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CONDENSÉ EN FRANÇAIS 

Cette thèse porte sur deux sujets très reliés, à savoir la classification et la sélection de 

variables.  La première contribution de la thèse consiste à développer un algorithme pour 

l'identification du sous-ensemble optimal de variables pour la classification d'une variable cible 

dans un cadre bayésien, sous-ensemble que l'on désigne par la Couverture de Markov d'une 

variable cible.  L'algorithme développé, IPC-MB, affiche une performance prédictive et une 

complexité calculatoire se situant au niveau des meilleurs algorithmes existants.  Cependant, il est 

toutefois le seul algorithme affichant les meilleures performances sur les deux plans 

simultanément, ce qui constitue une percée importante au plan pratique. 

La Couverture de Markov d'une variable cible est un sous ensemble qui ne comporte pas de 

structure, notamment le réseau bayésien des variables impliquées. La seconde contribution 

consiste à exploiter les résultats intermédiaires de  l'algorithme IPC-MB pour améliorer 

l'induction de la structure du réseau bayésien correspondant à la Couverture de Markov d'une 

variable cible.  Nous démontrons empiriquement que l'algorithme pour induire la structure du 

réseau bayésien est légèrement plus efficace qu'un algorithme standard comme PC qui n'utilise 

pas les données intermédiaires de IPC-MB. 

La sélection des variables pertinentes pour une tâche de classification est un problème 

fondamental en apprentissage machine. Il consiste à réduire la dimensionalité de l‟espace des 

solutions en éliminant les attributs qui ne sont pas pertinents, ou qui le sont peu. Pour la tâche 

classification, un jalon important vers la résolution de ce problème a été atteint par Koller et 

Sahami [1].  Basé sur les travaux de Pearl dans les réseaux bayésiens [2], il a établi que la 

Couverture de Markov (Markov Blanket) d‟une variable T représentait le sous-ensemble optimal 

d‟attributs pour la prédiction de sa classe. Nous le dénotons     lorsque la variable cible est 

connue et par    autrement. 

Induire     étant donné un réseau bayésien est un problème trivial.  Cependant, l‟apprentissage 

de la structure d‟un réseau bayésien à partir de données est un problème reconnu comme NP 

difficile [3].  Pour un grand nombre de variables, l‟apprentissage d‟un réseau bayésien est en 

pratique très difficile non seulement à cause de la complexité calculatoire, mais aussi à cause de 

la quantité de données requises pour des problèmes dont la dimensionalité est très grande.  

Souvent, le problème de la dimensionalité est contourné en imposant des contraintes sur la 
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structure comme c‟est le cas avec les réseaux bayésiens naïfs [4, 5], qui sont probablement les 

plus répandus.  Leur complexité calculatoire est relativement faible, n‟ayant pas à effectuer un 

apprentissage de la structure du réseau, et leur effacité est très souvent relativement bonne malgré 

les hypothèses fortes qu‟ils imposent.   

Une des extensions des réseaux bayésiens naïfs est le formalisme de réseaux bayésiens naïf 

arborescent (Tree-Augmented Naïve Bayes, ou TAN) [6].  Les TAN sont généralement plus 

performants que les réseaux bayésiens naïfs en permettant certaines formes de dépendance parmi 

les attributs. Cependant, ils repondent néanmoins sur des hypothèses fortes qui peuvent les rendre 

invalides en général.  Du fait que les réseaux bayésiens ne font pas d‟hypothèses fortes sur les 

données, on s‟attend que leur performance pour la classification soit meilleure que pour un réseau 

bayésien naïf ou un TAN [7].  Cependant, il faut noter que pour la tâche de classification, 

seulement un sous-ensemble du réseau bayésien est effectif pour la prédiction, c‟est-à-dire la 

Couverture de Markov du nœud cible,    . Lorsque ce sous-ensemble         est utilisé 

aux fins de classification, nous y référerons par     , c‟est-à-dire le classificateur basé sur la 

Couverture de Markov.  En général, le classificateur      est considérablement plus petit que le 

réseau bayésien et sa performance est en théorie équivalente à celle du réseau bayésien complet.  

L‟induction de    et     sont deux problèmes très près l‟un de l‟autre, bien que l‟induction de 

   peut s‟avérer être  une étape indépendante. 

Cette thèse aborde le problème de l‟efficacité de l‟apprentissage de    et     à partir d‟un 

échantillon de données limité.  L‟objectif premier est de fournir un algorithme général de 

sélection des variables, ou attributs, tel que requis pour différentes tâches de classification, ou 

même de forage de données.  Notre première contribution est de définir un algorithme qui 

élimine les attributs non pertinents d‟un    (ou    ) sous l‟hypothèse de la fidélité (voir plus 

loin), lorsque la Couverture de Markov d‟une variable cible T est unique et composée des parents 

de T      , de ses enfants       et de ses conjoints, ou spouses,       [2].  Selon notre revue 

de la littérature, il existe au moins neuf travaux publiés depuis 1996 portant sur l‟apprentissage de 

la couverture de Markov, c'est-à-dire depuis que le concept a été démontré être le sous-ensemble 

optimal d‟attributs pour la prédiction et malgré le fait qu‟il est connu depuis 1988 [1][2]. 

Tous les algorithmes connus peuvent être regroupés en deux catégories : (1) ceux qui dépendent 

de la propriété d‟indépendance conditionnelle           , où T est considéré indépendant de 
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toutes les autres variables étant donné les valeurs connues de    ; et (2) les algorithmes qui 

reposent sur l‟information topologique, c‟est-à-dire la recherche des parents, enfants et conjoints 

du nœud cible.  IAMB [8] est l‟exemple le plus représentatif des algorithmes du premier groupe.  

Sa complexité calculatoire et son implémentation sont toutes deux d‟une grande simplicité. 

IAMB comporte deux phases: la phase de croissance et celle de décroissance.  Chaque phase 

nécessite la vérification de savoir si une variable X est indépendante de T étant donné un 

ensemble de nœuds candidats de la Couverutre de Markov,    
 , puis d‟enlever ou d‟ajouter des 

nœuds de cet ensemble de candidats. PCMB [9] est la contribution la plus récente aux 

algorithmes avant nos travaux et il est un exemple du second groupe.  Ce fut en réalité le premier 

et alors le seul algorithme dont la preuve a été faite qu‟il peut induire la Couverture de Markov, 

bien que ce n‟est toutefois pas le seul qui s‟est appuyé sur l‟information topologique pour le faire. 

Malgré ces avancements, la recherche d‟un algorithme qui peut à la fois garantir de recouvrer la 

Couverture de Markov et le faire en un temps raisonnable et avec un ensemble de données 

réaliste demeure un objectif non atteint.  Par exemple, KS [1] est un algorithme approximatif (il 

ne peut garantir de recouvrer la Couverture de Markov); IAMB est un algorithme simple qui peut 

fournir cette garantie, mais il impose une quantité extraordinaire de données afin d‟arriver à un 

résultat acceptable pour des problèmes pratiques; MMPC/MB [10] et HITON-PC/MB [11] 

représentent les premiers essais pour améliorer l‟efficacité en regard des données par 

l‟exploitation de données topologiques, mais il a été démontré qu‟ils n‟offrent pas la garantie de 

recouvrer la Couverture de Markov [9]; PCMB a suivi la découverte de MMPC/MB et de 

HITON-PC/MB, et ils peuvent effectivement fournir de bien meilleurs résultats que IAMB pour 

les mêmes données.  Cependant, PCMB est beaucoup plus lent que IAMB, et nos résultats 

suggèrent même qu‟il peut nécessiter plus de temps que l‟algorithme PC (voir  Chapitre 4).  Nous 

proposons l‟algorithme IPC-MB [12-14] afin d‟offrir une solution qui vise à la fois à fournir des 

résultats en un temps rapide et avec une quantité de données réaliste.  Cet algorithme est de la 

seconde catégorie, c‟est-à-dire qu‟il utilise l‟information topologique pour dériver la couverture 

de Markov. 

Tout comme les algorithmes MMPC/MB [10], HITON-PC/MB [11] et PCMB, l‟algorithme IPC-

MB divise l‟apprentissage de     en deux phases séparées, l‟induction de     et de    .  Dans 

la première phase, IPC-MB effectue une recherche pour trouver les voisins immédiats du nœud et 

elle est commune aux algorithmes PCMB, MMPC/MB et HITON-PC/MB.  Cependant, alors que 
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ces algorithmes effectuent une série de tests afin de déterminer si un nœud X n‟est PAS 

indépendant du nœud cible T étant donné tous les ensembles possibles de conditions, c‟est-à-dire 

           où         , IPC-MB présume initialement que toutes les variables du domaine 

à l‟exclusion de T (c.-à-d.  \{T}) sont des candidats à    . Puis, l‟algorithme élimine les 

variables une à une si X est indépendant de T étant donné un ensemble de conditions    

quelconque.  Parce que la majorité des réseaux ne sont pas denses en pratique et que IPC-MB 

commence par des ensembles conditionnels vides pour les élargir un nœud à la fois, il lui est 

possible d‟éliminer la majorité des faux candidats avec un petit ensemble de conditionnels, ce qui 

entraîne un gain en termes de calculs et de données nécessaires. Bien que certains descendants de 

T peuvent demeuré dans    , ils sont rapidement éliminés en réexecutant la même recherche 

pour chaque      
  (candidats de     qui est le résultat de la recherche précédente) afin de 

déterminer si      
 . De plus, en reconnaissant que tous les conjoints sont contenus dans 

l‟union des résultats des recherches pour    , c.-à-d.     
 

     , et que seulement les véritables 

conjoints contenus dans    
  seront dépendant de T conditionnellement à l‟ensemble séparateur 

trouvé précédemment plus X, une quantité importante de ressources est économisée en 

comparaison avec PCMB afin de dériver    . 

Nous faisons la preuve que l‟algorithme IPC-MB est valide et comparons sa performance avec 

les algorithmes qui sont actuellement l‟état de l‟art, notamment [10], PCMB [9] et PC [15].  Les 

expériences effectuées avec des échantillons de données générées à partir de réseaux bayésiens 

connus, notamment des réseaux de petites tailles comme Asia qui compte huit nœuds, des 

réseaux moyenne envergure comme Alarm et PolyAlarm (une version polyarborescence, polytee, 

de Alarm) avec 37 nœuds, et des réseaux plus grands comme Hailfinder (56 nœuds) et Test152 

(152 nœuds).  Nous mesurons la performance des algorithmes en termes de précision, rappel et de 

distance (                     ).  Le temps de calcul est mesuré en termes de nombre de tests 

d‟indépendance conditionnelle (CI) et de nombre de passes qui doivent être effectuées sur les 

données (relectures des données), car une seule passe n‟est généralement pas suffisante pour 

mettre en cache toutes les fréquences requises en mémoire.  Ces mesures sont couramment 

utilisées, car elles sont indépendantes du matériel utilisé et représentent la grande partie des 

ressources calculatoires consommées pour ce type d‟algorithmes. 
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Les résultats démontrent que, IPC-MB fournit (1) un niveau de performance nettement supérieur 

à IAMB pour une quantité d‟observations équivalente, atteignant jusqu‟à 80% en réduction de 

distance (mesurée par rapport au résultat idéal), (2) a une performance légèrement supérieure à 

PCMB et PC (toujours à quantité de données égales), (3) nécessite jusqu‟à 98% moins de tests CI 

que PC et 95% moins que PCMB, et (4) en moyenne les tests CI comportent un ensemble 

conditionnel relativement plus petit par rapport à IAMB et PCMB (ce qui est en bonne partie à la 

source des améliorations observées).  Nous pouvons donc conclure que les stratégies 

d‟apprentissage de     et     adpotées pour IPC-MB sont très efficaces et permettent un gain 

significatif pour atteindre l‟objectif d‟induire la Couverture de Markov avec un rapport réaliste de 

temps et de données. 

Étant donné le résultat de IPC-MB, c.-à-d.    , les algorithmes conventionnels pour induire la 

structure d‟un réseau bayésien peuvent être appliqués pour recouvrir     autre modification 

puisque l‟apprentissage de     est indépendant d‟eux.  La complexité de l‟apprentissage de la 

structure devrait être considérablement réduite en comparaison de l‟apprentissage induit de 

l‟ensemble des variables du domaine  . Nous avons réalisé une autre étude dans le cadre de la 

thèse en appliquant l‟algorithme PC pour l‟apprentissage de la structure étant donné    , 

l‟algorithme IPC-MB+PC, et avons observé un temps de calcul considérablement réduit.  En fait, 

le résultat de IPC-MB peut être considéré comme la sélection de variables d‟un problème et être 

utilisé dans un grand nombre d‟algorithmes de prédiction.  L‟algorithme a d‟ailleurs été 

développé par l‟auteur lorsqu‟à l‟emploi de SPSS en 2007 et il est actuellement intégré au 

module Clémentine 12 pour dériver un    . 

Une seconde contribution de cette thèse est l‟extension de IPC-MB pour induire la structure d‟un 

    directement sans avoir à dériver l‟ensemble du réseau bayésien au préalable comme la 

solution IPC-MB+PC le fait, ce qui constitue une première à notre connaissance.   Cet algorithme 

est nommé IPC-MBC (ou IPC-BNC dans une publication antérieure) [16].  Tout comme IPC-MB, 

il repose sur une recherche locale afin de déterminer les voisins d‟une variable. 

Étant donné une variable cible                     , l‟algorithme IPC-MBC peut être divisé 

en 5 étapes, après une initialisation où le nœud T est assigné à une liste de nœuds « visités », 

Scanned={T}.  
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1. Induction des liens entre         
          commence avec un graphe initial   dans 

lequel T est connecté avec tous les nœuds autres nœuds de  , sans toutefois spécifier de 

direction aux liens.  Puis, les nœuds dont le test CI indique une indépendance sont alors 

considérés non connectés.  Les tests de CI commencent avec un ensemble conditionnel vide 

puis incrémentent cet ensemble d<un nœud à la fois jusqu‟à ce que tous les tests possibles 

soient effectués.  À la fin du processus, l‟ensemble des nœuds connectés à T qui reste,    
 , 

contient tous les liens entre   et    , les parents et enfants réels de T, mais il contient aussi 

des faux positifs. 

2. Élimination des faux positifs de    
 , ajout des liens entre tous les nœuds de    

  et 

recueil des conjoints candidats.  La seconde étape consiste à établir un lien non-dirigé entre 

tous les nœuds de    
  aux autres nœuds de            , pour obtenir    

        

      (c.-à-d. tous les Y connectés à un nœud quelconque Z dans  ) .  Puis la procédure 

appliquée à l‟étape 1 est répétée pour tout      
  afin d‟éliminer les faux liens de 

dépendance, après quoi chaque X est ajouté à la liste Scanned.  À cette étape, l‟ensemble des 

liens non-dirigés et des nœuds restants forment un graphe   contenant (1) uniquement les 

véritables parents et enfants de T (c.-à-d.    , en présumant des tests CI fidèles) et (2) les 

liens entre ces parents.  Les liens adjacents à       sont donc des candidats conjoints, 

   
 . 

3. Identification des véritables conjoints,    , ajout des liens entre conjoints eux-mêmes et 

entre les conjoints et les véritables parents de T,    .  Pour chaque      , on identifie 

   
 , où    

              et où    
       

 .  Puis, pour chaque    

   
         , si Y est dependent de T conditionnellement à              , alors Y est un 

veritable conjoint de T, et nous obtenons une structure en V :      .  De plus, pour ce 

Y, nous ajoutons des liens non orientés avec chaque             dans  .  Finalement, la 

procédure similaire permettant de déterminer les faux positifs de    
  tel qu‟appliquée 

précédemment aux liens entre   et           qui restent dans  . Comme chaque 

véritable conjoint de Y est traité de la même façon, tous les liens entre les conjoints,    , 

seront identifiés, de même que ceux entre            . 

4. Élimination des nœuds n’appartenant pas à           . L‟étape précédente ajoute des 

nœuds n‟appartenant pas à            à travers le calcul de    
       

 .  Ces nœuds sont 
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éliminés par une procédure similaire à celle de l‟étape 2.  Le graphe résultant   comprte 

alors une structure proche de celle de       contenant certains liens dirigés obtenus à 

travers la structure en V, et la majorité non dirigés. 

5. Orientation des liens. Une procédure relativement standard est appliquée à   obtenu de 

l‟étape précédente pour orienter tous les liens et obtenir la structure finale de     . 

L‟algorithme IPC-MBC est prouvé correct.  Lors de nos tests empiriques, nous avons comparé sa 

performance de classification (précision, rappel et distance) et son efficience en termes de 

nombre de tests CI et de passes de données avec celles de PC et IPC-MB+PC (c.-à-d. 

l‟apprentissage de la structure avec l‟algorithme PC appliqué sur le produit de IPC-MB).  Les 

mêmes données que celles utilisées pour l‟étude de IPC-MB ont été utilisées.  Sans surprise, IPC-

MBC et IPC-MB+PC sont tous deux plus efficaces que PC, avec un gain de l‟ordre de 95%, sans 

perte au plan de la performance.  D‟autre part, IPC-MBC affiche un léger gain de performance 

par rapport à IPC-MB+PC.  Quant à son efficacité, on ne peut garantir que IPC-MBC nécessitera 

moins de tests CI que IPC-MB+PC, mais il nécessite moins de passes sur les données.  Ces 

différences peuvent s‟expliquer du fait que IPC-MB et PC n‟échangent aucune information 

intermédiaire alors que IPC-MBC réutilise les mêmes tests CI à la fois pour l‟induction de la 

structure comme pour la sélection des nœuds, ce qui lui confère une meilleure efficacité lors 

d‟une même passe sur les données et influence sa performance. 

Outre les deux contributions principales présentées, nous discutons de la question de fiabilité des 

tests CI et de son influence sur le résultat des algorithmes, ainsi que des actions à prendre 

advenant le cas de tests non fiables.  Une piste derecherche intéressante serait d'explorer le 

comportement de IPC-MB sous un modeinspiré de la notion d'Oracle en tests logiciels [4]. Le 

principe consiste à substituer la valeur du test d'indépendance par le résultat        , c'est-à-dire le 

résultat conforme au réseau Bayésien qui a servi à générer les données aléatoires. Dans un tel 

mode, deux hypothèses importantes sont alors forcées d'être respectées : (1) celui de la fidélité 

des données au réseau sous-jacent et (2) la fiabilité du test conditionnel est alors assurée. Une 

comparaison de la performance du mode   Oracle  avec celle du mode de simulation original 

permettrait ainsi d'explorer l'impact du non-respect des hypothèses sous-jacentes à IPC-MB.  

De plus, pour aborder la question de l‟efficacité qui demeure un problème pour des applications 

réelles, nous présentons uneesquisse d‟un algorithme pour paralléliser IPC-MB et un autre d‟une 
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heuristique basée sur IPC-MB qui sont tous deux susceptibles d‟améliorer la valeur pratique de 

ce type d‟algorithmes. Finalement, nous abordons la question d‟appliquer des algorithmes pour la 

recherche d‟une structure basée sur le score plutôt que sur des tests CI. Le score correspond ici à 

la probabilité d'observer la distribution donné étant donnée un réseau bayésien. Quoique 

considéré comme une approche prometteuse, leur coût calculatoire était jusqu‟ici l‟obstacle 

majeur qui a brimé la recherche de telles solutions. En effet, le nombre de topologies possibles de 

réseau bayésien croît de façon très rapide en fonction du nombre de variables et devient 

rapidement impossible à traiter après quelques dizaines de variables et même moins. Mais en 

considérant que IPC-MB réduit considérablement la dimensionalité de l‟espace problème et qu‟il 

nous permet de fixer certains liens entre , et , alors les algorithmes basés sur le score peuvent 

effectuer un gain d‟efficacité important en les combinant avec IPC-MB.  
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RÉSUMÉ 

La sélection de variables est un problème de première importance dans le domaine de 

l'apprentissage machine et le forage de données.  Pour une tâche de classification, un jalon 

important du développement de stratégies sélection de variables a été atteint par Koller et Shamai 

[1].  Sur la base des travaux de Pearl dans le domaine des réseaux bayésiens (RB) [2], ils ont 

démontré que la couverture de Markov (CM) d'une variable nominale représente le sous-

ensemble optimal pour prédire sa valeur (classe). 

Différents algorithmes ont été développés pour d'induire la CM d'une variable cible à partir de 

données, sans pour autant nécessiter l'induction du RB qui inclue toutes les variables potentielles 

depuis 1996, mais ils affichent tous des problèmes de performance, soit au plan de la complexité 

calculatoire, soit au plan de la reconnaissance. 

La première contribution de cette thèse est le développement d'un nouvel algorithme pour cette 

tâche.  L'algorithme IPC-MB [9-11] permet d'induire la CM d'une variable avec une performance 

qui combine les meilleures performances en terme de complexité calculatoire et de 

reconnaissance.  IPC-MB effectue une recherche itérative des parents et enfants du noeud cible 

en minimisant le nombre de variables conditionnnelles des tests d'indépendance.  Nous prouvons 

que l'algorithme est théoriquement correct et comparons sa performance avec les algorithmes les 

mieux connus, IAMB [12], PCMB [13] et PC [14].  Des expériences de simulations en utilisant 

des données générées de réseaux bayésiens connus, à savoir un réseau de petite envergure, Asia, 

contenant huit noeuds; deux réseaus de moyenne envergure, Alarm et PolyAlarm de 37 noeuds, 

et deux réseaux de plus grande envergure, Hailfinder contenant 56 noeuds et Test152 contenant 

152 noeuds. 

Les résultats démontrent qu'avec un nombre comparable d'observations, (1) IPC-MB obtient une 

reconnaissance nettement plus élevée que IAMB, jusqu'à 80% de réduction de distance (par 

rapport à un résultat parfait), (2) IPC-MB a une reconnaissance légèrement supérieure que PCMB 

et PC, et (3) IPC-MB nécessite jusqu'à 98% moins de tests conditionnels que PC et 95% de moins 

que PCMB (le nombre de tests conditionnels représente la mesure de complexité calculatoire ici). 

La seconde contribution de la thèse est un algorithme pour induire la topologie du RB constitué 

des variables de la CM.  Lorsqu'une CM d'une variable cible forme un RB, ce réseau est alors 

considéré comme un classificateur, nommé une Couverture de Markov de Classification (MBC).  
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L'algorithme a été nommé IPC-MBC sur la base du premier algorithme, IPC-MB.  À l'instar de 

IPC-MB, l'algorithme IPC-MBC effectue une série de recherches locales pour éliminer les faux-

négatifs, incluant les noeuds et les arcs.  Cependant, sa complexité est supérieure et requiert des 

ressources calculatoires plus importantes que IPC-MB.  Nous prouvons que IPC-MB est 

théoriquement et effectuons des études empiriques pour comparer sa performance calculatoire et 

de reconnaissance par rapport à PC seul et PC combiné à IPC-MB (c.-à-d. l'induction de la 

structure du RB avec l'algorithme PC seul et avec PC appliqué sur le résultat de IPC-MB). Les 

mêmes données que pour les expériences de simulation de IPC-MB sont utilisées.  Les résultats 

démontrent que IPC-MBC combiné à IPC-MB et que PC combiné à IPC-MB sont tous deux plus 

efficaces que PC seul en termes de temps de complexité calculatoires, fournissant jusqu'à 95% de 

réduction du nombre de tests conditionnels, sans pour autant avoir d'impact au plan du taux de 

reconnaissance. 
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ABSTRACT 

Feature selection is a fundamental topic in data mining and machine learning. It addresses the 

issue of dimension reduction by removing non-relevant, or less relevant attributes in model 

building. For the task of classification, a major milestone for feature selection was achieved by 

Koller and Sahami [1].  Building upon the work of Pearl on Bayesian Networks (BN) [2], they 

proved that a Markov blanket (MB) of a variable is the optimal feature subset for class prediction. 

Deriving the MB of a class variable given a BN is a trivial problem. However, learning the 

structure of a BN from data is known to be NP hard.  For large number of variables, learning the 

BN is impractical, not only because of the computational complexity, but also because of the data 

size requirement that is one of the curses of high dimensionality feature spaces. 

Hence, simpler topologies are often assumed, such as the Naive Bayes approach (NB) [5, 6], 

which is probably the best known one due its computational simplicity, requiring no structure 

learning, and also its surprising effectiveness in many applications despite its unrealistic 

assumptions. One of its extension, Tree-Augmented Naïve Bayes (TAN) [7] is shown to have a 

better performance than NB, by allowing limited additional dependencies among the features.  

However, because they make strong assumptions, these approaches may be flawed in general.  

By further relaxing the restriction on the dependencies, a BN is expected to show better 

performance in term of classification accuracy than NB and TAN [8]. The question is whether we 

can derive a MB without learning the full BN topology for the classification task. Let us refer to a 

MB for classification as a Markov Blanket Classifier, MBC.  The MBC is expected to perform as 

well as the whole Bayesian network as a classifier, though it is generally much smaller in size 

than the whole network. 

This thesis addresses the problem of deriving the MBC effectively and efficiently from limited 

data. The goal is to outperform the simpler NB and TAN approaches that rely on potentially 

invalid assumptions, yet to allow MBC learning with limited data and low computational 

complexity. 

Our first contribution is to propose one novel algorithm to filter out non-relevant attributes of a 

MBC. From our review, it is known that there are at least nine existing published works on the 

learning of Markov blanket since 1996. However, there is no satisfactory tradeoff between 
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correctness, data requirement and time efficiency. To address this tradeoff, we propose the IPC-

MB algorithm [9-11].  IPC-MB performs an iterative search of the parents and children given a 

node of interest. We prove that the algorithm is sound in theory, and we compare it with the state 

of the art in MB learning, IAMB [12], PCMB [13] and PC [14].  Experiments are conducted 

using samples generated from known Bayesian networks, including small one like Asia with 

eight nodes, medium ones like Alarm and PolyAlarm (one polytree version of Alarm) with 37 

nodes, and large ones like Hailfinder (56 nodes) and Test152 (152 nodes). The results 

demonstrate that, given the same amount of observations, (1) IPC-MB achieves much higher 

accuracy than IAMB, up to 80% reduction in distance (from the perfect result), (2) IPC-MB has 

slightly higher accuracy than PCMB and PC, (3) IPC-MB may require up to 98% fewer 

conditional independence (CI) tests than PC, and 95% fewer than PCMB. Given the output of 

IPC-MB, conventional structure learning algorithms can be applied to recover MBC without any 

modification since the feature selection procedure is transparent to them. In fact, the output of 

IPC-MB can be viewed as the output of general feature selection, and be employed further by all 

kinds of classifier.  This algorithm was implemented by the author while working at SPSS and 

shipped with the software Clementine 12 in 2007. 

The second contribution is to extend IPC-MB to induce the MBC directly without having to 

depend on external structure learning algorithm, and the proposed algorithm is named IPC-MBC 

(or IPC-BNC in one of our early publication) [15]. Similar to IPC-MB, IPC-MBC conducts a 

series of local searches to filter out false negatives, including nodes and arcs. However, it is more 

complex and requires greater computing resource than IPC-MB. IPC-MBC is also proved sound 

in theory. In our empirical studies, we compare the accuracy and time cost between IPC-MBC, 

PC and IPC-MB plus PC (i.e. structure learning by PC on the features output by IPC-MB), with 

the same data as used in the study of IPC-MB. It is observed that both IPC-MBC and IPC-MB 

plus PC are much more time efficient than PC, with up to 95% saving of CI tests, but with no loss 

of accuracy. This reflects the advantage of local search and feature selection respectively. 
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Chapitre 1 INTRODUCTION 

1.1 Feature selection 

Prediction, or classification, on one particular attribute in a set of observations is a common data 

mining and machine learning task. To analyze and predict the value of this attribute, we need to 

first ascertain which of the other attributes in the domain affect it. This task is frequently referred 

to as the feature selection problem. A solution to this problem is often non-trivial, and can be 

infeasible when the domain is defined over a large number of attributes.  

In 1997, when a special issue of the journal of Artificial Intelligence on relevance, including 

several papers on variable and feature selection, was published, few domains explored used more 

than 40 features [16, 17]. The situation has changed considerably in the past decade: domains 

involving more variables but relatively few training examples are becoming common [12, 13, 18]. 

Therefore, feature selection has been an active research area in the pattern recognition, statistics 

and data mining communities. The main idea of feature selection is to select a subset of input 

variables by eliminating features with little or no predictive information, but without sacrificing 

the performance of the model built on the chosen features. It is also known as variable selection, 

feature reduction, attribute selection or variable subset selection. By removing most of the 

irrelevant and redundant features from the data, feature selection brings many potential benefits 

to us: 

 Alleviating the effect of the curse of dimensionality to improve prediction performance; 

 Facilitating data visualization and data understanding, e.g. which are the important features 

and how they are related with each other; 

 Reducing the measurement and storage requirements; 

 Speeding up the training and inference process; 

 Enhancing model generalization.  

A principled solution to the feature selection is to determine a subset of features that can render 

of the rest of the features independent of the variable of interest [1, 12, 13]. From a theoretical 
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perspective, it can be shown that optimal feature selection for supervised learning problems 

requires an exhaustive search of all possible subsets of features, the complexity of which is 

known as exponential function of the size of whole features. In practice, the target is demoted to a 

satisfactory set of features instead of an optimal set due to the lack of efficient algorithms.   

Feature selection algorithms typically fall into two categories: Feature Ranking and Subset 

Selection. Feature Ranking ranks all attributes by a metric and eliminates those that do not 

achieve an adequate score. Selecting the most relevant variables is usually suboptimal for 

building a predictor, particularly if the variables are redundant. In other words, relevance does not 

imply optimality [17]. Besides, it has been demonstrated that a variable which is irrelevant to the 

target by itself can provide a significant performance improvement when taken with others [17, 

19]. 

Subset selection, however, evaluates a subset of features that together have good predictive 

power, as opposed to ranking variables according to their individual predictive ability. Subset 

selection essentially divides into wrappers, filters and embedded [19].  

In the wrapper approach, the feature selection algorithm conducts a search through the space of 

possible features and evaluates each subset by utilizing a specific modeling approach of interest 

as a black box [17], e.g. Naïve Bayes or SVM . For example, a Naïve Bayes model is induced 

with the given feature subset and assigned training data, and the prediction performance is 

evaluated using the remaining observations available. By iterating the training and cross-

validation over each feature subset, wrappers can be computationally expensive and the outcome 

is tailored to a particular algorithm [17].  

Filter is a paradigm proposed by Kohavi and John [17], and it is similar to wrappers in the search 

approach. A filter method computes a score for each feature and then select features according to 

their scores. Therefore, filters work independently of the chosen predictor. However, filters have 

the similar weakness as Feature Ranking since they imply that irrelevant features (defined as 

those with relatively low scores) are useless though it is proved not true [17, 19].  

Embedded methods perform variable selection in the process of training and are usually specific 

to given learning algorithms. Compared with wrappers, embedded methods may be more 

efficient in several respects: they make better use of the available data without having to split the 

training data into a training and validation set; they reach a solution faster by avoiding retraining 
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a predictor from scratch for every variable subset to investigate [19]. Embedded methods are 

found in decision trees such as CART, for example, which have a built-in mechanism to perform 

variable selection [20].   

1.2 Classification benefits from feature selection 

In the classic supervised learning task, we are given a training set of labeled fixed-length feature 

vectors, or instances, from which to induce a classification model. This model, in turn, is used to 

predict the class label for a set of previously unlabeled instances. While, in a theoretical sense, 

having more features should give us more discriminating power, the real-world provides us with 

many reasons why this is not generally the case. 

Foremost, many induction methods suffer from the curse of dimensionality. That is, as the 

number of features in an induction increases, the time requirements for an algorithm grow 

dramatically, sometimes exponentially. Therefore, when the set of features in the data is 

sufficiently large, many induction algorithms are simply intractable. This problem is further 

exacerbated by the fact that many features in a learning task may either be irrelevant or redundant 

to other features with respect to predicting the class of an instance. In this context, such features 

serve no purpose except to increase induction time. 

Furthermore, many learning algorithms can be viewed as performing (a biased form of) 

estimation of the probability of the class label given a set of features. In domain with a large 

number of features, this distribution is very complex and of high dimension. Unfortunately, in the 

real world, we are often faced with the problem of limited data from which to induce a model. 

This makes it very difficult to obtain good estimates of the many parameters. In order to avoid 

over-fitting the model to the particular distribution seen in the training data, many algorithms 

employ the Occam‟s Razor [13] principle to build as simple a model as possible that still 

achieves some acceptable level of performance on the training data. This guide often leads us to 

prefer a small number of relatively predictive features over a large number of features.  

If we could reduce the set of features considered by the algorithm, we can therefore serve two 

purposes. We can considerably decrease the running time of the induction algorithm, and we can 

increase the accuracy of the resulting model. In light of this, effort has been put on the issue of 

feature subset selection in machine learning as we mentioned in last section. 
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1.3 Bayesian Network, Markov blanket and Markov blanket 

classifier  

Let   be the set of features, and   as the target variable of interest.   is used to refer our problem 

domain, and it is composed of    and  , i.e.        .  A Markov blanket of   is any subset 

of   that renders   statistically independent from all the remaining attributes (see Definition 7.4). 

