UNIVERSITÉ DE MONTRÉAL

COMPENSATION DES ERREURS D'USINAGE PAR LE PROCESSUS INTERMITTENT D'INSPECTION

RACHID GUIASSA DÉPARTEMENT DE GÉNIE MÉCANIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L'OBTENTION DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES (GÉNIE MÉCANIQUE) Septembre 2009

© Rachid Guiassa, 2009.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

COMPENSATION DES ERREURS D'USINAGE PAR LE PROCESSUS INTERMITTENT D'INSPECTION

présenté par : GUIASSA Rachid

en vue de l'obtention du diplôme de : <u>Maîtrise ès sciences appliquées</u> a été dûment accepté par le jury d'examen constitué de :

M. BALAZINSKI Marek, Ph.D., président

M. MAYER René, Ph.D., membre et directeur de recherche

M. BARON Luc, Ph.D., membre

DÉDICACE

À mes parents, mes frères et sœurs, À toute ma famille, À tous mes amis.

REMERCIEMENTS

Ce mémoire est le fruit des travaux effectués sous la direction du Professeur René Mayer du département de génie mécanique de l'École Polytechnique de Montréal. Je tiens à le remercier pour : son exceptionnel encadrement, sa disponibilité, sa patience, sa gentillesse, ses bonnes orientations et conseils, la confiance qu'il m'accorde et pour son aide morale et financière. Sans ses encouragements, ce travail, dont je suis fier, n'aurait jamais vu le jour.

Je remercie Monsieur Marek Balazinski - Professeur à l'École Polytechnique de Montréal - pour m'avoir fait l'honneur de participer au jury d'examen en tant que président. Je remercie Monsieur Luc Baron - Professeur à l'École Polytechnique de Montréal - en tant que membre de jury.

Les travaux expérimentaux ont été effectués au Laboratoire de Recherche en Fabrication Virtuelle de la même école, Je tiens à remercier tout le personnel de ce laboratoire. Exceptionnellement, le technicien Guy Giron, pour les facilités techniques appréciées durant les tests de validation. Je remercie aussi le technicien François Ménard.

RÉSUMÉ

La procédure de compensation par le processus intermittent d'inspection est une procédure de compensation des erreurs d'usinage utilisant la machine-outil pour inspecter le profil réalisé en semi-finition pour ajuste la trajectoire d'outil en finition. Les erreurs pouvant être détectées par l'inspection sur la machine-outil sont celles causées par l'usure et les défauts de la géométrie de l'outil de coupe et le fléchissement de l'outil et/ou de la pièce durant l'usinage. Ces erreurs sont divisées en deux composantes: une ε_{R} dépend de la profondeur de coupe et l'autre ε_{0} ne dépend pas de la profondeur de coupe. L'inspection après la semi-finition fournit ces deux erreur combinées ε_{T} , la procédure de séparation est basée sur l'annulation de la profondeur de coupe pour un court profil inspectable, l'erreur détectée est ε_0 . La profondeur de coupe est considérée en relation linéaire avec l'erreur $\varepsilon_{\rm R}$ pour chaque position de la trajectoire. Par conséquent, la trajectoire d'outil en finition est ajustée par la correction calculée en utilisant ces deux erreurs et en introduisant l'effet de la profondeur de coupe. Trois méthodes sont développées dans ce mémoire: la première mesure la profondeur réelle de coupe par l'inspection avant et après usinage, la deuxième ignore une inspection pour réduire le temps du non-usinage et la troisième introduit la variation de la rigidité de la pièce causée par l'enlèvement de la matière. La validation expérimentale pour un trajet linéaire et un autre circulaire montre l'efficacité de la technique proposée.

ABSTRACT

The compensation by the process intermittent gagging is a procedure to compensate machining errors using the machine tool to inspect the semi-finished cut and adjusts the tool path in the finished cut. On machine measurement can detect only errors caused by: tool wear and tool imperfect geometry and tool-part deflection under machining loads. These errors are divided into two components: one $\epsilon_{\scriptscriptstyle R}\,$ depends on the depth of cut and other ε_0 independent of the depth of cut. OMM inspection produced only the combination ε_{T} of these errors, the separation procedure is based on the depth of cut cancelling for a short inspectable profile and ε_0 is the correspond error detected. Linear relationship between the depth of cut and ε_R is considered for each nominal position. Therefore, tool path adjustment of the finished cut is calculated using these two errors and by introducing the depth of cut effect. Three methods are developed in this paper: the first measure the actual depth of cut by inspection before and after machining, the second ignore one inspection to reduce the unproductive time and the third introduced the variation of the part rigidity caused by material removing. Experimental validation for the linear and circular profiles shows the effectiveness of the proposed strategy.

TABLE DES MATIÈRES

DÉDIC	САСЕ	iii
REME	ERCIEMENTS	iv
RÉSU	MÉ	v
ABST	RACT	vi
TABL	E DES MATIÈRES	vii
LISTE	E DES TABLEAUX	X
LISTE	E DES FIGURES	xi
LISTE	E DES SYMBOLES	XV
LISTE	E DES ANNEXES	xvii
INTRO	ODUCTION	1
1.	REVUE DE LITTÉRATURE	3
1.1	Erreurs affectant la précision d'usinage	3
1.1.	2 Erreur volumétrique et cinématique	4
1.1.	3 Modélisation de l'erreur géométrique et cinématique	7
1.1.4	4 Mesure de l'erreur géométrique et cinématique	8
1.2	Compensation d'erreur	11
1.3	Erreur causée par l'effort de coupe	18
1.3.	1 Erreur dynamique	19
1.3.2	2 Erreur statique	20
1.4	Compensation d'erreur détectée par processus intermittent d'inspecti	i on. 2 4
1.4.	1 Inspection de surface sur machine-outil	25

1.4.2	2 Erreur de mesure sur machine-outil
1.4.3	3 Identification et compensation des erreurs détectées par la MMO 27
1.5	Conclusion et objectifs
1.5.1	Conclusion
1.5.2	2 Objectif
2.	MÉTHODE DE COMPENSATION BASÉE SUR LE PALPAGE EN USINAGE
	INTERMITTENT
2.1	Principe de la compensation par le processus intermittent d'inspection 32
2.2	Méthode de miroir
2.3	Méthode proposée : intégration de la profondeur de coupe dans le calcul de
	la compensation
2.3.1	Hypothèses
2.3.2	2 Séparation des erreurs
2.3.3	Première méthode : compensation de l'erreur ε_{R} avec double inspection 48
2.3.4	Deuxième méthode : compensation de l'erreur ε_{R} avec simple inspection 51
2.3.5	Étude analytique comparative entre la technique de compensation proposée
	et la technique de miroir
2.3.6	5 Troisième méthode : compensation de l'erreur d'usinage avec variation
	significative de la rigidité de la pièce
2.3.7	7 Comparaison, par un exemple numérique simple, entre les compensations
	calculées par les méthodes discutées dans ce chapitre 61

3. ÉTUDE EXPERIMENTALE	
------------------------	--

3.1	Protocole expérimental
3.1.1	Équipements utilisés65
3.1.2	Procédure expérimentale72
3.1.3	Compensation de l'erreur de forme pour un trajet linéaire
3.1.4	Compensation de l'erreur d'usinage pour un trajet circulaire
3.2	Résultats expérimentaux
3.2.1	Compensation de l'erreur de forme pour le trajet linéaire
3.2.2	Compensation de l'erreur pour le trajet circulaire
3.2.3	Comparaison entre la correction par la troisième méthode proposée et par la
	méthode de miroir
CONC	LUSION
PERSF	ECTIVES
RÉFEI	RENCES
ANNE	KES

ix

LISTE DES TABLEAUX

Tableau 2-1 : Ex	trait du code G	33
Tableau 3-1 : Qu	elques caractéristiques de la machine Huron KX8 Five	68
Tableau 3-2: Que	elques caractéristiques de l'outil de coupe	69
Tableau 3-3 : Les	s paramètres de coupe pour le test de compensation de l'erreur de form	ıe.
		76
Tableau 3-4 : Par	ramètres de coupe pour le test de compensation du trajet circulaire	83
Tableau 3-5 : Co	mpensation selon les deux méthodes (proposée et de miroir) pour	
cer	tains points sélectionnés 1	04

LISTE DES FIGURES

Figure 1-1 : Six composants de l'erreur de mouvement d'une articulation prismatique de
machine [4]
Figure 1-2 : Défaut de perpendicularité entre deux axes et son effet sur la pose d'outil 6
Figure 1-3 : Illustration de quelques défauts détectés par un test circulaire utilisant la
barre à bille; a) pics d'inversion, b) jeu d'inversion 'backlash', c) écart
d'échelle, d) perpendicularité7
Figure 1-4 : Mesure directe par interféromètre laser [10]
Figure 1-5: Plaque à billes
Figure 1-6 : Concept de la méthode de compensation de l'erreur géométrique de Lei et
Sung
Figure 1-7 : Quatre paramètres caractéristiques de l'erreur et de la tolérance [18] 15
Figure 1-8 : Base de données de la méthode de Cho et al. (a) usinage avec profondeur
radiale de coupe variable, (b, c) enregistrement des paramètres vs la
profondeur radiale de coupe [18]16
Figure 1-9 : Efforts de coupe prédits et mesurés [20] 18
Figure 1-10 :Modélisation du comportement dynamique de l'outil-pièce [21] 19
Figure 1-11 : Lobes de stabilité
Figure 1-12 : Discrétisation de l'outil en disques pour calculer l'effort total [26] 22
Figure 1-13 : Méthode du miroir adoptée par Bandy et al
Figure 2-1 : Profil désiré obtenu après plus d'une passe pour fin d'inspection entre-
passes

Figure 2-2 : Illustration de l'erreur de montage
Figure 2-3 : Définition de l'erreur d'usinage
Figure 2-4 : La méthode de miroir
Figure 2-5 : Erreur causée par l'usure et les défauts de géométrie de l'outil (cercle
continu correspond à l'outil usé)
Figure 2-6 : Erreur de faible rigidité : (a) cas rigide, (b) fléchissement de l'outil et de la
pièce durant l'usinage, (c) erreur résultant du fléchissement
Figure 2-7 : Comparaison d'une loi de coupe exponentielle de type Kienzle et d'une loi
affine dérivée [37]43
Figure 2-8 : La relation linéaire entre $\epsilon_{_{\rm T}}$ et $h_{_{\rm eff}}$
Figure 2-9 : Réduction de la profondeur de coupe sur un court trajet
Figure 2-10 : Profondeur radiale de coupe considérée pour le calcul de la compensation
pour un trajet circulaire dans le cas de l'engagement progressif de l'outil. 47
Figure 2-11 : Concept général d'inspection et de compensation par la première méthode.
(A, B, C et D : les profils programmés)49
Figure 2-12 : Procédure de compensation par la méthode en une inspection 52
Figure 2-13 : Estimation de la variation de rigidité en finition à partir de la variation de
rigidité en semi-finition 59
Figure 2-14 Exemple numérique
Figure 2-15 : Exemple numérique : La compensation de l'erreur (Figure 2-14-a) calculée
par les méthodes discutées dans ce chapitre
Figure 3-1: Première pièce utilisée pour les tests expérimentaux; paroi droite

Figure 3-2: Deuxième pièce utilisée pour les tests expérimentaux : paroi circulaire	66
Figure 3-3: Centre d'usinage HURON KX 8 Five.	67
Figure 3-4: Outil de coupe utilisé.	68
Figure 3-5: Palpeur Renishaw MP700	69
Figure 3-6: MMT du LRFV de marque LK tool modèle G90C.	70
Figure 3-7: Bague de référence Ø2.40004".	71
Figure 3-8: Comparateur utilisé pour vérifier le défaut de forme linéaire	72
Figure 3-9 Erreur de forme à partir des données d'inspection	73
Figure 3-10: La procédure de compensation.	75
Figure 3-11: Géométrie 2D de la pièce utilisée pour le test linéaire.	76
Figure 3-12: Mesure de la bague étalon de diamètre 2.40004"	80
Figure 3-13: Géométrie 2D de la pièce et outil avec sa trajectoire	83
Figure 3-14 : Inspection par palpage sur machine-outil d'un profil réalisé suivant le tr	ajet
linéaire	84
Figure 3-15 : Superposition de l'erreur par rapport à l'encastrement, mesurée sur MO	et
la mesure obtenue par comparateur sur marbre	85
Figure 3-16: Erreur avant et après compensation par la méthode de miroir	86
Figure 3-17: Résultat de compensation par la méthode en deux inspections	87
Figure 3-18: Inspection de la bague étalon sur MO	89
Figure 3-19: Variation du rayon mesuré par rapport au rayon de la bague	90
Figure 3-20: Inspection de la bague étalon sur MMT	91

Figure 3-21 : Résultats d'inspection du profil usiné après la première passe et après la	t
deuxième passe.	92
Figure 3-22 : Excentricité du cercle obtenu par rapport au centre du cercle programm	é
pour 9 inspections après usinage	93
Figure 3-23: Erreur d'usinage centrée	94
Figure 3-24 : Variation de la profondeur de coupe à la fin du trajet d'outil; la profond	eur
programmée à la fin du trajet est nulle	95
Figure 3-25 : Géométrie 2D de la pièce : principale cause de la variation de l'erreur e	n
deuxième passe par rapport à la première passe.	96
Figure 3-26 : Erreur de conversion en NURBS de la trajectoire nominale d'outil en	
finition	97
Figure 3-27: Erreur d'approximation des 72 points mesurés sur le premier profil obte	nu.
	98
Figure 3-28: Approximation des erreurs.	99
Figure 3-29 : Déviation (compensation) programmée en finition par rapport au profil	
désiré	. 100
Figure 3-30 : Profil obtenu après compensation par la méthode 3	. 101
Figure 3-31 : Correction de trajet d'outil par la méthode proposée et par la méthode d	e
miroir	. 103

LISTE DES SYMBOLES

- x_a : Position actuelle
- x_d : Position déviée
- \vec{e} : Vecteur d'erreur
- \vec{c} : Vecteur de compensation
- ϵ_{T} : Erreur d'usinage détectée par l'inspection sur machine-outil
- ϵ_0 : Erreur causée par la géométrie de l'outil de coupe
- ϵ_{R} : Erreur causée la faible rigidité
- ϵ_{T1} : Erreur d'usinage détectée après la première passe
- ϵ_{T2} : Erreur d'usinage détectée après la deuxième passe
- $\Delta \epsilon$: Erreur résiduelle après compensation par la méthode de miroir
- C_R : Compensation de l'erreur ε_R
- C_0 : Compensation de l'erreur ϵ_0
- C_{T} : Compensation de l'erreur ϵ_{T}
- ε_{RO} : Fléchissement de l'outil
- ε_{RP} : Fléchissement de la pièce
- F : Effort radiale de coupe
- K_{RO} : Coefficient de compliance de l'outil
- K_{RP} : Coefficient de compliance de la pièce
- Coefficient de compliance de l'ensemble outil-pièce pour une position donnée
- $\Delta \rho$: Variation du coefficient ρ après la passe de semi-finition
- $\Delta \rho_F$: Estimation de la variation du coefficient ρ après la passe de finition par rapport à la passe de semi-finition
- h_{eff} : Profondeur de coupe effective en semi-finition

 $h_{eff F}$: Profondeur de coupe désirée en finition

- h_{n1} : Profondeur de coupe programmée pour la première passe (semi-finition)
- h_{n2} : Profondeur de coupe programmée pour la deuxième passe (semi-finition)
- h_{nF} : Profondeur de coupe programmée pour la passe de finition

LISTE DES ANNEXES

ANNEXE A: Outils mathématiques	114
ANNEXE B : Code G pour la trajectoire circulaire	127

INTRODUCTION

Le fraisage est une opération de base dans la fabrication des pièces mécaniques sur machines-outils. À partir des dimensions imposées par le design, la machine est programmée pour effectuer l'enlèvement de la matière nécessaire pour l'obtention de la surface finale désirée. Ceci passe par le calcul de la trajectoire d'outil avec grande précision. Après usinage, la pièce produite doit répondre à un critère de conformité dimensionnelle pour pouvoir l'assembler dans le mécanisme pour lequel elle est fabriquée et pour qu'elle accomplisse sa mission planifiée.

