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RÉSUMÉ 

 

Les problèmes d'optimisation industrielle, telle que la maximisation de la production de produits 

chimiques et pétrochimiques, montrent généralement plusieurs points optimaux locaux. Le 

développement de méthode pour la sélection du point optimal global a toujours fait l’objet de 

nombreuses recherches. Plusieurs techniques déterministes et stochastiques ont été explorées à 

cette fin. Les techniques stochastiques ne garantissent pas toujours la convergence vers la 

solution globale, mais sont efficaces pour les dimensions supérieures. D'autre part, les méthodes 

déterministes se rendent à l'optimum global, mais le défi est d'employer un cloisonnement 

efficace de l'espace afin de réduire le nombre d'évaluations fonctionnelles. 

Cette thèse propose une approche originale en matière d’optimisation globale, numérique et 

déterministe basée sur des techniques d'optimisation locale en temps réel  et en particulier, sur 

des techniques sans modèle appelé les systèmes de commande extrémale. Pour les problèmes 

sans contrainte, les systèmes de commande extrémale représente le problème d'optimisation 

comme un contrôle du gradient. La façon dont le gradient est estimé constitue la différence 

principale entre les différentes alternatives qui sont proposées dans la littérature scientifique. Pour 

les méthodes de perturbation, un signal d'excitation temporelle est utilisé afin de calculer le 

gradient.  Une alternative existe dans le cadre d'optimisation multi-unité où le gradient est estimé 

par la différence finie de la sortie de deux unités identiques, mais dont les données d’entré se 

distinguent par un décalage.  

Le point de départ de cette recherche a été motivée par les systèmes de commandes extrémales 

locales. Ces commandes sont basées sur une perturbation qui peut être utilisée comme un outil 

pour l'optimisation globale des polynômes scalaires du quatrième ordre avec un optimum global. 

L'objectif de cette thèse est d'étendre ce concept et de développer une technique d'optimisation 

globale déterministe pour une classe générale de systèmes multi-variables, statiques, non linéaires 

et continus. Dans cette thèse, il est d'abord démontré que si le décalage est réduit à zéro pour une 

optimisation multi-unité scalaire, le système converge vers l'optimum global. Le résultat est 

également étendu aux problèmes scalaires avec contraintes qui sont caractérisés par des régions 

non-convexes. Dans ce cas, une stratégie de commande de “Switching” est utilisée pour faire face 

aux contraintes.  
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L'étape suivante consiste à étendre l'algorithme à plus d'une variable. Pour les systèmes à deux 

entrées, l’optimisation globale mono-variable a été répétée sur la circonférence d'un cercle de 

rayon réduit. Avec trois variables, l'optimisation à deux variables mentionnées ci-dessus a été 

répétée sur la surface d'une sphère de rayon réduit. L’échéance de séparation entre les différentes 

couches (optimisation mono-variable, ce qui réduit le rayon du cercle et le rayon de la sphère) a 

démontré la nécessité de garantir la convergence. Les concepts théoriques sont illustrés pour  

l'optimisation globale de plusieurs exemples de référence. Les résultats de la comparaison avec 

d'autres méthodes de concurrence ont montré l'efficacité de la nouvelle technique en termes du 

nombre d'évaluations fonctionnels. 
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ABSTRACT 

 

Industrial optimization problems, e.g., maximizing production in chemical and petrochemical 

facilities, typically exhibit multiple local optimal points and so choosing the global one has 

always attracted many researchers. Many deterministic and stochastic techniques have been 

explored towards this end. The stochastic techniques do not always guarantee convergence to the 

global solution, but fare well computationally for higher dimensions. On the other hand, the 

deterministic methods get to the global optimum, while the challenge therein is to employ an 

efficient partitioning of the space in order to reduce the number of functional evaluations. 

This thesis proposes an original approach to numerical deterministic global optimization based on 

real-time local optimization techniques (in particular, model-free techniques termed the 

extremum-seeking schemes). For unconstrained problems, extremum-seeking schemes recast the 

optimization problem as the control of the gradient. The way the gradient is estimated forms the 

main difference between different alternatives that are proposed in the literature. In perturbation 

methods, a temporal excitation signal is used in order to compute the gradient. As an alternative, 

in the multi-unit optimization framework, the gradient is estimated as the finite difference of the 

outputs of two identical units driven with the inputs that differ by an offset.  

The starting point of this research was motivated by the perturbation-based extremum seeking 

schemes which can be used as a tool for global optimization of scalar fourth order polynomials, 

with one local and one global optimum. The objective of this thesis is to extend this concept and 

develop a deterministic global optimization technique for a general class of multi-variable, static, 

nonlinear and continuous systems. In this thesis, it is first shown that in the scalar multi-unit 

optimization framework, if the offset is reduced to zero, the scheme converges to the global 

optimum. The result is also extended to scalar constrained problems, with possible non-convex 

feasible regions, where a switching control strategy is employed to deal with the constraints. 

The next step consists of extending the algorithm to more than one variable. For two-input 

systems, univariate global optimization was repeated on the circumference of a circle of reducing 

radius. With three variables, the two-variable optimization mentioned above is repeated on the 

surface of a sphere of reducing radius. Time-scale separation between the various layers 
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(univariate optimization, reducing the radius of the circle and reducing the radius of the sphere) 

was shown to be necessary to guarantee convergence. The theoretical concepts are illustrated on 

the global optimization of several benchmark examples. The comparison results with other 

competitive methods showed the efficiency of the new technique in terms of number of function 

evaluations.  
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CONDENSÉ EN FRANÇAIS 

 

Des algorithmes d'optimisation ont été développés dans pratiquement toutes les disciplines de 

l'ingénierie et de la science depuis plusieurs décennies. Parmi ces algorithmes, on retrouve une 

très grande diversité. La recherche des valeurs optimales des variables manipulées peut être faite 

en se basant sur des modèles mathématiques ou en utilisant des méthodes expérimentales. De 

nombreuses méthodes soit déterministes  soit probabilistes, ont été développées pour effectuer 

une optimisation dite globale (Floudas et al, 2008). La complexité de calcul, le coût et la 

précision de ces méthodes diffèrent. Néanmoins, ces classes de méthodes sont basées sur des 

modèles et typiquement ne vont pas atteindre l'optimum global du système physique réel, car il 

existe un décalage entre le modèle mathématique et la réalité.  

 

La fonction objectif qui décrit le rendement économique d'un processus industriel est 

typiquement non linéaire et contient différents paramètres tels que les conditions d’opération, les 

prix des produits et le prix des matières premières. En général, cette fonction peut présenter 

plusieurs optima locaux (maxima, minima et les points de selle), mais le maximum global est 

généralement recherché. L’optimisation du procédé avec une méthode locale peut mener à une 

baisse du profit, puisque la méthode n'est pas toujours capable de trouver l’optimum global. Ceci 

n'est pas seulement dû à une imprécision dans le modèle, car cette baisse peut se produire même 

si le processus réel est modélisé à la perfection.  Trouver la valeur optimale globale des variables 

de contrôle d'un processus industriel est un objectif pour de nombreuses applications d'ingénierie. 

 

Les méthodes d'optimisation à base de modèle ne sont pas toujours capables de trouver les 

meilleures conditions fonctionnement d’un procédé. En outre, il n'y a parfois pas de modèle 

approprié pour le procédé et les seules données mesurables ne sont que des paramètres d’entrée et 

de sortie. Les problèmes d'optimisation où les propriétés du système sont peu connues permettent 

une approche alternative connue sous le nom d’ « optimisation boîte noire ». Les scénarios 

« boîte noire » sont pertinents lorsque la fonction objectif : (1) n’est pas disponible sous une 

forme fermée (les valeurs de la fonction sont déterminées par des calculs complexes, des 
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simulations ou des expériences) ou (2) est très complexe et/ou mal comprise (Zitler, 2003). Dans 

un scénario « boîte noire », la fonction objectif (f: U → Y) est traitée comme une boîte noire, telle 

une procédure exécutable dans un ordinateur pour lequel le code de programmation n'est pas 

connue ou n'est pas accessible. 

 

Dans certaines applications, l’objectif principal est donc de trouver la valeur optimale d'une 

fonction objectif qui est difficile à modéliser ou complètement inconnue. Ces problèmes ont une 

fonction objectif qui peut ne pas être facilement différentiable. C'est pourquoi une stratégie sans 

modèle d'optimisation globale pour les systèmes « boîte noire » est nécessaire afin d'ajuster le 

processus à son meilleur point de fonctionnement. Les algorithmes « boîte noire » utilisent moins 

d’hypothèses sur la fonction objectif comparativement à une classe plus générale de problèmes 

(Laguna et al., 2010). Aucune information locale ou globale sur la fonction objectif n’est prise en 

compte. Dans ce cas, il est difficile de déterminer si une solution globale optimale a été trouvée, à 

moins que l'espace de décision tout entier ait été prélevé. À cette fin, les méthodes stochastiques 

d'optimisation globale peuvent être utilisées, mais la convergence vers l'optimum global réel n'est 

pas toujours garanti (Schneider, 2006). Toutefois, l'augmentation de la capacité de calcul des 

ordinateurs entraîne également une hausse de la capacité à concevoir des algorithmes pour des 

systèmes mal définis. Différentes méthodes déterministes et stochastiques ont été développées 

pour traiter ces types de problèmes d'optimisation (Kargupta et Goldberg, 1997). 

 

Les méthodes stochastiques tentent de résoudre les problèmes d’optimisation en introduisant des 

éléments aléatoires dans l’algorithme. Les méthodes stochastiques ne garantissent pas toujours la 

convergence vers l'optimum global. Les algorithmes de Monte Carlo et « multi-start » sont deux 

méthodes typiques de recherche aléatoire (Schoen, 1991; Zilinskas, 1989). Les algorithmes 

« Bayesians » (Betro, 1983), les méthodes de « Clustering » (Rinnooy et Timmer, 1987), 

« Simulated annealing » (Kirpatrik et al., 1983), les algorithmes génétiques (Holland, 1973; 

Goldberg, 1989) et les stratégies d'évolution (Rechenberg, 1973) sont d’autres exemples de 

techniques de recherche avec adaptation d'échantillonnage. Ces techniques ont été largement 

utilisées pour résoudre les problèmes d'optimisation de type « boîte noire ». Ces algorithmes 

exploitent les informations recueillies à partir d'échantillons de l'espace de recherche.  
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Les algorithmes déterministes recherchent systématiquement la région de faisabilité à partir des 

informations recueillies sur la fonction objectif. DIRECT est un algorithme déterministe qui 

utilise les arguments de constante de « Lipschitz » (de zéro à l'infini) afin de décider quelles 

régions de l'espace de recherche méritent une exploration à chaque itération (Johns et Perttunen, 

1993). De cette façon, l'algorithme explore la région de recherche de manière efficace puisqu’il 

concentre ses évaluations de fonctions supplémentaires dans les régions qui semblent « 

potentiellement optimales ». 

 

Le problème d'optimisation considéré dans cette étude est l'optimisation globale d'un système 

statique et continu, où la fonction objectif est non convexe. Les variables manipulées peuvent être 

estimées en ligne en se basant sur des mesures disponibles. En outre, la différentiabilité du 

système n'est pas nécessaire. Le problème d'optimisation peut contenir de contraintes d'inégalité 

et les mesures appropriées des contraintes sont également disponibles. Enfin, la connaissance 

initiale des caractéristiques mathématiques du processus est supposée très limitée, de sorte que 

l'utilisation d'un modèle de base pour l'optimisation est considérée comme non nécessaire.  

 

La littérature scientifique propose plusieurs méthodes d’optimisation globale 

(Floudas et al, 2008). Toutefois, plusieurs de ces méthodes ne sont pas applicables à des 

problèmes d'optimisation « boîte noire » en raison de leurs hypothèses sur les propriétés de la 

fonction objectif. Comme mentionné plus haut, les méthodes d'optimisation globale qui tiennent 

compte d'une information préalable sur les caractéristiques et la structure de la fonction objectif 

ne peuvent être considérées comme une optimisation « boîte noire ». D'un autre côté, un débat 

existe toujours quant au degré d'efficacité des techniques d'estimation du gradient des processus 

continus qui peuvent être utilisés à des fins d'optimisation globale sans l'intermédiaire d'un 

modèle. 

 

D'autre part, des méthodes d'optimisation sans modèle ont été étudiées sous le nom de commande 

extrémale, où le concept de base consiste à reformuler le problème d'optimisation sans contrainte 
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en un problème de contrôle du gradient où ce dernier doit atteindre zéro. Bien que cette méthode 

soit assez ancienne (Leblanc, 1922), elle a reçu un intérêt renouvelé récemment (Ariyur & Krstic, 

2003; Guay et al, 2004; Srinivasan, 2007). En outre, de nombreuses publications ont rapporté des 

applications (e.g. Ariyur & Krstic, 2003; Propović et al, 2003). L’absence de modèle des 

méthodes de commande extrémale les rend aptes à gérer l'optimisation « boîte noire » 

(Guay et Dochain, 2010). Toutefois, la valeur de la fonction objectif doit être mesurée en ligne. À cet 

égard, les schémas de commande extrémale sont des méthodes d'optimisation qui contrôlent le 

gradient à zéro. Les commandes extrémales sont des méthodes en temps réel qui remanient le problème 

d'optimisation en un problème de contrôle et profitent de la réduction de la sensibilité en rejetant des 

perturbations. La façon d'estimer le gradient est la différence principale entre ces différentes techniques. 

 

Deux méthodes principales d'estimation du gradient seront discutées dans cette thèse. Pour la 

commande extrémale locale basée sur une perturbation, un signal d'excitation externe est utilisé pour 

calculer le gradient numérique. C’est une technique traditionnelle (Leblanc, 1922; 

Ariyur et Krstic, 2003), où une variation temporelle, c’est-à-dire un signal de vibration avec une 

amplitude constante et préfixée, est ajouté à l'entrée. Le gradient est obtenu par une corrélation 

entre les entrées et les sorties. Comme alternative, Srinivasan (2007) a proposé une méthode 

d'optimisation multi-unités, où le gradient est calculé sur la base des différences finies entre un 

ensemble d'unités parallèles qui fonctionnent avec des valeurs d'entrée différentes par un 

décalage constant et fixé à l'avance. Le gradient est poussé à zéro par un intégrateur et il a été 

démontré que la séparation d’échelle de temps n'est pas nécessaire. De plus, l'optimisation multi-

unités pourrait se traduire par une convergence plus rapide (Woodward et al, 2009). Toutefois, la 

convergence de ces deux techniques dépend de leur état initial, ce qui amène le système à converger vers 

l'optimum local le plus proche. 

 

Les deux stratégies de commande extrémale mentionnées ci-dessus mènent à l'optimum local, car 

elles sont basées sur le gradient. L'optimum local qui est atteint dépend des conditions initiales du 

procédé où commence l'optimisation. Ainsi, l'algorithme peut être piégé dans un optimum local 

au lieu d'atteindre le global. Ces situations conduisent à une performance inférieure du procédé et 

motivent le développement de stratégies de commande extrémale globale. À cette fin, certains 
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schémas ont été proposés récemment pour l'optimisation globale d'une classe limitative de 

systèmes non-linéaires. Une méthode de commande extrémale globale basée sur les perturbations 

a été analysée par Tan et al (2006 a, 2006 b), ce constitue un prolongement de leurs travaux sur 

les propriétés de stabilité semi-globale des contrôleurs de commande extrémale (Tan et al, 2005). 

L'idée de base est de réduire l'amplitude du signal de perturbation asymptotiquement vers zéro. 

Cette méthode superpose une perturbation périodique asymptotiquement appliquée sur le 

processus, connue sous le nom de signal « dither », afin d'observer ses effets sur la fonction 

objectif. Une corrélation entre les mesures de la fonction objectif et cette perturbation peut 

estimer le gradient à l'état stationnaire. La perturbation à la baisse est temporaire et une bonne 

estimation du gradient à l'état d'équilibre nécessite différentes échelles de temps entre la 

fréquence des perturbations, des filtres de coupure et d'adaptation. La vitesse de convergence de 

cette méthode est généralement lente. Il a été montré que, bien que cette stratégie ait été testée 

avec succès sur une collection de problèmes non-linéaires scalaires, elle est seulement applicable 

à une classe limitative de systèmes statiques. 

 

Développer une technique d'optimisation globale pour une classe plus générale de systèmes non-linéaires 

a été la motivation principale dans la présente étude. D'ailleurs, l’utilisation d’une stratégie qui peut 

éliminer la séparation des échelles de temps et accélérer la convergence vers l'optimum dans ce 

contexte serait très efficace. Compte tenu de la définition du problème ci-dessus, la méthode 

d'optimisation multi-unités, où le gradient estimé par les mesures est contrôlé à zéro, fournit le 

cadre de la présente thèse. Cette méthode nécessite la présence d'unités identiques pour optimiser 

le processus. Dans le schéma local de cette méthode, la perturbation constante entre les valeurs 

des variables d'entrée des unités identiques ne constitue pas un décalage temporel. Le gradient est 

alors estimé par des différences finies entre les mesures de la fonction objectif de ces multiples 

unités. Effectuer des modifications à cette méthode afin de la rendre convergente à l’optimale 

globale constitue l'idée principale pour résoudre le problème mentionné. À cette fin, la présente 

thèse présente une technique d'optimisation globale déterministe en utilisant le cadre d'adaptation 

multi-unité pour une classe générale de systèmes non linéaires. La restriction de la commande 

extrémale fondée sur des perturbations qui mènent à une convergence vers un faux optimum a été 

supprimée dans la nouvelle stratégie.  
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La présente thèse propose une méthode d'optimisation globale et déterministe qui utilise l’esprit 

des stratégies de la commande extrémale en temps réel pour le contrôle du gradient. L'objectif 

principal est d‘effectuer l'optimisation globale de systèmes statiques et non linéaires continus en 

utilisant des outils d'optimisation locale en temps réel. À cette fin, l'extension de la commande 

extrémale multi-unités classique et locale à une technique d'optimisation déterministe globale et 

sans modèle est prise en considération. Toutefois, il ne s’agit pas d’une méthode d'optimisation 

en temps réel qui suit la variation de l'optimum global en permanence. De ce point de vue, cette 

réalisation peut être considérée comme une stratégie « d'optimisation globale » pour les systèmes 

« boîte noire ». Des exemples illustratifs sont présentés pour certains modèles mathématiques de 

systèmes non linéaires. Ces exemples simulent les processus réels pour obtenir des mesures où le 

gradient est exclusivement estimé par les valeurs d'entrée/sortie en ligne. Ceci est moins restrictif 

que les méthodes d'optimisation basées sur des modèles qui utilisent certaines propriétés 

mathématiques d'un modèle virtuel pour estimer le gradient. Dans l'algorithme présenté, après 

l'acquisition de données à partir des sorties mesurées, il n'est pas nécessaire d'estimer les 

paramètres inconnus d'un modèle ou mettre à jour les coefficients d'un modèle comme le 

nécessitent les optimiseurs classiques en temps réel. Les données acquises sont directement 

utilisées pour optimiser une fonction objectif afin de trouver les nouveaux points d’opération 

optimale qui sont transférés au système de contrôle pour les mettre en œuvre dans le processus. 

C'est la raison pour laquelle l'algorithme est considéré comme une stratégie d'optimisation sans 

modèle. Il est démontré que l'algorithme présenté converge vers un voisinage très petit de 

l'optimum global d’un système statique non linéaire et continu. La nouvelle méthode utilise le 

concept de la réduction du décalage asymptotique vers une petite valeur positive dans l'approche 

de l’optimisation multi-unités. Il est montré que, avec une modification mineure de l'algorithme 

d'adaptation, l'algorithme converge vers un petit voisinage de l'optimum global sans conditions 

préalables sur la fonction objectif. Enfin, des relaxations de l'algorithme sont présentées pour le 

rendre numériquement efficace. 

 

La première contribution de la présente thèse est l'extension de la commande extrémale 

multi-unités locale à l'optimisation globale de systèmes statiques, non linéaires, continus et 

scalaires. Le chapitre 2 décrit l'optimisation globale d'une fonction scalaire non linéaire et sans 

bruit. Dans ce chapitre, une technique d'optimisation globale et déterministe pour une classe 



xvi 

 

générale de systèmes statiques, non linéaires et continus a été élaborée. La méthode présentée est 

un algorithme sans modèle du procédé qui utilise les données de mesure de la fonction objectif 

pour estimer le gradient. Cette technique permet de surmonter le défaut classique de la 

commande extrémale en temps réel, soit la convergence aux optima locaux selon les conditions 

initiales définies. La méthode présentée utilise la structure d'optimisation multi-unités, où certains 

décalages prédéfinis sont mis en place entre les entrées de deux unités identiques et le gradient 

est estimé par différences finies. Toutefois, au lieu de déduire le gradient par l'ajout d'un signal de 

perturbation et par le calcul de la corrélation entre l'entrée et la sortie, cette nouvelle méthode 

introduit des entrées légèrement différentes à la position de deux unités identiques en parallèle, ce 

qui permet le calcul du gradient. Dans cette technique, l'excitation est la différence entre les 

entrées introduites sur les deux systèmes. 

 

La méthode utilise quelques propriétés intéressantes des différences finies jusqu’à présent 

inexploitées. L'objectif principal est de réguler le point de fonctionnement des systèmes multi-

unités simultanément à l’optimum global. L’intention est de rejoindre la région réalisable de 

manière adaptative. L'idée de base consiste à réduire l'amplitude du signal de décalage 

asymptotiquement vers zéro, ce qui est très efficace en théorie. Il a été démontré que si les 

décalages sont réduits à zéro d'une manière contrôlée, l'ensemble du système peut converger vers 

l'optimum global. L'optimisation semi-globale a été réalisée en débutant la méthode avec un 

paramètre de décalage assez grand entre les entrées et puis le réduire de façon monotone à une 

valeur petite « ε ». Par cette technique, il est possible de converger vers l'optimum global d’un 

système statique et non linéaire si le paramètre scalaire initial de l'algorithme a été sélectionné 

correctement.  

 

La dynamique de chaque unité est formulée de manière à ce qu'elle absorbe le mouvement des 

autres unités à un meilleur point de fonctionnement local sur le plan non linéaire. L'algorithme 

passe sur les optima locaux et converge vers l'optimum global. La nature déterministe de cette 

approche garantit la convergence de l'algorithme à l'optimum global. L'approche est d'abord 

présentée pour l'optimisation sans contrainte, suivie d'une extension à des problèmes avec 
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contraintes, pour laquelle une logique de « Switching » est introduite. Plusieurs exemples 

académiques (scalaires) sont présentés pour illustrer cette approche.  

 

Le chapitre 2 s’attarde à l'idée de base d'une telle extension et à la preuve de convergence vers 

l'optimum global de la courbe statique comportant deux unités identiques. Selon l'hypothèse où 

les courbures non-convexes des unités statiques sont les mêmes, il a été démontré que la 

convergence globale de l'algorithme peut être assurée par un choix de perturbation variable 

introduite entre les points de fonctionnement de chaque unité (Δ). Comme mentionné ci-dessus, 

la principale contribution de notre approche est que l'optimum global peut être atteint au coût 

d’un calcul relativement simple par une décroissance monotone du décalage à zéro. L'algorithme 

déterministe converge à proximité de l'optimum global par le choix approprié de ce décalage. 

Choisir un décalage initial (Δ0) suffisamment petit minimise le nombre d'évaluations de la 

fonction et se termine par une convergence plus rapide. 

 

D'autre part, si la valeur de la perturbation initiale choisie est trop petite, le système converge 

vers un état d’équilibre différent de l'optimum global réel. Toutefois, il est garanti que le point 

d'équilibre obtenu est toujours l'optimum global dans l'intervalle d'exploitation qui est imposé par  

la décalage initial (Δ0) à multi-unités. Il a été démontré que, selon la caractéristique de la 

constante de Lipschitz des systèmes statiques, les lois d'adaptation peuvent introduire une rigidité 

(«stiffness») dans le processus d'intégration. Une modification à la conception originale de 

l'algorithme a été mise en place pour minimiser cet effet. Une autre solution pour surmonter cette 

rigidité a été de remplacer la fonction « Signe » par la fonction « Tangente Hyperbolique » dans 

la loi principale d’adaptation. Il a été démontré que le nombre d'évaluations de fonctions et la 

vitesse de convergence du système dépendent de la relaxation du gain d'adaptation pour l’atteinte 

des points de fonctionnement. En outre, l'adaptation en ligne simultanée de multi-unités vers 

l'optimum global ne nécessite aucune interruption. 

 

Un autre avantage de cet algorithme est l’absence de l'hypothèse de différentiabilité au long de ce 

travail. L’utilisation de la méthode présentée ne requiert pas nécessairement l’hypothèse de la 

différentiabilité du système. L’exemple 2.3.4  présenté au chapitre 2, introduit une caractéristique 
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non-différentiable statique à l'optimum global. La preuve de convergence pour cet algorithme est 

fournie en utilisant le formalisme mathématique contradictionnel. Les résultats des simulations 

ont confirmé les développements théoriques sur les nombreux exemples de référence pour 

l'optimisation globale. L'efficacité de la méthode et le nombre requis des évaluations de la 

fonction objectif ont été comparés aux algorithmes « DIRECT », « Genetic Algorithm » et 

« Simulated Annealing ». Les concepts théoriques sont illustrés par l'optimisation globale de 

plusieurs exemples. Les résultats de la comparaison avec d'autres méthodes ont confirmé la 

meilleure performance de la nouvelle technique en termes du nombre d'évaluations de la 

fonction. Il a été démontré que la méthode proposée permet de résoudre ce problème 

d'optimisation scalaire de manière très efficace. 

 

Pour le cas scalaire, l'algorithme a été étendu au problème d'optimisation avec contraintes où une 

loi d'adaptation de « Switching » a été utilisée pour gérer les contraintes. Il a été démontré qu'une 

telle adaptation conduit à l’optimal global sous contrainte. La preuve de la convergence de cette 

méthode en utilisant cette logique a également été établie. Bien que cette méthode ne soit pas une 

commande extrémale en temps réel, c'est une stratégie d'optimisation « boîte noire », car elle 

utilise une méthode de commande extrémale comme un outil. L'algorithme utilise une procédure 

récursive comme un optimiseur en temps réel afin de converger vers l'optimum. Toutefois, cette 

récursivité s'arrête après la convergence vers l'optimum global puisque le décalage (Δ) entre les 

entrées multi-unités converge vers zéro à la fin de l'optimisation. Afin de maintenir le processus 

sur ce point ou de suivre l’optimal global qui est variable, d'autres stratégies de contrôle doivent 

être développées. Toutefois, il a été observé que l'algorithme proposé peut osciller (« chattering») 

lorsque la solution est sur la limite de la région réalisable. Des méthodes utilisant la projection 

pourrait en principe remédier à cette difficulté. L’extension de l'optimisation semi-globale pour 

des cas multivariables et sans contrainte constitue la prochaine étape de ce travail de recherche.  

