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CONDENSÉ EN FRANÇAIS

La maintenance de logiciels est la dernière phase du cycle de vie des logiciels. Elle joue un rôle

important dans le cycle de vie d’un logiciel car plus de 50% du coût du cycle de vie appartient à la

maintenance. Un des défis importants avec la maintenance de logiciels est la compréhension.

La compréhension de logiciels est une partie cruciale de la maintenance et est un facteur majeur

pour une maintenance efficace ainsi que pour une évolution réussie d’un logiciel.

Un problème commun à la compréhension de logiciels est souvent le manque d’une documenta-

tion adéquate. Quelques années après le déploiement, c’est possible que la documentation n’existe

plus ou si elle existe, elle est surement dépassée. Les développeurs qui maintiennent le logiciel,

la plupart du temps, sont différents de ceux qui l’ont développé. Par conséquent, les développeurs

doivent recourir à la lecture du code source du système, avec rien d’autre que des navigateurs de

code, pour comprendre le logiciel et accomplir leurs tâches de maintenance et d’évolution. Dans

certains cas, la compréhension du code source est facilitée par différentes techniques d’analyse sta-

tique et/ou des visualisations construites sur de l’information statique. Dans d’autres cas, le débo-

gage peut être utilisé pour comprendre le comportement d’un logiciel dans un contexte particulier

et/ou pour trouver une faille. Toutefois, la navigation manuelle de code source, l’analyse d’une

trace d’exécution ou le débogage de longues séquences d’instructions sont des tâches redoutables

qui prennent beaucoup de temps.

L’identification et la localisation de concepts ou de fonctionnalités visent à aider les dévelop-

peurs à effectuer leurs tâches de maintenance et d’évolution, en identifiant des abstractions (par

exemple, caractéristiques) et l’emplacement de l’implémentation de ces abstractions. Autrement

dit, ils visent à identifier des fragments de code source, c’est à dire l’ensemble d’appels de mé-

thodes dans des séquences d’instructions et les déclarations de ces méthodes dans le code source,

responsables de la mise en œuvre des concepts du domaine du logiciel et des caractéristiques ob-

servables par l’utilisateur (Antoniol et Gueheneuc (2006); Biggerstaff et al. (1993); Kozaczynski

et al. (1992); Poshyvanyk et al. (2007a); Tonella et Ceccato (2004)). Dans la littérature il existe des
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approches d’analyse statique (Anquetil et Lethbridge (1998); Marcus et al. (2004)) et dynamique

(Wilde et Scully (1995); Tonella et Ceccato (2004)) ; Recherche Documentaire (Information Retrie-

val - IR) (Poshyvanyk et al. (2007a)) et des approches d’analyse hybride (statique et dynamique)

(Eaddy et al. (2008)).

L’analyse statique utilise des données extraites à partir du code source. Les données peuvent

être des données structurelles utilisées pour générer des graphes de dépendance de programmes

(Chen et Rajlich (2000)), ou des composants d’un groupe au sein du logiciel (Maletic et Marcus

(2001)), ou bien de l’information d’ordre sémantique fourni en utilisant des techniques de recherche

d’information (Marcus et al. (2004)).

Toutes les approches dynamiques utilisent les séquences d’instructions (traces), obtenue par

l’exécution du logiciel, pour identifier les fonctionnalités du code source. Les traces utilisées dans

ces approches sont générées par l’exécution des scénarios qui sont conçus à partir des cas de test ou

des requis du logiciel. En utilisant l’exécution de scénarios, chaque technique a sa propre méthode

pour détecter une fonctionnalité particulière. Certaines techniques identifient une fonctionnalité en

comparant deux traces avec et sans la fonctionnalité, d’autres effectuent certaines opérations de

classement sur les méthodes d’une trace.

Les deux techniques, statiques et dynamiques, ont leurs propres limites. En général, les tech-

niques dynamiques sont conservatives par nature, car les traces sont souvent très vastes et contiennent

beaucoup de bruit. La sélection appropriée des cas de test ou des scénarios à exécuter est un autre

problème de ces techniques. D’autre part, l’analyse statique peut rarement déterminer les méthodes

contribuant à l’exécution d’un scénario spécifique. En fait, chaque type d’analyse recueille des

données qui seraient non disponibles pour l’autre type d’analyse, mais qui peuvent améliorer la

performance du processus d’identification de fonctionnalités. Autrement dit, chaque approche peut

être considérée comme un complément de l’autre. Des travaux récents ont accentué sur une com-

binaison des données statiques et dynamiques (Eaddy et al. (2008); Poshyvanyk et al. (2007a)), où

le problème de localisation de fonctionnalités à partir de traces d’exécution multiples est modélisé

comme un problème d’IR, qui a l’avantage de simplifier le processus de localisation et, souvent,
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d’améliorer la précision (Poshyvanyk et al. (2007a)).

Cette thèse propose une nouvelle approche pour identifier des fragments cohésifs et découplés

dans des traces d’exécution, qui participent probablement à mettre en œuvre les concepts liés à

certaines fonctionnalités. L’approche repose sur des techniques optimisées pour la recherche en

utilisant un algorithme de métaheuristiques, analyse textuelle du code source du logiciel en utilisant

l’indexation sémantique latente et des techniques de compression de traces.

Le domaine du génie logiciel orienté recherche (SBSE) tente de trouver des solutions aux pro-

blèmes du génie logiciel en reformulant ces derniers en problèmes de recherche pour ensuite appli-

quer des techniques de recherche métaheuristiques. Les techniques de recherche métaheuristique

sont utilisées pour résoudre les problèmes où la solution doit être trouvée dans des espaces de

recherche très étendues. Ils explorent l’espace de recherche de façon itérative et essayent d’amé-

liorer la solution actuelle en utilisant des fonctions coût. La solution finale obtenue en utilisant une

technique de recherche métaheuristique peut ne pas être la solution optimale, mais elle est généra-

lement proche de la solution optimale. Nous avons utilisé trois algorithmes métaheuristiques dans

notre approche : escalade, recuit simulé et algorithme génétique.

La science de recherche d’information (IR) est une science d’extraction d’informations à partir

de documents. Sa tâche est de trouver des documents pertinents dans une grande base de documents

pour une requête spécifique. IR accélère le processus de recherche de documents en les représen-

tant avec des modèles mathématiques. Pour extraire de l’information linguistique à partir du code

source, dans notre approche, nous avons utilisé l’indexation sémantique latente (Latent Seman-

tic Indexing - LSI) qui est une version développée du modèle d’espace vectoriel. LSI utilise une

technique mathématique appelée décomposition en valeurs singulières (SVD) pour identifier des

patrons de la relation entre les termes et concepts dans un recueil de texte.

Un problème typique pour lequel l’approche proposée peut être bénéfique est le suivant. Sup-

posons qu’un échec a été observé lors de l’exécution d’un scénario particulier d’un logiciel, mais

malheureusement le risque de reproduire les conditions d’exécution de cet échec est très faible.

Les développeurs qui maintiennent le logiciel sont alors confrontés au problème de l’analyse de
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la trace d’exécution produite par ce scénario et l’identification des abstractions de haut niveau qui

participent probablement à la fonctionnalité qui produit le comportement indésirable.

Pour faire face au problème décrit ci-dessus, l’approche proposée identifie des concepts qui

composent un scénario d’exécution en regroupant les méthodes qui sont (i) invoquées ensemble de

façon séquentielle/dans l’ordre, et (ii) cohésives et découplées de point de vue conceptuel. L’hypo-

thèse sous-jacente est que, si une fonctionnalité spécifique est exécutée dans un scénario complexe

(par exemple, " Ouvrir une page Web à partir d’un navigateur " ou " Enregistrer une image dans

une application graphique "), alors l’ensemble des méthodes successivement invoquées est suscep-

tible d’être cohérent sur le plan conceptuel et découplé des autres fonctionnalités. Nous utilisons

la cohésion conceptuelle et le couplage de Marcus et al (Marcus et al. (2008)) Poshyvanyk et

al(Poshyvanyk et Marcus (2006a)).

L’approche fonctionne comme suit. Premièrement, nous indexons le code source de chaque mé-

thode d’un système textuellement. Ensuite, nous instrumentons et exerçons le système de collecte

de traces d’exécution pour certains scénarios liés aux différentes fonctionalités et, par conséquent,

contenant des ensembles de concepts différents. Nous compressons les traces pour supprimer des

fonctions utilitaires et des concepts entrecroisés et pour abstraire les répétitions de mêmes sous sé-

quences de méthodes. Enfin, nous appliquons une technique de recherche basée sur l’optimisation,

c’est-à-dire, un algorithme génétique, afin de scinder les traces comprimées en fragments cohé-

sifs et découplés. Nous assurons la performance via la parallélisation de l’algorithme sur plusieurs

ordinateurs.

Pour évaluer l’approche proposée, nous avons effectué une étude empirique en appliquant l’ap-

proche proposée sur deux logiciels libres, ArgoUML et JHotDraw. Les résultats ont montré que

l’approche est stable, et, globalement, localise les concepts avec une précision élevée. La préci-

sion a tendance à baisser pour les éléments réalisés en utilisant des séquences de méthodes très

similaires, comme c’est parfois le cas dans JHotDraw, où différents types de formes sont dessinées

essentiellement de la même façon. Les chevauchements entre un oracle manuellement construits

et les segments détectés automatiquement varient en fonction de la cohésion des fonctionnalités
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analysées, car l’approche a tendance à diviser des traces liées à de grandes fonctionnalités en plus

petits segments liés à des sous concepts cohésifs.

Les futurs travaux suivront différentes directions. Premièrement, nous améliorons l’approche

proposée pour accroître sa performance en réglant mieux la recherche basée sur l’optimisation et les

techniques d’indexation de texte. D’autres futurs travaux consisteront à améliorer et implémenter

notre idée d’assigner automatiquement des étiquettes appropriées pour les concepts localisés. Nous

devons aussi travailler sur le problème du passage à l’échelle, trouver une solution appropriée et

pratique en mesure d’être appliquée à de très longues traces. Aussi, l’approche devrait être étendue

pour être capable de travailler avec des systèmes multiprocessus.

L’Approche d’Identification de Concept

L’approche proposée pour l’identification de concept comprend les étapes suivantes :

– L’analyse textuelle du code source des méthodes

– L’instrumentation du système

– La récupération des traces d’exécution

– La réduction et la compression des traces

– L’identification des concepts à l’aide de techniques d’optimisation basées sur la recherche

Analyse Textuelle du Code Source des Méthodes

Pour déterminer la cohésion conceptuelle des méthodes, notre approche utilise la métrique de

cohésion conceptuelle définie par Marcus et al. (Marcus et al. (2008)). Nous considérons chaque

méthode comme un document, donc notre corpus est l’ensemble des méthodes dans le système.

Nous extrayons un ensemble de termes de chaque méthode en procédant à l’analyse lexicale du

code source et des commentaires qui y sont rattachées. Nous retirons ensuite les caractères spé-

ciaux, les mots clés du langage de programmation ainsi que des mots (anglais) non pertinents tels

que les articles et les prépositions. A l’étape qui suit, nous séparons à chaque lettre majuscule les

termes composés créés avec la convention Camel-Case. Ensuite, nous retrouvons les racines des
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termes obtenus en utilisant l’outil de Porter (Porter (1980)). Par exemple, le mot anglais " visited "

sera remplacé par sa racine " visit ". Une fois que les termes appartenant à chaque méthode ont été

extraits, nous indexons ces termes en utilisant les mécanismes d’indexation TF − IDF (Baeza-

Yates et Ribeiro-Neto (1999)). Nous obtenons ainsi une matrice terme-document, où les documents

sont toutes les méthodes de toutes les classes du système étudié et les termes sont tous les termes

extraits (et divisés) des commentaires et du code source des méthodes. Enfin, nous appliquons

l’indexation sémantique latente (LSI) (Deerwester et al. (1990)), en utilisant l’implémentation par

décomposition en valeurs singulières (SV D) dans R, afin de réduire la matrice document-terme

à une matrice document-concept. Pour chaque paire de méthodes dans le corpus, nous calculons

leur similitude en calculant le cosinus entre leurs vecteurs correspondants dans la matrice méthode-

terme (Figure 1).
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Figure 1 Similarité Textuelle Entre Deux Méthodes.

Instrumentation du Système et Récupération des Traces d’Exécution

Pour générer les traces d’exécution, d’abord nous instrumentons le système logiciel en utilisant

l’instrumenteur MoDeC. Ensuite, nous exerçons le système en suivant des scénarios tirés des ma-

nuels utilisateurs ou des descriptions de cas d’utilisation et nous extrayons les traces d’exécution.
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Réduire et comprimer les traces

Certaines méthodes se produisent trop souvent dans presque tous les scénarios, par exemple,

les méthodes liées aux mouvements de la souris. Ces méthodes ne sont reliées à aucun concept

particulier et ne sont pas utiles pour l’identification de fonctionnalités. Nous pouvons les considé-

rer comme des méthodes utilitaires gérant des tâches génériques. En analysant la distribution des

fréquences d’occurrences des méthodes, nous pouvons procéder à la suppression des méthodes trop

fréquentes. Nous retirons les méthodes qui ont une fréquence supérieure à Q3 + 2 · IQR, où Q3

est le troisième quartile (percentile 75%) de la distribution et IQR est l’intervalle inter-quartile. Les

traces contiennent souvent des répétitions d’appels d’une ou plusieurs méthodes, par exemple m1

() ; m1 () ; m1 () ; ou m1 () ; m2 () ; m1 () ; m2 () ;. Les répétitions ne présentent pas de nouveaux

concepts, Ainsi, on comprime les traces en utilisant l’algorithme Run Length Encoding (RLE) pour

supprimer les répétitions et garder seulement une occurrence de la répétition. Les deux exemples

précédents deviendraient " m1() " et " m1() ; m2() ", respectivement.

Techniques d’Optimisation Basées Sur la Recherche

Nous avons expérimenté des techniques différentes : la descente, le recuit simulé et les algo-

rithmes génétiques (GAs). Finalement, nous avons choisi d’utiliser des GAs puisqu’en raison des

caractéristiques de l’espace de recherche, ils ont surpassé les autres techniques. Notre représenta-

tion d’un individu est une chaîne de bits aussi longue que la trace d’exécution dans laquelle nous

voulons identifier certains concepts (fonctionnalités). Chaque appel de méthode est représenté par

un "0", à l’exception de l’appel de la dernière méthode dans un segment, qui est représenté par un

"1". Par exemple, la chaîne de bits

00010010001︸ ︷︷ ︸
11mthodes

signifie que la trace, contenant 11 appels de méthode, est divisé en trois segments décomposés

suivant les (i) quatre premiers appels de méthode (ii) les trois suivants, et (iii) les quatre derniers.

Un exemple concret de découpage d’un segment est indiqué dans le Tableau 1.
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Tableau 1 Example de la representation d’un individu de GA (deuxième colonne)

Method Invocations Repr. Segments#
TextTool.deactivate() 0
TextTool.endEdit() 0
FloatingTextField.getText() 0
TextFigure.setText-String() 0 1
TextFigure.willChange() 0
TextFigure.invalidate() 0
TextFigure.markDirty() 1
TextFigure.changed() 0
TextFigure.invalidate() 0
TextFigure.updateLocation() 0 2
FloatingTextField.endOverlay() 0
CreationTool.activate() 1
JavaDrawApp.setSelectedToolButton() 0
ToolButton.reset() 0
ToolButton.select() 0
ToolButton.mouseClickedMouseEvent() 0 3
ToolButton.updateGraphics() 0
ToolButton.paintSelectedGraphics() 0
TextFigure.drawGraphics() 0
TextFigure.getAttributeString() 1

L’opérateur de mutation choisit au hasard un bit dans la représentation et le change. Changer

un "0" en "1" signifie diviser un segment existant en deux segments, tandis que changer un "1" en

"0" signifie la fusion de deux segments consécutifs (Figure 2).

14

Step V
We use a search-based optimization technique based on Genetic Algorithms (GA) to
split traces into segments
Representation: a bit-vector where 1 indicates the end of a segment

Mutation: randomly flips a bit (i.e., splits or merge segments)

Crossover: two-points

Selection: roulette wheel

0 1 0 0 1 0 0 0 1

Trace splitting

Representation

0 1 0 0 1 0 0 0 1

0 0 1 0 0 1 0 0 1

0 1 0 0 0 1 0 0 1

0 0 1 0 1 0 0 0 1

m1 m2 m1 m3 m4 m1 m4 m6 m1m1 m2 m1 m4 m6m1 m4 m1m6m1 m4m1 m3 m4m1 m3

0 1 0 0 1 0 0 0 11 0 1 0 0 1 0 0 0 1100 1 00 1 000 1 1000 1 0100 1

Figure 2 L’opérateur de Mutation

L’opérateur de croisement est le croisement standard bi-points. Partant de deux individus sélec-

tionnés en tant que parents, deux positions aléatoires x, y avec x <y sont choisis dans la chaîne de

bits d’un individu et les bits de x à y sont échangés entre les deux individus pour créer de nouveaux

individus (fils). Le choix des parents est effectué en utilisant la une roulette biaisée (Figure 3).

La Fonction de Fitness

Comme mentionné précédemment, nous utilisons les principes de cohésion et de couplage dans

une conception logicielle. Ces principes ont déjà été utilisés dans le passé pour identifier les mo-
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We use a search-based optimization technique based on Genetic Algorithms (GA) to
split traces into segments
Representation: a bit-vector where 1 indicates the end of a segment

Mutation: randomly flips a bit (i.e., splits or merge segments)

Crossover: two-points

Selection: roulette wheel

0 1 0 0 1 0 0 0 1

Trace splitting

Representation

0 1 0 0 1 0 0 0 1

0 0 1 0 0 1 0 0 1

0 1 0 0 0 1 0 0 1

0 0 1 0 1 0 0 0 1

m1 m2 m1 m3 m4 m1 m4 m6 m1m1 m2 m1 m4 m6m1 m4 m1m6m1 m4m1 m3 m4m1 m3

0 1 0 0 1 0 0 0 11 0 1 0 0 1 0 0 0 1100 1 00 1 000 1 1000 1 0100 1

Figure 3 L’opérateur de Croisement

dules dans des systèmes informatiques (Mitchell et Mancoridis (2006)), mais dans notre cas, nous

nous appuyons sur des mesures conceptuelles (i.e textuelles), plutôt que sur des mesures de cohé-

sion et de couplage structurelles.

Nous définissons la cohésion d’un segment k comme étant la moyenne de la similarité textuelle

entre n’importe quelle paire de méthodes dans un segment k. Nous la calculons en utilisant l’équa-

tion 1 où begin(k) est la position (dans la chaîne de bits de chaque individu) du premier appel de

méthode du kième segment et end(k) est la position du dernier appel de méthode dans ce segment.

La similarité entre deux méthodes est calculée en utilisant la mesure de similarité cosinus sur la

matrice LSI extraite à l’étape précédente.

Le couplage d’un segment est défini comme la moyenne de la similarité entre un segment et

tous les autres segments de la trace, calculée en utilisant l’équation 2, où L est la longueur de la

trace.

Enfin, pour une trace divisée en n segments, la fonction de fitness est représentée par l’équation

3.

SegmentCohesionk =

∑end(k)−1
i=begin(k)

∑end(k)
j=i+1 similarity(methodi,methodj)

(end(k)− begin(k) + 1) · (end(k)− begin(k))/2 (1)

SegmentCouplingk =

∑end(k)
i=begin(k)

∑l
j=1,j<begin(k) or j>end(k)similarity(methodi,methodj)

(l − (end(k)− begin(k) + 1)) · (end(k)− begin(k) + 1)
(2)

fitness(individual) =
1

n
·

n∑
k=1

SegmentCohesionk

SegmentCouplingk
(3)
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Tableau 2 Les Statistiques pour les deux Systèmes.

Systems N
um

be
r

of
C

la
ss

es

K
ilo

L
in

e
of

C
od

e

R
el

ea
se

D
at

es

ArgoUML v0.18.1 1,267 203 30/04/05
JHotDraw v5.4b2 413 45 1/02/04

Étude Empirique et les Résultats

Nous avons effectué une étude empirique pour évaluer l’approche que nous proposons pour

identifier des concepts. Le but de cette étude est d’analyser notre approche dans le but d’évaluer

sa capacité à identifier des concepts pertinents. La perspective est celle de chercheurs souhaitant

évaluer comment l’approche proposée peut être utilisée lors de la maintenance et de l’évolution

d’un logiciel. Le contexte consiste en une implémentation de notre approche et des données de

traces d’exécution extraites de deux systèmes " open source " ( JHotDraw et ArgoUML). Le Tableau

2 met en évidence les caractéristiques principales des deux systèmes.

Nous générons des traces en exerçant divers scénarios dans les deux systèmes. Le Tableau 3

résume les scénarios et montre que les traces générées vont de 6.000 à près de 65.000 appels de

méthode. Les traces compressées vont de 240 à plus de 750 appels de méthode.

Tableau 3 Les Statistiques pour les Traces.

Systems Scenarios O
ri

gi
na

lS
iz

e

C
le

an
ed

Si
ze

s

C
om

pr
es

se
d

Si
ze

s

ArgoUML Start, Create note, Stop 34,746 821 588
Start, Create class, Create note, Stop 64,947 1066 764
Start, Add text, Draw rectangle, Stop 13,841 753 361
Start, Draw rectangle, Cut rectangle, Stop 11,215 1206 414
Start, Spawn window, Draw circle, Stop 16,366 670 433

Nous avons besoin d’un oracle pour évaluer l’exactitude et l’exhaustivité des concepts identi-

fiés. Nous construisons un tel oracle par un marquage manuel des traces d’exécution pour indiquer
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le début et la fin de chaque fonctionnalité.

Par cette étude empirique, nous tenterons de répondre aux questions de recherche suivantes :

– RQ1 : Quelle est la stabilité des solutions, obtenues par exécutions multiples de notre ap-

proche, lors de l’identification des concepts dans les traces d’exécution ?

– RQ2 : Dans quelle mesure les concepts identifiés correspondent à celles de l’oracle ?

– RQ3 : Quelle est la précision de l’identification de concepts dans les traces d’exécution ?

RQ1 : Stabilité de GA

Les solutions sont considérées stables lorsque les segments identifiés dans une exécution existent

dans la solution d’une autre exécution. Nous calculons le chevauchement entre chaque paire de

segments pris de deux différentes solutions en utilisant l’indice de chevauchement Jaccard présenté

dans l’équation

Jaccard(sx,i, sy,j) =
|sx,i ∩ sy,j|
|sx,i ∪ sy,j|

Figure 4 montre les indices de chevauchement Jaccard pour deux solutions generées par deux dif-

ferent l’exécutions. Puisqu’un segment de la trace T1 chevauche plusieurs segments de T2, un bon

20

RQ1: GA Stability

Solutions are stable when the identified segments in one run exist in the 
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Figure 4 Les Indices de Chevauchement Jaccard pour deux Solutions

appariement est choisi en utilisant l’algorithme Hongrois. Un exemple est présenté à la Figure 5

Nous évaluons la stabilité de l’AG en calculant la similarité moyenne des segments identifiés dans

dix exécutions différentes de notre approche. Le Tableau 4 présente les résultats de ces calculs.

Dans l’ensemble, les moyennes de similarité pour JHotDraw varient entre 55% et 95%, avec des

valeurs médianes comprises entre 70% et 84%. Ces résultats montrent que l’approche est capable
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Figure 5 Chevauchement entre Plusieurs Segments

de générer des segments stables à travers de plusieurs exécutions, malgré l’espace de recherche

relativement large.

RQ2 : Correspondance avec l’Oracle

Pour répondre à RQ2, nous évaluons la mesure dans laquelle les segments reflètent réellement

les fonctionnalités telles qu’elles ont été marquées lors de la construction de l’Oracle. La corres-

pondance entre les solutions obtenues, en appliquant l’approche sur les traces, et l’oracle est calculé

en utilisant l’indice de chevauchement Jaccard.

Comme indiqué dans le Tableau 5 Pour certaines fonctions, par exemple, dessiner un rectangle

ou un cercle, les moyennes et médianes de l’indice de chevauchement Jaccard sont très élevées,

ce qui suggère que les fonctionnalités sont mises en oeuvre à travers des séquences de méthodes

très cohésives. Cependant, d’autres fonctionnalités présentent de moins bons indices de chevauche-

ments. Ces bas indices de chevauchements signifient que notre approche a été incapable d’identifier

les fonctionnalités. En effet, dans certains cas, par exemple les scénarios " Ajouter le texte " dans

JHotDraw et " Créer la note " dans ArgoUML, les fonctionnalités sont réalisées en adaptant la fonc-

tionnalité " édition de texte " en tant que fonctionnalité " dessin de forme " en utilisant le design

pattern Adaptateur. L’adaptation de fonctionnalités produit des séquences de méthodes que notre

algorithme tend à diviser du fait de leur faible cohésion. Par conséquent, les chevauchements qui

en résultent sont, logiquement, bas. Dans d’autres cas, en particulier avec des traces de ArgoUML,

les moins bons résultats sont dus au fait que de longs segments sont découpés en segments plus

petits et plus cohésifs. Par exemple, " Créer une classe " (ArgoUML) est divisé en cinq segments :
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Tableau 4 Les Statistiques Descriptives de Similitude entre les Segments Obtenus des Différent
Exécutions.

Systems Scenarios/Features Similarity Averages
Min. Max. Mean Median σ

ArgoUML (1) Add note 0.69 0.95 0.84 0.83 0.07
(2) Add class, Add note 0.65 0.98 0.80 0.80 0.06

JHotDraw

(1) Draw rectangle 0.55 0.96 0.76 0.76 0.12
(2) Add text, Draw rectangle 0.54 0.93 0.72 0.70 0.10
(3) Draw rectangle, Cut rectangle 0.73 0.93 0.85 0.84 0.05
(4) Spawn window, Draw circle 0.67 0.86 0.76 0.76 0.04

création d’objets, ajout du type de projet, gestion d’espace de noms, paramétrage des propriétés

d’objet et gestion de la persistance du diagramme. Les segments détectés par notre approche sont

plus cohésifs et suggèrent que notre oracle devrait être amélioré.

Tableau 5 La Similitude (Jaccard chevauchement) entre les Segments Identifiés par l’Approche et
les Segments Indiqués par l’Oracle.

Systems Scenarios Features Jaccard
Min. Max. Mean Median σ

ArgoUML
(1) Add note 0.15 0.39 0.28 0.27 0.08
(2) Create class 0.11 0.28 0.22 0.25 0.05
(2) Create note 0.22 0.56 0.35 0.31 0.14

JHotDraw

(1) Draw rectangle 0.63 0.93 0.84 0.89 0.13
(2) Add text 0.21 0.31 0.26 0.27 0.05
(2) Draw rectangle 0.53 0.70 0.63 0.61 0.06
(3) Draw rectangle 0.42 0.76 0.64 0.72 0.14
(3) Cut rectangle 0.16 0.23 0.22 0.23 0.02
(4) Draw circle 0.54 0.96 0.85 0.88 0.14
(4) Spawn window 0.07 0.41 0.20 0.16 0.11

RQ3 : Précision dans l’Identification des Concepts

Nous utilisons Précision, équation pour montrer le degré de précision des résultats obtenus, par

rapport à l’oracle. La précision est définie comme suit :

Precision(sx,i, sy,o) =
|sx,i ∩ sy,o|
|sx,i|

où s(x, i) sont des segments obtenus par notre approche et s(y, o) sont des segments de la trace

correspondante de l’oracle. Un exemple de calcul de précision est indiqué à la Figure 6 Le Tableau
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RQ3: Accuracy in concept identification

We use Precision to show how accurate the obtained results are, 
with respect to the oracle.
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Figure 6 Un Exemple de Calcul de Précision

6 rend compte de la précision des segments identifiés par rapport à l’oracle. La précision est souvent

très élevée, avec des valeurs médianes, dans la plupart des cas, supérieures à 85% et très souvent

égale à 100%. Dans certains cas, la précision est plus faible mais cela s’explique aisément. Par

exemple, dans le scénario (2) de JHotDraw, composé de " Ajouter du texte " et " Dessiner un

rectangle ", les deux fonctionnalités sont implémentées en utilisant une séquence très similaire

d’appels de méthode, ce qui les rend difficiles à distinguer.

