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CONDENSE EN FRANCAIS

Cette thése porte sur deux sujets tres reliés, a savoir la classification et la séection de
variables. La premié&e contribution de la thése consiste a développer un algorithme pour
I'identification du sous-ensemble optimal de variables pour la classification d'une variable cible
dans un cadre bayésien, sous-ensemble que I'on designe par la Couverture de Markov d'une
variable cible. L'algorithme développ& IPC-MB, affiche une performance prélictive et une
complexitécalculatoire se situant au niveau des meilleurs algorithmes existants. Cependant, il est
toutefois le seul algorithme affichant les meilleures performances sur les deux plans

simultané@ment, ce qui constitue une percé importante au plan pratique.

La Couverture de Markov d'une variable cible est un sous ensemble qui ne comporte pas de
structure, notamment le réseau bayésien des variables impliquées. La seconde contribution
consiste & exploiter les résultats intermédiaires de I'algorithme IPC-MB pour am@iorer
I'induction de la structure du réeau bayésien correspondant ala Couverture de Markov d'une
variable cible. Nous démontrons empiriquement que l'algorithme pour induire la structure du
réseau bayésien est I&é&ement plus efficace qu'un algorithme standard comme PC qui n'utilise

pas les données intermé&liaires de IPC-MB.

La séection des variables pertinentes pour une t&he de classification est un probléne
fondamental en apprentissage machine. Il consiste a réduire la dimensionalité de I’espace des
solutions en @iminant les attributs qui ne sont pas pertinents, ou qui le sont peu. Pour la t&he
classification, un jalon important vers la réolution de ce probléne a &éatteint par Koller et
Sahami [1]. Basésur les travaux de Pearl dans les ré&seaux bayésiens [2], il a &abli que la
Couverture de Markov (Markov Blanket) d’une variable T représentait le sous-ensemble optimal
d’attributs pour la prédiction de sa classe. Nous le dénotons MB lorsque la variable cible est

connue et par MB autrement.

Induire MB étant donné un réseau bayésien est un probléme trivial. Cependant, I’apprentissage
de la structure d’un réseau bayésien a partir de données est un probléme reconnu comme NP
difficile [3]. Pour un grand nombre de variables, I’apprentissage d’un réseau bayésien est en
pratique tres difficile non seulement &cause de la complexitécalculatoire, mais aussi acause de
la quantité de donnéss requises pour des problémes dont la dimensionalité est trés grande.

Souvent, le probléne de la dimensionalité est contournéen imposant des contraintes sur la
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structure comme c’est le cas avec les réseaux bayésiens naifs [4, 5], qui sont probablement les
plus répandus. Leur complexité calculatoire est relativement faible, n’ayant pas a effectuer un
apprentissage de la structure du réseau, et leur effacitéest trés souvent relativement bonne malgré

les hypothéses fortes qu’ils imposent.

Une des extensions des ré&seaux bayésiens nafs est le formalisme de réeaux bayésiens naf
arborescent (Tree-Augmented Nawe Bayes, ou TAN) [6]. Les TAN sont géé&alement plus
performants que les ré&seaux bayeésiens na'fs en permettant certaines formes de dépendance parmi
les attributs. Cependant, ils repondent n&@nmoins sur des hypothéses fortes qui peuvent les rendre
invalides en général. Du fait que les réseaux bayésiens ne font pas d’hypothéses fortes sur les
données, on s’attend que leur performance pour la classification soit meilleure que pour un ré&seau
bayésien naf ou un TAN [7]. Cependant, il faut noter que pour la t&he de classification,
seulement un sous-ensemble du réseau bayésien est effectif pour la prédiction, c’est-adire la
Couverture de Markov du nceud cible, MB;. Lorsque ce sous-ensemble MB, U {T} est utilisé
aux fins de classification, nous y réé&erons par MBC, c’est-adire le classificateur basésur la
Couverture de Markov. En géné&al, le classificateur MBC- est considé&ablement plus petit que le
réseau bayesien et sa performance est en thérie &uivalente acelle du ré&seau bayésien complet.
L’induction de MB et MBC sont deux problémes trés prés [’un de I’autre, bien que ’induction de

MB peut s’avérer étre une étape indéendante.

Cette these aborde le probleme de ’efficacité de 1’apprentissage de MB et MBC a partir d’un
échantillon de données limité. L’objectif premier est de fournir un algorithme général de
séection des variables, ou attributs, tel que requis pour diffé&entes t&hes de classification, ou
méne de forage de données. Notre premi&e contribution est de définir un algorithme qui
¢limine les attributs non pertinents d’un MB (ou MBC) sous [ 'hypothese de la fidélité (voir plus
loin), lorsque la Couverture de Markov d’une variable cible T est unique et composés des parents
de T (Par), de ses enfants (Chy) et de ses conjoints, ou spouses, (Spr) [2]. Selon notre revue
de la littérature, il existe au moins neuf travaux publiés depuis 1996 portant sur 1’apprentissage de
la couverture de Markov, c'est-adire depuis que le concept a &&démontréére le sous-ensemble

optimal d’attributs pour la prédiction et malgré le fait qu’il est connu depuis 1988 [1][2].

Tous les algorithmes connus peuvent &re regroupés en deux catégories : (1) ceux qui déendent

de la propriété d’indépendance conditionnelle (T, X|MB;), ouT est considééindéendant de
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toutes les autres variables &ant donnéles valeurs connues de MB;; et (2) les algorithmes qui
reposent sur I’information topologique, c’est-&dire la recherche des parents, enfants et conjoints
du nceud cible. TAMB [8] est I’exemple le plus représentatif des algorithmes du premier groupe.
Sa complexité calculatoire et son implémentation sont toutes deux d’une grande simplicité.
IAMB comporte deux phases: la phase de croissance et celle de deésroissance. Chaque phase
né&essite la véification de savoir si une variable X est indéendante de T &ant donné un
ensemble de nceuds candidats de la Couverutre de Markov, MBS, puis d’enlever ou d’ajouter des
nceuds de cet ensemble de candidats. PCMB [9] est la contribution la plus récente aux
algorithmes avant nos travaux et il est un exemple du second groupe. Ce fut en ré&litéle premier
et alors le seul algorithme dont la preuve a été faite qu’il peut induire la Couverture de Markov,

bien que ce n’est toutefois pas le seul qui s’est appuyé sur 1’information topologique pour le faire.

Malgré ces avancements, la recherche d’un algorithme qui peut a la fois garantir de recouvrer la
Couverture de Markov et le faire en un temps raisonnable et avec un ensemble de donné&s
réliste demeure un objectif non atteint. Par exemple, KS [1] est un algorithme approximatif (il
ne peut garantir de recouvrer la Couverture de Markov); IAMB est un algorithme simple qui peut
fournir cette garantie, mais il impose une quantité extraordinaire de données afin d’arriver a un
résultat acceptable pour des problémes pratiques; MMPC/MB [10] et HITON-PC/MB [11]
représentent les premiers essais pour améliorer D’efficacité en regard des données par
I’exploitation de données topologiques, mais il a été démontré qu’ils n’offrent pas la garantie de
recouvrer la Couverture de Markov [9]; PCMB a suivi la dé&ouverte de MMPC/MB et de
HITON-PC/MB, et ils peuvent effectivement fournir de bien meilleurs ré&ultats que IAMB pour
les mé&nes données. Cependant, PCMB est beaucoup plus lent que IAMB, et nos réultats
suggerent méme qu’il peut nécessiter plus de temps que 1’algorithme PC (voir Chapitre 4). Nous
proposons 1’algorithme IPC-MB [12-14] afin d’offrir une solution qui vise ala fois afournir des
résultats en un temps rapide et avec une quantitéde donnés ré&liste. Cet algorithme est de la
seconde catégorie, c’est-adire qu’il utilise 1’information topologique pour dériver la couverture

de Markov.

Tout comme les algorithmes MMPC/MB [10], HITON-PC/MB [11] et PCMB, 1’algorithme IPC-
MB divise I’apprentissage de MB; en deux phases séparées, I’induction de PCy et de Spy. Dans
la premiée phase, IPC-MB effectue une recherche pour trouver les voisins immé&liats du nceud et
elle est commune aux algorithmes PCMB, MMPC/MB et HITON-PC/MB. Cependant, alors que
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ces algorithmes effectuent une série de tests afin de déterminer si un nceud X n’est PAS
indépendant du nceud cible T éant donné&tous les ensembles possibles de conditions, ¢’est-&dire
~I(T,X|Z;) oUZ; < U\{T}, IPC-MB pré&sume initialement que toutes les variables du domaine
a I’exclusion de T (c.-ad. U\{T}) sont des candidats aPCy. Puis, ’algorithme élimine les
variables une aune si X est indépendant de T é&ant donné un ensemble de conditions Z;
quelconque. Parce que la majoritédes ré&eaux ne sont pas denses en pratique et que IPC-MB
commence par des ensembles conditionnels vides pour les €largir un noeud a la fois, il lui est
possible d’éliminer la majorité des faux candidats avec un petit ensemble de conditionnels, ce qui
entrame un gain en termes de calculs et de données néeessaires. Bien que certains descendants de
T peuvent demeurédans PC;, ils sont rapidement &iminé en ré&xecutant la mé&ne recherche
pour chaque X € PC$ (candidats de PCy qui est le réultat de la recherche pré&élente) afin de
déerminer si T € PC$. De plus, en reconnaissant que tous les conjoints sont contenus dans
I’union des résultats des recherches pour PCr, c.-&d. Uxepc, PC%, et que seulement les vé&itables

conjoints contenus dans PC$ seront dépendant de T conditionnellement a I’ensemble séparateur
trouvé pr&alemment plus X, une quantité importante de ressources est é&onomisé en

comparaison avec PCMB afin de d&iver Spy.

Nous faisons la preuve que ’algorithme TPC-MB est valide et comparons sa performance avec
les algorithmes qui sont actuellement 1’état de I’art, notamment [10], PCMB [9] et PC [15]. Les
expé&iences effectuées avec des &hantillons de donné&s géné&ées apartir de réseaux bayésiens
connus, notamment des réseaux de petites tailles comme Asia qui compte huit nceuds, des
réseaux moyenne envergure comme Alarm et PolyAlarm (une version polyarborescence, polytee,
de Alarm) avec 37 nceuds, et des réseaux plus grands comme Hailfinder (56 nceuds) et Test152

(152 neeuds). Nous mesurons la performance des algorithmes en termes de précision, rappel et de

distance (\/precisionz + distance?). Le temps de calcul est mesuréen termes de nombre de tests
d’indépendance conditionnelle (CI) et de nombre de passes qui doivent &re effectuées sur les
données (relectures des données), car une seule passe n’est généralement pas suffisante pour
mettre en cache toutes les fr&uences requises en ménmoire. Ces mesures sont couramment
utiliséss, car elles sont indépendantes du maté&iel utilis€et repré&entent la grande partie des

ressources calculatoires consommeées pour ce type d’algorithmes.
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Les ré&ultats démontrent que, IPC-MB fournit (1) un niveau de performance nettement supé&ieur
a IJAMB pour une quantité¢ d’observations équivalente, atteignant jusqu’a 80% en réduction de
distance (mesuré par rapport au résultat idél), (2) a une performance l&ge&ement sup&ieure a
PCMB et PC (toujours a quantité de données égales), (3) nécessite jusqu’a 98% moins de tests CI
que PC et 95% moins que PCMB, et (4) en moyenne les tests CI comportent un ensemble
conditionnel relativement plus petit par rapport alAMB et PCMB (ce qui est en bonne partie ala
source des am@iorations observees). Nous pouvons donc conclure que les stratégies
d’apprentissage de PCy et Spy adpotées pour IPC-MB sont trés efficaces et permettent un gain
significatif pour atteindre 1’objectif d’induire la Couverture de Markov avec un rapport r&liste de

temps et de données.

Etant donnéle ré&ultat de IPC-MB, c.-&d. MBy, les algorithmes conventionnels pour induire la
structure d’un réseau bayésien peuvent étre appliqués pour recouvrir MBC autre modification
puisque 1’apprentissage de MBr est indépendant d’eux. La complexité de I’apprentissage de la
structure devrait étre considérablement réduite en comparaison de 1’apprentissage induit de
I’ensemble des variables du domaine U. Nous avons ré&lis€éune autre éude dans le cadre de la
thése en appliquant I’algorithme PC pour I’apprentissage de la structure étant donné MBy,
I’algorithme IPC-MB+PC, et avons observeéun temps de calcul considé&ablement ré&luit. En fait,
le ré&ultat de IPC-MB peut étre considéré comme la sélection de variables d’un probléme et étre
utilis¢é dans un grand nombre d’algorithmes de prédiction. L’algorithme a d’ailleurs été
développé par P'auteur lorsqu’a I’emploi de SPSS en 2007 et il est actuellement intégré au

module Clémentine 12 pour d&iver un MBC.

Une seconde contribution de cette these est 1’extension de [PC-MB pour induire la structure d’un
MBC directement sans avoir a dériver ’ensemble du réseau bayésien au préalable comme la
solution IPC-MB+PC le fait, ce qui constitue une premiée anotre connaissance. Cet algorithme
est nommelPC-MBC (ou IPC-BNC dans une publication anté&ieure) [16]. Tout comme IPC-MB,

il repose sur une recherche locale afin de déterminer les voisins d’une variable.

Etant donnéune variable cible T € U et les données D, I’algorithme IPC-MBC peut &re divisé

en 5 étapes, apres une initialisation ou le nceud T est assigné a une liste de nceuds « Visités >3

Scanned={T}.
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Induction des liens entre T et PCS.IPC — MBC commence avec un graphe initial G dans
lequel T est connecté avec tous les nceuds autres nceuds de U, sans toutefois speifier de
direction aux liens. Puis, les noeuds dont le test CI indique une indépendance sont alors
considé&& non connectés. Les tests de Cl commencent avec un ensemble conditionnel vide
puis incrémentent cet ensemble d<un nceud a la fois jusqu’a ce que tous les tests possibles
soient effectués. A la fin du processus, 1’ensemble des neeuds connectés a T qui reste, PC%,
contient tous les liens entre T et PCr, les parents et enfants réls de T, mais il contient aussi

des faux positifs.

Elimination des faux positifs de PC%, ajout des liens entre tous les nceuds de PCS et
recueil des conjoints candidats. La seconde éape consiste aéablir un lien non-dirigéentre
tous les nceuds de PC$ aux autres nceuds de Y € U\Scanned, pour obtenir PC$ = {Y|(Y —
X) € G} (c.-&d. tous les Y connectés a un nceud quelconque Z dans G) . Puis la procélure
appliquée a I’étape 1 est répétée pour tout X € PCS afin d’éliminer les faux liens de
dépendance, aprés quoi chaque X est ajoutéala liste Scanned. A cette étape, I’ensemble des
liens non-dirigés et des nceuds restants forment un graphe G contenant (1) uniquement les
vé&itables parents et enfants de T (c.-&d. PCy, en pré&umant des tests Cl fidées) et (2) les
liens entre ces parents. Les liens adjacents aX € PC; sont donc des candidats conjoints,
Sps.

Identification des vé&ritables conjoints, Sp, ajout des liens entre conjoints eux-mémes et
entre les conjoints et les vé&ritables parents de T, PC;. Pour chaque X € PCy, on identifie
PC$, ou PCS =({Y|(X—Y) € G} et ol Sp% =Uy PCS . Puis, pour chaque VY €
PC$\Scanned, si Y est dependent de T conditionnellement &Sepset;y U {X}, alors Y est un
veritable conjoint de T, et nous obtenons une structureen V: Y - X « T. De plus, pour ce
Y, nous ajoutons des liens non orienté&s avec chaque Z € U\Scanned dans G. Finalement, la
procé&lure similaire permettant de déerminer les faux positifs de PCS tel qu’appliquée
pr&éalemment aux liens entre Y et Z € Sp; U PC, qui restent dans G. Comme chaque
ve&itable conjoint de Y est traitéde la méne fagn, tous les liens entre les conjoints, Sp,

seront identifiés, de mé&ne que ceux entre Sp; and PCy.

Elimination des nceuds n’appartenant pas a PC; et Sp;. L’étape précédente ajoute des

nceuds n’appartenant pas aPC, et Spy atravers le calcul de Spé =uUy PC$. Ces nceuds sont
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¢liminés par une procédure similaire a celle de 1’étape 2. Le graphe résultant G comprte
alors une structure proche de celle de MIBC, contenant certains liens dirigés obtenus a

travers la structure en V, et la majoriténon dirigés.

5. Orientation des liens. Une procé&lure relativement standard est appliguée aG obtenu de

I’étape précédente pour orienter tous les liens et obtenir la structure finale de MIBCr.

L’algorithme IPC-MBC est prouvécorrect. Lors de nos tests empiriques, nous avons compareésa
performance de classification (pré&eision, rappel et distance) et son efficience en termes de
nombre de tests Cl et de passes de données avec celles de PC et IPC-MB+PC (c.-ad.
I’apprentissage de la structure avec 1’algorithme PC appliqué sur le produit de IPC-MB). Les
mémes données que celles utilisées pour 1’étude de IPC-MB ont &édutilisés. Sans surprise, IPC-
MBC et IPC-MB+PC sont tous deux plus efficaces que PC, avec un gain de I’ordre de 95%, sans
perte au plan de la performance. D’autre part, IPC-MBC affiche un l&ger gain de performance
par rapport alPC-MB+PC. Quant ason efficacit& on ne peut garantir que IPC-MBC néessitera
moins de tests Cl que IPC-MB+PC, mais il né&essite moins de passes sur les données. Ces
différences peuvent s’expliquer du fait que IPC-MB et PC n’échangent aucune information
intermédiaire alors que IPC-MBC réutilise les mémes tests CI a la fois pour I’induction de la
structure comme pour la sélection des nceuds, ce qui lui confére une meilleure efficacité lors

d’une méme passe sur les données et influence sa performance.

Outre les deux contributions principales préentées, nous discutons de la question de fiabilitédes
tests Cl et de son influence sur le réultat des algorithmes, ainsi que des actions aprendre
advenant le cas de tests non fiables. Une piste derecherche inté&essante serait d'explorer le
comportement de IPC-MB sous un modeinspiréde la notion d'Oracle en tests logiciels [4]. Le
principe consiste asubstituer la valeur du test d'indéendance par le réultat “vrai”, c'est-adire le
résultat conforme au réseau Bayésien qui a servi agénéer les données alé&toires. Dans un tel
mode, deux hypothéses importantes sont alors forcés d'@re respectees : (1) celui de la fidgité
des donné&s au réeau sous-jacent et (2) la fiabilitédu test conditionnel est alors assuré&. Une
comparaison de la performance du mode “ Oracle” avec celle du mode de simulation original

permettrait ainsi d'explorer I'impact du non-respect des hypothéses sous-jacentes alPC-MB.

De plus, pour aborder la question de 1’efficacité qui demeure un probléme pour des applications

réelles, nous présentons uneesquisse d’un algorithme pour paralléiser IPC-MB et un autre d’une
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heuristique basé sur IPC-MB qui sont tous deux susceptibles d’améliorer la valeur pratique de
ce type d’algorithmes. Finalement, nous abordons la question d’appliquer des algorithmes pour la
recherche d’une structure basee sur le score plut@ que sur des tests CI. Le score correspond ici &
la probabilité d'observer la distribution donné é&ant donné un réeau bayeésien. Quoique
considé&é comme une approche prometteuse, leur cott calculatoire éait jusqu’ici 1’obstacle
majeur qui a briméla recherche de telles solutions. En effet, le nombre de topologies possibles de
réseau bayésien croT de fagn trés rapide en fonction du nombre de variables et devient
rapidement impossible atraiter apres quelques dizaines de variables et m&ne moins. Mais en
considé&ant que IPC-MB réluit considérablement la dimensionalité de 1’espace probléme et qu’il
nous permet de fixer certains liens entre , et , alors les algorithmes basés sur le score peuvent

effectuer un gain d’efficacité important en les combinant avec IPC-MB.
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RESUME

La sdection de variables est un probléene de premi&e importance dans le domaine de
I'apprentissage machine et le forage de données. Pour une t&he de classification, un jalon
important du développement de strategies s@ection de variables a &éatteint par Koller et Shamai
[1]. Sur la base des travaux de Pearl dans le domaine des ré&eaux bayeésiens (RB) [2], ils ont
démontré que la couverture de Markov (CM) d'une variable nominale représente le sous-

ensemble optimal pour prélire sa valeur (classe).

Difféents algorithmes ont &é&développé& pour d'induire la CM d'une variable cible apartir de
données, sans pour autant né&essiter I'induction du RB qui inclue toutes les variables potentielles
depuis 1996, mais ils affichent tous des problémes de performance, soit au plan de la complexité

calculatoire, soit au plan de la reconnaissance.

La premiee contribution de cette thése est le développement d'un nouvel algorithme pour cette
t&he. L'algorithme IPC-MB [9-11] permet d'induire la CM d'une variable avec une performance
qui combine les meilleures performances en terme de complexité calculatoire et de
reconnaissance. IPC-MB effectue une recherche ité&ative des parents et enfants du noeud cible
en minimisant le nombre de variables conditionnnelles des tests d'indépendance. Nous prouvons
que l'algorithme est théariquement correct et comparons sa performance avec les algorithmes les
mieux connus, IAMB [12], PCMB [13] et PC [14]. Des expé&iences de simulations en utilisant
des donné&s gen&eées de réeaux bayésiens connus, asavoir un réeau de petite envergure, Asia,
contenant huit noeuds; deux réeaus de moyenne envergure, Alarm et PolyAlarm de 37 noeuds,
et deux réseaux de plus grande envergure, Hailfinder contenant 56 noeuds et Test152 contenant
152 noeuds.

Les résultats dénontrent qu'avec un nombre comparable d'observations, (1) IPC-MB obtient une
reconnaissance nettement plus éevée que IAMB, jusqu'a80% de réluction de distance (par
rapport aun réultat parfait), (2) IPC-MB a une reconnaissance l&&ement sup&ieure que PCMB
et PC, et (3) IPC-MB néeessite jusqu'a98% moins de tests conditionnels que PC et 95% de moins

qgue PCMB (le nombre de tests conditionnels repréente la mesure de complexitécalculatoire ici).

La seconde contribution de la thése est un algorithme pour induire la topologie du RB constitué
des variables de la CM. Lorsqu'une CM d'une variable cible forme un RB, ce ré&eau est alors

considé&écomme un classificateur, nommeéune Couverture de Markov de Classification (MBC).
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L'algorithme a &&nomme&IPC-MBC sur la base du premier algorithme, IPC-MB. A l'instar de
IPC-MB, l'algorithme IPC-MBC effectue une sé&ie de recherches locales pour diminer les faux-
negatifs, incluant les noeuds et les arcs. Cependant, sa complexitéest sup&ieure et requiert des
ressources calculatoires plus importantes que IPC-MB. Nous prouvons que IPC-MB est
thériquement et effectuons des é&udes empiriques pour comparer sa performance calculatoire et
de reconnaissance par rapport aPC seul et PC combiné alPC-MB (c.-ad. I'induction de la
structure du RB avec l'algorithme PC seul et avec PC appliquésur le résultat de IPC-MB). Les
ménes donnés que pour les exp&iences de simulation de IPC-MB sont utilisées. Les résultats
démontrent que IPC-MBC combinéalPC-MB et que PC combinéalPC-MB sont tous deux plus
efficaces que PC seul en termes de temps de complexitécalculatoires, fournissant jusqu'a95% de
réluction du nombre de tests conditionnels, sans pour autant avoir d'impact au plan du taux de

reconnaissance.
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ABSTRACT

Feature selection is a fundamental topic in data mining and machine learning. It addresses the
issue of dimension reduction by removing non-relevant, or less relevant attributes in model
building. For the task of classification, a major milestone for feature selection was achieved by
Koller and Sahami [1]. Building upon the work of Pearl on Bayesian Networks (BN) [2], they

proved that a Markov blanket (MB) of a variable is the optimal feature subset for class prediction.

Deriving the MB of a class variable given a BN is a trivial problem. However, learning the
structure of a BN from data is known to be NP hard. For large number of variables, learning the
BN is impractical, not only because of the computational complexity, but also because of the data

size requirement that is one of the curses of high dimensionality feature spaces.

Hence, simpler topologies are often assumed, such as the Naive Bayes approach (NB) [5, 6],
which is probably the best known one due its computational simplicity, requiring no structure
learning, and also its surprising effectiveness in many applications despite its unrealistic
assumptions. One of its extension, Tree-Augmented Naive Bayes (TAN) [7] is shown to have a
better performance than NB, by allowing limited additional dependencies among the features.
However, because they make strong assumptions, these approaches may be flawed in general.
By further relaxing the restriction on the dependencies, a BN is expected to show better
performance in term of classification accuracy than NB and TAN [8]. The question is whether we
can derive a MB without learning the full BN topology for the classification task. Let us refer to a
MB for classification as a Markov Blanket Classifier, MBC. The MBC is expected to perform as
well as the whole Bayesian network as a classifier, though it is generally much smaller in size

than the whole network.

This thesis addresses the problem of deriving the MBC effectively and efficiently from limited
data. The goal is to outperform the simpler NB and TAN approaches that rely on potentially
invalid assumptions, yet to allow MBC learning with limited data and low computational

complexity.

Our first contribution is to propose one novel algorithm to filter out non-relevant attributes of a
MBC. From our review, it is known that there are at least nine existing published works on the

learning of Markov blanket since 1996. However, there is no satisfactory tradeoff between
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correctness, data requirement and time efficiency. To address this tradeoff, we propose the IPC-
MB algorithm [9-11]. TPC-MB performs an iterative search of the parents and children given a
node of interest. We prove that the algorithm is sound in theory, and we compare it with the state
of the art in MB learning, IAMB [12], PCMB [13] and PC [14]. Experiments are conducted
using samples generated from known Bayesian networks, including small one like Asia with
eight nodes, medium ones like Alarm and PolyAlarm (one polytree version of Alarm) with 37
nodes, and large ones like Hailfinder (56 nodes) and Test152 (152 nodes). The results
demonstrate that, given the same amount of observations, (1) [IPC-MB achieves much higher
accuracy than IAMB, up to 80% reduction in distance (from the perfect result), (2) [IPC-MB has
slightly higher accuracy than PCMB and PC, (3) IPC-MB may require up to 98% fewer
conditional independence (CI) tests than PC, and 95% fewer than PCMB. Given the output of
IPC-MB, conventional structure learning algorithms can be applied to recover MBC without any
modification since the feature selection procedure is transparent to them. In fact, the output of
IPC-MB can be viewed as the output of general feature selection, and be employed further by all
kinds of classifier. This algorithm was implemented by the author while working at SPSS and
shipped with the software Clementine 12 in 2007.

The second contribution is to extend IPC-MB to induce the MBC directly without having to
depend on external structure learning algorithm, and the proposed algorithm is named IPC-MBC
(or IPC-BNC in one of our early publication) [15]. Similar to IPC-MB, IPC-MBC conducts a
series of local searches to filter out false negatives, including nodes and arcs. However, it is more
complex and requires greater computing resource than [PC-MB. IPC-MBC is also proved sound
in theory. In our empirical studies, we compare the accuracy and time cost between [IPC-MBC,
PC and IPC-MB plus PC (i.e. structure learning by PC on the features output by IPC-MB), with
the same data as used in the study of IPC-MB. It is observed that both IPC-MBC and IPC-MB
plus PC are much more time efficient than PC, with up to 95% saving of CI tests, but with no loss

of accuracy. This reflects the advantage of local search and feature selection respectively.
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Chapitre 1 INTRODUCTION

1.1 Feature selection

Prediction, or classification, on one particular attribute in a set of observations is a common data
mining and machine learning task. To analyze and predict the value of this attribute, we need to
first ascertain which of the other attributes in the domain affect it. This task is frequently referred
to as the feature selection problem. A solution to this problem is often non-trivial, and can be

infeasible when the domain is defined over a large number of attributes.

In 1997, when a special issue of the journal of Artificial Intelligence on relevance, including
several papers on variable and feature selection, was published, few domains explored used more
than 40 features [16, 17]. The situation has changed considerably in the past decade: domains
involving more variables but relatively few training examples are becoming common [12, 13, 18].
Therefore, feature selection has been an active research area in the pattern recognition, statistics
and data mining communities. The main idea of feature selection is to select a subset of input
variables by eliminating features with little or no predictive information, but without sacrificing
the performance of the model built on the chosen features. It is also known as variable selection,
feature reduction, attribute selection or variable subset selection. By removing most of the
irrelevant and redundant features from the data, feature selection brings many potential benefits

to us:

» Alleviating the effect of the curse of dimensionality to improve prediction performance;

» Facilitating data visualization and data understanding, e.g. which are the important features

and how they are related with each other;
» Reducing the measurement and storage requirements;
» Speeding up the training and inference process;
» Enhancing model generalization.

A principled solution to the feature selection is to determine a subset of features that can render

of the rest of the features independent of the variable of interest [1, 12, 13]. From a theoretical



perspective, it can be shown that optimal feature selection for supervised learning problems
requires an exhaustive search of all possible subsets of features, the complexity of which is
known as exponential function of the size of whole features. In practice, the target is demoted to a

satisfactory set of features instead of an optimal set due to the lack of efficient algorithms.

Feature selection algorithms typically fall into two categories: Feature Ranking and Subset
Selection. Feature Ranking ranks all attributes by a metric and eliminates those that do not
achieve an adequate score. Selecting the most relevant variables is usually suboptimal for
building a predictor, particularly if the variables are redundant. In other words, relevance does not
imply optimality [17]. Besides, it has been demonstrated that a variable which is irrelevant to the
target by itself can provide a significant performance improvement when taken with others [17,
19].

Subset selection, however, evaluates a subset of features that together have good predictive
power, as opposed to ranking variables according to their individual predictive ability. Subset

selection essentially divides into wrappers, filters and embedded [19].

In the wrapper approach, the feature selection algorithm conducts a search through the space of
possible features and evaluates each subset by utilizing a specific modeling approach of interest
as a black box [17], e.g. Nawe Bayes or SVM . For example, a Nawe Bayes model is induced
with the given feature subset and assigned training data, and the prediction performance is
evaluated using the remaining observations available. By iterating the training and cross-
validation over each feature subset, wrappers can be computationally expensive and the outcome

is tailored to a particular algorithm [17].

Filter is a paradigm proposed by Kohavi and John [17], and it is similar to wrappers in the search
approach. A filter method computes a score for each feature and then select features according to
their scores. Therefore, filters work independently of the chosen predictor. However, filters have
the similar weakness as Feature Ranking since they imply that irrelevant features (defined as

those with relatively low scores) are useless though it is proved not true [17, 19].

Embedded methods perform variable selection in the process of training and are usually specific
to given learning algorithms. Compared with wrappers, embedded methods may be more
efficient in several respects: they make better use of the available data without having to split the

training data into a training and validation set; they reach a solution faster by avoiding retraining



a predictor from scratch for every variable subset to investigate [19]. Embedded methods are
found in decision trees such as CART, for example, which have a built-in mechanism to perform

variable selection [20].

1.2 Classification benefits from feature selection

In the classic supervised learning task, we are given a training set of labeled fixed-length feature
vectors, or instances, from which to induce a classification model. This model, in turn, is used to
predict the class label for a set of previously unlabeled instances. While, in a theoretical sense,
having more features should give us more discriminating power, the real-world provides us with

many reasons why this is not generally the case.

Foremost, many induction methods suffer from the curse of dimensionality. That is, as the
number of features in an induction increases, the time requirements for an algorithm grow
dramatically, sometimes exponentially. Therefore, when the set of features in the data is
sufficiently large, many induction algorithms are simply intractable. This problem is further
exacerbated by the fact that many features in a learning task may either be irrelevant or redundant
to other features with respect to predicting the class of an instance. In this context, such features

serve no purpose except to increase induction time.

Furthermore, many learning algorithms can be viewed as performing (a biased form of)
estimation of the probability of the class label given a set of features. In domain with a large
number of features, this distribution is very complex and of high dimension. Unfortunately, in the
real world, we are often faced with the problem of limited data from which to induce a model.
This makes it very difficult to obtain good estimates of the many parameters. In order to avoid
over-fitting the model to the particular distribution seen in the training data, many algorithms
employ the Occam’s Razor [13] principle to build as simple a model as possible that still
achieves some acceptable level of performance on the training data. This guide often leads us to

prefer a small number of relatively predictive features over a large number of features.

If we could reduce the set of features considered by the algorithm, we can therefore serve two
purposes. We can considerably decrease the running time of the induction algorithm, and we can
increase the accuracy of the resulting model. In light of this, effort has been put on the issue of

feature subset selection in machine learning as we mentioned in last section.



1.3 Bayesian Network, Markov blanket and Markov blanket

classifier

Let X be the set of features, and T as the target variable of interest. U is used to refer our problem
domain, and it is composed of Xand T, i.e. U= XU {T}. A Markov blanket of T is any subset
of X that renders T statistically independent from all the remaining attributes (see Definition 7.4).
Koller and Sahami [1] first showed that the Markov blanket of a given target is the theoretically
optimal set of attributes to predict its class value. If the probability distribution of U = X U {T}
can be faithfully (see Definition 1.3) represented by a Bayesian network (BN, see Definition 1.1)
over U, then the Markov blanket of T is unique, just equal to its Markov boundary(see
Definition 7.4), and it consists of the union of the parents, children and spouses of T in the
corresponding BN [2]. Besides, the partial Bayesian network over the Markov blanket of T plus
T itself is called Markov blanket classifier, or Bayesian network classifier (see Definition 1.5).
Figure 1-1 illustrates a Bayesian network, Markov blanket of T and Markov blanket classifier

with T as the target (or class).

Definition 1.1 (Bayesian Network) A Bayesian network consists of a directed acyclic graph

(DAG) G an a set of local distributions. G is composed of nodes V and edges E, i.e. G = {V,E}.

Definition 1.2 (Conditional Independence) Two sets of variables, X and Y, are said to be
conditionally independent given some set of variables Z if, for any assignment of values x, y and
z to the variables X, Y and Z respectively, P(X =x|Z =2z Y=y) = P(X =Xx|Z = z). Thatis, Y
gives us no information about X beyond what is already in Z. We use (X, Y|Z) in the remaining

text to denote this conditional independence relationship.

Definition 1.3 (Faithfulness Condition) A Bayesian Network G and a joint distribution P are
faithful to one another iff. every conditional independence entailed by the graph G and the

Markov Condition is also present in P [2].

Definition 7.4 (Markov blanket) A Markov blanket of an attribute T € U is any subset F of
U\{T?} for which T is conditionally independent with U\F\{T} given the values of F. A set is

called a Markov boundary of T if none of its proper subsets satisfy this condition.



Definition 1.5 (Markov blanket classifier) Given a Bayesian network G over the target variable
T and attributes {X;}, the partial DAG over T U MB; is called the Markov Blanket Classifier, or
Bayesian Network Classifier about T, and denoted as MIBC; or BNC.

Definition 1.6 (Markov Condition) Given the value of parents, X is conditionally independent
with all its non-descendants, denoted as NDy, excluding its parents Pay, i.e. I((X,NDy\
Pay|Pay,).

Theorem 1.1 If a Bayesian network G and a joint distribution P are faithful to one another, then
for every attribute T € U, the Markov blanket of T is unique and is the set of parents, children

and spouses of T.
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Figure 1-1: An example of a Bayesian network. The parents and children of T are the variables in
gray, while MB, additionally includes the textured-filled variable O. The partial network over

MB, and T are the Markov blanket classifier about T as class.