L'imprécision des pièces fabriquées sur machine-outil est causée par une multitude de sources d'erreur.

Le présent mémoire traite les erreurs produites au cours de l'usinage. Ces erreurs sont causées principalement par l'imprécision des dimensions de l'outil de coupe, à savoir l'usure et l'imperfection de sa géométrie et le fléchissement de la pièce et/ou de l'outil durant l'usinage à cause de l'effort de coupe.

La machine-outil est conçue pour usiner, mais elle peut effectuer la tâche d'inspection. Ceci par palpage de la surface usiné en utilisant un palpeur remplaçant l'outil de coupe. La surface obtenue par inspection peut être comparée avec celle programmée ou désirée pour évaluer l'imprécision à condition que les erreurs systématiques de la machine-outil et les erreurs de palpage soient étudiées séparément ou négligées.

Dans ce mémoire, une technique qui vise l'amélioration de la précision des pièces fabriquées sur machines-outils est développée. Elle utilise la machine-outil pour usiner et pour inspecter le profil réalisé en semi-finition. En finition une correction de la trajectoire

est calculée pour anticiper l'erreur attendue. La procédure de compensation utilisant la machine-outil pour inspecter et corriger la trajectoire d'outil en utilisant l'erreur détectée s'appelle le processus intermittent d'inspection.

La technique existante, appelée la méthode de *miroir*, corrige la trajectoire d'outil en finition en ajoutant l'erreur détectée en semi-finition, mais en sens inverse.

La profondeur radiale de coupe est un élément important à considérer. Le changement de l'amplitude de la profondeur de coupe cause un changement de l'amplitude du fléchissement de l'ensemble outil-pièce-machine. Par conséquent, l'erreur d'usinage peut changer significativement d'amplitude.

La technique développée introduit la profondeur radiale de coupe dans le calcul de la compensation. L'erreur d'usinage détectée par inspection sur machine-outil est divisée en deux composantes : une dépend de la profondeur de coupe, appelée l'erreur de faible rigidité, et l'autre ne dépend pas la profondeur de coupe. Ces deux erreurs ne se compensent pas de la même manière.

La technique développée est sous la forme de trois méthodes. La première mesure la profondeur effective de coupe. Par conséquent, elle nécessite la double inspection du profil avant et après usinage. La deuxième ignore une inspection sous l'hypothèse de la négligence de la variation de rigidité de la pièce à cause de l'enlèvement de la matière. La troisième introduit la variation de la rigidité dans le calcul de la compensation.

Le mémoire détaille les travaux effectués à l'École Polytechnique de Montréal et la validation expérimentale effectuée au sein du Laboratoire de Recherche en Fabrication Virtuelle de la même école.

1. REVUE DE LITTÉRATURE

Ce chapitre présente une recherche bibliographique sur l'erreur affectant la précision des pièces fabriquées sur machine-outil. Il présente quelques travaux antérieurs sur les méthodologies de réduction de l'imprécision d'usinage.

1.1 Erreurs affectant la précision d'usinage

Les dimensions finales des pièces usinées sur machines-outils doivent répondre aux critères de conformité dictés par la conception. D'un côté l'évolution technologique de la conception exige de plus en plus de tolérances assez sévères pour des raisons de montage et de rôle des pièces durant leur cycle de vie. De l'autre côté, la modernisation des machines-outils pour répondre aux exigences du produit fini reste insuffisante. Pour ces raisons, de multiples recherches sont menées pour apporter un correctif à la trajectoire nominale de l'outil dans le but d'obtenir des dimensions acceptables pour la pièce finie.

La précision des pièces fabriquées sur machine-outil se trouve affectée par une variété d'erreurs que l'on peut classer grossièrement [1] comme suit:

- a) erreurs géométriques : causées par les défauts de la structure et des composants de la machine-outil;
- b) erreurs cinématiques : causées par l'imprécision du mouvement relatif des composants de la machine;
- c) erreur causée par la dilatation thermique des composants de la machine;
- d) erreur causée par l'effort de coupe;
- e) erreur résultant de l'usure de l'outil de coupe;
- f) autres erreurs causées par :

- la rotation de la broche et la variation de l'effort de coupe (dynamique);
- la fixation de la pièce;
- le fléchissement par force d'inertie des composants de la machine;
- l'algorithme d'interpolation;
- l'encodeur de position.

Les erreurs géométriques, cinématiques et thermiques s'appellent erreurs quasi-statiques, qui sont associées au comportement à basse vitesse et varient peu à court terme. D'autres erreurs affectant la qualité de la surface sont les erreurs dynamiques qui sont causées principalement par la variation avec le temps de l'effort de coupe et du comportement dynamique de la machine-outil.

Ces erreurs se combinent pour constituer une erreur résultante affectant directement la précision dimensionnelle de la pièce.

Par la considération de toutes ces erreurs répertoriées, on comprend la complexité de les impliquer dans une procédure d'amélioration de la précision d'usinage. Les principales erreurs étudiées dans la littérature sont : les erreurs géométrique, cinématique, thermique, et celles causées par l'effort de coupe [2].

1.1.2 Erreur volumétrique et cinématique

L'erreur volumétrique d'une machine-outil se définit comme l'erreur de mouvement relatif entre l'outil et la pièce [3]. Une cause importante d'erreur volumétrique provient du mouvement de chaque axe de la machine qui peut être décrit par six degrés de liberté: trois translations et trois rotations, alors qu'idéalement un seul degré de liberté est présent suivant l'axe du mouvement souhaité linéaire ou de rotation.

Selon la norme ISO 230-1 [4], les six erreurs d'une articulation prismatique suivant l'axe Y illustrées à la Figure 1-1sont :

- a) yty : erreur de positionnement selon l'axe de mouvement y (écart d'échelle);
- b) ytx : erreur de positionnement selon l'axe x (erreur de rectitude);
- c) ytz : erreur de positionnement selon l'axe z (erreur de rectitude);
- d) yry : erreur de rotation suivant l'axe du mouvement (roulis);
- e) yrz : erreur de rotation suivant l'axe z (lacet);
- f) yrx : erreur de rotation suivant l'axe x (tangage).

Figure 1-1 : Six composants de l'erreur de mouvement d'une articulation prismatique de machine [4].

Pour une machine multiaxes; les écarts géométriques de membrure [5] s'ajoutent aux erreurs de chaque axe. Par exemple, l'effet d'une perpendicularité imparfaite entre deux axes illustrés à la Figure 1-2, qui est invariant, mais qui est plus grave que celle d'un écart d'échelle car il se multiple par le bras de levier qui s'appelle 'distance d'ABBE'.

Figure 1-2 : Défaut de perpendicularité entre deux axes et son effet sur la pose d'outil.

D'autres erreurs sont causées par le mouvement des différents éléments de la machine comme les pics et les jeux d'inversion 'backlash'. La Figure 1-3 illustre quatre exemples de défaut pouvant être détectés lors d'un test circulaire (utilisant la barre à billes).

Figure 1-3: Illustration de quelques défauts détectés par un test circulaire utilisant la barre à bille; a) pics d'inversion, b) jeu d'inversion 'backlash', c) écart d'échelle, d) perpendicularité.

1.1.3 Modélisation de l'erreur géométrique et cinématique

Selon la topologie de la machine-outil, chaque mouvement élémentaire d'un axe est accompagné de six composantes d'erreur. Pour une machine-outil 3-axes, on compte donc 18 erreurs de mouvements. À cela s'ajoute 3 composantes résultant des défauts de perpendicularité entre ces axes pour un total de 21 paramètres [6]. Généralement, les matrices de transformation homogènes (MTH) [7, 8] sont utilisées sous l'hypothèse de la cinématique des corps rigides pour modéliser la propagation de ces erreurs durant le mouvement relatif des composants de la machine. L'erreur résultante au bout de l'outil par rapport à la pièce est alors exprimée en fonction de ces paramètres d'erreur. Pour une machine 5-axes, 8 paramètres sont identifiés [9] : 6 paramètres pour chaque axe, 3 paramètres de défaut d'orthogonalité et 5 paramètres associés aux axes de rotation.

1.1.4 Mesure de l'erreur géométrique et cinématique

L'objectif de la modélisation de ces erreurs, est l'identification des paramètres pour une éventuelle correction qui passe par la mesure de l'erreur résultante au bout de l'outil. Les méthodes utilisées pour la mesure d'erreur peuvent être classées en deux catégories [6]:

Figure 1-4 : Mesure directe par interféromètre laser [10]

La première est la mesure directe d'erreur : cette méthode consiste à mesurer directement par un instrument comme l'interféromètre laser (Figure 1-4), ou la barre à bille. Ses indications sont comparées avec la trajectoire commandée pour évaluer les erreurs au bout de l'outil.

La deuxième est la mesure d'un artefact ou d'une pièce de référence : un palpeur est monté à la broche remplaçant l'outil, une pièce ou un artefact telle qu'une plaque à billes illustrée à la Figure 1-5, cet artefact est pré-étalonné sur une machine à mesurer tridimensionnelle (MMT) [11]. La comparaison des mesures par palpage sur machine-outil des 36 sphères avec leurs coordonnées prédéfinies permet d'étudier les erreurs de la machine-outil. La figure illustre l'utilisation de trois billes pour établir un système de référence [11].

Figure 1-5: Plaque à billes.

Erreur thermique

La variation de la température des éléments de la machine-outil provoque des déformations qui affectent la précision de positionnement de l'outil par rapport à la pièce. Plusieurs sources de chaleur peuvent être citées [12]:

- a) roulements,
- b) huile hydraulique,
- c) pompes et moteurs,
- d) glissières,
- e) action de coupe et de copeaux,
- f) autres sources de chaleur (environnement extérieur).

Les erreurs thermiques peuvent être divisées en deux catégories. La première inclut les erreurs qui varient en fonction de la température mais pas en fonction des coordonnées absolues. La deuxième inclut les erreurs qui changent aussi avec les coordonnées machine. La théorie thermo-élastique des structures est souvent utilisée [13] pour modéliser l'effet du comportement thermique de la structure de la machine sur sa précision. Généralement, l'erreur thermique se base sur des modèles empiriques et s'appuie sur la collecte des données sous des conditions spécifiques. Ma [14] a proposé une analyse modale utilisant la théorie thermo-élastique et l'analyse par éléments finis. Les chercheurs accordent beaucoup d'importance à la collecte des données (température), au choix de l'emplacement des capteurs et leur nombre. Plusieurs méthodes sont utilisées pour la prédiction de l'erreur thermique. Certains auteurs introduisent les erreurs thermiques avec les erreurs géométriques et cinématiques dans le même modèle. Chen et

al. [15] proposent un modèle avec 32 paramètres d'erreur au lieu de 21 pour une machine3-axes incluant 11 paramètres supplémentaires pour représenter l'erreur thermique.

1.2 Compensation d'erreur

La compensation est la procédure d'élimination d'erreur systématique dans le but d'améliorer la précision de la pièce usinée. Ramesh [1] résume et classifie les différents types d'erreurs ainsi que les méthodologies d'identification et de compensation. Selon cette étude, les principaux types d'erreur sont les erreurs géométrique, thermique et l'erreur causée par l'effort de coupe. L'élimination des erreurs est classée en deux catégories : la première est l'évitement d'erreur; soit par l'amélioration de la qualité des machines-outils ou par la conception du procédé. La deuxième vient compléter la première et s'appelle la *compensation* d'erreurs; elle essaie d'annuler l'effet de l'erreur. Cette catégorie d'élimination d'erreur concerne la programmation de la machine-outil, où l'erreur étant prévisible et une correction est apportée au mouvement des différents éléments de la machine pour anticiper cette erreur.

Durant le procédé d'usinage, la position désirée x_d de l'outil n'est pas atteinte avec précision, il en résulte une déviation (erreur) $e(x_d)$. Cette déviation doit être prédite par un modèle d'erreur et ensuite utilisée comme entrée pour un autre modèle pour calculer la position à commander, x_c pour atteindre cette position désirée. Chen et al. [15] propose un schéma récursif de compensation. L'idée de cette procédure est que la position actuelle x_a de l'outil s'exprime en fonction de x_d et l'erreur $e(x_d)$ tel que :

 $x_a = x_d + e(x_d)$

Selon Chen et al., le choix de la position commandée $x_c = x_d - e(x_d)$ pour atteindre x_d est insuffisant parce que la position actuelle devient :

$$x_a = x_c + e(x_c) = x_d - e(x_d) + e(x_d - e(x_d))$$

Cette approche n'est pas populaire car pour l'erreur géométrique et pour les petits écarts de positionnement $e(x_d - e(x_d)) \approx e(x_d)$, le vecteur de compensation \vec{c} peut être calculé tout simplement à partir du vecteur d'erreur \vec{e} comme suit :

$$\vec{c} = -\vec{e}$$
 [16]

Généralement, la compensation se calcule pour chaque mouvement (incrément) de l'outil. Si la trajectoire est composée d'un grand nombre d'incréments linéaires et si les modèles de calcul sont complexes et accompagnés d'erreurs de calcul, ceci peut nuire à la compensation. Lei et Sung [16] propose une approche pour compenser toute la trajectoire d'outil en une seule étape de calcul. La trajectoire commandée est représentée par le modèle mathématique 'Non Uniform Rationnel Base Spline' (NURBS), ce qui a permis de contrôler la trajectoire composée d'un grand nombre d'incréments linéaires par quelques points de contrôle (pôles). La Figure 1-6 montre le concept de la méthode de Lei et Sung.