Koller and Sahami [1] first showed that the Markov blanket of a given target is the theoretically 

optimal set of attributes to predict its class value. If the probability distribution of         

can be faithfully (see Definition 1.3) represented by a Bayesian network (BN, see Definition 1.1) 

over  , then the Markov blanket of    is unique, just equal to its Markov boundary(see 

Definition 7.4), and it consists of the union of the parents, children and spouses of   in the 

corresponding BN [2]. Besides, the partial Bayesian network over the Markov blanket of   plus 

   itself is called Markov blanket classifier, or Bayesian network classifier (see Definition 1.5). 

Figure 1-1 illustrates a Bayesian network, Markov blanket of   and Markov blanket classifier 

with   as the target (or class).  

Definition 1.1 (Bayesian Network)  A Bayesian network consists of a directed acyclic graph 

(DAG)   an a set of local distributions.    is composed of nodes   and edges  , i.e.        .  

Definition 1.2 (Conditional Independence) Two sets of variables,   and  , are said to be 

conditionally independent given some set of variables    if, for any assignment of values  ,   and 

  to the variables   ,   and    respectively,                          . That is,   

gives us no information about   beyond what is already in  . We use          in the remaining 

text to denote this conditional independence relationship.  

Definition 1.3 (Faithfulness Condition) A Bayesian Network   and a joint distribution   are 

faithful to one another iff. every conditional independence entailed by the graph   and the 

Markov Condition is also present in   [2].  

Definition 7.4 (Markov blanket) A Markov blanket of an attribute     is any subset   of  

      for which   is conditionally independent with         given the values of  . A set is 

called a Markov boundary of   if none of its proper subsets satisfy this condition.  
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Definition 1.5 (Markov blanket classifier) Given a Bayesian network   over the target variable 

  and attributes     , the partial DAG over       is called the Markov Blanket Classifier, or 

Bayesian Network Classifier about  , and denoted as      or     .  

Definition 1.6 (Markov Condition) Given the value of parents,   is conditionally independent 

with all its non-descendants, denoted as    , excluding its parents    , i.e.          

         . 

Theorem 1.1 If a Bayesian network   and a joint distribution   are faithful to one another, then 

for every attribute    , the Markov blanket of    is unique and is the set of parents, children 

and spouses of  .  

 

Figure 1-1: An example of a Bayesian network. The parents and children of   are the variables in 

gray, while     additionally includes the textured-filled variable O. The partial network over 

    and   are the Markov blanket classifier about   as class. 

Let    ,     and     denote the parents, children and spouses of   respectively, the Markov 

blanket of   , denoted as    , then is the union of    ,     and     (see Theorem 1.1), i.e. 

                 for short. Given this knowledge,     of any     is easily to be 

obtained if the Bayesian network over   is known. However, having to learn the Bayesian 

Network   in order to learn     can be painfully time consuming [21]. Hence, how to learn  

    but without having to learn the BN first became the goal of many who are interested to 

apply Markov blanket as feature selection.  

Bayesian network, Markov blanket and Markov blanket classifier concepts are closely related 

given the faithfulness assumption. They will be frequently mentioned in the remaining text since 

our goals are efficient learning of Markov blanket and Markov blanket classifier. Chapitre 2 to 
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Chapitre 5 are about the learning of Markov blanket given a target of interest. The Markov 

blanket is important because 

 It is the optimal feature subset for the prediction of  , and feature selection is an important 

data preprocessing step for most machine learning and data mining tasks; 

 It is closely related to the Markov blanket classifier since the later is just a DAG over     

and  . Understanding this concept well will be helpful to understand our work on Markov 

blanket classifier; 

 Given the Markov blanket of  , all existing structure learning algorithms of Bayesian 

network are applicable to induce the Markov blanket classifier. Since the feature space is 

greatly reduced, the remaining structure learning is expected to be much more efficient than 

using all features directly; 

 Our algorithm for inducing the Markov blanket classifier of   is an extension of our 

algorithm on the induction of Markov blanket. 

We return to the concept of Markov blanket classifier Chapitre 6.  

1.4 KS and related algorithms 

Following Koller and Sahami‟s work (KS), many others also realized that the principled solution 

to the feature selection problem is to determine a subset of features that can render the rest of all 

other features independent of the variable of interest [12, 13, 18, 21, 22]. Based on the findings 

that the full knowledge of     is enough to determine the probability distribution of   and that 

the values of all other variables become superfluous, we normally can have a much smaller group 

of variables in the final classifier, reducing the complexity of learning and resulting with a 

simpler model, but without sacrificing classification performance [2, 3, 4].  

Although Koller and Sahami theoretically proved that Markov blanket is the optimal feature 

subset for predicting the target, the algorithm as proposed by them for inducing     is 

approximate, guaranteeing no correct outcome. There are several attempts to make the induction 

more effective and efficient, including GS (Grow-Shrink) [23, 24], IAMB (Iterative Associative 

Markov Blanket) and its variants [12, 18, 22], MMPC/MB (Max-Min Parents and 
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Children/Markov Blanket) [21], HITON-PC/MB[25], PCMB(Parent-Child Markov Blanket 

learning) [13] and our own work [10, 11, 26, 27], IPC-MB (Iterative Parents-Children based 

search of Markov Blanket), which will be discussed later.  To our best knowledge, this list 

contains all the published primary algorithms. In next chapter, we will review these MB local 

learning algorithms in terms of theoretical and practical considerations, based on our experience 

gained from both academic research and industry implementation.  

1.5 Motivation, contributions and overall structure 

This project was initiated during my time in SPSS® (http://www.spss.com, acquired by IBM in 

2009), where they needed a component of Bayesian Network for classification on widely 

deployed Clementine® (http://www.spss.com/software/modeling/modeler/, now named as PASW 

Modeler®). The greatest merit of a Bayesian Network is that its graphical model allows us to 

observe the relations of the variables involved, which is very important for diagnosis application. 

However, this component is designed primarily for classification, i.e. predicting the state of some 

target variable given input features, instead of general modeling. Regarding this goal, Pearl and 

Koller‟s works tell us that only the Markov blanket is effective in the prediction, which means 

that the partial Bayesian Network over the target and its Markov blanket is enough. This partial 

Bayesian Network is called Markov Blanket Classifier (MBC) or Bayesian Network Classifier 

(BNC) by us, to distinguish it from the whole Bayesian Network. It has all the merits of a general 

Bayesian Network, but it is “customized” for classification. In a naïve way, we can induce the 

Bayesian Network over all input variables first, and then extracting the MBC becomes trivial. 

This is possible and it requires no extra research effort, all existing conventional algorithms for 

the structure learning of Bayesian Network are there for reference. However, the learning of 

Bayesian network is known as an NP-complete problem, and the complexity grows exponentially 

in term of the number of inputs and the number of states of each individual input [3]. Therefore, 

the goal is to induce the MBC directly without having to learn the Bayesian Network first.  

Koller and Sahami opened a new window, and many more fruitful studies have been done, along 

with many published outcomes. Given a bag of features  , these algorithms allow the induction 

of      without requiring to know the Bayesian Network over   in advance. With    , the 

problem space generally is greatly reduced in dimension; besides, all existing algorithms for the 

structure learning of Bayesian Network are applicable, and they are expected to yield the 

http://www.spss.com/
http://www.spss.com/software/modeling/modeler/
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Bayesian Network structure over    . More importantly, due to the feature selection, all 

conventional structure learning algorithms are expected to solve larger scale of problems given 

the same computing resource. However, our review and experiments with all published 

algorithms on Markov blanket induction indicate that none of them was ideal, at least in the early 

2007. Some of them may not yield the correct result; some may be efficient in time, but not data 

(or sample) efficient, which means that it requires large amount of data to produce satisfactory 

result; some of them may be quite data efficient, but quite poor in time efficiency.  

Our first contribution is to propose a competitive algorithm for the local learning of Markov 

blanket. It is named as IPC-MB [10, 11, 27] since it is built on a series of iterative discovery of 

parents and children. IPC-MB is proved correct, and it is shown as much more data efficient than 

IAMB, and much more time efficient than PCMB, two well known algorithms for inducing    . 

As compared with PC [14, 28], one most known algorithm for the structure learning of BN, IPC-

MB demonstrates obvious advantage as one requiring only local search, achieving great gain in 

time efficiency. IPC-MB was designed by myself for the induction of Markov blanket in the 

Bayesian Network component and implemented in Clementine® in 2007.  

The second contribution extended IPC-MB to get IPC-MBC, which allows us to get the target 

Markov blanket classifier via efficient local search. It is called IPC-MBC since it also depends on 

the iterative discovery of parents and children, but it is more complex than IPC-MB because that 

it cares of not only to find     but also the links existing among nodes of        . In our 

experiments, we compare IPC-MBC with not only PC, but IPC-MB+PC which calls IPC-MB to 

do feature selection first, and then depends on PC to finish the structure learning over     . The 

results show that although they have close performance on accuracy, IPC-MBC and IPC-MB+PC 

are much more time efficient than PC. Therefore, they are expected with better scalability. 

So, we started with the problem of feature selection in classification application, and reviewed 

the family of algorithms on inducing Markov blanket. IPC-MB was proposed to compete with all 

existing similar ones, with exciting relative performance gained. Then, we went further to 

propose two effective and efficient algorithms for learning Markov blanket classifier, making full 

use of the knowledge and experience gained.  In addition, we also study the combination of IPC-

MB plus PC, and the results indicate that feature selection by IPC-MB not only greatly reduces 

the complexity of structure learning, but the overall timing cost. All these parts actually are 
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closely related. Efficiency, especially the data or sample efficiency, was emphasized all along the 

project since we always view the practical value as a very important evaluation criterion.  

The remaining chapters of the thesis are organized as follows: 

 A thorough review regarding the algorithms on learning Markov blanket is done in Chapter 2, 

which allows us to have in mind a comprehensive map about the existing work; 

 In Chapter 3, a novel algorithm, called IPC-MB, for efficient learning of Markov blanket is 

proposed, including its motivation, specification, proof, complexity analysis and more 

discussion. It is categorized as local learning since it enables us to find the Markov blanket of 

target without having the whole Bayesian network known first, and it is expected to be the 

most data efficient among similar works, which is critical for algorithms built on statistical 

tests; 

 Then, in Chapter 4, a series of empirical studies with data sampled from classical real 

networks are presented to give a comparison between IPC-MB and existing classical work, 

including IAMB, PCMB and PC algorithms, in term of accuracy, time and data efficiency. 

Besides, necessary implementation details are covered to make the results reproducible; 

 A comprehensive trade-off analysis discussion about IAMB, PCMB, IPC-MB and PC is 

made in Chapter 5, including theoretical assumption, search strategy, data efficiency, time 

efficiency, potential scalability, information induced and implementation issues. All these 

factors are important for practical usage, so the discussion is believed valuable reference for 

applicants as well as researchers who are interested on this topic; 

 In Chapter 6, we further propose an algorithm to learn the Markov blanket classifier without 

having to learn the whole Bayesian network first. It’s called IPC-MBC, and it built on our 

knowledge and experience gained on previous work, especially IPC-MB. Experimental study 

is conducted over PC, IPC-MB+PC (which depends on IPC-MB to realize feature reduction 

first, then apply PC algorithm to finish the structure learning) and IPC-MBC with real 

networks, and the results indicate that both IPC-MB+PC and IPC-MBC achieve the similar 

accuracy as PC, but with much less cost on computing resource. With structure ready, the 

parameter learning is trivial, hence it is not covered in our discussion; 



10 

 

 Chapter 7 is a conclusion of the whole thesis as well as perspectives of our works.  
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Chapitre 2 REVIEW OF ALGORITHMS FOR MARKOV BLANKET 

LEARNING 

Since Koller and Sahami‟s work in 1996 [1], there have been several efforts to make the learning 

procedure more efficient and effective. In this chapter, we will briefly review those known 

published works, including KS, GS, IAMB and its variants, MMPC/MB, HITON-PC/MB and 

PCMB. Because all these algorithms, including our own work, require faithfulness assumption 

(KS is an exception since it does not require this assumption), and depend on statistical 

(in)dependence test, we first discuss these two concepts in Section 2.1 and Section 2.2 

respectively. Sections 2.3 to 2.8 are contributed for reviewing of those known published works.  

2.1 Faithfulness Assumption 

Faithfulness (see Definition 1.3) is an important concept that can be traced back to Pearl‟s work 

on Bayesian network in 1988 [2], and it is the most critical assumption as required by algorithms 

covered in the discussion here, including our own work but with KS as an exception. In its 

original texts [2, 29], Pearl et al. explained that, with the assumption of faithfulness, every 

distribution has a unique causal model (up to equivalence), as long as there are no hidden 

variables. This uniqueness follows from the fact the structural constraints that an underling DAG 

imposes upon the probability distribution are equivalent to a finite set of conditional 

independence relationships asserting that, given its parents, each variable is conditionally 

independent of all its non-descendents.  

As we mentioned in last chapter, with this assumption, the Markov blanket also becomes unique, 

and is composed of the target‟s parents, children and spouses. Therefore, faithfulness builds a 

connection between probability distribution and graph structure. In the future discussion, we will 

demonstrate how PCMB and our work, IPC-MB, make use of this topology to increase the data 

efficiency which is known as the most disadvantage of GS, IAMB and their variants.  

Lucky enough, the vast majority of distributions are faithful in the sample limit. Besides, for a 

number of different parametric families, the set of parameters that lead to violations of the 

faithfulness asssumption are Lebesgue measure 0 [28, 30].  
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2.2 Statistical dependence and independence 

All algorithms covered here depend on asking for the true of independence relationships of the 

form:  

         

where   is a subset of variables excluding   and  . It can work with any source providing this 

kind of information. If we have a data set, this is answered by means of statistical tests of 

independence.  

Among those works covered in this project, KS and IAMB employ cross entropy to measure the 

dependency, while the others choose Pearson‟s conditional independence     or     test [31]. We 

would like to introduce them briefly respectively here.  

2.2.1 Cross-entropy 

If    and   are random variables with joint probability distribution  , the cross entropy between 

them is defined as: 

                   
      

        
 

   

 

Given three variables  ,   and  , the cross entropy of   and   given   defined as: 

                            
        

            
 

    

 

This value is also called the mutual information. It can be analogously defined when   is a set of 

variables. It verifies similar properties to unconditional entropy, and it measures the degree of 

dependence of   and   given  . In particular, it is equal to 0.0 when this conditional 

independence is verified.  

2.2.2 Pearson’s Chi-Square test 

Pearson‟s chi-square (  ) is the best-known of several chi-square tests, statistical procedures 

whose results are evaluated by reference to the    distribution. It can be used to access two types 

of comparison: tests of goodness of fit and tests of independence.  
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The    statistic is calculated by finding the difference between each observed and theoretical 

frequency, denoted as   and   respectively, for each possible outcome, squaring them, dividing 

each by the theoretical frequency, and taking the sum of the results. A second important part of 

determining the test statistic is to define the degrees of freedom of the test.  

In the test of independence, an “observation” consists of the values of two outcomes and the null 

hypothesis is that the occurrence of these outcomes is statistically independent. Each observation 

is allocated to one cell of a two-dimensional array of cells according to the values of the two 

outcomes. If there are   rows and   columns, and totally   cells in the table, the theoretical 

frequency for a cell, given the hypothesis of independence, is 

     
          

 
   

 
   

 
 

(1.1) 

and fitting the model of “independence” reduces the number of degrees of freedom by     

   . The value of the test-statistic is 

  
           

 

    

 

   
 

 

   
 

(1.2) 

The number of degrees of freedom is equal to the number of cells   , minus the reduction in 

degrees of freedom,  , which reduces to           .  

For the test of independence, the   , a probability       is commonly interpreted as 

justification for rejecting the null hypothesis that the row variable is unrelated to the column 

variable.  

The    test requires minimal cell sizes. A common rule is 5 or more in all cells of a 2-by-2 table, 

and 5 or more in 80% of cells in larger tables, but no cells with zero count. When this assumption 

is not met, Yates‟ correction is applied (refer to next section). 

2.2.3 Chi-Square test with Yates correction 

The approximation to the    distribution breaks down if expected frequencies are too low. It will 

normally be acceptable so long as no more than 10% of the events have expected frequencies 
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below 5. Where there is only 1 degree of freedom, the approximation is not reliable if expected 

frequencies are below 10. In this case, a better approximation can be obtained by reducing the 

absolute value of each difference between observed and expected frequencies by 0.5 before 

squaring, and this is called Yates‟ correction for continuity. The following is Yates‟ corrected 

version of Pearson‟s    statistic:  

  
                 

 

    

 

   

 

   
 

(1.3) 

2.2.4    Test 

In cases where the expected value,  , is found to be small (indicating either a small underlying 

population probability, or a small number of observations), the normal approximation of the 

multinomial distribution can fail, and in such cases it is found to be more appropriate to use the 

  , a likelihood ratio-based test statistic.  

The commonly used chi-squared tests for goodness of fit to a distribution and for independence 

in contingency tables are in fact approximations of the log-likelihood ratio on which the    tests 

are based. This approximation was developed by Karl Pearson because at the time it was unduly 

laborious to calculate log-likelihood ratios. Due to the introduction of computers, however,    

tests are coming into increasing use.  

The general formula for    corresponding to equation (1.2) is 

                  
    

    
  

   
 
       (1.4) 

where    denotes the natural logarithm and the sum is taken over all non-empty cells. Given the 

null hypothesis that the observed frequencies are random sampling from a distribution with the 

given expected frequencies, the distribution of     is approximately that of    , with the same 

number of degrees of freedom as in the corresponding    test.  

For samples of a reasonable size, the    test and the    test will lead to the same conclusions. 

However, the approximation to the theoretical    distribution for the    test is better than for the 
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Pearson    tests in cases where for any cell              , and in any such case the    test 

should always be used [32].  

2.2.5 Our Choice 

In our implementation, the    test is chosen based on the following knowledge gained from our 

own review and experimental studies:  

1. It is preferred by similar research work [13, 21], and we want to produce a comparable 

results;  

2. It produces better results than Pearson    test with or without Yates correction in our 

empirical studies, especially when sample size is relatively small. 

Besides, in our implementation, a test           will be ignored if  

 

                 
   

(1.5) 

where   is the total number of observations available,     and     are the number of value that   

and   can have respectively, and   is an empirical threshold value. This in-equation gives an 

empirical standard to decide if a test is reliable or not, that is the minimum average number of 

observations available in each cell of a contingency table should be at least  . In all our 

experiments we choose     because, as suggested by Agresti [31], this is the minimum average 

number of instances per cell for the   statistic to have    distribution, and it is applied by several 

similar published works like Fast-IAMB [22] and PCMB [13].  

Note: (1)    test is employed in the implementation of all algorithms studied in our experiments 

for fair comparison purpose; (2) In our implementations,             means that         are 

conditionally dependent given  , while             indicates that         are conditionally 

independent given  .  

2.3 KS (Koller and Sahami’s Algorithm) 

In the following sections, we will review the algorithms introduced for deriving an MB, starting 

with the earlier ones and towards the most sophisticated and latter ones.  
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Koller and Sahami proposed a framework for optimal feature selection by measuring and 

minimizing the amount of predictive information lost during feature elimination [1]. They also 

proposed an approximate algorithm based on their theoretical model, and this algorithm is 

referred to as KS by many since then.  KS is the first algorithm for feature selection to employ 

the concept of Markov blanket, and it accepts two parameters, (1) the number of variables to 

retain, i.e. the limit of the target Markov blanket, and (2) the maximum number of variables it is 

allowed to condition on. Both settings are useful to reduce the search space, but obviously, it is a 

heuristic and approximate algorithm, not always guaranteeing correct outcome.  

Basically, KS is a filter algorithm which does not incur the high computational cost of conducting 

a search through the space of feature subsets as in the wrapper methods, and is therefore efficient 

for domains containing hundreds or even thousands of features. Although it is theoretically sound, 

the KS algorithm itself will not always produce correct outcomes. In this section, how KS works 

will be described with a little more detail.  

Although this algorithm is simple and easy to implement, it is clearly suboptimal in many ways, 

particularly due to the very naïve approximations that it uses. Koller and Sahami also discussed 

some ways to possibly improve the result, and more importantly, they point out that increasing 

the size of the conditioning set would fragment the training set into small chunks, and result with 

a degradation on performance. Though it was noticed as early as in 1996, this problem was not 

conquered by latter algorithms, until the introduction of PCMB. 

2.4 GS (Grow-Shrink) 

The Grow-shrink (GS) [23, 24] algorithm was proposed to induce the structure of Bayesian 

network via the discovery of local neighbours, i.e. Markov blanket of each node. The GS 

algorithm actually contains two independent components, GSMB and GSBN. GSMB is 

responsible to induce the Markov blanket of a variable, and GSBN is employed to induce the 

whole Bayesian network by using the knowledge supplied by GSMB. Therefore, when we 

mention GS in the context of Markov blanket learning, in fact, it is called GSMB in the original 

literature. In this thesis, we will continue the usage of GS to refer to GSMB considering that no 

ambiguity will be introduced.  
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GS employs independence properties of the underlying network to discover parts of its structure, 

just like the SGS and PC algorithms [14, 28]. However, the design of GS enables it to addresses 

the two main shortcomings of the prior work which are preventing its use from becoming more 

widespread. These two disadvantages are: exponential execution time and proneness to errors in 

dependence tests used. The former problem is addressed in [23, 24] in two ways. One is by 

identifying the local neighbourhood of each variable in the Bayesian network as a pre-processing 

step in order to facilitate the recovery of the local structure around each variable in polynomial 

time under the assumption of bounded neighbourhood size. The second, randomized version goes 

one step further, employing a user-specified number of randomized tests (constant or logarithmic) 

in order to ascertain the same result with high probability. The second disadvantage of this 

research approach, namely proneness to errors, is also addressed by the randomized version, by 

using multiple data sets (if available) and Bayesian accumulation of evidence. 

Although the concept of the Markov blanket is not new, GS is known as the first to explicitly use 

this idea to effectively limit unnecessary computation while inducing the underlying Bayesian 

network. GS(MB) itself is simple, and it proceeds in two phases: grow first, shrink secondly (see 

Figure 1-2).  

Here,   denotes the complete set of variables. The idea behind the growing phase is simple: as 

long as the Markov blanket property of   is violated, i.e. there exists a variable in    that is 

dependent on  , it is added to   until there are no more such variables. In this process however, 

there may be some variables that were added to   that were really outside the blanket. Such 

variables would have been rendered independent from   at a later point when all Markov blanket 

nodes of the underlying Bayesian network were added to  . This observation necessitates the 

shrinking phase, which identifies and removes those variables. Finally, what is left in   is known 

the Markov blanket of   ,       

Theorem 1.2 Given the assumption of faithfulness and correct independence test, GS induces the 

correct Markov blanket [23, 24].  

The algorithm is efficient, requiring only      conditional tests. One may minimize the number 

of tests in shrinking phase by heuristically ordering the variables in the loop of growing phase, 

for example by ascending mutual information or probability of dependence between   and  . In 

[23, 24], Margaritis and Thrun also proposed one randomized version of GS algorithm to solve 
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problems involving large amount of variables or variables with many possible values. It requires 

manually defined parameter to reduce the number of conditional tests, so it cannot guarantee 

correct output, and it is ignored without further discussion.  

 

Figure 1-2: Grow-shrink (GS) algorithm.  

2.5 IAMB and Its Variants 

2.5.1 IAMB 

Following KS and GS algorithms, Tsamardinos et al. proposed a series of algorithms for inducing 

the Markov blanket of a variable   of interest without having to learn the whole Bayesian 

network first. All of these works are based on same two assumptions as required by GS: 1) the 
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data are generated by processes that can be faithfully represented by BNs, and 2) there exist 

reliable statistical tests of conditional independence and measures of associations for the given 

variable distribution, sample size and sampling of the data.  

 

Figure 1-3: IAMB algorithm 

The primary algorithm proposed by Tsamardinos et al. is called Incremental Association Markov 

Blanket, or IAMB (Figure 1-3). IAMB consists of two steps, a forward and a backward one, 

which actually is akin to the growing and shrinking phases in GS. This algorithm relies on an 

independence test,      , that is considered true (or succeeded) if it is smaller or equal than a 

threshold and false (failed) otherwise. It is important that       is an effective test so that the set 

of candidate variables after Phase I is as small as possible for two reasons: one is time efficiency 

(i.e., do not spend time considering irrelevant variables) and another is sample efficiency (do not 
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require sample larger than what is necessary to perform conditional tests of independence). Since 

this step is based on the heuristic at line 5, some nodes not in     may be added to    
  as well. 

In Phase II (backward), we remove one-by-one the features that do not belong to     by testing 

the whether a feature        is independent of   given the remaining    
  (lines 10-18).  

IAMB algorithm is structurally similar to GS algorithm, and follows the same two-phase 

structure. However, there is an important difference: GS may order the variables when they are 

considered for inclusion in phase I, according to their strength of association with   given the 

empty set [23, 24] (this appears in the discussion for better performance in the original text, but 

not in Figure 1-2). It then admits into    
  the next variable in the ordering that is not 

conditionally independent from   given the current    
 . One problem with this heuristic is that 

when the    
  contains spouses of  , the spouses are typically associated with   very weakly 

given the empty set and are considered for inclusion in the    
   late in the first phase 

(associations between spouses and   are only through confounding/common descendant variables, 

thus they are weaker than those ancestors‟ associations with  ). In turn, this implies that more 

false positives will enter    
  during phase I and the conditional tests of independence will 

become unreliable much sooner than when using IAMB‟s heuristic. In contrast, conditioned on 

the common children, spouses may have strong association with   and, when using IAMB‟s 

heuristic, and enter the    
  early.  

2.5.2 InterIAMBnPC 

Tsamardinos et al. recognized and pointed out explicitly that the smaller the conditioning test 

given a finite sample of fixed size, the more accurate are the statistical tests of independence and 

the measure of association [12, 18, 21]. In other words, to have a reliable decision given 

independence test of high degree, we need a large amount of instances for training. Though 

IAMB provides guarantees on correctness theoretically, it is only suited for the cases where the 

available sample size is large enough to perform condition independence tests as conditioned on 

the full     or even larger set. Some variants are therefore proposed to decrease the critical 

requirement of data size, which just reflects the authors‟ emphasis on the practical value of their 

work.  
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InterIAMBnPC is one such variant aiming to further reduce the size of the conditioning sets [18]. 

It employs two methods for this goal: (1) it interleaves the growing phase of IAMB with the 

pruning phase attempting to keep the size of    
   as small as possible during all steps of the 

algorithm‟s execution; (2) it substitutes the shrinking phase as implemented in IAMB with the PC 

algorithm instead [14], a Bayesian Network learning algorithm that determines directed edges 

between variables in a more sample-efficient manner.  

Two other IAMB variants experimented in [12, 18] are InterIAMB and IAMBnPC which are 

similar to InterIAMBnPC but they employ only either interleaving the first two phases or using 

PC for the backward phase respectively. Considering that they have no fundamental difference 

compared to InterIAMBnPC, no more space is consumed for further introduction of these two 

algorithms.  

2.5.3 Fast-IAMB   

Fast-IAMB was proposed in 2005, and it is also built on the two assumptions: faithfulness and 

correct independence test [22]. Similar to GS and IAMB, Fast-IAMB contains a “growing” phase 

and a “shrinking” phase. During the growing phase of each iteration, it sorts the attributes that are 

candidates for admission to    
  from most to least conditionally dependent, according to a 

heuristic function  (corresponding to        in IAMB; it is mutual information in IAMB, but    

conditional statistical test here). Each such sorting step is potentially expensive since it involves 

the calculation of the    test static between   and each member of  . The key idea behind Fast-

IAMB is to reduce the number of such tests by adding not one, but a number of attributes at a 

time after each reordering of the remaining attributes following a modification of the Markov 

blanket. Fast-IAMB speculatively adds one or more attributes of highest    test significance 

without re-sorting after each modification as IAMB does, which (hopefully) adds more than one 

true member of the blanket. Thus, the cost of re-sorting the remaining attributes after each 

Markov blanket modification can be amortized over the addition of multiple attributes.  

The question arises: how many attributes should be added to the blanket within each iteration? 

The following heuristic is used in [22]: dependent attributes are added as long as the conditional 

independence tests are reliable, i.e. there is enough data for conducting them. For this purpose, a 

numeric parameter   is used to denote the minimum average number of instances per cell of a 
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contingency table that should be present for a conditional independence test to be deemed reliable. 

Please refer to section 2.2.5 for the discussion of a reliable test and the choice of  .   

 

Figure 1-4: Fast-IAMB algorithm. 

The authors of Fast-IAMB also answer explicitly one practical question that the authors of IAMB 

didn‟t mention in their work [18], namely what is to be done if the average number of instances 
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per cell for each remaining attribute is less than  ? In this case, one has two choices: assume 

dependence or assume independence. While assuming dependence might seem to be the “safe” 

choice, in practice this would result in large blankets that are hard to justify and of little practical 

use. Therefore, independence is assumed in [22], which results in halting (Line 22, Figure 1-4) 

and returning the current blanket. This is followed in our implementation as well.  

In conclusion, Fast-IAMB follows the previous work of GS and IAMB, especially Inter-IAMB 

by interleaving growing and shrinking. To realize a fast induction, greedy strategy is employed in 

growing by adding as many candidates as possible if allowed. Compared with IAMB, it 

emphasizes more the practical value of the algorithm, which is highly desired for practitioners. 

Although the authors declared it is fast and it is indeed demonstrated by their experiments relative 

to IAMB and Inter-IAMB, we consider that doubt remains about this point since more statistical 

tests are possibly expected in the shrinking phase if more false positive ones are added in the 

growing state.  

2.6 MMMB (Max-Min Markov Boundary algorithm) 

Starting with KS, and followed by much effort, several efficient algorithms to induce the Markov 

blanket given a target   of interest have been proposed. However, none of them ever make use of 

the underlying topology information to improve the efficiency, especially the data efficiency, 

given the faithfulness assumption. The Max-Min Markov Blanket (MMMB) algorithm is 

proposed here to improve data efficiency over previously known algorithms for inducing Markov 

blanket, because the sample requirements of MMMB depend on the connectivity and topology of 

the Bayesian network faithful to the data, but the others depend on the size of the learned Markov 

blanket.  

2.6.1 Bayesian Network and Markov Blanket 

Since the underlying topology information will possibly help to increase the performance of MB 

induction algorithms, we revisit theoretical considerations and introduce additional background 

knowledge about Bayesian networks. A Bayesian network is a graphical tool that compactly 

represents a joint probability distribution   over a set of random variables   using a directed 

acyclic graph (DAG)   annotated with conditional probability tables of the probability 

distribution of a node given any instantiation of its parents. The graph represents qualitative 
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information about the random variables (conditional independence properties), whiles the 

associated probability distribution, consistent with such properties, provides a quantitative 

description of how the variables relate to each other. An example of BN is shown in Figure 1-1. 

The probability distribution    and the graph   of a BN are connected by the Markov Condition 

property: a node is conditionally independent of its non-descendants, given its parents.  

As its name indicates, DAG is formed by a collection of vertices and directed edges, each edge 

connecting one vertex to another, such that there is NO way to start at some vertex    and follow 

a sequence of edges that eventually loops back to   again [33]. Each DAG gives rise to a partial 

order   on its vertices, where     if there exists a directed path from   to  .    , in fact, 

means that   is a descendant of  , and its formal definition is given with Definition 1.7 for later 

reference. Each DAG has a topological ordering, an ordering of the vertices such that the starting 

endpoint of every edge occurs earlier in the ordering than the ending endpoint of the edge. In 

general, this ordering is not unique; A DAG has a unique topological ordering if and only if it has 

a directed path containing all the vertices, in which case the ordering is the same as the order in 

which the vertices appear in the path [28, 33, 34].  

Definition 1.7  (Descendant)   is a descendant of  , if there exists a directed path from   to  , 

but there exists no directed path from   to  . The set of descendants of   is denoted with      

in the remaining text.  

Definition 1.8  (Non-Descendant) Given all variable set  , those other than descendants are 

known as non-descendants of  , denoted as    .            .  

As mentioned above, if we know the Bayesian network over   in advance, it is trivial to get the 

    of interest. The partial structure over         is also a directed acyclic graph (DAG); 

recall that, for any     and       , it has to satisfy one of the two graphical constraints: 

1. Either   is connected to   directly, more specifically     or    , when   is parent or 

child of  ; or,  

2.   shares some common child(ren)   with  , i.e.      , when   is known as the spouse 

of  .  

D-separation is the criterion that allows computation of the entailed independence in a Bayesian 

network from the Markov Condition [2]. D-separation is defined on the basis of blocked paths: 
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Definition 1.9 Collider node and Blocked path. A node   of a path   is a collider if   contains 

two incoming edges into   (e.g.,   in Figure 1-1 is a collider in the path      ). A path   

from node   to node   is blocked by a set of nodes  , if any of the following is true: (1) There is 

a non-collider node on   that belongs to  ; (2) No collider nodes of   and none of their 

descendants belong in  .  

Definition 1.10 d-separation Two nodes   and   are d-separated by   if and only if every path 

from   to   is blocked by  , and it is denoted as             .  