Let Pa;, Ch; and Sp denote the parents, children and spouses of T respectively, the Markov
blanket of T, denoted as MB, then is the union of Pa;, Ch; and Sp (see Theorem 1.1), i.e.
MB; = Pa; U Ch; U Spy for short. Given this knowledge, MB; of any T € U is easily to be
obtained if the Bayesian network over U is known. However, having to learn the Bayesian
Network G in order to learn MB; can be painfully time consuming [21]. Hence, how to learn
MB; but without having to learn the BN first became the goal of many who are interested to

apply Markov blanket as feature selection.

Bayesian network, Markov blanket and Markov blanket classifier concepts are closely related
given the faithfulness assumption. They will be frequently mentioned in the remaining text since

our goals are efficient learning of Markov blanket and Markov blanket classifier. Chapitre 2 to



Chapitre 5 are about the learning of Markov blanket given a target of interest. The Markov
blanket is important because

» It is the optimal feature subset for the prediction of T, and feature selection is an important

data preprocessing step for most machine learning and data mining tasks;

» 1t is closely related to the Markov blanket classifier since the later is just a DAG over MBy
and T. Understanding this concept well will be helpful to understand our work on Markov

blanket classifier;

» Given the Markov blanket of T, all existing structure learning algorithms of Bayesian
network are applicable to induce the Markov blanket classifier. Since the feature space is
greatly reduced, the remaining structure learning is expected to be much more efficient than

using all features directly;

» Our algorithm for inducing the Markov blanket classifier of T is an extension of our

algorithm on the induction of Markov blanket.

We return to the concept of Markov blanket classifier Chapitre 6.

1.4 KS and related algorithms

Following Koller and Sahami’s work (KS), many others also realized that the principled solution
to the feature selection problem is to determine a subset of features that can render the rest of all
other features independent of the variable of interest [12, 13, 18, 21, 22]. Based on the findings
that the full knowledge of MB is enough to determine the probability distribution of T and that
the values of all other variables become superfluous, we normally can have a much smaller group
of variables in the final classifier, reducing the complexity of learning and resulting with a

simpler model, but without sacrificing classification performance [2, 3, 4].

Although Koller and Sahami theoretically proved that Markov blanket is the optimal feature
subset for predicting the target, the algorithm as proposed by them for inducing MB; is
approximate, guaranteeing no correct outcome. There are several attempts to make the induction
more effective and efficient, including GS (Grow-Shrink) [23, 24], IAMB (lterative Associative
Markov Blanket) and its variants [12, 18, 22], MMPC/MB (Max-Min Parents and



Children/Markov Blanket) [21], HITON-PC/MB[25], PCMB(Parent-Child Markov Blanket
learning) [13] and our own work [10, 11, 26, 27], IPC-MB (lterative Parents-Children based
search of Markov Blanket), which will be discussed later. To our best knowledge, this list
contains all the published primary algorithms. In next chapter, we will review these MB local
learning algorithms in terms of theoretical and practical considerations, based on our experience
gained from both academic research and industry implementation.

1.5 Motivation, contributions and overall structure

This project was initiated during my time in SPSS® (http://www.spss.com, acquired by IBM in

2009), where they needed a component of Bayesian Network for classification on widely

deployed Clementine® (http://www.spss.com/software/modeling/modeler/, now named as PASW

Modeler®). The greatest merit of a Bayesian Network is that its graphical model allows us to
observe the relations of the variables involved, which is very important for diagnosis application.
However, this component is designed primarily for classification, i.e. predicting the state of some
target variable given input features, instead of general modeling. Regarding this goal, Pearl and
Koller’s works tell us that only the Markov blanket is effective in the prediction, which means
that the partial Bayesian Network over the target and its Markov blanket is enough. This partial
Bayesian Network is called Markov Blanket Classifier (MBC) or Bayesian Network Classifier
(BNC) by us, to distinguish it from the whole Bayesian Network. It has all the merits of a general
Bayesian Network, but it is “customized” for classification. In a naive way, we can induce the
Bayesian Network over all input variables first, and then extracting the MBC becomes trivial.
This is possible and it requires no extra research effort, all existing conventional algorithms for
the structure learning of Bayesian Network are there for reference. However, the learning of
Bayesian network is known as an NP-complete problem, and the complexity grows exponentially
in term of the number of inputs and the number of states of each individual input [3]. Therefore,

the goal is to induce the MBC directly without having to learn the Bayesian Network first.

Koller and Sahami opened a new window, and many more fruitful studies have been done, along
with many published outcomes. Given a bag of features U, these algorithms allow the induction
of MB; without requiring to know the Bayesian Network over U in advance. With MB, the
problem space generally is greatly reduced in dimension; besides, all existing algorithms for the
structure learning of Bayesian Network are applicable, and they are expected to yield the
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Bayesian Network structure over MB,. More importantly, due to the feature selection, all
conventional structure learning algorithms are expected to solve larger scale of problems given
the same computing resource. However, our review and experiments with all published
algorithms on Markov blanket induction indicate that none of them was ideal, at least in the early
2007. Some of them may not yield the correct result; some may be efficient in time, but not data
(or sample) efficient, which means that it requires large amount of data to produce satisfactory

result; some of them may be quite data efficient, but quite poor in time efficiency.

Our first contribution is to propose a competitive algorithm for the local learning of Markov
blanket. It is named as IPC-MB [10, 11, 27] since it is built on a series of iterative discovery of
parents and children. IPC-MB is proved correct, and it is shown as much more data efficient than
IAMB, and much more time efficient than PCMB, two well known algorithms for inducing MB .
As compared with PC [14, 28], one most known algorithm for the structure learning of BN, IPC-
MB demonstrates obvious advantage as one requiring only local search, achieving great gain in
time efficiency. IPC-MB was designed by myself for the induction of Markov blanket in the

Bayesian Network component and implemented in Clementine® in 2007.

The second contribution extended IPC-MB to get IPC-MBC, which allows us to get the target
Markov blanket classifier via efficient local search. It is called IPC-MBC since it also depends on
the iterative discovery of parents and children, but it is more complex than IPC-MB because that
it cares of not only to find MB; but also the links existing among nodes of MB; U {T}. In our
experiments, we compare IPC-MBC with not only PC, but IPC-MB+PC which calls IPC-MB to
do feature selection first, and then depends on PC to finish the structure learning over MB;. The
results show that although they have close performance on accuracy, IPC-MBC and IPC-MB+PC
are much more time efficient than PC. Therefore, they are expected with better scalability.

So, we started with the problem of feature selection in classification application, and reviewed
the family of algorithms on inducing Markov blanket. IPC-MB was proposed to compete with all
existing similar ones, with exciting relative performance gained. Then, we went further to
propose two effective and efficient algorithms for learning Markov blanket classifier, making full
use of the knowledge and experience gained. In addition, we also study the combination of IPC-
MB plus PC, and the results indicate that feature selection by IPC-MB not only greatly reduces

the complexity of structure learning, but the overall timing cost. All these parts actually are



closely related. Efficiency, especially the data or sample efficiency, was emphasized all along the

project since we always view the practical value as a very important evaluation criterion.

The remaining chapters of the thesis are organized as follows:

>

A thorough review regarding the algorithms on learning Markov blanket is done in Chapter 2,

which allows us to have in mind a comprehensive map about the existing work;

In Chapter 3, a novel algorithm, called IPC-MB, for efficient learning of Markov blanket is
proposed, including its motivation, specification, proof, complexity analysis and more
discussion. It is categorized as local learning since it enables us to find the Markov blanket of
target without having the whole Bayesian network known first, and it is expected to be the
most data efficient among similar works, which is critical for algorithms built on statistical

tests;

Then, in Chapter 4, a series of empirical studies with data sampled from classical real
networks are presented to give a comparison between IPC-MB and existing classical work,
including IAMB, PCMB and PC algorithms, in term of accuracy, time and data efficiency.

Besides, necessary implementation details are covered to make the results reproducible;

A comprehensive trade-off analysis discussion about IAMB, PCMB, IPC-MB and PC is
made in Chapter 5, including theoretical assumption, search strategy, data efficiency, time
efficiency, potential scalability, information induced and implementation issues. All these
factors are important for practical usage, so the discussion is believed valuable reference for

applicants as well as researchers who are interested on this topic;

In Chapter 6, we further propose an algorithm to learn the Markov blanket classifier without
having to learn the whole Bayesian network first. It’s called IPC-MBC, and it built on our
knowledge and experience gained on previous work, especially IPC-MB. Experimental study
is conducted over PC, IPC-MB+PC (which depends on IPC-MB to realize feature reduction
first, then apply PC algorithm to finish the structure learning) and IPC-MBC with real
networks, and the results indicate that both IPC-MB+PC and IPC-MBC achieve the similar
accuracy as PC, but with much less cost on computing resource. With structure ready, the

parameter learning is trivial, hence it is not covered in our discussion;



» Chapter 7 is a conclusion of the whole thesis as well as perspectives of our works.
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Chapitre 2 REVIEW OF ALGORITHMS FOR MARKOV BLANKET
LEARNING

Since Koller and Sahami’s work in 1996 [1], there have been several efforts to make the learning
procedure more efficient and effective. In this chapter, we will briefly review those known
published works, including KS, GS, IAMB and its variants, MMPC/MB, HITON-PC/MB and
PCMB. Because all these algorithms, including our own work, require faithfulness assumption
(KS is an exception since it does not require this assumption), and depend on statistical
(in)dependence test, we first discuss these two concepts in Section 2.1 and Section 2.2

respectively. Sections 2.3 to 2.8 are contributed for reviewing of those known published works.

2.1 Faithfulness Assumption

Faithfulness (see Definition 1.3) is an important concept that can be traced back to Pearl’s work
on Bayesian network in 1988 [2], and it is the most critical assumption as required by algorithms
covered in the discussion here, including our own work but with KS as an exception. In its
original texts [2, 29], Pearl et al. explained that, with the assumption of faithfulness, every
distribution has a unique causal model (up to equivalence), as long as there are no hidden
variables. This uniqueness follows from the fact the structural constraints that an underling DAG
imposes upon the probability distribution are equivalent to a finite set of conditional
independence relationships asserting that, given its parents, each variable is conditionally

independent of all its non-descendents.

As we mentioned in last chapter, with this assumption, the Markov blanket also becomes unique,
and is composed of the target’s parents, children and spouses. Therefore, faithfulness builds a
connection between probability distribution and graph structure. In the future discussion, we will
demonstrate how PCMB and our work, IPC-MB, make use of this topology to increase the data

efficiency which is known as the most disadvantage of GS, IAMB and their variants.

Lucky enough, the vast majority of distributions are faithful in the sample limit. Besides, for a
number of different parametric families, the set of parameters that lead to violations of the

faithfulness asssumption are Lebesgue measure 0 [28, 30].
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2.2 Statistical dependence and independence

All algorithms covered here depend on asking for the true of independence relationships of the

form:
I1(X,Y|Z)

where Z is a subset of variables excluding X and Y. It can work with any source providing this
kind of information. If we have a data set, this is answered by means of statistical tests of
independence.

Among those works covered in this project, KS and IAMB employ cross entropy to measure the
dependency, while the others choose Pearson’s conditional independence y? or G2 test [31]. We

would like to introduce them briefly respectively here.

2.2.1 Cross-entropy

If X and Y are random variables with joint probability distribution P, the cross entropy between

them is defined as:

P(x,y) )

CE(X, Y) = ;P(X,y)lOg <WP(}1)

Given three variables X, Y and Z, the cross entropy of X and Y given Z defined as:

P(x,y|2) )

CEQLYIZ) = ) P() ) P(x y1)log (oo s
Z x,y

This value is also called the mutual information. It can be analogously defined when Z is a set of
variables. It verifies similar properties to unconditional entropy, and it measures the degree of
dependence of X and Y given Z. In particular, it is equal to 0.0 when this conditional

independence is verified.

2.2.2 Pearson’s Chi-Square test

Pearson’s chi-square (yx?) is the best-known of several chi-square tests, statistical procedures
whose results are evaluated by reference to the %2 distribution. It can be used to access two types

of comparison: tests of goodness of fit and tests of independence.
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The 2 statistic is calculated by finding the difference between each observed and theoretical
frequency, denoted as O and E respectively, for each possible outcome, squaring them, dividing
each by the theoretical frequency, and taking the sum of the results. A second important part of

determining the test statistic is to define the degrees of freedom of the test.

In the test of independence, an “observation” consists of the values of two outcomes and the null
hypothesis is that the occurrence of these outcomes is statistically independent. Each observation
is allocated to one cell of a two-dimensional array of cells according to the values of the two
outcomes. If there are r rows and c columns, and totally n cells in the table, the theoretical
frequency for a cell, given the hypothesis of independence, is

_ Yk=1 Oik Xk=1 Ok,j
n

El,j
(1.1)

and fitting the model of “independence” reduces the number of degrees of freedom by d = r +

¢ — 1. The value of the test-statistic is

zr ZC (01— Ey)’
i=1 4= j=1 E;;

(1.2)

The number of degrees of freedom is equal to the number of cells rc, minus the reduction in

degrees of freedom, d, which reduces to (r — 1)(c — 1).

For the test of independence, the x2, a probability > 0.05 is commonly interpreted as
justification for rejecting the null hypothesis that the row variable is unrelated to the column

variable.

The %2 test requires minimal cell sizes. A common rule is 5 or more in all cells of a 2-by-2 table,
and 5 or more in 80% of cells in larger tables, but no cells with zero count. When this assumption

is not met, Yates’ correction is applied (refer to next section).

2.2.3 Chi-Square test with Yates correction

The approximation to the 2 distribution breaks down if expected frequencies are too low. It will

normally be acceptable so long as no more than 10% of the events have expected frequencies
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below 5. Where there is only 1 degree of freedom, the approximation is not reliable if expected
frequencies are below 10. In this case, a better approximation can be obtained by reducing the
absolute value of each difference between observed and expected frequencies by 0.5 before
squaring, and this is called Yates’ correction for continuity. The following is Yates’ corrected

version of Pearson’s 2 statistic:

zr ZC (loy; — Eij| - 05)°
i=14—j=1 E;

(1.3)

2.2.4 G?* Test

In cases where the expected value, E, is found to be small (indicating either a small underlying
population probability, or a small number of observations), the normal approximation of the
multinomial distribution can fail, and in such cases it is found to be more appropriate to use the

G2, a likelihood ratio-based test statistic.

The commonly used chi-squared tests for goodness of fit to a distribution and for independence
in contingency tables are in fact approximations of the log-likelihood ratio on which the G? tests
are based. This approximation was developed by Karl Pearson because at the time it was unduly
laborious to calculate log-likelihood ratios. Due to the introduction of computers, however, G?2

tests are coming into increasing use.

The general formula for G2 corresponding to equation (1.2) is

0i;

El,]
where In denotes the natural logarithm and the sum is taken over all non-empty cells. Given the
null hypothesis that the observed frequencies are random sampling from a distribution with the

given expected frequencies, the distribution of G is approximately that of 2, with the same

number of degrees of freedom as in the corresponding y? test.

For samples of a reasonable size, the G2 test and the y? test will lead to the same conclusions.

However, the approximation to the theoretical y? distribution for the G? test is better than for the
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Pearson y?2 tests in cases where for any cell |0; — E;|/E; > 1, and in any such case the G2 test

should always be used [32].

2.2.5 Our Choice

In our implementation, the G2 test is chosen based on the following knowledge gained from our

own review and experimental studies:

1. It is preferred by similar research work [13, 21], and we want to produce a comparable

results;

2. It produces better results than Pearson y? test with or without Yates correction in our

empirical studies, especially when sample size is relatively small.
Besides, in our implementation, a test I, (X, Y|Z) will be ignored if

N

>k
|X| X Y] X [1z,ez |Zi]

(15)

where N is the total number of observations available, | X| and |Y| are the number of value that X
and Y can have respectively, and k is an empirical threshold value. This in-equation gives an
empirical standard to decide if a test is reliable or not, that is the minimum average number of
observations available in each cell of a contingency table should be at least k. In all our
experiments we choose k = 5 because, as suggested by Agresti [31], this is the minimum average
number of instances per cell for the G statistic to have y? distribution, and it is applied by several
similar published works like Fast-IAMB [22] and PCMB [13].

Note: (1) G2 test is employed in the implementation of all algorithms studied in our experiments
for fair comparison purpose; (2) In our implementations, I, (X,Y|Z) < & means that X and Y are
conditionally dependent given Z, while I, (X,Y|Z) > ¢ indicates that X and Y are conditionally

independent given Z.

2.3 KS (Koller and Sahami’s Algorithm)

In the following sections, we will review the algorithms introduced for deriving an MB, starting

with the earlier ones and towards the most sophisticated and latter ones.
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Koller and Sahami proposed a framework for optimal feature selection by measuring and
minimizing the amount of predictive information lost during feature elimination [1]. They also
proposed an approximate algorithm based on their theoretical model, and this algorithm is
referred to as KS by many since then. KS is the first algorithm for feature selection to employ
the concept of Markov blanket, and it accepts two parameters, (1) the number of variables to
retain, i.e. the limit of the target Markov blanket, and (2) the maximum number of variables it is
allowed to condition on. Both settings are useful to reduce the search space, but obviously, it is a

heuristic and approximate algorithm, not always guaranteeing correct outcome.

Basically, KS is a filter algorithm which does not incur the high computational cost of conducting
a search through the space of feature subsets as in the wrapper methods, and is therefore efficient
for domains containing hundreds or even thousands of features. Although it is theoretically sound,
the KS algorithm itself will not always produce correct outcomes. In this section, how KS works

will be described with a little more detail.

Although this algorithm is simple and easy to implement, it is clearly suboptimal in many ways,
particularly due to the very na'we approximations that it uses. Koller and Sahami also discussed
some ways to possibly improve the result, and more importantly, they point out that increasing
the size of the conditioning set would fragment the training set into small chunks, and result with
a degradation on performance. Though it was noticed as early as in 1996, this problem was not
conquered by latter algorithms, until the introduction of PCMB.

2.4 GS (Grow-Shrink)

The Grow-shrink (GS) [23, 24] algorithm was proposed to induce the structure of Bayesian
network via the discovery of local neighbours, i.e. Markov blanket of each node. The GS
algorithm actually contains two independent components, GSMB and GSBN. GSMB is
responsible to induce the Markov blanket of a variable, and GSBN is employed to induce the
whole Bayesian network by using the knowledge supplied by GSMB. Therefore, when we
mention GS in the context of Markov blanket learning, in fact, it is called GSMB in the original
literature. In this thesis, we will continue the usage of GS to refer to GSMB considering that no

ambiguity will be introduced.
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GS employs independence properties of the underlying network to discover parts of its structure,
just like the SGS and PC algorithms [14, 28]. However, the design of GS enables it to addresses
the two main shortcomings of the prior work which are preventing its use from becoming more
widespread. These two disadvantages are: exponential execution time and proneness to errors in
dependence tests used. The former problem is addressed in [23, 24] in two ways. One is by
identifying the local neighbourhood of each variable in the Bayesian network as a pre-processing
step in order to facilitate the recovery of the local structure around each variable in polynomial
time under the assumption of bounded neighbourhood size. The second, randomized version goes
one step further, employing a user-specified number of randomized tests (constant or logarithmic)
in order to ascertain the same result with high probability. The second disadvantage of this
research approach, namely proneness to errors, is also addressed by the randomized version, by

using multiple data sets (if available) and Bayesian accumulation of evidence.

Although the concept of the Markov blanket is not new, GS is known as the first to explicitly use
this idea to effectively limit unnecessary computation while inducing the underlying Bayesian
network. GS(MB) itself is simple, and it proceeds in two phases: grow first, shrink secondly (see
Figure 1-2).

Here, U denotes the complete set of variables. The idea behind the growing phase is simple: as
long as the Markov blanket property of T is violated, i.e. there exists a variable in U that is
dependent on T, it is added to S until there are no more such variables. In this process however,
there may be some variables that were added to S that were really outside the blanket. Such
variables would have been rendered independent from T at a later point when all Markov blanket
nodes of the underlying Bayesian network were added to S. This observation necessitates the
shrinking phase, which identifies and removes those variables. Finally, what is left in S is known
the Markov blanket of T, MB;.

Theorem 1.2 Given the assumption of faithfulness and correct independence test, GS induces the
correct Markov blanket [23, 24].

The algorithm is efficient, requiring only O(n) conditional tests. One may minimize the number
of tests in shrinking phase by heuristically ordering the variables in the loop of growing phase,
for example by ascending mutual information or probability of dependence between X and Y. In

[23, 24], Margaritis and Thrun also proposed one randomized version of GS algorithm to solve
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problems involving large amount of variables or variables with many possible values. It requires
manually defined parameter to reduce the number of conditional tests, so it cannot guarantee

correct output, and it is ignored without further discussion.

GS(T: Target, D: Dataset, : Significance Value)

{
1. MBS < {};

//Growing phase
2. repeat
3. stillGrow < false;
4. for(vX € U\MB£\{T}) do
5. If (I,(T.X|MB£) < ¢) then
6. MBf£ « MBE u {X3:
7. stillGrow « true;
8. end if
9. end for
10. until stiliGrow = false

Shrinking phase

11. repeat

12. stillShrink < false;
13. for(vX € MBf) do

14, if (I,(T, X|MBE — {X}) > &) then
15. MBS < MBE&\{X}:

16. stillShrink < true;

17. end if

18. end for

19. until stiliShrink = fasle
20. return MBS;

}

Figure 1-2: Grow-shrink (GS) algorithm.

2.5 1AMB and Its Variants

25.1 IAMB

Following KS and GS algorithms, Tsamardinos et al. proposed a series of algorithms for inducing
the Markov blanket of a variable T of interest without having to learn the whole Bayesian

network first. All of these works are based on same two assumptions as required by GS: 1) the
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data are generated by processes that can be faithfully represented by BNs, and 2) there exist

reliable statistical tests of conditional independence and measures of associations for the given

variable distribution, sample size and sampling of the data.

{
1.

o goni e o

}

10.
11.
12.
13.
14,
15.
16.
17.
18.
19.

IAMB(T: Target, D: Dataset, £: Significance Value)

MBS = {};
//Growing phase
repeat

stillGrow < false;

YV« argmax,e mes I,(T,X|MB$);

If (I,(T.Y|MB£) < ¢) then
MB£ « MBS u {X}:
stillGrow « true;

end if

until stiliGrow = false
‘Shrinking phase
repeat

stillShrink < false;

for(vX € MBf) do
If (I,(T,X|MBE — {X}) > ¢) then

MBS < MBS\ {X}:
stillShrink < true;
end if
end for
until stiliShrink = fasle
return MBS;

Figure 1-3: IAMB algorithm

The primary algorithm proposed by Tsamardinos et al. is called Incremental Association Markov

Blanket, or IAMB (Figure 1-3). IAMB consists of two steps, a forward and a backward one,

which actually is akin to the growing and shrinking phases in GS. This algorithm relies on an

independence test, I,(+), that is considered true (or succeeded) if it is smaller or equal than a

threshold and false (failed) otherwise. It is important that I,,(-) is an effective test so that the set

of candidate variables after Phase | is as small as possible for two reasons: one is time efficiency

(i.e., do not spend time considering irrelevant variables) and another is sample efficiency (do not
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require sample larger than what is necessary to perform conditional tests of independence). Since
this step is based on the heuristic at line 5, some nodes not in MB; may be added to MBS as well.
In Phase 11 (backward), we remove one-by-one the features that do not belong to MB; by testing

the whether a feature X € MB is independent of T given the remaining MBS (lines 10-18).

IAMB algorithm is structurally similar to GS algorithm, and follows the same two-phase
structure. However, there is an important difference: GS may order the variables when they are
considered for inclusion in phase I, according to their strength of association with T given the
empty set [23, 24] (this appears in the discussion for better performance in the original text, but
not in Figure 1-2). It then admits into MBS the next variable in the ordering that is not
conditionally independent from T given the current MBS. One problem with this heuristic is that
when the MBS contains spouses of T, the spouses are typically associated with T very weakly
given the empty set and are considered for inclusion in the MBS late in the first phase
(associations between spouses and T are only through confounding/common descendant variables,
thus they are weaker than those ancestors’ associations with T). In turn, this implies that more
false positives will enter MBS during phase | and the conditional tests of independence will
become unreliable much sooner than when using IAMB’s heuristic. In contrast, conditioned on
the common children, spouses may have strong association with T and, when using IAMB’s

heuristic, and enter the MBS early.

2.5.2 InterlAMBNnPC

Tsamardinos et al. recognized and pointed out explicitly that the smaller the conditioning test
given a finite sample of fixed size, the more accurate are the statistical tests of independence and
the measure of association [12, 18, 21]. In other words, to have a reliable decision given
independence test of high degree, we need a large amount of instances for training. Though
IAMB provides guarantees on correctness theoretically, it is only suited for the cases where the
available sample size is large enough to perform condition independence tests as conditioned on
the full MB; or even larger set. Some variants are therefore proposed to decrease the critical
requirement of data size, which just reflects the authors’ emphasis on the practical value of their

work.
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InterlAMBNPC is one such variant aiming to further reduce the size of the conditioning sets [18].
It employs two methods for this goal: (1) it interleaves the growing phase of IAMB with the
pruning phase attempting to keep the size of MBS as small as possible during all steps of the
algorithm’s execution; (2) it substitutes the shrinking phase as implemented in IAMB with the PC
algorithm instead [14], a Bayesian Network learning algorithm that determines directed edges

between variables in a more sample-efficient manner.

Two other IAMB variants experimented in [12, 18] are InterlAMB and IAMBNPC which are
similar to InterlAMBNPC but they employ only either interleaving the first two phases or using
PC for the backward phase respectively. Considering that they have no fundamental difference
compared to Inter AMBNPC, no more space is consumed for further introduction of these two

algorithms.

2.5.3 Fast-lIAMB

Fast-IAMB was proposed in 2005, and it is also built on the two assumptions: faithfulness and
correct independence test [22]. Similar to GS and IAMB, Fast-IAMB contains a “growing” phase
and a “shrinking” phase. During the growing phase of each iteration, it sorts the attributes that are

candidates for admission to MBS from most to least conditionally dependent, according to a
heuristic function k (corresponding to I (+) in IAMB; it is mutual information in IAMB, but G2

conditional statistical test here). Each such sorting step is potentially expensive since it involves
the calculation of the G? test static between T and each member of S. The key idea behind Fast-
IAMB is to reduce the number of such tests by adding not one, but a number of attributes at a
time after each reordering of the remaining attributes following a modification of the Markov
blanket. Fast-IAMB speculatively adds one or more attributes of highest G2 test significance
without re-sorting after each modification as IAMB does, which (hopefully) adds more than one
true member of the blanket. Thus, the cost of re-sorting the remaining attributes after each

Markov blanket modification can be amortized over the addition of multiple attributes.

The question arises: how many attributes should be added to the blanket within each iteration?
The following heuristic is used in [22]: dependent attributes are added as long as the conditional
independence tests are reliable, i.e. there is enough data for conducting them. For this purpose, a

numeric parameter k is used to denote the minimum average number of instances per cell of a
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contingency table that should be present for a conditional independence test to be deemed reliable.

Please refer to section 2.2.5 for the discussion of a reliable test and the choice of k.

Fast — IAMB(T': Target, D: Dataset, : Significance Value)

MBS < {J;
S—{XIXeU\{T}and I,(T.X) < ¢);
while(S={ })do
< X,,...X|s| >« S sorted according to I;;
insuf ficient _data < false;
//Growing phase
6. for(i=1to|S|)do

0 oohy W et

7. if(—————) = k then

TP Xary

MBS « MBS U {X};

9. else
10. insuf ficient_data < true;
11. go to 14  /* insufficient data*®
12. end if
13. end for

// Shrinking phase

14, stillShrink « fasle;
15. for(vX € MB£f)do

16. if (I, (T, X|MBS — {X}) then

17. MBS < MBS\ (X}

18. stillShrink < true;

19. end if

20. end for

21. if(insuf ficien_data = true and stillShrink = false) do
22. break:

23. else

24. S « {X|X € U\MBE\{T} and I,(T. X|MBE) < £)};
25. end if

26. end while

27. return MB§,

1

Figure 1-4: Fast-IAMB algorithm.

The authors of Fast-IAMB also answer explicitly one practical question that the authors of IAMB
didn’t mention in their work [18], namely what is to be done if the average number of instances
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per cell for each remaining attribute is less than k? In this case, one has two choices: assume
dependence or assume independence. While assuming dependence might seem to be the “safe”
choice, in practice this would result in large blankets that are hard to justify and of little practical
use. Therefore, independence is assumed in [22], which results in halting (Line 22, Figure 1-4)

and returning the current blanket. This is followed in our implementation as well.

In conclusion, Fast-IAMB follows the previous work of GS and IAMB, especially Inter-IAMB
by interleaving growing and shrinking. To realize a fast induction, greedy strategy is employed in
growing by adding as many candidates as possible if allowed. Compared with IAMB, it
emphasizes more the practical value of the algorithm, which is highly desired for practitioners.
Although the authors declared it is fast and it is indeed demonstrated by their experiments relative
to IAMB and Inter-IAMB, we consider that doubt remains about this point since more statistical
tests are possibly expected in the shrinking phase if more false positive ones are added in the

growing state.

2.6 MMMB (Max-Min Markov Boundary algorithm)

Starting with KS, and followed by much effort, several efficient algorithms to induce the Markov
blanket given a target T of interest have been proposed. However, none of them ever make use of
the underlying topology information to improve the efficiency, especially the data efficiency,
given the faithfulness assumption. The Max-Min Markov Blanket (MMMB) algorithm is
proposed here to improve data efficiency over previously known algorithms for inducing Markov
blanket, because the sample requirements of MMMB depend on the connectivity and topology of
the Bayesian network faithful to the data, but the others depend on the size of the learned Markov
blanket.

2.6.1 Bayesian Network and Markov Blanket

Since the underlying topology information will possibly help to increase the performance of MB
induction algorithms, we revisit theoretical considerations and introduce additional background
knowledge about Bayesian networks. A Bayesian network is a graphical tool that compactly
represents a joint probability distribution P over a set of random variables U using a directed
acyclic graph (DAG) G annotated with conditional probability tables of the probability

distribution of a node given any instantiation of its parents. The graph represents qualitative
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information about the random variables (conditional independence properties), whiles the
associated probability distribution, consistent with such properties, provides a quantitative
description of how the variables relate to each other. An example of BN is shown in Figure 1-1.
The probability distribution P and the graph G of a BN are connected by the Markov Condition

property: a node is conditionally independent of its non-descendants, given its parents.

As its name indicates, DAG is formed by a collection of vertices and directed edges, each edge
connecting one vertex to another, such that there is NO way to start at some vertex X and follow
a sequence of edges that eventually loops back to X again [33]. Each DAG gives rise to a partial
order < on its vertices, where X <Y if there exists a directed path fromY to X. X <Y, in fact,
means that X is a descendant of Y, and its formal definition is given with Definition 1.7 for later
reference. Each DAG has a topological ordering, an ordering of the vertices such that the starting
endpoint of every edge occurs earlier in the ordering than the ending endpoint of the edge. In
general, this ordering is not unique; A DAG has a unique topological ordering if and only if it has
a directed path containing all the vertices, in which case the ordering is the same as the order in

which the vertices appear in the path [28, 33, 34].

Definition 1.7 (Descendant) Y is a descendant of X, if there exists a directed path from X to Y,
but there exists no directed path from Y to X. The set of descendants of X is denoted with Desy

in the remaining text.

Definition 1.8 (Non-Descendant) Given all variable set U, those other than descendants are

known as non-descendants of X, denoted as NDy. NDy = U\Desy .

As mentioned above, if we know the Bayesian network over U in advance, it is trivial to get the
MB of interest. The partial structure over {T} U MB is also a directed acyclic graph (DAG);

recall that, for any X € U and X € MB, it has to satisfy one of the two graphical constraints:

1. Either X is connected to T directly, more specifically X - T or T — X, when X is parent or
child of T; or,

2. X shares some common child(ren) Y with T, i.e. X - Y « T, when X is known as the spouse
of T.

D-separation is the criterion that allows computation of the entailed independence in a Bayesian

network from the Markov Condition [2]. D-separation is defined on the basis of blocked paths:
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Definition 1.9 Collider node and Blocked path. A node X of a path p is a collider if p contains
two incoming edges into X (e.g., W in Figure 1-1 is a collider in the path 0 - W « T). A path p
from node X to node Y is blocked by a set of nodes Z, if any of the following is true: (1) There is
a non-collider node on p that belongs to Z; (2) No collider nodes of p and none of their

descendants belong in Z.

Definition 1.10 d-separation Two nodes X and Y are d-separated by Z if and only if every path
from X to Y is blocked by Z, and it is denoted as d — sep(X,Y|Z).

Theorem 1.3 If a Bayesian network G is faithful to a distribution P, then d — sep(X,Y|Z) &

1(X,Y|Z), i.e. the conditional independence relation in P is equal to d-separation in G.

With the theorem presented and the faithfulness assumption, the terms d-separation and

conditional independence are used interchangeably in the rest of the article.

By performing independence tests and considering the d-separation relations they entail, one can
reconstruct the Bayesian network corresponding to the distribution. This is the main idea behind
constraint-based, or Cl test-based, Bayesian network learning approaches [8, 14, 23, 24, 35, 36].
The following theorem in [14, 28] is foundational for both PC and MMMB algorithm here:

Theorem 1.4 If a Bayesian network G is faithful to a joint probability distribution P then:

1. There is an edge between the pair of nodes X and Y in G iff X and Y are conditionally

dependent given any other set of nodes;

2. For each triplet of nodes X, Y and Z in G such that X and Y are adjacent to Z but X is not
adjacent to Y, X - Z « Y is a subgraph of G iff. X and Y are dependent conditioned on

every other set of nodes that contains Z.

The first part of the theorem allows us to infer the existence of edges or not, and the second part
to determine the known v-structure which actually allows us to determine the orientation of

related arcs.

Given the faithfulness assumption, the Markov blanket of T, MB;, can be defined either
probabilistically (as the minimal set conditioned on which every other node is independent is

independent of T') or graph theoretically (as the set of parents, children, and spouses of T).
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Definition 1.11 Markov Blanket (Probabilistic viewpoint) Given the faithfulness assumption,
the Markov blanket of T, MB;, is a minimal set conditioned on which all other nodes are
independent of T, i.e. VX € U\MB;\{T}, I(X,T|MBy).

Definition 1.12 Markov Blanket (Graphical viewpoint) Given the faithfulness assumption, the
Markov blanket of T, MBy, is identical to T’s parents, children and children’ parents (spouses),

Before MMPC/MB, algorithms like IAMB and GS only depend on the (in)dependence property
as derived from Definition 1.11 to recognize positive as well as false positive ones, though the
property as contained in Definition 1.12 was known. Compared with previous works,
MMPC/MB works in a different way. It is built on the basis of Theorem 1.4, and the induction
of target MB; is divided into the recognition of PC;(= Pa; U Ch;) and Sp separately. It
depends on a series of conditional independence tests, like I(X,Y|Z), to decide if there exists
edge between X and Y. Generally, Z is smaller than MB, hence MMPC/MB finds a novel way to
achieve better data efficiency than GS and IAMB. Actually, HITON, PCMB and our IPC-MB are
all proposed on the basis on this important finding.

