

UNIVERSITÉ DE MONTRÉAL

EFFICIENT LEARNING OF MARKOV BLANKET AND MARKOV BLANKET

CLASSIFIER

SHUNKAI FU

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÉSE PRÉSENTÉE EN VUE DE L‟OBTENTION

DU DIPLÔME DE PHILOSOPHIAE DOCTOR

(GÉNIE INFORMATIQUE)

AOÛT 2010

© Shunkai Fu, 2010.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée:

EFFICIENT LEARNING OF MARKOV BLANKET AND MARKOV BLANKET

CLASSIFIER

présenté par : FU Shunkai

en vue de l‟obtention du diplôme de : Philosophiae Doctor

a été dûment accepté par le jury d‟examen constitué de :

M. GAGNON Michel, Ph.D, président

M. DESMARAIS Michel ,Ph.D, membre et directeur de recherche

M. PAL Christopher J., Ph.D, membre

Mme. PRECUP Doina, Ph.D, membre

iii

DEDICATION

The author wishes to dedicate this dissertation to my family, who offered me unconditional love

and support throughout the course of this thesis.

iv

ACKNOWLEDGEMENTS

My utmost gratitude goes to my master and doctoral program supervisor, Dr. Michel C.

Desmarais for bringing me to Ecole Polytechnique de Montreal, for his expertise, kindness, and

most of all, for his patience. I believe that one of the main gains of this 5-year program was

working with Dr. Michel C. Desmarais and gaining his trust and friendship. My thanks and

appreciation goes to the thesis committee members, Dr. Michel Gagnon, Dr. Christopher Pal and

Dr. Doina Precup. I do owe thanks to Dr. Wai-Tung Ho and Dr. Spisis Demire for their sharing

and guide during my time in SPSS. Also, I thank my wife, Shan Huang who stands beside me

and encourages me constantly. My thanks goes to my children, JingYi and JingYao for giving

me happiness and joy. Finally, I would like to thank my parents whose love is boundless.

v

CONDENSÉ EN FRANÇAIS

Cette thèse porte sur deux sujets très reliés, à savoir la classification et la sélection de

variables. La première contribution de la thèse consiste à développer un algorithme pour

l'identification du sous-ensemble optimal de variables pour la classification d'une variable cible

dans un cadre bayésien, sous-ensemble que l'on désigne par la Couverture de Markov d'une

variable cible. L'algorithme développé, IPC-MB, affiche une performance prédictive et une

complexité calculatoire se situant au niveau des meilleurs algorithmes existants. Cependant, il est

toutefois le seul algorithme affichant les meilleures performances sur les deux plans

simultanément, ce qui constitue une percée importante au plan pratique.

La Couverture de Markov d'une variable cible est un sous ensemble qui ne comporte pas de

structure, notamment le réseau bayésien des variables impliquées. La seconde contribution

consiste à exploiter les résultats intermédiaires de l'algorithme IPC-MB pour améliorer

l'induction de la structure du réseau bayésien correspondant à la Couverture de Markov d'une

variable cible. Nous démontrons empiriquement que l'algorithme pour induire la structure du

réseau bayésien est légèrement plus efficace qu'un algorithme standard comme PC qui n'utilise

pas les données intermédiaires de IPC-MB.

La sélection des variables pertinentes pour une tâche de classification est un problème

fondamental en apprentissage machine. Il consiste à réduire la dimensionalité de l‟espace des

solutions en éliminant les attributs qui ne sont pas pertinents, ou qui le sont peu. Pour la tâche

classification, un jalon important vers la résolution de ce problème a été atteint par Koller et

Sahami [1]. Basé sur les travaux de Pearl dans les réseaux bayésiens [2], il a établi que la

Couverture de Markov (Markov Blanket) d‟une variable T représentait le sous-ensemble optimal

d‟attributs pour la prédiction de sa classe. Nous le dénotons lorsque la variable cible est

connue et par autrement.

Induire étant donné un réseau bayésien est un problème trivial. Cependant, l‟apprentissage

de la structure d‟un réseau bayésien à partir de données est un problème reconnu comme NP

difficile [3]. Pour un grand nombre de variables, l‟apprentissage d‟un réseau bayésien est en

pratique très difficile non seulement à cause de la complexité calculatoire, mais aussi à cause de

la quantité de données requises pour des problèmes dont la dimensionalité est très grande.

Souvent, le problème de la dimensionalité est contourné en imposant des contraintes sur la

vi

structure comme c‟est le cas avec les réseaux bayésiens naïfs [4, 5], qui sont probablement les

plus répandus. Leur complexité calculatoire est relativement faible, n‟ayant pas à effectuer un

apprentissage de la structure du réseau, et leur effacité est très souvent relativement bonne malgré

les hypothèses fortes qu‟ils imposent.

Une des extensions des réseaux bayésiens naïfs est le formalisme de réseaux bayésiens naïf

arborescent (Tree-Augmented Naïve Bayes, ou TAN) [6]. Les TAN sont généralement plus

performants que les réseaux bayésiens naïfs en permettant certaines formes de dépendance parmi

les attributs. Cependant, ils repondent néanmoins sur des hypothèses fortes qui peuvent les rendre

invalides en général. Du fait que les réseaux bayésiens ne font pas d‟hypothèses fortes sur les

données, on s‟attend que leur performance pour la classification soit meilleure que pour un réseau

bayésien naïf ou un TAN [7]. Cependant, il faut noter que pour la tâche de classification,

seulement un sous-ensemble du réseau bayésien est effectif pour la prédiction, c‟est-à-dire la

Couverture de Markov du nœud cible, . Lorsque ce sous-ensemble est utilisé

aux fins de classification, nous y référerons par , c‟est-à-dire le classificateur basé sur la

Couverture de Markov. En général, le classificateur est considérablement plus petit que le

réseau bayésien et sa performance est en théorie équivalente à celle du réseau bayésien complet.

L‟induction de et sont deux problèmes très près l‟un de l‟autre, bien que l‟induction de

 peut s‟avérer être une étape indépendante.

Cette thèse aborde le problème de l‟efficacité de l‟apprentissage de et à partir d‟un

échantillon de données limité. L‟objectif premier est de fournir un algorithme général de

sélection des variables, ou attributs, tel que requis pour différentes tâches de classification, ou

même de forage de données. Notre première contribution est de définir un algorithme qui

élimine les attributs non pertinents d‟un (ou) sous l‟hypothèse de la fidélité (voir plus

loin), lorsque la Couverture de Markov d‟une variable cible T est unique et composée des parents

de T , de ses enfants et de ses conjoints, ou spouses, [2]. Selon notre revue

de la littérature, il existe au moins neuf travaux publiés depuis 1996 portant sur l‟apprentissage de

la couverture de Markov, c'est-à-dire depuis que le concept a été démontré être le sous-ensemble

optimal d‟attributs pour la prédiction et malgré le fait qu‟il est connu depuis 1988 [1][2].

Tous les algorithmes connus peuvent être regroupés en deux catégories : (1) ceux qui dépendent

de la propriété d‟indépendance conditionnelle , où T est considéré indépendant de

vii

toutes les autres variables étant donné les valeurs connues de ; et (2) les algorithmes qui

reposent sur l‟information topologique, c‟est-à-dire la recherche des parents, enfants et conjoints

du nœud cible. IAMB [8] est l‟exemple le plus représentatif des algorithmes du premier groupe.

Sa complexité calculatoire et son implémentation sont toutes deux d‟une grande simplicité.

IAMB comporte deux phases: la phase de croissance et celle de décroissance. Chaque phase

nécessite la vérification de savoir si une variable X est indépendante de T étant donné un

ensemble de nœuds candidats de la Couverutre de Markov,
 , puis d‟enlever ou d‟ajouter des

nœuds de cet ensemble de candidats. PCMB [9] est la contribution la plus récente aux

algorithmes avant nos travaux et il est un exemple du second groupe. Ce fut en réalité le premier

et alors le seul algorithme dont la preuve a été faite qu‟il peut induire la Couverture de Markov,

bien que ce n‟est toutefois pas le seul qui s‟est appuyé sur l‟information topologique pour le faire.

Malgré ces avancements, la recherche d‟un algorithme qui peut à la fois garantir de recouvrer la

Couverture de Markov et le faire en un temps raisonnable et avec un ensemble de données

réaliste demeure un objectif non atteint. Par exemple, KS [1] est un algorithme approximatif (il

ne peut garantir de recouvrer la Couverture de Markov); IAMB est un algorithme simple qui peut

fournir cette garantie, mais il impose une quantité extraordinaire de données afin d‟arriver à un

résultat acceptable pour des problèmes pratiques; MMPC/MB [10] et HITON-PC/MB [11]

représentent les premiers essais pour améliorer l‟efficacité en regard des données par

l‟exploitation de données topologiques, mais il a été démontré qu‟ils n‟offrent pas la garantie de

recouvrer la Couverture de Markov [9]; PCMB a suivi la découverte de MMPC/MB et de

HITON-PC/MB, et ils peuvent effectivement fournir de bien meilleurs résultats que IAMB pour

les mêmes données. Cependant, PCMB est beaucoup plus lent que IAMB, et nos résultats

suggèrent même qu‟il peut nécessiter plus de temps que l‟algorithme PC (voir Chapitre 4). Nous

proposons l‟algorithme IPC-MB [12-14] afin d‟offrir une solution qui vise à la fois à fournir des

résultats en un temps rapide et avec une quantité de données réaliste. Cet algorithme est de la

seconde catégorie, c‟est-à-dire qu‟il utilise l‟information topologique pour dériver la couverture

de Markov.

Tout comme les algorithmes MMPC/MB [10], HITON-PC/MB [11] et PCMB, l‟algorithme IPC-

MB divise l‟apprentissage de en deux phases séparées, l‟induction de et de . Dans

la première phase, IPC-MB effectue une recherche pour trouver les voisins immédiats du nœud et

elle est commune aux algorithmes PCMB, MMPC/MB et HITON-PC/MB. Cependant, alors que

viii

ces algorithmes effectuent une série de tests afin de déterminer si un nœud X n‟est PAS

indépendant du nœud cible T étant donné tous les ensembles possibles de conditions, c‟est-à-dire

 où , IPC-MB présume initialement que toutes les variables du domaine

à l‟exclusion de T (c.-à-d. \{T}) sont des candidats à . Puis, l‟algorithme élimine les

variables une à une si X est indépendant de T étant donné un ensemble de conditions

quelconque. Parce que la majorité des réseaux ne sont pas denses en pratique et que IPC-MB

commence par des ensembles conditionnels vides pour les élargir un nœud à la fois, il lui est

possible d‟éliminer la majorité des faux candidats avec un petit ensemble de conditionnels, ce qui

entraîne un gain en termes de calculs et de données nécessaires. Bien que certains descendants de

T peuvent demeuré dans , ils sont rapidement éliminés en réexecutant la même recherche

pour chaque
 (candidats de qui est le résultat de la recherche précédente) afin de

déterminer si
 . De plus, en reconnaissant que tous les conjoints sont contenus dans

l‟union des résultats des recherches pour , c.-à-d.

 , et que seulement les véritables

conjoints contenus dans
 seront dépendant de T conditionnellement à l‟ensemble séparateur

trouvé précédemment plus X, une quantité importante de ressources est économisée en

comparaison avec PCMB afin de dériver .

Nous faisons la preuve que l‟algorithme IPC-MB est valide et comparons sa performance avec

les algorithmes qui sont actuellement l‟état de l‟art, notamment [10], PCMB [9] et PC [15]. Les

expériences effectuées avec des échantillons de données générées à partir de réseaux bayésiens

connus, notamment des réseaux de petites tailles comme Asia qui compte huit nœuds, des

réseaux moyenne envergure comme Alarm et PolyAlarm (une version polyarborescence, polytee,

de Alarm) avec 37 nœuds, et des réseaux plus grands comme Hailfinder (56 nœuds) et Test152

(152 nœuds). Nous mesurons la performance des algorithmes en termes de précision, rappel et de

distance (). Le temps de calcul est mesuré en termes de nombre de tests

d‟indépendance conditionnelle (CI) et de nombre de passes qui doivent être effectuées sur les

données (relectures des données), car une seule passe n‟est généralement pas suffisante pour

mettre en cache toutes les fréquences requises en mémoire. Ces mesures sont couramment

utilisées, car elles sont indépendantes du matériel utilisé et représentent la grande partie des

ressources calculatoires consommées pour ce type d‟algorithmes.

ix

Les résultats démontrent que, IPC-MB fournit (1) un niveau de performance nettement supérieur

à IAMB pour une quantité d‟observations équivalente, atteignant jusqu‟à 80% en réduction de

distance (mesurée par rapport au résultat idéal), (2) a une performance légèrement supérieure à

PCMB et PC (toujours à quantité de données égales), (3) nécessite jusqu‟à 98% moins de tests CI

que PC et 95% moins que PCMB, et (4) en moyenne les tests CI comportent un ensemble

conditionnel relativement plus petit par rapport à IAMB et PCMB (ce qui est en bonne partie à la

source des améliorations observées). Nous pouvons donc conclure que les stratégies

d‟apprentissage de et adpotées pour IPC-MB sont très efficaces et permettent un gain

significatif pour atteindre l‟objectif d‟induire la Couverture de Markov avec un rapport réaliste de

temps et de données.

Étant donné le résultat de IPC-MB, c.-à-d. , les algorithmes conventionnels pour induire la

structure d‟un réseau bayésien peuvent être appliqués pour recouvrir autre modification

puisque l‟apprentissage de est indépendant d‟eux. La complexité de l‟apprentissage de la

structure devrait être considérablement réduite en comparaison de l‟apprentissage induit de

l‟ensemble des variables du domaine . Nous avons réalisé une autre étude dans le cadre de la

thèse en appliquant l‟algorithme PC pour l‟apprentissage de la structure étant donné ,

l‟algorithme IPC-MB+PC, et avons observé un temps de calcul considérablement réduit. En fait,

le résultat de IPC-MB peut être considéré comme la sélection de variables d‟un problème et être

utilisé dans un grand nombre d‟algorithmes de prédiction. L‟algorithme a d‟ailleurs été

développé par l‟auteur lorsqu‟à l‟emploi de SPSS en 2007 et il est actuellement intégré au

module Clémentine 12 pour dériver un .

Une seconde contribution de cette thèse est l‟extension de IPC-MB pour induire la structure d‟un

 directement sans avoir à dériver l‟ensemble du réseau bayésien au préalable comme la

solution IPC-MB+PC le fait, ce qui constitue une première à notre connaissance. Cet algorithme

est nommé IPC-MBC (ou IPC-BNC dans une publication antérieure) [16]. Tout comme IPC-MB,

il repose sur une recherche locale afin de déterminer les voisins d‟une variable.

Étant donné une variable cible , l‟algorithme IPC-MBC peut être divisé

en 5 étapes, après une initialisation où le nœud T est assigné à une liste de nœuds « visités »,

Scanned={T}.

x

1. Induction des liens entre
 commence avec un graphe initial dans

lequel T est connecté avec tous les nœuds autres nœuds de , sans toutefois spécifier de

direction aux liens. Puis, les nœuds dont le test CI indique une indépendance sont alors

considérés non connectés. Les tests de CI commencent avec un ensemble conditionnel vide

puis incrémentent cet ensemble d<un nœud à la fois jusqu‟à ce que tous les tests possibles

soient effectués. À la fin du processus, l‟ensemble des nœuds connectés à T qui reste,
 ,

contient tous les liens entre et , les parents et enfants réels de T, mais il contient aussi

des faux positifs.

2. Élimination des faux positifs de
 , ajout des liens entre tous les nœuds de

 et

recueil des conjoints candidats. La seconde étape consiste à établir un lien non-dirigé entre

tous les nœuds de
 aux autres nœuds de , pour obtenir

 (c.-à-d. tous les Y connectés à un nœud quelconque Z dans) . Puis la procédure

appliquée à l‟étape 1 est répétée pour tout
 afin d‟éliminer les faux liens de

dépendance, après quoi chaque X est ajouté à la liste Scanned. À cette étape, l‟ensemble des

liens non-dirigés et des nœuds restants forment un graphe contenant (1) uniquement les

véritables parents et enfants de T (c.-à-d. , en présumant des tests CI fidèles) et (2) les

liens entre ces parents. Les liens adjacents à sont donc des candidats conjoints,

 .

3. Identification des véritables conjoints, , ajout des liens entre conjoints eux-mêmes et

entre les conjoints et les véritables parents de T, . Pour chaque , on identifie

 , où

 et où

 . Puis, pour chaque

 , si Y est dependent de T conditionnellement à , alors Y est un

veritable conjoint de T, et nous obtenons une structure en V : . De plus, pour ce

Y, nous ajoutons des liens non orientés avec chaque dans . Finalement, la

procédure similaire permettant de déterminer les faux positifs de
 tel qu‟appliquée

précédemment aux liens entre et qui restent dans . Comme chaque

véritable conjoint de Y est traité de la même façon, tous les liens entre les conjoints, ,

seront identifiés, de même que ceux entre .

4. Élimination des nœuds n’appartenant pas à . L‟étape précédente ajoute des

nœuds n‟appartenant pas à à travers le calcul de

 . Ces nœuds sont

xi

éliminés par une procédure similaire à celle de l‟étape 2. Le graphe résultant comprte

alors une structure proche de celle de contenant certains liens dirigés obtenus à

travers la structure en V, et la majorité non dirigés.

5. Orientation des liens. Une procédure relativement standard est appliquée à obtenu de

l‟étape précédente pour orienter tous les liens et obtenir la structure finale de .

L‟algorithme IPC-MBC est prouvé correct. Lors de nos tests empiriques, nous avons comparé sa

performance de classification (précision, rappel et distance) et son efficience en termes de

nombre de tests CI et de passes de données avec celles de PC et IPC-MB+PC (c.-à-d.

l‟apprentissage de la structure avec l‟algorithme PC appliqué sur le produit de IPC-MB). Les

mêmes données que celles utilisées pour l‟étude de IPC-MB ont été utilisées. Sans surprise, IPC-

MBC et IPC-MB+PC sont tous deux plus efficaces que PC, avec un gain de l‟ordre de 95%, sans

perte au plan de la performance. D‟autre part, IPC-MBC affiche un léger gain de performance

par rapport à IPC-MB+PC. Quant à son efficacité, on ne peut garantir que IPC-MBC nécessitera

moins de tests CI que IPC-MB+PC, mais il nécessite moins de passes sur les données. Ces

différences peuvent s‟expliquer du fait que IPC-MB et PC n‟échangent aucune information

intermédiaire alors que IPC-MBC réutilise les mêmes tests CI à la fois pour l‟induction de la

structure comme pour la sélection des nœuds, ce qui lui confère une meilleure efficacité lors

d‟une même passe sur les données et influence sa performance.

Outre les deux contributions principales présentées, nous discutons de la question de fiabilité des

tests CI et de son influence sur le résultat des algorithmes, ainsi que des actions à prendre

advenant le cas de tests non fiables. Une piste derecherche intéressante serait d'explorer le

comportement de IPC-MB sous un modeinspiré de la notion d'Oracle en tests logiciels [4]. Le

principe consiste à substituer la valeur du test d'indépendance par le résultat , c'est-à-dire le

résultat conforme au réseau Bayésien qui a servi à générer les données aléatoires. Dans un tel

mode, deux hypothèses importantes sont alors forcées d'être respectées : (1) celui de la fidélité

des données au réseau sous-jacent et (2) la fiabilité du test conditionnel est alors assurée. Une

comparaison de la performance du mode Oracle avec celle du mode de simulation original

permettrait ainsi d'explorer l'impact du non-respect des hypothèses sous-jacentes à IPC-MB.

De plus, pour aborder la question de l‟efficacité qui demeure un problème pour des applications

réelles, nous présentons uneesquisse d‟un algorithme pour paralléliser IPC-MB et un autre d‟une

xii

heuristique basée sur IPC-MB qui sont tous deux susceptibles d‟améliorer la valeur pratique de

ce type d‟algorithmes. Finalement, nous abordons la question d‟appliquer des algorithmes pour la

recherche d‟une structure basée sur le score plutôt que sur des tests CI. Le score correspond ici à

la probabilité d'observer la distribution donné étant donnée un réseau bayésien. Quoique

considéré comme une approche prometteuse, leur coût calculatoire était jusqu‟ici l‟obstacle

majeur qui a brimé la recherche de telles solutions. En effet, le nombre de topologies possibles de

réseau bayésien croît de façon très rapide en fonction du nombre de variables et devient

rapidement impossible à traiter après quelques dizaines de variables et même moins. Mais en

considérant que IPC-MB réduit considérablement la dimensionalité de l‟espace problème et qu‟il

nous permet de fixer certains liens entre , et , alors les algorithmes basés sur le score peuvent

effectuer un gain d‟efficacité important en les combinant avec IPC-MB.

xiii

RÉSUMÉ

La sélection de variables est un problème de première importance dans le domaine de

l'apprentissage machine et le forage de données. Pour une tâche de classification, un jalon

important du développement de stratégies sélection de variables a été atteint par Koller et Shamai

[1]. Sur la base des travaux de Pearl dans le domaine des réseaux bayésiens (RB) [2], ils ont

démontré que la couverture de Markov (CM) d'une variable nominale représente le sous-

ensemble optimal pour prédire sa valeur (classe).

Différents algorithmes ont été développés pour d'induire la CM d'une variable cible à partir de

données, sans pour autant nécessiter l'induction du RB qui inclue toutes les variables potentielles

depuis 1996, mais ils affichent tous des problèmes de performance, soit au plan de la complexité

calculatoire, soit au plan de la reconnaissance.

La première contribution de cette thèse est le développement d'un nouvel algorithme pour cette

tâche. L'algorithme IPC-MB [9-11] permet d'induire la CM d'une variable avec une performance

qui combine les meilleures performances en terme de complexité calculatoire et de

reconnaissance. IPC-MB effectue une recherche itérative des parents et enfants du noeud cible

en minimisant le nombre de variables conditionnnelles des tests d'indépendance. Nous prouvons

que l'algorithme est théoriquement correct et comparons sa performance avec les algorithmes les

mieux connus, IAMB [12], PCMB [13] et PC [14]. Des expériences de simulations en utilisant

des données générées de réseaux bayésiens connus, à savoir un réseau de petite envergure, Asia,

contenant huit noeuds; deux réseaus de moyenne envergure, Alarm et PolyAlarm de 37 noeuds,

et deux réseaux de plus grande envergure, Hailfinder contenant 56 noeuds et Test152 contenant

152 noeuds.

Les résultats démontrent qu'avec un nombre comparable d'observations, (1) IPC-MB obtient une

reconnaissance nettement plus élevée que IAMB, jusqu'à 80% de réduction de distance (par

rapport à un résultat parfait), (2) IPC-MB a une reconnaissance légèrement supérieure que PCMB

et PC, et (3) IPC-MB nécessite jusqu'à 98% moins de tests conditionnels que PC et 95% de moins

que PCMB (le nombre de tests conditionnels représente la mesure de complexité calculatoire ici).

La seconde contribution de la thèse est un algorithme pour induire la topologie du RB constitué

des variables de la CM. Lorsqu'une CM d'une variable cible forme un RB, ce réseau est alors

considéré comme un classificateur, nommé une Couverture de Markov de Classification (MBC).

xiv

L'algorithme a été nommé IPC-MBC sur la base du premier algorithme, IPC-MB. À l'instar de

IPC-MB, l'algorithme IPC-MBC effectue une série de recherches locales pour éliminer les faux-

négatifs, incluant les noeuds et les arcs. Cependant, sa complexité est supérieure et requiert des

ressources calculatoires plus importantes que IPC-MB. Nous prouvons que IPC-MB est

théoriquement et effectuons des études empiriques pour comparer sa performance calculatoire et

de reconnaissance par rapport à PC seul et PC combiné à IPC-MB (c.-à-d. l'induction de la

structure du RB avec l'algorithme PC seul et avec PC appliqué sur le résultat de IPC-MB). Les

mêmes données que pour les expériences de simulation de IPC-MB sont utilisées. Les résultats

démontrent que IPC-MBC combiné à IPC-MB et que PC combiné à IPC-MB sont tous deux plus

efficaces que PC seul en termes de temps de complexité calculatoires, fournissant jusqu'à 95% de

réduction du nombre de tests conditionnels, sans pour autant avoir d'impact au plan du taux de

reconnaissance.

xv

ABSTRACT

Feature selection is a fundamental topic in data mining and machine learning. It addresses the

issue of dimension reduction by removing non-relevant, or less relevant attributes in model

building. For the task of classification, a major milestone for feature selection was achieved by

Koller and Sahami [1]. Building upon the work of Pearl on Bayesian Networks (BN) [2], they

proved that a Markov blanket (MB) of a variable is the optimal feature subset for class prediction.

Deriving the MB of a class variable given a BN is a trivial problem. However, learning the

structure of a BN from data is known to be NP hard. For large number of variables, learning the

BN is impractical, not only because of the computational complexity, but also because of the data

size requirement that is one of the curses of high dimensionality feature spaces.

Hence, simpler topologies are often assumed, such as the Naive Bayes approach (NB) [5, 6],

which is probably the best known one due its computational simplicity, requiring no structure

learning, and also its surprising effectiveness in many applications despite its unrealistic

assumptions. One of its extension, Tree-Augmented Naïve Bayes (TAN) [7] is shown to have a

better performance than NB, by allowing limited additional dependencies among the features.

However, because they make strong assumptions, these approaches may be flawed in general.

By further relaxing the restriction on the dependencies, a BN is expected to show better

performance in term of classification accuracy than NB and TAN [8]. The question is whether we

can derive a MB without learning the full BN topology for the classification task. Let us refer to a

MB for classification as a Markov Blanket Classifier, MBC. The MBC is expected to perform as

well as the whole Bayesian network as a classifier, though it is generally much smaller in size

than the whole network.

This thesis addresses the problem of deriving the MBC effectively and efficiently from limited

data. The goal is to outperform the simpler NB and TAN approaches that rely on potentially

invalid assumptions, yet to allow MBC learning with limited data and low computational

complexity.

Our first contribution is to propose one novel algorithm to filter out non-relevant attributes of a

MBC. From our review, it is known that there are at least nine existing published works on the

learning of Markov blanket since 1996. However, there is no satisfactory tradeoff between

xvi

correctness, data requirement and time efficiency. To address this tradeoff, we propose the IPC-

MB algorithm [9-11]. IPC-MB performs an iterative search of the parents and children given a

node of interest. We prove that the algorithm is sound in theory, and we compare it with the state

of the art in MB learning, IAMB [12], PCMB [13] and PC [14]. Experiments are conducted

using samples generated from known Bayesian networks, including small one like Asia with

eight nodes, medium ones like Alarm and PolyAlarm (one polytree version of Alarm) with 37

nodes, and large ones like Hailfinder (56 nodes) and Test152 (152 nodes). The results

demonstrate that, given the same amount of observations, (1) IPC-MB achieves much higher

accuracy than IAMB, up to 80% reduction in distance (from the perfect result), (2) IPC-MB has

slightly higher accuracy than PCMB and PC, (3) IPC-MB may require up to 98% fewer

conditional independence (CI) tests than PC, and 95% fewer than PCMB. Given the output of

IPC-MB, conventional structure learning algorithms can be applied to recover MBC without any

modification since the feature selection procedure is transparent to them. In fact, the output of

IPC-MB can be viewed as the output of general feature selection, and be employed further by all

kinds of classifier. This algorithm was implemented by the author while working at SPSS and

shipped with the software Clementine 12 in 2007.

The second contribution is to extend IPC-MB to induce the MBC directly without having to

depend on external structure learning algorithm, and the proposed algorithm is named IPC-MBC

(or IPC-BNC in one of our early publication) [15]. Similar to IPC-MB, IPC-MBC conducts a

series of local searches to filter out false negatives, including nodes and arcs. However, it is more

complex and requires greater computing resource than IPC-MB. IPC-MBC is also proved sound

in theory. In our empirical studies, we compare the accuracy and time cost between IPC-MBC,

PC and IPC-MB plus PC (i.e. structure learning by PC on the features output by IPC-MB), with

the same data as used in the study of IPC-MB. It is observed that both IPC-MBC and IPC-MB

plus PC are much more time efficient than PC, with up to 95% saving of CI tests, but with no loss

of accuracy. This reflects the advantage of local search and feature selection respectively.

xvii

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENTS .. IV

CONDENSÉ EN FRANÇAIS ... V

RÉSUMÉ .. XIII

ABSTRACT .. XV

TABLE OF CONTENTS .. XVII

LIST OF TABLES .. XXIII

LIST OF FIGURES .. XXV

LIST OF ACRONYMS AND ABBREVIATIONS .. XXXI

Chapitre 1 INTRODUCTION ... 1

1.1 Feature selection ... 1

1.2 Classification benefits from feature selection .. 3

1.3 Bayesian Network, Markov blanket and Markov blanket classifier 4

1.4 KS and related algorithms .. 6

1.5 Motivation, contributions and overall structure ... 7

Chapitre 2 REVIEW OF ALGORITHMS FOR MARKOV BLANKET LEARNING 11

2.1 Faithfulness Assumption .. 11

2.2 Statistical dependence and independence .. 12

2.2.1 Cross-entropy ... 12

2.2.2 Pearson‟s Chi-Square test ... 12

2.2.3 Chi-Square test with Yates correction .. 13

2.2.4 Test ... 14

2.2.5 Our Choice ... 15

xviii

2.3 KS (Koller and Sahami‟s Algorithm) ... 15

2.4 GS (Grow-Shrink) .. 16

2.5 IAMB and Its Variants ... 18

2.5.1 IAMB ... 18

2.5.2 InterIAMBnPC ... 20

2.5.3 Fast-IAMB ... 21

2.6 MMMB (Max-Min Markov Boundary algorithm)... 23

2.6.1 Bayesian Network and Markov Blanket .. 23

2.6.2 D-separation ... 26

2.6.3 MMPC/MB Algorithm ... 29

2.7 HITON-PC/MB .. 32

2.8 PCMB ... 34

2.8.1 Motivation and Theoretical Foundation ... 34

2.8.2 Algorithm Specification ... 35

Chapitre 3 A NOVEL ALGORITHM FOR LOCAL LEARNING OF MARKOV BLAKNET :

IPC-MB 38

3.1 Motivation .. 38

3.1.1 Data efficiency, accuracy and time efficiency ... 38

3.1.2 Assumptions and overview of our work .. 40

3.2 IPC-MB algorithm specification and proof .. 42

3.2.1 Overall description ... 42

3.2.2 Learn Parent/Child Candidates ... 43

3.2.3 Learn Parents/Children ... 49

3.2.4 Learn Spouses .. 52

3.3 IPC-MB is Sound in Theory ... 55

xix

3.4 Complexity Analysis .. 56

3.4.1 Time Complexity of FindCanPC .. 56

3.4.2 Time Complexity of IPC-MB .. 61

3.4.3 Memory Requirement of FindCanPC .. 63

3.4.4 Memory Requirement of IPC-MB ... 65

3.4.5 Brief Conclusion on the Complexity of IPC-MB ... 65

3.5 Data Efficiency and Reliability of IPC-MB ... 65

3.6 Analysis of Special Case: Polyrtree ... 67

3.7 Parallel version of IPC-MB .. 69

3.7.1 Overall illustration .. 69

3.7.2 Proof of soundness ... 70

3.7.3 Time and space complexity .. 71

3.7.4 About implementation .. 71

3.8 Conclusion .. 71

Chapitre 4 EMPIRICAL STUDY OF MARKOV BLANKET LEARNING 73

4.1 Experiment Design ... 73

4.2 Data Sets ... 73

4.3 Implementation Version of IPC-MB .. 77

4.4 Accuracy ... 78

4.4.1 Small Network: Asia .. 79

4.4.2 Moderate Network: Alarm ... 82

4.4.3 Large Network: Hailfinder and Test152 .. 85

4.4.4 Polytree Network: PolyAlarm (Derived from Alarm) ... 88

4.4.5 Conclusion .. 91

xx

4.5 Time Efficiency .. 93

4.5.1 Small Network: Asia .. 94

4.5.2 Moderate Network: Alarm ... 95

4.5.3 Large Network: Hailfinder and Test152 .. 96

4.5.4 Polytree Network: PolyAlarm(Derived) .. 97

4.5.5 Conclusion .. 98

4.6 Data Efficiency ... 101

4.6.1 Relative Accuracy .. 101

4.6.2 Distribution of Conditioning Set Size .. 102

4.7 Summary .. 105

Chapitre 5 TRADEOFF ANALYSIS OF DIFFERENT MARKOV BLANKET LEARNING

ALGORITHMS ... 107

5.1 Introduction .. 107

5.2 Category of Algorithms .. 107

5.3 Efficiency Gain by Local Search ... 108

5.4 Data Efficiency ... 108

5.4.1 Data Efficiency is Critical .. 108

5.4.2 Why IAMB is Very Data Inefficient .. 108

5.4.3 PCMB is Data Efficient .. 109

5.4.4 IPC-MB is Data Efficient Too ... 109

5.5 Time Efficiency .. 110

5.5.1 IAMB is Fast but with High Cost ... 110

5.5.2 IPC-MB is Much More Efficient Than PCMB .. 111

5.6 Scalability ... 112

5.7 Information Deduced .. 113

xxi

5.8 Approximate Version of IPC-MB .. 114

5.9 Summary .. 116

Chapitre 6 A NOVEL LOCAL LEARNING ALGORITHM OF BAYESIAN NETWORK

CLASSIFIER: IPC-MBC .. 118

6.1 Background .. 118

6.2 Structure Learning of Bayesian Network ... 120

6.2.1 Conditional Independence Test Approach ... 120

6.2.2 Score-and-Search Approach ... 121

6.2.3 Statistical Equivalence ... 122

6.3 Motivation, Heuristics and Our Work .. 123

6.4 IPC-MBC Algorithm Specification and Proof ... 124

6.4.1 Overrall Description ... 124

6.4.2 Induce Candidate Parents/Children of Target .. 127

6.4.3 Recognize /Links among / .. 129

6.4.4 Recognize /Links among /Links between and 132

6.4.5 Achieve the Skeleton of .. 135

6.4.6 Orientation .. 135

6.4.7 Conclusion .. 136

6.5 Complexity Analysis .. 137

6.6 Empirical Study .. 137

6.6.1 Experiment Design ... 137

6.6.2 IPC-MBC as Markov Blanket Learner ... 139

6.6.3 IPC-MBC as MBC Learner .. 150

6.7 Discussion of Different MBC Learners ... 152

6.8 Conclusion .. 154

xxii

Chapitre 7 CONCLUSION AND PERSPECTIVES .. 155

7.1 Conclusion on Knowledge, Work and Experience Gained .. 155

7.2 Perspectives and Feature Work .. 155

7.2.1 Reduce data passes ... 155

7.2.2 Work with Score-and-Search Structure Learning Algorithms 156

7.2.3 Bayesian Network Structure Learning via Parallel Local Learning 160

7.2.4 Increasing the Reliability of Induction ... 160

7.2.5 Comparison with Other Feature Selection Algorithms .. 161

BIBLIOGRAPHY ... 162

xxiii

LIST OF TABLES

Table 3.1: General analysis of the number of CI tests as required in FindCanPC. 57

Table 4.1: Feature summary of data sets ... 77

Table 4.2: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Asia network. 79

Table 4.3: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Alarm network. 83

Table 4.4: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Hailfinder network. 85

Table 4.5: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Test152 network. ... 85

Table 4.6: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over polytree version

Alarm network. ... 88

Table 4.7: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over Asia network.