 

Dans le cas multivariable, le premier schéma a été étendu aux systèmes à deux entrées. Au 

chapitre 3, le développement de l'algorithme d'optimisation globale au long de la circonférence 

d'un cercle contracté est une autre contribution de cette thèse. L'idée de base de l'optimisation des 

systèmes monovariables est utilisée pour l'extension de l'algorithme à plus d'une variable. Cela a 
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été fait en répétant l’optimisation globale monovariable sur la circonférence d'un cercle de rayon 

réduit. La séparation de temps nécessaire entre la dynamique de l'adaptation itérative vers 

l'optimum global sur le cercle et la dynamique de la contraction du même cercle est requise pour 

cette méthode. Ce fait a été démontré à l’aide d'une preuve typique par contradiction pour le cas 

limite. Une méthode d'optimisation globale sans contrainte a été proposée en contrôlant le centre 

d'un cercle contracté sur lequel le gradient est estimé à partir des différences finies entre les 

entrées décalées de deux unités identiques. Le paramètre de décalage entre les entrées des deux 

unités est réduit à zéro de façon monotone et itérative lorsque le rayon du cercle est diminué en 

parallèle d’une manière monotone. Par cette démarche, il a été démontré qu'il est possible de 

converger vers l'optimum global d’une fonction objectif non-linéaire statique à deux variables, 

mais à condition que l'optimum global soit présent dans le premier cercle composé par le centre 

des entrées initiales et la valeur initiale du rayon. 

 

L’efficacité de l'algorithme proposé a été démontrée à l’aide de trois exemples de référence. En 

outre, l’algorithme proposé a été comparé avec d'autres algorithmes déterministes et 

stochastiques afin de démontrer qu’il est efficace en termes du nombre d'évaluations de fonctions. 

Trois couches de l'algorithme itératif sont considérées : 

Couche 1: Optimisation globale au long de la circonférence d'un cercle 

Couche 2: Optimisation globale récursive 

Couche 3: Réduction du rayon du cercle 

Le développement de l'algorithme proposé pour les systèmes avec plus de deux degrés de liberté 

est considéré comme la prochaine étape de cette recherche. 

  

Dans le chapitre 4, une nouvelle méthode est proposée afin de résoudre les problèmes 

d'optimisation globale sans contrainte avec trois variables. Cette technique est l'extension à trois 

dimensions de l'optimisation globale des systèmes multi-unités avec deux entrées. Le contrôle 

adaptatif de rotation du cercle de rayon variable sur un espace sphérique rétréci est la contribution 

principale du chapitre 4. En tournant le cercle variable sur la sphère, il couvre la région réalisable 

lorsque l'optimisation multi-unités a lieu. Cette réalisation a été développée sur la base des 
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concepts de rotation de cercle de rayon réduit sur un plan, tel que décrit dans le chapitre 3. Dans 

les systèmes à trois entrées, l'intégration des entrées est contrôlée de manière dynamique par une 

nouvelle formulation. Cette loi d’adaptation fait en sorte que le système multi-unités se déplace 

en direction d'une trajectoire circulaire rotative dans un espace sphérique qui rétrécit vers 

l'optimum global. Le mouvement de rotation sur le plan non linéaire est basé sur la différence de 

gradient entre les sorties du système multi-unités. Le rayon du mouvement circulaire est changé 

avec un taux spécifique et le rayon de l'espace sphérique est contracté à zéro. Une séparation 

d’échelle de temps assez  grande doit être appliquée à la dynamique des lois d'adaptation dans les 

différentes couches de l'optimisation. Le principal défi dans le cadre de l'optimisation globale des 

systèmes multivariables est l'évolutivité de l'algorithme qui ne doit pas mettre en péril l'efficacité 

de son exécution pour atteindre une bonne performance. Cela signifie que plus le nombre de 

degrés de liberté d'un système augmente, plus la convergence vers l'optimum global est coûteux 

en calcul. Une discussion sur l'extension de l'algorithme à plus de trois variables est également 

présentée. 

 

Dans le chapitre 4, l'algorithme d'optimisation globale avec l’adaptation multi-unités a été étendu 

aux systèmes avec trois variables. Le contrôle adaptatif de rotation du cercle de rayon variable 

sur un rétrécissement de l'espace sphérique est la principale contribution de ce chapitre. Le cercle 

du rayon variable en rotation couvre la région réalisable lorsque l'optimisation multi-unité a lieu. 

L'idée de base de l'optimisation des systèmes à deux entrées est utilisée pour l'extension de 

l'algorithme à des problèmes d'optimisation à trois variables. Dans les systèmes à  trois entrées, 

l'intégration des entrées du système est contrôlée de manière dynamique par une nouvelle 

formulation. Cette modification des lois d’adaptation permet au système multi-unités de se 

déplacer le long d'une trajectoire circulaire rotative marquée par rétrécissement de l'espace 

sphérique vers l'optimum global. Le mouvement de rotation dans l’espace non-linéaire est basé 

sur la différence de gradient entre les sorties du système multi-unités. Le rayon du mouvement 

circulaire est changé avec un taux spécifique et le rayon de l'espace sphérique est réduit à zéro de 

manière simultanée. Une séparation suffisante de l’échelle de temps doit être appliquée à la 

dynamique des lois d'adaptation dans les différentes couches de l'optimisation. La dynamique de 

chaque unité est formulée de manière à ce qu'elle absorbe le mouvement des autres unités à un 

meilleur point de fonctionnement local sur le plan non linéaire. La nature déterministe de cette 
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approche garantit la convergence de l'algorithme à l'optimum global. Il a été démontré que la 

méthode proposée est efficace en termes de convergence précise à l'optimum. Les comparaisons 

avec les trois techniques d'optimisation globale dans cette classe (DIRECT, GA et SA), illustrent 

la performance compétitive de l'approche proposée. Cinq couches de l'algorithme itératif sont 

considérées pour l’optimisation des systèmes avec trois variables : 

Couche 1: Optimisation globale le long de la circonférence d'un cercle en rotation sur une sphère 

à trois dimensions 

Couche 2: Optimisation globale récursive le long du cercle 

Couche 3: Expansion et la contraction du rayon du cercle 

Couche 4: Optimisation globale récursive sur la sphère 

Couche 5: Réduction du rayon de la sphère 

Une discussion sur l'extension de la technique proposée à un plus grand nombre de variables est 

présentée. Les résultats de la comparaison pour l'optimisation multi-unité des systèmes en deux et 

trois entrées montrent que lorsque le nombre de variables est petit, la méthode multi-unités de 

l'optimisation globale est acceptable et parfois même supérieure aux autres méthodes 

concurrentes. Toutefois, comme le nombre de variables augmente, cette méthode peut rapidement 

devenir inefficace. La généralisation de l'algorithme à des dimensions supérieures est discutée. 

Les résultats montrent que l'évolutivité de la méthode est le principal défi dans le cas 

multivariable. L'impact de cet inconvénient devient de plus important avec l’augmentation de la 

taille du problème en termes de degrés de liberté. Cela pourrait réduire l'efficacité de l'algorithme. 

Cette situation découle du fait que beaucoup d'itérations sont faites de façon répétée et 

systématique sur les sous-espaces limités des cercles. Cela peut empêcher l'algorithme de 

converger sur l'optimum global selon les valeurs d'entrée initiales. Ainsi, l'algorithme de multi-

unités ne peut pas sauter à l'optimum global (déterministe ou stochastique) comme les autres 

méthodes concurrentielles. Cela provoque des progrès limités systématiques vers le minimum 

global. Bien que cela puisse être considéré comme un inconvénient de cette méthode, la 

convergence vers un optimum global de cette technique est toutefois garantie. Certaines 

modifications ont été introduites pour permettre une mise à l’échelle de l'algorithme plus efficace.  

Une façon de minimiser est l'utilisation de plusieurs unités en cadre d'optimisation multi-unités 
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au lieu de seulement deux d'entre elles. La considération d'une unité supplémentaire flottant dans 

le centre du cercle contracté pourrait améliorer considérablement l'évolutivité de l'algorithme.  

 

Enfin, cette thèse ouvre un nouveau domaine de recherche et expose plusieurs sujets relatifs à 

l'optimisation globale par la commande extrémale multi-unités. Sur la base des premiers résultats 

obtenus dans cette thèse, quelques idées originales sur la structure préliminaire de l'optimisation 

globale à l'aide de l’adaptation multi-unité ont été établies. Avec le travail effectué sur cette 

technique, la recherche future peut maintenant se concentrer sur les futurs progrès à réaliser avec 

cette méthode. Le dernier chapitre suggère des travaux qui sont liés aux résultats et les 

contributions présentées dans cette thèse. L’application expérimentale potentielle de cette 

méthode pour optimiser certains problèmes techniques et industriels est également discutée dans 

le dernier chapitre. Les contributions principales de cette thèse ont été identifiées comme suit: 

1. La méthode classique d’optimisation multi-unité locale est étendue à la classe des 

techniques d'optimisation globale. Une méthode d'optimisation déterministe globale et 

indépendante des conditions initiales a été établie dans le cadre de commande extrémale 

multi-unités. 

2. Un algorithme itératif d'adaptation à l'aide de commande extrémale multi-unités le long de 

la circonférence d'un cercle rétrécissant permet la convergence d’un système à deux 

entrées à l'optimum global. 

3. Un contrôle de rotation adaptatif du cercle avec un rayon variable sur l'espace hyper-

sphérique rétrécissant effectue l'optimisation globale des systèmes multivariables en 

utilisant la commande extrémale multi-unités. 

 

Structure de la thèse : 

Le chapitre 1 présente la revue de la littérature scientifique pour les méthodes d'optimisation 

globale « boîte noire », la commande extrémale en temps réel et l'optimisation multi-unités. Le 

chapitre 2 présente le nouvel algorithme pour les systèmes scalaires sans et avec contraintes et 

fournit les résultats principaux de convergence. Les effets de différents paramètres sur la 

convergence de la méthode sont également décrits dans le chapitre 2. De plus, la méthode 

d'optimisation globale établie est appliquée sur plusieurs exemples et enfin, une comparaison 
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avec trois autres méthodes d'optimisation globale est présentée. Le chapitre 3 porte sur l'extension 

de la méthode obtenue à l'optimisation globale des systèmes statiques avec deux entrées. La 

preuve mathématique de convergence pour l'optimisation globale le long de la circonférence d'un 

cercle réduit est présentée. Le chapitre 4 contient l'optimisation globale des systèmes avec trois 

variables d’entrée à l'aide d'adaptation multi-unités. Ces résultats sont également comparés avec 

les résultats obtenus en utilisant certaines des autres méthodes d'optimisation globale. Une 

discussion sur la généralisation de l'algorithme à des dimensions plus élevées est également 

présentée. Enfin, les conclusions de cette thèse, et quelques recommandations pour les travaux 

futurs sont abordées dans le dernier chapitre. 
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INTRODUCTION 

Context 

 

The economic profit of an industrial process (an objective function to be maximized) is typically 

a nonlinear function of different parameters such as operating conditions, the prices of products 

and raw materials. In general, this objective function may exhibit several local optima (maxima, 

minima and saddle points) among which the global maximum is typically sought. Herein, real-

time optimization strategies bring and maintain a process at its optimal operating point. In this 

regard, extremum-seeking schemes are real-time optimization methods that control the gradient 

to zero. Most of these methods can converge only to the closest local optimum, though recently, 

some schemes have been proposed for global optimization of a restrictive class of nonlinear 

maps.  

 

Finding the real time global optimal value of the control variable(s) of an industrial process 

which yields the best performance of the objective function has been always attractive in many 

engineering applications. The adaptation of the manipulated variables to their optima could be 

done based on mathematical models or by using experimental methods. Herein, many 

deterministic (such as Branch and Bounds and Lipschitzian) or probabilistic (such as random 

search and clustering) global optimization approaches have been significantly developed during 

the last decades (Floudas et al., 2008). The computational complexity, cost and the accuracy of 

these methods differ from one scheme to another.  These classes of numerical methods are based 

on fundamental models and will not reach the global optimum of the true physical system as 

there is a model mismatch between the mathematical model and the reality. The experimental 

methods on the other hand are slower but accurate (Srinivasan, 2003).  

 

When the only available information about the process to be optimized is the online input/output 

values, the system is so-called a “black-box”. In this case, without having an overall model of the 

system, it becomes impossible to use the above mentioned offline optimization methods in an 

effective manner. In a black-box scenario, the mapping function f: U→Y is treated as a black-box 
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like an executable procedure in a computer for which the programming code is not known or not 

accessible.  In this case, it is difficult to determine whether a global optimal solution has been 

found, unless the entire decision space has been sampled. Black-box scenarios arise whenever the 

objective functions (1) are not given in closed form, i.e., if the objective function values are 

determined via complex computations, simulations, or experiments; or (2) are highly complex 

and/or poorly understood (Zitler, 2003). Herein, stochastic global optimization methods would 

have been used but the convergence to the real global optimum is not always guaranteed 

(Schneider, 2006). 

 

On the other hand, model-free optimization methods have been studied under the name of 

extremum-seeking control, where the basic concept is to reformulate the unconstrained 

optimization problem as a problem of controlling the gradient of the objective function to zero. 

Though this method is quite old (Leblanc, 1922), it has received renewed interest recently 

(Ariyur & Kristic, 2003; Guay et al., 2004; Srinivasan, 2007).  Also, many recent publications 

have reported successful applications (Ariyur & Kristic, 2003; Propović et al., 2003). 

 

Extremum-seeking methods vary in their gradient estimation strategies. Two main gradient 

estimation methods will be discussed in this dissertation. The first is the traditional one (Leblanc, 

1922; Ariyur & Kristic, 2003) where a temporal variation, i.e., a dither signal with constant, pre-

fixed amplitude is added to input. The gradient is obtained as a correlation between the inputs and 

the outputs. As an alternative, Srinivasan (2007) proposed the multi-unit optimization method, 

where the gradient is computed based on the finite difference between a set of parallel units 

which operate with input values differing by a constant, pre-fixed offset. Herein, it was shown 

that time-scale separation is not necessary and that the multi-unit optimization could result in 

faster convergence (Woodward et al., 2009). The two above mentioned extremum-seeking 

strategies lead to the local optimum, since they are gradient-based. The local optimum that is 

reached depends on the initial conditions from where the optimization starts. So, the algorithm 

could be trapped in a local optimum instead of reaching the global one. Moreover, an optimum 

which is currently global can eventually become local or not even an optimum, if process 

parameters change (Lacks, 2003). These situations lead to inferior process performance and 
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provide strong motivation to develop global extremum seeking strategies. A global extremum 

seeking method based on perturbations has been recently analyzed by Tan et al. (2006 a, 2006 b). 

This has been an extension of their previous work on studying the semi-global stability properties 

of the extreme seeking controllers (Tan et al., 2005). The core idea is to reduce the amplitude of 

the dither signal asymptotically to zero. It was shown that although this strategy was successfully 

tested on a collection of nonlinear scalar problems, it is only applicable for a restrictive class of 

static maps.  

 

Real-time constrained extremum seeking deals with online optimization of nonlinear functions 

under inequality constraints. Herein, barrier or penalty functions can be used to convert a 

constrained optimization problem into the unconstrained one (Dehaan and Guay, 2005). Also, 

projection of the gradient on the active constraints can be used to get to the constrained optimum 

(Woodward et al., 2007). A switching logic is required to determine the set of active constraints. 

However, both these methods only get to the local optimum.  

 

The current research proposes a deterministic global optimization method that uses the spirit of 

real-time extremum seeking strategies in terms of controlling the gradient. However, it is not a 

real-time optimization method which follows the variation of global optimum permanently. In 

other words, real-time optimization in the sense of tracking the variable global optimum is a 

question that is not addressed in this study. From this point of view, this achievement can be 

sought as a “global optimization” strategy for the black-box systems. Towards this end, the 

illustrative examples are presented by some mathematical models of nonlinear systems as the 

objective functions. These benchmarks simulate the real processes to get the input/output 

measurement data and the gradient is exclusively estimated through the online input/output 

values. This is in contrast with the model-based optimization methods which use some 

mathematical properties of a virtual model in the gradient estimation procedure. In the presented 

algorithm, after data acquisition from the measured outputs, there is no need to estimate the 

unknown parameters of a model or to update the coefficients of a model as the classical real-time 

model-based optimizers. The acquired data will be directly used to optimize an objective function 

in order to find the new optimal set points which will be transferred to the control system in order 
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to implement in the process. That is the reason for classifying the algorithm as a model-free 

optimization strategy. It is shown that the presented algorithm converges to a very small vicinity 

of the global optimum of the static nonlinear continuous scalar maps. It is based on the multi-unit 

optimization approach and uses the concept of reducing the offset asymptotically to a small 

positive value. It is shown that with a minor modification of the adaptation algorithm, the 

algorithm converges to a small neighborhood of the global optimum without any preconditions 

on the nonlinear function. Also, relaxations of the algorithm are presented to make it numerically 

efficient. 

 

Problem Statement 

The general definition of the problem under question in this thesis is as follows: 

Running a process with a local optimization method may cause the process to operate at a lower 

profit. This is because that the model-based local optimization is not always able to find the best 

operating set points. This fact is not only a problem of model mismatching, because it occurs 

even if the real process is modeled perfectly. Moreover, sometimes there is no appropriate model 

of the process and the only measurable data are input/output of the system (black-box 

optimization). Therefore a gradient based model-free global optimization strategy is needed in 

order to adjust the process on its best operating point. These issues form the main motivation of 

this research. 

 

The specific definition of the problem is as follows: 

The optimization problem considered in this study is the global optimization of a static and 

continuous system, where the objective function is non-convex. The manipulated variables can be 

estimated online based on available measurements. Moreover, the differentiability of the system 

is not necessary. The optimization problem may or may not contain inequality constraints and the 

appropriate measures of the constraints are also available. Finally, a priori knowledge of 

mathematical characteristics of the process is very limited, such that using a basic model in the 

optimization method is considered impossible. In this context, the global optimization using 

perturbation method can be applied (Tan et al. 2006 a). This method superimposes an 
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asymptotically decreasing periodic disturbance on process (known as the dither signal) in order to 

observe its effect on the objective function. A correlation between the measures of objective 

function and this disturbance can estimate the gradient in the steady state. The decreasing 

perturbation is temporary and a good estimation of the gradient in steady state requires different 

time scales between the frequency of disturbance, cutoff filters and adaptation. The speed of 

convergence in this method is commonly slow. As a result, using an alternative strategy that can 

eliminate the separation of time scales and accelerate the convergence to the optimum in this 

context would be very effective. Considering the above problem definition, the multi-unit 

optimization method (Srinivasan, 2007) - where the estimated gradient through the measurements 

are controlled to zero - provides the framework of this thesis. This method requires the presence 

of identical units to optimize the process.  In the local based schematic of this method, the 

constant disturbance between the input values of the identical units is not a temporal offset. The 

gradient is then estimated by finite differences between the measures of objective function of 

these units. Modifications of this method in order to make it convergent to the global optimum 

form the main idea to solve the mentioned problem.  

 

Main Objective 

There has always been a debate on how efficient gradient estimation techniques of the continuous 

processes can be used for global optimization purposes without the intermediary of a model. The 

main objective of this thesis is the global optimization of the static and continuous nonlinear 

systems using tools from real-time local optimization. In this framework, the extension of the 

classical local-based multi-unit extremum seeking controllers to a model-free deterministic global 

optimization technique is considered.  

 

Specific Objectives 

The other specific objectives of this work are: 

1. To diminish the restriction of the global extremum seeking controllers using perturbation 

methods in convergence to the false optimum.   

2. To prove the convergence of the global optimization algorithm using multiple units. 
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3. To compare the results of this study with other global optimization algorithms in order to make 

more comprehensible the pros and cons of the presented algorithm.   

4.  To extend the algorithm to constrained optimization problems (in scalar case). 

5. To determine the scalability impact of the extended method in multivariable optimization 

problems for higher dimensions. 

6. To develop a gradient-based global optimization algorithm that is independent from the initial 

conditions. 

 

Structure of the Thesis 

The outline of this research dissertation is as follows: 

Chapter 1 provides the literature review in the black-box global optimization methods, real-time 

extremum seeking controllers and multi-unit optimization. Chapter 2 presents the new algorithm 

for the unconstrained and constrained scalar systems and provides the main convergence results. 

The effects of different parameters on the convergence of the method are outlined. The 

established global optimization method is applied on several illustrative examples and finally a 

comparison with three other global optimization methods is presented. Chapter 3 deals with the 

extension of the obtained method to the global optimization of static systems with two inputs. 

The mathematical convergence proof has been provided for global optimization along the 

circumference of a shrinking circle.  Chapter 4 contains the global optimization of the three 

variable systems using multi-unit adaptation. A discussion on generalization of the algorithm to 

higher dimensions has been also presented. These results are also compared with results obtained 

using some of the other global optimization methods. Finally, conclusions of this thesis and some 

recommendations for future work are addressed in the last chapter. 

 

Contributions 

The main contributions of this dissertation are as follows: 

1. The local multi-unit optimization method is extended to a global optimization technique by 

reducing the offset parameter to zero.  
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2. In the two-input case, the same algorithm is used along the circumference of a shrinking circle 

in order to converge to the global optimum. 

3. The method is extended to the optimization of three-input systems by performing two- 

dimensional optimization on the surface of a shrinking sphere.  
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CHAPTER 1 RESEARCH REVIEW 

1.1 Black-box global optimization methods  

 

The main purpose of optimization is to improve the profit or reduce the operating cost, which is 

typically expressed as a nonlinear function of different decision variables. Finding the global 

optimum of an industrial process has always been attractive in many engineering applications. 

Most of these problems are intrinsically multivariable. There are a growing number of problems 

in which optimization methods can be applied. Optimization algorithms have been developed in 

every discipline of engineering and science (both in theory and practice) for several decades. The 

common pattern in optimization research would be to design a specific algorithm given a very 

specific class of problems with some known properties.  There is a large variety of different 

optimization algorithms which are applied to different problems. However, many of these 

optimization algorithms make assumptions about the properties of the objective functions which 

restrict their application. It is also important to note that the class of real-world optimization 

problems is often not easy to identify in order to apply the appropriate optimization algorithm.  

 

On the other hand, optimization algorithms which use no further knowledge than the value of the 

objective function can be classified under the so-called “black-box optimization”. In these 

approaches, the objective function may not be easily differentiable, may not have a closed 

functional form, and may require extensive computations in order to obtain them. With growing 

computational capabilities, designing such algorithms with little prior knowledge on the 

characteristics of an optimization problem is becoming more common.  

 

For global optimization, two classes of methods can be distinguished, i.e., model-based methods 

and black-box methods. In model-based approaches (such as tight convex αBB underestimators 

for С2-continous functions) have been significantly developed during the last decades (Floudas et 

al., 2008), where structural properties present in the nonlinear functions are exploited. Contrarily, 

“black-box” algorithms can handle the optimization of objective functions which may not be 

available as an explicit analytical expression. Given the set of manipulated variables, a “black-
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box” provides the objective function to be optimized. Black-box scenarios arise whenever (1) 

objective functions are not given in closed from, i.e., if the objective function values are 

determined implicitly via complex computations, or simulations or (2) the model is highly 

complex and/or poorly understood (Laguna et al., 2010). The “black-box” optimization 

framework will be discussed further in this thesis. 

 

Black-box optimization is addressed when there is a little domain of knowledge about the 

process. While some random enumerative search methods try to solve these problems, it is 

important to note that the sampling in black-box optimization is an inductive procedure 

(Kargupta, 1997). In the absence of any knowledge about the relation among the members of 

search space, induction is interpreted as a matter of guessing, based on what is known. A 

common ground to approach the black-box optimization is to make a framework which relates 

the members of the search space. The performance and scope of many black-box optimization 

algorithms like genetic algorithm (Holland, 1973), simulated annealing (Kirpatrick, Gelatt and 

Vecchi, 1983) and tabu search (Glover, 1989), differ from one another on many aspects. In black-

box optimization, the objective function is available as a black-box meaning that for a given x in 

a search domain it returns the function value f(x). The general black-box optimization can be 

formally defined as follows (Kargupta and Goldberg, 1997),    

:f X Y→                                                           (1.1) 

where X denotes the set of finite-dimensional input space and Y being the real line. For a given 

input x, the black-box f(x) is computed. The main purpose of a minimization problem is to find 

some x*  X such that f(x*) ≤  f(x)+ε ∀ x  X and ε>0 is a small arbitrary constant.  The next 

sections deal with problems in the following form, 

 
( )

. . L U

Min f x
s t x x x≤ ≤                                                 (1.2) 

where f   is a “Lipschitz” continuous function (Jones et al., 1993) and x, xL, xU  n. Here xL, 

xU indicate the lower and upper bounds of the feasible region for the variable x respectively.  
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The global optimization has a rich volume of literature. Many of these methods are restrictive 

because of their assumptions about the properties of the objective function (Schoen, 1991). The 

global optimization methods which take into account prior information about the characteristics 

and structure of the objective function cannot be considered as black-box optimization. On the 

other hand, two kinds of algorithms can be considered for black-box global optimization 

techniques: deterministic and non-deterministic (stochastic) methods.  

 

1.1.1 Deterministic and Stochastic global optimization 

 

Many earlier efforts in global optimization suggest to classifying these methods based on their 

deterministic or non-deterministic (stochastic) nature (Archetti and schoen, 1984; Dixon and 

Szegö, 1978). Global optimization methods with black-box objective functions can also be 

categorized based on this approach. However, there are other ways to classify the optimization 

algorithms from different points of view (Törn and Žilinskas, 1989; Vavasis, 1991). 

 

The stochastic methods try to solve the problem by introducing some random elements in their 

algorithm. The main reason for the popularity of the stochastic algorithms is that they scale well 

with dimension, i.e., for higher dimensions deterministic algorithms become prohibitively 

expensive.  However, stochastic methods do not always guarantee convergence to the global 

optimum. The Monte Carlo and multi-start algorithms are two typical types of blind random 

search methods (Schoen, 1991; Törn and Žilinskas, 1989). Bayesian algorithms (Betrò, 1983), 

clustering methods (Rinnooy and Timmer, 1987), simulated annealing (Kirpatrik et al., 1983), 

genetic algorithms (Holland, 1973; Goldberg, 1989) and evolutionary strategies (Rechenberg, 

1973) are examples of the adaptive sampling search techniques which have been extensively used 

for solving black-box optimization problems. These algorithms try to exploit the information 

gathered from samples from search space. A good survey and critical evaluation of these methods 

can be found in Kargupta and Goldberg, 1996. The Monte Carlo algorithm simply compares the 

random samples generated from the feasible space with a fixed distribution. Multi-start global 

optimization method combines the local optimization techniques with Monte Carlo sample 
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generation method. Bayesian algorithms exploit the information needed for optimization from 

sampling points by developing a statistical model of an objective function. In this method an 

implicit objective function is constructed based on a random variable. The expected value of this 

random variable minimizes the expected deviation of the estimated global optimum from the real 

one. Bayesian algorithms are fairly complicated and need expensive computations which involve 

the inverse of the covariance matrix. Clustering methods combine the Monte Carlo sample 

generation technique with the cluster analysis algorithms to identify local minima which is 

followed by a local search for each of them. This algorithm performs poorly in multivariable 

systems or in optimization of a function with many local optima.    