2.6.2 D-separation

Since d-separation is frequently referred during our proof, in this section, we step further to
introduce how to determine if node X is d-separated from Y, which is equal to determine

conditional independency given faithfulness assumption.

Bayesian networks encode the dependencies and independencies among variables. Under the
causal Markov assumption, each variable in a Bayesian network is independent of its ancestors
given the values of its parents [2], which permits us to infer some conditional independence
relationships. For the general conditional independence in a Bayesian network, Pearl proposed a
concept called d-separation [2]. D-separation, as short for direction-dependent separation, is a
graphical property of Bayesian networks and has the following implication: If two sets of nodes
X and Y are d-separated in Bayesian networks by a disjoint set Z (i.e. XNYNZ = @), the
corresponding variable sets X and Y are independent given the variables in Z. The definition of d-

separation (Definition 1.10) tells us that X and Y are d-separated by a disjoint set Z iff. every
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undirected path between XandY, ie. X —--Z--—Y , is “blocked”, where X € X, Y € Y and

Z € Z. The term “blocked” means:

» Either the connection through Z is “tail-to-tail” or “tail-to-head” and Z is instantiated, i.e.

Z EZ;or

» The connection through Z is “head-to-head” and neither Z nor any of Z’s descendants has
received evidence, i.e. Z € Z.

The graph patterns of “tail-to-tail (diverging)”, “tail-to-head (serial)” and ‘head-to-head

(converging or collider)” are shown as below (Figure 1-5):

—(D— O—@— O—GO—D
®)

(1) Q)
tail-to-tail, or tail-to-head, or head-to-.head, or
divergiing pattern serial pattern converging pattern

Figure 1-5: Three possible patterns about any path through a node in Bayesian network

With the definition of d-separation, and the three graphical patterns as demonstrated in Figure 1-5,
we are interested in proving I(T, U\MB;\{T}|IMB;) from the viewpoint of d-separation, i.e.
MB. d-separates T from U\MB;\{T}, and MB. is the minimal such set given faithfulness

assumption.

Theorem 1.5 Given the faithfulness assumption, the minimal set of nodes which d-separates the

node T from all other nodes is T’s Markov blanket.
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Figure 1-6: The Markov blanket of T (includes P(arents), C(hildren) and S(pouses)) d-separates

all other nodes given faithfulness assumption.

Proof. MB; contains T ’s parents, children and spouses, which are represented with grayed
circles and denoted as P, C and S respectively in Figure 1-6. Those X ¢ MB but are connected
to P, C or S are represented by circles with dotted edge. In total, there are five possible such
cases, denoted as X;, X,, X3, X, and X< respectively, and we will explain how they are all d-
separated from T, given the precondition that the whole MB; are instantiated (denoted as grayed

circles):

1. X, —» S - C « T: There exists serial (tail-to-head) pattern (X; —» S — C) on this path, and S

is instantiated , so this path is “blocked”’;

2. X, = P > T: This path is “blocked” due to the existing of serial(tail-to-head) pattern with P

instantiated;

3. X3 « § > C « T: There exists diverging(tail-to-tai)l pattern (X3 « S — C) on this path, and

S is instantiated , so this path is “blocked’’;

4. X, < P — T: This path is “blocked” due to the existing of diverging(tail-to-tai)l pattern with

P instantiated;
5. X5« C « T: This path is “blocked” is due to the existing of serial(tail-to-head) pattern.

Given any X ¢ MBy, we have to “visit” Xq, X5, X3, X, or X5 (Figure 1-6), and then some P, C or
S before accessing T. Then, although there may exist many possible paths from X to T, each of
them must contain some pattern(s) of the 1-5 as listed above; hence, we can infer that each of the
possible path will be “blocked”, and X is d-separated from T. Therefore, we conclude that MB
d-separates T from all X ¢ MB.

The proof that MB is the minimal set is trivial by contradiction, and ignored here. I

Therefore, d-separation actually bridges the semantic gap between the distribution and the
graphical model, based on the faithfulness assumption. With d-separation, we are able to infer

more conditional independence from the underlying DAG, in addition to the known Markov

property.
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2.6.3 MMPC/MB Algorithm

The overall Max-Min Markov blanket (MMMB, Figure 1-7) algorithm is composed of two steps.
First, it discovers PC; by MMPC(T). Then it attempts to identify Spy. Any X € Sp; is known as
the parent of some child(ren) of T, which suggests that they should belong to Uyepc, PCy, i.€. the
union of the parents and children of the parents and children set. However, this union set,
MB¢(Line 3 of MMMB), also includes the children of the children of T, the parents of the
parents of T, and the children of the parents of T. Thus, it is a superset of MB;, and those false

positives need to be filtered out.

MMPC(T: Target, D: Dataset, &: SignificanceValue) MMMB(T': Target, D: Dataset, : SignificanceValue)
{ {
/add candidate true positives to PC§ add true positives to MB
1. PCf<{ } I. PC, < MMPC(T):
2. repeat 2. MB; <« PC;;
3. for(wX € U\PCE\{T})do 3. MBf « (PCy Upe, MMPC(X)\(T},
4. Sepsetry < argming pcclp (T, X|Z); add more true positives to MB,
- ) " 4. for(wvX € MBS\PC;) do
5. Y —argmax,qy pee iy (T. XISepsetry); 5. find any Z\st.lD(T, X|Z)> candT.Y € Z:
6. if (I,(T.Y|Sepset ;) < ¢)then 6. for(vY € PC,) do
7. PCS «PCEu {V}: A if(I,(T.X|Zu {Y} < &)then
8. end if 8. MB. < MB; u{X}:
0. until PCS does not change 9. end if
/iremove false positives from PCE 10. end for
10. for(vX € PCE)do 11. end for
11. if(I,(T.X|Z) = &, for someZ c PCE\{X}) then 12. return MB;;
12. PCE < PCE\{X}: }
13, end if
14. end for
15. return PCE;
}

Figure 1-7: MMPC/MB algorithm

Given X € Spy but not adjacent to T, it has the following property: conditioned on any subset
that includes a common child (or children), X and T are dependent (Theorem 1.4, part 2). This
property is not owned by the false positives in MBS, so it can be used to filter them out. One
problem with checking the property directly is that we do not know which nodes in PC; are

actually children. Another problem is that it is inefficient to condition on all possible subsets.
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Fortunately, MMMB overcomes both of these problems. First, it identifies a subset Sepsetr x
that d-separates X from T (Line 5, MMPC), and caches it for later reference. Now if there is a
variable Y € PCy, such that ~I(X, T|{Y} U Sepsetr x), then Y has to be a child of T and X has to
be a spouse of T. This is from the definition of the d-separation. The reverse also holds, so if
there is no node Y for which the condition holds, X cannot be a spouse of T and it can be filtered

out.

Tsamardinos et al. falsely proved in [21] that, under the assumptions of faithfulness and correct
(in)dependence test, the output of MMPC is PC; In practice, MMMB performs a test if it is
reliable and skips it otherwise. MMMB follows the same criterion as IAMB and Fast-IAMB to
decide whether a test is reliable or not. MMMB is data efficient because the number of instances
required to identify MB, does not depend on the size of MB; but on the topology of G. The
experiments done in [21] shows that the algorithm is able to scale to problems with thousands of

features, which actually reflects its merit of data efficiency.
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Figure 1-8: Two examples that MMPC/MB produces incorrect results

However, Pena et al. showed that MMPC does not guarantee to produce correct PCy [13]. They
pointed out that the flaw in the proof is the assumption that if X ¢ PCy, then I(X, T|Z) for some
Z = PC; and thus, any node not in PC; that enters PC at line 7 is removed from it at line 12.
This is not always true for the descendants of T, and it could be illustrated by running MMPC(T)
with data faithful to the DAG(a) in Figure 1-8. Neither P nor R enters PCS at line 7 because
I(T,P|®) and I(T,R|®). Q enters PC& because T is not independent for all Z such that T, Q ¢ Z.
S enters PC% because ~I(T, S|®) (since the path T — Q « S is NOT blocked) and ~I(T, S|Q)
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(since the path T - Q « P - R — S is NOT blocked). Then PC& = {Q, S} at line 9. Neither Q
nor S leaves PCS at line 11. Consequently, the output of MMPC includes S which is not in PCy ;
therefore, MMPC does not guarantee the correct output under the faithfulness assumption. This
example also illustrates that (1) partial MB; can not completely shield T completely from outside
variables; (2) if we have MB; = {Q, P}, then all the paths from T to {R, S} will be blocked; (3)

there is no subset of such MB to satisfy this condition.

Furthermore, Pena et al. showed that MMMB is not always true even if MMPC were correct
under the faithfulness assumption. With DAG (b) in Figure 1-8, let us assume that MMPC is
correct under the faithfulness assumption. Then, MB; = PC; = {Q, S} and MB¢ = {P,Q,R, S} at
line 3 (of MMMB). P enters MB at line 8 if Z = {Q} at line 5, because (1)both P - Q — T and
P - R —> S « T are blocked with instantiated @, which means that I(T, P|Q) (line 5); With
Z ={Q}, ~I(T,P|{Q} U {S}) since the path P - R = S « T is NOT blocked with instantiated S
(line 7). Consequently, the output of MMMB can include P which is not in MB; and, thus,
MMMB does not guarantee the correct output under the faithfulness assumption even if MMPC

were correct under this assumption.

In [40], Tsamardinos et al. identify the flaw in MMPC and propose a corrected MMPC (CMMPC,
Figure 1-9). The output of MMPC must be further processed in order to obtain PC;, because it
may contain some descendants of T in G other than its children. Fortunately, these nodes can be
easily identified: If X is in the output of MMPC(T), then X is a descendant of T in G other than
one of its children iff T is in the output of MMPC(X). However, as shown above, correcting
MMPC does not ensure MMMB is correct.

Different from IAMB and GS, which condition on the full candidate MB (CMB), MMPC or
CMMPC tries all subsets of the candidate PC, (CPC) or CMB in an attempt to d-separate all
nodes not in the local neighborhood. Obviously, conditioning on the full CMB instead of all
subsets of it significantly reduces the time complexity, but the sample requirements of the
algorithms also increase exponentially. Therefore, MMPC/MB is the first valuable effort to
improve the data efficiency of such category of algorithms, though it doesn’t always produce

correct outcome.
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CMMPC(T: Target, D: Dataset, ¢: SignificanceValue)

{

L. PCE=1}

2. for(vX € MMPC(T))do
3. if (T € MMPC(X))then
4 PCE < PCE U (X}
5 end if

6. end for

Figure 1-9: CMMC, Corrected MMPC

2.7 HITON-PC/MB

HITON [25](pronounced “hee-ton, it is from Greek, means “cover”, “cloak” or “blanket”) is also
the work by the authors of IAMB, and can be viewed as an effort to further make the induction of
Markov blanket more data efficient to meet the challenge in the biomedical field where sample
sizes are typically limited (and often sample-to-variable ratios are very small). HITON also
requires the same two assumptions as its ancestors IAMB: faithfulness and correct

(in)dependence tests.

HITON — PC(T: Target, D: Dataset, : SignificanceValue) | HITON — MB(T': Target, D: Dataset, : SignificanceValue)
{ {
L. PE.<F % add true positives to MB
2. PCf « U\{T} 1. PC. < HITON — PC(T);
3. repeat " ‘
//add the best candidate to PC, 2. MBS < (PC; Userc, HITON = PCCD)\(TY
4. Y <arg mmxepcgl (T X10): remove false positives from MBS
S. PC,. «PC. u{Y}; 3. for(vX € MBf) do
6. PCE < PCE\{V): 4. for(vY e PC.)do
//remove false positives from PCE <% if(I,(T,X|ZU {Y} > ¢ for some Z = (U\{T, X, Y}))then
7. for(vX e PC;)do 6. MB{ « MBS\ {{X}:
8. if(I;(T. X|Z) > = for some Z = PC. \{X})then | 7. end if
9 PC. « PC \{X} 8. end for
10. end if 9. end for
11.  end for 10. return MBS
12. until PCf « {} }
13. return PC;:
}

Figure 1-10: HITON-PC/MB algorithm

HITON works in a similar manner as MMMB. It first identifies the parents and child of T by
calling HITON-PC and, then identifying the rest of the parents of the children of T in G via
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HITON-MB (Figure 1-10). HITON-PC is similar to MMPC, with the exception that the former
interleaves the addition of the nodes in PC$ to PC(lines 4-6) and the removal from PC$ of the
nodes that are not in PC; but that have been added to PC$ by the heuristic at line 4 (lines 7-11).
Note also that this heuristic is simpler than the one used by MMPC because the conditioning set
is always the empty set. Aliferis et al. proved in [25] that, under the assumptions of faithfulness
and correct independence test, the output of HITON-PC is PC;. However, this is not always true.
The flaw in the proof is the same as that in the proof of correctness of MMPC. Running HITON-
PC(T) with D faithful to the DAG (a) in Figure 1-8 can produce the same incorrect result as
MMPC(T). Obviously, the flaw in HITON-PC can be fixed in the exactly the same way as the

flaw in MMPC was fixed above.

Figure 1-10 outlines HITON-MB. The algorithm receives the target node T as input and returns
MB; in MBS as output. HITON-MB is similar to MMMB. The algorithm works in two steps.
First, PC; and MB¢ are initialized with PC; and (PCy Uxepc, PCx)\{T} respectively, via the
call of HITON-PC(T) (lines 1-2). Second, the nodes in MBS that are neither in PC; nor have a
common child with T in G are removed from MBS (Lines 3-9). This step is based on the
following observation. If X € MB$ and Y € PC;, then X must be removed from MBS iff
I(T,X|Z U {Y}) for some Z such that T,X & Z. Aliferis et al. also prove that the output of
HITON-MB is MB; [25]. However, this is not always true even if HITON-PC were correct
under the faithfulness assumption. The flaw in the proof is the observation that motivates the
second step of HITON-MB, which is not true. This is illustrated by running HITON-MB(T) with
D faithful to the DAG(b) in Figure 1-8. Let us assume that HITON-PC is correct under the
faithfulness assumption. Then PC; = {Q,S} and MB% = {P,Q,R,S} at Line 3. P and R are
removed from MB at line 6 because Q € PCr, I(T,R|Q) and I(T,P|Q). Therefore, MBS =
{Q, S} at line 10. Consequently, the output of HITON-MB does NOT contain R, the spouse of T.
Thus, HITON-MB does not guarantee the correct output even if HITON-PC were correct.

The experiments done in [25] show that the algorithm is able to scale to problems with thousands
of features. Though it is not always correct, HITON-PC/MB still is recognized as another
meaningful effort for an efficient learning algorithm of Markov blanket discovery without having

to learn the whole Bayesian network.
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2.8 PCMB

2.8.1 Motivation and Theoretical Foundation

Although neither MMPC/MB nor HITON-PC/MB is sound in theory, they represent a novel
direction of learning Markov blanket in a more economic and practical manner, i.e. improving the
efficiency of data usage by making use of the underlying topology information. This is
considered as a great progress compared with all previous works, and it makes it possible for this
kind of algorithm to work in many modern applications where high dimension is involved but
collecting training data may be costly. Even for scenarios with relatively large volume of data,
reducing the degrees of freedom of statistical tests may also increase the reliability of the results.
Following this path, Pena & al who are the first ones to point out the flaw of MMPC/MB and
HITON-PC/MB proposed a similar but sound algorithm, called PCMB (Parents and Children
based Markov Blanket algorithm) [13]. It relies on the same two assumptions as required by
MMPC/MB and HITON-PC/MB: faithfulness and correct statistical test. Similarly, PCMB
induces MB via the recognition of direct connection, i.e. parents and children about any variable
of interest, just like MMPC/MB and HITON-PC/MB do, which may explain where its name

comes from.

Some background knowledge and theory about Bayesian network are covered in section 2.6.1. In
this section, additional theorems necessary for the explanation and proof are presented for later
reference, considering that our work is built on the same set of theoretical basis.

Theorem 1.6 Let X,Y,Z and W denote four mutually disjoint subsets of U. Any probability
distribution P satisfies the following four properties: (1) symmetry I(X,Y|Z) = [(Y,X|Z), (2)
decomposition I(X,YU W|Z) = I(X,Y|Z), (3) weak union IX,YUW|Z) = IX Y|ZUW),
and (4) contraction I(X,Y|ZU W) AI(X,W|Z) = I(X,Y UW|Z). If P is strictly positive, then
P satisfies the previous four properties plus the intersection property I(X,Y|ZU W) A
IX,W|ZUY)=I(X,YUW|Z). If Pis faithful to a DAG G, then P satisfies the previous five
properties plus the composition property I(X,Y|Z) A I(X,W|Z) = I(X,Y U W|Z) and the local
Markov property I(X, NDy\Pay|Pay), where NDy denotes the non-descendants of X, and Pay
for the parents of X [2, 28].
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To make later references easier, we abstract those related properties of a probability distribution
faithful to a DAG G as:

Corollary 1.1 LetX,Y,Z and W denote four mutually disjoint subsets of U. Any probability
distribution P faithful to a DAG G satisfies the following seven properties: (1)
symmetry I(X,Y|Z) = (Y, X|Z), (2) decomposition I(X,Y U W|Z) = (X, Y|Z), (3) weak union
IX,YUW|Z)=> IX,Y|ZUW), and (4) contraction I(X,YIZUW)AIX,W|Z) = I(X, YU
W|Z; (5) intersection I(X,YIZUW)AIX,WIZUY)=I(X,YUW|Z); (6) composition
IXY|IZ)ANI(X,W|Z) = [(X,Y UW|Z); (7) local Markov property I(X,NDy\Pay|Pay).

2.8.2 Algorithm Specification

PCMB identifies PCy using the subroutines GetPC, and GetPC calls GetPCD to get the
candidates. GetPCD receives the target node T as input and returns a superset of PC; in
GetPCD.PCD (for easy reference, we attach the procedure name in front of the variable) as
output. This superset contains false positives, nodes that do not belong in PC;. The algorithm
tries to minimize the number of false positives, and it repeats three steps until GetPCD. PCD does
not change. First, some false positives are removed from GetPCD.CanPCD (lines 4-11). This
step is based on the observation that X € PCy iff ~I(T, X|Z) for all Z such that T, X ¢ Z. Second,
the candidate most likely to be in PC;is added to GetPCD.PCD and removed from
GetPCD.CanPCD (lines 12-15). Since this step is based on the heuristic at line 13, some false
positives may be added to PCD as well. Some of these nodes are removed from GetPCD.PCD in
the third step (lines 16-23). This step is based on the same observation as the first step. In
GetPCD, the separator set corresponding to T and X (if there is, as found at Line 6 and 18) is

cached and denoted with Sepsetr .

Theorem 1.7 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution P
faithful to a DAG G, GetPCD(T) returns a superset of PC; that does not include any node in
ND;\Pa; [13].

The output of GetPCD may still contain some descendants of T in G other than its children.
These nodes can be easily identified. If X is in the output of GetPCD(T), then X is a descendant
of T in G other than one of its children iff T is not in the output of GetPCD(X). GetPC, which is
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outlined in Figure 1-11, implements this observation, and its correctness is proved by the author,
see Theorem 1.8.

GetPCD(T': Target, D: Dataset, ¢: SignificanceValue) | GetPC(T: Target, D: Dataset, &: SignificanceValue)
{ {

1. PCD=% & 1. PCE<E kb

2. CanPCD « U\{T}; 2. for(vX € GetPCD(T))do

3. repeat 3. if(T € GetPCD(X))then

4. //Remove false positives from CanPCD 4. PCS «PCfu {X};

5. for(vX € CanPCD)do 5. return PCE;

6. Sepsetry < argmingcpcplp (T, X|Z); }

£ for(vX € CanPCD)do

8. if(1,(T. X|Sepset, ) > ¢) then PCMB(T: Target, D: Dataset, <: SignificanceValue)
0. CanPCD « CanPCD\{X}; {

10. end if / add true positives to MB

11. end for 1. PC; < GetPC(T):

12. /Add the best candidate to PCD 2. MBS < PC;;

13. Y «argmaxgecanpeplo(T. X|Sepsets): 'add more true positives to MB

14. PCD « PCD u {Y}:[1-3] 3. for(vX € PC;)do

15. CanPCD « CanPCD\{Y}; 4. for(vY € GetPC(X)) do

16. /Remove false positives from PCD 3. if(Y € PC;) then

17. for(vX € PCD)do 6. findZ st.I,(T.Y|Z) > candT,Y € Z;
18. Sepsetry « argmingcpcplp(T.X|Z); T if(I,(T.Y|Zu {X}) = £)then

19. for(vX € PCD)do 8. MBf <« MBS U {Y};

20. if(I,(T.X|Sepset;) > ) then 0. end if

21. PCD « PCD\{X}: 10. end if

22. end if 11. end for

23. end for 12. end for

24. until PCD does not change; 13. return MB;

25. return PCD; }

}

Figure 1-11: PCMB Algorithm.

Theorem 1.8 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed (i.i.d.) sample from a probability distribution
P faithful to a DAG G, GetPC(X) returns PC; [13].

PCMB receives the target node T as input and returns MB, as output. The algorithm works in
two steps. Firstly MBS is initialized with PC; by calling GetPC (line 2). Secondly, the parents of
the children of T in G that are not yet in MBS are added to it (lines 3-12). This step is base on the
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following observation. The parents of the children of T in G that are missing from MB¥ at line 3
are those that are non-adjacent to T in G. Therefore, if Y € PC, X € PCy and X ¢ PCy and, then
X and T are non-adjacent parents of Y iff ~I(T,X|Z U {Y}) for any Z such that I(T, X|Z) and
T,X ¢ Z. Note that Z can be efficiently obtained at line 6: GetPCD must have found such Z

and have cached it with Sepset; x as we mentioned above.

Theorem 1.9 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution P
faithful to a DAG G, PCMB(T) returns MB [1].

In practice, PCMB follows the same criterion (equation (1.5) as IAMB, MMMB and HITON-MB
to decide whether a test is reliable or not. PCMB is data efficient like MMMB and HITON-MB
since the number of instances required to identify MB, does not depend on the size of MB; but
on the topology of G, but it is the first such kind of progress proved sound. Though one
experiment in the original text [13] demonstrates that PCMB scales to one KDD Cup problem
with thousands of features, it is shown as actually quite time inefficient by our empirical studies
in Chapter 4, much slower than another algorithm we developed and that is introduced later, IPC-
MB.



38

Chapitre 3 ANOVEL ALGORITHM FOR LOCAL LEARNING OF
MARKOV BLAKNET : IPC-MB

3.1 Motivation

From the review in the previous two chapters, we can see a clear progress towards efficiently
deriving an MB from data. Beginning with Koller and Sahami’s work, it was shown that the
Markov Blanket is the optimal feature subset, although the KS algorithm itself can’t always
guarantee correct output. Then, GS, IAMB and several variants were proposed. Compared with
KS (algorithm), they are correct, simple and fast. However, they are known as very data
inefficient [11, 13, 15, 21, 25, 26], which weakens their practical value, especially when the cost
for collecting training data is high. MMPC/MB and HITON-PC/MB were therefore proposed
aiming at reducing the critical requirement on the scale of training data. By putting the
underlying topology information into consideration, MMPC/MB and HITON-PC/MB do proceed
in the right direction to solve the data inefficiency problem, but unfortunately, neither of them is
proved sound as they cannot always produce the correct outcome. Therefore, before this project
starts, to the best of our knowledge, PCMB was the most promising algorithm that was published,
known as sound, scalable and data efficient [26]. Even though Pena et al. proved that PCMB is
correct, and showed that PCMB is scalable to large problems [13], there is still much space to
improve based on our study, including accuracy, time and data efficiency.

3.1.1 Data efficiency, accuracy and time efficiency

The most common feature of these algorithms is that they are all based on conditional
independence (CI) test. Based on our discussion in section (1.5, we can increase the reliability of
Cl tests by adding more observations, or reducing the degrees of freedom. Very often, we may
have limited data; then, the only option is to reduce the number of variables as contained in the
conditioning set of ClI test (to make the discussion easier, we assume that each variable has the
same number of values). In previous works [13, 21, 25], GS, IAMB and its variants were known
to perform CI tests with conditioning set as large as MBy . In fact, considering that false positives

(i.e. X € U\MB; ) may be added to the candidate MB container, MBS , in the growing phase,
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the actual conditioning set can be even larger than MB; . For example, given an initially empty
MBY¢ in the growing phase of IAMB, X € Des; will fail the CI test I (X, T|®) (since at least we
have an open path), and may be added into MBS (Line 6 of IAMB, Figure 1-3). Upon the
introduction of the first false positive, the door hence becomes open to more false ones, which
possibly results in cascading errors due to the common way that independence-based algorithms
work: their decision on which test to perform next typically depends on the outcomes of previous
ones [37]. Thus, a single error in a statistical test, especially in the early stage, can be propagated

by the subsequent choices of tests to be performed by the algorithm.

In IAMB, assuming that we have enough instances to allow the search to continue until no more
can be added, we may have the MBS set (much) larger than MB; by the end of the growing
phase as discussed in the last paragraph, instead of merely “as large as MBr ” as it was reported
[13, 21]. If we have only limited observations, we may give up the search in the growing phase if
there are not enough instances to support reliable statistical tests any more, with a MBS set
containing a subset of the target MB; plus some false positives. These initial misclassified
variables could impact the final accuracy (or recall, more specifically) because the shrinking
phase can possibly help to filter out false positives as contained in MB%. Our experiments in
Section 4.4 confirm that the actual performance as achieved by IAMB is not balanced, with
precision level much higher than recall; additionally, its general accuracy performance is far
below that of PCMB and our IPC-MB.

So, IAMB’s poor accuracy performance is actually caused by its search strategy which doesn’t
make efficient use of observations. To improve the efficiency of data usage, PCMB makes use of
the known topology information, and takes the divide-and-conquer strategy by first finding PC,
and then Sp. In the inference of PC;, the authors of PCMB follow the first conclusion of
Theorem 1.4 by checking if I(T, X|S) for each S € U\{T, X}. To ensure correctness as well as to
control the size of the conditioning set, PCMB interleaves shrinking and growing phases in
GetPCD (Figure 1-11). Though this is effective to ensure sound outcome and efficient usage of
data, it is time consuming since CI tests with all subsets of PCD or CanPCD (PCD and CanPCD
are containers used to store found parents/children/descendants and candidate PCD respectively)
have to be conducted for each iteration in GetPCD. Therefore, the accumulated time cost

resulting from the many calls of GetPCD in PCMB will be considerable. As we will see in
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Chapter 4, PCMB may be even more time consuming than the PC algorithm [14] which outputs
the whole Bayesian network. This caveat is not reported in its original publication [13], and

raises the issue of its actual scalability, at least from the perspective of time complexity.

In summary, we conjecture that although it is a valid algorithm for inducing Markov blankets,
IAMB is data inefficient and may produce poor result given limited data, while PCMB can be

costly in terms of time.

3.1.2 Assumptions and overview of our work

Although we have raised issues with the previous work, we acknowledge the efforts and
contributions by predecessors since their findings illumined us all along:

» A Markov blanket is theoretically the optimal subset of variables for a classification task;

» 1AMB is time efficient, but data inefficient since it may condition on the whole MB or an
even larger set containing not only MB; but some or all of X € U\MB . This is what we

need to avoid if we want the solution practically valuable;

» Topology information may be of critical importance to avoid conditioning on needlessly
large set [13, 21, 25].

In this project, we start by proposing a novel algorithm for learning MB, which minimizes the
size of the conditioning set of CI tests during the search yielding better data efficiency than
known algorithms. It is named Iterative Parent-Child based search of Markov Blanket (IPC-MB).

Throughout our discussion below, we will assume the following assumptions:
» Faithfulness;
» No hidden variables;

» Reliable independence test (i.e. the test can tell us the (in)dependency if it holds in the
distribution);

» Discrete observations;
» No missing values in observations.

Akin to PCMB, IPC-MB induces MB; via the recognition of PC; and Spy, and follows these

guiding principles:
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The induction of MB; in IPC-MB proceeds in a manner of breadth-first search. It first
determines the direct neighbors of T, i.e. PC, and then the neighbors of each Y € PC, i.e.
PCy. This two-layer search permits us to not only find the true PC; (how it is realized is
discussed in Section 3.2.2 and 3.2.3), but prepare the search for spouse candidates
considering that spouses must belong to some PC, where Y € PC, (more detail can be found
in Section 3.2.3). Some additional checking is further applied to induce those true spouses
from among the candidates (refer to Section 3.2.4 for more discussion). Hence, both the
learning of PC and Spy depend, directly or indirectly, on the search of local neighbours,

which explains the origin of our algorithm;

In the induction of PCy (here X can represent T and T’s neighbours found in IPC-MB), we
start with the assumption that all U\{X} are X’s parents or children. Then, it proceeds by
checking and removing false positives, i.e. those actually belonging to U\PCy. Considering
that (1) we are able to delete the link X — Y if there exists a single positive ClI test, with some
Z < U\{X, Y} as the conditioning set, indicating that X and Y are independent; (2) the real
network normally is not dense in connectivity and PCy is small relative to U in most cases,
then the removal of false positives is believed an effective approach to decrease the search
space quickly. By removing those false positives, all or most of the remaining ones are

expected to belong to PCy;

During the process of filtering out Y € U\PCy, the conditioning set in I, (X, Y|Z) starts with
empty set, and grows one at time. Whenever Y is tested as conditionally independent with X
given some Z, it is considered as not belonging to PCy and removed from PC% (Candidate
PCjy) right now. Therefore, any decision on false positive is made with as small conditioning

set as possible, which maximizes data efficiency;

Meanwhile, since we start with the empty conditioning set, and each Y in the PC{ is tested
given the current conditioning set(s), as many false positives are removed, and at an as early

time as possible, which maximizes time efficiency;

Therefore, IPC-MB is expected to solve the most severe shortcoming of IAMB and PCMB,

thereby maximizing computational efficiency.
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The rest of this chapter is organized as follows. The specification and proof of IPC-MB is
covered in section 3.2 and 3.3. Complexity analysis is discussed in section 3.4, followed by the
discussion of data efficiency and reliability in section 3.5. Analysis of our algorithm given
polytree, one special type of Bayesian network, is presented in section 3.6. Section 3.7 discusses

the parallel version of IPC-MB, and the final section provides some concluding remarks.
3.2 IPC-MB algorithm specification and proof

3.2.1 Overall description

A novel algorithm for learning Markov blanket is proposed by us in this section, based on a series
of CI tests. Since it induces the target Markov blanket via iterative learning of parents and
children, it is named as IPC-MB (lterative Parent-Child based learning of Markov Blanket).

Although IPC-MB can be grouped into the category of constraint-based learning like HITON-
PC/MB, MMPC/MB and PCMB, it differs from those three in the search of local neighbors of
some variable X (i.e. PCy): IPC-MB initially assumes that all U\{X} are connected (or adjacent)
to X, and it tries to remove Y € U\PCy with PCy left; however, the other three work to determine
directly if Y € PCy. For easy reference, we use PC$ to denote the candidate adjacent neighbors
of X, and it is initialized as U\{X}. To realize that, IPC-MB starts with empty conditioning set ¢,
and removes from PC§ all Y that are known as conditionally independent from X by CI test
Ip(X,Y|Z) where Z = @. Then, the allowed conditioning set size grows by one, and the removing
continues if there is Y € PC$ which is known as independent from X conditioned on some Z,
where Z € PC§ and |Z| = 1. The search continues on in this way, with the conditioning set
growing by one each time, and terminates when there are no Cl tests remaining in Y € PC$
(which will be discussed in 3.2.2). In so doing, false positives are removed by the lowest-order
tests, resulting in a decreased search space. More importantly, minimizing the high-order tests
reduces the risk of non-reliable tests, while improving the overall reliability of the algorithm
especially when the sample size is limited. This is important since learning built on statistical
tests suffers most from the curse of dimensionality [38]. However, the other methods (HITON-
PC/MB, MMPC/MB and PCMB) have to know if X is conditionally dependent from Y € U\{X}
given all Z € U\{X, Y} before including it into PCy .
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Similar to MMPC/MB, HITON-PC/MB and PCMB, the whole procedure of IPC-MB can be
divided into two phases:

1. Firstly, it attempts to identify nodes directly connected to T among U, i.e. PCy. This actually
is achieved by two steps, recognizing the candidate parents and children, followed by

filtering out false positives (if there are any) to reach the true PCy;

2. Secondly, it induces the Sp; from the candidates prepared in the first phase. Note that for the
X € PCr N Spr, they are recognized as PC first and be included into MB7 in the first step.

The first phase will be discussed with detail in section 3.2.2 and 3.2.3, and the second phase with

section 3.2.4.

3.2.2 Learn Parent/Child Candidates

The discovery of parent/child is critical to the efficiency of the local search approach of this
algorithm of IPC-MB. Given a variable X, the FindCanPC procedure (Figure 3-1) aims to
identify the target’s parents and children, though, but descendants may be output as well.

FindCanPC has four input parameters:

1. T, the target variable;

2. Y € PC§, the candidate parents and children initialized as U\{T}. Then, obviously, PC; =
PCF;

3. D, the dataset used for learning;

4. &, significance threshold value used in determining if a CI test indicates positive CI
relationship (when the result of test is larger than &) or not (when the result is smaller or
equal to &), i.e. significant or not. Empirical choice may be 0.01 or 0.05. Note: As mentioned

in section 2.2, we implement G?2 test and apply it for all algorithms covered in our discussion.
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FindCanPC(T: Target,PCE: Adjacency set,D: Dataset, <: SignificanceValue)

NonPC « @;
cutSetSize « 0;
repeat
for( vX € PCE) do
5 for(S = PCE\{X}) with |§| = cutSetSize) do
6 ifl/,(T.X|S) = ) then
7. NonPC « NonPC U {X};
8
0

B O W e

Sepsetry < S Cache for later reference
) break:

10. end if
11. end for
12.  end for
13.  PCf_. < PC{\NonPC;
14. NonPC « ©;
15. cutSetSize + +:
16. until ((PCE| = cutSetSize)
17. return PCE;

}

Figure 3-1: FindCanPC algorithm and its pseudo code.

FindCanPC begins with the assumption that T is dependent over all X € PC%, which means that
T is connected with each X € PC% given the faithfulness assumption. Then, it tries to determine
whether or not each such edge T — X should be deleted, which corresponds to removing false
positives from X € PCS. This is achieved by three embedded loops (Note that we assume there
are enough observations for learning here, i.e. the discussion over the reliability of the CI tests is

postponed to section 3.5):

1. Repeat...until (the outmost loop) (Line 3 — 16). It starts with empty conditioning set
(cutSetSize = 0), and exits when that | X € PC&| is equal to cutSetSize. In addition to the

two embedded inner for...do... loops, we find additional instructions (line 13-15):

a) If there are false positives found, i.e. NonPC # @, they are removed from PC& by the
end of this iteration. Hence, in the next iteration, we may have a smaller search space. If
there are false positives removed in each iteration, the search space will continue to

shrink;
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b) Otherwise if NonPC = @, i.e. no false positive is found, nothing is done except for

increasing the cutSetSize by one.

for(each X € PC%) do... (the middle layer) loop (Line 4-12). Upon entering this loop, each
X € PC§ is assumed to be connected with T. With conditioning sets of size cutSetSize, each
X € PC& will be checked if it is conditionally independent with T (how this is done is
discussed in the next point). If it is, X will be put into NonPC and be removed from PC$ by

the end of do...while... loop as we discussed above.

for(each S € PC$\{X}) do...loop (the inner one) (Line 5 — 11). With each X € PC% and
given cutSetSize, X is checked if it is independent with T conditioned on some S ©
PCS\{X}, as tested by the statistical function I, (line 6). Note that the number of I,
involved in the search is a critical measure that reflects the time complexity of this kind of
algorithm, and we will discuss this topic in more details in 3.4.1 and 3.4.2. Anytime X is
tested as independent with T', conditioned on some S, it is added to NonPC (line 7) and exits
from the current loop (line 9), which is the advantage of filtering false positives from an
initial candidate set since we stop after a single negative ClI test each time and we can start
with the smallest conditioning set, instead of working from an empty candidate set where
we would need to run all possible CI tests each time. For each rejected candidate, the found
conditioning set S is denoted as Sepsetr x, and cached for later reference (spouse learning in
3.2.4).