La trajectoire commandée C(u) est contrôlée par les points P_n . Pour l'erreur géométrique, chaque point de C(u) doit être injecté dans le modèle d'erreur pour calculer l'erreur e(u) correspondante. Ensuite, la trajectoire déviée $C_e(u)$ est l'ensemble de ces points : $C_e(u) = C(u) + e(u)$

Figure 1-6 : Concept de la méthode de compensation de l'erreur géométrique de Lei et Sung.

Selon Lei et Sung, la trajectoire déviée $C_e(u)$ peut être approximée (recherche des points de contrôle) par une NURBS utilisant les mêmes paramètres¹ de la trajectoire commandée (fonctions B-Spline et vecteur nodale). Mais Lei et Sung injectent les points de contrôle P_n de C(u) dans le modèle d'erreur pour obtenir des déviations ΔP_n , ensuite ils construisent une courbe $C'_e(u)$ avec les mêmes paramètres de C(u), mais contrôlée

¹ Voir annexe pour plus de détail sur les courbes NURBS.

par les points $P_n + \Delta P_n$. La courbe $C'_e(u)$ n'est pas forcément $C_e(u)$, mais c'est une approximation de $C'_e(u)$. La précision de cette approximation dépend d'un côté du nombre de points de contrôle et de l'autre côté du modèle géométrique d'erreur.

Si par exemple l'erreur dépend linéairement de la position, c'est-à-dire e(u) = a + b C(u), cette approximation est exacte.

Lo et Hsiao [17] proposent une procédure de compensation qui peut surmonter les difficultés rencontrées avec les autres méthodes où les modèles et les algorithmes sont complexes et lourds. Cette méthode est basée sur l'inspection de la pièce finie sur une machine à mesurer tridimensionnelle (MMT). La pièce est usinée en utilisant la trajectoire nominale, ensuite la pièce est inspectée sur MMT pour évaluer la trajectoire déviée. La pièce suivante est usinée suivant une trajectoire calculée par le décalage symétrique de la trajectoire déviée par rapport à la trajectoire nominale. Ce processus se répète jusqu'à l'obtention d'une précision acceptable. Cette méthode s'applique efficacement dans le cas de la production en série, le démontage de la pièce de la machine-outil, le transport, l'inspection sur MMT dans des conditions différentes à celles d'usinage et la perte des références pièce compliquent l'identification de l'erreur réelle d'usinage.

Cho et al. [18] proposent une méthode de compensation d'erreur d'usinage utilisant une base de données d'inspection sur machine-outil de surface usinée. Ils caractérisent d'abord les erreurs géométriques de la machine-outil ainsi que l'erreur de mesure sur machine-outil; ces erreurs ne dépendent pas du processus d'usinage et doivent être compensées séparément. L'erreur d'usinage est caractérisée par deux paramètres : L'intervalle de variation de l'erreur W_{err} et une cote D_{err} localisant cet intervalle d'erreur par rapport à la référence. La surface à usiner est caractérisée par deux paramètres : l'intervalle de tolérance W_{tol} et une cote D_{tol} définissant la surface à usiner par rapport à une référence.

La Figure 1-7 montre ces quatre paramètres définissant la surface à usiner.

(a) Characterization of error zone

(b) Characterization of tolerance criteria

Figure 1-7 : Quatre paramètres caractéristiques de l'erreur et de la tolérance [18].

Cho et al. expriment les deux paramètres W_{err} et D_{err} en fonction de la profondeur radiale de coupe R_D par deux relations empiriques, tout en gardant les autres paramètres de coupe inchangés (vitesse d'avance et profondeur axiale de coupe).

Figure 1-8 : Base de données de la méthode de Cho et al. (a) usinage avec profondeur radiale de coupe variable, (b, c) enregistrement des paramètres vs la profondeur radiale de coupe [18].

Pour établir ces relations, ils varient la profondeur radiale de coupe et enregistrent W_{err} et D_{err} . La Figure 1-8 montre la pièce utilisée pour construire cette base de données sur un trajet d'outil de 65 mm et R_{D} varient de 0.0 à 2.5mm.

D'après ces résultats, il est possible d'exprimer les deux paramètres W_{err} et D_{err} en fonction de R_D par des relations empiriques (polynomiale). La méthodologie de compensation de Cho et al. est basée sur ces relations; pour une profondeur radiale de coupe donnée, ils prédisent les deux paramètres W_{err} et D_{err} . Une correction de la trajectoire d'outil est nécessaire si ces paramètres rendent la pièce hors tolérance ; cette correction s'effectue hors ligne en cherchant la position corrigée optimale par un calcul itératif :

- a) $P_c = P_n$ (la première position corrigée est la position nominale)
- b) Pour *i*=1 à N (nombre maximal d'itérations)

Calculer la profondeur radiale de coupe R_{D} qui correspond à P_{c} .

Prédire les deux paramètres W_{err} et D_{err} correspondant à R_D (à partir de la base de données).

Si
$$W_{tol} - W_{err} \approx 0$$
 ou $i = N$ fin

Sinon actualise $P_c = P_c + W_{tol} - W_{err}$ et aller à b)

Les résultats de Cho et al. montrent que l'erreur D_{err} augmente avec l'augmentation de la profondeur radiale de coupe, cette relation peut être affectée si la pièce présente un changement significatif de rigidité le long de la trajectoire d'outil. Cho et al. mettent en hypothèses, pour que cette méthode soit efficace, que l'erreur causée par le fléchissement d'outil et sa mauvaise géométrie ('runout') sont les erreurs dominantes. Généralement, la compensation concerne la phase de finition. Par conséquent la profondeur de coupe peut

être sélectionnée de manière à minimiser le fléchissement de l'outil. Dans ce cas l'erreur causée par la faible rigidité de la pièce peut être dominante.

1.3 Erreur causée par l'effort de coupe

Les méthodes et modèles développés pour l'identification des erreurs paramétriques des machines[9], peuvent êtres utilisées pour prédire les erreurs volumétriques [19]. Par contre, généralement, les essais de mesure sont effectués à vide, c'est-à-dire que les erreurs sont identifiées hors usinage. Par exemple, le fraisage hélicoïdal est un procédé d'usinage qui nécessite un effort de coupe.

Figure 1-9 : Efforts de coupe prédits et mesurés [20].

Vue la géométrie de l'outil, cet effort est variable tel qu'illustré à la Figure 1-9, causant des déformations élastiques de la pièce, de l'outil et de la machine, et causant aussi un comportement vibratoire par l'excitation périodique de la structure (machine-outil-pièce). L'effort de coupe est à l'origine de deux types d'erreurs : l'erreur dynamique et l'erreur statique.

Dans cette section, nous discutons des travaux effectués pour surmonter ces problèmes.

1.3.1 Erreur dynamique

L'erreur dynamique est causée principalement par les vibrations résultant de la variation de l'effort de coupe. Les vibrations causées par l'effort de coupe dépendent des paramètres de coupe (profondeur de passe et vitesse de rotation de la broche).

Figure 1-10 : Modélisation du comportement dynamique de l'outil-pièce [21].

Altintas et Budak [21] proposent une méthodologie pour éliminer ce type d'erreurs.

La Figure 1-10 montre la modélisation 2D du comportement dynamique de l'outil. Cette procédure est basée sur l'établissement des abaques pour chaque couple outil-pièce. Ces
abaques consistent en des lobes de stabilité, montré à la Figure 1-11, et définissent la profondeur de coupe (passe) maximale permise en fonction de la vitesse de rotation de la broche pour laquelle le système outil-pièce reste stable.

Figure 1-11 : Lobes de stabilité.

La procédure expérimentale pour définir ces lobes de stabilité est basée sur l'analyse modale et l'identification de la fonction de transfert en utilisant un instrument source d'une force excitant la structure. Les vibrations résultant sont mesurées par un accéléromètre fixé sur la broche et analysées pour calculer la profondeur de passe critique.

1.3.2 Erreur statique

Le fraisage hélicoïdal est une opération de base pour l'usinage des pièces mécaniques. Ce procédé est accompagné par des efforts causant des déformations élastiques pour l'ensemble (outil, pièce et machine). La déviation résultante affecte la précision des surfaces usinées. Selon sa rigidité, chaque élément participe à cette déviation. La

prédiction avec précision en tenant compte de la faible rigidité de ces éléments est une opération lourde ou difficile. Pour pouvoir modéliser ces erreurs, les chercheurs les traitent généralement séparément.

Fléchissement de l'outil

En fraisage périphérique, l'outil fléchit sous l'effort de coupe, ce qui affecte la précision de la pièce finie. Pour surmonter ce problème, plusieurs approches d'évaluation et de compensation ont été étudiées [22].

Le bon choix des conditions de coupe, à savoir la vitesse d'avance et la profondeur radiale et axiale de coupe peut réduire cette erreur [23, 24]. Ces approches sont d'une efficacité limitée et peuvent affecter le choix des conditions de coupe optimisant la production. La modification de la trajectoire d'outil permet d'améliorer la précision tout en gardant une production optimale. Cette procédure nécessite une bonne modélisation de l'effort de coupe et une description de la géométrie de l'outil.

Le modèle de calcul de la déformation de l'outil est basé sur le calcul du fléchissement d'une poutre cylindrique encastrée soumise à un effort de flexion. La variation de la déformation avec l'avance est généralement négligée comme dans l'équation 1.1 du modèle proposé par Kline et al. [25].

$$d_{y}(z) = \frac{F_{y}}{6EI_{y}} \left[(CFY - Z)^{3} - (L - Z)^{3} - 3(L - Z)^{2}(L - CFY) \right]$$
(1.1)

 $d_{v}(z)$: déformation correspondant à la position Z sur l'axe de l'outil;

 F_{v} : effort dans la direction radiale de l'outil;

CFY : localise le point d'application de la force;

L, I_v : longueur et moment d'inertie de l'outil respectivement.

Kline et al. [25] traitent les géométries complexes de l'outil comme une somme d'outils élémentaires, tel qu'illustré à la Figure 1-12. Ainsi, une fraise cylindrique avec un angle d'hélice non nul se décompose suivant son axe comme un empilement d'outils élémentaires.

Figure 1-12 : Discrétisation de l'outil en disques pour calculer l'effort total [26].

Le but de cette subdivision est de considérer l'angle d'hélice nul pour chaque arête élémentaire sur le disque pour pouvoir appliquer les lois de coupe simplifiées du fraisage orthogonal. L'effort est la somme de tous les efforts élémentaires appliqués aux disques. L'algorithme d'Altintas [27] permet de tracer les composantes d'effort en fonction de l'angle de rotation de l'outil : pour chaque position angulaire de l'outil, les trois composantes de l'effort sont calculées par la somme des efforts élémentaires appliquées aux disques. L'effort élémentaire appliqué à un disque est la somme des efforts appliqués aux arêtes coupantes en contact avec la matière.

Fléchissement de la pièce sous l'effort de coupe

Si la pièce présente une faible rigidité, elle fléchit sous l'effort de coupe et ce fléchissement empêche l'outil d'enlever la quantité de matière prévue, produisant ainsi une imprécision sur la surface finie. Des pièces mécaniques de faible rigidité sont utilisées dans l'industrie aérospatiale et nécessitent malgré tout une grande précision dimensionnelle. La prédiction et la compensation de l'erreur résultant de la flexibilité de la pièce constituent l'objectif de plusieurs recherches courantes. La majorité de ces études sont basées sur la prédiction de l'effort de coupe en tenant compte du fléchissement de la pièce ainsi que la prédiction de la déformation de la pièce sous l'effort de coupe. Ces approche sont complexes et exigent des modèles bien étalonnés.

Ratchev et al. [28] proposent une procédure de compensation d'erreurs pour les pièces de faible rigidité basée sur :

- la prédiction de l'effort de coupe par un modèle dit 'flexible' [29];
- la prédiction de la déformation de la pièce utilisant les outils de calcul par éléments finis et l'effort prédit;
- la correction de la trajectoire pour compenser l'erreur prédite résultant du fléchissement de la pièce.

Ces trois éléments sont couplés [28], la correction de la trajectoire affecte la prédiction de l'effort et par conséquent affecte la prédiction de la déformation.

La compensation de l'erreur causée par le fléchissement d'une barre cylindrique en tournage est étudiée par Kops[30]. La profondeur de coupe programmée dépend linéairement du fléchissement. Le calcul du fléchissement de la barre est basé sur des travaux antérieurs. Il considère que la profondeur de coupe actuelle est la différence entre la profondeur programmée et le fléchissement. La relation linéaire entre la profondeur programmée et le fléchissement conduit au choix du diamètre à programmer, pour chaque incrément le long de la barre, pour compenser le fléchissement. Kops exprime le besoin d'une évaluation séparée de l'usure de l'outil qui n'est pas considérée dans son étude.

1.4 Compensation d'erreur détectée par processus intermittent d'inspection

La technique de compensation d'erreur d'usinage détectée par processus intermittent d'inspection est une méthode de compensation différente de celles déjà citées. Cette technique est basée sur l'utilisation de la machine-outil à la fois comme une machine d'usinage et d'inspection. La surface usinée en phase de semi-finition est inspectée sur la machine-outil par un palpeur remplaçant l'outil de coupe. Le terme processusintermittent indique que l'inspection s'effectue durant un intervalle entre le procédé de semi-finition et de finition. Les données acquises par cette inspection sont analysées afin d'identifier les erreurs d'usinage. En phase de finition, la trajectoire nominale d'outil est légèrement modifiée par l'ajout d'une correction calculée à partir des erreurs identifiées. La pièce finie est inspectée pour vérifier l'efficacité de la compensation et pour vérifier aussi la conformité de la pièce. Cette technique de compensation vise principalement à corriger les erreurs résultant de la géométrie et de l'usure de l'outil de coupe et les erreurs causées par la déformation de l'outil et/ou de la pièce sous l'effort de coupe [31].