 .. 94

Table 4.8: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over ALARM

network. .. 95

Table 4.9: Time complexity comparison of IAMB, PCMB, IPC-MB over Hailfinder network

(= 0.05). ... 96

Table 4.10: Time complexity comparison of IAMB, PCMB, IPC-MB over Test152 network

(= 0.05). ... 96

Table 4.11: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over PolyAlarm

network. .. 97

Table 4.12: Time complexity comparison of between IAMB/PCMB/IPC-MB and PC. The

comparison is based on the average measures of 20K-Asia experiment, 5K-

PolyAlarm experiment, 5K-Alarm, 20K-Hailfinder and 2.5K-Test152 ex-

periments respectively. In the table means that x% reduction is achieved

compared with PC algorithm; , in contrast, indicates additional x% cost

relative to that of PC algorithm. ... 99

xxiv

Table 4.13: Time complexity comparison of IAMB/PCMB/IPC-MB given example networks

with same number of nodes but different density of connectivity. All are

measured in experiments with 5,000 instances. ... 100

Table 5.1: The comparison of IPC-MB to PCMB and IAMB in terms of time efficiency and

accuracy. About time cost, means IPC-MB costs more CI tests than

PCMB or IAMB; and about accuracy, means IPC-MB‟s distance to the

perfect result is larger than PCMB or IAMB (note: the smaller the distance,

the more accurate the result). .. 113

Table 5.2: Trade-off summary over IAMB, PCMB and IPC-MB. ... 116

Table 6.1: Accuracy comparison of PC, IPC-MB and IPC-MBC over Alarm network. 139

Table 6.2: Time efficiency comparison of PC, IPC-MB, IPC-MBC (Alarm, = 0.05). 141

Table 6.3: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over Alarm network. 143

Table 6.4: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over PolyAlarm network.

 .. 144

Table 6.5: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over Test152 network. .. 146

Table 6.6: Time complexity comparison of PC, IPC-MB+PC and IPC-MBC over Asia

network. .. 147

Table 6.7: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (Alarm, = 0.05). 148

Table 6.8: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (PolyAlarm, = 0.05).

 .. 149

Table 6.9: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (Test152, = 0.05). ... 149

Table 6.10: Accuracy comparison of PC, IPC-MB+PC and IPC-MB over Asia network. 150

xxv

LIST OF FIGURES

Figure 1-1: An example of a Bayesian network. The parents and children of are the

variables in gray, while additionally includes the textured-filled variable

O. The partial network over and are the Markov blanket classifier about

 as class. .. 5

Figure 2-1: Grow-shrink (GS) algorithm. .. 18

Figure 2-2: IAMB algorithm .. 19

Figure 2-3: Fast-IAMB algorithm. ... 22

Figure 2-4: Three possible patterns about any path through a node in Bayesian network 27

Figure 2-5: The Markov blanket of (includes P(arents), C(hildren) and S(pouses)) d-

separates all other nodes given faithfulness assumption. .. 28

Figure 2-6: MMPC/MB algorithm ... 29

Figure 2-7: Two examples that MMPC/MB produces incorrect results 30

Figure 2-8: CMMC, Corrected MMPC .. 32

Figure 2-9: HITON-PC/MB algorithm .. 32

Figure 2-10: PCMB Algorithm. ... 36

Figure 3-1: FindCanPC algorithm and its pseudo code. .. 44

Figure 3-2: Possible connections between Non-Descendants/Parents/Children and descendant.48

Figure 3-3: IPC-MB algorithm and its pseudo code. ... 50

Figure 3-4:
 as output by FindCanPC(), and the output of typical

 , i.e.
 51

Figure 3-5: An example of network which has the largest size of Markov blanket, and

FindCanPC performs the worst on it. ... 59

Figure 3-6: An example of network which has the largest size of Markov blanket, but

FindCanPC perform the best on it. ... 60

Figure 3-7: A simple example of polytree. The original graph can be found online at

http://en.wikipedia.org/wiki/Polytree. .. 68

xxvi

Figure 3-8: Parallel version of IPC-MB. .. 70

Figure 4-1: Asia Bayesian Network including 8 nodes of two states and 8 arcs, along with its

CPTs. For reference purpose, each node is assigned one unique ID, from 0 to 7.

The original graph can be found at http://www.norsys.com/netlib/asia.htm. 74

Figure 4-2: Alarm Bayesian Network including 37 nodes of two, three or four states (To save

space, the CPTs are ignored). The original graph can be found online at

http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.htm. 75

Figure 4-3: A polytree derived from Alarm Bayesian Network [39]. This graph is created by

BNJ tool. ... 76

Figure 4-4: Distribution of the size of Markov blankets as contained in Asia, Alarm, Poly-

Alarm, Hailfinder and Test152. .. 77

Figure 4-5: The implemented version of FindCanPC that considers reliability of statistical

tests. Its original version can be found in Figure 3-1, and the differences are

illustrated in bold here for comparison convenience. ... 78

Figure 4-6: Comparison of distances given different number of instances (0.1K~20K):

IAMB vs. PCMB vs. IPC-MB vs. PC (Asia, = 0.05, refer to Tableau 4.2 for

more information) ... 81

Figure 4-7: Comparison of precision given different number of instances (0.1K~20K):

IAMB vs. PCMB vs. IPC-MB vs. PC (Asia, = 0.05, refer to Tableau 4.2 for

more information) ... 82

Figure 4-8: Comparison of recall given different number of instances (0.1K~20K): IAMB

vs. PCMB vs. IPC-MB vs. PC (Asia, = 0.05, refer to Tableau 4.2 for more

information) .. 82

Figure 4-9: Comparison of distances given different number of instances (0.5K~5K): IAMB

vs. PCMB vs. IPC-MB vs. PC (Alarm, = 0.05, refer to Tableau 4.3 for more

information) .. 84

xxvii

Figure 4-10: Comparison of precision given different number of instances (0.5K~5K): IAMB

vs. PCMB vs. IPC-MB vs. PC (Alarm, = 0.05, refer to Tableau 4.3 for more

information) .. 84

Figure 4-11: Comparison of recall given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Alarm, = 0.05, refer to Tableau 4.3 for more

information) .. 85

Figure 4-12: Comparison of distances given different number of instances (0.25K~2.5K):

IAMB vs. PCMB vs. IPC-MB vs. PC (Test152, = 0.05, refer to 87

Figure 4-13: Comparison of precision given different number of instances (0.25K~2.5K):

IAMB vs. PCMB vs. IPC-MB vs. PC (Test152, = 0.05, refer to 88

Figure 4-14: Comparison of recall given different number of instances (0.25K~2.5K): IAMB

vs. PCMB vs. IPC-MB vs. PC (Test152, = 0.05, refer to 88

Figure 4-15: Comparison of distances given different number of instances (0.5K~5K): IAMB

vs. PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Tableau 4.6 for

more information) ... 90

Figure 4-16: Comparison of precision given different number of instances (0.5K~5K): IAMB

vs. PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Tableau 4.6 for

more information) ... 90

Figure 4-17: Comparison of recall given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Tableau 4.6 for more

information). ... 91

Figure 4-18: Comparison of IPC-MB‟s Precision and Recall (Based on experiments with

Alarm, = 0.05, refer to Tableau 4.3 for more information) 93

Figure 4-19: Comparison of increasing rate of CI tests given Alarm and PolyAlarm networks:

IAMB vs. PCMB vs. IPC-MB. ... 101

Figure 4-20: Example distribution of conditioning set size (i.e. the cardinality of conditioning

set) as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in

xxviii

experiments of Alarm (The upper graph is the average distribution given 500

instances, and the bottom is that measured given 5,000 instances). 104

Figure 4-21: Example distribution of conditioning set size (i.e. the cardinality of conditioning

set) as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in

experiments of polytree version Alarm (5,000 instances). 105

Figure 4-22: Example distribution of conditioning set size (i.e. the cardinality of conditioning

set) as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in

experiments of Test152 (2,500 instances). ... 105

Figure 5-1: Output of IAMB (left), PCMB and IPC-MB (right) .. 114

Figure 5-2: The version of FindCanPC that restricts the search space as well as considers

reliability of statistical tests. ... 115

Figure 6-1: Examples of Bayesian classifiers, including Naïve Bayes (upper left), Tree-

Augmented Naïve Bayes (upper right) and Bayesian Network (bottom) 119

Figure 6-2: The overall algorithm specification of IPC-MBC .. 126

Figure 6-3: FindCanPC-MBC algorithm specification. .. 127

Figure 6-4: contains all the parents and children of (denoted as since they cannot

be distinguished for now) as connected to , as well as some false positives

possibly, i.e. children‟s descendants (
with dotted circle). Note that nodes

NOT connected to are not drawn in this graph. ... 129

Figure 6-5: In all connecting to are exactly ‟s parents and children, and they still

cannot be distinguished further. It also contains all the possible links among

 . Candidate spouses
 are found to be connected with some .

In the graph, all confirmed findings are drawn with solid lines, and non-

confirmed with dotted lines... 132

Figure 6-6: In , spouses are recognized, along with some children of 134

Figure 6-7: In , all the nodes and links of the target MBC are there, with some orientation

determined on some links. No other nodes or links are contained. 135

xxix

Figure 6-8: Distribution of the size of Bayesian network classifier as contained in Asia,

Alarm and PolyAlarm, and the size is measured by the number of edges. 139

Figure 6-9: Comparison of distances given different number of instances (0.5K~5K): PC,

IPC-MB and IPC-MBC (Alarm, = 0.05, refer to Tableau 6.1 for more

information) .. 140

Figure 6-10: Example distribution of conditioning set size (i.e. the cardinality of conditioning

set) as involved in CI tests conducted by PC, IPC-MB and IPC-MBC in

experiments of Alarm (5,000 instances). .. 142

Figure 6-11: Comparison of the increasing rate of CI tests as required by PC, IPC-MB and

IPC-MBC given more observations (Alarm network, = 0.05). Note: For

displaying and convenient observation purpose, the corresponding number of

PC algorithm is divided by 4. ... 142

Figure 6-12: Comparison of distances given different number of instances (0.5K~5K): PC vs.

IPC-MB+PC vs. IPC-MBC (Alarm, = 0.05, refer to Tableau 6.3 for more

information). ... 144

Figure 6-13: Comparison of distances given different number of instances (0.5K~5K): PC vs.

IPC-MB+PC vs. IPC-MBC (PolyAlarm, = 0.05, refer to Tableau 6.4 for the

complete data). .. 146

Figure 6-14: Comparison of distances given different number of instances (0.25K~2.5K): PC

vs. IPC-MB+PC vs. IPC-MBC (Test152, = 0.05, refer to Tableau 6.5 for the

complete data). .. 147

Figure 6-15: Comparison of distances given different number of instances (0.1K~20K): PC

vs. IPC-MB+PC vs. IPC-MBC (Asia, = 0.05, refer to Tableau 6.10 for more

information) .. 152

Figure 6-16: On the output of IPC-MB, the number of CI tests as required by PC to induce

the connectivity is relatively small compared with that of IPC-MB. 153

Figure 7-1: The overall procedure: start with a bag of variables, then selected with IPC-MB,

and finally apply further scoring-based search to add the remaining arcs as well

as to determine the orientations. v-structure determined by IPC-MB is fixed. 157

xxx

Figure 7-2: Typical output as returned by IPC-MB. ... 158

Figure 7-3: CI2S-MBC algorithm specification .. 159

Figure 7-4: Adjust the output of IPC-MB to make the scoring work as conventional. 159

xxxi

LIST OF ACRONYMS AND ABBREVIATIONS

 Observations

 All attributes as contained in

 Graph. Here, it is used to refer the directed acyclic graph of one Bayesian network,

so , where is the set of nodes, and is the set of directed arcs

 Variable or attribute

 Variable set or attribute vector,

| | Cardinality of set or, size of vector

 Target variable, or dependent variable.

 Significance value, or threshold value

 Empty set, or

 Variable set excluding

BN The concept of Bayesian network, by default over .

 The structure of one Bayesian network, so it is a directed acyclic graph.

 Parents of in

 Children of in

 Spouses of in

 Parents and children of in

 Descendants of in

 , where

 Non-Descendants of of in

 Markov blanket of

 Candidate parents and children of

 Candidate spouses of

xxxii

 Candidate Markov blanket of

 Markov blanket classifier of . It is the partial Bayesian network over variables

 , so it is a directed acyclic graph as well

 Bayesian network classifier of , another name of

 Variable is independent with given

d- is d-separated from by node set

 Variable is NOT independent with given

 Statistical measure of (in)dependency between and given with data

iff. If and only if, can be represented with or

 is connected with in

 is connected with in , and the edge is pointing to

CI Conditional independence

KS Koller and Sahami‟s algorithm on the induction of

GS Grow-Shrink algorithm for the induction of

IAMB Incremental Association Markov Blanket

HITON-PC One algorithm proposed to learn Markov blanket

/MB

MMPC Max-Min Markov boundary algorithm

/MB

PCMB Parents and Children based Markov Blanket algorithm

PC PC algorithm, one classical method for the structure learning of Bayesian network

TAN Tree-Augmented Naive Bayes. It can be viewed as a special Bayesian network, so

it is a directed acyclic graph as well. If it refers to a specific model structure, we

use as the representation.

1

Chapitre 1 INTRODUCTION

1.1 Feature selection

Prediction, or classification, on one particular attribute in a set of observations is a common data

mining and machine learning task. To analyze and predict the value of this attribute, we need to

first ascertain which of the other attributes in the domain affect it. This task is frequently referred

to as the feature selection problem. A solution to this problem is often non-trivial, and can be

infeasible when the domain is defined over a large number of attributes.

In 1997, when a special issue of the journal of Artificial Intelligence on relevance, including

several papers on variable and feature selection, was published, few domains explored used more

than 40 features [16, 17]. The situation has changed considerably in the past decade: domains

involving more variables but relatively few training examples are becoming common [12, 13, 18].

Therefore, feature selection has been an active research area in the pattern recognition, statistics

and data mining communities. The main idea of feature selection is to select a subset of input

variables by eliminating features with little or no predictive information, but without sacrificing

the performance of the model built on the chosen features. It is also known as variable selection,

feature reduction, attribute selection or variable subset selection. By removing most of the

irrelevant and redundant features from the data, feature selection brings many potential benefits

to us:

 Alleviating the effect of the curse of dimensionality to improve prediction performance;

 Facilitating data visualization and data understanding, e.g. which are the important features

and how they are related with each other;

 Reducing the measurement and storage requirements;

 Speeding up the training and inference process;

 Enhancing model generalization.

A principled solution to the feature selection is to determine a subset of features that can render

of the rest of the features independent of the variable of interest [1, 12, 13]. From a theoretical

2

perspective, it can be shown that optimal feature selection for supervised learning problems

requires an exhaustive search of all possible subsets of features, the complexity of which is

known as exponential function of the size of whole features. In practice, the target is demoted to a

satisfactory set of features instead of an optimal set due to the lack of efficient algorithms.

Feature selection algorithms typically fall into two categories: Feature Ranking and Subset

Selection. Feature Ranking ranks all attributes by a metric and eliminates those that do not

achieve an adequate score. Selecting the most relevant variables is usually suboptimal for

building a predictor, particularly if the variables are redundant. In other words, relevance does not

imply optimality [17]. Besides, it has been demonstrated that a variable which is irrelevant to the

target by itself can provide a significant performance improvement when taken with others [17,

19].

Subset selection, however, evaluates a subset of features that together have good predictive

power, as opposed to ranking variables according to their individual predictive ability. Subset

selection essentially divides into wrappers, filters and embedded [19].

In the wrapper approach, the feature selection algorithm conducts a search through the space of

possible features and evaluates each subset by utilizing a specific modeling approach of interest

as a black box [17], e.g. Naïve Bayes or SVM . For example, a Naïve Bayes model is induced

with the given feature subset and assigned training data, and the prediction performance is

evaluated using the remaining observations available. By iterating the training and cross-

validation over each feature subset, wrappers can be computationally expensive and the outcome

is tailored to a particular algorithm [17].

Filter is a paradigm proposed by Kohavi and John [17], and it is similar to wrappers in the search

approach. A filter method computes a score for each feature and then select features according to

their scores. Therefore, filters work independently of the chosen predictor. However, filters have

the similar weakness as Feature Ranking since they imply that irrelevant features (defined as

those with relatively low scores) are useless though it is proved not true [17, 19].

Embedded methods perform variable selection in the process of training and are usually specific

to given learning algorithms. Compared with wrappers, embedded methods may be more

efficient in several respects: they make better use of the available data without having to split the

training data into a training and validation set; they reach a solution faster by avoiding retraining

3

a predictor from scratch for every variable subset to investigate [19]. Embedded methods are

found in decision trees such as CART, for example, which have a built-in mechanism to perform

variable selection [20].

1.2 Classification benefits from feature selection

In the classic supervised learning task, we are given a training set of labeled fixed-length feature

vectors, or instances, from which to induce a classification model. This model, in turn, is used to

predict the class label for a set of previously unlabeled instances. While, in a theoretical sense,

having more features should give us more discriminating power, the real-world provides us with

many reasons why this is not generally the case.

Foremost, many induction methods suffer from the curse of dimensionality. That is, as the

number of features in an induction increases, the time requirements for an algorithm grow

dramatically, sometimes exponentially. Therefore, when the set of features in the data is

sufficiently large, many induction algorithms are simply intractable. This problem is further

exacerbated by the fact that many features in a learning task may either be irrelevant or redundant

to other features with respect to predicting the class of an instance. In this context, such features

serve no purpose except to increase induction time.

Furthermore, many learning algorithms can be viewed as performing (a biased form of)

estimation of the probability of the class label given a set of features. In domain with a large

number of features, this distribution is very complex and of high dimension. Unfortunately, in the

real world, we are often faced with the problem of limited data from which to induce a model.

This makes it very difficult to obtain good estimates of the many parameters. In order to avoid

over-fitting the model to the particular distribution seen in the training data, many algorithms

employ the Occam‟s Razor [13] principle to build as simple a model as possible that still

achieves some acceptable level of performance on the training data. This guide often leads us to

prefer a small number of relatively predictive features over a large number of features.

If we could reduce the set of features considered by the algorithm, we can therefore serve two

purposes. We can considerably decrease the running time of the induction algorithm, and we can

increase the accuracy of the resulting model. In light of this, effort has been put on the issue of

feature subset selection in machine learning as we mentioned in last section.

4

1.3 Bayesian Network, Markov blanket and Markov blanket

classifier

Let be the set of features, and as the target variable of interest. is used to refer our problem

domain, and it is composed of and , i.e. . A Markov blanket of is any subset

of that renders statistically independent from all the remaining attributes (see Definition 7.4).

Koller and Sahami [1] first showed that the Markov blanket of a given target is the theoretically

optimal set of attributes to predict its class value. If the probability distribution of

can be faithfully (see Definition 1.3) represented by a Bayesian network (BN, see Definition 1.1)

over , then the Markov blanket of is unique, just equal to its Markov boundary(see

Definition 7.4), and it consists of the union of the parents, children and spouses of in the

corresponding BN [2]. Besides, the partial Bayesian network over the Markov blanket of plus

 itself is called Markov blanket classifier, or Bayesian network classifier (see Definition 1.5).

Figure 1-1 illustrates a Bayesian network, Markov blanket of and Markov blanket classifier

with as the target (or class).

Definition 1.1 (Bayesian Network) A Bayesian network consists of a directed acyclic graph

(DAG) an a set of local distributions. is composed of nodes and edges , i.e. .

Definition 1.2 (Conditional Independence) Two sets of variables, and , are said to be

conditionally independent given some set of variables if, for any assignment of values , and

 to the variables , and respectively, . That is,

gives us no information about beyond what is already in . We use in the remaining

text to denote this conditional independence relationship.

Definition 1.3 (Faithfulness Condition) A Bayesian Network and a joint distribution are

faithful to one another iff. every conditional independence entailed by the graph and the

Markov Condition is also present in [2].

Definition 7.4 (Markov blanket) A Markov blanket of an attribute is any subset of

 for which is conditionally independent with given the values of . A set is

called a Markov boundary of if none of its proper subsets satisfy this condition.

5

Definition 1.5 (Markov blanket classifier) Given a Bayesian network over the target variable

 and attributes , the partial DAG over is called the Markov Blanket Classifier, or

Bayesian Network Classifier about , and denoted as or .

Definition 1.6 (Markov Condition) Given the value of parents, is conditionally independent

with all its non-descendants, denoted as , excluding its parents , i.e.

 .

Theorem 1.1 If a Bayesian network and a joint distribution are faithful to one another, then

for every attribute , the Markov blanket of is unique and is the set of parents, children

and spouses of .

Figure 1-1: An example of a Bayesian network. The parents and children of are the variables in

gray, while additionally includes the textured-filled variable O. The partial network over

 and are the Markov blanket classifier about as class.

Let , and denote the parents, children and spouses of respectively, the Markov

blanket of , denoted as , then is the union of , and (see Theorem 1.1), i.e.

 for short. Given this knowledge, of any is easily to be

obtained if the Bayesian network over is known. However, having to learn the Bayesian

Network in order to learn can be painfully time consuming [21]. Hence, how to learn

 but without having to learn the BN first became the goal of many who are interested to

apply Markov blanket as feature selection.

Bayesian network, Markov blanket and Markov blanket classifier concepts are closely related

given the faithfulness assumption. They will be frequently mentioned in the remaining text since

our goals are efficient learning of Markov blanket and Markov blanket classifier. Chapitre 2 to

6

Chapitre 5 are about the learning of Markov blanket given a target of interest. The Markov

blanket is important because

 It is the optimal feature subset for the prediction of , and feature selection is an important

data preprocessing step for most machine learning and data mining tasks;

 It is closely related to the Markov blanket classifier since the later is just a DAG over

and . Understanding this concept well will be helpful to understand our work on Markov

blanket classifier;

 Given the Markov blanket of , all existing structure learning algorithms of Bayesian

network are applicable to induce the Markov blanket classifier. Since the feature space is

greatly reduced, the remaining structure learning is expected to be much more efficient than

using all features directly;

 Our algorithm for inducing the Markov blanket classifier of is an extension of our

algorithm on the induction of Markov blanket.

We return to the concept of Markov blanket classifier Chapitre 6.

1.4 KS and related algorithms

Following Koller and Sahami‟s work (KS), many others also realized that the principled solution

to the feature selection problem is to determine a subset of features that can render the rest of all

other features independent of the variable of interest [12, 13, 18, 21, 22]. Based on the findings

that the full knowledge of is enough to determine the probability distribution of and that

the values of all other variables become superfluous, we normally can have a much smaller group

of variables in the final classifier, reducing the complexity of learning and resulting with a

simpler model, but without sacrificing classification performance [2, 3, 4].

Although Koller and Sahami theoretically proved that Markov blanket is the optimal feature

subset for predicting the target, the algorithm as proposed by them for inducing is

approximate, guaranteeing no correct outcome. There are several attempts to make the induction

more effective and efficient, including GS (Grow-Shrink) [23, 24], IAMB (Iterative Associative

Markov Blanket) and its variants [12, 18, 22], MMPC/MB (Max-Min Parents and

7

Children/Markov Blanket) [21], HITON-PC/MB[25], PCMB(Parent-Child Markov Blanket

learning) [13] and our own work [10, 11, 26, 27], IPC-MB (Iterative Parents-Children based

search of Markov Blanket), which will be discussed later. To our best knowledge, this list

contains all the published primary algorithms. In next chapter, we will review these MB local

learning algorithms in terms of theoretical and practical considerations, based on our experience

gained from both academic research and industry implementation.

1.5 Motivation, contributions and overall structure

This project was initiated during my time in SPSS® (http://www.spss.com, acquired by IBM in

2009), where they needed a component of Bayesian Network for classification on widely

deployed Clementine® (http://www.spss.com/software/modeling/modeler/, now named as PASW

Modeler®). The greatest merit of a Bayesian Network is that its graphical model allows us to

observe the relations of the variables involved, which is very important for diagnosis application.

However, this component is designed primarily for classification, i.e. predicting the state of some

target variable given input features, instead of general modeling. Regarding this goal, Pearl and

Koller‟s works tell us that only the Markov blanket is effective in the prediction, which means

that the partial Bayesian Network over the target and its Markov blanket is enough. This partial

Bayesian Network is called Markov Blanket Classifier (MBC) or Bayesian Network Classifier

(BNC) by us, to distinguish it from the whole Bayesian Network. It has all the merits of a general

Bayesian Network, but it is “customized” for classification. In a naïve way, we can induce the

Bayesian Network over all input variables first, and then extracting the MBC becomes trivial.

This is possible and it requires no extra research effort, all existing conventional algorithms for

the structure learning of Bayesian Network are there for reference. However, the learning of

Bayesian network is known as an NP-complete problem, and the complexity grows exponentially

in term of the number of inputs and the number of states of each individual input [3]. Therefore,

the goal is to induce the MBC directly without having to learn the Bayesian Network first.

Koller and Sahami opened a new window, and many more fruitful studies have been done, along

with many published outcomes. Given a bag of features , these algorithms allow the induction

of without requiring to know the Bayesian Network over in advance. With , the

problem space generally is greatly reduced in dimension; besides, all existing algorithms for the

structure learning of Bayesian Network are applicable, and they are expected to yield the

http://www.spss.com/
http://www.spss.com/software/modeling/modeler/

8

Bayesian Network structure over . More importantly, due to the feature selection, all

conventional structure learning algorithms are expected to solve larger scale of problems given

the same computing resource. However, our review and experiments with all published

algorithms on Markov blanket induction indicate that none of them was ideal, at least in the early

2007. Some of them may not yield the correct result; some may be efficient in time, but not data

(or sample) efficient, which means that it requires large amount of data to produce satisfactory

result; some of them may be quite data efficient, but quite poor in time efficiency.

Our first contribution is to propose a competitive algorithm for the local learning of Markov

blanket. It is named as IPC-MB [10, 11, 27] since it is built on a series of iterative discovery of

parents and children. IPC-MB is proved correct, and it is shown as much more data efficient than

IAMB, and much more time efficient than PCMB, two well known algorithms for inducing .

As compared with PC [14, 28], one most known algorithm for the structure learning of BN, IPC-

MB demonstrates obvious advantage as one requiring only local search, achieving great gain in

time efficiency. IPC-MB was designed by myself for the induction of Markov blanket in the

Bayesian Network component and implemented in Clementine® in 2007.

The second contribution extended IPC-MB to get IPC-MBC, which allows us to get the target

Markov blanket classifier via efficient local search. It is called IPC-MBC since it also depends on

the iterative discovery of parents and children, but it is more complex than IPC-MB because that

it cares of not only to find but also the links existing among nodes of . In our

experiments, we compare IPC-MBC with not only PC, but IPC-MB+PC which calls IPC-MB to

do feature selection first, and then depends on PC to finish the structure learning over . The

results show that although they have close performance on accuracy, IPC-MBC and IPC-MB+PC

are much more time efficient than PC. Therefore, they are expected with better scalability.

So, we started with the problem of feature selection in classification application, and reviewed

the family of algorithms on inducing Markov blanket. IPC-MB was proposed to compete with all

existing similar ones, with exciting relative performance gained. Then, we went further to

propose two effective and efficient algorithms for learning Markov blanket classifier, making full

use of the knowledge and experience gained. In addition, we also study the combination of IPC-

MB plus PC, and the results indicate that feature selection by IPC-MB not only greatly reduces

the complexity of structure learning, but the overall timing cost. All these parts actually are

9

closely related. Efficiency, especially the data or sample efficiency, was emphasized all along the

project since we always view the practical value as a very important evaluation criterion.

The remaining chapters of the thesis are organized as follows:

 A thorough review regarding the algorithms on learning Markov blanket is done in Chapter 2,

which allows us to have in mind a comprehensive map about the existing work;

 In Chapter 3, a novel algorithm, called IPC-MB, for efficient learning of Markov blanket is

proposed, including its motivation, specification, proof, complexity analysis and more

discussion. It is categorized as local learning since it enables us to find the Markov blanket of

target without having the whole Bayesian network known first, and it is expected to be the

most data efficient among similar works, which is critical for algorithms built on statistical

tests;

 Then, in Chapter 4, a series of empirical studies with data sampled from classical real

networks are presented to give a comparison between IPC-MB and existing classical work,

including IAMB, PCMB and PC algorithms, in term of accuracy, time and data efficiency.

Besides, necessary implementation details are covered to make the results reproducible;

 A comprehensive trade-off analysis discussion about IAMB, PCMB, IPC-MB and PC is

made in Chapter 5, including theoretical assumption, search strategy, data efficiency, time

efficiency, potential scalability, information induced and implementation issues. All these

factors are important for practical usage, so the discussion is believed valuable reference for

applicants as well as researchers who are interested on this topic;

 In Chapter 6, we further propose an algorithm to learn the Markov blanket classifier without

having to learn the whole Bayesian network first. It’s called IPC-MBC, and it built on our

knowledge and experience gained on previous work, especially IPC-MB. Experimental study

is conducted over PC, IPC-MB+PC (which depends on IPC-MB to realize feature reduction

first, then apply PC algorithm to finish the structure learning) and IPC-MBC with real

networks, and the results indicate that both IPC-MB+PC and IPC-MBC achieve the similar

accuracy as PC, but with much less cost on computing resource. With structure ready, the

parameter learning is trivial, hence it is not covered in our discussion;

10

 Chapter 7 is a conclusion of the whole thesis as well as perspectives of our works.

11

Chapitre 2 REVIEW OF ALGORITHMS FOR MARKOV BLANKET

LEARNING

Since Koller and Sahami‟s work in 1996 [1], there have been several efforts to make the learning

procedure more efficient and effective. In this chapter, we will briefly review those known

published works, including KS, GS, IAMB and its variants, MMPC/MB, HITON-PC/MB and

PCMB. Because all these algorithms, including our own work, require faithfulness assumption

(KS is an exception since it does not require this assumption), and depend on statistical

(in)dependence test, we first discuss these two concepts in Section 2.1 and Section 2.2

respectively. Sections 2.3 to 2.8 are contributed for reviewing of those known published works.

2.1 Faithfulness Assumption

Faithfulness (see Definition 1.3) is an important concept that can be traced back to Pearl‟s work

on Bayesian network in 1988 [2], and it is the most critical assumption as required by algorithms

covered in the discussion here, including our own work but with KS as an exception. In its

original texts [2, 29], Pearl et al. explained that, with the assumption of faithfulness, every

distribution has a unique causal model (up to equivalence), as long as there are no hidden

variables. This uniqueness follows from the fact the structural constraints that an underling DAG

imposes upon the probability distribution are equivalent to a finite set of conditional

independence relationships asserting that, given its parents, each variable is conditionally

independent of all its non-descendents.

As we mentioned in last chapter, with this assumption, the Markov blanket also becomes unique,

and is composed of the target‟s parents, children and spouses. Therefore, faithfulness builds a

connection between probability distribution and graph structure. In the future discussion, we will

demonstrate how PCMB and our work, IPC-MB, make use of this topology to increase the data

efficiency which is known as the most disadvantage of GS, IAMB and their variants.

Lucky enough, the vast majority of distributions are faithful in the sample limit. Besides, for a

number of different parametric families, the set of parameters that lead to violations of the

faithfulness asssumption are Lebesgue measure 0 [28, 30].

12

2.2 Statistical dependence and independence

All algorithms covered here depend on asking for the true of independence relationships of the

form:

where is a subset of variables excluding and . It can work with any source providing this

kind of information. If we have a data set, this is answered by means of statistical tests of

independence.

Among those works covered in this project, KS and IAMB employ cross entropy to measure the

dependency, while the others choose Pearson‟s conditional independence or test [31]. We

would like to introduce them briefly respectively here.

2.2.1 Cross-entropy

If and are random variables with joint probability distribution , the cross entropy between

them is defined as:

Given three variables , and , the cross entropy of and given defined as:

This value is also called the mutual information. It can be analogously defined when is a set of

variables. It verifies similar properties to unconditional entropy, and it measures the degree of

dependence of and given . In particular, it is equal to 0.0 when this conditional

independence is verified.

2.2.2 Pearson’s Chi-Square test

Pearson‟s chi-square () is the best-known of several chi-square tests, statistical procedures

whose results are evaluated by reference to the distribution. It can be used to access two types

of comparison: tests of goodness of fit and tests of independence.

13

The statistic is calculated by finding the difference between each observed and theoretical

frequency, denoted as and respectively, for each possible outcome, squaring them, dividing

each by the theoretical frequency, and taking the sum of the results. A second important part of

determining the test statistic is to define the degrees of freedom of the test.

In the test of independence, an “observation” consists of the values of two outcomes and the null

hypothesis is that the occurrence of these outcomes is statistically independent. Each observation

is allocated to one cell of a two-dimensional array of cells according to the values of the two

outcomes. If there are rows and columns, and totally cells in the table, the theoretical

frequency for a cell, given the hypothesis of independence, is

(1.1)

and fitting the model of “independence” reduces the number of degrees of freedom by

 . The value of the test-statistic is

(1.2)

The number of degrees of freedom is equal to the number of cells , minus the reduction in

degrees of freedom, , which reduces to .

For the test of independence, the , a probability is commonly interpreted as

justification for rejecting the null hypothesis that the row variable is unrelated to the column

variable.

The test requires minimal cell sizes. A common rule is 5 or more in all cells of a 2-by-2 table,

and 5 or more in 80% of cells in larger tables, but no cells with zero count. When this assumption

is not met, Yates‟ correction is applied (refer to next section).

2.2.3 Chi-Square test with Yates correction

The approximation to the distribution breaks down if expected frequencies are too low. It will

normally be acceptable so long as no more than 10% of the events have expected frequencies

14

below 5. Where there is only 1 degree of freedom, the approximation is not reliable if expected

frequencies are below 10. In this case, a better approximation can be obtained by reducing the

absolute value of each difference between observed and expected frequencies by 0.5 before

squaring, and this is called Yates‟ correction for continuity. The following is Yates‟ corrected

version of Pearson‟s statistic:

(1.3)

2.2.4 Test

In cases where the expected value, , is found to be small (indicating either a small underlying

population probability, or a small number of observations), the normal approximation of the

multinomial distribution can fail, and in such cases it is found to be more appropriate to use the

 , a likelihood ratio-based test statistic.

The commonly used chi-squared tests for goodness of fit to a distribution and for independence

in contingency tables are in fact approximations of the log-likelihood ratio on which the tests

are based. This approximation was developed by Karl Pearson because at the time it was unduly

laborious to calculate log-likelihood ratios. Due to the introduction of computers, however,

tests are coming into increasing use.

The general formula for corresponding to equation (1.2) is

 (1.4)

where denotes the natural logarithm and the sum is taken over all non-empty cells. Given the

null hypothesis that the observed frequencies are random sampling from a distribution with the

given expected frequencies, the distribution of is approximately that of , with the same

number of degrees of freedom as in the corresponding test.

For samples of a reasonable size, the test and the test will lead to the same conclusions.

However, the approximation to the theoretical distribution for the test is better than for the

15

Pearson tests in cases where for any cell , and in any such case the test

should always be used [32].

2.2.5 Our Choice

In our implementation, the test is chosen based on the following knowledge gained from our

own review and experimental studies:

1. It is preferred by similar research work [13, 21], and we want to produce a comparable

results;

2. It produces better results than Pearson test with or without Yates correction in our

empirical studies, especially when sample size is relatively small.