To better explain the algorithm, we illustrate the procedure by a simple example, given target T

and PCS = {U,V,W,X,Y,Z} initially:

1.

cutSetSize = 0. The following CI tests will be conducted: Ip(T,U|®) , Ip(T,V|D) ,
In(T,W|0),Ip(T,X|0),I,(T,Y|0) and I, (T, Z|@). Assuming that only two nodes have a
positive CI test, Ip(T,U|@) < eand I, (T,V|0) < ¢, then U and V are put into NonPC at
line 7; meanwhile, Sepsetr ; = @ and Sepsetr,, = @ are cached for later reference (line 8).
At line 13, both U and V are removed from PC%, with updated PC$ = {W, X,Y, Z}. With
new cutSetSize=1 (by increasing with 1 at line 14), it is still smaller than |PC%| (=4, line

16), we continue with the processing;

cutSetSize = 1. At most, the following groups of CI tests will be done:
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a) Ip(T,WIX), Ip(T,W|Y), Ip(T,W|Z);
b) Ip(T,X|IW), Ip(T, X|Y), Ip(T, X|Z);
) Ip(T.Y|W), Ip(T,Y|X), Ip(T,Y|Z);
d) Ip(T,Z\W), I(T,Z|X) , Ip(T,Z|Y).

Each group above is about T and some X € PC$ conditioning on some S € PC$\{X} and
S| =1. At any time, if we determine that T and X are conditionally independent
(i.e. Ip(T, X|S) < ¢€), the remaining CI tests in the corresponding group are ignored. For
example, if I,(T,W|X) <&, W is added into NonPC, neither I, (T, W|Y) nor I,(T,W|Z)
is necessary. That is why we mention “at most” above. Assuming Ip(T,W|X) < ¢ and

I,(T,Y|X) < €, we have updated PC¢ = {Y, Z} and cutSetSize = 2 ;

3. Because |PC%| = cutSetSize = 2, we exit from the loop, with PC$ = {Y, Z} being returned.
We can do so because with PC% = {Y, Z}, all possibly constructed Cl tests, like I (T, Y|®),
Ip(T,Y|Z), Ip(T,Z|®), and I, (T, Z|Y), are conducted in previous iterations. Hence, there is
nothing to do but exit. ||j

Theorem 3.1 Under the assumptions that the independence tests are correct and that the learning
data D is an i.i.d. sample from a probability distribution P faithful to a DAG ¢, given PC& =
U\{T}, FindCanPC enables us to find the superset of PC;, denoted as PC% (Candidate Parents
and Children), and it has two properties: (1) for each X € PC;, X € PC%; and (2) there are some

false positives contained in PC%, PC; € PCS.

Proof. We need to prove the two properties respectively. The first one is proved by contradiction.
With PCS = U\{T} initially, it is assumed that there is some X € PCy not output by FindCanPC.
Given the faithfulness assumption, it is known that if X € PC;, X is connected to T directly.
According to Theorem 1.4, for such X, it should NOT be independent of T given any
conditioning set, i.e. should pass all I, (T, X|Z) as met in FindCanPC. Given correct statistic test,
X would not be output by FindCanPC only when it fails on some I, (T, X|S), which is obviously
contradictory with the fact that X € PC;. Therefore, all X € PC; would be returned by
FindCanPC.
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We prove the second property (PCr = PC%) with the example of Figure 1-8(a) that FindCanPC
may output some of T'’s descendants given some topology. With T and PC% = {Q, P, R, S}, it
starts by connecting T with Q,P,R and S .With cutSetSize =0, (1) both T - Q « P and
T - Q — S« R« P are blocked due to the converging pattern at Q and S, and neither is
instantiated, which implies that I(T, P|®) since they are the only two paths between T and P; (2)
bothT - Q< P—->RandT - Q —» S « R are blocked due to the same reason, and we have
I(T,R|®) .Hence , NonPC = {P,R} , Sepsetrp =@ and Sepsetrp =0 . Then, with
cutSetSize = 1 and PC% = {Q,S}, (1) ~I(T,Q|S) is trivial; (2) ~I(T,S|Q) since although
T - Q — S is blocked with Q instantiated, T - Q « P = R — S is not blocked (P or R is needed,
but both are absent). Therefore, no additional false positive is found, the search terminates with
{Q, S} being returned. Obviously, S is a false positive that is not filtered out. There are two
possible paths fromTtoS: T—->Q —>SandT - Q « P - R - S. Based on the d-separation
concept, the minimum cut set to “block” T and S is {Q, R} or {Q, P}. However, here, R and P
have been deleted from PC$% when cutSetSize = 0, which prevents us from filtering S. Therefore,
FindCanPC may output false positives, and PC; € PC%. Note that S is a false positive
descendant of T based on Definition 1.7, and as we will discuss right below, FindCanPC(X)

may output X ’s descendants. ||

Before we discuss how to filter out false positives as contained in the output of FindCanPC, it is

necessary to study more closely how they occur.

Lemma 3.1 Given T and PC% = U\{T}, the output of FindCanPC will NOT contain non-

descendants of T excluding T’s parents, i.e. ND\Par.

Proof. (1) The local Markov property (Theorem 1.6) tells us that T is independent of its non-
descendants given the value of its parents, i.e. I(T,ND;\Par|Par); (2) It is known that Pa; will
always stay in PC& (Theorem 3.1), i.e. |Par| < |PC&|; (3) The conditioning set starts with ¢, so
we are guaranteed to have a chance to condition Pa; at cutSetSize = |Pay|; (4) We check each
X € PCS in each iteration, including the iteration of cutSetSize = |Pay|. Therefore, each
X € ND;\Pay is able to be successfully recognized given the test I, (T, X|Pa;)(< €) and is

filtered out as expected. ||}
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Lemma 3.2 Given T and PC$ = U\{T}, FindCanPC may or may not output descendants of T,
and it depends on the underlying topology.

Proof. (1) In Theorem 3.1, one example has been given to show that descendants of T may be
missed from deletion. (2) Here, we give another example to show that descendants of T may not
be output by FindCanPC. In Figure 3-2, if there are no dotted links ND; — Des (between Non-
Descendant and Descendant, and the direction of the edge does not matter) and P — Des
(between Parent and Descendant) in addition to C — Des, it is trivial to know that Des is d-
separated from T given C, so it will not be output by FindCanPC. Even with ND; — Des and
P — Des added, we can still prove that the paths of Des — ND; — P - T and Des « P — T are
blocked by {P} due to the existing of serial and diverging patterns respectively. Since P and C
will always be output by FindCanPC, Des in this example then will never be output by
FindCanPC. .

Figure 3-2: Possible connections between Non-Descendants/Parents/Children and descendant.

Theorem 3.2 Given T and PC& = U\{T}, FindCanPC may return false positives, and they may

only be T’s descendants, but not its non-descendants (excluding Par).

Proof. (1) PC% = U\{T} = ND; U Desy; (2) ND; N Des; = @. These two facts, plus the proof
of Lemma 3.1 and Lemma 3.2, are enough to declare that non-descendants won’t be output by
FindCanPC, and some descendants may be output under some conditions though it is not

expected Jjj
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In this section, we introduced the core module of IPC-MB, FindCanPC. We start with heuristics,
followed by algorithm specification, and ended with a proof that FindCanPC will output all
parents and children of T; additionally, we noted that some of T’s descendants may also be
falsely output depending on the underlying topology. In the next section, we will discuss how to
construct a true parent-children set of T, i.e. PC, by filtering those false positives that
FindCanPC(T) may output.

3.2.3 Learn Parents/Children

As we discussed above, FindCanPC(T) itself does not guarantee to return exactly the parents and
children of T (Theorem 3.1), but some descendants of T (Theorem 3.2). Unfortunately,
candidate parents and children are mixed together, and therefore denoted as PC$ (Line 2 of IPC-
MB, Figure 3-3). The container reserved for true Parents/Children, denoted with PC;, is
initialized as empty (Line 3, IPC-MB).

Lemma 3.3 With PC% « FindCanPC(T), given each X € PC$ and PC$ = FindCanPC(X), (1) if
T € PC$, X is known as a true parent/child, and should be added into PC; (Line 7-10, IPC-MB);

(2) if T ¢ PC§, X is known as a false parent/child, and would be ignored with no further action.

Proof. Theorem 3.2 tells us that FindCanPC(T) may contain two types of output: true
parents/children of T as expected, and descendants of T which are not desired. The proof
contains two parts based on extra checking on each X € PC%: what true is still recognized as

true, but what false can be successfully filtered out.

First, if X € PC;, obviously, T € PCx and T would be returned by FindCanPC(X) given
Theorem 3.1. Then, our inference that “if X € PC% and T € PC§, then the decision that X is true

parent/child “ is known correct.

Second, we need to prove that if X € PCS but T & PCS, then X is false parent/child. From
Theorem 3.2, it is known that what false positives possibly output by FindCanPC(T) and
FindCanPC(X) can only be T’s and X ‘s descendants respectively. Assuming that X € PCS but
X & PCr, can T be returned by FindCanPC(X)?
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This may happen only when T is its own descendant’s descendant. Obviously, it is impossible
since one cycle will happen. So, if X € PC% and T ¢ PCY, it can be inferred that X is NOT true
parent/child, and should NOT be added into PCy. l

IPC — MB(T': Target, D: Dataset, : SignificanceValue)

{
‘Recognize T's parents and children
1. PCEf« U\{T) 'Candidate adjacency set
2. PCE « FindCanPC(T,PCE,D,g); //Candidate parents/children
3. PCG<{}k
4. for(wvX € PCf) do
3. PCS « U\{X}:
6. PC§ < FindCanPC(X,PCE. D, g);
¥ if(T € PCS)then
8. PC, « PC. u{X}; One true parent/child is found
0 Sp$x — PCS: '/Cache for future reference
10. end if
11. end for
12. MB; < PC;;

/Recognize T's spouses
13. for(vX € PC;) do
14. for(vY € SpS, and Y € MB; ) do

15. if(1,(T.Y|Sepset,, U{X}) > ¢) then

16. MB, <« MB; U {¥}; //Atrue spouse is found
17. end if

18. end for

19. end for

20. return MB;;

¥

Figure 3-3: IPC-MB algorithm and its pseudo code.

Figure 3-4 demonstrates the effect of repeating the call of FindCanPC in IPC-MB. Although
some false positives may be output by FindCanPC(T), it is known that they can be successfully
recognized and deleted in IPC-MB, as shown in Lemma 3.3. By repeating the call of FindCanPC
for each X € PC%, then we know that the results of PC; at line 12 (IPC-MB) are exactly parents
and children of T.
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/ FindCanPC(P)

| FindCanPC(Cd) | FindCanPC(C)

Figure 3-4: PC$ as output by FindCanPC(T), and the output of typical X € PC%, i.e. PCS.

Theorem 3.3 Under the assumptions that the independence tests are correct and that the learning
data D is i.i.d sample from a probability distribution P faithful to a DAG G, IPC-MB allows us to

find the complete and correct parents and children of one target, i.e. PC; for T of interest.

Proof. (1) Given Theorem 3.1,it is known that PC$ contains not only PC; but, probably, some
false positives; (2)Theorem 3.2 tells us that those possible false positives can only be
descendants of T'; (3) With Lemma 3.3, we know that if X € PC$ is a false positive descendant, it
will be recognized. (4) Finally, since we apply the same verification procedure for each X € PC§,

we are guaranteed to have PCy with all false positives being removed from PCS. l

By now, we have explained and proved that IPC-MB allows us to learn the complete parents and
children of T of interest, i.e. PC; (Theorem 3.3). It is noticed that the learning is built on a series
of FindCanPC(X) , which exactly explains why our algorithm is called Iterative Parent-Child
based learning of Markov Blanket (IPC-MB).

What left is the learning of T’s spouses, i.e. Spr. How to recognize Spy is discussed in the next

section, but it is necessary to predict that it is built on the finding of FindCanPC(X) as well.
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3.2.4 Learn Spouses

By the Line 12 of IPC-MB (Figure 3-3), we have MB; = PC; as discussed in last section. In fact,

we also have collected all candidate spouses of T with the repeated calls of FindCanPC(X).
Lemma 3.4 Given X € PCS, if T € PC§, PC§ contains candidate spouses of T if there are.

Proof. Theorem 3.1 tells us that PC$, the output of FindCanPC(X), contains all parents/children
of X. Given X € PCS, if T € PC§, then X is known as a true parent/child (Lemma 3.3). If X is a
child of T, and if it is a common child of T and some Y, Y must be returned by FindCanPC(X) .

This applies to all X ’s parents which are T’s spouses meanwhile. .

All outputs of FindCanPC(X) regarding to such X € PC{ are cached as Sp%. x (Line 9, IPC-MB)

with subscript (T, X) for later reference. Obviously, it contains more than what we want:
> T,since T € PC§;
» True parents and/or children of T, which would be ignored;

» True spouses of T, i.e. those having X as their child as T. These are what we are interested to

distinguished here;
» False positives (neither parents, children nor spouses of T).

Lemma 3.5 Given PC$=FindCanPC(X),Spr c (UPC$), where X € PCS and T € PC$, i.e.
X € PC,.

Proof. Assume there exists some spouse Sof T which is not contained in Uxcpc, PC$, which
means that S is not contained in any PC$, where X € PC& and T € PC$ . This may happen only
when (1) The common child of this S and T is not contained in PC%, or (2) S is not returned by its
common child with T, X, though X € PC%. Both cases are contradictory to the facts that
FindCanPC(X) returns all parents and children of X (Theorem 3.1). l

With Lemma 3.5, it is known that Uycpc, PC§ contain all candidate spouses of T, by Line 12 of
IPC-MB, and it is denoted with shorthand Sp%. However, there are many false positives are

known as contained in Sp% as well, waiting for further processing.

Similarly to the discovery of parents and children of T, i.e. PC;, we depend on the underlying

connectivity information to recognize Spr from Sp%. For any X € Spy, there are two facts
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available for reference: (1) it has to belong to PCy and Y € PC;; (2) it is independent of T as
conditioned on Sepsetry or Sepsetyr (that is why it is not included in PCr) , but it is
dependent with T conditioned on Sepsetr y U {Y} or Sepsetyr U {Y}. The first observation is

obvious given the underlying topology, and the second is based on Theorem 1.4.

Lemma 3.6 Given each X € Spf but X & PCy , there must exist some Z, € Z c U, such that
I(T, X|Z).

Proof. The proof is trivial since if there is no such Z, X should be in PCT.I

Lemma 3.7 In IPC-MB, for each X € Sp% but X & PC,, either Sepsetry = NIL or
Sepsetyr = NIL (Note that @ means empty set {}, while NIL means Null pointer, i.e. there is
no record for the corresponding subscript (X, Y)).

Proof. Given each X & PC;, (1) If it is a non-descendant of T, it will be recognized as
conditionally independent given some Sepsetr x # NIL; (2) Else if it is a descendant of T, it
may be falsely decided as conditionally dependent with T, which means that Sepsety x = NIL,
and it will be contained in PC%; (3) Since we will call FindCanPC for each X € PC, if X & PCr,
T will be recognized as conditionally independent given some Sepsetyr # NIL within
FindCanPC(X). In short, for each X ¢ PCy, it is always can be recognized conditionally

independent given some set, and therefore Sepsety x # NIL or Sepsetyr # NIL. l

Due that either Sepsetr x # NIL or Sepsetyr # NIL, it is necessary to check them before the

assignment as done at Line 15 of IPC-MB.

Lemma 3.8 Given the faithfulness assumption, I(T, X|Sepset) is equal to say that all paths
between T and X are blocked by Sepset, i.e. T is d-separated from X by Sepset.

Lemma 3.9 Given X € Spy and PC$ = FindCanPC(T), X & PC&.

Proof. Theorem 3.2 tells that FindCanPC(T) won't output T ’s non-descendants. Since Sp; S

ND/, it means that Spr N PC% = @, i.e. X & PC% given each X € Spy. I

Theorem 3.4 Given X € PC; and PC$ =FindCanPC(X), for each Y € PC$ but Y ¢ MB; and

Y & PC5 (excluding processed and descendants of T if there are), if Y is conditionally dependent
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with T given Sepsetr x U {X} or Sepsetyr U {X} (depending on which one is not NIL), Y is

known as a true spouse of T.

Proof. Given X € PC;,Y € PCS butY ¢ MB; and Y & PCS, it is secure to declare that T is

connected with X, denoted as T —X, and T is NOT connected with Y ,denoted asY = T.

Besides, due that Y ¢ PC, it is known that I(T,Y|Sepset) where Sepset = (SepsetT,Y *

@)? Sepsetry: Sepsety r (Lemma 3.6 and Lemma 3.7) . In other words, Sepset blocks all

possible paths connecting T and X (Lemma 3.8). To prove the statement, we have to study the

following six cases separately considering that X may be a parent/child of T (X € PC;) and Y

can be a parent/child/descendant of X (Y € PC):

1.

X€eParandY € Pay,ie.YEND;, Y > X —>T butY ~ T. Toblockthe pathY - X —» T,
the statement that X € Sepset must be true. Otherwise, at least we have a non-blocked path,
which is contradictory to the fact that I(T,Y|Sepset)and Lemma 3.8. Therefore, Sepset U
{X} = Sepse,and ~I(T,Y|Sepset U {X}) won’t happen for this case;

X €Pa; andY € Chy, ie.Y « X - T butY ~ T. Same proof as case 1;

X€eChyandY € Pay,ie.Y > X «TbhutY ~ T. Itis easy to prove that adding X does will
make the path Y - X « T non-blocked, i.e. Sepset U{X} won’t d-separates Y and T
anymore. Therefore, we have ~I(T,Y|Sepset U {X});

X €ChyandY € Chy,i.e.Y « X « T hbutY + T. Same proof as case 1;

X € Pa; andY € Desy. (1) Since Y € PC§ and Desy, there must exist, at least one, non-
blocked path Y —---—X. (2) Because Y ¢ PC;, all paths connecting Y and T must be
blocked by some Sepset. Assuming that there is one path Y — --- — X known as open, then it
is extendable to access T via X since X € Pay, e.g. Y —---— X — T. To ensure d-separation,
this pathY —--- — X — T has to be blocked; therefore X has to be observed, i.e. X € Sepset.
Otherwise, Y —---—X — T will keep open (since there is no chance to construct a
converging pattern here with the existing of X — T), which is contradictory to the fact that

I(T,Y|Sepset). Since X € Sepset, it is impossible to have ~I(T,Y|Sepset U {X});

X € Chy and Y € Desy. Similar proof as case 5.
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These six cases cover all possible happenings, so the proof itself is complete. From the discussion
above, it is noticed that only the true spouse can satisfy ~I(T,Y|Sepset U{X}) given
I(T,Y|Sepset), where X € PC, Y € PC5 butY ¢ MB and Y ¢ PCE. [

Theorem 3.5 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution P
faithful to a DAG G, all spouses of T of interest are found with IPC-MB.

Proof. PC; (Line 12 of IPC-MB) contains all the true parents and children, and Uxcpc, PC$ =
Uxepc, SP7x = Sp% contains all spouses of T. With each Y € Sp§ but not in the current MB.

and not in PC&, it will be correctly recognized if it is true spouse (Theorem 3.5). Since this

checking applies to all variables in Sp$%, we are able to find all spouses of T. l

The determination of any true spouse is done in a manner different from the learning of
parents/children. While searching for T’s parents and children, we try to filter as many false
positives as possible, reaching a set containing true parents and children, though some
descendants are included as well. Then, those false positives are further filtered out, with only
true positives left. However, while searching for the spouses of T, we directly check if each

candidate is true or not.

Though the search of spouses proceeds in a different way, it depends on the output of
FindCanPC, including spouse candidates and sepsets cached. This again reflects the importance
of FindCanPC.

3.3 IPC-MB is Sound in Theory

Theorem 3.6 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution P
faithful to a DAG G, the result induced by IPC-MB is MBy.

Proof. IPC-MB is divided into two phases: learn the parents and children of T first, then further
to learn T'’s spouses. The soundness of these two parts is demonstrated by Theorem 3.3 and
Theorem 3.5 respectively. Both theorems show that not only all true members are ensured to be

found and added into MB, but no single false positive has chance to enter into MB. I
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So far, we have described in detail how IPC-MB induces the Markov blanket given a variable of
interest, and we have proved that the output as returned by IPC-MB is correct. If we view the
discussion so far as "qualitative" aspect about IPC-MB, in the next section 3.4, more

"guantitative" features about IPC-MB will be studied.

3.4 Complexity Analysis

In IPC-MB, FindCanPC plays a critical role in the learning of MB;, and most computation
happens inside FindCanPC. Therefore, we study the time and memory complexity of
FindCanPC first, on which the overall cost can then be determined.

In algorithms like IPC-MB which depends primarily on a series of CI tests in the search, the
overall measure of time complexity can be measured by the number of ClI tests, i.e. I(-), as

required.

Note: Our analysis is based on the assumption that there are enough data for thorough search as

designated by the algorithm theoretically.

3.4.1 Time Complexity of FindCanPC

In this section, we focus on the performance of FindCanPC since it is viewed as the foundation
of IPC-MB, and as we can see late, it determines the whole complexity of IPC-MB as well. Our
discussion includes two aspects: qualitative and quantitative. The qualitative analysis gives us a

"rough” picture of FindCanPC, leading us to explore more descriptive outcome.

Qualitative Analysis

Theorem 3.7 Given the assumption of faithfulness and correct conditional independence tests,

any recognition of false positive in FindCanPC is achieved at the very first time.

Proof. We can prove it by contradiction. Assume that (1) at the ithiteration, X € PC%, S c PC&
and I (T, X|S) < &, i.e. I(T, X|S) and X is recognized as NonPC, one false positive; (2) there is
S c S, and I,(T,X|S) < e.WithS c PC$and S ¢ S, itis able to infer that S’ c PC&; then, S’
must be met in earlier iteration, and X should has been removed from PC$ at iteration j(j < i)

when smaller conditioning set with the cardinality as " is under study. This contradicts to the



57

fact that X € PCS at the beginning of the ith iteration. Therefore, if X is able to be recognized

as false positive in FindCanPC, it must be found at the very first time. I

Theorem 3.7 indicates that deleting any recognizable false positive in FindCanPC is achieved
with the least cost. This theorem concludes the data-efficient feature of our work from the
theoretical viewpoint, and we will revisit it again in next section to see if it applies globally
within IPC-MB.

Quantitative Analysis

The most effective measure about the IPC-MB is the number of CI tests (Ip(:) in our
implementation)required considering that (1) IPC-MB and related algorithms depend on CI test
to make decision, and (2) it is the most time consuming processing unit compared with other

operations involved in the algorithm.
General Case

Our analysis starts with a very general scenario: Given T and CanPCy, the search starts with
empty conditioning set on, and it continues till there is no more CI tests left non-conducted, i.e.
|PCS| < cutSetSize. The overall procedure is illustrated in 452! RILF5IHIE. , and we

assume totally there are K iterations.

Table 3.1 General analysis of the number of CI tests as required in FindCanPC.

Given T and PC$ with |PC%| = M > 0 (i.e at least one candidate neighbor)
Step 1: cutSetSize = 0, |PC$| = M

# of I, Tests: (M(; 1) * (M — Ny), where Ny = 0

# of Non-PC Found: N;(= 0)

Step 2: cutSetSize = 1, |PC$| = M — N, — N,
# of I, Tests: (M_NO I Ny = 1) * (M — Ny — N;)
# of Non-PC Found: N,

Step i: cutSetSize =i —1,|PC&| =M — Ny — N; — -+ — N;_,

# of I, Tests: (M —No—N; ; o= Ny — 1) * (M —=Ny—N; —+—N;_;)

# of Non-PC Found: N;

Step K: cutSetSize =K — 1, |PC$| =M — Ny — -+ — N;_; — =+ — Ng_4

# of I, Tests: (M —Now = Ni‘ll_ o Ny = 1) «(M =Ny — = Ny_qe—
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NK—l)
# of Non-PC Found: Ny
The learning terminates since |PCS| < cutSetSize after cutSetSize + +

Let Y.cpcox)(CI) be the total number of CI tests as required in FindCanPC(X ), and the index

CPC(X) means the learning of candidate parents/children of X. To get it, we need summing the

number of CI tests needed in each round:

Sercoo@D = (M R0 T 1) (v = Np)+

(M_NO_Nl_1)*(M—NO—N1)+"'+

1
M—Ny—-—N;_;—1
( 0 i—1 -1 )*(M—No—”‘—Ni—1)+"’+
M—Ny—++—N;  —eo—Nyp_—1
( 0 Kl_ll K=t )*(M—No—“‘— i-1— "= Ng_1)
(3.1)
Where:
1. N;=0(i =0..K)
2. i<M—Ny—-+-—N;_41 (1 <i<K —1) (the intermediate step)
3. K>M—-Ny—+— N;_; — - — Ng (the terminating condition)
The ith (i > 1) element can be simplified further:
M~—-Ny—--—N;_1—1 N _ (M—Ngo—++-—Nj_;—1)! N
( i—1 ) * (M =Ny Ni) = (M—Ng—-—Nj_; —1—-(i-1))!(i-1)! (M—No
= Nig = 1)
M —Ny—-—N;_; — 1!
= — (= Ny— Ny = D)
(M—Ny—=N_;—1—-({—-1)({—D!

_ (M=No—-=N;_1)!
© (M—Ng——Nj_;—D!(i—1)!

(M =Ny == Ni_)!* ()
" (M =Ny == Ni_y = D) (D)!

. (M_No — i—1)
[
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(3.2)

Then, replacing each item in equation (3.1) with (3.2), we get a compact representation:

K M — No— -+ —N:
> wn=) (i (M H))
CPC(X) i=1 l

(3.3)

Worst Case

From (3.3), we can infer that when each N;equals to zero, i * (M —No _l,"' - Ni‘l) is then

maximized, so as the summing due that we may have maximum K = M meanwhile. Then, we

have new version of summing equation on the total number of CI tests as required:

M
Z o = Z (ixCl)=M=2M"1
CPC(X) i=1

(3.4)

The example shown in Figure 3-5 is one such case satisfying (3.4). Since all attributes excluding
T are T’s children, none of them are conditionally independent from T given any conditioning
set. Therefore, N; = 0, and the loop has to continue from cutSetSize = 0 to cutSetSize = M —

1, totally M iterations.

Figure 3-5: An example of network which has the largest size of Markov blanket, and
FindCanPC performs the worst on it.
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Simplest Case
Similarly, we infer that (3.3) is minimized when M — N; < 1, i.e. all recognizable false positives

are found in the first iteration. Figure 3-6 also illustrates one such example in which T has one
child, and all other attributes are spouses of T. Then, all spouses are conditionally independent

with T given empty set, and all of them are deleted from PCS by the end of the first iteration,

with PCS% = {C} left. The loop, therefore, terminates since |PC%| < cutSetSize = 1. In this case,

we have

M .
Z (CI)=Z (ixCy)=1xCh=M
CPC(X) i=1

(3.5)

Figure 3-6: An example of network which has the largest size of Markov blanket, but FindCanPC

perform the best on it.

Theorem 3.8 Given T and CanPCy of fixed cardinality (>1), the maximum number of CI tests as

possibly required by FindCanPC is M = 2M~1 and the possibly minimum amount is M , where
M = |PC&|.

Theorem 3.8 gives the upper and lower bound of the time complexity of FindCanPC, and the
actual amount is determined by the underlying topology. Fortunately, in applications, most false
positives are removed given a small conditioning set, which results with actual cost far below
M * 2M=1 (refer to Section 4.5).
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3.4.2 Time Complexity of IPC-MB

The measure of FindCanPC is the basis for the overall analysis of IPC-MB. Our analysis is
composed of two steps: the learning of parents/children based on a sequential call of FindCanPC,
as well as the induction of true spouses from spouse candidates as collected in the first step.

Analysis on the Learning of Parents/Children and Candidate Spouses

During the first phase of IPC-MB, FindCanPC is called repeatedly to achieve our goal, and the

time complexity of this phase may be measured as how many times FindCanPC is called. Given

T and U, a general equation can be constructed to reflect the time complexity:

ZCPC(T)(CI) + erpcg <ZCPC(X)(C1)>

(3.6)

To maximize (3.6), we need not only maximize Y cpcr(CI) and PCS$ (the output of
FindCanPC(T)), but Y.cpc(x)(CI) given each X € PCf. The example of Figure 3-5 exactly
satisfies these three conditions: (1) Xcpc(r)(CI) is maximized as discussed in last section; (2)
PC% = U\{T} , maximized meanwhile; and (3) each Ycpcxy(CI) is maximized due that all

U\{X} are parents or children of X . Therefore, by replacing each term of (3.6) with (3.4), we can

infer that the maximum number of CI tests as required to induce the PC(T):

ZPCT(CI) = |U] zlll_lll_l <i . (IUli_ 1)> — |U|2 # 2UI-1

(3.7)
where Ypc,(CI) is newly introduced |PC%| is replaced with |U| — 1.
Similarly, we know that (3.6) achieves the smallest value given the example of Figure 3-6:
D sy, €D =101+ (U] = 1)
(3.8)

Note: Since the preparation of candidate spouses are done during this procedure without extra

cost, no extra analysis is required on that.
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Theorem 3.9 Given T and U, the possibly maximum number of CI tests as required by IPC-MB

to learn PCy is [U|? * 2!V~ and the minimum amount is |U| * (|U| — 1).

In real applications, the actual cardinality of MB; normally is much smaller than U. Therefore,
the actual cost generally is far below than the maximum value |U|?  2/VI-1 Besides, the
underlying topology is influential to the actual performance, even though the underlying Markov

blanket is known of size |U]|.

Analysis on the Learning of Spouses

Given PC; and Sp$ ready, the determination of true spouses is done with a two-layer loop. Here
we assume that the checking if X € X can be done in constant time given hash-like storage, so the
time complexity of the second phase of IPC-MB can also be measured with the number of CI
tests (Line 15, IPC-MB).

To avoid repetition and save computing resource, we will ignore all Y € MB; , i.e. those
recognized and added to the MB container already. Besides, considering that (1) those positive
ones in PC& are added to MBy, and (2) those false positives as contained in PC% can only be T’s
descendants, the whole PC$ will be ignored. Therefore, we only consider Y € Sp$\MB\PC%.
The total number of CI tests as required for the recognition of true spouses can then be denoted as:

Do (ED=)  |spf.x\MBy\PCf]
Spr XEPC

(3.9)

Assuming that |PC;|/|U|=a, where 0 < a < 1. If a = 1, obviously nothing left to do; otherwise,
we have |Sp$\MB;\PC|/|U| < (1 — a) considering that MB, may increases with time on and
PC; < PC&. Therefore, at most (1 — a) = |U] times of Cl tests are available in each inner loop,
and maximally, we need a(1 —a) = |U|? CI tests by summing a = |U| times of (1 —a) * |U]|
based on (3.9).

Theorem 3.10 Given T and U, maximallyi |U|? Cl tests are required in the second phase of IPC-

MB to learn true spouses.

Proof. a(1 — a) = |U]? achieves the maximum value when a = 0.5, i.e. i LN |
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So, when |PC|/|U|=0.5, i.e. half of U are parents and children of T , the second phase of IPC-

MB needs the maximum number of CI tests. However, compared with the worse case of the first
phase, |U|? x 2/UI-1, i|U|2 is relatively small, and its increasing rate is much slower than the
previous one. Therefore, the worst complexity of IPC-MB is determined more by the first phase.
Interestingly, given the examples of Figure 3-5, no additional CI tests are required in the second
phase since MB; = PC; = U.

Theorem 3.11 The worst performance of IPC-MB on time efficiency is |U|? * 2/UI=1 and the

best performance is less than Z |UI% — |U].

Proof. The worst case is discussed. The best performance is determined by the topology, so we

only give a loose upper bound by summing the best case of the first phase |U| = (|U| — 1) and

the worst case of the second phase i LI

3.4.3 Memory Requirement of FindCanPC

The access to memory (RAM) is known as much faster than disk 1/O operation, so ideally we
want all data to be referred during the computing available in memory. Though this is impossible
for most cases, we prefer some solution to reduce the frequency of disk access as much as
possible. In this and next sections, we analysis the memory consumption of FindCanPC and IPC-

MB respectively, based on our own implementation strategy.
NonPC

It is used to cache those recognized as false positive in each iteration, and it is trivial to know that

its maximum size won’t exceed |PC|.

Subsets S and Contingency Tables

The number of subsets and the size of each subset are known upon entering the innermost loop
(Line 5, Figure 3-1), so we prefer to allocate memory to cache all S € PC$\{X} of the size
cutSetSize between the Line 5 and Line 11. Given PC$ and cutSetSize, the number of subsets
of is PCS\{X} is

(cutS etSize

IPCE| — 1 ) where 0 < cutSetSize < |PC%| — 1
T
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Considering that the cardinality of each subset is of size cutSetSize, and assuming that each
variable is binary (including the target), each contingency table corresponding to I, (T, X|S) has

22+cutsetSize og||s, Then totally we need

22+cutSetSize * (cutSetSize)
[PCS| —1

(3.10)

In (3.10) it is noticed that there are three factors to influence the actual complexity, including
|PCS|, cutSetSize and the number of values of each variable. In fact, the first two factors are
influenced by the actual topology, and the third one is determined by the actual problem. In our
implementation, hash table-like container is used to hold contingency table considering there may
exist empty cells, i.e. cells with no values. However, we have to admit that our current

implementation cannot deal with too large scale of problems on a common PC machine.
Sepsetr x
This is global allocation since it needs to be referred later in IPC-MB.

Lemma 3.10 Those seprator set (i.e. Sepset as found in our algorithm) as found and cached for

T and X inIPC-MB, i.e. Sepsetr x or Sepsety r, is the minimal such set.

Proof. It can be proved by contradiction. Assuming that we find Sepset™., such that

Sepsetr y C Sepset” and I(T, X|Sepset™ .. ). Given |Sepsetr x| < |Sepset™. |, it means

T.X’
that Sepsetr x is missed though it appears at an early time in FindCanPC, which happens only
when I, (T, X|Sepsetrx) > €. Obviously, it is contradictory with the fact that Sepsetrx is a

valid separator set. ||j

Given each pair of (T, X), since we will cache only one separator set to satisfy I, (T, X|Sepset) <
g, the total number of such seprator won’t exceed |PC%|. However, the size for Sepset; x and
Sepsetry may differ since they may be recognized in different iteration. Then, we can denote the

total memory as required by caching Sepset as:
Yip(Tx)<e |Sepsetr x|, with restrict to 0 < |SepsetT,X| <|PC&|—1

Empty Sepsetr x appears when X is found conditionally independent of T given empty set in the

first iteration; if no variable in PC% is removed until the iteration |[PC%| — 1, we may have
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Sepsetr x as large as |PCS| — 1. Therefore, the actual memory footprint is influenced by the

topology as well.
Theorem 3.12 The memory allocation for Sepsety y is minimized in IPC-MB.