Theorem 1.3 If a Bayesian network   is faithful to a distribution  , then              

        , i.e. the conditional independence relation in    is equal to d-separation in  . 

With the theorem presented and the faithfulness assumption, the terms d-separation and 

conditional independence are used interchangeably in the rest of the article.  

By performing independence tests and considering the d-separation relations they entail, one can 

reconstruct the Bayesian network corresponding to the distribution. This is the main idea behind 

constraint-based, or CI test-based, Bayesian network learning approaches [8, 14, 23, 24, 35, 36]. 

The following theorem in [14, 28] is foundational for both PC and MMMB algorithm here:  

Theorem 1.4  If a Bayesian network   is faithful to a joint probability distribution   then:  

1. There is an edge between the pair of nodes   and   in   iff   and   are conditionally 

dependent given any other set of nodes; 

2. For each triplet of nodes  ,   and   in   such that   and   are adjacent to   but   is not 

adjacent to  ,       is a subgraph of   iff.   and   are dependent conditioned on 

every other set of nodes that contains  .  

The first part of the theorem allows us to infer the existence of edges or not, and the second part 

to determine the known v-structure which actually allows us to determine the orientation of 

related arcs.  

Given the faithfulness assumption, the Markov blanket of  ,    , can be defined either 

probabilistically (as the minimal set conditioned on which every other node is independent is 

independent of  ) or graph theoretically (as the set of parents, children, and spouses of  ).  
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Definition 1.11 Markov Blanket (Probabilistic viewpoint) Given the faithfulness assumption, 

the Markov blanket of   ,    , is a minimal set conditioned on which all other nodes are 

independent of  , i.e.             ,           .  

Definition 1.12 Markov Blanket (Graphical viewpoint) Given the faithfulness assumption, the 

Markov blanket of   ,    , is identical to  ‟s parents, children and children‟ parents (spouses), 

i.e.                .  

Before MMPC/MB, algorithms like IAMB and GS only depend on the (in)dependence property 

as derived from Definition 1.11 to recognize positive as well as false positive ones, though the 

property as contained in Definition 1.12 was known. Compared with previous works, 

MMPC/MB works in a different way. It is built on the basis of Theorem 1.4, and the induction 

of target     is divided into the recognition of               and     separately. It 

depends on a series of conditional independence tests, like         , to decide if there exists 

edge between   and  . Generally,   is smaller than    , hence MMPC/MB finds a novel way to 

achieve better data efficiency than GS and IAMB. Actually, HITON, PCMB and our IPC-MB are 

all proposed on the basis on this important finding.  

2.6.2 D-separation  

Since d-separation is frequently referred during our proof, in this section, we step further to 

introduce how to determine if node   is d-separated from  , which is equal to determine 

conditional independency given faithfulness assumption.  

Bayesian networks encode the dependencies and independencies among variables. Under the 

causal Markov assumption, each variable in a Bayesian network is independent of its ancestors 

given the values of its parents [2], which permits us to infer some conditional independence 

relationships. For the general conditional independence in a Bayesian network, Pearl proposed a 

concept called d-separation [2]. D-separation, as short for direction-dependent separation, is a 

graphical property of Bayesian networks and has the following implication: If two sets of nodes 

  and   are d-separated in Bayesian networks by a disjoint set   (i.e.        ), the 

corresponding variable sets   and   are independent given the variables in  . The definition of d-

separation (Definition 1.10) tells us that   and   are d-separated by a disjoint set    iff. every 
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undirected path between   and  , i.e.         , is “blocked”, where    ,     and 

   . The term “blocked” means: 

 Either the connection through   is “tail-to-tail” or “tail-to-head” and   is instantiated, i.e. 

   ; or 

 The connection through   is “head-to-head” and neither   nor any of  ‟s descendants has 

received evidence, i.e.    .  

The graph patterns of “tail-to-tail (diverging)”, “tail-to-head (serial)” and “head-to-head 

(converging or collider)” are shown as below (Figure 1-5):  

 

Figure 1-5: Three possible patterns about any path through a node in Bayesian network  

With the definition of d-separation, and the three graphical patterns as demonstrated in Figure 1-5, 

we are interested in proving                     from the viewpoint of d-separation, i.e. 

    d-separates   from          , and     is the minimal such set given faithfulness 

assumption.  

Theorem 1.5 Given the faithfulness assumption, the minimal set of nodes which d-separates the 

node    from all other nodes is  ‟s Markov blanket.  

 



28 

 

Figure 1-6: The Markov blanket of   (includes P(arents), C(hildren) and S(pouses)) d-separates 

all other nodes given faithfulness assumption. 

Proof.     contains  ‟s parents, children and spouses, which are represented with grayed 

circles and denoted as  ,   and   respectively in Figure 1-6. Those       but are connected 

to  ,   or   are represented by circles with dotted edge. In total, there are five possible such 

cases, denoted as   ,   ,   ,    and    respectively, and we will explain how they are all d-

separated from  , given the precondition that the whole     are instantiated (denoted as grayed 

circles):  

1.         : There exists serial (tail-to-head) pattern (      ) on this path, and   

is instantiated , so this path is “blocked”;  

2.       : This path is “blocked” due to the existing of serial(tail-to-head) pattern with   

instantiated;  

3.         : There exists diverging(tail-to-tai)l pattern (      ) on this path, and  

  is instantiated , so this path is “blocked”; 

4.       : This path is “blocked” due to the existing of diverging(tail-to-tai)l pattern with 

  instantiated;  

5.       : This path is “blocked” is due to the existing of serial(tail-to-head) pattern.  

Given any      , we have to “visit”   ,   ,   ,    or    (Figure 1-6), and then some  ,   or 

  before accessing  . Then, although there may exist many possible paths from   to  , each of 

them must contain some pattern(s) of the 1-5 as listed above; hence, we can infer that each of the 

possible path will be “blocked”, and   is d-separated from  . Therefore, we conclude that     

d-separates   from all      . 

The proof that     is the minimal set is trivial by contradiction, and ignored here. █ 

Therefore, d-separation actually bridges the semantic gap between the distribution and the 

graphical model, based on the faithfulness assumption. With d-separation, we are able to infer 

more conditional independence from the underlying DAG, in addition to the known Markov 

property.  
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2.6.3 MMPC/MB Algorithm 

The overall Max-Min Markov blanket (MMMB, Figure 1-7) algorithm is composed of two steps. 

First, it discovers     by MMPC( ). Then it attempts to identify    . Any       is known as 

the parent of some child(ren) of  , which suggests that they should belong to          , i.e. the 

union of the parents and children of the parents and children set. However, this union set, 

   
 (Line 3 of MMMB), also includes the children of the children of  , the parents of the 

parents of  , and the children of the parents of  . Thus, it is a superset of    , and those false 

positives need to be filtered out.  

 

Figure 1-7: MMPC/MB algorithm 

Given       but not adjacent to  , it has the following property: conditioned on any subset 

that includes a common child (or children),   and   are dependent (Theorem 1.4, part 2). This 

property is not owned by the false positives in    
 , so it can be used to filter them out. One 

problem with checking the property directly is that we do not know which nodes in     are 

actually children. Another problem is that it is inefficient to condition on all possible subsets. 
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Fortunately, MMMB overcomes both of these problems. First, it identifies a subset           

that d-separates   from   (Line 5, MMPC), and caches it for later reference. Now if there is a 

variable      , such that                      , then   has to be a child of   and   has to 

be a spouse of  . This is from the definition of the d-separation. The reverse also holds, so if 

there is no node   for which the condition holds,   cannot be a spouse of   and it can be filtered 

out.  

Tsamardinos et al. falsely proved in [21] that, under the assumptions of faithfulness and correct 

(in)dependence test, the output of MMPC is     In practice, MMMB performs a test if it is 

reliable and skips it otherwise. MMMB follows the same criterion as IAMB and Fast-IAMB to 

decide whether a test is reliable or not. MMMB is data efficient because the number of instances 

required to identify     does not depend on the size of     but on the topology of  . The 

experiments done in [21] shows that the algorithm is able to scale to problems with thousands of 

features, which actually reflects its merit of data efficiency.   

 

Figure 1-8: Two examples that MMPC/MB produces incorrect results 

However, Pena et al. showed that MMPC does not guarantee to produce correct     [13]. They 

pointed out that the flaw in the proof is the assumption that if      , then          for some 

      and thus, any node not in     that enters    
  at line 7 is removed from it at line 12. 

This is not always true for the descendants of  , and it could be illustrated by running MMPC( ) 

with data faithful to the DAG(a) in Figure 1-8. Neither   nor   enters    
  at line 7 because 

         and         .   enters    
  because   is not independent for all   such that      . 

  enters    
  because           (since the path       is NOT blocked) and           
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(since the path            is NOT blocked). Then    
         at line 9. Neither   

nor   leaves    
  at line 11. Consequently, the output of MMPC includes   which is not in     ; 

therefore, MMPC does not guarantee the correct output under the faithfulness assumption. This 

example also illustrates that (1) partial     can not completely shield   completely from outside 

variables; (2) if we have          , then all the paths from   to       will be blocked; (3) 

there is no subset of  such     to satisfy this condition.  

Furthermore, Pena et al. showed that MMMB is not always true even if MMPC were correct 

under the faithfulness assumption. With DAG (b) in Figure 1-8, let us assume that MMPC is 

correct under the faithfulness assumption. Then,               and    
            at 

line 3 (of MMMB).   enters     at line 8 if       at line 5, because (1)both       and 

        are blocked with instantiated  , which means that          (line 5); With 

     ,                 since the path         is NOT blocked with instantiated   

(line 7). Consequently, the output of MMMB can include   which is not in     and, thus, 

MMMB does not guarantee the correct output under the faithfulness assumption even if MMPC 

were correct under this assumption.  

In [40], Tsamardinos et al. identify the flaw in MMPC and propose a corrected MMPC (CMMPC, 

Figure 1-9). The output of MMPC must be further processed in order to obtain    , because it 

may contain some descendants of   in   other than its children. Fortunately, these nodes can be 

easily identified: If   is in the output of MMPC( ), then   is a descendant of   in   other than 

one of its children iff   is in the output of MMPC( ). However, as shown above, correcting 

MMPC does not ensure MMMB is correct. 

Different from IAMB and GS, which condition on the full candidate    (   ), MMPC or 

CMMPC tries all subsets of the candidate     (   ) or     in an attempt to d-separate all 

nodes not in the local neighborhood. Obviously, conditioning on the full     instead of all 

subsets of it significantly reduces the time complexity, but the sample requirements of the 

algorithms also increase exponentially. Therefore, MMPC/MB is the first valuable effort to 

improve the data efficiency of such category of algorithms, though it doesn‟t always produce 

correct outcome.  
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Figure 1-9: CMMC, Corrected MMPC 

2.7 HITON-PC/MB 

HITON [25](pronounced “hee-tón, it is from Greek, means “cover”, “cloak” or “blanket”) is also 

the work by the authors of IAMB, and can be viewed as an effort to further make the induction of 

Markov blanket more data efficient to meet the challenge in the biomedical field where sample 

sizes are typically limited (and often sample-to-variable ratios are very small). HITON also 

requires the same two assumptions as its ancestors IAMB: faithfulness and correct 

(in)dependence tests.  

 

Figure 1-10: HITON-PC/MB algorithm 

HITON works in a similar manner as MMMB. It first identifies the parents and child of    by 

calling HITON-PC and, then identifying the rest of the parents of the children of    in   via 
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HITON-MB (Figure 1-10). HITON-PC is similar to MMPC, with the exception that the former 

interleaves the addition of the nodes in     
  to    (lines 4-6) and the removal from    

  of the 

nodes that are not in     but that have been added to    
  by the heuristic at line 4 (lines 7-11). 

Note also that this heuristic is simpler than the one used by MMPC because the conditioning set 

is always the empty set. Aliferis et al. proved in [25] that, under the assumptions of faithfulness 

and correct independence test, the output of HITON-PC is    . However, this is not always true. 

The flaw in the proof is the same as that in the proof of correctness of MMPC. Running HITON-

PC( ) with D faithful to the DAG (a) in Figure 1-8 can produce the same incorrect result as 

MMPC( ). Obviously, the flaw in HITON-PC can be fixed in the exactly the same way as the 

flaw in MMPC was fixed above.  

Figure 1-10 outlines HITON-MB. The algorithm receives the target node   as input and returns 

     in    
  as output. HITON-MB is similar to MMMB. The algorithm works in two steps. 

First,     and    
  are initialized with     and                    respectively, via the 

call of HITON-PC( ) (lines 1-2). Second, the nodes in    
  that are neither in     nor have a 

common child with   in   are removed from    
  (Lines 3-9). This step is based on the 

following observation. If      
   and      , then   must be removed from    

  iff 

             for some   such that      . Aliferis et al. also prove that the output of 

HITON-MB is     [25]. However, this is not always true even if HITON-PC were correct 

under the faithfulness assumption. The flaw in the proof is the observation that motivates the 

second step of HITON-MB, which is not true. This is illustrated by running HITON-MB( ) with 

D faithful to the DAG(b) in Figure 1-8. Let us assume that HITON-PC is correct under the 

faithfulness assumption. Then           and    
            at Line 3.   and   are 

removed from    
  at line 6 because                  and         . Therefore,    

  

      at line 10. Consequently, the output of HITON-MB does NOT contain  , the spouse of  . 

Thus, HITON-MB does not guarantee the correct output even if HITON-PC were correct.  

The experiments done in [25] show that the algorithm is able to scale to problems with thousands 

of features. Though it is not always correct, HITON-PC/MB still is recognized as another 

meaningful effort for an efficient learning algorithm of Markov blanket discovery without having 

to learn the whole Bayesian network.  
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2.8 PCMB 

2.8.1 Motivation and Theoretical Foundation 

Although neither MMPC/MB nor HITON-PC/MB is sound in theory, they represent a novel 

direction of learning Markov blanket in a more economic and practical manner, i.e. improving the 

efficiency of data usage by making use of the underlying topology information. This is 

considered as a great progress compared with all previous works, and it makes it possible for this 

kind of algorithm to work in many modern applications where high dimension is involved but 

collecting training data may be costly. Even for scenarios with relatively large volume of data, 

reducing the degrees of freedom of statistical tests may also increase the reliability of the results. 

Following this path, Pena & al who are the first ones to point out the flaw of MMPC/MB and 

HITON-PC/MB proposed a similar but sound algorithm, called PCMB (Parents and Children 

based Markov Blanket algorithm) [13]. It relies on the same two assumptions as required by 

MMPC/MB and HITON-PC/MB: faithfulness and correct statistical test. Similarly, PCMB 

induces MB via the recognition of direct connection, i.e. parents and children about any variable 

of interest, just like MMPC/MB and HITON-PC/MB do, which may explain where its name 

comes from.   

Some background knowledge and theory about Bayesian network are covered in section 2.6.1. In 

this section, additional theorems necessary for the explanation and proof are presented for later 

reference, considering that our work is built on the same set of theoretical basis.  

Theorem 1.6 Let       and   denote four mutually disjoint subsets of  . Any probability 

distribution   satisfies the following four properties: (1) symmetry                  , (2) 

decomposition                    , (3) weak union                      , 

and (4) contraction                               . If   is strictly positive, then 

  satisfies the previous four properties plus the intersection property             

                     . If   is faithful to a DAG  , then   satisfies the previous five 

properties plus the composition property                              and the local 

Markov property                 , where     denotes the non-descendants of  , and     

for the parents of   [2, 28].  
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To make later references easier, we abstract those related properties of a probability distribution 

faithful to a DAG   as: 

Corollary 1.1 Let        and   denote four mutually disjoint subsets of  . Any probability 

distribution   faithful to a DAG   satisfies the following seven properties: (1) 

symmetry                  , (2) decomposition                    , (3) weak union 

                     , and (4) contraction                           

   ; (5) intersection                                  ; (6) composition 

                            ; (7) local Markov property                  .  

2.8.2 Algorithm Specification 

PCMB identifies     using the subroutines GetPC, and GetPC calls GetPCD to get the 

candidates.  GetPCD receives the target node   as input and returns a superset of     in 

           (for easy reference, we attach the procedure name in front of the variable) as 

output. This superset contains false positives, nodes that do not belong in    . The algorithm 

tries to minimize the number of false positives, and it repeats three steps until            does 

not change. First, some false positives are removed from               (lines 4-11). This 

step is based on the observation that       iff           for all   such that      . Second, 

the candidate most likely to be in    is added to            and removed from 

              (lines 12-15). Since this step is based on the heuristic at line 13, some false 

positives may be added to     as well. Some of these nodes are removed from            in 

the third step (lines 16-23). This step is based on the same observation as the first step. In 

      , the separator set corresponding to   and   (if there is, as found at Line 6 and 18) is 

cached and denoted with          .  

Theorem 1.7 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution   

faithful to a DAG  , GetPCD( ) returns a superset of      that does not include any node in 

        [13].  

The output of GetPCD may still contain some descendants of   in   other than its children. 

These nodes can be easily identified. If   is in the output of GetPCD( ), then   is a descendant 

of    in   other than one of its children iff   is not in the output of GetPCD( ). GetPC, which is 
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outlined in Figure 1-11, implements this observation, and its correctness is proved by the author, 

see Theorem 1.8.  

 

Figure 1-11: PCMB Algorithm.  

Theorem 1.8 Under the assumptions that the independence tests are correct and that the learning 

data    is an independent and identically distributed (i.i.d.) sample from a probability distribution 

  faithful to a DAG  , GetPC( ) returns      [13]. 

PCMB receives the target node   as input and returns     as output. The algorithm works in 

two steps. Firstly    
  is initialized with     by calling GetPC (line 2). Secondly, the parents of 

the children of   in   that are not yet in    
  are added to it (lines 3-12). This step is base on the 
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following observation. The parents of the children of   in   that are missing from    
  at line 3 

are those that are non-adjacent to   in  . Therefore, if      ,       and       and, then 

  and   are non-adjacent parents of   iff               for any   such that          and 

     . Note that   can be efficiently obtained at line 6: GetPCD must have found such   

and have cached it with            as we mentioned above.  

Theorem 1.9 Under the assumptions that the independence tests are correct and that the learning 

data    is an independent and identically distributed sample from a probability distribution   

faithful to a DAG  , PCMB( ) returns     [1].  

In practice, PCMB follows the same criterion (equation (1.5) as IAMB, MMMB and HITON-MB 

to decide whether a test is reliable or not. PCMB is data efficient like MMMB and HITON-MB 

since the number of instances required to identify      does not depend on the size of      but 

on the topology of  , but it is the first such kind of progress proved sound. Though one 

experiment in the original text [13] demonstrates that PCMB scales to one KDD Cup problem 

with thousands of features, it is shown as actually quite time inefficient by our empirical studies 

in Chapter 4, much slower than another algorithm we developed and that is introduced later, IPC-

MB. 
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Chapitre 3 A NOVEL ALGORITHM FOR LOCAL LEARNING OF 

MARKOV BLAKNET : IPC-MB 

3.1 Motivation 

From the review in the previous two chapters, we can see a clear progress towards efficiently 

deriving an MB from data. Beginning with Koller and Sahami‟s work, it was shown that the 

Markov Blanket is the optimal feature subset, although the KS algorithm itself can‟t always 

guarantee correct output. Then, GS, IAMB and several variants were proposed. Compared with 

KS (algorithm), they are correct, simple and fast. However, they are known as very data 

inefficient [11, 13, 15, 21, 25, 26], which weakens their practical value, especially when the cost 

for collecting training data is high. MMPC/MB and HITON-PC/MB were therefore proposed 

aiming at reducing the critical requirement on the scale of training data. By putting the 

underlying topology information into consideration, MMPC/MB and HITON-PC/MB do proceed 

in the right direction to solve the data inefficiency problem, but unfortunately, neither of them is 

proved sound as they cannot always produce the correct outcome. Therefore, before this project 

starts, to the best of our knowledge, PCMB was the most promising algorithm that was published,  

known as sound, scalable and data efficient [26]. Even though Pena et al. proved that PCMB is 

correct, and showed that PCMB is scalable to large problems [13], there is still much space to 

improve based on our study, including accuracy, time and data efficiency.  

3.1.1 Data efficiency, accuracy and time efficiency 

The most common feature of these algorithms is that they are all based on conditional 

independence (CI) test. Based on our discussion in section (1.5, we can increase the reliability of 

CI tests by adding more observations, or reducing the degrees of freedom. Very often, we may 

have limited data; then, the only option is to reduce the number of variables as contained in the 

conditioning set of CI test (to make the discussion easier, we assume that each variable has the 

same number of values). In previous works [13, 21, 25], GS, IAMB and its variants were known 

to perform CI tests with conditioning set as large as     . In fact, considering that false positives 

(i.e.         )  may be added to the candidate MB container,    
  , in the growing phase, 
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the actual conditioning set can be even larger than     . For example, given an initially empty 

   
  in the growing phase of IAMB,        will fail the CI test           (since at least we 

have an open path), and may be added into    
  (Line 6 of IAMB, Figure 1-3). Upon the 

introduction of the first false positive, the door hence becomes open to more false ones, which 

possibly results in cascading errors due to the common way that independence-based algorithms 

work: their decision on which test to perform next typically depends on the outcomes of previous 

ones [37]. Thus, a single error in a statistical test, especially in the early stage, can be propagated 

by the subsequent choices of tests to be performed by the algorithm.  

In IAMB, assuming that we have enough instances to allow the search to continue until no more 

can be added, we may have the    
  set (much) larger than      by the end of the growing 

phase as discussed in the last paragraph, instead of merely “as large as     ” as it was reported 

[13, 21].  If we have only limited observations, we may give up the search in the growing phase if 

there are not enough instances to support reliable statistical tests any more, with a    
  set 

containing a subset of the target      plus some false positives. These initial misclassified 

variables could impact the final accuracy (or recall, more specifically) because the shrinking 

phase can possibly help to filter out false positives as contained in    
 . Our experiments in 

Section 4.4 confirm that the actual performance as achieved by IAMB is not balanced, with 

precision level much higher than recall; additionally, its general accuracy performance is far 

below that of PCMB and our IPC-MB.    

So, IAMB‟s poor accuracy performance is actually caused by its search strategy which doesn‟t 

make efficient use of observations. To improve the efficiency of data usage, PCMB makes use of 

the known topology information, and takes the divide-and-conquer strategy by first finding    , 

and then    . In the inference of    , the authors of PCMB follow the first conclusion of 

Theorem 1.4 by checking if          for each          . To ensure correctness as well as to 

control the size of the conditioning set, PCMB interleaves shrinking and growing phases in 

GetPCD (Figure 1-11). Though this is effective to ensure sound outcome and efficient usage of 

data, it is time consuming since CI tests with all subsets of     or        (    and        

are containers used to store found parents/children/descendants and candidate PCD respectively) 

have to be conducted for each iteration in GetPCD. Therefore, the accumulated time cost 

resulting from the many calls of GetPCD in PCMB will be considerable. As we will see in 
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Chapter 4, PCMB may be even more time consuming than the PC algorithm [14] which outputs 

the whole Bayesian network. This caveat is not reported in its original publication [13], and 

raises the issue of its actual scalability, at least from the perspective of time complexity. 

In summary, we conjecture that although it is a valid algorithm for inducing Markov blankets, 

IAMB is data inefficient and may produce poor result given limited data, while PCMB can be 

costly in terms of time.  

3.1.2 Assumptions and overview of our work 

Although we have raised issues with the previous work, we acknowledge the efforts and 

contributions by predecessors since their findings illumined us all along: 

 A Markov blanket is theoretically the optimal subset of variables for a classification task;  

 IAMB is time efficient, but data inefficient since it may condition on the whole     or an 

even larger set containing not only     but some or all of         . This is what we 

need to avoid if we want the solution practically valuable; 

 Topology information may be of critical importance to avoid conditioning on needlessly 

large set [13, 21, 25]. 

In this project, we start by proposing a novel algorithm for learning MB, which minimizes the 

size of the conditioning set of CI tests during the search yielding better data efficiency than 

known algorithms. It is named Iterative Parent-Child based search of Markov Blanket (IPC-MB).  

Throughout our discussion below, we will assume the following assumptions: 

 Faithfulness; 

 No hidden variables; 

 Reliable independence test (i.e. the test can tell us the (in)dependency if it holds in the 

distribution); 

 Discrete observations; 

 No missing values in observations. 

Akin to PCMB, IPC-MB induces     via the recognition of     and    , and follows these 

guiding principles: 
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 The induction of     in IPC-MB proceeds in a manner of breadth-first search. It first 

determines the direct neighbors of   , i.e.    , and then the neighbors of each      , i.e. 

   . This two-layer search permits us to not only find the true     (how it is realized is 

discussed in Section 3.2.2 and 3.2.3), but prepare the search for spouse candidates 

considering that spouses must belong to some     where       (more detail can be found 

in Section 3.2.3). Some additional checking is further applied to induce those true spouses 

from among the candidates (refer to Section 3.2.4 for more discussion). Hence, both the 

learning of     and      depend, directly or indirectly, on the search of local neighbours, 

which explains the origin of our algorithm; 

 In the induction of     (here   can represent   and  ‟s neighbours found in IPC-MB), we 

start with the assumption that all       are  ‟s parents or children. Then, it proceeds by 

checking and removing false positives, i.e. those actually belonging to      . Considering 

that (1) we are able to delete the link     if there exists a single positive CI test, with some 

          as the conditioning set, indicating that         are independent; (2) the real 

network normally is not dense in connectivity and     is small relative to   in most cases, 

then the removal of false positives is believed an effective approach to decrease the search 

space quickly. By removing those false positives, all or most of the remaining ones are 

expected to belong to    ;  

 During the process of filtering out        , the conditioning set in           starts with 

empty set, and grows one at time. Whenever   is tested as conditionally independent with   

given some  , it is considered as not belonging to     and removed from    
   (Candidate 

   ) right now. Therefore, any decision on false positive is made with as small conditioning 

set as possible, which maximizes data efficiency;  

 Meanwhile, since we start with the empty conditioning set, and each   in the    
  is tested 

given the current conditioning set(s), as many false positives are removed, and at an as early 

time as possible, which maximizes time efficiency; 

 Therefore, IPC-MB is expected to solve the most severe shortcoming of IAMB and PCMB, 

thereby maximizing computational efficiency. 
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The rest of this chapter is organized as follows. The specification and proof of IPC-MB is 

covered in section 3.2 and 3.3. Complexity analysis is discussed in section 3.4, followed by the 

discussion of data efficiency and reliability in section 3.5. Analysis of our algorithm given 

polytree, one special type of Bayesian network, is presented in section 3.6. Section 3.7 discusses 

the parallel version of IPC-MB, and the final section provides some concluding remarks.  

3.2 IPC-MB algorithm specification and proof 

3.2.1 Overall description 

A novel algorithm for learning Markov blanket is proposed by us in this section, based on a series 

of CI tests. Since it induces the target Markov blanket via iterative learning of parents and 

children, it is named as IPC-MB (Iterative Parent-Child based learning of Markov Blanket).  

Although IPC-MB can be grouped into the category of constraint-based learning like HITON-

PC/MB, MMPC/MB and PCMB, it differs from those three in the search of local neighbors of 

some variable   (i.e.    ): IPC-MB initially assumes that all       are connected (or adjacent) 

to  , and it tries to remove         with     left; however, the other three work to determine 

directly if      . For easy reference, we use    
  to denote the candidate adjacent neighbors 

of  , and it is initialized as        To realize that, IPC-MB starts with empty conditioning set  , 

and removes from    
  all   that are known as conditionally independent from   by CI test 

          where    . Then, the allowed conditioning set size grows by one, and the removing 

continues if there is      
  which is known as independent from   conditioned on some  , 

where      
  and |    . The search continues on in this way, with the conditioning set 

growing by one each time, and terminates when there are no CI tests remaining in      
  

(which will be discussed in 3.2.2). In so doing, false positives are removed by the lowest-order 

tests, resulting in a decreased search space. More importantly, minimizing the high-order tests 

reduces the risk of non-reliable tests, while improving the overall reliability of the algorithm 

especially when the sample size is limited. This is important since learning built on statistical 

tests suffers most from the curse of dimensionality [38]. However, the other methods (HITON-

PC/MB, MMPC/MB and PCMB) have to know if   is conditionally dependent from         

given all           before including it into     .  
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Similar to MMPC/MB, HITON-PC/MB and PCMB, the whole procedure of IPC-MB can be 

divided into two phases: 

1. Firstly, it attempts to identify nodes directly connected to   among  , i.e.      This actually 

is achieved by two steps, recognizing the candidate parents and children, followed by 

filtering out false positives (if there are any) to reach the true    ; 

2. Secondly, it induces the     from the candidates prepared in the first phase. Note that for the 

         , they are recognized as     first and be included into     in the first step.  

The first phase will be discussed with detail in section 3.2.2 and 3.2.3, and the second phase with 

section 3.2.4.  

3.2.2 Learn Parent/Child Candidates  

The discovery of parent/child is critical to the efficiency of the local search approach of this 

algorithm of IPC-MB. Given a variable  , the FindCanPC procedure (Figure 3-1) aims to 

identify the target‟s parents and children, though, but descendants may be output as well. 

FindCanPC has four input parameters:  

1.  , the target variable;  

2.      
 , the candidate parents and children initialized as      . Then, obviously,      

   
 ; 

3.  , the dataset used for learning;  

4.  , significance threshold value used in determining if a CI test indicates positive CI 

relationship (when the result of test is larger than  ) or not (when the result is smaller or 

equal to  ), i.e. significant or not. Empirical choice may be 0.01 or 0.05. Note: As mentioned 

in section 2.2, we implement    test and apply it for all algorithms covered in our discussion. 
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Figure 3-1: FindCanPC algorithm and its pseudo code. 

FindCanPC begins with the assumption that   is dependent over all      
 , which means that 

  is connected with each      
  given the faithfulness assumption. Then, it tries to determine 

whether or not each such edge     should be deleted, which corresponds to removing false 

positives from      
 . This is achieved by three embedded loops (Note that we assume there 

are enough observations for learning here, i.e. the discussion over the reliability of the CI tests is 

postponed to section 3.5):  

1. Repeat…until (the outmost loop) (Line 3 – 16). It starts with empty conditioning set 

(            ), and exits when that       
   is equal to           . In addition to the 

two embedded inner for…do… loops, we find additional instructions (line 13-15):  

a) If there are false positives found, i.e.        , they are removed from    
  by the 

end of this iteration. Hence, in the next iteration, we may have a smaller search space. If 

there are false positives removed in each iteration, the search space will continue to 

shrink;  
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b) Otherwise if        , i.e. no false positive is found, nothing is done except for 

increasing the            by one.  

2. for(each      
 ) do… (the middle layer) loop (Line 4-12). Upon entering this loop, each 

     
  is assumed to be connected with  . With conditioning sets of size           , each 

     
  will be checked if it is conditionally independent with   (how this is done is 

discussed in the next point). If it is,   will be put into       and be removed from    
  by 

the end of do…while… loop as we discussed above.  

3. for(each      
     ) do…loop (the inner one) (Line 5 – 11). With each       

  and 

given           ,   is checked if it is independent with   conditioned on some   

   
     , as tested by the statistical function    (line 6). Note that the number of    

involved in the search is a critical measure that reflects the time complexity of this kind of 

algorithm, and we will discuss this topic in more details in 3.4.1 and 3.4.2. Anytime   is 

tested as independent with  , conditioned on some  , it is added to       (line 7) and exits 

from the current loop (line 9), which is the advantage of filtering false positives from an 

initial candidate set since we stop after a single negative CI test each time and we can start 

with the smallest conditioning set, instead of working from an empty candidate set where 

we would need to run all possible CI tests each time. For each rejected candidate, the found 

conditioning set   is denoted as          , and cached for later reference (spouse learning in 

3.2.4).   

To better explain the algorithm, we illustrate the procedure by a simple example, given target   

and    
                 initially:  

1.             . The following CI tests will be conducted:          ,          , 

         ,         ,          and          . Assuming that only two nodes have a 

positive CI test,             and            , then   and    are put into       at 

line 7; meanwhile,             and              are cached for later reference (line 8). 

At line 13, both   and    are removed from    
 , with updated    

           . With 

new           =1 (by increasing with 1 at line 14), it is still smaller than     
   (=4, line 

16), we continue with the processing; 

2.             . At most, the following groups of CI tests will be done:  
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a)          ,          ,          ; 

b)          ,          ,          ; 

c)          ,          ,          ; 

d)          ,           ,          .  

Each group above is about   and some      
  conditioning on some       

      and 

     . At any time, if we determine that   and   are conditionally independent 

(i.e.            ), the remaining CI tests in the corresponding group are ignored. For 

example, if             ,   is  added into      , neither           nor           

is necessary. That is why we mention “at most” above. Assuming             and 

           , we have updated    
        and              ; 

3. Because     
               ,  we exit from the loop, with    

        being returned. 

We can do so because with    
       , all possibly constructed CI tests, like          , 

         ,          , and          , are conducted in previous iterations. Hence, there is 

nothing to do but exit. █ 

Theorem 3.1 Under the assumptions that the independence tests are correct and that the learning 

data   is an i.i.d. sample from a probability distribution   faithful to a DAG  , given    
  

     , FindCanPC enables us to find the superset of    , denoted as    
  (Candidate Parents 

and Children), and it has two properties: (1) for each      ,      
 ; and (2) there are some 

false positives contained in    
         

 .  

