⎢⎢⎣
ATET P̂EA− ET P̂E + (1− γ2)CT

2 C2 ATET P̂EB1 (1− γ2)CT
2 0

BT
1 EPEA −γ2I 0 0

(1− γ2)C2 0 Q̂− I 0

0 0 0 −Q̂

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (6.65)

⎡⎣ 0 1
2(A

TET P̂EL− γ2CT
2 )

1
2(A

TET P̂EL− γ2CT
2 )

T (γ2 − δ1)I

⎤⎦ ≤ 0 (6.66)

for some number δ1 ≥ 1. Then the filter

Fdl
DS1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ex̂k+1 = (A+ 1

γ2B1B
T
1 EPEA+ 1

γ2 L̂L̂
TEPEA)x̂k + L̂(y − C2x̂k);

x̂(k0) = 0

ẑk = yk − C2x̂k

(6.67)

solves the H∞ filtering problem for the system.

Proof: Take V̂ (Ex̂, y) = 1
2
(x̂TET P̂Ex̂ + yT Q̂y), P̂ > 0 and apply the result of the

Proposition. �

Notice similarly however, since the system is inherently constrained, convergence of the esti-

mates may be slow with filter Fad
DS1. Therefore, to guarantee better convergence, we propose a
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proportional-integral (PI) filter configuration (Gao, 2004), (Koenig, 1995) to further improve

the convergence. Thus, we consider the following class of filters:

Fad
DS2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ex̌k+1 = f(x̌k) + g1(x̌)w̌
�
k + Ľ1(x̌k, ξk, yk)(yk − h2(x̌k)− k21(x̌k)w̌

�
k)+

Ľ2(x̌k, ξk, yk)ξk, x̌(k0) = 0

ξk+1 = yk − h2(x̌k)

žk = yk − h2(x̌k)

(6.68)

where x̌ ∈ X is the filter state, w̌� is the estimated worst-case noise of the system, ξ ∈ �m is

the integrator state, and Ľ1, Ľ2 : X ×Y ×Y → �n×m are the proportional and integral gain

matrices of the filter respectively. Similarly, using manipulations as in Proposition 6.3.1, we

can arrive at the following result.

Theorem 6.3.1. Consider the nonlinear system (6.44) and the H∞ local filtering problem for

this system. Suppose the plant Pad
D satisfies Assumption 6.3.1, is locally asymptotically stable

about the equilibrium-point x = 0, and locally zero-input observable. Further, suppose there

exist a C2 positive-definite function V̌ : Ň × Ξ̌× Υ̌ → �+ locally defined in a neighborhood

Ň × Ξ̌ × Υ̂ ⊂ X × Y × Y of the origin (x̌, ξ, y) = (0, 0, 0), and matrix functions Ľ1, Ľ2 :

Ň × Ξ̌× Υ̌ → �n×m, satisfying the DHJIE

V̌ (Ef(x̌), ξ, y) + V̌Ex̌(Ef(x̌), ξ, y)Ef(x̌)+

1
2γ2 V̂Ex̌(Ef(x̌), y)Eg1(x̌)(x̌)g

T
1 (x̌)E

T V̌ T
Ex̌(Ef(x̌), y)−

V̌ (Ex̌, ξ, yk−1) + V̌ξ(Ef(x̌), ξ, y)(y − h2(x̌))− ξT ξ+

(1−γ2)
2

(y − h2(x̌))
T (y − h2(x̌)) = 0, V̌ (0, 0, 0) = 0, (6.69)

together with the side-conditions

V̌Ex̌(Ex̌, ξ, y)EĽ�
1(x̌, ξ, y) = −γ2(y − h2(x̌))

T , (6.70)

V̌Ex̌(Ex̌, ξ, y)EĽ�
2(x̌, ξ, y) = −ξT . (6.71)

Then, the filter Fad
DS2 solves the H∞ local filtering problem for the system locally in Ň .
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Proof: The proof follows along similar lines as Proposition 6.3.1. �

In the next section, we consider the design of normal filters for the system.