 

On the other hand, deterministic algorithms systematically search the feasibility region based on 

information gathered about the objective function. DIRECT is a deterministic algorithm which 

uses “Lipschitz” constant arguments (from zero to infinity) to decide which regions of the search 

space are worth to explore at each iteration (Jones et al., 1993). This way, the algorithm explores 

the search region efficiently by focusing extra function evaluations only in regions which seem 

“potentially optimal”.  Some reports indicate that in some particular problems, the deterministic 

algorithm DIRECT is more reliable than other competing stochastic methods (Bartholomew-

Biggs et al., 2003) 

In the following sections a brief review of some previous efforts to solve the black-box global 

optimization problems are presented. Their pros and cons along with the similarities and 

differences between these competing methods will be discussed. This gives a common idea to 

relate and investigate these kinds of algorithms from different points of view.    

 

1.1.2 Simulated annealing 

 

Classical local optimization methods start from an initial point and move around this point such 

that the objective function value is always improved. This procedure stops when the optimization 

algorithm cannot move to a better point. This is the reason for convergence of the algorithm to 

the nearest local optimum to the initial point. Different optimal solutions can be found depending 
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on the starting point. In order to find the global optimum of a function, the algorithm must have 

the capability to occasionally move in a direction which makes worse the objective function 

value. This is essential to move over the local optima and discover the other areas of the search 

space. In other words, during the movement in the search space the algorithm should choose the 

worse points with a particular probability.        

 

Simulated annealing (SA) is an optimization technique which has been significantly discussed in 

black-box optimization framework. This algorithm was motivated based on the mathematical 

simulation of the statistical behavior of molecules during the crystallization process in annealing 

of solids. The molecules of a solid metal have a certain potential energy among themselves. 

Heating the metal increases the kinetic energy of the molecules. As a result, they can move 

around and locate to the new different states with respect to the other molecules. The total set of 

molecules have a tendency to settle down in a position (state) in which the system has the lowest 

energy. In the beginning of the annealing process, a solid material is heated to its melting point. 

Then, the solid is allowed to cool gradually enough such that thermal equilibrium is maintained. 

The cooling process with a slow rate arranges the molecules in the solid material as the minimum 

energy state is attained. In other words, cooling process gives the ability of experimenting 

different states to the system (even the states which increase the potential energy). This way, the 

system would reach a state which has a lower potential energy compared to its initial state. The 

system eventually converges to a stable state by decreasing the kinetic energy and movement of 

the molecules. The important point to note is that the final crystallized state of the molecules is 

completely independent from their initial states.        

 

This natural phenomenon first was applied to numerical calculations by Metropolis et al. (1953) 

and then it is applied to engineering (optimization of VLSI circuit design) by Kirpatrick et al. 

(1983). The states of the molecules and the potential energy in annealing process are 

corresponding to the sampling points of the search space and the penalty function in the 

simulated algorithm respectively. The ability of the algorithm to move towards the worse 

solutions is attributed as the kinetic energy of the molecules. The main task of such an algorithm 

would be move the state of a system with a certain initial potential energy and arbitrary kinetic 
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energy to a new state in which the potential energy is the lowest. In the final state, the kinetic 

energy would be zero too and the system reaches the stable equilibrium.   

 

In simulated annealing an arbitrary initial point is chosen and the penalty function is calculated at 

this point. The final result of the algorithm should not be influenced by the starting point since it 

is a global optimization method. An initial temperature (T0) is considered corresponding to the 

kinetic energy. The choice of initial temperature is arbitrary, but it can be chosen based on the 

behavior of the function at the starting point. For instance, if the function has less variation it 

would be better to choose a small T0 in order to limit the ability of the extra variation in the 

algorithm. Otherwise, a larger T0 is chosen to increase the ability of movement from the pitfalls 

of local optima. A new point is then generated using the sampling points in the neighborhood of 

the initial point. The state of the algorithm is represented by one design at a time. During the next 

generations, if the value of the objective function corresponding to the new design is better than 

the old one, it is accepted and the algorithm moves to this state. Otherwise, the algorithm moves 

to the new point by the probability of (P). As a result, the worse point may or may not be 

accepted. The new point is accepted or failed as the new state of the algorithm based on the 

following probabilistic comparison (Kirpatrick et al., 1983), 

0
0

0

exp( )

1

U U
if U U

P T
if U U

−⎧
− >⎪= ⎨

⎪ ≤⎩
                                (1.3) 

P is the probability of the movement to the new state, U0 and U correspond to the potential 

energy at the old and new points respectively and T is the temperature proportional to the kinetic 

energy. The above probability function for decision making to move to the new state has been 

inspired from the Boltzmann probability function (P(E) =exp(-E/KBT)) which indicates the 

probability of the specified state with energy E and temperature T (Metropolis et al., 1953). KB is 

the Boltzmann constant. 

 

If the Boltzmann probability (P) is more than a randomly generated number between zero and 

one, the worse design will be accepted. ΔU represents the change in the objective function and 
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the temperature parameter (T) dynamically sets the Boltzmann probability (P). This function is 

defined such that the probability of the movement to a higher potential energy (worse state) is 

proportional to the temperature value, i.e., the larger is T, the smaller would be (ΔU/T) and P will 

be larger accordingly. On the other hand, the slope of the function or the rate of the change of the 

function in the movement direction (ΔU) is another parameter which affects P. In other words, 

the larger is the difference between the potential energies of the original and destination states, 

the smaller would be the probability of this movement. After each movement, temperature T is 

reduced a little bit. (The kinetic energy is reduced a little bit). The choice of cooling schedules 

(the rate of reduction for T) is not completely arbitrary and it must be chosen such that the global 

convergence is guaranteed. This choice may vary from one problem to another. After several 

iterations and reducing temperature T to zero (i.e., losing the kinetic energy completely) it is 

supposed that this algorithm converges to the lowest penalty function (the lowest potential 

energy) which is corresponding to the global minimum of the function. 

 

Choosing a low temperature with a very fast cooling rate in SA, would lead the algorithm to the 

closest local minimum from the starting point. Therefore, the initial value of the temperature 

parameter must be chosen high enough while it gradually decreases according to a cooling 

schedule.  Furthermore, in order to reach thermal equilibrium, it is suggested that the temperature 

parameter T is held constant at the starting temperature (T0) for a few number of first iterations. 

For example, the number of initial iterations in which T is held constant is set at [15×number of 

variables] as in Vanderbit and Louie (1984). The basic structure of the simulated annealing 

algorithm is presented in the following flowchart, 
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Figure 1.1 Flow chart of the basic simulated annealing algorithm 

 

Kirpatrick et al. established a proof for asymptotic convergence of this algorithm to the optimal 

solution. Simulated annealing can be also used to optimize non-continuous systems and functions 

with discrete inputs. Although simulated annealing has introduced a promising contribution in 

global optimization, some negative results have been reported in literature (Ferreira and 

Žerovnik, 1993).  This algorithm needs a large amount of computational load and several 

iterations in order to ascertain the convergence to the global minimum. As the number of 

variables grows, simulated annealing becomes very slow and the time taken to ascertain the 

global convergence increases drastically.  Another disadvantage of simulated annealing is that 

many attempts to speed up the algorithm (e.g., parallel versions of the algorithm) are highly 

problem-dependent because of the nature of the algorithm (Ram et al., 1996).  
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Simulated annealing has been widely applied to a variety of problems such as: optimizing the 

placement of the elements on integrated circuits, the famous traveling salesman problem, time 

scheduling, resource allocation problems and data mining.           

 

1.1.3 Genetic algorithm 

 

Genetic algorithms (GA) have received significant attraction in the black-box global optimization 

research area. The simple genetic algorithm was motivated by natural selection process in the 

evolution of living organisms. The core idea in this algorithm is the survival of the fittest 

members in a sampling population with the greatest probability (Holland, 1973, De Jong, 1975 

and Goldberg, 1989). Holland’s work (1975) has been the foundation of many new developed 

algorithms in this framework. These algorithms, along with evolutionary strategies (Rechenberg, 

1973) and evolutionary programming (Fogel, Owens and Walsh, 1996) are the probabilistic 

global optimization methods dealing with black-box problems.  

 

Genetic algorithms work with a population of samples instead of a single point at a time. Initial 

population members are chosen randomly. Each sample is represented as some sequences. In 

other words, the population members are generally represented by binary strings in the written 

code. These binary strings are called “Chromosomes”. The characteristics of the optimization 

variables (members) are coded in these binary strings which are known as the “Genes”.  A fitness 

function which is based on the objective function evaluates each member of the population. 

“Mutation” and “Crossover” operators generate the new samples and members for the next 

generation are chosen based on their fitness values. The probability of being chosen for the next 

generation is proportional with the fitness value corresponding to that member. The exchange of 

bits of the binary strings of parents to create a new child is called “Crossover”. Genetic 

algorithms treat combination of two existing solutions (parents) as a new candidate (child) which 

is assumed to be a good solution with more probably found near already found good solutions. 

This assumption seems to be consistent since such combinations (children) logically inherit the 

properties of their parents.  This is the key factor which makes a big difference between genetic 
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algorithms with random search. A child of two good solutions is more probably good than a 

random solution. “Mutation” is the random change of a bit in a binary string from 0 to 1 or 1 to 0. 

The occurrence of these operators in the algorithm depends on a given probability.   

 

The simple GA has some restrictive disadvantages such as noisy evolution of schemata. The 

similarities and differences between genetic algorithms and Bayesian approaches have been 

studied by Jones et al. (1992) and a hybrid algorithm has been produced by their combination. A 

parallel genetic version of simulated annealing that tries to employ the strengths of both GA and 

SA is called parallel recombinative simulated annealing (Mahfoud and Goldberg, 1992).  The 

global convergence behavior of evolutionary algorithms and simulated annealing has been 

studied by Hart (1996).  

 

The fundamental similarities and differences between the genetic algorithm and simulated 

annealing has been studied by Goldberg (1990) and Kohonen (1999). Although both approaches 

are closely related, however, their terminology is quite different. SA deals with solutions, costs, 

neighbors and moves while in GA there is a different mathematical indication such as 

chromosomes, fitness function, crossover and mutation. These techniques do not require the 

evolution of the gradient information in order to solve the problem. Instead, both of these 

methods share the idea that good solutions are more probably near the already known good 

solutions rather than randomly selected samples. If the population size in GA is considered as 

only one, this algorithm can somehow be thought as SA. On the other hand, while SA deals with 

one solution at a time, GA creates multiple solutions by combining different parents.    

 

Some attempts have been reported to compare these algorithms. Manikas and Cain (1996) 

compare 20 trials with each algorithm on a circuit partitioning problem without taking account on 

the execution time used. Their results show that GA produces solutions equal or better than SA. 

Mann and Smith (1996) reported that the execution times of SA were always shorter than of the 

GA (10 to 24 times) on solving a particular traffic routing problem. It was indicated that SA is a 

good “quick starter” that is able to converge to good solutions quickly, but it is not able to 

improve it given more time. GA is a good “slow starter” which can improve the solution given 
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more execution time. In other words, SA usually gives better solution than GA given the same 

amount of execution time. In general, the answer to the question that whether SA is better or 

worse than GA is not straightforward and depends on the characteristic of the working problem.         

 

1.1.4 Lipschitzian optimization 

 

In this thesis, a new deterministic algorithm for two-dimensional global optimization will be 

studied. The most appropriate algorithm with which it can be compared is the method termed 

“DIRECT” which is a deterministic sampling approach based on the space-partitioning scheme 

(Jones et al., 1993). No derivative information is used in this algorithm. DIRECT is the 

shortening form of two words “Dividing RECTangles” which indicates the way this algorithm 

moves toward the global optimum. The algorithm divides large bounded hyper-rectangles into a 

collection of smaller ones where the center of each hyper-rectangle is evaluated via the objective 

function. A set of potentially optimal hyper-rectangles are selected for further partitioning and 

divisions in the next iterations. In this section, this algorithm is explained in detail. 

 

DIRECT is a modification of a standard “Lipschitzian” approach that eliminates the need to 

know the Lipschitz constant (Jones et al., 1993). This method was created for cases with bounded 

domains and real-value objective functions. In the rest of this section first a brief introduction to 

Lipschitzian algorithms and their shortcomings is introduced. Then the DIRECT algorithm which 

is motivated to overcome the drawbacks of the Lipschitzian optimization is discussed. The core 

ideas of the DIRECT algorithm are summarized here. The proof of convergence was presented in 

Jones et al., (1993). Detailed and good surveys of this algorithm can be found in Finkel, (2005) 

and Björkman and Holmström, (1999).  

 

The Lipschitzian algorithms are the iterative algorithms that use the Lipschitz constant 

information (K) of a continuous function to seek its minimum. A function f : X→Y is called 

Lipschitz-continuous on X if there exists a positive constant K such that, 
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In standard Lipschitzian methods the maximum rate of change of the objective function must be 

always equal to (or less than) the known Lipschitz constant of the function. This constant is 

usually large which emphasizes the effort of the algorithm on global search. This makes these 

algorithms converge slowly. If the Lipschitz constant K of a function is known, this information 

can be used to construct Lipschitzian global optimization methods. One of the most 

straightforward type of these methods is the Shubert algorithm (Shubert, 1972). If we assume that 

x  [xL,xU] and we substitute xL and xU from (1.2) for x’ into the definition of the Lipschitz 

continuity (1.4), the following two conditions for f(x) are obtained,  

( ) ( ) ( )L Lf x f x K x x≥ − −                                               (1.5)           

( ) ( ) ( )U Uf x f x K x x≥ + −                                               (1.6)                       

The lines corresponding to these two inequality conditions form a V-shape below f(x) as figure 

1.2. The intersection point of two lines which provides the first estimate of the minimum f  is then 

easily calculated as follows, 
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             (1.8) 

The algorithm continuous performing the same operation of subdividing on the new regions 

[xL,x1] and [x1,xU]. The subsequent subdivisions are performed in the regions with intersection 

point corresponding to the lower function value. Figure 1.2 shows this process for two iterations.  
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Figure 1.2 Shubert’s algorithm 

 

One of the drawbacks of shubert’s algorithm is that the Lipschitz constant must be known to 

perform this method.  K might not be easily accessible. Not only for the Lipschitz-continuous 

functions this constant cannot be estimated properly but also many applications may not be even 

Lipschitz-continuous on their space.  Moreover, a poor estimation of K can lead to a poor result 

of the algorithm. If the estimation is too small, the final result may not be the global optimum of f 

and if the choice is too large the convergence of this algorithm will be very slow (Finkel, 2005). 

The other shortcoming of this method is that since the idea of end-points cannot be translated 

well into higher dimensions, generalization of the algorithm for multivariable optimization is 

intuitively impossible. 

 

1.1.5 DIRECT algorithm 

 

DIRECT needs no prior knowledge of the Lipschitz constant of the problem.  This algorithm 

even does not require the objective function to be Lipschitz continuous. DIRECT solves the 
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optimization problem by carrying out simultaneous searches using all possible constants from 

zero to infinity. This method uses all possible Lipschitz constants, during each iteration. As a 

result, DIRECT operates at both the global and local search levels simultaneously. This makes 

the convergence of the algorithm very fast. In the DIRECT algorithm the unknown “Lipschitz” 

constant is viewed as a weighting parameter. This weighting parameter balances the emphasis 

which must take place on global versus local search. In other words, K implicitly serves as a 

trade-off between global and local search.  As will be discussed further, the DIRCET algorithm 

repeatedly samples at the midpoints of the search space. This way the confusion of the 

generalization of the Lipschitzian algorithms to higher dimensions is removed.     

 

The DIRECT algorithm begins with a given n-dimensional “hyper-rectangle” as the initial search 

space. First of all the search space is normalized by transforming the search domain of the 

problem into a unit imaginary domain called a hyper-rectangle, 

{ }: 0 1n
iX x x= ∈ ≤ ≤                                                (1.9) 

In DIRECT algorithm, the sampling is done at the central point of the intervals (hyper-

rectangles). This way the computational complexity arising in higher dimensions is removed. 

Similar to the scalar case, subdivision procedure of the algorithm consists of trisecting 

(shrinking) the unique longest edge (side) of an existing hyper-rectangle j characterized by (cj, fj) 

to three equal sections. As a result, DIRECT replaces each hyper-rectangle by three new smaller 

hyper-rectangles. Each hyper-rectangle is defined by its center point “c0” where the objective 

function is f0≡f(c0). In other words, the objective function is evaluated at the center of the hyper-

rectangle (c0) and then at points c0±δei, where “δ” is one third of the side length of hyper 

rectangle, and “ei” is a unit vector with a one in the ith position and zeros elsewhere (i=1,…,n 

represents each dimension). The initial normalized hyper-rectangle is then repeatedly split into 

smaller hyper-rectangles by subsequent subdivisions. The fact that all divisions are restricted to 

only being done along the longest dimension(s) of the hyper rectangle ensures that the rectangles 

will shrink on every dimension. The hierarchy of such a division pattern is explained here. The 

subdivision is a trisecting process in each hyper-rectangle. This division is done in a manner that 
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the best objective function value evaluated in the centers of these hyper-rectangles is left in the 

largest hyper-rectangle. In other words, by defining the following criteria,  

0 0min( ( ), ( )) 1,...,i i iw f c e f c e i nδ δ= + − =                     (1.10) 

the division is first done on the dimension with the smallest wi into third parts. Therefore, c0±δei 

are the centers of the new divided hyper-rectangles in this dimension. After the first division, the 

above mentioned pattern is repeated for all dimensions on the "center hyper-rectangle" 

hierarchically. The next smaller wi determines the next dimension to be divided. In other words, 

DIRECT subdivides along directions with best function values first. This way the largest 

rectangles contain the best function values. This process of division is illustrated for the 

imaginary objective function values at the center of divided hyper-rectangles for a 2D domain in 

figure 1.3.  

 

Figure 1.3 Divisions of DIRECT algorithm in 2D  

 

This way, the rectangles are subdivided along their longest dimension. In more than two 

dimensions the rectangles become hyper-cubes and DIRECT similarly divide them along the set 

of longest sides for all dimensions (Figure 1.4).   
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Figure 1.4 Divisions of DIRECT algorithm in 3D  

 

The key point in DIRECT algorithm is that instead of using a Lipschitz constant for determining 

the candidate rectangles to sample next, it identifies a set of potentially optimal hyper-rectangles 

in each iteration. All potentially optimal hyper-rectangles are further split to smaller hyper-

rectangles and the objective function value f is evaluated in their center-points. In other words, 

rectangles (cubes) which have the potential to contain the global optimum are identified within 

the iteration and make the set of next candidates (S) for further subdivision into smaller 
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rectangles (cubes). S can have “m” different members during different iterations depending on the 

objective function. Within each iteration, the objective function can be evaluated several times. A 

hyper-rectangle s  S is called “potentially optimal” if there exist a rate of change constant 

( 0) such that the following conditions are satisfied, 

1) ( ) ( )j j s sf c Kd f c Kd s S− ≤ − ∀ ∈% %                             (1.11)        

min min2) ( )j jf c Kd f fε− ≤ −%

                                              
(1.12) 

Here, cj and dj denote the centre point and “size” of the jth hyper-rectangle respectively where j  

J and J is the set of all of the hyper-rectangles. dj is simply the distance from the centre point to 

the vertices of hyper-rectangles. In other words, the hyper-rectangles are grouped according to 

the distance from their center to their corner. This measuring criterion of the hyper-rectangles is 

known as their size. ε is a positive constant. fmin is the global optimum found in all iterations so 

far.  

For each hyper-rectangle j, the algorithm checks whether there exists any “Lipschitz” constant 

such that it could contain a lower objective function value than other rectangles. This is 

interpreted as the local search of the algorithm. If there exists such a Lipschitz constant, that 

particular rectangle is considered to further subdivisions. Otherwise, rectangle j is not worth to 

being split more on the current iteration. In other words, the algorithm predicts the regions that 

must be avoided to further search and this way focuses on the worthy regions as long as the 

algorithm proceeds.  This can be interpreted as the global searching aspect of the algorithm. 

While the first inequality condition emphasizes the effort of the algorithm on local search in 

hyper-rectangles with the same size, the second inequality condition prevents the algorithm from 

becoming too local by comparing the optimality criteria with the best optimum found so far. In 

other words, the second condition prevents the algorithm from doing numerous function 

evaluations in local level which yield only small improvements. As a result, some smaller 

rectangles are not selected for further division during consecutive iterations. In general, there may 

be more than one potentially optimal hyper-rectangle found during an iteration. Once the set of 

potentially optimal rectangles (S) is chosen, DIRECT divides them into smaller units according to 

the explained pattern. The algorithm stops when a predefined budget of number of iterations or 

divisions is completed.  
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The drawback of this algorithm is that the global convergence may cost a large number of 

function evaluations in the feasible space. If there are only a few local minima, DIRECT uses a 

lot of unnecessary function evaluations to explore unvisited territory. Usually the algorithm is 

performed for a predefined number of iterations. This algorithm generally requires a few pre-

defined parameters to run such as the maximum number of iterations and the maximum number 

of hyper-rectangle divisions. The basic structure of the DIRECT algorithm is depicted in the 

following flowchart, 
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Figure 1.5 Flow chart of the basic DIRECT algorithm 

 

Since no gradient information is used, there is no natural way for defining the global convergence 

in this algorithm. However, the convergence of the DIRECT algorithm to the global optimum is 
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guaranteed for continuous objective functions (or at least continuous in the neighborhood of the 

global optimum) if the number of iterations goes to infinity (Jones et al., 1993). This is consistent 

since as the number of iterations goes to infinity, a very dense subset of the hyper-rectangles is 

formed by the sampling points. Finkel (2005) developed the rate of convergence analysis for this 

algorithm.  

 

A number of other versions of this algorithm have been suggested to modify the basic one. 

DIRECT-1 is another version of this algorithm which uses aggressive searches in which the 

potential optimality test is omitted on some iterations and all Kj candidate hyper-rectangles are 

subdivided (Gablonsky, 2001). In DIRECT-1 if 50n hyper-rectangle subdivisions are done 

without any significant reduction in the best value of the objective function an aggressive search 

occurs. DIRECT-2 is another version of the algorithm in which the trisection process takes place 

along only one edge thereby being less expensive per iteration. However, it may need more 

iteration to ascertain the global convergence. In DIRECT-1 a lower limit on the subdivided 

hyper-rectangle sizes has been considered (δj < 10-3) as the stopping criteria for the algorithm.   

DIRECT can be performed in restart mode, i.e., instead of running “i” consecutive iterations, we 

stop the algorithm after “i /2” or “i /4” iterations and restart it in a new hyper-rectangle centered 

on the best point found so far. It was reported that sometimes DIRECT leads to a better point 

with a lower computational cost in restart mode (Bartholomew-Biggs et al., 2003).  Re-centering 

the initial search on a good estimate of solution not only reduces the number of candidate hyper-

rectangles that have to be considered over the “i” consecutive iterations, but also it reduces the 

number of potentially optimal hyper-rectangles that are identified after subsequent restarts.           

 

Many applications of this algorithm can be found in literature. Bartholomew-Biggs et al. (2003) 

applied DIRECT algorithm to solve an aircraft routing problem. Another application of this 

method was to optimize the slider air-bearing surface in design of hard-drive heads (Zhu and 

Bogy, 2002). Finkel (2005) applied this method to minimize the installation and operational cost 

in a groundwater optimization problem.  DIRECT was also employed to optimize the gas 

pipeline networks by Gablonsky (2001). Rapid and robust phase behavior stability was analyzed 

using DIRECT by Saber and Shaw (2008).  
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1.2 Extremum seeking control 

 

Real-time optimization with “black-box” objective functions has been addressed by using 

extremum-seeking techniques. In these methods, the unconstrained optimization problem is cast 

as a problem of controlling the gradient of the objective function to zero. For estimating the 

gradient, many techniques have been used: perturbations (Leblanc, 1922; Kristic, 2000), model-

based (Guay et al., 2004) and multi-unit optimization (Srinivasan, 2007). These strategies lead to 

the closest local optimum depending on where the optimization starts. The framework used in 

this thesis is the multi-unit optimization method, where the gradient is approximated based on the 

finite difference between a set of parallel units which operate with input values differing by a 

constant, pre-fixed offset (Srinivasan, 2007).  

 

Real time optimization (RTO) is a feed back control system that in an on-line manner, maximizes 

or minimizes a particular objective function. A schema presented by Marlin and Hrymak (1997) 

shows the place of the real-time optimization in an assumed plant operation. In a general 

description, process optimization is between the planning and control levels and it gets the 

constraints and objective function from the higher planning level and provides a set of optimized 

set-points for the control level. In other words, the planning step deals with the inventory 

management and production rate which is a function of the market needs and costs.  Next, this 

information is transferred to the real time optimization system which handles the most profitable 

operating conditions. The operating conditions generally are revised after a few hours or a few 

days during the plant production. Finally, the desired conditions are transferred to the control 

system which in turn, maintains the process states to their desired set points, despite of the 

perturbation. It means that the task of moving the plant process towards this obtained optimality 

is by control system. Several elements are necessary in order to realize the real time optimization 

of a process. Marlin and Hrymak (1997) presented the pre-requirements of a RTO problem from 

a theoretical point of view. As a brief conclusion, the main role of the real-time optimization is to 

follow the displacement of the optimum points in the process. There are different approaches to 

solve an optimization problem. Certain parameters are fixed, while other parameters like primary 

material costs, environmental norms, utility and energy expenses, product specifications and its 
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price and marketing demand are dynamically variable. Therefore, an objective function which is 

a combined relationship of all the previously mentioned data and constraints can be determined in 

order to achieve the best operating conditions and set-points which lead the plant to produce with 

the minimum possible cost. The performance of an optimization problem depends on the quality 

of the reduced and simplified models which represent the process states, constraints and cost 

function. Real-time optimization is a recursive procedure. The first step is data acquisition from 

the available measured outputs (y) and to evaluate their precision. Then these data will be used in 

order to estimate the unknown parameters (θ̂ ) and the model coefficients. The new model which 

is updated by the estimated parameters will be used to optimize an objective function in order to 

find the new optimal set points (y*) which will be transferred to the control system in order to 

implement the process. The mentioned procedure will be repeated indefinitely according to a 

fixed delay time by a proper algorithm. It is ideally awaited that the previous calculated set points 

are implemented into the system and the process attaints a new steady state before activating a 

new optimization cycle. 

 

Figure 1.6 Real time optimization procedure 

 

One of the interesting methods for implementing real-time optimization algorithms in a control 

loop is the extremum-seeking controllers. This is demanding when the objective function of the 

system should be maximized or minimized and the set-points of the system are unknown or are a 

complex function of different conditions. The basic concept of the extremum seeking control 

which is a non-model based method, is to control the gradient of the output (instead of the output) 
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towards a zero set-point and in this way to find the local maximum or minimum of the objective 

function. The objective function depends on the system to be controlled. The principal idea of the 

gradient-based extremum seekers is the fact that an extremum has a gradient with the magnitude 

of zero.  