Proof.  We need to prove the two properties respectively. The first one is proved by contradiction. 

With    
        initially, it is assumed that there is some       not output by FindCanPC. 

Given the faithfulness assumption, it is known that if      ,   is connected to   directly. 

According to Theorem 1.4, for such  , it should NOT be independent of   given any 

conditioning set, i.e. should pass all           as met in FindCanPC. Given correct statistic test, 

  would not be output by FindCanPC only when it fails on some          , which is obviously 

contradictory with the fact that      . Therefore, all       would be returned by 

FindCanPC.  
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We prove the second property (       
 ) with the example of Figure 1-8(a) that FindCanPC 

may output some of   ‟s descendants given some topology. With   and    
           , it 

starts by connecting   with        and  .With             , (1) both        and 

          are blocked due to the converging pattern at   and  , and neither is 

instantiated, which implies that          since they are the only two paths between         ; (2) 

both         and         are blocked due to the same reason, and we have 

        .Hence ,            ,             and            . Then, with 

             and    
       , (1)          is trivial; (2)           since although 

      is blocked with   instantiated,           is not blocked (  or   is needed, 

but both are absent). Therefore, no additional false positive is found, the search terminates with 

      being returned. Obviously,   is a false positive that is not filtered out. There are two 

possible paths from   to  :       and          . Based on the d-separation 

concept, the minimum cut set to “block”   and   is       or      . However, here,   and   

have been deleted from    
  when             , which prevents us from filtering  . Therefore, 

FindCanPC may output false positives, and        
 . Note that   is a false positive 

descendant of    based on Definition 1.7, and as we will discuss right below, FindCanPC( ) 

may output  ‟s descendants. █ 

Before we discuss how to filter out false positives as contained in the output of FindCanPC, it is 

necessary to study more closely how they occur. 

Lemma 3.1 Given   and    
       ,  the output of FindCanPC will NOT contain non-

descendants of   excluding  ‟s parents, i.e.        .  

Proof.  (1) The local Markov property (Theorem 1.6) tells us that    is independent of its non-

descendants given the value of its parents, i.e.                 ; (2) It is known that     will 

always stay in    
  (Theorem 3.1), i.e.           

  ; (3) The conditioning set starts with  , so 

we are guaranteed to have a chance to condition     at                 ; (4) We check each 

     
  in each iteration, including the iteration of                 . Therefore, each 

          is able to be successfully recognized given the test                 and is 

filtered out as expected. █ 
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Lemma 3.2 Given   and    
       , FindCanPC may or may not output descendants of  , 

and it depends on the underlying topology.  

Proof.  (1) In Theorem 3.1, one example has been given to show that descendants of   may be 

missed from deletion. (2) Here, we give another example to show that descendants of   may not 

be output by FindCanPC. In Figure 3-2, if there are no dotted links         (between Non-

Descendant and Descendant, and the direction of the edge does not matter) and       

(between Parent and Descendant) in addition to      , it is trivial to know that Des is d-

separated from   given  , so it will not be output by FindCanPC. Even with         and 

      added, we can still prove that the paths of             and         are 

blocked by     due to the existing of serial and diverging patterns respectively. Since   and   

will always be output by FindCanPC,     in this example then will never be output by 

FindCanPC. █ 

 

Figure 3-2: Possible connections between Non-Descendants/Parents/Children and descendant.  

Theorem 3.2 Given   and    
        , FindCanPC may return false positives, and they may 

only be  ‟s descendants, but not its non-descendants (excluding    ).  

Proof.  (1)    
                ; (2)           . These two facts, plus the proof 

of Lemma 3.1 and Lemma 3.2, are enough to declare that non-descendants won‟t be output by 

FindCanPC, and some descendants may be output under some conditions though it is not 

expected.█ 
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In this section, we introduced the core module of IPC-MB, FindCanPC. We start with heuristics, 

followed by algorithm specification, and ended with a proof that FindCanPC will output all 

parents and children of  ; additionally, we noted that some of  ‟s descendants may also be 

falsely output depending on the underlying topology. In the next section, we will discuss how to 

construct a true parent-children set of  , i.e.     , by filtering those false positives that 

FindCanPC( ) may output.  

3.2.3 Learn Parents/Children 

As we discussed above, FindCanPC( ) itself does not guarantee to return exactly the parents and 

children of   (Theorem 3.1), but some descendants of   (Theorem 3.2). Unfortunately, 

candidate parents and children are mixed together, and therefore denoted as    
  (Line 2 of IPC-

MB, Figure 3-3). The container reserved for true Parents/Children, denoted with    ,  is 

initialized as empty (Line 3, IPC-MB).  

Lemma 3.3 With    
   FindCanPC( ), given each      

  and    
  = FindCanPC( ), (1) if 

     
 ,   is known as a true parent/child, and should be added into     (Line 7-10, IPC-MB); 

(2) if      
 ,   is known as a false parent/child, and would be ignored with no further action.  

Proof. Theorem 3.2 tells us that FindCanPC(  ) may contain two types of output: true 

parents/children of   as expected, and descendants of   which are not desired. The proof 

contains two parts based on extra checking on each      
 : what true is still recognized as 

true, but what false can be successfully filtered out.  

First, if      , obviously,       and   would be returned by FindCanPC( ) given 

Theorem 3.1. Then, our inference that “if      
  and      

 , then the decision that   is true 

parent/child “ is known correct. 

Second, we need to prove that if      
  but      

 , then   is false parent/child. From 

Theorem 3.2, it is known that what false positives possibly output by FindCanPC( ) and 

FindCanPC( ) can only be   ‟s and   „s descendants respectively. Assuming that      
  but 

      , can    be returned by FindCanPC( )? 
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This may happen only when   is its own descendant‟s descendant. Obviously, it is impossible 

since one cycle will happen. So, if      
  and      

 , it can be inferred that   is NOT true 

parent/child, and should NOT be added into    . █ 

 

Figure 3-3: IPC-MB algorithm and its pseudo code. 

Figure 3-4 demonstrates the effect of repeating the call of FindCanPC in IPC-MB. Although 

some false positives may be output by FindCanPC( ), it is known that they can be successfully 

recognized and deleted in IPC-MB, as shown in Lemma 3.3. By repeating the call of FindCanPC 

for each      
 ,  then we know that the results of     at line 12 (IPC-MB) are exactly parents 

and children of  . 
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Figure 3-4:    
  as output by FindCanPC( ), and the output of typical      

 , i.e.    
 .  

Theorem 3.3 Under the assumptions that the independence tests are correct and that the learning 

data   is i.i.d sample from a probability distribution   faithful to a DAG  , IPC-MB allows us to 

find the complete and correct parents and children of one target, i.e.     for   of interest.  

Proof. (1) Given Theorem 3.1,it is known that    
  contains not only     but, probably, some 

false positives; (2)Theorem 3.2 tells us that those possible false positives can only be 

descendants of  ; (3) With Lemma 3.3, we know that if      
   is a false positive descendant, it 

will be recognized. (4) Finally, since we apply the same verification procedure for each      
 , 

we are guaranteed to have      with all false positives being removed from    
 . █ 

By now, we have explained and proved that IPC-MB allows us to learn the complete parents and 

children of   of interest, i.e.     (Theorem 3.3). It is noticed that the learning is built on a series 

of FindCanPC( ) , which exactly explains why our algorithm is called Iterative Parent-Child 

based learning of Markov Blanket (IPC-MB).  

What left is the learning of  ‟s spouses, i.e.    . How to recognize     is discussed in the next 

section, but it is necessary to predict that it is built on the finding of FindCanPC( ) as well.  
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3.2.4 Learn Spouses 

By the Line 12 of IPC-MB (Figure 3-3), we have         as discussed in last section. In fact, 

we also have collected all candidate spouses of    with the repeated calls of FindCanPC( ). 

Lemma 3.4 Given      
 , if      

 ,    
  contains candidate spouses of   if there are.  

Proof. Theorem 3.1 tells us that    
 , the output of FindCanPC( ), contains all parents/children 

of  . Given      
 , if      

 , then   is known as a true parent/child (Lemma 3.3). If   is a 

child of   , and if it is a common child of    and some  ,    must be returned by FindCanPC( ) . 

This applies to all  ‟s parents which are  ‟s spouses meanwhile. █  

All outputs of FindCanPC( ) regarding to such      
  are cached as      

  (Line 9, IPC-MB) 

with subscript       for later reference. Obviously, it contains more than what we want: 

  , since      
 ;  

 True parents and/or children of  , which would be ignored; 

 True spouses of  , i.e. those having   as their child as  . These are what we are interested to 

distinguished here; 

 False positives (neither parents, children nor spouses of  ).  

Lemma 3.5 Given    
 =FindCanPC( ),         

  , where      
  and      

 , i.e. 

     .  

Proof. Assume there exists some spouse  of   which is not contained in          
 , which 

means that   is not contained in any    
 , where      

  and      
  . This may happen only 

when (1) The common child of this   and   is not contained in    
 , or (2)   is not returned by its 

common child with  ,  , though      
 . Both cases are contradictory to the facts that 

FindCanPC( ) returns all parents and children of   (Theorem 3.1). █ 

With Lemma 3.5, it is known that          
  contain all candidate spouses of  , by Line 12 of 

IPC-MB, and it is denoted with shorthand    
 .  However, there are many false positives are 

known as contained in    
  as well, waiting for further processing.  

Similarly to the discovery of parents and children of  , i.e.    , we depend on the underlying 

connectivity information to recognize     from    
 . For any      , there are two facts 
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available for reference: (1) it has to belong to     and      ; (2) it is independent of    as 

conditioned on            or            (that is why it is not included in    ) , but it is 

dependent with   conditioned on                or               . The first observation is 

obvious given the underlying topology, and the second is based on Theorem 1.4.  

Lemma 3.6 Given each      
  but       , there must exist some  ,      , such that 

        .  

Proof. The proof is trivial since if there is no such  ,   should be in    .█ 

Lemma 3.7 In IPC-MB, for each      
  but      , either                or  

              (Note that  means  empty set   , while     means Null pointer, i.e. there is 

no record for the corresponding subscript      ). 

Proof. Given each       , (1) If it is a non-descendant of  , it will be recognized as 

conditionally independent given some              ; (2) Else if it is a descendant of  ,  it 

may be falsely decided as conditionally dependent with  , which means that              , 

and it will be contained in    
 ; (3) Since we will call FindCanPC for each      

 , if      , 

  will be recognized as conditionally independent given some               within 

FindCanPC( ). In short, for each      , it is always can be recognized conditionally 

independent given some set, and therefore               or              .  █ 

Due that either               or              , it is necessary to check them before the 

assignment as done at Line 15 of IPC-MB.  

Lemma 3.8 Given the faithfulness assumption,               is equal to say that all paths 

between   and   are blocked by       , i.e.   is d-separated from   by       .  

Lemma 3.9  Given       and    
  = FindCanPC( ),      

 .  

Proof. Theorem 3.2 tells that FindCanPC( ) won‟t output  ‟s non-descendants. Since     

   , it means that        
    , i.e.      

  given each      . █ 

Theorem 3.4  Given       and    
  FindCanPC( ), for each      

  but       and 

     
  (excluding processed and descendants of   if there are), if   is conditionally dependent 
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with   given               or               (depending on which one is not NIL),   is 

known as a true spouse of  .  

Proof.  Given      ,      
   but       and      

 , it is secure to declare that   is 

connected with  , denoted as     ,  and   is NOT  connected with  ,denoted as    . 

Besides, due that      , it is known that               where                    

                       (Lemma 3.6 and Lemma 3.7) . In other words,        blocks all 

possible paths connecting   and   (Lemma 3.8). To prove the statement, we have to study the 

following six cases separately considering that X may be a parent/child of T (     ) and Y 

can be a parent/child/descendant of    (     
 ): 

1.       and      , i.e.      ,        but    . To block the path      , 

the statement that           must be true. Otherwise, at least we have a non-blocked path, 

which is contradictory to the fact that              and Lemma 3.8. Therefore,        

         ,and                    won‟t happen for this case; 

2.        and      ,  i.e.       but    . Same proof as case 1;  

3.       and      , i.e.       but    . It is easy to prove that adding   does will 

make the path       non-blocked, i.e.            won‟t d-separates   and   

anymore. Therefore, we have                   ; 

4.       and      , i.e.       but    . Same proof as case 1; 

5.        and       . (1) Since      
  and     , there must exist, at least one, non-

blocked path       . (2) Because      , all paths connecting   and   must be 

blocked by some       . Assuming that there is one path       known as open, then it 

is extendable to access   via   since      , e.g.        . To ensure d-separation, 

this path         has to be blocked; therefore   has to be observed, i.e.         . 

Otherwise,         will keep open (since there is no chance to construct a 

converging pattern here with the existing of    ), which is contradictory to the fact that 

             . Since         , it is impossible to have                   ; 

6.       and       . Similar proof as case 5.  
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These six cases cover all possible happenings, so the proof itself is complete. From the discussion 

above, it is noticed that only the true spouse can satisfy                    given 

             , where      ,      
  but       and      

 .  █ 

Theorem 3.5 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution   

faithful to a DAG  ,  all spouses  of   of interest are found with IPC-MB.  

Proof.     (Line 12 of IPC-MB) contains all the true parents and children, and           
  

           
     

  contains all spouses of   . With each      
  but not in the current     

and not in    
 , it will be correctly recognized if it is true spouse (Theorem 3.5). Since this 

checking applies to all variables in    
 , we are able to find all spouses of  . █  

The determination of any true spouse is done in a manner different from the learning of 

parents/children. While searching for  ‟s parents and children, we try to filter as many false 

positives as possible, reaching a set containing true parents and children, though some 

descendants are included as well. Then, those false positives are further filtered out, with only 

true positives left. However, while searching for the spouses of  , we directly check if each 

candidate is true or not. 

Though the search of spouses proceeds in a different way, it depends on the output of 

FindCanPC, including spouse candidates and sepsets cached. This again reflects the importance 

of FindCanPC. 

3.3 IPC-MB is Sound in Theory 

Theorem 3.6 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution   

faithful to a DAG  ,  the result induced by IPC-MB is     .  

Proof. IPC-MB is divided into two phases: learn the parents and children of   first, then further 

to learn  ‟s spouses. The soundness of these two parts is demonstrated by Theorem 3.3 and 

Theorem 3.5 respectively. Both theorems show that not only all true members are ensured to be 

found and added into    , but no single false positive has chance to enter into    . █ 
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So far, we have described in detail how IPC-MB induces the Markov blanket given a variable of 

interest, and we have proved that the output as returned by IPC-MB is correct. If we view the 

discussion so far as "qualitative" aspect about IPC-MB, in the next section 3.4, more 

"quantitative" features about IPC-MB will be studied.  

3.4 Complexity Analysis 

In IPC-MB, FindCanPC plays a critical role in the learning of    , and most computation 

happens inside FindCanPC. Therefore, we study the time and memory complexity of 

FindCanPC first, on which the overall cost can then be determined.  

In algorithms like IPC-MB which depends primarily on a series of CI tests in the search, the 

overall measure of time complexity can be measured by the number of CI tests, i.e.       , as 

required.  

Note: Our analysis is based on the assumption that there are enough data for thorough search as 

designated by the algorithm theoretically.  

3.4.1 Time Complexity of FindCanPC 

In this section, we focus on the performance of FindCanPC since it is viewed as the foundation 

of IPC-MB, and as we can see late, it determines the whole complexity of IPC-MB as well. Our 

discussion includes two aspects: qualitative and quantitative. The qualitative analysis gives us a 

"rough" picture of FindCanPC, leading us to explore more descriptive outcome.  

Qualitative Analysis 

Theorem 3.7 Given the assumption of faithfulness and correct conditional independence tests, 

any recognition of false positive in FindCanPC is achieved at the very first time.  

Proof. We can prove it by contradiction. Assume that (1) at the    iteration,      
 ,      

  

and            , i.e.          and   is recognized as      , one false positive; (2) there is 

    , and         
     .With      

  and      , it is able to  infer that       
 ; then,    

must be met in earlier iteration, and    should has been removed from    
   at iteration          

when smaller conditioning set with the cardinality as    is under study. This contradicts to the 
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fact that      
  at the beginning of the     iteration. Therefore, if    is able to be recognized 

as false positive in FindCanPC, it must be found at the very first time. █ 

Theorem 3.7 indicates that deleting any recognizable false positive in FindCanPC is achieved 

with the least cost. This theorem concludes the data-efficient feature of our work from the 

theoretical viewpoint, and we will revisit it again in next section to see if it applies globally 

within IPC-MB. 

Quantitative Analysis 

The most effective measure about the IPC-MB is the number of CI tests (       in our 

implementation)required considering that (1) IPC-MB and related algorithms depend on CI test 

to make decision, and (2) it is the most time consuming processing unit compared with other 

operations involved in the algorithm. 

General Case 

Our analysis starts with a very general scenario: Given   and       , the search starts with 

empty conditioning set on, and it continues till there is no more CI tests left non-conducted,  i.e. 

    
             . The overall procedure is illustrated in 错误！未找到引用源。, and we 

assume totally there are   iterations.  

Table 3.1 General analysis of the number of CI tests as required in FindCanPC.  

Given   and    
  with      

        (i.e at least one candidate neighbor) 

Step 1:             ,     
     

# of    Tests:  
   
 

        , where      

# of Non-PC Found:          
Step 2:             ,     

           

# of    Tests:  
         

 
            

# of Non-PC Found:    

… 

Step  :               ,     
                  

# of    Tests:  
                

 
                   

# of Non-PC Found:    
… 

Step  :               ,     
                      

# of    Tests:  
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# of Non-PC Found:    

The learning terminates since     
              after              

Let             be the total number of CI tests as required in FindCanPC(  ), and the index 

       means the learning of candidate parents/children of  . To get it, we need summing the 

number of CI tests needed in each round: 

             
      

 
        + 

                          
         

 
           +   

   
             

   
               +   

   
                    

   
                                                     

(3.1) 

Where: 

1.              

2.               (       ) (the intermediate step)  

3.                    (the terminating condition) 

The     (   ) element can be simplified further: 
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(3.2) 

Then, replacing each item in equation (3.1) with (3.2), we get a compact representation:  

     
      

      
           

 
  

 

   
 

(3.3) 

Worst Case 

From (3.3), we can infer that when each   equals to zero,    
           

 
  is then 

maximized, so as the summing due that we may have maximum     meanwhile. Then, we 

have new version of summing equation on the total number of CI tests as required: 

            
         

 

         
 

(3.4) 

The example shown in Figure 3-5 is one such case satisfying (3.4). Since all attributes excluding 

  are  ‟s children, none of them are conditionally independent from     given any conditioning 

set. Therefore,     , and the loop has to continue from              to              

 , totally   iterations.  

 

Figure 3-5: An example of network which has the largest size of Markov blanket, and 

FindCanPC performs the worst on it. 
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Simplest Case 

Similarly, we infer that (3.3) is minimized when       , i.e. all recognizable false positives 

are found in the first iteration. Figure 3-6 also illustrates one such example in which  has one 

child, and all other attributes are spouses of . Then, all spouses are conditionally independent 

with  given empty set, and all of them are deleted from    
  by the end of the first iteration, 

with    
      left. The loop, therefore, terminates since     

               . In this case, 

we have  

            
       

   
 

         
 

(3.5) 

 

Figure 3-6: An example of network which has the largest size of Markov blanket, but FindCanPC 

perform the best on it. 

Theorem 3.8 Given   and        of fixed cardinality (>1), the maximum number of CI tests as 

possibly required by FindCanPC is       , and the possibly minimum amount is   , where 

      
  .  

Theorem 3.8 gives the upper and lower bound of the time complexity of FindCanPC, and the 

actual amount is determined by the underlying topology. Fortunately, in applications, most false 

positives are removed given a small conditioning set, which results with actual cost far below  

       (refer to Section 4.5).  
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3.4.2 Time Complexity of IPC-MB 

The measure of FindCanPC is the basis for the overall analysis of IPC-MB. Our analysis is 

composed of two steps: the learning of parents/children based on a sequential call of FindCanPC, 

as well as the induction of true spouses from spouse candidates as collected in the first step.  

Analysis on the Learning of Parents/Children and Candidate Spouses 

During the first phase of IPC-MB, FindCanPC is called repeatedly to achieve our goal, and the 

time complexity of this phase may be measured as how many times FindCanPC is called. Given 

 and  , a general equation can be constructed to reflect the time complexity:  

             
      

 
     

       
 

(3.6) 

To maximize (3.6), we need not only maximize              and    
  (the output of 

FindCanPC( )), but             given each      
 . The example of Figure 3-5 exactly 

satisfies these three conditions: (1)             is maximized as discussed in last section; (2) 

   
        , maximized meanwhile; and (3) each             is maximized due that all 

      are parents or children of   . Therefore, by replacing each term of (3.6) with (3.4), we can 

infer that the maximum number of CI tests as required to induce the      :  

     
   

          
     

 
  

     

   
             

(3.7) 

where          is newly introduced      
    is replaced with      .    

Similarly, we know that (3.6) achieves the smallest value given the example of Figure 3-6:  

     
   

             

(3.8) 

Note: Since the preparation of candidate spouses are done during this procedure without extra 

cost, no extra analysis is required on that.  
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Theorem 3.9 Given   and  , the possibly maximum number of CI tests as required by IPC-MB 

to learn     is            , and the minimum amount is 
           .  

In real applications, the actual cardinality of     normally is much smaller than  . Therefore, 

the actual cost generally is far below than the maximum value            . Besides, the 

underlying topology is influential to the actual performance, even though the underlying Markov 

blanket is known of size 
   .  

Analysis on the Learning of Spouses 

Given     and    
  ready, the determination of true spouses is done with a two-layer loop. Here 

we assume that the checking if     can be done in constant time given hash-like storage, so the 

time complexity of the second phase of IPC-MB can also be measured with the number of CI 

tests (Line 15, IPC-MB).  

To avoid repetition and save computing resource, we will ignore all       , i.e. those 

recognized and added to the     container already. Besides, considering that (1) those positive 

ones in    
  are added to    , and (2) those false positives as contained in    

  can only be  ‟s 

descendants, the whole    
  will be ignored. Therefore, we only consider      

         
 . 

The total number of CI tests as required for the recognition of true spouses can then be denoted as:  

             
         

  
        

 

 (3.9) 

Assuming that          =a, where       . If    , obviously nothing left to do; otherwise, 

we have     
         

             considering that     may increases with time on and 

       
 . Therefore, at most           times of CI tests are available in each inner loop, 

and maximally, we need             CI tests by summing       times of           

based on (3.9).  

Theorem 3.10 Given   and  , maximally 
 

 
     CI tests are required in the second phase of IPC-

MB to learn true spouses.  

Proof.             achieves the maximum value when      , i.e. 
 

 
    . █ 
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So, when          =0.5, i.e. half of   are parents and children of   , the second phase of IPC-

MB needs the maximum number of CI tests. However, compared with the worse case of the first 

phase,            , 
 

 
     is relatively small, and its increasing rate is much slower than the 

previous one. Therefore, the worst complexity of IPC-MB is determined more by the first phase. 

Interestingly, given the examples of Figure 3-5, no additional CI tests are required in the second 

phase since          . 

Theorem 3.11 The worst performance of IPC-MB on time efficiency is            , and the 

best performance is less than 
 

 
        .  

Proof. The worst case is discussed. The best performance is determined by the topology, so we 

only give a loose upper bound by summing the best case of the first phase              and 

the worst case of the second phase 
 

 
    . █ 

3.4.3 Memory Requirement of FindCanPC 

The access to memory (RAM) is known as much faster than disk I/O operation, so ideally we 

want all data to be referred during the computing available in memory. Though this is impossible 

for most cases, we prefer some solution to reduce the frequency of disk access as much as 

possible. In this and next sections, we analysis the memory consumption of FindCanPC and IPC-

MB respectively, based on our own implementation strategy.  

NonPC 

It is used to cache those recognized as false positive in each iteration, and it is trivial to know that 

its maximum size won‟t exceed      
  .  

Subsets S and Contingency Tables 

The number of subsets and the size of each subset are known upon entering the innermost loop 

(Line 5, Figure 3-1), so we prefer to allocate memory to cache all      
       of the size 

           between the Line 5 and Line 11. Given    
  and           , the number of subsets 

of is    
      is  

 
          
    

    
 , where                  
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Considering that the cardinality of each subset is of size           , and assuming that each 

variable is binary (including the target), each contingency table corresponding to           has 

              cells. Then totally we need 

               
          
    

    
  

(3.10) 

In (3.10)  it is noticed that there are three factors to influence the actual complexity, including 

    
  ,            and the number of values of each variable. In fact, the first two factors are 

influenced by the actual topology, and the third one is determined by the actual problem. In our 

implementation, hash table-like container is used to hold contingency table considering there may 

exist empty cells, i.e. cells with no values. However, we have to admit that our current 

implementation cannot deal with too large scale of problems on a common PC machine.   

          

This is global allocation since it needs to be referred later in IPC-MB.  

Lemma 3.10  Those seprator set (i.e.        as found in our algorithm) as found and cached for 

  and     in IPC-MB, i.e.           or          , is the minimal such set.  

Proof. It can be proved by contradiction. Assuming that we find        
   

  such that 

                 
   

, and              
   

 . Given                     
   

 , it means 

that           is missed though it appears at an early time in FindCanPC, which happens only 

when                     . Obviously, it is contradictory with the fact that           is a 

valid separator set. █ 

Given each pair of (   ), since we will cache only one separator set to satisfy                

 , the total number of such seprator won‟t exceed     
  . However, the size for           and 

          may differ since they may be recognized in different iteration. Then, we can denote the 

total memory as required by caching        as: 

                     , with restrict to                   
     

Empty           appears when   is found conditionally independent of    given empty set in the 

first iteration; if no variable in    
  is removed until the iteration     

    , we may have 



65 

 

          as large as     
    . Therefore, the actual memory footprint is influenced by the 

topology as well.  

Theorem 3.12  The memory allocation for            is minimized in IPC-MB.  

Proof. Lemma 3.10 tells us that           as found is the minimal one; besides, it is known that 

we only cache either           or          , then it is trivial to know that the memory allocation 

for this part is minimized in IPC-MB. █  

3.4.4 Memory Requirement of IPC-MB 

Based on our discussion of FindCanPC, it is known that only            is global allocation. In 

addition to this, all other allocation in FindCanPC becomes free upon leaving it.  

Considering that there is no other large memory requirement in IPC-MB, or they are relatively 

small as compared with FindCanPC, no more space is left for this discussion.  

3.4.5 Brief Conclusion on the Complexity of IPC-MB 

By making full use of the underlying topology information, IPC-MB learns the Markov blanket 

of   via iterative local search. Within each local search round, it takes the strategy of removing 

any false positive at the first moment it is found, which is very different from all previous work 

and is expected to be much more efficient than them. Its “smart” strategy makes the overall 

architecture very simple, easy to understand and implement as well.  

Our analysis is built around this design as well. As its name indicates, the overall cost, no matter 

time or memory, is determined by that of FindCanPC. However, the actual complexity will be 

influenced by the underlying actual topology. From our analysis, it is observed that the 

theoretically best and worst cases have very different performance, ranging from linear to 

exponential growth. 

3.5 Data Efficiency and Reliability of IPC-MB 

Data efficiency is critical for the practical value of one algorithm since instances available for 

training or learning are limited very often. In algorithms built on statistical testing, like the CI test 

employed in IPC-MB, normally the fewer variables involved in          , the more data 
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efficient is the algorithm. This is because CI test error, being the primary source of error, is the 

result of unnecessary large condition set leading to the curse-of-dimensionality or choosing an 

inaccurate conditioning set due to partial information. Therefore, data efficiency indirectly 

influences the accuracy. In fact, in Chapter 4, we can observe obvious difference in the actual 

accuracy between algorithms with low and high data efficiency.  

In this section, we discuss the data efficiency of IPC-MB from theoretical viewpoint, and we will 

revisit this topic in Chapter 4 and Chapter 5 considering that and it is so important and will never 

be overemphasized. In fact, you will find in our conclusion later (Section 5.4) that data efficiency 

is the most merit of IPC-MB, which permits IPC-MB not only to be very time efficient but to 

achieve the highest accuracy as compared with similar works. 

Lemma 3.11  Any false positive as recognized in FindCanPC is conditioned with the smallest 

conditioning set.  

Proof. Please refer to the proof of Lemma 3.10. █ 

Lemma 3.12  Any false positive as contained in    
  is recognized with the smallest 

conditioning set.  

Proof. The recognition of any false positive   is via the call of FindCanPC( ) which tells us if 

      
 . Those false positives relative to   are recognized with the smallest conditioning set 

(Lemma 3.11), so we can say that any false positive of     
  is recognized with the smallest 

conditioning set. █ 

Theorem 3.13 Given   and  , the recognition of  any       is achieved with the least 

conditioning set.  

Proof. For any       
  as output by FindCanPC( ), it enters into or leaves from (by deleted) 

   
  according to CI tests with the smallest conditioning set, as ensured by Lemma 3.11 and 

Lemma 3.12. Therefore, we can declare that the recognition of any       is achieved with the 

least conditioning set. █ 

Lemma 3.13 The recognition of true spouses is achieved with the least conditioning set.  

Proof. The recognition of any true spouse is realized with two phases: (1) the preparation of 

candidate spouses, and (2) the determination of one true spouse. Regarding the preparation of 
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candidate spouses, it is learned by a series of FindCanPC( ), so it is known that the smallest 

conditioning set is used (Lemma 3.11). Besides, the Sepset as used to determine if a candidate is 

true spouse is also minimized in cardinality (Lemma 3.10), therefore, the recognition of any true 

spouse is achieved with the least conditioning set. █ 

Theorem 3.14  No algorithm can be more data efficient than IPC-MB.  

Proof.  Theorem 3.13 and Lemma 3.13 ensure the least conditioning set is used to recognize 

parents/children and spouses respectively, so it is known that the recognition of      realizes 

the best performance in term of data efficiency. █ 

In real application, we may only have limited data for learning. To ensure the trustability of 

statistical testing like          , we expect to make the conditioning set   as small as possible. 

Given the same amount of training data, a test with a smaller conditioning set will always 

produce a more trustable outcome than the one with larger one. Considering that IPC-MB will 

resort to the smallest conditioning set with priority, it is believed that the output of IPC-MB is 

more reliable compared to similar algorithms given the same scale of data for training. Note that 

this merit of IPC-MB is not exchanged with any sacrifice of correctness, which again makes IPC-

MB attractive.   

3.6 Analysis of Special Case: Polyrtree 

Being a special case of Bayesian network, a polytree is a directed acyclic graph with the property 

that ignoring the directions on edges yields a graph with no undirected cycles[2]. In other words, 

there exists unique path between each possible couple of nodes (see Figure 3-7 for an example), 

so polytree is the “thinnest” Bayesian network. In this section, we will discuss the expected 

behavior of IPC-MB given a polytree, and experiments on a polytree-like Bayesian network are 

included in Chapitre 4. 

Theorem 3.15 Given a polytree network, the call of FindCanPC( ) in IPC-MB will output the 

exact    , under the faithfulness and correct CI test assumptions.  

Proof. From Theorem 3.1 and  Theorem 3.2, it is know that FindCanPC( ) will output a 

superset of     , and the only possible false positives are  ‟s descendants. Therefore, here we 

only need to prove that descendants of   won‟t be falsely output by FindCanPC given a polytree 
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network, and this can be proved by contradiction. Assume some        appears in the output 

of FindCanPC( ). Because there is only one directed path from   to   in the polytree, it must be 

either       or         , where   is X‟s child. It is trivial to know that   blocks 

this unique path from   to   due to the head-to-tail connection, plus the fact that   will always 

stay in        and output by FindCanPC, hence   won‟t pass the test           and will be 

removed successfully. This proof applies to all  ‟s descendants, so none of them will appear in 

the output of FindCanPC( ). █ 

 

Figure 3-7: A simple example of polytree. The original graph can be found online at 

http://en.wikipedia.org/wiki/Polytree.  

Theorem 3.16 Under the faithfulness and correct CI test assumptions, given a polytree network, 

all       will be recognized by some conditional independence tests            where 

     , in FindCanPC( ).  

Proof. Given any      , there exists a unique path from   to   in a polytree network, and it 

can be one of the following three cases:         ,         , and     

   . In the first two cases (linear connection),    is known as independent of   given   , or we 

say   blocks the path. And in the third case (converging connection),   is known as independent 

of  given empty set. Hence, all non-parents/children of   will fail some            where 

     .  █ 

Corollary 3.1 In FindCanPC( ), all false positives will be removed from    
  in the loop of 

             or             .  

Proof. It is trivial to infer this from Theorem 3.16.  █ 

http://en.wikipedia.org/wiki/Polytree
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Corollary 3.2 In FindCanPC( ), spouses are removed from    
  in the loop of cutSetSize = 0.  