6.3.3 Discrete-time H∞ Normal Filters

In this subsection, we discuss normal filters for the system (6.44). We shall consider the

design of both full-order and reduced-order filters. We start with the full-order filter first,

and in this regard, without any loss of generality, we can assume that E is of the form

E =

⎛⎝ Iq×q 0

0 0

⎞⎠ .

This follows from matrix theory and can easily be proven using the singular-value decompo-

sition (SVD) of E. It follows that, the system can be represented in the canonical form of a

differential-algebraic system

P̄ad
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = f1(xk) + g11(xk)wk; x(k0) = x0

0 = f2(xk) + g21(xk)wk

y = h2(xk) + k21(xk)wk

(6.72)

where dim(x1) = q, f1(0) = 0, f2(0) = 0. We also assume the following counterpart of

Assumption 6.3.1 for simplicity.

Assumption 6.3.3. The system matrices in (6.72) are such that

k21(x)[g
T
11(x) g21(x)] = 0,

k21(x)k
T
21(x) = I.

Then, if we define

x2,k+1 = f2(xk) + g21(xk)wk,

where x2,k+1 is a fictitious state vector, and dim(x2) = n − q, the system (6.72) can be
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represented by a normal state-space system as

P̃ad
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = f1(xk) + g11(xk)wk; x1(k0) = x10

x2,k+1 = f2(xk) + g21(xk)wk; x2(k0) = x20

y = h2(xk) + k21(xk)wk.

(6.73)

Now define the following set Ωo ⊂ X

Ωo = {(x1, x2) ∈ X | x2,k+1 ≡ 0, k = 1, . . .}. (6.74)

Then, we have the following system equivalence

P̃ad
D |Ωo = P̄ad

D . (6.75)

Thus, to estimate the states of the system (6.72), we need to stabilize the system (6.73)

about Ωo and then design a filter for the resulting system. For this purpose, we consider the

following class of filters

Fad
DN3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̀1,k+1 = f1(x̀k) + g11(x̀k)ẁ
�
k + L̀1(x̀k, yk)[yk − h2(x̀k)− k21(x̀k)ẁ

�
k],

x̀1(k0) = 0

x̀2,k+1 = f2(x̀k) + g21(x̀k)ẁ
�
k + g22(xk)α2(x̀k) + L̀2(x̀k, yk)[yk−

h2(x̀k)− k21(x̀k)ẁ
�
k], x̀2(k0) = 0

z̀k = yk − h2(x̀k),

(6.76)

where x̀ ∈ X is the filter state, ẁ� is the worst-case estimated system noise, L̀1 : X × Y →
�q×m, L̀2 : X ×Y → �(n−q)×m are the filter gain matrices, and g̃22 : X → M(n−q)×p is a gain

matrix for the artificial control input u = α2(x̀) ∈ �p required to stabilize the corresponding

filter dynamics x̀2,k+1 about

Ὼo = {(x̀1, x̀2) ∈ X | x̀2,k+1 ≡ 0, k = 1, . . .}. (6.77)

Accordingly, we make the following assumption.
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Assumption 6.3.4. The pair {f2, g̃22} is locally stabilizable, i.e., ∃ a control law α2(x̀2) and

a Lyapunov-function (LF), V̄ > 0, such that V̄ (f2(x̀)−g̃22(x̀)α2(x̀))−V̄ (x̀) < 0 ∀x̀ ∈ Ǹ ⊂ X .

Thus, if Assumption 6.3.4 holds, then we can make α2 = α2(x̀, ε), where ε > 0 is small,

a high-gain feedback (Young, 1977) to constrain the dynamics on Ωo as fast as possible.

Then, we proceed to design the gain matrices L̀1, L̀2 to estimate the states using similar

approximations as in the previous section. Using the first-order Taylor approximation, we

have the following result.