Les résultats de cette étude empirique montrent que notre approche est stable et capable d’iden-

tifier les segments avec une haute précision. Pour les fonctions de haut niveau, l’approche divise

le grand segment indiqué par l’oracle en plusieurs segments plus petits et plus cohésifs. En l’état,

l’approche proposée est limitée en présence de multi-threading et de méthodes utilitaires telles que

celles relatives aux événements dans l’interface graphique.

Tableau 6 La Similitude (Précision) entre les Segments Identifiés par l’Approche et les Segments
Indiqués par l’Oracle.

Systems Scenarios Features Precision
Min. Max. Mean Median σ

ArgoUML
(1) Add note 0.91 1.00 0.97 1.00 0.04
(2) Create class 1.00 1.00 1.00 1.00 0.00
(2) Create note 1.00 1.00 1.00 1.00 0.00

JHotDraw

(1) Draw rectangle 0.89 1.00 0.96 1.00 0.06
(2) Add text 0.27 0.36 0.32 0.34 0.04
(2) Draw rectangle 0.61 1.00 0.69 0.66 0.13
(3) Draw rectangle 0.73 1.00 0.94 1.00 0.11
(3) Cut rectangle 1.00 1.00 1.00 1.00 0.00
(4) Draw circle 0.81 1.00 0.91 0.95 0.09
(4) Spawn window 1.00 1.00 1.00 1.00 0.00
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ABSTRACT

Maintenance is the last phase of software life cycle and plays an important role in the life cycle

of a system. More than 50% of the cost of the whole life cycle belongs to the maintenance phase.

One of the most challenging problem of software maintenance is program comprehension.

Program comprehension is a crucial part of maintenance and is a major factor in providing

effective software maintenance and enabling successful evolution of a software system.

A common problem in understanding software systems is that software systems often lack an

adequate documentation. Most of the time, the only available source to understand the program

is the source code. Therefore, developers must resort to reading the system source code, without

specific tool support but code browsers, to understand the systems and perform their maintenance

and evolution tasks.

Concept or feature location and identification aim at helping developers to perform their main-

tenance and evolution tasks, by identifying abstractions (i.e., features) and the location of the im-

plementation of these abstractions. Specifically, they aim at identifying code fragments, i.e., set of

method calls in traces and the related method declarations in the source code, responsible for the

implementation of domain concepts and user-observable features. The literature reports approaches

built upon static and dynamic analyses; Information Retrieval (IR) and hybrid (static and dynamic)

techniques.

This thesis proposes a novel approach to identify cohesive and decoupled fragments in exe-

cution traces, which likely participate in implementing concepts related to some features. The

approach relies on search-based optimization techniques using metaheuristic algorithm, textual

analysis of the system source code using latent semantic indexing, and trace compression tech-

niques.

The proposed approach is evaluated to identify features from execution traces of two open

source systems from different domains, JHotDraw and ArgoUML. Results show that the approach

is stable and is generally able to locate concepts with a high precision.
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RESUMÉ

La maintenance de logiciels est la dernière phase du cycle de vie des logiciels. Elle joue un rôle

important dans le cycle de vie d’un logiciel car plus de 50% du coût du cycle de vie appartient à la

maintenance. Un des défis importants avec la maintenance de logiciels est la compréhension.

La compréhension de logiciels est une partie cruciale de la maintenance et est un facteur majeur

pour une maintenance efficace ainsi que pour une évolution réussie d’un logiciel.

Un problème commun à la compréhension de logiciels est souvent le manque d’une documenta-

tion adéquate. Quelques années après le déploiement, c’est possible que la documentation n’existe

plus ou si elle existe, elle est surement dépassée. Les développeurs qui maintiennent le logiciel,

la plupart du temps, sont différents de ceux qui l’ont développé. Par conséquent, les développeurs

doivent recourir à la lecture du code source du système, avec rien d’autre que des navigateurs de

code, pour comprendre le logiciel et accomplir leurs tâches de maintenance et d’évolution.

L’identification et la localisation de concepts ou de fonctionnalités visent à aider les dévelop-

peurs à effectuer leurs tâches de maintenance et d’évolution, en identifiant des abstractions et l’em-

placement de l’implémentation de ces abstractions. Autrement dit, ils visent à identifier des frag-

ments de code source, c’est à dire l’ensemble d’appels de méthodes dans des séquences d’instruc-

tions et les déclarations de ces méthodes dans le code source, responsables de la mise en oeuvre

des concepts du domaine du logiciel et des caractéristiques observables par l’utilisateur. Dans la

littérature il existe des approches d’analyse statique et dynamiquve ; Recherche Documentaire (In-

formation Retrieval - IR) et des approches d’analyse hybride (statique et dynamique).

Cette thèse propose une nouvelle approche pour identifier des fragments cohésifs et découplés

dans des traces d’exécution, qui participent probablement à mettre en oeuvre les concepts liés

à certaines fonctionnalités. L’approche repose sur des techniques optimisées pour la recherche en

utilisant un algorithme de métaheuristiques, analyse textuelle du code source du logiciel en utilisant

l’indexation sémantique latente et des techniques de compression de traces.

Pour évaluer l’approche proposée, nous avons effectué une étude empirique en appliquant l’ap-
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proche proposée sur deux logiciels libres, ArgoUML et JHotDraw. Les résultats ont montré que

l’approche est stable, et, globalement, localise les concepts avec une précision élevée.
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CHAPITRE 1

INTRODUCTION

Maintenance is the last phase of the software life cycle but plays an important role in the life

cycle. More than 50% of the cost of a system belongs to the maintenance phase. Maintenance does

not only deal with the correction of faults and errors that are found in the system after its delivery.

Some modifications are applied to answer new user requirement, some others are performed to

make a system compatible with a new environment. There are also changes made to improve

maintainability of the system. According to Lientz et al. in (Lientz (1980)) there are four types of

maintenance:

– Corrective: fixing errors and defects in the system. The defects can result from design errors,

logical errors or coding errors.

– Adaptive: adapting system to a new environment such as hardware or operating system.

– Perfective: changes that are done to answer to new user requirements.

– Preventive: activities to make a system more maintainable. These activities include updating

documents, adding comments to source codes, modifying some structure in source code.

Some software characteristics affect software maintenance activities. These characteristics are

system size, system age, and the structure of the system. Some of the most challenging problems

of software maintenance are program comprehension, impact analysis, and regression testing. Pro-

gram comprehension is a crucial part of the maintenance phase and is a major factor in providing

effective software maintenance and enabling successful evolution of a software system.

Program comprehension means having the knowledge of what the software system does, what

functionalities it provides, which parts of its code contribute to implementing each functionality,

how the system relates to its environment, identifying places of the system that are affected by each

particular change and knowing how the modified parts should work.
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1.1 Problem Definition

A common problem in understanding software systems is that software systems often lack an

adequate documentation. A few years after deployment, documentation may no longer exist or if it

exists it is almost surely outdated. In addition the developers who perform maintenance activities

often are different from those who implemented the system. Therefore, developers must resort to

reading the system source code, without specific tool support but code browsers, to understand

the systems and perform their maintenance and evolution. In some cases, code understanding is

supported by static analysis and–or visualizations built upon static data. In other case, debugging

can be used to understand the behavior of a system in a particular context and–or to locate a fault.

However, manually browsing of source code, inspecting an execution trace or debugging long

sequences of instructions are time consuming and daunting tasks.

1.1.1 Feature Location

Concept or feature location aims at helping developers to perform maintenance and evolution

of the system, by identifying abstractions (i.e., features) and the location of the implementation

of these abstractions in the source code. Specifically, they aim at identifying code fragments, that

are responsible for the implementation of domain concepts and user-observable features (Anto-

niol et Gueheneuc (2006); Biggerstaff et al. (1993); Kozaczynski et al. (1992); Poshyvanyk et al.

(2007a); Tonella et Ceccato (2004)). The literature reports approaches built upon static (Anquetil et

Lethbridge (1998); Marcus et al. (2004)) and dynamic (Wilde et Scully (1995); Tonella et Ceccato

(2004)) analyses; Information Retrieval (IR) (Poshyvanyk et al. (2007a)) and hybrid (static and

dynamic) (Eaddy et al. (2008)) techniques.

Static approaches mostly use IR techniques to locate the features in the source codes. They

consider classes and methods in the source code as the documents whose terms are identifiers and

comments. To locate a particular feature in the source code, the developer should apply a query

describing the feature to be found in the corpus. The most similar methods or classes to the query

are considered as implementing the feature.
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All dynamic approaches use system execution traces to identify features in the source code. The

execution traces used in these approaches are generated by executing scenarios that are designed

based on system test cases or specifications. Thus, in all of these approaches, the developer is

aware of the feature or features executed in the scenario. Thus none of these approaches can be

used to extract the concepts in a trace that is generated by an unknown scenario where there is no

information about the features that are exercised in it. Using the execution scenario, each approach

has its own method to detect a particular feature. Some of them identify a feature by comparing

two traces with and without the feature, some others rank the methods in a trace.

Having several traces based on the scenarios requires lots of effort and care to design precise,

appropriate scenarios to generate traces that provide the approach method with enough data.

1.2 Objective of the project

The objective of this project is to propose an approach to identify all the concepts existing in

a single execution trace and assign meaningful labels to concepts. The label of a located concept

should represent the functionality of that concept.

The thesis proposes a novel approach to identify cohesive and decoupled fragments in execu-

tion traces, which likely participate in implementing concepts related to some features. A typical

problem for which the proposed approach can be beneficial is the following. Suppose that a fail-

ure has been observed when executing a particular scenario of a software system; unfortunately

the likelihood to reproduce the execution conditions for that failure is very low. Maintainers are

then faced with the problem of analyzing the execution trace produced by a particular scenario and

identifying high-level abstractions (concepts) that likely participate in the feature producing the

unwanted behavior. Thus it can be helpful in finding problem causing concepts.

To deal with the above described scenario, the proposed approach identifies concepts compos-

ing an execution scenario by grouping together methods that are (i) sequentially invoked together

and (ii) cohesive and decoupled from a conceptual point of view. The underlying assumption is

that, if a specific feature is being executed within a complex scenario (e.g., “Open a Web page from
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a browser” or “Save an image in a paint application”), then the set of methods being invoked, im-

plementing a specific feature (open the Web page), is likely to be conceptually cohesive, decoupled

from those of other features, and sequentially invoked. We use conceptual cohesion and coupling

from Marcus et al. (Marcus et al. (2008)) and Poshyvanyk et al.(Poshyvanyk et Marcus (2006a)).

The approach works as follows. First, we index the source code of each method of a system

textually. Then, we instrument and exercise the system to collect execution traces for some sce-

narios related to different features and, therefore, containing sets of different concepts. We com-

press the traces to remove utility and cross-cutting concepts and to abstract repetitions of the same

sub-sequences of methods. Then, we apply a search-based optimization technique, i.e., a genetic

algorithm, to split the compressed traces into cohesive and decoupled fragments. We ensure perfor-

mances by parallelizing computations over multiple computers. Finally, we assign a representing

label to each detected concept. The label represents the functionality of a concept.

1.3 The Contributions of This Work

In general, the contributions of this thesis are:

1. A novel approach combining IR techniques, dynamic analysis, and search-based optimization

techniques to identify concepts into execution traces;

2. An empirical study that shows the applicability and the performances of the proposed ap-

proach in identifying concepts into execution traces of two systems, JHotDraw and Ar-

goUML. Results indicate that the approach is able to identify concepts (with a precision

in most cases greater than 80%), while the overlap with a manually-built oracle varies de-

pending on the cohesiveness of the concepts to be identified.

3. Parallelization of the search-based optimization technique used in this work (a genetic algo-

rithm) by implementing four client-server architectures conceived to improve performance

and reduce GA computation times to resolve the concept location problem. We could find an

architecture that reduces extremely the execution time.
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We published our work at the The European Conference on Software Maintenance and Reengi-

neering (CSMR) 2010. The article entitled "A Heuristic-based Approach to Identify Concepts in

Execution Traces" by Fatemeh Asadi, Massimiliano di Penta, Giuliano Antoniol, and Yann-Gaël

Guéhéneuc (Asadi et al. (2010b)).

Our second article that explains the Distributed Architectures for GA parallelization is pub-

lished at the 2nd International Symposium on Search Based Software Engineering (SSBSE 2010).

The article entitled "Concept Location with Genetic Algorithms: A Comparison of Four Distributed

Architectures" by Fatemeh Asadi, Giuliano Antoniol, Yann-Gaël Guéhéneuc (Asadi et al. (2010a)).

The following is a detailed description of our contributions in this thesis:

1. At the beginning, we had a basic problem definition which we improved during our study

based on our observations and findings.

2. We have tried several equations to find an appropriate fitness function that guides the search

to find a good segmentation with meaningful segments. We have performed several exper-

iments by using each equation and we improved the equation based on the results of these

experiments.

3. We applied several meta heuristic search algorithms namely, hill-climbing, simulated anneal-

ing and genetic algorithms. For the first two ones we used our own implementations and for

the genetic algorithm we used GAlib, a Java genetic algorithm library, and we optimized its

computations. We also defined the transformations which were performed by each algorithm

to improve the solution.

4. We defined several representation of the problem, and we performed some experiments with

each one to find a proper representation that helped to find meaningful segmentations.

5. To verify the stability of the search algorithms we have proposed and implemented two ver-

ification algorithms, one used with our local searches results and the other one with the GA

results.

6. We implemented and used our own run length encoding algorithm to compress the execution

traces,.
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7. We speeded up the execution of our approach by parallelizing GA computations. We im-

plemented four different client-server configurations to distribute GA computations among

several servers. Having performed some experiments, we could find the configuration that

reduces enormously the execution time.

1.4 Plan of the thesis

The remainder of this Thesis is organized as follows: Chapter 2 presents some previous works.

Chapter 3 gives a brief explanation of supporting techniques. Chapter 4 describes the approach.

Chapter 5 presents an empirical study and reports its results with some discussions. Chapter 6

explains the distributed architectures we used to parallelize the GA computations in order to reduce

the execution time. Chapter 7 concludes the thesis and outlines future work.
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CHAPITRE 2

LITERATURE REVIEW

Although many concept identification approaches exist, none of these approaches attempts to

identify all concepts in a single execution trace automatically. This chapter presents some of pre-

vious work in locating concepts in source code. Some of them use only static analysis by analyzing

data extracted from source code, the others are based on dynamic analysis and try to locate features

by extracting execution traces and analyzing them. There are also approaches that use both static

and dynamic analyses.

2.1 Static Approaches

Static analysis use the data extracted from source code. The data can be structural data used

to generate program dependency graphs (Chen et Rajlich (2000)) or clustering components wi-

thin a software system (Maletic et Marcus (2001)) or data extracted by using information retrieval

techniques (Marcus et al. (2004)).

Chen and Rajlich (Chen et Rajlich (2000)) developed an approach to identify features using

Abstract System Dependencies Graphs (ASDG). In C, an ASDG models functions and global va-

riables as well as function calls and data flow in a system source code. They used only static data to

identify features and a manual process. Their approach is not completely automatic. It is based on

the interactions between the computer and the programmer. The computer is responsible for gene-

rating the dependency graph of the system and updating the search graph. The search graph is the

part of the ASDG that was visited during the search. The programmer is responsible for locating

starting points, choosing next component for visit, exploring the source code, dependency graph,

and documentation, to understand the component and decide whether it is relevant or irrelevant to

the feature and finally checking if all components related to the the feature have been detected.
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In (Maletic et Marcus (2001)) Maletic et al. proposed an approach to support program compre-

hension by using semantic and structural information. Semantic information is provided by using

Latent Semantic Indexing (LSI) and is used to define a semantic similarity measure between soft-

ware components. The similarity measure is then used to cluster components in the software sys-

tem. Structural information is used to assess the semantic cohesion of the clusters. This approach

does not aim to locate features in the source code. It only tries to provide the maintainer with some

organized systematic data about the system that helps them in understanding a program.

Marcus et al. (Marcus et al. (2004)) proposed a LSI based approach to locate concepts in the

system source code. LSI is used to map the concepts that are expressed in natural language by the

programmer, to the related parts of the source code. Using LSI mitigates the problem of polysemy

and synonymy that existed in previous approaches like grep based techniques. The other advantage

of using LSI is that the method is not dependent on a specific programming language, thus the

source code preprocessing is simpler than building the dependency graph.

The corpus is built by considering system methods as the documents and terms that exist in the

identifiers and comments as LSI terms. Then the concepts are located by applying queries to the

corpus. The method can be used in two distinct ways : one way is based on automatically generated

queries. In the other way the user formulates queries and directly queries the system.

The results obtained from a case study that applied this technique to locate concept in NCSA

Mosaic showed that the proposed method outperformed the previous methods based on regular

expression searches and searches on the program dependency graph.

2.2 Dynamic Approaches

Dynamic feature location is based on collecting and analyzing execution traces, which identify

methods that are executed for a specific scenario. In their pioneering work, Wilde and Scully (Wilde

et Scully (1995)) presented the first approach to identify features by analyzing execution traces.

They used two sets of test cases to build two execution traces, one where a feature is exercised and

another where the feature is not. They compared the execution traces to identify the feature in the
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system. In their work, they used only dynamic data to identify features and they performed no static

analysis of the program.

As they mention in the paper, their proposed approach has some limitations. First, it cannot

be used for the functionalities that are always present in the program. Second, choosing the test

cases should be done very carefully and they should be classified according to the functionalities

they present. Otherwise, the obtained results will be meaningless. Finally, their proposed approach

is effective in detecting the parts of source code that uniquely belong to a particular feature but it

does not guaranty to find all the components and source code that participate in implementing the

feature. In other words, the results obtained by using their method presents only starting points.

Wong et al. (Wong et al. (2000)) analyzed execution slices of test cases to identify features in

source code. They defined an execution slice as a group of basic programming blocks and a feature

as "an abstract description of a functionality given in the specifications". To locate parts of source

code that implemented a feature, they executed the program by an input that forced to exercise

that feature. Finding basic blocks (execution slices) related to a feature, they tried to measure the

quantitative interaction between a feature and a program component. In order to do that, they defi-

ned three metrics : disparity, concentration and dedication. Disparity says how much a feature is

related to a component. Concentration shows how much of the code in a component is dedicated

to implement a feature and dedication says how much of the code implementing a feature, exists

in a component. By using these metrics, they believed that their method gave a bigger overview of

how the implementation of a feature is spread over a system. It helps to find the components im-

plementing a feature compared to its previous work that only found starting implementation points.

They used a special tool called χSudsTM to calculate these metrics. To show how their metrics are

useful in program understanding and how they help programmers in software maintenance activi-

ties, they presented a case study that was performed on a software system called SHARPE 1. They

chose six features from the regression test suit of SHARPE and they found the slices related to each

one of these six features. Then they asked some experts who knew the system very well to evaluate

1. Symbolic Hierarchical Automated Reliability and Performance Evaluator
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their findings. The feedback of the experts said that they agree using the introduced metrics in the

paper were helpful in detecting components that collaborate in implementing a feature. Moreover,

the experts believed that using these metrics helped them to capture more precisely the places in

the system that are related to each feature than using their own knowledge of the system which

provides only a qualitative understanding of where each feature is implemented in the system.

Wilde’s original idea was later extended in several works (Antoniol et Gueheneuc (2006); Po-

shyvanyk et al. (2007a); Edwards et al. (2004); Eisenberg et Volder (2005)) to improve its accuracy

by introducing new criteria on selecting execution scenarios and by analyzing the execution traces

differently.

Edwards et al.(Edwards et al. (2004)) suggested a solution for the feature location problem

for distributed systems. Since distributed systems usually run continuously by executing different

features, the concept of "time interval" should be used instead of the concept of "test case". De-

termination of intervals in distributed systems is a complex task and it is difficult to determine the

correct order of events. Thus they defined a time interval based on causal ordering of events. Then

they compared the execution traces between the determined intervals to locate a particular feature.

Eisenbarth et al. in (Eisenberg et Volder (2005)) introduced a feature identification approach by

using test cases. First, they partitioned test cases in feature-specific subsets manually and used them

to generate traces. They believed that the previous techniques which relied on comparison between

two traces, are very sensitive to the quality of inputs. Thus they proposed a heuristical ranking-

based technique to decrease the sensitivity to input. The ranks are used to describe the relevancy

of a method to a particular feature. They defined three different ranks : Multiplicity, Specialization

and Depth. Multiplicity of a method in a test set is the ratio of number of execution of the method in

the test set to the number of execution of the same method in all the other test sets. Specialization

shows how a method is special for a test set or how it is common between all the test sets. The

traces that are analyzed in this approach are generated by running test cases of the system such that

each feature of the system is executed at least with one of test cases. Then by computing the three

ranks mentioned above they detected the methods that are relevant to a particular feature.
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They developed a tool for the Java programming language and applied this tool to three different

systems.

2.3 Hybrid Approaches

Both static and dynamic techniques have their own limitations. In general, dynamic techniques

are conservative in nature, as execution traces are often very large and contain a lot of noise. Selec-

tion of proper test cases or scenarios to be executed is another problem of these techniques. On the

other hand, static analysis can rarely identify methods contributing to a specific execution scenario

exactly. In fact each type of analysis collects data that would be unavailable to the other analysis

but can improve the performance of the feature location process. In the other words, each approach

can be considered as a complement to the other. Recent works focused on a combination of static

and dynamic data (Eaddy et al. (2008); Poshyvanyk et al. (2007a)), in which, essentially, the pro-

blem of features location from multiple execution traces is modeled as an IR problem, which has

the advantage to simplify the location process and, often, improves accuracy (Poshyvanyk et al.

(2007a)).

Antoniol et al. (Antoniol et Gueheneuc (2005)) proposed a statistical analysis technique to

detect features in multi threaded object oriented programs. Their approach used both static and

dynamic data collected from a program source code and its executions. Static analysis is used to

build an architectural model of a program from its source code. This model is later used to create

feature models. In dynamic data collection phase, they used processor emulation to improve the

order and the precision of collected data. Since all the events occurred while executing a scena-

rio are not interesting, regarding to a particular feature, they removed some obviously unrelated

events from the execution trace by using Knowledge-based Filtering. Then, they used probabi-

listic ranking technique to classify events as relevant or irrelevant to a feature. At the end, they

used the events related to each feature to build micro-architectures that highlighted the parts of the

source code that implement that feature. By comparing and highlighting differences among micro-

architectures, maintainers can understand and compare behaviors of different functionalities or of
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a same functionality with different scenarios.

An extension of this work was presented later in (Antoniol et Gueheneuc (2006)) in which they

improved their previous approach by using the concept of epidemiology of diseases in locating

the features. Their assumption was that the events that are frequent in the scenarios in which a

particular feature is exercised, can be related to that feature with high probability. Thus they used

an epidemiological metaphor besides probabilistic ranking technique to classify events as relevant

and irrelevant and also to rank the relevant events to associate top ranked events with a feature. The

results obtained by using this method were more accurate than their previous approach’s results.

In (Poshyvanyk et al. (2007b)) Poshyvanyk et al. proposed a hybrid method, called PROME-

SIR, by combining the static approach presented in (Marcus et al. (2004)) and the dynamic approach

presented in (Antoniol et Gueheneuc (2005)) and (Antoniol et Gueheneuc (2006)) to find starting

points in impact analysis. PROMESIR static approach is an information retrieval-based approach

that uses latent semantic indexing to find related methods and classes to a particular feature. The

LSI-based approach considers each method and class as a document composed by identifiers and

comments. To find methods and classes that implement a particular feature, a developer formulates

a query by selecting a set of words that describe the feature. The LSI-based system tries to find

related documents (classes and methods) to the features described in the query by computing the

similarity between the documents in the corpus and the query. Then the retrieved documents are

ranked based on the similarity measures. The dynamic approach is the scenario-based probability

approach (SPR) explained in (Antoniol et Gueheneuc (2005),Antoniol et Gueheneuc (2006)). Fau-

nally, they considered SPR ranking and LSI ranking as the judgement of two experts and combined

them using the formula presented in (Jacobs (1995)).

Each one of these two approaches collects and analyzes data that would be unavailable to the

other approach but can improve the performance of feature location process. Using LSI, developers

can query static documents and obtain a ranked list of code fragments related to a feature. Using

SPR, developers analyze dynamic traces of the execution of different scenarios and obtain a list

of entities (methods and classes), again ranked according to their relevance to a feature of inter-
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est. Thus each one can be considered as a complement for the other one and using both together

improves the performance and precision of feature location tasks.

To show the superiority of their method, the authors performed a case study for bug location in

two large open source programs : Eclipse and Mozilla. The case study showed that LSI and SPR

complement each other, and the results obtained with the combined techniques are better than those

of any of the techniques used independently.

Eisenbarth et al. (Eisenbarth et al. (2003)) proposed an approach by combining both static

and dynamic data to identify features. First, they performed a dynamic analysis of a system using

profiling techniques to identify features, similar to Wilde and Scully’s approach. Then, they applied

concept analysis techniques to link features together, and to guide a static analysis that narrowed

the scope of the identified features. In fact, they used the results obtained from dynamic analysis

just to guide the analyst in the static analysis and not as a definite answer. They experimented their

approach on two C systems with good results.

The test cases used as scenarios in the proposed approach should be designed carefully and

precisely by a domain expert. The domain expert should design several scenarios, all triggering

the same feature but with different sets of inputs. To obtain effective and efficient coverage, it is

needed to build equivalence classes of relevant inputs. Thus, to understand a system by using this

approach, having a vast previous knowledge of the system is necessary.

This approach is a semiautomatic approach where the tasks related to the dynamic analysis are

performed automatically but the static analysis that consists of interpretations of concept lattice and

static dependency analysis are performed by an analyst.

Salah and Mancoridis (Salah et Mancoridis (2004)) used both static and dynamic data to iden-

tify features in Java systems. They went beyond feature identification by creating feature-interaction

views, which highlight dependencies among features. They defined four types of views : object-

interaction, class-interaction, feature-interaction, and feature-implementation. Each view abstrac-

ted preceding views to present only the most relevant data. Feature-interaction and implementation

views highlighted relationships among views. Their work was extended to allow feature identifica-
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tion and evolution analysis in large-scale systems, e.g., Mozilla (Salah et al. (2005)).