Proof. It is trivial to infer this from Theorem 3.16.  █ 

With Corollary 3.1 and Corollary 3.2, we can infer three points as below: 

1. Computing complexity is greatly reduced since all false positives are recognized and 

removed in the first two iterations (Line 3-16, FindCanPC, Figure 3-1); 

2. The decision to remove these false positives is made given small conditioning set, so the 

decision as made according to the CI testing result is trustable, which is valuable in practice; 

3. Since each spouse   is recognized with empty separator, i.e.            , the conditional 

test involved to recogze a true spouse in IPC-MB (Line 15, Figure 3-3) will have 

conditioning set of size one only. Like the second point, it reflects the data efficiency of IPC-

MB as well. 

Even though we can remove all false positives in the first two iterations within FindCanPC( ), it 

doesn‟t mean that only two iterations are needed. We have to continue the search until     
   

          , hence, the actual time and memory complexity are influenced by the size of    .  

3.7 Parallel version of IPC-MB 

3.7.1 Overall illustration 

Though IPC-MB is proposed to be more time efficient than PCMB, it still could be very 

computationally intensive in the worst case. Considering performance is critical, we devote a 

small section to discuss the parallel version of IPC-MB.  

Given the output of FindCanPC( ), i.e.    
  , the remaining processing (Line 4-19) in IPC-MB, 

actually, can proceed in parallel since each branch is independent one another, as demonstrated in  

Figure 3-8, where    
           .  
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Figure 3-8: Parallel version of IPC-MB. 

3.7.2 Proof of soundness 

Theorem 3.17 Under the assumptions that the independence tests are correct and that the 

learning data   is an independent and identically distributed sample from a probability 

distribution   faithful to a DAG  , Parallel version of IPC-MB, denoted as Parallel-IPC-MB 

produces the same output of IPC-MB, if given the same inputs.  

Proof. (1)It‟s trivial to know that FindCanPC( ) produces the same result as it works in IPC-

MB.(2)Then, for each       
 , FindCanPC(  ) is called separately, and it produces the same 

result as in sequential version since each FindCanPC(  ) is fed with the same inputs in both 

versions. (3)That         if        
   still be true considering that both    

  and     
  are 

what expected as in the non-parallel version. (4) Then      
  is also the same as that in IPC-MB. 
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(5) The remaining checking of        
  is expected to produce the same result if both 

          and            are ready in each branch then. Obviously, this is true because 

FindCanPC( ) and FindCanPC(  ), in which both         are collected respectively, have been 

conducted by then. 

Therefore, both Theorem 3.3 and Theorem 3.5 still work for Parallel-IPC-MB, and it is expected 

to produce the same outcome as IPC-MB given the same assumptions and inputs. █ 

3.7.3 Time and space complexity 

Theorem 3.18 The worst performance of Parallel-IPC-MB on time efficiency is  

2*                    

Proof. Since the timing consumption of FindCanPC( ) is not avoidable, and the remaining 

FindCanPC( ) proceeds in paralle, totally we need only consider two times of the worst case of 

FindCanPC. Then, this result is trivial to infer on the basis of Theorem 3.11. █ 

Regarding the memory consumption, there is no gain in the Parallel-IPC-MB since FindCanPC 

runs in a serial order in IPC-MB, and it has the same effect as the memory allocation on each 

machine in the parallel version, assuming each branch is distributed to one individual machine for 

processing.  

3.7.4 About implementation 

The training data has to be copied to each machine where we want the individual branch to run. 

Though it may be time consuming as transferred via network, the cost may be worthy in large 

scale of processing where the transferring time may be ignorable as compared with what we save 

on the learning.   

In fact, it is believed that there must exist more fine-grained parallel versions of IPC-MB, but it is 

not the focus of this project and won‟t be discussed further here.  

3.8 Conclusion 

Given the faithfulness assumption,     is known to contain  ‟s parents, children and spouses. 

Among them, parents and children are directly connected to  , and spouses connect as well as 
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point to  ‟s child(ren). With these topology information and Theorem 1.4 in mind, constraint-

based learning is believed to be more suitable than score-and-search based approach because it 

doesn‟t have to explore among the complete space, but in a greatly reduced sub-space. IPC-MB 

achieves this goal quite well by filtering out as many      , also as early, as possible, and 

with economical cost. Besides, by determining if          with as small conditioning set   as 

possible, more reliable performance is expected given limited data in practice.  

IPC-MB is the core part of this thesis project, and more applications derived from it will be 

discussed in the following text. Before that, empirical study will be presented in Chapter 4 to 

confirm what we have presented, and a comprehensive comparison is included in Chapter 5 

between IPC-MB and other representative works. 
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Chapitre 4 EMPIRICAL STUDY OF MARKOV BLANKET LEARNING 

4.1 Experiment Design 

In Chapitre 3, we explain how IPC-MB works, prove its correctness, and analyze its expected 

performance on time and space complexity, and data efficiency. In this chapter, a series of 

experiments are conducted to compare the relative performance of IPC-MB, IAMB, PCMB and 

PC algorithms.  

We only compare our algorithm with two typical Markov blanket learning algorithms, IAMB and 

PCMB, considering that (1) both of them are proved correct, and highly referred; (2) IAMB is the 

best known and also simple and time efficient; (3) PCMB is the latest published work, and it 

represents a new direction of this research field. Though MMPC/MB and HITON-PC/MB appear 

before PCMB, they are proved not correct and hence ignored. In additional to IAMB and PCMB, 

we also include PC algorithm to allow us to observe the difference between global and local 

learning algorithms.  

In the experiments, five networks are used. Three of them are known benchmark examples, 

including Asia [39] with 8 nodes, Alarm [40] with 37 nodes and Hailfinder network with 56 

nodes [41]. The other two are artificially created networks shipped with BNJ package[42], one 

has 152 nodes and the other is a polytree derived from Alarm. For easy reference, they are named 

Test152 and PolyAlarm respectively. Data are sampled from these five networks, and be fed to 

algorithms to recover the underlying network. We run IAMB, PCMB and IPC-MB with each 

node in the BN taken in turn as the target variable   and report the average performance over 

multiple rounds. Our discussion contains accuracy, time efficiency and data efficiency. 

In Section 4.2, we introduce briefly data sets used. From Section 4.4 to Section 4.6, experimental 

results as well as some conclusions as derived are presented. We conclude briefly in Section 4.7.   

4.2 Data Sets 

The five selected networks represent four types of typical problem we are interested to study: 

 Small problem, e.g. Asia; 

 Medium size application, e.g. Alarm; 
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 Larger scale problem, e.g. Hailfinder and Test152. Though Hailfinder has only 56 nodes, its 

nodes have up to 11 values, so its search space actually is quite large. As we can see later, all 

four algorithms have difficulties to produce satisfactory results with 20,000 instances; while, 

acceptable results are observed on Test152 with only 2,500 instances; 

 Polytree is a topology with at most one undirected path between any two vertices which 

allows more efficient computations and is a good example to study the data efficiency of our 

algorithm.  

Asia 

Asia is a small Bayesian network linking tuberculosis, lung cancer or bronchitis respectively and 

different factors, for example whether or not the patient has been to Asia recently. It firstly 

appeared in Lauritzen and Spiegelhalter‟s work [39], 1988, and has been widely referred in the 

past two decades. Its structure and the corresponding CPTs are illustrated in Figure 4-1.  

Although small, this network allows us 1) to have a look at the corresponding performance of the 

four algorithms given a simple problem, and 2) show that the four algorithms may all output the 

correct outcomes given enough data.  

 

Figure 4-1: Asia Bayesian Network including 8 nodes of two states and 8 arcs, along with its 

CPTs.  For reference purpose, each node is assigned one unique ID, from 0 to 7. The 

original graph can be found at http://www.norsys.com/netlib/asia.htm.     

ALARM 

http://www.norsys.com/netlib/asia.htm
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ALARM stands for „A Logical Alarm Reduction Mechanism,‟ a network for monitoring patients 

in intensive care. It was first introduced by Beinlich et al. in 1989 [40], and it consists of 37 

nodes of two, three or four states, and 46 arcs. It is a commonly viewed as a representative of a 

real life Bayesian network.  

 

Figure 4-2: Alarm Bayesian Network including 37 nodes of two, three or four states (To save 

space, the CPTs are ignored). The original graph can be found online at 

http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.htm.  

ALARM of Polytree Version 

This polytree version Alarm network, including the structure and parameters, is included in the 

installation package of Bayesian Network tool in Java (BNJ) [42]. This network is denoted as 

PolyAlarm for short in the remaining text.  

 

http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.htm


76 

 

 

Figure 4-3: A polytree derived from Alarm Bayesian Network [40]. This graph is created by BNJ 

tool.  

Hailfinder 

Hailfinder [41] is a Bayesian system that forecasts severe summer hail in Northeastern Colorado. 

It is the first such system to apply Bayesian models in the realm of meteorology. Hailfinder 

contains 56 nodes, and the nodes contain two to eleven different values. Compared with Alarm in 

which four-value is the maximum, the underlying search space of Hailfinder is much larger.    

Test152 

This network is shipped with the installation package of BNJ tool, as a testing example. Since it 

contains 152 binary nodes, it is called as Test152 by us for quick reference.  

Summary 

The following table and figure summarize the features of the five networks under experiment. In 

Table 4.1, the total number of nodes and arcs, the largest size of Markov blanket as contained, 

and the number of states of nodes about Asia, Alarm, PolyAlarm, Hailfinder and Test152 are 

presented. The distribution about the cardinalities of Markov blankets as contained in the five 

networks are illustrated in Figure 4-4, and it is observed that even the largest Markov blankets are 

much smaller than the whole Bayesian networks in size. Therefore, we can conclude that (1) 

feature selection is necessary to remove non-related attributes; (2) real networks are mostly 

sparse, as illustrated in Figure 3-5. 
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Table 4.1: Feature summary of data sets 

Bayesian 

Network 

Values of 

Nodes 

# of Nodes # of Arcs Size of 

largest MB 

Asia 2 8 8 5 

Alarm 2/3/4 37 46 8 

PolyAlarm 2/3/4 37 36 8 

Hailfinder 2/3/4/5/6/7/11 56 66 17 

Test152 2 152 200 5 

 

 

Figure 4-4: Distribution of the size of Markov blankets as contained in Asia, Alarm, PolyAlarm, 

Hailfinder and Test152. 

4.3 Implementation Version of IPC-MB 

In Section 2.2, we have stated that we ignore CI test for which there are not enough instances to 

ensure trustable result. In practice, the common choice of   in the inequality (1.5) is 5, and it is 

followed in our implementation as well. Besides, in FindCanPC, if there is no reliable CI test 

available in the loop of           , no further search will be conducted, and the learning 

1 2 3 4 5 6 7 8 13 16 17

Asia 2 2 3 1

Alarm 6 9 5 8 2 2 3 2

PolyAlarm 9 10 10 5 1 1 1

Hailfinder 13 10 10 8 4 6 2 2 1

Test152 51 1 2 49 49
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terminates because all further tests will be of higher degree due to the growing conditioning set 

size. Figure 4-5 illustrates the implemented version of FindCanPC.  

Similar strategy is taken in the implementation of IAMB, PCMB and PC algorithms, allowing for 

a fair comparison.  

 

Figure 4-5: The implemented version of FindCanPC that considers reliability of statistical tests. 

Its original version can be found in Figure 3-1, and the differences are illustrated in 

bold here for comparison convenience.  

4.4 Accuracy 

The experiments in this section focus on the accuracy of the algorithms. We run IAMB, PCMB 

and IPC-MB with each node in each BN as the target variable   and then, report the average 
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precision and recall over all the nodes for each BN. Precision is the number of true positives in 

the output divided by the number of nodes in the output. Recall is the number of true positives in 

the output divided by the number of true positives in the BN. We also combine precision and 

recall as  

                                     

(4.1) 

to measure the Euclidean distance from perfect precision and recall. The significance level (   

for the independence test is 0.05. These experimental specifications follow that of [13], with the 

expectation of comparable results. PC algorithm is ran a single time given each data set to induce 

the whole network, and the precision, recall and distance are measured similarly over each node. 

Note: for each sample size, we prepare 10 to 20 groups of data for multiple-folder simulation.   

4.4.1 Small Network: Asia 

Asia is a very small network with only eight nodes, and two of them have Markov blanket of size 

one. Because Asia is small, we used a 20-folds simulation experiment and report the average and 

standard deviations (Table 4.2).  

Table 4.2: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Asia network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(Mean±Std. Dev.) 

Recall 

(Mean±Std. Dev.) 

Distance 

(Mean± 

Std. Dev.) 

100 20 

IAMB .55±.08 .51±.09 .72±.10 

PCMB .55±.11 .49±.17 .76±.15 

IPC-MB .55±.11 .47±.17 .77±.16 

PC .55±.14 .60±.26 .71±.13 

200 20 

IAMB .60±.09 .72±.09 .53±.11 

PCMB .68±.10 .57±.13 .61±.11 

IPC-MB .66±.11 .55±.12 .63±.12 

PC .59±.14 .62±.22 .66±.10 

500 20 

IAMB .66±. 06 .77±.05 .45±.08 

PCMB .77±.10 .65±.10 .48±.13 

IPC-MB .76±.10 .66±.10 .47±.14 

PC .72±.12 .64±.10 .52±.13 

1000 10 

IAMB .72±.11 .79±.06 .39±.12 

PCMB .80±.11 .69±.07 .42±.12 

IPC-MB .80±.12 .73±.09 .38±.14 
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PC .74±.11 .70±. 09 .45±.13 

2000 10 

IAMB .78±.14 .78±.05 .35±.13 

PCMB .82±.12 .71±.06 .40±.11 

IPC-MB .81±.11 .73±.01 .38±.08 

PC .76±. 09 .69±.05 .44±.05 

4000 10 

IAMB .85±.07 .82±.09 .26±.11 

PCMB .86±.04 .76±.11 .31±.10 

IPC-MB .87±.02 .76±.07 .30±.08 

PC .83±.05 .74±.08 .35±.08 

6000 10 

IAMB .85±.07 .83±.06 .26±.10 

PCMB .86±.06 .82±.12 .25±.13 

IPC-MB .86±.06 .82±.09 .25±.11 

PC .81±. 04 .81±.10 .31±.08 

8000 10 

IAMB .87±.08 .84±.08 .24±.12 

PCMB .88±.07 .82±.11 .24±.13 

IPC-MB .87±.04 .82±.08 .24±.09 

PC .83±. 07 .80±.10 .29±.11 

10000 10 

IAMB .83±.08 .83±.07 .27±.10 

PCMB .87±.06 .81±.10 .26±.12 

IPC-MB .88±.02 .81±.06 .25±.06 

PC .83±. 06 .79±. 08 .30±.07 

20000 

 

10 

IAMB .90±.06 .92±.07 .15±.07 

PCMB .92±.08 .93±.08 .12±.10 

IPC-MB .94±.07 .94±.08 .10±.10 

PC .92±. 08 .93±. 08 .12±.10 
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Figure 4-6: Comparison of distances given different number of instances (0.1K~20K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (Asia,  = 0.05, refer to Table 4.2 for more information) 

 

 

100 200 500 1000 2000 4000 6000 8000 10000 20000

IAMB 0.72 0.53 0.45 0.39 0.35 0.26 0.26 0.24 0.27 0.15 

PCMB 0.76 0.61 0.48 0.42 0.40 0.31 0.25 0.24 0.26 0.12 

IPC-MB 0.77 0.63 0.47 0.38 0.38 0.30 0.25 0.24 0.25 0.10 

PC 0.71 0.66 0.52 0.45 0.44 0.35 0.31 0.29 0.30 0.12 
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100 200 500 1000 2000 4000 6000 8000 10000 20000

IAMB 0.55 0.60 0.66 0.72 0.78 0.85 0.85 0.87 0.83 0.90 

PCMB 0.55 0.68 0.77 0.80 0.82 0.86 0.86 0.88 0.87 0.92 

IPC-MB 0.55 0.66 0.76 0.80 0.81 0.87 0.86 0.87 0.88 0.94 

PC 0.55 0.59 0.72 0.74 0.76 0.83 0.81 0.83 0.83 0.92 
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Figure 4-7: Comparison of precision given different number of instances (0.1K~20K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (Asia,  = 0.05, refer to Table 4.2 for more information) 

 

Figure 4-8: Comparison of recall given different number of instances (0.1K~20K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (Asia,  = 0.05, refer to Table 4.2 for more information) 

4.4.2 Moderate Network: Alarm 

For the Alarm network (Figure 4-2), a 10-folds simulation experiment is conducted considering 

that it contains many more nodes as compared with Asia, and more stable results are expected. 

Detailed results are presented in Table 4.3, followed by graphs about the average distance (Figure 

4-9), precision (Figure 4-10) and recall (Figure 4-11).  

We note that there is a difference between our results and those in [13] on IAMB, given Alarm 

data. Their accuracy results are close to the IPC-MB results up to 1000 cases. Accuracy (in terms 

of distance) stands around 0.20 at 2000 and more cases. This discrepancy can be explained that 

they actually implemented InterIAMB, a variant of IAMB that interleaves the growing and 

shrinking steps until convergence to improve data efficiency. Hence, the results about IAMB as 

reported in [13] are, in fact, those of InterIAMB as mentioned in section 4.1 of [13], whereas ours 

are based on the plain IAMB (Figure 1-3). Another source of discrepancy stems from the fact that 

100 200 500 1000 2000 4000 6000 8000 10000 20000

IAMB 0.51 0.72 0.77 0.79 0.78 0.82 0.83 0.84 0.83 0.92 

PCMB 0.49 0.56 0.65 0.69 0.71 0.76 0.82 0.82 0.81 0.93 

IPC-MB 0.47 0.55 0.66 0.73 0.73 0.76 0.82 0.82 0.81 0.94 

PC 0.60 0.62 0.64 0.70 0.69 0.74 0.81 0.80 0.79 0.93 
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they used 0.01 as the significance value, while we take 0.05. By applying 0.05 to the software 

package provided by the authors of [13], we empirically observed obviously worse results.  

Table 4.3: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Alarm network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(Mean±Std.Dev.) 

Recall 

(Mean±Std.Dev.) 

Distance 

(Mean± 

Std.Dev.) 

250 10 

IAMB .50±.10 .43±.06 .80±.10 

PCMB .66±.10 .68±.06 .53±.08 

IPC-MB .67±.10 .67±.06 .53±.08 

PC .58±.07 .70±.04 .58±.06 

500 10 

IAMB .57±.03 .55±.02 .67±.04 

PCMB .86±.03 .78±.04 .31±.05 

IPC-MB .85±.02 .77±.04 .32±.04 

PC .77±.05 .78±.03 .37±.04 

1000 10 

IAMB .57±.02 .60±.02 .64±.02 

PCMB .93±.02 .84±.02 .20±.03 

IPC-MB .94±.02 .84±.02 .19±.03 

PC .90±.03 .85±.03 .21±.04 

2000 10 

IAMB .52±.03 .58±.01 .67±.02 

PCMB .97±.03 .89±.03 .13±.04 

IPC-MB .98±.02 .90±.03 .11±.04 

PC .96±.02 .90±.03 .13±.04 

3000 10 

IAMB .52±.03 .58±.02 .68±.03 

PCMB .97±.01 .92±.03 .10±.04 

IPC-MB .99±.01 .93±.02 .07±.03 

PC .97±.01 .92±.02 .10±.02 

4000 10 

IAMB .51±.03 .59±.02 .68±.03 

PCMB .97±.02 .94±.03 .07±.04 

IPC-MB .99±.01 .95±.01 .06±.03 

PC .97±.01 .94±.02 .09±.03 

5000 10 

IAMB .49±.02 .58±.02 .70±.03- 

PCMB .98±.01 .96±.03 .06±.03 

IPC-MB .99±.01 .95±.01 .05±.02 

PC . 96±.02 .94±.01 .10±.03 
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Figure 4-9: Comparison of distances given different number of instances (0.5K~5K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (Alarm,  = 0.05, refer to Table 4.3 for more information) 

 

Figure 4-10: Comparison of precision given different number of instances (0.5K~5K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (Alarm,  = 0.05, refer to Table 4.3 for more information) 

250 500 1000 2000 3000 4000 5000

IAMB 0.80 0.67 0.64 0.67 0.68 0.68 0.70 

PCMB 0.53 0.31 0.20 0.13 0.10 0.07 0.06 

IPC-MB 0.53 0.32 0.19 0.11 0.07 0.06 0.05 

PC 0.58 0.37 0.21 0.13 0.10 0.09 0.10 
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250 500 1000 2000 3000 4000 5000

IAMB 0.50 0.57 0.57 0.52 0.52 0.51 0.49 

PCMB 0.66 0.86 0.93 0.97 0.97 0.97 0.98 

IPC-MB 0.67 0.85 0.94 0.98 0.99 0.99 0.99 
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Figure 4-11: Comparison of recall given different number of instances (0.5K~5K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (Alarm,  = 0.05, refer to Table 4.3 for more information) 

4.4.3 Large Network: Hailfinder and Test152 

A 10-folds experiment is also conducted for the Hailfinder and Test152 networks, and the 

corresponding average accuracy is reported in Table 4.4 and  

Table 4.5.  

Table 4.4: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Hailfinder network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(Mean±Std. Dev.) 

Recall 

(Mean±Std. Dev.) 

Distance 

(Mean± 

Std. Dev.) 

10000 10 

IAMB .36±.02 .45±.01 .88±.02 

PCMB .71±.02 .52±.03 .61±.03 

IPC-MB .71±.02 .53±.02 .60±.02 

PC .70±.02 .53±.03 .61±.02 

20000 10 

IAMB .34±.01 .45±.01 .89±.01 

PCMB .74±.03 .56±.04 .55±.04 

IPC-MB .73±.03 .58±.03 .54±.05 

PC .71±.04 .57±.04 .56±.06 

 

Table 4.5: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Test152 network. 

250 500 1000 2000 3000 4000 5000

IAMB 0.43 0.55 0.60 0.58 0.58 0.59 0.58 

PCMB 0.68 0.78 0.84 0.89 0.92 0.94 0.96 

IPC-MB 0.67 0.77 0.84 0.90 0.93 0.95 0.95 

PC 0.70 0.78 0.85 0.90 0.92 0.94 0.94 
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Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(Mean±Std. Dev.) 

Recall 

(Mean±Std. Dev.) 

Distance 

(Mean± 

Std. Dev.) 

250 10 

IAMB .54±.01 .74±.00 .59±.01 

PCMB .89±.02 .71±.01 .37±.02 

IPC-MB .90±.02 .71±.01 .36±.01 

PC .72±.03 .71±.01 .49±.02 

500 10 

IAMB .50±.01 .81±.01 .57±.01 

PCMB .89±.01 .76±.01 .33±.02 

IPC-MB .90±.01 .76±.01 .31±.01 

PC .75±.03 .76±.02 .43±.01 

750 10 

IAMB .45±.01 .86±.01 .59±.01 

PCMB .90±.03 .80±.02 .28±.03 

IPC-MB .92±.01 .81±.02 .26±.02 

PC .74±.04 .80±.02 .40±.03 

1000 10 

IAMB .47±.01 .89±.01 .56±.02 

PCMB .91±.02 .84±.02 .24±.03 

IPC-MB .93±.02 .85±.02 .21±.03 

PC .74±.02 .84±.02 .37±.03 

1500 10 

IAMB .42±.01 .91±.01 .61±.01 

PCMB .91±.01 .91±.02 .17±.03 

IPC-MB .94±.01 .92±.02 .14±.02 

PC .74±.02 .91±.02 .32±.03 

2000 10 

IAMB .44±.01 .93±.01 .58±.01 

PCMB .93±.01 .96±.02 .11±.02 

IPC-MB .95±.01 .96±.02 .09±.02 

PC .78±.02 .96±.01 .25±.02 

2500 10 

IAMB .46±.01 .96±.01 .56±.01 

PCMB .92±.02 .97±.01 .11±.02 

IPC-MB .95±.01 .98±.01 .07±.01 

PC .79±.02 .98±.01 .22±.01 
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Figure 4-12: Comparison of distances given different number of instances (0.25K~2.5K): IAMB 

vs. PCMB vs. IPC-MB vs. PC (Test152,  = 0.05, refer to  

Table 4.5 for more information) 

 

250 500 750 1000 1500 2000 2500

IAMB 0.59 0.57 0.59 0.56 0.61 0.58 0.56 

PCMB 0.37 0.33 0.28 0.24 0.17 0.11 0.11 

IPC-MB 0.36 0.31 0.26 0.21 0.14 0.09 0.07 

PC 0.49 0.43 0.40 0.37 0.32 0.25 0.22 
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250 500 750 1000 1500 2000 2500

IAMB 0.54 0.50 0.45 0.47 0.42 0.44 0.46 

PCMB 0.89 0.89 0.90 0.91 0.91 0.93 0.92 

IPC-MB 0.90 0.90 0.92 0.93 0.94 0.95 0.95 

PC 0.72 0.75 0.74 0.74 0.74 0.78 0.79 
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Figure 4-13: Comparison of precision given different number of instances (0.25K~2.5K): IAMB 

vs. PCMB vs. IPC-MB vs. PC (Test152,  = 0.05, refer to  

Table 4.5 for more information) 

 

Figure 4-14: Comparison of recall given different number of instances (0.25K~2.5K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (Test152,  = 0.05, refer to  

Table 4.5 for more information). 

4.4.4 Polytree Network: PolyAlarm (Derived from Alarm) 

A 10-folds experiment for the PolyAlarm network is reported in Figure 4-3. Detailed results are 

presented in Table 4.6, followed by graphs about the average distance (Figure 4-15), precision 

(Figure 4-16) and recall (Figure 4-17). 

Table 4.6: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over polytree version Alarm 

network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(Mean±Std. Dev.) 

Recall 

(Mean±Std. Dev.) 

Distance 

(Mean± 

Std. Dev.) 

500 10 
IAMB .64±.03 .71±.03 .53±.04 

PCMB .84±.05 .75±.04 .33±.07 

250 500 750 1000 1500 2000 2500

IAMB 0.74 0.81 0.86 0.89 0.91 0.93 0.96 

PCMB 0.71 0.76 0.80 0.84 0.91 0.96 0.97 

IPC-MB 0.71 0.76 0.81 0.85 0.92 0.96 0.98 

PC 0.71 0.76 0.80 0.84 0.91 0.96 0.98 
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IPC-MB .85±.05 .74±.04 .33±.07 

PC .76±.07 .72±.05 .43±.08 

1000 10 

IAMB .70±.03 .84±.02 .40±.04 

PCMB .91±.02 .86±.01 .19±.02 

IPC-MB .91±.03 .85±.02 .20±.04 

PC .81±.04 .80±.02 .34±.06 

2000 10 

IAMB .65±.02 .89±.01 .42±.02 

PCMB .93±.02 .89±.02 .14±.02 

IPC-MB .93±.01 .90±.03 .13±.04 

PC .83±.03 .83±.02 .29±.04 

3000 10 

IAMB .65±.03 .89±.02 .41±.02 

PCMB .91±.02 .92±.02 .13±.05 

IPC-MB .92±.02 .91±.03 .13±.04 

PC .84±.03 .86±.01 .26±.03 

4000 10 

IAMB .62±.03 .92±.02 .43±.04 

PCMB .93±.03 .92±.02 .13±.05 

IPC-MB .94±.02 .92±.02 .12±.03 

PC .86±.03 .87±.03 .23±.04 

5000 10 

IAMB .61±.04 .92±.02 .43±.05 

PCMB .93±.03 .93±.02 .11±.04 

IPC-MB .94±.02 .92±.02 .11±.02 

PC .87±.03 .89±.03 .20±.04 

 

 

500 1000 2000 3000 4000 5000

IAMB 0.53 0.40 0.42 0.41 0.43 0.43 

PCMB 0.33 0.19 0.14 0.13 0.12 0.11 

IPC-MB 0.33 0.20 0.14 0.13 0.12 0.11 

PC 0.43 0.34 0.29 0.26 0.23 0.20 
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Figure 4-15: Comparison of distances given different number of instances (0.5K~5K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (PolyAlarm,  = 0.05, refer to Table 4.6 for more 

information) 

Figure 4-16: Comparison of precision given different number of instances (0.5K~5K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (PolyAlarm,  = 0.05, refer to Table 4.6 for more 

information) 

500 1000 2000 3000 4000 5000

IAMB 0.64 0.70 0.65 0.65 0.62 0.61 

PCMB 0.84 0.91 0.93 0.91 0.93 0.93 

IPC-MB 0.85 0.91 0.93 0.92 0.94 0.94 

PC 0.76 0.81 0.83 0.84 0.86 0.87 
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Figure 4-17: Comparison of recall given different number of instances (0.5K~5K): IAMB vs. 

PCMB vs. IPC-MB vs. PC (PolyAlarm,  = 0.05, refer to Table 4.6 for more 

information).  

4.4.5 Conclusion 

Our experiments with different size of samples over five different scale of networks indicate that: 

 As expected, the accuracy of PCMB, IPC-MB and PC increases when more observations 

become available (with decreasing distance in Figure 4-6, Figure 4-9, Figure 4-12, and 

Figure 4-15). However, though it is believed that IAMB will also produce perfect results 

given enough data, it appears the accuracy of IAMB flattens quickly given more observations, 

e.g. in the problems of Alarm (Figure 4-9), Test152 (Figure 4-12) and PolyAlarm (Figure 

4-15). This may be explained by the fact that more false positives are added in the growing 

phase (see more discussion in Section 4.6 and 5.4); 

 The underlying topology, or the problem itself, greatly influences the performance of all 

algorithms. Given the same amount of observations, we observe quite different accuracy 

performances in different problems; 

500 1000 2000 3000 4000 5000

IAMB 0.71 0.84 0.89 0.89 0.92 0.92 

PCMB 0.75 0.86 0.89 0.92 0.92 0.93 

IPC-MB 0.74 0.85 0.90 0.91 0.92 0.92 

PC 0.72 0.80 0.83 0.86 0.87 0.89 
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 The algorithms may produce worse results in problems with fewer features, but more 

observations. For example, with 20,000 instances, the accuracy reached in the other four 

problems is much lower than that achieved with Test152 in which only 2,500 instances are 

given. Therefore, the underlying topology, together with the number of states of nodes (or 

variables), determines the actual complexity of problems; 

 PCMB and IPC-MB demonstrate no obvious gain over IAMB given very small problem like 

Asia (refer to Figure 4-6). However, the relative advantage becomes quite attractive given 

larger problems (Figure 4-9, Figure 4-12 and Figure 4-15). For example, with Alarm network, 

PCMB and IPC-MB have distance less than 0.50 given 500 instances, but IAMB couldn‟t 

reach this level even with as many as 5,000 instances; 

 With more observations being fed with, PCMB and IPC-MB have much faster increase in 

accuracy than IAMB; 

 PCMB has close performance to IPC-MB, in term of both precision and recall; IPC-MB 

performs slightly better than PCMB; 

 IPC-MB never loses to PC, and has obvious better accuracy in Test152 (Figure 4-12) and 

PolyAlarm (Figure 4-15); 

 Given more data, both precision and recall increase for PCMB and IPC-MB algorithms. 

However, precision always is higher than recall as observed in our experiments, before 

enough information becomes available for them to reach a balance. Figure 4-18 illustrates 

this difference given IPC-MB as example. For PCMB, this reflects that its strict selection of 

true positives is effective; and for IPC-MB, it confirms that its strategy of removing as many 

as possible false positives also works quite well; 
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Figure 4-18: Comparison of IPC-MB‟s Precision and Recall (Based on experiments with Alarm,  

 = 0.05, refer to Table 4.3 for more information) 

In conclusion, although IAMB, PCMB and IPC-MB algorithms are all proved correct, and they 

are believed to produce the perfect result if enough data is available, their relative accuracy 

performance is different given limited observations. Obvious difference is observed between 

IAMB and PCMB/IPC-MB.  

IPC-MB has slightly higher accuracy performance than PCMB, and it beats PC with obvious 

advantage in some cases.  

4.5 Time Efficiency 

In Chapter 3, we have analyzed the time complexity of IPC-MB in terms of number of CI tests. 

Here, one more measure is introduced, that is number of data passes, where a data pass consists 

in scanning the whole training data for one time. In practice, to save the memory, we generally do 

not cache all contingency tables; in fact, it is impossible to do so given the exponentially growing 

number of possible subsets (or combinations) of features. Hence, a more practical way is to cache 

only what are known as necessary for our immediate decision making purpose. For example, in 

IPC-MB, we only cache the contingency tables given the known  ,   and conditioning set of 

cardinality cutSetSize, and this is reasonable since not only the cutSetSize will change (increase 

with 1) in next iteration, but also the    
  due to the possible deletion of false positives. 

250 500 1000 2000 3000 4000 5000

Recall 0.67 0.77 0.84 0.90 0.93 0.95 0.95 

Precision 0.67 0.85 0.94 0.98 0.99 0.99 0.99 
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Therefore, we only allocate memory to cache      
  with               , and release all 

memory allocation at the end of this iteration, which is effective to reduce the consumption of 

space. However, this requires to re-scan the whole data file with additional time upon entering 

next iteration, e.g. with increased cutSetSize and possibly modified    
 . With very large training 

data, scanning the whole data may be quite time consuming a job since we may need to visit the 

disk, or even network, for many times.  