Besides, in our implementation, a test will be ignored if

(1.5)

where is the total number of observations available, and are the number of value that

and can have respectively, and is an empirical threshold value. This in-equation gives an

empirical standard to decide if a test is reliable or not, that is the minimum average number of

observations available in each cell of a contingency table should be at least . In all our

experiments we choose because, as suggested by Agresti [31], this is the minimum average

number of instances per cell for the statistic to have distribution, and it is applied by several

similar published works like Fast-IAMB [22] and PCMB [13].

Note: (1) test is employed in the implementation of all algorithms studied in our experiments

for fair comparison purpose; (2) In our implementations, means that are

conditionally dependent given , while indicates that are conditionally

independent given .

2.3 KS (Koller and Sahami’s Algorithm)

In the following sections, we will review the algorithms introduced for deriving an MB, starting

with the earlier ones and towards the most sophisticated and latter ones.

16

Koller and Sahami proposed a framework for optimal feature selection by measuring and

minimizing the amount of predictive information lost during feature elimination [1]. They also

proposed an approximate algorithm based on their theoretical model, and this algorithm is

referred to as KS by many since then. KS is the first algorithm for feature selection to employ

the concept of Markov blanket, and it accepts two parameters, (1) the number of variables to

retain, i.e. the limit of the target Markov blanket, and (2) the maximum number of variables it is

allowed to condition on. Both settings are useful to reduce the search space, but obviously, it is a

heuristic and approximate algorithm, not always guaranteeing correct outcome.

Basically, KS is a filter algorithm which does not incur the high computational cost of conducting

a search through the space of feature subsets as in the wrapper methods, and is therefore efficient

for domains containing hundreds or even thousands of features. Although it is theoretically sound,

the KS algorithm itself will not always produce correct outcomes. In this section, how KS works

will be described with a little more detail.

Although this algorithm is simple and easy to implement, it is clearly suboptimal in many ways,

particularly due to the very naïve approximations that it uses. Koller and Sahami also discussed

some ways to possibly improve the result, and more importantly, they point out that increasing

the size of the conditioning set would fragment the training set into small chunks, and result with

a degradation on performance. Though it was noticed as early as in 1996, this problem was not

conquered by latter algorithms, until the introduction of PCMB.

2.4 GS (Grow-Shrink)

The Grow-shrink (GS) [23, 24] algorithm was proposed to induce the structure of Bayesian

network via the discovery of local neighbours, i.e. Markov blanket of each node. The GS

algorithm actually contains two independent components, GSMB and GSBN. GSMB is

responsible to induce the Markov blanket of a variable, and GSBN is employed to induce the

whole Bayesian network by using the knowledge supplied by GSMB. Therefore, when we

mention GS in the context of Markov blanket learning, in fact, it is called GSMB in the original

literature. In this thesis, we will continue the usage of GS to refer to GSMB considering that no

ambiguity will be introduced.

17

GS employs independence properties of the underlying network to discover parts of its structure,

just like the SGS and PC algorithms [14, 28]. However, the design of GS enables it to addresses

the two main shortcomings of the prior work which are preventing its use from becoming more

widespread. These two disadvantages are: exponential execution time and proneness to errors in

dependence tests used. The former problem is addressed in [23, 24] in two ways. One is by

identifying the local neighbourhood of each variable in the Bayesian network as a pre-processing

step in order to facilitate the recovery of the local structure around each variable in polynomial

time under the assumption of bounded neighbourhood size. The second, randomized version goes

one step further, employing a user-specified number of randomized tests (constant or logarithmic)

in order to ascertain the same result with high probability. The second disadvantage of this

research approach, namely proneness to errors, is also addressed by the randomized version, by

using multiple data sets (if available) and Bayesian accumulation of evidence.

Although the concept of the Markov blanket is not new, GS is known as the first to explicitly use

this idea to effectively limit unnecessary computation while inducing the underlying Bayesian

network. GS(MB) itself is simple, and it proceeds in two phases: grow first, shrink secondly (see

Figure 1-2).

Here, denotes the complete set of variables. The idea behind the growing phase is simple: as

long as the Markov blanket property of is violated, i.e. there exists a variable in that is

dependent on , it is added to until there are no more such variables. In this process however,

there may be some variables that were added to that were really outside the blanket. Such

variables would have been rendered independent from at a later point when all Markov blanket

nodes of the underlying Bayesian network were added to . This observation necessitates the

shrinking phase, which identifies and removes those variables. Finally, what is left in is known

the Markov blanket of ,

Theorem 1.2 Given the assumption of faithfulness and correct independence test, GS induces the

correct Markov blanket [23, 24].

The algorithm is efficient, requiring only conditional tests. One may minimize the number

of tests in shrinking phase by heuristically ordering the variables in the loop of growing phase,

for example by ascending mutual information or probability of dependence between and . In

[23, 24], Margaritis and Thrun also proposed one randomized version of GS algorithm to solve

18

problems involving large amount of variables or variables with many possible values. It requires

manually defined parameter to reduce the number of conditional tests, so it cannot guarantee

correct output, and it is ignored without further discussion.

Figure 1-2: Grow-shrink (GS) algorithm.

2.5 IAMB and Its Variants

2.5.1 IAMB

Following KS and GS algorithms, Tsamardinos et al. proposed a series of algorithms for inducing

the Markov blanket of a variable of interest without having to learn the whole Bayesian

network first. All of these works are based on same two assumptions as required by GS: 1) the

19

data are generated by processes that can be faithfully represented by BNs, and 2) there exist

reliable statistical tests of conditional independence and measures of associations for the given

variable distribution, sample size and sampling of the data.

Figure 1-3: IAMB algorithm

The primary algorithm proposed by Tsamardinos et al. is called Incremental Association Markov

Blanket, or IAMB (Figure 1-3). IAMB consists of two steps, a forward and a backward one,

which actually is akin to the growing and shrinking phases in GS. This algorithm relies on an

independence test, , that is considered true (or succeeded) if it is smaller or equal than a

threshold and false (failed) otherwise. It is important that is an effective test so that the set

of candidate variables after Phase I is as small as possible for two reasons: one is time efficiency

(i.e., do not spend time considering irrelevant variables) and another is sample efficiency (do not

20

require sample larger than what is necessary to perform conditional tests of independence). Since

this step is based on the heuristic at line 5, some nodes not in may be added to
 as well.

In Phase II (backward), we remove one-by-one the features that do not belong to by testing

the whether a feature is independent of given the remaining
 (lines 10-18).

IAMB algorithm is structurally similar to GS algorithm, and follows the same two-phase

structure. However, there is an important difference: GS may order the variables when they are

considered for inclusion in phase I, according to their strength of association with given the

empty set [23, 24] (this appears in the discussion for better performance in the original text, but

not in Figure 1-2). It then admits into
 the next variable in the ordering that is not

conditionally independent from given the current
 . One problem with this heuristic is that

when the
 contains spouses of , the spouses are typically associated with very weakly

given the empty set and are considered for inclusion in the
 late in the first phase

(associations between spouses and are only through confounding/common descendant variables,

thus they are weaker than those ancestors‟ associations with). In turn, this implies that more

false positives will enter
 during phase I and the conditional tests of independence will

become unreliable much sooner than when using IAMB‟s heuristic. In contrast, conditioned on

the common children, spouses may have strong association with and, when using IAMB‟s

heuristic, and enter the
 early.

2.5.2 InterIAMBnPC

Tsamardinos et al. recognized and pointed out explicitly that the smaller the conditioning test

given a finite sample of fixed size, the more accurate are the statistical tests of independence and

the measure of association [12, 18, 21]. In other words, to have a reliable decision given

independence test of high degree, we need a large amount of instances for training. Though

IAMB provides guarantees on correctness theoretically, it is only suited for the cases where the

available sample size is large enough to perform condition independence tests as conditioned on

the full or even larger set. Some variants are therefore proposed to decrease the critical

requirement of data size, which just reflects the authors‟ emphasis on the practical value of their

work.

21

InterIAMBnPC is one such variant aiming to further reduce the size of the conditioning sets [18].

It employs two methods for this goal: (1) it interleaves the growing phase of IAMB with the

pruning phase attempting to keep the size of
 as small as possible during all steps of the

algorithm‟s execution; (2) it substitutes the shrinking phase as implemented in IAMB with the PC

algorithm instead [14], a Bayesian Network learning algorithm that determines directed edges

between variables in a more sample-efficient manner.

Two other IAMB variants experimented in [12, 18] are InterIAMB and IAMBnPC which are

similar to InterIAMBnPC but they employ only either interleaving the first two phases or using

PC for the backward phase respectively. Considering that they have no fundamental difference

compared to InterIAMBnPC, no more space is consumed for further introduction of these two

algorithms.

2.5.3 Fast-IAMB

Fast-IAMB was proposed in 2005, and it is also built on the two assumptions: faithfulness and

correct independence test [22]. Similar to GS and IAMB, Fast-IAMB contains a “growing” phase

and a “shrinking” phase. During the growing phase of each iteration, it sorts the attributes that are

candidates for admission to
 from most to least conditionally dependent, according to a

heuristic function (corresponding to in IAMB; it is mutual information in IAMB, but

conditional statistical test here). Each such sorting step is potentially expensive since it involves

the calculation of the test static between and each member of . The key idea behind Fast-

IAMB is to reduce the number of such tests by adding not one, but a number of attributes at a

time after each reordering of the remaining attributes following a modification of the Markov

blanket. Fast-IAMB speculatively adds one or more attributes of highest test significance

without re-sorting after each modification as IAMB does, which (hopefully) adds more than one

true member of the blanket. Thus, the cost of re-sorting the remaining attributes after each

Markov blanket modification can be amortized over the addition of multiple attributes.

The question arises: how many attributes should be added to the blanket within each iteration?

The following heuristic is used in [22]: dependent attributes are added as long as the conditional

independence tests are reliable, i.e. there is enough data for conducting them. For this purpose, a

numeric parameter is used to denote the minimum average number of instances per cell of a

22

contingency table that should be present for a conditional independence test to be deemed reliable.

Please refer to section 2.2.5 for the discussion of a reliable test and the choice of .

Figure 1-4: Fast-IAMB algorithm.

The authors of Fast-IAMB also answer explicitly one practical question that the authors of IAMB

didn‟t mention in their work [18], namely what is to be done if the average number of instances

23

per cell for each remaining attribute is less than ? In this case, one has two choices: assume

dependence or assume independence. While assuming dependence might seem to be the “safe”

choice, in practice this would result in large blankets that are hard to justify and of little practical

use. Therefore, independence is assumed in [22], which results in halting (Line 22, Figure 1-4)

and returning the current blanket. This is followed in our implementation as well.

In conclusion, Fast-IAMB follows the previous work of GS and IAMB, especially Inter-IAMB

by interleaving growing and shrinking. To realize a fast induction, greedy strategy is employed in

growing by adding as many candidates as possible if allowed. Compared with IAMB, it

emphasizes more the practical value of the algorithm, which is highly desired for practitioners.

Although the authors declared it is fast and it is indeed demonstrated by their experiments relative

to IAMB and Inter-IAMB, we consider that doubt remains about this point since more statistical

tests are possibly expected in the shrinking phase if more false positive ones are added in the

growing state.

2.6 MMMB (Max-Min Markov Boundary algorithm)

Starting with KS, and followed by much effort, several efficient algorithms to induce the Markov

blanket given a target of interest have been proposed. However, none of them ever make use of

the underlying topology information to improve the efficiency, especially the data efficiency,

given the faithfulness assumption. The Max-Min Markov Blanket (MMMB) algorithm is

proposed here to improve data efficiency over previously known algorithms for inducing Markov

blanket, because the sample requirements of MMMB depend on the connectivity and topology of

the Bayesian network faithful to the data, but the others depend on the size of the learned Markov

blanket.

2.6.1 Bayesian Network and Markov Blanket

Since the underlying topology information will possibly help to increase the performance of MB

induction algorithms, we revisit theoretical considerations and introduce additional background

knowledge about Bayesian networks. A Bayesian network is a graphical tool that compactly

represents a joint probability distribution over a set of random variables using a directed

acyclic graph (DAG) annotated with conditional probability tables of the probability

distribution of a node given any instantiation of its parents. The graph represents qualitative

24

information about the random variables (conditional independence properties), whiles the

associated probability distribution, consistent with such properties, provides a quantitative

description of how the variables relate to each other. An example of BN is shown in Figure 1-1.

The probability distribution and the graph of a BN are connected by the Markov Condition

property: a node is conditionally independent of its non-descendants, given its parents.

As its name indicates, DAG is formed by a collection of vertices and directed edges, each edge

connecting one vertex to another, such that there is NO way to start at some vertex and follow

a sequence of edges that eventually loops back to again [33]. Each DAG gives rise to a partial

order on its vertices, where if there exists a directed path from to . , in fact,

means that is a descendant of , and its formal definition is given with Definition 1.7 for later

reference. Each DAG has a topological ordering, an ordering of the vertices such that the starting

endpoint of every edge occurs earlier in the ordering than the ending endpoint of the edge. In

general, this ordering is not unique; A DAG has a unique topological ordering if and only if it has

a directed path containing all the vertices, in which case the ordering is the same as the order in

which the vertices appear in the path [28, 33, 34].

Definition 1.7 (Descendant) is a descendant of , if there exists a directed path from to ,

but there exists no directed path from to . The set of descendants of is denoted with

in the remaining text.

Definition 1.8 (Non-Descendant) Given all variable set , those other than descendants are

known as non-descendants of , denoted as . .

As mentioned above, if we know the Bayesian network over in advance, it is trivial to get the

 of interest. The partial structure over is also a directed acyclic graph (DAG);

recall that, for any and , it has to satisfy one of the two graphical constraints:

1. Either is connected to directly, more specifically or , when is parent or

child of ; or,

2. shares some common child(ren) with , i.e. , when is known as the spouse

of .

D-separation is the criterion that allows computation of the entailed independence in a Bayesian

network from the Markov Condition [2]. D-separation is defined on the basis of blocked paths:

25

Definition 1.9 Collider node and Blocked path. A node of a path is a collider if contains

two incoming edges into (e.g., in Figure 1-1 is a collider in the path). A path

from node to node is blocked by a set of nodes , if any of the following is true: (1) There is

a non-collider node on that belongs to ; (2) No collider nodes of and none of their

descendants belong in .

Definition 1.10 d-separation Two nodes and are d-separated by if and only if every path

from to is blocked by , and it is denoted as .

Theorem 1.3 If a Bayesian network is faithful to a distribution , then

 , i.e. the conditional independence relation in is equal to d-separation in .

With the theorem presented and the faithfulness assumption, the terms d-separation and

conditional independence are used interchangeably in the rest of the article.

By performing independence tests and considering the d-separation relations they entail, one can

reconstruct the Bayesian network corresponding to the distribution. This is the main idea behind

constraint-based, or CI test-based, Bayesian network learning approaches [8, 14, 23, 24, 35, 36].

The following theorem in [14, 28] is foundational for both PC and MMMB algorithm here:

Theorem 1.4 If a Bayesian network is faithful to a joint probability distribution then:

1. There is an edge between the pair of nodes and in iff and are conditionally

dependent given any other set of nodes;

2. For each triplet of nodes , and in such that and are adjacent to but is not

adjacent to , is a subgraph of iff. and are dependent conditioned on

every other set of nodes that contains .

The first part of the theorem allows us to infer the existence of edges or not, and the second part

to determine the known v-structure which actually allows us to determine the orientation of

related arcs.

Given the faithfulness assumption, the Markov blanket of , , can be defined either

probabilistically (as the minimal set conditioned on which every other node is independent is

independent of) or graph theoretically (as the set of parents, children, and spouses of).

26

Definition 1.11 Markov Blanket (Probabilistic viewpoint) Given the faithfulness assumption,

the Markov blanket of , , is a minimal set conditioned on which all other nodes are

independent of , i.e. , .

Definition 1.12 Markov Blanket (Graphical viewpoint) Given the faithfulness assumption, the

Markov blanket of , , is identical to ‟s parents, children and children‟ parents (spouses),

i.e. .

Before MMPC/MB, algorithms like IAMB and GS only depend on the (in)dependence property

as derived from Definition 1.11 to recognize positive as well as false positive ones, though the

property as contained in Definition 1.12 was known. Compared with previous works,

MMPC/MB works in a different way. It is built on the basis of Theorem 1.4, and the induction

of target is divided into the recognition of and separately. It

depends on a series of conditional independence tests, like , to decide if there exists

edge between and . Generally, is smaller than , hence MMPC/MB finds a novel way to

achieve better data efficiency than GS and IAMB. Actually, HITON, PCMB and our IPC-MB are

all proposed on the basis on this important finding.

2.6.2 D-separation

Since d-separation is frequently referred during our proof, in this section, we step further to

introduce how to determine if node is d-separated from , which is equal to determine

conditional independency given faithfulness assumption.

Bayesian networks encode the dependencies and independencies among variables. Under the

causal Markov assumption, each variable in a Bayesian network is independent of its ancestors

given the values of its parents [2], which permits us to infer some conditional independence

relationships. For the general conditional independence in a Bayesian network, Pearl proposed a

concept called d-separation [2]. D-separation, as short for direction-dependent separation, is a

graphical property of Bayesian networks and has the following implication: If two sets of nodes

 and are d-separated in Bayesian networks by a disjoint set (i.e.), the

corresponding variable sets and are independent given the variables in . The definition of d-

separation (Definition 1.10) tells us that and are d-separated by a disjoint set iff. every

27

undirected path between and , i.e. , is “blocked”, where , and

 . The term “blocked” means:

 Either the connection through is “tail-to-tail” or “tail-to-head” and is instantiated, i.e.

 ; or

 The connection through is “head-to-head” and neither nor any of ‟s descendants has

received evidence, i.e. .

The graph patterns of “tail-to-tail (diverging)”, “tail-to-head (serial)” and “head-to-head

(converging or collider)” are shown as below (Figure 1-5):

Figure 1-5: Three possible patterns about any path through a node in Bayesian network

With the definition of d-separation, and the three graphical patterns as demonstrated in Figure 1-5,

we are interested in proving from the viewpoint of d-separation, i.e.

 d-separates from , and is the minimal such set given faithfulness

assumption.

Theorem 1.5 Given the faithfulness assumption, the minimal set of nodes which d-separates the

node from all other nodes is ‟s Markov blanket.

28

Figure 1-6: The Markov blanket of (includes P(arents), C(hildren) and S(pouses)) d-separates

all other nodes given faithfulness assumption.

Proof. contains ‟s parents, children and spouses, which are represented with grayed

circles and denoted as , and respectively in Figure 1-6. Those but are connected

to , or are represented by circles with dotted edge. In total, there are five possible such

cases, denoted as , , , and respectively, and we will explain how they are all d-

separated from , given the precondition that the whole are instantiated (denoted as grayed

circles):

1. : There exists serial (tail-to-head) pattern () on this path, and

is instantiated , so this path is “blocked”;

2. : This path is “blocked” due to the existing of serial(tail-to-head) pattern with

instantiated;

3. : There exists diverging(tail-to-tai)l pattern () on this path, and

 is instantiated , so this path is “blocked”;

4. : This path is “blocked” due to the existing of diverging(tail-to-tai)l pattern with

 instantiated;

5. : This path is “blocked” is due to the existing of serial(tail-to-head) pattern.

Given any , we have to “visit” , , , or (Figure 1-6), and then some , or

 before accessing . Then, although there may exist many possible paths from to , each of

them must contain some pattern(s) of the 1-5 as listed above; hence, we can infer that each of the

possible path will be “blocked”, and is d-separated from . Therefore, we conclude that

d-separates from all .

The proof that is the minimal set is trivial by contradiction, and ignored here. █

Therefore, d-separation actually bridges the semantic gap between the distribution and the

graphical model, based on the faithfulness assumption. With d-separation, we are able to infer

more conditional independence from the underlying DAG, in addition to the known Markov

property.

29

2.6.3 MMPC/MB Algorithm

The overall Max-Min Markov blanket (MMMB, Figure 1-7) algorithm is composed of two steps.

First, it discovers by MMPC(). Then it attempts to identify . Any is known as

the parent of some child(ren) of , which suggests that they should belong to , i.e. the

union of the parents and children of the parents and children set. However, this union set,

 (Line 3 of MMMB), also includes the children of the children of , the parents of the

parents of , and the children of the parents of . Thus, it is a superset of , and those false

positives need to be filtered out.

Figure 1-7: MMPC/MB algorithm

Given but not adjacent to , it has the following property: conditioned on any subset

that includes a common child (or children), and are dependent (Theorem 1.4, part 2). This

property is not owned by the false positives in
 , so it can be used to filter them out. One

problem with checking the property directly is that we do not know which nodes in are

actually children. Another problem is that it is inefficient to condition on all possible subsets.

30

Fortunately, MMMB overcomes both of these problems. First, it identifies a subset

that d-separates from (Line 5, MMPC), and caches it for later reference. Now if there is a

variable , such that , then has to be a child of and has to

be a spouse of . This is from the definition of the d-separation. The reverse also holds, so if

there is no node for which the condition holds, cannot be a spouse of and it can be filtered

out.

Tsamardinos et al. falsely proved in [21] that, under the assumptions of faithfulness and correct

(in)dependence test, the output of MMPC is In practice, MMMB performs a test if it is

reliable and skips it otherwise. MMMB follows the same criterion as IAMB and Fast-IAMB to

decide whether a test is reliable or not. MMMB is data efficient because the number of instances

required to identify does not depend on the size of but on the topology of . The

experiments done in [21] shows that the algorithm is able to scale to problems with thousands of

features, which actually reflects its merit of data efficiency.

Figure 1-8: Two examples that MMPC/MB produces incorrect results

However, Pena et al. showed that MMPC does not guarantee to produce correct [13]. They

pointed out that the flaw in the proof is the assumption that if , then for some

 and thus, any node not in that enters
 at line 7 is removed from it at line 12.

This is not always true for the descendants of , and it could be illustrated by running MMPC()

with data faithful to the DAG(a) in Figure 1-8. Neither nor enters
 at line 7 because

 and . enters
 because is not independent for all such that .

 enters
 because (since the path is NOT blocked) and

31

(since the path is NOT blocked). Then
 at line 9. Neither

nor leaves
 at line 11. Consequently, the output of MMPC includes which is not in ;

therefore, MMPC does not guarantee the correct output under the faithfulness assumption. This

example also illustrates that (1) partial can not completely shield completely from outside

variables; (2) if we have , then all the paths from to will be blocked; (3)

there is no subset of such to satisfy this condition.

Furthermore, Pena et al. showed that MMMB is not always true even if MMPC were correct

under the faithfulness assumption. With DAG (b) in Figure 1-8, let us assume that MMPC is

correct under the faithfulness assumption. Then, and
 at

line 3 (of MMMB). enters at line 8 if at line 5, because (1)both and

 are blocked with instantiated , which means that (line 5); With

 , since the path is NOT blocked with instantiated

(line 7). Consequently, the output of MMMB can include which is not in and, thus,

MMMB does not guarantee the correct output under the faithfulness assumption even if MMPC

were correct under this assumption.

In [40], Tsamardinos et al. identify the flaw in MMPC and propose a corrected MMPC (CMMPC,

Figure 1-9). The output of MMPC must be further processed in order to obtain , because it

may contain some descendants of in other than its children. Fortunately, these nodes can be

easily identified: If is in the output of MMPC(), then is a descendant of in other than

one of its children iff is in the output of MMPC(). However, as shown above, correcting

MMPC does not ensure MMMB is correct.

Different from IAMB and GS, which condition on the full candidate (), MMPC or

CMMPC tries all subsets of the candidate () or in an attempt to d-separate all

nodes not in the local neighborhood. Obviously, conditioning on the full instead of all

subsets of it significantly reduces the time complexity, but the sample requirements of the

algorithms also increase exponentially. Therefore, MMPC/MB is the first valuable effort to

improve the data efficiency of such category of algorithms, though it doesn‟t always produce

correct outcome.

32

Figure 1-9: CMMC, Corrected MMPC

2.7 HITON-PC/MB

HITON [25](pronounced “hee-tón, it is from Greek, means “cover”, “cloak” or “blanket”) is also

the work by the authors of IAMB, and can be viewed as an effort to further make the induction of

Markov blanket more data efficient to meet the challenge in the biomedical field where sample

sizes are typically limited (and often sample-to-variable ratios are very small). HITON also

requires the same two assumptions as its ancestors IAMB: faithfulness and correct

(in)dependence tests.

Figure 1-10: HITON-PC/MB algorithm

HITON works in a similar manner as MMMB. It first identifies the parents and child of by

calling HITON-PC and, then identifying the rest of the parents of the children of in via

33

HITON-MB (Figure 1-10). HITON-PC is similar to MMPC, with the exception that the former

interleaves the addition of the nodes in
 to (lines 4-6) and the removal from

 of the

nodes that are not in but that have been added to
 by the heuristic at line 4 (lines 7-11).

Note also that this heuristic is simpler than the one used by MMPC because the conditioning set

is always the empty set. Aliferis et al. proved in [25] that, under the assumptions of faithfulness

and correct independence test, the output of HITON-PC is . However, this is not always true.

The flaw in the proof is the same as that in the proof of correctness of MMPC. Running HITON-

PC() with D faithful to the DAG (a) in Figure 1-8 can produce the same incorrect result as

MMPC(). Obviously, the flaw in HITON-PC can be fixed in the exactly the same way as the

flaw in MMPC was fixed above.

Figure 1-10 outlines HITON-MB. The algorithm receives the target node as input and returns

 in
 as output. HITON-MB is similar to MMMB. The algorithm works in two steps.

First, and
 are initialized with and respectively, via the

call of HITON-PC() (lines 1-2). Second, the nodes in
 that are neither in nor have a

common child with in are removed from
 (Lines 3-9). This step is based on the

following observation. If
 and , then must be removed from

 iff

 for some such that . Aliferis et al. also prove that the output of

HITON-MB is [25]. However, this is not always true even if HITON-PC were correct

under the faithfulness assumption. The flaw in the proof is the observation that motivates the

second step of HITON-MB, which is not true. This is illustrated by running HITON-MB() with

D faithful to the DAG(b) in Figure 1-8. Let us assume that HITON-PC is correct under the

faithfulness assumption. Then and
 at Line 3. and are

removed from
 at line 6 because and . Therefore,

 at line 10. Consequently, the output of HITON-MB does NOT contain , the spouse of .

Thus, HITON-MB does not guarantee the correct output even if HITON-PC were correct.

The experiments done in [25] show that the algorithm is able to scale to problems with thousands

of features. Though it is not always correct, HITON-PC/MB still is recognized as another

meaningful effort for an efficient learning algorithm of Markov blanket discovery without having

to learn the whole Bayesian network.

34

2.8 PCMB

2.8.1 Motivation and Theoretical Foundation

Although neither MMPC/MB nor HITON-PC/MB is sound in theory, they represent a novel

direction of learning Markov blanket in a more economic and practical manner, i.e. improving the

efficiency of data usage by making use of the underlying topology information. This is

considered as a great progress compared with all previous works, and it makes it possible for this

kind of algorithm to work in many modern applications where high dimension is involved but

collecting training data may be costly. Even for scenarios with relatively large volume of data,

reducing the degrees of freedom of statistical tests may also increase the reliability of the results.

Following this path, Pena & al who are the first ones to point out the flaw of MMPC/MB and

HITON-PC/MB proposed a similar but sound algorithm, called PCMB (Parents and Children

based Markov Blanket algorithm) [13]. It relies on the same two assumptions as required by

MMPC/MB and HITON-PC/MB: faithfulness and correct statistical test. Similarly, PCMB

induces MB via the recognition of direct connection, i.e. parents and children about any variable

of interest, just like MMPC/MB and HITON-PC/MB do, which may explain where its name

comes from.

Some background knowledge and theory about Bayesian network are covered in section 2.6.1. In

this section, additional theorems necessary for the explanation and proof are presented for later

reference, considering that our work is built on the same set of theoretical basis.

Theorem 1.6 Let and denote four mutually disjoint subsets of . Any probability

distribution satisfies the following four properties: (1) symmetry , (2)

decomposition , (3) weak union ,

and (4) contraction . If is strictly positive, then

 satisfies the previous four properties plus the intersection property

 . If is faithful to a DAG , then satisfies the previous five

properties plus the composition property and the local

Markov property , where denotes the non-descendants of , and

for the parents of [2, 28].

35

To make later references easier, we abstract those related properties of a probability distribution

faithful to a DAG as:

Corollary 1.1 Let and denote four mutually disjoint subsets of . Any probability

distribution faithful to a DAG satisfies the following seven properties: (1)

symmetry , (2) decomposition , (3) weak union

 , and (4) contraction

 ; (5) intersection ; (6) composition

 ; (7) local Markov property .

2.8.2 Algorithm Specification

PCMB identifies using the subroutines GetPC, and GetPC calls GetPCD to get the

candidates. GetPCD receives the target node as input and returns a superset of in

 (for easy reference, we attach the procedure name in front of the variable) as

output. This superset contains false positives, nodes that do not belong in . The algorithm

tries to minimize the number of false positives, and it repeats three steps until does

not change. First, some false positives are removed from (lines 4-11). This

step is based on the observation that iff for all such that . Second,

the candidate most likely to be in is added to and removed from

 (lines 12-15). Since this step is based on the heuristic at line 13, some false

positives may be added to as well. Some of these nodes are removed from in

the third step (lines 16-23). This step is based on the same observation as the first step. In

 , the separator set corresponding to and (if there is, as found at Line 6 and 18) is

cached and denoted with .

Theorem 1.7 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG , GetPCD() returns a superset of that does not include any node in

 [13].

The output of GetPCD may still contain some descendants of in other than its children.

These nodes can be easily identified. If is in the output of GetPCD(), then is a descendant

of in other than one of its children iff is not in the output of GetPCD(). GetPC, which is

36

outlined in Figure 1-11, implements this observation, and its correctness is proved by the author,

see Theorem 1.8.

Figure 1-11: PCMB Algorithm.

Theorem 1.8 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed (i.i.d.) sample from a probability distribution

 faithful to a DAG , GetPC() returns [13].

PCMB receives the target node as input and returns as output. The algorithm works in

two steps. Firstly
 is initialized with by calling GetPC (line 2). Secondly, the parents of

the children of in that are not yet in
 are added to it (lines 3-12). This step is base on the

37

following observation. The parents of the children of in that are missing from
 at line 3

are those that are non-adjacent to in . Therefore, if , and and, then

 and are non-adjacent parents of iff for any such that and

 . Note that can be efficiently obtained at line 6: GetPCD must have found such

and have cached it with as we mentioned above.

Theorem 1.9 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG , PCMB() returns [1].

In practice, PCMB follows the same criterion (equation (1.5) as IAMB, MMMB and HITON-MB

to decide whether a test is reliable or not. PCMB is data efficient like MMMB and HITON-MB

since the number of instances required to identify does not depend on the size of but

on the topology of , but it is the first such kind of progress proved sound. Though one

experiment in the original text [13] demonstrates that PCMB scales to one KDD Cup problem

with thousands of features, it is shown as actually quite time inefficient by our empirical studies

in Chapter 4, much slower than another algorithm we developed and that is introduced later, IPC-

MB.

38

Chapitre 3 A NOVEL ALGORITHM FOR LOCAL LEARNING OF

MARKOV BLAKNET : IPC-MB

3.1 Motivation

From the review in the previous two chapters, we can see a clear progress towards efficiently

deriving an MB from data. Beginning with Koller and Sahami‟s work, it was shown that the

Markov Blanket is the optimal feature subset, although the KS algorithm itself can‟t always

guarantee correct output. Then, GS, IAMB and several variants were proposed. Compared with

KS (algorithm), they are correct, simple and fast. However, they are known as very data

inefficient [11, 13, 15, 21, 25, 26], which weakens their practical value, especially when the cost

for collecting training data is high. MMPC/MB and HITON-PC/MB were therefore proposed

aiming at reducing the critical requirement on the scale of training data. By putting the

underlying topology information into consideration, MMPC/MB and HITON-PC/MB do proceed

in the right direction to solve the data inefficiency problem, but unfortunately, neither of them is

proved sound as they cannot always produce the correct outcome. Therefore, before this project

starts, to the best of our knowledge, PCMB was the most promising algorithm that was published,

known as sound, scalable and data efficient [26]. Even though Pena et al. proved that PCMB is

correct, and showed that PCMB is scalable to large problems [13], there is still much space to

improve based on our study, including accuracy, time and data efficiency.

3.1.1 Data efficiency, accuracy and time efficiency

The most common feature of these algorithms is that they are all based on conditional

independence (CI) test. Based on our discussion in section (1.5, we can increase the reliability of

CI tests by adding more observations, or reducing the degrees of freedom. Very often, we may

have limited data; then, the only option is to reduce the number of variables as contained in the

conditioning set of CI test (to make the discussion easier, we assume that each variable has the

same number of values). In previous works [13, 21, 25], GS, IAMB and its variants were known

to perform CI tests with conditioning set as large as . In fact, considering that false positives

(i.e.) may be added to the candidate MB container,
 , in the growing phase,

39

the actual conditioning set can be even larger than . For example, given an initially empty

 in the growing phase of IAMB, will fail the CI test (since at least we

have an open path), and may be added into
 (Line 6 of IAMB, Figure 1-3). Upon the

introduction of the first false positive, the door hence becomes open to more false ones, which

possibly results in cascading errors due to the common way that independence-based algorithms

work: their decision on which test to perform next typically depends on the outcomes of previous

ones [37]. Thus, a single error in a statistical test, especially in the early stage, can be propagated

by the subsequent choices of tests to be performed by the algorithm.

In IAMB, assuming that we have enough instances to allow the search to continue until no more

can be added, we may have the
 set (much) larger than by the end of the growing

phase as discussed in the last paragraph, instead of merely “as large as ” as it was reported

[13, 21]. If we have only limited observations, we may give up the search in the growing phase if

there are not enough instances to support reliable statistical tests any more, with a
 set

containing a subset of the target plus some false positives. These initial misclassified

variables could impact the final accuracy (or recall, more specifically) because the shrinking

phase can possibly help to filter out false positives as contained in
 . Our experiments in

Section 4.4 confirm that the actual performance as achieved by IAMB is not balanced, with

precision level much higher than recall; additionally, its general accuracy performance is far

below that of PCMB and our IPC-MB.

So, IAMB‟s poor accuracy performance is actually caused by its search strategy which doesn‟t

make efficient use of observations. To improve the efficiency of data usage, PCMB makes use of

the known topology information, and takes the divide-and-conquer strategy by first finding ,

and then . In the inference of , the authors of PCMB follow the first conclusion of

Theorem 1.4 by checking if for each . To ensure correctness as well as to

control the size of the conditioning set, PCMB interleaves shrinking and growing phases in

GetPCD (Figure 1-11). Though this is effective to ensure sound outcome and efficient usage of

data, it is time consuming since CI tests with all subsets of or (and

are containers used to store found parents/children/descendants and candidate PCD respectively)

have to be conducted for each iteration in GetPCD. Therefore, the accumulated time cost

resulting from the many calls of GetPCD in PCMB will be considerable. As we will see in

40

Chapter 4, PCMB may be even more time consuming than the PC algorithm [14] which outputs

the whole Bayesian network. This caveat is not reported in its original publication [13], and

raises the issue of its actual scalability, at least from the perspective of time complexity.

In summary, we conjecture that although it is a valid algorithm for inducing Markov blankets,

IAMB is data inefficient and may produce poor result given limited data, while PCMB can be

costly in terms of time.