Proof. Lemma 3.10 tells us that Sepsety y as found is the minimal one; besides, it is known that
we only cache either Sepsetr x or Sepsety r, then it is trivial to know that the memory allocation

for this part is minimized in IPC-MB. ||}

3.4.4 Memory Requirement of IPC-MB

Based on our discussion of FindCanPC, it is known that only Sepsety y is global allocation. In

addition to this, all other allocation in FindCanPC becomes free upon leaving it.

Considering that there is no other large memory requirement in IPC-MB, or they are relatively
small as compared with FindCanPC, no more space is left for this discussion.

3.4.5 Brief Conclusion on the Complexity of IPC-MB

By making full use of the underlying topology information, IPC-MB learns the Markov blanket
of T via iterative local search. Within each local search round, it takes the strategy of removing
any false positive at the first moment it is found, which is very different from all previous work
and is expected to be much more efficient than them. Its “smart” strategy makes the overall

architecture very simple, easy to understand and implement as well.

Our analysis is built around this design as well. As its name indicates, the overall cost, no matter
time or memory, is determined by that of FindCanPC. However, the actual complexity will be
influenced by the underlying actual topology. From our analysis, it is observed that the
theoretically best and worst cases have very different performance, ranging from linear to

exponential growth.

3.5 Data Efficiency and Reliability of IPC-MB

Data efficiency is critical for the practical value of one algorithm since instances available for
training or learning are limited very often. In algorithms built on statistical testing, like the CI test

employed in IPC-MB, normally the fewer variables involved in I,(X,Y|Z), the more data
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efficient is the algorithm. This is because CI test error, being the primary source of error, is the
result of unnecessary large condition set leading to the curse-of-dimensionality or choosing an
inaccurate conditioning set due to partial information. Therefore, data efficiency indirectly
influences the accuracy. In fact, in Chapter 4, we can observe obvious difference in the actual

accuracy between algorithms with low and high data efficiency.

In this section, we discuss the data efficiency of IPC-MB from theoretical viewpoint, and we will
revisit this topic in Chapter 4 and Chapter 5 considering that and it is so important and will never
be overemphasized. In fact, you will find in our conclusion later (Section 5.4) that data efficiency
is the most merit of IPC-MB, which permits IPC-MB not only to be very time efficient but to
achieve the highest accuracy as compared with similar works.

Lemma 3.11 Any false positive as recognized in FindCanPC is conditioned with the smallest

conditioning set.
Proof. Please refer to the proof of Lemma 3.10. ||j

Lemma 3.12 Any false positive as contained in PC¢ is recognized with the smallest

conditioning set.

Proof. The recognition of any false positive X is via the call of FindCanPC(X) which tells us if
T € PC. Those false positives relative to X are recognized with the smallest conditioning set
(Lemma 3.11), so we can say that any false positive of PC$ is recognized with the smallest

conditioning set. ||j

Theorem 3.13 Given T and U, the recognition of any X € PC; is achieved with the least

conditioning set.

Proof. For any X € PC% as output by FindCanPC(T), it enters into or leaves from (by deleted)
PC$ according to Cl tests with the smallest conditioning set, as ensured by Lemma 3.11 and
Lemma 3.12. Therefore, we can declare that the recognition of any X € PC; is achieved with the

least conditioning set. ||
Lemma 3.13 The recognition of true spouses is achieved with the least conditioning set.

Proof. The recognition of any true spouse is realized with two phases: (1) the preparation of

candidate spouses, and (2) the determination of one true spouse. Regarding the preparation of
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candidate spouses, it is learned by a series of FindCanPC(X), so it is known that the smallest
conditioning set is used (Lemma 3.11). Besides, the Sepset as used to determine if a candidate is
true spouse is also minimized in cardinality (Lemma 3.10), therefore, the recognition of any true

spouse is achieved with the least conditioning set. l
Theorem 3.14 No algorithm can be more data efficient than IPC-MB.

Proof. Theorem 3.13 and Lemma 3.13 ensure the least conditioning set is used to recognize
parents/children and spouses respectively, so it is known that the recognition of MB; realizes

the best performance in term of data efficiency. l

In real application, we may only have limited data for learning. To ensure the trustability of
statistical testing like I, (X,Y|Z), we expect to make the conditioning set Z as small as possible.
Given the same amount of training data, a test with a smaller conditioning set will always
produce a more trustable outcome than the one with larger one. Considering that IPC-MB will
resort to the smallest conditioning set with priority, it is believed that the output of IPC-MB is
more reliable compared to similar algorithms given the same scale of data for training. Note that
this merit of IPC-MB is not exchanged with any sacrifice of correctness, which again makes IPC-
MB attractive.

3.6 Analysis of Special Case: Polyrtree

Being a special case of Bayesian network, a polytree is a directed acyclic graph with the property
that ignoring the directions on edges yields a graph with no undirected cycles[2]. In other words,
there exists unique path between each possible couple of nodes (see Figure 3-7 for an example),
so polytree is the “thinnest” Bayesian network. In this section, we will discuss the expected
behavior of IPC-MB given a polytree, and experiments on a polytree-like Bayesian network are
included in Chapitre 4.

Theorem 3.15 Given a polytree network, the call of FindCanPC(X) in IPC-MB will output the

exact PCy, under the faithfulness and correct CI test assumptions.

Proof. From Theorem 3.1 and Theorem 3.2, it is know that FindCanPC(X) will output a
superset of PCy, and the only possible false positives are X s descendants. Therefore, here we

only need to prove that descendants of X won 't be falsely output by FindCanPC given a polytree
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network, and this can be proved by contradiction. Assume some Y € Desy appears in the output
of FindCanPC(X). Because there is only one directed path from X to Y in the polytree, it must be
eitherX - Z>YorX —>Z—>--—>Y, whereZis X’s child. It is trivial to know that Z blocks
this unique path from X to Y due to the head-to-tail connection, plus the fact that Z will always
stay in CanPCy and output by FindCanPC, hence Y won'’t pass the test I,(X,Y|Z) and will be
removed successfully. This proof applies to all X ’s descendants, so none of them will appear in
the output of FindCanPC(X). ||j

Figure 3-7: A simple example of polytree. The original graph can be found online at

http://en.wikipedia.org/wiki/Polytree.

Theorem 3.16 Under the faithfulness and correct CI test assumptions, given a polytree network,
all Y ¢ PCy will be recognized by some conditional independence tests I,(X,Y|S) where
|S| < 1, in FindCanPC(X).

Proof. Given any Y € PCy, there exists a unique path from Y to X in a polytree network, and it
can be one of the following three cases: Y -+ > Z->X , X>Z > >Y,andY - - -
Z « X. In the first two cases (linear connection), Y is known as independent of X given Z , or we
say Z blocks the path. And in the third case (converging connection), Y is known as independent

of X given empty set. Hence, all non-parents/children of X will fail some I,(X,Y|S) where
Isi<1. |}

Corollary 3.1 In FindCanPC(X), all false positives will be removed from PC% in the loop of

cutSetSize = 0 or cutSetSize = 1.

Proof. It is trivial to infer this from Theorem 3.16. ||
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Corollary 3.2 In FindCanPC(X), spouses are removed from PC$ in the loop of cutSetSize = 0.
Proof. It is trivial to infer this from Theorem 3.16. |
With Corollary 3.1 and Corollary 3.2, we can infer three points as below:

1. Computing complexity is greatly reduced since all false positives are recognized and
removed in the first two iterations (Line 3-16, FindCanPC, Figure 3-1);

2. The decision to remove these false positives is made given small conditioning set, so the

decision as made according to the ClI testing result is trustable, which is valuable in practice;

3. Since each spouse Y is recognized with empty separator, i.e. Sepsetyy = @, the conditional
test involved to recogze a true spouse in IPC-MB (Line 15, Figure 3-3) will have
conditioning set of size one only. Like the second point, it reflects the data efficiency of IPC-
MB as well.

Even though we can remove all false positives in the first two iterations within FindCanPC(X), it
doesn’t mean that only two iterations are needed. We have to continue the search until |PC$| <

cutSetSize, hence, the actual time and memory complexity are influenced by the size of PCy.
3.7 Parallel version of IPC-MB

3.7.1 Overall illustration

Though IPC-MB is proposed to be more time efficient than PCMB, it still could be very
computationally intensive in the worst case. Considering performance is critical, we devote a

small section to discuss the parallel version of IPC-MB.

Given the output of FindCanPC(T), i.e. PCS% , the remaining processing (Line 4-19) in IPC-MB,

actually, can proceed in parallel since each branch is independent one another, as demonstrated in

Figure 3-8, where PC5 = {X,, ..., X; }.
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PCE=FindCanPC/(T)
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Combine MB; as retwned |_
by each branch

v

Figure 3-8: Parallel version of IPC-MB.

3.7.2 Proof of soundness

Theorem 3.17 Under the assumptions that the independence tests are correct and that the
learning data D is an independent and identically distributed sample from a probability
distribution P faithful to a DAG G, Parallel version of IPC-MB, denoted as Parallel-IPC-MB

produces the same output of IPC-MB, if given the same inputs.

Proof. (I)It’s trivial to know that FindCanPC(T) produces the same result as it works in IPC-
MB.(2)Then, for each X; € PC%, FindCanPC(X;) is called separately, and it produces the same
result as in sequential version since each FindCanPC(X;) is fed with the same inputs in both

versions. (3)That X; € PC; if T € PCg, still be true considering that both PCZ and PCg, are

what expected as in the non-parallel version. (4) Then Sp¥ x is also the same as that in IPC-MB.
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(5) The remaining checking of Y € Sp$ x is expected to produce the same result if both
Sepsetry and Sepsetyr are ready in each branch then. Obviously, this is true because
FindCanPC(T) and FindCanPC(X;), in which both Sepsets are collected respectively, have been
conducted by then.

Therefore, both Theorem 3.3 and Theorem 3.5 still work for Parallel-IPC-MB, and it is expected

to produce the same outcome as IPC-MB given the same assumptions and inputs. .

3.7.3 Time and space complexity
Theorem 3.18 The worst performance of Parallel-IPC-MB on time efficiency is
2*|U| * 2/VI=1 = |y « 21Ul

Proof. Since the timing consumption of FindCanPC(T) is not avoidable, and the remaining
FindCanPC(X) proceeds in paralle, totally we need only consider two times of the worst case of
FindCanPC. Then, this result is trivial to infer on the basis of Theorem 3.11. ||

Regarding the memory consumption, there is no gain in the Parallel-IPC-MB since FindCanPC
runs in a serial order in IPC-MB, and it has the same effect as the memory allocation on each
machine in the parallel version, assuming each branch is distributed to one individual machine for

processing.

3.7.4 About implementation

The training data has to be copied to each machine where we want the individual branch to run.
Though it may be time consuming as transferred via network, the cost may be worthy in large
scale of processing where the transferring time may be ignorable as compared with what we save

on the learning.

In fact, it is believed that there must exist more fine-grained parallel versions of IPC-MB, but it is

not the focus of this project and won’t be discussed further here.

3.8 Conclusion

Given the faithfulness assumption, MB is known to contain T’s parents, children and spouses.

Among them, parents and children are directly connected to T, and spouses connect as well as
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point to T’s child(ren). With these topology information and Theorem 1.4 in mind, constraint-
based learning is believed to be more suitable than score-and-search based approach because it
doesn’t have to explore among the complete space, but in a greatly reduced sub-space. IPC-MB
achieves this goal quite well by filtering out as many X ¢ PCy, also as early, as possible, and
with economical cost. Besides, by determining if I(X,Y|Z) with as small conditioning set Z as

possible, more reliable performance is expected given limited data in practice.

IPC-MB is the core part of this thesis project, and more applications derived from it will be
discussed in the following text. Before that, empirical study will be presented in Chapter 4 to
confirm what we have presented, and a comprehensive comparison is included in Chapter 5

between IPC-MB and other representative works.
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Chapitre 4 EMPIRICAL STUDY OF MARKOV BLANKET LEARNING

4.1 Experiment Design

In Chapitre 3, we explain how IPC-MB works, prove its correctness, and analyze its expected
performance on time and space complexity, and data efficiency. In this chapter, a series of
experiments are conducted to compare the relative performance of IPC-MB, IAMB, PCMB and
PC algorithms.

We only compare our algorithm with two typical Markov blanket learning algorithms, IAMB and
PCMB, considering that (1) both of them are proved correct, and highly referred; (2) IAMB is the
best known and also simple and time efficient; (3) PCMB is the latest published work, and it
represents a new direction of this research field. Though MMPC/MB and HITON-PC/MB appear
before PCMB, they are proved not correct and hence ignored. In additional to IAMB and PCMB,
we also include PC algorithm to allow us to observe the difference between global and local

learning algorithms.

In the experiments, five networks are used. Three of them are known benchmark examples,
including Asia [39] with 8 nodes, Alarm [40] with 37 nodes and Hailfinder network with 56
nodes [41]. The other two are artificially created networks shipped with BNJ package[42], one
has 152 nodes and the other is a polytree derived from Alarm. For easy reference, they are named
Test152 and PolyAlarm respectively. Data are sampled from these five networks, and be fed to
algorithms to recover the underlying network. We run IAMB, PCMB and IPC-MB with each
node in the BN taken in turn as the target variable T and report the average performance over

multiple rounds. Our discussion contains accuracy, time efficiency and data efficiency.

In Section 4.2, we introduce briefly data sets used. From Section 4.4 to Section 4.6, experimental

results as well as some conclusions as derived are presented. We conclude briefly in Section 4.7.

4.2 Data Sets

The five selected networks represent four types of typical problem we are interested to study:
» Small problem, e.g. Asia;

» Medium size application, e.g. Alarm;
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» Larger scale problem, e.g. Hailfinder and Test152. Though Hailfinder has only 56 nodes, its
nodes have up to 11 values, so its search space actually is quite large. As we can see later, all
four algorithms have difficulties to produce satisfactory results with 20,000 instances; while,

acceptable results are observed on Test152 with only 2,500 instances;

» Polytree is a topology with at most one undirected path between any two vertices which
allows more efficient computations and is a good example to study the data efficiency of our

algorithm.

Asia

Asia is a small Bayesian network linking tuberculosis, lung cancer or bronchitis respectively and
different factors, for example whether or not the patient has been to Asia recently. It firstly
appeared in Lauritzen and Spiegelhalter’s work [39], 1988, and has been widely referred in the

past two decades. Its structure and the corresponding CPTs are illustrated in Figure 4-1.

Although small, this network allows us 1) to have a look at the corresponding performance of the
four algorithms given a simple problem, and 2) show that the four algorithms may all output the

correct outcomes given enough data.

3 0
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Figure 4-1: Asia Bayesian Network including 8 nodes of two states and 8 arcs, along with its
CPTs. For reference purpose, each node is assigned one unique ID, from 0 to 7. The
original graph can be found at http://www.norsys.com/netlib/asia.htm.

ALARM


http://www.norsys.com/netlib/asia.htm
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ALARM stands for ‘A Logical Alarm Reduction Mechanism,” a network for monitoring patients
in intensive care. It was first introduced by Beinlich et al. in 1989 [40], and it consists of 37
nodes of two, three or four states, and 46 arcs. It is a commonly viewed as a representative of a

real life Bayesian network.

Figure 4-2: Alarm Bayesian Network including 37 nodes of two, three or four states (To save
space, the CPTs are ignored). The original graph can be found online at

http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.htm.

ALARM of Polytree Version

This polytree version Alarm network, including the structure and parameters, is included in the
installation package of Bayesian Network tool in Java (BNJ) [42]. This network is denoted as

PolyAlarm for short in the remaining text.


http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.htm
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Figure 4-3: A polytree derived from Alarm Bayesian Network [40]. This graph is created by BNJ

tool.

Hailfinder

Hailfinder [41] is a Bayesian system that forecasts severe summer hail in Northeastern Colorado.
It is the first such system to apply Bayesian models in the realm of meteorology. Hailfinder
contains 56 nodes, and the nodes contain two to eleven different values. Compared with Alarm in
which four-value is the maximum, the underlying search space of Hailfinder is much larger.

Test152

This network is shipped with the installation package of BNJ tool, as a testing example. Since it

contains 152 binary nodes, it is called as Test152 by us for quick reference.
Summary

The following table and figure summarize the features of the five networks under experiment. In
Table 4.1, the total number of nodes and arcs, the largest size of Markov blanket as contained,
and the number of states of nodes about Asia, Alarm, PolyAlarm, Hailfinder and Test152 are
presented. The distribution about the cardinalities of Markov blankets as contained in the five
networks are illustrated in Figure 4-4, and it is observed that even the largest Markov blankets are
much smaller than the whole Bayesian networks in size. Therefore, we can conclude that (1)
feature selection is necessary to remove non-related attributes; (2) real networks are mostly

sparse, as illustrated in Figure 3-5.
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Table 4.1: Feature summary of data sets

Bayesian Values of # of Nodes # of Arcs Size of
Network Nodes largest MB
Asia 2 8 8 5
Alarm 2/3/4 37 46 8
PolyAlarm  2/3/4 37 36 8
Hailfinder  2/3/4/5/6/7/11 56 66 17
Test152 2 152 200 5

Sizes of Markov Blankets Contained in Networks
60
50
40
o
-..2_ 30
o
3+
20
10
0 J]l _J__l__-l -
1 2 3 4 5 6 7 8 13 | 16 | 17
M Asia 2 2 3 1
Alarm 6 9 5 8 2 2 3 2
M PolyAlarm| 9 10 10 5 1 1 1
® Hailfinder | 13 | 10 | 10 8 4 6 2 2 1
W Test152 51 1 2 49 49

Figure 4-4: Distribution of the size of Markov blankets as contained in Asia, Alarm, PolyAlarm,
Hailfinder and Test152.

4.3 Implementation Version of IPC-MB

In Section 2.2, we have stated that we ignore ClI test for which there are not enough instances to
ensure trustable result. In practice, the common choice of k in the inequality (1.5) is 5, and it is
followed in our implementation as well. Besides, in FindCanPC, if there is no reliable CI test

available in the loop of cutSetSize, no further search will be conducted, and the learning
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terminates because all further tests will be of higher degree due to the growing conditioning set
size. Figure 4-5 illustrates the implemented version of FindCanPC.

Similar strategy is taken in the implementation of IAMB, PCMB and PC algorithms, allowing for

a fair comparison.

FindCanPC(T: Target,PCE: Candidate PC, D: Dataset, s: SignificanceValue)
{

1. NonPC = 0

2. cutSetSize = 0;

3. repeat

4. notReliableAnyMore = true;

5. for( vX € PCE) do

6. for(S = PC£_\{X}) with |S| = cutSetSize) do

78 ifil ,(T.X|S) is reliable)then

8. notReliableAnyMore = false;

9. ifil,(T.X|S) = ) then

10. NonPC = NonPC U {X};

11. Sepset .y = S: 'Cache for later reference
12. break:

13 end if

14. end if

15. end for

16.  end for

17.  PC§ = PCE\NonPC;

18. NonPC = @;

19.  cutSetSize + +;

20. until (|PCE| = cutSetSize or notReliableAnyMore = true)
21. return PCE;

}

Figure 4-5: The implemented version of FindCanPC that considers reliability of statistical tests.
Its original version can be found in Figure 3-1, and the differences are illustrated in

bold here for comparison convenience.

4.4 Accuracy

The experiments in this section focus on the accuracy of the algorithms. We run IAMB, PCMB

and IPC-MB with each node in each BN as the target variable T and then, report the average
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precision and recall over all the nodes for each BN. Precision is the number of true positives in
the output divided by the number of nodes in the output. Recall is the number of true positives in
the output divided by the number of true positives in the BN. We also combine precision and

recall as

distance = \/(1 — precision)? + (1 — recall)?
(4.1)

to measure the Euclidean distance from perfect precision and recall. The significance level (¢)
for the independence test is 0.05. These experimental specifications follow that of [13], with the
expectation of comparable results. PC algorithm is ran a single time given each data set to induce
the whole network, and the precision, recall and distance are measured similarly over each node.

Note: for each sample size, we prepare 10 to 20 groups of data for multiple-folder simulation.

4.4.1 Small Network: Asia

Asia is a very small network with only eight nodes, and two of them have Markov blanket of size
one. Because Asia is small, we used a 20-folds simulation experiment and report the average and
standard deviations (Table 4.2).

Table 4.2: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Asia network.

Simulation . Precision Recall Distance
Instances Rounds Algorithm (Mean4Std. Dev.) (Mean4Std. Dev.) S(tl(\j/legg\_/_'-)
IAMB .55+08 51+09 72x10
100 20 PCMB 55+11 49+17 7615
IPC-MB 55+11 A7x17 J7x16
PC 55+14 .60+26 71+13
IAMB .60+09 72409 53+11
200 20 PCMB .68x10 57x13 61%11
IPC-MB 6611 55+12 63+12
PC 59+14 62422 6610
IAMB .66+ 06 77+05 45+08
500 20 PCMB J7x10 .65+10 48+13
IPC-MB .76+10 .66+10 A7+14
PC 72+12 64+10 52+13
IAMB q2x11 .79x06 39+12
1000 10 PCMB 80+11 .69+07 42+12

IPC-MB .80%12 .73x09 38x14
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PC 74411 70+ 09 45413
IAMB 78+14 78405 35413
PCMB 82412 71406 40411
2000 10 IPC-MB  .81+11 73+01 38408
PC 76+ 09 69405 44405
IAMB 85607 8200 26+11
PCMB  .86+04 76411 31410
4000 10 IPC-MB 87402 76607 30-£08
PC 83£05 74408 35408
IAMB 85607 8306 26+10
PCMB  .86+06 8212 25413
6000 10 IPC-MB 86406 82409 25411
PC 81+ 04 81410 31408
IAMB 87408 84408 24412
PCMB  .88+07 82411 24413
8000 10 IPC-MB 8704 82408 24409
PC 83+ 07 80410 29411
IAMB 83£08 8307 27+10
PCMB  .87+06 81410 26412
10000 10 IPC-MB  .88+02 81406 25406
PC 83+ 06 79+ 08 30£07
IAMB 90-£06 92407 1507
oo 10 PCMB  .92+08 0308 12410
IPC-MB 94407 94408 10+10
PC 02+ 08 93+ 08 12410
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Figure 4-6: Comparison of distances given different number of instances (0.1K~20K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Asia, e= 0.05, refer to Table 4.2 for more information)
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Figure 4-7: Comparison of precision given different number of instances (0.1K~20K): IAMB vs.
PCMB vs. IPC-MB vs. PC (Asia, e= 0.05, refer to Table 4.2 for more information)

Average Recall Comparison: IAMB vs. PCMB vs. IPC-MB vs. PC
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Figure 4-8: Comparison of recall given different number of instances (0.1K~20K): IAMB vs.
PCMB vs. IPC-MB vs. PC (Asia, e= 0.05, refer to Table 4.2 for more information)

4.4.2 Moderate Network: Alarm

For the Alarm network (Figure 4-2), a 10-folds simulation experiment is conducted considering
that it contains many more nodes as compared with Asia, and more stable results are expected.
Detailed results are presented in Table 4.3, followed by graphs about the average distance (Figure
4-9), precision (Figure 4-10) and recall (Figure 4-11).

We note that there is a difference between our results and those in [13] on IAMB, given Alarm
data. Their accuracy results are close to the IPC-MB results up to 1000 cases. Accuracy (in terms
of distance) stands around 0.20 at 2000 and more cases. This discrepancy can be explained that
they actually implemented InterlAMB, a variant of IAMB that interleaves the growing and
shrinking steps until convergence to improve data efficiency. Hence, the results about IAMB as
reported in [13] are, in fact, those of InterlAMB as mentioned in section 4.1 of [13], whereas ours

are based on the plain IAMB (Figure 1-3). Another source of discrepancy stems from the fact that
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they used 0.01 as the significance value, while we take 0.05. By applying 0.05 to the software
package provided by the authors of [13], we empirically observed obviously worse results.

Table 4.3: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Alarm network.

Instances Simulation Algorithm Precision Recall [()Ii;g:ﬁ
Rounds g (MeanaStd.Dev.) (MeanaStd.Dev.) Std Dev_)
IAMB 50£10 43x06 .80%10
250 10 PCMB 6610 .68+06 .53+08
IPC-MB 67x10 .67£06 .53+08
PC 58+07 7004 .58+06
IAMB 57£03 .55+02 67x04
500 10 PCMB 8603 .78+04 31405
IPC-MB 8502 J7x£04 .32+04
PC 77x05 .78+03 3704
IAMB 5702 .60x02 6402
PCMB .93+02 .84+02 .20+03
1000 10 IPC-MB 94+02 .84+02 19403
PC .90£03 .85+03 2104
IAMB 52403 .58+01 67+02
PCMB 97£03 .89+03 13+04
2000 10 IPC-MB .98+02 .90+03 11404
PC 9602 .90+03 13+04
IAMB 52403 .58+02 .68+03
PCMB 97401 .92+03 10404
3000 10 IPC-MB 99+01 .93+02 .07£03
PC 97401 .92+02 .10+02
IAMB 51403 59402 .68+03
PCMB 97402 .94+03 .07x04
4000 10 IPC-MB 99+01 .95+01 0603
PC 97+01 .94+02 .09£03
IAMB 49402 58402 .70£03-
PCMB .98+01 .96+03 0603
S000 10 IPC-MB 99+01 .95+01 0502

PC . 9602 .94+01 .10+03
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PCMB vs. IPC-MB vs. PC (Alarm, = 0.05, refer to Table 4.3 for more information)
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Figure 4-10: Comparison of precision given different number of instances (0.5K~5K): IAMB vs.
PCMB vs. IPC-MB vs. PC (Alarm, e= 0.05, refer to Table 4.3 for more information)
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Figure 4-11: Comparison of recall given different number of instances (0.5K~5K): IAMB vs.
PCMB vs. IPC-MB vs. PC (Alarm, e= 0.05, refer to Table 4.3 for more information)

4.4.3 Large Network: Hailfinder and Test152
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A 10-folds experiment is also conducted for the Hailfinder and Test152 networks, and the

corresponding average accuracy is reported in Table 4.4 and

Table 4.5.

Table 4.4: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Hailfinder network.

Instances Simulation Algorithm Precision Recall I:()Ii;:\rr]:f
Rounds g (Mean45Std. Dev.) (Mean4Std. Dev.) Std Dev_)
IAMB .36%+02 45+01 .88+02
PCMB 71+02 52+03 .61+03
10000 10 IPC-MB 71+02 .53+02 .60=%02
PC .70%+02 .53+03 .61+02
IAMB .34+01 45+01 .89+01
PCMB .74+03 .56+04 .55+04
20000 10 IPC-MB .73%+03 .58+03 .54+05
PC 71+04 57+04 .56+06

Table 4.5: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Test152 network.
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Instances Simulation Algorithm Precision Recall [(ﬁmf
Rounds g (Mean45Std. Dev.) (Mean4Std. Dev.) std Dev_)
IAMB 54+01 .74x00 59401
950 10 PCMB 8902 71+01 37+02
IPC-MB .90+02 71+01 3601
PC 72403 71+01 49+02
IAMB 50+01 .81+01 57+01
500 10 PCMB .89+01 7601 .33+£02
IPC-MB .90+01 7601 31+01
PC .75+03 7602 43+01
IAMB 45x01 8601 .59+01
750 10 PCMB .90+03 .80+02 .28+03
IPC-MB .92+01 .81+02 2602
PC 7404 .80+02 40+03
IAMB A47x01 .89+01 5602
PCMB 91402 .84+02 24403
1000 10 IPC-MB .93+02 .85+02 21+03
PC 7402 84402 .37+03
IAMB 42+01 91+01 61+01
PCMB 91401 91402 17403
1500 10 IPC-MB 94+01 .92+02 14+02
PC 7402 91402 32403
IAMB 4401 .93+01 .58+01
PCMB 93+01 .96+02 11+02
2000 10 IPC-MB 95201 9602 0902
PC .78+02 .96+01 .25+02
IAMB 4601 9601 5601
PCMB 92402 97+01 11+02
2500 10 IPC-MB .95+01 .98+01 .07+01

PC .719%02 .98+01 22+01
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Figure 4-12: Comparison of distances given different number of instances (0.25K~2.5K): IAMB

vs. PCMB vs.

IPC-MB vs. PC (Test152, e= 0.05, refer to

Table 4.5 for more information)
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Figure 4-13: Comparison of precision given different number of instances (0.25K~2.5K): IAMB
vs. PCMB vs. IPC-MB vs. PC (Test152, e= 0.05, refer to

Table 4.5 for more information)
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Figure 4-14: Comparison of recall given different number of instances (0.25K~2.5K): IAMB vs.
PCMB vs. IPC-MB vs. PC (Test152, e= 0.05, refer to

Table 4.5 for more information).

4.4.4 Polytree Network: PolyAlarm (Derived from Alarm)

A 10-folds experiment for the PolyAlarm network is reported in Figure 4-3. Detailed results are
presented in Table 4.6, followed by graphs about the average distance (Figure 4-15), precision
(Figure 4-16) and recall (Figure 4-17).

Table 4.6: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over polytree version Alarm
network.

Instances Simulation Algorithm Precision Recall I(Dﬁgzrrlﬁi
Rounds g (Mean4Std. Dev.) (Mean4Std. Dev.) Std Dev_)
500 10 IAMB .64+03 .71+03 .53+04

PCMB .84+05 .75x04 33x07
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IPC-MB .85+05 .74+04 3307
PC 7607 .72+05 4308
IAMB .70+03 .84+02 40+04
PCMB .91+02 .86+01 .19+02
1000 10 IPC-MB .91+03 .85+02 .20+=04
PC .81+04 .80+02 .34+06
IAMB .65+02 .89+01 42402
PCMB .93+02 .89+02 .14+02
2000 10 IPC-MB .93+01 .90+03 13+04
PC .83+03 .83+02 .29+04
IAMB .65+03 .89+02 41402
PCMB .91+02 .92+02 .13+05
3000 10 IPC-MB .92+02 .91+03 .13+04
PC .84+03 .86+01 .26+03
IAMB .62+03 .92+02 43+04
4000 10 PCMB .93+03 .92+02 1305
IPC-MB .94+02 .92+02 .12+03
PC .86+03 .87+03 .23x04
IAMB .61+04 .92+02 43+05
PCMB .93+03 .93+02 11+04
5000 10 IPC-MB .94+02 .92+02 11+02
PC .87+03 .89+03 .20+04
Average Distance:IAMB vs. PCMB vs. IPC-MB vs. PC
0.60
0.50 ~
, 040 M —— ¢ —
e 0.30 A \\
2 0.20 \ 3 >
0.10 — oD
0.00
500 1000 2000 3000 4000 5000
—=¢=—|AMB 0.53 0.40 0.42 0.41 0.43 0.43
=i—PCMB 0.33 0.19 0.14 0.13 0.12 0.11
IPC-MB 0.33 0.20 0.14 0.13 0.12 0.11
== PC 0.43 0.34 0.29 0.26 0.23 0.20
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Figure 4-15: Comparison of distances given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Table 4.6 for more

information)

Average Precision: IAMB vs. PCMB vs. IPC-MB vs. PC
1.00
0.95
0.90 ‘.___——.—q.—"_.=-
X
0.85 ./ —
5
& 0.80 7K
o 075
o
o A >
0.65 r
0.60
0.55
500 1000 2000 3000 4000 5000
=——|AMB 0.64 0.70 0.65 0.65 0.62 0.61
=i=PCMB 0.84 0.91 0.93 0.91 0.93 0.93
=== |PC-MB 0.85 0.91 0.93 0.92 0.94 0.94
== PC 0.76 0.81 0.83 0.84 0.86 0.87

Figure 4-16: Comparison of precision given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Table 4.6 for more

information)
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Average Recall:IAMB vs. PCMB vs. IPC-MB vs. PC

0.95
050 _ /"_/'1/!
_ . //' l)(-/)/x‘
]
o 0.80 /
0.75 /
0.70
500 1000 2000 3000 4000 5000
=—4—|AMB 0.71 0.84 0.89 0.89 0.92 0.92
=fi—PCMB 0.75 0.86 0.89 0.92 0.92 0.93
IPC-MB 0.74 0.85 0.90 0.91 0.92 0.92
= PC 0.72 0.80 0.83 0.86 0.87 0.89

Figure 4-17: Comparison of recall given different number of instances (0.5K~5K): IAMB vs.
PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Table 4.6 for more

information).

4.45 Conclusion

Our experiments with different size of samples over five different scale of networks indicate that:

» As expected, the accuracy of PCMB, IPC-MB and PC increases when more observations
become available (with decreasing distance in Figure 4-6, Figure 4-9, Figure 4-12, and
Figure 4-15). However, though it is believed that IAMB will also produce perfect results
given enough data, it appears the accuracy of IAMB flattens quickly given more observations,
e.g. in the problems of Alarm (Figure 4-9), Test152 (Figure 4-12) and PolyAlarm (Figure
4-15). This may be explained by the fact that more false positives are added in the growing
phase (see more discussion in Section 4.6 and 5.4);

» The underlying topology, or the problem itself, greatly influences the performance of all
algorithms. Given the same amount of observations, we observe quite different accuracy

performances in different problems;



92

The algorithms may produce worse results in problems with fewer features, but more
observations. For example, with 20,000 instances, the accuracy reached in the other four
problems is much lower than that achieved with Test152 in which only 2,500 instances are
given. Therefore, the underlying topology, together with the number of states of nodes (or

variables), determines the actual complexity of problems;

PCMB and IPC-MB demonstrate no obvious gain over IAMB given very small problem like
Asia (refer to Figure 4-6). However, the relative advantage becomes quite attractive given
larger problems (Figure 4-9, Figure 4-12 and Figure 4-15). For example, with Alarm network,
PCMB and IPC-MB have distance less than 0.50 given 500 instances, but [AMB couldn’t
reach this level even with as many as 5,000 instances;

With more observations being fed with, PCMB and IPC-MB have much faster increase in

accuracy than IAMB;

PCMB has close performance to IPC-MB, in term of both precision and recall; IPC-MB
performs slightly better than PCMB;

IPC-MB never loses to PC, and has obvious better accuracy in Test152 (Figure 4-12) and
PolyAlarm (Figure 4-15);

Given more data, both precision and recall increase for PCMB and IPC-MB algorithms.
However, precision always is higher than recall as observed in our experiments, before
enough information becomes available for them to reach a balance. Figure 4-18 illustrates
this difference given IPC-MB as example. For PCMB, this reflects that its strict selection of
true positives is effective; and for IPC-MB, it confirms that its strategy of removing as many
as possible false positives also works quite well;
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IPC-MB: Precision vs. Recall

0.95 /‘
0.90

0.85 //
0.80

0.75

0.70 //

0.65

Percentage

250 500 1000 2000 3000 4000 5000
== Recall 0.67 0.77 0.84 0.90 0.93 0.95 0.95
=fll=Precision| 0.67 0.85 0.94 0.98 0.99 0.99 0.99

Figure 4-18: Comparison of IPC-MB’s Precision and Recall (Based on experiments with Alarm,

€= 0.05, refer to Table 4.3 for more information)

In conclusion, although IAMB, PCMB and IPC-MB algorithms are all proved correct, and they
are believed to produce the perfect result if enough data is available, their relative accuracy
performance is different given limited observations. Obvious difference is observed between
IAMB and PCMB/IPC-MB.