Yet, Liu et al. (Liu et al. (2007)) showed that a single trace suffices to build an IR system

and locate useful data. Their proposed method, called SITIR, is a semiautomated method in which

user and computer interact with each other to find the methods related to a feature. The approach

starts by using LSI to capture relations between terms (identifiers and comments) and documents

(methods) in the source code. Then the user formulates a scenario that executes the desired feature

and collects the execution trace. In the next step the user should formulate a query describing the

desired feature. Using terms similar to the terms used in the system is helpful in finding more

precise results. Applying the query on the execution trace, all the methods in the trace are ranked

based on their textual similarity to the query. Then the user examines the source code starting with

the methods at the top of the sorted list. Inspecting the source code, the user can reformulate the

scenario or improve the query.

To evaluate the performance of their proposed approach, the authors performed two case stu-

dies, one by using JEdit and the other one by using Eclipse. For each of these two, they tried to

locate three features that needed to be modified. They defined the effectiveness of a feature location

technique by considering the ranking of a first method that participates in implementing the desired

feature. Thus a feature location technique is considered better than another one "if it returns at least

one method relevant to the feature on a better position in the list of ranked results". The results ob-

tained from these two case studies showed that SITIR outperforms the approach based only on LSI

or SPR. The results of SITIR are very close to the ones of PROMESIR. However, SITIR is much

simpler than PROMESIR and it uses only one unique trace, instead of multiple traces in PROME-

SIR, to detect the desired features. The way in which the static and dynamic analysis results are

combined, is also more transparent in the SITIR. It is also indicated that defining the scenarios in

SITIR is straightforward as they do not have to be very precise and SITIR is less sensitive to poor

user queries than LSI alone.

A brief summary of all these approaches is presented in table 2.1.

We share with previous work the use of dynamic data and IR techniques to identify features.
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Table 2.1 Summary of feature location approaches

Approach Static Static Use Dynamic # Of Traces Dynamic Use
Wilde(Wilde et Scully (1995)) - - X Two traces Comparing
Wong(Wong et al. (2000)) - - X Multiple Traces Ranking
EdwardsEdwards et al. (2004) - - X Two Traces Comparing

Extract Probabilistic
AntoniolAntoniol et Gueheneuc (2005) X architectural model X Multiple Traces Ranking
PoshyvanykEisenberg et Volder (2005) X LSI X Multiple Traces SPR Ranking
ChenChen et Rajlich (2000) X ASD 2 Graphs - - -
EisenbarthEisenbarth et al. (2003) X Concept Analysis X Multiple Traces profiling
EisenbarthEisenberg et Volder (2005) - - X Multiple Traces Ranking
SalahSalah et Mancoridis (2004) X ? X Multiple Traces Interaction Views
LiuLiu et al. (2007) X LSI X Single Trace Query Answering
MarcusMarcus et al. (2004) X LSI - - Query Answering

However, instead of querying traces using an IR technique, e.g., similar to Poshyvanyk et al. (Po-

shyvanyk et al. (2007a)), we determine cohesive and decoupled fragments likely being relevant to

a concept automatically. Our approach is based on two conjectures not yet fully investigated : (1)

methods helping to implement a concept are likely to share some linguistic information ; (2) me-

thods responsible to implement a feature are likely to be called close to each other in an execution

trace. Therefore, the conceptual coupling of methods participating in a concept should be high and

these methods should appear relatively close together in the execution trace. The first conjecture is

grounded on the findings published in (Poshyvanyk et al. (2007a)) and other publications based on

IR to locate features and concepts. IR-inspired works assume some form of commonalities between

a query and linguistic information of entities. Locality of concept manifestation in traces is more

questionable, however we believe unlikely that a user-observable feature or concept, not constitu-

ting a crosscutting concern, will be uniformly spread in a trace.
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CHAPITRE 3

SUPPORTING TECHNIQUES

3.1 SBSE and Meta-heuristic Algorithms

Search based software engineering (SBSE) seeks solution to software engineering problems by

reformulating them as search problems and applying metaheuristic search techniques.

Meta-heuristic search techniques are used to solve problems where solution must be found in

large search spaces. They explore the large search space iteratively and try to improve the current

solution by using fitness functions. The final solution obtained by using a metaheuristic search

technique may not be the optimal solution but it is usually what is "close" to the optimal solution.

The reason of using metaheuristic search techniques instead of exact optimization techniques is that

applying the exact optimization techniques, such as linear programming to large scale software pro-

blems is not practical. Metaheuristic search techniques are used in different software engineering

areas such as, software testing ,requirements analysis, software design, software development, and

software maintenance.

There are two main categories of metaheuristic search techniques, local search techniques and

evolutionary algorithms.

Local search techniques are used to solve the problems

– for which a neighborhood relation can be defined in the search space and

– that can be formulated as finding a (near) optimal solution among a number of candidates in

the defined neighborhood

Local search techniques move from one solution to the other in the search space until finding

an optimal (maybe local optimal) solution or reaching a stopping criteria. A local search algorithm

starts from a candidate solution and then iteratively moves to a neighbor solution. Typically, every

candidate solution has more than one neighbor solution. The choice of moving to which neigh-
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bor depends on the policy defined by the search algorithm. For instance in some algorithms, only

moving to an improving neighbor is accepted. They may check which neighbor improves the so-

lution more or may choose the first detected neighbor that improves the solution without verifying

the others. In some others, moving toward a non-improving solution can happen according to a

probability function to explore more of the search space.

Evolutionary algorithms (EAs) are search methods that take their inspiration from biological

evolution and use operations such as reproduction, mutation, recombination, and selection. EAs

involve a search from a population of solutions. They start with an initial population that is ran-

domly generated. Then, in each iteration, they evolve the population into the regions of the space

that contain more optimal solutions. The evolution of population, generation of next population,

is done in several steps. First a competitive selection is done to get rid of poor solutions. Then the

solutions with high fitness are recombined with other solutions by swapping parts of a solution with

another. Solutions may also mutate by making a small change to a single element of the solution.

To use any metaheuristic search technique, the two following tasks should be performed(Harman

et al. (2007)) :

1. Choosing an appropriate representation of the problem that can be used by the metaheuristic

algorithm. For example if the problem is finding the test data for the Triangle method in

algorithm 3.1 and we decide to solve this problem by using a genetic algorithm, we can

represent this problem as a population of chromosomes where each chromosome consists of

three integer genes.

2. Defining a fitness function. A fitness function is an equation that guides the search to im-

prove the solution. They are generated according to the problem goal. In fact, we translate

the problem criteria to the fitness function. The definition of fitness function is not always

straightforward. There is no exact approach or standard that shows how a fitness function

should be defined for a given problem. We are sometimes obliged to define and try several

fitness functions to find an appropriate one.

When the search algorithm generates a new solution, it evaluates the solution by calculating
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the fitness. The algorithm uses the fitness value either to know if the solution has been impro-

ved and it can be accepted as the current result (hill climbing) or to rank the solution against

the other ones (genetic algorithm).

Algorithm 3.1. Triangle

boolean Triangle(int x, int y, int z) {

boolean isTriangle ;

if(x+ y > z&&x+ z > y&&y + z > x)

isTriangle = true ;

else

isTriangle = false ;

return isTriangle ;

}

We implemented our concept location approach, explained in chapter 4, using three metaheuris-

tic algorithms : hill climbing, simulated annealing, and genetic algorithm. In the following sections

we explain each of these algorithms.

3.1.1 Hill Climbing

Hill climbing is one of the local search techniques. It relies on the neighborhood of the current

solution. The first steps in using hill climbing to solve a problem are defining the solution search

space and the goal of the search. The algorithm looks for the optimal solution in the defined search

space. To know the value of the solutions with respect to the defined objective, each solution is

evaluated by the fitness function. The fitness function f : S → R is defined based on the objective

of the search and it assigns a real value R to any solution S.

Hill climbing starts with an initial solution that is generated randomly. At each iteration, the

algorithm chooses from the current solution’s neighborhood a neighbor that improves the fitness

value and considers it as the new current solution. There are two choices for choosing a neighbor

as the next solution. In the next ascent hill climbing, the algorithm moves to the first neighbor that
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improves fitness. In steepest ascent hill climbing, the algorithm checks all the neighbors and moves

to the neighbor that improves fitness more than others.

The algorithm continues working until there is no neighbor that improve fitness. This is the stop

point for the algorithm and it shows that the algorithm has reached a (possibly local) optimum. A

simple schema of hill climbing is shown in algorithm 3.2 :

Algorithm 3.2. Pseudo-code of Hill Climbing

currentNode = randomeStartNode() ;

loop do

improved = false ;

N = NEIGHBORS(currentNode) ;

currEval = EVAL(curentNode) ;

for all n in N

if (EVAL(n) > currEval)

currentNode = n ;

currEval = EVAL(n) ;

improved = true ;

break ;

while(improved) ;

The problem with the hill climbing approach is that the hill located by the algorithm may be

a local optimum that is much poorer than the global optimum in the search space. In fact this

algorithm has a high tendency to converge to the local optimum that is close to the initial location

in the search space (Figure 3.1).

A possible solution to this problem is to repeatedly restart the algorithm by using new initial

solutions, in other words starting the movement from different locations in the search space. This

approach is called multiple-restart hill climbing. Using this approach we can hope to find the solu-

tion closer to the global optimum but there is still no guarantee of finding the best possible solution,

ı.e the global optimum.
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Optimum

Local 
Optimum

Figure 3.1 Local optimums in hill climbing

3.1.2 Simulated Annealing

Simulated annealing can be considered as an improved version of hill climbing. Simulated an-

nealing is used to avoid the problem of local optimum by allowing the moves towards the neighbors

that have poorer fitness. The algorithm simulates the process of annealing a metal. In the annealing

process, a highly heated metal cools slowly to become harder. In high temperatures, the atoms can

move freely. As the temperature decreases the atoms are limited in their movement and have less

freedom.

In a simulated annealing algorithm, the cooling process is simulated by a probability function.

In the first iterations, the probability of accepting solutions worse than the current solution is high.

By increasing the iteration number, the probability of accepting less fit solutions is reduced, simu-

lating the lower temperature in the annealing process. In the last iterations, the algorithm works

as a hill climbing algorithm choosing only the solutions that improve fitness. A simple schema of

simulated annealing is shown in Algorithm 3.3.

Algorithm 3.3. Pseudo-code of Simulated Annealing

randomly select currentNode
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repeat

j ← 0

repeat

T ← Tmax · e−jr

select nextNode in the neighborhood of correntNode

if fitness(nextNode) > fitness(currentNode)

currentNode← nextNode

else if random [0, 1) < e
fitness(nextNode)−fitness(currentNode)

T

currentNode← nextNode

until T < Tmin

3.1.3 Genetic Algorithm

The genetic algorithm is one of the evolutionary algorithms and also the most famous one. It is

the most applied search technique in SBSE (Harman et al. (2007)). It works by using the concepts

of population and recombination. Such as other evolutionary algorithms, in a genetic algorithm,

each iteration involves the evolution of the whole population, in contrast with the local search

techniques where in each iteration, only one individual is evolved.

The genetic algorithm starts with a definite number of individuals that are generated randomly.

The number of individuals depends on the nature of the problem. The number of individuals in all

the generations will be the same as the initial population.

In each iteration, some of the individuals of the current generation are selected to generate the

next generation. Let us refer to them as parents. The parents are chosen by using a fitness-based

probability function. Using this function, fitter individuals have a greater chance to be selected as

parents. The reason of choosing good quality parents is that good quality parents have more chance

to produce good quality descendants. The selected parents then mate using the genetic operators.

A child generated by these operators share many characteristic with its parents. It is expected that

the average fitness of the new generation increases since the best individuals have been selected to
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generate the new population.

There are two genetic operators used in the mating phase to generate the next generation :

crossover and mutation.

Crossover

Crossover is a genetic operator that combines two parents to produce two new chromosomes

(offspring). The idea is that the new offspring may be fitter than both its parents if it inherits the

best characteristic from each of its parents. Crossover occurs while evolution according to crossover

probability. There exist several types of crossover operators such as : one-point, two-point, uniform,

arithmetic, and heuristic.

One-Point Crossover

In one-point crossover the operator selects randomly a split point within the chromosomes. It

splits both chromosomes at this points. The new offsprings are created by exchanging the tails of

both chromosomes. An example of one-point crossover is illustrated in Figure 3.2.

0 0 0 00 0000

1 1 1 11 1111

0 0 0 00

000

0

1 1 1 11

111

1

Parents

Children

Figure 3.2 One-Point Crossover
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Two-Point Crossover

This operator selects randomly two split points within the chromosomes and splits the chro-

mosomes at these points. Then the chromosomes exchange the segment located between these two

split points and generates two new offspring. An example of two-point crossover is illustrated in

Figure 3.3.

0 0 0 00 0000

1 1 1 11 1111

Parents

Children
0 0

0 00

000

01 1

1 11

111

1

Figure 3.3 Two-Point Crossover

Uniform Crossover

In uniform crossover the parent chromosomes mix with each other at gene level rather than

segment level as in the two previous crossover methods. The uniform crossover considers the first

child, and for each of its genes, it flips a coin to decide from which one of its parents, the first child

should inherits this gene, then the other parent’s gene is assigned to the second child. An example

of two-point crossover is illustrated in Figure 3.4.
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Figure 3.4 Uniform Crossover

Whole Arithmetic Crossover

Whole arithmetic crossover is useful for individuals that are represented as vectors of real va-

lues. It produces the children using the following equations :

child1.gene(i) = a× parent1.gene(i) + (1− a)× parent2.gene(i)

child2.gene(i) = (1− a)× parent1.gene(i) + a× parent2.gene(i)

Where a is a weighting factor selected randomly in the interval [0, 1]. An example of arithmetic

crossover is illustrated in Figure 3.5

Mutation

Mutation is another genetic operator that alters one or some gene values in a chromosome. This

operator can result in generating a new chromosome. Mutation is important because it helps to

prevent the population from converging to a local optimum. Mutation probability should be low,

lower than or equal to 0.05, because a high value probability drives the search close to a random

search. An example of applying a mutation operator is illustrated in Figure 3.6.

There are different types of mutations such as flip-bit for binary genes ; boundary, uniform, and

non-uniform for integer and float genes ; and character mutation for character genes. In flip-bit
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Children
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Figure 3.5 Arithmetic Crossover, a = 0.7

1 1 1 11 1111

Parent

Child 1 111 1 111 1 1111 1 11111 1 111111 1 1111111 1 1111111 1 11111 1 00

1 1 1 11 11111 111 1 111 1 1111 1 11111 1 111111 1 1111111 1 11111111 1 111111 1

0 00

Figure 3.6 Mutation

mutation, the mutation operator simply inverts the value of the selected gene. In other words it

replaces a 1 with a 0 and vice versa. In boundary mutation the value of the selected gene is replaced

by the lower bound or upper bound defined for that gene. The choice of replacing with the upper or

lower bound is done randomly. In uniform mutation, a selected gene’s value is replaced with a value

that is selected randomly between the user defined lower and upper bound. Non-uniform mutation

draws a random number with a Gaussian distribution and then modifies it a bit for each gene

separately. The mutation operator for character genes selects two genes randomly and exchanges

their values.

Elitism

Elitism is the act of copying the best chromosome or some of the best chromosomes in the

population of the next generation. Elitism guarantees the survival of the best solutions from one

generation to the next one. Copying the best chromosomes into the next population is done before
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performing any crossover operation. The best chromosomes are not removed from the population

so they have a chance to be selected as crossover operands. During the final control to generate the

next generation, the mutation is not applied to the fittest chromosome. Thus, we are sure that the

best chromosome is transferred to the next generation.

Fitness Evaluations

The fitness evaluation is performed for all the individuals of the population. The evaluation of

the fitness depends directly on the problem definition and goal of the search. In some cases it is

needed to execute a program that receives the individuals as the input, do some processing using

the data in the individual, and return some kind of result. The results are collected by the GA then

evaluation is performed according to the collected results. An example of evaluating the fitness in

this way, is using GA to automatically generate test cases for white box testing. In other cases the

fitness evaluation is performed according to the data that are extracted from chromosome.

Depending on the search strategy, some individuals are transferred to the next generation wi-

thout being affected by any of the genetic operators. Since fitness evaluation is a time consuming

process, it would be the waste of time to reevaluate the fitness for these non-modified individuals.

Thus, a mechanism may be needed to indicate if the current individual has been modified since the

last generation and if its fitness should be reevaluated or not.

Stopping criteria

The generation process continues until reaching a terminating condition. While evolving the

generation, it is possible that the population converges to a small area in the search space. In this

situation, the fitness values evaluated for all the individuals are very close together and the diversity

of the solutions is very low. This situation can be considered as a stopping criteria.

In some cases the number of iterations is defined by the user and the evolution process stops

after a certain number of iterations.

A terminating condition can also be defined as finding a solution that satisfies the goal of the



27

search. However, it is possible that the population converge to an area where there is no solution

to satisfy all the defined constrains. To avoid being in a loop, a maximum number of iterations

should be defined. Defining a maximum number of iterations prevents the algorithm from running

indefinitely. A simple schema of genetic algorithm is shown in algorithm 3.4.

Algorithm 3.4. Pseudo-code of Genetic Algorithm 4.2

begin GA

g := 0 { generation counter }

Initialize population P(g)

Evaluate population P(g) { i.e., compute fitness values }

while not done do

g :=g+1

Select P(g) from P(g − 1)

Crossover P(g)

Mutate P(g)

Evaluate P(g)

end while

end GA

3.2 Information Retrieval and Latent Semantic Indexing

Information retrieval (IR) is the technique of extracting information from documents. It is the

task of finding relevant documents in a large document database to a given query. It accelerates

the process of searching documents by representing them with mathematical models. The different

models used in the information retrieval process to represent the documents can be classified into

the following categories(Frakes et Baeza-Yates (1992); Singhal (2001)) :

– Set-theoretic models : they represent documents as sets of words or phrases. Similarities are

calculated based on set-theoretic operations on the representative sets. Common models in

this category are the Standard Boolean model, the Extended Boolean model and the Fuzzy
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retrieval model.

– Algebraic models : they represent documents and queries as vectors. The similarity between

a query and a document is the cosine value of the angle between their vectors. Common

models in this category are the Vector Space Model, the Generalized vector space model, the

(Enhanced) Topic-based Vector Space Model, the Extended Boolean model, and the Latent

Semantic Indexing.

– Probabilistic models : they consider the information retrieval process as a probabilistic infe-

rence. Similarities are defined as probabilities that a document is relevant for a given query

by using probabilistic theorems like Bayes’ theorem. This category includes the following

models : Binary Independence Model, Uncertain inference, Language models, Divergence-

from-randomness model and, Latent Dirichlet allocation.

Using any representation model, an information retrieval process begins when a user sends a query

into the system. A query can be any statement of information-needs. A well known example of a

system using IR techniques to perform the search between documents is the Google web search

engine.

In information retrieval, a query does not identify some objects as its perfect matches. In other

words, the retrieved documents may not match completely with the query but they are relevant to

it by a relevancy degree. Thus, most IR systems compute a score that shows how well each object

matches the query and objects are ranked according to this computed value. Then the top ranking

objects are shown to the user as the query results.

3.2.1 A Simple Example of the Vector Space Model

Before describing the vector space model, let us explain basic information retrieval with a

simple example. Suppose that we have the following documents :

– Document (1) I love fish.

– Document (2) I eat fish and I hate cats.

– Document (3) I love cats and dogs love cats.
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– Document (4) I do not eat fish but the cats eat fish and the dogs do not hate fish.

– Document (5) The cats do not love the dogs, but the dogs love the fish.

– Document (6) The dogs hate the cats.

– Document (7) The cats hate the fish.

– Document (8) Not fish, not cats, I love dogs.

We want to create the vector-space model corresponding to these documents. By removing the

articles propositions, propositions and conjunctions, we have the following terms in the vector-

space dictionary : "I", "love", "fish", "eat", "hate", "cats", "dogs", "do" and "not". After extracting

the terms from the documents, a document-term matrix is generated. The generated document–

term matrix is a matrix that contains the weight of each term in each document. The weight of a

term in a document can be defined in different ways. It may be presented only by 0 or 1 to show the

presence or absence of a term in a document. The weight can be also defined as the frequency of the

presence of a term in a document. There are some other weights such as TF − IDF (Lalmas et al.

(2006))that indicates how important a term is to a document in comparison with other documents

in the set of documents (section 3.2.4). In the document–term matrix of this example, we use the

occurrence frequency of a term in a document as the weight of that term in the document. The

document–term matrix of the example is shown in 3.1

Table 3.1 Document-Term Matrix of the Given Example

I Love fish eat hate cats dogs do not
Document (1) 1 1 1 0 0 0 0 0 0
Document (2) 2 0 1 1 1 1 0 0 0
Document (3) 1 2 0 0 0 2 1 0 0
Document (4) 1 0 3 2 1 1 1 2 2
Document (5) 0 1 1 1 0 1 2 1 1
Document (6) 0 0 0 0 1 1 1 0 0
Document (7) 0 0 1 0 1 1 0 0 0
Document (8) 1 1 1 0 0 1 1 0 2

Each row in the term–document matrix is the vector assigned to the corresponding document

and contains the weight of the terms in that document.
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Suppose that a user wants to find the relevant documents to this query : “I do not love fish".

To apply this query to the generated corpus, we consider it as a document and we generate its

corresponding vector. The corresponding vector of this query is as follows : To find the relative

Query) 1 1 1 0 0 0 0 1 1

document to this query the similarity between the query and each one of the documents in the corpus

should be computed. In vector-space model the similarity between two documents is defined as the

cosine of the angle between the vectors of the two documents. The results of calculating similarity

between the query and the documents in the corpus is presented in table 3.2

Table 3.2 Similarity Values Between the Documents and the Query

Similarity Value
Document (1) 0.7746
Document (2) 0.4743
Document (3) 0.4243
Document (4) 0.7155
Document (5) 0.5657
Document (6) 0
Document (7) 0.2582
Document (8) 0.7454

After computing the similarity values, the documents can be sorted according to their relevance

to the given query.

Table 3.3 Relevancy Sorted List

Sorted List
Document (1)
Document (8)
Document (4)
Document (5)
Document (2)
Document (3)
Document (7)
Document (6)

As it is shown in the sorted list Document 1) is the most relevant document to the given query

while the Document 6) is the least relevant document.
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3.2.2 Measuring Performance

The two most important measures used to evaluate the performance of an information retrieval

system are precision and recall. Precision indicates the exactness of the retrieval process. It is

defined as the number of relevant documents retrieved by a search divided by the total number of

documents retrieved by that search. Precision value shows how much the retrieved documents are

relevant to the applied query :

Precision =
{relevant documents}⋂{retrieved documents}

{retrieved documents} (3.1)

Recall indicates the completeness of retrieval process. It is defined as the number of relevant

documents retrieved by a search divided by the total number of existing relevant documents and

shows the percent of relevant documents that are retrieved :

Recall =
{relevant documents}⋂{retrieved documents}

{relevant documents} (3.2)

3.2.3 Vector Space Model

Vector space model (or term vector model) is one of the IR algebraic models. It has been widely

used in the traditional IR field. Most search engines also use similarity measures based on this

model to rank Web documents.

A vector space model creates a space in which both documents and queries are represented as

vectors of terms :

di = {w1,i, w2,i · · ·wn,i} , q = {w1,q, w2,q · · ·wn,q} where “di" is a document in the corpus, “w"s

are weights of terms in the document and “q" is a query applied to the corpus. Each dimension

corresponds to a term. If a term occurs in the document the value of its corresponding dimension

should be different from zero. There are several ways to compute this value that can be considered

as the weight of a term in a document. One way is using the frequency of the term occurrence in the

document as the weight of that term. By computing the weights in this way, all terms are considered
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equally important because it shows how frequent a term is in a document but it cannot indicate if

the term is a common term that occurs frequently in other documents too, or if it is a special term

that belongs to this document more than others. One of the best schemes to compute this weight is

tf-idf that is explained in the following section.

The terms are defined differently according to the applications. Typically, the terms are the

words in the set of documents on which the queries are applied (corpus). Distinct words in the

corpus form a dictionary. The dimensionality of the vectors representing the documents, is the

number of terms in the dictionary. The query is considered as a document and is represented by the

same kind of vector as the documents.

To rank documents against a query, we need to calculate the similarity between the query and each

document. The similarity between a document and a query can be defined based on deviation of

angles between their vectors (θ). The more narrow the angle, the higher similarity. In practice the

cosine of the angle between the document’s vector and the query’s vector is used as their similarity.

Similarity(di, q) = cos θ =
di · q
‖di‖‖q‖

(3.3)

3.2.4 TF–IDF

The TF–IDF weight (term frequency-inverse document frequency) is a weight often used in

information retrieval and text mining. It is a statistical measure used to evaluate how important a

word is to a document in a corpus. The importance increases proportionally to the number of times

a word appears in the document but is offset by the frequency of the word in the corpus.

Term frequency (TF) value is the number of times a given term appears in the document normalized

by dividing to occurrences of all terms in the document. The normalization is done to prevent a

bias towards longer documents since a long document may have a high frequency number of a term

regardless of the real importance of that term in the document. Thus the TF value for term i in
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document j is defined as follows :

TF(i, j) =
n(i, j)∑
k n(i, k)

(3.4)

where n(i, j) is the number of occurrence of term ti in document dj .

Inverse document frequency (IDF) value indicates the general importance of a term in the cor-

pus. It is defined as the logarithm of the result of dividing the number of all documents in the

corpus by the number of documents that contains the given term. The equation used to calculate

(IDF) value is as follows :

IDFi = log
| D |

| {d : ti ∈ d} |
(3.5)

where | D | is the number of all documents in the corpus, ti, represents the given term and | {d :

ti ∈ d} is the number of documents that contain ti. Low (IDF) value means that the given term is a

common term that can be found in most documents while high (IDF) value indicates that the term

is an important term for the containing document.

Finally the TF − IDF weight of term i in document j is calculated using the following equa-

tion :

(TF − IDF )(i, j) = TF(i, j)× IDFi (3.6)

where TF(i, j) is the term-frequency of term i in document j ,and IDFi is the inverse document

frequency of term i.

A high TF–IDF weight is obtained when the frequency of a given term’s occurrence is high in

a given document but the term appears rarely in other documents in the corpus.

3.2.5 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a developed version of vector space model. LSI uses a ma-

thematical technique called Singular Value Decomposition (SVD) to identify patterns of relations

between the terms and concepts in a collection of texts. In fact LSI works with the concepts rather
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then the exact terms. This characteristic of LSI provides the following benefits :

– LSI does not require an exact match to return useful results ;

– it overcomes the problem of synonymy (several words with the same meaning) and polysemy

(a word with more than one meaning) ;

– it is useful for document categorization and document clustering ;

– LSI is very tolerant to noise i.e., misspelled words, typographical errors, unreadable charac-

ters, etc ;

– LSI is not restricted to sentences in texts. It can work with different types of texts such as

lists, free-form notes, emails, Web-based content, etc.

The LSI process starts by constructing a weighted term–document matrix A. A is a (m × n)

matrix where m is the number of terms and n is the number of documents. Then the term-document

matrix is decomposed into three matrices : U,S ,and V where U is a term–concept vector matrix,

S diagonal matrix of weights ordered by weight value, V is a concept-document vector matrix and

they satisfy the following relations :

A = USV T (3.7)

The next step is truncating the singular value matrix S to size k where k is typically selected in the

range of 100 to 300. To conform with the truncated S the other matrices should also be modified as

follows :

A ≈ Ak = UkSkV
T
k (3.8)

The effect of using this reduction is preserving the most important semantic information in the text

while reducing noise and other undesirable artifacts of the original space of A.