 

1.2.1 Local extremum seeking based on perturbations 

 

In extremum-seeking, which is designed to take a system to one of its local maxima, the 

optimization problem is recast into a problem of controlling the gradient to zero. The difference 

between different extremum-seeking methods lies in the way the gradient is estimated. In the 

method using perturbations, a temporal perturbation (termed the dither) is injected along the input 

and the gradient is estimated by using the correlation between the input and the output. An 

integral controller is used to control the gradient at zero.  A schematic of the standard local 

extremum seeking controller is provided in figure 1.7.  

 

 

Figure 1.7 Perturbation-based local extremum seeking control (after Krstic and Wang, (2000)) 

 

The update equation is given by 
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Back to the history of the extremum seeker controllers, for the first time in 1922 Leblanc 

proposed a perturbation based method in order to estimate the gradient. Despite some 

implementation problems, the research in extremum seeking controllers was continued in the 

1950s and 60s. Although it was not possible to guarantee their stability, in some practical 

applications they performed quite well. The 1970s and 80s were the dormant period for the 

research in this area. Krstic constructed a milestone in this area of research by starting to publish 

some articles about the stability criterion for a perturbation scheme. During the year 1999, 

Miroslav Krstic presented the first related article for the 38th Conference on Decision & Control 

concerning, a proof for stability of an extremum controller based on a perturbation scheme which 

was followed by several other articles related to his theories with different approaches and 

applications (Krstic, 1999).  

 

The extremum seeking algorithms have to be able to control the sign and gain variation in the 

vicinity of the maximum or minimum. In the maximization case, if the estimated gradient is 

positive the search direction is kept and if it is negative the sign of the step size is switched. The 

size of the parameter step in each time interval can be adapted. The gain can be regarded as the 

step length. Once a gradient is obtained, the algorithm can determine how close the inputs of 

desired objective function are to the extremum. The basic idea by assuming a unique extremum 

was to keep the gradient at zero. This is accomplished by using an integrator (1/S), a gain 

multiplier (k) and a high pass filter (L(S)).  

 

In order to stay at the top of the objective function (in the case of maximization with a positive 

gain k) or at the bottom (in case of minimization with a negative gain k), extremum seeking 
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algorithms determine in which direction the gradient is pointing given a state of the process. In 

extremum seeking controllers, the input signal is slightly distorted by some kind of periodic 

signal (e.g., a sinusoid). The scheme presented by Krstic in figure 1.7 estimates the gradient using 

a sinusoidal wave which is added before the plant. The correlation between the output and input 

then determines whether the operating point is located at the “right” or “left” side of the 

extremum (i.e., gradient estimation using correlation analysis). Suppose that we want to find the 

local minimum of a static and continuous map which is approximately quadratic (at least locally 

about the current input). In fact, there is no real requirement that the static map be quadratic and 

this assumption is for convenience in the following illustration. The extremum of f occurs at 

unknown u* and assume that there is only one extremum in the input-output domain of interest, 

namely,  

* 2
min( ) ( )f u f u uλ≅ + −                                        (1.13) 

Assume that the current input uc is less than the local optimum u*. We start perturbing this input 

by the following small sinusoidal wave of frequency ω: 

sin( )cu u a tω= +                                          (1.14) 

 

Figure 1.8 An example for static and continuous map 
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The sign of the output sinusoid is now opposite to the sign of the input perturbation. Then, it is 

desired to isolate this information and use it to update the current input uc in order to converge to 

the local extremum.  

* 2
min

2 *
min

2 2 2
min

2 2
2

min

( ) ( )

( sin )

( 2 sin sin )

( 2 sin cos 2 )
2 2

c

f u f u u

f a t u where u u u

f u ua t a t

a af u ua t t

λ

λ ω

λ ω ω

λ ω ω

≈ + −

= + − = −

= + − +

= + − + −

% %

% %

% %
                     

(1.15)

 

The sign of the underlined term is the important information that is desired to be isolated (since 

u%  indicates whether the input is above or below the extremum). Then the high pass filter starts 

to remove DC terms i.e., 

2
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+

% %          (1.16) 

Consequently, the sign of the second term is isolated through “demodulation”, 
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In the above equation everything except the term ( uaλ− % ) is a function of relatively high 

frequency. Therefore using a low pass filter integrator (k/s) with cut-off at 0 Hz after one 

complete period of the sinusoidal wave, we identify the desired gradient information as follows, 

c

c

u k
du

k ua
dt

ξ

λ

•
=

= − %
                                                  

   (1.18) 
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Considering the definition u% = u*-uc and k < 0 for minimization case, if uc is below u* then duc/dt 

will be positive, and if uc is above u* then duc/dt will be negative. In other words, uc always 

moves towards u* and it can be shown that it converges to within a ε-neighborhood of u*. This 

mathematical illustration can be similarly developed for the maximization case (k > 0). The 

scheme in figure 1.7 causes convergence to the extremum point in a static map and is analyzed by 

an averaging approach. Krstic developed some stability results using the averaging analysis. This 

method can be extended further to multiple inputs and slope seeking rather than extremum 

seeking. When there exist several inputs, it is possible to obtain the required information by 

applying the perturbation signals with different frequencies to each input. Early multivariable 

extremum seeking schemes developed by Rotea (2000) and Walsh (2000) followed by a 

systematic design procedure provided by Ariyur et al. (2003). Teel and Popović (2001) studied 

sufficient conditions for the asymptotic stability of the smooth and non-smooth multivariable 

extremum-seeking controllers. 

 

Several articles of gradient-based extremum seeking control with adaptive design in chemical 

processes and reactor engineering have been published by Perrier, Dochain, Guay, Dehaan and 

their co-workers. Some new developments of numerical extremum seeking algorithms and their 

applications to Antilock Braking Systems (ABS) and swarm source seeking control were 

published by Zhang in 2006. Numerical extremum seeking methods have been developed in two 

categories (line search method and trust region method) by Zhang.  

 

1.2.2 Global extremum seeking based on perturbations 

 

A global extremum-seeking strategy based on perturbations (Tan et al., 2005, 2006a, b) was 

proposed, where the amplitude of perturbation was reduced to zero. However, it has been shown 

that such a technique works for a restricted class of univariate nonlinear functions. In the standard 

perturbation method (local optimization scheme), a, the amplitude of the dither signal is kept 

constant. It was shown that decreasing the amplitude of the dither can lead to the global 

extremum in certain cases (Tan et al., 2006 a). A schematic is provided in figure 1.9.  
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Figure 1.9 Perturbation-based global extremum seeking control 

 

The update equation is given by, 

, (0)
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c c cini
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x t
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y f u a t
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=
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= +                                         

(1.19) 

The amplitude of the dither is constant in the local extremum-seeking controller. The difference 

between the local and global extremum seeking controllers is that in global optimization the 

amplitude of the dither is reduced in the following manner,  

0( ) (0) 0a a g a a aε
•
= − = >                               (1.20) 

where g(.) is a positive locally “Lipschitz” function and the parameters ε, a0 are strictly positive. 

However, convergence to the global minimum requires the following conditions. For ease of the 

analysis consider that L(s)=1 (Tan et al., 2006 a), which results the following update equation,  
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( sin( ))sin( ) , (0)c c c ciniu k f u a t t u uω ω
• •

= + =                      (1.21) 

 Consider the averaged function, 

2

0
( , ) : ( sin( ))sin( )

2avf u a f u a t t dt
π
ωω ω ω

π

•
= +∫                        (1.22)  

Let l(a) be one of the isolated roots of  fav(u,a) = 0 with the following properties: 

a) l is defined for all a > 0, l(a) is continuous and 0))(( <
∂
∂ al

u
fav  

b) There exists a* > 0, such that for all a ≥ a*, l(a) is the unique root of fav(u,a) = 0.  

c)  When a → 0 then l(0) = u**. 

It was shown that if the above conditions hold, convergence of the algorithm to an arbitrarily 

small neighborhood of the global extremum from an arbitrarily large set of initial conditions is 

guaranteed. Though, these conditions are trivially satisfied in the case of fourth-order 

polynomials, they are difficult to satisfy in the general case and the authors present several 

counter-examples.  Two of them will be considered below. These examples will be discussed in 

detail in chapter 2.  

Counter-example 1: 6th-order polynomial (Tan et al., 2006 a): 

6 5 4 3 21 623 659 11287 259 637( )
10 400 4000 20000 4000 20000

f u u u u u u u= − + + − − + +           (1.23) 

This polynomial has 3 maxima at u = -0.8985, u = 0.5, u = 0.8951, with u = -0.8985 being the 

global maximum. The above-mentioned algorithm converges to u = 0.8951. 

Counter-example 2: Sum of exponentials (Tan et al., 2006 a): 

22

11
1 5( 15)1 0.2( ) uuf u e e + −+= +                                            (1.24) 

This counterexample has two local maxima at u = 0 and u = 15. The global maximum is at u = 

15, while the algorithm converges to u = 0. 
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1.2.3 Local extremum seeking using multiple units 

 

The multi-unit optimization technique is based on an alternate gradient estimation method 

recently proposed in Srinivasan (2007). The idea is to have two identical units operating at two 

different operating points differing by an offset Δ. The gradient is estimated by the finite 

difference and an integral controller forces the gradient to zero. The schematic is presented in 

figure 1.10.  

∫

1u

2u

u
)( 1uf

)( 2uf

 

Figure 1.10 Extremum seeking control with multiple units 

The update equations are given by, 

Δ−=Δ+= uuuu 21 ,                                                 (1.25) 

( ) ( )
2

f u f uu k
• + Δ − −Δ⎛ ⎞= ⎜ ⎟Δ⎝ ⎠                                           (1.26) 

where k > 0 is the adjustable gain. The main advantage of this method is that the dynamics of the 

two units cancel out and the adaptation does not require time-scale separations necessary in 

methods based on temporal perturbations. Thereby, faster convergence to the optimum can be 

achieved. 
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1.3 Summary 

 

In this chapter a general description of different optimization strategies including black-box 

optimization methods, global optimization algorithms and real-time optimization techniques has 

been presented. Black-box algorithms only use input and output of the system to find the 

optimum operation conditions. Furthermore, these methods are divided in two main categories; 

deterministic and stochastic. General properties of these methods have been described and pros 

and cons of each one have been analyzed. The genetic algorithm and simulated annealing as 

stochastic methods and the Lipschitzian optimization and DIRECT algorithm as deterministic 

methods have been analyzed in details.  

 

One of the criteria for evaluating a global optimization algorithm is the number of functional 

evaluations used to ascertain global convergence. For lower dimensional systems, stochastic 

algorithms require prohibitively large number of functional evaluations and further more do not 

always guarantee global convergence. So, the goal of this work is to provide an alternate 

deterministic algorithm for global optimization that would require lesser number of functional 

evaluations than the Lipscitzian and DIRECT optimization for lower dimensional problems. 

 

In the second part of this chapter, extremum-seeking controllers as the real-time optimization 

techniques have been introduced. The perturbation-based extremum seeking and multi-unit 

extremum seeking control are two main categories presented in this class. These methods recast 

the optimization problem into a control problem. Moreover, these strategies are very appropriate 

to perform black-box optimization. A brief introduction to the local and global extremum seeking 

based on perturbation has been presented. The perturbation-based global extremum seeking is 

applicable only to scalar systems and furthermore to only a restricted class of polynomials. So, 

the goal of this thesis is to check whether one could extend the class of systems for which the 

global optimum is found by using multi-unit extremum seeking instead of perturbation based 

extremum seeking. Also, we wish to extend the methodology to global optimization of two- and 

three-input systems.          
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CHAPTER 2 GLOBAL OPTIMIZATION OF SCALAR SYSTEMS 

USING MULTI-UNIT EXTREMUM SEEKING 

 

The goal of chapter 2 is to develop a deterministic global optimization method that can handle the 

black-box univariate objective functions. It is shown that in extremum seeking control with 

multi-units when the offset between inputs is reduced to zero, the scheme reaches the global 

optimum for all continuous nonlinear scalar functions. This technique is also extended to include 

inequality constraints.  

2.1 Unconstrained global optimization using multi-units 

 

Consider the problem of maximizing, y = f(u), where f: R→R, is scalar, static, non-convex 

continuous, nonlinear function. The problem may have multiple local maxima, uk
*, k = 1,2, …, n, 

but a unique global maximum, u**. In the rest of the chapter, it is assumed that the global 

maximum is unique. 

 

2.1.1 Schematic diagram 

 

In this thesis, an idea similar to that proposed by Tan et al. (2006 a) is used in the multi-unit 

framework to achieve global optimization. The offset parameter is reduced to zero in a predefined 

fashion. But, the core contribution lies in the fact that the length of step taken by the input is 

determined not by the gradient but by the variation of the offset parameter. The adaptation laws 

are given by, 

( ). ( ( ) ( )) (0) iniu g sign f u f u u u
•
= Δ + Δ − −Δ =

                        (2.1) 

( ) (0) 0inig
•
Δ = − Δ Δ = Δ >

                               (2.2) 
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g(. ) can be any positive bounded function which is zero only when Δ = 0. Depending on g(. ), 

the offset Δ decreases to zero linearly, exponentially or in any other manner. For linear and 

exponential decrease, g(Δ) would be as represented follows, 

 

    
⎩
⎨
⎧

=Δ
>Δ

=Δ
00
0

)(
if
ifk

g lin

                                            
(2.3) 

                                                                     Δ=Δ kg )(exp                                                                     
(2.4) 

k > 0 is a parameter that determines the rate at which Δ  is reduced to zero.  For example, if the 

exponential convergence for dynamics of Δ is chosen, the dynamics of Δ would be calculated by

k t
inie

−Δ = Δ . The time constant of this system is 1
k

. The larger the adaptation gain k, the smaller 

will be the time constant of the system. The time is artificial in this method and any value can be 

chosen as long as the integration time, T, is chosen accordingly. However, the precision of the 

algorithm is determined by “kT” i.e., as long as the value of “kT” remains unchanged, the 

precision of the algorithm won’t be affected. Since the value of k does not affect the performance 

of integration algorithm, k = 1 is chosen in the rest of the section with a fixed execution 

(simulation) time. This way, the precision of the algorithm is fixed for all examples. 

The modified schematic is presented in figure 2.1. 

1u

2u

u
)( 1uf

)( 2uf∫ ∫−

)(Δg

 

Figure 2.1 Global extremum-seeking control with multiple units 
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2.1.2 Convergence  

With these modifications, it will be shown below that no preconditions on the nonlinear function 

are required to achieve the global maximum. However, the initial condition and the initial value 

of the offset parameter should be chosen such that the global maximum lies in the initial interval 

[u1(0), u2(0)]. Using the equations (1.25) this interval is equivalent to [u(0)-Δ(0) , u(0)+Δ(0)] or 

[uini -Δini , uini +Δini]. It will be shown that this algorithm is capable of avoiding being stuck in any 

of the local optima and always converges to the global one.  

Theorem 2.1.1 Consider the multi-unit optimization scheme with the adaptation laws (2.1)-(2.2) 

where the offset parameter Δ is monotonically decreased to zero. If (a) f(.) has a unique global 

maximum and (b) |uini -u**|≤ Δini , then **lim ( )
t

u t u
→∞

= . 

Proof  First, it will be shown that |u(t) -u**| ≤  Δ(t), ∀t. This fact will be proved by contradiction. 

Suppose at time instant t, |u(t) -u**| > Δ(t). Also, from the hypothesis, |uini -u**| ≤  Δini, i.e., |u(0) 

-u**| ≤  Δ(0). So, there should exist a time instant τ < t, such that |u(τ) -u**| = Δ(τ). This means 

that either u1(τ) = u(τ)+Δ(τ) = u** or u2(τ)= u(τ)-Δ(τ) = u**. Without loss of generality assume 

that u1(τ) = u**.  

From equations (2.1) and (2.2) it is clear that u = Δ&& . With u1(τ) = u**, due to the uniqueness of 

the global maximum, f(u1) > f(u2), and from the same equations it can be concluded u = −Δ&& . On 

the other hand, 1u u= + Δ&& & , so, 1 0u =& .   

So, u1(t) = u**, ∀t > τ. In other words, u1(t) = u(t)+ Δ(t) = u**, i.e., |u(t)-u**| = Δ(t), ∀t > τ. This 

is in contradiction with the supposition |u(t) -u**| > Δ(t). This shows that |u(t) -u**| ≤  Δ(t) ∀t.  

Since ( )gΔ = − Δ& is bounded, Δ(t) is a continuous function of t. Also, since Δ(0) = Δini > 0, if Δ(t) 

has to become negative at some point of time, it cannot jump but pass through Δ = 0. However 

when Δ = 0 at t = ρ, since g(0) = 0, Δ&  will be 0, which implies Δ  = 0 from that time onwards, 

i.e., t ≥ ρ. So Δ(t) can never change sign and, Δ(t) ≥ 0 for all t. Also g(Δ) > 0 means that Δ 

decreases in a strictly monotonic fashion for Δ > 0 and is bounded from below by zero. This 

concludes that lim ( ) 0
t

t
→∞

Δ = . 
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Since |u(t) -u**| ≤ Δ(t) ∀t, it can be said that asymptotically **lim ( ) lim ( ) 0
t t

u t u t
→∞ →∞

− ≤ Δ = , i.e., 

**lim ( )
t

u t u
→∞

= .     ■ 

 

Remark 1 The sign function in the adaptation law (2.1) corresponds to a very high gain and 

induces a non-Lipschitz nature in the system. This might cause stiffness in integration. A simple 

solution is to replace the sign function by the hyperbolic tangent as shown below. 

( ) ( )( ). tanh
2

f u f uu g η
• ⎛ ⎞+ Δ − − Δ⎛ ⎞= Δ ⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠                                 

(2.5) 

where η is a tuning parameter. The lower the value of η, the faster will be the integration. 

However, a low value of  η might lead to a situation where the global optimum is missed and the 

algorithm converges to a local maximum. Thus, the value of η should be chosen as compromise 

between accuracy and integration time. 

 

Remark 2 The only condition for this algorithm to converge to the global optimum is |uini -u**| ≤  

Δini. Since the location of u** is not known a priori, the above condition will be satisfied by 

choosing a large enough initial value for Δini. The downside of such a choice is that the algorithm 

requires more time to get to the optimum.  

 

Remark 3 The final convergent point of the algorithm depends on the choice of Δini. If Δini  is 

chosen large enough such that the real global optimum of the objective function sits in the 

interval [uini -Δini , uini +Δini], the algorithm will converge to the real global optimum of the 

system. However, if Δini is not chosen large enough, the algorithm still converges to the best 

optimum corresponding to the interval [uini -Δini , uini +Δini]. As a result, this algorithm always 

guarantees convergence to the best optimum which resides in the initial interval [u1(0), u2(0)].  

 



43 

 

Remark 4 The performance of the “Sign” function in the adaptation law of the global extremum 

seeking method makes the structure of this control law similar to sliding mode control (Khalil, 

2002). Sliding mode control is a nonlinear control method that switches from one continuous 

control structure to another by means of a high-frequency switching strategy. The similarities of 

these methods deserve more research. One similarity would be the robustness of these controllers 

to parameter variations (that may enter into the control channel) because of their particular 

On/Off switching structure.   

 

2.2 Constrained global optimization using multi-units 

 

2.2.1 Schematic diagram 

 

Consider the problem of maximizing the constrained function y = f(u), where f: R→R, is scalar, 

static, non-convex, nonlinear and bounded function. This problem can be expressed as follows: 

( )

. . ( ) 0 1
u R

i

Max y f u

s t C u i m
∈

=

≤ = L
                                         (2.6) 

The problem may have multiple local maxima, uk
*, k = 1,2,…,n, but a unique global maximum, 

u**. It is also assumed that the constrained global maximum is unique. The input constraint sets 

Ci(u)  ≤ 0  (i=1,…,m)  define the feasibility region for input u. These constraints represent the 

critical or physical bounds of the input. The main question that is addressed in this section is how 

these constraints, which could lead to a non-convex feasible set, can be incorporated in the 

algorithm. The proposed algorithm uses the spirit of the unconstrained global optimization one. It 

is assumed that the feasible global maximum lies within the initial interval [u1(0),u2(0)].  If inputs 

of both the units are feasible, then the same adaptation law as in (2.1) is used. However, when 

one of the inputs is infeasible, then the feasible input is kept unchanged, while only the infeasible 

input is moved as the offset is reduced to zero. If both the inputs are infeasible, both of them are 

moved towards each other in search of a feasible point. The inputs will eventually become 
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feasible, since the feasible global maximum is assumed to be within that interval.  This switching 

logic is expressed through the following adaptation laws, 

1 2

1 2

1 2

1 2

( ). (0)

( ( ) ( ))
1

1
0

iniu g S u u

sign f u f u if u and u are feasible
if u is feasible and u is infeasible

S
if u is infeasible and u is feasible
if u and u are infeasible

•
= Δ =

+ Δ − − Δ⎧
⎪
⎪= ⎨−⎪
⎪⎩

(2.7) 

                                    ( ) (0) 0inig
•
Δ = − Δ Δ = Δ >

                                        (2.8) 

where g(. ) is a positive bounded function as (2.3) and (2.4). The schematic of this switching 

control strategy is presented in figure 2.2. As can be seen, the only difference from figure 2.1 is 

that the sign function is replaced by a switching logic decided by the constraints of the problem.  
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u
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Figure 2.2 Constrained global extremum seeking control with multiple units 
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2.2.2 Convergence 

 

With these modifications, it will be shown below that without any preconditions on the nonlinear 

function and the constraints, the algorithm always converges to the feasible constrained global 

maximum. However, the initial condition and the initial value of the offset parameter should be 

chosen such that the global maximum lies in the initial interval [u1(0), u2(0)].  

Theorem 2.2.1 Consider the multi-unit constrained optimization problem (2.6) with the 

adaptation laws (2.7)-(2.8). If (a) f(.) has a unique constrained global maximum and (b) |uini -

u**|≤ Δini ,  then **lim ( )
t

u t u
→∞

= .   

Proof   Note that the proof of reaching the unconstrained global optimum is based on the fact that 

the global maximum always lies within the interval [u1(t), u2(t)] for all t (Theorem 2.1.1). The 

same idea will be used here. It is shown next that global optimum cannot be removed from the 

interval [u1(t), u2(t)] in any of the cases by the adaptation law. 

• If both inputs are feasible, the arguments from unconstrained global optimization can be 

evoked to show that feasible global optimum still lies within the interval [u1(t), u2(t)]. 

• If one of the inputs is infeasible, the feasible input is left unchanged and only the 

infeasible one moves. So, as the interval shrinks, the part that is removed by this 

adaptation is only an infeasible sub-interval. The global optimum being feasible, the 

adaptation proposed in this case cannot remove it from the interval.  

• If both inputs are infeasible, both inputs are moved towards each other till one of them is 

feasible. This way only the infeasible sub-intervals are removed by the adaptation. On 

similar lines, the feasible global optimum cannot be removed from the interval [u1(t), 

u2(t)]. 

As the interval shrinks to zero, since the feasible constrained global optimum is trapped in the 

interval, both units reach the global optimum.     ■ 
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2.3  Illustrative examples 

 

2.3.1 Application of global multi-unit optimization method 

 

Example 2.3.1 Consider the following nonlinear static map (shown in figure 2.3) with a unique 

global maximum at u** = 1.68 and several local optima at other points.  

 

 
4 2 3 2( ) 3 64 sin ( ) 12 4 80f u u u u u= − + + + −                           (2.9) 

 

Figure 2.3 Static nonlinear map for example 2.3.1 

 

The global optimization algorithm using two identical units is applied to optimize this nonlinear 

system. The initial input uini = -1 and Δini = 4 were considered such that the global maximum 

along with several other local ones lie in the interval. If the exponential decreasing is considered 

for Δ by choosing gexp (Δ) as equation (2.4) (with k =1), the time evolution of the inputs and Δ 

would be as figure 2.4. 
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Figure 2.4 Evolution of u1, u2, u and exponential Δ for example 2.3.1  

 

It is equally interesting to see the evolution of the inputs to the two units, u1 and u2. Most of the 

time only one of them evolves and the other (which has a higher objective function value) is kept 

constant. Also, there are time regions where both units have the same objective function and the 

inputs evolve together. 

If the linear adaptation is considered for Δ by choosing glin (Δ) as equation (2.3) (with k=1), the 

time evolution of the inputs and Δ would be as figure 2.5. 

 

 

Figure 2.5 Evolution of u1, u2, u and linear Δ for example 2.3.1  
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The exponential and linear adaptation of Δ only affects the number of function evaluations 

needed for convergence, which is 82 in the exponential case and 91 in linear case.  Otherwise, 

both schemes converge to the global optimum. Using the adaptation as in (2.1) instead of (2.5) 

leads to a longer execution time of 13.2 sec in contrast to 1.31 sec in the later case with η = 1. 

The increase in execution time can be attributed to the increase in stiffness. To illustrate this idea, 

figure 2.6 shows the increase of integration time with increasingη. Of course, if too small value 

of η is chosen (η < 0.2), then the global optimum will be missed. 

 

Note that the integration time is the time horizon over which the algorithm is integrated. 

Execution  time (simulation time) can be calculated by “tic and toc” command in Matlab. The 

number of function evaluations is the number of times that the objective function is called. 

 

Figure 2.6 Influence of η on integration time  

 

Example 2.3.2 Consider counter-example 1 presented in Section 1.2.2 where the global 

extremum-seeking controller based on the sinusoidal perturbation method was unable to find the 

global optimum. The static map is depicted in figure 2.7. 
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Figure 2.7 Static nonlinear map for example 2.3.2 

 

Applying the global optimization algorithm using multiple units makes the system input converge 

to the global maximum. gexp(Δ) = Δ has been chosen in this example. The key condition to satisfy 

is the inequality |uini -u**| ≤  Δini which is in fact verified by choosing uini = 2 and Δini = 3. The 

initial condition of u is chosen on purpose so as to be as closer to the local maxima and further 

away from the global one. The algorithm converges to the global maximum at u** = -0.8985. 

Choosing  uini = 2 and Δini = 2 causes the algorithm to converge to the local maximum u = 0.8951 

instead of the global one. This is because the initial interval [u1(0), u2(0)] = [0, 4] does not 

include the global maximum. In fact, the solution corresponds to the global maximum of this 

initial interval. 

 

Example 2.3.3 Consider the second counter-example of section 1.2.2 where the global 

perturbation-based extremum-seeking controller was unable to find the global maximum. The 

static map is given in Figure 2.8. The proposed algorithm successfully converges to the global 

maximum with the following parameters: uini = -10, Δini = 60 and gexp(Δ) = Δ. 
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Figure 2.8 Static nonlinear map of example 2.3.3 

 

In this example, it can be seen from figure 2.9 that the maximum of f(u1) and f(u2) (which in this 

case corresponds to f(u1)) is always non-decreasing. Also, it can be seen that f(u1)  remains 

constant while the other tries to catch up with it. Also, there are phases where both improve 

together (t < 2 and t > 6). Although the maximum (of f(u1) and f(u2)) being non-decreasing is a 

good property but it is not always satisfied by all problems (example 2.3.4).  