To make different algorithm comparable, we treat the collection of contingency tables in a fair 

manner in our implementation, i.e. one data pass is consumed to collect all statistics expected in 

the current active session or loop. In IAMB, an additional data pass is needed to re-construct 

related contingency tables after adding or removing one variable. While in PCMB, three data 

passes are needed in each iteration of the searching loop within GetPCD, corresponding to the 

three steps involved, i.e. removing negatives, adding best candidate and removing false positives 

respectively.  

4.5.1 Small Network: Asia 

In Table 4.7, the “# Data Passes” of IAMB/PCMB/IPC-MB refers to the average number of data 

passes we need to induce the corresponding Markov blanket of all the 8 nodes of Asia BN (It is 

obtained by dividing the total number of data passes with the number of nodes, to reflect the 

average complexity of IAMB, PCMB and IPC-MB), while the “# Data Passes” of PC is just the 

number of data passes happening to induce the whole network. “# CI test” is defined similarly. 

Generally, the larger are these two numbers, the slower is the algorithm.  

Table 4.7: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over Asia network.  

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(Mean±Std. Dev.) 

# CI Tests 

(Mean±Std. Dev.) 

100 20 

IAMB 5±1 25±3 

PCMB 80±87 2006±3673 

IPC-MB 10±7 188±288 

PC 26±9 213±267 

200 20 

IAMB 4±0 22±2 

PCMB 64±50 1044±1636 

IPC-MB 8±4 110±136 

PC 25±8 171±179 

500 20 
IAMB 5±0 23±1 

PCMB 48±12 316±130 
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IPC-MB 8±2 63±13 

PC 24±3 111±18 

1000 10 

IAMB 5±0 23±1 

PCMB 49±13 367±122 

IPC-MB 8±1 70±11 

PC 24±3 120±15 

2000 10 

IAMB 5±0 23±2 

PCMB 52±17 433±213 

IPC-MB 9±2 77±18 

PC 24±3 131±23 

4000 10 

IAMB 5±0 23±1 

PCMB 50±7 436±84 

IPC-MB 8±1 84±9 

PC 26±4 139±10 

6000 10 

IAMB 5±0 23±1 

PCMB 55±10 486±104 

IPC-MB 9±1 91±16 

PC 27±4 147±19 

8000 10 

IAMB 5±0 23±1 

PCMB 55±9 482±98 

IPC-MB 9±1 90±15 

PC 28±4 147±19 

10000 10 

IAMB 5±0 24±1 

PCMB 57±8 493±75 

IPC-MB 9±1 91±12 

PC 27±4 150±17 

20000 

 

10 

IAMB 5±0 25±1 

PCMB 66±11 583±109 

IPC-MB 10±1 99±13 

PC 31±3 155±14 

4.5.2 Moderate Network: Alarm 

Table 4.8: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over ALARM 

network. 

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Dev.) 

# CI Tests 

(mean±Std. Dev.) 

250 10 

IAMB 4±0 93±8 

PCMB 261±22 5464±539 

IPC-MB 12±1 562±30 

PC 303±19 2330±92 

500 10 
IAMB 5±0 116±2 

PCMB 160±11 4638±374 
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IPC-MB 12±1 561±31 

PC 220±16 2736±82 

1000 10 

IAMB 5±0 140±2 

PCMB 154±5 6047±385 

IPC-MB 12±0 637±37 

PC 191±12 3528±121 

2000 10 

IAMB 6±0 162±2 

PCMB 175±7 8804±532 

IPC-MB 13±0 736±37 

  PC 188±12 3528±121 

3000 10 

IAMB 6±0 179±3 

PCMB 204±8 12329±817 

IPC-MB 13±0 798±53 

PC 200±19 3717±166 

4000 10 

IAMB 7±0 187±4 

PCMB 218±6 16007±1326 

IPC-MB 14±0 849±48 

PC 211±18 3902±122 

5000 10 

IAMB 7±0 197±3 

PCMB 231±6 17704±1189 

IPC-MB 14±0 876±31 

PC 215±16 3956±80 

4.5.3 Large Network: Hailfinder and Test152 

Table 4.9: Time complexity comparison of IAMB, PCMB, IPC-MB over Hailfinder network ( = 

0.05).  

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Dev.) 

# CI Tests 

(mean±Std. Dev.) 

10000 10 

IAMB 6±0 270±1 

PCMB 120±10 8186±1049 

IPC-MB 9±0 736±56 

PC 283±25 6489±161 

20000 10 

IAMB 7±0 299±2 

PCMB 136±10 14538±1617 

IPC-MB 10±0 1000±101 

  PC 284±29 7515±301 

Table 4.10: Time complexity comparison of IAMB, PCMB, IPC-MB over Test152 network ( = 

0.05).  

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Dev.) 

# CI Tests 

(mean±Std. Dev.) 
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250 10 

IAMB 5±0 602±0 

PCMB 89±4 3154±168 

IPC-MB 11±0 780±29 

PC 608±3 17947±351 

500 10 

IAMB 6±0 750±1 

PCMB 101±3 3757±148 

IPC-MB 12±0 924±28 

PC 669±78 19803±392 

750 10 

IAMB 7±0 896±2 

PCMB 111±6 4284±239 

IPC-MB 13±1 1055±52 

PC 684±80 21429±582 

1000 10 

IAMB 7±0 896±2 

PCMB 119±4 4685±183 

IPC-MB 14±0 1147±32 

  PC 684±80 22732±426 

1500 10 

IAMB 8±0 1042±1 

PCMB 134±3 5384±145 

IPC-MB 15±0 1316±35 

PC 714±73 24865±415 

2000 10 

IAMB 8±0 1041±2 

PCMB 148±3 5928±174 

IPC-MB 15±0 1432±46 

PC 684±80 26173±593 

2500 10 

IAMB 8±0 1042±2 

PCMB 161±3 6444±142 

IPC-MB 16±0 1532±44 

PC 730±96 27512±614 

4.5.4 Polytree Network: PolyAlarm(Derived) 

Table 4.11: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over PolyAlarm 

network. 

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Dev.) 

# CI Tests 

(mean±Std. Dev.) 

500 10 

IAMB 4±0 106±3 

PCMB 47±3 584±48 

IPC-MB 7±0 143±8 

PC 117±16 1061±48 

1000 10 

IAMB 5±0 126±3 

PCMB 54±4 715±84 

IPC-MB 8±0 164±8 

PC 140±26 1145±42 
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2000 10 

IAMB 5±0 147±2 

PCMB 59±2 837±57 

IPC-MB 9±0 179±6 

  PC 158±24 1223±35 

3000 10 

IAMB 6±0 155±4 

PCMB 68±5 1002±78 

IPC-MB 9±0 190±7 

PC 174±15 1265±39 

4000 10 

IAMB 6±0 165±3 

PCMB 68±5 1002±78 

IPC-MB 9±0 195±8 

PC 176±11 1292±41 

5000 10 

IAMB 6±0 171±4 

PCMB 70±4 1067±41 

IPC-MB 9±1 196±11 

PC 181±2 1308±56 

 

4.5.5 Conclusion 

Our experiments with different size of samples over five different problems indicate that: 

 IAMB has the fastest speed among the four algorithms and IPC-MB is second; PCMB and 

PC are slower than the other two, and PCMB is the slowest one among the three local search 

algorithms; 

 The underlying topology, i.e. the problem itself, influences the actual performance of all 

algorithms greatly, especially on PCMB. For example, PCMB may need 347.5% more CI 

tests than PC in Alarm problem (Table 4.8), but 76.6% less in Test152 problem (Table 4.10). 

In contrast, the topology has much smaller influence on IAMB, or in other words, IAMB is 

“blind” to the topology, which confirms the fact that IAMB and its variants don‟t consider 

topology in the search; 

 Given the same number of features, the actual connectivity influences the actual cost for all 

algorithms. Generally saying, they cost less on parse networks  (Table 4.13); 

 Compared with the global search by PC, IPC-MB saves a lot of data passes and CI tests in all 

experiments (Table 4.12), which reflects the advantage of local search. For example, given 

the Test152 problem, IPC-MB requires 94.4% fewer times of CI tests than PC, when there 

are 2,500 instances available for learning; 
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Table 4.12: Time complexity comparison of between IAMB/PCMB/IPC-MB and PC. The 

comparison is based on the average measures of 20K-Asia experiment, 5K-PolyAlarm 

experiment, 5K-Alarm, 20K-Hailfinder and 2.5K-Test152 experiments respectively. In the table 

    means that x% reduction is achieved compared with PC algorithm;    , in contrast, 

indicates additional x% cost relative to that of PC algorithm.  

 Problem 

PC 

# Data Passes # CI Tests 

IAMB 

Asia               

PolyAlarm               

Alarm               

Hailfinder               

Test152               

PCMB 

Asia                 

PolyAlarm               

Alarm               

Hailfinder               

Test152               

IPC-MB 

Asia               

PolyAlarm               

Alarm               

Hailfinder              
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Test152              

Table 4.13: Time complexity comparison of IAMB/PCMB/IPC-MB given example networks 

with same number of nodes but different density of connectivity. All are measured in experiments 

with 5,000 instances.  

  Alarm 

 Algorithm # Data Passes # CI Tests 

PolyAlarm 

IAMB               

PCMB               

IPC-MB               

 Given the special network, polytree, the difference between IAMB and IPC-MB becomes 

very small; 

 Though considered a local search, PCMB‟s cost is similar to PC which conducts global 

search to induce the whole network; 

 IPC-MB is much faster than PCMB, over 75% reduction on CI tests and more than 90% 

reduction on data passes, in all experiments; 

 PCMB has a much higher increasing rate of data passes and CI tests than IPC-MB and 

IAMB (Figure 4-19). The difference observed in complex problem (Alarm) is more obvious 

than simpler problem (PolyAlarm). It is easy to understand since the algorithms converge 

more quickly in simpler problems. 

 

250 500 1000 2000 3000 4000 5000

IAMB 93 116 140 162 179 187 197 

PCMB/10 546 464 605 880 1233 1601 1770 

IPC-MB 562 561 637 736 798 849 876 
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Figure 4-19: Comparison of increasing rate of CI tests given Alarm and PolyAlarm networks: 

IAMB vs. PCMB vs. IPC-MB. 

4.6 Data Efficiency 

Data efficiency can be measured in two dimensions, the relative accuracy given the same amount 

of training instances, and the actual cardinality of conditioning set as involved in the CI tests. The 

first measure is indirect, while the second one is direct.  

4.6.1 Relative Accuracy 

From the study of Section 4.4, it is observed that although IPC-MB has no gain over IAMB given 

the small problem Asia, it obviously exceeds IAMB given larger and more complex problems, 

like Alarm, PolyAlam, Hailfinder and Test152. For example, given only 500 instances in Alarm 

problem, the average distance of IPC-MB is 0.32, while it is 0.67 for IAMB. Besides, given more 

instances, the accuracy rate reached by IPC-MB increases faster than IAMB, which reflects 

further that IPC-MB is able to make better use of data to infer more information than IAMB. 

PCMB and PC perform much better than IAMB too, but slightly poorer than IPC-MB, which will 

be explained soon in 4.6.2.   

500 1000 2000 3000 4000 5000

IAMB 106 126 147 155 165 171 

PCMB/5 117 143 167 200 203 213 

IPC-MB 143 164 179 190 195 196 
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With IAMB, we even observe a decrease in accuracy given more observations, e.g. with Alarm 

(Figure 4-9), Hailfinder (Table 4.9), Test152 (Figure 4-12) and PolyAlarm problems (Figure 

4-15). As we mentioned in 4.4.5, this is not our implementation mistake, but it is determined by 

the nature of IAMB – though more search can be conducted given more instances in IAMB, it 

adds more false positives in the growing phase but not able to remove them in the shrinking 

phase.   

PCMB is observed to have the similar accuracy performance as IPC-MB, so it is indeed more 

data efficient than IAMB too as declared in [13].  

4.6.2 Distribution of Conditioning Set Size 

The relative accuracy of IAMB/PCMB/IPC-MB given the same amount of observations is one 

important, but indirect, measure to reflect the distinction resulted from different data efficiency. 

In this section, we study the problem in a direct manner by measuring the distribution of 

conditioning set size of three algorithms, which is believed helpful for us better understand what 

happens behind the scene.  

Two example distributions are illustrated in Figure 4-20, and both are based on experiments with 

Alarm data. We summarize the number of CI tests with conditioning set of cardinality  , and 

then normalize them with the total number of CI tests as involved in the search to get the relative 

frequencies. The upper graph in Figure 4-20 is measured given the data collected in the Alarm 

experiments with 500 instances, and the bottom one is about experiments with 5,000 instances. 

This permits us to observe the relative distribution of the conditioning set size about IAMB, 

PCMB, IPC-MB and PC, given “small” and “large” data sets respectively.  

From Figure 4-20, we see that given 500 instances, the largest conditioning set is of size five 

(variable) (found in PCMB); with more instances, for example 5,000, it increases to 7 (found in 

IAMB and PCMB). The increased largest conditioning set indicates that more searches can be 

done in IAMB and PCMB. However, we didn‟t see any gain in accuracy on IAMB algorithm 

(Figure 4-9), while PCMB achieves great progress with distance decreasing from 0.31 to 0.06. In 

contrast, the largest conditioning set is of size 2 and 4 respectively for IPC-MB, given 500 and 

5,000 instances. 
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IPC-MB performs much better than IAMB, and achieves slightly higher accuracy than PCMB, 

which seems can resort to the fact that most of its CI tests involve fewer number of variables 

(Figure 4-20, Figure 4-21, Figure 4-22). For example, given 5,000 instances in Alarm problem, 

96.6% CI tests have no more than two variables in their conditioning set, in IPC-MB; this number 

is 70.6% for PCMB, and 53.3% for IAMB. Actually, in all five experiments, we observe that 

over 90% of CI tests involved in IPC-MB have two or fewer variables in the conditioning set. 

This explains why PCMB and IPC-MB performs much better than IAMB, in a different light. 

Besides, we do observe a little more gain by IPC-MB over PCMB in Test152 problem. Though 

there is no obvious gain is observed by IPC-MB over PCMB, it is believed that more trustable 

outcomes are expected on IPC-MB over PCMB in applications. 

 

0 1 2 3 4 5

PCMB 31.0% 72.6% 93.8% 98.5% 100.0% 100.0%

IAMB 31.1% 61.5% 90.5% 99.4% 100.0%

IPC-MB 22.1% 95.2% 100.0%

PC 34.3% 94.9% 100.0% 100.0%
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Figure 4-20: Example distribution of conditioning set size (i.e. the cardinality of conditioning set) 

as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in 

experiments of Alarm (The upper graph is the average distribution given 500 

instances, and the bottom is that measured given 5,000 instances).  

 

0 1 2 3 4 5 6 7

IAMB 18.3% 36.1% 53.3% 69.9% 84.6% 95.9% 99.9% 100.0%

PCMB 12.3% 36.0% 70.6% 92.0% 99.1% 99.8% 100.0% 100.0%

IPC-MB 14.6% 82.7% 96.5% 99.9% 100.0%

PC 24.6% 84.4% 97.3% 99.8% 100.0%
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0 1 2 3 4 5 6

PCMB 48.7% 72.5% 94.3% 98.9% 99.8% 100.0% 100.0%

IAMB 21.0% 41.4% 60.5% 78.6% 93.1% 99.8% 100.0%

IPC-MB 54.4% 93.2% 97.9% 99.6% 100.0%

PC 59.6% 93.3% 98.1% 99.6% 100.0%
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Figure 4-21: Example distribution of conditioning set size (i.e. the cardinality of conditioning set) 

as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in 

experiments of polytree version Alarm (5,000 instances).  

 

Figure 4-22: Example distribution of conditioning set size (i.e. the cardinality of conditioning set) 

as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in 

experiments of Test152 (2,500 instances).  

Figure 4-21 shows the distribution of conditioning set size as measured in experiments with the 

polytree version of Alarm, where 5,000 instances are available. Compared with the measures 

shown in Figure 4-20,  it is noticed that the portion of CI tests with smaller conditioning set 

increases, for each algorithm covered. Meanwhile, many fewer number of CI tests are observed 

by comparing Table 4.8 and Table 4.11. Hence, we can conclude that problems of sparse 

networks are easier to solve.  

4.7 Summary 

A series of experiments with classical problems, ranging from small to large scale, are conducted, 

over IAMB, PCMB, IPC-MB and PC algorithms. By feeding different size of observations to 

these four algorithms, we study their relative performance in term of accuracy, time efficiency 

and data efficiency. Compared with IAMB, IPC-MB achieves much higher accuracy given the 

0 1 2 3 4 5 6

IAMB 14.5% 28.9% 43.2% 57.4% 71.5% 85.5% 100.0%

PCMB 51.5% 73.2% 92.2% 98.5% 99.9% 100.0% 100.0%

IPC-MB 38.5% 92.0% 99.0% 99.9% 100.0% 100.0%

PC 47.3% 91.8% 98.9% 100.0% 100.0% 100.0%
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same amount of samples, and the extra requirement on time is affordable; compared with PCMB, 

IPC-MB reaches the same or slightly higher accuracy but in much faster speed; compared with 

PC, IPC-MB demonstrates obvious advantage in term of time complexity as an algorithm 

requiring only local search. 

In next chapter, we will go a little beyond the results collected in this chapter, discussing more on 

the causes behind the scene. 
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Chapitre 5 TRADEOFF ANALYSIS OF DIFFERENT MARKOV BLANKET 

LEARNING ALGORITHMS 

5.1 Introduction 

The necessary background of Markov blanket, existing learning algorithms, and our own 

proposed one are covered in previous chapters. A series of experiments are also designed to 

provide a vivid and direct comparison of their relative performance. In this chapter, we will go 

beyond the facts as presented in Chapter 4, with emphasis on why one algorithm behaves like 

what it appears, and we expect to end with a non-biased recommendation on one most 

appropriate algorithm for inducing Markov blanket.   

5.2 Category of Algorithms 

From 1996 on, there are at least 10 algorithms for inducing Markov blanket have been proposed, 

including KS, GS, IAMB and its variants (InterIAMB, InterIAMBnPC and Fast-IAMB), 

MMPC/MB, HITON-PC/MB, PCMB and our own IPC-MB.  They actually can be classified into 

two groups: 

1. Algorithms built on the property that            , for         . KS, GS, IAMB and 

its variants belong to this category. We use GROUP I to refer to these algorithms in the 

remaining text of this chapter; 

2. Algorithms built on the property that             and the underlying connection 

between       and the target  , i.e. the so-called topology information. More recent 

algorithms like MMPC/MB, HITON-PC/MB, PCMB and IPC-MB fall into this class. 

GROUP II  is used to denote them in this chapter.  

Algorithms of both categories depend on a series of conditional independence tests in the search 

of    .  

In this chapter, we only consider IAMB, PCMB and IPC-MB considering that (1) IAMB and 

PCMB are representatives of GROUP I and GROUP II respectively; (2) Both are proved correct, 

and their relative performance data are collected in Chapter 4; and (3) All three algorithms 

require the same assumption, faithfulness.  
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5.3 Efficiency Gain by Local Search 

Local search is defined relative to global search. Given the faithfulness assumption, if an 

algorithm could induce     without having to induce the whole Bayeisan network over  , it is 

viewed as local search, or local learning. Based on this definition, IAMB, PCMB and IPC-MB all 

belong to this category.  

However, it doesn‟t mean that local search is guaranteed to be more time efficient than global 

search. From the study in Section 4.5 (more specifically, Table 4.12), it is observed that IAMB 

and IPC-MB are able to achieve obvious reduction in time complexity as compared with PC (but 

IAMB performs much worse than PC in term of accuracy), and the gain is expected to be more 

remarkable with increasing scale of problems. Although PCMB produces as correct outcome as 

IPC-MB and PC given the same number of instances, its timing cost may even exceed that of PC 

(see Section 4.5.1, 4.5.2 and 4.5.3). Even though, we prefer to say the PC is such an excellent 

algorithm, instead of declaring that PCMB is not good enough. 

5.4 Data Efficiency 

5.4.1 Data Efficiency is Critical 

As we see in Chapter 4, though one algorithm, like IAMB, can be correct theoretically, it may 

produce very poor results with limit instances. Normally the lower accuracy achieved by one 

algorithm given specific number of instances, the more data inefficient this algorithm is. One 

may argue for more observations to reach a satisfactory level, this is not realistic in real 

applications. For example, given the Alarm problem, even when 20,000 instances are allowed for 

IAMB, its accuracy is still much poorer than that reached by PCMB and IPC-MB given 5,000 

instances. Therefore, IAMB has limit in applications, though it is expected to be time efficient.  

Data efficiency is the most problem existing in GROUP I algorithms, and it is this problem 

which has attracted several following effort since the birth of IAMB.   

5.4.2 Why IAMB is Very Data Inefficient 

There are two reasons to cause the data inefficiency of IAMB. Firstly, IAMB and other 

algorithms in GROUP I depend on checking if          
   to determine whether or not add into 
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or remove from     some variable  . This is direct and simple; however, they may condition on 

the whole     or even larger one, so the number of instances required for reliable test then 

would be considerable. In fact, even if we have large samples, we still want the freedom degree 

of statistical tests be as small as possible to have more reliable tests.  

Secondly, many false positives are added in the growing phase, which prevents true ones from 

being added. IAMB is composed of two phases: growing and shrinking. In the growing phase, 

variable    is added into    
  if it is not conditionally independent of    given the current    

 . 

Sicne    
  starts with empty on, obviously, false positives will be added, and they stay in    

  

since then. To make things worse, upon the first false one being allowed into    
  , the door is 

opened for more false positives. If we have too few instances, we may terminate the learning 

somewhere, ending with a possibly completely wrong    
  candidate set, which was observed in 

our experiment. Feeding such a set into the shrinking phase can be a disaster, even worse than 

conditioning on the whole    . Therefore, pretty low precision and recall are observed on 

IAMB in our experimental studies. 

5.4.3 PCMB is Data Efficient 

The data inefficiency problem was noticed by others, including the authors of PCMB, so the 

growing and shrinking are interleaved in GetPCD of PCMB. In GetPCD, a best candidate is 

selected based on a series of conditional independence tests; upon one new candidate being added 

to PCD, all variables of PCD, including the one just added, are checked to see if there is any false 

positive. By doing so, false ones are recognized and removed in time, preventing error from 

being accumulated and resulting with more error as in IAMB. 

Besides, by dividing the recognition of      into     and    , the possibly largest conditioning 

set is further limited. Therefore, although PCMB works like IAMB by considering which ones 

should be included into    , it makes each decision with enough caution aiming at correctness 

as well as data efficiency.  

5.4.4 IPC-MB is Data Efficient Too 

Though IPC-MB has a similar framework as PCMB, it recognizes the    
  in a quite different 

way. Instead of deciding which ones can be added into    
  or    

  as PCMB or IAMB does, 
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IPC-MB realizes this target by removing those known as false positives, with true ones left. This 

is built on the observation that false positives normally occupy a much larger portion among the 

whole attribute set  , e.g. the largest Markov blanket in Alarm is of size eight while totally there 

are 37 attributes. In IPC-MB, each false positive is found with a conditioning set of the smallest 

cardinality (Theorem 3.13). Similar to PCMB, the recognition of      is divided into     and 

    as well. By minimizing the number of variables in separator set in FindCanPC, the 

cardinality of the conditioning set involved in the recognition of a true spouse is also minimized, 

which further ensures the reliability of the algorithm (Theorem 3.14).  

As shown in Section 4.6, PCMB and IPC-MB demonstrate obvious advantage over IAMB in 

term of data efficiency. Although the gain of accuracy of IPC-MB is not so obvious over PCMB 

in our experiments, the distributions of conditioning set cardinality as shown in Figure 4-20, 

Figure 4-21 and Figure 4-22 support such an argument: IPC-MB is expected to produce more 

reliable results than PCMB because it requires smaller conditioning set by average.  

5.5 Time Efficiency 

5.5.1 IAMB is Fast but with High Cost 

The study in Chapter 4 shows that IAMB is the fastest one, and PCMB is terribly slow as 

compared to the other two.  IPC-MB is slower than IAMB, but in an affordable scale.  

In IAMB, the numbers of CI tests and data passes as required in both phases grow in a linear 

speed. Given  , both the number of CI tests and data passes needed in the worst case (Figure 3-5) 

are           for the growing phase. Actually, it is also         for the shrinking phase, and 

hence the total number is           for CI tests as well as data passes. Due to its data 

inefficiency, in practice, the actual number of CI tests and data passes may be even fewer than 

that as expected. The possible introduction of false candidates in the growing phase further make 

the thing worse as we discussed in 5.4.2. Therefore, in IAMB, CI tests quickly become un-

reliable after few rounds in the growing phase, and the search has to terminate, with pretty poor 

results being produced.  
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5.5.2 IPC-MB is Much More Efficient Than PCMB 

IPC-MB is observed to have slightly better accuracy performance than PCMB, but with much 

less cost in term of time. Both of them declare as local search, and they all include the topology 

information into consideration, then why they differ so great in time complexity? We analyze the 

cause from two aspects.  

First,  the authors of PCMB didn‟t realize the conclusion made on Theorem 3.4. Then, in PCMB, 

GetPC is called on not only the target   , but each      . However, in IPC-MB, FindCanPC, 

which functions similarly as GetPCD, is called on   as well as each      
 . All these 

FindCanPC calls combined together actually equals to one-time call of GetPC. Therefore, at least 

       times of GetPC are saved in IPC-MB, which is significant considering that each GetPC is 

really time consuming.   

Second, what search conducted in FindCanPC is more efficient than GetPCD. Given the example 

of Figure 3-5, the first step “remove false positives from CanPCD” (Figure 1-11) in PCMB has 

the same complexity as the whole FindCanPC in IPC-MB, that is           ; besides, each 

GetPC has the complexity as the recognition of     in IPC-MB, that is           . Since PCMB 

calls GetPC for each      , the corresponding complexity increases to           . If we count 

the extra two steps in GetPCD, i.e. “add the best candidate to PCD” and “remove false positives 

from PCD” (Figure 1-11), the whole complexity of PCMB will be even higher.  

Therefore, PCMB loses to IPC-MB in time efficiency due to three causes:  

1. GetPCD (PCMB) is much more complex than FindCanPC (IPC-MB). GetPCD actually 

follows the design of IAMB, but it interleaves the growing and shrinking to remove any false 

positives wrongly recognized at an early time. The adding of one possible candidate within 

each iteration is accompanied with two times of  consuming checking, i.e. “remove false 

positives from CanPCD” and “remove false positives from PCD”; 

2. In GetPCD, the PCD not only differs between adjacent iteration, but within the same 

iteration. Based on the guideline of our implementation, i.e. only known contingency tables 

are constructed in one scanning of data file, we may need three data passes in each iteration 

of GetPCD, which further makes thing worse;  



112 

 

3. The needless calling of GetPC for each      . GetPC(X) is called to collect parents and 

children of   in PCMB, and it has the same effect of what Line 2-12 do in IPC-MB. In other 

words, we only call GetPC(X) for one time in IPC-MB because we recognized that spouse 

candidates can be prepared meanwhile (Lemma 3.5), and only true spouses will pass the test 

                   (Theorem 3.4). Therefore, those GetPC(X) for       is not 

necessary, and it greatly increases the whole complexity of PCMB considering that each 

individual GetPC(X) is so time consuming a procedure. 

Therefore, to achieve better performance over IAMB and other previous works, IPC-MB is paid 

with more affordable additional cost than PCMB.  

5.6 Scalability 

If we view the data as a matrix, with columns for features and rows for instances, scalability 

refers to the ability that one algorithm works well given high dimensionality (column-wise), or 

large number of observations (row-wise), or both.   

Regarding IAMB, it doesn‟t consider the topology, so the number of dimensions, or features, 

directly influences its actual performance. In our experiments, acceptable accuracy level is only 

observed in Asia problem. Though we believe that given enough instances, IAMB is able to 

produce perfect results, the number of instances as required may be too large to meet. Therefore, 

IAMB is not expected to perform well given increasing dimensionality, except when there are 

also considerable observations accordingly. 

PCMB is shown indeed more data efficient than IAMB, i.e. producing much higher accuracy 

given the same amount of observations. Given fixed dimensionality, PCMB is also expected to 

achieve much faster increase in accuracy than IAMB. However, as one algorithm declaring local 

search, PCMB is quite time inefficient, and it may even cost much more than the global search by 

PC algorithm. Though PCMB is shown scalable by its author in [13], where it is applied to a 

problem with 139,351 features appearing in KDD-Cup‟2001, we doubt the conclusion very much.  

IPC-MB inherits the advantage of PCMB, i.e. data efficient. In fact, it may be more data efficient 

than PCMB, as shown in our experiments (refer to Section 4.6.2).  However, IPC-MB runs in a 

much faster speed than PCMB. In Table 5.1, we observe that IPC-MB achieve the same or better 
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result than PCMB, requiring many fewer CI tests. Compared with IAMB, the additional cost for 

IPC-MB is affordable if we realize the much higher accuracy as achieved by IPC-MB. 

Table 5.1: The comparison of IPC-MB to PCMB and IAMB in terms of time efficiency and 

accuracy. About time cost,     means IPC-MB costs    more CI tests than PCMB or IAMB; 

and about accuracy,     means IPC-MB‟s distance to the perfect result is    larger than 

PCMB or IAMB (note: the smaller the distance, the more accurate the result).  

Problem 

(# instances) 

PCMB IAMB 

Time Cost 

(CI Tests) 

Accuracy 

(Distance) 

Time Cost 

(CI Tests) 

Accuracy 

(Distance) 

Asia (20K)                              

PolyAlarm (5K)                            

Alarm (5K)                              

Test152 (2.5K)                             

Both PCMB and IPC-MB are sensitive to the underlying topology, or we can say that the actual 

topology influences their scalability a lot. For example, although both Alarm and PolyAlarm 

have 37 attributes, the actual timing cost by IPC-MB and PCMB  differs greatly. In addition, we 

observe that IPC-MB and PCMB achieve quite expressive results in Test152 problem given only 

2,500 instances; they need 5,000 or more instances to reach the same accuracy level in Alarm 

problem, though Test152 has much higher dimensionality than Alarm problem.  

In conclusion, compared with IAMB and PCMB, IPC-MB achieve a good tradeoff by improving 

the data efficiency with reasonable additional timing cost; hence, it is expected to have better 

scalability. Besides, the underlying topology influences the actual scalability of algorithms 

depending on the structure, like PCMB and IPC-MB.  

5.7 Information Deduced 

To the problem of feature selection, recognizing the variables belonging to the Markov blanket of 

T is the target. Regarding this goal, all three algorithms under study are known with this ability 

from the theoretical viewpoint, i.e. producing the perfect result given enough information.  

However, given the faithfulness assumption, Markov blanket is known as unique and it contains 

target‟s parents, children and spouses (along with edges and corresponding orientations). IAMB 

and other previous algorithms only recognize that variables of MB render the rest of variables 

independent of target; their designs are built on this property, and their output only tell us if 
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      given    . PCMB and IPC-MB are built on the information as encoded in the 

underlying connectivity existing on Markov blanket and  . It not only enables algorithms to 

achieve much better data efficiency than IAMB but generate more informative result. IAMB 

doesn‟t distinguish the parents, children and spouses of  , but PCMB and IPC-MB separate 

spouses from the remaining variables in    . Besides, those common children of spouses and     

are recognized among        , so as the orientations of related arcs, see Figure 5-1.  

     

Figure 5-1: Output of IAMB (left), PCMB and IPC-MB (right) 

The additional information as found by PCMB and IPC-MB may be helpful for applicants to 

understand the underlying problem better. Furthermore, they can be made use to reduce the effort 

for the learning of Markov blanket classifier as to be discussed in Chapter 6 and 7.  

5.8 Approximate Version of IPC-MB 

Although IPC-MB is demonstrated very efficient in our experiments, its time complexity may 

still be un-affordable given network with dense connections or with large Markov blanket. For 

example, as we discuss in Section 3.9, it has to continue the search until there are no conditional 

independence tests left undone, even all false positives are able to be removed with conditioning 

sets of size smaller than two, given polytree networks. By imposing the checking of reliability of 

tests, as found in Figure 4-5 (Section 4.3.2), the search may terminate at earlier time when there 

are no more trustable tests available, which possibly reduces the time complexity though it is 

added originally to guarantee the correctness of results in practice.   
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However, we still may face large search space when there are ample instances for learning. One 

common choice as referred in conditional test based structure learning algorithms of Bayesian 

network can be applied here to reduce the search space to an expected level, i.e. restricting the 

maximum number of parents. In IPC-MB, this is equal to limit the maximum value of cutSetSize 

in FindCanPC because IPC-MB, actually, depends the Markov condition to remove those non-

descendants in FindCanPC. Therefore, we have a new version of FindCanPC (Figure 5-2) 

derived from the version proposed in Figure 4-5.   

 

Figure 5-2: The version of FindCanPC that restricts the search space as well as  considers 

reliability of statistical tests.  