The transformation of the query vectors in to the new space is performed according to the

following equation :

qk = qTUkS
−1
k (3.9)

Now we have in the new space, both term–document matrix, Vk, and query vector, qk . The simila-

rity between a query and a document is the cosine of the angle between their vectors.
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CHAPITRE 4

CONCEPT IDENTIFICATION APPROACH

Concept or feature location identifies abstractions (i.e.,concepts or features) and the location

of the implementation of these abstractions. By location we mean highlighting the classes and the

methods that implement a concept. Our concept location approach identifies concepts composing

an execution scenario by grouping together methods that are (i) sequentially invoked together/in

sequence, and (ii) cohesive and decoupled from a conceptual point of view. The underlying as-

sumption is that, if a specific feature is being executed within a complex scenario (e.g., "Open a

Web page from a browser" or "Save an image in a paint application"), then the set of methods being

invoked, implementing a sub-concept or a concept, is likely to be conceptually cohesive, decoupled

from those of other features and sequentially invoked. We adapted the definition of conceptual

cohesion and coupling proposed by (Marcus et al. (2008)) and (Poshyvanyk et Marcus (2006b)).

The approach works as follows : first, we index the source code of each method of a system by

means of IR approaches. Then, we instrument and exercise the system to collect execution traces for

some scenarios related to different features and, therefore, containing sets of different concepts.We

compress and filter the traces to remove utility and cross-cutting concerns and to remove repetitions

of the same sub-sequences of methods. Finally, we apply a search-based optimization technique,

i.e., a genetic algorithm, to split the compressed traces into conceptually cohesive and decoupled

fragments. We overcome performance issues by parallelizing the generic algorithm over multiple

machines.

4.1 Textual Analysis of Method Source Code

To determine the conceptual cohesion of methods, our approach uses the Conceptual Cohesion

metric defined by Marcus et al. (Marcus et al. (2008)). We consider each method as a document, so
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our corpus is the collection of methods in the system. We extract a set of terms from each method

by tokenizing the method source code and comments, pruning out special characters, programming

language keywords, and terms belonging to a stop-word list of the English language such as the

articles and the propositions. We assume that comments appearing on top of the method declaration

belong to the following method and thus they are associated to it.

In the next step, we split compound terms created via the Camel Case naming convention at

each capitalized letter. Following Camel Case convention, the terms constructing a compound term

are joined together without any space. The first letter of each term is upper case and the other letters

are lower case except the first term that should start with the lower case. The term getBook is an

example of a compound term created via the Camel Case naming convention. In this step, it is split

into get and book.

Then, we stem the obtained simple terms by using a Porter stemmer (Porter (1980)) to reduce

inflected (or derived) words to their stem or root word. For example the term visited is replaced by

its stem visit after stemming step.

We generate a dictionary from the extracted terms. The dictionary is used in both the concept

identifying and label assignment phases. In label assignment phase, we assign to each detected

feature a descriptive label that indicate the functionality of the feature.

Once terms belonging to each method have been extracted, we index these terms using the

TF-IDF indexing mechanisms (Baeza-Yates et Ribeiro-Neto (1999)). We obtain a term-document

matrix, where documents are all methods of all classes belonging to the system under study and

where terms are all the terms extracted (and split) from comments and method source code. Finally,

we apply Latent Semantic Indexing (LSI) (Deerwester et al. (1990)), by using the implementation

of singular value decomposition (SV D) in R , to reduce the term-document matrix into a concept-

document matrix. The meaning of "concept" in LSI is different from that of "concept" in concept

location. In LSI, a "concept" is one of the orthonormal dimensions of the LSI space.

Then we compute the conceptual cohesion of methods in a class in the LSI subspace to deal

with synonymy, polysemy, and term dependency. Conceptual cohesion of each two methods is the
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cosine between their corresponding vectors in method-term matrix.

4.2 System Instrumentation and Trace Collection

The traces, from which the concepts are identified, are sequences of method calls during the

execution of specific scenarios. To generate such traces the system should be instrumented first.

We instrument the software system using the instrumentor of MoDeC. MoDeC is a tool to extract

and model sequence diagrams from Java systems (Ng et al. (2009)). The MoDeC instrumentor is a

dedicated Java bytecode modification tool implemented on top of the Apache BCEL bytecode trans-

formation library1. It inserts appropriate and dedicated method invocations in the system to trace

method/constructor entries/exits, taking care of exceptions and system exits (System.exit(int)). It

also allows the user to add to the traces tags containing meta-information e.g., delimiting and labe-

ling sequences of method calls related to some specific features being exercised.

An execution scenario is composed of a sequence of cohesive steps. For example, exercising a

Web browser could consist in a sequence of the following steps (i) open the browser ; (ii) insert a

URL and access a Web page ; and (iii) save the Web page into a local HTML file. We exercise the

instrumented system to collect execution traces by following scenarios taken from user manuals

or use case descriptions. Resulting traces are text files listing method calls and including the class

of the object caller, the unique ID of the caller, the class of the receiver, its unique ID, and the

complete signature of the method.

4.3 Pruning and Compressing Traces

There are some methods that occurs to much in almost all scenarios, e.g., methods related to

mouse movements. Even in a single execution trace of an application with a graphical user inter-

face, mouse tracking methods will largely exceed all other method invocations. It is likely that such

methods are not related to any particular concept and they are not really useful for feature identifica-

tion, e.g., they are utility methods. These methods do not provide useful information for developers

when locating a concept, because they are common in many concepts. These methods are similar
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to low-discriminating terms occurring in many documents when applying an IR technique. Such

terms are penalized by indexing measures like TF-IDF [21].

Similarly, we built the distributions of the frequencies of method occurrences to remove too-

frequent methods. We then prune out the methods having a frequency greater than Q3 + 2 · IQR,

where Q3 is the third quartile (75% percentile) of the distribution and IQR is the inter-quartile

range. An alternative approach to deal with these methods is aspect mining (Tonella et Ceccato

(2004)), (Marin et al. (2007)). We do not use aspect mining because we are interested in pruning

these methods to locate concepts, not to crosscutting concerns.

Traces often contain repetitions of one or more method invocations, for example m1() ; m1() ;

m1() ; or m1() ; m2() ; m1() ; m2() ;. Repetitions do not introduce new concepts, they are dedicated

to do the same task again and again in order to have for example a figure in a larger scale in

a graphical system. Thus we compress traces using the Run Length Encoding (RLE) algorithm

to remove repetitions and keep one occurrence of any repetition only. The two previous examples

would become m1() and m1() ;m2(), respectively. Compression is performed for any sub-sequences

of method invocations having an arbitrary length.

4.4 Search-based Concept Location

In this step we segment execution traces into conceptually cohesive segments related to the

feature being exercised (and thus to a specific concept). Determining a (near) optimal splitting of

a trace into segments is NP-hard [25]. Therefore we decided to find a (near) optimal solution by

using search-based techniques.

We experimented different techniques : hill climbing, simulated annealing, and genetic algo-

rithms (GA). The representation of the problem and the possible movements in each iteration defi-

ned in local search techniques, hill climbing and simulated annealing, was different from those in

GA. Comparing the obtained results of these three algorithm we chose to use GA since, due to the

characteristics of the search space, it outperformed other techniques.

A short explanation of our implementation of hill climbing and simulated annealing comes in
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the following section then we explain the use of GA in identifying and locating the concepts in an

execution trace more in details.

4.4.1 Local Search Implementation

The first mental model of the problem was based on the presence of segments and gaps. We

assumed that a trace is a set of segments and gaps. A segment is a sequence of method invocations

implementing a concept (a feature) and its length, ı.e. the number of its methods, should be greater

than one. A segment is supposed to have high conceptual cohesion. A gap contains the method

invocations that do not collaborate in implementing any special concept (utility methods) like the

methods related to the mouse movements. They do not share much common linguistic information

with other methods so their similarity with other methods should be very low. The length of a gap,

ı.e. the number of its methods, can be equal to 1. A gap is supposed to have very low conceptual

cohesion.

According to this definition a trace should be split to pieces representing segments and gaps

such that each two segments are separated from each other by a gap.

Solution Representation

Our representation of the hill climbing solution is a bit-string as long as the trace in which we

want to identify the concepts. Each segment is represented as a sequence of "1"s and each gap is

represented as a sequence of "0"s. For example, the bit-string

111100011111︸ ︷︷ ︸
12methods

means that the trace, containing 12 method invocations, is split into two segments and a gap de-

composed into the first four method invocations (first segment), the next three (gap), and the last

five (second segment).
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Initial Solution

The initial solution is generated randomly. By randomly we mean that the number of pieces,

gaps and segments, and the length of each piece is selected randomly in a defined range. The

following constraints should be considered while defining the range of possible piece numbers and

their lengths :

1. The length of a segment should be equal to or greater than two.

2. The length of a gap should be equal to or greater than one.

3. Each two segments are separated from each other by a gap.

4. We decided that the first solution starts and ends with the gaps.

The constraints (3) and (4) result in

gapNo = segmentNo+ 1 (4.1)

where segmentNo is the total number of segments in a trace and gapNo is the total number of gaps

in the same trace. So if we have segmentNo = n then we have gapNo = n + 1. considering the

constraints (1) and (2) we have

|segment| ≥ 2 (4.2)

|gap| ≥ 1 (4.3)

If we show the length of the trace with L then we have

L = n|segment|+ (n+ 1)|gap|

≥ (2n) + (n+ 1)

≥ 3n+ 1
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Now we can calculate the upper limit for n.

n ≤ L− 1

3
(4.4)

By randomly selecting n in the range [1, L−1
3
] we have n segments and n+1 gaps. Assigning

the length to the generated pieces is done in two steps. First, the length of each segment is defined

equal to 2 and each gap equal to 1. Then we use a loop in which we randomly select a piece and a

number between 1 and the length of the trace minus the current length of all the pieces. The random

selected number is added to the length of the random chosen piece.

Hill Climbing Transformation

We defined the following transformations for exploring the neighborhood via hill climbing :

– Boundary movement : each segment has two boundaries, begin and end. Each boundary

can be moved towards two directions, left and right. So we have four possible boundary

movements for each segment.

Each boundary movement add/remove one method to/from a segment.

– Merge : this transformation merges two segments by getting rid of the gap between them.

– Split : this transformation splits the segment into two segments with a gap between them. If

it applies to a gap it creates a segment in the gap.

At each iteration, the algorithm tries to improve the solution by applying one of these trans-

formations to the current solution. Solution improvement starts by applying boundary movement

on the segments. If this transformation can improve, the solution the current iteration is done and

the algorithm goes to the next iteration. If by applying all possible movements the solution is not

improved, then the algorithm applies merge and split to find a better solution.

The iteration cycle comes to an end when the solution cannot be improved any more. It happens

when the fitness value of current solution is higher than the fitness value of all its neighbors, so any

movement cannot increase the fitness value.
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Hill Climbing Fitness Function

We tried our implementation of hill climbing with several fitness functions. Each fitness equa-

tion was obtained by improving the last equation based on manual validation of the concept location

algorithm in splitting traces into segments and gaps. In this section we are going to present some

of the fitness functions we used in our hill climbing implementation.

First fitness equation was defined using the following elements :

1. Number of concepts - positively contributes to fitness

2. Number of gaps - negatively contributes

3. Conceptual cohesion of segments - positively contributes to fitness

4. Conceptual cohesion of gaps - negatively contributes to fitness

Conceptual cohesion of a piece, gap or segment, with n methods is defined as the average of tex-

tual similarity between each pair of methods in that segment. The cohesion value is calculated as

follows :

conceptualCohesion(Pk) =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

S(mi,mj) (4.5)

Where Pk is the segment or gap in the kth position in the trace and S(mi,mj) is the textual si-

milarity between these two methods obtained from the similarity matrix generated by using latent

semantic indexing. The fitness function that is defined using the mentioned elements is as follows :

fitness = w1 · segNo+ w2 · segCohAV G− (w3 · gapNo+ w4 · gapCohAV G) (4.6)

where wi is a positive weight, segNo and gapNo are the number of segments and gaps in the related

solution, and segCohAVG and gapCohAVG are the average of conceptual cohesion of segments

and gaps. The results we obtained by using the equation 4.6 were not promising. Thus we decided

to improve the fitness equation by adding the conceptual coupling to it. We defined the conceptual

coupling of a segment as the average of textual similarity between the methods of that segment

with the methods of its two neighbors. The equation used to calculate the coupling for a piece k
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(gap or segment) is as follows :

conceptualCoupling(k) =

∑end(k)
i=begin(k)

∑end(k−1)
j=begin(k−1) S(mi,mj)

(begin(k)− end(k) + 1)(begin(k − 1)− end(k − 1) + 1)
+ (4.7)

∑end(k)
i=begin(k)

∑end(k+1)
j=begin(k+1) S(mi,mj)

(begin(k)− end(k) + 1)(begin(k + 1)− end(k + 1) + 1)

where begin(k) is the position (in the trace) of first method invocation of kth piece and end(k) the

position of last method invocation of that piece.

The new fitness equation obtained by adding the coupling to the fitness function elements, is as

follows :

fitness =
segCohAV G

(1 + gapCohAV G)(1 + cohAV G)(1 + gapNo)(1 + segNo)
(4.8)

where cohAVG is the average of cohesion of all the trace. By verifying the results obtained by doing

some experiments using the equation 4.6 we decided that the number of pieces, segments or gaps,

has a negative effect on solution improvement. This is to say that in the new fitness function the

number of segments contributes negatively in the fitness.

Simulated Annealing (SA)

The results we obtained from hill climbing were not stable enough, it means that different

starting points generated very different segmentations. It seemed that each solution converged to

a local optimum and stopped there. Therefor, we decided to use simulated annealing. SA accepts

non improving movements in the first iterations with a probability that depends on the difference

between the corresponding fitness values and on a global parameter T (the temperature), that is

gradually decreased during the process. The dependency is such that the current solution changes

almost randomly when T is large (high temperature), but increasingly "uphill" as T goes to zero.

The allowance for "downhill" moves saves the solution from converging to a local optimum and

becoming stuck at it, which is the defect of the hill climbing algorithm.
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In the implementation of SA, for a determined number of times , when the algorithm reaches its

stopping criteria, the temperature is reset to its initial value and the process starts again. Using the

concept of temperature besides several restarts, we hoped to overcome the problem of convergence

to a local optimum and have stable solutions (in different runs).

The representation of the solution and the transformations are the same as what we explained in the

implementation of hill climbing. The pseudo-code of implemented SA is as follows :

Algorithm 4.1. pseudo-code of implemented SA

tries← 0

randomlyselectsolc

repeat

j ← 0

repeat

T ← Tmax · e−jr

select soln in the neighborhood of solc

if fitness(soln) > fitness(solc)

solc ← soln

else if random [0, 1) < e
fitness(soln)−fitness(solc)

T

solc ← soln

until T < Tmin

tries← tries+ 1

until tries = MAXTRIES

In our implementation we defined Tmin = 0.01, Tmax = 0.30 and r = 0.001.

4.4.2 Local Searches Stability

When using any search algorithm, it is important to have consistent solutions in different runs.

Solution consistency shows that the algorithm is stable and all search processes in different runs
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have been converted to the same or very similar optimum, i.e. the fitness function always leads the

search to the same area. Thus the search algorithm and its result(s) are reliable.

Here the solutions are consistent when an identified segment or gap in one run exists in the

solution of the other run. A detected segment or gap may exactly be repeated in the other solution

or may partially overlap with some others in the second solution. Figure 4.1 gives a demonstration

of this explanation. The arrows indicate the positions where two solutions are different. Stability

1111111111

01111

11111111110000111111000

111111 1111111000000011111100

Solutionx

Solutiony

Figure 4.1 Two Local Search Solutions

value is defined as (1 − distance) when the distance is the normalized value of the number of

positions in which two solutions are different. Distance value is calculated by using X − OR

operator as follows :

distance =
|solutionx

⊕
solutiony|

|solutionx|

when |solutionx| = |solutiony|. In the example given in Figure 4.1, the number of different posi-

tions in two solutions is 7 and solutions length is 33, so distance is 7
33
' 0.21 and stability value is

1− 0.21 = 0.79.

Stability values calculated for the local search solutions are not high, the average stability value

is around 0.5. One reason is that the search space of our problem is very large with many local

optima. Thus different running processes converge to different local optima and it produces low

consistency between final solutions.

4.4.3 Genetic Algorithm (GA)

By using local search techniques we could not reach consistent solutions. The main reason was

the very large search space. Thus we decided to apply a genetic algorithm because it is able to
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Table 4.1 Example of GA individual representation (second column).

Method Invocations Repr. Segments#
TextTool.deactivate() 0
TextTool.endEdit() 0
FloatingTextField.getText() 0
TextFigure.setText-String() 0 1
TextFigure.willChange() 0
TextFigure.invalidate() 0
TextFigure.markDirty() 1
TextFigure.changed() 0
TextFigure.invalidate() 0
TextFigure.updateLocation() 0 2
FloatingTextField.endOverlay() 0
CreationTool.activate() 1
JavaDrawApp.setSelectedToolButton() 0
ToolButton.reset() 0
ToolButton.select() 0
ToolButton.mouseClickedMouseEvent() 0 3
ToolButton.updateGraphics() 0
ToolButton.paintSelectedGraphics() 0
TextFigure.drawGraphics() 0
TextFigure.getAttributeString() 1

outperform the two previous techniques in large search spaces with many local optimum.

At this point we realized that we can improve our problem definition by removing the concept of

the gaps. According to our definition, a gap is a segment with low conceptual cohesion that does not

participate in implementing any special concept, such as mouse tracking methods. This definition is

not completely correct, because some of these methods that are not related to any special concept,

have high conceptual cohesion with each other. Thus we can consider them as utility methods that

implement a generic, common concept such as mouse move.

A New Individual Representation

Our representation of an individual is a bit-string as long as the execution trace in which we

want to identify some feature-related concepts. Each method invocation is represented as a “0”,

except the last method invocation in a segment, which is represented as a “1”. For example, the

bit-string

00010010001︸ ︷︷ ︸
11methods
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means that the trace, containing 11 method invocations, is split into three segments decomposed

into the first four method invocations, the next three, and the last four. A real example of segment

splitting 1 is shown in Table 4.1.

Initial Population

The only constraint is that the length of a segment should not be less than two.

|segment| ≥ 2 (4.9)

If we define n as the number of segments in the trace and L as the length of the trace, then conside-

ring equation 4.9 we have

L = n · |segment|

L ≥ 2n

Now for the upper limit for n we have

n ≤ L

2

The initial solution is generated in two random steps. In the first step the number of segments is

randomly selected in the rang [1, L
2
]. Then the length of each segment is defined with a randomly

selected number in the range [2, L
n
].

Genetic Algorithm Operators and Parameters

The mutation operator randomly chooses one bit in the representation and flips it over. Flipping

a “0” into a “1” means splitting an existing segment into two segments, while flipping a “1” into a

“0” means merging two consecutive segments.

The crossover operator is the standard two-point crossover. Selecting two individuals as parents,

1. The segment splitting shown in Table 4.1 has been obtained randomly and does not correspond to an actual
“good” solution.
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two random positions x, y with x < y are chosen in one individual’s bit-string and the bits from

x to y are swapped between the two individuals to create the new offsprings. The selection of

the parents is performed by using the roulette-wheel selection. Roulette-wheel selection uses a

probability function to define the chance of each individual for being selected as a parent. Based

on this probability function, the individuals with higher fitness value have a greater chance as a

candidate for generating the members of the next generation. In fact, it simulates a casino roulette

wheel, where each proportion of the wheel is assigned to an individual based on its fitness.

We do not have elitism in our GA, i.e. it does not guarantee to retain best individuals across

subsequent generations. This is done to prevent GA to converge too fast to a local optimum.

Fitness Function

As we mentioned before, in our fitness function, we use the software design principles of co-

hesion and coupling, already adopted in the past to identify modules in software systems (Mitchell

et Mancoridis (2006)), although we use conceptual (i.e. textual) cohesion and coupling measures,

rather than structural cohesion and coupling measures.

Similar to hill climbing, segment cohesion is the average (textual) similarity between any pair of

methods in a segment k and is computed using the formulas in Equation 4.10 where begin(k) is the

position (in the individual’s bit-string) of the first method invocation of the kth segment and end(k)

the position of the last method invocation in that segment. The similarity between two methods is

computed using the cosine similarity measure over the LSI matrix extracted in the previous step.

Our definition of coupling in GA fitness is different from the coupling in hill climbing. Here seg-

ment coupling is defined as the average similarity between a segment and all other segments in the

trace, computed using Equation 4.11, where l is the trace length. As our conjecture is that a concept

should be implemented by method calls locally close to each other, on the one hand the algorithm

favors the merging of consecutive segments containing methods with high average conceptual simi-

larity. On the other hand, the algorithm penalizes solutions where consecutive segments are highly

coupled together. The segment coupling represents, for a given segment, the average similarity bet-
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ween methods in that segment and those in different ones. Finally, for a trace split into n segments,

the fitness function is shown in Equation 4.12.

SegmentCohesionk =

∑end(k)−1
i=begin(k)

∑end(k)
j=i+1 similarity(methodi,methodj)

(end(k)− begin(k) + 1) · (end(k)− begin(k))/2 (4.10)

SegmentCouplingk =

∑end(k)
i=begin(k)

∑l
j=1,j<begin(k) or j>end(k)similarity(methodi,methodj)

(l − (end(k)− begin(k) + 1)) · (end(k)− begin(k) + 1)
(4.11)

fitness(individual) =
1

n
·

n∑
k=1

SegmentCohesionk

SegmentCouplingk
(4.12)

4.4.4 GA Stability

As it is mentioned before, when using a search algorithm, it is important to have consistent

solutions in different runs.

In the case of our GA implementation, solutions are constant when an identified segment in

one run exists in the solution of the other run. A detected segment is either repeated in the other

solution or has a correspondent with high intersection in that solution. Figure 4.2 reports an example

of similarity and stability computation. It shows two solutions solutionx and solutiony of a trace

that consists of 28 method invocations. The first detected segment in both solutions is exactly the

same. The second segment of solutionx has overlap with three segments of the solutiony. In such

cases the segments with the biggest overlap are matched together and the similarity is calculated

between them. Thus in figure 4.2 the third segment of the solutiony is chosen as the corresponding

segment with the second segment of solutionx. The arrows indicate the matching segments of two
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0.291.0 0.070.59 0.610.23

Solutionx

Solutiony

Figure 4.2 An example of matching segments in two GA solutions
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solutions. Beside each arrow there is a number. This number is the calculated similarity between

two matched segments.

The similarity between two segments does not depend only on their intersection but also on their

union. We calculate similarity between two segments by using Jaccard index 2 (free encyclopedia

(2010)) that is presented in equation 4.13.

similarity(Sx,i, Sy,j) =
|Sx,i ∩ Sy,j|
|Sx,i ∪ Sy,j|

(4.13)

where Sx,i and Sy,j are respectively the i′th segment in solution x and the j′th segment in solution

y. The similarity between two solutions is defined as the average of the similarity between matched

Table 4.2 Match Matrix of the Solutions in Figure 4.2

Segments Sx,1 Sx,2 Sx,3 Sx,4

Sy,1 1.0 0.0 0.0 0.0
Sy,2 0.0 0.29 0.0 0.0
Sy,3 0.0 0.59 0.0 0.0
Sy,4 0.0 0.07 0.23 0.61

pairs, it means that the segments from two solutions should be matched together such that the sum

of their similarity is maximum. Thus the first step in calculating similarity between two segments

is finding appropriate pairs that maximize the summation. It is a kind of assignment problem 3 in

which we should try to assign to each segment in a solution a segment in the other solution such

that the sum of similarities between all the pairs be the maximum possible value. To solve this

problem we use the Hungarian algorithm 4. The Hungarian algorithm finds the optimal path in a

graph by choosing the appropriate assigned pairs, which may not always be the pair with the highest

similarity. The algorithm works on the matrix that represents the graph. In our implementation, The

2. The Jaccard index, also known as the Jaccard similarity coefficient is a statistic used for comparing the similarity
and diversity of sample sets.

3. "The assignment problem is one of the fundamental combinatorial optimization problems in the branch of op-
timization or operations research in mathematics. It consists of finding a maximum weight matching in a weighted
bipartite graph." (free encyclopedia (2010))

4. "The Hungarian method is a combinatorial optimization algorithm which solves the assignment problem in
polynomial time and which anticipated later primal-dual methods. "(free encyclopedia (2010))
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matrix consists of the similarity between each two segments from two different solutions. Table 4.2

presents match matrix of the two solutions in figure 4.2

Then the algorithm receives the matched matrix as the input and calculates the optimal solution

matching. At the end, the value calculated by the algorithm is normalized in the range of [0,1] by

being divided to the number of matches.

High similarity value indicates that the results are consistent while low value is a sign of insta-

bility. Calculated similarity for the GA solutions, shows that the results have high consistency and

the algorithm is stable. We discuss the stability of the GA in the next chapter 4.2 with more details.

4.5 Segment Labeling

To identify the concepts (segments) in the execution trace, it is needed to assign them mea-

ningful labels that introduce their functionalities. An introducing label can be a term or a bunch of

terms textually relevant to the located concept. As it is explained in chapter 4.2 the relevance of a

term to a method is defined by the TF-IDF weight. TF-IDF indicates how important a word is to

a document in a corpus. The importance increases proportionally to the number of times a word

appears in the document but is offset by the frequency of the word in the corpus. We use the same

idea to compute the relevance of a term to a segment.

The weight of a term t in a segment s that consists of n methods is defined as the average of the

TF-IDF weight of t in each method of s. It is computed by using the formulas in equation 4.14.

The relevance of a term t to a segment sk is defined as the weight(t, sk) minus the average of

the weight of t in other segments of the trace. It is computed by using the formulas in equation 4.15

where |S| is the number of identified segments in the trace.

weight(t, s) =
1

n

∑

i=1

nTF − IDF (t,mi) (4.14)

weight(t, sk) = weight(t, sk)−
1

|S| − 1

∑

i=1,i 6=k
|s|weight(t, si) (4.15)
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However, several problems were encountered preventing to obtain meaningful, good labeling.

Most noticeably, high number of JDK and various JAR keywords and method names were polluting

the linguistic information.

4.6 Conclusion

In this chapter, we introduced our proposed approach to identify concepts in an execution trace.

The proposed approach is a hybrid approach that uses textual information extracted from source

code (static analysis) to detect the concepts that exist in an execution trace (dynamic analysis). To

identify the methods contributing in implementation of a concept, the approach splits a trace into

textually cohesive and decoupled segments and tries to find a (near) optimal segmentation by using

the genetic algorithm.

We have made the following assumptions :

1. methods helping to implement a concept are likely to share some linguistic information and,

2. methods responsible to implement a feature are likely to be called close to each other in an

execution trace.
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CHAPITRE 5

EMPIRICAL STUDY AND RESULTS

We performed an empirical study to evaluate the proposed concept location approach. The goal

of this study is to analyze the novel concept location approach based on dynamic data, with the

purpose of evaluating its capability of identifying meaningful concepts. The quality focus is the

accuracy and completeness of the identified concepts. The perspective is that of researchers who

want to evaluate how the proposed approach can be used during maintenance and evolution. The

context consists of an implementation of our approach and of the execution traces extracted from

two open source systems, JHotDraw and ArgoUML.