 

Figure 2.9 Evolution of f(u1) and  f(u2)  in example 2.3.3 

 

Example 2.3.4 This example considers a nonlinear system which has several local optima, but 

with the global maximum that occurs at u** = 0. Two important aspects of this example are the 
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discontinuous derivative at the global optimum and the presence of equal valued and symmetric 

local optima. 

( ) 3sin( )f u u u= − +                                                (2.10) 

The optimization and control parameters were: uini = -10, Δini = 15 and gexp(Δ) = Δ. The algorithm 

converges to the global optimum despite discontinuous derivatives. 

 

Figure 2.10 Static nonlinear map of example 4 

Due to the symmetric nature of the problem, the maximum of the objective function of the two 

units follows the ups and downs of the given static map. In this case, it can be seen that 

maximum of f(u1) and f(u2) does not monotonically increase as shown in figure 2.11. 

 

Figure 2.11 Evolution of f(u1) and  f(u2)  in example 2.3.4 
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Example 2.3.5 Consider the following constrained nonlinear optimization problem.  

4 2 3 2( ) 3 64 sin ( ) 12 4 80

. . ( 1)( 2) 0
u R

Max f u u u u u

s t u u
∈

= − + + + −

+ − ≥
           (2.11)       

The global constrained optimization algorithm using two identical units is applied to optimize 

this nonlinear system. The initial parameters used were uini = -2, Δini = 5 and gexp(Δ) = Δ has been 

chosen for adaptation laws. The feasible region for the unit inputs is highlighted and the 

infeasible region has been shown by dashed lines on the nonlinear map (figure 2.12). The static 

map f(u) has a unique feasible global maximum at u** = -1.166 and several local optima at other 

points. 

 

Figure 2.12 Static nonlinear map for example 2.3.5 

 

The time evolution of the units’ inputs and Δ are shown in figure 2.13. 
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Figure 2.13 Evolution of u1, u2, u and Δ for example 2.3.5 

 

As it is seen from Figure 2.13 the inputs of both units converge to u**= -1.166 which is the 

feasible global maximum of the objective function. The value of the offset is reduced to zero. It 

can be seen from this figure that the input trajectory of the unit 1 violates the constraints when it 

takes the value between -1 and 2. However, infeasibility is temporary and the operating points of 

the units are never stuck in the infeasible region.  

Example 2.3.6 The last example considers the constrained optimization of the following 

nonlinear system:  

 

2 2

( ) 2 sin( )

. . ( 20) ( 2 sin( ) 25) 144
u R

Max f u u u u

s t u u u u
∈

= − −

− + − − + ≤
               (2.12) 

 

As it is seen from figure 2.14, the feasible set consists of several discontinuous intervals (the 

objective function in the feasible intervals is represented by a solid line, the dotted line is used to 

represent the objective function outside the feasible region). The method proposed in this chapter 

is applied with initial values uini = 20, Δini = 12 and gexp(Δ) = Δ has been considered for 

adaptation laws. 
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Figure 2.14 Nonlinear map and constraints for example 2.3.6 

 

The initial conditions of uini and Δini are chosen such that the initial interval covers the entire 

feasible region. The algorithm converges to the feasible global maximum u**= 11.92, as seen in 

figure 2.15. Though the feasible region is non-convex in examples 5 and 6, the key difference is 

that the solution is at the boundary here. This means that the gradient is not equal to zero at the 

optimum. The non-zero gradient then tries to seek an operating point with a higher cost by 

pushing the system into the infeasible region. However, the feasibility part of the algorithm 

pushes the system back into the feasible region. Thus, the solution chatters around the optimal 

point as can be seen in figure 2.16. The frequency of chattering depends on the final value of Δ 

which is determined by ε. Gradient projection methods (Woodward et al., 2007) can be used to 

eliminate this chattering. The very small value ε is chosen to avoid numerical problems. This way 

Δ asymptotically goes to ε. In other words, ε is a parameter that determines the arbitrary 

neighborhood of the global optimum at the end of convergence. 

 



55 

 

 

Figure 2.15 Evolution of u1 and u2 for example 2.3.6 

 

 

Figure 2.16 Zoom of figure 2.15 after convergence 

 

2.4 Comparison with other global optimization methods 

 

In order to compare the performance of the global optimization by Multi-Units (MU) with other 

global optimization methods; DIRECT algorithm, Genetic Algorithm (GA) and Simulated 

Annealing algorithm (SA) were considered to optimize the nonlinear map of Example 2.3.1.  
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It is important to note that the multi-unit optimization can be visualized as multi-model 

optimization where two mathematical models are used in the place of units. In fact, MU uses two 

individual units (models) to perform its algorithm whereas the other methods, except GA, use 

only one unit in their procedure. In GA, as many units (models), as there are members in the 

population, are used.     

Global multi-unit optimization generates a single point at each iteration (function evaluation) and 

selects the next point by a deterministic computation. The sequence of points approaches an 

optimal solution. DIRECT converges to global optimum by systematic gridding the search area. 

On the other hand, the Genetic Algorithm generates a population of points at each iteration and 

selects the next population by a computation which uses random number generators. The best 

point in the population approaches an optimal solution. Similarly, the simulated annealing 

algorithm begins by randomly generating a new point and the next point of each iteration is 

determined by a probabilistic computation. The optimal solution is gradually approached by 

systematically decreasing a control parameter (temperature) which determines the probability of 

accepting a worse solution at any step (Schneider & Kirkpatrick, 2006). 

The computational results of these algorithms were obtained by using the Optimization Toolbox 

4.0 of MATLAB version 7.6.0.347(R2009a) and SIMULINK version 6(R14) which are 

registered trademark of the MathWorks. For deterministic algorithms two sets of tests and for 

probabilistic algorithms three sets of tests with different tuning parameters were performed. For 

probabilistic algorithms, each set consists of 100 individual implementations of the considered 

algorithm. In order to show a comparative result, one of the key factors of each algorithm (g(Δ) in 

MU, the iteration number in DIRECT (Niteration), the population size (Npop) in GA and the initial 

temperature (Tinitial) in simulated annealing) were changed during each set of these tests. The 

other initial parameters for global multi-unit optimization were uini = -1, Δini = 3. The tuning 

factors for Genetic algorithm such as (fitness scaling function, crossover function, mutation 

function, stopping criteria, …) and for simulated annealing algorithm such as (annealing 

parameters, temperature update function, stopping criteria, …) were set as their default values 

(Appendix IV). Since the searching area for MU was between (uini - Δini)= - 4 and (uini + Δini)= 2, 

these bounds were considered for scalar optimization by DIRECT, GA and SA. This way, all 

algorithms could operate within the same bounded area [-4, 2].   
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The results were compared in terms of the percentage of successful convergence to the global 

optimum and the average number of function evaluations (table 2.1). The percentage of the 

successful convergence to the global optimum after 100 individual implementation of an 

algorithm is referred to as the reliability of the global optimization method. 

 

Table 2.1 Comparison between global multi-unit optimization, DIRECT, genetic algorithm and 

simulated annealing   

 

As it is shown in table 2.1, the global optimization method with multiple units always converges 

to the global optimum using a strictly positive decreasing function in the adaptation laws. The 

DIRECT algorithm also converges to the global optimum after a certain number of function 

evaluations. On the other hand, these results show a significant percentage of convergence to a 

false optimum when the population size of Genetic algorithm and the value of initial temperature 

for Simulated annealing algorithm are chosen very small. Increasing the population size of GA 
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and the value of initial temperature in SA, enhance the percentage of the global convergence. As 

a result, both of the algorithms converge to the global optimum when the mentioned parameters 

are tuned sufficiently large.  

The precision of the converged global optimum was 0.001 for all of the algorithms. Also, in 

optimization by multiple units, this precision is controllable by choosing ε (the final value of Δ). 

While the optimization by multi-units converges to the same optimum during all tests of each set, 

the other algorithms show a probabilistic nature in their final convergence. The rate of successful 

convergence for MU is always 100% if Δini is chosen properly (big enough). The global 

convergence of DIRECT algorithm with an acceptable precision is also guaranteed after limited 

number of function evaluations. However for GA and SA, the rate of successful convergence is 

directly proportional to the population size and the initial temperature value respectively.  It is 

also important to note that the number of function evaluations via global optimization by multi-

units and DIRECT algorithm were constant in each individual set of these tests. This fact is 

because of the deterministic nature of these algorithms. However, the number of function 

evaluations is also dependent on the integrator type (ode15s, ode23, ode45,…) which is applied in 

MATLAB or SIMULINK (ode15s was applied in this study). It also depends on the tolerances 

used in the integration. In short the accuracy of the method depends very much on the accuracy 

of the integrator. It is also seen that the number of function evaluations for MU depends on the 

decreasing manner of Δ.  

In Genetic Algorithm when the population size is made large, the number of function evaluation 

significantly increases. However, there is no correlation between the number of function 

evaluations and the value of initial temperature in simulated annealing algorithm.    

As is clear from table 2.1, the average numbers of function evaluations for global optimization by 

multi-units were less than the one for Genetic Algorithm and simulated annealing in all of the 

tests. Also, MU usually takes less number of function evaluations to converge in univariate case 

comparing to DIRECT algorithm. This shows that for this case, a significant improvement in 

terms of number of function evaluations performed by global optimization via multiple units 

comparing to the other global optimization algorithms.  

If the optimization algorithm is directly linked with real units, the global optimization using 

multi-units would be advantageous to other methods (DIRECT, GA and SA), particularly due to 
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the continuity of system inputs in multi-unit optimization. The inputs of the multi-unit system 

continuously and smoothly converge to the global optimum whereas in other methods the inputs 

are essentially discontinuous. 

 

Table 2.2 Comparison between global multi-unit optimization with different η 

 

 

As it is shown in table 2.2, the global optimization method by multiple units always converge to 

the global optimum when the value of parameter η is selected sufficiently large (η>0.2). 

Similarly, this method never converges to the global optimum if η is selected too small. It is also 

seen that the number of function evaluations for MU (when η>1) is proportional to the value of 

tuning parameter η. This means that for (η > 1), the lower the value of η, the lower will be the 

number of function evaluations. This was similarly mentioned in (remark 1) and (figure 2.6). A 

very low value of η (η < 0.2) leads to a situation where the global optimum is missed.    

 

2.5 Conclusion 

 

Chapter 2 describes the global optimization of a scalar noise-free nonlinear function. The 

approach is cast in the framework of extremum-seeking control. However, instead of inferring the 

gradient through the addition of a dither signal and the computation of the correlation between 

the input and the output, it proposes to position two similar units in parallel and feed them 
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slightly different inputs, thereby allowing the computation of the gradient. In this framework, a 

deterministic global optimization method using multi-units for nonlinear static scalar maps is 

proposed. The presented method is a model-free gradient-based algorithm which uses the 

measurement data of the objective function for estimation of the gradient. This technique 

overcomes the classical shortcoming of the real-time local extremum seekers which drop in the 

pitfall of the local optima depending on the initial conditions.  

The approach is first presented for unconstrained optimization, followed by an extension to 

constrained problems, for which a switching logic is introduced. Several simple (scalar) academic 

examples are presented that illustrate the approach. The working idea consists in reducing the 

amplitude of the dither signal asymptotically to zero, which is quite appealing theoretically. In 

this technique, the excitation is the difference between the inputs sent to the two plants. 

 

The presented method uses the multi-unit optimization structure, where some predefined offsets 

are introduced between the inputs of identical units and the gradient is estimated by finite 

difference. The method utilizes some interesting properties of finite differences unexplored 

previously. It was shown that if the offsets are reduced to zero in a controlled manner, the whole 

system can be made to converge to the global optimum for nonlinear continuous static maps. The 

global optimization was achieved by initially starting off with a large offset parameter between 

the inputs and then reducing it monotonically to a small value ε.  With this, it was shown that it is 

possible to converge to the global optimum of nonlinear static and scalar objective function if the 

algorithm’s initial parameter (Δini, k,η) have been chosen properly. The algorithm was extended 

to the constraint optimization problem where a switching adaptation law was used to handle the 

constraints. It was shown that such an adaptation would lead to the global constrained optimum.  

However, it was seen that the proposed algorithm can chatter when the solution is on the 

boundary of the feasible region. Methods using projection will be investigated in the future to 

alleviate this difficulty. Extensions of the global optimization framework to the multivariable 

case, with and without constraints form the next steps of this research work. It has been 

demonstrated that the proposed method solves that univariate optimization problem rather 

effectively, at least compared to stochastic approaches such as genetic algorithms (GA) and 

simulated annealing (SA). 
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CHAPTER 3 GLOBAL OPTIMIZATION OF TWO-INPUT SYSTEMS 

USING MULTI-UNIT ADAPTATION 

 

The goal of this chapter is to develop a deterministic global optimization method that can handle 

the black-box objective functions with two-inputs. Herein, an extremum-seeking strategy that 

converges to the global optimum of the static nonlinear continuous systems with two decision 

variables is proposed. The core idea is to iteratively perform univariate global optimization on the 

circumference of a circle of reducing radius. The radius of the circle is asymptotically reduced to 

zero. 

 

The outline of this chapter is as follows. Section 3.1 and 3.2 present the new algorithm and 

establishes its convergence. The proposed methodology is numerically simulated on some 

illustrative examples in Section 3.3 and compared with other global optimization algorithms in 

Section 3.4. 

 

3.1 Construction of the algorithm 

 

The main question that is addressed in this chapter is how the global optimum of a two-

dimensional map can be found in the multi-unit optimization framework. 

 

Consider the problem of minimizing, y = f(u1,u2), where f: R2→R, is a non-convex continuous, 

nonlinear function. The problem may have multiple local optima, (u1k
*, u2k

*), k = 1,2, …, n, but a 

unique global minimum, (u1
**, u2

**). In the rest of the chapter, it is assumed that the global 

minimum is unique. The proposed algorithm uses the spirit of the unconstrained scalar global 

optimization. Here, we need two units referred to as “a”, “b”.  Let (u1a and u2a) represent the first 

and second inputs of unit “a” and (u1b and u2b) represent the inputs of unit “b”. The core idea of 
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this algorithm is to perform global optimization on the circumference of a circle of reducing 

radius. 

It is assumed that the feasible global optimum lies within the initial circle. The radius of this 

circle is reduced to zero in a predefined fashion. If the centre of the circle is so adapted as to keep 

the best optimum at the circumference, the algorithm converges to the global optimum of the 

nonlinear map when the radius goes to zero. In order to mathematically formulate the above 

mentioned methodology three iterative layers for the new optimization algorithm are considered: 

 

3.1.1   Layer 1: Global optimization along the circumference of a circle 

 

Consider a circle centered at the input values (u1, u2) and a radius of Δ (figure 3.1). The multi-unit 

optimization along the circumference of the circle of reducing radius is repeated iteratively. Let 

θa , θb be the angles of the two units. Then the input values of the two units are given by: 

1 1

2 2

cos( )
sin( )

a a

a a

u u
u u

θ
θ

= + Δ⎧
⎨ = + Δ⎩                                                (3.1) 

1 1

2 2

cos( )
sin( )

b b

b b

u u
u u

θ
θ

= + Δ⎧
⎨ = + Δ⎩

                                                (3.2) 

The adaptation laws (for minimization) along the circumference of the circle are given by, 

a θθ θ= +Δ     ,    b θθ θ= −Δ                                         (3.3) 

( ) . ( )a bg sign f fθ θθ
•
= − Δ −       ,          ( ) miiTθ π θ+ = +                          (3.4) 

( )gθ θ θ

•
Δ = − Δ              ,             ( )iTθ π+Δ =                                 (3.5) 

where Δθ is the offset between two angles θa and θb. Here gθ(. ) can also be any positive bounded 

function which is zero only when Δθ = 0. This corresponds to univariate global optimization 

along the circle of radius Δ using the angle θ. As will be discussed in the next section, the initial 
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conditions of the equations (3.4) and (3.5) would be reinitialized periodically. The period of each 

iteration (T) on the circumference of the circle is so chosen that Δθ reduces to εθ, i.e., 

2

( )
d

T
g

θ

π
θ

θ θε

Δ
=

Δ∫                                                      (3.6) 

 

 

 

 

 

 

 

 

 

 

3.1.2   Layer 2: Recursive global optimization  

 

Let “i” denote the number of iteration (i = 0,1,2,…). At the beginning of each iteration, Δθ is 

initialized to π in order to cover the entire circle. The initial value of θ is so chosen to be the 

global optimum of the previous iteration. At the beginning of first iteration (i.e., i=0), the initial 

value of θm0 is arbitrarily set at zero. In the next iterations, θmi is computed from the values of θa , 

θb at the end of the previous iteration as follows, 

( )
( )

a a b
mi

b a b

iT if f f
iT if f f

θ
θ

θ
−

−

<⎧
= ⎨ ≥⎩

                                       (3.7) 

1u

2u

),( 21 uu

),( 21 aa uu

),( 21 bb uu

Figure 3.1 Global optimization along the circumference of a circle 
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The optimization along the circumference is repeated every T time units. θmi corresponds to the 

converged value and would represent the global optimum along the circumference of the circle of 

iteration “i-1” if εθ = 0. 

 

3.1.3   Layer 3: Reducing the radius of the circle  

 

It is assumed that the feasible global minimum lies within the initial circle (centered at the initial 

inputs (u1(0),u2(0)) with the radius of Δ(0)). This radius is monotonically reduced to ε i.e., 

0( ) (0) 0g
•

Δ = − Δ Δ = Δ >                                         (3.8) 

g(.) is a positive bounded function as (2.3 or 2.4) and it is zero only when Δ = 0. The algorithm 

stops when Δ is reduced to a prefixed value ε. This means the time of integration of the algorithm 

is given by, 

0

( )tot
dT

gε

Δ Δ
=

Δ∫                                                            (3.9) 

This way, the total number of iterations for convergence to the global optimum is fixed to Ttot / T. 

T is defined in equation (3.6). The coordinates which correspond to the global optimum of each 

iteration are presented as follows (figure 3.2),                   

1 1

2 2

cos( )
sin( )

m mi

m mi

u u
u u

θ
θ

= + Δ

= + Δ                                                   (3.10) 

where θmi corresponds to the global optimum of the previous iteration. The adaptation laws of the 

centre of the circle are so chosen to keep the global optimum found. In other words, the circle 

with the radius Δ and centre (u1,u2) is contracted in such a manner as to keep (u1m,u2m) at the same 

point i.e., 1 2( , ) (0,0)m mu u
• •

= . So, the adaptation laws are given by, 
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1 1 10

2 2 20

cos( ) , (0)

sin( ) , (0)

mi

mi

u u u

u u u

θ

θ

• •

• •

= −Δ =

=−Δ =
                                     (3.11) 

This contraction is depicted in figure 3.2. The centre of the circle is expected to converge to the 

global optimum of the non-linear map when Δ reaches zero.  

 

 

 

 

 

 

 

 

 

 

The structure of the above mentioned algorithm is presented in the following flowchart, 

1u

2u

),( 21 uu

θm

),( 21 mm uu

Figure 3.2 Contraction of the circle toward the global optimum 
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a θθ θ= + Δb θθ θ= − Δ
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Figure 3.3 Flow chart of the global optimization of two-input systems using multi-units 
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3.2 Convergence  

 

For the general case, i.e., non-zero values of ε and εθ, it cannot be guaranteed that the above 

scheme is indeed global. However, in the limiting case, it can be shown that this algorithm is 

capable of avoiding the local optima and converging to the global one.  

 

Theorem 3.2.1 Consider the multi-unit optimization scheme with the adaptation laws (3.4), (3.5), 

(3.8) and (3.11), with ε = 0 and εθ = 0 If (a) f(.) has a unique global minimum, (b) T << Ttot  and 

(c) (u1
**- u10)2+ (u2

**- u20)2≤ Δ0
2 , then **

1 1lim ( )
t

u t u
→∞

=  and  **
2 2lim ( )

t
u t u

→∞
= .  

 

Proof  The proof of this result is based on the fact that there are two different time scales in the 

algorithm. The fast time scale is that of θ and Δθ, while the slow one consists of Δ, u1 and u2. 

Initially it will be shown that the fast time scale keeps θmi at the global optimum along the 

circumference of the circle. Secondly, assuming this fact, it will be shown that the shrinking of 

the circle leads to the global optimum of the problem. In fact, for θmi to always correspond to the 

global optimum, it is very important to have a good time scale separation between the two 

dynamics and the assumption T << Ttot is made towards this end. 

 

To prove that θmi is in fact the global optimum along the circle, the proof follows the lines of 

proof of theorem 2.1.1 in chapter 2. At each iteration (i =1,2,3,… ) the univariate global 

optimization along the circumference would lead to,  |θ(t) – θi
**| ≤ Δθ(t), ∀t∈[iT+,(i+1)T-], where 

θi
** is the angle corresponding to the global optimum along the circle at iteration “i”. So, when Δθ 

→0 , then |θ(t)- θi**| = 0, θa(iT-)= θb(iT-) = θi
** i.e., at the end of the iteration “i”, θmi = θi

**. 

 

Now, in a slower time scale, note that θmi is the global optimum along the circumference of the 

shrinking circle at any time. It will be shown by contradiction that  (u1
**- u1(t))2+ (u2

**- u2(t))2≤ 

Δ2(t), ∀t. Suppose that at time instant t, (u1
**- u1(t))2+ (u2

**- u2(t))2> Δ2(t). From the hypothesis, 
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(u1
**- u10)2+ (u2

**- u20)2≤ Δ0
2, there exists a time instant t =τ, such that (u1

**- u1(τ))2+ (u2
**- 

u2(τ))2 = Δ2(τ). This means that the global optimum of the map (u1
**,u2

**) is on the circle with 

centre (u1(τ),u2(τ)) and radius Δ(τ). So, the angle search θmi would indeed latch on to this point 

(since the global optimum of the map is indeed the global optimum along the circumference of 

the circle). Also, in the next iteration θb(iT+) = θmi , u1b = u1
** , u2b = u2

** and, 

( ) ( ) ( ) 0b a bg sign f f gθ θ θ θ θθ θ
• • •
= −Δ = − Δ − + Δ =                  (3.12) 

Note that within the iteration, 0bθ
•
= , since fb < fa  is guaranteed by the uniqueness of the global 

minimum. Also, at the end of the iteration, θb will be retained as θmi since it has a better function 

value. Thus, once (u1
**- u1(τ))2+ (u2

**- u2(τ))2 = Δ2(τ), from there on for all t > τ, u1b = u1
** and 

u2b = u2
**. 

 

Since (u1b,u2b) = (u1
**, u2

**) is on the circumference of the circle of radius Δ(τ), it can be seen that 

(u1
**- u1(t))2+ (u2

**- u2(t))2 = Δ2(t) for all t>τ, which is a contradiction to the assumption (u1
**- 

u1(t))2+ (u2
**- u2(t))2> Δ2(t). So, it is deduced that (u1

**- u1(t))2+ (u2
**- u2(t))2≤ Δ2(t), ∀t. 

 

On the other hand, since ( )g
•

Δ = − Δ  is bounded, Δ(t) is a continuous function of t. Also, since Δ(0) 

= Δini > 0, if Δ(t) has to become negative at some point of time, it cannot jump but pass through 

Δ = 0. However when Δ = 0 at t = ρ, since g(0) = 0, 
•

Δ will be 0, which implies Δ  = 0 from that 

time onwards, i.e., t ≥ ρ. So Δ(t) can never change sign and, Δ(t) ≥ 0 for all t. Also g(Δ) > 0 

means that Δ decreases in a strictly monotonic fashion for Δ > 0 and is bounded from below by 

zero. This concludes that lim ( ) 0
t

t
→∞

Δ = . 

Since (u1
**- u1(t))2+ (u2

**- u2(t))2≤ Δ2(t), ∀t, it can be said that when Δ →0, asymptotically (u1
**- 

lim
t→∞

u1(t))2+ (u2
**- lim

t→∞
u2(t))2 ≤ lim

t→∞
Δ2(t) =0, i.e., lim

t→∞
u1(t)=u1

** and lim
t→∞

u2(t)=u2
** .     ■ 
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Remark 1 Similar to what is stated in chapter 2 (2.5) , the sign function in the adaptation law 

(3.4) corresponds to a very high gain and induces a non-Lipschitz nature in the system. This 

might cause stiffness in integration. A simple solution is to replace the sign function by the 

hyperbolic tangent as shown below. 

( ) tanh
2
a bf f

g θ
θ

θ η
• ⎛ ⎞⎛ ⎞−
= − Δ ⎜ ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠                                      

(3.13) 

Remark 2 The basic condition for this algorithm to converge to the global optimum is (u1
**- 

u10)2+ (u2
**- u20)2≤ Δ0

2. Since the location of u** is not known a priori, the above condition will 

be satisfied by choosing a large enough the initial value for Δ0. The downside of such a choice is 

that the algorithm requires more time to get to the optimum. 

 

3.3 Illustrative Examples 

3.3.1 Test problems 

 

The algorithm is tested on three global optimization problems. The three problems are first 

presented followed by the results with the proposed algorithm. The performance of the proposed 

algorithm is compared to the other deterministic and stochastic methods in the next section. 

 

Example 3.3.1 Ackley's function (AC) (Ackley, 1987) 
 

Consider the following nonlinear static map (figure 3.4) with a unique global minimum at (u1
**, 

u2
**) = (0, 0) and several other local optima. 

2 2
2

1 2
1 1

1 1( , ) 20exp 0.2 exp cos(2 ) 20 exp(1)
2 2i i

i i

f u u u uπ
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟= − − − + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑        (3.14) 

The key aspect of this example is the presence of equal valued and symmetric local optima. 
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Figure 3.4 Ackley's function for example 3.3.1 

 
Example 3.3.2 Double Summation (DS1) (Strongin and Sergeyev,1992) 

7 7
2

1 2 1 2 1 2
1 1

17 7
2 2

1 2 1 2
1 1
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=
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∑ ∑

∑ ∑

) 8 .2885= −

(3.15) 

 

Aij, Bij, Cij, Dij are random coefficients from interval [-1,1]. ω is a parameter that controls the 

density of the local optima. The bigger the ω, the number of up and downs increases, thereby 

increasing the complexity of the test function. The coefficients chosen for Aij, Bij, Cij, Dij are 

presented in the Appendix III (A). This function with ω =1 is shown in figure 3.5 (in order to 

better presentation of minima, the function is plotted in inverted form). 



71 

 

 

Figure 3.5 Double Summation function with ω=1 (DS1) (inverted plot) 

Example 3.3.3 Double Summation (DS2)  
The optimization test function in (3.15) with ω = 2 and a new set of coefficients (provided in 

Appendix III (B)) is depicted in Figure 3.6. The global optimum in this case is 

fglobal(0.2349,0.3714) = -9.3633 and it is comparatively more difficult to find. 

 

Figure 3.6 Double Summation function with ω=2 (DS2) (inverted plot) 

 

3.3.2 Application of global multi-unit optimization method 

 

For example 3.3.1 (AC), the initial settings u10 = -1, u20 = -2, and Δ0 = 5 were considered such 

that the global minimum among the several other local ones lie in the circle composed by the 

centre of (u10,u20) and the radius of Δ0. The key condition to satisfy is the inequality (u1
**- u10)2+ 
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(u2
**- u20)2≤ Δ0

2 which is in fact verified by choosing Δ0 big enough. The other parameters used 

were k = 0.01, kθ = 1, ε = 0.007, εθ =0.01. As will be discussed later, the maximum variable step 

size of the integration routine is a key variable for convergence. Here Mstep-size=1. Applying the 

global optimization algorithm using multiple units makes the system inputs to converge to the 

global minimum. The time evolution of the inputs and Δ are shown in figure 3.7. 