Though it is an approximate version, it doesn‟t mean that we won‟t get correct results. For 

example, with a polytree, if we set the maximum number of parents as two or larger value, the 
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outcome of FindCanPC as well as IPC-MB are both guaranteed. Considering that real problems 

generally have spare connectivity, most false positives can be recognized and removed given 

small conditioning set. Therefore, this approximate version will not entail a large loss of accuracy, 

but both the time and space complexity are reduced to an predictable level. 

PCMB may have an approximate version by applying the same limit on the number of parents. 

However, there is no such choice for IAMB since it is not dependent on the underlying topology. 

The only possible choice is to limit the maximum cardinality of target    , which will make the 

performance of IAMB worse.  

5.9 Summary 

Although IAMB, PCMB and IPC-MB are all proved correct theoretically, they still demonstrate 

relative strength or weakness when applied to real problems, as revealed by the experiments 

conducted in Chapitre 4. In this chapter, we go beyond the facts observed, aiming at deciphering 

some causes existing behind the facts.    

For practical applicants, based on our experience, IAMB is strongly recommended if there are 

ample data because it is easy to implement, fast in speed and efficient in memory usage. However, 

we should realize that the need for large data samples increases quickly (actually, exponentially) 

when the number of variables and/or the number of values per variable increase, and rarely we 

can meet the corresponding requirement. In our experiments with IAMB, satisfactory result is 

observed only on Asia, one very tiny problem containing only eight variables.  

Compared with IAMB, PCMB and IPC-MB have much better accuracy performance given the 

same amount of observations, which reflects their data efficiency property. However, PCMB is 

much slower than IPC-MB, and it may cost more time than PC. Hence, IPC-MB is further 

recommended over PCMB. Considering that samples are always small relative to the observation 

space, i.e.     where     , and the time cost is affordable, IPC-MB is determined as the best 

choice among the three for applicants. Approximate version is possible for PCMB and IPC-MB, 

but not IAMB. Table 5.2 gives a brief summary on their relative features. 

Table 5.2: Trade-off summary over IAMB, PCMB and IPC-MB.   
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 IAMB PCMB IPC-MB 

Assumption(s) Faithfulness Faithfulness Faithfulness 

Local Search Yes, and less cost 

than PC 

Yes, but cost may be 

higher than PC 

Yes, and less cost than 

PC 

Data Efficiency Very poor Good Best 

Time Efficiency Best Poor Good 

Scalability Ignored Applicable(especially 

with approximation 

version) 

Applicable(especially 

with  approximate 

version) 

Information 

Induced 

Only         plus partial 

connections and 

orientations 

    plus partial 

connections and 

orientations 

Implementation 

Difficulty 

Simple Difficult, and should pay 

attention on the code and 

memory optimization  

Simple but should pay 

attention to memory 

usage optimization 
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Chapitre 6 A NOVEL LOCAL LEARNING ALGORITHM OF BAYESIAN 

NETWORK CLASSIFIER: IPC-MBC 

We have shown how to derive the set of variables that compose a Markov Blanket with local 

learning algorithms in the previous chapters. This set of variables can be used for any classifier 

and it is known as the optimal set for that purpose. However, the full topology of the BN over 

tihs set of nodes is not derived from these algorithms. This topologhy corresponds to a Markov 

Blanket Classifier. In this chapter, we introduce a novel algorithm for efficiently learning this 

topology. Compared with conventional structure learning algorithms, e.g. PC, we limit the search 

in a local manner as we do in IPC-MB, so obvious reduction of time cost is observed.  

6.1 Background 

Classification is a fundamental task in data mining that requires learning a classifier through the 

observation of data. Basically, a classifier is a function that maps instances described by a set of 

attributes to a class label. Naïve Bayes networks have been widely used for the task of 

classification [43, 44]  (Figure 6-1 upper-left). They represent a special case of the more general 

Bayesian networks (BN) formalism and are characterized by their strong assumption about the 

independence of attributes given the target node. Although they generally perform fairly well in 

spite of this assumption [6], they lack the power to represent more complex dependencies among 

attributes and the target node that can affect performance. Tree Augmented Naïve Bayes [7] 

(Figure 6-1 upper-right) is an extension of Naïve Bayes that weakens its assumption, allowing 

additional dependence relations among attributes. It is empirically shown to yield better 

performance [7]. 

Compared with Naïve Bayes and TAN, a BN (Figure 6-1 bottom) doesn‟t distinguish between 

target (class) variable and attributes. The target can be a parent or child of attributes, and general 

dependencies are found among attributes. Although such general BN is expected with several 

promising merits, including (1) yielding better performance than Naïve Bayes and TAN [8], (2) 

encoding more detailed dependence relations as needed in diagnosis applications, and (3) 

inferring any node‟s possible state given complete or incomplete observations of other nodes, the 

NP-complete complexity to learn a BN inhibits its widespread application. 
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Figure 6-1: Examples of Bayesian classifiers, including Naïve Bayes (upper left), Tree-

Augmented Naïve Bayes (upper right) and Bayesian Network (bottom) 

However, we note that not all attributes are effective in predicting the target in applying BN as a 

classifier. With the BN example in Figure 6-1 (bottom), we have a decision rule like, 

                         

                                                               

(6.1) 

of which some terms, namely                                 ,      do not contain the 

target variable  , which means that their values have no direct influence on the classification 

decision of  . By removing them, we obtain a simpler decision rule with no sacrifice with regards 

to classification performance: 

      
 

                              

(6.2) 

The attributes                 , involved in this new version of the decision rule (6.2) 

correspond to the Markov blanket of   , i.e.    . Actually   ,     plus the arcs among them 

also constructs a Bayesian network, part of the original whole BN, and it encodes all the 

dependence relationships appearing in (6.2). Obviously, if we have the Bayesian network over  , 

it is trivial to get the sub-network that is effective for the classification of  , and it is called 

Markov blanket classifier (MBC) (with another name Bayesian network classifier (BNC) in one 

of our early publication [15]) this article to distinguish it from the whole BN over  .  
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Definition 6.1 (Markov Blanket Classifier or Bayesian Network Classifier). Given a Bayesian 

network over  , the partial DAG over       is called the Markov Blanket Classifier, or 

Bayesian Network Classifier about  , and denoted as      or     .  

Note : (1) We will use MBC or BNC to refer the general concept; (2) Because     was used 

in our early published work [15], it is mentioned for easy reference, though     is preferred 

considering its close connection with Markov Blanket.  

As mentioned above, with a learned (known) BN and a given target  , getting the target      is 

a trivial task. In this chapter, we propose one algorithm to learn the      without having to 

learn the whole BN first. It is built on IPC-MB, and it is proved correct, demonstrated as more 

efficient than the conventional approaches which have to learn the BN before we can get MBC. 

In Section 6.2, necessary knowledge of Bayesian network is covered for later reference and self-

contained purpose. Then, in Section 6.3, how the related work is motivated is introduced in brief. 

In Sections 6.4, a local structure learning algorithm for MBC is proposed, and its correctness is 

proved. The complexity analysis is conducted in Section 6.5, followed by empirical study and 

discussion in Section 6.6 and 6.7. A brief conclusion about this chapter is made with Section 6.8. 

6.2 Structure Learning of Bayesian Network 

Since MBC is a BN, but over a feature subset          , those methods applicable to the 

structure learning of BN are believed useful references for our work. There are two ways to view 

a Bayesian network, each suggesting a particular approach to learning and they are described 

below.  

6.2.1 Conditional Independence Test Approach 

This approach views the BN as a structure that represents a group of conditional independence 

relationships among the nodes, according to the concept of d-separation [2]. This suggests 

learning the BN structure by identifying the conditional independence relationships among the 

nodes. Using some statistical test (such as Chi-squared test), we can find the conditional 

independence relationships among the attributes and use these relationships as constraints to 

construct a BN. These algorithms are referred as CI-based algorithms or constraint-based 

algorithms [14, 23, 35, 36]. This approach includes IC algorithm (inductive causation) [2], PC 
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algorithm (after its authors, Peter and Clark) [14], GS algorithm (grow and shrink) [23] and 

TPDA algorithm (three-phase dependency analysis) [36]. All of them recover structures to be 

consistent with the conditional independencies among the variables. Generally, algorithms start 

by learning the skeleton of the graph (by propagating constraints on the neighborhood of each 

variable) and then edges are oriented to cope with dependencies revealed from data. Finally, one 

network is retained from the equivalent class consistent with the series of tests. Under the 

faithfulness condition, such strategies have been proven to build a graph converging to the true 

network as the size of the data approaches infinity. Moreover, their complexity is polynomial, 

assuming that the maximal degree of the network, that is, the maximal size of direct neighbors, is 

bounded [45].  

6.2.2 Score-and-Search Approach 

The second approach views the BN as a structure that represents the joint distribution of the 

attributes. This suggests that the best BN is the one that best fits the data, and leads to the 

scoring-based learning algorithms, that seek a structure maximizes the Bayesian, MDL or 

Kullback-Leibler (KL) entropy scoring function [46, 47]. Since the search space is known to be 

of a super exponential size on the number of nodes , that is,        
 
 
   [48], an exhaustive 

search is practically infeasible, implying that various greedy strategies have been proposed to 

browse DAG space, sometimes requiring some prior knowledge.  

Among them, the state-of-the-art greedy hill climbing strategy, although simple and yielding only 

a locally optimal network, remains one of the most employed method in practice, especially with 

larger networks. There exist various implementations using different empirical tricks to improve 

the score of the results, such as Tabu List, restarting, simulated annealing or searching with 

different orderings of the variables [49, 50].  

No matter what scoring function to take and what heuristic to employ during the search, such 

algorithm will process in the following manner: 

1. Start the search from a given DAG, usually the empty one or Naïve Bayes network; 

n
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2. Then, from a list of possible transformations containing at least addition, withdrawal or 

reversal of an edge, select and apply the transformation that improves the score most while 

also ensuring that graph remains acyclic; 

3. Finally repeat previous step until strict improvements to the score can no longer be found.   

6.2.3 Statistical Equivalence 

A Bayesian network structure   represents conditional independence assumptions that allow the 

joint distribution to be decomposed, reducing the number of parameters. The graph   encodes the 

Markov assumption: Each variable    is independent of its non-descendants, given its parents in 

 .By applying the chain rule of probabilities and properties of conditional independencies, any 

joint distribution that satisfies the Markov assumption can be decomposed into the product form 

                        

 

   

 

(6.3) 

The Bayesian network structure    implies a set of independence assumptions in addition to (6.3). 

Let      be the set of independence statements (of the form   is independent of   given  ) that 

hold in all distributions satisfying these Markov assumptions, and they can be derived as 

consequences of (6.3) [2].  

More than one graph can imply exactly the same set of independencies. For example, consider a 

BN over two variables   and  . The graphs     and     both imply the same set of 

independencies (i.e.,       ). Two graphs   and    are equivalent if           [51]. That 

is, both graphs are alternative ways of describing the same set of independencies.  

This notation of equivalence is crucial since when we examine observations from a distribution, 

we cannot distinguish between equivalent graphs. Pearl and Verma [29] show that we can 

characterize equivalent classes of graphs using a simple representation. In particular, these results 

establish that equivalent BNs have the same underlying undirected graph but might disagree on 

the direction of some of the arcs.  



123 

 

Theorem 6.1 Two DAGs are equivalent if and only if they have the same underlying undirected 

graph and the same v-structures (i.e. same set of uncoupled head-to-head converging, such as  

     ) [29, 52].  

This theorem implies that (1) learning the v-structures is critical for learning a Bayesian network, 

and (2) the remaining arcs‟ directions have no influence on the usage. 

6.3 Motivation, Heuristics and Our Work 

With a known BN over   and   of interest, it is trivial to extract the target     . However, 

from the discussion in Section 6.2 and our experimental study in Section 4.5 (on PC), it is known 

that both CI and score-and-search approaches fail to scale to large problems. Actually, compared 

with the whole network,      normally occupies quite a small area of the whole DAG, in terms 

of both nodes and arcs. For example, the largest MBC in Asia, Alarm, Hailfinder, Test152 and 

PolyAlarm has 5, 8, 8, 17 and 5 nodes respectively, as compared with 8, 37, 56, 152 and 37 nodes 

as contained in the corresponding network. Therefore, an ideal solution permitting to learn only 

the nodes and arcs related with the target      is expected. Having to learn the DAG over    

first is not what we prefer, though we have no other choice in the past, since it means waste of 

computing resource; and generally, the larger is the whole DAG, the more is the possible waste. 

How to reduce search space and reach an efficient learning algorithm for MBC is the goals of this 

and next chapter.  

Given the output of IPC-MB, we want to make use of it to solve the pending problem considering 

three facts that (1) IPC-MB enables us to find the correct    , (2)     contains all and only the 

nodes belonging to the target      (except for   ), and (3)     is much smaller than  , 

restricting the remaining search in a quite smaller scope. With     ready, all existing methods 

available for the structure learning of BN are applicable without changes. One typical naïve 

procedure is to apply IPC-MB first to recognize    , and then apply constrained (CI-test) or 

score-and-search learning algorithms as though      . However, we can take advantage of 

some of the structure learning that occure in IPC-MB to derive       more efficiently.  



124 

 

6.4 IPC-MBC Algorithm Specification and Proof 

6.4.1 Overrall Description 

IPC-MBC requires faithfulness assumption, and it also depends on a series of conditional tests to 

determine if any link     should exist or not. The overall design of IPC-MBC is based on such 

an fact – if we know     of each      , the union of links between                 

should belong to the target     .  

Given target                       , the whole procedure of IPC-MBC (Figure 6-2) can be 

divided into five sequential steps as described below:  

1. Induce the connections between          
   (Line 1-5). IPC-MBC starts with an initial   

in which   is connected with     . The false parents/children are removed by 

disconnecting them from   via the call of FindCanPC-       , with possible exception on 

 ‟s descendants. Candidate parents/children of   then are retrieved from   based on the 

linkage, denoted as    
  .   is marked as scanned by adding it into the container        ; 

2. Remove false positives from    
   to get    , add links between          and collect 

spouse candidates (Line 6-10). Given       
 , it is initialized to be connected to all 

            in   (Note: the edges existing between                 therefore are 

kept un-changed). Then FindCanPC-MBC( ) is called to remove false positives from its 

adjacent neighbors to get    
 . The current   is added to         as well. After such call of 

FindCanPC-MBC( ) on       
 , (1) what connected to   are only its true parents and 

children, denoted as    ; (2) the edges existing between any pair of         are added in 

 ; and (3) nodes adjacent to       are known as candidate spouses, denoted as    
 ;  

3. Recognize true spouses,    , add links among    , and between 

                          We retrieve     and    
  first from   based on the 

connection. For        , we similarly retrieve    
  where    

             . Then, 

for       
         , if it is dependent with   as conditioned on              , it is 

known as a true spouse. For such  , we add links between it and each            , and 

call FindCanPC-MBC( ) to induce the links as may exist between   and          . 
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Since each true spouse   is processed in the same way, we won‟t miss any links among 

     as well as links between            ; 

4. Remove nodes not belonging to             (Line 23). The arcs connecting to the 

removed nodes are deleted as well, with the skeleton of      and some know V-structures 

left in  ; 

5. Orienting the arcs. A series of orientation rules are applied to the outcome of Step 4 to get 

the final     .  

These five steps summarize the overall design of IPC-MBC (Figure 6-2), from which one can see 

that we repeatedly depend on the recognition of parents and children, via calling FindCanPC-

MBC(Figure 6-3), to determine the connection between any pair of nodes (including Step 1, 2 

and 3). This is similar to what we done in IPC-MB, but more complex since here we care not 

only    , but also about links existing among        . Because we carefully restrict the call 

of FindCanPC-MBC within a local scope by (1) following breadth-first manner, (2) removing 

confirmed false positives, and (3) preventing duplicate study, a great reduction of complexity is 

expected. In the coming sections, each step will be expanded with more details, along with 

necessary proof of correctness.   
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Figure 6-2: The overall algorithm specification of IPC-MBC 
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Figure 6-3: FindCanPC-MBC algorithm specification.  

6.4.2 Induce Candidate Parents/Children of Target 

As the name of this algorithm indicates, the whole learning depends on the discovery of parents 

and children enables us to induce the links of interest, which is critical to the locality nature of 

this algorithm. FindCanPC-MBC procedure (Figure 6-3) is responsible for the learning of 

parent/child candidates, and it has four input parameters:  

1.    the active target that we are going to study its connectivity status with others; 

2.    the graph container which contains (1) what we have found, and (2) manually added 

adjacent neighbors of                   upton entering FindCanPC-MBC.  

3.  , the dataset prepared for training;  
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4.  , threshold value to be used in determining if a conditional independence test indicates “true” 

CI relationship or not, e.g. significant or not. It is set empirically, and common choice may 

be 0.01 or 0.05.  

The output of FindCanPC-MBC is contained in    but with some links possibly deleted compared 

with the state when it just enters into the function. For easy reference purpose, we use      

      to represent the graph as got by the end of each of the five step.  

FindCanPC-MBC(   ) (the remaining two parameters are ignored since they are same for 

different calls) actually is same as FindCanPC(     
   in IPC-MB since    

  can be retrieved 

from  , and it is actually done at Line 3 in FindCanPC-MBC. Although there is more 

information contained in   (except for the first call of FindCanPC-MBC), they, in fact, are 

ignored within FindCanPC-MBC. Therefore, all discussions and conclusions on FindCanPC (in 

3.4. 1) apply here. In the first step,   is initialized as                 , and we have the 

following two corollary derived from previous conclusions made in Chapitre 3.  

Corollary 6.1 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 

faithful to a DAG, given                   , FindCanPC-MBC enables us to find the 

superset of     , denoted as    
  (Candidate Parents and Children), and        

  .  

Proof. Please refer to Theorem 3.1. ▋ 

Corollary 6.2 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 

faithful to a DAG, given                   , the only possible false positives as output 

by FindCanPC-MBC are  ‟s descendants.  

Proof. Please refer to Theorem 3.2. ▋ 

Therefore, by the end of the first step, we have                
  , and Figure 6-4 gives 

an example illustration. 
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Figure 6-4:    contains all the parents and children of   (denoted as     since they cannot be 

distinguished for now) as connected to  , as well as some false positives possibly, i.e. 

children‟s descendants (   with dotted circle). Note that nodes NOT connected to   

are not drawn in this graph.   

6.4.3 Recognize    /Links among    /    
  

Given   , it is trivial to retrieve nodes direcly connecting with   in   , denoted as    
   In this 

step, we call FindCanPC-MBC on each      
   If we denote the graph to have by the end of 

this step as   , we need to prove the following two findings: 

              is exactly parents and children of  , i.e.      Besides, 

                                                       

                   , i.e. the links existing among     in    are exactly those among 

    in the target     . 

Lemma 6.1 Given                         , the call of FindCanPC-MBC(     

will output all parents and children of  .  

Proof.         is known to contain nodes having FindCanPC-MBC called. Then, given 

                        , (1)nodes contained in         and confirmed not 

connecting to   in      are excluded from consideration, as expected; and (2) nodes known as 

connecting to   and contained in         keep remained in  . Upon the calling of FindCanPC-

MBC(    , all parents and children must connect to        ; otherwise, it means that some 

              fails some CI test in previous FindCanPC-MBC(X), which is impossible 
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based on Corollary 6.1. Similarly, none of     will be removed in the current FindCanPC-

MBC(Y) given Corollary 6.1. Therefore,  all the parents and children of   will be output as 

connecting to  . ▋ 

Lemma 6.2 Given                         , the call of FindCanPC-MBC(     

will never output non-descendants of   (excluding parents of  ).  

Proof. It is known from Lemma 6.1 that                 by the end of calling 

FindCanPC-MBC(   , which means that        
  all alone within FindCanPC-MBC(  . If 

there is any non-descendant       being output, then it obviously contradicts with the fact 

that                 . ▋ 

Theorem 6.2 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 

faithful to a DAG,                               , FindCanPC-MBC(     will 

always output     and the only possibly false positives as connected to        can only be  ‟s 

descendants.  

Proof. Lemma 6.1 and Lemma 6.2 ensures that     will be output, and non-descendant will 

never be output respectively. The example that some descendants may be output can be found in 

the proof of Theorem 3.1. ▋  

Theorem 6.3 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 

faithful to a DAG,              are exactly    .  

Proof. Given      
              , we initialize                 

        . By calling FindCanPC-MBC(    ,             is known as subset of     

       If      , then it is known that      , and the edge     will keep left in  . Else if 

     , i.e.       , the edge      should has be deleted since (1)   is then a non-

descendant of   and, (2) it is impossible to have this edge based on Theorem 6.2.  

Because we call each FindCanPC-MBC on each      
              , all links 

between                            
  will be deleted. Therefore, what left connected to   in    
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are only its true parents and children. In other words, we have found all links between   and 

   . ▋ 

Corollary 6.3 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 

faithful to a DAG, after the calling of FindCanPC-MBC(     and FindCanPC-MBC(    , 

    stay in   only if         are truly connected.  

Proof. Please refer to the first half part of the proof on Theorem 6.3 above. ▋ 

Theorem 6.4 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 

faithful to a DAG,                                          in    are exactly those existing 

in the target     .  

Proof. We call RecongziePC-MBC(   ) on each      
  (Line 6-10), then each         

                             
  should be in     Sicne        

 , then the statement gets 

proved. ▋  

Therefore, by the end of Step 2, we get closer to the target      – both    and the links among 

    are induced correctly. In addition to these, nodes connected to some       actually 

contain true spouses requiring for further search work, which will be discussed in Step 3. Figure 

6-5 is one example of   , in which the non-dotted edges and circles means they are confirmed as 

part of the target         
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Figure 6-5: In     all connecting to    are exactly   ‟s parents and children, and they still cannot 

be distinguished further.  It also contains all the possible links among    . Candidate 

spouses    
  are found to be connected with some       . In the graph, all 

confirmed findings are drawn with solid lines, and non-confirmed with dotted lines.  

6.4.4 Recognize    /Links among    /Links between     and     

The output of Step 2,   , is fed into Step 3 as input.     can be retrieved from    easily 

(Theorem 6.3). Then, given        we obtain    
  similarly based on the connection in  . 

With       
 , if it is recognized as true spouse (Line 15-18), FindCanPC-MBC( ) is called; 

otherwise, it is removed from  , so as any links connecting to it. If the graph we have by the end 

of Step 3 is denoted as   , we will prove that in addition to what true information as contained in 

  , we have the following additional: 

 All true spouses are left in                    

 Edges between any         are contained in     

 Edges between any       and         are contained in      
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Lemma 6.3 For        ,    
              contains the spouses of   if these spouses 

have   as the common-child with  .  

Proof. It is known that        
 , so all parents of   should  be contained in    

 , saying 

nothing of those having common children. █ 

Lemma 6.4 For       
 ,  only the true spouse of   will satisfy the condition of 

                      ) (at Line 15 of IPC-MBC).  

Proof. Please refer to the proof of  Theorem 3.4. █ 

Theorem 6.5 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 

faithful to a DAG, all true spouses are correctly recognized in     

Proof. (1) Given      , we check each      
 , therefore all spouses as probably contained 

in    
  will be correctly recognized based on Lemma 6.4. (2) The same treatment is given to 

each      , hence we are able to find all spouses as contained in    
 . (3) Assume that there 

is one spouse not belonging to any    
 , this may happen only when the corresponding   is not 

contained in    , which obviously contradicts to Lemma 6.1.  █ 

Theorem 6.6 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 

faithful to a DAG, all edges existing between any         in    are exactly those existing 

beween any         in the target       

Proof. (1) All     are contained in   , based on Theorem 6.5; (2) We call FindCanPC-

MBC(   ) for       , and                         . So, if the edge     

must be added to   before calling FindCanPC-MBC(   )  assuming that    is studied earlier 

than  .  (3) Based on Corollary 6.3, the corresponding edge,    , won‟t be removed from   

since it is added on if it is true. (4) In contrast, all false edges between any         will be 

removed in FindCanPC-MBC(   ) or FindCanPC-MBC(   ). Therefore, what edges left 

between any         by the end of Step 3 are just the true ones. █ 

Theorem 6.7 Under the assumptions that the independence tests are correct and that the learning 

data   is an independent and identically distributed sample from a probability distribution 
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faithful to a DAG, all edges existing between any        and any       in    are exactly 

those existing beween                          in the target      

Proof. (1)It is known that all             are contained in    based on previous discussion. (2) 

Assume that       and      , and it is known that     is added to   when we call 

FindCanPC-MBC(  ) at Line 8 (IPC-MBC). (3) Based on Corollary 6.3, it stays in   since then 

if it is true; otherwise, it will be removed within FindCanPC-MBC(  ) or FindCanPC-MBC(  ). 

If it is removed in FindCanPC-MBC(  ), it will not be added back since    is marked as Scanned 

at Line 9, and will be ignored during preparing adjacency nodes for    at Line 13. (4) All such 

true edges will be left in   since we call FindCanPC-MBC(  ) for each      . (5) All the 

false edges will be removed correct from   since we call FindCanPC-MBC(  ) and FindCanPC-

MBC(  ) for all such pairs of nodes involved. █ 

Therefore, by the end of Step 3, (1) what left connected to   are just    , (2) All spouses are 

correctly recognized, (3) some children are also correctly distinguished from      after being 

recognized as a common child of some       and  ; (4) all edges among     are recognized; 

and (5) all edges between     and      are also recognized. In conclusion, all nodes and edges 

as contained in the target       are correctly recognized. Figure 6-6 shows the result after the 

additional processing, as discussed in this section, being conducted on the graph in Figure 6-5.  

 

Figure 6-6: In   , spouses are recognized, along with some children of   .  
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6.4.5 Achieve the Skeleton of       

All the nodes and links belonging to the target       are correctly recognized in    by the end 

of last step. However, there are some by-products left in the container   , including nodes and 

links (Figure 6-6, but not all of them are presented). Removing them is trivial by judging if they 

belong to     or    . Figure 6-7 is one such example obtained from Figure 6-6, denoted as    

considering it is the outcome after Step 4.     contains the skeleton (see definition below) of the 

target DAG with some oriented edges, but it is noted that the orientation of most links are 

unknown yet.  

 

Figure 6-7: In   , all the nodes and links of the target MBC are there, with some orientation 

determined on some links. No other nodes or links are contained.  

Definition 6.2 (Skeleton). Let   be a DAG, and the undirected version of   is called the skeleton 

of    [52].  

Definition 6.3 (  ).    is the skeleton of the target       plus orientation of some links which 

constructing v-structures.  

6.4.6 Orientation 

The orientation step will look for all triples         such that edges     and     are in the 

graph but not the edge    . Then, if            , we have oriented edges as     and 

   , which creates a new v-structure:      . After all v-structures are recognized by 

repeating this rule, the rest edges are oriented following two basic principles: not to create cycles 

and not to create new v-structure. In our implementation, we refer rules applied in Weka and [53]: 
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 Rule 1:        &           ; 

 Rule 2:      &         ; 

 Rule 3:       &        &        ; 

 Rule 4:         &             ; 

 Rule 5: if no edges are directed then take a random one (first we can find). 

Lemma 6.5 For each triple         such that edges     and     are in the graph but not the 

edge    , if            , then we find one v-structure, i.e.      . 

Proof. Given a connection like      , there are three possible converges, i.e. the so-called 

tail-to-head      , head-to-head       and tail-to-tail      . Then we need 

only prove that       and       are not possible. Assume       is true, then 

           ; otherwise, at least there exists one path       is not blocked, so   is NOT 

independent with  , and     should exist. This is contradictory to the fact that     doesn‟t 

exist in graph. Similarly, we can prove that       is impossible either. Therefore,     

  must be true, and the lemma is proved. █ 

Definition 6.4  (Markov equivalence): Two DAGs are Markov equivalent if they encode the 

same set of independence relations.  

Theorem 6.8  Two DAGs are Markov equivalent with each other if and only if they have the 

same skeleton and they consist of the same of v-structure (or immoralities in the original text 

since they are equivalent concepts).  

In the section of empirical study, we will only check the skeleton and v-structures learned when 

we compare them to that of the underlying true models. This simplifies the comparison work but 

without sacrificing the desired effect.  

6.4.7  Conclusion 

Our explanation on how IPC-MBC induces the target      is presented as step by step in this 

section, including how each step works, the expected outcome, and the correctness of the 

expected outcome. The expected result of IPC-MBC, i.e.     , is ensured by the correctness of 

each step.  
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IPC-MBC is a direct extension of IPC-MB, but with more fine-grained control to integrating the 

recognition of related edges with nodes belonging to    . It completely depends on the 

underlying topology, and the search proceeds in a breadth-first order. By restricing the search in a 

local manner, IPC-MBC is expected to be more efficient than global learning algorithm like PC, 

and our experimental study confirms this (Section 6.6).  

6.5 Complexity Analysis 

The complexity of IPC-MBC is determined by the times of call on FindCanPC-MBC, just like 

FindCanPC to IPC-MB. The complexity of Recognize-MBC is same as FindCanPC in the worst 

case, that is           . However, because     on which FindCanPC-MBC has been called, 

they may not considered in the adjacency table, instead of       always in FindCanPC (IPC-

MB), reduction on real complexity is expected depending on the underlying topology.  

In IPC-MB, FindCanPC is only called for           
 ; however, in  IPC-MBC, 

FindCanPC-MBC is called on           
     . Therefore, the overall time complexity of 

IPC-MBC is expected to be higher than IPC-MB, and the actual difference is determined by the 

underlying topology (since it determines the cardinality of    ). Given the example (Figure 3-5) 

causing the highest complexity to IPC-MB, the corresponding complexity of IPC-MBC is the 

same,            .  

The memory complexity of IPC-MBC is similar to IPC-MB, and no more discussion is spent here. 

6.6 Empirical Study 

6.6.1 Experiment Design 

Though IPC-MBC is proposed to induce     , it can be regarded as an algorithm to induce 

    as well. Considering that the induction of     is the basis for inducing     , we will 

firstly study the performance of IPC-MBC as a learner of Markov blanket, in term of accuracy 

and time efficiency. IPC-MBC will be compared with PC in our study to see how much gain in 

performance it has as a local search. Besides, it will be compared with IPC-MB, though it is 

known more complex than IPC-MB. The comparison will also give us chance to verify the 

implementation of IPC-MBC.   
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Being a MBC learner, we want to compare three approaches, including: 

 PC. PC is called on   to induce the target BN first, then the MBC of interest can be retrieved 

from the BN induced; 

 IPC-MB + PC. Given a target    , we run IPC-MB first to induce       first, realizing 

dimension reduction; then, PC algorithm is employed to induce the      over    . In this 

case, only the information that       applied, and this topology information inferred by 

IPC-MB is ignored; 

 IPC-MBC. Given a target     , IPC-MBC is called to induce the target       

Considering that the output of feature selection influences the structure learning greatly, 

IAMB+PC is not considered due that the poor accuracy performance of IAMB. PCMB+PC is not 

considered as well here because PCMB has been observed with a similar performance with IPC-

MB in term of accuracy, in Chapter 4.  

In the experiments, we use synthetic data sampled from three networks introduced in Chapter 4 

already, including Asia (Figure 4-1), Alarm (Figure 4-2), Test152 and PolyAlarm (Figure 4-3). 

The distribution of the size of MBC, in term of number of edges, as contained in the 

corresponding Bayesian network is shown in Figure 6-8. The corresponding distribution of size 

measured of nodes can be found in Figure 4-4. We run IPC-MB, IPC-MB + PC and IPC-MBC 

separately with each node in the BN as the target variable   and report the average performance 

over 10 rounds, including analysis of accuracy and time efficiency. PC algorithm is called for one 

time given a data set, and the accuracy is reported based on the     or      retrieved from the 

Bayesian network, given each      .  
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Figure 6-8: Distribution of the size of Bayesian network classifier as contained in Asia, Alarm 

and PolyAlarm, and the size is measured by the number of edges.  

Note that in the measure of accuracy of MBC learner, we only consider the skeleton of network 

by ignoring the orientation of edges because (1) determining the orientation is not our research 

focus here, and more importantly (2) given a distribution P, there is more than one DAG 

encoding the same group of constraints given the equivalence network as discussed in 6.4.6.  

6.6.2 IPC-MBC as Markov Blanket Learner 

By applying IPC-MBC as a Markov blanket learner, we ignore the topology induced, but only 

check the nodes as contained in the output. In the comparison of accuracy, we still apply the 

measures of precision, recall and distance as we taken in Section 4.4. 

Only Alarm network is used in the experiment about applying IPC-MBC as a MB learner, and 

the results about average accuracy and time efficiency are reported in 错误！未找到引用源。 

and Table 6.2 respectively.  