Pfiefer [32] a étudié le processus intermittent d'inspection. Selon [33], l'étude de Pfiefer est une première évaluation de l'état de la technologie du processus intermittent d'inspection. Pfiefer, dès 1980, conclut qu'il s'agit d'un domaine important et nécessite plus de travaux de recherche.

Les deux principales étapes de la compensation par le processus intermittent d'inspection sont :

- a) l'inspection sur machine-outil de la surface semi-finie.
- b) l'identification des erreurs d'usinage par l'analyse des résultats d'inspection et la correction de la trajectoire d'outil pour la finition.

1.4.1 Inspection de surface sur machine-outil

Traditionnellement, l'inspection de pièce finie s'effectue hors-ligne sur MMT dans un environnement contrôlé. Cependant la machine-outil peut réaliser certain opérations d'inspection par un simple changement automatique de l'outil de coupe par un palpeur; le processus d'usinage et d'inspection s'effectue sur la même machine.

La mesure (l'inspection) sur machine-outil (MMO) peut réduire considérablement le coût d'inspection par la réduction du temps de cycle de production [33].

Compte tenu de la diversité des sources d'erreurs affectant la précision de la pièce citées précédemment, l'inspection sur machine-outil peut détecter seulement les erreurs

produites par l'usinage et ne peut pas détecter les erreurs propres à la machine car l'outil de coupe et le palpeur suivent le même trajet erroné [31].

Pour que l'inspection de surface soit précise, les erreurs volumétriques détectables hors usinage doivent êtres évaluées et compensées avant toute opération d'usinage ou d'inspection des pièces sur machine-outil.

Une autre source d'erreur affectant les mesures est l'instrument (palpeur) car les données d'inspection se trouvent additionnées d'une erreur de mesure qui doit être aussi identifiée et séparée des données d'inspection. Si les erreurs géométriques de la machine sont compensées et les erreurs de mesure sont identifiées et séparées des données, alors les données d'inspection peut êtres comparées avec les données de la surface nominale et donc l'imprécision de la surface usinée peut être évaluée.

1.4.2 Erreur de mesure sur machine-outil

La comparaison des données d'inspection sur machine-outil avec les données prévues nominalement ne reflète pas seulement les défauts résultant de l'usinage, mais se trouve accompagnée par une erreur de mesure qui fait l'objet de plusieurs recherche [34].

Les principaux facteurs de l'erreur de palpage sont [34] :

- 1. l'environnement (température);
- la structure du palpeur : rigidité et longueur du stylet et le rayon de la touche du stylet;
- le mouvement de palpage : vitesse et direction d'approche et l'impact de l'effort de contact;
- 4. la pièce à palper incluant la forme et le matériau;

5. le nombre et la répartition des points de mesures.

Par exemple, si la vitesse d'approche est grande, il résulte un grand effort transmis et donc peut produire une déflexion importante du stylet [34]. Par conséquent, la précision de l'acquisition de la position peut être affectée.

1.4.3 Identification et compensation des erreurs détectées par la MMO

Dans le rapport de Bandy et al. [35], on trouve une méthodologie de compensation des erreurs d'usinage détectées par le processus intermittent d'inspection; selon ce rapport, seulement les erreurs causées par la géométrie et l'usure de l'outil et le fléchissement de l'outil et/ou de la pièce peuvent être détectées.

Figure 1-13 : Méthode du miroir adoptée par Bandy et al.

Les mesures sont approximées par une courbe par la méthode de minimisation au sens des moindres carrés; ceci permet de définir pour chaque position nominale un vecteur d'erreur à partir duquel le vecteur de compensation s'obtient par la méthode dite 'de miroir'. La Figure 1-13 illustre un profil nominal et un profil mesuré. À toute position nominale correspond une position déviée obtenue sur le profil mesuré suivant la normale au profil nominal. Le vecteur de compensation pour cette position nominale est le vecteur d'erreur, mais de signe opposé.

1.5 Conclusion et objectifs

1.5.1 Conclusion

D'après cette étude bibliographique, la précision dépend d'une multitude de sources d'erreurs. Les erreurs systématiques de la machine-outil peuvent être évaluées lorsque la machine opère à vide. Durant le processus d'usinage, d'autres erreurs affectent la précision telles que les erreurs dues aux efforts statiques et dynamiques. En plus des vibrations. Les principales sources d'erreur d'usinage sont [31] :

- les dimensions et l'usure de l'outil;
- le fléchissement de l'outil;
- le fléchissement de la pièce.

La compensation par le processus intermittent d'inspection est une méthode de compensation des erreurs d'usinage. L'attrait de cette méthode est que la pièce soit usinée et inspectée directement sur la machine-outil sans démontage. L'amélioration de la précision est effectuée pour la pièce inspectée elle-même, contrairement aux méthodes

qui inspectent la pièce sur CMM et utilisent les données de cette inspection dans la correction des erreurs pour la prochaine pièce [17].

Le fléchissement causant une erreur d'usinage est dû à l'effort appliqué entre l'outil et la pièce. La profondeur de coupe est un paramètre important qui affecte la précision d'usinage, l'augmentation de la profondeur augmente l'effort. Par conséquent, le fléchissement de l'outil et de la pièce sous cet effort augmente. La profondeur de coupe est un élément important nécessitant une considération dans la prédiction de l'erreur d'usinage.

1.5.2 Objectif

L'objectif de ce travail est d'améliorer la précision des pièces usinées sur machine-outil par le processus intermittent d'inspection en considérant les aspects suivants.

La compensation par la méthode de miroir conduit généralement à une augmentation de la profondeur de coupe pour pouvoir couper la profondeur nominale additionnée de l'erreur détectée par l'inspection du profil semi-fini. Par conséquent, l'effort entre l'outil et la pièce augmente, ce qui conduit en finition à un fléchissement plus important par rapport au fléchissement durant la semi-finition. Il résulte même après compensation une erreur résiduelle causée par cette augmentation de la profondeur de coupe.

L'enlèvement de la matière par la coupe affaiblit la pièce et peut provoquer un fléchissement plus important durant la coupe d'une passe par rapport à la passe précédente dans le cas de pièces de faible épaisseur.

La contribution du mémoire vise à :

- introduire la profondeur de coupe dans le calcul de la compensation de l'erreur d'usinage pour combler les lacunes de la méthode de miroir;
- introduire la variation de la rigidité de la pièce causée par l'enlèvement de la matière dans le calcul de la compensation.

2. MÉTHODE DE COMPENSATION BASÉE SUR LE PALPAGE EN USINAGE INTERMITTENT

Dans ce chapitre, la méthode de miroir puis l'approche proposée sont décrites. Trois stratégies de compensation de l'erreur d'usinage sont développées dans ce chapitre.

- a) La première est la compensation avec double inspection. Le profil semi-fini est usiné par deux passes successives. L'inspection est effectuée avant et après la deuxième passe. En finition, les deux données d'inspection sont utilisées pour modifier la trajectoire.
- b) La deuxième découle de la première méthode, mais sans la première inspection pour diminuer le temps du non-usinage.
- c) La troisième est une amélioration de la première méthode; elle tient compte de la variation de la rigidité de la pièce causée par l'enlèvement de la matière en finition par rapport à la semi-finition.

La méthode de miroir est utilisée comme base fin de comparaison pour ces nouvelles stratégies. La compensation de l'erreur d'usinage par le processus intermittent d'inspection utilise la machine-outil pour usiner et pour inspecter le profil obtenu. Pour que cette compensation soit efficace, les erreurs systématiques de la machine telles que l'imprécision de positionnement, l'effet de la dilatation thermique et l'erreur de palpage doivent être étudiées séparément ou doivent être négligeables devant l'erreur d'usinage. Le système de mesure sur machine-outil doit être étalonné.

2.1 Principe de la compensation par le processus intermittent d'inspection

La compensation par le processus intermittent d'inspection s'effectue comme l'indique le nom par une alternance entre l'usinage et l'inspection sur la machine-outil tout en gardant la pièce sous le même montage. Elle se divise en deux étapes : la première est l'inspection du profil semi-fini. Pour que la compensation soit efficace, l'erreur détectée en semi-finition doit être répétable. La deuxième est la modification de la trajectoire d'outil en finition. Cette modification est calculée en utilisant l'erreur détectée en semi-finition. La Figure 2-1 illustre l'obtention du profil final par l'enlèvement de la matière en passes multiples pour fin d'inspection entre les passes.

Figure 2-1 : Profil désiré obtenu après plus d'une passe pour fin d'inspection entrepasses.

L'importance de cette méthode de compensation est que l'erreur d'usinage est corrigée pour la même pièce sans démontage.

Dans les sections suivantes, on définie le profil nominal, actuel, l'erreur de montage du palpeur et l'erreur d'usinage.

a) Profil nominal

Le profil nominal est obtenu à partir du profil programmé, c'est-à-dire le code G prêt à être utilisé sur la Machine-outil (MO). Le tableau 2.1 montre un extrait du code G pour un trajet 2D dans le plan (x, y)

Tableau 2-1 : Extrait du code G			
	N63	X9.997	Y16.996
	N64	X9.985	Y17.271
	N65	X9.966	Y17.546
	N66	X9.940	Y17.820
	N67	X9.906	Y18.094
	N68	X9.864	Y18.366
	N69	X9.815	Y18.637
	N70	X9.758	Y18.907

Les coordonnées X et Y montrées au tableau 2.1 tracent la trajectoire du centre d'outil dans un repère pièce défini par la localisation de la pièce dans l'espace de travail de la MO au début des opérations d'usinage. Le profil nominal est complété par l'ajout du rayon d'outil à cette trajectoire.

b) Profil actuel

On définit le profil actuel comme étant le profil inspecté et s'obtient par le traitement des données d'inspection.

L'inspection s'effectue par un palpeur remplaçant l'outil de coupe, les données acquises sont sous forme d'un ensemble de points discrets, la courbe continue approximant ces points est le profil actuel.

c) Erreur de montage outil-palpeur

L'opération d'usinage s'effectue par rotation de l'outil autour de l'axe de rotation de la broche, l'opération d'inspection s'effectue par palpage. L'axe du palpeur ne se trouve pas forcément confondu avec l'axe de rotation de la branche. On peut définir l'erreur de montage $e_{montage}$ comme étant l'excentricité entre l'axe du palpeur et l'axe de rotation de la broche. Cette excentricité apparaît sur les données d'inspection. La Figure 2-2 illustre un cercle parfait de 10 mm de diamètre et le tracé du même cercle (trait continu) avec excentricité cartésienne 2D de (1,1) mm. Le rayon du tracé du cercle excentrique calculé à partir du centre du cercle initial est variable. Cette variation se trouve additionnée de l'erreur d'usinage dans le cas d'un profil réel.

L'erreur de montage est évaluée à partir de l'usinage d'un profil circulaire sur une pièce de géométrie symétrique, l'excentricité du cercle obtenue par rapport au cercle programmé est considérée comme étant l'erreur de montage outil-palpeur. L'excentricité outil-palpeur cause une variation du rayon obtenu par inspection

Figure 2-2 : Illustration de l'erreur de montage.

d) Approximation des points mesurés par le profil actuel

Les points discrets obtenus par palpage sont approximés au sens des moindres carrés par une courbe continue. Dans ce travail, le modèle mathématique NURBS est utilisé pour convertir les profils nominaux et actuels.

La procédure d'approximation et de calcul de la position déviée est détaillée en Annexe.

e) Erreur d'usinage

On définit l'erreur d'usinage $\varepsilon_T(x, y)$ pour une position nominale P(x, y) comme étant la déviation normale du profil actuel par rapport au profil nominal.

Figure 2-3 : Définition de l'erreur d'usinage.

La Figure 2-3 illustre un profil nominal et un profil actuel, obtenu par lissage aux points mesurés. Pour fins de simplification, dans le reste du chapitre, les expressions développées seront exprimées dans le repère local $(P, \vec{n}, \vec{\tau})$. Dans ce cas, on peut ignorer les représentations vectorielles.

2.2 Méthode de miroir

La méthode de miroir est une stratégie de compensation de l'erreur d'usinage. Pour corriger l'erreur ε_T détectée après la passe de semi-finition, la trajectoire en finition est modifiée par l'ajout d'un vecteur de correction de norme ε_T , mais en sens inverse. Cette stratégie est basée sur l'hypothèse suivante :

L'erreur ε_T détectée après la première passe va se reproduire en deuxième passe si l'on maintient les paramètres nominaux de coupe (profondeur radiale et axiale et la vitesse d'avance et de coupe) inchangés. Par conséquent, la correction C_T suivant la direction $(-\vec{n})$ apportée à la trajectoire d'outil en finition s'obtient par la relation suivante :

$$C_{\rm T} = \varepsilon_{\rm T} \tag{2.1}$$

La compensation par la méthode de miroir consiste à anticiper l'erreur en finition par l'inspection du profil semi-fini. L'approximation des données discrètes d'inspection par une courbe continue est nécessaire [31]. Le profil nominal peut être aussi représenté par les mêmes paramètres que le profil mesuré [16]. La Figure 2-4 illustre cette méthode de compensation.

Figure 2-4 : La méthode de miroir

La déviation du profil programmé compensé par rapport au profil désiré en finition correspond à la déviation du profil actuel par rapport au profil désiré en semi-finition. Le profil programmé est une image du profil actuel.

2.3 Méthode proposée : intégration de la profondeur de coupe dans le calcul de la compensation

Dans cette section, la nouvelle stratégie de compensation par le processus intermittent d'inspection proposée est présentée.

La méthode existante (miroir) exige que les paramètres de coupe (vitesse, avance et profondeur) demeurent inchangés pour que l'erreur détectée en semi-finition se répète en finition. Ceci ne peut être respecté simplement a cause de la compensation qui est. La méthode proposée introduit le changement de la profondeur de coupe dans le calcul de la compensation. L'erreur d'usinage ε_{T} est décomposée en deux erreurs :

- la première ε_0 , ne dépend pas de la profondeur de coupe;
- la deuxième ε_R , dépend de la profondeur de coupe.

Figure 2-5 : Erreur causée par l'usure et les défauts de géométrie de l'outil (cercle continu correspond à l'outil usé)

L'erreur ε_0 est associée principalement à l'imprécision sur les dimensions et l'usure de l'outil. La Figure 2-5 illustre le changement de diamètre de l'outil causé par l'usure (usé en cercle plein et programmé en cercle discontinu). La différence entre les profils désiré et obtenu (tracés avec trait plein et discontinu respectivement) est l'erreur ε_0 . Si le couple outil-pièce est rigide, seule l'erreur ε_0 est présente.