IPC-MB has slightly higher accuracy performance than PCMB, and it beats PC with obvious

advantage in some cases.

4.5 Time Efficiency

In Chapter 3, we have analyzed the time complexity of IPC-MB in terms of number of ClI tests.
Here, one more measure is introduced, that is number of data passes, where a data pass consists
in scanning the whole training data for one time. In practice, to save the memory, we generally do
not cache all contingency tables; in fact, it is impossible to do so given the exponentially growing
number of possible subsets (or combinations) of features. Hence, a more practical way is to cache
only what are known as necessary for our immediate decision making purpose. For example, in
IPC-MB, we only cache the contingency tables given the known T, X and conditioning set of
cardinality cutSetSize, and this is reasonable since not only the cutSetSize will change (increase

with 1) in next iteration, but also the PCS due to the possible deletion of false positives.
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Therefore, we only allocate memory to cache S € PC$ with |S| = cutSetSize, and release all
memory allocation at the end of this iteration, which is effective to reduce the consumption of
space. However, this requires to re-scan the whole data file with additional time upon entering
next iteration, e.g. with increased cutSetSize and possibly modified PCS%. With very large training
data, scanning the whole data may be quite time consuming a job since we may need to visit the

disk, or even network, for many times.

To make different algorithm comparable, we treat the collection of contingency tables in a fair
manner in our implementation, i.e. one data pass is consumed to collect all statistics expected in
the current active session or loop. In IAMB, an additional data pass is needed to re-construct
related contingency tables after adding or removing one variable. While in PCMB, three data
passes are needed in each iteration of the searching loop within GetPCD, corresponding to the
three steps involved, i.e. removing negatives, adding best candidate and removing false positives

respectively.

4.5.1 Small Network: Asia

In Table 4.7, the “# Data Passes” of IAMB/PCMB/IPC-MB refers to the average number of data
passes we need to induce the corresponding Markov blanket of all the 8 nodes of Asia BN (It is
obtained by dividing the total number of data passes with the number of nodes, to reflect the
average complexity of IAMB, PCMB and IPC-MB), while the “# Data Passes” of PC is just the
number of data passes happening to induce the whole network. “# CI test” is defined similarly.

Generally, the larger are these two numbers, the slower is the algorithm.

Table 4.7: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over Asia network.

Instances Simulation Algorithm # Data Passes # Cl Tests
Rounds (Mean#5td. Dev.) (Mean4Std. Dev.)

IAMB 5+ 2543

100 20 PCMB 8087 20063673
IPC-MB 104/ 1884288
PC 2649 2134267
IAMB 449 2242

200 20 PCMB 64450 1044+1636
IPC-MB 84 110+136
PC 2548 1714179

500 20 IAMB 540 23+

PCMB 48+2 316+130
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IPC-MB 8+2 63+3
PC 2443 11148
IAMB 5#) 23+
PCMB 4943 367422
1000 10 IPC-MB 8+l 70+11
PC 2443 120H5
IAMB 54 232
PCMB 5247 4334213
2000 10 IPC-MB 92 77+18
PC 2443 131423
IAMB 5#) 23+
PCMB 507 436484
4000 10 IPC-MB 8+l 8419
PC 264 139+10
IAMB 5H) 23+
PCMB 55+10 486+104
6000 10 IPC-MB 9+ 91+16
PC 274 14749
IAMB 5 23+
PCMB 5519 482498
8000 10 IPC-MB 9+ 90415
PC 2844 14749
IAMB 5 24+
PCMB 5748 493475
10000 10 IPC-MB 9+ 91H2
PC 27+ 150417
IAMB 5#) 25+
20000 10 PCMB 6641 583+109
IPC-MB 10+ 99#13
PC 3143 155+4

4.5.2 Moderate Network: Alarm

Table 4.8: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over ALARM

network.

Instances Simulation Algorithm # Data Passes # CI Tests
Rounds (mean=Std. Dev.) (mean=Std. Dev.)
IAMB 440 9348
250 10 PCMB 261422 54644539
IPC-MB 12+ 562430
PC 303+19 2330492

PCMB 160+1 46384374
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IPC-MB 124 561431
PC 220416 273682
IAMB 530 14042
PCMB 15445 6047385
1000 10 IPC-MB 1210 637437
PC 191412 3528121
IAMB 620 16242
2000 10 PCMB 17547 8804532
IPC-MB 1340 736237
PC 188412 35284121
IAMB 620 17943
PCMB 20448 123294817
3000 10 IPC-MB 1340 798453
PC 20019 37174166
IAMB 740 18744
PCMB 21846 1600741326
4000 10 IPC-MB 1440 849448
PC 211418 39024122
IAMB 740 19743
PCMB 23146 1770441189
5000 10 IPC-MB 1440 876431
PC 215416 3956280

4.5.3 Large Network: Hailfinder and Test152

Table 4.9: Time complexity comparison of IAMB, PCMB, IPC-MB over Hailfinder network (e=

0.05).
Instances Simulation Algorithm # Data Passes # Cl Tests
Rounds (mean4Std. Dev.) (mean=Std. Dev.)

IAMB 640 270+
PCMB 120+10 8186+1049

10000 10 IPC-MB 940 736256
PC 283425 6489+161
IAMB 740 29942

20000 10 PCMB 136+10 14538+1617
IPC-MB 1040 1000+101
PC 284429 75154301

Table 4.10: Time complexity comparison of IAMB, PCMB, IPC-MB over Test152 network (&=

0.05).

Instances

Simulation
Rounds

Algorithm

# Data Passes

# CIl Tests

(mean4Std. Dev.) (mean4Std. Dev.)




IAMB 530 60220

250 " PCMB 894 31544168
IPC-MB 1140 780429
PC 60823 179474351
IAMB 640 75041

500 " PCMB 10143 37574148
IPC-MB 1240 924428
PC 669478 198034392
IAMB 720 8962

e 0 PCMB 11146 42844239
IPC-MB 134 1055452
PC 684:480 214294582
IAMB 740 80642

1000 10 PCMB 11944 46854183
IPC-MB 1440 1147432
PC 684-480 227324426
IAMB 810 104241
PCMB 13443 53844145

1500 10 IPC-MB 150 1316235
PC 714473 248654415
IAMB 840 104142
PCMB 14843 5028174

2000 10 IPC-MB 1540 1432446
PC 634-480 261734593
IAMB 810 104242
PCMB 16143 64444142

2500 10 IPC-MB 16240 1532444
PC 730496 275124614

4.5.4 Polytree Network: PolyAlarm(Derived)
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Table 4.11: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over PolyAlarm

network.

Instances Simulation Alaorithm # Data Passes # Cl Tests
Rounds g (mean4Std. Dev.) (mean=Std. Dev.)
IAMB 410 10643
PCMB 4743 584448
>0 10 IPC-MB 730 14348
PC 11746 1061448
IAMB 540 12643
PCMB 5444 715484
1000 10 PC.MB 849 l6aas
PC 14026 1145442
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IAMB 530 1472
2000 10 PCMB 5942 837457
IPC-MB 940 17946
PC 158424 1223435
IAMB 620 15544
PCMB 6845 1002478
3000 10 IPC-MB 940 10047
PC 174415 1265439
IAMB 620 16543
PCMB 6845 1002478
4000 10 IPC-MB 940 10548
PC 176411 1292441
IAMB 620 17144
PCMB 7044 1067441
5000 10 IPC-MB 941 196411
PC 18142 1308156

455 Conclusion

Our experiments with different size of samples over five different problems indicate that:

>

IAMB has the fastest speed among the four algorithms and IPC-MB is second; PCMB and
PC are slower than the other two, and PCMB is the slowest one among the three local search

algorithms;

The underlying topology, i.e. the problem itself, influences the actual performance of all
algorithms greatly, especially on PCMB. For example, PCMB may need 347.5% more ClI
tests than PC in Alarm problem (Table 4.8), but 76.6% less in Test152 problem (Table 4.10).
In contrast, the topology has much smaller influence on IAMB, or in other words, IAMB is
“blind” to the topology, which confirms the fact that IAMB and its variants don’t consider

topology in the search;

Given the same number of features, the actual connectivity influences the actual cost for all

algorithms. Generally saying, they cost less on parse networks (Table 4.13);

Compared with the global search by PC, IPC-MB saves a lot of data passes and CI tests in all
experiments (Table 4.12), which reflects the advantage of local search. For example, given
the Test152 problem, IPC-MB requires 94.4% fewer times of CI tests than PC, when there

are 2,500 instances available for learning;
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Table 4.12: Time complexity comparison of between IAMB/PCMB/IPC-MB and PC. The
comparison is based on the average measures of 20K-Asia experiment, 5K-PolyAlarm
experiment, 5K-Alarm, 20K-Hailfinder and 2.5K-Test152 experiments respectively. In the table
1 X% means that x% reduction is achieved compared with PC algorithm; T x%, in contrast,

indicates additional x% cost relative to that of PC algorithm.

PC
Problem
# Data Passes # Cl Tests

Asia 1 83.9% 1 83.9%

PolyAlarm 1 96.7% 1 86.9%
IAMB Alarm 196.7% 1 95.0%

Hailfinder 197.9% 196.4%

Test152 1 98.9% 196.2%

Asia T112.9% 1276.1%

PolyAlarm 1 61.3% 1 18.4%
PCMB Alarm T7.4% T 347.5%

Hailfinder 1 52.1% 793.4%

Test152 1 77.9% 1 76.6%

Asia 1 67.7% 136.1%

PolyAlarm 1 95.0% 1 86.5%
IPC-MB

Alarm 1 92.6% 177.39

Hailfinder 1 96.5% 1 86.7




Test152

1 97.8%

1 94.4
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Table 4.13: Time complexity comparison of IAMB/PCMB/IPC-MB given example networks

with same number of nodes but different density of connectivity. All are measured in experiments

with 5,000 instances.

Alarm
Algorithm # Data Passes # Cl Tests
IAMB 1 14.3% 1 13.2%
PolyAlarm | PCMB 1 69.7% 1 94.0%
IPC-MB 1 35.7% 1 77.6%

» Given the special network, polytree, the difference between IAMB and IPC-MB becomes

very small;

» Though considered a local search, PCMB’s cost is similar to PC which conducts global

search to induce the whole network;

> IPC-MB is much faster than PCMB, over 75% reduction on CI tests and more than 90%

reduction on data passes, in all experiments;

» PCMB has a much higher increasing rate of data passes and ClI tests than IPC-MB and

IAMB (Figure 4-19). The difference observed in complex problem (Alarm) is more obvious

than simpler problem (PolyAlarm). It is easy to understand since the algorithms converge

more quickly in simpler problems.

Increasing Rate of Cl Tests: IAMB vs. PCMB vs.IPC-
MB(Alarm)
2000
1800
1400
2 1200 /l/
o 1000
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o 800 . «
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400 —
208 - —————— O —m -—
250 500 1000 | 2000 | 3000 | 4000 | 5000
—4—|AMB 93 116 140 162 179 187 197
—#—PCMB/10| 546 464 605 880 1233 | 1601 | 1770
IPC-MB 562 561 637 736 798 849 876
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Inreasing Rate of Cl Tests: IAMB vs. PCMB vs. IPC-MB

(PolyAlarm)
220
200 /. ‘___./.
180 7
(%}
2 160
140 //
120 W
100
500 1000 2000 3000 4000 5000
= |AMB 106 126 147 155 165 171
={l=PCMB/5 117 143 167 200 203 213
IPC-MB 143 164 179 190 195 196

Figure 4-19: Comparison of increasing rate of CI tests given Alarm and PolyAlarm networks:
IAMB vs. PCMB vs. IPC-MB.

4.6 Data Efficiency

Data efficiency can be measured in two dimensions, the relative accuracy given the same amount
of training instances, and the actual cardinality of conditioning set as involved in the CI tests. The

first measure is indirect, while the second one is direct.

4.6.1 Relative Accuracy

From the study of Section 4.4, it is observed that although IPC-MB has no gain over IAMB given
the small problem Asia, it obviously exceeds IAMB given larger and more complex problems,
like Alarm, PolyAlam, Hailfinder and Test152. For example, given only 500 instances in Alarm
problem, the average distance of IPC-MB is 0.32, while it is 0.67 for IAMB. Besides, given more
instances, the accuracy rate reached by IPC-MB increases faster than IAMB, which reflects
further that IPC-MB is able to make better use of data to infer more information than IAMB.
PCMB and PC perform much better than IAMB too, but slightly poorer than IPC-MB, which will

be explained soon in 4.6.2.
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With IAMB, we even observe a decrease in accuracy given more observations, e.g. with Alarm
(Figure 4-9), Hailfinder (Table 4.9), Test152 (Figure 4-12) and PolyAlarm problems (Figure
4-15). As we mentioned in 4.4.5, this is not our implementation mistake, but it is determined by
the nature of IAMB — though more search can be conducted given more instances in IAMB, it
adds more false positives in the growing phase but not able to remove them in the shrinking
phase.

PCMB is observed to have the similar accuracy performance as IPC-MB, so it is indeed more
data efficient than IAMB too as declared in [13].

4.6.2 Distribution of Conditioning Set Size

The relative accuracy of IAMB/PCMB/IPC-MB given the same amount of observations is one
important, but indirect, measure to reflect the distinction resulted from different data efficiency.
In this section, we study the problem in a direct manner by measuring the distribution of
conditioning set size of three algorithms, which is believed helpful for us better understand what

happens behind the scene.

Two example distributions are illustrated in Figure 4-20, and both are based on experiments with
Alarm data. We summarize the number of CI tests with conditioning set of cardinality X, and
then normalize them with the total number of CI tests as involved in the search to get the relative
frequencies. The upper graph in Figure 4-20 is measured given the data collected in the Alarm
experiments with 500 instances, and the bottom one is about experiments with 5,000 instances.
This permits us to observe the relative distribution of the conditioning set size about IAMB,

PCMB, IPC-MB and PC, given “small” and “large” data sets respectively.

From Figure 4-20, we see that given 500 instances, the largest conditioning set is of size five
(variable) (found in PCMB); with more instances, for example 5,000, it increases to 7 (found in
IAMB and PCMB). The increased largest conditioning set indicates that more searches can be
done in IAMB and PCMB. However, we didn’t see any gain in accuracy on [AMB algorithm
(Figure 4-9), while PCMB achieves great progress with distance decreasing from 0.31 to 0.06. In
contrast, the largest conditioning set is of size 2 and 4 respectively for IPC-MB, given 500 and

5,000 instances.
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IPC-MB performs much better than IAMB, and achieves slightly higher accuracy than PCMB,
which seems can resort to the fact that most of its CI tests involve fewer number of variables
(Figure 4-20, Figure 4-21, Figure 4-22). For example, given 5,000 instances in Alarm problem,
96.6% CI tests have no more than two variables in their conditioning set, in IPC-MB; this number
Is 70.6% for PCMB, and 53.3% for IAMB. Actually, in all five experiments, we observe that
over 90% of ClI tests involved in IPC-MB have two or fewer variables in the conditioning set.
This explains why PCMB and IPC-MB performs much better than IAMB, in a different light.
Besides, we do observe a little more gain by IPC-MB over PCMB in Test152 problem. Though
there is no obvious gain is observed by IPC-MB over PCMB, it is believed that more trustable

outcomes are expected on IPC-MB over PCMB in applications.

Cummulative Distribution of Conditioning Set Size: IAMB
vs. PCMB vs. IPC-MB vs. PC (Alarm 500)
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Figure 4-20: Example distribution of conditioning set size (i.e. the cardinality of conditioning set)
as involved in Cl tests conducted by IAMB, PCMB, IPC-MB and PC in

experiments of Alarm (The upper graph is the average distribution given 500

instances, and the bottom is that measured given 5,000 instances).

PCMB vs. IPC-MB vs. PC (PolyAlarm, 5K)
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Figure 4-21: Example distribution of conditioning set size (i.e. the cardinality of conditioning set)
as involved in Cl tests conducted by IAMB, PCMB, IPC-MB and PC in

experiments of polytree version Alarm (5,000 instances).

Cummulative Distribution of Conditioning Set Size: IAMB vs.
PCMB vs. IPC-MB vs. PC (Test152, 2.5K)
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Figure 4-22: Example distribution of conditioning set size (i.e. the cardinality of conditioning set)
as involved in Cl tests conducted by IAMB, PCMB, IPC-MB and PC in
experiments of Test152 (2,500 instances).

Figure 4-21 shows the distribution of conditioning set size as measured in experiments with the
polytree version of Alarm, where 5,000 instances are available. Compared with the measures
shown in Figure 4-20, it is noticed that the portion of CI tests with smaller conditioning set
increases, for each algorithm covered. Meanwhile, many fewer number of ClI tests are observed
by comparing Table 4.8 and Table 4.11. Hence, we can conclude that problems of sparse

networks are easier to solve.

4.7 Summary

A series of experiments with classical problems, ranging from small to large scale, are conducted,
over IAMB, PCMB, IPC-MB and PC algorithms. By feeding different size of observations to
these four algorithms, we study their relative performance in term of accuracy, time efficiency

and data efficiency. Compared with IAMB, IPC-MB achieves much higher accuracy given the



106

same amount of samples, and the extra requirement on time is affordable; compared with PCMB,
IPC-MB reaches the same or slightly higher accuracy but in much faster speed; compared with
PC, IPC-MB demonstrates obvious advantage in term of time complexity as an algorithm
requiring only local search.

In next chapter, we will go a little beyond the results collected in this chapter, discussing more on
the causes behind the scene.
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Chapitre 5 TRADEOFF ANALYSIS OF DIFFERENT MARKOV BLANKET
LEARNING ALGORITHMS

5.1 Introduction

The necessary background of Markov blanket, existing learning algorithms, and our own
proposed one are covered in previous chapters. A series of experiments are also designed to
provide a vivid and direct comparison of their relative performance. In this chapter, we will go
beyond the facts as presented in Chapter 4, with emphasis on why one algorithm behaves like
what it appears, and we expect to end with a non-biased recommendation on one most

appropriate algorithm for inducing Markov blanket.

5.2 Category of Algorithms

From 1996 on, there are at least 10 algorithms for inducing Markov blanket have been proposed,
including KS, GS, IAMB and its variants (InterlAMB, InterlAMBnPC and Fast-IAMB),
MMPC/MB, HITON-PC/MB, PCMB and our own IPC-MB. They actually can be classified into

two groups:

1. Algorithms built on the property that I(T, X|MB7) , for vX € U\MB;. KS, GS, IAMB and
its variants belong to this category. We use GROUP | to refer to these algorithms in the

remaining text of this chapter;

2. Algorithms built on the property that MB; = PC; U Sp; and the underlying connection
between X € MB and the target T, i.e. the so-called topology information. More recent
algorithms like MMPC/MB, HITON-PC/MB, PCMB and IPC-MB fall into this class.
GROURP 11 is used to denote them in this chapter.

Algorithms of both categories depend on a series of conditional independence tests in the search

of MB;.

In this chapter, we only consider IAMB, PCMB and IPC-MB considering that (1) IAMB and
PCMB are representatives of GROUP I and GROUP II respectively; (2) Both are proved correct,
and their relative performance data are collected in Chapter 4; and (3) All three algorithms

require the same assumption, faithfulness.
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5.3 Efficiency Gain by Local Search

Local search is defined relative to global search. Given the faithfulness assumption, if an
algorithm could induce MB; without having to induce the whole Bayeisan network over U, it is
viewed as local search, or local learning. Based on this definition, IAMB, PCMB and IPC-MB all

belong to this category.

However, it doesn’t mean that local search is guaranteed to be more time efficient than global
search. From the study in Section 4.5 (more specifically, Table 4.12), it is observed that IAMB
and IPC-MB are able to achieve obvious reduction in time complexity as compared with PC (but
IAMB performs much worse than PC in term of accuracy), and the gain is expected to be more
remarkable with increasing scale of problems. Although PCMB produces as correct outcome as
IPC-MB and PC given the same number of instances, its timing cost may even exceed that of PC
(see Section 4.5.1, 4.5.2 and 4.5.3). Even though, we prefer to say the PC is such an excellent
algorithm, instead of declaring that PCMB is not good enough.

5.4 Data Efficiency

5.4.1 Data Efficiency is Critical

As we see in Chapter 4, though one algorithm, like IAMB, can be correct theoretically, it may
produce very poor results with limit instances. Normally the lower accuracy achieved by one
algorithm given specific number of instances, the more data inefficient this algorithm is. One
may argue for more observations to reach a satisfactory level, this is not realistic in real
applications. For example, given the Alarm problem, even when 20,000 instances are allowed for
IAMB, its accuracy is still much poorer than that reached by PCMB and IPC-MB given 5,000

instances. Therefore, IAMB has limit in applications, though it is expected to be time efficient.
Data efficiency is the most problem existing in GROUP 1 algorithms, and it is this problem
which has attracted several following effort since the birth of IAMB.

5.4.2 Why IAMB is Very Data Inefficient

There are two reasons to cause the data inefficiency of IAMB. Firstly, IAMB and other
algorithms in GROUP | depend on checking if 1(T, X|MB%) to determine whether or not add into
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or remove from MB; some variable X. This is direct and simple; however, they may condition on
the whole MB or even larger one, so the number of instances required for reliable test then
would be considerable. In fact, even if we have large samples, we still want the freedom degree
of statistical tests be as small as possible to have more reliable tests.

Secondly, many false positives are added in the growing phase, which prevents true ones from
being added. IAMB is composed of two phases: growing and shrinking. In the growing phase,
variable X is added into MBS if it is not conditionally independent of T given the current MBS.
Sicne MBS starts with empty on, obviously, false positives will be added, and they stay in MBS
since then. To make things worse, upon the first false one being allowed into MBS , the door is
opened for more false positives. If we have too few instances, we may terminate the learning
somewhere, ending with a possibly completely wrong MBS candidate set, which was observed in
our experiment. Feeding such a set into the shrinking phase can be a disaster, even worse than
conditioning on the whole MB,. Therefore, pretty low precision and recall are observed on

IAMB in our experimental studies.

5.4.3 PCMB is Data Efficient

The data inefficiency problem was noticed by others, including the authors of PCMB, so the
growing and shrinking are interleaved in GetPCD of PCMB. In GetPCD, a best candidate is
selected based on a series of conditional independence tests; upon one new candidate being added
to PCD, all variables of PCD, including the one just added, are checked to see if there is any false
positive. By doing so, false ones are recognized and removed in time, preventing error from

being accumulated and resulting with more error as in IAMB.

Besides, by dividing the recognition of MB, into PC; and Sp, the possibly largest conditioning
set is further limited. Therefore, although PCMB works like IAMB by considering which ones
should be included into MB, it makes each decision with enough caution aiming at correctness

as well as data efficiency.

5.4.4 IPC-MB is Data Efficient Too

Though IPC-MB has a similar framework as PCMB, it recognizes the PC$ in a quite different
way. Instead of deciding which ones can be added into PC% or MBS as PCMB or IAMB does,
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IPC-MB realizes this target by removing those known as false positives, with true ones left. This
is built on the observation that false positives normally occupy a much larger portion among the
whole attribute set U, e.g. the largest Markov blanket in Alarm is of size eight while totally there
are 37 attributes. In IPC-MB, each false positive is found with a conditioning set of the smallest
cardinality (Theorem 3.13). Similar to PCMB, the recognition of MBy is divided into PC; and
Spr as well. By minimizing the number of variables in separator set in FindCanPC, the
cardinality of the conditioning set involved in the recognition of a true spouse is also minimized,

which further ensures the reliability of the algorithm (Theorem 3.14).

As shown in Section 4.6, PCMB and IPC-MB demonstrate obvious advantage over IAMB in
term of data efficiency. Although the gain of accuracy of IPC-MB is not so obvious over PCMB
in our experiments, the distributions of conditioning set cardinality as shown in Figure 4-20,
Figure 4-21 and Figure 4-22 support such an argument: IPC-MB is expected to produce more

reliable results than PCMB because it requires smaller conditioning set by average.

5.5Time Efficiency

5.5.1 IAMB is Fast but with High Cost

The study in Chapter 4 shows that IAMB is the fastest one, and PCMB is terribly slow as
compared to the other two. IPC-MB is slower than IAMB, but in an affordable scale.

In IAMB, the numbers of CI tests and data passes as required in both phases grow in a linear
speed. Given U, both the number of CI tests and data passes needed in the worst case (Figure 3-5)
are (JU|—1) for the growing phase. Actually, it is also (JU| — 1) for the shrinking phase, and
hence the total number is 2 * (|U| — 1) for CI tests as well as data passes. Due to its data
inefficiency, in practice, the actual number of CI tests and data passes may be even fewer than
that as expected. The possible introduction of false candidates in the growing phase further make
the thing worse as we discussed in 5.4.2. Therefore, in IAMB, CI tests quickly become un-
reliable after few rounds in the growing phase, and the search has to terminate, with pretty poor

results being produced.



111

5.5.2 IPC-MB is Much More Efficient Than PCMB

IPC-MB is observed to have slightly better accuracy performance than PCMB, but with much
less cost in term of time. Both of them declare as local search, and they all include the topology
information into consideration, then why they differ so great in time complexity? We analyze the

cause from two aspects.

First, the authors of PCMB didn’t realize the conclusion made on Theorem 3.4. Then, in PCMB,
GetPC is called on not only the target T , but each X € PC;. However, in IPC-MB, FindCanPC,
which functions similarly as GetPCD, is called on T as well as each X € PC%. All these
FindCanPC calls combined together actually equals to one-time call of GetPC. Therefore, at least
|PC;| times of GetPC are saved in IPC-MB, which is significant considering that each GetPC is

really time consuming.

Second, what search conducted in FindCanPC is more efficient than GetPCD. Given the example
of Figure 3-5, the first step “remove false positives from CanPCD” (Figure 1-11) in PCMB has
the same complexity as the whole FindCanPC in IPC-MB, that is |U] = 2!VI=1; besides, each
GetPC has the complexity as the recognition of PC in IPC-MB, that is [U]?2!YI-1. Since PCMB
calls GetPC for each X € PC, the corresponding complexity increases to [U|32/VI=1, If we count
the extra two steps in GetPCD, i.e. “add the best candidate to PCD” and “remove false positives
from PCD” (Figure 1-11), the whole complexity of PCMB will be even higher.

Therefore, PCMB loses to IPC-MB in time efficiency due to three causes:

1. GetPCD (PCMB) is much more complex than FindCanPC (IPC-MB). GetPCD actually
follows the design of IAMB, but it interleaves the growing and shrinking to remove any false
positives wrongly recognized at an early time. The adding of one possible candidate within
each iteration is accompanied with two times of consuming checking, i.e. “remove false

positives from CanPCD” and “remove false positives from PCD”;

2. In GetPCD, the PCD not only differs between adjacent iteration, but within the same
iteration. Based on the guideline of our implementation, i.e. only known contingency tables
are constructed in one scanning of data file, we may need three data passes in each iteration

of GetPCD, which further makes thing worse;
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3. The needless calling of GetPC for each X € PC,. GetPC(X) is called to collect parents and
children of X in PCMB, and it has the same effect of what Line 2-12 do in IPC-MB. In other
words, we only call GetPC(X) for one time in IPC-MB because we recognized that spouse
candidates can be prepared meanwhile (Lemma 3.5), and only true spouses will pass the test
Ip(T,Y|Sepset U {X}) (Theorem 3.4). Therefore, those GetPC(X) for X € PC; is not
necessary, and it greatly increases the whole complexity of PCMB considering that each

individual GetPC(X) is so time consuming a procedure.

Therefore, to achieve better performance over IAMB and other previous works, IPC-MB is paid
with more affordable additional cost than PCMB.

5.6 Scalability

If we view the data as a matrix, with columns for features and rows for instances, scalability
refers to the ability that one algorithm works well given high dimensionality (column-wise), or

large number of observations (row-wise), or both.

Regarding IAMB, it doesn’t consider the topology, so the number of dimensions, or features,
directly influences its actual performance. In our experiments, acceptable accuracy level is only
observed in Asia problem. Though we believe that given enough instances, IAMB is able to
produce perfect results, the number of instances as required may be too large to meet. Therefore,
IAMB is not expected to perform well given increasing dimensionality, except when there are
also considerable observations accordingly.

PCMB is shown indeed more data efficient than IAMB, i.e. producing much higher accuracy
given the same amount of observations. Given fixed dimensionality, PCMB is also expected to
achieve much faster increase in accuracy than IAMB. However, as one algorithm declaring local
search, PCMB is quite time inefficient, and it may even cost much more than the global search by
PC algorithm. Though PCMB is shown scalable by its author in [13], where it is applied to a
problem with 139,351 features appearing in KDD-Cup’2001, we doubt the conclusion very much.

IPC-MB inherits the advantage of PCMB, i.e. data efficient. In fact, it may be more data efficient
than PCMB, as shown in our experiments (refer to Section 4.6.2). However, IPC-MB runs in a
much faster speed than PCMB. In Table 5.1, we observe that IPC-MB achieve the same or better
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result than PCMB, requiring many fewer CI tests. Compared with IAMB, the additional cost for
IPC-MB is affordable if we realize the much higher accuracy as achieved by IPC-MB.

Table 5.1: The comparison of IPC-MB to PCMB and IAMB in terms of time efficiency and
accuracy. About time cost, T x% means IPC-MB costs x% more CI tests than PCMB or IAMB;
and about accuracy, T x% means IPC-MB’s distance to the perfect result is x% larger than

PCMB or IAMB (note: the smaller the distance, the more accurate the result).

Problem PCMB IAMB
(# instances) Time Cost Accuracy Time Cost Accuracy
(CI Tests) (Distance) (CI Tests) (Distance)
Asia (20K) 1 83.0% 116.7% 1 296.0% 1 33.3%
PolyAlarm (5K) 195.1% 10.0% 1 14.6% 1 74.4%
Alarm (5K) 1 95.1% 116.7% T 344.7% 1 92.9%
Test152 (2.5K) 176.2% 1 36.4% T47.0% 1 87.5%

Both PCMB and IPC-MB are sensitive to the underlying topology, or we can say that the actual
topology influences their scalability a lot. For example, although both Alarm and PolyAlarm
have 37 attributes, the actual timing cost by IPC-MB and PCMB differs greatly. In addition, we
observe that IPC-MB and PCMB achieve quite expressive results in Test152 problem given only
2,500 instances; they need 5,000 or more instances to reach the same accuracy level in Alarm

problem, though Test152 has much higher dimensionality than Alarm problem.

In conclusion, compared with IAMB and PCMB, IPC-MB achieve a good tradeoff by improving
the data efficiency with reasonable additional timing cost; hence, it is expected to have better
scalability. Besides, the underlying topology influences the actual scalability of algorithms
depending on the structure, like PCMB and IPC-MB.

5.7 Information Deduced

To the problem of feature selection, recognizing the variables belonging to the Markov blanket of
T is the target. Regarding this goal, all three algorithms under study are known with this ability

from the theoretical viewpoint, i.e. producing the perfect result given enough information.

However, given the faithfulness assumption, Markov blanket is known as unique and it contains
target’s parents, children and spouses (along with edges and corresponding orientations). IAMB
and other previous algorithms only recognize that variables of MB render the rest of variables

independent of target; their designs are built on this property, and their output only tell us if
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X € MB; given X € U. PCMB and IPC-MB are built on the information as encoded in the
underlying connectivity existing on Markov blanket and T. It not only enables algorithms to
achieve much better data efficiency than IAMB but generate more informative result. IAMB
doesn’t distinguish the parents, children and spouses of T, but PCMB and IPC-MB separate
spouses from the remaining variables in MB,. Besides, those common children of spouses and T

are recognized among MB;\Sp, so as the orientations of related arcs, see Figure 5-1.

@‘ Q(@“

&

PCMB IPC-MB

Figure 5-1: Output of IAMB (left), PCMB and IPC-MB (right)

The additional information as found by PCMB and IPC-MB may be helpful for applicants to
understand the underlying problem better. Furthermore, they can be made use to reduce the effort

for the learning of Markov blanket classifier as to be discussed in Chapter 6 and 7.

5.8 Approximate Version of IPC-MB

Although IPC-MB is demonstrated very efficient in our experiments, its time complexity may
still be un-affordable given network with dense connections or with large Markov blanket. For
example, as we discuss in Section 3.9, it has to continue the search until there are no conditional
independence tests left undone, even all false positives are able to be removed with conditioning
sets of size smaller than two, given polytree networks. By imposing the checking of reliability of
tests, as found in Figure 4-5 (Section 4.3.2), the search may terminate at earlier time when there
are no more trustable tests available, which possibly reduces the time complexity though it is

added originally to guarantee the correctness of results in practice.
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However, we still may face large search space when there are ample instances for learning. One
common choice as referred in conditional test based structure learning algorithms of Bayesian
network can be applied here to reduce the search space to an expected level, i.e. restricting the
maximum number of parents. In IPC-MB, this is equal to limit the maximum value of cutSetSize
in FindCanPC because IPC-MB, actually, depends the Markov condition to remove those non-
descendants in FindCanPC. Therefore, we have a new version of FindCanPC (Figure 5-2)

derived from the version proposed in Figure 4-5.

FindCanPC(T: Target,PCE: Candidate PC, D: Dataset, <: SignificanceValue)

{

1. NonPC = @;

2. cutSetSize = 0;

3. repeat

4 notReliableAnyMore = true;

3 for( vX € PCE) do

6 for(S = PC{_{X}) with |S| = cutSetSize) do
7. ifi1, (T, X|S) is reliable) then

8 notReliableAnyMore = faise;

9. ifil, (T, X|S) < ¢) then

10. NonPC = NonPC U {X};

11. Sepsetry = §: /Cache for later reference
12. break:

13. end if

14. end if

15. end for

16.  end for

17.  PCE = PCE\NonPC;

18. NonPC = @,

19.  cutSetSize + +;

20. until(cusSetSize=maxNumParents or |PCE| = cutSetSize or notReliablednyMore = true)
21. return PCE;

}

Figure 5-2: The version of FindCanPC that restricts the search space as well as considers
reliability of statistical tests.

Though it is an approximate version, it doesn’t mean that we won’t get correct results. For

example, with a polytree, if we set the maximum number of parents as two or larger value, the
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outcome of FindCanPC as well as IPC-MB are both guaranteed. Considering that real problems
generally have spare connectivity, most false positives can be recognized and removed given
small conditioning set. Therefore, this approximate version will not entail a large loss of accuracy,

but both the time and space complexity are reduced to an predictable level.

PCMB may have an approximate version by applying the same limit on the number of parents.
However, there is no such choice for IAMB since it is not dependent on the underlying topology.
The only possible choice is to limit the maximum cardinality of target MB, which will make the

performance of IAMB worse.

5.9 Summary

Although IAMB, PCMB and IPC-MB are all proved correct theoretically, they still demonstrate
relative strength or weakness when applied to real problems, as revealed by the experiments
conducted in Chapitre 4. In this chapter, we go beyond the facts observed, aiming at deciphering

some causes existing behind the facts.