3.1.2 Assumptions and overview of our work

Although we have raised issues with the previous work, we acknowledge the efforts and

contributions by predecessors since their findings illumined us all along:

 A Markov blanket is theoretically the optimal subset of variables for a classification task;

 IAMB is time efficient, but data inefficient since it may condition on the whole or an

even larger set containing not only but some or all of . This is what we

need to avoid if we want the solution practically valuable;

 Topology information may be of critical importance to avoid conditioning on needlessly

large set [13, 21, 25].

In this project, we start by proposing a novel algorithm for learning MB, which minimizes the

size of the conditioning set of CI tests during the search yielding better data efficiency than

known algorithms. It is named Iterative Parent-Child based search of Markov Blanket (IPC-MB).

Throughout our discussion below, we will assume the following assumptions:

 Faithfulness;

 No hidden variables;

 Reliable independence test (i.e. the test can tell us the (in)dependency if it holds in the

distribution);

 Discrete observations;

 No missing values in observations.

Akin to PCMB, IPC-MB induces via the recognition of and , and follows these

guiding principles:

41

 The induction of in IPC-MB proceeds in a manner of breadth-first search. It first

determines the direct neighbors of , i.e. , and then the neighbors of each , i.e.

 . This two-layer search permits us to not only find the true (how it is realized is

discussed in Section 3.2.2 and 3.2.3), but prepare the search for spouse candidates

considering that spouses must belong to some where (more detail can be found

in Section 3.2.3). Some additional checking is further applied to induce those true spouses

from among the candidates (refer to Section 3.2.4 for more discussion). Hence, both the

learning of and depend, directly or indirectly, on the search of local neighbours,

which explains the origin of our algorithm;

 In the induction of (here can represent and ‟s neighbours found in IPC-MB), we

start with the assumption that all are ‟s parents or children. Then, it proceeds by

checking and removing false positives, i.e. those actually belonging to . Considering

that (1) we are able to delete the link if there exists a single positive CI test, with some

 as the conditioning set, indicating that are independent; (2) the real

network normally is not dense in connectivity and is small relative to in most cases,

then the removal of false positives is believed an effective approach to decrease the search

space quickly. By removing those false positives, all or most of the remaining ones are

expected to belong to ;

 During the process of filtering out , the conditioning set in starts with

empty set, and grows one at time. Whenever is tested as conditionally independent with

given some , it is considered as not belonging to and removed from
 (Candidate

) right now. Therefore, any decision on false positive is made with as small conditioning

set as possible, which maximizes data efficiency;

 Meanwhile, since we start with the empty conditioning set, and each in the
 is tested

given the current conditioning set(s), as many false positives are removed, and at an as early

time as possible, which maximizes time efficiency;

 Therefore, IPC-MB is expected to solve the most severe shortcoming of IAMB and PCMB,

thereby maximizing computational efficiency.

42

The rest of this chapter is organized as follows. The specification and proof of IPC-MB is

covered in section 3.2 and 3.3. Complexity analysis is discussed in section 3.4, followed by the

discussion of data efficiency and reliability in section 3.5. Analysis of our algorithm given

polytree, one special type of Bayesian network, is presented in section 3.6. Section 3.7 discusses

the parallel version of IPC-MB, and the final section provides some concluding remarks.

3.2 IPC-MB algorithm specification and proof

3.2.1 Overall description

A novel algorithm for learning Markov blanket is proposed by us in this section, based on a series

of CI tests. Since it induces the target Markov blanket via iterative learning of parents and

children, it is named as IPC-MB (Iterative Parent-Child based learning of Markov Blanket).

Although IPC-MB can be grouped into the category of constraint-based learning like HITON-

PC/MB, MMPC/MB and PCMB, it differs from those three in the search of local neighbors of

some variable (i.e.): IPC-MB initially assumes that all are connected (or adjacent)

to , and it tries to remove with left; however, the other three work to determine

directly if . For easy reference, we use
 to denote the candidate adjacent neighbors

of , and it is initialized as To realize that, IPC-MB starts with empty conditioning set ,

and removes from
 all that are known as conditionally independent from by CI test

 where . Then, the allowed conditioning set size grows by one, and the removing

continues if there is
 which is known as independent from conditioned on some ,

where
 and | . The search continues on in this way, with the conditioning set

growing by one each time, and terminates when there are no CI tests remaining in

(which will be discussed in 3.2.2). In so doing, false positives are removed by the lowest-order

tests, resulting in a decreased search space. More importantly, minimizing the high-order tests

reduces the risk of non-reliable tests, while improving the overall reliability of the algorithm

especially when the sample size is limited. This is important since learning built on statistical

tests suffers most from the curse of dimensionality [38]. However, the other methods (HITON-

PC/MB, MMPC/MB and PCMB) have to know if is conditionally dependent from

given all before including it into .

43

Similar to MMPC/MB, HITON-PC/MB and PCMB, the whole procedure of IPC-MB can be

divided into two phases:

1. Firstly, it attempts to identify nodes directly connected to among , i.e. This actually

is achieved by two steps, recognizing the candidate parents and children, followed by

filtering out false positives (if there are any) to reach the true ;

2. Secondly, it induces the from the candidates prepared in the first phase. Note that for the

 , they are recognized as first and be included into in the first step.

The first phase will be discussed with detail in section 3.2.2 and 3.2.3, and the second phase with

section 3.2.4.

3.2.2 Learn Parent/Child Candidates

The discovery of parent/child is critical to the efficiency of the local search approach of this

algorithm of IPC-MB. Given a variable , the FindCanPC procedure (Figure 3-1) aims to

identify the target‟s parents and children, though, but descendants may be output as well.

FindCanPC has four input parameters:

1. , the target variable;

2.
 , the candidate parents and children initialized as . Then, obviously,

 ;

3. , the dataset used for learning;

4. , significance threshold value used in determining if a CI test indicates positive CI

relationship (when the result of test is larger than) or not (when the result is smaller or

equal to), i.e. significant or not. Empirical choice may be 0.01 or 0.05. Note: As mentioned

in section 2.2, we implement test and apply it for all algorithms covered in our discussion.

44

Figure 3-1: FindCanPC algorithm and its pseudo code.

FindCanPC begins with the assumption that is dependent over all
 , which means that

 is connected with each
 given the faithfulness assumption. Then, it tries to determine

whether or not each such edge should be deleted, which corresponds to removing false

positives from
 . This is achieved by three embedded loops (Note that we assume there

are enough observations for learning here, i.e. the discussion over the reliability of the CI tests is

postponed to section 3.5):

1. Repeat…until (the outmost loop) (Line 3 – 16). It starts with empty conditioning set

(), and exits when that
 is equal to . In addition to the

two embedded inner for…do… loops, we find additional instructions (line 13-15):

a) If there are false positives found, i.e. , they are removed from
 by the

end of this iteration. Hence, in the next iteration, we may have a smaller search space. If

there are false positives removed in each iteration, the search space will continue to

shrink;

45

b) Otherwise if , i.e. no false positive is found, nothing is done except for

increasing the by one.

2. for(each
) do… (the middle layer) loop (Line 4-12). Upon entering this loop, each

 is assumed to be connected with . With conditioning sets of size , each

 will be checked if it is conditionally independent with (how this is done is

discussed in the next point). If it is, will be put into and be removed from
 by

the end of do…while… loop as we discussed above.

3. for(each
) do…loop (the inner one) (Line 5 – 11). With each

 and

given , is checked if it is independent with conditioned on some

 , as tested by the statistical function (line 6). Note that the number of

involved in the search is a critical measure that reflects the time complexity of this kind of

algorithm, and we will discuss this topic in more details in 3.4.1 and 3.4.2. Anytime is

tested as independent with , conditioned on some , it is added to (line 7) and exits

from the current loop (line 9), which is the advantage of filtering false positives from an

initial candidate set since we stop after a single negative CI test each time and we can start

with the smallest conditioning set, instead of working from an empty candidate set where

we would need to run all possible CI tests each time. For each rejected candidate, the found

conditioning set is denoted as , and cached for later reference (spouse learning in

3.2.4).

To better explain the algorithm, we illustrate the procedure by a simple example, given target

and
 initially:

1. . The following CI tests will be conducted: , ,

 , , and . Assuming that only two nodes have a

positive CI test, and , then and are put into at

line 7; meanwhile, and are cached for later reference (line 8).

At line 13, both and are removed from
 , with updated

 . With

new =1 (by increasing with 1 at line 14), it is still smaller than
 (=4, line

16), we continue with the processing;

2. . At most, the following groups of CI tests will be done:

46

a) , , ;

b) , , ;

c) , , ;

d) , , .

Each group above is about and some
 conditioning on some

 and

 . At any time, if we determine that and are conditionally independent

(i.e.), the remaining CI tests in the corresponding group are ignored. For

example, if , is added into , neither nor

is necessary. That is why we mention “at most” above. Assuming and

 , we have updated
 and ;

3. Because
 , we exit from the loop, with

 being returned.

We can do so because with
 , all possibly constructed CI tests, like ,

 , , and , are conducted in previous iterations. Hence, there is

nothing to do but exit. █

Theorem 3.1 Under the assumptions that the independence tests are correct and that the learning

data is an i.i.d. sample from a probability distribution faithful to a DAG , given

 , FindCanPC enables us to find the superset of , denoted as
 (Candidate Parents

and Children), and it has two properties: (1) for each ,
 ; and (2) there are some

false positives contained in

 .

Proof. We need to prove the two properties respectively. The first one is proved by contradiction.

With
 initially, it is assumed that there is some not output by FindCanPC.

Given the faithfulness assumption, it is known that if , is connected to directly.

According to Theorem 1.4, for such , it should NOT be independent of given any

conditioning set, i.e. should pass all as met in FindCanPC. Given correct statistic test,

 would not be output by FindCanPC only when it fails on some , which is obviously

contradictory with the fact that . Therefore, all would be returned by

FindCanPC.

47

We prove the second property (
) with the example of Figure 1-8(a) that FindCanPC

may output some of ‟s descendants given some topology. With and
 , it

starts by connecting with and .With , (1) both and

 are blocked due to the converging pattern at and , and neither is

instantiated, which implies that since they are the only two paths between ; (2)

both and are blocked due to the same reason, and we have

 .Hence , , and . Then, with

 and
 , (1) is trivial; (2) since although

 is blocked with instantiated, is not blocked (or is needed,

but both are absent). Therefore, no additional false positive is found, the search terminates with

 being returned. Obviously, is a false positive that is not filtered out. There are two

possible paths from to : and . Based on the d-separation

concept, the minimum cut set to “block” and is or . However, here, and

have been deleted from
 when , which prevents us from filtering . Therefore,

FindCanPC may output false positives, and
 . Note that is a false positive

descendant of based on Definition 1.7, and as we will discuss right below, FindCanPC()

may output ‟s descendants. █

Before we discuss how to filter out false positives as contained in the output of FindCanPC, it is

necessary to study more closely how they occur.

Lemma 3.1 Given and
 , the output of FindCanPC will NOT contain non-

descendants of excluding ‟s parents, i.e. .

Proof. (1) The local Markov property (Theorem 1.6) tells us that is independent of its non-

descendants given the value of its parents, i.e. ; (2) It is known that will

always stay in
 (Theorem 3.1), i.e.

 ; (3) The conditioning set starts with , so

we are guaranteed to have a chance to condition at ; (4) We check each

 in each iteration, including the iteration of . Therefore, each

 is able to be successfully recognized given the test and is

filtered out as expected. █

48

Lemma 3.2 Given and
 , FindCanPC may or may not output descendants of ,

and it depends on the underlying topology.

Proof. (1) In Theorem 3.1, one example has been given to show that descendants of may be

missed from deletion. (2) Here, we give another example to show that descendants of may not

be output by FindCanPC. In Figure 3-2, if there are no dotted links (between Non-

Descendant and Descendant, and the direction of the edge does not matter) and

(between Parent and Descendant) in addition to , it is trivial to know that Des is d-

separated from given , so it will not be output by FindCanPC. Even with and

 added, we can still prove that the paths of and are

blocked by due to the existing of serial and diverging patterns respectively. Since and

will always be output by FindCanPC, in this example then will never be output by

FindCanPC. █

Figure 3-2: Possible connections between Non-Descendants/Parents/Children and descendant.

Theorem 3.2 Given and
 , FindCanPC may return false positives, and they may

only be ‟s descendants, but not its non-descendants (excluding).

Proof. (1)
 ; (2) . These two facts, plus the proof

of Lemma 3.1 and Lemma 3.2, are enough to declare that non-descendants won‟t be output by

FindCanPC, and some descendants may be output under some conditions though it is not

expected.█

49

In this section, we introduced the core module of IPC-MB, FindCanPC. We start with heuristics,

followed by algorithm specification, and ended with a proof that FindCanPC will output all

parents and children of ; additionally, we noted that some of ‟s descendants may also be

falsely output depending on the underlying topology. In the next section, we will discuss how to

construct a true parent-children set of , i.e. , by filtering those false positives that

FindCanPC() may output.

3.2.3 Learn Parents/Children

As we discussed above, FindCanPC() itself does not guarantee to return exactly the parents and

children of (Theorem 3.1), but some descendants of (Theorem 3.2). Unfortunately,

candidate parents and children are mixed together, and therefore denoted as
 (Line 2 of IPC-

MB, Figure 3-3). The container reserved for true Parents/Children, denoted with , is

initialized as empty (Line 3, IPC-MB).

Lemma 3.3 With
 FindCanPC(), given each

 and
 = FindCanPC(), (1) if

 , is known as a true parent/child, and should be added into (Line 7-10, IPC-MB);

(2) if
 , is known as a false parent/child, and would be ignored with no further action.

Proof. Theorem 3.2 tells us that FindCanPC() may contain two types of output: true

parents/children of as expected, and descendants of which are not desired. The proof

contains two parts based on extra checking on each
 : what true is still recognized as

true, but what false can be successfully filtered out.

First, if , obviously, and would be returned by FindCanPC() given

Theorem 3.1. Then, our inference that “if
 and

 , then the decision that is true

parent/child “ is known correct.

Second, we need to prove that if
 but

 , then is false parent/child. From

Theorem 3.2, it is known that what false positives possibly output by FindCanPC() and

FindCanPC() can only be ‟s and „s descendants respectively. Assuming that
 but

 , can be returned by FindCanPC()?

50

This may happen only when is its own descendant‟s descendant. Obviously, it is impossible

since one cycle will happen. So, if
 and

 , it can be inferred that is NOT true

parent/child, and should NOT be added into . █

Figure 3-3: IPC-MB algorithm and its pseudo code.

Figure 3-4 demonstrates the effect of repeating the call of FindCanPC in IPC-MB. Although

some false positives may be output by FindCanPC(), it is known that they can be successfully

recognized and deleted in IPC-MB, as shown in Lemma 3.3. By repeating the call of FindCanPC

for each
 , then we know that the results of at line 12 (IPC-MB) are exactly parents

and children of .

51

Figure 3-4:
 as output by FindCanPC(), and the output of typical

 , i.e.
 .

Theorem 3.3 Under the assumptions that the independence tests are correct and that the learning

data is i.i.d sample from a probability distribution faithful to a DAG , IPC-MB allows us to

find the complete and correct parents and children of one target, i.e. for of interest.

Proof. (1) Given Theorem 3.1,it is known that
 contains not only but, probably, some

false positives; (2)Theorem 3.2 tells us that those possible false positives can only be

descendants of ; (3) With Lemma 3.3, we know that if
 is a false positive descendant, it

will be recognized. (4) Finally, since we apply the same verification procedure for each
 ,

we are guaranteed to have with all false positives being removed from
 . █

By now, we have explained and proved that IPC-MB allows us to learn the complete parents and

children of of interest, i.e. (Theorem 3.3). It is noticed that the learning is built on a series

of FindCanPC() , which exactly explains why our algorithm is called Iterative Parent-Child

based learning of Markov Blanket (IPC-MB).

What left is the learning of ‟s spouses, i.e. . How to recognize is discussed in the next

section, but it is necessary to predict that it is built on the finding of FindCanPC() as well.

52

3.2.4 Learn Spouses

By the Line 12 of IPC-MB (Figure 3-3), we have as discussed in last section. In fact,

we also have collected all candidate spouses of with the repeated calls of FindCanPC().

Lemma 3.4 Given
 , if

 ,
 contains candidate spouses of if there are.

Proof. Theorem 3.1 tells us that
 , the output of FindCanPC(), contains all parents/children

of . Given
 , if

 , then is known as a true parent/child (Lemma 3.3). If is a

child of , and if it is a common child of and some , must be returned by FindCanPC() .

This applies to all ‟s parents which are ‟s spouses meanwhile. █

All outputs of FindCanPC() regarding to such
 are cached as

 (Line 9, IPC-MB)

with subscript for later reference. Obviously, it contains more than what we want:

 , since
 ;

 True parents and/or children of , which would be ignored;

 True spouses of , i.e. those having as their child as . These are what we are interested to

distinguished here;

 False positives (neither parents, children nor spouses of).

Lemma 3.5 Given
 =FindCanPC(),

 , where
 and

 , i.e.

 .

Proof. Assume there exists some spouse of which is not contained in
 , which

means that is not contained in any
 , where

 and
 . This may happen only

when (1) The common child of this and is not contained in
 , or (2) is not returned by its

common child with , , though
 . Both cases are contradictory to the facts that

FindCanPC() returns all parents and children of (Theorem 3.1). █

With Lemma 3.5, it is known that
 contain all candidate spouses of , by Line 12 of

IPC-MB, and it is denoted with shorthand
 . However, there are many false positives are

known as contained in
 as well, waiting for further processing.

Similarly to the discovery of parents and children of , i.e. , we depend on the underlying

connectivity information to recognize from
 . For any , there are two facts

53

available for reference: (1) it has to belong to and ; (2) it is independent of as

conditioned on or (that is why it is not included in) , but it is

dependent with conditioned on or . The first observation is

obvious given the underlying topology, and the second is based on Theorem 1.4.

Lemma 3.6 Given each
 but , there must exist some , , such that

 .

Proof. The proof is trivial since if there is no such , should be in .█

Lemma 3.7 In IPC-MB, for each
 but , either or

 (Note that means empty set , while means Null pointer, i.e. there is

no record for the corresponding subscript).

Proof. Given each , (1) If it is a non-descendant of , it will be recognized as

conditionally independent given some ; (2) Else if it is a descendant of , it

may be falsely decided as conditionally dependent with , which means that ,

and it will be contained in
 ; (3) Since we will call FindCanPC for each

 , if ,

 will be recognized as conditionally independent given some within

FindCanPC(). In short, for each , it is always can be recognized conditionally

independent given some set, and therefore or . █

Due that either or , it is necessary to check them before the

assignment as done at Line 15 of IPC-MB.

Lemma 3.8 Given the faithfulness assumption, is equal to say that all paths

between and are blocked by , i.e. is d-separated from by .

Lemma 3.9 Given and
 = FindCanPC(),

 .

Proof. Theorem 3.2 tells that FindCanPC() won‟t output ‟s non-descendants. Since

 , it means that
 , i.e.

 given each . █

Theorem 3.4 Given and
 FindCanPC(), for each

 but and

 (excluding processed and descendants of if there are), if is conditionally dependent

54

with given or (depending on which one is not NIL), is

known as a true spouse of .

Proof. Given ,
 but and

 , it is secure to declare that is

connected with , denoted as , and is NOT connected with ,denoted as .

Besides, due that , it is known that where

 (Lemma 3.6 and Lemma 3.7) . In other words, blocks all

possible paths connecting and (Lemma 3.8). To prove the statement, we have to study the

following six cases separately considering that X may be a parent/child of T () and Y

can be a parent/child/descendant of (
):

1. and , i.e. , but . To block the path ,

the statement that must be true. Otherwise, at least we have a non-blocked path,

which is contradictory to the fact that and Lemma 3.8. Therefore,

 ,and won‟t happen for this case;

2. and , i.e. but . Same proof as case 1;

3. and , i.e. but . It is easy to prove that adding does will

make the path non-blocked, i.e. won‟t d-separates and

anymore. Therefore, we have ;

4. and , i.e. but . Same proof as case 1;

5. and . (1) Since
 and , there must exist, at least one, non-

blocked path . (2) Because , all paths connecting and must be

blocked by some . Assuming that there is one path known as open, then it

is extendable to access via since , e.g. . To ensure d-separation,

this path has to be blocked; therefore has to be observed, i.e. .

Otherwise, will keep open (since there is no chance to construct a

converging pattern here with the existing of), which is contradictory to the fact that

 . Since , it is impossible to have ;

6. and . Similar proof as case 5.

55

These six cases cover all possible happenings, so the proof itself is complete. From the discussion

above, it is noticed that only the true spouse can satisfy given

 , where ,
 but and

 . █

Theorem 3.5 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG , all spouses of of interest are found with IPC-MB.

Proof. (Line 12 of IPC-MB) contains all the true parents and children, and

 contains all spouses of . With each
 but not in the current

and not in
 , it will be correctly recognized if it is true spouse (Theorem 3.5). Since this

checking applies to all variables in
 , we are able to find all spouses of . █

The determination of any true spouse is done in a manner different from the learning of

parents/children. While searching for ‟s parents and children, we try to filter as many false

positives as possible, reaching a set containing true parents and children, though some

descendants are included as well. Then, those false positives are further filtered out, with only

true positives left. However, while searching for the spouses of , we directly check if each

candidate is true or not.

Though the search of spouses proceeds in a different way, it depends on the output of

FindCanPC, including spouse candidates and sepsets cached. This again reflects the importance

of FindCanPC.

3.3 IPC-MB is Sound in Theory

Theorem 3.6 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG , the result induced by IPC-MB is .

Proof. IPC-MB is divided into two phases: learn the parents and children of first, then further

to learn ‟s spouses. The soundness of these two parts is demonstrated by Theorem 3.3 and

Theorem 3.5 respectively. Both theorems show that not only all true members are ensured to be

found and added into , but no single false positive has chance to enter into . █

56

So far, we have described in detail how IPC-MB induces the Markov blanket given a variable of

interest, and we have proved that the output as returned by IPC-MB is correct. If we view the

discussion so far as "qualitative" aspect about IPC-MB, in the next section 3.4, more

"quantitative" features about IPC-MB will be studied.

3.4 Complexity Analysis

In IPC-MB, FindCanPC plays a critical role in the learning of , and most computation

happens inside FindCanPC. Therefore, we study the time and memory complexity of

FindCanPC first, on which the overall cost can then be determined.

In algorithms like IPC-MB which depends primarily on a series of CI tests in the search, the

overall measure of time complexity can be measured by the number of CI tests, i.e. , as

required.

Note: Our analysis is based on the assumption that there are enough data for thorough search as

designated by the algorithm theoretically.

3.4.1 Time Complexity of FindCanPC

In this section, we focus on the performance of FindCanPC since it is viewed as the foundation

of IPC-MB, and as we can see late, it determines the whole complexity of IPC-MB as well. Our

discussion includes two aspects: qualitative and quantitative. The qualitative analysis gives us a

"rough" picture of FindCanPC, leading us to explore more descriptive outcome.

Qualitative Analysis

Theorem 3.7 Given the assumption of faithfulness and correct conditional independence tests,

any recognition of false positive in FindCanPC is achieved at the very first time.

Proof. We can prove it by contradiction. Assume that (1) at the iteration,
 ,

and , i.e. and is recognized as , one false positive; (2) there is

 , and
 .With

 and , it is able to infer that
 ; then,

must be met in earlier iteration, and should has been removed from
 at iteration

when smaller conditioning set with the cardinality as is under study. This contradicts to the

57

fact that
 at the beginning of the iteration. Therefore, if is able to be recognized

as false positive in FindCanPC, it must be found at the very first time. █

Theorem 3.7 indicates that deleting any recognizable false positive in FindCanPC is achieved

with the least cost. This theorem concludes the data-efficient feature of our work from the

theoretical viewpoint, and we will revisit it again in next section to see if it applies globally

within IPC-MB.

Quantitative Analysis

The most effective measure about the IPC-MB is the number of CI tests (in our

implementation)required considering that (1) IPC-MB and related algorithms depend on CI test

to make decision, and (2) it is the most time consuming processing unit compared with other

operations involved in the algorithm.

General Case

Our analysis starts with a very general scenario: Given and , the search starts with

empty conditioning set on, and it continues till there is no more CI tests left non-conducted, i.e.

 . The overall procedure is illustrated in 错误！未找到引用源。, and we

assume totally there are iterations.

Table 3.1 General analysis of the number of CI tests as required in FindCanPC.

Given and
 with

 (i.e at least one candidate neighbor)

Step 1: ,

of Tests:

 , where

of Non-PC Found:
Step 2: ,

of Tests:

of Non-PC Found:

…

Step : ,

of Tests:

of Non-PC Found:
…

Step : ,

of Tests:

58

of Non-PC Found:

The learning terminates since
 after

Let be the total number of CI tests as required in FindCanPC(), and the index

 means the learning of candidate parents/children of . To get it, we need summing the

number of CI tests needed in each round:

 +

 +

 +

(3.1)

Where:

1.

2. () (the intermediate step)

3. (the terminating condition)

The () element can be simplified further:

59

(3.2)

Then, replacing each item in equation (3.1) with (3.2), we get a compact representation:

(3.3)

Worst Case

From (3.3), we can infer that when each equals to zero,

 is then

maximized, so as the summing due that we may have maximum meanwhile. Then, we

have new version of summing equation on the total number of CI tests as required:

(3.4)

The example shown in Figure 3-5 is one such case satisfying (3.4). Since all attributes excluding

 are ‟s children, none of them are conditionally independent from given any conditioning

set. Therefore, , and the loop has to continue from to

 , totally iterations.

Figure 3-5: An example of network which has the largest size of Markov blanket, and

FindCanPC performs the worst on it.

60

Simplest Case

Similarly, we infer that (3.3) is minimized when , i.e. all recognizable false positives

are found in the first iteration. Figure 3-6 also illustrates one such example in which has one

child, and all other attributes are spouses of . Then, all spouses are conditionally independent

with given empty set, and all of them are deleted from
 by the end of the first iteration,

with
 left. The loop, therefore, terminates since

 . In this case,

we have

(3.5)

Figure 3-6: An example of network which has the largest size of Markov blanket, but FindCanPC

perform the best on it.

Theorem 3.8 Given and of fixed cardinality (>1), the maximum number of CI tests as

possibly required by FindCanPC is , and the possibly minimum amount is , where

 .

Theorem 3.8 gives the upper and lower bound of the time complexity of FindCanPC, and the

actual amount is determined by the underlying topology. Fortunately, in applications, most false

positives are removed given a small conditioning set, which results with actual cost far below

 (refer to Section 4.5).

61

3.4.2 Time Complexity of IPC-MB

The measure of FindCanPC is the basis for the overall analysis of IPC-MB. Our analysis is

composed of two steps: the learning of parents/children based on a sequential call of FindCanPC,

as well as the induction of true spouses from spouse candidates as collected in the first step.

Analysis on the Learning of Parents/Children and Candidate Spouses

During the first phase of IPC-MB, FindCanPC is called repeatedly to achieve our goal, and the

time complexity of this phase may be measured as how many times FindCanPC is called. Given

 and , a general equation can be constructed to reflect the time complexity:

(3.6)

To maximize (3.6), we need not only maximize and
 (the output of

FindCanPC()), but given each
 . The example of Figure 3-5 exactly

satisfies these three conditions: (1) is maximized as discussed in last section; (2)

 , maximized meanwhile; and (3) each is maximized due that all

 are parents or children of . Therefore, by replacing each term of (3.6) with (3.4), we can

infer that the maximum number of CI tests as required to induce the :

(3.7)

where is newly introduced
 is replaced with .

Similarly, we know that (3.6) achieves the smallest value given the example of Figure 3-6:

(3.8)

Note: Since the preparation of candidate spouses are done during this procedure without extra

cost, no extra analysis is required on that.

62

Theorem 3.9 Given and , the possibly maximum number of CI tests as required by IPC-MB

to learn is , and the minimum amount is
 .

In real applications, the actual cardinality of normally is much smaller than . Therefore,

the actual cost generally is far below than the maximum value . Besides, the

underlying topology is influential to the actual performance, even though the underlying Markov

blanket is known of size
 .

Analysis on the Learning of Spouses

Given and
 ready, the determination of true spouses is done with a two-layer loop. Here

we assume that the checking if can be done in constant time given hash-like storage, so the

time complexity of the second phase of IPC-MB can also be measured with the number of CI

tests (Line 15, IPC-MB).

To avoid repetition and save computing resource, we will ignore all , i.e. those

recognized and added to the container already. Besides, considering that (1) those positive

ones in
 are added to , and (2) those false positives as contained in

 can only be ‟s

descendants, the whole
 will be ignored. Therefore, we only consider

 .

The total number of CI tests as required for the recognition of true spouses can then be denoted as:

 (3.9)

Assuming that =a, where . If , obviously nothing left to do; otherwise,

we have

 considering that may increases with time on and

 . Therefore, at most times of CI tests are available in each inner loop,

and maximally, we need CI tests by summing times of

based on (3.9).

Theorem 3.10 Given and , maximally

 CI tests are required in the second phase of IPC-

MB to learn true spouses.

Proof. achieves the maximum value when , i.e.

 . █

63

So, when =0.5, i.e. half of are parents and children of , the second phase of IPC-

MB needs the maximum number of CI tests. However, compared with the worse case of the first

phase, ,

 is relatively small, and its increasing rate is much slower than the

previous one. Therefore, the worst complexity of IPC-MB is determined more by the first phase.

Interestingly, given the examples of Figure 3-5, no additional CI tests are required in the second

phase since .

Theorem 3.11 The worst performance of IPC-MB on time efficiency is , and the

best performance is less than

 .

Proof. The worst case is discussed. The best performance is determined by the topology, so we

only give a loose upper bound by summing the best case of the first phase and

the worst case of the second phase

 . █

3.4.3 Memory Requirement of FindCanPC

The access to memory (RAM) is known as much faster than disk I/O operation, so ideally we

want all data to be referred during the computing available in memory. Though this is impossible

for most cases, we prefer some solution to reduce the frequency of disk access as much as

possible. In this and next sections, we analysis the memory consumption of FindCanPC and IPC-

MB respectively, based on our own implementation strategy.

NonPC

It is used to cache those recognized as false positive in each iteration, and it is trivial to know that

its maximum size won‟t exceed
 .

Subsets S and Contingency Tables

The number of subsets and the size of each subset are known upon entering the innermost loop

(Line 5, Figure 3-1), so we prefer to allocate memory to cache all
 of the size

 between the Line 5 and Line 11. Given
 and , the number of subsets

of is
 is

 , where

64

Considering that the cardinality of each subset is of size , and assuming that each

variable is binary (including the target), each contingency table corresponding to has

 cells. Then totally we need

(3.10)

In (3.10) it is noticed that there are three factors to influence the actual complexity, including

 , and the number of values of each variable. In fact, the first two factors are

influenced by the actual topology, and the third one is determined by the actual problem. In our

implementation, hash table-like container is used to hold contingency table considering there may

exist empty cells, i.e. cells with no values. However, we have to admit that our current

implementation cannot deal with too large scale of problems on a common PC machine.

This is global allocation since it needs to be referred later in IPC-MB.

Lemma 3.10 Those seprator set (i.e. as found in our algorithm) as found and cached for

 and in IPC-MB, i.e. or , is the minimal such set.

Proof. It can be proved by contradiction. Assuming that we find

 such that

, and

 . Given

 , it means

that is missed though it appears at an early time in FindCanPC, which happens only

when . Obviously, it is contradictory with the fact that is a

valid separator set. █

Given each pair of (), since we will cache only one separator set to satisfy

 , the total number of such seprator won‟t exceed
 . However, the size for and

 may differ since they may be recognized in different iteration. Then, we can denote the

total memory as required by caching as:

 , with restrict to

Empty appears when is found conditionally independent of given empty set in the

first iteration; if no variable in
 is removed until the iteration

 , we may have

65

 as large as
 . Therefore, the actual memory footprint is influenced by the

topology as well.

Theorem 3.12 The memory allocation for is minimized in IPC-MB.

Proof. Lemma 3.10 tells us that as found is the minimal one; besides, it is known that

we only cache either or , then it is trivial to know that the memory allocation

for this part is minimized in IPC-MB. █

3.4.4 Memory Requirement of IPC-MB

Based on our discussion of FindCanPC, it is known that only is global allocation. In

addition to this, all other allocation in FindCanPC becomes free upon leaving it.

Considering that there is no other large memory requirement in IPC-MB, or they are relatively

small as compared with FindCanPC, no more space is left for this discussion.

3.4.5 Brief Conclusion on the Complexity of IPC-MB

By making full use of the underlying topology information, IPC-MB learns the Markov blanket

of via iterative local search. Within each local search round, it takes the strategy of removing

any false positive at the first moment it is found, which is very different from all previous work

and is expected to be much more efficient than them. Its “smart” strategy makes the overall

architecture very simple, easy to understand and implement as well.

Our analysis is built around this design as well. As its name indicates, the overall cost, no matter

time or memory, is determined by that of FindCanPC. However, the actual complexity will be

influenced by the underlying actual topology. From our analysis, it is observed that the

theoretically best and worst cases have very different performance, ranging from linear to

exponential growth.

3.5 Data Efficiency and Reliability of IPC-MB

Data efficiency is critical for the practical value of one algorithm since instances available for

training or learning are limited very often. In algorithms built on statistical testing, like the CI test

employed in IPC-MB, normally the fewer variables involved in , the more data

66

efficient is the algorithm. This is because CI test error, being the primary source of error, is the

result of unnecessary large condition set leading to the curse-of-dimensionality or choosing an

inaccurate conditioning set due to partial information. Therefore, data efficiency indirectly

influences the accuracy. In fact, in Chapter 4, we can observe obvious difference in the actual

accuracy between algorithms with low and high data efficiency.

In this section, we discuss the data efficiency of IPC-MB from theoretical viewpoint, and we will

revisit this topic in Chapter 4 and Chapter 5 considering that and it is so important and will never

be overemphasized. In fact, you will find in our conclusion later (Section 5.4) that data efficiency

is the most merit of IPC-MB, which permits IPC-MB not only to be very time efficient but to

achieve the highest accuracy as compared with similar works.

Lemma 3.11 Any false positive as recognized in FindCanPC is conditioned with the smallest

conditioning set.

Proof. Please refer to the proof of Lemma 3.10. █

Lemma 3.12 Any false positive as contained in
 is recognized with the smallest

conditioning set.

Proof. The recognition of any false positive is via the call of FindCanPC() which tells us if

 . Those false positives relative to are recognized with the smallest conditioning set

(Lemma 3.11), so we can say that any false positive of
 is recognized with the smallest

conditioning set. █

Theorem 3.13 Given and , the recognition of any is achieved with the least

conditioning set.

Proof. For any
 as output by FindCanPC(), it enters into or leaves from (by deleted)

 according to CI tests with the smallest conditioning set, as ensured by Lemma 3.11 and

Lemma 3.12. Therefore, we can declare that the recognition of any is achieved with the

least conditioning set. █

Lemma 3.13 The recognition of true spouses is achieved with the least conditioning set.

Proof. The recognition of any true spouse is realized with two phases: (1) the preparation of

candidate spouses, and (2) the determination of one true spouse. Regarding the preparation of

67

candidate spouses, it is learned by a series of FindCanPC(), so it is known that the smallest

conditioning set is used (Lemma 3.11). Besides, the Sepset as used to determine if a candidate is

true spouse is also minimized in cardinality (Lemma 3.10), therefore, the recognition of any true

spouse is achieved with the least conditioning set. █

Theorem 3.14 No algorithm can be more data efficient than IPC-MB.