The setting of genetic algorithm for this empirical study was as follows : the population size was

set to 200 individuals and a number of generations of 2,000 for shorter traces (those of JHotDraw)

and 3,000 for longer ones (those of ArgoUML) was used. The crossover probability was set to 70%

and the mutation probability to 5%, which are widely used values in many GA applications (McGill

(July 01, 2010)).

5.1 Context

Table 5.1 Statistics for the two systems.

Systems N
um

be
r

of
C

la
ss

es

K
ilo
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in

e
of
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od

e
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el

ea
se

D
at

es

ArgoUML v0.18.1 1,267 203 30/04/05
JHotDraw v5.4b2 413 45 1/02/04

The context of our study are execution traces from ArgoUML and JHotDraw. Table 5.1 high-
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lights the main characteristics of the two systems. ArgoUML 1 is an open source UML modeling

tool with advanced software design features, such as reverse engineering and code generation. The

ArgoUML project started in September 2000 and is still active. We analyzed release 0.19.8. JHot-

Draw 2 is a Java framework for drawing 2D graphics. JHotDraw started in October 2000 with the

main purpose of illustrating the use of design patterns in a real context. We analyzed release 5.1.

Table 5.2 Statistics for the collected traces.

Systems Scenarios O
ri

gi
na

lS
iz

e
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le

an
ed

Si
ze

s
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om

pr
es

se
d

Si
ze

s

ArgoUML Start, Create note, Stop 34,746 821 588
Start, Create class, Create note, Stop 64,947 1066 764
Start, Add text, Draw rectangle, Stop 13,841 753 361
Start, Draw rectangle, Cut rectangle, Stop 11,215 1206 414
Start, Spawn window, Draw circle, Stop 16,366 670 433

We generate traces by exercising various scenarios in the two systems. Table 5.2 summarizes

the scenarios and shows that the generated traces include from 6,000 up to almost 65,000 method

invocations. The compressed traces include from 240 up to more than 750 method invocations.

By exercising these scenarios, we do not want to identify concepts related to the systems’ star-

tup, Start, and closing, Stop. Therefore, in the following, when naming the scenarios and their

associated features, we no longer include the Start and Stop concepts.

The GA was implemented using the Java GA Lib 3 library.

5.2 Building the Oracle

We need an oracle to assess the accuracy and completeness of the identified concepts. We build

such an oracle by manually tagging the execution traces. Two “Start” and “Stop” tags enclose the

method invocations related to a particular concept. While executing the instrumented system, be-

fore and after a step in the execution scenario (e.g., Draw rectangle), the user, through a command

1. http ://argouml.tigris.org
2. http ://www.jhotdraw.org
3. http ://sourceforge.net/projects/javagalib/
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in the instrumentor interface, inserts the appropriate tags in the execution trace and then continues

to exercise the instrumented system with the next steps of the scenario. Consequently, the collec-

ted traces are composed of a sequence of method invocations interleaved with tags separating the

invocations belonging to different steps.

5.3 Research Questions

In the empirical study we addressed the three following research questions :

– RQ1 : How stable is the GA, through multiple runs, when identifying concepts into execution

traces ? Approaches based on GAs could suffer from the randomness of the search : the ini-

tial individuals are randomly generated and the crossover, mutation, and selection operators

are influenced by random choices. However, it is desirable that the representation, opera-

tors, fitness, and other settings (e.g., population size and stopping criteria) be chosen so that

multiple runs of the GA yield similar solutions.

– RQ2 : To what extent the identified concepts match the ones in the oracle ? We are interested

to evaluate the extent to which the identified segments overlap with the ones in our oracle,

obtained by manually tagging the traces.

– RQ3 : How accurate is the identification of concepts in execution traces ? Finally, we are

interested to evaluate the extent to which the identified segments are accurate, i.e., how many

of the method invocations that they contain are also in the oracle and how many are not.

5.4 Study Settings and Analysis Method

To answer RQ1, we evaluate the extent to which the segments identified in multiple runs of

the GA, and occurring in the same position of the trace, overlap each other. Let us consider a

compressed trace composed of N method invocations T ≡ m1, . . .mN and partitioned at run

i of the GA in ki segments s1,i . . . sk,i. For each segment sx,i obtained at run i, and for all the

segmentations obtained at run j 6= i, we compute the maximum overlap between sx,i and the
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segments obtained at run j as follows :

max(Jaccard(sx,i, sy,j)), y = 1 . . . kj

where :

Jaccard(sx,i, sy,j) =
|sx,i ∩ sy,j|
|sx,i ∪ sy,j|

and where union and intersection are computed considering method invocations occurring at a

given position in the trace. Stability is evaluated by means of descriptive statistics computed across

the above obtained overlap values.

RQ2 is answered similarly to RQ1 but, in this question, we compare the overlap between

manually-tagged segments in the execution traces with segments identified by our approach. Spe-

cifically, given the segments determined by the tags in the trace (our oracle) and given the segments

obtained by an execution of the system, we compute the overlap between each manually-tagged

segment in the trace and the most similar automatically-identified segment.

Finally, RQ3 is addressed like RQ2, with the only difference that we use precision instead of

the Jaccard score, because we are interested in evaluating the accuracy of our approach. Precision

is defined as follows :

Precision(sx,i, sy,o) =
|sx,i ∩ sy,o|
|sx,i|

where sx,i are segments obtained by our approach and sy,o are segments in the corresponding trace

in the oracle.

5.5 RESULTS AND DISCUSSION

This subsection reports the results of our experimental evaluation : the collected data and their

analysis to address the previous research questions.
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Table 5.3 Descriptive statistics of similarity among segments obtained in ten different runs.

Systems Scenarios/Features Similarity Averages
Min. Max. Mean Median σ

ArgoUML (1) Add note 0.69 0.95 0.84 0.83 0.07
(2) Add class, Add note 0.65 0.98 0.80 0.80 0.06

JHotDraw

(1) Draw rectangle 0.55 0.96 0.76 0.76 0.12
(2) Add text, Draw rectangle 0.54 0.93 0.72 0.70 0.10
(3) Draw rectangle, Cut rectangle 0.73 0.93 0.85 0.84 0.05
(4) Spawn window, Draw circle 0.67 0.86 0.76 0.76 0.04

5.5.1 RQ1 : How Stable is the GA across Multiple Runs ?

We assess the stability of the GA by computing the average similarity of the segments identified

in ten different runs of the approach. Table 5.3 shows the similarity results. Overall, the similarity

averages for JHotDraw range between 55% and 95%, with median values ranging between 70%

and 84% . They are slightly higher for ArgoUML, between 80% and 83%. Thus, we conclude

that, despite the potentially large size of the search space, our approach is able to generate stable

segments across multiple runs. In addition, increasing the number of generations and the population

size would potentially further increase the approach stability.

5.5.2 RQ2 : To What Extent the Identified Concepts Match the Ones in the Oracle ?

Table 5.4 Similarity (Jaccard overlap) between segments identified by the approach and features
tagged in the trace.

Systems Scenarios Features Jaccard
Min. Max. Mean Median σ

ArgoUML
(1) Add note 0.15 0.39 0.28 0.27 0.08
(2) Create class 0.11 0.28 0.22 0.25 0.05
(2) Create note 0.22 0.56 0.35 0.31 0.14

JHotDraw

(1) Draw rectangle 0.63 0.93 0.84 0.89 0.13
(2) Add text 0.21 0.31 0.26 0.27 0.05
(2) Draw rectangle 0.53 0.70 0.63 0.61 0.06
(3) Draw rectangle 0.42 0.76 0.64 0.72 0.14
(3) Cut rectangle 0.16 0.23 0.22 0.23 0.02
(4) Draw circle 0.54 0.96 0.85 0.88 0.14
(4) Spawn window 0.07 0.41 0.20 0.16 0.11

To address RQ2, we evaluate the extent to which the segments actually reflect features as they

were manually tagged when executing the instrumented system to generate the execution traces.
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Table 5.5 Similarity (precision) between segments identified by the approach and features tagged
in the trace.

Systems Scenarios Features Precision
Min. Max. Mean Median σ

ArgoUML
(1) Add note 0.91 1.00 0.97 1.00 0.04
(2) Create class 1.00 1.00 1.00 1.00 0.00
(2) Create note 1.00 1.00 1.00 1.00 0.00

JHotDraw

(1) Draw rectangle 0.89 1.00 0.96 1.00 0.06
(2) Add text 0.27 0.36 0.32 0.34 0.04
(2) Draw rectangle 0.61 1.00 0.69 0.66 0.13
(3) Draw rectangle 0.73 1.00 0.94 1.00 0.11
(3) Cut rectangle 1.00 1.00 1.00 1.00 0.00
(4) Draw circle 0.81 1.00 0.91 0.95 0.09
(4) Spawn window 1.00 1.00 1.00 1.00 0.00

For some features, e.g., drawing a rectangle or a circle, the average (and median) Jaccard overlap

is very high, suggesting that the features are implemented through sequences of very cohesive

methods. Yet, other features exhibit lower overlaps. These lower overlaps do not mean that our

approach was unable to successfully identify the features. Indeed, in some cases, for example the

scenarios Add text in JHotDraw and Create note in ArgoUML, the features are realized by adapting

a textual-editing feature as a shape-drawing feature, using the Adapter design pattern. The feature

adaptation produces sequences of methods with a low cohesion, which our algorithm tend to split.

As a consequence, the resulting overlaps are appropriately low.

In other cases, in particular with traces from ArgoUML, a large trace segment corresponding to

a feature is split into two or more segments by our approach. Thus, the overlap between the (larger)

manually-tagged segment and the corresponding automatically-identified segment is low. A ma-

nual study of such cases revealed that the manually-tagged segment is indeed composed of several

smaller and cohesive sub-concepts that our algorithm tends to split, as illustrated and discussed in

the following subsection.

5.5.3 RQ3 : How Accurate is the Identification of Concepts in Execution Traces ?

Table 5.5 reports the precision of the identified segments with respect to the manually-tagged

ones. Precision is often very high, with median values in most cases above 85% and very often

equal to 100%.
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Lower precision values sometimes occur with explainable reasons. For example, in the scenario

(2) of JHotDraw, composed of Add text and Draw rectangle, the two features are implemented

using a very similar sequence of method invocations, making them hard to distinguish. Because

these features are executed one after the other, our search-based optimization technique is unable

to split the trace into segments similar to the ones from the oracle. Consequently, the precision of

Add text drops to a median value of 34% and that of Draw rectangle, usually very high in other

scenarios, is only 66%.

5.5.4 Discussion

We analyze in detail some results to understand how the approach split the traces into segments.

We focus on cases where the Jaccard score is low. In other cases, we know that the segments are

meaningful because they are consistent with the oracle. Tables 5.6, 5.7 and 5.8 show excerpts of

three segments.

The Add class feature of ArgoUML was matched with a very low Jaccard score. The manual

tags in the trace delimited a sequence of 199 method invocations. The approach split this sequence

into 5 segments comprising a total of 172 method invocations, out of which 16 invocations occurred

before the tag and, thus, do not belong to the oracle. The remaining 199−172+16 = 43 invocations

were grouped in small segments mainly related to GUI-event handling. In details, the five segments

are related to (1) creation of the objects responsible for handling the class diagram through an

instance of the Factory design pattern ; (2) adding the class to the project ; (3) adding the class to

the current name-space ; (4) setting properties of the class through a Façade design pattern ; and,

(5) handling the persistence of the diagram in the XMI file representing the UML diagram.

For the Create note feature of ArgoUML, the tagged segment is composed of 88 method invoca-

tions while the best matching segment identified by our approach is composed of 50 methods. The

identified segment deals with the creation of a note, i.e., creation of the object through a Factory,

addition to the project, setting of its property. When compared to the Add class feature, only one

segment was identified instead of five because the segment for creating a note is shorter than that of
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Table 5.6 Excerpt of segments identified by the approach.

Create note (ArgoUML)
FacadeMDRImpl.isSingleton(. . . )
FacadeMDRImpl.isUtility(. . . )
CoreFactory.getCoreFactory()
CoreFactoryMDRImpl.buildComment(. . . )
CoreFactoryMDRImpl.createComment()
CoreFactoryMDRImpl.initialize(. . . )
ModelEventPumpMDRImpl.flushModelEvents()
UndoCoreHelperDecorator.addAnnotatedElement(. . . )
ModelEventPumpMDRImpl.flushModelEvents()
ClassDiagramGraphModel.addNode(. . . )
ClassDiagramGraphModel.canAddNode(. . . )
FacadeMDRImpl.isAInterface(. . . )
FacadeMDRImpl.isASubsystem(. . . )
Project.getRoot()
ModelManagementFactory.getModelManagementFactory()
ModelManagementFactoryMDRImpl.getRootModel()
CoreHelperMDRImpl.isValidNamespace(. . . )
FacadeMDRImpl.getModel(. . . )
FacadeMDRImpl.isAModel(. . . )
FacadeMDRImpl.isAFeature(. . . )
. . .

adding a class (50 invocations vs. 172) and because this smaller number of method invocations has

a higher cohesion than that of the Add class feature. In addition, 32 of the remaining 88− 50 = 38

methods belong to the end of the trace and were not put in the same segment, while the sequence of

these a methods continued after the tag with 24 other invocations. The continuation of the sequence

after the tags means that the oracle is not precise enough. We explain this lack of precision by the

extensive use of multi-threading in ArgoUML.

All methods related to setting properties through the Façade design pattern were not grouped

in a same segment by our approach because these methods were invoked in a loop, in which each

iteration of the loop contained a slightly different sequence of invocations. Consequently, (1) the

RLE compression algorithm was not able to group together the various loop iterations and (2) the

various iterations were not cohesive and thus the trace was split into several segments.

The Cut rectangle feature of JHotDraw has been tagged as a sequence of 172 method invo-

cations. However, in the best case shown in Table 5.4, only 39 of these methods were grouped

together by our approach, i.e., the methods belonging to the last part of the tagged segment. We

inspected this sequence and discovered that it is related to (1) add the rectangle content to the clip-
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Table 5.7 Excerpt of segments identified by the approach.

Spawn window (JHotDraw)
JavaDrawApp.createTools(. . . )
MySelectionTool.MySelectionTool(. . . )
TextFigure.TextFigure()
TextFigure.setAttribute(. . . )
FigureAttributes.FigureAttributes()
FigureAttributes.set(. . . )
TextFigure.changed()
TextFigure.invalidate()
TextFigure.updateLocation()
TextTool.TextTool(. . . )
TextTool.TextTool(. . . )
TextFigure.TextFigure()
TextFigure.setAttribute(. . . )
FigureAttributes.FigureAttributes()
FigureAttributes.set(. . . )
TextFigure.changed()
TextFigure.invalidate()
TextFigure.updateLocation()
ConnectedTextTool.ConnectedTextTool(. . . )
ConnectedTextTool.ConnectedTextTool(. . . )
. . .

board, (2) modify the properties of the drawn rectangle so that it appears as “cut” in the painter,

and (3) update the menu commands (e.g., the command “Paste” is now enabled). The preceding

sequence of 172 − 39 = 133 methods was split in many small segments in which GUI events and

actions performed by clicking the mouse button are interleaved, resulting in a sequence of loosely

cohesive invocations.

The Spawn window feature of JHotDraw includes, in the manually-tagged segment, 197 method

invocations ; the segment with the highest overlap only included, however, 72 of these invocations.

This sequence of 72 method invocations is actually related to re-sizing and re-adjusting figures in

the panel while spawning the window. The remaining invocations (at the end of the trace) kept out

by our approach are mainly related to restoring and setting-up the status of the menu commands.

Finally, as previously explained for the Add text feature of JHotDraw, the low Jaccard score and

low precision are due to the high similarity between the sequences of methods of the Add text and

Draw rectangle features, which leads our approach to put together both features in a segment of

168 method invocations.

On the one hand, the previous discussion highlights the capability of our approach to split
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Table 5.8 Excerpt of segments identified by the approach.

Cut rectangle (JHotDraw)
StorableOutput.close()
Clipboard.Clipboard()
Clipboard.getClipboard()
Clipboard.setContents(. . . )
CutCommand.deleteSelection()
BouncingDrawing.removeAll(. . . )
BouncingDrawing.figureRequestRemove(. . . )
AnimationDecorator.removeFromContainer(. . . )
AnimationDecorator.invalidate()
AnimationDecorator.removeFigureChangeListener(. . . )
AnimationDecorator.changed()
AnimationDecorator.invalidate()
AnimationDecorator.release()
RectangleFigure.removeFromContainer(. . . )
RectangleFigure.removeFigureChangeListener(. . . )
RectangleFigure.changed()
RectangleFigure.release()
RectangleFigure.removeFromContainer(. . . )
RectangleFigure.removeFigureChangeListener(. . . )
RectangleFigure.changed()
. . .

execution traces into conceptually cohesive segments, despite the low Jaccard overlap with respect

to manually-tagged segments. On the other hand, it shows some difficulties in identifying concepts

in execution traces, due to :

– design patterns and, in general, object-orientation mechanisms (e.g., polymorphism, dynamic

binding), which make traces for different features almost identical (e.g., Add text and Draw

rectangle in JHotDraw) ;

– imprecision when generating and tagging traces due to multi-threading ;

– the compression algorithm that is unable to group loop iterations consisting of slightly dif-

ferent sequences of method invocations.

In particular, despite the good results obtained by our approach when analyzing traces from

JHotDraw (both with the Jaccard score and in precision), the extensive use of inheritance and

design patterns in JHotDraw explain the lower results when compared to those obtained with Ar-

goUML. Inheritance and design patterns lead to the generation of many method invocations not

directly related to a feature, but supporting and–or enabling the implementation of this feature.

Consequently, these method invocations can appear in many different segments related to different
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features and thus can be a confounding factor for our approach.

Another difficulty of trace-based concept location approaches is to deal with method invocations

related to GUI and system events. For example, hundreds of method invocations in both ArgoUML

and JHotDraw execution traces correspond to GUI events, such as mousePressed(...). These

methods are not feature-specific and can appear almost anywhere in a trace and could lead to

different segmentation across different runs. We deal with these methods by compressing the traces,

removing sub-sequences of such methods, and using conceptual cohesion and coupling measures,

which lead to the creation of small segments containing only such method invocations.

5.5.5 Threats to validity

We now discuss the threats to validity that can have affected our empirical study.

Construct validity threats concern the relation between theory and observation. In this study,

they are mainly due to measurement errors. The traces are automatically produced by executing

the instrumented systems against some scenarios. Thus, the information contained in the traces is

reliable. However, multi-threading could change the ordering of method calls in different traces

exercising the same sub-scenarios. The performances of the proposed approach are evaluated by

using the Jaccard overlap, already used in the past to evaluate concept location approaches and

by using the standard IR precision measure, because we are also interested to split the trace into

segments that only contain methods related to the feature of interest.

We only performed a preliminary assessment of the meaning of the identified concepts, by

manually analyzing sequences of method invocations belonging to different segments. In future

work, we plan to use automated techniques to label segments and thus better help the maintainer

by assigning meanings to segments automatically.

Threats to internal validity concern confounding factors that could affect our results. The

manually-tagged traces that we use as oracle pose such a threat. Indeed, it is possible that tags

would appear in slightly different positions in the traces obtained by exercising the same scenarios

in different runs. The slightly different positions result from multi-threading, as well as from me-
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thod invocations related to mouse and other GUI events. In particular, extra method calls related to

GUI events or other uncontrollable system events could be interleaved in the traces.

Methods declared in class libraries could also introduce “noise” in our approach. For example,

calls to methods from the Java class libraries frequently occur in the traces obtained in our expe-

riments. They do not occur frequently enough to be discarded as “utility” method calls yet are not

related to interesting concepts. Therefore, in future work, we will consider adding these methods

in our list of stop-words.

A last threat to internal validity relates to the intrinsic randomness of GAs. However, in RQ1,

we showed that, overall, results are quite stable across different GA runs.

Reliability validity threats concern the possibility of replicating this study. We attempted to

provide all the necessary details to replicate our study.

Threats to external validity concern the possibility to generalize our results. We studied two

systems having different size and belonging to different domains. However, we are aware that this

is a first study aimed at validating the proposed approach and that we only split traces on a small

sample of scenarios for the two software systems. Other traces could possibly lead to different

results. Also, further validation on a larger set of different systems is desirable. Yet, within its

limits, our results confirm the stability and precision of our approach for concept location.

A final remark concerns the complexity of our approach and computation times. Although this

is a proof of concept, we are aware that excessive computation times or complexity may prevent

further studies and practical application. On average, identifying concepts in a compressed trace

of about 400 methods on a single high end PC (i.e., with at least 4GB RAM) took about one day ;

when GA was mapped on multiple serves as described, the time went down to 20 minutes. Clearly,

to make the approach appealing, we need to improve scalability both in time and space as well as

in the possibility to handle longer traces.
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CHAPITRE 6

GA AND DISTRIBUTED ARCHITECTURE

We started our experiments with a basic GA implementation running on a single computer. We

found that computations were overly time consuming, impairing the possibility to actually obtain

results in a reasonable amount of time. As an example, running an experiment with a compressed

trace from JHotDraw v5.4b2, and the scenario Start-DrawRectangle-Quit, that contains 240 method

calls, with a number of iterations equal to 2,000, took about 12 hours.

Table 6.1 Example of individual coding and segment redundancy

Id1 0001 0001 0000001 0001 0001
Id2 0001 0001 001 0001 0001 0001
Id3 001 00001 0000000001 0001
Id4 00001 0001 0000001 000001
Id5 0001 0001 0000001 0001 001 01

To reduce computation time, we decided to resort on the client–server architectural style, custo-

mized into more specific architectures detailed in the following. The rationale behind the different

architectures comes from the illustrative population shown in Table 6.1 : several individuals share

some segments. For example, the first two segments of individuals Id1, Id2, and Id5 are identical

(i.e., beginning and end are the same) ; Id1 and Id5 are almost identical but for their last segments.

Thus, once Id1’s fitness value is calculated, if segment cohesion and coupling were stored, they

could be reused to compute the fitness values of Id2 and Id5.

6.1 Different Architectures

Using client–server architectural style, the computations are distributed among several ma-

chines. In fact our distributed GA implementations are based on the GA global parallelization

model of Stender et al. Stender (1993) in which a computer acting as the master applies the ge-
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netic operators on the individuals’ genomes and distributes the individuals among slave computers

(servers), which compute the fitness values of the individuals.

In the following, we minimally define that a client computer (master in Stender’s work (Stender

(1993))), performing mutation, crossover, and population evolution, distributes fitness computation

to multiple servers, which compute the received individual’s fitness value and return it back to the

client.

6.1.1 A Simple Client Server Architecture

The simplest distributed client–server architecture is shown in Figure 6.1. The servers have

no local memory, do not communicate among themselves or store data locally or on a global and

shared device. The client sends the individuals’ encodings to the servers and waits for the fitness

values to be returned. Each server has only its own local LSI matrix and computes fitness values

based on the equations presented in the previous section.

6.1.2 A Database Client Server Architecture

Figure 6.2 shows the architecture of a client–server in which a database server stores global

shared storage device. When a segment cohesion or coupling value is required, a server first queries

the database before computing it if missing.

The database holds two tables : a cohesion table and a coupling table, each with three columns.

Each record in these tables keeps a similarity/coupling value for one segment. The first column,

called beginning, keeps the index of the first method invocation in a segment and the second column

keeps the index of the last method invocation in the same segment. The third column contains the

cohesion/coupling value of that segment.

Whenever the fitness value for a new individual must be computed, the responsible server

checks first the database. If it can find the needed values (already calculated in the last iterations

or by other servers for other individuals), it uses these to compute the fitness value using a simple

division. Else, it computes cohesion and coupling for the new segment and stores the values in the
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Figure 6.1 Baseline Client Server Configuration.

database. Thus, computation is performed if and only if the values can not be retrieved from the

database : as much data as possible is shared between servers to reduce computation times.

There is an extra cost due to database queries and network communication. A central database

implies that all servers write in and read from the same database. Yet, we would expected that

using a database reduces the computation times by caching already-calculated values. However,

sending data over the network, acquiring and releasing locks, and performing queries are also time

consuming operations.

6.1.3 A Hash-database Client Server Architecture

To limit the possible communication between servers and the database, the architecture shown

in Figure 6.3 was devised. The goal of this architecture is to further reduce computation time

by decreasing the number of accesses to the central database using a local cache on each server,
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Figure 6.2 DBMS Client Server Configuration.

implemented with a hash table.

The architecture works as follows : whenever a server wants to compute the fitness value of a

segment, it searches its hash table. If the required data does not exist in its local hash table, then

the server queries the central database. If the server finds the required data in the database, it uses

it to compute the fitness value and and stores it in its hash table, else it computes the required data

and stores the results in both its hash table for its future use and in the central database for the other

servers use. Figure 6.4 reports the flowchart of the process of this architecture.

6.1.4 A Hash Client Server Architecture

This last architecture is a compromise between the two previous ones : only local data is stored

in the local hash table of servers. No data is shared among servers. As shown in Figure 6.5, servers

only communicate with the client and no global data is kept and available.
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Each server has two hash tables : one for similarity cohesion and the other for coupling values

for each segment. The key of the hash tables is a combination of the indexes of the first and last

method invocations of a segment. Each server uses its own hash tables and thus cannot benefit from

the computation results of others. However, because all the data is stored locally and there is no

access policy using locking algorithms, the access to the already-calculated data as well as their

storage is efficient.

6.2 Results and Discussions

This section, reports the typical timing obtained with the different architectures on two com-

pressed traces from JHotDraw.

The traces were collected by instrumenting JHotDraw and executing the scenarios Start-DrawRectangle-

Quit and Start-Spawn-Window-Draw-Circle-Stop. These scenarios generated respectively traces of
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Figure 6.4 Flow chart of Database-Hash table configuration process

6,668 and 16,366 method calls ; once utility methods were removed their sizes are reduced to 447

and 670 calls. Finally RLE 1 compression brought down the numbers of distinct calls to 240 and

432.

In our experiments, we distributed computations over a sub-network of 14 workstations. Five

high-end workstations, the most powerful ones, are connected in a Gigabit Ethernet LAN ; low-end

workstations are connected to a LAN segment at 100 MBit/s and talk among themselves at 100

Mbit/s. Each experience was run on a subset of ten computers : nine servers and one client.

Workstations run CentOS v5 64 bits ; memory varies between four to 16 Gbytes. Worksta-

tions are based on Athlon X2 Dual Core Processor 4400 ; the five high-end workstations are either

single or dual Opteron. Workstations run basic Unix services (e.g., network file system, SAMBA,

1. Run Length Encoding
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Figure 6.5 Hash Table Client Server Configuration.

mySQL) and user processes. User processes are typically editing and compilation of programs,

e-mail clients, Web browsers, and so on. No special care was taken to ensure a specific network

condition (e.g., priorities were not altered) and thus times and ratios between times can be conside-

red typical of a industrial or research environment. However, the sizes of the GA processes never

exceeded the physical memory of the workstations to avoid paging ; workstations were managed to

ensure that each computationally-intensive user processes had a dedicated CPU.

The client computer was also responsible to measure execution times and to verify the liveness

of connections ; connections to servers as well as connections to the database were implemented

on top of TCP/IP (AF_INET) sockets. All components have been implemented in Java 1.5 64bits.