For practical applicants, based on our experience, IAMB is strongly recommended if there are
ample data because it is easy to implement, fast in speed and efficient in memory usage. However,
we should realize that the need for large data samples increases quickly (actually, exponentially)
when the number of variables and/or the number of values per variable increase, and rarely we
can meet the corresponding requirement. In our experiments with IAMB, satisfactory result is

observed only on Asia, one very tiny problem containing only eight variables.

Compared with IAMB, PCMB and IPC-MB have much better accuracy performance given the
same amount of observations, which reflects their data efficiency property. However, PCMB is
much slower than IPC-MB, and it may cost more time than PC. Hence, IPC-MB is further
recommended over PCMB. Considering that samples are always small relative to the observation
space, i.e. [] X; where X; € U, and the time cost is affordable, IPC-MB is determined as the best
choice among the three for applicants. Approximate version is possible for PCMB and IPC-MB,
but not IAMB. Table 5.2 gives a brief summary on their relative features.

Table 5.2: Trade-off summary over IAMB, PCMB and IPC-MB.
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IAMB

PCMB

IPC-MB

Assumption(s)

Faithfulness

Faithfulness

Faithfulness

Local Search

Yes, and less cost
than PC

Yes, but cost may be
higher than PC

Yes, and less cost than
PC

Data Efficiency Very poor Good Best

Time Efficiency Best Poor Good

Scalability Ignored Applicable(especially Applicable(especially
with approximation with approximate
version) version)

Information Only MB MB, plus partial MBj plus partial

Induced connections and connections and
orientations orientations

Implementation Simple Difficult, and should pay Simple but should pay

Difficulty

attention on the code and
memory optimization

attention to memory
usage optimization
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Chapitre 6 ANOVEL LOCAL LEARNING ALGORITHM OF BAYESIAN
NETWORK CLASSIFIER: IPC-MBC

We have shown how to derive the set of variables that compose a Markov Blanket with local
learning algorithms in the previous chapters. This set of variables can be used for any classifier
and it is known as the optimal set for that purpose. However, the full topology of the BN over
tihs set of nodes is not derived from these algorithms. This topologhy corresponds to a Markov
Blanket Classifier. In this chapter, we introduce a novel algorithm for efficiently learning this
topology. Compared with conventional structure learning algorithms, e.g. PC, we limit the search

in a local manner as we do in IPC-MB, so obvious reduction of time cost is observed.

6.1 Background

Classification is a fundamental task in data mining that requires learning a classifier through the
observation of data. Basically, a classifier is a function that maps instances described by a set of
attributes to a class label. Nawe Bayes networks have been widely used for the task of
classification [43, 44] (Figure 6-1 upper-left). They represent a special case of the more general
Bayesian networks (BN) formalism and are characterized by their strong assumption about the
independence of attributes given the target node. Although they generally perform fairly well in
spite of this assumption [6], they lack the power to represent more complex dependencies among
attributes and the target node that can affect performance. Tree Augmented Nawe Bayes [7]
(Figure 6-1 upper-right) is an extension of Nawe Bayes that weakens its assumption, allowing
additional dependence relations among attributes. It is empirically shown to yield better

performance [7].

Compared with Nawe Bayes and TAN, a BN (Figure 6-1 bottom) doesn’t distinguish between
target (class) variable and attributes. The target can be a parent or child of attributes, and general
dependencies are found among attributes. Although such general BN is expected with several
promising merits, including (1) yielding better performance than Na'we Bayes and TAN [8], (2)
encoding more detailed dependence relations as needed in diagnosis applications, and (3)
inferring any node’s possible state given complete or incomplete observations of other nodes, the

NP-complete complexity to learn a BN inhibits its widespread application.
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Bayesian Network

Figure 6-1: Examples of Bayesian classifiers, including Na'we Bayes (upper left), Tree-
Augmented Nawe Bayes (upper right) and Bayesian Network (bottom)

However, we note that not all attributes are effective in predicting the target in applying BN as a

classifier. With the BN example in Figure 6-1 (bottom), we have a decision rule like,

P(T|Xy, ..., X;) & P(T, Xy, ..., X)
= P(T|X3, Xs)P(X3|X1)P(Xs5|X6) P (X2 | X1) P (X4l X2, T)P(X7|T)P(X1)P(Xe)

(6.1)

of which some terms, namely P(X;|X;), P(Xs|X¢), P(X2|X1), P(X,),P(X,) do not contain the
target variable T, which means that their values have no direct influence on the classification
decision of T. By removing them, we obtain a simpler decision rule with no sacrifice with regards

to classification performance:

argmax P(T = t|X3, X5)P(X4|X2, T)P(X7|T)
t

(6.2)

The attributes {X,, X5, X4, X5, X5}, involved in this new version of the decision rule (6.2)
correspond to the Markov blanket of T, i.e. MB;. Actually T , MB plus the arcs among them
also constructs a Bayesian network, part of the original whole BN, and it encodes all the
dependence relationships appearing in (6.2). Obviously, if we have the Bayesian network over U,
it is trivial to get the sub-network that is effective for the classification of T, and it is called
Markov blanket classifier (MBC) (with another name Bayesian network classifier (BNC) in one

of our early publication [15]) this article to distinguish it from the whole BN over U.
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Definition 6.1 (Markov Blanket Classifier or Bayesian Network Classifier). Given a Bayesian
network over U, the partial DAG over T U MB is called the Markov Blanket Classifier, or

Bayesian Network Classifier about T, and denoted as MIBC; or BNC.

Note : (1) We will use MBC or BNC to refer the general concept; (2) Because BNC was used
in our early published work [15], it is mentioned for easy reference, though MBC is preferred

considering its close connection with Markov Blanket.

As mentioned above, with a learned (known) BN and a given target T, getting the target MIBC is
a trivial task. In this chapter, we propose one algorithm to learn the MIBC without having to
learn the whole BN first. It is built on IPC-MB, and it is proved correct, demonstrated as more
efficient than the conventional approaches which have to learn the BN before we can get MBC.
In Section 6.2, necessary knowledge of Bayesian network is covered for later reference and self-
contained purpose. Then, in Section 6.3, how the related work is motivated is introduced in brief.
In Sections 6.4, a local structure learning algorithm for MBC is proposed, and its correctness is
proved. The complexity analysis is conducted in Section 6.5, followed by empirical study and

discussion in Section 6.6 and 6.7. A brief conclusion about this chapter is made with Section 6.8.

6.2 Structure Learning of Bayesian Network

Since MBC is a BN, but over a feature subset MB; = U\{T}, those methods applicable to the
structure learning of BN are believed useful references for our work. There are two ways to view
a Bayesian network, each suggesting a particular approach to learning and they are described

below.

6.2.1 Conditional Independence Test Approach

This approach views the BN as a structure that represents a group of conditional independence
relationships among the nodes, according to the concept of d-separation [2]. This suggests
learning the BN structure by identifying the conditional independence relationships among the
nodes. Using some statistical test (such as Chi-squared test), we can find the conditional
independence relationships among the attributes and use these relationships as constraints to
construct a BN. These algorithms are referred as Cl-based algorithms or constraint-based
algorithms [14, 23, 35, 36]. This approach includes IC algorithm (inductive causation) [2], PC
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algorithm (after its authors, Peter and Clark) [14], GS algorithm (grow and shrink) [23] and
TPDA algorithm (three-phase dependency analysis) [36]. All of them recover structures to be
consistent with the conditional independencies among the variables. Generally, algorithms start
by learning the skeleton of the graph (by propagating constraints on the neighborhood of each
variable) and then edges are oriented to cope with dependencies revealed from data. Finally, one
network is retained from the equivalent class consistent with the series of tests. Under the
faithfulness condition, such strategies have been proven to build a graph converging to the true
network as the size of the data approaches infinity. Moreover, their complexity is polynomial,
assuming that the maximal degree of the network, that is, the maximal size of direct neighbors, is
bounded [45].

6.2.2 Score-and-Search Approach

The second approach views the BN as a structure that represents the joint distribution of the
attributes. This suggests that the best BN is the one that best fits the data, and leads to the
scoring-based learning algorithms, that seek a structure maximizes the Bayesian, MDL or

Kullback-Leibler (KL) entropy scoring function [46, 47]. Since the search space is known to be
of a super exponential size on the number of nodes n, that is, O (n! 2" (;)) [48], an exhaustive

search is practically infeasible, implying that various greedy strategies have been proposed to

browse DAG space, sometimes requiring some prior knowledge.

Among them, the state-of-the-art greedy hill climbing strategy, although simple and yielding only
a locally optimal network, remains one of the most employed method in practice, especially with
larger networks. There exist various implementations using different empirical tricks to improve
the score of the results, such as Tabu List, restarting, simulated annealing or searching with

different orderings of the variables [49, 50].

No matter what scoring function to take and what heuristic to employ during the search, such

algorithm will process in the following manner:

1. Start the search from a given DAG, usually the empty one or Nawe Bayes network;
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2. Then, from a list of possible transformations containing at least addition, withdrawal or
reversal of an edge, select and apply the transformation that improves the score most while

also ensuring that graph remains acyclic;

3. Finally repeat previous step until strict improvements to the score can no longer be found.

6.2.3 Statistical Equivalence

A Bayesian network structure G represents conditional independence assumptions that allow the
joint distribution to be decomposed, reducing the number of parameters. The graph G encodes the
Markov assumption: Each variable X; is independent of its non-descendants, given its parents in
G.By applying the chain rule of probabilities and properties of conditional independencies, any

joint distribution that satisfies the Markov assumption can be decomposed into the product form

P(Yy, . %) = | | PCXIPaC())
i=1

(6.3)

The Bayesian network structure G implies a set of independence assumptions in addition to (6.3).
Let I(@) be the set of independence statements (of the form X is independent of Y given Z) that
hold in all distributions satisfying these Markov assumptions, and they can be derived as

consequences of (6.3) [2].

More than one graph can imply exactly the same set of independencies. For example, consider a
BN over two variables X and Y. The graphs X —» Y and X « Y both imply the same set of
independencies (i.e., I(G) = @). Two graphs G and G' are equivalent if I(G) = I(G")[51]. That

is, both graphs are alternative ways of describing the same set of independencies.

This notation of equivalence is crucial since when we examine observations from a distribution,
we cannot distinguish between equivalent graphs. Pearl and Verma [29] show that we can
characterize equivalent classes of graphs using a simple representation. In particular, these results
establish that equivalent BNs have the same underlying undirected graph but might disagree on
the direction of some of the arcs.
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Theorem 6.1 Two DAGs are equivalent if and only if they have the same underlying undirected
graph and the same v-structures (i.e. same set of uncoupled head-to-head converging, such as
X ->Y « Z)[29,52].

This theorem implies that (1) learning the v-structures is critical for learning a Bayesian network,

and (2) the remaining arcs’ directions have no influence on the usage.

6.3 Motivation, Heuristics and Our Work

With a known BN over U and 7" of interest, it is trivial to extract the target MIBC,. However,
from the discussion in Section 6.2 and our experimental study in Section 4.5 (on PC), it is known
that both CI and score-and-search approaches fail to scale to large problems. Actually, compared
with the whole network, MIBC; normally occupies quite a small area of the whole DAG, in terms
of both nodes and arcs. For example, the largest MBC in Asia, Alarm, Hailfinder, Test152 and
PolyAlarm has 5, 8, 8, 17 and 5 nodes respectively, as compared with 8, 37, 56, 152 and 37 nodes
as contained in the corresponding network. Therefore, an ideal solution permitting to learn only
the nodes and arcs related with the target MIBC is expected. Having to learn the DAG over U
first is not what we prefer, though we have no other choice in the past, since it means waste of
computing resource; and generally, the larger is the whole DAG, the more is the possible waste.
How to reduce search space and reach an efficient learning algorithm for MBC is the goals of this

and next chapter.

Given the output of IPC-MB, we want to make use of it to solve the pending problem considering
three facts that (1) IPC-MB enables us to find the correct MB, (2) MB contains all and only the
nodes belonging to the target MIBC (except for 77), and (3) MB; is much smaller than U,
restricting the remaining search in a quite smaller scope. With MB ready, all existing methods
available for the structure learning of BN are applicable without changes. One typical nawe
procedure is to apply IPC-MB first to recognize MB;, and then apply constrained (Cl-test) or
score-and-search learning algorithms as though U = MB;. However, we can take advantage of

some of the structure learning that occure in IPC-MB to derive MIBC; more efficiently.
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6.4 IPC-MBC Algorithm Specification and Proof

6.4.1 Overrall Description

IPC-MBC requires faithfulness assumption, and it also depends on a series of conditional tests to

determine if any link X — Y should exist or not. The overall design of IPC-MBC is based on such

an fact — if we know PCy of each X € MB, the union of links between X and Y € PCxy N MB;

should belong to the target MIBC;.

Given target T € U and observations D, the whole procedure of IPC-MBC (Figure 6-2) can be

divided into five sequential steps as described below:

1.

Induce the connections between T and PC$ (Line 1-5). IPC-MBC starts with an initial G
in which T is connected with VX € U. The false parents/children are removed by
disconnecting them from T via the call of FindCanPC-MBC(T) , with possible exception on
T’s descendants. Candidate parents/children of T then are retrieved from G based on the

linkage, denoted as PC5 . T is marked as scanned by adding it into the container Scanned;

Remove false positives from PC¢ to get PCr, add links between VX, Y € PC; and collect
spouse candidates (Line 6-10). Given VX € PC, it is initialized to be connected to all
Y € U\Scanned in G (Note: the edges existing between X and Y € Scanned therefore are
kept un-changed). Then FindCanPC-MBC(X) is called to remove false positives from its
adjacent neighbors to get PC$. The current X is added to Scanned as well. After such call of
FindCanPC-MBC(X) on VX € PC%, (1) what connected to T are only its true parents and
children, denoted as PCy; (2) the edges existing between any pair of X,Y € PC; are added in

G; and (3) nodes adjacent to X € PC; are known as candidate spouses, denoted as SP$;

Recognize true spouses, Spy , add links among Spy , and between
Spr and PC; (Line 11 — 22). We retrieve PC, and SP& first from G based on the
connection. For VX € PCy , we similarly retrieve PC$ where PC§ = {Y|(X — Y) € G}. Then,
for vY € PC§\Scanned, if it is dependent with T as conditioned on Sepsetry U {X}, it is
known as a true spouse. For such Y, we add links between it and each Z € U\Scanned, and
call FindCanPC-MBC(Y) to induce the links as may exist between Y and Z € Sp; U PC.
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Since each true spouse Y is processed in the same way, we won’t miss any links among

Spr, as well as links between Sp; and PCy;

4. Remove nodes not belonging to PC; and Sp; (Line 23). The arcs connecting to the
removed nodes are deleted as well, with the skeleton of MIBC; and some know V-structures
leftin G;

5. Orienting the arcs. A series of orientation rules are applied to the outcome of Step 4 to get
the final MBC.

These five steps summarize the overall design of IPC-MBC (Figure 6-2), from which one can see
that we repeatedly depend on the recognition of parents and children, via calling FindCanPC-
MBC(Figure 6-3), to determine the connection between any pair of nodes (including Step 1, 2
and 3). This is similar to what we done in IPC-MB, but more complex since here we care not
only MB, but also about links existing among MB U {T}. Because we carefully restrict the call
of FindCanPC-MBC within a local scope by (1) following breadth-first manner, (2) removing
confirmed false positives, and (3) preventing duplicate study, a great reduction of complexity is
expected. In the coming sections, each step will be expanded with more details, along with

necessary proof of correctness.



126

IPC — MBC(T: Target, D: Dataset, &: Significance Value)
{

// Step 1: Recognize CanPC(T)

Scanned = {};

G = {(T —X)|vX € U\{T}}

G = FindCanPC —MBC(T,G,D.s);

PCf = {X|(T —X) € G}:

. Scanned = Scannedu {T};

//Step 2: Recognize PC;/Add links among PC;

6. for(wX €PCEt)do

7. G=GuU{(X-Y) vY eU\Scanned};

8. G = RecognizePC — MBC(X,G,D,¢):

9. Scanned = Scanned U {X};

10. end for

//Step 3: Recognize Sp-/Add links among Sp;/Add links between Spr and PC;
11. PC, = {X|(T —X) € G};

12. for(vX € PC;) do

13. PCS={IX-D) €G}:

14.  for(vY € PCS and Y € Scanned)do

15. if(1,(T.Y|Sepset,., U{X}) > ¢) then

N

il

16. Set T=X«<YingG;

17. G =Gu{(Y — Z)| vZ € U\Scanned}:
18. G = RecognizePC — MBC(Y,G.D,¢);
19. Scanned = Scanned U {Y}

20. end if

21.  end for

22. end for

//Step 4: Clean unnecessary nodes and links in G, with the skeleton of MBC;. left

23. Remove all X from G such that X € (PC; U Spr U{T}) so as those links related to the
removed nodes, with MBC,. skeleton plus some known v-structures left;

// Step 5: Orientation (refer to Section-Orientation)

24 return G;

)

Figure 6-2: The overall algorithm specification of IPC-MBC
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FindCanPC— MBC(T: Target, G: Graph to work with, D: Dataset, ¢: Significance Value)

NonPC = {};

cutSetSize = 0;

PCE = {X|(T —X) € G}, /Retrieve adjacent nodes of T
do

35 for(vX € PC£) do

6 for(vS c PCE\{X} with|S| = cutSetSize) do

7. if(I,(T.X|S) < c)then

8 G =G\{(T-X)k

9. NonPC = NonPC u {X};

10. Sepsetry =S; // Cache for reference in IPC-MBC
11. break;

12. end if

13. end for

14.  end for

PCE = PCE\NonPC;

16. cutSetSize = cutSetSize + 1;

17. while(|PCE| > cutSetSize)

18. returnG;

}

e R

—
h

Figure 6-3: FindCanPC-MBC algorithm specification.

6.4.2 Induce Candidate Parents/Children of Target

As the name of this algorithm indicates, the whole learning depends on the discovery of parents
and children enables us to induce the links of interest, which is critical to the locality nature of
this algorithm. FindCanPC-MBC procedure (Figure 6-3) is responsible for the learning of

parent/child candidates, and it has four input parameters:
1. T,the active target that we are going to study its connectivity status with others;

2. G, the graph container which contains (1) what we have found, and (2) manually added

adjacent neighbors of T, i.e. U\Scanned, upton entering FindCanPC-MBC.

3. D, the dataset prepared for training;
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4. g, threshold value to be used in determining if a conditional independence test indicates “true”
ClI relationship or not, e.g. significant or not. It is set empirically, and common choice may
be 0.01 or 0.05.

The output of FindCanPC-MBC is contained in G, but with some links possibly deleted compared
with the state when it just enters into the function. For easy reference purpose, we use G;(i =

1..5) to represent the graph as got by the end of each of the five step.

FindCanPC-MBC(T, G) (the remaining two parameters are ignored since they are same for
different calls) actually is same as FindCanPC(T, PC%) in IPC-MB since PC$ can be retrieved
from G, and it is actually done at Line 3 in FindCanPC-MBC. Although there is more
information contained in G (except for the first call of FindCanPC-MBC), they, in fact, are
ignored within FindCanPC-MBC. Therefore, all discussions and conclusions on FindCanPC (in
3.4. 1) apply here. In the first step, G is initialized as {(T — X)|vX € U\{T}}, and we have the

following two corollary derived from previous conclusions made in Chapitre 3.

Corollary 6.1 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution
faithful to a DAG, given G = {(T — X)|vX € U\{T}}, FindCanPC-MBC enables us to find the
superset of PC; , denoted as PC$ (Candidate Parents and Children), and PC; € PC&..

Proof. Please refer to Theorem 3.1. ||

Corollary 6.2 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution
faithful to a DAG, given G = {(T — X)|vX € U\{T}}, the only possible false positives as output
by FindCanPC-MBC are T’s descendants.

Proof. Please refer to Theorem 3.2. ||

Therefore, by the end of the first step, we have G, = {(T — X)|X € PC%}, and Figure 6-4 gives

an example illustration.
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Figure 6-4: G, contains all the parents and children of T (denoted as P/C since they cannot be
distinguished for now) as connected to T, as well as some false positives possibly, i.e.
children’s descendants (C4 with dotted circle). Note that nodes NOT connected to T

are not drawn in this graph.

6.4.3 Recognize PCy/Links among PCy/ PC$

Given Gy, it is trivial to retrieve nodes direcly connecting with T in G,, denoted as PC&. In this
step, we call FindCanPC-MBC on each X € PC&. If we denote the graph to have by the end of

this step as G,, we need to prove the following two findings:
» {X|(T — X) € G,} is exactly parents and children of T, i.e. PC; Besides,

> {(X-|X-Y)EG,,VX,YEPCrand X # Y} ={(X —Y)|(X —Y) € MBCy,
V X,Y € PCyand X # Y}, i.e. the links existing among PCy in G, are exactly those among
PC in the target MIBC.

Lemma 6.1 Given G = G U {(Y — X)|VX € U\Scanned}, the call of FindCanPC-MBC(Y, ¢)

will output all parents and children of Y.

Proof. Scanned is known to contain nodes having FindCanPC-MBC called. Then, given
G=GU{(Y—-X)|VX € U\Scanned}, (1)nodes contained in Scanned and confirmed not
connecting to Y in MIBC, are excluded from consideration, as expected; and (2) nodes known as
connecting to Y and contained in Scanned keep remained in G. Upon the calling of FindCanPC-
MBC(Y, G), all parents and children must connect to Y in G ; otherwise, it means that some

X € PCy N Scanned fails some CI test in previous FindCanPC-MBC(X), which is impossible
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based on Corollary 6.1. Similarly, none of PCy will be removed in the current FindCanPC-
MBC(Y) given Corollary 6.1. Therefore, all the parents and children of Y will be output as

connectingto Y. i

Lemma 6.2 Given G = G U {(Y — X)|VX € U\Scanned}, the call of FindCanPC-MBC(Y, G)

will never output non-descendants of Y (excluding parents of Y).

Proof. It is known from Lemma 6.1 that PCy, € {X|(Y —X) € G} by the end of calling
FindCanPC-MBC(Y) , which means that PC, € PC$ all alone within FindCanPC-MBC(Y). If
there is any non-descendant Z € NDy being output, then it obviously contradicts with the fact

that /(Y,ND, /Pay|PCy). }i

Theorem 6.2 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution
faithful to a DAG, given G = G U {(Y — X)|VX € U\Scanned}, FindCanPC-MBC(Y, G) will
always output PCy and the only possibly false positives as connected to Y in G can only be Y’s

descendants.

Proof. Lemma 6.1 and Lemma 6.2 ensures that PCy will be output, and non-descendant will
never be output respectively. The example that some descendants may be output can be found in

the proof of Theorem 3.1. il

Theorem 6.3 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution
faithful to a DAG, {X|(T — X) € G,} are exactly PCy.

Proof. Given Y € PCS ={X|(T—X) € G;} , we initialize G =G U {(Y —X)|VX € U\
Scanned}. By calling FindCanPC-MBC(Y, G), {X|(Y — X) € G} is known as subset of PCy U
Desy. If Y € PCy, then it is known that T € PCy, and the edge T — Y will keep left in G. Else if
Y € PCy, i.e. Y € Desy, the edge T — Y should has be deleted since (1) T is then a non-

descendant of Y and, (2) it is impossible to have this edge based on Theorem 6.2.

Because we call each FindCanPC-MBC on each Y € PC$ = {X|(T — X) € G;}, all links

between T and false positves in PCS will be deleted. Therefore, what left connected to T in G,
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are only its true parents and children. In other words, we have found all links between T and

rc..

Corollary 6.3 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution
faithful to a DAG, after the calling of FindCanPC-MBC(X, G) and FindCanPC-MBC(Y, G),
X — Y stayin G only if X and Y are truly connected.

Proof. Please refer to the first half part of the proof on Theorem 6.3 above. |l

Theorem 6.4 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution
faithful to a DAG, all edges existing between any X,Y € PC; in G, are exactly those existing
in the target MIBCy.

Proof. We call RecongziePC-MBC(X,G) on each X € PC$ (Line 6-10), then each true X —
Y between any pair of X,Y € PC% should be in G,. Sicne PC; € PC%, then the statement gets
proved. li

Therefore, by the end of Step 2, we get closer to the target MIBC, — both PCand the links among
PC, are induced correctly. In addition to these, nodes connected to some X € PC; actually
contain true spouses requiring for further search work, which will be discussed in Step 3. Figure
6-5 is one example of G, in which the non-dotted edges and circles means they are confirmed as
part of the target MIBC .
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Figure 6-5: In G, all connecting to T are exactly T ’s parents and children, and they still cannot
be distinguished further. It also contains all the possible links among PCr. Candidate
spouses Sp$ are found to be connected with some X € PCr . In the graph, all

confirmed findings are drawn with solid lines, and non-confirmed with dotted lines.

6.4.4 Recognize Sp,/Links among Sp,/Links between Sp,. and PCr

The output of Step 2, G,, is fed into Step 3 as input. PC; can be retrieved from G, easily
(Theorem 6.3). Then, given VX € PC; we obtain PC$ similarly based on the connection in G.
With vY € PCS, if it is recognized as true spouse (Line 15-18), FindCanPC-MBC(Y) is called;
otherwise, it is removed from G, so as any links connecting to it. If the graph we have by the end
of Step 3 is denoted as Gs, we will prove that in addition to what true information as contained in

G, we have the following additional:
» All true spouses are left in Gs, denoted as Spr;
» Edges between any X,Y € Spy are contained in Gg;

» Edges between any X € Sprand Y € PC(T) are contained in Gs.
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Lemma 6.3 For VX € PCy, PCS = {Y|(Y — X) € G} contains the spouses of T if these spouses

have X as the common-child with T.

Proof. It is known that PCy € PC¢, so all parents of X should be contained in PC$, saying

nothing of those having common children. I

Lemma 6.4 For VY € PC5, only the true spouse of T will satisfy the condition of
Ip(T,Y|Sepsetry U {X} < ¢) (at Line 15 of IPC-MBC).

Proof. Please refer to the proof of Theorem 3.4. ||

Theorem 6.5 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution

faithful to a DAG, all true spouses are correctly recognized in Gs.

Proof. (1) Given X € PC, we check each Y € PC, therefore all spouses as probably contained
in PC$ will be correctly recognized based on Lemma 6.4. (2) The same treatment is given to
each X € PCy, hence we are able to find all spouses as contained in PC$. (3) Assume that there
is one spouse not belonging to any PC¢, this may happen only when the corresponding X is not

contained in PCy, which obviously contradicts to Lemma 6.1. [}

Theorem 6.6 Under the assumptions that the independence tests are correct and that the learning
data D is an independent and identically distributed sample from a probability distribution
faithful to a DAG, all edges existing between any X,Y € Sp; in Gz are exactly those existing
beween any X,Y € Sp; in the target MBC.

Proof. (1) All Sp; are contained in G;, based on Theorem 6.5; (2) We call FindCanPC-
MBC(X,G) for VX € Spy, and G = G U {(X = Y)|VY & U\Scanned}. So, if the edge X —Y
must be added to G before calling FindCanPC-MBC(X, G) assuming that X is studied earlier
than Y. (3) Based on Corollary 6.3, the corresponding edge, X — Y, won 't be removed from G
since it is added on if it is true. (4) In contrast, all false edges between any X,Y € Sp, will be
removed in FindCanPC-MBC(X,G) or FindCanPC-MBC(Y,G). Therefore, what edges left
between any X,Y € Spr by the end of Step 3 are just the true ones. .

Theorem 6.7 Under the assumptions that the independence tests are correct and that the learning

data D is an independent and identically distributed sample from a probability distribution
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faithful to a DAG, all edges existing between any X € PC; and any Y € Sp; in G5 are exactly
those existing beween any X € PC; and any Y € Sp; in the target MIBC,

Proof. (1)It is known that all PC; and Sp; are contained in G5 based on previous discussion. (2)
Assume that X € PC; and Y € Spy, and it is known that X — Y is added to G when we call
FindCanPC-MBC(X ) at Line 8 (IPC-MBC). (3) Based on Corollary 6.3, it stays in G since then
if it is true; otherwise, it will be removed within FindCanPC-MBC(X ) or FindCanPC-MBC(Y ).
If it is removed in FindCanPC-MBC(X ), it will not be added back since X is marked as Scanned
at Line 9, and will be ignored during preparing adjacency nodes for Y at Line 13. (4) All such
true edges will be left in G since we call FindCanPC-MBC(X ) for each X € PC. (5) All the
false edges will be removed correct from G since we call FindCanPC-MBC(X ) and FindCanPC-
MBC(Y ) for all such pairs of nodes involved. l

Therefore, by the end of Step 3, (1) what left connected to T are just PC, (2) All spouses are
correctly recognized, (3) some children are also correctly distinguished from PC; after being
recognized as a common child of some X € Sp; and T; (4) all edges among Sp are recognized,;
and (5) all edges between PC; and Sp; are also recognized. In conclusion, all nodes and edges
as contained in the target MIBCy. are correctly recognized. Figure 6-6 shows the result after the

additional processing, as discussed in this section, being conducted on the graph in Figure 6-5.

P/C

K
o
o

Figure 6-6: In G, spouses are recognized, along with some children of T.



135

6.4.5 Achieve the Skeleton of MBCy.

All the nodes and links belonging to the target MIBCy. are correctly recognized in G by the end
of last step. However, there are some by-products left in the container Gs, including nodes and
links (Figure 6-6, but not all of them are presented). Removing them is trivial by judging if they
belong to PC; or Sp. Figure 6-7 is one such example obtained from Figure 6-6, denoted as G,
considering it is the outcome after Step 4. G, contains the skeleton (see definition below) of the

target DAG with some oriented edges, but it is noted that the orientation of most links are

T

()

g N\

& P/C

unknown yet.

Figure 6-7: In G,, all the nodes and links of the target MBC are there, with some orientation

determined on some links. No other nodes or links are contained.

Definition 6.2 (Skeleton). Let G be a DAG, and the undirected version of G is called the skeleton
of G [52].

Definition 6.3 (G,). G, is the skeleton of the target MIBC. plus orientation of some links which

constructing v-structures.

6.4.6 Orientation

The orientation step will look for all triples {X,Y, Z} such that edges X — Z and Z — Y are in the
graph but not the edge X — Y. Then, if Z & Sepsetyy, we have oriented edges as X — Z and
Z <Y, which creates a new v-structure: X — Z « Y. After all v-structures are recognized by
repeating this rule, the rest edges are oriented following two basic principles: not to create cycles
and not to create new v-structure. In our implementation, we refer rules applied in Weka and [53]:
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Rulel: /- ]J]—K &I —-/-K =] - K,
Rule2] -] >K&I——-K=1-K,
Rule3: 1> J]«K&I-M—K&M—-]=>M -],

Ruled: K- M—-1-]&I-K—-]=>1-> M« K,

vV V VYV V¥V VY

Rule 5: if no edges are directed then take a random one (first we can find).

Lemma 6.5 For each triple {X, Y, Z} such that edges X — Z and Z — Y are in the graph but not the

edge X — Y, if Z & Sepsetyy, then we find one v-structure, i.e. X - Z < Y.

Proof. Given a connection like X — Z — Y, there are three possible converges, i.e. the so-called
tail-to-head X —» Z - Y, head-to-head X « Z — Y and tail-to-tail X - Z « Y. Then we need
only prove that X - Z - Y and X « Z — Y are not possible. Assume X = Z — Y is true, then
Z & Sepsetyy; otherwise, at least there exists one path X — Z — Y is not blocked, so X is NOT
independent with Y, and X — Y should exist. This is contradictory to the fact that X — Y doesn’t
exist in graph. Similarly, we can prove that X « Z — Y is impossible either. Therefore, X - Z «

Y must be true, and the lemma is proved. ||

Definition 6.4 (Markov equivalence): Two DAGs are Markov equivalent if they encode the

same set of independence relations.

Theorem 6.8 Two DAGs are Markov equivalent with each other if and only if they have the
same skeleton and they consist of the same of v-structure (or immoralities in the original text

since they are equivalent concepts).

In the section of empirical study, we will only check the skeleton and v-structures learned when
we compare them to that of the underlying true models. This simplifies the comparison work but

without sacrificing the desired effect.

6.4.7 Conclusion

Our explanation on how IPC-MBC induces the target MBC; is presented as step by step in this
section, including how each step works, the expected outcome, and the correctness of the
expected outcome. The expected result of IPC-MBC, i.e. MIBC, is ensured by the correctness of

each step.
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IPC-MBC is a direct extension of IPC-MB, but with more fine-grained control to integrating the
recognition of related edges with nodes belonging to MB. It completely depends on the
underlying topology, and the search proceeds in a breadth-first order. By restricing the search in a
local manner, IPC-MBC is expected to be more efficient than global learning algorithm like PC,

and our experimental study confirms this (Section 6.6).

6.5 Complexity Analysis

The complexity of IPC-MBC is determined by the times of call on FindCanPC-MBC, just like
FindCanPC to IPC-MB. The complexity of Recognize-MBC is same as FindCanPC in the worst
case, that is |U| * 2!/VI=1. However, because X € U on which FindCanPC-MBC has been called,
they may not considered in the adjacency table, instead of U\{T} always in FindCanPC (IPC-

MB), reduction on real complexity is expected depending on the underlying topology.

In IPC-MB, FindCanPC is only called for vX € {T}uUPC% ; however, in IPC-MBC,
FindCanPC-MBC is called on VX € {T} U PC% U Sp. Therefore, the overall time complexity of
IPC-MBC is expected to be higher than IPC-MB, and the actual difference is determined by the
underlying topology (since it determines the cardinality of Sp). Given the example (Figure 3-5)
causing the highest complexity to IPC-MB, the corresponding complexity of IPC-MBC is the

same, |U]? = 2IVI-1,

The memory complexity of IPC-MBC is similar to IPC-MB, and no more discussion is spent here.
6.6 Empirical Study

6.6.1 Experiment Design

Though IPC-MBC is proposed to induce MIBCy, it can be regarded as an algorithm to induce
MB; as well. Considering that the induction of MB is the basis for inducing MIBC;, we will
firstly study the performance of IPC-MBC as a learner of Markov blanket, in term of accuracy
and time efficiency. IPC-MBC will be compared with PC in our study to see how much gain in
performance it has as a local search. Besides, it will be compared with IPC-MB, though it is
known more complex than IPC-MB. The comparison will also give us chance to verify the
implementation of IPC-MBC.
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Being a MBC learner, we want to compare three approaches, including:

» PC.PCiscalled on U to induce the target BN first, then the MBC of interest can be retrieved
from the BN induced;

» IPC-MB + PC. Given a target T € U, we run IPC-MB first to induce MB(T) first, realizing
dimension reduction; then, PC algorithm is employed to induce the MIBC; over MB+. In this
case, only the information that MB, = U applied, and this topology information inferred by
IPC-MB is ignored;

» IPC-MBC. Given atarget T € U, IPC-MBC is called to induce the target MBC.

Considering that the output of feature selection influences the structure learning greatly,
IAMB+PC is not considered due that the poor accuracy performance of IAMB. PCMB+PC is not
considered as well here because PCMB has been observed with a similar performance with IPC-
MB in term of accuracy, in Chapter 4.