Proof. Theorem 3.13 and Lemma 3.13 ensure the least conditioning set is used to recognize

parents/children and spouses respectively, so it is known that the recognition of realizes

the best performance in term of data efficiency. █

In real application, we may only have limited data for learning. To ensure the trustability of

statistical testing like , we expect to make the conditioning set as small as possible.

Given the same amount of training data, a test with a smaller conditioning set will always

produce a more trustable outcome than the one with larger one. Considering that IPC-MB will

resort to the smallest conditioning set with priority, it is believed that the output of IPC-MB is

more reliable compared to similar algorithms given the same scale of data for training. Note that

this merit of IPC-MB is not exchanged with any sacrifice of correctness, which again makes IPC-

MB attractive.

3.6 Analysis of Special Case: Polyrtree

Being a special case of Bayesian network, a polytree is a directed acyclic graph with the property

that ignoring the directions on edges yields a graph with no undirected cycles[2]. In other words,

there exists unique path between each possible couple of nodes (see Figure 3-7 for an example),

so polytree is the “thinnest” Bayesian network. In this section, we will discuss the expected

behavior of IPC-MB given a polytree, and experiments on a polytree-like Bayesian network are

included in Chapitre 4.

Theorem 3.15 Given a polytree network, the call of FindCanPC() in IPC-MB will output the

exact , under the faithfulness and correct CI test assumptions.

Proof. From Theorem 3.1 and Theorem 3.2, it is know that FindCanPC() will output a

superset of , and the only possible false positives are ‟s descendants. Therefore, here we

only need to prove that descendants of won‟t be falsely output by FindCanPC given a polytree

68

network, and this can be proved by contradiction. Assume some appears in the output

of FindCanPC(). Because there is only one directed path from to in the polytree, it must be

either or , where is X‟s child. It is trivial to know that blocks

this unique path from to due to the head-to-tail connection, plus the fact that will always

stay in and output by FindCanPC, hence won‟t pass the test and will be

removed successfully. This proof applies to all ‟s descendants, so none of them will appear in

the output of FindCanPC(). █

Figure 3-7: A simple example of polytree. The original graph can be found online at

http://en.wikipedia.org/wiki/Polytree.

Theorem 3.16 Under the faithfulness and correct CI test assumptions, given a polytree network,

all will be recognized by some conditional independence tests where

 , in FindCanPC().

Proof. Given any , there exists a unique path from to in a polytree network, and it

can be one of the following three cases: , , and

 . In the first two cases (linear connection), is known as independent of given , or we

say blocks the path. And in the third case (converging connection), is known as independent

of given empty set. Hence, all non-parents/children of will fail some where

 . █

Corollary 3.1 In FindCanPC(), all false positives will be removed from
 in the loop of

 or .

Proof. It is trivial to infer this from Theorem 3.16. █

http://en.wikipedia.org/wiki/Polytree

69

Corollary 3.2 In FindCanPC(), spouses are removed from
 in the loop of cutSetSize = 0.

Proof. It is trivial to infer this from Theorem 3.16. █

With Corollary 3.1 and Corollary 3.2, we can infer three points as below:

1. Computing complexity is greatly reduced since all false positives are recognized and

removed in the first two iterations (Line 3-16, FindCanPC, Figure 3-1);

2. The decision to remove these false positives is made given small conditioning set, so the

decision as made according to the CI testing result is trustable, which is valuable in practice;

3. Since each spouse is recognized with empty separator, i.e. , the conditional

test involved to recogze a true spouse in IPC-MB (Line 15, Figure 3-3) will have

conditioning set of size one only. Like the second point, it reflects the data efficiency of IPC-

MB as well.

Even though we can remove all false positives in the first two iterations within FindCanPC(), it

doesn‟t mean that only two iterations are needed. We have to continue the search until

 , hence, the actual time and memory complexity are influenced by the size of .

3.7 Parallel version of IPC-MB

3.7.1 Overall illustration

Though IPC-MB is proposed to be more time efficient than PCMB, it still could be very

computationally intensive in the worst case. Considering performance is critical, we devote a

small section to discuss the parallel version of IPC-MB.

Given the output of FindCanPC(), i.e.
 , the remaining processing (Line 4-19) in IPC-MB,

actually, can proceed in parallel since each branch is independent one another, as demonstrated in

Figure 3-8, where
 .

70

Figure 3-8: Parallel version of IPC-MB.

3.7.2 Proof of soundness

Theorem 3.17 Under the assumptions that the independence tests are correct and that the

learning data is an independent and identically distributed sample from a probability

distribution faithful to a DAG , Parallel version of IPC-MB, denoted as Parallel-IPC-MB

produces the same output of IPC-MB, if given the same inputs.

Proof. (1)It‟s trivial to know that FindCanPC() produces the same result as it works in IPC-

MB.(2)Then, for each
 , FindCanPC() is called separately, and it produces the same

result as in sequential version since each FindCanPC() is fed with the same inputs in both

versions. (3)That if
 still be true considering that both

 and
 are

what expected as in the non-parallel version. (4) Then
 is also the same as that in IPC-MB.

71

(5) The remaining checking of
 is expected to produce the same result if both

 and are ready in each branch then. Obviously, this is true because

FindCanPC() and FindCanPC(), in which both are collected respectively, have been

conducted by then.

Therefore, both Theorem 3.3 and Theorem 3.5 still work for Parallel-IPC-MB, and it is expected

to produce the same outcome as IPC-MB given the same assumptions and inputs. █

3.7.3 Time and space complexity

Theorem 3.18 The worst performance of Parallel-IPC-MB on time efficiency is

2*

Proof. Since the timing consumption of FindCanPC() is not avoidable, and the remaining

FindCanPC() proceeds in paralle, totally we need only consider two times of the worst case of

FindCanPC. Then, this result is trivial to infer on the basis of Theorem 3.11. █

Regarding the memory consumption, there is no gain in the Parallel-IPC-MB since FindCanPC

runs in a serial order in IPC-MB, and it has the same effect as the memory allocation on each

machine in the parallel version, assuming each branch is distributed to one individual machine for

processing.

3.7.4 About implementation

The training data has to be copied to each machine where we want the individual branch to run.

Though it may be time consuming as transferred via network, the cost may be worthy in large

scale of processing where the transferring time may be ignorable as compared with what we save

on the learning.

In fact, it is believed that there must exist more fine-grained parallel versions of IPC-MB, but it is

not the focus of this project and won‟t be discussed further here.

3.8 Conclusion

Given the faithfulness assumption, is known to contain ‟s parents, children and spouses.

Among them, parents and children are directly connected to , and spouses connect as well as

72

point to ‟s child(ren). With these topology information and Theorem 1.4 in mind, constraint-

based learning is believed to be more suitable than score-and-search based approach because it

doesn‟t have to explore among the complete space, but in a greatly reduced sub-space. IPC-MB

achieves this goal quite well by filtering out as many , also as early, as possible, and

with economical cost. Besides, by determining if with as small conditioning set as

possible, more reliable performance is expected given limited data in practice.

IPC-MB is the core part of this thesis project, and more applications derived from it will be

discussed in the following text. Before that, empirical study will be presented in Chapter 4 to

confirm what we have presented, and a comprehensive comparison is included in Chapter 5

between IPC-MB and other representative works.

73

Chapitre 4 EMPIRICAL STUDY OF MARKOV BLANKET LEARNING

4.1 Experiment Design

In Chapitre 3, we explain how IPC-MB works, prove its correctness, and analyze its expected

performance on time and space complexity, and data efficiency. In this chapter, a series of

experiments are conducted to compare the relative performance of IPC-MB, IAMB, PCMB and

PC algorithms.

We only compare our algorithm with two typical Markov blanket learning algorithms, IAMB and

PCMB, considering that (1) both of them are proved correct, and highly referred; (2) IAMB is the

best known and also simple and time efficient; (3) PCMB is the latest published work, and it

represents a new direction of this research field. Though MMPC/MB and HITON-PC/MB appear

before PCMB, they are proved not correct and hence ignored. In additional to IAMB and PCMB,

we also include PC algorithm to allow us to observe the difference between global and local

learning algorithms.

In the experiments, five networks are used. Three of them are known benchmark examples,

including Asia [39] with 8 nodes, Alarm [40] with 37 nodes and Hailfinder network with 56

nodes [41]. The other two are artificially created networks shipped with BNJ package[42], one

has 152 nodes and the other is a polytree derived from Alarm. For easy reference, they are named

Test152 and PolyAlarm respectively. Data are sampled from these five networks, and be fed to

algorithms to recover the underlying network. We run IAMB, PCMB and IPC-MB with each

node in the BN taken in turn as the target variable and report the average performance over

multiple rounds. Our discussion contains accuracy, time efficiency and data efficiency.

In Section 4.2, we introduce briefly data sets used. From Section 4.4 to Section 4.6, experimental

results as well as some conclusions as derived are presented. We conclude briefly in Section 4.7.

4.2 Data Sets

The five selected networks represent four types of typical problem we are interested to study:

 Small problem, e.g. Asia;

 Medium size application, e.g. Alarm;

74

 Larger scale problem, e.g. Hailfinder and Test152. Though Hailfinder has only 56 nodes, its

nodes have up to 11 values, so its search space actually is quite large. As we can see later, all

four algorithms have difficulties to produce satisfactory results with 20,000 instances; while,

acceptable results are observed on Test152 with only 2,500 instances;

 Polytree is a topology with at most one undirected path between any two vertices which

allows more efficient computations and is a good example to study the data efficiency of our

algorithm.

Asia

Asia is a small Bayesian network linking tuberculosis, lung cancer or bronchitis respectively and

different factors, for example whether or not the patient has been to Asia recently. It firstly

appeared in Lauritzen and Spiegelhalter‟s work [39], 1988, and has been widely referred in the

past two decades. Its structure and the corresponding CPTs are illustrated in Figure 4-1.

Although small, this network allows us 1) to have a look at the corresponding performance of the

four algorithms given a simple problem, and 2) show that the four algorithms may all output the

correct outcomes given enough data.

Figure 4-1: Asia Bayesian Network including 8 nodes of two states and 8 arcs, along with its

CPTs. For reference purpose, each node is assigned one unique ID, from 0 to 7. The

original graph can be found at http://www.norsys.com/netlib/asia.htm.

ALARM

http://www.norsys.com/netlib/asia.htm

75

ALARM stands for „A Logical Alarm Reduction Mechanism,‟ a network for monitoring patients

in intensive care. It was first introduced by Beinlich et al. in 1989 [40], and it consists of 37

nodes of two, three or four states, and 46 arcs. It is a commonly viewed as a representative of a

real life Bayesian network.

Figure 4-2: Alarm Bayesian Network including 37 nodes of two, three or four states (To save

space, the CPTs are ignored). The original graph can be found online at

http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.htm.

ALARM of Polytree Version

This polytree version Alarm network, including the structure and parameters, is included in the

installation package of Bayesian Network tool in Java (BNJ) [42]. This network is denoted as

PolyAlarm for short in the remaining text.

http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.htm

76

Figure 4-3: A polytree derived from Alarm Bayesian Network [40]. This graph is created by BNJ

tool.

Hailfinder

Hailfinder [41] is a Bayesian system that forecasts severe summer hail in Northeastern Colorado.

It is the first such system to apply Bayesian models in the realm of meteorology. Hailfinder

contains 56 nodes, and the nodes contain two to eleven different values. Compared with Alarm in

which four-value is the maximum, the underlying search space of Hailfinder is much larger.

Test152

This network is shipped with the installation package of BNJ tool, as a testing example. Since it

contains 152 binary nodes, it is called as Test152 by us for quick reference.

Summary

The following table and figure summarize the features of the five networks under experiment. In

Table 4.1, the total number of nodes and arcs, the largest size of Markov blanket as contained,

and the number of states of nodes about Asia, Alarm, PolyAlarm, Hailfinder and Test152 are

presented. The distribution about the cardinalities of Markov blankets as contained in the five

networks are illustrated in Figure 4-4, and it is observed that even the largest Markov blankets are

much smaller than the whole Bayesian networks in size. Therefore, we can conclude that (1)

feature selection is necessary to remove non-related attributes; (2) real networks are mostly

sparse, as illustrated in Figure 3-5.

77

Table 4.1: Feature summary of data sets

Bayesian

Network

Values of

Nodes

of Nodes # of Arcs Size of

largest MB

Asia 2 8 8 5

Alarm 2/3/4 37 46 8

PolyAlarm 2/3/4 37 36 8

Hailfinder 2/3/4/5/6/7/11 56 66 17

Test152 2 152 200 5

Figure 4-4: Distribution of the size of Markov blankets as contained in Asia, Alarm, PolyAlarm,

Hailfinder and Test152.

4.3 Implementation Version of IPC-MB

In Section 2.2, we have stated that we ignore CI test for which there are not enough instances to

ensure trustable result. In practice, the common choice of in the inequality (1.5) is 5, and it is

followed in our implementation as well. Besides, in FindCanPC, if there is no reliable CI test

available in the loop of , no further search will be conducted, and the learning

1 2 3 4 5 6 7 8 13 16 17

Asia 2 2 3 1

Alarm 6 9 5 8 2 2 3 2

PolyAlarm 9 10 10 5 1 1 1

Hailfinder 13 10 10 8 4 6 2 2 1

Test152 51 1 2 49 49

0

10

20

30

40

50

60

o

f
M

B

Sizes of Markov Blankets Contained in Networks

78

terminates because all further tests will be of higher degree due to the growing conditioning set

size. Figure 4-5 illustrates the implemented version of FindCanPC.

Similar strategy is taken in the implementation of IAMB, PCMB and PC algorithms, allowing for

a fair comparison.

Figure 4-5: The implemented version of FindCanPC that considers reliability of statistical tests.

Its original version can be found in Figure 3-1, and the differences are illustrated in

bold here for comparison convenience.

4.4 Accuracy

The experiments in this section focus on the accuracy of the algorithms. We run IAMB, PCMB

and IPC-MB with each node in each BN as the target variable and then, report the average

79

precision and recall over all the nodes for each BN. Precision is the number of true positives in

the output divided by the number of nodes in the output. Recall is the number of true positives in

the output divided by the number of true positives in the BN. We also combine precision and

recall as

(4.1)

to measure the Euclidean distance from perfect precision and recall. The significance level (

for the independence test is 0.05. These experimental specifications follow that of [13], with the

expectation of comparable results. PC algorithm is ran a single time given each data set to induce

the whole network, and the precision, recall and distance are measured similarly over each node.

Note: for each sample size, we prepare 10 to 20 groups of data for multiple-folder simulation.

4.4.1 Small Network: Asia

Asia is a very small network with only eight nodes, and two of them have Markov blanket of size

one. Because Asia is small, we used a 20-folds simulation experiment and report the average and

standard deviations (Table 4.2).

Table 4.2: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Asia network.

Instances
Simulation

Rounds
Algorithm

Precision

(Mean±Std. Dev.)

Recall

(Mean±Std. Dev.)

Distance

(Mean±

Std. Dev.)

100 20

IAMB .55±.08 .51±.09 .72±.10

PCMB .55±.11 .49±.17 .76±.15

IPC-MB .55±.11 .47±.17 .77±.16

PC .55±.14 .60±.26 .71±.13

200 20

IAMB .60±.09 .72±.09 .53±.11

PCMB .68±.10 .57±.13 .61±.11

IPC-MB .66±.11 .55±.12 .63±.12

PC .59±.14 .62±.22 .66±.10

500 20

IAMB .66±. 06 .77±.05 .45±.08

PCMB .77±.10 .65±.10 .48±.13

IPC-MB .76±.10 .66±.10 .47±.14

PC .72±.12 .64±.10 .52±.13

1000 10

IAMB .72±.11 .79±.06 .39±.12

PCMB .80±.11 .69±.07 .42±.12

IPC-MB .80±.12 .73±.09 .38±.14

80

PC .74±.11 .70±. 09 .45±.13

2000 10

IAMB .78±.14 .78±.05 .35±.13

PCMB .82±.12 .71±.06 .40±.11

IPC-MB .81±.11 .73±.01 .38±.08

PC .76±. 09 .69±.05 .44±.05

4000 10

IAMB .85±.07 .82±.09 .26±.11

PCMB .86±.04 .76±.11 .31±.10

IPC-MB .87±.02 .76±.07 .30±.08

PC .83±.05 .74±.08 .35±.08

6000 10

IAMB .85±.07 .83±.06 .26±.10

PCMB .86±.06 .82±.12 .25±.13

IPC-MB .86±.06 .82±.09 .25±.11

PC .81±. 04 .81±.10 .31±.08

8000 10

IAMB .87±.08 .84±.08 .24±.12

PCMB .88±.07 .82±.11 .24±.13

IPC-MB .87±.04 .82±.08 .24±.09

PC .83±. 07 .80±.10 .29±.11

10000 10

IAMB .83±.08 .83±.07 .27±.10

PCMB .87±.06 .81±.10 .26±.12

IPC-MB .88±.02 .81±.06 .25±.06

PC .83±. 06 .79±. 08 .30±.07

20000

10

IAMB .90±.06 .92±.07 .15±.07

PCMB .92±.08 .93±.08 .12±.10

IPC-MB .94±.07 .94±.08 .10±.10

PC .92±. 08 .93±. 08 .12±.10

81

Figure 4-6: Comparison of distances given different number of instances (0.1K~20K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Asia, = 0.05, refer to Table 4.2 for more information)

100 200 500 1000 2000 4000 6000 8000 10000 20000

IAMB 0.72 0.53 0.45 0.39 0.35 0.26 0.26 0.24 0.27 0.15

PCMB 0.76 0.61 0.48 0.42 0.40 0.31 0.25 0.24 0.26 0.12

IPC-MB 0.77 0.63 0.47 0.38 0.38 0.30 0.25 0.24 0.25 0.10

PC 0.71 0.66 0.52 0.45 0.44 0.35 0.31 0.29 0.30 0.12

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

D
is

ta
n

ce

Average Distance Comparison: IAMB vs. PCMB vs. IPC-MB vs PC

100 200 500 1000 2000 4000 6000 8000 10000 20000

IAMB 0.55 0.60 0.66 0.72 0.78 0.85 0.85 0.87 0.83 0.90

PCMB 0.55 0.68 0.77 0.80 0.82 0.86 0.86 0.88 0.87 0.92

IPC-MB 0.55 0.66 0.76 0.80 0.81 0.87 0.86 0.87 0.88 0.94

PC 0.55 0.59 0.72 0.74 0.76 0.83 0.81 0.83 0.83 0.92

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

Average Precision Comparison: IAMB vs.PCMB vs.IPC-MB vs. PC

82

Figure 4-7: Comparison of precision given different number of instances (0.1K~20K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Asia, = 0.05, refer to Table 4.2 for more information)

Figure 4-8: Comparison of recall given different number of instances (0.1K~20K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Asia, = 0.05, refer to Table 4.2 for more information)

4.4.2 Moderate Network: Alarm

For the Alarm network (Figure 4-2), a 10-folds simulation experiment is conducted considering

that it contains many more nodes as compared with Asia, and more stable results are expected.

Detailed results are presented in Table 4.3, followed by graphs about the average distance (Figure

4-9), precision (Figure 4-10) and recall (Figure 4-11).

We note that there is a difference between our results and those in [13] on IAMB, given Alarm

data. Their accuracy results are close to the IPC-MB results up to 1000 cases. Accuracy (in terms

of distance) stands around 0.20 at 2000 and more cases. This discrepancy can be explained that

they actually implemented InterIAMB, a variant of IAMB that interleaves the growing and

shrinking steps until convergence to improve data efficiency. Hence, the results about IAMB as

reported in [13] are, in fact, those of InterIAMB as mentioned in section 4.1 of [13], whereas ours

are based on the plain IAMB (Figure 1-3). Another source of discrepancy stems from the fact that

100 200 500 1000 2000 4000 6000 8000 10000 20000

IAMB 0.51 0.72 0.77 0.79 0.78 0.82 0.83 0.84 0.83 0.92

PCMB 0.49 0.56 0.65 0.69 0.71 0.76 0.82 0.82 0.81 0.93

IPC-MB 0.47 0.55 0.66 0.73 0.73 0.76 0.82 0.82 0.81 0.94

PC 0.60 0.62 0.64 0.70 0.69 0.74 0.81 0.80 0.79 0.93

0.40

0.50

0.60

0.70

0.80

0.90

1.00

R
ec

al
l

Average Recall Comparison: IAMB vs. PCMB vs. IPC-MB vs. PC

83

they used 0.01 as the significance value, while we take 0.05. By applying 0.05 to the software

package provided by the authors of [13], we empirically observed obviously worse results.

Table 4.3: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Alarm network.

Instances
Simulation

Rounds
Algorithm

Precision

(Mean±Std.Dev.)

Recall

(Mean±Std.Dev.)

Distance

(Mean±

Std.Dev.)

250 10

IAMB .50±.10 .43±.06 .80±.10

PCMB .66±.10 .68±.06 .53±.08

IPC-MB .67±.10 .67±.06 .53±.08

PC .58±.07 .70±.04 .58±.06

500 10

IAMB .57±.03 .55±.02 .67±.04

PCMB .86±.03 .78±.04 .31±.05

IPC-MB .85±.02 .77±.04 .32±.04

PC .77±.05 .78±.03 .37±.04

1000 10

IAMB .57±.02 .60±.02 .64±.02

PCMB .93±.02 .84±.02 .20±.03

IPC-MB .94±.02 .84±.02 .19±.03

PC .90±.03 .85±.03 .21±.04

2000 10

IAMB .52±.03 .58±.01 .67±.02

PCMB .97±.03 .89±.03 .13±.04

IPC-MB .98±.02 .90±.03 .11±.04

PC .96±.02 .90±.03 .13±.04

3000 10

IAMB .52±.03 .58±.02 .68±.03

PCMB .97±.01 .92±.03 .10±.04

IPC-MB .99±.01 .93±.02 .07±.03

PC .97±.01 .92±.02 .10±.02

4000 10

IAMB .51±.03 .59±.02 .68±.03

PCMB .97±.02 .94±.03 .07±.04

IPC-MB .99±.01 .95±.01 .06±.03

PC .97±.01 .94±.02 .09±.03

5000 10

IAMB .49±.02 .58±.02 .70±.03-

PCMB .98±.01 .96±.03 .06±.03

IPC-MB .99±.01 .95±.01 .05±.02

PC . 96±.02 .94±.01 .10±.03

84

Figure 4-9: Comparison of distances given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Alarm, = 0.05, refer to Table 4.3 for more information)

Figure 4-10: Comparison of precision given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Alarm, = 0.05, refer to Table 4.3 for more information)

250 500 1000 2000 3000 4000 5000

IAMB 0.80 0.67 0.64 0.67 0.68 0.68 0.70

PCMB 0.53 0.31 0.20 0.13 0.10 0.07 0.06

IPC-MB 0.53 0.32 0.19 0.11 0.07 0.06 0.05

PC 0.58 0.37 0.21 0.13 0.10 0.09 0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

D
is

ta
n

ce

Average Distance:IAMB vs. PCMB vs. IPC-MB vs. PC

250 500 1000 2000 3000 4000 5000

IAMB 0.50 0.57 0.57 0.52 0.52 0.51 0.49

PCMB 0.66 0.86 0.93 0.97 0.97 0.97 0.98

IPC-MB 0.67 0.85 0.94 0.98 0.99 0.99 0.99

PC 0.58 0.77 0.90 0.96 0.97 0.97 0.96

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
re

ci
si

o
n

Average Precision: IAMB vs. PCMB vs. IPC-MB

85

Figure 4-11: Comparison of recall given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Alarm, = 0.05, refer to Table 4.3 for more information)

4.4.3 Large Network: Hailfinder and Test152

A 10-folds experiment is also conducted for the Hailfinder and Test152 networks, and the

corresponding average accuracy is reported in Table 4.4 and

Table 4.5.

Table 4.4: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Hailfinder network.

Instances
Simulation

Rounds
Algorithm

Precision

(Mean±Std. Dev.)

Recall

(Mean±Std. Dev.)

Distance

(Mean±

Std. Dev.)

10000 10

IAMB .36±.02 .45±.01 .88±.02

PCMB .71±.02 .52±.03 .61±.03

IPC-MB .71±.02 .53±.02 .60±.02

PC .70±.02 .53±.03 .61±.02

20000 10

IAMB .34±.01 .45±.01 .89±.01

PCMB .74±.03 .56±.04 .55±.04

IPC-MB .73±.03 .58±.03 .54±.05

PC .71±.04 .57±.04 .56±.06

Table 4.5: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over Test152 network.

250 500 1000 2000 3000 4000 5000

IAMB 0.43 0.55 0.60 0.58 0.58 0.59 0.58

PCMB 0.68 0.78 0.84 0.89 0.92 0.94 0.96

IPC-MB 0.67 0.77 0.84 0.90 0.93 0.95 0.95

PC 0.70 0.78 0.85 0.90 0.92 0.94 0.94

0.40

0.50

0.60

0.70

0.80

0.90

1.00

R
ec

al
l

Average Recall:IAMB vs. PCMB vs. IPC-MB vs. PC

86

Instances
Simulation

Rounds
Algorithm

Precision

(Mean±Std. Dev.)

Recall

(Mean±Std. Dev.)

Distance

(Mean±

Std. Dev.)

250 10

IAMB .54±.01 .74±.00 .59±.01

PCMB .89±.02 .71±.01 .37±.02

IPC-MB .90±.02 .71±.01 .36±.01

PC .72±.03 .71±.01 .49±.02

500 10

IAMB .50±.01 .81±.01 .57±.01

PCMB .89±.01 .76±.01 .33±.02

IPC-MB .90±.01 .76±.01 .31±.01

PC .75±.03 .76±.02 .43±.01

750 10

IAMB .45±.01 .86±.01 .59±.01

PCMB .90±.03 .80±.02 .28±.03

IPC-MB .92±.01 .81±.02 .26±.02

PC .74±.04 .80±.02 .40±.03

1000 10

IAMB .47±.01 .89±.01 .56±.02

PCMB .91±.02 .84±.02 .24±.03

IPC-MB .93±.02 .85±.02 .21±.03

PC .74±.02 .84±.02 .37±.03

1500 10

IAMB .42±.01 .91±.01 .61±.01

PCMB .91±.01 .91±.02 .17±.03

IPC-MB .94±.01 .92±.02 .14±.02

PC .74±.02 .91±.02 .32±.03

2000 10

IAMB .44±.01 .93±.01 .58±.01

PCMB .93±.01 .96±.02 .11±.02

IPC-MB .95±.01 .96±.02 .09±.02

PC .78±.02 .96±.01 .25±.02

2500 10

IAMB .46±.01 .96±.01 .56±.01

PCMB .92±.02 .97±.01 .11±.02

IPC-MB .95±.01 .98±.01 .07±.01

PC .79±.02 .98±.01 .22±.01

87

Figure 4-12: Comparison of distances given different number of instances (0.25K~2.5K): IAMB

vs. PCMB vs. IPC-MB vs. PC (Test152, = 0.05, refer to

Table 4.5 for more information)

250 500 750 1000 1500 2000 2500

IAMB 0.59 0.57 0.59 0.56 0.61 0.58 0.56

PCMB 0.37 0.33 0.28 0.24 0.17 0.11 0.11

IPC-MB 0.36 0.31 0.26 0.21 0.14 0.09 0.07

PC 0.49 0.43 0.40 0.37 0.32 0.25 0.22

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

D
is

ta
n

ce

Average Distance:IAMB vs. PCMB vs. IPC-MB vs. PC

250 500 750 1000 1500 2000 2500

IAMB 0.54 0.50 0.45 0.47 0.42 0.44 0.46

PCMB 0.89 0.89 0.90 0.91 0.91 0.93 0.92

IPC-MB 0.90 0.90 0.92 0.93 0.94 0.95 0.95

PC 0.72 0.75 0.74 0.74 0.74 0.78 0.79

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
re

ci
si

o
n

Average Precision: IAMB vs. PCMB vs. IPC-MB

88

Figure 4-13: Comparison of precision given different number of instances (0.25K~2.5K): IAMB

vs. PCMB vs. IPC-MB vs. PC (Test152, = 0.05, refer to

Table 4.5 for more information)

Figure 4-14: Comparison of recall given different number of instances (0.25K~2.5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (Test152, = 0.05, refer to

Table 4.5 for more information).

4.4.4 Polytree Network: PolyAlarm (Derived from Alarm)

A 10-folds experiment for the PolyAlarm network is reported in Figure 4-3. Detailed results are

presented in Table 4.6, followed by graphs about the average distance (Figure 4-15), precision

(Figure 4-16) and recall (Figure 4-17).

Table 4.6: Accuracy comparison of IAMB, PCMB, IPC-MB and PC over polytree version Alarm

network.

Instances
Simulation

Rounds
Algorithm

Precision

(Mean±Std. Dev.)

Recall

(Mean±Std. Dev.)

Distance

(Mean±

Std. Dev.)

500 10
IAMB .64±.03 .71±.03 .53±.04

PCMB .84±.05 .75±.04 .33±.07

250 500 750 1000 1500 2000 2500

IAMB 0.74 0.81 0.86 0.89 0.91 0.93 0.96

PCMB 0.71 0.76 0.80 0.84 0.91 0.96 0.97

IPC-MB 0.71 0.76 0.81 0.85 0.92 0.96 0.98

PC 0.71 0.76 0.80 0.84 0.91 0.96 0.98

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
ec

al
l

Average Recall:IAMB vs. PCMB vs. IPC-MB vs. PC

89

IPC-MB .85±.05 .74±.04 .33±.07

PC .76±.07 .72±.05 .43±.08

1000 10

IAMB .70±.03 .84±.02 .40±.04

PCMB .91±.02 .86±.01 .19±.02

IPC-MB .91±.03 .85±.02 .20±.04

PC .81±.04 .80±.02 .34±.06

2000 10

IAMB .65±.02 .89±.01 .42±.02

PCMB .93±.02 .89±.02 .14±.02

IPC-MB .93±.01 .90±.03 .13±.04

PC .83±.03 .83±.02 .29±.04

3000 10

IAMB .65±.03 .89±.02 .41±.02

PCMB .91±.02 .92±.02 .13±.05

IPC-MB .92±.02 .91±.03 .13±.04

PC .84±.03 .86±.01 .26±.03

4000 10

IAMB .62±.03 .92±.02 .43±.04

PCMB .93±.03 .92±.02 .13±.05

IPC-MB .94±.02 .92±.02 .12±.03

PC .86±.03 .87±.03 .23±.04

5000 10

IAMB .61±.04 .92±.02 .43±.05

PCMB .93±.03 .93±.02 .11±.04

IPC-MB .94±.02 .92±.02 .11±.02

PC .87±.03 .89±.03 .20±.04

500 1000 2000 3000 4000 5000

IAMB 0.53 0.40 0.42 0.41 0.43 0.43

PCMB 0.33 0.19 0.14 0.13 0.12 0.11

IPC-MB 0.33 0.20 0.14 0.13 0.12 0.11

PC 0.43 0.34 0.29 0.26 0.23 0.20

0.00

0.10

0.20

0.30

0.40

0.50

0.60

D
is

ta
n

ce

Average Distance:IAMB vs. PCMB vs. IPC-MB vs. PC

90

Figure 4-15: Comparison of distances given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Table 4.6 for more

information)

Figure 4-16: Comparison of precision given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Table 4.6 for more

information)

500 1000 2000 3000 4000 5000

IAMB 0.64 0.70 0.65 0.65 0.62 0.61

PCMB 0.84 0.91 0.93 0.91 0.93 0.93

IPC-MB 0.85 0.91 0.93 0.92 0.94 0.94

PC 0.76 0.81 0.83 0.84 0.86 0.87

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

Average Precision: IAMB vs. PCMB vs. IPC-MB vs. PC

91

Figure 4-17: Comparison of recall given different number of instances (0.5K~5K): IAMB vs.

PCMB vs. IPC-MB vs. PC (PolyAlarm, = 0.05, refer to Table 4.6 for more

information).

4.4.5 Conclusion

Our experiments with different size of samples over five different scale of networks indicate that:

 As expected, the accuracy of PCMB, IPC-MB and PC increases when more observations

become available (with decreasing distance in Figure 4-6, Figure 4-9, Figure 4-12, and

Figure 4-15). However, though it is believed that IAMB will also produce perfect results

given enough data, it appears the accuracy of IAMB flattens quickly given more observations,

e.g. in the problems of Alarm (Figure 4-9), Test152 (Figure 4-12) and PolyAlarm (Figure

4-15). This may be explained by the fact that more false positives are added in the growing

phase (see more discussion in Section 4.6 and 5.4);

 The underlying topology, or the problem itself, greatly influences the performance of all

algorithms. Given the same amount of observations, we observe quite different accuracy

performances in different problems;

500 1000 2000 3000 4000 5000

IAMB 0.71 0.84 0.89 0.89 0.92 0.92

PCMB 0.75 0.86 0.89 0.92 0.92 0.93

IPC-MB 0.74 0.85 0.90 0.91 0.92 0.92

PC 0.72 0.80 0.83 0.86 0.87 0.89

0.70

0.75

0.80

0.85

0.90

0.95

R
ec

al
l

Average Recall:IAMB vs. PCMB vs. IPC-MB vs. PC

92

 The algorithms may produce worse results in problems with fewer features, but more

observations. For example, with 20,000 instances, the accuracy reached in the other four

problems is much lower than that achieved with Test152 in which only 2,500 instances are

given. Therefore, the underlying topology, together with the number of states of nodes (or

variables), determines the actual complexity of problems;

 PCMB and IPC-MB demonstrate no obvious gain over IAMB given very small problem like

Asia (refer to Figure 4-6). However, the relative advantage becomes quite attractive given

larger problems (Figure 4-9, Figure 4-12 and Figure 4-15). For example, with Alarm network,

PCMB and IPC-MB have distance less than 0.50 given 500 instances, but IAMB couldn‟t

reach this level even with as many as 5,000 instances;

 With more observations being fed with, PCMB and IPC-MB have much faster increase in

accuracy than IAMB;

 PCMB has close performance to IPC-MB, in term of both precision and recall; IPC-MB

performs slightly better than PCMB;

 IPC-MB never loses to PC, and has obvious better accuracy in Test152 (Figure 4-12) and

PolyAlarm (Figure 4-15);

 Given more data, both precision and recall increase for PCMB and IPC-MB algorithms.

However, precision always is higher than recall as observed in our experiments, before

enough information becomes available for them to reach a balance. Figure 4-18 illustrates

this difference given IPC-MB as example. For PCMB, this reflects that its strict selection of

true positives is effective; and for IPC-MB, it confirms that its strategy of removing as many

as possible false positives also works quite well;

93

Figure 4-18: Comparison of IPC-MB‟s Precision and Recall (Based on experiments with Alarm,

 = 0.05, refer to Table 4.3 for more information)

In conclusion, although IAMB, PCMB and IPC-MB algorithms are all proved correct, and they

are believed to produce the perfect result if enough data is available, their relative accuracy

performance is different given limited observations. Obvious difference is observed between

IAMB and PCMB/IPC-MB.

IPC-MB has slightly higher accuracy performance than PCMB, and it beats PC with obvious

advantage in some cases.

4.5 Time Efficiency

In Chapter 3, we have analyzed the time complexity of IPC-MB in terms of number of CI tests.

Here, one more measure is introduced, that is number of data passes, where a data pass consists

in scanning the whole training data for one time. In practice, to save the memory, we generally do

not cache all contingency tables; in fact, it is impossible to do so given the exponentially growing

number of possible subsets (or combinations) of features. Hence, a more practical way is to cache

only what are known as necessary for our immediate decision making purpose. For example, in

IPC-MB, we only cache the contingency tables given the known , and conditioning set of

cardinality cutSetSize, and this is reasonable since not only the cutSetSize will change (increase

with 1) in next iteration, but also the
 due to the possible deletion of false positives.