Figure 2-6 : Erreur de faible rigidité : (a) cas rigide, (b) fléchissement de l'outil et de la pièce durant l'usinage, (c) erreur résultant du fléchissement.

L'erreur ε_{R} est liée principalement au fléchissement de l'outil et de la pièce. La direction habituelle des forces d'usinage fait en sorte que le manque de rigidité cause éloignement de l'outil par rapport à la surface usinée durant l'usinage. Par conséquent, la profondeur réelle coupée est inférieure à celle programmée.

La Figure 2-6 illustre l'erreur de faible rigidité. Dans le cas où la pièce et l'outil sont infiniment rigides, la profondeur programmée (h) est totalement coupée, le profil désiré coïncide avec le profil programmé. En réalité, la pièce et l'outil fléchissent sous l'effort de coupe. La profondeur programmée (h) n'est pas coupée totalement, et l'on obtient plutôt une profondeur effective (h_{eff}). Après usinage, la matière non coupée à cause du fléchissement devient un défaut d'usinage caractérisé par ε_{R} . Malgré que h soit programmée constante pour toute la trajectoire, h_{eff} peut être variable et dépend du fléchissement de l'outil et de la pièce pour chaque position nominale.

L'erreur d'usinage sera la somme des deux erreurs :

$$\varepsilon_{\rm T} = \varepsilon_{\rm O} + \varepsilon_{\rm R} \tag{2.2}$$

2.3.1 Hypothèses

L'erreur ε_{R} peut être supposée constituée de deux erreurs soit celles causées par le fléchissement de l'outil (ε_{RO}) et de la pièce (ε_{RP}) sous l'effort radial de coupe tel que :

$$\varepsilon_{\rm R} = \varepsilon_{\rm RO} + \varepsilon_{\rm RP} \tag{2.3}$$

a) Fléchissement de l'outil

Les efforts appliqués sur l'outil sont répartis sur les arêtes coupantes en contact avec la pièce. Ils dépendent de la profondeur instantanée de coupe qui pour une fraise hélicoïdale dépendent aussi de l'angle localisant le point considéré [27], ce qui complique la mise en équation compacte reliant la flèche et la force.

Afin de simplifier, on suppose que le fléchissement de l'outil dépend linéairement [25] de l'effort dans la direction normale à la trajectoire tel que :

$$\varepsilon_{\rm RO} = K_{\rm RO} F \tag{2.4}$$

où K_{RO} est le coefficient caractérisant la compliance (le manque de rigidité) de l'outil.

b) Fléchissement de la pièce

L'usinage de pièce de faible rigidité sur machine-outil est difficile à modéliser [36]. Dans ce travail, nous considérons que la déformation de la pièce est linéairement dépendante de l'effort qui est le même que sur l'outil selon la troisième loi d'interaction action-réaction de Newton :

$$\varepsilon_{\rm RP} = K_{\rm RP} F \tag{2.5}$$

où K_{RP} est le coefficient caractérisant la compliance de la pièce.

c) Fléchissement résultant

Après le passage de l'outil, la pièce se décharge de l'effort ayant causé le fléchissement et revient à sa position de 'repos'. Durant ce fléchissement, l'outil ne coupe pas toute la

matière correspondant à la profondeur radiale de coupe commandée. La quantité de matière non coupée à cause du fléchissement correspond à l'erreur de rigidité ε_{R} . L'équation (2.3) devient :

$$\varepsilon_{R} = K_{RO}F + K_{RP}F$$

$$\varepsilon_{R} = (K_{RO} + K_{RP})F$$

$$\varepsilon_{R} = K_{R}F$$
(2.6)

où K_R : coefficient de compliance du couple outil-pièce pour une position donnée de la trajectoire d'outil, reliant l'erreur ϵ_R et l'effort.

d) Relation entre la profondeur radiale de coupe et l'erreur de rigidité

La modélisation du processus d'usinage est complexe et basée sur l'identification expérimentale des constantes caractérisant le couple outil-pièce [27], la variation de la profondeur radiale de coupe cause une variation de l'effort de coupe.

Figure 2-7 : Comparaison d'une loi de coupe exponentielle de type Kienzle et d'une loi affine dérivée [37]

La Figure 2-7 montre le modèle d'une loi de coupe exponentielle (empirique) de Kienzle (effort radial (Fc) vs épaisseur de copeau (h)) et montre un modèle linéaire dérivé au voisinage de h_0 donnée, Fc peut être approché par une relation linéaire de h [37]. Dans ce travail, on suppose que l'effort radial de coupe dépend linéairement de la profondeur de coupe que l'on écrit comme suit :

$$\mathbf{F} = \mathbf{K}_{\mathbf{F}} \mathbf{h}_{\mathbf{eff}} \tag{2.7}$$

où K_F : coefficient regroupant les constantes de coupe (pour le couple outil-pièce) et la vitesse d'avance.

h_{eff} : profondeur réelle de coupe.

En combinant les équations 2.6 et 2.7, l'erreur de rigidité ε_R devient:

$$\varepsilon_{\rm R} = K_{\rm R} K_{\rm F} h_{\rm eff} \tag{2.8}$$

$$= \rho h_{\rm eff} \tag{2.9}$$

où ρ : coefficient caractérisant la compliance du couple outil-pièce pour des paramètres de coupe données.

L'équation (2.9) correspond à une position nominale donnée du profil à usiner tel que :

$$\varepsilon_{R}(x, y) = \rho(x, y) h_{eff}(x, y)$$
(2.10)

où $h_{eff}(x, y)$ est la profondeur radiale de coupe effective (réelle), qui doit être mesurée pour chaque position nominale. elle s'obtient par la pré- et post-inspection du profil semi-fini.

 $\varepsilon_{R}(x, y)$ est l'erreur causée par la faible rigidité associée au fléchissement combiné du couple outil-pièce.

L'équation (2.10) relie l'erreur causée par la faible rigidité $\varepsilon_{R}(x, y)$ et la profondeur radiale de coupe $h_{eff}(x, y)$ par le coefficient $\rho(x, y)$ selon une relation linéaire. À chaque position sur la trajectoire nominale correspond un coefficient $\rho(x, y)$ caractérisant la compliance pour cette position.

2.3.2 Séparation des erreurs

La procédure de compensation développée décompose l'erreur d'usinage en deux composantes ε_{R} et ε_{0} . Ces deux composantes ne sont pas causées par la même source d'erreur. Par conséquent, leurs compensations seront calculées séparément. Le traitement de l'inspection des profils obtenus permet d'obtenir seulement l'erreur ε_{T} , il est donc nécessaire de trouver une technique de séparation des erreurs ε_{R} et ε_{0} pour pouvoir les compenser différemment.

En substituant l'expression de ε_R selon l'équation 2.9 dans l'équation 2.2, nous obtenons :

$$\varepsilon_{\rm T} = \rho \, \mathbf{h}_{\rm eff} + \varepsilon_0 \tag{2.11}$$

Figure 2-8 : La relation linéaire entre $\epsilon_{_T}$ et $h_{_{eff}}$

La relation (2.11) est une équation linéaire reliant h_{eff} et ε_T pour une position nominale donnée (Figure 2-8).

La technique simple pour évaluer l'erreur ε_0 consiste à annuler la profondeur de coupe programmée pour un court trajet inspectable. L'erreur ε_T détectée lorsque la profondeur est programmée nulle est l'erreur ε_0 qui va être la même pour toute la trajectoire.

$$\varepsilon_{\rm T}({\rm h}=0) = \varepsilon_{\rm R} \tag{2.12}$$

Figure 2-9 : Réduction de la profondeur de coupe sur un court trajet.

Par l'inspection du profil usiné, l'erreur ε_{T} est obtenue pour chaque position nominale, donc l'erreur de rigidité ε_{R} sera obtenue par la relation suivante :

$$\varepsilon_{\rm R}(x,y) = \varepsilon_{\rm T}(x,y) - \varepsilon_0 \tag{2.13}$$

où (x, y) localise la position le long de la trajectoire.

L'exemple de la Figure 2-9 illustre cette méthode de séparation des erreurs; la première passe est effectuée avec une profondeur h_{n1} , la deuxième passe est de profondeur h_{n2} ,

mais elle varie à la fin du trajet pour pouvoir évaluer l'erreur lorsque la profondeur de coupe s'annule. La Figure 2-10 illustre un autre exemple de réduction de la profondeur radiale de coupe pour un trajet circulaire en fraisage orbital intérieur. La figure montre la profondeur programmée qui doit être prise en compte dans le calcul.

Figure 2-10 : Profondeur radiale de coupe considérée pour le calcul de la compensation pour un trajet circulaire dans le cas de l'engagement progressif de l'outil.

L'engagement progressif de l'outil pour effectuer une passe en fraisage orbitale intérieur permet de réduire la profondeur programmée à la fin de la trajectoire; l'outil rentre progressivement dans la matière jusqu'à la prise de la totalité de la profondeur.

La technique de séparation des erreurs peut être intégrée dans le processus de compensation par le changement local de la trajectoire programmée et peut être effectuée

durant une des passes de semi-finition. La recherche de ε_0 n'est pas nécessaire pour chaque pièce usinée, elle dépend de l'usure de l'outil durant l'usinage, c'est une actualisation des dimensions de l'outil qui peut être effectuée périodiquement.

La méthode de miroir est appliquée pour compenser cette erreur qui ne dépend pas de la rigidité du couple outil-pièce. La compensation C_0 suivant $(-\vec{n})$ de l'erreur ε_0 mesurée suivant (\vec{n}) s'écrit :

$$C_0 = \varepsilon_0 \tag{2.14}$$

2.3.3 Première méthode : compensation de l'erreur ε_R avec double inspection

La procédure de compensation suivant cette première méthode est illustrée à la Figure 2-11. La pièce est pré-usinée sans démontage et sans inspection. La figure montre trois passes successives h_{n1} , $h_{n2, et}$ h_{nF} séparant les profils programmés A, B, C et D.

Figure 2-11 : Concept général d'inspection et de compensation par la première méthode. (A, B, C et D : les profils programmés)

Ces profils programmés sont obtenus directement du code G. Après la première passe h_{n1} , le profil obtenu (actuel 1) est inspecté et approximé par une courbe NURBS. La différence entre le profil programmés B et le profil actuel 1, obtenu par inspection, est considérée l'erreur d'usinage visée par cette procédure de compensation. S'il y a une différence entre la trajectoire programmée, obtenu a partir du code G et la trajectoire commandée par la combinaison de mouvement des axes de la machine après traitement du code G par le contrôleur, cette différence n'est pas considérée dans ce travail. Alors l'erreur ε_{T1} peut être calculée pour chaque position nominale par le calcul de la position déviée. Après la deuxième passe de profondeur h_{n2} , le profil obtenu (actuel 2) est aussi inspecté et l'erreur ε_{T2} se calcule de la même manière que ε_{T1} .

Après la deuxième inspection, la profondeur effective de coupe $h_{eff}(x, y)$ pour chaque position peut être calculée directement par la différence entre les deux inspections :

$$h_{eff} = Profil actuel 1 - Profil actuel 2$$
 (2.15)

En finition, pour obtenir le profil désiré D, l'erreur détectée avant la passe de finition est additionnée à la profondeur nominale de coupe h_{nF} . Alors, pour chaque position, la profondeur de coupe effective en finition $h_{eff F}$ se calcule tel que:

$$h_{\rm eff \ F}(x, y) = h_{\rm n \ F} + \varepsilon_{\rm T2}(x, y)$$
(2.16)

À cause de la faible rigidité, la profondeur radiale de coupe réelle diffère de celle programmée. Le coefficient de compliance $\rho(x, y)$ caractérisant le fléchissement de l'outil et de la pièce pour chaque position est évalué après la passe de semi-finition à partir de la relation (2.10) :

$$\rho(x, y) = \frac{\varepsilon_{R}(x, y)}{h_{eff}(x, y)}$$
(2.17)

Si l'enlèvement de la matière en finition ne cause pas un changement significatif de la rigidité de la pièce, alors ce coefficient est constant et peut être utilisé pour relier la profondeur effective de coupe en finition $h_{eff_F}(x, y)$ et l'erreur de faible rigidité attendue qui va être annulée par la compensation $C_R(x, y)$ Alors :

$$\rho(x, y) = \frac{C_{R}(x, y)}{h_{eff_{F}}(x, y)}$$
(2.18)

La correction $C_R(x, y)$ s'obtient d'après la relation (2.18)

$$C_{R}(x, y) = \rho(x, y)h_{eff F}(x, y)$$
 (2.19)

En négligeant l'usure de l'outil durant une passe, la procédure de réduction de la profondeur de coupe pour séparer les erreurs peut être appliquée durant la première passe ou la deuxième passe. L'erreur ε_0 est supposée la même.

La compensation de l'erreur ε_{T2} pour chaque position nominale P(*x*, *y*) se calcule comme suit :

$$C_{T}(x, y) = C_{0} + C_{R}(x, y)$$
(2.20)

où C_0 est la compensation de l'erreur ε_0 calculée par la relation (2.14);

 $C_R(x, y)$ est la compensation de l'erreur $\varepsilon_R(x, y)$, calculée par la relation (2.19).

2.3.4 Deuxième méthode : compensation de l'erreur ε_R avec simple inspection

Le temps alloué à une inspection peut nuire à la productivité. Il est intéressant de modifier la première méthode de compensation avec deux inspections en une deuxième méthode utilisant une seule inspection.

Sous l'hypothèse de la négligence de la variation de rigidité, on peut admettre que lorsque la pièce est usinée en effectuant deux passes successives de même profondeur de coupe (h), l'erreur détectée après la deuxième passe va se reproduire si on effectue une autre passe (h).

Dans ce cas, on peut écrire :

$$\varepsilon_{\mathrm{T1}} = \varepsilon_{\mathrm{T2}} = \varepsilon_{\mathrm{T}} \tag{2.21}$$

Tel que précédemment l'erreur ε_0 est mesurée lorsque la profondeur (h) est programmée nulle.

$$\varepsilon_0 = \varepsilon_T (h = 0) \tag{2.22}$$

Sous ces conditions, la profondeur de coupe réelle $h_{eff}(x, y)$ est:

$$\mathbf{h}_{\rm eff}(x, y) = \mathbf{h} + \mathbf{\varepsilon}_{\rm T} - \mathbf{\varepsilon}_{\rm T} = \mathbf{h}$$
(2.23)

La compensation C_R de l'erreur de faible rigidité ε_R devient selon la relation (2.17) :

- - -

$$C_{R}(\boldsymbol{x}, \boldsymbol{y}) = \rho(\boldsymbol{x}, \boldsymbol{y})h_{eff F}(\boldsymbol{x}, \boldsymbol{y})$$

où $\rho(x, y)$ s'obtient à partir de la relation (2.16) tel que :

$$\rho(x, y) = \frac{\varepsilon_{\rm R}(x, y)}{\rm h}$$
(2.24)

et $h_{eff_F}(x, y)$ s'obtient à partir de la relation (2.18).