Proposition 6.3.2. Consider the nonlinear system (6.72) and the H∞ local filtering prob-

lem for this system. Suppose the plant P̄ad
D satisfies Assumptions 6.3.3, 6.3.4, is locally

asymptotically stable about the equilibrium-point x = 0, and zero-input observable. Further,

suppose there exist a C1 positive-semidefinite function V̀ : Ǹ × Ὺ → �+, locally defined in

a neighborhood Ǹ × Ὺ ⊂ X × Y of the origin (x̀1, x̀2, y) = (0, 0, 0), and matrix functions

L̀1 : Ǹ × Ὺ → �q×m, L̀2 : Ǹ × Ὺ → �n−q×m, satisfying the DHJIE:

V̀ (f1(x̀), f2(x̀), y)− V̀ (x̀1, x̀2, yk−1)+

1
2γ2 V̂x̀1(f1(x̀), f2(x̀), y)g11(x̀)(x̀)g

T
11(x̀)V̀

T
x̀1
(f1(x̀), f2(x̀), y)+

1
γ2 V̀x̀1(f1(x̀), f2(x̀), y)g11(x̀)(x̀)g

T
12(x̀)V̀

T
x̀2
(f1(x̀), f2(x̀), y)−

V̀x̀2(f1(x̀), f2(x̀), y)g22(x̀)α2(x̀, ε)+

1
2γ2 V̀x̀2(f1(x̀), f2(x̀), y)g21(x̀)(x̀)g

T
21(x̀)V̀

T
x̀2
(f1(x̀), f2(x̀), y)+

(1−γ2)
2

(y − h2(x̀))
T (y − h2(x̀)) = 0, V̀ (0, 0, 0) = 0, (6.78)

together with the side-conditions

V̀x̀1(f1(x̀), f2(x̀), y)L̀1(x̀1, x̀2, y)+ V̀x̀2(f1(x̀), f2(x̀), y)L̀2(x̀1, x̀2, y) = −γ2(y−h2(x̀))
T . (6.79)

Then, the filter Fda
DN3 solves the H∞-filtering problem for the system locally in Ǹ .

Proof: Follows along same lines as Proposition 6.3.1.

A common DHJIE-Lyapunov function for both the stabilization (Guillard, 1996) and filter



225

design can also be utilized in the above design procedure. This can be achieved optimally if

we take

α2(x̀, ε) = −1
ε
gT22(x̀)V̄

T
x̀2
(f1(x̀), f2(x̀), y)

V̄x̀1(f1(x̀), f2(x̀), y)L̀1(x̀, y) + V̄x̀2(f1(x̀), f2(x̀), y)L̀2(x̀, y) = −γ2(y − h2(x̀))
T ,

where V̄ ≥ 0 is a C1 solution of the following DHJIE

V̄ (f1(x̀), f2(x̀), y)− V̄ (x̀1, x̀2, yk−1)+

1
2γ2 V̄x̀1(f1(x̀), f2(x̀), y)g11(x̀)(x̀)g

T
11(x̀)V̄

T
x̀1
(f1(x̀), f2(x̀), y)+

1
γ2 V̄x̀1(f1(x̀), f2(x̀), y)g11(x̀)(x̀)g

T
12(x̀)V̄

T
x̀2
(f1(x̀), f2(x̀), y)−

1
ε
V̄x̀2(f1(x̀), f2(x̀), y)g22(x̀)g

T
22(x̀)V̄

T
x̀2
(f1(x̀), f2(x̀), y)+

1
2γ2 V̄x̀2(f1(x̀), f2(x̀), y)g21(x̀)(x̀)g

T
21(x̀)V̄

T
x̀2
(f1(x̀), f2(x̀), y)+

(1−γ2)
2

(y − h2(x̀))
T (y − h2(x̀)) = 0, V̄ (0, 0, 0) = 0. (6.80)

Similarly, a normal PI-filter for the system (6.72) can also be designed. However, next

we consider a reduced-order normal filter design. Accordingly, partition the state-vector x

comformably with rank(E) = q as x = (xT
1 xT

2 )
T with dim(x1) = q, dim(x2) = n − q and

the state equations as

P̆ad
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1,k+1 = f1(x1,k, x2,k) + g11(x1,k, x2,k)wk; x1(k0) = x10

0 = f2(x1,k, x2,k) + g21(x1,k, x2,k)wk; x2(k0) = x20

yk = h2(xk) + k21(xk)wk

(6.81)

Then we make the following assumption.