 

Figure 3.7 Evolution of the inputs and Δ for example AC 

As it can be seen from this figure the centre of the circle (u1,u2) converges to the global optimum 

at (0,0), while the radius of the circle (Δ) is asymptotically reduced to ε. The contracted circles 

are depicted by dash-lines in figure 3.8. As is clear from this figure, the orientation of the 

shrinking depends on where the global optimum on the circumference is found.    

 

Figure 3.8 Evolution of the circles for example AC 
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In example 3.3.2 (DS1), the initial conditions are chosen to be u10 = 0.5, u20 = 0.5 and Δ0 = 0.7. 

Other tuning parameters remain the same. As can be seen in figure 3.9, applying the global 

optimization algorithm using multiple units makes the system input converge to the global 

minimum at (u1
**,u2

**)= (0.563,0.25) (red line).  

 

It is important to note that if the condition T << Ttot is not satisfied i.e., if the fraction kθ /k is not 

large enough, the shrinking of the circle becomes too fast and the global optimum could be 

missed. In this example, the period of each iteration on the circumference of the circle and the 

total time of integration were T=6.443sec and Ttot=657.88sec respectively and so the number of 

iterations was Ttot/T=102. However, for instance if this ratio is reduced to 10, the multi-unit 

optimization would converge to the local optimum at (0.67, 0.29) rather than the global one. This 

is depicted in figure 3.9 using the blue line. 

 

Figure 3.9 Evolution of the centre with Ttot/T=102 (red line) and with Ttot/T=10 (blue line) for 

example DS1 

 

Figure 3.10 shows the time evolution of the angle θmi (in rad.) for example DS1. The value of this 

angle evolves depending on the polar position of the global optimum found on the circumference 

of the shrinking circle. However, its value remains constant within the time interval of each 

iteration “i”. At t=420 sec., the algorithm hits upon the global optimum and θmi stays fixed at its 

value of 3.07 rad. Then, the radius shrinks to ε.  
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Figure 3.10 Evolution of θm for example DS1  

For example 3.3.3 (DS2), the movement of the centre of the shrinking circle with exponential and 

linear adaptation of the radius Δ is presented in figure 3.11.  The initial conditions and other 

tuning parameters remain the same as example DS1. The exponential and linear adaptation of Δ 

only affects the number of function evaluations needed for convergence, which is 1412 in the 

exponential case and 1449 in linear case.   

 

Figure 3.11 Evolution of the centre for exponential (red line) and linear (blue line) decreasing Δ 

for example DS2  

This function has high dense local optima which effectively increases its complexity. In this 

problem though the area of global optimum is found, the real global minimum is difficult to 

achieve. In the close vicinity of this global optimum there are many local optima with very small 
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difference in their objective values. This feature would become important when comparing with 

other standard global optimization algorithms. 

 

3.4 Comparison with Other Global Optimization Methods 

 

In order to compare the performance of the global optimization by Multi-Units (MU), three other 

methods are considered. (i) Stochastic method - Genetic Algorithm (GA), (ii) Stochastic method - 

Simulated Annealing algorithm (SA) and (iii) Deterministic method - DIRECT algorithm 

(DIviding RECTangles). All the benchmarks presented in Section 4 were worked out.  

 

The genetic algorithm generates a population of points at each iteration and selects the next 

population by mutation and cross-over (both random operations). The best point in the population 

approaches an optimal solution. In the simulated annealing algorithm, the optimal solution is 

gradually approached by systematically decreasing a control parameter (temperature) which 

determines the probability of accepting a worse solution at any step (Schneider & Kirkpatrick, 

2006). In DIRECT (Jones et al., 1993) optimal hyper-rectangles are selected for further 

partitioning. Although the searching area for GA, SA and DIRECT algorithms is a square, the 

searching area for MU is a circle. The radius of the initial circle (Δ0) was chosen to include the 

square. 

 

The computational results of the (GA) and (SA) algorithms were obtained by using the 

optimization toolbox 4.0 of MATLAB version 7.8.0.347(R2009a). The MATLAB version of the 

DIRECT algorithm developed by Björkman and Hölmstrom (1999) has been used in this study. 

The multi-unit optimization is simulated by SIMULINK version 7.3(R2009a). For stochastic 

methods, a set of 100 individual implementations of the algorithm was considered.  

The number of function evaluations of multi-unit optimization depends on the integrator type 

(ode15s, ode23, ode45, …-ode45 was applied in this thesis). It also depends on the error 

tolerances used in the integration. The error tolerances of ode solvers can be set by the command 
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odeset in MATLAB. Herein, RelTol, is the error tolerance relative to the size of each solution 

component. It controls the number of correct digits in all solution components, except those 

smaller than thresholds AbsTol. The absolute error tolerance AbsTol determines the accuracy 

when the solution approaches zero. This is a threshold below which the value of the solution 

component is unimportant. The default values of RelTol and AbsTol are 1e-3 and 1e-6 

respectively. Another important property of the ode solvers which can affect the accuracy of the 

solution is step-size property. MaxStep sets an upper bound on solver step size. The default value 

of MaxStep is 0.1× 0 ft t− where t0 and tf are the starting and final points of integration time 

respectively. In short the accuracy of the method depends very much on the accuracy of the 

integrator. The precision of the converged global optimum by multiple units controlled by the 

integration parameters needs more investigation.  

The tuning factors for Genetic algorithm such as (fitness scaling function, crossover function, 

mutation function, stopping criteria, …) and for simulated annealing algorithm such as (annealing 

parameters, temperature update function, stopping criteria, …) and for DIRECT algorithm 

(weight parameter) were set as their default values (Appendix IV). The parameters used in multi 

unit optimization for all the benchmarks were k = 0.01, kθ = 1, ε = 0.007, εθ =0.01. For each one 

of the algorithms, three sets of tests with different tuning parameters were performed.  

The following variables during each set of these tests were changed: (i) population size (Npop) for 

genetic algorithm, (ii) initial temperature (Tinitial) for simulated annealing (iii) number of 

iterations (Niteration) for DIRECT and (iv) maximum of variable step-size (Mstep-size) for the 

proposed algorithm.  

The initial starting point has been chosen at the centre of the square/circular bounds of the inputs 

for each benchmark. The initial starting point in each problem has been considered the same for 

all of the algorithms. Convergence is quantified in terms of percent error from the global 

optimum as follows (Björkman and Hölmstrom ,1999):      

min100 global

global

f f
E

f

−
=

                                               
 (3.16) 

where fmin is the best function value at some point in the search and fglobal represents the known 

global optimum of the function. The results of deterministic algorithms were compared in terms 
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of the percentage of error from the global optimum (Table 3.1). On the other hand for 

probabilistic algorithms, the results were presented in terms of percentage of successful 

convergence to the global optimum (with E% <0.01) in table 3.2. The corresponding average 

number of function evaluations needed for global convergence is presented in table 3.3 as a 

measurement of the efficiency of these algorithms.  

 

Table 3.1 Comparison between MU and DIRECT in terms of percent error from the global 

optimum 

 

Table 3.2 Comparison of GA and SA in terms of successful global convergence (E% < 0.01) 
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Table 3.3 Comparison between global MU, DIRECT, GA and SA in terms of average number of 

function evaluations  

 

 

As it is shown in table 3.1, for the three test problems the global optimization method with 

multiple units converges to the global optimum with a good accuracy. The error percentage from 

the global optimum in DIRECT algorithm decreases with increasing number of iterations.  The 

error being zero means that the optimum coincides with one of the grid points used. 

 

While the optimization by deterministic algorithms MU and DIRECT converge to the same 

optimum during all tests of each set, the algorithms GA and SA show a probabilistic nature in 

their final convergence. This means that the rate of successful global convergence for MU and 

DIRECT with certain parameters is always 100%. However, table 3.2 shows a significant 

percentage of convergence to a false optimum when the population size of genetic algorithm and 

the value of initial temperature for simulated annealing algorithm are chosen very small. 
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Increasing the population size of GA and the value of initial temperature in SA, enhance the 

percentage of the global convergence 

 

The number of function evaluations in genetic algorithm depends on the size of initial population. 

In genetic algorithm when the population size is made large, the number of function evaluation 

significantly increases. However, there is no correlation between the number of function 

evaluations and the value of initial temperature in simulated annealing algorithm.    

As is clear from table 3.3 the average number of function evaluations for global optimization by 

multi-units and DIRECT algorithm was generally less than the one for genetic algorithm and 

simulated annealing in all of the tests. This can indeed be expected since the dimension is small.  

From Table 3, it can be seen that the number of function evaluations in DIRECT algorithm 

increases with the number of iterations and increase the precision. Also, for multi-unit 

optimization, decreasing the maximum step-size increases the number of function evaluations 

and also improves the precision. Now, comparing the two methods for a given amount of 

precision, it can be seen that the proposed method is at least as good as, or better than, the 

DIRECT algorithm. Because of the grids used by the DIRECT algorithm, sometimes, the error 

goes to zero, but it still requires considerable amount of evaluations to ascertain global 

optimality.  

Figure 3.12 illustrates the sampling points on nonlinear map (AC) calculated by DIRECT 

algorithm with N = 50 iterations (15243 function evaluations). Figure 3.13 shows the dispersion 

of sampling points from the same test problem with multi unit global optimization with Mstep-

size=1 (794 function evaluations). In this particular example the DIRECT algorithm coincides the 

global optimum quite fast with one of the grid points used. However, this technique requires 

more function evaluations compared to the multi unit optimization in order to cover the 

feasibility region to increase the reliability of the final result as the global optimum.  
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Figure 3.12 Sampling points by DIRECT algorithm for AC 

 

 

Figure 3.13 Sampling points by multi-unit optimization for AC 

 

It can be seen from comparing figure 3.13 with figure 3.8 that in multi-unit optimization the 

sampling points are mostly concentrated on the areas where circles are jammed (local optima). 

However, all the local optima on the nonlinear map are not covered depending on the initial 

conditions of the optimization problem. This is because the adaptation laws of the multi-unit 

optimization reduce the variable step size taken by integration in these areas. The integration 

step-size is so adapted to avoid unnecessary function evaluations. 
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3.5 Conclusion 

 

A model-free, unconstrained global optimization method using multi-units was proposed by 

controlling the centre of a shrinking circle on which the gradient is estimated using finite 

difference between two units operating with an offset. For two-input systems, the technique was 

performed on the circumference of a circle of reducing radius. The offset parameter between the 

inputs of the two units was monotonically and iteratively reduced to zero where the radius of the 

circle was monotonically shrinking in parallel.  With this, it was shown that it is possible to 

converge to the global optimum of any two dimensional nonlinear static objective function, 

provided the global optimum is present in the initial circle composed by the centre of the initial 

inputs and the initial value of the radius.  

 

Effectiveness of the proposed algorithm was shown using three benchmark two-input examples. 

Also, it was compared with other deterministic and stochastic algorithms and it was shown that 

the proposed algorithm is indeed efficient in terms of number of function evaluations. 

Development of the proposed algorithm to systems with more than two degrees of freedom is the 

next steps considered in this research framework. 
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CHAPTER 4 GLOBAL OPTIMIZATION OF THREE-INPUT SYSTEMS 

USING MULTI-UNIT ADAPTATION 

 

In this chapter, the multi-unit global optimization is generalized to the three dimensional systems 

(systems with three inputs). The spirit of the previous algorithm in chapter 3 is kept in 

generalization of the method to three dimensions. Furthermore, in three-variable optimization the 

circular path -where the multi-unit optimization takes place- rotates systematically on a spherical 

space in order to cover the circumference of the sphere. On the other hand, the radius of the 

sphere is monotonically decreased in order to cover the feasible region. In other words, the entire 

area of the sphere is going to be swept by these rotations deterministically. To do this, a sufficient 

time scale separation between different dynamics of the algorithm is necessary. The three-

dimensional rotation matrix (Rodrigues’ rotation formula) is employed to handle such a rotation 

of the two units on a shrinking sphere. The contribution in this chapter is related to the adaptive 

laws between the dynamics of two units in three-variable space. The results are illustrated on 

common global optimization test-problems.   

 

4.1 Construction of the algorithm 

 

Consider the problem of minimizing, y = f(u1, u2, u3), where f: R3→R, is a non-convex 

continuous and nonlinear function. The problem may have multiple local optima, (u1k
*, u2k

*, u3k
*) 

k = 1, 2… m, but a unique global minimum, (u1
**, u2

**, u3
**). In the rest of the paper, it is assumed 

that the global minimum is unique. 

 

The proposed algorithm uses the spirit of the global optimization by multi-units for two-input 

systems which has been presented in chapter 3. Similarly, we need two units referred to as “a” 

and “b”.  The idea for generalizing the algorithm to three dimensions is to perform the global 

optimization on the circumference of a circle of variant radius which systematically rotates on a 

shrinking spherical space. The main question that is addressed in this chapter is how the global 
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optimum of a three-dimensional nonlinear map can be found trough this adaptive rotation in the 

multi-unit optimization framework. 

 

It is assumed that the feasible global optimum lies within the initial spherical space. The radius of 

the sphere is reduced to zero in a predefined fashion. If the centre of the sphere is so adapted as to 

keep the best optimum at the circumference of the rotating circle on the sphere, the algorithm 

converges to the global optimum of the nonlinear map when the radius of the sphere goes to zero. 

In order to mathematically formulate the above mentioned methodology, five iterative layers for 

the proposed optimization algorithm are considered. 

 

4.1.1   Layer 1: Global optimization along the circumference of a rotating 

circle on a three-dimensional sphere 

 

Consider a three-dimensional spherical space centered at the input values (u1, u2, u3) and a radius 

of Δ. The multi-unit optimization along the circumference of the circle of variant radius placed on 

this sphere is repeated iteratively. Let (φ, θa) and (φ, θb) be the angles related to the position of 

two units in the spherical space. Then the input values of the two units are given by, 

,a ra b rb= + = +u u Μu u u Μu                             (4.1) 

where, 

1 1 1

2 2 2

3 3 3

, ,
a b

a a b b

a b

u u u
u u u
u u u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u u u

                        

(4.2) 

cos( ) cos( )
sin( )cos( ) , sin( )cos( )
sin( )sin( ) sin( )sin( )

ra a rb b

a b

ϕ ϕ
ϕ θ ϕ θ
ϕ θ ϕ θ

Δ Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Δ = Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦

u u

               

(4.3) 
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Here, (φ,θ) represent the elevation and azimuth angles in the three-dimensional polar system. 

Azimuth is the angle between the perpendicular projection of a given vector and the reference 

vector on the reference plane (in the spherical coordination). The elevation angle φ represents the 

angle between the given vector and the reference vector which is perpendicular to the reference 

plane. The angle φ is common between the coordinates of vectors “a” and “b”. Therefore, the end 

points of the vectors representing the two units move around the circumference of a circle as θa 

and θb vary.  M is a rotation matrix which is changed iteratively. This matrix will be widely 

discussed in the next layers. If we consider M=I3×3 (where I3×3 is the identical matrix), then 

equations (4.1), (4.2) and (4.3) represent a circular path on the sphere of radius Δ which is made 

by evolution of the input values “ua” and “ub”. The adaptation laws (for minimization) along the 

circumference of the circle on the sphere stay the same as previous chapter,  

a θθ θ= +Δ     ,    b θθ θ= −Δ                                          (4.4) 

( )a bk sign f fθ θθ
•
= − Δ −                                              (4.5) 

                      kθ θ θ

•
Δ = − Δ                                                        (4.6) 

Here, these equations correspond to the univariate global optimization along the circle of radius 

Δsin(φ) on a three-dimensional sphere.                  

  

4.1.2   Layer 2:  Recursive global optimization along the circle 

 

The initialization of the initial conditions for the adaptation laws (4.5) and (4.6), the period of 

each iteration on the circumference of the circle (T) and the number of iterations (i) stay the same 

as previous chapter,  

( ) miiTθ π θ+ = +                                                      (4.7) 

                      ( )iTθ π+Δ =                                                          (4.8) 
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In this case, θmi represents the Azimuth angle in three dimensional space which is associated to 

the best optimum in each iteration. At the beginning of first iteration, the initial value of θm0 is 

arbitrarily set at zero. In the next iterations, θmi, is computed from the values of the angle θ 

corresponding to units “a” and “b” at the end of the previous iteration as follows, 

( )
( )

a a b
mi

b a b

iT if f f
iT if f f

θ
θ

θ
−

−

<⎧
= ⎨ ≥⎩

                                          (4.9) 

Here fa and fb are objective function values provided by two units “a” and “b” which have three 

inputs. The period of each iteration on the circumference of the circle (T) is calculated by, 

2
1 2(ln )

d
T T

k k

π
θ

θ
θ θ θε

π
ε

Δ
= = =

Δ∫                                   (4.10) 

4.1.3   Layer 3: Expansion and contraction of the radius of the circle 

 

The circle on the sphere which was introduced in layer 1 is the locus where multi-unit 

optimization takes place.  In order to deterministically cover the whole feasible three dimensional 

region of optimization it is proposed that the mentioned circle is rotated on the sphere 

systematically. The sphere is contracted towards global optimum in parallel with a slower rate as 

it will be seen in layer 5.  

In three dimensional space, any rotation can be represented by a unit vector as the axis of rotation 

and an angle of revolution about that vector. Thus, given a point with orientation p1 and another 

point with a different orientation p2 in three dimensional space, we can always find an axis and 

angle which will rotate from orientation p1 to orientation p2.  The concept of the (angle-axis) 

rotation in three dimensional space can be expressed by the “Rodrigues” rotation matrix formula 

(Rodrigues, 1816). M is the Rodrigues rotation matrix that operates on any point on the sphere by 

rotating it about the unit vector Γ = (Γ1,Γ2,Γ3) by the angle γ. This matrix is given by the 

representation (Appendix I), 
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2
1 1 2 3 2 1 3

2
3 1 2 2 1 2 3

2
2 1 3 1 2 3 3

cos (1 cos ) (1 cos ) sin sin (1 cos )

sin (1 cos ) cos (1 cos ) sin (1 cos )

sin (1 cos ) sin (1 cos ) cos (1 cos )

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

⎡ ⎤+ Γ − Γ Γ − −Γ Γ + Γ Γ −
⎢ ⎥

= Γ + Γ Γ − + Γ − −Γ + Γ Γ −⎢ ⎥
⎢ ⎥
−Γ + Γ Γ − Γ + Γ Γ − + Γ −⎢ ⎥⎣ ⎦

M

   (4.11) 

As will be seen in the rest of the algorithm, the angle and axis of rotation (γ, v) are systematically 

changed from each iteration to another. This way, the whole surface of the spherical space is 

adaptively covered by the circle of layer 1. The initial axis of rotation for making the circular 

path of the multi-unit optimization is considered on u1-axis. Hence, the rotation about u1-axis is 

inherently a part of the basic algorithm in order to make a circular path and there is no need for 

compensation of the rotation about this dimension. However, the dynamics of the angle φ is 

changed linearly or exponentially. This angle repeatedly covers a complete range from 2π to ε 

and causes that the radius of the circle on the sphere varies between Δsin(ε) and Δ. The 

exponentially decreasing dynamics of the angle φ is considered to be, 

kϕϕ ϕ
•
= −                                                         (4.12) 

k kϕ θ                                                           (4.13) 

Inequality (4.13) indicates an adequate time scale separation between the dynamics of the angles 

θ and φ.  Here, kφ > 0 is a parameter that determines the rate at which φ is reduced to ε. The extra 

rotations of the circular path of the units on the sphere which is caused by angle φ in three-input 

systems affect the dynamics of the algorithm which were established for two-input-systems in 

previous section. Therefore, the compensation of the extra rotations of the circle on the sphere is 

necessary to latch on the global optimum found on the circular path. This compensation is done 

by changing the axis and angle of rotation at each iteration.  

 

Each iteration of the algorithm indicates a complete circular rotation of the units on the sphere. 

The converging point on the sphere where the last rotating circle ends, corresponds to particular 

latitude and longitude which is identified as the global optimum found on the surface of the 
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sphere. The coordinates of the point which correspond to the global optimum of each iteration are 

presented as,          

mi i rmi= +u u Μ u                                                 (4.14) 

1 1

2 2

3 3

cos( )
, , sin( )cos( )

sin( )sin( )

m mi

m m rmi mi mi

m mi mi

u u
u u
u u

ϕ
ϕ θ
ϕ θ

Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u u u
                (4.15) 

where φmi represents the second polar angle which is associated to the global optimum at each 

iteration. At the beginning of first iteration, the initial value of φm0 is arbitrarily set at zero. In the 

next iterations, φmi is fixed equal to the value of the angle φ at the end of the previous iteration 

and remain fixed until the end of that iteration, i.e., 

( )mi iTϕ ϕ −=                                                      (4.16) 

Mi is the rotation matrix which is updated at each iteration and (φmi, θmi) corresponds to the 

global optimum of the previous iteration. Figure 4.1 depicts one iteration of the multi-unit global 

optimization by units “a” and “b” on the rotating circular path on the sphere. 

 

Figure 4.1 Global optimization along the circumference of a rotating circle on the sphere 
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In order to realize the above mentioned method, the angle and axis of such a dynamic continuous 

rotation must be so adapted that (φmi, θmi) of each iteration corresponds to the global optimum 

found at the previous iteration (φm(i-1), θm(i-1)). This is necessary in order to latch the rotating 

circles on the global optimum found at each iteration. Therefore, the starting point of the multi-

unit optimization on the circle of iteration “i” must be equal to the global optimum found at the 

previous iteration “i-1”, i.e., um(i-1). This can be shown as follows,   

( ) ( ) ( 1) , 1starta i startb i m i i−= = ∀ ≥u u u                                      (4.17) 

 ( 1)( ) ( )a b m iiT iT+ + −= =u u u                                                (4.18) 

1 ( 1)( ) ( )i ra i rb i rm iiT iT+ + − −+ = + = +u M u u M u u M u                      (4.19) 

Since the center of the sphere is not affected by the rotation matrix Mi, the above equation 

becomes, 

1 ( 1)( ) ( )i ra i rb i rm iiT iT+ + − −= =M u M u M u                                  (4.20) 

If we consider the following substitutions in this equation, 

( ) ( )si ra rbiT iT+ += =v u u                                                (4.21) 

( 1) 1 ( 1)m i i rm i− − −=v M u
                                                   (4.22) 

it can be recast as, 

( 1)i si m i−=M v v
                                                           (4.23) 

At the beginning of first iteration, the initial rotation matrix M0 is arbitrarily set at identical 

matrix I3×3. In the next iterations, Mi is iteratively computed as follows in the rest of this layer. 

Equations (4.9) and (4.16) show that (φmi, θmi) indicate the converged value by multi-units and 

would represent the global optimum along the circumference of the circle of iteration “i-1” if ε = 

0. Therefore, according to (4.3), (4.15), equations (4.21) and (4.22) become, 
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The main question that comes to mind from interpretation of equation (4.23) would be: what is 

the rotation matrix Mi that when multiplies by the starting point (vs) on the rotating circle of the 

next iteration (i), it becomes equal to the global optimum (vm) found on the circle of previous 

iteration (i-1). On the other hand, Δ, φm(i-1), φmi, θm(i-1), θmi and the rotation matrix of previous 

iteration Mi-1 are known, therefore vs  and vm(i-1) are known vectors.  

 

As was mentioned before, any rotation in three dimensions is described by a rotational angle 

about an axis. Given the vectors vs and vm, we need to find an axis and angle which will rotate vs 

to vm. It is clear that the angle of rotation can be calculated by “dot” product of these vectors. The 

axis of rotation would be the line which is perpendicular to both vectors (cross product of these 

vectors). The angle and the axis of rotation at each iteration (γmi, Γmi) are defined as, 

( 1)

( 1)

arccos
T
si m i

mi
si m i

γ −

−

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

v v

v v                                       (4.26) 

( 1)mi si m i−= ×Γ v v                                                  (4.27) 

The angle and axis of rotation (γmi, Γmi) is adequate information needed for constructing the 

elements of rotation matrix Mi at each iteration. This way the starting point of the next iteration 

begins from the global optimum found during previous iteration and the effect of decreasing 

angle φ on the position of the circle on the sphere is cancelled out at each iteration. As a result, 

the algorithm rotates the whole circle by the angle of γmi about the axis Γmi. In layer 5 we will see 
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that how the circle where the multi-unit optimization takes place always latches on the global 

optimum found in the previous iteration.  

 

4.1.4   Layer 4:  Recursive global optimization along the sphere 

 

The initialization of the initial condition for the adaptation law (4.12) is set such that the 

dynamics of φ is repeatedly decreased from 2π + φmi to ε, i.e., 

( )( ) 2 ,mit t tϕ ϕ ϕ εϕ π ϕ ≤= + =                                     (4.28) 

The period of a complete extraction-contraction of the circle on the sphere (Tφ) can be calculated 

by,  

2
1 2(ln )dT

k k

π

ϕ
ϕ ϕε

ϕ π
ϕ ε

= =∫                                          (4.29) 

Furthermore, since kφ kθ, it can be concluded that Tφ Tθ. If this condition is satisfied, then after 

j=Tφ / Tθ iterations the rotating “expanding-contracting” circles complete a whole coverage of the 

surface of the sphere from zero to 2π.  

 

4.1.5   Layer 5:  Reducing the radius of the sphere 

 

It is assumed that the feasible global minimum lies within the initial sphere (centered at the initial 

inputs (u1(0),u2(0),u3(0)) with the radius of Δ(0)). This radius is monotonically reduced to zero 

i.e., 

0(0) 0sk
•

Δ = − Δ Δ = Δ >                                   (4.30)    

sk k kϕ θ                                                     (4.31) 
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ks > 0 is a parameter that determines the rate at which Δ  is reduced to ε. On the other hand, the 

adaptation laws of the centre of the sphere are so chosen to keep umi at the same point. To do this, 

the derivative of the coordinates of the global optimum found at each iteration (equation 4.14) 

must be set at zero i.e.,  

0mi i rmi

•• •

= + =u u Μ u                                                 (4.32) 

( )i rmii rmi rmi i

•• • •

= − = − +u Μ u Μ u Μ u                                 (4.33) 

In order to being latch on global optimum, miθ
•

and miϕ
•

 intuitively must be zero within each 

iteration.  That is why these angles are kept constant within each iteration equal to the angles of 

the global optimum found from previous iteration (equations 4.9 and 4.16). The angle and axis of 

rotation (γmi, Γmi) are also constant within each iteration, thereby 0mi
•

=M . The only variable in 

equation (4.33) which is dynamically changed within each iteration is Δ. So, the rate of change in 

the coordinates of the center of the sphere is continuously calculated as follows, 

cos( )
sin( ) cos( )
sin( ) sin( )

mi

i rmi i mi mi

mi mi

ϕ
ϕ θ
ϕ θ

•• •
⎡ ⎤
⎢ ⎥= − = −Δ ⎢ ⎥
⎢ ⎥⎣ ⎦

u Μ u Μ                                (4.34) 

This means that the sphere with the radius Δ and centre (u1, u2, u3) is contracted towards the 

global optimum of the nonlinear function in such a manner as to keep the best optimum found 

within each iteration. The algorithm stops when Δ is reduced to a prefixed value ε. The rate of 

change of Δ must be slower than the dynamics of the angles θ and φ. Note that the slowest time 

scale that exists in this algorithm corresponds to dynamics ofΔ. The total time of integration (Ttot) 

is calculated by the following formula,  

0
01 (ln )tot

s s

dT
k kε ε

Δ ΔΔ
= =

Δ∫                                                (4.35) 

The number of total iterations can be calculated by N=Ttot / Tθ  , where Tθ  is the period of each 

circular rotation of the units on the sphere. 
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4.1.6   Illustration and explanation of the layers of optimization 

The contraction of the sphere is depicted in figures 4.2 and 4.3. Since the space of rotations is 

continuous, the centre of the sphere is expected to converge to the global optimum of the non-

linear map when Δ reaches zero. As it is clear from these figures, the continuously shrinking 

spheres never come out of the prior one.  