À partir des relations (2.24) et (2.17), la compensation C_R s'écrit :

Figure 2-12 : Procédure de compensation par la méthode en une inspection

La compensation C_T de l'erreur totale ϵ_T s'obtient à partir des relations (2.20) et (2.25) :

$$C_{T}(x, y) = C_{0} + \frac{h_{eff_{F}}(x, y)}{h_{eff}(x, y)} \varepsilon_{R2}(x, y)$$
(2.26)

La Figure 2-12 illustre la procédure de compensation par la deuxième méthode, les différences entre la première méthode et la deuxième sont :

- le profil obtenu après la première passe n'est pas inspecté pour la deuxième méthode;
- les profondeurs de coupe séparant les profils programmés A, B et C sont égales;
 ceci est nécessaire pour mieux évaluer le coefficient de compliance ρ(x, y) qui
 dépend de la profondeur réelle de coupe non mesurée par cette méthode. Sous
 l'hypothèse de la négligence de la variation de rigidité de la pièce, la profondeur
 réelle de coupe causant l'erreur mesurée après la deuxième passe est supposée
 égale à la profondeur programmée.

Si la profondeur de coupe nominale en finition h_{nF} égale (h), la relation (2.26) se simplifie tel que :

$$C_{T}(x, y) = C_{0} + \frac{h + \varepsilon_{T}(x, y)}{h} \varepsilon_{R}(x, y)$$

$$C_{T}(x, y) = C_{0} + \varepsilon_{R}(x, y) + \frac{\varepsilon_{R}(x, y)}{h} \varepsilon_{T}(x, y)$$

$$C_{T}(x, y) = C_{0} + \varepsilon_{R}(x, y) + \rho(x, y) \varepsilon_{T}(x, y)$$
(2.27)

La différence entre la compensation $C_T(x, y)$ obtenue par la relation (2.27) et la compensation de l'erreur $\varepsilon_T(x, y)$ obtenue par la méthode de miroir est la correction additionnelle suivante :

$$\Delta C(x, y) = \rho(x, y) \varepsilon_{\mathrm{T}}(x, y)$$
(2.28)

 $\Delta C(x, y)$ dépend du coefficient de compliance $\rho(x, y)$. Si le système outil-pièce est rigide, $\rho(x, y)$ devient petit; par conséquent, $\Delta C(x, y)$ devient négligeable.

2.3.5 Étude analytique comparative entre la technique de compensation proposée et la technique de miroir

a) Prédiction de l'erreur résiduelle après la compensation par la méthode de miroir.

La méthode de compensation proposée est basée sur la proportionnalité entre l'erreur de faible rigidité $\varepsilon_{R}(x, y)$ et la profondeur réelle de coupe. Si la compensation est effectuée par la méthode de miroir, on peut estimer l'erreur résiduelle causée par le fléchissement supplémentaire due à l'augmentation de la profondeur de coupe. Reprenant les relations (2.17) et (2.18)

$$\rho(x, y) = \frac{\varepsilon_{\mathrm{R}}(x, y)}{\mathrm{h}_{\mathrm{eff}}(x, y)} = \frac{\mathrm{C}_{\mathrm{R}}(x, y)}{\mathrm{h}_{\mathrm{eff}_{\mathrm{F}}}(x, y)}$$

Pour simplification, les profondeurs nominales de coupe sont prises égales (h) et la deuxième méthode est utilisée pour prédire l'erreur résiduelle, donc $\rho(x, y)$ s'écrit comme suit :

$$\rho(x, y) = \frac{\varepsilon_{R}(x, y)}{h_{eff}(x, y)} = \frac{\varepsilon_{R}(x, y)}{h}$$
(2.29)

Et la correction de l'erreur de rigidité est calculée à partir de la relation suivante :

$$\rho(x, y) = \frac{C_{R}(x, y)}{h_{eff_{F}}(x, y)}$$
(2.30)

Selon la méthode de miroir, la compensation $C_{R}(x, y)$ est choisie égale à $\varepsilon_{R}(x, y)$.

$$C_{R}(x, y) = \varepsilon_{R}(x, y)$$
(2.31)

Selon la nouvelle technique de compensation proposée, il résulte après compensation une erreur résiduelle $\Delta \varepsilon(x, y)$.

Rappelons que $\rho(x, y)$ relie l'erreur de faible rigidité et la profondeur réellement coupée. Alors le coefficient de compliance (relation 2.30) s'exprime plutôt comme suit :

$$\rho(x, y) = \frac{\varepsilon_{\rm R}(x, y) + \Delta\varepsilon(x, y)}{h_{\rm eff \ F}(x, y)}$$
(2.32)

où
$$h_{\text{eff}_{F}}(\boldsymbol{x}, \boldsymbol{y}) = h + \varepsilon_{T}(\boldsymbol{x}, \boldsymbol{y}) - \Delta \varepsilon(\boldsymbol{x}, \boldsymbol{y})$$
 (2.33)

 $\Delta \varepsilon(x, y)$ s'obtient par la combinaison des relations (2.29) à (2.33) tel que :

$$\Delta \varepsilon(x, y) = \frac{\varepsilon_{R}(x, y) \varepsilon_{T}(x, y)}{h + \varepsilon_{R}(x, y)}$$
(2.34)

et en fonction du coefficient de compliance s'écrit :

$$\Delta \varepsilon(x, y) = \frac{\rho(x, y)}{1 + \rho(x, y)} \varepsilon_{\mathrm{T}}(x, y)$$
(2.35)

On peut poser :

$$\mu(x, y) = \frac{\rho(x, y)}{1 + \rho(x, y)}$$
(2.36)

La relation (2.35) devient :

$$\Delta \varepsilon(x, y) = \mu(x, y) \varepsilon_{\mathrm{T}}(x, y)$$
(2.37)
La relation (2.37) prédit l'erreur résiduelle si on effectue la compensation par la méthode de miroir.

b) Recherche de la correction optimale par minimisation de l'erreur résiduelle

La relation (2.37) prédit l'erreur résiduelle lorsque la compensation est prise égale à l'erreur. On peut ajouter cette erreur résiduelle à la correction pour mieux compenser l'erreur, la relation (2.32) devient :

$$\rho(x, y) = \frac{(\varepsilon_{\mathbb{R}}(x, y) + \Delta\varepsilon(x, y)) + \Delta\varepsilon_{1}(x, y)}{h_{\text{eff}}(x, y)}$$
(2.38)

où $\Delta \varepsilon_1(x, y)$ est l'erreur résiduelle lorsque la compensation choisie est :

$$C_{R}(x, y) = \varepsilon_{R}(x, y) + \Delta \varepsilon(x, y)$$

et $h_{eff_{F}}(x, y) = h + \varepsilon_{T}(x, y) - \Delta \varepsilon_{1}(x, y)$ (2.39)

Avec la combinaison des relations (2.29), (2.38) et (2.39) on obtient la relation suivante :

$$\frac{\varepsilon_{\rm R}(x,y)}{\rm h} = \frac{(\varepsilon_{\rm R}(x,y) + \Delta\varepsilon(x,y)) + \Delta\varepsilon_{\rm I}(x,y)}{\rm h} + \varepsilon_{\rm T}(x,y) - \Delta\varepsilon_{\rm I}(x,y)$$
(2.40)

De la relation (2.40), on peut tirer $\Delta \varepsilon_1(x, y)$ tel que :

$$\Delta \varepsilon_{1}(x, y) = \frac{\varepsilon_{R}(x, y) \varepsilon_{T}(x, y) - \Delta \varepsilon(x, y) h}{h + \varepsilon_{R}(x, y)}$$

$$= \frac{\varepsilon_{R}(x, y) \varepsilon_{T}(x, y)}{h + \varepsilon_{R}(x, y)} - \frac{\Delta \varepsilon(x, y) h}{h + \varepsilon_{R}(x, y)}$$

$$= \Delta \varepsilon(x, y) - \frac{h}{h + \varepsilon_{R}(x, y)} \Delta \varepsilon(x, y)$$
(2.41)

$$= \Delta \varepsilon(x, y) (1 - \frac{h}{h + \varepsilon_{R}(x, y)}) = \Delta \varepsilon(x, y) \frac{\varepsilon_{R}(x, y)}{h + \varepsilon_{R}(x, y)}$$

Alors

$$\Delta \varepsilon_{1}(x, y) = \mu(x, y) \Delta \varepsilon(x, y)$$

$$\Delta \varepsilon_{1}(x, y) = \mu^{2}(x, y) \varepsilon_{T}(x, y) \qquad (2.42)$$

Ajoutons cette nouvelle erreur résiduelle à la compensation, la relation (2.40) s'écrit plutôt :

$$\frac{\varepsilon_{\rm R}(x,y)}{\rm h} = \frac{(\varepsilon_{\rm R}(x,y) + \Delta\varepsilon(x,y) + \Delta\varepsilon_{\rm 1}(x,y)) + \Delta\varepsilon_{\rm 2}(x,y)}{\rm h} + \varepsilon_{\rm T}(x,y) - \Delta\varepsilon_{\rm 2}(x,y)$$
(2.43)

où $\Delta \varepsilon_2(x, y)$ est l'erreur résiduelle lorsque la compensation est

$$C_{R}(x, y) = \varepsilon_{R}(x, y) + \Delta\varepsilon(x, y) + \Delta\varepsilon_{1}(x, y)$$

De la même manière $\Delta \varepsilon_2(x, y)$ s'obtient de la relation (2.43) tel que :

$$\Delta \varepsilon_2(x, y) = \mu^3(x, y) \varepsilon_{\mathrm{T}}(x, y)$$
(2.44)

La compensation optimale s'obtient comme suit :

$$C_{R}(x, y) = \varepsilon_{R}(x, y) + \Delta\varepsilon(x, y) + \Delta\varepsilon_{1}(x, y) + \Delta\varepsilon_{2}(x, y) + \dots + \Delta\varepsilon_{n}(x, y)$$

$$C_{R}(x, y) = \varepsilon_{R}(x, y) + \mu(x, y) \varepsilon_{T}(x, y) + \mu^{2}(x, y) \varepsilon_{T}(x, y) + \dots + \mu^{n}(x, y) \varepsilon_{T}(x, y)$$

$$C_{R}(x, y) = \varepsilon_{R}(x, y) + \varepsilon_{T}(x, y) \sum_{i=1}^{\infty} \mu^{i}(x, y)$$

On peut constater d'après la relation (2.36) que $\mu < 1$; par conséquent, la série converge tel que :

$$C_{R}(x, y) = \varepsilon_{R}(x, y) + \varepsilon_{T}(x, y) \frac{\mu(x, y)}{1 - \mu(x, y)}$$

$$C_{R}(x, y) = \varepsilon_{R}(x, y) + \varepsilon_{T}(x, y)\rho(x, y)$$
(2.45)

La relation (2.45) obtenue par un raisonnement récursif minimisant l'erreur résiduelle est la même relation obtenue directement par la relation (2.16).

2.3.6 Troisième méthode : compensation de l'erreur d'usinage avec variation significative de la rigidité de la pièce

La compensation de l'erreur totale par les deux méthodes précédentes (double et simple inspection) peut être insuffisante lorsque la pièce présente un changement significatif de sa rigidité d'une passe à l'autre; l'enlèvement de la matière réduit la rigidité de la pièce qui se déforme plus que prévu. C'est le cas des pièces de faible épaisseur et pour une profondeur de coupe relativement grande. Dans ce cas, la prise en compte de la variation de la rigidité de la pièce dans le calcul de l'estimation de la compensation est pertinente.

Le modèle qu'on propose pour tenir compte de la variation de la rigidité de la pièce est similaire à celui proposé pour la compensation avec deux inspections. Le profil pré-usiné doit être obtenu par l'enlèvement d'une profondeur radiale de coupe (h_n) . h_{n1} et h_{n2} doivent être aussi égales à (h_n) pour pouvoir estimer la variation de la rigidité de la pièce à partir des erreurs ε_{T1} (après la première passe) et ε_{T2} (après la deuxième passe).

À chaque position nominale P correspond un coefficient $\rho(x, y)$. Ce coefficient est estimé après la deuxième passe et caractérise la rigidité avant compensation.

La différence $d\varepsilon(x, y)$ est définie comme suit :

$$d\varepsilon(x, y) = \varepsilon_{T2} - \varepsilon_{T1}$$
(2.46)

Si $d\epsilon(x, y)$ est significatif alors la rigidité de la pièce est changée après la deuxième passe par rapport à la première passe.

Donc, le coefficient $\rho(x, y)$ ne peut pas être utilisé pour relier $h_{eff_F}(x, y)$ et l'erreur de rigidité (fléchissent combiné outil-pièce) attendu en finition. La relation (2.16) néglige la variation de rigidité. Pour tenir compte de cette variation de rigidité, en passe de finition, un autre coefficient $\rho_F(x, y)$ doit être utilisé comme suit :

$$\rho_F(x, y) = \rho(x, y) + \Delta \rho_F(x, y) \tag{2.47}$$

où $\Delta \rho_F(x, y)$ est l'estimation de la variation de $\rho(x, y)$ causée par l'enlèvement de la matière en phase de finition à partir de la variation de rigidité causée par la semi-finition. L'inspection de la pièce avant et après la deuxième passe permet d'évaluer d $\varepsilon(x, y)$.

Figure 2-13 : Estimation de la variation de rigidité en finition à partir de la variation de rigidité en semi-finition.

La variation $\Delta \rho(x, y)$ causée par l'enlèvement de $h_{eff}(x, y)$ est :

$$\Delta \rho(x, y) = \frac{\mathrm{d}\varepsilon(x, y)}{\mathrm{h}_{\mathrm{eff}}(x, y)}$$
(2.48)

La Figure 2-13 illustre l'estimation de $\rho_F(x, y)$ avec deux inspections. N'ayant que deux données, seule l'hypothèse de proportionnalité peut être utilisée pour estimer $\rho_F(x, y)$ causé par l'enlèvement de $h_{eff_F}(x, y)$.