250 500 1000 2000 3000 4000 5000

Recall 0.67 0.77 0.84 0.90 0.93 0.95 0.95

Precision 0.67 0.85 0.94 0.98 0.99 0.99 0.99

0.65

0.70

0.75

0.80

0.85

0.90

0.95
P

er
ce

n
ta

ge

IPC-MB: Precision vs. Recall

94

Therefore, we only allocate memory to cache
 with , and release all

memory allocation at the end of this iteration, which is effective to reduce the consumption of

space. However, this requires to re-scan the whole data file with additional time upon entering

next iteration, e.g. with increased cutSetSize and possibly modified
 . With very large training

data, scanning the whole data may be quite time consuming a job since we may need to visit the

disk, or even network, for many times.

To make different algorithm comparable, we treat the collection of contingency tables in a fair

manner in our implementation, i.e. one data pass is consumed to collect all statistics expected in

the current active session or loop. In IAMB, an additional data pass is needed to re-construct

related contingency tables after adding or removing one variable. While in PCMB, three data

passes are needed in each iteration of the searching loop within GetPCD, corresponding to the

three steps involved, i.e. removing negatives, adding best candidate and removing false positives

respectively.

4.5.1 Small Network: Asia

In Table 4.7, the “# Data Passes” of IAMB/PCMB/IPC-MB refers to the average number of data

passes we need to induce the corresponding Markov blanket of all the 8 nodes of Asia BN (It is

obtained by dividing the total number of data passes with the number of nodes, to reflect the

average complexity of IAMB, PCMB and IPC-MB), while the “# Data Passes” of PC is just the

number of data passes happening to induce the whole network. “# CI test” is defined similarly.

Generally, the larger are these two numbers, the slower is the algorithm.

Table 4.7: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over Asia network.

Instances
Simulation

Rounds
Algorithm

Data Passes

(Mean±Std. Dev.)

CI Tests

(Mean±Std. Dev.)

100 20

IAMB 5±1 25±3

PCMB 80±87 2006±3673

IPC-MB 10±7 188±288

PC 26±9 213±267

200 20

IAMB 4±0 22±2

PCMB 64±50 1044±1636

IPC-MB 8±4 110±136

PC 25±8 171±179

500 20
IAMB 5±0 23±1

PCMB 48±12 316±130

95

IPC-MB 8±2 63±13

PC 24±3 111±18

1000 10

IAMB 5±0 23±1

PCMB 49±13 367±122

IPC-MB 8±1 70±11

PC 24±3 120±15

2000 10

IAMB 5±0 23±2

PCMB 52±17 433±213

IPC-MB 9±2 77±18

PC 24±3 131±23

4000 10

IAMB 5±0 23±1

PCMB 50±7 436±84

IPC-MB 8±1 84±9

PC 26±4 139±10

6000 10

IAMB 5±0 23±1

PCMB 55±10 486±104

IPC-MB 9±1 91±16

PC 27±4 147±19

8000 10

IAMB 5±0 23±1

PCMB 55±9 482±98

IPC-MB 9±1 90±15

PC 28±4 147±19

10000 10

IAMB 5±0 24±1

PCMB 57±8 493±75

IPC-MB 9±1 91±12

PC 27±4 150±17

20000

10

IAMB 5±0 25±1

PCMB 66±11 583±109

IPC-MB 10±1 99±13

PC 31±3 155±14

4.5.2 Moderate Network: Alarm

Table 4.8: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over ALARM

network.

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Dev.)

CI Tests

(mean±Std. Dev.)

250 10

IAMB 4±0 93±8

PCMB 261±22 5464±539

IPC-MB 12±1 562±30

PC 303±19 2330±92

500 10
IAMB 5±0 116±2

PCMB 160±11 4638±374

96

IPC-MB 12±1 561±31

PC 220±16 2736±82

1000 10

IAMB 5±0 140±2

PCMB 154±5 6047±385

IPC-MB 12±0 637±37

PC 191±12 3528±121

2000 10

IAMB 6±0 162±2

PCMB 175±7 8804±532

IPC-MB 13±0 736±37

 PC 188±12 3528±121

3000 10

IAMB 6±0 179±3

PCMB 204±8 12329±817

IPC-MB 13±0 798±53

PC 200±19 3717±166

4000 10

IAMB 7±0 187±4

PCMB 218±6 16007±1326

IPC-MB 14±0 849±48

PC 211±18 3902±122

5000 10

IAMB 7±0 197±3

PCMB 231±6 17704±1189

IPC-MB 14±0 876±31

PC 215±16 3956±80

4.5.3 Large Network: Hailfinder and Test152

Table 4.9: Time complexity comparison of IAMB, PCMB, IPC-MB over Hailfinder network (=

0.05).

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Dev.)

CI Tests

(mean±Std. Dev.)

10000 10

IAMB 6±0 270±1

PCMB 120±10 8186±1049

IPC-MB 9±0 736±56

PC 283±25 6489±161

20000 10

IAMB 7±0 299±2

PCMB 136±10 14538±1617

IPC-MB 10±0 1000±101

 PC 284±29 7515±301

Table 4.10: Time complexity comparison of IAMB, PCMB, IPC-MB over Test152 network (=

0.05).

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Dev.)

CI Tests

(mean±Std. Dev.)

97

250 10

IAMB 5±0 602±0

PCMB 89±4 3154±168

IPC-MB 11±0 780±29

PC 608±3 17947±351

500 10

IAMB 6±0 750±1

PCMB 101±3 3757±148

IPC-MB 12±0 924±28

PC 669±78 19803±392

750 10

IAMB 7±0 896±2

PCMB 111±6 4284±239

IPC-MB 13±1 1055±52

PC 684±80 21429±582

1000 10

IAMB 7±0 896±2

PCMB 119±4 4685±183

IPC-MB 14±0 1147±32

 PC 684±80 22732±426

1500 10

IAMB 8±0 1042±1

PCMB 134±3 5384±145

IPC-MB 15±0 1316±35

PC 714±73 24865±415

2000 10

IAMB 8±0 1041±2

PCMB 148±3 5928±174

IPC-MB 15±0 1432±46

PC 684±80 26173±593

2500 10

IAMB 8±0 1042±2

PCMB 161±3 6444±142

IPC-MB 16±0 1532±44

PC 730±96 27512±614

4.5.4 Polytree Network: PolyAlarm(Derived)

Table 4.11: Time complexity comparison of IAMB, PCMB, IPC-MB and PC over PolyAlarm

network.

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Dev.)

CI Tests

(mean±Std. Dev.)

500 10

IAMB 4±0 106±3

PCMB 47±3 584±48

IPC-MB 7±0 143±8

PC 117±16 1061±48

1000 10

IAMB 5±0 126±3

PCMB 54±4 715±84

IPC-MB 8±0 164±8

PC 140±26 1145±42

98

2000 10

IAMB 5±0 147±2

PCMB 59±2 837±57

IPC-MB 9±0 179±6

 PC 158±24 1223±35

3000 10

IAMB 6±0 155±4

PCMB 68±5 1002±78

IPC-MB 9±0 190±7

PC 174±15 1265±39

4000 10

IAMB 6±0 165±3

PCMB 68±5 1002±78

IPC-MB 9±0 195±8

PC 176±11 1292±41

5000 10

IAMB 6±0 171±4

PCMB 70±4 1067±41

IPC-MB 9±1 196±11

PC 181±2 1308±56

4.5.5 Conclusion

Our experiments with different size of samples over five different problems indicate that:

 IAMB has the fastest speed among the four algorithms and IPC-MB is second; PCMB and

PC are slower than the other two, and PCMB is the slowest one among the three local search

algorithms;

 The underlying topology, i.e. the problem itself, influences the actual performance of all

algorithms greatly, especially on PCMB. For example, PCMB may need 347.5% more CI

tests than PC in Alarm problem (Table 4.8), but 76.6% less in Test152 problem (Table 4.10).

In contrast, the topology has much smaller influence on IAMB, or in other words, IAMB is

“blind” to the topology, which confirms the fact that IAMB and its variants don‟t consider

topology in the search;

 Given the same number of features, the actual connectivity influences the actual cost for all

algorithms. Generally saying, they cost less on parse networks (Table 4.13);

 Compared with the global search by PC, IPC-MB saves a lot of data passes and CI tests in all

experiments (Table 4.12), which reflects the advantage of local search. For example, given

the Test152 problem, IPC-MB requires 94.4% fewer times of CI tests than PC, when there

are 2,500 instances available for learning;

99

Table 4.12: Time complexity comparison of between IAMB/PCMB/IPC-MB and PC. The

comparison is based on the average measures of 20K-Asia experiment, 5K-PolyAlarm

experiment, 5K-Alarm, 20K-Hailfinder and 2.5K-Test152 experiments respectively. In the table

 means that x% reduction is achieved compared with PC algorithm; , in contrast,

indicates additional x% cost relative to that of PC algorithm.

 Problem

PC

Data Passes # CI Tests

IAMB

Asia

PolyAlarm

Alarm

Hailfinder

Test152

PCMB

Asia

PolyAlarm

Alarm

Hailfinder

Test152

IPC-MB

Asia

PolyAlarm

Alarm

Hailfinder

100

Test152

Table 4.13: Time complexity comparison of IAMB/PCMB/IPC-MB given example networks

with same number of nodes but different density of connectivity. All are measured in experiments

with 5,000 instances.

 Alarm

 Algorithm # Data Passes # CI Tests

PolyAlarm

IAMB

PCMB

IPC-MB

 Given the special network, polytree, the difference between IAMB and IPC-MB becomes

very small;

 Though considered a local search, PCMB‟s cost is similar to PC which conducts global

search to induce the whole network;

 IPC-MB is much faster than PCMB, over 75% reduction on CI tests and more than 90%

reduction on data passes, in all experiments;

 PCMB has a much higher increasing rate of data passes and CI tests than IPC-MB and

IAMB (Figure 4-19). The difference observed in complex problem (Alarm) is more obvious

than simpler problem (PolyAlarm). It is easy to understand since the algorithms converge

more quickly in simpler problems.

250 500 1000 2000 3000 4000 5000

IAMB 93 116 140 162 179 187 197

PCMB/10 546 464 605 880 1233 1601 1770

IPC-MB 562 561 637 736 798 849 876

0
200
400
600
800

1000
1200
1400
1600
1800
2000

C
I T

es
ts

Increasing Rate of CI Tests: IAMB vs. PCMB vs.IPC-
MB(Alarm)

101

Figure 4-19: Comparison of increasing rate of CI tests given Alarm and PolyAlarm networks:

IAMB vs. PCMB vs. IPC-MB.

4.6 Data Efficiency

Data efficiency can be measured in two dimensions, the relative accuracy given the same amount

of training instances, and the actual cardinality of conditioning set as involved in the CI tests. The

first measure is indirect, while the second one is direct.

4.6.1 Relative Accuracy

From the study of Section 4.4, it is observed that although IPC-MB has no gain over IAMB given

the small problem Asia, it obviously exceeds IAMB given larger and more complex problems,

like Alarm, PolyAlam, Hailfinder and Test152. For example, given only 500 instances in Alarm

problem, the average distance of IPC-MB is 0.32, while it is 0.67 for IAMB. Besides, given more

instances, the accuracy rate reached by IPC-MB increases faster than IAMB, which reflects

further that IPC-MB is able to make better use of data to infer more information than IAMB.

PCMB and PC perform much better than IAMB too, but slightly poorer than IPC-MB, which will

be explained soon in 4.6.2.

500 1000 2000 3000 4000 5000

IAMB 106 126 147 155 165 171

PCMB/5 117 143 167 200 203 213

IPC-MB 143 164 179 190 195 196

100

120

140

160

180

200

220
C

I T
es

ts

Inreasing Rate of CI Tests: IAMB vs. PCMB vs. IPC-MB
(PolyAlarm)

102

With IAMB, we even observe a decrease in accuracy given more observations, e.g. with Alarm

(Figure 4-9), Hailfinder (Table 4.9), Test152 (Figure 4-12) and PolyAlarm problems (Figure

4-15). As we mentioned in 4.4.5, this is not our implementation mistake, but it is determined by

the nature of IAMB – though more search can be conducted given more instances in IAMB, it

adds more false positives in the growing phase but not able to remove them in the shrinking

phase.

PCMB is observed to have the similar accuracy performance as IPC-MB, so it is indeed more

data efficient than IAMB too as declared in [13].

4.6.2 Distribution of Conditioning Set Size

The relative accuracy of IAMB/PCMB/IPC-MB given the same amount of observations is one

important, but indirect, measure to reflect the distinction resulted from different data efficiency.

In this section, we study the problem in a direct manner by measuring the distribution of

conditioning set size of three algorithms, which is believed helpful for us better understand what

happens behind the scene.

Two example distributions are illustrated in Figure 4-20, and both are based on experiments with

Alarm data. We summarize the number of CI tests with conditioning set of cardinality , and

then normalize them with the total number of CI tests as involved in the search to get the relative

frequencies. The upper graph in Figure 4-20 is measured given the data collected in the Alarm

experiments with 500 instances, and the bottom one is about experiments with 5,000 instances.

This permits us to observe the relative distribution of the conditioning set size about IAMB,

PCMB, IPC-MB and PC, given “small” and “large” data sets respectively.

From Figure 4-20, we see that given 500 instances, the largest conditioning set is of size five

(variable) (found in PCMB); with more instances, for example 5,000, it increases to 7 (found in

IAMB and PCMB). The increased largest conditioning set indicates that more searches can be

done in IAMB and PCMB. However, we didn‟t see any gain in accuracy on IAMB algorithm

(Figure 4-9), while PCMB achieves great progress with distance decreasing from 0.31 to 0.06. In

contrast, the largest conditioning set is of size 2 and 4 respectively for IPC-MB, given 500 and

5,000 instances.

103

IPC-MB performs much better than IAMB, and achieves slightly higher accuracy than PCMB,

which seems can resort to the fact that most of its CI tests involve fewer number of variables

(Figure 4-20, Figure 4-21, Figure 4-22). For example, given 5,000 instances in Alarm problem,

96.6% CI tests have no more than two variables in their conditioning set, in IPC-MB; this number

is 70.6% for PCMB, and 53.3% for IAMB. Actually, in all five experiments, we observe that

over 90% of CI tests involved in IPC-MB have two or fewer variables in the conditioning set.

This explains why PCMB and IPC-MB performs much better than IAMB, in a different light.

Besides, we do observe a little more gain by IPC-MB over PCMB in Test152 problem. Though

there is no obvious gain is observed by IPC-MB over PCMB, it is believed that more trustable

outcomes are expected on IPC-MB over PCMB in applications.

0 1 2 3 4 5

PCMB 31.0% 72.6% 93.8% 98.5% 100.0% 100.0%

IAMB 31.1% 61.5% 90.5% 99.4% 100.0%

IPC-MB 22.1% 95.2% 100.0%

PC 34.3% 94.9% 100.0% 100.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

R
at

io

Cummulative Distribution of Conditioning Set Size: IAMB
vs. PCMB vs. IPC-MB vs. PC (Alarm 500)

104

Figure 4-20: Example distribution of conditioning set size (i.e. the cardinality of conditioning set)

as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in

experiments of Alarm (The upper graph is the average distribution given 500

instances, and the bottom is that measured given 5,000 instances).

0 1 2 3 4 5 6 7

IAMB 18.3% 36.1% 53.3% 69.9% 84.6% 95.9% 99.9% 100.0%

PCMB 12.3% 36.0% 70.6% 92.0% 99.1% 99.8% 100.0% 100.0%

IPC-MB 14.6% 82.7% 96.5% 99.9% 100.0%

PC 24.6% 84.4% 97.3% 99.8% 100.0%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

R
at

io

Cummulative Distribution of Conditioning Set Size(IAMB
vs. PCMB vs. IPC-MB vs. PC, Alarm 5K)

0 1 2 3 4 5 6

PCMB 48.7% 72.5% 94.3% 98.9% 99.8% 100.0% 100.0%

IAMB 21.0% 41.4% 60.5% 78.6% 93.1% 99.8% 100.0%

IPC-MB 54.4% 93.2% 97.9% 99.6% 100.0%

PC 59.6% 93.3% 98.1% 99.6% 100.0%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

R
at

io

Cummulative Distribution of Conditioning Set Size: IAMB vs.
PCMB vs. IPC-MB vs. PC (PolyAlarm, 5K)

105

Figure 4-21: Example distribution of conditioning set size (i.e. the cardinality of conditioning set)

as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in

experiments of polytree version Alarm (5,000 instances).

Figure 4-22: Example distribution of conditioning set size (i.e. the cardinality of conditioning set)

as involved in CI tests conducted by IAMB, PCMB, IPC-MB and PC in

experiments of Test152 (2,500 instances).

Figure 4-21 shows the distribution of conditioning set size as measured in experiments with the

polytree version of Alarm, where 5,000 instances are available. Compared with the measures

shown in Figure 4-20, it is noticed that the portion of CI tests with smaller conditioning set

increases, for each algorithm covered. Meanwhile, many fewer number of CI tests are observed

by comparing Table 4.8 and Table 4.11. Hence, we can conclude that problems of sparse

networks are easier to solve.

4.7 Summary

A series of experiments with classical problems, ranging from small to large scale, are conducted,

over IAMB, PCMB, IPC-MB and PC algorithms. By feeding different size of observations to

these four algorithms, we study their relative performance in term of accuracy, time efficiency

and data efficiency. Compared with IAMB, IPC-MB achieves much higher accuracy given the

0 1 2 3 4 5 6

IAMB 14.5% 28.9% 43.2% 57.4% 71.5% 85.5% 100.0%

PCMB 51.5% 73.2% 92.2% 98.5% 99.9% 100.0% 100.0%

IPC-MB 38.5% 92.0% 99.0% 99.9% 100.0% 100.0%

PC 47.3% 91.8% 98.9% 100.0% 100.0% 100.0%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

R
at

io

Cummulative Distribution of Conditioning Set Size: IAMB vs.
PCMB vs. IPC-MB vs. PC (Test152, 2.5K)

106

same amount of samples, and the extra requirement on time is affordable; compared with PCMB,

IPC-MB reaches the same or slightly higher accuracy but in much faster speed; compared with

PC, IPC-MB demonstrates obvious advantage in term of time complexity as an algorithm

requiring only local search.

In next chapter, we will go a little beyond the results collected in this chapter, discussing more on

the causes behind the scene.

107

Chapitre 5 TRADEOFF ANALYSIS OF DIFFERENT MARKOV BLANKET

LEARNING ALGORITHMS

5.1 Introduction

The necessary background of Markov blanket, existing learning algorithms, and our own

proposed one are covered in previous chapters. A series of experiments are also designed to

provide a vivid and direct comparison of their relative performance. In this chapter, we will go

beyond the facts as presented in Chapter 4, with emphasis on why one algorithm behaves like

what it appears, and we expect to end with a non-biased recommendation on one most

appropriate algorithm for inducing Markov blanket.

5.2 Category of Algorithms

From 1996 on, there are at least 10 algorithms for inducing Markov blanket have been proposed,

including KS, GS, IAMB and its variants (InterIAMB, InterIAMBnPC and Fast-IAMB),

MMPC/MB, HITON-PC/MB, PCMB and our own IPC-MB. They actually can be classified into

two groups:

1. Algorithms built on the property that , for . KS, GS, IAMB and

its variants belong to this category. We use GROUP I to refer to these algorithms in the

remaining text of this chapter;

2. Algorithms built on the property that and the underlying connection

between and the target , i.e. the so-called topology information. More recent

algorithms like MMPC/MB, HITON-PC/MB, PCMB and IPC-MB fall into this class.

GROUP II is used to denote them in this chapter.

Algorithms of both categories depend on a series of conditional independence tests in the search

of .

In this chapter, we only consider IAMB, PCMB and IPC-MB considering that (1) IAMB and

PCMB are representatives of GROUP I and GROUP II respectively; (2) Both are proved correct,

and their relative performance data are collected in Chapter 4; and (3) All three algorithms

require the same assumption, faithfulness.

108

5.3 Efficiency Gain by Local Search

Local search is defined relative to global search. Given the faithfulness assumption, if an

algorithm could induce without having to induce the whole Bayeisan network over , it is

viewed as local search, or local learning. Based on this definition, IAMB, PCMB and IPC-MB all

belong to this category.

However, it doesn‟t mean that local search is guaranteed to be more time efficient than global

search. From the study in Section 4.5 (more specifically, Table 4.12), it is observed that IAMB

and IPC-MB are able to achieve obvious reduction in time complexity as compared with PC (but

IAMB performs much worse than PC in term of accuracy), and the gain is expected to be more

remarkable with increasing scale of problems. Although PCMB produces as correct outcome as

IPC-MB and PC given the same number of instances, its timing cost may even exceed that of PC

(see Section 4.5.1, 4.5.2 and 4.5.3). Even though, we prefer to say the PC is such an excellent

algorithm, instead of declaring that PCMB is not good enough.

5.4 Data Efficiency

5.4.1 Data Efficiency is Critical

As we see in Chapter 4, though one algorithm, like IAMB, can be correct theoretically, it may

produce very poor results with limit instances. Normally the lower accuracy achieved by one

algorithm given specific number of instances, the more data inefficient this algorithm is. One

may argue for more observations to reach a satisfactory level, this is not realistic in real

applications. For example, given the Alarm problem, even when 20,000 instances are allowed for

IAMB, its accuracy is still much poorer than that reached by PCMB and IPC-MB given 5,000

instances. Therefore, IAMB has limit in applications, though it is expected to be time efficient.

Data efficiency is the most problem existing in GROUP I algorithms, and it is this problem

which has attracted several following effort since the birth of IAMB.

5.4.2 Why IAMB is Very Data Inefficient

There are two reasons to cause the data inefficiency of IAMB. Firstly, IAMB and other

algorithms in GROUP I depend on checking if
 to determine whether or not add into

109

or remove from some variable . This is direct and simple; however, they may condition on

the whole or even larger one, so the number of instances required for reliable test then

would be considerable. In fact, even if we have large samples, we still want the freedom degree

of statistical tests be as small as possible to have more reliable tests.

Secondly, many false positives are added in the growing phase, which prevents true ones from

being added. IAMB is composed of two phases: growing and shrinking. In the growing phase,

variable is added into
 if it is not conditionally independent of given the current

 .

Sicne
 starts with empty on, obviously, false positives will be added, and they stay in

since then. To make things worse, upon the first false one being allowed into
 , the door is

opened for more false positives. If we have too few instances, we may terminate the learning

somewhere, ending with a possibly completely wrong
 candidate set, which was observed in

our experiment. Feeding such a set into the shrinking phase can be a disaster, even worse than

conditioning on the whole . Therefore, pretty low precision and recall are observed on

IAMB in our experimental studies.

5.4.3 PCMB is Data Efficient

The data inefficiency problem was noticed by others, including the authors of PCMB, so the

growing and shrinking are interleaved in GetPCD of PCMB. In GetPCD, a best candidate is

selected based on a series of conditional independence tests; upon one new candidate being added

to PCD, all variables of PCD, including the one just added, are checked to see if there is any false

positive. By doing so, false ones are recognized and removed in time, preventing error from

being accumulated and resulting with more error as in IAMB.

Besides, by dividing the recognition of into and , the possibly largest conditioning

set is further limited. Therefore, although PCMB works like IAMB by considering which ones

should be included into , it makes each decision with enough caution aiming at correctness

as well as data efficiency.

5.4.4 IPC-MB is Data Efficient Too

Though IPC-MB has a similar framework as PCMB, it recognizes the
 in a quite different

way. Instead of deciding which ones can be added into
 or

 as PCMB or IAMB does,

110

IPC-MB realizes this target by removing those known as false positives, with true ones left. This

is built on the observation that false positives normally occupy a much larger portion among the

whole attribute set , e.g. the largest Markov blanket in Alarm is of size eight while totally there

are 37 attributes. In IPC-MB, each false positive is found with a conditioning set of the smallest

cardinality (Theorem 3.13). Similar to PCMB, the recognition of is divided into and

 as well. By minimizing the number of variables in separator set in FindCanPC, the

cardinality of the conditioning set involved in the recognition of a true spouse is also minimized,

which further ensures the reliability of the algorithm (Theorem 3.14).

As shown in Section 4.6, PCMB and IPC-MB demonstrate obvious advantage over IAMB in

term of data efficiency. Although the gain of accuracy of IPC-MB is not so obvious over PCMB

in our experiments, the distributions of conditioning set cardinality as shown in Figure 4-20,

Figure 4-21 and Figure 4-22 support such an argument: IPC-MB is expected to produce more

reliable results than PCMB because it requires smaller conditioning set by average.

5.5 Time Efficiency

5.5.1 IAMB is Fast but with High Cost

The study in Chapter 4 shows that IAMB is the fastest one, and PCMB is terribly slow as

compared to the other two. IPC-MB is slower than IAMB, but in an affordable scale.

In IAMB, the numbers of CI tests and data passes as required in both phases grow in a linear

speed. Given , both the number of CI tests and data passes needed in the worst case (Figure 3-5)

are for the growing phase. Actually, it is also for the shrinking phase, and

hence the total number is for CI tests as well as data passes. Due to its data

inefficiency, in practice, the actual number of CI tests and data passes may be even fewer than

that as expected. The possible introduction of false candidates in the growing phase further make

the thing worse as we discussed in 5.4.2. Therefore, in IAMB, CI tests quickly become un-

reliable after few rounds in the growing phase, and the search has to terminate, with pretty poor

results being produced.

111

5.5.2 IPC-MB is Much More Efficient Than PCMB

IPC-MB is observed to have slightly better accuracy performance than PCMB, but with much

less cost in term of time. Both of them declare as local search, and they all include the topology

information into consideration, then why they differ so great in time complexity? We analyze the

cause from two aspects.

First, the authors of PCMB didn‟t realize the conclusion made on Theorem 3.4. Then, in PCMB,

GetPC is called on not only the target , but each . However, in IPC-MB, FindCanPC,

which functions similarly as GetPCD, is called on as well as each
 . All these

FindCanPC calls combined together actually equals to one-time call of GetPC. Therefore, at least

 times of GetPC are saved in IPC-MB, which is significant considering that each GetPC is

really time consuming.

Second, what search conducted in FindCanPC is more efficient than GetPCD. Given the example

of Figure 3-5, the first step “remove false positives from CanPCD” (Figure 1-11) in PCMB has

the same complexity as the whole FindCanPC in IPC-MB, that is ; besides, each

GetPC has the complexity as the recognition of in IPC-MB, that is . Since PCMB

calls GetPC for each , the corresponding complexity increases to . If we count

the extra two steps in GetPCD, i.e. “add the best candidate to PCD” and “remove false positives

from PCD” (Figure 1-11), the whole complexity of PCMB will be even higher.

Therefore, PCMB loses to IPC-MB in time efficiency due to three causes:

1. GetPCD (PCMB) is much more complex than FindCanPC (IPC-MB). GetPCD actually

follows the design of IAMB, but it interleaves the growing and shrinking to remove any false

positives wrongly recognized at an early time. The adding of one possible candidate within

each iteration is accompanied with two times of consuming checking, i.e. “remove false

positives from CanPCD” and “remove false positives from PCD”;

2. In GetPCD, the PCD not only differs between adjacent iteration, but within the same

iteration. Based on the guideline of our implementation, i.e. only known contingency tables

are constructed in one scanning of data file, we may need three data passes in each iteration

of GetPCD, which further makes thing worse;

112

3. The needless calling of GetPC for each . GetPC(X) is called to collect parents and

children of in PCMB, and it has the same effect of what Line 2-12 do in IPC-MB. In other

words, we only call GetPC(X) for one time in IPC-MB because we recognized that spouse

candidates can be prepared meanwhile (Lemma 3.5), and only true spouses will pass the test

 (Theorem 3.4). Therefore, those GetPC(X) for is not

necessary, and it greatly increases the whole complexity of PCMB considering that each

individual GetPC(X) is so time consuming a procedure.

Therefore, to achieve better performance over IAMB and other previous works, IPC-MB is paid

with more affordable additional cost than PCMB.

5.6 Scalability

If we view the data as a matrix, with columns for features and rows for instances, scalability

refers to the ability that one algorithm works well given high dimensionality (column-wise), or

large number of observations (row-wise), or both.

Regarding IAMB, it doesn‟t consider the topology, so the number of dimensions, or features,

directly influences its actual performance. In our experiments, acceptable accuracy level is only

observed in Asia problem. Though we believe that given enough instances, IAMB is able to

produce perfect results, the number of instances as required may be too large to meet. Therefore,

IAMB is not expected to perform well given increasing dimensionality, except when there are

also considerable observations accordingly.

PCMB is shown indeed more data efficient than IAMB, i.e. producing much higher accuracy

given the same amount of observations. Given fixed dimensionality, PCMB is also expected to

achieve much faster increase in accuracy than IAMB. However, as one algorithm declaring local

search, PCMB is quite time inefficient, and it may even cost much more than the global search by

PC algorithm. Though PCMB is shown scalable by its author in [13], where it is applied to a

problem with 139,351 features appearing in KDD-Cup‟2001, we doubt the conclusion very much.

IPC-MB inherits the advantage of PCMB, i.e. data efficient. In fact, it may be more data efficient

than PCMB, as shown in our experiments (refer to Section 4.6.2). However, IPC-MB runs in a

much faster speed than PCMB. In Table 5.1, we observe that IPC-MB achieve the same or better

113

result than PCMB, requiring many fewer CI tests. Compared with IAMB, the additional cost for

IPC-MB is affordable if we realize the much higher accuracy as achieved by IPC-MB.

Table 5.1: The comparison of IPC-MB to PCMB and IAMB in terms of time efficiency and

accuracy. About time cost, means IPC-MB costs more CI tests than PCMB or IAMB;

and about accuracy, means IPC-MB‟s distance to the perfect result is larger than

PCMB or IAMB (note: the smaller the distance, the more accurate the result).

Problem

(# instances)

PCMB IAMB

Time Cost

(CI Tests)

Accuracy

(Distance)

Time Cost

(CI Tests)

Accuracy

(Distance)

Asia (20K)

PolyAlarm (5K)

Alarm (5K)

Test152 (2.5K)

Both PCMB and IPC-MB are sensitive to the underlying topology, or we can say that the actual

topology influences their scalability a lot. For example, although both Alarm and PolyAlarm

have 37 attributes, the actual timing cost by IPC-MB and PCMB differs greatly. In addition, we

observe that IPC-MB and PCMB achieve quite expressive results in Test152 problem given only

2,500 instances; they need 5,000 or more instances to reach the same accuracy level in Alarm

problem, though Test152 has much higher dimensionality than Alarm problem.

In conclusion, compared with IAMB and PCMB, IPC-MB achieve a good tradeoff by improving

the data efficiency with reasonable additional timing cost; hence, it is expected to have better

scalability. Besides, the underlying topology influences the actual scalability of algorithms

depending on the structure, like PCMB and IPC-MB.

5.7 Information Deduced

To the problem of feature selection, recognizing the variables belonging to the Markov blanket of

T is the target. Regarding this goal, all three algorithms under study are known with this ability

from the theoretical viewpoint, i.e. producing the perfect result given enough information.

However, given the faithfulness assumption, Markov blanket is known as unique and it contains

target‟s parents, children and spouses (along with edges and corresponding orientations). IAMB

and other previous algorithms only recognize that variables of MB render the rest of variables

independent of target; their designs are built on this property, and their output only tell us if

114

 given . PCMB and IPC-MB are built on the information as encoded in the

underlying connectivity existing on Markov blanket and . It not only enables algorithms to

achieve much better data efficiency than IAMB but generate more informative result. IAMB

doesn‟t distinguish the parents, children and spouses of , but PCMB and IPC-MB separate

spouses from the remaining variables in . Besides, those common children of spouses and

are recognized among , so as the orientations of related arcs, see Figure 5-1.

Figure 5-1: Output of IAMB (left), PCMB and IPC-MB (right)

The additional information as found by PCMB and IPC-MB may be helpful for applicants to

understand the underlying problem better. Furthermore, they can be made use to reduce the effort

for the learning of Markov blanket classifier as to be discussed in Chapter 6 and 7.

5.8 Approximate Version of IPC-MB

Although IPC-MB is demonstrated very efficient in our experiments, its time complexity may

still be un-affordable given network with dense connections or with large Markov blanket. For

example, as we discuss in Section 3.9, it has to continue the search until there are no conditional

independence tests left undone, even all false positives are able to be removed with conditioning

sets of size smaller than two, given polytree networks. By imposing the checking of reliability of

tests, as found in Figure 4-5 (Section 4.3.2), the search may terminate at earlier time when there

are no more trustable tests available, which possibly reduces the time complexity though it is

added originally to guarantee the correctness of results in practice.

115

However, we still may face large search space when there are ample instances for learning. One

common choice as referred in conditional test based structure learning algorithms of Bayesian

network can be applied here to reduce the search space to an expected level, i.e. restricting the

maximum number of parents. In IPC-MB, this is equal to limit the maximum value of cutSetSize

in FindCanPC because IPC-MB, actually, depends the Markov condition to remove those non-

descendants in FindCanPC. Therefore, we have a new version of FindCanPC (Figure 5-2)

derived from the version proposed in Figure 4-5.

Figure 5-2: The version of FindCanPC that restricts the search space as well as considers

reliability of statistical tests.

Though it is an approximate version, it doesn‟t mean that we won‟t get correct results. For

example, with a polytree, if we set the maximum number of parents as two or larger value, the

116

outcome of FindCanPC as well as IPC-MB are both guaranteed. Considering that real problems

generally have spare connectivity, most false positives can be recognized and removed given

small conditioning set. Therefore, this approximate version will not entail a large loss of accuracy,

but both the time and space complexity are reduced to an predictable level.

PCMB may have an approximate version by applying the same limit on the number of parents.

However, there is no such choice for IAMB since it is not dependent on the underlying topology.

The only possible choice is to limit the maximum cardinality of target , which will make the

performance of IAMB worse.

5.9 Summary

Although IAMB, PCMB and IPC-MB are all proved correct theoretically, they still demonstrate

relative strength or weakness when applied to real problems, as revealed by the experiments

conducted in Chapitre 4. In this chapter, we go beyond the facts observed, aiming at deciphering

some causes existing behind the facts.

For practical applicants, based on our experience, IAMB is strongly recommended if there are

ample data because it is easy to implement, fast in speed and efficient in memory usage. However,

we should realize that the need for large data samples increases quickly (actually, exponentially)

when the number of variables and/or the number of values per variable increase, and rarely we

can meet the corresponding requirement. In our experiments with IAMB, satisfactory result is

observed only on Asia, one very tiny problem containing only eight variables.

Compared with IAMB, PCMB and IPC-MB have much better accuracy performance given the

same amount of observations, which reflects their data efficiency property. However, PCMB is

much slower than IPC-MB, and it may cost more time than PC. Hence, IPC-MB is further

recommended over PCMB. Considering that samples are always small relative to the observation

space, i.e. where , and the time cost is affordable, IPC-MB is determined as the best

choice among the three for applicants. Approximate version is possible for PCMB and IPC-MB,

but not IAMB. Table 5.2 gives a brief summary on their relative features.

Table 5.2: Trade-off summary over IAMB, PCMB and IPC-MB.