 

At t=0 consider the initial rotation in which the axis of rotation lies on the u1-axis. Beginning 

with the initial conditions set at ((φm0, θm0) = (0, 0)), the point on the north pole of the sphere 

centered at (u1, u2, u3) would be the starting point of multi-unit optimization. Any specific 

rotation realized by the rotation matrix M can be specified by a circular slice on the sphere. The 

multi-unit optimization along the circumference of the rotating circle is repeated every T time 

units. The position angle θ is periodically adapted based on the multi-unit adaptation laws along 

the circumference of the circle by two units (covering the horizontal rotation about the u1-axis 

from the range of ε to 2π Radians). Meanwhile the rotating circle is systematically moved from 

the north towards the south pole by decreasing the perpendicular position angle φ from 2π to ε 

Radians which is the complete perpendicular rotation. The initial rotating circle made by 

multiplication of the rotational matrix M on this point would be very small near the north pole. 

Accordingly, at t=0 the three-input systems “a” and “b” start to rotate about the u1-axis moving 

in a circular path with a very small radius. 

 

As the position angle φ changes, the circle moves southward and the radius of the rotating circle 

becomes larger. The dynamics of the radius of the rotating circle on the sphere depends on 

dynamics of Δ and φ. If the centre of the sphere is so adapted as to keep the best optimum at the 

circumference of the rotating circle, the starting point of each rotation on the sphere is specified 

by the global optimum found on the circle of previous rotation. Having φ decreased at the same 

time with a slower speed, the rotating circles continue to enlarge until the circle whose 

circumference is equal to the equator of the sphere is reached. From now on, the radii of the 

rotating circles become smaller. If an enough time scale separation between the dynamics of the 

angles θ and φ is considered, once this radius of the circle shrinks to zero, the entire surface of the 
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sphere is covered by these rotating circles. Thus, the set of expanding and contracting rotating 

circles would cover the entire surface of the sphere. Figure 4.4 depicts a part of repetitive 

expansion and contraction of the rotating circles latched on the global optimum found on their 

circumference iteratively (umi). 

  

Figure 4.2 Contraction of the sphere towards the global optimum (top view) 

 

 

Figure 4.3 Contraction of the sphere towards the global optimum (side view) 



94 

 

 

Figure 4.4 Illustration of repetitive expansion and contraction of the rotating circles on the sphere 

toward the global optimum (umi) 

 

The structure of the above mentioned algorithm is presented in flowchart at figure 4.5. 
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Figure 4.5 Flow chart of the global optimization of three-input systems using multi-units 
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4.2 Convergence 

 

Consider the multi-unit optimization scheme with the adaptation laws (4.5),(4.6),(4.12),(4.30) 

and (4.33) with ε=0. If (a) f(.) has a unique global minimum, (b) ks kφ kθ  and (c) (u1
**- u10)2+ 

(u2
**- u20)2+ (u3

**- u30)2≤ Δ0
2 , then lim

t→∞
u1(t)=u1

**,  lim
t→∞

u2(t)=u2
** and  lim

t→∞
u3(t)=u3

**. Similarly, 

the basic condition for this algorithm to converge to the global optimum is (u1
**- u10)2+ (u2

**- 

u20)2+  (u3
**- u30)2≤ Δ0

2. Since the location of u** is not known a priori, the above condition will 

be satisfied by choosing a large enough the initial value for Δ0. The downside of such a choice is 

that the algorithm requires more time to get to the optimum.  

 

4.3 Illustrative examples 

4.3.1 Test problems 

 

Ten test problems were selected for evaluation of the developed algorithm in three variables case. 

These test problems have been widely used in global optimization literature. The analytical 

results for four of these problems are presented in details. The results of multi-unit global 

optimization are then compared with other competitive methods in this class. For the other six 

test problems only the numerical results are given for briefness. These global optimization 

benchmarks have been presented in appendix II. 
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Example 4.3.1 Levy function (Levy and Montalvo, 1985) 
1
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(4.36) 

This function has several local minima. 

Example 4.3.2 Hartman function H3 (Dixon and Szegö, 1978) 
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The coefficients ck, aki, pki have been given in appendix C. This function has four local minima. 

Example 4.3.3 Perm function (Deng and Ferris, 2007) 
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 (4.38) 

 

For a given β=10 and n=3, this function has the minimum objective value f (u*) = 0 at ui
*= (i)-1. 

The domain of definition is x [-1,1]3. The smaller the β, the number of optima increases, thereby 

increasing the complexity of the test function. 
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Example 4.3.4 (Rosenbrock, 1960) 
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(4.39)

 

This function has several local minima. 

 

4.3.2 Application of global multi-unit optimization method 

 

For example 4.3.1 (Levy function), the initial settings (u10, u20, u30) = (3, 4.7, -5), and Δ0 = 10 

were considered such that the global minimum among the several other local ones lies in the 

sphere composed by the centre of (u10, u20, u30) and the radius of Δ0. The key condition to satisfy 

is the inequality (u1
**- u10)2+ (u2

**- u20)2 + (u3
**- u30)2≤ Δ0

2 which is in fact verified by choosing 

Δ0 big enough. The other parameters used for all examples were ks = 0.001, kφ = 0.01, kθ = 0.1, ε 

= 0.01.  

Applying the global optimization algorithm using multiple units makes the system inputs to 

converge to the global minimum. The time evolution of the inputs and Δ are shown in figure 4.6. 
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Figure 4.6 Evolution of the inputs and Δ for example Levy function 

 

As it can be seen from this figure the centre of the circle (u1,u2,u3) converges to the global 

optimum at (1,1,1), while the radius of the circle (Δ) is asymptotically reduced to ε. The 

shrinking spheres are depicted in figure 4.7. The orientation of the shrinking depends on where 

the global optimum on the circumference of the rotating circle on sphere is found.    

 

Figure 4.7 Evolution of the spheres for example Levy function 
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In example 4.3.2 (Hartman function), the initial conditions are chosen to be (u10, u20, u30) = (0.9, 

0.1, 0.3) and Δ0 = 1. Other tuning parameters remain the same. As can be seen in figure 4.8, 

applying the global optimization algorithm using multiple units makes the system input to 

converge to the global minimum at (u1
**,u2

**, u3
**)= (0.2143, 0.5533 , 0.8519) (red line).  

  

Figure4.8 Evolution of the centre of sphere with Ttot/T=66 (red line) and with Ttot/T=10 (blue 

line) for example Hartman function  

 

Similar to the two-variable optimization, if the condition T << Ttot is not satisfied i.e., if the 

fraction kθ / kφ or kφ / ks are not large enough, the shrinking of the circle (or sphere) becomes too 

fast and the global optimum could be missed. In this example, the period of each iteration on the 

circumference of the rotating circle, the period of a complete extraction-contraction of this circle 

on the sphere and finally the total time of integration were Tθ=60.443sec, Tφ=600.443sec and 

Ttot=4000.6052sec respectively. 
 

It is clear that after Tφ / Tθ =10 iterations the rotating “expanding-contracting” circles complete a 

whole coverage of the surface of the shrinking sphere from zero to 2π. The number of total 

iterations (rotations on the sphere) was Ttot/ Tθ =66. However, for instance if this ratio is reduced 

to 10 (with ks = 0.01, kφ = 0.05, kθ = 0.1), the multi-unit optimization would converge to the local 

optimum at (0.8775, 0.4061, 1.0285) rather than the global one. This is depicted in figure 4.8 

using the blue line. 
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Figure 4.9 shows the time evolution of the angles θmi , φmi for example 4.3.3 (Perm function) for 

the first forty iterations. The initial inputs were (u10, u20, u30) = (0.2,-0.3, 0) and Δ0 = 2. The 

values of these angles evolve depending on the polar position of the global optimum found on the 

circumference of the rotating circle on the shrinking sphere. However, their value remain 

constant within the time interval of each iteration “i”.  

 

Figure 4.9 Evolution of θm and φm for example Perm function 

 

For example 4.3.4 (Rosenbrock function), the movement of the centre of the shrinking circle with 

two different maximum step size (Mstep-size ) of the integrator in the adaptation laws is presented in 

figure 4.10 ODE23 has been chosen for integration. The initial conditions and other tuning 

parameters were (u10, u20, u30) = (3,-0.3,-3) and Δ0 = 5. The maximum step size of the integration 

affects the precision and the number of function evaluations needed for convergence. If Mstep-size = 

1, the number of function evaluations is 2218 and the algorithm converges to (0.9924, 0.9848, 

0.9697) with 2e-4 difference from the real global optimum (red line). If Mstep-size = 5, the number 

of function evaluations is 2208. However, the algorithm converges to (0.9708, 09423, 0.8875) 

which is less precise with 0.0042 error (blue line). 
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Figure 4.10 Evolution of the centre of sphere for Mstep size = 1 (red line) and Mstep size = 5 (blue line) 

for example Rosenbrock function 

 

4.4 Comparison with other global optimization methods 

 

In this comparison, two benchmarking criteria are taken into account according to Baritompa and 

Hendrix (2005):  

1) “Effectiveness” which indicates whether the real global optimum has been found with a 

given approximation and reflects the accuracy of the solution. This benchmarking 

criterion can be evaluated by the number of successful convergences to the global 

optimum by a certain algorithm. To assess the effectiveness of an optimization method, 

usually the algorithm application is repeated several times. 

2) “Efficiency” which reflects the computational cost required to global convergence and is 

measured by the number of function evaluations used by the algorithm.  

 

In order to demonstrate the performance of the proposed method (similar to previous chapters), 

the results of multi-unit global optimization are compared with DIRECT algorithm, genetic 

algorithm and simulated annealing for all considered well-known test problems presented in 

section 4.3 and appendix II. All the algorithms have been implemented using the Optimization 
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Toolbox 4.0 of MATLAB version 7.8.0.347(R2009a) which is a registered trademark of the 

MathWorks. The MATLAB version of the DIRECT algorithm developed by Björkman and 

Hölmstrom (1999) has been also used in this study. For stochastic methods, a set of 100 

individual implementations of the algorithm was considered.  

  

In three variables optimization, although the searching area for GA, SA and DIRECT algorithms 

is a cube, the searching area for MU is a sphere. The radius of the initial sphere (Δ0) was so 

chosen to include the cube. The initial input values and the other setting parameter values of the 

algorithm for different tests remain the same as previous section. The initial input values for all 

benchmarks are given in appendix II. The initial starting point of optimization has been chosen at 

the centre of the cube/sphere bounds of the inputs for each benchmark. The initial starting point 

in each problem has been considered the same for all of the algorithms.  

 

The tuning factors for genetic algorithm and simulated annealing were set as their default values. 

Similarly, for each one of the algorithms, three sets of tests with different tuning parameters were 

performed. The following variables during each set of these tests were changed: (i) population 

size (Npop) for genetic algorithm, (ii) initial temperature (Tinitial) for simulated annealing (iii) 

number of iterations (Niteration) for DIRECT and (iv) type of the integrator (ODE) for the proposed 

algorithm. In this study, the maximum variable step size of the integration routine for adaptation 

laws in multi-unit optimization is set fix (in contraction with chapter 3). The variable step size is 

adapted automatically during the integration routine by MATLAB. The integration step-size is so 

adapted to avoid unnecessary function evaluations. However, in this study the algorithm is 

analyzed in terms of number of function evaluations obtained by deferent integrator types (ode45, 

ode113, ode23). More information about these ordinary differential equation solvers can be found 

in MATLAB website. Convergence is quantified in terms of percent error from the global 

optimum as (3.16). However, for cases that the real global optimum value was zero, the obtained 

objective function value is recorded (i.e., the difference between the function and its accurate 

global value). Similar to Chapter 3, the effectiveness of deterministic algorithms were compared 

in terms of the percentage of error from the global optimum (Table 4.1). The effectiveness of 

probabilistic algorithms were evaluated in terms of percentage of successful convergence to the 
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global optimum (with E% <0.01) in table 4.2. The efficiency of all the algorithms is compared by 

evaluating the corresponding average number of function evaluations needed for global 

convergence (Table 4.3).  

 

Table 4.1 and Table 4.3 show that the accuracy of multi-unit optimization and the number of 

function evaluations in this algorithm depend on the integrator type (ode45, ode113, ode23). The 

step size and precision of the integrator in these solvers varies differently. These integrator 

routines are designed for solving different nonlinear differential equations with different 

characters in MATLAB. On the other hand, depending on the position of the center of initial cube 

which is split by DIRECT algorithm, the number of function evaluations needed for global 

convergence varies. As it was shown in chapter 3, this technique requires more function 

evaluations compared to the multi unit optimization in order to cover the feasibility region to 

increase the reliability of the final result as the global optimum.     

Table 4.3 presents the number of function evaluations needed for these convergences. As is 

evident from the results presented in this table, the DIRECT algorithm converges very fast and 

obtains accurate results. The convergence of the DIRECT algorithm to the global optimum is 

guaranteed in the limit when the number of iterations goes to infinity (Niteration → ∞). However, to 

achieve results in finite time the number of iterations must be finite. In the DIRECT algorithm, it 

is obvious that the greater the number of iterations, the more accurate the results will be. 

However, a greater number of iterations increases the number of function evaluations. 

Nevertheless, still with less computational cost the results are quite accurate. On the other hand, 

numerical comparisons of multi-unit optimization with GA and SA clearly indicate the advantage 

of MU in terms of accuracy of solutions. Herein, MU usually takes a smaller number of function 

evaluations comparing these two methods. In terms of successful global convergence, SA showed 

a better performance in comparison with GA (Table 4.2). The reason for this in general is that the 

genetic algorithm needs a greater number of function evaluations to improve the performance. 
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Table 4.1 Comparison between MU and DIRECT in terms of percent error from the global 

optimum 

 

 

Table 4.2 Comparison between GA and SA in terms of successful global conv. (E% < 0.01) 
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Table 4.3 Comparison between global MU, DIRECT, GA and SA in terms of average number of 

function evaluations 

 

The comparison results are mostly similar to the results which were obtained in optimization of 

two-input systems. As shown in table 4.1, for all test problems the global optimization method 

with multi-units converges to the global optimum with a good accuracy. The error percentage 

from the global optimum in this algorithm depends on the accuracy of the integrator type and the 

error tolerances used in the integration.  The error percentage from the global optimum in 

DIRECT algorithm decreases with increasing the number of iterations. Again, comparing the two 

methods for a given amount of precision, it can be seen that the proposed method is at least as 

good as, or better than, the DIRECT algorithm. The optimization by deterministic algorithms MU 

and DIRECT converge to the same optimum during all tests of each set. However, table 4.2 

shows that the algorithms GA and SA show a probabilistic nature in their final convergence and 

converge to a false optimum when the population size of the genetic algorithm and the value of 

initial temperature for simulated annealing algorithm are chosen to be very small. Again, 
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increasing the population size of GA and the value of initial temperature in SA, enhances the 

percentage of the global convergence. It is clear from table 4.3 that the number of function 

evaluations for global optimization by multi-units has been increased compared to optimization 

of the two-dimensional functions in chapter 3.  This can be expected since the dimension is 

increased by one. However, the number of function evaluations in this algorithm is still 

competitive with the other algorithms depending on the solver type chosen for integration.  

According to table 4.1 and 4.4 it is difficult to find a correlation between the integrator type and 

precision in this algorithm. In general, it cannot be concluded which solver gives more precise 

solutions for all functions. This is because of the fact that ODEs in MATLAB solve the 

differential equations with different routines and their precision depends on different factors 

including stiffness of the function. A prior knowledge about some characteristics of the objective 

function would be very helpful to choose the right integrator in different optimization problems.   

ODE45 and ODE23 are one-step solvers meaning that in computation current solution they need 

only the solution at the previous time point. ODE113 is a multi-step solver meaning that it needs 

the solutions at several preceding time points to compute the current solution (MATLAB version 

7.6.0.324(R2008a) as a trademark of the Mathworks).  In general, ODE45 is the best solver to 

apply as a first try for most problems. ODE23 may show more efficiency than ODE45 in the 

presence of moderate stiffness. ODE113 may be more efficient than ODE45 for solving 

computationally intensive problems. The order of accuracy for ODE45, ODE23 and ODE113 are 

medium, low and low to high respectively. The average number of function evaluations for 

global optimization by DIRECT algorithm was generally less than the other methods when 

Niteration is chosen small.  However, very small numbers of iterations in this algorithm decreases 

the accuracy (e.g., Perm function in table 4.1). In general, because of the grids used by the 

DIRECT algorithm it is capable to converge fast with a good accuracy. However, it still requires 

more function evaluations to ascertain global optimality. As was mentioned in chapter 3, the 

number of function evaluations in genetic algorithm depends on the size of initial population. In 

genetic algorithms, the larger the population size, the more is the number of function evaluation. 

Similar to optimization of two-input systems, there is no correlation between the number of 

function evaluations and the value of initial temperature in simulated annealing algorithm. The 

comparison results between multi-unit and DIRECT algorithms for more test problems listed in 
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appendix II are presented in tables 4.4 and 4.5. The set of 100 individual implementations of the 

stochastic methods for these problems was omitted for the sake of briefness.  

 

Table 4.4 Comparison between MU and DIRECT in terms of percent error from the global 

optimum for the problems listed in appendix II 

 

Table 4.5 Comparison between global MU and DIRECT in terms of average number of function 

evaluations for the problems listed in appendix II
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4.5 Discussion on extension of the algorithm to higher dimensions  

 

Consider an n-dimensional spherical space centered at the input values (u1, u2…un) and a radius 

of Δ. Let (Φ1a, Φ2a … Φ(n-1)a) and (Φ1b, Φ2b … Φ(n-1)b) be the angles of the two units. Then the 

input values of the two units are given by, 
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M would be the rotation matrix for n- input systems that affects the points on the hyper-sphere. 

This matrix would be the extension of “Rodrigues” rotation matrix to higher dimensions. The 

idea for generalization of the algorithm to higher dimensions is that the multi-unit global 

optimization takes place repeatedly along the circumference of a rotating circle on an n-

dimensional hyper-sphere. In optimization of a system with n-variables the circle of optimization 

rotates systematically on the n-dimensional hyper-sphere in order to cover the entire feasible 

hyper-spherical surface. In other words, the entire area of the hyper-sphere is going to be swept 

by these rotations. On the other hand, the angle and axis of such a dynamic continuous rotation 

must be so adapted that (Φ1, Φ2, …, Φ(n-1))mi in each iteration (rotation) correspond to the global 

optimum of the previous iteration.  

 

Any rotation in n-dimensions is described by a rotational angle about an axis. The concept of 

rotation explained in three-dimensional systems can be analogously extended to a general 

rotation in n-dimensional hyper-spherical space. Generally the motion of an n-dimensional point 

in a circular path is called rotation in an n-dimensional hyper-spherical space. When a point 

rotates about an axis, it traces a circular path as it moves through space. The axis of rotation 

about which the rotation of point takes place can be a point, line, plane, volume,…or an n-

dimensional space depending on the dimension of the system of rotation (2,3,4,…, n 

respectively). A good visualization of rotation matrices entries for spaces up to dimension sixteen 

can be found in http://demonstrations.wolfram.com/RotationMatrixEntries/. 

 

The initial rotating circle made by multi-unit optimization between two units starts from a point 

which is predefined by the initial position angles (Φ1, Φ2, …, Φ(n-1))0 in the polar system. The 

position angle Φ(n-1) is periodically adapted based on the multi-unit optimization along the 

circumference of the circle by adaptation laws between two units (covering the rotation range of ε 

to 2π Radians). This way a complete rotation about the u1 axis would be completed. The global 

optimum found on the circumference of the rotating circle is retrieved at each iteration. 

Meanwhile the position angle Φ(n-2) increases monotonically (with a slower dynamic compared to 

dynamics of Φ(n-1)) and the circle grows until this angle reaches π Radians. At this point the 

rotating circle begins to shrink once again as the angle Φ(n-2) approaches 2π Radians. This way a 
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complete rotation about the u2 axis would be completed. Having complete rotation about both of 

the axes u1 and u2, a complete rotation about the plane of u1u2 would be completed in the range of 

ε to 2π. In a similar manner the position angles Φ(n-3), Φ(n-4),…, Φ1 monotonically increase (from 

ε to 2π Radians) with an enough time scale separation between their dynamics thereby 

completing an entire rotation about their relevant rotation axes u3, u4, …, u1 respectively.  

 

In 3, 4, 5,… , n dimensional space the basic axes of rotation about which the rotation of a point 

takes place would be the lines of u1, u2, u3 - the planes of u1u2, u1u3, u1u4, u2u3, u2u4, u3u4 - the 

volumes of u1u2u3, u1u2u4, u1u2u5, u1u3u4, u1u3u5, u1u4u5, u2u3u4, u2u3u5, u2u4u5, u3u4u5 and 

eventually the n-2 dimensional spaces respectively. For n dimensional space the total number of 

basic rotations about the basic axes is the number of n-2 combinations from n, i.e., 
2

n

nC −
.  

In the n-dimensional space, let U represent the set of all possible rotation axes made by u1, 

u2…un. For instance, in the four-dimensional space (n=4) the mentioned set of axes has six 

members and it would be the set of following planes U = {u1u2, u1u3, u1u4, u2u3, u2u4, u3u4}. Let 

UN represent each member of this set where N is the number of members, e.g., in the four-

dimensional space (n=4), N=6 and U1 = u1u2, U2 = u1u3… U6 = u3u4. In general case the first 

member is considered as U1 = u1u2…un-2. 

 

Having the structure of the rotation matrix in n-dimensional space, the axis and angle of rotation 

of any point corresponding to units “a” and “b” can be obtained in a similar manner for three 

dimensions. This way an entire rotation about all axes of rotation made by all variables u1, u2…un 

must be established. These rotations would be about the set of axes of lines, planes, volumes and 

etc. made by variables u1, u2…un depending on the dimension of the hyper-spherical space (n).  

Therefore, each of these rotations takes place about the axes of rotations in U which was defined 

earlier. The rotations are performed in order to cover the entire n-dimensional hyper-sphere. 

However, the extra rotations about different axes in higher dimensions affect the dynamics of the 

two units on the circle of the basic algorithm (in two dimensions) which was established in 

chapter 3. Therefore, the compensation of the extra rotations about the axes in higher dimensions 

is necessary to latch on the global optimum found on the circular path.  
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At t=0 consider the initial rotation in which the axis of rotation lies on U1. Beginning the multi-

unit optimization at the north pole of the hyper-sphere centered at (u1, u2,…, un), a point very 

close to the north pole would be the starting point of optimization (Φ1, Φ2, …, Φ(n-1))m0 =(ε, ε …, 

ε). Any specific rotation realized by the rotation matrix M would be on a circular slice on the n 

dimensional sphere. The multi-unit optimization along the circumference of this rotating circle 

inside the hyper-sphere is repeated every T time units. The position angle Φn-1 is periodically 

adapted based on the multi-unit adaptation laws along the circumference of the circle by two 

units (covering the rotation about the axis U1 in the range of ε to 2π Radians). In other words, Φn-

1 plays the role of angle θ in chapter 4. Meanwhile the rotating circle is moved from the north to 

the south pole by simultaneous increasing the other position angles Φ1, Φ2, …, Φn-2 from ε to 2π 

Radians (with an enough time scale separation between their dynamics)..  

 

The initial rotating circle on the hyper-sphere made by multiplication of the combinatorial 

rotational matrix M on this n-dimensional point would be very small near the north pole if the 

value of the initial rotation angles (Φ1, Φ2, …, Φ(n-1))0 are chosen small (ε, ε, …, ε). In other 

words, at t=0 the n-input systems “a” and “b” start to rotate about U1-axis moving in a circular 

path on a hyper-sphere with a very small radius. As the position angles Φ1, Φ2, …, Φn-2 

accordingly become larger, the circle moves southward and the radius of the rotating circle 

becomes larger. The dynamics of the radius of the rotating circle on the hyper-sphere depends on 

the dynamics of Δ, the dynamics of position angles Φ1, Φ2, …, Φn-1. The rotation angle γ 

compensate the effect of the dynamics of position angles Φ1, Φ2, …, Φn-1 in order to latch the 

circumference of the rotating circle on the global optimum found in each iteration. This is 

realized through rotation matrix M. 

 

If the centre of the hyper-sphere is so adapted as to keep the best optimum at the circumference 

of the rotating circle, the starting point of each rotation on the hyper-sphere is specified by the 

global optimum found on the circle of previous rotation. Having Φ1, Φ2, …, Φn-2 increased at the 

same time with dynamics of Φn-1 but with a slower hierarchical speed, the rotating circles 

continue to enlarge until the circle whose circumference is equal to the equator of the hyper-

sphere is reached. From now on, the radii of the rotating circles become smaller. Once the radius 
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of the circle completely shrinks to zero, the entire surface of the sphere is covered by these 

rotating circles. Briefly, if these rotations are repeated with enough time scale separation between 

the dynamics of the angles Φ(n-1), Φ(n-2),…, Φ1, the set of expanding and contracting rotating 

circles would cover the entire surface of the n-dimensional hyper-sphere. These angles must 

increase with different predefined speeds at the same time. This is consistent since an n-

dimensional axis of rotation offers enough space (degrees of freedom) for rotation with different 

speeds in different dimensions. (Φ1, Φ2, …, Φ(n-1))mi would represent the global optimum along 

the circumference of the circle in iteration “i-1” if ε = 0. Each iteration of the algorithm is a 

complete circular rotation on the hyper-sphere. The converging point where the last rotating 

circle on the hyper-sphere ends up corresponding to a particular latitude and longitude which is 

identified as the global optimum found on the surface of the hyper-sphere. 

The time scale separation between the dynamics of the position angles Φ1, Φ2, …, Φn-1 has the 

main role in convergence of the algorithm to the n-dimensional global optimum. The difference 

between the values of the adaptation gains for these angles must be chosen large enough as 

follows, 

1 2 ( 1)... nk k kφ φ φ −  

The time scale separation between the different layers of this method makes the convergence of 

the optimization algorithm slow when the number of variables increases.   