Table 6.1: Accuracy comparison of PC, IPC-MB and IPC-MBC over Alarm network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(mean±Std. Err) 

Recall 

(mean±Std. Err) 

Distance 

(mean±Std. Err) 

500 10 PC .77±.05 .78±.03 .37±.04 

1 2 3 4 5 6 7 8 9 10 11 12

Asia 2 2 3 0 1

Alarm 6 8 4 8 2 3 1 2 1 1 1

PolyAlarm 9 10 10 5 1 1 1
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Distribution of the MBC's Size (measured by # of edges)
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IPC-MB .85±.02 .77±.04 .32±.04 

IPC-MBC .85±.02 .76±.04 .33±.04 

1000 10 

PC .90±.03 .85±.03 .21±.04 

IPC-MB .94±.02 .84±.02 .19±.03 

IPC-MBC .94±.02 .83±.02 .20±.03 

2000 10 

PC .96±.02 .90±.03 .13±.04 

IPC-MB .98±.02 .90±.03 .11±.04 

IPC-MBC .98±.02 .90±.03 .11±.04 

3000 10 

PC .97±.01 .92±.02 .10±.02 

IPC-MB .99±.01 .93±.02 .07±.03 

IPC-MBC 1.00±.01 .92±.02 .08±.02 

4000 10 

PC .97±.01 .94±.02 .09±.03 

IPC-MB .99±.01 .95±.01 .06±.03 

IPC-MBC 1.00±.01 .94±.01 .06±.01 

 

5000 

 

10 

PC .96±.02 .94±.01 .10±.02 

IPC-MB .99±.01 .95±.01 .05±.02 

IPC-MBC 1.00±.01 .94±.01 .06±.01 

 

 

Figure 6-9: Comparison of distances given different number of instances (0.5K~5K): PC, IPC-

MB and IPC-MBC (Alarm,  = 0.05, refer to Table 6.1 for more information) 

500 1000 2000 3000 4000 5000

PC 0.37 0.21 0.13 0.10 0.09 0.10 

IPC-MB 0.32 0.19 0.11 0.07 0.06 0.05 

IPC-BNC 0.33 0.20 0.11 0.08 0.06 0.06 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

D
is

ta
n

ce

Average Distance: PC vs. IPC-MB vs. IPC-MBC



141 

 

In Table 6.2,  the “# CI Tests” of IPC-MB and IPC-MBC  refers to the average number of CI 

tests we need to induce the corresponding MB given each node of the Alarm network as target.  

The amount for PC is the total number of CI tests required to learn the whole Alarm BN as by 

traditional approach. The “# Data Passes” is defined in similar way.  

Table 6.2: Time efficiency comparison of PC, IPC-MB, IPC-MBC (Alarm,  = 0.05).  

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Err) 

# CI Tests 

(mean±Std. Err) 

500 10 

PC 220±16 2736±82 

IPC-MB 12±1 561±31 

IPC-MBC 13±1 639±32 

1000 10 

PC 191±17 3168±105 

IPC-MB 12±0 637±37 

IPC-MBC 15±0 738±34 

2000 10 

PC 188±12 3528±121 

IPC-MB 13±0 736±37 

IPC-MBC 15±1 845±39 

3000 10 

PC 200±19 3717±166 

IPC-MB 13±0 798±53 

IPC-MBC 16±0 920±56 

4000 10 

PC 211±18 3902±122 

IPC-MB 14±0 849±48 

IPC-MBC 16±0 986±64 

5000 10 

PC 215±16 3956±80 

IPC-MB 14±0 876±31 

IPC-MBC 16±0 1010±29 
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Figure 6-10: Example distribution of conditioning set size (i.e. the cardinality of conditioning set) 

as involved in CI tests conducted by PC, IPC-MB and IPC-MBC in experiments of 

Alarm (5,000 instances).  

 

Figure 6-11: Comparison of the increasing rate of CI tests as required by PC, IPC-MB and IPC-

MBC given more observations (Alarm network,   = 0.05). Note: For displaying and 

0 1 2 3 4

PC 24.6% 59.8% 12.9% 2.6% 0.2%

IPC-MB 14.6% 68.2% 13.8% 3.3% 0.1%

IPC-BNC 13.5% 54.1% 22.4% 10.0% 0.0%
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convenient observation purpose, the corresponding number of PC algorithm is 

divided by 4.  

Some conclusion can be made by observing the results shown in the two tables above: 

1. PC, IPC-MB and IPC-MBC have nearly same accuracy performance, given different size of 

observations. This also reflects indirectly that they have similar data efficiency; 

2. As expected, PC is the slowest one among the three, and IPC-MB is the fastest. Compared 

with PC, both IPC-MB and IPC-MBC realize local search, which enables them to be much 

more efficient than PC. For example, given 4000 observations, by average, IPC-MB and 

IPC-MBC require about 78% and 75% fewer number of CI tests than PC respectively; in 

term of data passes, IPC-MB and IPC-MBC requires about 93% and 91% fewer than that of 

PC respectively; 

3. IPC-MBC is proposed to induce more information than IPC-MB, hence it costs more than 

IPC-MB. However, the additional cost is affordable as shown in our experiments with Alarm, 

about 10% more on both data passes and CI tests; 

4. Given more observations, all three algorithms are able to conduct more searches to achieve 

better result, but IPC-MBC has higher increasing rate on time complexity than the other two. 

IPC-MB and PC has similar rate (Figure 6-11); 

5. IPC-MBC is expected to achieve higher accuracy than IAMB, and faster than PCMB, based 

on our comparison on them with IPC-MB in Chapter 4. 

Table 6.3: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over Alarm network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(mean±Std. 

Err) 

Recall 

(mean±Std. 

Err) 

Distance 

(mean±Std. 

Err) 

500 10 

PC .71±.05 .74±.03 .45±.03 

IPC-

MB+PC 
.74±.04 .74±.04 .42±.03 

IPC-MBC .79±.02 .73±.04 .39±.04 

1000 10 

PC .88±.03 .81±.02 .26±.04 

IPC-

MB+PC 
.92±.02 .81±.02 .23±.06 

IPC-MBC .93±.03 .74±.05 .29±.06 

2000 10 
PC .96±.02 .87±.03 .15±.04 

IPC- .98±.02 .87±.03 .14±.04 



144 

 

MB+PC 

IPC-MBC .95±.02 .77±.04 .25±.05 

3000 10 

PC .97±.01 .90±.03 .12±.03 

IPC-

MB+PC 
.92±.02 .92±.02 .14±.02 

IPC-MBC .99±.01 .91±.02 .10±.03 

4000 10 

PC .97±.01 .92±.01 .11±.02 

IPC-

MB+PC 
.92±.02 .94±.01 .13±.03 

IPC-MBC 1.00±.01 .93±.02 .07±.02 

 

5000 

 

10 

PC .96±.02 .93±.01 .11±.02 

IPC-

MB+PC 
.92±.02 .94±.01 .12±.02 

IPC-MBC 1.00±.01 .94±.01 .06±.02 

 

 

Figure 6-12: Comparison of distances given different number of instances (0.5K~5K): PC vs. 

IPC-MB+PC vs. IPC-MBC (Alarm,  = 0.05, refer to Table 6.3 for more information). 

Table 6.4: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over PolyAlarm network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(mean±Std. 

Err) 

Recall 

(mean±Std. 

Err) 

Distance 

(mean±Std. 

Err) 

500 1000 2000 3000 4000 5000

IPC-MB+PC 0.42 0.28 0.18 0.14 0.13 0.12 

IPC-BNC 0.39 0.23 0.14 0.10 0.07 0.06 

PC 0.45 0.26 0.15 0.12 0.10 0.11 
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500 10 

PC .75±.07 .72±.05 .44±.08 

IPC-

MB+PC 
.83±.06 .74±.04 .34±.07 

IPC-MBC .84±.06 .74±.04 .34±.08 

1000 10 

PC .80±.04 .80±.02 .34±.06 

IPC-

MB+PC 
.90±.03 .85±.02 .21±.04 

IPC-MBC .91±.03 .84±.02 .21±.04 

2000 10 

PC .83±.03 .83±.02 .29±.03 

IPC-

MB+PC 
.91±.02 .90±.01 .15±.02 

IPC-MBC .93±.02 .89±.02 .15±.03 

3000 10 

PC .83±.03 .86±.01 .27±.03 

IPC-

MB+PC 
.91±.04 .91±.03 .15±.05 

IPC-MBC .92±.03 .91±.03 .14±.05 

4000 10 

PC .86±.03 .87±.03 .23±.04 

IPC-

MB+PC 
.92±.02 .92±.02 .13±.02 

IPC-MBC .94±.02 .91±.02 .12±.03 

 

5000 

 

10 

PC .87±.03 .89±.03 .20±.04 

IPC-

MB+PC 
.92±.03 .92±.02 .12±.03 

IPC-MBC .94±.02 .92±.02 .11±.02 

 

 

500 1000 2000 3000 4000 5000

PC 0.44 0.34 0.29 0.27 0.23 0.20 

IPC-MB+PC 0.34 0.21 0.15 0.15 0.13 0.12 

IPC-BNC 0.34 0.21 0.15 0.14 0.12 0.11 
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Figure 6-13: Comparison of distances given different number of instances (0.5K~5K): PC vs. 

IPC-MB+PC vs. IPC-MBC (PolyAlarm,   = 0.05, refer to Table 6.4 for the complete 

data). 

Table 6.5: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over Test152 network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(mean±Std. Err) 

Recall 

(mean±Std. Err) 

Distance 

(mean± 

Std. Err) 

500 10 

PC .74±.03 .68±.01 .49±.01 

IPC-MB+PC .88±.01 .69±.01 .39±.01 

IPC-MBC .91±.01 .68±.01 .38±.01 

750 10 

PC .74±.04 .73±.02 .45±.03 

IPC-MB+PC .88±.03 .75±.02 .33±.02 

IPC-MBC .92±.02 .72±.02 .34±.02 

1000 10 

PC .74±.02 .78±.02 .42±.02 

IPC-MB+PC .89±.02 .79±.02 .28±.02 

IPC-MBC .93±.02 .77±.02 .28±.03 

1500 10 

PC .75±.02 .87±.02 .35±.03 

IPC-MB+PC .90±.01 .88±.03 .19±.03 

IPC-MBC .94±.01 .86±.03 .19±.03 

2000 10 

PC .78±.02 .94±.02 .26±.02 

IPC-MB+PC .91±.01 .94±.02 .13±.02 

IPC-MBC .95±.01 .93±.03 .12±.03 

2500 10 

PC .80±.02 .97±.02 .22±.02 

IPC-MB+PC .91±.02 .97±.01 .12±.03 

IPC-MBC .95±.01 .96±.02 .09±.02 
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Figure 6-14: Comparison of distances given different number of instances (0.25K~2.5K): PC vs. 

IPC-MB+PC vs. IPC-MBC (Test152,  = 0.05, refer to Table 6.5 for the complete 

data). 

The number of data passes and CI tests as required by PC and IPC-MBC to induce the MBC here 

actually are same as that needed to induce the MB. IPC-MB plus PC is added here since it is not 

considered in the experiments about applying IPC-MBC as Markov blanket learner. Again, the 

measures reported on IPC-MB plus PC and IPC-MBC are the average values over each node of 

the target whole Bayesian network, while the values about PC are the time required to learn the 

whole Bayesian network. This comparison allows us to observe the difference between global 

and local learning.  

Table 6.6: Time complexity comparison of PC, IPC-MB+PC and IPC-MBC over Asia network.  

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Err) 

# CI Tests 

(mean±Std. Err) 

100 20 

PC 24±6 135±119 

IPC-MB+PC 16±11 129±166 

IPC-MBC 9±5 96±113 

200 20 

PC 25±8 149±136 

IPC-MB+PC 16±8 138±169 

IPC-MBC 9±4 110±136 

500 20 PC 24±3 111±18 

250 500 750 1000 1500 2000 2500

PC 0.55 0.49 0.45 0.42 0.35 0.26 0.22 

IPC-MB+PC 0.43 0.39 0.33 0.28 0.19 0.13 0.12 

IPC-BNC 0.43 0.38 0.34 0.28 0.19 0.12 0.09 
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IPC-MB+PC 15±3 80±20 

IPC-MBC 9±2 66±13 

1000 10 

PC 24±3 120±15 

IPC-MB+PC 16±3 87±19 

IPC-MBC 9±1 73±12 

2000 10 

PC 24±3 131±23 

IPC-MB+PC 16±4 96±32 

IPC-MBC 10±2 81±18 

4000 10 

PC 26±4 139±10 

IPC-MB+PC 15±2 101±12 

IPC-MBC 9±1 86±8 

6000 10 

PC 27±4 147±19 

IPC-MB+PC 17±2 112±20 

IPC-MBC 10±1 93±15 

8000 10 

PC 28±4 147±18 

IPC-MB+PC 17±2 110±19 

IPC-MBC 10±1 91±13 

10000 10 

PC 27±4 150±17 

IPC-MB+PC 14±2 110±15 

IPC-MBC 10±1 92±12 

20000 10 

PC 31±3 155±14 

IPC-MB+PC 19±2 124±20 

IPC-MBC 11±2 100±12 

Table 6.7: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (Alarm,  = 0.05).  

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Err) 

# CI Tests 

(mean±Std. Err) 

500 10 

PC 220±16 2736±82 

IPC-MB+PC 23±2 602±34 

IPC-MBC 13±1 639±32 

1000 10 

PC 191±17 3168±105 

IPC-MB+PC 24±1 678±38 

IPC-MBC 15±0 738±34 

2000 10 

PC 188±12 3528±121 

IPC-MB+PC 25±1 777±39 

IPC-MBC 15±1 845±39 

3000 10 

PC 200±19 3717±166 

IPC-MB+PC 26±1 844±55 

IPC-MBC 16±0 920±56 

4000 10 

PC 211±18 3902±122 

IPC-MB+PC 27±1 901±49 

IPC-MBC 16±0 986±64 

5000 10 
PC 215±16 3956±80 

IPC-MB+PC 27±1 928±31 
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IPC-MBC 16±0 1010±29 

Table 6.8: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (PolyAlarm,  = 0.05).  

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Err) 

# CI Tests 

(mean±Std. Err) 

500 10 

PC 117±16 1061±48 

IPC-MB+PC 8±1 162±10 

IPC-MBC 13±1 153±8 

1000 10 

PC 140±26 1145±42 

IPC-MB+PC 15±0 177±8 

IPC-MBC 10±0 192±11 

2000 10 

PC 158±24 1223±35 

IPC-MB+PC 17±1 195±7 

IPC-MBC 10±0 212±8 

3000 10 

PC 174±15 1265±39 

IPC-MB+PC 17±0 209±8 

IPC-MBC 11±0 226±9 

4000 10 

PC 176±11 1292±41 

IPC-MB+PC 17±1 213±8 

IPC-MBC 11±0 231±9 

5000 10 

PC 181±2 1308±56 

IPC-MB+PC 18±1 215±12 

IPC-MBC 11±1 233±13 

Table 6.9: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (Test152,  = 0.05).  

Instances 
Simulation 

Rounds 
Algorithm 

# Data Passes 

(mean±Std. Err) 

# CI Tests 

(mean±Std. Err) 

250 10 

PC 608±0 17947±351 

IPC-MB+PC 19±1 796±29 

IPC-MBC 12±0 800±30 

500 10 

PC 669±78 19803±392 

IPC-MB+PC 21±1 946±29 

IPC-MBC 13±1 962±38 

750 10 

PC 684±80 21429±582 

IPC-MB+PC 23±1 1083±55 

IPC-MBC 15±1 1114±70 

1000 10 

PC 684±80 22732±426 

IPC-MB+PC 25±1 1179±34 

IPC-MBC 16±0 1222±37 

1500 10 

PC 714±73 24865±415 

IPC-MB+PC 27±1 1357±37 

IPC-MBC 17±1 1421±42 

2000 10 
PC 684±80 26173±593 

IPC-MB+PC 29±1 1479±48 
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IPC-MBC 18±0 1556±57 

2500 10 

PC 730±96 27512±614 

IPC-MB+PC 30±1 1583±45 

IPC-MBC 18±0 1660±45 

From the experimental results shown above, we notice that 

 PC, IPC-MB+PC and IPC-MBC have similar accuracy performance. IPC-MBC is slightly 

better than the other two, and IPC-MB+PC is slightly poorer than the other two. Given more 

observations, all three algorithms are expected to product the perfect result; 

 By applying IPC-MB to reduce the dimension first, the whole time complexity of IPC-MB + 

PC is much lower than applying PC directly. With the problem scale becomes larger, this 

saving is expected to be more obvious. For example, given Asia (20,000 instances for 

learning), 39% fewer of CI tests and  48% fewer of data passes are needed by IPC-MB+PC 

than PC; however, given larger problem like Alarm (5,000 instances for learning), the gains 

become as 77% and  84%; 

 IPC-MBC realizes local learning as well, and the comparison with PC is discussed in 6.7. 

Compared with IPC-MB+PC, it has similar time complexity in term of CI tests, but 

obviously fewer data passes.  

6.6.3 IPC-MBC as MBC Learner 

The experiments in this section focus on the accuracy and time efficiency of IPC-MBC as MBC 

learner. We run IPC-MB plus PC and IPC-MBC with each node in each BN as the target variable 

and then, report the average precision and recall over all the nodes for each BN. Precision is the 

number of true positives in the output divided by the number of edges in the output. Recall is the 

number of true positives in the output divided by the number of true positives in the MBC. 

Euclidean distance from perfect precision and recall is defined as Equation (4.1). The 

significance level for the independence test is 0.05. PC algorithm is ran with one time given each 

data set to induce the whole network, and the precision, recall and distance are measured 

similarly over each MBC as retrieved from the whole BN recovered.  

Table 6.10: Accuracy comparison of PC, IPC-MB+PC and IPC-MB over Asia network. 

Instances 
Simulation 

Rounds 
Algorithm 

Precision 

(mean±Std. Err) 

Recall 

(mean±Std. Err) 

Distance 

(mean± 
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Std. Err) 

100 20 

PC .40±.20 .49±.18 .87±.13 

IPC-MB+PC .45±.15 .47±.17 .84±.14 

IPC-MBC .45±.15 .47±.17 .84±.13 

200 20 

PC .49±.20 .54±.22 .77±.13 

IPC-MB+PC .56±.16 .54±.12 .71±.13 

IPC-MBC .57±.16 .54±.11 .71±.13 

500 20 

PC .65±.16 .63±.10 .57±.16 

IPC-MB+PC .68±.16 .65±.11 .54±.17 

IPC-MBC .70±.16 .64±.11 .53±.17 

1000 10 

PC .70±.16 .70±.09 .48±.16 

IPC-MB+PC .73±.15 .72±.08 .45±.15 

IPC-MBC .76±.17 .70±.09 .44±.17 

2000 10 

PC .72±.15 .69±.05 .48±.10 

IPC-MB+PC .73±.15 .73±.01 .45±.12 

IPC-MBC .76±.17 .69±.03 .45±.12 

4000 10 

PC .82±.05 .74±.08 .36±.08 

IPC-MB+PC .81±.04 .76±.07 .36±.06 

IPC-MBC .87±.02 .73±.09 .33±.10 

6000 10 

PC .79±.06 .81±.10 .33±.08 

IPC-MB+PC .79±.05 .82±.09 .33±.08 

IPC-MBC .86±.07 .81±.10 .27±.12 

8000 10 

PC .82±.08 .80±.10 .30±.11 

IPC-MB+PC .80±.06 . 82±.08 .32±.08 

IPC-MBC .87±.04 .80±.10 .26±.10 

10000 10 

PC .82±.09 .79±.08 .32±.08 

IPC-MB+PC .80±.04 .81±.06 .33±.03 

IPC-MBC .87±.01 .79±.08 .27±.07 

20000 10 

PC .90±.11 .93±.08 .14±.12 

IPC-MB+PC .84±.10 .94±.08 .20±.11 

IPC-MBC .93±.09 .93±.08 .12±.11 
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Figure 6-15: Comparison of distances given different number of instances (0.1K~20K): PC vs. 

IPC-MB+PC vs. IPC-MBC (Asia,  = 0.05, refer to Table 6.10 for more information) 

6.7 Discussion of Different MBC Learners 

Three algorithms are compared in our experiments, PC, IPC-MB+PC and IPC-MBC. Given the 

problem of learning     , PC is regarded as global learning algorithm since it needs to learn 

the whole Bayesian network first, while the other two are viewed as local learning.  

Being a typical and known algorithm for the structure learning of Bayesian network, PC is able to 

induce the structure efficiently. With the whole structure ready, it is trivial to get the target 

    , given any      In our experiments, a Bayesian network is known to exist over   , but 

this may not be true in real applications, especially in the exploratory stage when we are just 

thrown with a group of observations with feature set   . There may exist a Bayesian network 

over       , but not on  . If    is much smaller than  , much resource may be wasted, though it 

is not avoidable. If we need only     , and considering that         normally is even smaller 

than   , the benefit brought by local learning algorithms, in fact, will be more considerable than 

what we observed in the experiments here.  

100 200 500 1000 2000 4000 6000 8000 10000 20000

PC 0.87 0.77 0.57 0.48 0.48 0.36 0.33 0.30 0.32 0.14 

IPC-MB+PC 0.84 0.71 0.54 0.45 0.45 0.36 0.33 0.32 0.33 0.20 

IPC-BNC 0.84 0.71 0.53 0.44 0.45 0.33 0.27 0.26 0.27 0.12 
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The combination of IPC-MB and PC is a direct application of IPC-MB as feature reduction tool, 

and it indeed reduces the time complexity by average, as compared with PC. For example of 

Alarm, IPC-MB+PC requires 77% and 84% fewer CI tests and data passes than PC‟s. Though PC 

is directly applied to the output of IPC-MB, not much work is left to PC (see Figure 6-16 for an 

example). 

 

Figure 6-16: On the output of IPC-MB, the number of CI tests as required by PC to induce the 

connectivity is relatively small compared with that of IPC-MB. 

IPC-MBC works independently, and it realizes local learning as well. Compared with IPC-

MB+PC, IPC-MBC achieves a little higher accuracy performance, but requiring much fewer data 

passes. If we ignore the difference on data passes, whether IPC-MB+PC is more efficient than 

IPC-MBC is hard to say since it is influenced by the underlying topology, and we are interested 

to share with some in an informal way: 

 Comparing with IPC-MB, the additional CI tests of IPC-MB+PC are required by PC over 

   , which can roughly be measured as                ; For IPC-MBC, the 

additional CI tests can be measured in a similar way,                 ; 

 In both cases,           refers to the search within the neighborhood of some   

           in our case here. The complexity of           is determined by the 

cardinality of     
  , as well as the actual connectivity among    
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 The largest     
   as possibly met in the PC of IPC-MB+PC is          , while the 

smallest      
   as may be met in the phase (Line 11-22, IPC-MBC) is  (           ; 

 Then, if        is comparable to    , the work left to IPC-MB+PC will be comparable to or 

more than that left with IPC-MBC, when IPC-MBC will be more efficient. Asia is one such 

simple example, see Figure 6-7;  

 Besides, if the connectivity among     , especially among     , is dense, then IPC-MBC 

may also be more efficient since the remaining work may be small compared with those 

finished. 

So, it is known that the underlying topology influence the actual performance of IPC-MB+PC 

and IPC-MBC. However, one conclusion is confirmed, that is both of them are much more 

efficient than PC.  

6.8 Conclusion 

In this chapter, one novel algorithm called IPC-MBC is proposed to induce the Bayesian network 

classifier given target    , without having to learn the whole Bayesian network over  . It is 

built on our work of inducing Markov blanket, IPC-MB, and hence they share similar framework, 

realizing the learning via a series of local search of the neighborhood of    . By carefully 

limiting the search in a breadth-first order, and removing as many false positives as possible in 

each meta-local-search, it achieves much reduction on time complexity than global learning 

algorithm like PC.  

IPC-MB + PC is also studied in our experiments. Based on the fact that      is the DAG over 

   , applying IPC-MB first enables to reduce the search space greatly, considering that 

normally     is much smaller than  . The overall time complexity of IPC-MB+PC is observed 

to be much lower than PC as shown in our experiments.  

In conclusion, both IPC-MB+PC and IPC-MBC are believed useful solutions to induce     , 

realizing the same accuracy but requiring much less computing resource. Therefore, they are 

believed able to solve larger problem, or scale up better, given the same limit on CPU or memory. 
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Chapitre 7 CONCLUSION AND PERSPECTIVES 

7.1 Conclusion on Knowledge, Work and Experience Gained 

Markov Blankets are known to be the optimal feature set for a classification problem. We 

introduced a novel algorithm for the induction of a Markov Blanket, IPCMB, and showed that it 

is in general more accurate than the current state of the art algorithm, PCMB, while achieving a 

highly substantial performance gain. The efficiency of IPC-MB is close to the fastest, but highly 

inaccurate IAMB algorithm. Thus, IPC-MB offers the compelling advantage of combining speed 

and accuracy over the existing algorithms.  

Furthermore, we showed that using the intermediate results of IPC-MB, we can derive a Markov 

Blanket Classifier (MBC) that is more accurate than an MBC derived by applying the classic PC 

algorithm to the nodes of the Markov Blanket, or by deriving the whole BN first which, in any 

case, is an highly inefficient solution.  

7.2 Perspectives and Feature Work 

7.2.1 Reduce data passes 

In our implementation, due to the limit of memory and large number of contingency tables, we 

have to scan the data file for several times to construct necessary contingency tables to collect 

needed frequency information. For algorithms requiring intensive CI tests, like IPC-MB, 

repeating scanning the data files may be quite influential to the actual efficiency performance, 

especially when we have large data file. An ideal solution is to scan the data file for one time, and 

cache all frequencies in memory (or at least partial in memory) for later quick reference. One 

possibly economic choice is AD-Tree [54], and we hope to implement this to further speed up the 

search. If this is realized, the efficiency difference between IPC-MB and IAMB can be further 

reduced, making IPC-MB as more competitive a choice. Of course, we are interested to explore 

other effective and efficient caching solutions considering that is widely demanded in modern 

data mining and machine learning tasks which depend on statistical tests.  
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7.2.2 Work with Score-and-Search Structure Learning Algorithms 

Both IPC-MBC and IPC-MB+PC are categorized into conditional test based structure learning 

algorithms, and untill now we haven‟t tried another one popular category of structure learning 

algorithms, i.e. the so called score-and search as we mentioned in last chapter. This family of 

algorithms views the structure learning of Bayesian Network as an optimization problem. They 

employ some measure about the consistence between the data and one graph, and 

add/delete/reverse edge until reach a graph with highest defined scores. However, as we 

discussed in Section 3.2, this approach is not suitable for identifying     over  , so we chose 

the constraint search approach in IPC-MB, which is followed by all previous works as well.  

With     ready, as produced by IPC-MB, the score-based search becomes applicable for 

inducing the Bayesian Network over         (i.e.     ), just like how it works for 

determining the Bayesian Network over the whole problem domain   traditionally. In this 

chapter, we propose one such kind of algorithm which depends on IPC-MB to induce     first 

and then induce the target       with score-based search. Considering that only the real 

effective features of the target MBC left through IPC-MB, a much smaller search space compared 

with the original one where all features are present, the proposed scoring-and-search learning 

algorithm is expected to be much more efficient than learning the whole Bayesian network with 

the same approach. Furthermore, compared with IPC-MB+PC, where only the information of 

        is referred, the additional edges and orientations information (see Section 5.7) are to 

be considered in this new algorithm to further narrow down the search space.  

Given the output by IPC-MB, we have the knowledge about which attributes contained in the 

target MBC, which are parent/child nodes, and which are spouses if there are (see the following 

figure). Besides, from the output of IPC-MB, we have all the edges between      and  , and 

some orientations as known from the induction of v-structure in IPC-MB. These known edges 

and orientations are fixed, which means that they won‟t be removed or reversed in the remaining 

learning by score-and-search. The overall procedure is demonstrated as in Figure 7-1.  
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Figure 7-1: The overall procedure: start with a bag of variables, then selected with IPC-MB, and 

finally apply further scoring-based search to add the remaining arcs as well as to 

determine the orientations. v-structure determined by IPC-MB is fixed.  

Two direct benefits are there to enable us to anticipate a very promising MBC learning algorithm: 

(1) The output of IPC-MB helps to prune the search space greatly by limiting further search only 

among the nodes contained in the final MBC; (2) The topology information inferred by IPC-MB 

further reduces the search complexity. The overall algorithm corresponding to Figure 7-1 is 

specified in Figure 7-3, and it can be divided into three steps: 

1. Feature selection by IPC-MB; 

2. Initialize the orientation of edges between      and   as pointing to  ; the orientation of v-

structure is set respectively too; 

3. Apply score-and-search to reverse orientation, add edges or remove edges until no increase 

on score can be made. What output then is the target Bayesian network classifier. 

With problem   and training data  , IPC-MB( ) is called to induce     first. The correctness 

of IPC-MB is proved in Chapter 3, and the typical output of IPC-MB can be represented as 

Figure 7-2. In Figure 7-2, there are three types of information that are critical for later reference: 

1.     nodes: They are directly connected to  , and they may be parents or children of   . 

Therefore, the orientation of    –   is unknown; 

2.   nodes: They are directly connected to  , and they are known as children. Correspondinly, 

we have oriented arc     ; 
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3.    nodes: They are not directly connected to  , but they are directly connected to   nodes. 

They are known as spouses of  , and we have oriented arc  S  .  

 

Figure 7-2: Typical output as returned by IPC-MB. 

Therefore, the output of IPC-MB is very informative as compared to the initial point when we 

know nothing but a bag of variables   as given. In some cases, such kind of algorithms start with 

Naïve Bayes, i.e. the target variable pointing to all feature variables, which obviously includes 

noisy information as compared to the output of IPC-MB because normally the number of 

effective features is much less than the size of whole feature set.  

Given the typical output of IPC-MB shown in Figure 7-2, the remaining search can be viewed as 

common BN structure learning, but starting with a given structure (as output by IPC-MB). To 

make the remaining scoring and search workable as conventional, those non-oriented arcs of  the 

output of IPC-MB is set in advance, all pointing to the target from the    . Figure 7-4 is one 

such example derived from Figure 7-2. Compared with the target Bayesian network classifier, we 

need to determine additionally that: 

1. If reversing the arcs         can result with higher score; 

2. If there are additional edges existing between        , and their orientations. 

In addition adding/removing/reversing edges (but without introducing a cycle), and re-calculating 

the score, as conducted in conventional score-and-search algorithm, two special rules must be 

obeyed in the search, which is specific in our solution:  

 Those oriented arcs        should be fixed, i.e. no deleting or reversing of orientation 

is applicable to them;  
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 Those arcs       can only be reversed, but not deleted. 

These two constraints further restrict the remaining search space, decreasing the problem 

complexity to some extent. 

 

Figure 7-3: CI2S-MBC algorithm specification 

 

Figure 7-4: Adjust the output of IPC-MB to make the scoring work as conventional. 
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Implementation of CI2S-MBC is expected, including various scoring function and search 

strategies. A comparison with global score-and-search can be interesting, and the target algorithm 

is believed as another efficient algorithm for the learning of Bayesian network classifier.  

7.2.3 Bayesian Network Structure Learning via Parallel Local Learning 

As we discussed in 2.4, the GS [24] algorithm actually was proposed for the learning of Bayesian 

network via a series of local learning. The most benefit of divide-and-conquer strategy is that we 

are expected to solve larger scale of problems. Considering the obvious advantage of IPC-MB 

relative to IAMB and GS, and their similar functionality, we are interested in proposing one 

algorithm for the learning of Bayesian network, based on the outcome of IPC-MB.  

Since the induction of Markov blanket given     is independent one another, parallel 

processing is possible, which will further improve the efficiency. Besides, as we discussed in 3.7, 

the computing of IPC-MB can also proceed in parallel, therefore, we expect a very promising 

work compared with existing work.  

7.2.4 Increasing the Reliability of Induction 

For algorithms relying on independence information from CI tests, like IPC-MB and IPC-MBC, a 

major shortcoming is the impact that noise and errrors from small sample size has on the output 

[37]. The reliability of statistical tests significantly diminishes on small data sets. In the current 

version, we ignore a CI test according to the rule of  Equation (1.5), and we terminate the search 

when there are no more reliable tests available. Taking such a conservative choice is based on 

empirical knowledge shared by the community as well as our own experience – conservatism is 

warranted by the fact that early and invalid CI tests can propagate errors by leading the search 

through incorrect paths. 

One avenue to investigate the impact of noisy CI tests over the performance of the different 

algorithm is to use an Oracle in place of the CI tests : the results of each CI test would be forced 

to comply with the “true” distribution. Comparing the results of an oracle based simulation with 

that of the current method would allow to assess the impact of some of the invalid CI tests over 

the performance.  
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Bromberg and Margaritis [37] proposed a novel approach to increase the reliability of 

independence tests for small data sets. Their contribution is to recognize that the outcomes of 

independence tests are not themselves independent but are constrained by the outcomes of other 

tests through Pearl‟s well-known properties of the conditional independence relation [2]. This 

way, certain inconsistent test outcomes may be corrected, which will help us to avoid some errors 

and achieve results of higher accuracy. We are interested to incorporate their findings into our 

works directly or with some customizations.   

7.2.5 Comparison with Other Feature Selection Algorithms 

Finally, we are also interested in making a comparison with other mainstream feature selection 

algorithms which don‟t fall into this family, i.e. depending on the induction of Markov blanket. 

Relative effective and efficiency are two important aspects we are looking forward to a study. In 

term of the effectiveness, in addition to the distance measure (                           ) 

taken already in our experimental studies, we will build predictors using the features chosen, and 

compare their relative prediction accuracy. The latter approach is useful in scenarios where we 

don‟t know the exact optimal feature subset.  
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