117

 IAMB PCMB IPC-MB

Assumption(s) Faithfulness Faithfulness Faithfulness

Local Search Yes, and less cost

than PC

Yes, but cost may be

higher than PC

Yes, and less cost than

PC

Data Efficiency Very poor Good Best

Time Efficiency Best Poor Good

Scalability Ignored Applicable(especially

with approximation

version)

Applicable(especially

with approximate

version)

Information

Induced

Only plus partial

connections and

orientations

 plus partial

connections and

orientations

Implementation

Difficulty

Simple Difficult, and should pay

attention on the code and

memory optimization

Simple but should pay

attention to memory

usage optimization

118

Chapitre 6 A NOVEL LOCAL LEARNING ALGORITHM OF BAYESIAN

NETWORK CLASSIFIER: IPC-MBC

We have shown how to derive the set of variables that compose a Markov Blanket with local

learning algorithms in the previous chapters. This set of variables can be used for any classifier

and it is known as the optimal set for that purpose. However, the full topology of the BN over

tihs set of nodes is not derived from these algorithms. This topologhy corresponds to a Markov

Blanket Classifier. In this chapter, we introduce a novel algorithm for efficiently learning this

topology. Compared with conventional structure learning algorithms, e.g. PC, we limit the search

in a local manner as we do in IPC-MB, so obvious reduction of time cost is observed.

6.1 Background

Classification is a fundamental task in data mining that requires learning a classifier through the

observation of data. Basically, a classifier is a function that maps instances described by a set of

attributes to a class label. Naïve Bayes networks have been widely used for the task of

classification [43, 44] (Figure 6-1 upper-left). They represent a special case of the more general

Bayesian networks (BN) formalism and are characterized by their strong assumption about the

independence of attributes given the target node. Although they generally perform fairly well in

spite of this assumption [6], they lack the power to represent more complex dependencies among

attributes and the target node that can affect performance. Tree Augmented Naïve Bayes [7]

(Figure 6-1 upper-right) is an extension of Naïve Bayes that weakens its assumption, allowing

additional dependence relations among attributes. It is empirically shown to yield better

performance [7].

Compared with Naïve Bayes and TAN, a BN (Figure 6-1 bottom) doesn‟t distinguish between

target (class) variable and attributes. The target can be a parent or child of attributes, and general

dependencies are found among attributes. Although such general BN is expected with several

promising merits, including (1) yielding better performance than Naïve Bayes and TAN [8], (2)

encoding more detailed dependence relations as needed in diagnosis applications, and (3)

inferring any node‟s possible state given complete or incomplete observations of other nodes, the

NP-complete complexity to learn a BN inhibits its widespread application.

119

Figure 6-1: Examples of Bayesian classifiers, including Naïve Bayes (upper left), Tree-

Augmented Naïve Bayes (upper right) and Bayesian Network (bottom)

However, we note that not all attributes are effective in predicting the target in applying BN as a

classifier. With the BN example in Figure 6-1 (bottom), we have a decision rule like,

(6.1)

of which some terms, namely , do not contain the

target variable , which means that their values have no direct influence on the classification

decision of . By removing them, we obtain a simpler decision rule with no sacrifice with regards

to classification performance:

(6.2)

The attributes , involved in this new version of the decision rule (6.2)

correspond to the Markov blanket of , i.e. . Actually , plus the arcs among them

also constructs a Bayesian network, part of the original whole BN, and it encodes all the

dependence relationships appearing in (6.2). Obviously, if we have the Bayesian network over ,

it is trivial to get the sub-network that is effective for the classification of , and it is called

Markov blanket classifier (MBC) (with another name Bayesian network classifier (BNC) in one

of our early publication [15]) this article to distinguish it from the whole BN over .

120

Definition 6.1 (Markov Blanket Classifier or Bayesian Network Classifier). Given a Bayesian

network over , the partial DAG over is called the Markov Blanket Classifier, or

Bayesian Network Classifier about , and denoted as or .

Note : (1) We will use MBC or BNC to refer the general concept; (2) Because was used

in our early published work [15], it is mentioned for easy reference, though is preferred

considering its close connection with Markov Blanket.

As mentioned above, with a learned (known) BN and a given target , getting the target is

a trivial task. In this chapter, we propose one algorithm to learn the without having to

learn the whole BN first. It is built on IPC-MB, and it is proved correct, demonstrated as more

efficient than the conventional approaches which have to learn the BN before we can get MBC.

In Section 6.2, necessary knowledge of Bayesian network is covered for later reference and self-

contained purpose. Then, in Section 6.3, how the related work is motivated is introduced in brief.

In Sections 6.4, a local structure learning algorithm for MBC is proposed, and its correctness is

proved. The complexity analysis is conducted in Section 6.5, followed by empirical study and

discussion in Section 6.6 and 6.7. A brief conclusion about this chapter is made with Section 6.8.

6.2 Structure Learning of Bayesian Network

Since MBC is a BN, but over a feature subset , those methods applicable to the

structure learning of BN are believed useful references for our work. There are two ways to view

a Bayesian network, each suggesting a particular approach to learning and they are described

below.

6.2.1 Conditional Independence Test Approach

This approach views the BN as a structure that represents a group of conditional independence

relationships among the nodes, according to the concept of d-separation [2]. This suggests

learning the BN structure by identifying the conditional independence relationships among the

nodes. Using some statistical test (such as Chi-squared test), we can find the conditional

independence relationships among the attributes and use these relationships as constraints to

construct a BN. These algorithms are referred as CI-based algorithms or constraint-based

algorithms [14, 23, 35, 36]. This approach includes IC algorithm (inductive causation) [2], PC

121

algorithm (after its authors, Peter and Clark) [14], GS algorithm (grow and shrink) [23] and

TPDA algorithm (three-phase dependency analysis) [36]. All of them recover structures to be

consistent with the conditional independencies among the variables. Generally, algorithms start

by learning the skeleton of the graph (by propagating constraints on the neighborhood of each

variable) and then edges are oriented to cope with dependencies revealed from data. Finally, one

network is retained from the equivalent class consistent with the series of tests. Under the

faithfulness condition, such strategies have been proven to build a graph converging to the true

network as the size of the data approaches infinity. Moreover, their complexity is polynomial,

assuming that the maximal degree of the network, that is, the maximal size of direct neighbors, is

bounded [45].

6.2.2 Score-and-Search Approach

The second approach views the BN as a structure that represents the joint distribution of the

attributes. This suggests that the best BN is the one that best fits the data, and leads to the

scoring-based learning algorithms, that seek a structure maximizes the Bayesian, MDL or

Kullback-Leibler (KL) entropy scoring function [46, 47]. Since the search space is known to be

of a super exponential size on the number of nodes , that is,

 [48], an exhaustive

search is practically infeasible, implying that various greedy strategies have been proposed to

browse DAG space, sometimes requiring some prior knowledge.

Among them, the state-of-the-art greedy hill climbing strategy, although simple and yielding only

a locally optimal network, remains one of the most employed method in practice, especially with

larger networks. There exist various implementations using different empirical tricks to improve

the score of the results, such as Tabu List, restarting, simulated annealing or searching with

different orderings of the variables [49, 50].

No matter what scoring function to take and what heuristic to employ during the search, such

algorithm will process in the following manner:

1. Start the search from a given DAG, usually the empty one or Naïve Bayes network;

n

122

2. Then, from a list of possible transformations containing at least addition, withdrawal or

reversal of an edge, select and apply the transformation that improves the score most while

also ensuring that graph remains acyclic;

3. Finally repeat previous step until strict improvements to the score can no longer be found.

6.2.3 Statistical Equivalence

A Bayesian network structure represents conditional independence assumptions that allow the

joint distribution to be decomposed, reducing the number of parameters. The graph encodes the

Markov assumption: Each variable is independent of its non-descendants, given its parents in

 .By applying the chain rule of probabilities and properties of conditional independencies, any

joint distribution that satisfies the Markov assumption can be decomposed into the product form

(6.3)

The Bayesian network structure implies a set of independence assumptions in addition to (6.3).

Let be the set of independence statements (of the form is independent of given) that

hold in all distributions satisfying these Markov assumptions, and they can be derived as

consequences of (6.3) [2].

More than one graph can imply exactly the same set of independencies. For example, consider a

BN over two variables and . The graphs and both imply the same set of

independencies (i.e.,). Two graphs and are equivalent if [51]. That

is, both graphs are alternative ways of describing the same set of independencies.

This notation of equivalence is crucial since when we examine observations from a distribution,

we cannot distinguish between equivalent graphs. Pearl and Verma [29] show that we can

characterize equivalent classes of graphs using a simple representation. In particular, these results

establish that equivalent BNs have the same underlying undirected graph but might disagree on

the direction of some of the arcs.

123

Theorem 6.1 Two DAGs are equivalent if and only if they have the same underlying undirected

graph and the same v-structures (i.e. same set of uncoupled head-to-head converging, such as

) [29, 52].

This theorem implies that (1) learning the v-structures is critical for learning a Bayesian network,

and (2) the remaining arcs‟ directions have no influence on the usage.

6.3 Motivation, Heuristics and Our Work

With a known BN over and of interest, it is trivial to extract the target . However,

from the discussion in Section 6.2 and our experimental study in Section 4.5 (on PC), it is known

that both CI and score-and-search approaches fail to scale to large problems. Actually, compared

with the whole network, normally occupies quite a small area of the whole DAG, in terms

of both nodes and arcs. For example, the largest MBC in Asia, Alarm, Hailfinder, Test152 and

PolyAlarm has 5, 8, 8, 17 and 5 nodes respectively, as compared with 8, 37, 56, 152 and 37 nodes

as contained in the corresponding network. Therefore, an ideal solution permitting to learn only

the nodes and arcs related with the target is expected. Having to learn the DAG over

first is not what we prefer, though we have no other choice in the past, since it means waste of

computing resource; and generally, the larger is the whole DAG, the more is the possible waste.

How to reduce search space and reach an efficient learning algorithm for MBC is the goals of this

and next chapter.

Given the output of IPC-MB, we want to make use of it to solve the pending problem considering

three facts that (1) IPC-MB enables us to find the correct , (2) contains all and only the

nodes belonging to the target (except for), and (3) is much smaller than ,

restricting the remaining search in a quite smaller scope. With ready, all existing methods

available for the structure learning of BN are applicable without changes. One typical naïve

procedure is to apply IPC-MB first to recognize , and then apply constrained (CI-test) or

score-and-search learning algorithms as though . However, we can take advantage of

some of the structure learning that occure in IPC-MB to derive more efficiently.

124

6.4 IPC-MBC Algorithm Specification and Proof

6.4.1 Overrall Description

IPC-MBC requires faithfulness assumption, and it also depends on a series of conditional tests to

determine if any link should exist or not. The overall design of IPC-MBC is based on such

an fact – if we know of each , the union of links between

should belong to the target .

Given target , the whole procedure of IPC-MBC (Figure 6-2) can be

divided into five sequential steps as described below:

1. Induce the connections between
 (Line 1-5). IPC-MBC starts with an initial

in which is connected with . The false parents/children are removed by

disconnecting them from via the call of FindCanPC- , with possible exception on

 ‟s descendants. Candidate parents/children of then are retrieved from based on the

linkage, denoted as
 . is marked as scanned by adding it into the container ;

2. Remove false positives from
 to get , add links between and collect

spouse candidates (Line 6-10). Given
 , it is initialized to be connected to all

 in (Note: the edges existing between therefore are

kept un-changed). Then FindCanPC-MBC() is called to remove false positives from its

adjacent neighbors to get
 . The current is added to as well. After such call of

FindCanPC-MBC() on
 , (1) what connected to are only its true parents and

children, denoted as ; (2) the edges existing between any pair of are added in

 ; and (3) nodes adjacent to are known as candidate spouses, denoted as
 ;

3. Recognize true spouses, , add links among , and between

 We retrieve and
 first from based on the

connection. For , we similarly retrieve
 where

 . Then,

for
 , if it is dependent with as conditioned on , it is

known as a true spouse. For such , we add links between it and each , and

call FindCanPC-MBC() to induce the links as may exist between and .

125

Since each true spouse is processed in the same way, we won‟t miss any links among

 as well as links between ;

4. Remove nodes not belonging to (Line 23). The arcs connecting to the

removed nodes are deleted as well, with the skeleton of and some know V-structures

left in ;

5. Orienting the arcs. A series of orientation rules are applied to the outcome of Step 4 to get

the final .

These five steps summarize the overall design of IPC-MBC (Figure 6-2), from which one can see

that we repeatedly depend on the recognition of parents and children, via calling FindCanPC-

MBC(Figure 6-3), to determine the connection between any pair of nodes (including Step 1, 2

and 3). This is similar to what we done in IPC-MB, but more complex since here we care not

only , but also about links existing among . Because we carefully restrict the call

of FindCanPC-MBC within a local scope by (1) following breadth-first manner, (2) removing

confirmed false positives, and (3) preventing duplicate study, a great reduction of complexity is

expected. In the coming sections, each step will be expanded with more details, along with

necessary proof of correctness.

126

Figure 6-2: The overall algorithm specification of IPC-MBC

127

Figure 6-3: FindCanPC-MBC algorithm specification.

6.4.2 Induce Candidate Parents/Children of Target

As the name of this algorithm indicates, the whole learning depends on the discovery of parents

and children enables us to induce the links of interest, which is critical to the locality nature of

this algorithm. FindCanPC-MBC procedure (Figure 6-3) is responsible for the learning of

parent/child candidates, and it has four input parameters:

1. the active target that we are going to study its connectivity status with others;

2. the graph container which contains (1) what we have found, and (2) manually added

adjacent neighbors of upton entering FindCanPC-MBC.

3. , the dataset prepared for training;

128

4. , threshold value to be used in determining if a conditional independence test indicates “true”

CI relationship or not, e.g. significant or not. It is set empirically, and common choice may

be 0.01 or 0.05.

The output of FindCanPC-MBC is contained in but with some links possibly deleted compared

with the state when it just enters into the function. For easy reference purpose, we use

 to represent the graph as got by the end of each of the five step.

FindCanPC-MBC() (the remaining two parameters are ignored since they are same for

different calls) actually is same as FindCanPC(
 in IPC-MB since

 can be retrieved

from , and it is actually done at Line 3 in FindCanPC-MBC. Although there is more

information contained in (except for the first call of FindCanPC-MBC), they, in fact, are

ignored within FindCanPC-MBC. Therefore, all discussions and conclusions on FindCanPC (in

3.4. 1) apply here. In the first step, is initialized as , and we have the

following two corollary derived from previous conclusions made in Chapitre 3.

Corollary 6.1 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG, given , FindCanPC-MBC enables us to find the

superset of , denoted as
 (Candidate Parents and Children), and

 .

Proof. Please refer to Theorem 3.1. ▋

Corollary 6.2 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG, given , the only possible false positives as output

by FindCanPC-MBC are ‟s descendants.

Proof. Please refer to Theorem 3.2. ▋

Therefore, by the end of the first step, we have
 , and Figure 6-4 gives

an example illustration.

129

Figure 6-4: contains all the parents and children of (denoted as since they cannot be

distinguished for now) as connected to , as well as some false positives possibly, i.e.

children‟s descendants (with dotted circle). Note that nodes NOT connected to

are not drawn in this graph.

6.4.3 Recognize /Links among /

Given , it is trivial to retrieve nodes direcly connecting with in , denoted as
 In this

step, we call FindCanPC-MBC on each
 If we denote the graph to have by the end of

this step as , we need to prove the following two findings:

 is exactly parents and children of , i.e. Besides,

 , i.e. the links existing among in are exactly those among

 in the target .

Lemma 6.1 Given , the call of FindCanPC-MBC(

will output all parents and children of .

Proof. is known to contain nodes having FindCanPC-MBC called. Then, given

 , (1)nodes contained in and confirmed not

connecting to in are excluded from consideration, as expected; and (2) nodes known as

connecting to and contained in keep remained in . Upon the calling of FindCanPC-

MBC(, all parents and children must connect to ; otherwise, it means that some

 fails some CI test in previous FindCanPC-MBC(X), which is impossible

130

based on Corollary 6.1. Similarly, none of will be removed in the current FindCanPC-

MBC(Y) given Corollary 6.1. Therefore, all the parents and children of will be output as

connecting to . ▋

Lemma 6.2 Given , the call of FindCanPC-MBC(

will never output non-descendants of (excluding parents of).

Proof. It is known from Lemma 6.1 that by the end of calling

FindCanPC-MBC(, which means that
 all alone within FindCanPC-MBC(. If

there is any non-descendant being output, then it obviously contradicts with the fact

that . ▋

Theorem 6.2 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG, , FindCanPC-MBC(will

always output and the only possibly false positives as connected to can only be ‟s

descendants.

Proof. Lemma 6.1 and Lemma 6.2 ensures that will be output, and non-descendant will

never be output respectively. The example that some descendants may be output can be found in

the proof of Theorem 3.1. ▋

Theorem 6.3 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG, are exactly .

Proof. Given
 , we initialize

 . By calling FindCanPC-MBC(, is known as subset of

 If , then it is known that , and the edge will keep left in . Else if

 , i.e. , the edge should has be deleted since (1) is then a non-

descendant of and, (2) it is impossible to have this edge based on Theorem 6.2.

Because we call each FindCanPC-MBC on each
 , all links

between
 will be deleted. Therefore, what left connected to in

131

are only its true parents and children. In other words, we have found all links between and

 . ▋

Corollary 6.3 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG, after the calling of FindCanPC-MBC(and FindCanPC-MBC(,

 stay in only if are truly connected.

Proof. Please refer to the first half part of the proof on Theorem 6.3 above. ▋

Theorem 6.4 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG, in are exactly those existing

in the target .

Proof. We call RecongziePC-MBC() on each
 (Line 6-10), then each

 should be in Sicne

 , then the statement gets

proved. ▋

Therefore, by the end of Step 2, we get closer to the target – both and the links among

 are induced correctly. In addition to these, nodes connected to some actually

contain true spouses requiring for further search work, which will be discussed in Step 3. Figure

6-5 is one example of , in which the non-dotted edges and circles means they are confirmed as

part of the target

132

Figure 6-5: In all connecting to are exactly ‟s parents and children, and they still cannot

be distinguished further. It also contains all the possible links among . Candidate

spouses
 are found to be connected with some . In the graph, all

confirmed findings are drawn with solid lines, and non-confirmed with dotted lines.

6.4.4 Recognize /Links among /Links between and

The output of Step 2, , is fed into Step 3 as input. can be retrieved from easily

(Theorem 6.3). Then, given we obtain
 similarly based on the connection in .

With
 , if it is recognized as true spouse (Line 15-18), FindCanPC-MBC() is called;

otherwise, it is removed from , so as any links connecting to it. If the graph we have by the end

of Step 3 is denoted as , we will prove that in addition to what true information as contained in

 , we have the following additional:

 All true spouses are left in

 Edges between any are contained in

 Edges between any and are contained in

133

Lemma 6.3 For ,
 contains the spouses of if these spouses

have as the common-child with .

Proof. It is known that
 , so all parents of should be contained in

 , saying

nothing of those having common children. █

Lemma 6.4 For
 , only the true spouse of will satisfy the condition of

) (at Line 15 of IPC-MBC).

Proof. Please refer to the proof of Theorem 3.4. █

Theorem 6.5 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG, all true spouses are correctly recognized in

Proof. (1) Given , we check each
 , therefore all spouses as probably contained

in
 will be correctly recognized based on Lemma 6.4. (2) The same treatment is given to

each , hence we are able to find all spouses as contained in
 . (3) Assume that there

is one spouse not belonging to any
 , this may happen only when the corresponding is not

contained in , which obviously contradicts to Lemma 6.1. █

Theorem 6.6 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

faithful to a DAG, all edges existing between any in are exactly those existing

beween any in the target

Proof. (1) All are contained in , based on Theorem 6.5; (2) We call FindCanPC-

MBC() for , and . So, if the edge

must be added to before calling FindCanPC-MBC() assuming that is studied earlier

than . (3) Based on Corollary 6.3, the corresponding edge, , won‟t be removed from

since it is added on if it is true. (4) In contrast, all false edges between any will be

removed in FindCanPC-MBC() or FindCanPC-MBC(). Therefore, what edges left

between any by the end of Step 3 are just the true ones. █

Theorem 6.7 Under the assumptions that the independence tests are correct and that the learning

data is an independent and identically distributed sample from a probability distribution

134

faithful to a DAG, all edges existing between any and any in are exactly

those existing beween in the target

Proof. (1)It is known that all are contained in based on previous discussion. (2)

Assume that and , and it is known that is added to when we call

FindCanPC-MBC() at Line 8 (IPC-MBC). (3) Based on Corollary 6.3, it stays in since then

if it is true; otherwise, it will be removed within FindCanPC-MBC() or FindCanPC-MBC().

If it is removed in FindCanPC-MBC(), it will not be added back since is marked as Scanned

at Line 9, and will be ignored during preparing adjacency nodes for at Line 13. (4) All such

true edges will be left in since we call FindCanPC-MBC() for each . (5) All the

false edges will be removed correct from since we call FindCanPC-MBC() and FindCanPC-

MBC() for all such pairs of nodes involved. █

Therefore, by the end of Step 3, (1) what left connected to are just , (2) All spouses are

correctly recognized, (3) some children are also correctly distinguished from after being

recognized as a common child of some and ; (4) all edges among are recognized;

and (5) all edges between and are also recognized. In conclusion, all nodes and edges

as contained in the target are correctly recognized. Figure 6-6 shows the result after the

additional processing, as discussed in this section, being conducted on the graph in Figure 6-5.

Figure 6-6: In , spouses are recognized, along with some children of .

135

6.4.5 Achieve the Skeleton of

All the nodes and links belonging to the target are correctly recognized in by the end

of last step. However, there are some by-products left in the container , including nodes and

links (Figure 6-6, but not all of them are presented). Removing them is trivial by judging if they

belong to or . Figure 6-7 is one such example obtained from Figure 6-6, denoted as

considering it is the outcome after Step 4. contains the skeleton (see definition below) of the

target DAG with some oriented edges, but it is noted that the orientation of most links are

unknown yet.

Figure 6-7: In , all the nodes and links of the target MBC are there, with some orientation

determined on some links. No other nodes or links are contained.

Definition 6.2 (Skeleton). Let be a DAG, and the undirected version of is called the skeleton

of [52].

Definition 6.3 (). is the skeleton of the target plus orientation of some links which

constructing v-structures.

6.4.6 Orientation

The orientation step will look for all triples such that edges and are in the

graph but not the edge . Then, if , we have oriented edges as and

 , which creates a new v-structure: . After all v-structures are recognized by

repeating this rule, the rest edges are oriented following two basic principles: not to create cycles

and not to create new v-structure. In our implementation, we refer rules applied in Weka and [53]:

136

 Rule 1: & ;

 Rule 2: & ;

 Rule 3: & & ;

 Rule 4: & ;

 Rule 5: if no edges are directed then take a random one (first we can find).

Lemma 6.5 For each triple such that edges and are in the graph but not the

edge , if , then we find one v-structure, i.e. .

Proof. Given a connection like , there are three possible converges, i.e. the so-called

tail-to-head , head-to-head and tail-to-tail . Then we need

only prove that and are not possible. Assume is true, then

 ; otherwise, at least there exists one path is not blocked, so is NOT

independent with , and should exist. This is contradictory to the fact that doesn‟t

exist in graph. Similarly, we can prove that is impossible either. Therefore,

 must be true, and the lemma is proved. █

Definition 6.4 (Markov equivalence): Two DAGs are Markov equivalent if they encode the

same set of independence relations.

Theorem 6.8 Two DAGs are Markov equivalent with each other if and only if they have the

same skeleton and they consist of the same of v-structure (or immoralities in the original text

since they are equivalent concepts).

In the section of empirical study, we will only check the skeleton and v-structures learned when

we compare them to that of the underlying true models. This simplifies the comparison work but

without sacrificing the desired effect.

6.4.7 Conclusion

Our explanation on how IPC-MBC induces the target is presented as step by step in this

section, including how each step works, the expected outcome, and the correctness of the

expected outcome. The expected result of IPC-MBC, i.e. , is ensured by the correctness of

each step.

137

IPC-MBC is a direct extension of IPC-MB, but with more fine-grained control to integrating the

recognition of related edges with nodes belonging to . It completely depends on the

underlying topology, and the search proceeds in a breadth-first order. By restricing the search in a

local manner, IPC-MBC is expected to be more efficient than global learning algorithm like PC,

and our experimental study confirms this (Section 6.6).

6.5 Complexity Analysis

The complexity of IPC-MBC is determined by the times of call on FindCanPC-MBC, just like

FindCanPC to IPC-MB. The complexity of Recognize-MBC is same as FindCanPC in the worst

case, that is . However, because on which FindCanPC-MBC has been called,

they may not considered in the adjacency table, instead of always in FindCanPC (IPC-

MB), reduction on real complexity is expected depending on the underlying topology.

In IPC-MB, FindCanPC is only called for
 ; however, in IPC-MBC,

FindCanPC-MBC is called on
 . Therefore, the overall time complexity of

IPC-MBC is expected to be higher than IPC-MB, and the actual difference is determined by the

underlying topology (since it determines the cardinality of). Given the example (Figure 3-5)

causing the highest complexity to IPC-MB, the corresponding complexity of IPC-MBC is the

same, .

The memory complexity of IPC-MBC is similar to IPC-MB, and no more discussion is spent here.

6.6 Empirical Study

6.6.1 Experiment Design

Though IPC-MBC is proposed to induce , it can be regarded as an algorithm to induce

 as well. Considering that the induction of is the basis for inducing , we will

firstly study the performance of IPC-MBC as a learner of Markov blanket, in term of accuracy

and time efficiency. IPC-MBC will be compared with PC in our study to see how much gain in

performance it has as a local search. Besides, it will be compared with IPC-MB, though it is

known more complex than IPC-MB. The comparison will also give us chance to verify the

implementation of IPC-MBC.

138

Being a MBC learner, we want to compare three approaches, including:

 PC. PC is called on to induce the target BN first, then the MBC of interest can be retrieved

from the BN induced;

 IPC-MB + PC. Given a target , we run IPC-MB first to induce first, realizing

dimension reduction; then, PC algorithm is employed to induce the over . In this

case, only the information that applied, and this topology information inferred by

IPC-MB is ignored;

 IPC-MBC. Given a target , IPC-MBC is called to induce the target

Considering that the output of feature selection influences the structure learning greatly,

IAMB+PC is not considered due that the poor accuracy performance of IAMB. PCMB+PC is not

considered as well here because PCMB has been observed with a similar performance with IPC-

MB in term of accuracy, in Chapter 4.

In the experiments, we use synthetic data sampled from three networks introduced in Chapter 4

already, including Asia (Figure 4-1), Alarm (Figure 4-2), Test152 and PolyAlarm (Figure 4-3).

The distribution of the size of MBC, in term of number of edges, as contained in the

corresponding Bayesian network is shown in Figure 6-8. The corresponding distribution of size

measured of nodes can be found in Figure 4-4. We run IPC-MB, IPC-MB + PC and IPC-MBC

separately with each node in the BN as the target variable and report the average performance

over 10 rounds, including analysis of accuracy and time efficiency. PC algorithm is called for one

time given a data set, and the accuracy is reported based on the or retrieved from the

Bayesian network, given each .

139

Figure 6-8: Distribution of the size of Bayesian network classifier as contained in Asia, Alarm

and PolyAlarm, and the size is measured by the number of edges.

Note that in the measure of accuracy of MBC learner, we only consider the skeleton of network

by ignoring the orientation of edges because (1) determining the orientation is not our research

focus here, and more importantly (2) given a distribution P, there is more than one DAG

encoding the same group of constraints given the equivalence network as discussed in 6.4.6.

6.6.2 IPC-MBC as Markov Blanket Learner

By applying IPC-MBC as a Markov blanket learner, we ignore the topology induced, but only

check the nodes as contained in the output. In the comparison of accuracy, we still apply the

measures of precision, recall and distance as we taken in Section 4.4.

Only Alarm network is used in the experiment about applying IPC-MBC as a MB learner, and

the results about average accuracy and time efficiency are reported in 错误！未找到引用源。

and Table 6.2 respectively.

Table 6.1: Accuracy comparison of PC, IPC-MB and IPC-MBC over Alarm network.

Instances
Simulation

Rounds
Algorithm

Precision

(mean±Std. Err)

Recall

(mean±Std. Err)

Distance

(mean±Std. Err)

500 10 PC .77±.05 .78±.03 .37±.04

1 2 3 4 5 6 7 8 9 10 11 12

Asia 2 2 3 0 1

Alarm 6 8 4 8 2 3 1 2 1 1 1

PolyAlarm 9 10 10 5 1 1 1

0

2

4

6

8

10

12

o

f
ed

ge

Distribution of the MBC's Size (measured by # of edges)

140

IPC-MB .85±.02 .77±.04 .32±.04

IPC-MBC .85±.02 .76±.04 .33±.04

1000 10

PC .90±.03 .85±.03 .21±.04

IPC-MB .94±.02 .84±.02 .19±.03

IPC-MBC .94±.02 .83±.02 .20±.03

2000 10

PC .96±.02 .90±.03 .13±.04

IPC-MB .98±.02 .90±.03 .11±.04

IPC-MBC .98±.02 .90±.03 .11±.04

3000 10

PC .97±.01 .92±.02 .10±.02

IPC-MB .99±.01 .93±.02 .07±.03

IPC-MBC 1.00±.01 .92±.02 .08±.02

4000 10

PC .97±.01 .94±.02 .09±.03

IPC-MB .99±.01 .95±.01 .06±.03

IPC-MBC 1.00±.01 .94±.01 .06±.01

5000

10

PC .96±.02 .94±.01 .10±.02

IPC-MB .99±.01 .95±.01 .05±.02

IPC-MBC 1.00±.01 .94±.01 .06±.01

Figure 6-9: Comparison of distances given different number of instances (0.5K~5K): PC, IPC-

MB and IPC-MBC (Alarm, = 0.05, refer to Table 6.1 for more information)

500 1000 2000 3000 4000 5000

PC 0.37 0.21 0.13 0.10 0.09 0.10

IPC-MB 0.32 0.19 0.11 0.07 0.06 0.05

IPC-BNC 0.33 0.20 0.11 0.08 0.06 0.06

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
is

ta
n

ce

Average Distance: PC vs. IPC-MB vs. IPC-MBC

141

In Table 6.2, the “# CI Tests” of IPC-MB and IPC-MBC refers to the average number of CI

tests we need to induce the corresponding MB given each node of the Alarm network as target.

The amount for PC is the total number of CI tests required to learn the whole Alarm BN as by

traditional approach. The “# Data Passes” is defined in similar way.

Table 6.2: Time efficiency comparison of PC, IPC-MB, IPC-MBC (Alarm, = 0.05).

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Err)

CI Tests

(mean±Std. Err)

500 10

PC 220±16 2736±82

IPC-MB 12±1 561±31

IPC-MBC 13±1 639±32

1000 10

PC 191±17 3168±105

IPC-MB 12±0 637±37

IPC-MBC 15±0 738±34

2000 10

PC 188±12 3528±121

IPC-MB 13±0 736±37

IPC-MBC 15±1 845±39

3000 10

PC 200±19 3717±166

IPC-MB 13±0 798±53

IPC-MBC 16±0 920±56

4000 10

PC 211±18 3902±122

IPC-MB 14±0 849±48

IPC-MBC 16±0 986±64

5000 10

PC 215±16 3956±80

IPC-MB 14±0 876±31

IPC-MBC 16±0 1010±29

142

Figure 6-10: Example distribution of conditioning set size (i.e. the cardinality of conditioning set)

as involved in CI tests conducted by PC, IPC-MB and IPC-MBC in experiments of

Alarm (5,000 instances).

Figure 6-11: Comparison of the increasing rate of CI tests as required by PC, IPC-MB and IPC-

MBC given more observations (Alarm network, = 0.05). Note: For displaying and

0 1 2 3 4

PC 24.6% 59.8% 12.9% 2.6% 0.2%

IPC-MB 14.6% 68.2% 13.8% 3.3% 0.1%

IPC-BNC 13.5% 54.1% 22.4% 10.0% 0.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

P
er

ce
n

ta
ge

Distribution of Conditioning Set Size Involved in CI Tests:
PC vs. IPC-MB vs. IPC-MBC (Alarm, 5K)

500 1000 2000 3000 4000 5000

PC/4 684 792 882 929 976 989

IPC-MB 561 637 736 798 849 876

IPC-BNC 639 738 845 920 986 1010

500

600

700

800

900

1000

1100

C

I T
es

ts

Increasing Rate: PC vs. IPC-MB vs. IPC-MBC

143

convenient observation purpose, the corresponding number of PC algorithm is

divided by 4.

Some conclusion can be made by observing the results shown in the two tables above:

1. PC, IPC-MB and IPC-MBC have nearly same accuracy performance, given different size of

observations. This also reflects indirectly that they have similar data efficiency;

2. As expected, PC is the slowest one among the three, and IPC-MB is the fastest. Compared

with PC, both IPC-MB and IPC-MBC realize local search, which enables them to be much

more efficient than PC. For example, given 4000 observations, by average, IPC-MB and

IPC-MBC require about 78% and 75% fewer number of CI tests than PC respectively; in

term of data passes, IPC-MB and IPC-MBC requires about 93% and 91% fewer than that of

PC respectively;

3. IPC-MBC is proposed to induce more information than IPC-MB, hence it costs more than

IPC-MB. However, the additional cost is affordable as shown in our experiments with Alarm,

about 10% more on both data passes and CI tests;

4. Given more observations, all three algorithms are able to conduct more searches to achieve

better result, but IPC-MBC has higher increasing rate on time complexity than the other two.

IPC-MB and PC has similar rate (Figure 6-11);

5. IPC-MBC is expected to achieve higher accuracy than IAMB, and faster than PCMB, based

on our comparison on them with IPC-MB in Chapter 4.

Table 6.3: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over Alarm network.

Instances
Simulation

Rounds
Algorithm

Precision

(mean±Std.

Err)

Recall

(mean±Std.

Err)

Distance

(mean±Std.

Err)

500 10

PC .71±.05 .74±.03 .45±.03

IPC-

MB+PC
.74±.04 .74±.04 .42±.03

IPC-MBC .79±.02 .73±.04 .39±.04

1000 10

PC .88±.03 .81±.02 .26±.04

IPC-

MB+PC
.92±.02 .81±.02 .23±.06

IPC-MBC .93±.03 .74±.05 .29±.06

2000 10
PC .96±.02 .87±.03 .15±.04

IPC- .98±.02 .87±.03 .14±.04

144

MB+PC

IPC-MBC .95±.02 .77±.04 .25±.05

3000 10

PC .97±.01 .90±.03 .12±.03

IPC-

MB+PC
.92±.02 .92±.02 .14±.02

IPC-MBC .99±.01 .91±.02 .10±.03

4000 10

PC .97±.01 .92±.01 .11±.02

IPC-

MB+PC
.92±.02 .94±.01 .13±.03

IPC-MBC 1.00±.01 .93±.02 .07±.02

5000

10

PC .96±.02 .93±.01 .11±.02

IPC-

MB+PC
.92±.02 .94±.01 .12±.02

IPC-MBC 1.00±.01 .94±.01 .06±.02

Figure 6-12: Comparison of distances given different number of instances (0.5K~5K): PC vs.

IPC-MB+PC vs. IPC-MBC (Alarm, = 0.05, refer to Table 6.3 for more information).

Table 6.4: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over PolyAlarm network.

Instances
Simulation

Rounds
Algorithm

Precision

(mean±Std.

Err)

Recall

(mean±Std.

Err)

Distance

(mean±Std.