 

4.6 Conclusion 
 

A new method for solving unconstrained global optimization problems with three variables is 

proposed in this chapter. This technique was the extension of the global optimization of two-

input systems with multi-units to three dimensions. The proposed multi-unit method was found to 

be effective in terms of accurate convergence to the global optimum and computationally 

efficient. The computational comparisons with three global optimization techniques in this class 

(DIRECT, genetic algorithm and simulated annealing) illustrate the competitive performance of 

the proposed approach.  
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A discussion on an extension of the proposed technique to a higher number of variables was 

presented. The other objective of such an extension would be to develop this technique to 

constrained optimization problems. Comparison results for multi-unit optimization in two- and 

three-input systems show that when the number of variables is small, then the multi-unit global 

optimization method is acceptable, sometimes superior to the other competitive methods. 

However, as the number of variables increase, this method may rapidly become inefficient. This 

situation arises from the fact that many of optimization iterations are made repeatedly and 

systematically on the limited subspaces of the slowly shrinking circles. This might prevent the 

algorithm to coincide with the global optimum at earlier iterations depending on the initial input 

values. Thereby, multi-unit algorithm cannot jump to the global optimum (stochastically or 

deterministically) as the other competitive methods. This causes only restricted systematic 

progress to the global minimum. Although this can be considered as a drawback of this method, 

however the convergence to global optimum in this technique is guaranteed. One way to improve 

this drawback would be usage several units (extra floating units) in multi-unit optimization 

framework instead of just to two of them. 
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CONCLUSIONS AND RECOMENDATIONS 

 

Conclusions 

 

The first contribution of this thesis is the extension of the local-based extremum seeking control 

using multi-units to global optimization of the static nonlinear and continuous scalar systems. 

Thus, in Chapter 2, we first studied the core idea of such an extension and the proof of 

convergence to the global optimum of the static curves having two identical units. According to 

the hypothesis when the non-convex curvatures of the static units are the same, it has been 

demonstrated that the convergence of the algorithm can be ensured by a choice of varying 

disturbance introduced between the operating points of each unit (Δ). The major breakthrough 

came when it was realized that the global optimum can be reached arbitrarily close by relatively 

low computational cost by monotonically decreasing the offset to zero. The algorithm 

deterministically converges to the small vicinity of the global optimum by the proper choice of 

this offset. Choosing an initial offset (Δ0) sufficiently small, minimizes the number of function 

evaluations and ends up with a faster convergence. On the other hand, if the value of the initial 

disturbance is chosen too small, the system converges to an equilibrium having a distance with 

the real global optimum. However, it is guaranteed that the obtained equilibrium is always the 

global optimum in the operating interval which is imposed by Δ0 to the multi-units. It has been 

shown that depending on the “Lipschitzian” characteristic of the static maps, the adaptation laws 

may introduce stiffness in the integration process. Modification to the original design of the 

algorithm has been introduced to relax this effect. An alternative solution to overcome this 

stiffness was to replace the “Sign” function by “Tangent Hyperbolic” in the main adaptation law. 

It has been demonstrated that the number of function evaluations and the convergence speed of 

the system depend on the relaxation of the adaptation gain for the integration of operating points. 

Moreover, the simultaneous online adaptation of multi-units towards the global optimum requires 

no interruption.  
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Another advantage of this algorithm is that it does not require the assumption of differentiability 

throughout this work. Example 2.3.4 presented in Chapter 2 introduces a case of a non-

differentiable static characteristic at the global optimum.  

 

The proof of convergence for this algorithm has been provided using mathematical contradiction 

formalism. The simulation results confirmed the theoretical developments on several test 

benchmarks for global optimization. The efficiency of the method and its required number of 

function evaluations were compared to the Genetic algorithm and Simulated annealing methods. 

Moreover, a switching control law has been incorporated to handle the constrained optimization 

problems. The proof of convergence of this method using this logic has also been established. 

 

Although this method is not a real time extremum seeker in terms of following the variable 

optimum, it is a black-box global optimization strategy since it uses an extremum-seeking 

method as a tool.  The algorithm uses a recursive procedure as a real-time optimizer in order to 

converge to the optimum. However, this recursion stops after the convergence to the global 

optimum. This is because the offset (Δ) between the multi-unit inputs converge to zero at the end 

of the optimization. In order to keep the process on this point or follow the variable global 

optimum, some other control strategies must be deliberated. 

 

The development of the global optimization algorithm along the circumference of a shrinking 

circle in Chapter 3 is another contribution of this dissertation. The required time separation 

between the dynamics of the iterative adaptation towards the global optimum on the shrinking 

circle in one hand and the dynamics of the contraction of the same circle in another hand was a 

necessity in this method. This fact was demonstrated trough a typical proof by contradiction in 

the limit case.  

 

In Chapter 4, the global optimization algorithm using multi-units has been extended to the three 

variable systems. Generalization of the algorithm to higher dimension has been discussed. The 

results showed that the scalability of the method is the main challenge in multivariable case. The 
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impact of this drawback becomes more outstanding by increasing the size of the problem in terms 

of degrees of freedom. This could reduce the effectiveness of the algorithm. Some modifications 

have been introduced to make the algorithm more scalable. Considering an additional floating 

unit in the center of the shrinking circle can significantly improve the scalability of the algorithm. 

The adaptive rotating control of the circle with varying radius on a shrinking spherical space was 

the main contribution of Chapter 4. The rotating variant circle covers the feasible region where 

the multi-unit optimization takes place. This achievement has been developed based on the 

concepts of rotating circle on a plane with reducing radius in Chapter 3.  

 

Recommendations 

 

As a result of fact, this dissertation opens a new area of research and there are many interesting 

things to investigate concerning global optimization by multiple units. Based on the primary 

results obtained in this dissertation, some principal ideas on the preliminary structure of global 

optimization using multi-units have been established. With the work done on the global 

optimization technique by multi-units so far, the future research can now focus on the other 

progresses that can be discovered with this method. The following suggested areas for 

investigation are related to the results of the chapters presented in this thesis including global 

optimization of constrained and unconstrained scalar and multivariable static systems using 

multi-unit adaptation. The future potential experimental application of this method to optimize 

some engineering and industrial problems is also discussed. The main aspects that could help to 

complete this work are as follows, 

 

1- The computational load of the proposed algorithm in this dissertation increases significantly 

when the dimension of the optimization problem is increased. Intuitively, it seems to be logical to 

use more units to solve the optimization problem, but the challenging question is how many units 

would be more efficient and how they would be controlled by the offset between their inputs.  
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One way to modify the growing number of function evaluations would be increasing the number 

of multi-units according to the dimension of problem. This way the efficiency of the global 

optimization algorithm will be significantly improved. For instance an extra unit could be placed 

on the center of the contracted circle. If so, the third unit is going to be systematically searching 

for the global optimum inside the area of the circle and be adapted with the other units on the 

circumference. The algorithm coincides the global optimum comparatively fast thereby relaxing 

the impact of number of function evaluations. However, regarding the simplicity of the algorithm 

the number of units is kept two in this thesis.    

 

As a result, scalability and extension of the proposed algorithm to higher dimensions (more than 

three variables) is the first question come in mind. Only two units have been considered in the 

structure of the algorithm so far. Henceforth, having increased one variable in the multivariable 

system, an extra unit can be added to the nth center of the n-dimensional hyper-spherical space 

established by multiple units. This simple modification allows the algorithm to estimate the 

gradient more efficiently and made it scalable. It can increase the speed of convergence and 

reduce the number of function evaluations significantly. It also gives a simple rule of thumb in 

order to calculate the number of required units in multivariable optimization using multiple units. 

 

2- The extension of global optimization algorithm in this thesis is limited to static systems. It 

would be interesting to consider the more general case, where the system is dynamic. In this case, 

since the units are identical, the estimation of the gradient by finite differences eliminates the 

effect of dynamics on this gradient (Woodward, 2009). In multivariable systems, the complexity 

of analysis is increased with increasing the number of manipulated variables.  

 

3- When there is only one exclusive unit and an appropriate available model, it would be 

interesting to analyze the efficiency of the global multi-unit optimization when the other units are 

replaced by adapted virtual models. In this framework, it is proposed that a system identification 

algorithm firstly estimate the different parameters of the model. Once the optimization algorithm 

is engaged, the excitation signal of the identification method will be cut to half.  The performance 

of the method when it is coupled with the parameter estimation and system identification 
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algorithms should be compared. The temporal excitation signal used in system identification 

process may affect the convergence velocity of the algorithm.  

 

4- The analysis presented takes no account of measurement noise.  All of the algorithms in this 

dissertation have been simulated in the ideal environment without any noise or disturbances. In 

the ideal conditions, each measurement represents the exact value of the process. However, any 

kind of real process is affected by high or low-frequency drifts and measurement noises. The 

impact of measurement noise on the performance of the method deserves attention. Presence of 

noise in system can make a real challenge in the gradient estimation. Preliminary studies in local 

multi-unit extremum seekers have shown that the measurement noise causes an error estimation 

of the gradient. This error can be eliminated by choosing value of Δ greater than the standard 

deviation of the noise (Woodward, 2009). However, too high a value of this parameter in the 

local extremum seeking by multi-units means a loss of performance. This solution would not be 

practical in global optimization using multi-units since the value of offset (Δ) asymptotically 

decreases to zero as the optimization process proceeds. As a result, it would be essential to 

investigate the effect of noise on the presented optimization algorithms through stochastic 

methods. This study would characterize the error of the gradient estimation by this algorithm in 

presence of noise and would propose some solutions to improve the performance. 

The impact of noise on the performance of the algorithm would be worse in the case of 

optimization with multiple virtual models (which is proposed in 3), because the identification of 

the parameters in noisy conditions takes more time. The measurement noise slows down the 

convergence to the optimality.  

 

5- The main assumption in the presented algorithm was having the identical systems. For 

example, the process may contain several identical micro-reactors or several photovoltaic cells. 

This means that it was assumed that there is no difference between the operating curves of their 

static maps. This is a strong assumption. It means that, in practice, the assumption that the units 

are identical process is rarely encountered which greatly limits its application. However, in case 

that the curves of static maps are not identical, some correctors would be needed to compensate 

for these differences. These correctors have been developed for local optimization using non-
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identical multi-units by Woodward et al. (2009). An appropriate study in order to extend the 

similar correctors for global optimization of scalar systems using non-identical units would be 

another possible extension of this work. The analysis can be repeated for multivariable systems 

but the complexity of analysis increases with  number of manipulated variables. 

 

6- It has been shown that in local optimization of dynamic systems using multi-units, the 

differences between the dynamics of units affects the stability of the algorithm (Reney, 2008). 

The stability of global optimization algorithms for dynamic systems with multi-units that 

represent differences in their dynamics is a subject that can also be followed in this framework. 

The next step would be the development of an appropriate correction strategy which ensures the 

stability of this method. 

 

7- The algorithm was extended to the constraint optimization problem where a switching 

adaptation law was used to handle the constraints. However, it was seen that the proposed 

algorithm can chatter when the solution is on the boundary of the feasible region. This means that 

the gradient is not equal to zero at the optimum. The non-zero gradient then tries to seek an 

operating point with a higher cost by pushing the system into the infeasible region. However, the 

feasibility part of the algorithm pushes the system back into the feasible region. Thus, the 

solution chatters around the optimal point. The frequency of chattering depends on the final value 

of Δ which is determined by ε. Gradient projection methods (e.g., Woodward et al., 2007) can be 

used to alleviate this chattering. 

 

8- Extension of the constrained global optimization method to the multivariable problems forms 

another future step of this research work. On the other hand, the constrained global optimization 

algorithm has been presented for identical scalar units. The application of the method for similar 

but non-identical units deserves to be studied.  

 

9- In final summary, it appears that a set of experimental set up can be developed in practice 

based on this study in order to confirm the predicted results by the theory and simulations.  The 
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optimization of producing electricity using “microbial fuel cells” (i.e., use of waste water as an 

energy source and bacteria as the catalyst) which has been experimentally verified by the local 

multi-unit optimization method (Woodward et al., 2009) seems to be a nice fit to be experienced 

by the global optimization method.  Another alternative would be the set up which can implement 

other types of multiple parallel bio-reactors. 

 

10- This research is an appropriate base for developing the global optimization tools by multiple 

units in some engineering or industrial applications. The presented global optimization theory has 

been developed so far only to continuous processes. Another long-term research program would 

be the extension of the technique to the domain of “batch processes” (Srinivasan). As a matter of 

fact, “batch processes” could be a proper candidate for the global optimization by multiple units. 

If the presented algorithm is well developed and implemented for dynamic systems, it can 

significantly reduce the operating costs of these processes. In this framework, the number of 

pertinent set-points, the corresponding degrees of freedom, the influent manipulated variables and 

all involved constraints in optimization by multiple batch units would be analyzed. Different 

trajectories such as convergence to the optimal operating points must be compared in order to 

find the best compromise between robustness and performance. 

 

11- It is proposed to create an auxiliary “parallel-processing” algorithm in order to reduce the 

integration time and to decrease the computation impact. The established gradient estimation 

strategy using this algorithm is such that some simultaneous computational load must be 

executed by several identical and parallel units. It would be interesting to extend an algorithm 

such that the integration of each unit is able to share data with others. This can be achieved 

through an appropriate multi-processing algorithm on multiple processors. This algorithm can 

significantly reduce the number of function evaluations by eliminating the extra calculations. 
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APPENDIX I  

RODRIGUES’ ROTATION MATRIX  

 

The rotation matrix in three dimensional space is called “Rodrigues” rotation formula (Rodrigues, 

1816) and there are different ways to obtain it. In the following section, the proof from (Baker, 

1998) has been used as reference. However, figures and notations have been modified according 

to formulas in chapter 4. The rotation of the point V1 about the axis Γ is desired. These vectors 

are depicted by the blue and red lines in figure I.1. The track of the rotating point forms a circular 

path in a given plane (shown in green). In the diagram below, this plane has been moved down so 

that it passes through the origin. This plane is defined by the rotation axis (the plane is 

perpendicular to the axis).  

 

Figure XI Rotation of vector v1 about axis Γ 

 

Now, we generate two basis vectors in the mentioned plane which can be used for defining the 

circle in the coordinate system. In order to get one of these basis vectors, we cross multiply the 

axis with V1. This gives a vector on the plane (b2) which is perpendicular to the projection of V1 
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onto the plane (b1). If (×) denotes the vector cross product, the following equation holds (figure 

I.2), 

2 1= ×b Γ v                                                         (AI.1) 

where, 

V1 = point being rotated 

 Γ = axis = direction of rotation as normalized (unit length) vector  

b1 = basis1 = first basis vector 

b2 = basis2 = second basis vector 

The first basis vector b1 is just the projection of the vector V1 onto the plane. This is a vector 

perpendicular to axis and b2, namely, 

1 2= ×b b Γ
                                                       

(AI.2) 

1 1( )= × ×b Γ v Γ
                                                

(AI.3) 

These basis vectors are shown in the following figure, 

 

Figure XII Illustration of the basis vectors b1 and b2 
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Therefore, the circle is given by a linear product of the basis vectors as follows (figure I.3),  

1 2cos( ) sin( )b bγ γ+                                                (AI.4) 

where, 

γ = angle = angle of rotation  

 

Since the circle has been offset to the origin, this is not quite the circle required. Therefore, we 

need to move it back to its original place as follows, 

2 1 2cos( ) sin( )offset b bγ γ= + +v                                 (AI.5) 

where, 

V2 = transform of point V1 

offset = distance of centre of circle from origin  

 

Figure XIII Illustration of the angle of rotation γ about the axis of rotation Γ 

 

From the diagram we can see that: 
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1 1offset b= −v                                                       (AI.6) 

Therefore substituting this value gives: 

2 1 1 1 2cos( ) sin( )b b bγ γ= − + +v v
                               

(AI.7) 

2 1 1 2(cos( ) 1) sin( )b bγ γ= + − +v v
                              

(AI.8) 

Substituting the basis values above gives: 

2 1 1 1(cos( ) 1)(( ) ) sin( )( )γ γ= + − × × + ×v v Γ v Γ Γ v                 (AI.9) 

This equation includes vector algebra. However, it is desired to convert this formula into matrix 

algebra. This can be done by using the skew symmetric matrix; Cross production is only applied 

to three dimensional vectors and it represents a vector which is perpendicular to both of the 

vectors being multiplied. We want to find a 3 3 matrix which is equivalent to vector cross 

production. We know that, 

if then= × =V A B V AB%                                    (AI.10) 

where A% is a square skew-symmetric (anti-symmetric) matrix as follows, 

0

0
0

z y

z x

y x

a a

a a
a a

−⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎣ ⎦

A%

                                       

(AI.11) 

Therefore, converting V2 to the matrix form gives:  

2 1 1 1(cos( ) 1)( ) sin( )γ γ= + − × +v v Γv Γ Γv% %
                  (AI.12) 

There is still one vector cross product in this formula. In order to remove it we will first change 

the order by using the anti-commute law:  

2 1 1 1(1 cos( ))( ) sin( )γ γ= + − × +v v Γ Γv Γv% %
                 (AI.13) 

Now, we can substitute the skew symmetric Γ%  as before:  
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2
2 1 1 1(1 cos( ))( ) sin( )γ γ= + − +v v Γ v Γv% %

                   (AI.14) 

Gathering the V1 terms together gives:  

2
2 1[ (1 cos( )) sin( ) ]γ γ= + − +v I Γ Γ v% %

                      (AI.15) 

Let the rotation matrix be M where:  

2 1=v Mv                                                        (AI.16) 

Therefore, the rotation matrix is:  

2(1 cos( )) sin( )γ γ= + − +M I Γ Γ% %
                        (AI.17) 

where, 

M = rotation matrix  

I = identity matrix 

Γ  = axis vector (Γ1, Γ2, Γ3) normalised to unit length 

Γ% = skew-symmetric matrix 

3 2

3 1

2 1

1 0 0 0
0 1 0 , 0
0 0 1 0

−Γ Γ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = Γ −Γ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−Γ Γ⎣ ⎦ ⎣ ⎦

I Γ%

                     

(AI.18) 

2 2
3 2 1 2 1 3

2 2 2
1 2 3 1 2 3

2 2
1 3 2 3 2 1

⎡ ⎤−Γ −Γ Γ Γ Γ Γ
⎢ ⎥

= Γ Γ −Γ −Γ Γ Γ⎢ ⎥
⎢ ⎥

Γ Γ Γ Γ −Γ −Γ⎢ ⎥⎣ ⎦

Γ%

                       

(AI.19) 

since Γ1
2+ Γ2

2+ Γ3
2=1 , 
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2
1 1 2 1 3

2 2
1 2 2 2 3

2
1 3 2 3 3

1

1

1

⎡ ⎤Γ − Γ Γ Γ Γ
⎢ ⎥

= Γ Γ Γ − Γ Γ⎢ ⎥
⎢ ⎥
Γ Γ Γ Γ Γ −⎢ ⎥⎣ ⎦

Γ%

                                   

(AI.20) 

therefore, 

2
1 1 2 3 2 1 3

2
3 1 2 2 1 2 3

2
2 1 3 1 2 3 3

1 (1 cos( ))( 1) (1 cos ) sin sin (1 cos )

sin (1 cos ) 1 (1 cos ) sin (1 cos )

sin (1 cos ) sin (1 cos ) 1 (1 cos )

γ γ γ γ γ

γ γ γ γ γ

γ γ γ γ γ

⎡ ⎤+ − Γ − Γ Γ − −Γ Γ + Γ Γ −
⎢ ⎥

= Γ + Γ Γ − +Γ − −Γ + Γ Γ −⎢ ⎥
⎢ ⎥
−Γ + Γ Γ − Γ + Γ Γ − + Γ −⎢ ⎥⎣ ⎦

M

(AI.21) 

The Rodrigues’ rotation matrix can be written as, 

2
1 1 2 3 2 1 3

2
3 1 2 2 1 2 3

2
2 1 3 1 2 3 3

cos (1 cos ) (1 cos ) sin sin (1 cos )

sin (1 cos ) cos (1 cos ) sin (1 cos )

sin (1 cos ) sin (1 cos ) cos (1 cos )

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

⎡ ⎤+ Γ − Γ Γ − −Γ Γ + Γ Γ −
⎢ ⎥

= Γ + Γ Γ − + Γ − −Γ + Γ Γ −⎢ ⎥
⎢ ⎥
−Γ + Γ Γ − Γ + Γ Γ − + Γ −⎢ ⎥⎣ ⎦

M

(AI.22) 
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APPENDIX II  

GLOBAL OPTIMIZATION TEST PROBLEMS  

A) Sum Squares function 
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B) Zakharov function 
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C) Griewank function 
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D) Ackley function 
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E) Sphere function 
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F) Dixon & Price function 
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G) Initial values and parameters chosen for tests problems in section 4.4 
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Table VI.1 Initial values and parameters chosen for tests problems in section 4.4 
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APPENDIX III  

COEFFICIENTS OF TEST PROBLEMS   

A) Coefficients of test problem (DS1) 

0.2714 0.9599 0.2352 0.1934 0.8117 0.1594 0.3950
0.6780 0.8478 0.6509 0.2117 0.5066 0.3630 0.3367
0.6045 0.7784 0.1385 0.7399 0.0548 0.5176 0.5422

0.6150 0.7725 0.0826 0.1830 0.2971 0.2992 0.3729
0.8460 0.9961 0

A

− − − −
− − −

− − − −
= − − − −

− − .3039 0.9387 0.0711 0.4147 0.4793
0.4871 0.9662 0.4973 0.4568 0.4924 0.1889 0.6153
0.2686 0.4950 0.7329 0.0492 0.9723 0.7968 0.3779

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

0.7478 0.7777 0.5781 0.6247 0.0197 0.6259 0.5367
0.9192 0.5652 0.2816 0.2286 0.2714 0.6753 0.4826
0.7971 0.3184 0.5575 0.1719 0.6967 0.7428 0.8809
0.0947 0.0412 0.6120 0.5545 0.8851 0.2781 0.0653

0.9056 0.0303 0.8
B

− − − −
− − −

− − − − −
= − −

− 543 0.8339 0.5849 0.8431 0.7274
0.9190 0.5441 0.5619 0.5208 0.3413 0.6352 0.8680
0.0583 0.0347 0.2549 0.7239 0.5960 0.0400 0.2571

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

 

0.0033 0.5523 0.5428 0.2097 0.2095 0.3882 0.4306
0.1521 0.4337 0.7967 0.0160 0.2824 0.4217 0.3263
0.9865 0.3172 0.1594 0.8101 0.6548 0.2544 0.5004
0.8917 0.6944 0.4253 0.1426 0.2606 0.3791 0.7831
0.0126 0.3281 0.533

C

− − −

− − −
= − − − −

− − − 9 0.2327 0.2886 0.6984 0.3127
0.8019 0.5602 0.6121 0.4142 0.2340 0.8427 0.7567
0.3766 0.4785 0.1592 0.3374 0.0859 0.2698 0.8729

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥− − − − − −⎣ ⎦

0.4717 0.3836 0.4009 0.6915 0.9248 0.4964 0.4788
0.4928 0.4223 0.4874 0.8992 0.3956 0.8207 0.1599
0.0355 0.8624 0.3941 0.6236 0.1875 0.0179 0.9762

0.4306 0.7387 0.0297 0.6392 0.1405 0.3847 0.3676
0.2101 0.4296 0.

D

− − − −
− − −
− − − − − −

= − −
− 0873 0.9564 0.8684 0.1059 0.7559

0.3953 0.7658 0.3411 0.8870 0.2851 0.9324 0.7488
0.8353 0.0183 0.0457 0.9942 0.2124 0.4405 0.0908

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 

B) Coefficients of test problem (DS2) 

0.9484 0.3877 0.4345 0.8094 0.1901 0.0202 0.8334
0.6054 0.8163 0.6896 0.7381 0.6529 0.3897 0.0222
0.7776 0.1958 0.9987 0.6675 0.1504 0.1772 0.2663
0.4053 0.4096 0.4328 0.6009 0.2124 0.9304 0.4790
0.2072 0.38

A

− − − −
− − − − −
− − − − −

= − − − −
− − 70 0.1016 0.8358 0.5711 0.4143 0.0495

0.1585 0.7889 0.7418 0.7254 0.0399 0.6029 0.6090
0.3770 0.1877 0.9155 0.0095 0.9784 0.3070 0.6338

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

0.6211 0.0890 0.3360 0.9118 0.1196 0.1823 0.5064
0.7526 0.2129 0.6795 0.3734 0.6864 0.4160 0.4001

0.6420 0.5209 0.2566 0.4675 0.3479 0.7127 0.5710
0.2758 0.7107 0.6564 0.1257 0.3719 0.7426 0.3598
0.9678 0.2343 0.

B

− − − − −
− −

− − − −
= − −

− − − 6470 0.2403 0.7890 0.8337 0.1146
0.7919 0.8307 0.7410 0.9593 0.5060 0.0765 0.7014
0.0308 0.4677 0.7598 0.2020 0.3786 0.9392 0.1171

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

0.8035 0.4920 0.2528 0.6947 0.6754 0.6517 0.8624
0.1610 0.1376 0.5566 0.3598 0.9887 0.4572 0.6329
0.2837 0.4051 0.5620 0.7267 0.5430 0.0686 0.4741
0.0220 0.1953 0.0445 0.7168 0.5296 0.4939 0.3934
0.4881 0.6363

C

− − − − −
− − − − −
− − −

= − − −
− − 0.1332 0.6003 0.1579 0.8341 0.5540
0.8583 0.7125 0.4826 0.2147 0.8864 0.5164 0.0038
0.0665 0.1684 0.8591 0.0861 0.1715 0.7741 0.1490

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

−⎢ ⎥
⎢ ⎥− − −⎣ ⎦

0.2225 0.1354 0.9938 0.8523 0.7133 0.8330 0.4924
0.7115 0.7757 0.8251 0.4030 0.2314 0.4403 0.0642
0.3416 0.6859 0.4785 0.3238 0.3914 0.1060 0.7217
0.0472 0.7976 0.9544 0.7190 0.2558 0.1751 0.0670
0.4024 0.8780 0.15

D

− −
− − − − −
− − −

= − −
− − 18 0.3190 0.0992 0.7553 0.0038
0.4079 0.6309 0.3179 0.7238 0.0528 0.0618 0.0251
0.2368 0.9973 0.0827 0.0156 0.8994 0.1252 0.5411

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− − − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦  
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C) Coefficients of test problem (H3) 

[ ]1 1.2 1 3.2 T
kC =  

3 10 30
0.1 10 35
3 10 30

0.1 10 35

kiA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

kiP

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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APPENDIX IV  

DEFAULT VALUES OF THE TUNING PARAMETERS FOR  

STOCHASTIC ALGORITHMS 

 

Table VII Default values of the tuning parameters of Simulated Annealing in the optimization 

Toolbox 4.0 of MATLAB version 7.6.0.347 (R2009a) 
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Table VIII Default values of the tuning parameters of Genetic Algorithm in the optimization 

Toolbox 4.0 of MATLAB version 7.6.0.347 (R2009a) 
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