In the experiments, we use synthetic data sampled from three networks introduced in Chapter 4
already, including Asia (Figure 4-1), Alarm (Figure 4-2), Test152 and PolyAlarm (Figure 4-3).
The distribution of the size of MBC, in term of number of edges, as contained in the
corresponding Bayesian network is shown in Figure 6-8. The corresponding distribution of size
measured of nodes can be found in Figure 4-4. We run IPC-MB, IPC-MB + PC and IPC-MBC
separately with each node in the BN as the target variable T and report the average performance
over 10 rounds, including analysis of accuracy and time efficiency. PC algorithm is called for one
time given a data set, and the accuracy is reported based on the MBy or MIBCy retrieved from the

Bayesian network, given each vX € U.
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Distribution of the MBC's Size (measured by # of edges)
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Figure 6-8: Distribution of the size of Bayesian network classifier as contained in Asia, Alarm

and PolyAlarm, and the size is measured by the number of edges.
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Note that in the measure of accuracy of MBC learner, we only consider the skeleton of network

by ignoring the orientation of edges because (1) determining the orientation is not our research

focus here, and more importantly (2) given a distribution P, there is more than one DAG

encoding the same group of constraints given the equivalence network as discussed in 6.4.6.

6.6.2 IPC-MBC as Markov Blanket Learner

By applying IPC-MBC as a Markov blanket learner, we ignore the topology induced, but only

check the nodes as contained in the output. In the comparison of accuracy, we still apply the

measures of precision, recall and distance as we taken in Section 4.4.

Only Alarm network is used in the experiment about applying IPC-MBC as a MB learner, and

the results about average accuracy and time efficiency are reported in 5% ! KILFEI5|HIE.

and Table 6.2 respectively.

Table 6.1: Accuracy comparison of PC, IPC-MB and IPC-MBC over Alarm network.

Simulation

Instances
Rounds

Algorithm

Precision

Recall

Distance

(meanzStd. Err) (meanaStd. Err) (meanzStd. Err)

500 10 PC

77x05

.78%03

3704
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IPC-MB .85+02 J7x04 .32+04
IPC-MBC  .85+02 1604 3304
PC .90+03 .85+03 2104
1000 10 IPC-MB .94+02 .84+02 19403
IPC-MBC  .94+02 .83+02 .20%03
PC .96+02 .90+03 1304
2000 10 IPC-MB .98+02 .90+03 1104
IPC-MBC .98+02 .90+03 1104
PC 9701 .92+02 1002
3000 10 IPC-MB 99401 .93+02 .07x03
IPC-MBC 1.00+01 .92+02 .08+02
PC 9701 .94+02 .09+03
4000 10 IPC-MB  .99+01 95401 0603
IPC-MBC 1.00+01 .94+01 0601
PC .96+02 .94+01 .10%02
5000 10 IPC-MB 99401 .95+01 0502
IPC-MBC 1.00+01 .94+01 .06+01
Average Distance: PC vs. IPC-MB vs. IPC-MBC
0.40
0.35 R\
0.30 \\\\
o 0.25
& 020 \
5 0.15 \
0.05
0.00
500 1000 2000 3000 4000 5000
——PC 0.37 0.21 0.13 0.10 0.09 0.10
IPC-MB 0.32 0.19 0.11 0.07 0.06 0.05
—4—I|PC-BNC|  0.33 0.20 0.11 0.08 0.06 0.06

Figure 6-9: Comparison of distances given different number of instances (0.5K~5K): PC, IPC-

MB and IPC-MBC (Alarm, €= 0.05, refer to Table 6.1 for more information)
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In Table 6.2, the “# CI Tests” of IPC-MB and IPC-MBC refers to the average number of CI
tests we need to induce the corresponding MB given each node of the Alarm network as target.

The amount for PC is the total number of CI tests required to learn the whole Alarm BN as by

traditional approach. The “# Data Passes” is defined in similar way.

Table 6.2: Time efficiency comparison of PC, IPC-MB, IPC-MBC (Alarm, e= 0.05).

Instances Simulation Algorithm # Data Passes # Cl Tests
Rounds (mean4Std. Err) (meandStd. Err)
PC 220+16 2736482
500 10 IPC-MB 12+ 561431
IPC-MBC 13+ 639432
PC 19147 3168+105
1000 10 IPC-MB 1240 637437
IPC-MBC 1540 738434
PC 188+12 3528+121
2000 10 IPC-MB 1340 736437
IPC-MBC 15+ 8451439
PC 200+19 3717166
3000 10 IPC-MB 1340 798453
IPC-MBC 1640 920456
PC 211438 3902+122
4000 10 IPC-MB 1440 849448
IPC-MBC 1640 986464
PC 2156 3956480
5000 10 IPC-MB 1440 876431
IPC-MBC 16#0 1010429
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Distribution of Conditioning Set Size Involved in Cl Tests:
PC vs. IPC-MB vs. IPC-MBC (Alarm, 5K)
80.0%
70.0%
60.0%
@ 50.0%
E . (o]
§ 40.0%
o 30.0%
o
20.0%
10.0%
0.0% _—.
0 1 2 3 4
m PC 24.6% 59.8% 12.9% 2.6% 0.2%
m IPC-MB 14.6% 68.2% 13.8% 3.3% 0.1%
WIPC-BNC|  13.5% 54.1% 22.4% 10.0% 0.0%

Figure 6-10: Example distribution of conditioning set size (i.e. the cardinality of conditioning set)
as involved in Cl tests conducted by PC, IPC-MB and IPC-MBC in experiments of
Alarm (5,000 instances).

Increasing Rate: PC vs. IPC-MB vs. IPC-MBC
1100
1000
" 900
= 800
O
co0 /
500
500 1000 2000 3000 4000 5000
——-PC/4 684 792 882 929 976 989
=¢—|PC-MB 561 637 736 798 849 876
===|PC-BNC 639 738 845 920 986 1010

Figure 6-11: Comparison of the increasing rate of Cl tests as required by PC, IPC-MB and IPC-

MBC given more observations (Alarm network, € = 0.05). Note: For displaying and
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convenient observation purpose, the corresponding number of PC algorithm is
divided by 4.

Some conclusion can be made by observing the results shown in the two tables above:

1.

PC, IPC-MB and IPC-MBC have nearly same accuracy performance, given different size of

observations. This also reflects indirectly that they have similar data efficiency;

As expected, PC is the slowest one among the three, and IPC-MB is the fastest. Compared
with PC, both IPC-MB and IPC-MBC realize local search, which enables them to be much
more efficient than PC. For example, given 4000 observations, by average, IPC-MB and
IPC-MBC require about 78% and 75% fewer number of CI tests than PC respectively; in
term of data passes, IPC-MB and IPC-MBC requires about 93% and 91% fewer than that of
PC respectively;

IPC-MBC is proposed to induce more information than IPC-MB, hence it costs more than
IPC-MB. However, the additional cost is affordable as shown in our experiments with Alarm,
about 10% more on both data passes and CI tests;

Given more observations, all three algorithms are able to conduct more searches to achieve
better result, but IPC-MBC has higher increasing rate on time complexity than the other two.
IPC-MB and PC has similar rate (Figure 6-11);

IPC-MBC is expected to achieve higher accuracy than IAMB, and faster than PCMB, based

on our comparison on them with IPC-MB in Chapter 4.

Table 6.3: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over Alarm network.

Simulation Precision Recall Distance
Instances Algorithm (mean4Std. (mean4Std. (mean4Std.
Rounds
Err) Err) Err)

PC .71+05 74+03 .45+03
IPC-

500 10 MB+PC 74+04 74+04 42+03
IPC-MBC .79%+02 73+04 .39+04
PC .88+03 .81+02 .26+04
IPC-

1000 10 MB+PC .92+02 .81+02 .23%+06
IPC-MBC .93+03 .74+05 .29+06

2000 10 PC .96+02 .87+03 15404

IPC- .98+02 8703 14+04
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MB+PC
IPC-MBC  .95+02 77404 25405
PC 97+01 90+03 12+03
IPC-
3000 10 MBAPC 92+02 92402 14402
IPC-MBC ~ .99+01 91402 10403
PC 97401 92401 11402
4000 10 IPC-
MBPC 92402 94401 13+03
IPC-MBC  1.00+01 93+02 07402
PC 9602 93+01 11+02
IPC- 92402 94401 12402
5000 10 MB+PC VeE oaE S
IPC-MBC  1.00+01 94+01 0602

Average Distance: IPC-MB+PC vs. IPC-MBC vs. PC
0.50
0.45
0.40
0.35
N\,
e 0.30
(8]
IS 0.25 \\‘\\\
a 0.20 A
0.10 \'\'_.
0.05
0.00
500 1000 2000 3000 4000 5000
=¢=|PC-MB+PC 0.42 0.28 0.18 0.14 0.13 0.12
== |PC-BNC 0.39 0.23 0.14 0.10 0.07 0.06
PC 0.45 0.26 0.15 0.12 0.10 0.11

Figure 6-12: Comparison of distances given different number of instances (0.5K~5K): PC vs.
IPC-MB+PC vs. IPC-MBC (Alarm, €= 0.05, refer to Table 6.3 for more information).

Table 6.4: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over PolyAlarm network.

Simulation Precision Recall Distance
Instances Algorithm (mean=Std. (mean=Std. (mean4Std.
Rounds
Err) Err) Err)
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PC .75+07 .72+05 A44+08
IPC-
500 10 MB+PC .83+06 74+04 34+07
IPC-MBC .84+06 74+04 .34+08
PC .80+04 8002 .34+06
IPC-
1000 10 MB+PC .90+03 85+02 .21+04
IPC-MBC .91+03 84+02 21+04
PC .83+03 83+02 .29+03
IPC-
2000 10 MB+PC .91+02 90+01 .15+02
IPC-MBC .93+02 89+02 .15+03
PC .83+03 86+01 .27+03
IPC-
3000 10 MB+PC .91+04 91+03 .15+05
IPC-MBC .92+03 91+03 .14+05
PC .86+03 87+03 .23+04
4000 10 IPC-
MB+PC .92+02 92+02 .13+02
IPC-MBC .94+02 91+02 12+03
PC .87+03 89+03 .20+04
IPC- 92+03 92402 12403
5000 10 MB+PC R - A
IPC-MBC .94+02 92402 11+02
Average Distance: PC vs. IPC-MB+PC vs. IPC-MBC
0.50
0.45
0.40 ~
0'35 ﬁ
Y 0.30 \‘\
I 0.25
a 0.20 \L \0
0.10
0.05
0.00
500 1000 2000 3000 4000 5000
—4—PC 0.44 0.34 0.29 0.27 0.23 0.20
=@—IPC-MB+PC|  0.34 0.21 0.15 0.15 0.13 0.12
IPC-BNC 0.34 0.21 0.15 0.14 0.12 0.11




Figure 6-13: Comparison of distances given different number of instances (0.5K~5K): PC vs.
IPC-MB+PC vs. IPC-MBC (PolyAlarm, € = 0.05, refer to Table 6.4 for the complete
data).

Table 6.5: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over Test152 network.
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: . . Distance
Instances Simulation Algorithm Precision Recall (Mean
Rounds (mean4Std. Err) (mean=Std. Err) Std. Err)
PC .74x03 .68+01 49101
500 10 IPC-MB+PC .88+01 .69+01 .39+01
IPC-MBC 91+01 .68+01 .38+01
PC 74+04 .73+02 45+03
750 10 IPC-MB+PC .88+03 .75%02 .33+02
IPC-MBC 92402 72402 .34+02
PC .74+02 .78+02 42402
1000 10 IPC-MB+PC .89+02 .79£02 .28+02
IPC-MBC .93+02 77+02 .28+03
PC 7502 87+02 .35+03
1500 10 IPC-MB+PC .90+01 .88+03 19403
IPC-MBC .94+01 .86+03 19403
PC .78+02 94+02 2602
2000 10 IPC-MB+PC 9101 9402 13202
IPC-MBC .95+01 .93+03 12403
PC 8002 97402 .22+02
2500 10 IPC-MB+PC .91+02 97+01 .12+03
IPC-MBC .95+01 .96+02 .09+02




Average Distance: PC vs. IPC-MB+PC vs. IPC-MBC

0.60
0.50 A\
0.40 "\".\
8 o \'"
g 0.30 =
2 TN \
a
0.20 \"-\ﬂ\_-
0.10
0.00
250 500 750 1000 1500 2000 2500
== PC 0.55 0.49 0.45 0.42 0.35 0.26 0.22
== |PC-MB+PC| 0.43 0.39 0.33 0.28 0.19 0.13 0.12
IPC-BNC 0.43 0.38 0.34 0.28 0.19 0.12 0.09
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Figure 6-14: Comparison of distances given different number of instances (0.25K~2.5K): PC vs.

IPC-MB+PC vs. IPC-MBC (Test152, €= 0.05, refer to Table 6.5 for the complete

data).

The number of data passes and ClI tests as required by PC and IPC-MBC to induce the MBC here

actually are same as that needed to induce the MB. IPC-MB plus PC is added here since it is not

considered in the experiments about applying IPC-MBC as Markov blanket learner. Again, the

measures reported on IPC-MB plus PC and IPC-MBC are the average values over each node of

the target whole Bayesian network, while the values about PC are the time required to learn the

whole Bayesian network. This comparison allows us to observe the difference between global

and local learning.

Table 6.6: Time complexity comparison of PC, IPC-MB+PC and IPC-MBC over Asia network.

Instances Simulation Algorithm # Data Passes # Cl Tests
Rounds (mean4Std. Err) (meandStd. Err)

PC 2446 1354119

100 20 IPC-MB+PC 16#11 1294166
IPC-MBC 945 96+113
PC 2518 1494136

200 20 IPC-MB+PC 1648 1384169
IPC-MBC 9+ 1104136

500 20 PC 2443 11148




IPC-MB+PC 1513 80420
IPC-MBC 92 66+13
PC 2443 120+5
1000 10 IPC-MB+PC 1643 87+19
IPC-MBC 9+ 73+12
PC 2443 131423
2000 10 IPC-MB+PC 16#4 96432
IPC-MBC 10+2 81+38
PC 2644 139+10
4000 10 IPC-MB+PC 15%2 101H2
IPC-MBC 9+ 8618
PC 2744 14749
6000 10 IPC-MB+PC  17%2 112420
IPC-MBC 10+ 93+15
PC 2844 14748
8000 10 IPC-MB+PC  17%2 11049
IPC-MBC 10+ 91#3
PC 2744 150+7
10000 10 IPC-MB+PC 14+2 11045
IPC-MBC 10+ 92H+72
PC 3143 155+14
20000 10 IPC-MB+PC 1942 124420
IPC-MBC 1142 100+H2

Table 6.7: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (Alarm, = 0.05).

Instances Simulation Algorithm # Data Passes # Cl Tests
Rounds (meanzStd. Err) (meanzStd. Err)
PC 220+16 2736482
500 10 IPC-MB+PC 23# 602434
IPC-MBC 13H 639432
PC 191+17 31684105
1000 10 IPC-MB+PC 24+ 678438
IPC-MBC 1540 738434
PC 188+12 3528+121
2000 10 IPC-MB+PC 25+ 777439
IPC-MBC 15+ 845439
PC 200+19 37174166
3000 10 IPC-MB+PC 26+ 844455
IPC-MBC 1640 920456
PC 211+18 3902+122
4000 10 IPC-MB+PC 27+ 901449
IPC-MBC 1640 986464
PC 215+16 3956480
5000 10 IPC-MB+PC 27+ 928431
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IPC-MBC

1640

149

1010429

Table 6.8: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (PolyAlarm, = 0.05).

Instances Simulation Algorithm # Data Passes # Cl Tests
Rounds (meanaStd. Err) (mean=Std. Err)
PC 117+16 1061448
500 10 IPC-MB+PC 8# 162+10
IPC-MBC 13H 15348
PC 14026 1145442
1000 10 IPC-MB+PC 1540 17748
IPC-MBC 1040 192+11
PC 158424 1223435
2000 10 IPC-MB+PC 17+ 19547
IPC-MBC 1040 21248
PC 174+15 1265439
3000 10 IPC-MB+PC 1740 20948
IPC-MBC 1140 22619
PC 176+11 1292441
4000 10 IPC-MB+PC 17+ 21348
IPC-MBC 1140 23149
PC 181+2 1308456
5000 10 IPC-MB+PC 18+ 215412
IPC-MBC 11H 233+3

Table 6.9: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (Test152, e= 0.05).

Instances Simulation Algorithm # Data Passes # Cl Tests
Rounds (meanzStd. Err) (meanzStd. Err)

PC 60840 179474351
250 10 IPC-MB+PC 19+ 796429

IPC-MBC 1240 800430

PC 669+78 198034392
500 10 IPC-MB+PC 21+ 946429

IPC-MBC 13H 962438

PC 684480 214294582
750 10 IPC-MB+PC 23+ 1083455

IPC-MBC 15H 1114470

PC 684480 227324426
1000 10 IPC-MB+PC 25+ 1179434

IPC-MBC 1640 1222437

PC 714473 248654415
1500 10 IPC-MB+PC 27+ 1357437

IPC-MBC 17+ 1421442

PC 684480 261734593
2000 10 IPC-MB+PC 29+ 1479448
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IPC-MBC 1840 1556457

PC 730496 275124614
2500 10 IPC-MB+PC 30+ 1583445

IPC-MBC 1840 1660445

From the experimental results shown above, we notice that

» PC, IPC-MB+PC and IPC-MBC have similar accuracy performance. IPC-MBC is slightly
better than the other two, and IPC-MB+PC is slightly poorer than the other two. Given more

observations, all three algorithms are expected to product the perfect result;

» By applying IPC-MB to reduce the dimension first, the whole time complexity of IPC-MB +
PC is much lower than applying PC directly. With the problem scale becomes larger, this
saving is expected to be more obvious. For example, given Asia (20,000 instances for
learning), 39% fewer of ClI tests and 48% fewer of data passes are needed by IPC-MB+PC
than PC; however, given larger problem like Alarm (5,000 instances for learning), the gains
become as 77% and 84%;

» IPC-MBC realizes local learning as well, and the comparison with PC is discussed in 6.7.
Compared with IPC-MB+PC, it has similar time complexity in term of CI tests, but

obviously fewer data passes.

6.6.3 IPC-MBC as MBC Learner

The experiments in this section focus on the accuracy and time efficiency of IPC-MBC as MBC
learner. We run IPC-MB plus PC and IPC-MBC with each node in each BN as the target variable
and then, report the average precision and recall over all the nodes for each BN. Precision is the
number of true positives in the output divided by the number of edges in the output. Recall is the
number of true positives in the output divided by the number of true positives in the MBC.
Euclidean distance from perfect precision and recall is defined as Equation (4.1). The
significance level for the independence test is 0.05. PC algorithm is ran with one time given each
data set to induce the whole network, and the precision, recall and distance are measured

similarly over each MBC as retrieved from the whole BN recovered.

Table 6.10: Accuracy comparison of PC, IPC-MB+PC and IPC-MB over Asia network.

Simulation Precision Recall Distance

Instances Rounds Algorithm (meanx5td. Err) (meanzStd. Err) (mean%
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Std. Err)
PC 4020 49+18 87x13
100 20 IPC-MB+PC .45%15 A7x17 .84x14
IPC-MBC 45+15 AT£17 .84+13
PC 49420 54422 J7x13
200 20 IPC-MB+PC .56+16 54+12 71%13
IPC-MBC 57x16 S4+11 J71%13
PC .65+16 .63+10 57+16
500 20 IPC-MB+PC .68+16 65+11 54x17
IPC-MBC .70x£16 .64+11 53x17
PC .70£16 .70+09 48+16
1000 10 IPC-MB+PC .73%15 .12+08 4515
IPC-MBC 7617 .70+09 A44+17
PC 72x15 6905 48+10
2000 10 IPC-MB+PC .73%15 .73x01 A45%12
IPC-MBC 7617 .69+03 45+12
PC .82+05 .74+08 .36£08
4000 10 IPC-MB+PC .81+04 7607 .36+06
IPC-MBC 87+02 .73£09 .33£10
PC .79+06 .81+10 .33+08
6000 10 IPC-MB+PC .79+05 .82+09 .33+08
IPC-MBC 8607 .81+10 2712
PC .82+08 .80+10 .30+11
8000 10 IPC-MB+PC .80+06 . 82+08 .32+08
IPC-MBC 8704 .80+10 2610
PC .82+09 .79+08 .32+08
10000 10 IPC-MB+PC .80+04 .81+06 .33+03
IPC-MBC 87+01 .79+08 27+07
PC 90+11 .93+08 14+12
20000 10 IPC-MB+PC .84+10 .94+08 2011
IPC-MBC .93+09 .93+08 12411
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Average Distance Comparison
: PCvs. IPC-MB+PC vs. IPC-MBC

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Distance

100 200 500 | 1000 | 2000 | 4000 | 6000 | 8000 | 10000 | 20000

=o—PC 087 | 0.77 | 0.57 | 048 | 0.48 | 0.36 | 0.33 | 0.30 | 0.32 | 0.14

=@—|PC-MB+PC| 0.84 | 0.71 | 0.54 | 0.45 | 0.45 | 0.36 | 0.33 | 0.32 | 0.33 | 0.20
IPC-BNC 084 | 0.71 | 0.53 | 044 | 045 | 033 | 0.27 | 0.26 | 0.27 | 0.12

Figure 6-15: Comparison of distances given different number of instances (0.1K~20K): PC vs.
IPC-MB+PC vs. IPC-MBC (Asia, €= 0.05, refer to Table 6.10 for more information)

6.7 Discussion of Different MBC Learners

Three algorithms are compared in our experiments, PC, IPC-MB+PC and IPC-MBC. Given the
problem of learning MIBC,,, PC is regarded as global learning algorithm since it needs to learn

the whole Bayesian network first, while the other two are viewed as local learning.

Being a typical and known algorithm for the structure learning of Bayesian network, PC is able to
induce the structure efficiently. With the whole structure ready, it is trivial to get the target
MBCy, given any Y € U. In our experiments, a Bayesian network is known to exist over U, but
this may not be true in real applications, especially in the exploratory stage when we are just
thrown with a group of observations with feature set U. There may exist a Bayesian network
over U' € U, butnoton . If U’ is much smaller than , much resource may be wasted, though it
is not avoidable. If we need only (T), and considering that |MIBC;| normally is even smaller
than U’, the benefit brought by local learning algorithms, in fact, will be more considerable than

what we observed in the experiments here.



153

The combination of IPC-MB and PC is a direct application of IPC-MB as feature reduction tool,
and it indeed reduces the time complexity by average, as compared with PC. For example of
Alarm, IPC-MB+PC requires 77% and 84% fewer CI tests and data passes than PC’s. Though PC
is directly applied to the output of IPC-MB, not much work is left to PC (see Figure 6-16 for an
example).

Cl Tests as Required by IPC-MB and PC Respectively within
IPC-MB + PC (Alarm)

®IPC-MB  m PC(over IPC-MB)

il

1000 2000 3000 4000 5000

Figure 6-16: On the output of IPC-MB, the number of CI tests as required by PC to induce the
connectivity is relatively small compared with that of IPC-MB.

IPC-MBC works independently, and it realizes local learning as well. Compared with IPC-
MB+PC, IPC-MBC achieves a little higher accuracy performance, but requiring much fewer data
passes. If we ignore the difference on data passes, whether IPC-MB+PC is more efficient than
IPC-MBC is hard to say since it is influenced by the underlying topology, and we are interested

to share with some in an informal way:

» Comparing with IPC-MB, the additional CI tests of IPC-MB+PC are required by PC over
MB;, which can roughly be measured as |MBy|* FindCanPC ; For IPC-MBC, the

additional CI tests can be measured in a similar way, |Spy| * FindCanPC ;

» In both cases, FindCanPC refers to the search within the neighborhood of some X €
MB, or Sp; in our case here. The complexity of FindCanPC is determined by the

cardinality of [PCS|, as well as the actual connectivity among PC%;
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> The largest |PC%| as possibly met in the PC of IPC-MB+PC is (|[MB;| — 1), while the
smallest |PC%| as may be met in the phase (Line 11-22, IPC-MBC) is (|U| — |PCy|) ;

» Then, if [MB;|is comparable to |U|, the work left to IPC-MB+PC will be comparable to or
more than that left with IPC-MBC, when IPC-MBC will be more efficient. Asia is one such

simple example, see Figure 6-7;

» Besides, if the connectivity among MBy, especially among PC; , is dense, then IPC-MBC
may also be more efficient since the remaining work may be small compared with those
finished.

So, it is known that the underlying topology influence the actual performance of IPC-MB+PC
and IPC-MBC. However, one conclusion is confirmed, that is both of them are much more

efficient than PC.

6.8 Conclusion

In this chapter, one novel algorithm called IPC-MBC is proposed to induce the Bayesian network
classifier given target T € U, without having to learn the whole Bayesian network over U. It is
built on our work of inducing Markov blanket, IPC-MB, and hence they share similar framework,
realizing the learning via a series of local search of the neighborhood of X € U. By carefully
limiting the search in a breadth-first order, and removing as many false positives as possible in
each meta-local-search, it achieves much reduction on time complexity than global learning
algorithm like PC.

IPC-MB + PC is also studied in our experiments. Based on the fact that MIBC is the DAG over
MB,, applying IPC-MB first enables to reduce the search space greatly, considering that
normally MB, is much smaller than U. The overall time complexity of IPC-MB+PC is observed

to be much lower than PC as shown in our experiments.

In conclusion, both IPC-MB+PC and IPC-MBC are believed useful solutions to induce MBCy,
realizing the same accuracy but requiring much less computing resource. Therefore, they are

believed able to solve larger problem, or scale up better, given the same limit on CPU or memory.
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Chapitre 7 CONCLUSION AND PERSPECTIVES

7.1 Conclusion on Knowledge, Work and Experience Gained

Markov Blankets are known to be the optimal feature set for a classification problem. We
introduced a novel algorithm for the induction of a Markov Blanket, IPCMB, and showed that it
Is in general more accurate than the current state of the art algorithm, PCMB, while achieving a
highly substantial performance gain. The efficiency of IPC-MB is close to the fastest, but highly
inaccurate IAMB algorithm. Thus, IPC-MB offers the compelling advantage of combining speed

and accuracy over the existing algorithms.

Furthermore, we showed that using the intermediate results of IPC-MB, we can derive a Markov
Blanket Classifier (MBC) that is more accurate than an MBC derived by applying the classic PC
algorithm to the nodes of the Markov Blanket, or by deriving the whole BN first which, in any

case, is an highly inefficient solution.

7.2 Perspectives and Feature Work

7.2.1 Reduce data passes

In our implementation, due to the limit of memory and large number of contingency tables, we
have to scan the data file for several times to construct necessary contingency tables to collect
needed frequency information. For algorithms requiring intensive CI tests, like IPC-MB,
repeating scanning the data files may be quite influential to the actual efficiency performance,
especially when we have large data file. An ideal solution is to scan the data file for one time, and
cache all frequencies in memory (or at least partial in memory) for later quick reference. One
possibly economic choice is AD-Tree [54], and we hope to implement this to further speed up the
search. If this is realized, the efficiency difference between IPC-MB and IAMB can be further
reduced, making IPC-MB as more competitive a choice. Of course, we are interested to explore
other effective and efficient caching solutions considering that is widely demanded in modern

data mining and machine learning tasks which depend on statistical tests.
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7.2.2 Work with Score-and-Search Structure Learning Algorithms

Both IPC-MBC and IPC-MB+PC are categorized into conditional test based structure learning
algorithms, and untill now we haven’t tried another one popular category of structure learning
algorithms, i.e. the so called score-and search as we mentioned in last chapter. This family of
algorithms views the structure learning of Bayesian Network as an optimization problem. They
employ some measure about the consistence between the data and one graph, and
add/delete/reverse edge until reach a graph with highest defined scores. However, as we
discussed in Section 3.2, this approach is not suitable for identifying MB; over U, so we chose

the constraint search approach in IPC-MB, which is followed by all previous works as well.

With MB; ready, as produced by IPC-MB, the score-based search becomes applicable for
inducing the Bayesian Network over MB; U {T} (i.e. MIBC; ), just like how it works for
determining the Bayesian Network over the whole problem domain U traditionally. In this
chapter, we propose one such kind of algorithm which depends on IPC-MB to induce MB; first
and then induce the target MBC, with score-based search. Considering that only the real
effective features of the target MBC left through IPC-MB, a much smaller search space compared
with the original one where all features are present, the proposed scoring-and-search learning
algorithm is expected to be much more efficient than learning the whole Bayesian network with
the same approach. Furthermore, compared with IPC-MB+PC, where only the information of
X € MB; is referred, the additional edges and orientations information (see Section 5.7) are to

be considered in this new algorithm to further narrow down the search space.

Given the output by IPC-MB, we have the knowledge about which attributes contained in the
target MBC, which are parent/child nodes, and which are spouses if there are (see the following
figure). Besides, from the output of IPC-MB, we have all the edges between MBy and T, and
some orientations as known from the induction of v-structure in IPC-MB. These known edges
and orientations are fixed, which means that they won’t be removed or reversed in the remaining

learning by score-and-search. The overall procedure is demonstrated as in Figure 7-1.
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Initial state Output of IPC-MB Output of CI2S-BNC
0
00 0O
O 0O O

. Target Q Variable

Figure 7-1: The overall procedure: start with a bag of variables, then selected with IPC-MB, and
finally apply further scoring-based search to add the remaining arcs as well as to
determine the orientations. v-structure determined by IPC-MB is fixed.

Two direct benefits are there to enable us to anticipate a very promising MBC learning algorithm:
(1) The output of IPC-MB helps to prune the search space greatly by limiting further search only
among the nodes contained in the final MBC; (2) The topology information inferred by IPC-MB
further reduces the search complexity. The overall algorithm corresponding to Figure 7-1 is

specified in Figure 7-3, and it can be divided into three steps:
1. Feature selection by IPC-MB;

2. Initialize the orientation of edges between P/C and T as pointing to T'; the orientation of v-

structure is set respectively too;

3. Apply score-and-search to reverse orientation, add edges or remove edges until no increase

on score can be made. What output then is the target Bayesian network classifier.

With problem U and training data D, [IPC-MB(T) is called to induce MB7 first. The correctness
of IPC-MB is proved in Chapter 3, and the typical output of IPC-MB can be represented as

Figure 7-2. In Figure 7-2, there are three types of information that are critical for later reference:
1. P/C nodes: They are directly connected to T, and they may be parents or children of T.
Therefore, the orientation of P/C-T is unknown;

2. C nodes: They are directly connected to T, and they are known as children. Correspondinly,

we have oriented arc T — C ;
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3. SP nodes: They are not directly connected to T, but they are directly connected to C nodes.

They are known as spouses of T, and we have oriented arc S— C.

R
R

Figure 7-2: Typical output as returned by IPC-MB.

Therefore, the output of IPC-MB is very informative as compared to the initial point when we
know nothing but a bag of variables U as given. In some cases, such kind of algorithms start with
Nawe Bayes, i.e. the target variable pointing to all feature variables, which obviously includes
noisy information as compared to the output of IPC-MB because normally the number of

effective features is much less than the size of whole feature set.

Given the typical output of IPC-MB shown in Figure 7-2, the remaining search can be viewed as
common BN structure learning, but starting with a given structure (as output by IPC-MB). To
make the remaining scoring and search workable as conventional, those non-oriented arcs of the
output of IPC-MB is set in advance, all pointing to the target from the P/C. Figure 7-4 is one
such example derived from Figure 7-2. Compared with the target Bayesian network classifier, we

need to determine additionally that:
1. If reversing the arcs P/C — T can result with higher score;
2. If there are additional edges existing between X,Y € MB, and their orientations.

In addition adding/removing/reversing edges (but without introducing a cycle), and re-calculating
the score, as conducted in conventional score-and-search algorithm, two special rules must be
obeyed in the search, which is specific in our solution:

» Those oriented arcs Sp — C « T should be fixed, i.e. no deleting or reversing of orientation

is applicable to them;
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» Those arcs P/C — T can only be reversed, but not deleted.

These two constraints further restrict the remaining search space, decreasing the problem

complexity to some extent.

CI2S-MBC(T: target, D: dataset, &: threshold, n/ter: maximum number of iteration)
{

/Step 1: Induce the skeleton of BNC
1. MB.=IPC-MB(T.D, &):

/Step 2: Construct the initial graph to start with

2. G=0;

3. for(each X € MB;) do

4. if (X iskind of Pa/Ch)

5: add X = T mto G; //Itis set arbitrary to make the later scoring workable
6. elseif(X 1s kind of Ch)

7. add T =X mto G:

8. elseif(X 1is kind of Sp)

9. add X = Y mto G where ¥ € MB, and Y isknown as X's child

10. end if

11. endfor

12. // Step 3: Score-based search on the basis of G
13. ScoreSearch(G, D, niter); //It can be hill-climbing, tabu-search etc.
14. retun G;

Figure 7-3: C12S-MBC algorithm specification

Figure 7-4: Adjust the output of IPC-MB to make the scoring work as conventional.
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Implementation of CI2S-MBC is expected, including various scoring function and search
strategies. A comparison with global score-and-search can be interesting, and the target algorithm

is believed as another efficient algorithm for the learning of Bayesian network classifier.

7.2.3 Bayesian Network Structure Learning via Parallel Local Learning

As we discussed in 2.4, the GS [24] algorithm actually was proposed for the learning of Bayesian
network via a series of local learning. The most benefit of divide-and-conquer strategy is that we
are expected to solve larger scale of problems. Considering the obvious advantage of IPC-MB
relative to IAMB and GS, and their similar functionality, we are interested in proposing one

algorithm for the learning of Bayesian network, based on the outcome of IPC-MB.

Since the induction of Markov blanket given X € U is independent one another, parallel
processing is possible, which will further improve the efficiency. Besides, as we discussed in 3.7,
the computing of IPC-MB can also proceed in parallel, therefore, we expect a very promising

work compared with existing work.

7.2.4 Increasing the Reliability of Induction

For algorithms relying on independence information from Cl tests, like IPC-MB and IPC-MBC, a
major shortcoming is the impact that noise and errrors from small sample size has on the output
[37]. The reliability of statistical tests significantly diminishes on small data sets. In the current
version, we ignore a ClI test according to the rule of Equation (1.5), and we terminate the search
when there are no more reliable tests available. Taking such a conservative choice is based on
empirical knowledge shared by the community as well as our own experience — conservatism is
warranted by the fact that early and invalid CI tests can propagate errors by leading the search

through incorrect paths.

One avenue to investigate the impact of noisy CI tests over the performance of the different
algorithm is to use an Oracle in place of the CI tests : the results of each CI test would be forced
to comply with the “true” distribution. Comparing the results of an oracle based simulation with
that of the current method would allow to assess the impact of some of the invalid CI tests over

the performance.
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Bromberg and Margaritis [37] proposed a novel approach to increase the reliability of
independence tests for small data sets. Their contribution is to recognize that the outcomes of
independence tests are not themselves independent but are constrained by the outcomes of other
tests through Pearl’s well-known properties of the conditional independence relation [2]. This
way, certain inconsistent test outcomes may be corrected, which will help us to avoid some errors
and achieve results of higher accuracy. We are interested to incorporate their findings into our

works directly or with some customizations.

7.2.5 Comparison with Other Feature Selection Algorithms

Finally, we are also interested in making a comparison with other mainstream feature selection
algorithms which don’t fall into this family, i.e. depending on the induction of Markov blanket.

Relative effective and efficiency are two important aspects we are looking forward to a study. In

term of the effectiveness, in addition to the distance measure (/(1 — precision)? + (1 — recall)2)
taken already in our experimental studies, we will build predictors using the features chosen, and
compare their relative prediction accuracy. The latter approach is useful in scenarios where we

don’t know the exact optimal feature subset.
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