Donc, $\rho_F(x, y)$ s'exprime d'après le graphique comme suit :

$$\Delta \rho_F(x,y) = \Delta \rho(x,y) \frac{\mathbf{h}_{\text{eff}_F}(x,y)}{\mathbf{h}_{\text{eff}}(x,y)}$$
(2.49)

La relation (2.16) devient :

$$C_{R}(x, y) = (\rho(x, y) + \Delta \rho_{F}(x, y))h_{eff_{F}}(x, y)$$
(2.50)

Substituons (2.48) et (2.49) dans (2.50)

$$C_{R}(x,y) = \left[\rho(x,y) + \Delta\rho(x,y) \frac{h_{eff_{F}}(x,y)}{h_{eff}(x,y)}\right] h_{eff_{F}}(x,y)$$

$$= \left[\frac{\varepsilon_{R}(x,y)}{h_{eff}(x,y)} + \frac{d\varepsilon(x,y)}{h_{eff}(x,y)} \frac{h_{eff_{F}}(x,y)}{h_{eff}(x,y)}\right] h_{eff_{F}}(x,y)$$

$$= \frac{h_{eff_{F}}(x,y)}{h_{eff}(x,y)} \varepsilon_{R2}(x,y) + \left[\frac{h_{eff_{F}}(x,y)}{h_{eff}(x,y)}\right]^{2} d\varepsilon(x,y)$$
(2.51)

La compensation de l'erreur totale est la somme des deux compensations C_R et C_0 :

$$C_{T}(x,y) = \varepsilon_{0} + \frac{h_{\text{eff}}(x,y)}{h_{\text{eff}}(x,y)} \varepsilon_{R2}(x,y) + \left[\frac{h_{\text{eff}}(x,y)}{h_{\text{eff}}(x,y)}\right]^{2} d\varepsilon(x,y)$$
(2.52)

Dans la relation 2.52, le premier terme est la compensation de l'erreur ε_0 , le deuxième terme représente la compensation de l'erreur de faible rigidité et le troisième terme correspond à la compensation de la variation de la rigidité causée par l'enlèvement de la matière.

2.3.7 Comparaison, par un exemple numérique simple, entre les compensations calculées par les méthodes discutées dans ce chapitre

Afin de montrer la différence entre les méthodes présentées, le calcul de la compensation est effectué par les différentes méthodes pour des données communes.

Les paramètres numériques proposés dans cet exemple sont :

 $h_{_{n1}}=h_{_{n2}}=h_{_{nF}}=0.500~mm$, $\,\epsilon_{_0}=0.020\,mm$

L'erreur $\varepsilon_{T1}(x)$ et $\varepsilon_{T2}(x)$ sont les erreurs totales simulées pour un trajet linéaire de 100 mm de longueur. Ces données peuvent être associées, par exemple, à une plaque de géométrie bidimensionnelle (2D) montrée à la Figure 2-14-a.

(0)

Figure 2-14 : Exemple numérique; (a) géométrie 2D d'une plaque, (b) erreur simulée

La Figure 2-14-b montre que l'erreur ε_{T1} varie linéairement de 0.020 à 0.100 mm le long de la trajectoire de 100 mm tandis que l'erreur ε_{T2} varie linéairement de 0.020 mm au début de la trajectoire jusqu'à 0.140 mm à la fin de la trajectoire.

Figure 2-15 : Exemple numérique : La compensation de l'erreur (Figure 2-14-a) calculée par les méthodes discutées dans ce chapitre.

La Figure 2-15 montre la compensation de l'erreur de l'exemple numérique.

Pour x=0, l'erreur totale $\varepsilon_{T2}(0) = \varepsilon_{T1}(0) = 0.020 \text{ mm}$. Compte tenu que l'erreur $\varepsilon_0 = 0.020 \text{ mm}$ on en déduit que l'erreur $\varepsilon_{R2}(0) = \varepsilon_{R1}(0) = 0.000 \text{ mm}$. Dans ce cas toutes les méthodes donnent la même compensation.

La différence entre les compensations par la première et la deuxième méthode est causée par l'usage de différentes profondeurs de coupe dans le calcul de la compensation. Pour la première méthode, la profondeur réelle est mesurée, tendis que pour la deuxième méthode, (une seule inspection) la profondeur de coupe programmée est prise dans le calcul de la compensation.

L'écart entre la compensation par la troisième méthode et par les autres méthodes pour une position x donnée, augmente lorsque la différence entre les erreurs $\varepsilon_{T1}(x)$ et $\varepsilon_{T2}(x)$ augmente car cela est attribué a la diminution de rigidité, laquelle est considérée par la troisième méthode.

3. ÉTUDE EXPERIMENTALE

3.1 Protocole expérimental

3.1.1 Équipements utilisés

a) Pièces :

Les tests de validation sont effectués sur deux types de pièce : la première est montrée sur la Figure 3-1 et consiste en une paroi en aluminium de 3 mm d'épaisseur, encastrée sur trois côtés. La longueur de la paroi est 250 mm (incluant l'encastrement). Cette pièce est utilisée pour valider l'approche dans le cas de défaut de forme et non de taille.

Figure 3-1: Première pièce utilisée pour les tests expérimentaux; paroi droite.

La portion usinée près de l'encastrement étant très rigide, elle pourra être considérée comme référence non affectée par les effets du fléchissement. Ainsi la procédure de détermination de l'erreur ε_0 ne sera pas requise.

La deuxième pièce montrée à la Figure 3-2 est utilisée pour valider l'approche dans le cas d'un trajet circulaire. L'opération d'usinage concernée par la procédure d'inspection et de compensation est le fraisage intérieur de la paroi sur une profondeur 10 mm en fraisage orbital. La paroi circulaire est d'épaisseur variable afin de créer des variations de rigidité de la paroi usinée. Cette pièce permet de valider non seulement l'approche de compensation pour l'erreur de forme mais aussi pour l'erreur de taille.

Figure 3-2: Deuxième pièce utilisée pour les tests expérimentaux : paroi circulaire.

b) Machine-outil

Les pièces utilisées sont usinées et inspectées sur le centre d'usinage cinq axes montré à la Figure 3-3 de HURON, modèle KX8 Five, du Laboratoire de Recherche en Fabrication Virtuelle (LRFV) de l'École Polytechnique de Montréal. Le contrôleur de la machine est

le S7-300 de Siemens. Le tableau 3.1 montre quelques caractéristiques de ce centre d'usinage.

Figure 3-3: Centre d'usinage HURON KX 8 Five.

COURSES		TABLE TOURNANTE		DEPLACEMENT DES	
X Chariot sur portique	650 mm	Dimension table	Ø 500 mm	Rapide X-Y-Z	50.000 mm/mn
Y Table mobile	700 mm	Angle de pivotement axe A	-30 / 90 deg	Avance de travail	1-50.000 mm/mn
Z Poupée broche	450 mm	Angle de pivotement axe C	360 deg	Accélération maximale	5 m/s ²

Tableau 3-1 : Quelques caractéristiques de la machine Huron KX8 Five

b) Outil de coupe

Toutes les opérations d'usinage ont été effectuées par le même outil de coupe montré à la Figure 3-4, de marque HANITA Réf. FZ 4AN3 19007 de dimensions montrées au Tableau 3-2.

Figure 3-4: Outil de coupe utilisé.

Parametre	valeur
Longueur totale	5"
Longueur de partie coupante	1"
Diamètre	3/4"
Nombre d'hélices	3

 Paramètre
 Valeur

d) Palpeur

L'inspection des opérations d'usinage sur machine-outil a été effectuée avec le palpeur RENISHAW modèle MP700 montré à la Figure 3-5.

Figure 3-5: Palpeur Renishaw MP700

e) Machine à mesurer tridimensionnelle

La machine à mesurer tridimensionnelle (MMT), montrée a la Figure 3-6, du LRFV est utilisée pour inspecter une bague étalon utilisée pour l'étalonnage de la machine-outil. Les performances de la MMT ne sont pas étudiées dans ce travail.

Figure 3-6: MMT du LRFV de marque LK tool modèle G90C.

Figure 3-7: Bague de référence Ø2.40004".

f) Bague de référence

La bague de référence montrée à la Figure 3-7 de diamètre 2.40004" est utilisée pour étalonner le système de mesure sur machine-outil. L'objectif principal de la mesure de la bague sur machine-outil est l'évaluation du rayon apparent du stylet. De plus cette étape permet de vérifier que l'erreur de mesure n'affecte pas significativement l'inspection du profil usiné.

g) Comparateur

Le comparateur montré à la Figure 3-8 est utilisé pour mesurer le défaut de forme pour le trajet linéaire de la première pièce.

Figure 3-8: Comparateur utilisé pour vérifier le défaut de forme linéaire.

Le comparateur est un instrument approprié pour l'inspection des défauts de forme linéaire. L'objectif de l'inspection par comparateur d'un profil linéaire est de comparer le défaut détecté par comparateur avec le même défaut détecté par la mesure sur machine-outil afin de confirmer que l'inspection sur machine-outil peut détecter le défaut de forme sans démontage de la pièce.

3.1.2 Procédure expérimentale

Le mode de fraisage en avalant est adopté pour toutes les opérations d'usinage.

Profil linéaire :

La pièce montrée à la Figure 3-1 est utilisée pour de multiples tests. Après usinage d'un profil sans compensation, celui-ci est inspecté par et sur la machine-outil. Le défaut de forme est obtenu par le traitement des données d'inspection. La pièce est démontée et transférée pour inspection par comparateur. Le défaut de forme détecté par machine-outil est comparé avec celui obtenu par comparateur. Le résultat de cette comparaison vise à vérifier que le défaut de forme linéaire peut être détecté avec précision directement par l'inspection sur machine-outil. Si c'est le cas, on peut appliquer la procédure de compensation de l'erreur de forme utilisant l'inspection sur machine-outil sans démontage de la pièce. Le système de mesure n'est pas étalonné dans ce cas de compensation de l'erreur de forme linéaire car comme illustré à la Figure 3-9, l'erreur de forme pour une position linéaire donnée est le positionnement relatif du point acquit par le système de mesure par rapport aux points acquis à l'encastrement pour lequel la déflection du système est supposée négligeable.

Points acquis
 Encastrement

Figure 3-9 : Erreur de forme à partir des données d'inspection

Profil circulaire :

L'inspection du profil circulaire nécessite l'étalonnage du système de mesure sur machine-outil pour pouvoir obtenir les dimensions du profil à partir des données d'inspection. La bague de référence de 60.961 mm de diamètre est mesurée approximativement dans l'espace de travail de la machine-outil (usinage et inspection), cette dimension est proche du diamètre du profil circulaire à usiner et inspecter de 70 mm de diamètre. Le rayon apparent du palpeur est la différence entre le rayon obtenu à partir de l'inspection et le rayon inscrit sur la bague.

La pièce utilisée pour le test circulaire est choisie de géométrie 2D symétrique. Ainsi l'excentricité du cercle obtenu par le fraisage orbital par rapport au cercle programmé est attribuée à l'erreur de montage outil-palpeur.

La Figure 3-10 montre l'ordre des opérations d'usinage, d'inspection durant la semifinition et de correction de trajectoire, d'usinage et d'inspection de la finition. Les trajectoires nominales TN1, TN2 et TN3 sont obtenues directement du code G. La trajectoire corrigée TC pour la passe de semi-finition est obtenue par l'ajout de la correction C(x, y) à chaque position de TN3.

Figure 3-10: La procédure de compensation.

3.1.3 Compensation de l'erreur de forme pour un trajet linéaire

La pièce est usinée avec trois passes successives sans démontage. L'inspection est effectuée après les deux premières passes afin de calculer la compensation. La compensation est effectuée à la troisième passe. La Figure 3-11 montre la géométrie 2D de la pièce et le trajet d'outil.

Figure 3-11: Géométrie 2D de la pièce utilisée pour le test linéaire.

Le Tableau 3-3 montre les paramètres de coupe. Ces paramètres sont gardés inchangés durant les trois passes.

Tableau 3-3 : Les paramètres de coupe pour le test de compensation de l'erreur de forme.

Parametre	valeur
Vitesse de coupe	8000 tr/mn
Vitesse d'avance	1000 mm/mn
Profondeur radiale	0.150 mm
Profondeur axiale	10 mm

Les données brutes, M, obtenues par l'inspection sur MO sont les coordonnées des points acquises lors du contact palpeur-pièce. Les données brutes se trouvent additionnées des paramètres suivants :

- Le rayon apparent du stylet R_s.
- L'erreur de mesure e_m du palpeur; généralement elle dépend de la direction de palpage [38]. Pour un trajet linéaire, elle peut être constante si les autre paramètres comme la vitesse de palpage sont gardées inchangées.
- L'erreur systématique de la machine-outil; elle n'est pas considérée dans ce travail.
- L'erreur de montage e_{montage} du palpeur (excentricité par rapport à l'axe de rotation de l'outil de coupe).

Donc, pour un trajet linéaire, on a pour chaque position *i* :

$$M_{i} = \varepsilon_{T,i} + R_{s} + e_{m} + e_{montage} = \varepsilon_{0} + \varepsilon_{R,i} + R_{s} + e_{m} + e_{montage}$$
$$= \varepsilon_{R,i} + \text{reste}$$

À l'encastrement, l'erreur de faible rigidité $\varepsilon_{R,0}$ est négligée. Ainsi les données d'inspection brute à l'encastrement s'écrivent:

 $M_0 = \varepsilon_{R,0} + reste = reste$

Il en résulte

$$M_i - M_0 \approx \varepsilon_{R,i}$$

S'intéresser seulement à l'erreur de forme permet d'avoir l'erreur $\varepsilon_{R,i}$ directement à partir des données d'inspection et les étapes suivantes ne sont pas nécessaires :

- évaluer l'erreur de mesure;
- \succ évaluer ε_0 ;
- évaluer le rayon apparent du stylet;
- évaluer l'erreur de montage;

Dans ce cas, la réécriture de l'équation (2.52) est :

$$C_{T}(\boldsymbol{x},\boldsymbol{y}) = 0 + \frac{h_{\text{eff}_F}(\boldsymbol{x},\boldsymbol{y})}{h_{\text{eff}}(\boldsymbol{x},\boldsymbol{y})} \varepsilon_{R2}(\boldsymbol{x},\boldsymbol{y}) + \left[\frac{h_{\text{eff}_F}(\boldsymbol{x},\boldsymbol{y})}{h_{\text{eff}}(\boldsymbol{x},\boldsymbol{y})}\right]^{2} d\varepsilon(\boldsymbol{x},\boldsymbol{y})$$
(3.1)

Si la variation de rigidité est négligée alors le dernier terme du coté droit disparait. Puis, en posant que les profondeurs radiales de coupe sont égales (h), la relation (3.1) devient :

$$C_{T}(x,y) = \frac{h + \varepsilon_{T2}(x,y)}{h_{eff}(x,y)} \varepsilon_{R2}(x,y) = \frac{h}{h_{eff}(x,y)} \varepsilon(x,y) + \frac{\varepsilon^{2}(x,y)}{h_{eff}(x,y)}$$
(3.2)

où $\epsilon_{T2} = \epsilon_{R2} = \epsilon$; (seule l'erreur de forme est compensée).