The database server, shown in Figures 6.2 and 6.3, was MySQL server v5.0.77.

Table 6.2 reports computation times for the different architectures. The times reported for the

single-computer architecture come from an optimized implementation of our approach. In our first
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Table 6.2 Computation times for desktop solution and the different architectures of Figures 6.1, 6.2,
and 6.5 with the Start-DrawRectangle-Quit scenario – Compressed trace length of 240 methods

Time Measurement
Architectures Runs # Measures Average

Desktop

1 12 :09 h
2 11 :39 h
3 12 :21 h 12 :07 h
4 11 :50 h
5 12 :38 h

Client–server

1 1 :44 h
2 2 :36 h
3 1 :53 h 2 :01 h
4 1 :40 h
5 2 :13 h

Database
1 16 :36 h
2 15 :3 h 13 :50 h
3 9 :52 h

Hash Table

1 5 :13 m
2 5 :19 m
3 5 :20 m 5 :17 m
4 5 :27 m
5 5 :10 m

Table 6.3 Computation times for desktop solution and the architecture of Figure 6.5 with the Start-
Spawn-Window-Draw-Circle-Stop scenario – Compressed trace length of 432 methods

Time Measurement
Architectures Runs # Measures Average

Desktop
1 45 :38 h
2 41 :28 h 44 :07
3 45 :07h

Hash Table
1 7 :21 m
2 7 :21 m 7 :24 m
3 7 :32 m

implementation, we reused the Java GALib library, which is freely available from SourceForge and

implements a simple GA. GALib makes no assumptions on crossover and mutation operators and

assumes that the fitness of an individual must be recomputed even if it was passed unchanged from

the old generation to the new one. This recomputation resulted in about 30% of computation-time

increase because between 20% and 30% of individuals are not subject to mutation or crossover

between generations. Thus, to reduce computation time, we modified GALib to compute only the

fitness values of individuals that have changed between the last generation and the current one.

Distributing the computation, shown in Figure 6.1, clearly results in an important reduction

of computation time ; as shown in the second row of Table 6.2. Computation time went from 12
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hours to about two hours ; however, the gain in terms of time reduction is considerably lower than

expected as we had nine computers available (excluding the client) and, thus, expected computation

times close to one hour.

We felt that there was still room for improvement and Amdahl’s law Amdahl (1967) was only

partially the reason for the reduced gain. We observed that the nature of our problem was such

that crossover and mutation preserve a large fraction of segments unchanged and that for those

segments, previous cohesion and coupling values could be reused.

Thus, we tested the two architectures in Figures 6.2 and 6.3. Table 6.2 in its third row reports

results for such database client–server architecture : to our surprise, sharing data among servers via

a central database increased computation times.

Finally, Table 6.2, in its last row, reports the computation times for the architecture in Figure

6.5, which is the fastest architectures. The gain in computation times obtained is of about 140 times.

The implementation of this GA parallelization is moreover relatively simple.

We obtained similar gains with other traces. For example, the trace generated by the scenario

Start-Spawn-Window-Draw-Circle-Stop, with the desktop architecture, was split in about 44 hours

while, with the fastest architecture, the client–server with the hash table, computation time is of

about 7 minutes. Table 6.3 reports the results of splitting the trace with two architectures.

6.2.1 Discussion

We conjecture that poor performance of the database architecture, in Figure 6.2, is mainly due

to the database accesses (reading, writing, and locking) for the computation of each coupling and

cohesion values. These frequent accesses are responsible for the increase in computation times. To

limit the number of database accesses, we introduced the hybrid architecture in Figure 6.3. Results

have not been reported in Table 6.2 because they are not substantially different (better) then those

of the database. We are investigating the reason of this unexpected behavior to locate the bottleneck

cause.

Indeed, in our current implementation, accesses to the local hash table and the database are



74

managed serially. Performance could improve by parallelizing writing in the database and access

to the hash table and by loading the hash table only once at the beginning of each computation.

Unfortunately, given the size of the search space and the huge number of possible segments, the

probability that in two consecutive runs a relevant number of the segments will be exactly the same

is very low. This fact makes the architecture in Figure 6.3 interesting from a theoretical point of

view but not practical.

Despite the decrease in computation time, the very definition of the concept location problem

makes it hard to obtain acceptable computation times for traces longer than few thousands of me-

thods even with the fastest architecture, unless a higher number of servers is available. The defini-

tion of this problem is tied to the size of the search space, Equations 4.10 and 4.11, and the bit-string

representation. Indeed, the longer the trace, the higher the number of methods contributing to the

segment coupling. However, we believe that if concepts are indeed implemented in cohesive and

decoupled segments, then computing coupling with Equation 4.11 is overly conservative and re-

defining the problem could substantially reduce computation time. We are currently working to

restate the concept location problem in using audio digital signal processing and time windowing.

We have reported data of two traces of one software system, namely JHotDraw, therefore we

cannot generalize to other traces though the performance issue is likely to be non-specific to JHot-

Draw or the used traces. Indeed, we experienced similar results with traces of different lengths

of ArgoUML. Much in the same way, we cannot generalize to other search-based software engi-

neering problems. However, we observed that the trade-off between the complexity of the fitness

function and the local and global knowledge representations ; similar trade-offs are known to be

general and common to many application of optimization techniques to software engineering.

6.3 Conclusion

In this chapter we presented and discussed four client–server architectures conceived to improve

performance and reduce GA computation times to resolve the concept location problem. To our

surprise, we discovered that on a standard TCP/IP network, the overhead of database accesses,
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communication, and latency may impair a dedicated solutions. Indeed, in our experiments, the

fastest solution was an architecture where each server kept track only of its computations without

exchanging data with other servers. This simple architecture reduced GA computation by about

140 times when compared to a simple implementation, in which all GA operations are performed

on a single machine.
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CHAPITRE 7

CONCLUSION

Maintenance is the most expensive phase in a software life cycle. As time passes and products

age, keeping the system updated with new user requirements becomes more and more difficult.

Sometimes, it is required to modify a system in order to make it adaptive to new environment.

Maintenance costs developers time, effort, and money. This requires that the maintenance phase be

as efficient as possible (Erdil et al. (2006)).

There are several steps in the software maintenance phase. The first is to try to understand the

program that already exists.

The problem with understanding a program is that usually the documentation is not complete

and up-to-date. In many cases the only available source to understand a program is its source

codes. Studying the source code is a time consuming, tedious task. There is no accepted standard

that explains the process of program understanding. There are some studies that discuss direction

of program understanding as well as its necessary depth. Some believe that top-down approaches

is more effective in program understanding while others claim that bottom-up can result in better

comprehension. There are also some discussion about using a combination of both to benefit from

the advantages of each one of them. Observing the programmers activities during the program

comprehension phase shows that some programmers tend to use systematic strategies while others

prefer as-needed strategies.

Concept or feature location and identification is a technique to identify the source code constructs

that are activated when exercising one or some of the features of a program. Although, many fea-

ture and concept identification approaches exist, none of these approaches attempt at identifying

concepts in a system trace automatically.

In this thesis, we presented an approach to locate automatically concepts in execution traces by

splitting traces into cohesive segments representing concepts related to software system features.
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We combined IR techniques, dynamic analysis, and search-based optimization techniques to iden-

tify concepts into execution traces. The approach relies on definitions of conceptual cohesion and

coupling from the literature (Marcus et al. (2008); Poshyvanyk et Marcus (2006a)). We have tried

several optimization algorithms and we have chosen the genetic algorithm since it is more efficient

and provides more accurate results.

We have tried many fitness equations and several representations of the problem to find the

appropriate representation and fitness equation.

The approach has been applied and evaluated on two open source systems, ArgoUML and

JHotDraw. Results showed that the approach is stable, and, overall, locates concepts with a high

precision. Precision tends to drop for features realized using very similar sequences of methods,

as sometimes happens in JHotDraw, where different kinds of shapes are drawn essentially in the

same way. The overlaps between a manually-built oracle and the automatically-located segments

vary depending on the cohesion of the features being analyzed, as the approach tends to split traces

related to large features into smaller segments related to cohesive sub-concepts.

Contrary to other dynamic approaches that use traces generated according to a well designed

scenario, our approach is not dependent to any designed scenario and can be applied to any traces

generated during program execution. It is not limited to locate one feature at a time and is able to

identify all the features executed in a trace.

To reduce the execution time, we have distributed GA computations among several servers.

We have implemented four different client server configurations and we found one that speed up

enormously the execution of the approach. As an example in the case of Start-Draw-Rectangle-Stop

trace this configuration reduced GA computation by about 140 times when compared to a simple

implementation, in which all GA operations are performed on a single machine.

The approach proposed in this thesis has the following advantages :

– It combines both static and dynamic analysis together and uses them as complements to have

more effective results.

– It is fully automatic and does not need any interaction with the developer.
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– Because of using LSI, the approach is independent from the programming language.

– It benefits from two software design principles, cohesion and coupling, already adopted in

the past to identify modules in software systems.

– It uses a single execution trace that may or may not be generated based on a designed scena-

rio.

– The developer does not need to know about the features executed in the trace.

– It is not limited to locate one feature at a time and can detect any number of features existing

in the trace.

– The approach tries to identify all the methods contributing in implementing a concept not

only the start points

– It can work with completely unfamiliar systems when the source code is available.

– It uses a distributed configuration to speed up the computations.

Considering the mentioned advantages, using this approach is easier and more effective than pre-

vious approaches proposed in literature.

Unfortunately the results we have obtained for the labeling part have not been promising so far.

One reason may be that the terms we have extracted from the source codes are too general and they

are not limited to developer-defined terms only.

7.1 Future Works

Future work will follow different directions. First, we are improving the proposed approach

to increase its performance by better tuning the search-based optimization and the text indexing

techniques.

As it was mentioned before we have not obtained the promised results for the automatic label

assignment part. Thus one of our future works is trying to improve our idea and implementation to

assign automatically appropriate, meaningful labels to the located concepts.

We are working on scalability issue to find an appropriate, practical solution to be able to apply

this approach to very long traces too. The approach should also be extended to be able to work with
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multi threaded systems.

We should compare the performance of our approach in detecting a desired concept, with some

pervious approaches.

Setting the number of GA iterations based on the size of the execution traces needs to be inves-

tigated further. Also, a study to find the relation between the number of the servers, which are used

in distributing the computations, and the execution time should be performed.
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gineering (CSMR) 2010. The article entitled "A Heuristic-based Approach to Identify Concepts in

Execution Traces" by Fatemeh Asadi, Massimiliano di Penta, Giuliano Antoniol, and Yann-Gaël

Guéhéneuc (Asadi et al. (2010b)).
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Abstract—Concept or feature identification, i.e., the identifi-
cation of the source code fragments implementing a particular
feature, is a crucial task during software understanding and
maintenance. This paper proposes an approach to identify
concepts in execution traces by finding cohesive and decoupled
fragments of the traces. The approach relies on search-based
optimization techniques, textual analysis of the system source
code using latent semantic indexing, and trace compression
techniques. It is evaluated to identify features from execution
traces of two open source systems from different domains,
JHotDraw and ArgoUML. Results show that the approach is
always able to identify trace segments implementing concepts
with a high precision and, for highly cohesive concepts, with a
high overlap with the manually-built oracle.

Keywords—Concept location, dynamic analysis, information
retrieval.

I. I NTRODUCTION

Software systems often lack an adequate and up-to-date
documentation. Therefore, developers must resort to reading
the system source code, without specific tool support but
code browsers, to understand the systems and perform
their maintenance and evolution tasks. In some cases, code
understanding is supported by static analysis and–or vi-
sualizations built upon static information. In other case,
debugging can be used to understand the behavior of a
system in a particular context and–or to locate a fault.
However, manually browsing of source code, inspecting an
execution trace or debugging long sequences of instructions
are time consuming and daunting tasks.

Concept or feature location and identification aim at help-
ing developers to perform their maintenance and evolution
tasks, by identifying abstractions (i.e., features) and the loca-
tion of the implementation of these abstractions. Specifically,
they aim at identifyingcode fragments, i.e., set of method
calls in traces and the related method declarations in the
source code, responsible for the implementation of domain
concepts and–or user-observable features [1], [2], [3], [4],
[5]. The literature reports approaches built upon static [6]
and dynamic [7], [5] analyses; Information Retrieval (IR)
[4] and hybrid (static and dynamic) [8] techniques.

This paper proposes a novel approach to identify cohesive
and decoupled fragments in execution traces, which likely

participate in implementing concepts related to some fea-
tures. A typical problem for which the proposed approach
can be beneficial is the following. Suppose a failure has been
observed when executing a particular scenario of a software
system; unfortunately the likelihood to reproduce the exe-
cution conditions for that failure are very low. Maintainers
are then faced with the problem of analyzing the execution
trace produced by that scenario and identifying high level
abstractions that likely participate in the feature producing
the unwanted behavior.

To deal with the above described problem, the proposed
approach identifies concepts composing an execution sce-
nario by grouping together methods that are (i) sequentially
invoked together/in sequence and (ii) cohesive and decou-
pled from a conceptual point of view. The underlying as-
sumption is that, if a specific feature is being executed within
a complex scenario (e.g., “Open a Web page from a browser”
or “Save an image in a paint application”), then the set of
methods being invoked is likely to be conceptually cohesive,
decoupled from those of other features, and sequentially
invoked. We use conceptual cohesion and coupling from
Marcuset al. [9] and Poshyvanyket al. [10].

The approach works as follows. First, we index the
source code of each method of a system textually. Then,
we instrument and exercise the system to collect execution
traces for some scenarios related to different features and,
therefore, containing sets of different concepts. We compress
the traces to remove utility and cross-cutting concepts andto
abstract repetitions of the same sub-sequences of methods.
Finally, we apply a search-based optimization technique,
i.e., a genetic algorithm, to split the compressed traces into
cohesive and decoupled fragments. We ensure performances
by parallelizing the algorithm over multiple computers.

Overall, the contributions of this paper are:
1) A novel approach combining IR techniques, dynamic

analysis, and search-based optimization techniques to
identify concepts into execution traces;

2) An empirical study that shows the applicability and
the performances of the proposed approach in identi-
fying concepts into execution traces of two systems,
JHotDraw and ArgoUML. Results indicate that the
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approach is able to identify concepts (with a precision
in most cases greater than 80%), while the overlap
with a manually-built oracle varies depending on the
cohesiveness of the concepts to be identified.

The remainder of the paper is organized as follows.
Section II presents related work. Section III describes the
approach. Section IV presents an empirical study and Sec-
tion V report its results and some discussions. Section VI
concludes the paper and outlines future work.

II. RELATED WORK

Although, many feature and concept identification ap-
proaches exist, none of these approaches attempts to identify
concepts in a system traceautomatically.

In their pioneering work, Wilde and Scully [7] presented
the first approach to identify features by analyzing execution
traces. They used two sets of test cases to build two exe-
cution traces, one where a feature is exercised and another
where the feature is not. They compared the execution traces
to identify the feature in the system. Similarly, Wonget
al. [11] analyzed execution slices of test cases to identify
features in source code. Wilde’s original idea was later
extended in several works [1], [4], [12], [13] to improve its
accuracy by introducing new criteria on selecting execution
scenarios and by analyzing the execution traces differently.

Chen and Rajlich [14] developed an approach to iden-
tify features using Abstract System Dependencies Graphs
(ASDG). In C, an ASDG models functions and global
variables as well as function calls and data flow in a system
source code. Chen and Rajlich identified features using the
ASDG following a precise manual process. In contrast to
Wilde and Scully’s work, Chen and Rajlich used only static
data to identify features and a manual process.

Eisenbarthet al. [15] combined previous approaches by
using both static and dynamic data to identify features.
In a following work, Eisenbarthet al. [13] introduced an
approach to feature identification using test cases.

Salah and Mancoridis [16] used both static and dynamic
data to identify features in Java systems. They went beyond
feature identification by creating feature-interaction views,
which highlight dependencies among features. Their work
was extended to allow feature identification and evolution
analysis in large-scale systems,e.g., Mozilla [17].

More recent pieces of work focused on a combination of
static and dynamic data [8], [4], in which, essentially, the
problem of features location from multiple execution traces
is modeled as an IR problem, which has the advantage to
simplify the location process and, often, improves accuracy
[4]. Yet, Liu et al. [18] showed that a single trace suffices to
build an IR system and locate useful data. Execution traces
were also used to mine aspects by Tonella and Ceccato [5].

We share with previous work the use of dynamic data
and IR techniques to identify features. However, instead
of querying traces using an IR technique,e.g., similar to

Poshyvanyket al. [4], we determine cohesive and decoupled
fragments likely being relevant to a conceptautomatically.
Our approach is based on two conjectures not yet fully
investigated: (1) methods helping to implement a concept
are likely to share some linguistic information; (2) meth-
ods responsible to implement a feature are likely to be
called close each other in an execution trace. Therefore, the
conceptual coupling of methods participating in a concept
should be high and these methods should appear relatively
close together in the execution trace. The first conjecture is
grounded on the findings published in [4] and other publica-
tions based on IR to locate features and concepts. IR-inspired
works assume some form of commonalities between a query
and linguistic information of entities. Locality of concept
manifestation in traces is more questionable, however we
believe unlikely that a user-observable feature or concept,
not constituting a crosscutting concern, will be uniformly
spread in a trace.

III. T HE APPROACH

This section describes the proposed approach to identify
concepts by analyzing execution traces. The approach con-
sists in five steps. First, the system is instrumented. Second,
the system is exercised to collect execution traces. Third,the
collected traces are compressed to reduce the search space
that must be explored to identify concepts. Fourth, each
method of the system is represented by means of the text
that it contains. Fifth, a search-based optimization technique
is used to identify, within execution traces, sequences of
method invocations that are related to a concept.

A. Steps 1 and 2 – System Instrumentation and Trace
Collection

First, the software system is instrumented using theinstru-
mentorof MoDeC. MoDeC is a tool to extract and model
sequence diagrams from Java systems [19]. The MoDeC
instrumentor is a dedicated Java bytecode modification tool
implemented on top of the Apache BCEL bytecode transfor-
mation library1. It inserts appropriate and dedicated method
invocations in the system to trace method/constructor en-
tries/exits, taking care of exceptions and system exits
(System.exit(int)). It also allows the user to add to the
traces tags containing meta-informatione.g., delimiting and
labeling sequences of method calls related to some specific
features being exercised.

Following the user manual (or use-case documents, if
available) of the system to be analyzed, an execution sce-
nario is composed of a sequence of cohesive steps. For
example, exercising a Web browser could consist in a
sequence of the following steps (i) open the browser; (ii)
insert a URL and access a Web page; and (iii) save the Web
page into a local HTML file. We exercise the instrumented

1http://jakarta.apache.org/bcel/
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system to collect execution traces by following execution
scenarios. Resulting traces are text files listing method calls
and including the class of the object caller, the unique ID
of the caller, the class of the receiver, its unique ID, and the
complete signature of the method.

B. Step 3 – Pruning and Compressing Traces

Usually, execution traces contain methods invoked in
most scenarios,e.g., methods related to logging. Even in a
single execution trace of an application with graphical user
interface, mouse tracking methods will largely exceed all
other method invocations. It is likely that such methods are
not related to any particular concept,i.e., they are utility
methods. These methods do not provide useful informa-
tion for developers when locating a concept, because they
are common in many concepts. They are similar to low-
discriminating terms occurring in many documents when
applying a IR technique. Such terms are penalized by
indexing measures liketf-idf [20].

Similarly, we built the distributions of the frequencies of
method occurrences to remove too-frequent methods. We
then prune out the methods having a frequency greater
than Q3 + 2 · IQR, whereQ3 is the third quartile (75%
percentile) of the distribution andIQR is the inter-quartile
range. An alternative approach to deal with these methods is
aspect mining [5], [21], because such methods can constitute
crosscutting concerns. We do not use aspect mining because
we are interested in pruning these methods to identify
concepts, not in crosscutting concerns.

Traces often contain repetitions of one or more method in-
vocations, for examplem1(); m1(); m1(); or m1();
m2(); m1(); m2();. A repetition does not introduce a
new concept, thus we compress traces using the Run Length
Encoding (RLE) algorithm to remove repetitions and keep
one occurrence of any repetition only. The two previous
examples would becomem1() andm1(); m2(), respec-
tively. Compression is performed for any sub-sequences
of method invocations having an arbitrary length. Other
encoding schema such as suffix trees or LZH algorithm are
likely to produce even better results in a future work.

C. Step 4 – Textual Analysis of Method Source Code

To determine the conceptual cohesion of methods, our
approach uses the Conceptual Cohesion metric defined by
Marcuset al. [9]. We extract a set of terms from each method
by tokenizing the method source code and comments, prun-
ing out special characters, programming language keywords,
and terms belonging to a stop-word list for the English
language. (We assume that comments appearing on top of
the method declaration belong to the following method.)

We split compound terms following the Camel Case
naming convention at each capitalized letter,e.g., getBook
is split into get and book. Then, we stem the obtained
simple terms using a Porter stemmer [22].

Once terms belonging to each method have been ex-
tracted, we index these terms using thetf-idf indexing
mechanisms [20]. We obtain a term–document matrix, where
documents are all methods of all classes belonging to the
system under study and where terms are all the terms
extracted (and split) from the method source code.

Finally, we apply Latent Semantic Indexing (LSI) [23] to
reduce the term–document matrix into a concept–document
matrix. The meaning of “concept” in LSI is different from
that of “concept” in concept location. In LSI, a concept
is one of the orthonormal dimensions of the LSI space.
Following Marcuset al. [9], we compute the conceptual
cohesion of methods in a class in the LSI subspace to deal
with synonymy, polysemy, and term dependency. The chosen
size of the LSI subspace is 50.

D. Step 5 – Search-based Concept Location

We now segment execution traces into conceptually-
cohesive segments related to the feature being exercised (and
thus to a specific concept). Determining a (near) optimal
splitting of a trace into segments is NP-hard. Therefore,
we use a genetic algorithm to perform the splitting and
parallelize its computations.

1) Choice of the Optimization Technique:We experi-
mented different techniques: hill climbing, simulated an-
nealing, and genetic algorithms (GAs). We chose to use
GAs because they outperformed other techniques due to the
characteristics of the search space.

A GA may be defined as an iterative procedure that
searches for the best solution to a given problem among
a constant-size population [24]. The search starts from an
initial population of individuals, represented by finite strings
of symbols (thegenome), often randomly generated. At
each evolution step, individuals are evaluated using afitness
function and selected using aselection mechanism. High-
fitness individuals have the highest reproduction probability.
The evolution (i.e., the generation of a new population) is
affected by two genetic operators: thecrossover operator
and themutation operator. The crossover operator takes two
individuals (theparents) of one generation and exchanges
parts of their genomes, producing one or more new individ-
uals (theoffspring) in the new generation. The mutation op-
erator prevents the convergence to local optima: it randomly
modifies an individual’s genome (e.g., by flipping some of
its symbols).

2) Use of the Optimization Technique:Our representation
of an individual is a bit-string as long as the execution trace
in which we want to identify some feature-related concepts.
Each method invocation is represented as a “0”, except the
last method invocation in a segment, which is represented
as a “1”. For example, the bit-string

00010010001︸ ︷︷ ︸
11
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SegmentCohesionk =

∑end(k)−1
i=begin(k)

∑end(k)
j=i+1 similarity(methodi,methodj)

(end(k)− begin(k) + 1) · (end(k)− begin(k))/2
(1)

SegmentCouplingk =

∑end(k)
i=begin(k)

∑l
j=1,j<begin(k) or j>end(k)similarity(methodi,methodj)

(l − (end(k)− begin(k) + 1)) · (end(k)− begin(k) + 1)
(2)

fitness(individual) =
1

n
·

n∑

k=1

SegmentCohesionk

SegmentCouplingk
(3)

Table I
EXAMPLE OF GA INDIVIDUAL REPRESENTATION(SECOND COLUMN).

Method Invocations Repr. Segments
TextTool.deactivate() 0

1

TextTool.endEdit() 0
FloatingTextField.getText() 0
TextFigure.setText-String() 0
TextFigure.willChange() 0
TextFigure.invalidate() 0
TextFigure.markDirty() 1
TextFigure.changed() 0

2
TextFigure.invalidate() 0
TextFigure.updateLocation() 0
FloatingTextField.endOverlay() 0
CreationTool.activate() 1
JavaDrawApp.setSelectedToolButton() 0

3

ToolButton.reset() 0
ToolButton.select() 0
ToolButton.mouseClickedMouseEvent() 0
ToolButton.updateGraphics() 0
ToolButton.paintSelectedGraphics() 0
TextFigure.drawGraphics() 0
TextFigure.getAttributeString() 1

means that the trace, containing 11 method invocations, is
split into three segments decomposed into the first four
method invocations, the next three, and the last four. An
real example of segment splitting2 is shown in Table I.

The mutation operator randomly chooses one bit in the
representation and flips it over. Flipping a “0” into a “1”
means splitting an existing segment into two segments, while
flipping a “1” into a “0” means merging two consecutive
segments. The crossover operator is the standard 2-points
crossover. Given two individuals, two random positionsx, y
with x < y are chosen in one individual’s bit-string and the
bits fromx to y are swapped between the two individuals to
create a new offspring. The selection operator is the roulette-
wheel selection. We use a simple GA with no elitism,
i.e., it does not guarantee to retain best individuals across
subsequent generations. We set the population size to 200
individuals and a number of generations of 2,000 for shorter
traces (those of JHotDraw) and 3,000 for longer ones (those
of ArgoUML). The crossover probability was set to 70%
and the mutation to 5%, which are widely used values in
many GA applications.

A fitness function drives the GA to produce individu-

2The segment splitting shown in Table I has been obtained randomly and
does not correspond to an actual “good” solution.

als that represent (near) optimal splittings of a trace into
segments likely to relate to some concepts. In our fitness
function, we use the software design principles of cohesion
and coupling, already adopted in the past to identify modules
in software systems [25], although we use conceptual (i.e.,
textual) cohesion and coupling measures [9], [10], rather
than structural cohesion and coupling measures.

Segment cohesion is the average (textual) similarity be-
tween any pair of methods in a segmentk and is computed
using the formulas in Equation 1 wherebegin(k) is the
position (in the individual’s bit-string) of the first method
invocation of thekth segment andend(k) the position of
the last method invocation in that segment. The similarity
between two methods is computed using the cosine similar-
ity measure over the LSI matrix extracted in the previous
step. Thus, it is the average of the similarity defined by [9],
[10] to all pairs of methods in a given segment.

Segment coupling is the average similarity between a
segment and all other segments in the trace, computed using
Equation 2, wherel is the trace length. As our conjecture
is that a concept should be implemented by method calls
locally close each other, on the one hand the algorithm
favors the merging of consecutive segments containing meth-
ods with high average conceptual similarity. On the other
hand, the algorithm penalizes solutions where consecutive
segments are highly coupled together. The segment coupling
represents, for a given segment, the average similarity be-
tween methods in that segment and those in different ones.

Finally, for a trace split inton segments, the fitness
function is shown in Equation 3.

3) Parallelization of the Optimization Technique:One
of the main advantages of GAs with respect to other
optimization techniques is the possibility of parallelizing
their computations,e.g., the evaluations of the fitness of
different individuals. In our approach, we use parallelization
to reduce computation time. (However, a detailed study of
the performances is out of scope of this paper and will be
treated in a future work).