Assumption 6.3.5. The system is in the standard-form, i.e., the Jacobian matrix f2,x2(x1, x2)

is nonsingular in an open neighborhood Ũ of (0, 0) and g21(0, 0) �= 0.

If Assumption 6.3.5 holds, then by the Implicit-function Theorem (Sastry, 1999), there exists
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a unique C1 function ϕ : �q ×W → �n−q and a solution

x̄2 = φ(x1, w)

to equation (6.81b). Thus, the system can be locally represented in Ũ as the reduced-order

system

P̄ad
rD :

⎧⎨⎩ x1,k+1 = f1(x1,k, φ(x1,k, wk)) + g11(x1,k, φ(x1,k, wk))wk; x1(k0) = x10

yk = h2(x1,k, φ(x1,k, wk)) + k21(x1,k, φ(x1,k, wk))wk.
(6.82)

We can then design a normal filter of the form

Fad
DrN4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̆1,k+1 = f1(x̆1,k, φ(x̆1,k, w̆
�
1,k)) + g11(x̆1,k, φ(x̆1,k, w̆

�
1,k))w̆

�
1+

L̆(x̆1,k, φ(x̆1,k, w̆
�
1,k), yk)[y − h2(x̆1,k, φ(x̆1,k, w̆

�))−
k21(x̆1,k, φ(x̆1,k, w̆

�
1))w̆

�];

x̆1(k0) = 0

z̆k = yk − h2(x̆1,k, φ(x̆1,k, w̆
�
1)),

(6.83)

where again all the variables have their corresponding previous meanings and dimensions.

Consequently, we have the following result. Suppose that for simplicity, the following equiv-

alent assumption is also satisfied by the subsystem (6.82).

Assumption 6.3.6. The system matrices are such that

k21(x)g
T
11(x) = 0,

k21(x)k
T
21(x) = I.

Theorem 6.3.2. Consider the nonlinear system (6.72) and the H2 local filtering problem for

this system. Suppose for the plant P̄ad
D is locally asymptotically stable about the equilibrium-

point x = 0, zero-input observable and Assumptions 6.3.5, 6.3.6 hold for the system. Further,

suppose there exist a C1 positive-semidefinite function V̆ : N̆ × Ῠ → �+, locally defined

in a neighborhood N̆ × Ῠ ⊂ Ũ × Y of the origin (x̆1, y) = (0, 0), and a matrix function
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L̆ : N̆ × Ῠ → �q×m, satisfying the DHJIE:

V̆ (f1(x̆1, φ(x̆1, w̆
�
1)), y) + V̆x̆1(f1(x̆1, φ(x̆1, w̆

�
1)), y)f1(x̆1, φ(x̆1, w̆

�
1))− V̆ (x̆1, yk−1)+

1
2γ2 V̆x̆1(f1(x̀, φ(x̆1, w̆

�
1)), y)g11(x̆1, φ(x̆1, w̆

�
1))g

T
11(x̆1, φ(x̆1, w̆

�
1))V̆

T
x̀1
(f1(x̆1, φ(x̆1, w̆

�
1)), y)

+ (1−γ2)
2

(y − h2(x̆1, φ(x̆1, w̆
�
1))

T (y − h2(x̆1, φ(x̆1, w̆
�
1)) = 0, V̆ (0, 0) = 0, (6.84)

together with the side-condition

V̆x̆1(f1(x̆1, φ(x̆1, w̆
�
1)), y)L̆(x̆1, y) = −(y − h2(x̆1, φ(x̆1, w̆

�
1)))

T , (6.85)

ŵ�
1 =

1

γ2
[gT11(x̆1, φ(x̆1, w̆

�
1))− kT

21(x̆1, φ(x̆1, w̆
�
1))L̂

T (x̂1, y)]V̆
T
x̀1
(f1(x̆1, φ(x̆1, w̆

�
1)), y).