Err)

500 1000 2000 3000 4000 5000

IPC-MB+PC 0.42 0.28 0.18 0.14 0.13 0.12

IPC-BNC 0.39 0.23 0.14 0.10 0.07 0.06

PC 0.45 0.26 0.15 0.12 0.10 0.11

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

D
is

ta
n

ce

Average Distance: IPC-MB+PC vs. IPC-MBC vs. PC

145

500 10

PC .75±.07 .72±.05 .44±.08

IPC-

MB+PC
.83±.06 .74±.04 .34±.07

IPC-MBC .84±.06 .74±.04 .34±.08

1000 10

PC .80±.04 .80±.02 .34±.06

IPC-

MB+PC
.90±.03 .85±.02 .21±.04

IPC-MBC .91±.03 .84±.02 .21±.04

2000 10

PC .83±.03 .83±.02 .29±.03

IPC-

MB+PC
.91±.02 .90±.01 .15±.02

IPC-MBC .93±.02 .89±.02 .15±.03

3000 10

PC .83±.03 .86±.01 .27±.03

IPC-

MB+PC
.91±.04 .91±.03 .15±.05

IPC-MBC .92±.03 .91±.03 .14±.05

4000 10

PC .86±.03 .87±.03 .23±.04

IPC-

MB+PC
.92±.02 .92±.02 .13±.02

IPC-MBC .94±.02 .91±.02 .12±.03

5000

10

PC .87±.03 .89±.03 .20±.04

IPC-

MB+PC
.92±.03 .92±.02 .12±.03

IPC-MBC .94±.02 .92±.02 .11±.02

500 1000 2000 3000 4000 5000

PC 0.44 0.34 0.29 0.27 0.23 0.20

IPC-MB+PC 0.34 0.21 0.15 0.15 0.13 0.12

IPC-BNC 0.34 0.21 0.15 0.14 0.12 0.11

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

D
is

ta
n

ce

Average Distance: PC vs. IPC-MB+PC vs. IPC-MBC

146

Figure 6-13: Comparison of distances given different number of instances (0.5K~5K): PC vs.

IPC-MB+PC vs. IPC-MBC (PolyAlarm, = 0.05, refer to Table 6.4 for the complete

data).

Table 6.5: Accuracy comparison of PC, IPC-MB+PC and IPC-MBC over Test152 network.

Instances
Simulation

Rounds
Algorithm

Precision

(mean±Std. Err)

Recall

(mean±Std. Err)

Distance

(mean±

Std. Err)

500 10

PC .74±.03 .68±.01 .49±.01

IPC-MB+PC .88±.01 .69±.01 .39±.01

IPC-MBC .91±.01 .68±.01 .38±.01

750 10

PC .74±.04 .73±.02 .45±.03

IPC-MB+PC .88±.03 .75±.02 .33±.02

IPC-MBC .92±.02 .72±.02 .34±.02

1000 10

PC .74±.02 .78±.02 .42±.02

IPC-MB+PC .89±.02 .79±.02 .28±.02

IPC-MBC .93±.02 .77±.02 .28±.03

1500 10

PC .75±.02 .87±.02 .35±.03

IPC-MB+PC .90±.01 .88±.03 .19±.03

IPC-MBC .94±.01 .86±.03 .19±.03

2000 10

PC .78±.02 .94±.02 .26±.02

IPC-MB+PC .91±.01 .94±.02 .13±.02

IPC-MBC .95±.01 .93±.03 .12±.03

2500 10

PC .80±.02 .97±.02 .22±.02

IPC-MB+PC .91±.02 .97±.01 .12±.03

IPC-MBC .95±.01 .96±.02 .09±.02

147

Figure 6-14: Comparison of distances given different number of instances (0.25K~2.5K): PC vs.

IPC-MB+PC vs. IPC-MBC (Test152, = 0.05, refer to Table 6.5 for the complete

data).

The number of data passes and CI tests as required by PC and IPC-MBC to induce the MBC here

actually are same as that needed to induce the MB. IPC-MB plus PC is added here since it is not

considered in the experiments about applying IPC-MBC as Markov blanket learner. Again, the

measures reported on IPC-MB plus PC and IPC-MBC are the average values over each node of

the target whole Bayesian network, while the values about PC are the time required to learn the

whole Bayesian network. This comparison allows us to observe the difference between global

and local learning.

Table 6.6: Time complexity comparison of PC, IPC-MB+PC and IPC-MBC over Asia network.

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Err)

CI Tests

(mean±Std. Err)

100 20

PC 24±6 135±119

IPC-MB+PC 16±11 129±166

IPC-MBC 9±5 96±113

200 20

PC 25±8 149±136

IPC-MB+PC 16±8 138±169

IPC-MBC 9±4 110±136

500 20 PC 24±3 111±18

250 500 750 1000 1500 2000 2500

PC 0.55 0.49 0.45 0.42 0.35 0.26 0.22

IPC-MB+PC 0.43 0.39 0.33 0.28 0.19 0.13 0.12

IPC-BNC 0.43 0.38 0.34 0.28 0.19 0.12 0.09

0.00

0.10

0.20

0.30

0.40

0.50

0.60

D
is

ta
n

ce

Average Distance: PC vs. IPC-MB+PC vs. IPC-MBC

148

IPC-MB+PC 15±3 80±20

IPC-MBC 9±2 66±13

1000 10

PC 24±3 120±15

IPC-MB+PC 16±3 87±19

IPC-MBC 9±1 73±12

2000 10

PC 24±3 131±23

IPC-MB+PC 16±4 96±32

IPC-MBC 10±2 81±18

4000 10

PC 26±4 139±10

IPC-MB+PC 15±2 101±12

IPC-MBC 9±1 86±8

6000 10

PC 27±4 147±19

IPC-MB+PC 17±2 112±20

IPC-MBC 10±1 93±15

8000 10

PC 28±4 147±18

IPC-MB+PC 17±2 110±19

IPC-MBC 10±1 91±13

10000 10

PC 27±4 150±17

IPC-MB+PC 14±2 110±15

IPC-MBC 10±1 92±12

20000 10

PC 31±3 155±14

IPC-MB+PC 19±2 124±20

IPC-MBC 11±2 100±12

Table 6.7: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (Alarm, = 0.05).

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Err)

CI Tests

(mean±Std. Err)

500 10

PC 220±16 2736±82

IPC-MB+PC 23±2 602±34

IPC-MBC 13±1 639±32

1000 10

PC 191±17 3168±105

IPC-MB+PC 24±1 678±38

IPC-MBC 15±0 738±34

2000 10

PC 188±12 3528±121

IPC-MB+PC 25±1 777±39

IPC-MBC 15±1 845±39

3000 10

PC 200±19 3717±166

IPC-MB+PC 26±1 844±55

IPC-MBC 16±0 920±56

4000 10

PC 211±18 3902±122

IPC-MB+PC 27±1 901±49

IPC-MBC 16±0 986±64

5000 10
PC 215±16 3956±80

IPC-MB+PC 27±1 928±31

149

IPC-MBC 16±0 1010±29

Table 6.8: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (PolyAlarm, = 0.05).

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Err)

CI Tests

(mean±Std. Err)

500 10

PC 117±16 1061±48

IPC-MB+PC 8±1 162±10

IPC-MBC 13±1 153±8

1000 10

PC 140±26 1145±42

IPC-MB+PC 15±0 177±8

IPC-MBC 10±0 192±11

2000 10

PC 158±24 1223±35

IPC-MB+PC 17±1 195±7

IPC-MBC 10±0 212±8

3000 10

PC 174±15 1265±39

IPC-MB+PC 17±0 209±8

IPC-MBC 11±0 226±9

4000 10

PC 176±11 1292±41

IPC-MB+PC 17±1 213±8

IPC-MBC 11±0 231±9

5000 10

PC 181±2 1308±56

IPC-MB+PC 18±1 215±12

IPC-MBC 11±1 233±13

Table 6.9: Time efficiency comparison of PC, IPC-MB+PC, IPC-MBC (Test152, = 0.05).

Instances
Simulation

Rounds
Algorithm

Data Passes

(mean±Std. Err)

CI Tests

(mean±Std. Err)

250 10

PC 608±0 17947±351

IPC-MB+PC 19±1 796±29

IPC-MBC 12±0 800±30

500 10

PC 669±78 19803±392

IPC-MB+PC 21±1 946±29

IPC-MBC 13±1 962±38

750 10

PC 684±80 21429±582

IPC-MB+PC 23±1 1083±55

IPC-MBC 15±1 1114±70

1000 10

PC 684±80 22732±426

IPC-MB+PC 25±1 1179±34

IPC-MBC 16±0 1222±37

1500 10

PC 714±73 24865±415

IPC-MB+PC 27±1 1357±37

IPC-MBC 17±1 1421±42

2000 10
PC 684±80 26173±593

IPC-MB+PC 29±1 1479±48

150

IPC-MBC 18±0 1556±57

2500 10

PC 730±96 27512±614

IPC-MB+PC 30±1 1583±45

IPC-MBC 18±0 1660±45

From the experimental results shown above, we notice that

 PC, IPC-MB+PC and IPC-MBC have similar accuracy performance. IPC-MBC is slightly

better than the other two, and IPC-MB+PC is slightly poorer than the other two. Given more

observations, all three algorithms are expected to product the perfect result;

 By applying IPC-MB to reduce the dimension first, the whole time complexity of IPC-MB +

PC is much lower than applying PC directly. With the problem scale becomes larger, this

saving is expected to be more obvious. For example, given Asia (20,000 instances for

learning), 39% fewer of CI tests and 48% fewer of data passes are needed by IPC-MB+PC

than PC; however, given larger problem like Alarm (5,000 instances for learning), the gains

become as 77% and 84%;

 IPC-MBC realizes local learning as well, and the comparison with PC is discussed in 6.7.

Compared with IPC-MB+PC, it has similar time complexity in term of CI tests, but

obviously fewer data passes.

6.6.3 IPC-MBC as MBC Learner

The experiments in this section focus on the accuracy and time efficiency of IPC-MBC as MBC

learner. We run IPC-MB plus PC and IPC-MBC with each node in each BN as the target variable

and then, report the average precision and recall over all the nodes for each BN. Precision is the

number of true positives in the output divided by the number of edges in the output. Recall is the

number of true positives in the output divided by the number of true positives in the MBC.

Euclidean distance from perfect precision and recall is defined as Equation (4.1). The

significance level for the independence test is 0.05. PC algorithm is ran with one time given each

data set to induce the whole network, and the precision, recall and distance are measured

similarly over each MBC as retrieved from the whole BN recovered.

Table 6.10: Accuracy comparison of PC, IPC-MB+PC and IPC-MB over Asia network.

Instances
Simulation

Rounds
Algorithm

Precision

(mean±Std. Err)

Recall

(mean±Std. Err)

Distance

(mean±

151

Std. Err)

100 20

PC .40±.20 .49±.18 .87±.13

IPC-MB+PC .45±.15 .47±.17 .84±.14

IPC-MBC .45±.15 .47±.17 .84±.13

200 20

PC .49±.20 .54±.22 .77±.13

IPC-MB+PC .56±.16 .54±.12 .71±.13

IPC-MBC .57±.16 .54±.11 .71±.13

500 20

PC .65±.16 .63±.10 .57±.16

IPC-MB+PC .68±.16 .65±.11 .54±.17

IPC-MBC .70±.16 .64±.11 .53±.17

1000 10

PC .70±.16 .70±.09 .48±.16

IPC-MB+PC .73±.15 .72±.08 .45±.15

IPC-MBC .76±.17 .70±.09 .44±.17

2000 10

PC .72±.15 .69±.05 .48±.10

IPC-MB+PC .73±.15 .73±.01 .45±.12

IPC-MBC .76±.17 .69±.03 .45±.12

4000 10

PC .82±.05 .74±.08 .36±.08

IPC-MB+PC .81±.04 .76±.07 .36±.06

IPC-MBC .87±.02 .73±.09 .33±.10

6000 10

PC .79±.06 .81±.10 .33±.08

IPC-MB+PC .79±.05 .82±.09 .33±.08

IPC-MBC .86±.07 .81±.10 .27±.12

8000 10

PC .82±.08 .80±.10 .30±.11

IPC-MB+PC .80±.06 . 82±.08 .32±.08

IPC-MBC .87±.04 .80±.10 .26±.10

10000 10

PC .82±.09 .79±.08 .32±.08

IPC-MB+PC .80±.04 .81±.06 .33±.03

IPC-MBC .87±.01 .79±.08 .27±.07

20000 10

PC .90±.11 .93±.08 .14±.12

IPC-MB+PC .84±.10 .94±.08 .20±.11

IPC-MBC .93±.09 .93±.08 .12±.11

152

Figure 6-15: Comparison of distances given different number of instances (0.1K~20K): PC vs.

IPC-MB+PC vs. IPC-MBC (Asia, = 0.05, refer to Table 6.10 for more information)

6.7 Discussion of Different MBC Learners

Three algorithms are compared in our experiments, PC, IPC-MB+PC and IPC-MBC. Given the

problem of learning , PC is regarded as global learning algorithm since it needs to learn

the whole Bayesian network first, while the other two are viewed as local learning.

Being a typical and known algorithm for the structure learning of Bayesian network, PC is able to

induce the structure efficiently. With the whole structure ready, it is trivial to get the target

 , given any In our experiments, a Bayesian network is known to exist over , but

this may not be true in real applications, especially in the exploratory stage when we are just

thrown with a group of observations with feature set . There may exist a Bayesian network

over , but not on . If is much smaller than , much resource may be wasted, though it

is not avoidable. If we need only , and considering that normally is even smaller

than , the benefit brought by local learning algorithms, in fact, will be more considerable than

what we observed in the experiments here.

100 200 500 1000 2000 4000 6000 8000 10000 20000

PC 0.87 0.77 0.57 0.48 0.48 0.36 0.33 0.30 0.32 0.14

IPC-MB+PC 0.84 0.71 0.54 0.45 0.45 0.36 0.33 0.32 0.33 0.20

IPC-BNC 0.84 0.71 0.53 0.44 0.45 0.33 0.27 0.26 0.27 0.12

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
D

is
ta

n
ce

Average Distance Comparison
: PC vs. IPC-MB+PC vs. IPC-MBC

153

The combination of IPC-MB and PC is a direct application of IPC-MB as feature reduction tool,

and it indeed reduces the time complexity by average, as compared with PC. For example of

Alarm, IPC-MB+PC requires 77% and 84% fewer CI tests and data passes than PC‟s. Though PC

is directly applied to the output of IPC-MB, not much work is left to PC (see Figure 6-16 for an

example).

Figure 6-16: On the output of IPC-MB, the number of CI tests as required by PC to induce the

connectivity is relatively small compared with that of IPC-MB.

IPC-MBC works independently, and it realizes local learning as well. Compared with IPC-

MB+PC, IPC-MBC achieves a little higher accuracy performance, but requiring much fewer data

passes. If we ignore the difference on data passes, whether IPC-MB+PC is more efficient than

IPC-MBC is hard to say since it is influenced by the underlying topology, and we are interested

to share with some in an informal way:

 Comparing with IPC-MB, the additional CI tests of IPC-MB+PC are required by PC over

 , which can roughly be measured as ; For IPC-MBC, the

additional CI tests can be measured in a similar way, ;

 In both cases, refers to the search within the neighborhood of some

 in our case here. The complexity of is determined by the

cardinality of
 , as well as the actual connectivity among

561 637
736 798 849 876

41
41

41
46

52 52

500 1000 2000 3000 4000 5000

CI Tests as Required by IPC-MB and PC Respectively within
IPC-MB + PC (Alarm)

IPC-MB PC(over IPC-MB)

154

 The largest
 as possibly met in the PC of IPC-MB+PC is , while the

smallest
 as may be met in the phase (Line 11-22, IPC-MBC) is (;

 Then, if is comparable to , the work left to IPC-MB+PC will be comparable to or

more than that left with IPC-MBC, when IPC-MBC will be more efficient. Asia is one such

simple example, see Figure 6-7;

 Besides, if the connectivity among , especially among , is dense, then IPC-MBC

may also be more efficient since the remaining work may be small compared with those

finished.

So, it is known that the underlying topology influence the actual performance of IPC-MB+PC

and IPC-MBC. However, one conclusion is confirmed, that is both of them are much more

efficient than PC.

6.8 Conclusion

In this chapter, one novel algorithm called IPC-MBC is proposed to induce the Bayesian network

classifier given target , without having to learn the whole Bayesian network over . It is

built on our work of inducing Markov blanket, IPC-MB, and hence they share similar framework,

realizing the learning via a series of local search of the neighborhood of . By carefully

limiting the search in a breadth-first order, and removing as many false positives as possible in

each meta-local-search, it achieves much reduction on time complexity than global learning

algorithm like PC.

IPC-MB + PC is also studied in our experiments. Based on the fact that is the DAG over

 , applying IPC-MB first enables to reduce the search space greatly, considering that

normally is much smaller than . The overall time complexity of IPC-MB+PC is observed

to be much lower than PC as shown in our experiments.

In conclusion, both IPC-MB+PC and IPC-MBC are believed useful solutions to induce ,

realizing the same accuracy but requiring much less computing resource. Therefore, they are

believed able to solve larger problem, or scale up better, given the same limit on CPU or memory.

155

Chapitre 7 CONCLUSION AND PERSPECTIVES

7.1 Conclusion on Knowledge, Work and Experience Gained

Markov Blankets are known to be the optimal feature set for a classification problem. We

introduced a novel algorithm for the induction of a Markov Blanket, IPCMB, and showed that it

is in general more accurate than the current state of the art algorithm, PCMB, while achieving a

highly substantial performance gain. The efficiency of IPC-MB is close to the fastest, but highly

inaccurate IAMB algorithm. Thus, IPC-MB offers the compelling advantage of combining speed

and accuracy over the existing algorithms.

Furthermore, we showed that using the intermediate results of IPC-MB, we can derive a Markov

Blanket Classifier (MBC) that is more accurate than an MBC derived by applying the classic PC

algorithm to the nodes of the Markov Blanket, or by deriving the whole BN first which, in any

case, is an highly inefficient solution.

7.2 Perspectives and Feature Work

7.2.1 Reduce data passes

In our implementation, due to the limit of memory and large number of contingency tables, we

have to scan the data file for several times to construct necessary contingency tables to collect

needed frequency information. For algorithms requiring intensive CI tests, like IPC-MB,

repeating scanning the data files may be quite influential to the actual efficiency performance,

especially when we have large data file. An ideal solution is to scan the data file for one time, and

cache all frequencies in memory (or at least partial in memory) for later quick reference. One

possibly economic choice is AD-Tree [54], and we hope to implement this to further speed up the

search. If this is realized, the efficiency difference between IPC-MB and IAMB can be further

reduced, making IPC-MB as more competitive a choice. Of course, we are interested to explore

other effective and efficient caching solutions considering that is widely demanded in modern

data mining and machine learning tasks which depend on statistical tests.

156

7.2.2 Work with Score-and-Search Structure Learning Algorithms

Both IPC-MBC and IPC-MB+PC are categorized into conditional test based structure learning

algorithms, and untill now we haven‟t tried another one popular category of structure learning

algorithms, i.e. the so called score-and search as we mentioned in last chapter. This family of

algorithms views the structure learning of Bayesian Network as an optimization problem. They

employ some measure about the consistence between the data and one graph, and

add/delete/reverse edge until reach a graph with highest defined scores. However, as we

discussed in Section 3.2, this approach is not suitable for identifying over , so we chose

the constraint search approach in IPC-MB, which is followed by all previous works as well.

With ready, as produced by IPC-MB, the score-based search becomes applicable for

inducing the Bayesian Network over (i.e.), just like how it works for

determining the Bayesian Network over the whole problem domain traditionally. In this

chapter, we propose one such kind of algorithm which depends on IPC-MB to induce first

and then induce the target with score-based search. Considering that only the real

effective features of the target MBC left through IPC-MB, a much smaller search space compared

with the original one where all features are present, the proposed scoring-and-search learning

algorithm is expected to be much more efficient than learning the whole Bayesian network with

the same approach. Furthermore, compared with IPC-MB+PC, where only the information of

 is referred, the additional edges and orientations information (see Section 5.7) are to

be considered in this new algorithm to further narrow down the search space.

Given the output by IPC-MB, we have the knowledge about which attributes contained in the

target MBC, which are parent/child nodes, and which are spouses if there are (see the following

figure). Besides, from the output of IPC-MB, we have all the edges between and , and

some orientations as known from the induction of v-structure in IPC-MB. These known edges

and orientations are fixed, which means that they won‟t be removed or reversed in the remaining

learning by score-and-search. The overall procedure is demonstrated as in Figure 7-1.

157

Figure 7-1: The overall procedure: start with a bag of variables, then selected with IPC-MB, and

finally apply further scoring-based search to add the remaining arcs as well as to

determine the orientations. v-structure determined by IPC-MB is fixed.

Two direct benefits are there to enable us to anticipate a very promising MBC learning algorithm:

(1) The output of IPC-MB helps to prune the search space greatly by limiting further search only

among the nodes contained in the final MBC; (2) The topology information inferred by IPC-MB

further reduces the search complexity. The overall algorithm corresponding to Figure 7-1 is

specified in Figure 7-3, and it can be divided into three steps:

1. Feature selection by IPC-MB;

2. Initialize the orientation of edges between and as pointing to ; the orientation of v-

structure is set respectively too;

3. Apply score-and-search to reverse orientation, add edges or remove edges until no increase

on score can be made. What output then is the target Bayesian network classifier.

With problem and training data , IPC-MB() is called to induce first. The correctness

of IPC-MB is proved in Chapter 3, and the typical output of IPC-MB can be represented as

Figure 7-2. In Figure 7-2, there are three types of information that are critical for later reference:

1. nodes: They are directly connected to , and they may be parents or children of .

Therefore, the orientation of – is unknown;

2. nodes: They are directly connected to , and they are known as children. Correspondinly,

we have oriented arc ;

158

3. nodes: They are not directly connected to , but they are directly connected to nodes.

They are known as spouses of , and we have oriented arc S .

Figure 7-2: Typical output as returned by IPC-MB.

Therefore, the output of IPC-MB is very informative as compared to the initial point when we

know nothing but a bag of variables as given. In some cases, such kind of algorithms start with

Naïve Bayes, i.e. the target variable pointing to all feature variables, which obviously includes

noisy information as compared to the output of IPC-MB because normally the number of

effective features is much less than the size of whole feature set.

Given the typical output of IPC-MB shown in Figure 7-2, the remaining search can be viewed as

common BN structure learning, but starting with a given structure (as output by IPC-MB). To

make the remaining scoring and search workable as conventional, those non-oriented arcs of the

output of IPC-MB is set in advance, all pointing to the target from the . Figure 7-4 is one

such example derived from Figure 7-2. Compared with the target Bayesian network classifier, we

need to determine additionally that:

1. If reversing the arcs can result with higher score;

2. If there are additional edges existing between , and their orientations.

In addition adding/removing/reversing edges (but without introducing a cycle), and re-calculating

the score, as conducted in conventional score-and-search algorithm, two special rules must be

obeyed in the search, which is specific in our solution:

 Those oriented arcs should be fixed, i.e. no deleting or reversing of orientation

is applicable to them;

159

 Those arcs can only be reversed, but not deleted.

These two constraints further restrict the remaining search space, decreasing the problem

complexity to some extent.

Figure 7-3: CI2S-MBC algorithm specification

Figure 7-4: Adjust the output of IPC-MB to make the scoring work as conventional.

160

Implementation of CI2S-MBC is expected, including various scoring function and search

strategies. A comparison with global score-and-search can be interesting, and the target algorithm

is believed as another efficient algorithm for the learning of Bayesian network classifier.

7.2.3 Bayesian Network Structure Learning via Parallel Local Learning

As we discussed in 2.4, the GS [24] algorithm actually was proposed for the learning of Bayesian

network via a series of local learning. The most benefit of divide-and-conquer strategy is that we

are expected to solve larger scale of problems. Considering the obvious advantage of IPC-MB

relative to IAMB and GS, and their similar functionality, we are interested in proposing one

algorithm for the learning of Bayesian network, based on the outcome of IPC-MB.

Since the induction of Markov blanket given is independent one another, parallel

processing is possible, which will further improve the efficiency. Besides, as we discussed in 3.7,

the computing of IPC-MB can also proceed in parallel, therefore, we expect a very promising

work compared with existing work.

7.2.4 Increasing the Reliability of Induction

For algorithms relying on independence information from CI tests, like IPC-MB and IPC-MBC, a

major shortcoming is the impact that noise and errrors from small sample size has on the output

[37]. The reliability of statistical tests significantly diminishes on small data sets. In the current

version, we ignore a CI test according to the rule of Equation (1.5), and we terminate the search

when there are no more reliable tests available. Taking such a conservative choice is based on

empirical knowledge shared by the community as well as our own experience – conservatism is

warranted by the fact that early and invalid CI tests can propagate errors by leading the search

through incorrect paths.

One avenue to investigate the impact of noisy CI tests over the performance of the different

algorithm is to use an Oracle in place of the CI tests : the results of each CI test would be forced

to comply with the “true” distribution. Comparing the results of an oracle based simulation with

that of the current method would allow to assess the impact of some of the invalid CI tests over

the performance.

161

Bromberg and Margaritis [37] proposed a novel approach to increase the reliability of

independence tests for small data sets. Their contribution is to recognize that the outcomes of

independence tests are not themselves independent but are constrained by the outcomes of other

tests through Pearl‟s well-known properties of the conditional independence relation [2]. This

way, certain inconsistent test outcomes may be corrected, which will help us to avoid some errors

and achieve results of higher accuracy. We are interested to incorporate their findings into our

works directly or with some customizations.

7.2.5 Comparison with Other Feature Selection Algorithms

Finally, we are also interested in making a comparison with other mainstream feature selection

algorithms which don‟t fall into this family, i.e. depending on the induction of Markov blanket.

Relative effective and efficiency are two important aspects we are looking forward to a study. In

term of the effectiveness, in addition to the distance measure ()

taken already in our experimental studies, we will build predictors using the features chosen, and

compare their relative prediction accuracy. The latter approach is useful in scenarios where we

don‟t know the exact optimal feature subset.

162

BIBLIOGRAPHY

1. Koller, D. and M. Sahami. Toward Optimal Feature Selection. in ICML. 1996.

2. Pearl, J., Probabilistic reasoning in expert systems. 1988, San Matego: Morgan

Kaufmann.

3. Chickering, D.M., D. Heckerman, and C. Meek, Large-sample learning of Bayesian

Network is NP-hard. Journal of Machine Learning Research, 1994. 5: p. 1287-1330.

4. Peters, D. and D.L. Parnas. Generating a test oracle from program documentation:work

in progress. in ACM SIGSOFT International Symposim on Software Testware Testing and

Analysis. 1994. Seattle Washington, United States: ACM.

5. Langley, P., W. Iba, and K. Thompson, An analysis of Bayesian classifiers, in The Tenth

National Conference of Artificial Intelligence. 1992, AAAI Press. p. 223-228.

6. Domingos, P. and M. Pazzani. Beyond Independence: Conditions for the Optimality of the

Simple Bayesian Classifier in International Conference on Machine Learning(ICML).

1996.

7. Friedman, N., D. Geiger, and M. Goldszmidt, Bayesian Network Classifiers. Machine

Learning, 1997. 29(2-3): p. 131-163.

8. Cheng, J. and R. Greiner. Comparing Bayesian Network Classifiers. in The 15th

Conference on Uncertainty in Artificial Intelligence. 1999.

9. Fu, S.-K. and M. C.Desmarais. Feature selection by efficient learning of Markov blanket.

in International Conference of Data Mining and Knowledge Engieering (ICDMKE). 2010.

London, UK: IAENG.

10. Fu, S.-K. and M.C. Desmarais. Local Learning Algorithm for Markov Blanket Discovery.

in Australian Conference on Artificial Intelligence. 2007. Gold Coast, Australia: Springer.

11. Fu, S.-K. and M.C. Desmarais. Fast Markov Blanket Discovery Algorithm Via Local

Learning within Single Pass. in Canadian Conference on AI. 2008. Windsor, Canada:

Springer.

12. Tsamardinos, I., C.F. Aliferis, and A.R. Statnikov. Time and sample efficient discovery of

Markov blankets and direct causal relations. in the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 2003: ACM.

13. Peña, J.M., et al., Towards scalable and data efficient learning of Markov boundaries.

International Journal of Approximate Reasoning 2007. 45(2).

14. Spirtes, P. and C. Glymour, An Algorithm for Fast Recovery of Sparse Causal Graphs.

Social Science Computer Review, 1991. 9(1): p. 62-72.

15. Fu, S.-K., M.C. Desmarais, and F. Li. One-Pass Learning Algorithm for Fast Recovery of

Bayesian Network. in the Twenty-First International Florida Artificial Intelligence

Research Society Conference. 2008. Coconut Grove, Florida, USA: AAAI Press.

16. Blum, A. and P. Langley, Selection of Relevant Features and Examples in Machine

Learning. Artificial Intelligence, 1997. 97(1-2).

 163

17. Kohavi, R. and G.H. John, Wrappers for Feature Subset Selection. Artificial Intelligence,

1997. 97(1-2).

18. Tsamardinos, I., C.F. Aliferis, and A.R. Statnikov. Algorithms for Large Scale Markov

Blanket Discovery. in the Sixteenth International Florida Artificial Intelligence Research

Society Conference. 2003. St. Augustine, Florida, USA: AAAI Press.

19. Guyon, I. and A. Elisseeff, An Introduction to Variable and Feature Selection. Journal of

Machine Learning Research, 2003. 3.

20. Breiman, L., et al., Classification and Regression Trees. 1 ed. 1984: Chapman & Hall.

21. Tsamardinos, I., L.E. Brown, and C.F. Aliferis, The max-min hill-climbing Bayesian

network structure learning algorithm Machine Learning, 2006. 65(1): p. 31-78.

22. Yaramakala, S. and D. Margaritis. Speculative Markov Blanket Discovery for Optimal

Feature Selection. in ICDM. 2005.

23. Margaritis, D. and S. Thrun. Bayesian Network Induction via Local Neighborhoods. in

Advances in Neural Information Processing Systems 1999. Denver, Colorado, USA: The

MIT Press.

24. Margaritis, D. and S. Thrun. Bayesian Network Induction via Local Neighborhoods in

Neural Information Processing System (NIPS). 1999: MIT Press.

25. Aliferis, C.F., I. Tsamardinos, and A.R. Statnikov. HITON: A novel Markov blanket

algorithm for optimal variable selection. in American Medical Informatics Association

Annual Symposium. 2003.

26. Fu, S.-K. and M.C. Desmarais. Tradeoff Analysis of Different Markov Blanket Local

Learning Approaches. in Advances in Knowledge Discovery and Data Mining, 12th

Pacific-Asia Conference (PAKDD). 2008. Osaka, Japan: Springer.

27. Fu, S.-K. and M. C.Desmarais. Markov blanket based feature selection: A review of past

decade. in International Conference of Data Mining and Knowledge Engineering

(ICDMKE). 2010. London, UK: IAENG.

28. Spirtes, P., C. Glymour, and R. Scheines, Causation, Prediction and Search (2nd Edition).

2001: The MIT Press.

29. Pearl, J. and T. Verma. A Theory Of Inferred Causation. in The Second International

Coference on the Principles of Knowledge Representation and Reasoning. 1991.

30. Meek, C., Strong completeness and faithfulness in Bayesian network, in the Eleventh

Annual Conference on Uncertainty in Artificial Intelligence. 1995: Montreal, Quebec,

Canada. p. 411-418.

31. Agresti, A., Categorical Data Analysis. 2nd ed. 2002: Wiley. 734.

32. Sokal, R.R. and F.J. Rohlf, Bometry: The Principles and Practices of Statistics in

Biological Research (3rd Edition). The Third Edition ed. 1994: W.H.Freeman.

33. Gross, J.L. and J. Yellen, Handbook of Graph Theory (Discrete Mathematics and Its

Application). 2003: CRC Press.

34. Pearl, J., Causality: Models, Reasoning, and Inference. 2000: Cambridge University Press.

 164

35. Cheng, J., D. A.Bell, and W. Liu. An algorithm for Bayesian network construction from

data. in The 6th International Workshop on Artificial Intelligence and Statistics. 1997.

36. Cheng, J., et al., Learning Bayesian networks from data: An information-theory based

approach. Artificial Intelligence, 2002. 137(1-2): p. 43-90.

37. Bromberg, F. and D. Margaritis, Improving the Reliability of Causal Discovery from

Small Data Sets Using Argumentation. Journal of Machine Learning Research, 2009.

Special Topic on Causality(10): p. 301-340.

38. Heckerman, D., A Tutorial on Learning With Bayesian Networks. 1996, Technical report

of Microsoft Research.

39. Lauritzen, S. and D. Spiegelhalter, Local Computations with Probabilities on Graphical

Structures and Their Application to Expert Systems. Journal of the Royal Statistical

Society, 1988. 50(2): p. 157-224.

40. A.Beinlich, I., et al., The ALARM Monitoring System: A Case Study with two

Probabilistic Inference Techniques for Belief Networks, in the 2nd European Conference

on Artificial Intelligence in Medicine. 1989. p. 247-256.

41. Abramson, B., et al., Hailfinder: A Bayesian system for forecasting severe weather.

Probability Judgemental Forecasting, 1996. 12(1): p. 57-71.

42. Lab, K., Bayesian Network tools in Java (BNJ). 2004, Kansas State University.

43. O.Duda, R., P.E. Hart, and D.G. Stork, Pattern Classification (2 edition). 2000: Wiley-

Interscience. 654.

44. Langley, P. and S. Sage. Induction of Selective Bayesian Classifiers in The Tenth

Conference on Uncertainty in Artificial Intelligence 1994: Morgan Kaufmann.

45. Kalisch, M. and P. B ühlmann, Estimating High-Dimensional Directed Acyclic Graphs

with the PC-Algorithm. Journal of Machine Learning Research, 2007. 8: p. 613-636.

46. Cooper, G.F. and E. Herskovits, A Bayesian method for the induction of probabilistic

networks from data Machine Learning, 1992. 9(4): p. 309-347.

47. Heckerman, D. A Bayesian Approach to Learning Causal Networks. in the Eleventh

Annual Conference on Uncertainty in Artificial Intelligence. 1995. Montreal, Quebec,

Canada: Morgan Kaufmann.

48. Robinson, R.W., Counting unlabeled acyclic digraphs, in Combinatorial Mathematics V.

1977, Springer Berlin/Hdeidelberg. p. 28-43.

49. Chickering, D.M. A Transformational Characterization of Equivalent Bayesian. in The

11th Conference on Uncertainty in Artificial Intelligence (UAI). 1995.

50. Bouckaert, R.R., Bayesian belief networks: from construction to inference. 1995,

University of Utrecht.

51. Chickerinig, D.M., Learning equivalence classes of bayesian-network structures. Journal

of Machine Learning Research, 2002. 2: p. 445-498.

52. Verma, T. and J. Pearl. Equivalence and synthesis of causal models. in The Sixth Annual

Conference on Uncertainty in Artificial Intelligence (UAI). 1990: Elsevier Science.

 165

53. Verma, T. and J. Pearl. An Algorithm for Deciding if a Set of Observed Independencies

Has a Causal Explanation. in The 8th Conference on Uncertainty in Artificial Intelligence.

1992: Morgan Kaufmann.

54. Moore, A. and M. Lee, Cached sufficient statistics for efficient machine learning with

large datasets. Journal of Artificial Intelligence Research, 1988. 8: p. 67-91.