In our experiments, we distributed computations over a
network of five servers and nine workstations. Servers are
connected in a Gigabit Ethernet LAN while workstations
are connected to a LAN segment at 100 MBit/s and talk to
servers at 100 Mbit/s. Servers and workstations run CentOS
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Table II
STATISTICS FOR THE TWO SYSTEMS.

Systems N
O

C

K
LO

C

R
el

ea
se

D
at

es

ArgoUML v0.18.1 1,267 203 30/04/05
JHotDraw v5.4b2 413 45 1/02/04

5, 64 bits; memory varies between four and 16 Gbytes.
Workstations are based on Athlon X2 Dual Core Processor
4400; the five servers are either single or dual Opteron. The
distributed architecture comprises one workstation taking
charge of distributing the GA individuals to other computers
by means of socket connections. On the slave computers, a
server receives the computation requests and the individuals,
computes the value of the fitness function and returns the
value back to the central computer. Only the fitness of new
individuals, with respect to previous generations, are com-
puted. The fitness values of individuals already evaluated are
not recomputed but retrieved from a hash table storing the
previous values.

Distribution over several computers is crucial to ensure
acceptable computation time. With the described configura-
tion, a single run takes about one hour. Scalability on very
large traces will require different computation architectures
(e.g., sharing information between slaves) and possibly di-
viding a large trace into chunks with approaches inspired
by overlapping time windows as in digital signal processing.
This possibility will be studied in a future work.

IV. EMPIRICAL STUDY DESCRIPTION

We report an empirical study evaluating the proposed con-
cept location approach. Thegoal of this study is to analyze
the novel concept location approach based on dynamic data,
with the purposeof evaluating its capability of identifying
meaningful concepts. Thequality focusis the accuracy and
completeness of the identified concepts. Theperspectiveis
that of researchers who want to evaluate how the proposed
approach can be used during maintenance and evolution.
The contextconsists of an implementation of our approach
and of the execution traces extracted from two open source
systems, JHotDraw and ArgoUML.

A. Context

The context of our study are execution traces from Ar-
goUML and JHotDraw. Figure IV highlights main character-
istics of the two systems.ArgoUML3 is an open source UML
modeling tool with advanced software design features, such
as reverse engineering and code generation. The ArgoUML
project started in September 2000 and is still active. We
analyzed release 0.19.8.JHotDraw4 is a Java framework for

3http://argouml.tigris.org
4http://www.jhotdraw.org

Table III
STATISTICS FOR THE COLLECTED TRACES.

Systems Scenarios O
rig

in
al
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se
d

S
iz

es

ArgoUML
Start, Create note, Stop 34,746 821 588
Start, Create class, Create note, Stop 64,947 1066 764

JHotDraw

Start, Draw rectangle, Stop 6,668 447 240
Start, Add text, Draw rectangle, Stop 13,841 753 361
Start, Draw rectangle, Cut rectangle, Stop11,215 1206 414
Start, Spawn window, Draw circle, Stop 16,366 670 433

drawing 2D graphics. JHotDraw started in October 2000
with the main purpose of illustrating the use of design
patterns in a real context. We analyzed release 5.1.

We generate traces by exercising various scenarios in
the two systems. Table IV-A summarizes the scenarios and
shows that the generated traces include from 6,000 up to
almost 65,000 method invocations. The compressed traces
include from 240 up to more than 750 method invocations.
By exercising these scenarios, we do not want to identify
concepts related to the systems’ startup,Start, and closing,
Stop. Therefore, in the following, when naming the scenarios
and their associated features, we no longer include the Start
and Stop concepts.

The GA was implemented using theJava GA Lib5 library.

B. Building the Oracle

We need an oracle to assess the accuracy and complete-
ness of the identified concepts. We build such an oracle
by manually tagging the execution traces. Two “Start” and
“Stop” tags enclose the method invocations related to a
particular concept. While executing the instrumented system,
before and after a step in the execution scenario (e.g., Draw
rectangle), the user, through a command in the instrumentor
interface, inserts the appropriate tags in the execution trace
and then continues to exercise the instrumented system with
the next steps of the scenario. Consequently, the collected
traces are composed of a sequence of method invocations
interleaved with tags separating the invocations belonging
to different steps.

C. Research Questions

This study aims at answering the three following research
questions:

• RQ1: How stable is the GA, through multiple runs,
when identifying concepts into execution traces?Ap-
proaches based on GAs could suffer from the random-
ness of the search: the initial individuals are randomly
generated and the crossover, mutation, and selection
operators are influenced by random choices. However,
it is desirable that the representation, operators, fitness,

5http://sourceforge.net/projects/javagalib/
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and other settings (e.g., population size and stopping
criteria) be chosen so that multiple runs of the GA
yields to similar solutions.

• RQ2: To what extent the identified concepts match the
ones in the oracle?We are interested to evaluate the
extent to which the identified segments overlaps with
the ones in our oracle, obtained by manually tagging
the traces.

• RQ3: How accurate is the identification of concepts in
execution traces?Finally, we are interested to evaluate
the extent to which the identified segments are accurate,
i.e., how many of the method invocations that they
contain are also in the oracle and how many are not.

D. Study Settings and Analysis Method

To answerRQ1, we evaluate the extent to which the seg-
ments identified in multiple runs of the GA, and occurring
in the same position of the trace, overlap each other. Let
us consider a compressed trace composed ofN method
invocationsT ≡ m1, . . .mN and partitioned at runi of
the GA in ki segmentss1,i . . . sk,i. For each segmentsx,i
obtained at runi, and for all the segmentations obtained at
run j 6= i, we compute the maximum overlap betweensx,i
and the segments obtained at runj as follows:

max(Jaccard(sx,i, sy,j)), y = 1 . . . kj

where:

Jaccard(sx,i, sy,j) =
|sx,i ∩ sy,j|
|sx,i ∪ sy,j|

and where union and intersection are computed considering
method invocations occurring at a given position in the
trace. Stability is evaluated by means of descriptive statistics
computed across the above obtained overlap values.

RQ2 is answered similarly toRQ1 but, in this question,
we compare the overlap between manually-tagged segments
in the execution traces with segments identified by our
approach. Specifically, given the segments determined by
the tags in the trace (our oracle) and given the segments
obtained by an execution of the system, we compute the
overlap between each manually-tagged segment in the trace
and the most similar automatically-identified segment.

Finally, RQ3 is addressed likeRQ2, with the only dif-
ference that we use precision instead of the Jaccard score,
because we are interested in evaluating the accuracy of our
approach. Precision is defined as follows:

Precision(sx,i, sy,o) =
|sx,i ∩ sy,o|

|sy,o|
wheresx,i are segments obtained by our approach andsy,o
are segments in the corresponding trace in the oracle.

V. RESULTS AND DISCUSSION

This section reports the results of our experimental eval-
uation: the collected data and their analyses to address the
previous research questions.

A. RQ1: How Stable is the GA across Multiple Runs?

We assess the stability of the GA by computing the
average similarity of the segments identified in ten different
runs of the approach. Table IV shows the similarity results.
Overall, the similarity averages for JHotDraw range between
55% and 95%, with median values ranging between 70% and
84% . They are slightly higher for ArgoUML, between 80%
and 83%. Thus, we conclude that, despite the potentially
large size of the search space, our approach is able to
generate stable segments across multiple runs. In addition,
increasing the number of generations and the population size
would potentially further increase the approach stability.

B. RQ2: To What Extent the Identified Concepts Match the
Ones in the Oracle?

To addressRQ2, we evaluate the extent to which the
segments actually reflect features as they were manually
tagged when executing the instrumented system to generate
the execution traces.

For some features,e.g., drawing a rectangle or a circle,
the average (and median) Jaccard overlap is very high,
suggesting that the features are implemented through se-
quences of very cohesive methods. Yet, other features exhibit
lower overlaps. These lower overlaps do not mean that our
approach was unable to successfully identify the features.
Indeed, in some cases, for example the scenariosAdd text
in JHotDraw andCreate notein ArgoUML, the features are
realized by adapting a textual-editing feature as a shape-
drawing feature, using the Adapter design pattern. The
feature adaptation produces sequences of methods with a
low cohesion, which our algorithm tend to split. As a
consequence, the resulting overlaps are appropriately low.

In other cases, in particular with traces from ArgoUML,
a large trace segment corresponding to a feature is split
into two or more segments by our approach. Thus, the
overlap between the (larger) manually-tagged segment and
the corresponding automatically-identified segment is low.
A manual study of such cases revealed that the manually-
tagged segment is indeed composed of several smaller and
cohesive sub-concepts that our algorithm tend to split, as
illustrated and discussed in the following subsection.

C. RQ3: How Accurate is the Identification of Concepts in
Execution Traces?

The right side of Table V reports the precision of the
identified segments with respect to the manually-tagged
ones. Precision is often very high, with median values in
most cases above 85% and very often equal to 100%.

Lower precision values sometimes occur with explainable
reasons. For example, in the scenario (2) of JHotDraw,
composed ofAdd textandDraw rectangle, the two features
are implemented using a very similar sequence of method
invocations, making them hard to distinguish. Because these
features are executed one after the other, our search-based
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Table IV
DESCRIPTIVE STATISTICS OF SIMILARITY AMONG SEGMENTS OBTAINED IN TEN DIFFERENT RUNS.

Systems Scenarios/Features Similarity Averages
Min. Max. Mean Median σ

ArgoUML
(1) Add note 0.69 0.95 0.84 0.83 0.07
(2) Add class, Add note 0.65 0.98 0.80 0.80 0.06

JHotDraw

(1) Draw rectangle 0.55 0.96 0.76 0.76 0.12
(2) Add text, Draw rectangle 0.54 0.93 0.72 0.70 0.10
(3) Draw rectangle, Cut rectangle 0.73 0.93 0.85 0.84 0.05
(4) Spawn window, Draw circle 0.67 0.86 0.76 0.76 0.04

Table V
SIMILARITY (JACCARD OVERLAP AND PRECISION) BETWEEN SEGMENTS IDENTIFIED BY THE APPROACH AND FEATURES TAGGED IN THE TRACE.

Systems Scenarios Features Jaccard Precision
Min. Max. Mean Median σ Min. Max. Mean Median σ

ArgoUML
(1) Add note 0.15 0.39 0.28 0.27 0.08 0.91 1.00 0.97 1.00 0.04
(2) Create class 0.11 0.28 0.22 0.25 0.05 1.00 1.00 1.00 1.00 0.00
(2) Create note 0.22 0.56 0.35 0.31 0.14 1.00 1.00 1.00 1.00 0.00

JHotDraw

(1) Draw rectangle 0.63 0.93 0.84 0.89 0.13 0.89 1.00 0.96 1.00 0.06
(2) Add text 0.21 0.31 0.26 0.27 0.05 0.27 0.36 0.32 0.34 0.04
(2) Draw rectangle 0.53 0.70 0.63 0.61 0.06 0.61 1.00 0.69 0.66 0.13
(3) Draw rectangle 0.42 0.76 0.64 0.72 0.14 0.73 1.00 0.94 1.00 0.11
(3) Cut rectangle 0.16 0.23 0.22 0.23 0.02 1.00 1.00 1.00 1.00 0.00
(4) Draw circle 0.54 0.96 0.85 0.88 0.14 0.81 1.00 0.91 0.95 0.09
(4) Spawn window 0.07 0.41 0.20 0.16 0.11 1.00 1.00 1.00 1.00 0.00

optimization technique is unable to split the trace into
segment similar to the ones from the oracle. Consequently,
the precision ofAdd textdrops to a median value of 34% and
that ofDraw rectangle, usually very high in other scenarios,
is only 66%.

D. Discussion

We analyze in detail some results to understand how the
approach split the traces into segments. We focus on cases
where the Jaccard score is low. In other cases, we know
that the segments are meaningful because they are consistent
with the oracle. Table VI shows excerpts of three segments.
(Due to lack of space, we cannot report complete segments.)

The Add classfeature of ArgoUML was matched with a
very low Jaccard score. The manual tags in the trace delim-
ited a sequence of 199 method invocations. The approach
split this sequence into 5 segments comprising in a total
of 172 method invocations, out of which 16 invocations
occurred before the tag and, thus, do not belong to the
oracle. The remaining199 − 172 + 16 = 43 invocations
were grouped in small segments mainly related to GUI-
event handling. In details, the five segments are related
to (1) creation of the objects responsible for handling the
class diagram through an instance of the Factory design
pattern; (2) adding the class to the project; (3) adding the
class to the current name-space; (4) setting properties of the
class through a Façade design pattern; and, (5) handling the
persistence of the diagram in the XMI file representing the
UML diagram.

For the Create notefeature of ArgoUML, the tagged
segment is composed of 88 method invocations while the
best matching segment identified by our approach is com-

posed of 50 methods. The identified segment deals with
the creation of a note,i.e., creation of the object through a
Factory, addition to the project, setting of its property. When
compared to theAdd classfeature, only one segment was
identified instead of five because the segment for creating a
note is shorter than that of adding a class (50 invocations vs.
172) and because this smaller number of method invocations
has a higher cohesion than that of theAdd classfeature. In
addition, 32 of the remaining88− 50 = 38 methods belong
to the end of the trace and were not put in the same segment,
while the sequence of these a methods continued after the tag
with 24 other invocations. The continuation of the sequence
after the tags means that the oracle is not precise enough.
We explain this lack of precision by the extensive use of
multi-threading in ArgoUML.

All methods related to setting properties through the
Façade design pattern were not put in a same segment by
our approach because these methods were invoked in a loop,
in which each iteration of the loop contained a slightly
different sequence of invocations. Consequently, (1) the RLE
compression algorithm was not able to group together the
various loop iterations and (2) the various iterations were
not cohesive and thus the trace was split in several segments.
We will explore in future work more complex compression
techniques to deal with such cases.

The Cut rectanglefeature of JHotDraw has been tagged
as a sequence of 172 method invocations. However, in the
best case shown in Table V, only 39 of these methods
were grouped together by our approach,i.e., the methods
belonging to the last part of the tagged segment. We in-
spected this sequence and discovered that it is related to
(1) add the rectangle content to the clipboard, (2) modify
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Table VI
EXCERPT OF SEGMENTS IDENTIFIED BY THE APPROACH.

Create note (ArgoUML) Spawn window (JHotDraw) Cut rectangle (JHotDraw)
FacadeMDRImpl.isSingleton(. . . ) JavaDrawApp.createTools(. . . ) StorableOutput.close()
FacadeMDRImpl.isUtility(. . . ) MySelectionTool.MySelectionTool(. . . ) Clipboard.Clipboard()
CoreFactory.getCoreFactory() TextFigure.TextFigure() Clipboard.getClipboard()
CoreFactoryMDRImpl.buildComment(. . . ) TextFigure.setAttribute(. . . ) Clipboard.setContents(. . . )
CoreFactoryMDRImpl.createComment() FigureAttributes.FigureAttributes() CutCommand.deleteSelection()
CoreFactoryMDRImpl.initialize(. . . ) FigureAttributes.set(. . . ) BouncingDrawing.removeAll(. . . )
ModelEventPumpMDRImpl.flushModelEvents() TextFigure.changed() BouncingDrawing.figureRequestRemove(. . . )
UndoCoreHelperDecorator.addAnnotatedElement(. . . ) TextFigure.invalidate() AnimationDecorator.removeFromContainer(. . . )
ModelEventPumpMDRImpl.flushModelEvents() TextFigure.updateLocation() AnimationDecorator.invalidate()
ClassDiagramGraphModel.addNode(. . . ) TextTool.TextTool(. . . ) AnimationDecorator.removeFigureChangeListener(. . . )
ClassDiagramGraphModel.canAddNode(. . . ) TextTool.TextTool(. . . ) AnimationDecorator.changed()
FacadeMDRImpl.isAInterface(. . . ) TextFigure.TextFigure() AnimationDecorator.invalidate()
FacadeMDRImpl.isASubsystem(. . . ) TextFigure.setAttribute(. . . ) AnimationDecorator.release()
Project.getRoot() FigureAttributes.FigureAttributes() RectangleFigure.removeFromContainer(. . . )
ModelManagementFactory.getModelManagementFactory()FigureAttributes.set(. . . ) RectangleFigure.removeFigureChangeListener(. . . )
ModelManagementFactoryMDRImpl.getRootModel() TextFigure.changed() RectangleFigure.changed()
CoreHelperMDRImpl.isValidNamespace(. . . ) TextFigure.invalidate() RectangleFigure.release()
FacadeMDRImpl.getModel(. . . ) TextFigure.updateLocation() RectangleFigure.removeFromContainer(. . . )
FacadeMDRImpl.isAModel(. . . ) ConnectedTextTool.ConnectedTextTool(. . . )RectangleFigure.removeFigureChangeListener(. . . )
FacadeMDRImpl.isAFeature(. . . ) ConnectedTextTool.ConnectedTextTool(. . . )RectangleFigure.changed()
. . . . . . . . .

the properties of the drawn rectangle so that it appears as
“cut” in the painter, and (3) update the menu commands
(e.g., the command “Paste” is now enabled). The preceding
sequence of172 − 39 = 133 methods was split in many
small segments in which GUI events and actions performed
by clicking the mouse button are interleaved, resulting in a
sequence of loosely cohesive invocations.

The Spawn windowfeature of JHotDraw includes, in
the manually-tagged segment, 197 method invocations; the
segment with the highest overlap only included, however, 72
of these invocations. This sequence of 72 method invocations
is actually related to re-sizing and re-adjusting figures inthe
panel while spawning the window. The remaining invoca-
tions (at the end of the trace) keep out by our approach are
mainly related to restoring and setting-up the status of the
menu commands.

Finally, as previously explained for theAdd textfeature of
JHotDraw, the low Jaccard score and low precision are due
to the high similarity between the sequences of methods of
the Add textand Draw rectanglefeatures, which leads our
approach to put together both features in a segment of 168
method invocations.

On the one hand, the previous discussion highlights the
capability of our approach to split execution traces into
conceptually cohesive segments, despite the low Jaccard
overlap with respect to manually-tagged segments. On the
other hand, it shows some difficulties in identifying concepts
in execution traces, due to:

• design patterns and, in general, object-orientation
mechanisms (e.g., polymorphism, dynamic binding),
which make traces for different features almost iden-
tical (e.g., Add textandDraw rectanglein JHotDraw);

• imprecision when generating and tagging traces due to
multi-threading;

• the compression algorithm that is unable to group loop
iterations consisting of slightly different sequences of
method invocations.

In particular, despite the good results obtained by our
approach when analyzing traces from JHotDraw (both with
the Jaccard score and in precision), the extensive use of in-
heritance and design patterns in JHotDraw explain the lower
results when compared to those obtained with ArgoUML.
Inheritance and design patterns lead to the generation of
many method invocations not directly related to a feature,
but supportingand–orenabling the implementation of this
feature. Consequently, these method invocations can appear
in many different segments related to different features and
thus can be a confounding factor for our approach.

Another difficulty of trace-based concept location ap-
proaches is to deal with method invocations related to GUI
and system events. For example, hundreds of method invo-
cations in both ArgoUML and JHotDraw execution traces
correspond to GUI events, such asmousePressed(...).
These methods are not feature-specific and can appear
almost anywhere in a trace and could lead to different
segmentation across different runs. We deal with these meth-
ods by compressing the traces, removing sub-sequences of
such methods, and using conceptual cohesion and coupling
measures [9], [10], which lead to the creation of small
segments containing only such method invocations.

E. Threats to validity

We now discuss the threats to validity that can have
affected our empirical study.

Construct validity threats concern the relation between
theory and observation. In this study, they are mainly due
to measurement errors. The traces are automatically pro-
duced by executing the instrumented systems against some
scenarios. Thus, the information contained in the traces is
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reliable. However, multi-threading could change the ordering
of method calls in different traces exercising the same sub-
scenarios. The performances of the proposed approach are
evaluated by using the Jaccard overlap, already used in the
past to evaluate concept location approaches [17] and by
using the standard IR precision measure, because we are also
interested to split the trace into segments that only contain
methods related to the feature of interest.

We only performed a preliminary assessment of the
meaning of the identified concepts, by manually analyzing
sequences of method invocations belonging to different seg-
ments. In future work, we plan to use automated techniques
to label segments and thus better help the maintainer by
assigning meanings to segments automatically.

Threats tointernal validity concern confounding factors
that could affect our results. The manually-tagged traces that
we use as oracle pose such a threat. Indeed, it is possible that
tags would appear in slightly different positions in the traces
obtained by exercising the same scenarios in different runs.
The slight different positions result from multi-threading,
as well as from method invocations related to mouse and
other GUI events. In particular, extra method calls related
to GUI events or other uncontrollable system events could
be interleaved in the traces.

Methods declared in class libraries could also introduce
“noise” in our approach. For example, calls to methods from
the Java class libraries frequently occur in the traces obtained
in our experiments. They do not occur frequently enough to
be discarded as “utility” method calls yet are not related
to interesting concepts. Therefore, in future work, we will
consider adding these methods in our list of stop-words.

A last threat to internal validity relates to the intrinsic
randomness of GAs. However, inRQ1, we showed that,
overall, results are quite stable across different GA runs.

Reliability validity threats concern the possibility of repli-
cating this study. We attempted to provide all the necessary
details to replicate our study.

Threats toexternal validity concern the possibility to
generalize our results. We studied two systems having dif-
ferent size and belonging to different domains. However, we
are aware that this is a first study aimed at validating the
proposed approach and that we only split traces on a small
sample of scenarios for the two software systems. Other
traces could possibly lead to different results. Also, further
validation on a larger set of different systems is desirable.
Yet, within its limits, our results confirm the stability and
precision of our approach for concept location.

A final remark concerns the complexity of our approach
and computation times. Although this is a proof of concept,
we are aware that excessive computation times or complexity
may prevent further studies and practical application. On
average, identifying concepts in a compressed trace of about
400 methods on a single high end PC (i.e., with at least
4GB RAM) took about one day; when GA was mapped

on multiple serves as described, the time went down to 20
minutes. Clearly, to make the approach appealing, we need
to improve scalability both in time and space as well as in
the possibility to handle longer traces.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an approach to locate automatically
concepts in execution traces by splitting traces into cohesive
segments representing concepts related to a software system
features. The approach relies on definitions of conceptual
cohesion and coupling from the literature [9], [10] and on
a search-based optimization technique, based on a genetic
algorithm, to find (near) optimal splittings of traces into
segments.

The approach has been applied and evaluated on two
open source systems, ArgoUML and JHotDraw. Results
showed that the approach is stable, and, overall, locates
concepts with a high precision. Precision tend to drop for
features realized using very similar sequences of methods,
as sometimes happens in JHotDraw, where different kinds of
shapes are drawn essentially in a same way. The overlaps be-
tween a manually-built oracle and the automatically-located
segments vary depending on the cohesion of the features
being analyzed, as the approach tends to split traces related
to large features into smaller segments related to cohesive
sub-concepts.

Future work will follow different directions. First, we are
improving the proposed approach to increase its performance
by better tuning the search-based optimization and the text
indexing techniques. Also, we want to assign automati-
cally meaningful labels to trace segments identified by the
approach to help maintainers understand their meanings.
Finally, we will carry other empirical studies to evaluate
the approach on traces obtained from different systems.
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entitled "Concept Location with Genetic Algorithms : A Comparison of Four Distributed Architec-

tures" by Fatemeh Asadi, Giuliano Antoniol, Yann-Gaël Guéhéneuc (Asadi et al. (2010a)).
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Abstract—Genetic algorithms are attractive to solve many
search-based software engineering problems because they allow
the easy parallelization of computations, which improves scala-
bility and reduces computation time. In this paper, we present
our experience in applying different distributed architectures
to parallelize a genetic algorithm used to solve the concept
identification problem. We developed an approach to identify
concepts in execution traces by finding cohesive and decoupled
fragments of the traces. The approach relies on a genetic algo-
rithm, on a textual analysis of source code using latent semantic
indexing, and on trace compression techniques. The fitness
function in our approach has a polynomial evaluation cost and
is highly computationally intensive. A run of our approach
on a trace of thousand methods may require several hours
of computation on a standard PC. Consequently, we reduced
computation time by parallelizing the genetic algorithm at the
core of our approach over a standard TCP/IP network. We
developed four distributed architectures and compared their
performances: we observed a decrease of computation time up
to 140 times. Although presented in the context of concept
location, our findings could be applied to many other search-
based software engineering problems.

Keywords-Concept location; dynamic analysis; information
retrieval; distributed architectures.

I. INTRODUCTION

Genetic algorithms (GAs) are an effective technique to
solve complex optimization problems. GAs are effective
in finding approximate solutions when the search space
is large or complex, when mathematical analysis or tradi-
tional methods are not available, and—in general—when
the problem to be solved is NP-complete or NP-hard [1].
Informally, a GA may be defined as an iterative procedure
that searches for the best solution to a given problem
among a constant-size population, represented by a finite
string of symbols, the genome. The search starts from an
initial population of individuals, often randomly generated.
At each evolutionary step, individuals are evaluated using
a fitness function. Highly fit individuals have the highest
probability to reproduce in the next generation. GAs have
been applied to many software engineering problems; from
library miniaturization [2], to project staffing [3], to test
input data generation [4], to software refactorings [5].

One of the attractive feature of GAs is that the evaluation
of the fitness function is often performed on each individual
in isolation: to assign its fitness value to an individual, the
GA only needs its genome representation because there are
no interactions with other individuals in the population. Such
an isolation in the evaluation of the fitness function leads
naturally to parallelize computations of the fitness function
to reduce computation time [6], [7], [8].

In this paper, we report our experience in distributing
the computation of a fitness function to parallelize a GA
to solve the concept location problem. To the best of our
knowledge, this is the first time that GA parallelization via
the distribution of the fitness function computation is applied
to solve the concept location problem.

Concept location approaches help developers perform
their maintenance and evolution tasks by identifying ab-
stractions (i.e., concepts or features) and the location of the
implementation of these abstractions in source code. They
aim at identifying code fragments, i.e., set of method calls
in traces and the related method declarations in the source
code, responsible for the implementation of domain concepts
and–or user-observable features [9], [10], [11], [12], [13].

In [14], we presented an approach to identify cohesive
and decoupled fragments in execution traces, which likely
participate in implementing concepts related to some fea-
tures. The approach builds upon previous concept location
approaches [15], [16], [13], [12], [17] and uses a GA to
automatically locate cohesive and decoupled fragments. Al-
though promising, our approach is computationally intensive
and suffers from scalability issues.

To resolve the scalability issues of our approach, we
developed, tested, and compared four different architectures
where a client (master) distributes the computation of the fit-
ness function among servers (slaves) over a TCP/IP network.
To our surprise, the most effective architecture to reduce
computation time defines servers that only use local data
and do not share data and–or results with other servers.

Consequently, the contribution of this paper is an applica-
tion of GA parallelization to a software engineering problem
and the comparison and discussion of our findings for four
different architectures. Although presented in the context
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of concept location, our findings could be applied to other
search-based software engineering problems.

The remainder of the paper is organized as follows:
Section II presents related work followed by Section III
where the concept location problem is summarized. Section
IV describes the approach to speed up computation. Section
V reports the results and some discussions. Section VI
concludes the paper and outlines some future work.

II. RELATED WORK

This paper focuses on the parallelization of a GA using a
distributed architecture to reduce the computation time of an
approach to solve the concept location problem. Therefore,
we focus in the following on previous work related to the
concept location problem (i.e., feature identification), to the
distribution of optimizations in software engineering, and to
the parallelization of GAs in other domains.