Then, the filter Fad
DrN4 solves the H∞ local filtering problem for the system in N̆ .

Proof: Follows along same lines as Proposition 6.3.1.

Similarly, we can specialize the result of Theorem 6.3.2 to the linear system (6.64). The

system can be rewritten in the form (6.72) as

Pld
D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk+1 = A1x1,k + A12x2,k +B11wk; x1(k0) = x10

0 = A21x1,k + A2x2,k +B21wk; x2(k0) = x20

yk = C21x1,k + C22x2,k +D21wk

(6.86)

Then, if A2 is nonsingular (Assumption 6.3.5) we can solve for x2 in equation (6.86(b)) to

get

x̄2 = −A−1
2 (A21x1 +B21w)

and the filter (6.83) takes the following form

Fld
DrN4

⎧⎨⎩ x̆1,k+1 = Ă1x̆1,k + B̆11w̆
�
1 + L̆[yk − C̆21x̆1,k −D21w̆

�
1]; x̆1(k0) = 0

z̆k = yk − C̆21x̆1,k.
(6.87)

where Ă1 = (A1 − A12A
−1
2 A21), B̆11 = (B11 − A12A

−1
2 B21), C̆21 = (C21 − C22A

−1
2 A21).
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Then, we have the following corollary.

Corollary 6.3.2. Consider the linear descriptor system (6.64) and the H∞-filtering problem

for this system. Suppose the plant Pld
D is locally asymptotically stable about the equilibrium-

point x = 0, Assumption 6.3.5, Assumption 6.3.6 hold, and the plant is observable. Suppose

further, for some γ > 0, there exist symmetric positive-semidefinite matrices P̆ ∈ �q×q,

Q̆ ∈ �m×m, and a matrix L̆ ∈ �n×m, satisfying the LMIs:⎡⎢⎢⎢⎢⎢⎢⎣
3ĂT

1 P̆ Ă1 − P̆ + (1− γ2)C̆T
2 C̆

T
21 B̆T

11P̆ Ă1 (1− γ2)C̆T
21 0

ĂT
1 P̆ B̃11 −γ2I 0 0

(1− γ2)C̆21 0 Q̆− I 0

0 0 0 −Q̆

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 (6.88)

⎡⎣ 0 1
2
(ĂT

1 P̆ L̆− γ2C̆T
21)

1
2
(ĂT

1 P̆ L̆− γ2C̆T
21)

T (1− δ3)I

⎤⎦ ≤ 0 (6.89)

for some number δ3 ≥ 1. Then, the filter (6.87) solves the H∞-filtering problem for the

system.

Proof: Take V̆ (x̆) = 1
2
(x̆T

1 P̆ x̆1 + yT Q̆y) and apply the result of the Theorem. �

6.4 Examples

Consider the following simple nonlinear differential-algebraic system:

x1,k+1 = x
1/3
1,k + x

2/5
2,k (6.90)

0 = x1,k + x2,k (6.91)

yk = x1,k + x2,k + wk. (6.92)

where w ∈ �2. A singular filter of the form Fa
DS1 (6.49) presented in Subsection 6.3.2 can

be designed. It can be checked that, the system is locally zero-input observable, and with

γ = 1for γ = 1, the function V̂ (x̂) = 1
2
(x̂2

1+ x̂2
2+y2), solves the DHJIE (6.59) for the system.
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Subsequently, we calculate the gain of the filter as

l̂1(x̂k, yk) = −(yk − x̂1,k − x̂2,k)

x̂
1/3
1,k + x̂

2/5
2,k

,

where l̂1 is set equal zero if |x̂1/3
1,k + x̂

2/5
2,k | < ε (ε small) to avoid a singularity. Thus, x1,k can

be estimated with the filter, while x2,k can be estimated from x̂2,k = −x̂1,k.