A. Feature Identification

In their pioneering work, Wilde and Scully [16] presented
the first approach to identify features by analyzing execution
traces. They used two sets of test cases to build two exe-
cution traces, one where a feature is exercised and another
where the feature is not. They compared the execution traces
to identify the feature in the system. Similarly, Wong et
al. [18] analyzed execution slices of test cases to identify
features in source code. Wilde’s original idea was later
extended in several works [9], [12], [19], [20] to improve its
accuracy by introducing new criteria on selecting execution
scenarios and by analyzing the execution traces differently.
Search based techniques have been used by Gold et al.
[21] for concept binding, the work extends a previous
contribution [22] and uses hill climbing and GA to locate
(possibly overlapping) concepts in the source code.

More recent works focused on a combination of static and
dynamic data [17], [12], in which, essentially, the problem
of features identification from multiple execution traces is
modelled as an information-retrieval (IR) problem, which
has the advantage to simplify the identification process and,
often, improves its accuracy [12]. Yet, Liu et al. [23] showed
that a single trace suffices to build an IR system and identify
useful features. Execution traces were also used to mine
aspects by Tonella and Ceccato [13].

We share with this previous work the use of dynamic data
and IR techniques to identify features. In our approach, we
determine, in an execution trace the cohesive and decoupled
fragments likely to be relevant to a feature using the values
of the conceptual cohesion and coupling [24], [25] metrics
of the methods participating in each fragment. The compu-
tational costs of conceptual cohesion and coupling together
with the size of the execution traces are at the root of the
scalability issues of our approach.

B. GA Parallelization in Software Engineering

A limited number of works in software engineering
addressed complex optimization problems by distributing
computations among several servers. Mitchal et al. [26]
proposed an approach to remodularize large systems by
grouping together related components by means of clustering
techniques. They used different search strategies based on
hill-climbing and GAs. To improve the performance of their
approach, they distributed the hill-climbing computations.

More recently, Mahdavi et al. [27] used a distributed
hill-climbing for software module clustering. The fitness
function clusters together modules that are cohesive and
decoupled from the other clusters. The algorithm was par-
allelized on 23 processing units running Linux.

C. GA Parallelization in Other Domains

The literature on the parallel implementation of GAs
reports that parallelization does not influence the quality of
results but makes GA execution much faster.

Parallel GAs have been to solve problems in different
domains. For example, parallel GAs were used for shortest-
path routing [28], multi-objective optimization [29], finding
roots of complex functional equation [30], image restoration
[31], service restoration in electric power distribution [32],
and rule discovery in large databases [33].

The scalability of a parallel system refers to its ability to
use an increasing number of processors (and–or computers)
in an effective way. Rivera [7] discussed the scalability of
parallel GAs based on their iso-efficiency, which is defined
according to the problem size, number of processors, and the
execution time of the parallel algorithm. A parallel system
is scalable iff it uses an iso-efficient fitness function.

Stender et al. [6] classified parallel GAs into three cat-
egories, each one using a different parallelization strategy.
In the category of global parallelization, only the evaluation
of the individuals’ fitness is parallelized: a computer acting
as master applies the genetic operators on the individuals’
genomes and distributes the individuals among slave com-
puters, which compute the fitness values of the individuals.

In the category of coarse-grained parallelization (is-
land model), a computer divides a population into sub-
populations and assigns each sub-population to another
computer. A GA is executed on each sub-population. When
it is needed, the computers exchange data related to the sub-
populations using a migration process. This model inspired
Zorman et al. [34]: they used a Java service-oriented ar-
chitecture to implement the island model using a migration
process to solve the knapsack problem.

In the category of fine-grained parallelization, each in-
dividual is assigned to a computer and all the GA op-
erations are performed in parallel. Our approach to GA
parallelization of the concept location problem falls under
this category: it is essentially a global parallelization where
servers are in charge of computing fitness values. Moreover,
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our work is the first to presents four distributed architectures
and their related trade-offs for the computation of the fitness
function to parallelize the concept location problem.

III. BACKGROUND

This section summarizes our approach [14] to locate
concepts by analyzing execution traces. We provide details
of our approach for the sake of completeness and because
they are necessary to understand the rationale behind the
four different architectures that we implemented.

Our concept location approach consists of five steps. First,
the system under analysis is instrumented. Second, it is
exercised to collect execution traces. Third, the collected
traces are compressed to reduce the search space that must
be explored to identify concepts. Fourth, each method of the
system is represented by means of the text that it contains.
Fifth, a GA-based technique is used to identify, within
execution traces, sequences of method invocations that are
related to a concept.

A. Steps 1 and 2 – System Instrumentation and Trace
Collection

First, the software system is instrumented using the instru-
mentor of MoDeC. MoDeC is a tool to extract and model
sequence diagrams from Java systems [35]. MoDeC instru-
mentor is a dedicated Java bytecode modification tool imple-
mented on top of the Apache BCEL bytecode transformation
library1. It inserts appropriate and dedicated method invoca-
tions in the system to trace method/constructor entries/exits,
taking care of exceptions and system exits. It also allows the
user to add tags containing meta-information to the traces,
e.g., tags delimiting and labelling sequences of method calls
related to some specific features being exercised. Resulting
traces are text files listing method invocations and including
the class of the object caller, the unique ID of the caller, the
class of the receiver, the unique ID of the callee, and the
complete signature of the method.

B. Step 3 – Pruning and Compressing Traces

Usually, execution traces contain methods invoked in
most scenarios, e.g., methods related to logging or start-
up and shut-down. In the execution trace of a system with a
graphical user interface, mouse tracking methods will largely
exceed all other method invocations. Yet, it is likely that such
methods are not related to any particular concept, i.e., they
are utility methods. We filter out these utility methods using
the distributions of the frequencies of their occurrences.

Moreover, traces often contain repetitions of one or more
method invocations, for example m1(); m1(); m1();
or m1(); m2(); m1(); m2();. A repetition does not
introduce a new concept and makes a trace longer that nec-
essary to locate concepts. Consequently, we compress traces
using the Run Length Encoding (RLE) algorithm to remove

1http://jakarta.apache.org/bcel/

Table I
EXAMPLE OF GA INDIVIDUAL REPRESENTATION (SECOND COLUMN).

Method Invocations Repr. Segments
TextTool.deactivate() 0

1

TextTool.endEdit() 0
FloatingTextField.getText() 0
TextFigure.setText-String() 0
TextFigure.willChange() 0
TextFigure.invalidate() 0
TextFigure.markDirty() 1
TextFigure.changed() 0

2
TextFigure.invalidate() 0
TextFigure.updateLocation() 0
FloatingTextField.endOverlay() 0
CreationTool.activate() 1
JavaDrawApp.setSelectedToolButton() 0

3

ToolButton.reset() 0
ToolButton.select() 0
ToolButton.mouseClickedMouseEvent() 0
ToolButton.updateGraphics() 0
ToolButton.paintSelectedGraphics() 0
TextFigure.drawGraphics() 0
TextFigure.getAttributeString() 1

repetitions and keep one occurrence of any repetition only.
The previous examples would become m1() and m1();
m2(), respectively. We compression any sub-sequences of
method invocations having an arbitrary length.

C. Step 4 – Textual Analysis of Method Source Code

To determine the conceptual cohesion and coupling of
invoked methods, our approach uses the metrics defined
by Marcus et al. [24], [25]. We extract a set of terms
from each method by tokenizing the method source code
and comments, pruning out special characters, programming
language keywords, and terms belonging to a stop-word
list for the English language. (We assume that comments
appearing on top of the method declaration belong to the
following method.)

We then split compound terms based on the Camel Case
naming convention at each capitalized letter, e.g., getBook
is split into get and book. Then, we stem the obtained
simple terms using a Porter stemmer [36].

Once terms belonging to each method extracted, we index
these terms using the tf-idf indexing mechanisms [37]. We
thus obtain a term–document matrix, where documents are
all methods of all classes belonging to the system under
study and where terms are all the terms extracted (and
split) from the method source code. Finally, we apply Latent
Semantic Indexing (LSI) [38] to reduce the term–document
matrix into a concept–document matrix.

We follow previous process and suggestion [24], [25]
when computing the conceptual cohesion and coupling of
methods in a class in the LSI subspace to deal with syn-
onymy, polysemy, and term dependency. We choose a size
of 50 for the LSI subspace.

99



SegmentCohesionk =

∑end(k)−1
i=begin(k)

∑end(k)
j=i+1 similarity(methodi,methodj)

(end(k)− begin(k) + 1) · (end(k)− begin(k))/2
(1)

SegmentCouplingk =

∑end(k)
i=begin(k)

∑l
j=1,j<begin(k) or j>end(k)similarity(methodi,methodj)

(l − (end(k)− begin(k) + 1)) · (end(k)− begin(k) + 1)
(2)

fitness(individual) =
1

n
·

n∑

k=1

SegmentCohesionk

SegmentCouplingk
(3)

D. Step 5 – Search-based Concept Location

We now have all the data to segment execution traces into
conceptually-cohesive and -decoupled segments related to a
feature being exercised and, thus, to a specific concept.

1) Problem Definition: Suppose that the collected trace
contains N methods; determining a (near) optimal solution
(splitting a trace into segments) means exploring a search
space of all possible binary strings, of length N , that do not
contain two consecutive 1. In other words, the order of the
problem search space is 2N and, therefore, we use a GA to
perform the splitting.

At each step of the GA, individuals are evaluated using
a fitness function and selected using a selection mecha-
nism. Highly fit individuals have the highest reproduction
probability. The evolution (i.e., the generation of a new
population) is affected by the crossover operator and the
mutation operator.

2) Problem Representation: Our representation of an
individual is a bit-string of the length of the compressed
execution trace in which we want to identify some feature-
related concepts. Each method invocation is represented as a
“0”, except the last method invocation in a segment, which
is represented as a “1”. For example, the bit-string

00010010001︸ ︷︷ ︸
11

means that the trace, containing 11 method invocations, is
split into three segments (i.e., concepts) composed by the
first four method invocations, the next three, and the last
four. Table I shows an example of a real segment splitting2.

Other representations could be more compact, for ex-
ample, a book keeping of segments beginnings and ends.
The disadvantage of such representation is that mutation
and crossover would be more complex and costly in time.
Among different representations, we found that the bit-string
representation is suitable to large traces: even for a trace
of one million method calls and hundreds of individuals,
memory requirement is still manageable on a standard
PC. Moreover, the bit-string representation allows to easily
understand the size of the search space, which is roughly
related to the number of bit strings.

2The segment splitting shown in Table I has been obtained randomly and
does not correspond to actual concepts.

3) Mutation: The mutation operator prevents the con-
vergence to a local optimum: it randomly modifies an
individual’s genome (e.g., by flipping some of its symbols).
The mutation operator randomly chooses one bit in the
representation and flips it over. Flipping a “0” into a “1”
means splitting an existing segment into two segments, while
flipping a “1” into a “0” means merging two consecutive seg-
ments. Mutation operator is thus implemented with constant
time complexity.

4) Crosssover: The crossover operator takes two individ-
uals (the parents) of one generation and exchanges parts
of their genomes, producing one or more new individuals
(the offspring) in the new generation. The crossover operator
is the standard 2-point crossover. Given two individuals,
two random positions x, y with x < y are chosen in
one individual’s bit-string and the bits from x to y are
swapped between the two individuals to create two new off-
springs. Crossover operator is thus implemented with linear
time complexity in the length of the bit-string individual
representation.

5) Fitness Function: A fitness function drives the GA to
produce individuals that represent a splitting of the trace
into segments that are related to some concepts. We use the
software design principles of cohesion and coupling, already
adopted in the past to identify modules in systems [39].

However, instead of structural cohesion and coupling
measures, we use conceptual (i.e., textual) cohesion and
coupling measures [24], [25]. Segment cohesion is the
average (textual) similarity between any pair of methods in a
segment k and is computed using the formulas in Equation 1
where begin(k) is the position (in the individual’s bit-string)
of the first method invocation of the kth segment and end(k)
the position of the last method invocation in that segment.
The similarity between two methods is computed using the
cosine similarity measure over the LSI matrix extracted in
the previous step. Thus, it is the average of the similarity
[24], [25] to all pairs of methods in a given segment.

Segment coupling is the average similarity between a
segment and all other segments in the trace, computed using
Equation 2, where l is the trace length. Segment coupling
represents, for a given segment, the average similarity be-
tween methods in that segment and those in different ones.

Cohesion and coupling have quadratic costs in the trace
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length, plus each similarity computation between a pair of
methods involves a scalar product in the LSI subspace,
with a cost proportional to d, the number of retained LSI
dimensions. Thus, when compared with the bit operations
required to perform mutation (constant time) and crossover
(linear time), it is evident that the main source of complexity
and computation costs come from Equations 1 and 2 that
have polynomial time complexity in the bit-string individual
representation, i.e., number of methods in the trace. For a
trace split into n segments, the fitness function is shown in
Equation 3.

6) GA Parameters: We use a simple GA with no elitism,
i.e., it does not guarantee to retain best individuals across
subsequent generations; the selection operator is the roulette-
wheel selection. We set the population size to 200 individ-
uals and a number of generations of 2,000. Crossover and
mutation are respectively performed on each individual of
the population with probability pcross and pmut respectively,
where pmut � pcross. The crossover probability was set
to 70% and the mutation to 5%, which are values widely
used in many GA applications.

IV. GA AND DISTRIBUTED ARCHITECTURE

We started our experiments with a basic GA imple-
mentation running on a single computer. We found that
computations were overly time consuming, impairing the
possibility to actually obtain results in a reasonable amount
of time. As an example, running an experiment with a
compressed trace from JHotDraw v5.4b2, and the scenario
Start-DrawRectangle-Quit, that contains 240 method calls,
with a number of iterations equal to 2,000, took about 12
hours.

We could expect a substantial improvement by paralleliz-
ing computations on several computers. However, according
to Amdahl’s law [40], the performance increase is not linear
with the number of computers due to the sequential code,
e.g., mutation and crossover. In addition, network latency,
available bandwidth between computers and, in general,
available resources complicate performance prediction and
could lessen time reduction. A detailed study of performance
in function of network latency, number of computers, and
speed-up is out of scope of this paper and will be treated in
a future work. Yet, we report the user-experienced speed-up
obtained with different architectures.

Table II
EXAMPLE OF INDIVIDUAL CODING AND SEGMENT REDUNDANCY

Id1 0001 0001 0000001 0001 0001
Id2 0001 0001 001 0001 0001 0001
Id3 001 00001 0000000001 0001
Id4 00001 0001 0000001 000001
Id5 0001 0001 0000001 0001 001 01

To reduce computation time, we decided to resort on the
client–server architectural style [41], customized into more
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 Client

Calculating Server

Calculating Server
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Fitness

Chromosome

Fitness

Chromosome

Fitness

Figure 1. Baseline Client Server Configuration.
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Figure 2. DBMS Client Server Configuration.

specific architectures detailed in the following. The rationale
behind the different architectures comes from the illustrative
population shown in Table II: several individuals share some
segments. For example, the first two segments of individuals
Id1, Id2, and Id5 are identical (i.e., beginning and end are
the same); Id1 and Id5 are almost identical but for their
last segments. Thus, once Id1’s fitness value is calculated, if
segment cohesion and coupling were stored, they could be
reused to compute the fitness values of Id2 and Id5.

In the following, we minimally define that a client com-
puter (master in Stender’s work [6]), performing mutation,
crossover, and population evolution, distributes fitness com-
putation to multiple servers, which compute the received
individual’s fitness value and return it to the client.
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A. A Simple Client Server Architecture

The simplest distributed client–server architecture is
shown in Figure 1. The servers have no local memory, do not
communicate among themselves or store data locally or on
a global and shared device. The client sends the individuals’
encodings to the servers and waits for the fitness values to be
returned. Each server has only its own local LSI matrix and
computes fitness values based on the equations presented in
the previous section.

B. A Database Client Server Architecture

Figure 2 shows the architecture of a client–server in which
a database server stores global shared storage device. When
a segment cohesion or coupling value is required, a server

Calculating Server

 Client

Calculating Server

Calculating Server

Chromosome

Fitness

Chromosome

Fitness

Chromosome

Fitness Hashtable

Hashtable

Hashtable

Figure 5. Hash Table Client Server Configuration.

first queries the database before computing it if missing.
The database holds two tables: a cohesion table and a cou-

pling table, each with three columns. Each record in these
tables keeps a similarity/coupling value for one segment.
The first column, called beginning, keeps the index of the
first method invocation in a segment and the second column
keeps the index of the last method invocation in the same
segment. The third column contains the cohesion/coupling
value of that segment.

Whenever the fitness value for a new individual must be
computed, the responsible server checks first the database. If
it can find the needed values (already calculated in the last
iterations or by other servers for other individuals), it uses
these to compute the fitness value using a simple division.
Else, it computes cohesion and coupling for the new segment
and stores the values in the database. Thus, computation is
performed if and only if the values can not be retrieved from
the database: as much data as possible is shared between
servers to reduce computation times.

There is an extra cost due to database queries and network
communication. A central database implies that all servers
write in and read from the same database. Yet, we would
expected that using a database reduces the computation times
by caching already-calculated values. However, sending data
over the network, acquiring and releasing locks, and per-
forming queries are also time consuming operations.

C. A Hash-database Client Server Architecture

To limit the possible communication between servers and
the database, the architecture shown in Figure 3 was devised.
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The goal of this architecture is to further reduce computation
time by decreasing the number of accesses to the central
database using a local cache on each server, implemented
with a hash table.

The architecture works as follows: whenever a server
wants to compute the fitness value of a segment, it searches
its hash table. If the required data does not exist in its local
hash table, then the server queries the central database. If
the server finds the required data in the database, it uses it
to compute the fitness value and and stores it in its hash
table, else it computes the required data and stores the
results in both its hash table for its future use and in the
central database for the other servers use. Figure 4 reports
the flowchart of the process of this architecture.

D. A Hash Client Server Architecture

This last architecture is a compromise between the two
previous ones: only local data is stored in the local hash
table of servers. No data is shared among servers. As shown
in Figure 5, servers only communicate with the client and
no global data is kept and available.

Each server has two hash tables: one for similarity cohe-
sion and the other for coupling values for each segment. The
key of the hash tables is a combination of the indexes of the
first and last method invocations of a segment. Each server
uses its own hash tables and thus cannot benefit from the
computation results of others. However, because all the data
is stored locally and there is no access policy using locking
algorithms, the access to the already-calculated data as well
as their storage is efficient.

V. RESULTS AND DISCUSSION

We now report the typical timing obtained with the differ-
ent architectures on two compressed traces from JHotDraw.

JHotDraw3 is a Java framework for drawing 2D graphics.
JHotDraw started in October 2000 with the main purpose
of illustrating the use of design patterns in a real context.
Version v5.4b2 used in our previous work [14] has a size of
about 413 KLOCs.

The traces were collected by instrumenting JHotDraw and
executing the scenarios Start-DrawRectangle-Quit and Start-
Spawn-Window-Draw-Circle-Stop. These scenarios gener-
ated respectively traces of 6,668 and 16,366 method calls;
once utility methods were removed their sizes are reduced to
447 and 670 calls. Finally RLE compression brought down
the numbers of distinct calls to 240 and 432.

In our experiments, we distributed computations over a
sub-network of 14 workstations. Five high-end worksta-
tions, the most powerful ones, are connected in a Gigabit
Ethernet LAN; low-end workstations are connected to a
LAN segment at 100 MBit/s and talk among themselves
at 100 Mbit/s. Each experience was run on a subset of ten
computers: nine servers and one client.

3http://www.jhotdraw.org

Workstations run CentOS v5 64 bits; memory varies
between four to 16 Gbytes. Workstations are based on
Athlon X2 Dual Core Processor 4400; the five high-end
workstations are either single or dual Opteron. Workstations
run basic Unix services (e.g., network file system, SAMBA,
mySQL) and user processes. User processes are typically
editing and compilation of programs, e-mail clients, Web
browsers, and so on. No special care was taken to ensure a
specific network condition (e.g., priorities were not altered)
and thus times and ratios between times can be considered
typical of a industrial or research environment. However,
the sizes of the GA processes never exceeded the physical
memory of the workstations to avoid paging; workstations
were managed to ensure that each computationally-intensive
user processes had a dedicated CPU.

The client computer was also responsible to measure
execution times and to verify the liveness of connections;
connections to servers as well as connections to the database
were implemented on top of TCP/IP (AF INET) sockets.
All components have been implemented in Java 1.5 64bits.
The database server, shown in Figures 2 and 3, was MySQL
server v5.0.77.

Table III
COMPUTATION TIMES FOR DESKTOP SOLUTION AND THE DIFFERENT

ARCHITECTURES OF FIGURES 1, 2, AND 5 WITH THE
Start-DrawRectangle-Quit SCENARIO – COMPRESSED TRACE LENGTH OF

240 METHODS

Time Measurement
Architectures Runs # Measures Average

Desktop

1 12:09 h
2 11:39 h
3 12:21 h 12:07 h
4 11:50 h
5 12:38 h

Client–server

1 1:44 h
2 2:36 h
3 1:53 h 2:01 h
4 1:40 h
5 2:13 h

Database
1 16:36 h
2 15:3 h 13:50 h
3 9:52 h

Hash Table

1 5:13 m
2 5:19 m
3 5:20 m 5:17 m
4 5:27 m
5 5:10 m

Table III reports computation times for the different
architectures. The times reported for the single-computer
architecture come from an optimized implementation of our
approach. In our first implementation, we reused the Java
GALib library, which is freely available from SourceForge
and implements a simple GA. GALib makes no assumptions
on crossover and mutation operators and assumes that the
fitness of an individual must be recomputed even if it was
passed unchanged from the old generation to the new one.
This recomputation resulted in about 30% of computation-
time increase because between 20% and 30% of individuals
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Table IV
COMPUTATION TIMES FOR DESKTOP SOLUTION AND THE

ARCHITECTURE OF FIGURE 5 WITH THE
Start-Spawn-Window-Draw-Circle-Stop SCENARIO – COMPRESSED

TRACE LENGTH OF 432 METHODS

Time Measurement
Architectures Runs # Measures Average

Desktop
1 45:38 h
2 41:28 h 44:07
3 45:07h

Hash Table
1 7:21 m
2 7:21 m 7:24 m
3 7:32 m

are not subject to mutation or crossover between generations.
Thus, to reduce computation time, we modified GALib to
compute only the fitness values of individuals that have
changed between the last generation and the current one.

Distributing the computation, shown in Figure 1, clearly
results in an important reduction of computation time; as
shown in the second row of Table III. Computation time
went from 12 hours to about two hours; however, the gain in
terms of time reduction is considerably lower than expected
as we had nine computers available (excluding the client)
and, thus, expected computation times close to one hour.

We felt that there was still room for improvement and
Amdahl’s law [40] was only partially the reason for the
reduced gain. We observed that the nature of our problem
was such that crossover and mutation preserve a large
fraction of segments unchanged and that for those segments,
previous cohesion and coupling values could be reused.

Thus, we tested the two architectures in Figures 2 and 3.
Table III in its third row reports results for such database
client–server architecture: to our surprise, sharing data
among servers via a central database increased computation
times.

Finally, Table III, in its last row, reports the computation
times for the architecture in Figure 5, which is the fastest
architectures. The gain in computation times obtained is of
about 140 times. The implementation of this GA paralleliza-
tion is moreover relatively simple.

We obtained similar gains with other traces. For example,
the trace generated by the scenario Start-Spawn-Window-
Draw-Circle-Stop, with the desktop architecture, was split
in about 44 hours while, with the fastest architecture, the
client–server with the hash table, computation time is of
about 7 minutes. Table IV reports the results of splitting the
trace with two architectures.

A. Discussion

We conjecture that poor performance of the database ar-
chitecture, in Figure 2, is mainly due to the database accesses
(reading, writing, and locking) for the computation of each
coupling and cohesion values. These frequent accesses are
responsible for the increase in computation times. To limit

the number of database accesses, we introduced the hybrid
architecture in Figure 3. Results have not been reported in
Table III because they are not substantially different (better)
then those of the database. We are investigating the reason
of this unexpected behavior to locate the bottleneck cause.

Indeed, in our current implementation, accesses to the
local hash table and the database are managed serially.
Performance could improve by parallelizing writing in the
database and access to the hash table and by loading the
hash table only once at the beginning of each computation.
Unfortunately, given the size of the search space and the
huge number of possible segments, the probability that in
two consecutive runs a relevant number of the segments
will be exactly the same is very low. This fact makes the
architecture in Figure 3 interesting from a theoretical point
of view but not practical.

Despite the decrease in computation time, the very def-
inition of the concept location problem makes it hard to
obtain acceptable computation times for traces longer than
few thousands of methods even with the fastest architecture,
unless a higher number of servers is available. The definition
of this problem is tied to the size of the search space,
Equations 1 and 2, and the bit-string representation. Indeed,
the longer the trace, the higher the number of methods
contributing to the segment coupling. However, we believe
that if concepts are indeed implemented in cohesive and
decoupled segments, then computing coupling with Equation
2 is overly conservative and redefining the problem could
substantially reduce computation time. We are currently
working to restate the concept location problem in using
audio digital signal processing and time windowing.

We have reported data of two traces of one software
system, namely JHotDraw, therefore we cannot generalize
to other traces though the performance issue is likely to
be non-specific to JHotDraw or the used traces. Indeed, we
experienced similar results with traces of different lengths of
ArgoUML. Much in the same way, we cannot generalize to
other search-based software engineering problems. However,
we observed that the trade-off between the complexity of
the fitness function and the local and global knowledge
representations; similar trade-offs are known to be general
and common to many application of optimization techniques
to software engineering.

VI. CONCLUSION AND FUTURE WORK

GAs have been successfully applied to many complex
software engineering problems. To the best of our knowl-
edge, no previous work distributed fitness computation on
several servers to exploit the intrinsic parallel nature of GAs
to reduce computation times for concept location.

This paper presented and discussed four client–server
architectures conceived to improve performance and reduce
GA computation times to resolve the concept location prob-
lem. To our surprise, we discovered that on a standard
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TCP/IP network, the overhead of database accesses, com-
munication, and latency may impair a dedicated solutions.
Indeed, in our experiments, the fastest solution was an archi-
tecture where each server kept track only of its computations
without exchanging data with other servers. This simple
architecture reduced GA computation by about 140 times
when compared to a simple implementation, in which all
GA operations are performed on a single machine.

Future work will follow different directions. First, we
are working on reformulating the concept location problem.
Also, we want to experiment different communication pro-
tocols (e.g., UDP) and synchronization strategies. We will
carry out other empirical studies to evaluate the approach
on more traces, obtained from different systems, to verify
the generality of our findings. Finally, we will reformulate
other search-based software engineering problems to exploit
parallel computation to verify further our findings.
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[5] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring:
an empirical study,” J. Softw. Maint. Evol., vol. 20, no. 5, pp.
345–364, 2008.

[6] J. Stender, Parallel Genetic Algorithm: Theory and Applica-
tions, 1993, vol. 14 Frontiers in Artificial Intelligence and
Applications.

[7] W. Rivera, “Scalable parallel genetic algorithms,” Artif. Intell.
Rev., vol. 16, no. 2, pp. 153–168, 2001.

[8] E. Alba, Parallel Metaheuristics. John Wiley and Sons Inc,
2005.
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