Similarly, a normal filter of the form (6.83) can be designed. It can be checked that, As-

sumption 6.3.5 is satisfied, and the function V̆ (x̆) = 1
2
(x̆2

1 + y2) solves the DHJIE (6.80) for

the system. Consequently, we can also calculate the filter gain as

l̆1(x̆k, yk) = −(yk − x̂1,k − x̆2,k)

x̆
1/3
1,k + x̆

2/5
1,k

and again l̆1 is set equal zero if |x̆1/3
1,k + x̆

2/5
1,k | < ε (ε small) to avoid a singularity.

6.5 Conclusion

In this chapter, we have presented a solution to the H∞ filtering problem for affine nonlinear

descriptor systems. Both in continuous-time, and in discrete-time. Two types of filters have

been proposed; namely, singular and normal filters. Reduced-order normal filters have also

been presented for the case of standard systems. Sufficient conditions for the solvability

of the problem using each type of filter are given in terms of HJIEs and DHJIEs. The

results have also been specialized to linear systems, in which case the conditions reduce to a

system of LMIs which are computationally efficient to solve. The problem for a nonconstant

singular recursion matrix has also been discussed, and finally, examples have been presented

to demonstrate the approach.

clearpage
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SUMMARY AND CONCLUSION

In this Dissertation, we have reviewed the historical development of estimation theory from

Gauss’s least squares method to the Kalman-Bucy theory and finally to the Stratonovich-

Kushner theory. We have also summarized most of the major approaches that have been

developed for linear dynamic systems, including the minimum-variance method, the maxi-

mum likelihood method and the Bayesian approaches. Finally, we have also discussed the

extensions of the above approaches to nonlinear dynamic systems including the extended

Kalman filter, the Stratonovich and Kushner filters as well as the maximum likelihood re-

cursive nonlinear filters and Baysian nonlinear filters.

On the other hand, the contribution of the Dissertation is mainly to develop H2 and H∞

approaches to filtering for nonlinear singular systems. These approaches which are deter-

ministic are much easier to derive and the filters developed are simpler to inplement. The

filters derived are also finite-dimensional, as opposed to the statistical methods which lead

to infinite-dimensional filters and evolution equations such as the Stratonovich equation, the

Kushner equation, and the Wong and Zakai equation, which have no exact solutions and nei-

ther computationally tractable numerical solutions. They rely on finding smooth solutions

of certain Hamilton-Jacobi equations which can be found using polynomial approximations

or other methods (Aliyu, 2003), (Al-Tamimi, 2008), (Abukhalaf, 2006), (Huang, 1999).

Further, to summarize the results, for singularly-perturbed systems, we have presented H2

and H∞-decomposition, aggregate and reduced-order filters, both in continuous-time and

discrete-time. While for descriptor systems, we have presented similarly H2 and H∞-singular

and normal filters in both continuous-time and discrete-time. Reduced-order filters have

also been considered. Some simulation results have also been presented to validate the

approaches.

The H2 filters are useful when the system and measurement noise is fairly known and can be

modeled as stationary Gaussian white-noise processes with certain covariances. Whereas the

H∞ filters are more useful when the system and measurement noise are generally unknown,
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but can be assumed to be L2-bounded. They also have better robustness against other forms

of disturbances than the H2 filters. In both cases we have pursued deterministic approaches

to the filter design as apposed to stochastic approaches.

By-and-large the Dissertation represents the first successful attempt to use Hamilton-Jacobi

theory to solve the filtering problem for affine nonlinear systems. Earlier not so successful

attempts (Mortenson, 1968), (Berman, 1996), (Nguang, 1996), (Shaked, 1995) have led to

very complicated Hamilton-Jacobi equations involving a rank-3 tensor (Mortenson, 1968) and

gain matrices that require the original state information (Berman, 1996), (Nguang, 1996),

(Shaked, 1995) which are practically unrealizable. On the other hand, we have avoided both

of these two problems by not using an error vector e = x − x̂ in our design, and also by

using determinstic techniques. We have attempted to address all the research objectives

that we set out in Chapter 2, but we believe that improvements can still be made on the

results that we have achieved, especially in finding efficient ways to solve the Hamilton-

Jacobi equations. Future efforts will also consider �1 filter design approaches which have the

tendency to suppress persistent bounded disturbances as well.
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