La relation (3.2) correspond à la première méthode (double inspection). Pour la deuxième méthode (simple inspection), elle s'écrit plutôt :

$$C_{T}(x,y) = \frac{h}{h}\varepsilon(x,y) + \frac{\varepsilon^{2}(x,y)}{h} = \varepsilon(x,y) + \frac{\varepsilon^{2}(x,y)}{h}$$
(3.3)

3.1.4 Compensation de l'erreur d'usinage pour un trajet circulaire

3.1.4.1 Calibration du processus d'inspection sur machine-outil

Le système d'inspection sur MO doit être étalonné pour pouvoir utiliser les indications de l'inspection. Le calibrage doit nous fournir les informations suivantes :

- Le rayon apparent nécessaire pour identifier la déviation (l'erreur) du profil actuel défini par les points palpés et le profil nominal.
- L'erreur de mesure sur machine-outil d'une bague étalon de dimensions connues. L'erreur ne doit pas être significative devant l'erreur d'usinage. La bague est mesurée approximativement dans le même espace de travail que pour l'usinage et l'inspection de la pièce d'essai.

1) Mesure de bague de référence sur MMT et sur MO

La Figure 3-12 montre la répartition de quelques points palpés sur le diamètre intérieur, ainsi que sur le plan de la bague lors de la mesure sur MO et sur MMT.

Le diamètre de la touche du stylet du palpeur de la MMT est obtenu par pré-étalonnage en mesurant la sphère de référence de la MMT.

Les objectifs de la mesure de la bague de référence sur la MMT et sur la MO sont:

- a) vérifier la capacité de mesure de la MMT et la de la MO;
- b) évaluer le rayon apparent du palpeur de MO.

Figure 3-12: Mesure de la bague étalon de diamètre 2.40004".

2) Traitement des données d'inspection

Les données de mesure M, (matrice $3 \times m$), de m points mesurés sur le diamètre intérieur de la bague, doivent être exprimées dans un référentiel attaché à la pièce.

Les données de mesure, M_p (matrice $3 \times n$), de n points sur le plan de la bague sont utilisées pour définir le plan de référence (X, Y) sur la bague.

Le référentiel local $(M_0, \vec{i}, \vec{j}, \vec{k})$ est défini comme suit :

L'origine M₀ est choisie tel que :

$$\mathbf{M}_{0} = \frac{1}{\boldsymbol{n}} \begin{bmatrix} \sum_{j=1}^{n} \mathbf{M}_{p,1,j} \\ \sum_{j=1}^{n} \mathbf{M}_{p,2,j} \\ \sum_{j=1}^{n} \mathbf{M}_{p,3,j} \end{bmatrix}$$

Selon Shakarji [39], M_0 appartient au plan des moindres carrés approximant les n points mesurés sur le plan et le vecteur normal à ce plan est le vecteur propre correspond à la plus petite valeur propre de la matrice (3×3) suivante :

$$(\overline{M} \overline{M}^{T})$$

avec

$$M_{i,j} = M_{p,ij} - M_{0,j}$$
 $i = 1,3$ $j = 1,...n$

Ce vecteur est choisi comme le vecteur unitaire \vec{k} dans la direction Z.

Le choix d'un vecteur \vec{i} sur le plan de la bague P_b, permet d'obtenir le troisième vecteur \vec{j} par la propriété d'orthogonalité :

$$\vec{k} \wedge \vec{i} = \vec{j}$$

La matrice de transformation homogène permettant le passage du système de référence initial au système de référence local est :

$${}_{0}^{1}\mathrm{T} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} & \mathrm{M}_{0} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

et

$${}^{\{1\}1}P = {}^{1}_{0}T^{\{0\}0}P$$

Avec ${}^{\{m\}m}P$ les coordonnées d'un point *P* exprimées dans le repère $\{m\}$.

Le rayon mesuré pour chaque point s'obtient par la relation suivante :

 $\boldsymbol{r}_i = \left| \mathbf{M}_i - \mathbf{O} \right|$

Avec O le centre du cercle approximant les points M_i .

Le rayon apparent de stylet du palpeur de la MO s'obtient par la relation suivante :

 $R_s = R_{bague} - R_m$

Avec R_m : le rayon du cercle approximant les données d'inspection de la machine-outil M_i et R_{bague} : le rayon inscrit de la bague.

3) Erreur de montage du palpeur de la MO

Le remplacement de l'outil de coupe par le palpeur, pour inspecter l'opération d'usinage conduit à une erreur de montage du palpeur où les données d'inspection se trouvent décalées dans le plan. Pour surmonter ce problème, la pièce, pour le test circulaire, est choisie de géométrie symétrique pour pouvoir estimer l'erreur de montage comme étant l'excentricité du cercle approximant les données d'inspection par rapport au centre du cercle programmé.

4) Trajectoire d'outil

La trajectoire de l'outil de coupe est programmée pour une entrée progressive dans la matière jusqu'à la totalité de la profondeur de coupe désirée. De cette manière la profondeur de coupe programmée est réduite progressivement à la fin du trajet jusqu' à ce qu'elle s'annule pour le dernier point de la trajectoire. La Figure 3-13 illustre la géométrie 2D et la trajectoire d'outil pour effectuer une passe en fraisage orbitale. Les paramètres de coupe sont montrés au Tableau 3-4.

Figure 3-13: Géométrie 2D de la pièce et outil avec sa trajectoire

 Paramètre
 Valeur

 Vitesse de coupe
 8000 tr/mn

 Vitesse d'avance
 1000 mm/mn

 Profondeur radiale
 0.500 mm

 Profondeur axiale
 10 mm

Tableau 3-4 : Paramètres de coupe pour le test de compensation du trajet circulaire

3.2 Résultats expérimentaux

3.2.1 Compensation de l'erreur de forme pour le trajet linéaire

Le résultat de l'inspection sur MO est présenté à la Figure 3-14. Le profil programmé est linéaire et le profil réalisé présente un défaut de forme causé principalement par la déformation élastique de la paroi durant l'usinage.

Figure 3-14 : Inspection par palpage sur machine-outil d'un profil réalisé suivant le trajet linéaire.

Le profil est aussi inspecté par comparateur après le déridage de la MO. Le résultat d'inspection est superposé avec l'inspection sur machine-outil et montré à la Figure 3-15.

Figure 3-15 : Superposition de l'erreur par rapport à l'encastrement, mesurée sur MO et la mesure obtenue par comparateur sur marbre.

La différence entre les deux résultats d'inspection peut être causée par le changement des conditions de mesure (température de la pièce et fixation). Le défaut de forme avant compensation dépend de la géométrie de la pièce (rigidité) et donc de sa compliance laquelle qui est maximale au milieu du trajet. L'erreur observée est attribuée principalement au fléchissement de la pièce. Malgré le changement des conditions de mesure, la superposition des deux inspections montre que le défaut de forme est détecté

par la mesure sur machine-outil. On peut donc utiliser cette inspection pour corriger la trajectoire d'outil afin de compenser ce défaut de forme sans démontage de la pièce.

Figure 3-16: Erreur avant et après compensation par la méthode de miroir.

Pour corriger le défaut de forme, la méthode de miroir est appliquée et le résultat est montré à la Figure 3-16. La figure montre l'erreur avant compensation et montre le défaut résiduel obtenu et prédit après compensation. L'erreur résiduelle est prédite par la relation 2.37.

Ce test simple montre que l'augmentation de la profondeur réelle de coupe cause une augmentation de l'erreur de faible rigidité. La prédiction, avec précision de 80%, de l'erreur résiduelle est basée sur la relation linéaire entre la profondeur de coupe et l'erreur de faible rigidité. La méthode de miroir est insuffisante pour éliminer complètement ce type d'erreur. L'erreur en finition est plus importante que l'erreur prévue et anticipée par la méthode de miroir. c'est pour cela qu'une erreur résiduelle est présente.

La première méthode de compensation, en deux inspections, proposée dans le chapitre 2, introduit l'effet de la variation de la profondeur réelle de coupe dans le calcul de la compensation. La relation (2.17) est utilisée pour prédire le fléchissement (l'erreur de forme) attendu en finition.

Par l'inspection avant et après la deuxième passe, la profondeur effective de coupe est mesurée. Pour obtenir le profil désiré en finition, la profondeur de coupe effective doit être la profondeur nominale plus le défaut après la deuxième passe.

Figure 3-17: Résultat de compensation par la méthode en deux inspections.

Pour cette méthode, la position de l'outil est ajustée pour pouvoir couper la totalité de la profondeur de coupe initialement programmée ainsi que le défaut enregistré après la deuxième passe. La Figure 3-17 montre l'inspection des profils obtenus après la première puis après la deuxième passe et montre le profil obtenu après compensation. L'erreur maximale avant compensation est de 80 μ m et l'erreur après compensation est de ±5 μ m, sans tendance ou forme particulaire.

3.2.2 Compensation de l'erreur pour le trajet circulaire

L'objectif de la compensation de l'erreur de forme pour le trajet linéaire est de valider la relation linéaire entre la profondeur de coupe et l'erreur de faible rigidité. Dans cette section, on vise également l'amélioration de la taille d'un profil circulaire. La première étape est l'étalonnage du système de mesure. Le rayon du stylet est la différence entre le rayon inscrit de la bague et le rayon du cercle approximant au mieux les données d'inspection.

Figure 3-18: Inspection de la bague étalon sur MO.

Le résultat de l'inspection de la bague de référence est montré à la Figure 3-18. Avec 72 points saisis sur le diamètre intérieur, le rayon du cercle approximant ces points est 27.5240 mm. Le rayon inscrit de la bague est 30.4805 mm. Donc, le rayon apparent du palpeur est 30.4805-27.5240=2.9565 mm. Le résultat de l'inspection est tracé en coordonnées polaires sur la Figure 3-19 montre que la variation du rayon mesuré est de l'ordre de $\pm 2 \mu m$.

Figure 3-19: Variation du rayon mesuré par rapport au rayon de la bague.

La bague de référence est utilisée pour calibrer le système de mesure sur machine-outil. L'exactitude des dimensions de la bague permet d'obtenir une bonne valeur du rayon apparent du stylet utilisé dans l'évaluation de l'erreur d'usinage. Pour confirmer la précision de la bague, elle est inspectée aussi sur MMT et le résultat de l'inspection est montré à la Figure 3-20. Le rayon moyen mesuré pour trois répétitions est 30.4807 mm.

Figure 3-20: Inspection de la bague étalon sur MMT (3 répétitions).

La différence entre le rayon mesuré et le rayon inscrit est 30.4807-30.4805=0.0002 mm. L'inspection de la bague sur la machine-outil montre que l'erreur maximale de la mesure du rayon ne dépasse pas 2 µm. L'étude de cette erreur n'est pas l'objectif de ces tests. D'après le résultat d'inspection de la bague sur MMT et sur MO, on peut utiliser la machine-outil pour inspecter directement la pièce et par la suite identifier l'erreur d'usinage qui ne va pas être significativement affectée par l'erreur de mesure.
3.2.2.1 Inspection du profil circulaire après les deux passes

Après deux passes successives, les deux profils réalisés sont inspectés. La Figure 3-21 montre la déviation des profils réalisés par rapport aux profils programmés.

Figure 3-21 : Résultats d'inspection du profil usiné après la première passe et après la deuxième passe.

Malgré la symétrie de la pièce, on constate que les tracés polaires de l'erreur sont excentriques par rapport aux cercles programmés. Les données d'inspection sont accompagnées de l'erreur de montage. Les points mesurés sont approximés par un cercle, la déviation du centre du cercle obtenu par rapport au centre du cercle programmé est considérée comme une erreur de montage.

Figure 3-22 : Excentricité du cercle obtenu par rapport au centre du cercle programmé pour neuf inspections après usinage.

La procédure de compensation par le processus intermittent d'inspection nécessite le démontage du palpeur après l'inspection du premier profil, le remontage de l'outil de coupe pour usiner le deuxième profil et le remontage du palpeur à nouveau pour inspecter

le deuxième profil. Malgré le démontage et le remontage du palpeur, on peut constater sur la Figure 3-21 que l'erreur de montage est pratiquement répétée, elle peut être considérée comme une caractéristique de l'ensemble broche-outil-palpeur. Les erreurs de montage pour neuf opérations d'inspection après usinage sont montrées à la Figure 3-22. Ce résultat est important, il peut être utilisé par exemple, dans le cas de l'usinage d'un profil circulaire pour une pièce non symétrique.

Figure 3-23: Erreur d'usinage centrée

Après élimination de l'erreur de montage (recentrage), les erreurs d'usinage peuvent être obtenues. La Figure 3-23 montre le résultat d'inspection après élimination de l'excentricité.

L'inspection montre que le rayon obtenu est inférieur au rayon programmé pour toute la trajectoire. L'erreur est minimale pour la position angulaire de 90°. Pour cette position, la profondeur radiale de coupe est minimale (voir illustration montrée à la Figure 3-24).

Figure 3-24 : Variation de la profondeur de coupe à la fin du trajet d'outil; la profondeur programmée à la fin du trajet est nulle.

Cette observation appuie l'hypothèse que l'erreur détectée dépend de l'effort, laquelle est proportionnelle à la profondeur de coupe. L'erreur détectée pour la position angulaire de 90° ne dépend pas de l'effort de coupe; cette erreur $est \varepsilon_0$, elle est utilisée comme ajustement radial pour toute la trajectoire.

Pour les deux portions du profil localisée aux plages angulaires 90-180° et 270-360°, l'erreur détectée après la deuxième passe est pratiquement la même détectée qu'après la première passe. Ceci peut être expliqué par la rigidité de la pièce : l'enlèvement de la profondeur de coupe n'affecte pas significativement la rigidité de la pièce dans ces régions. Par contre, pour le reste du profil (0-90° et180-270°), l'erreur enregistrée après la deuxième passe est supérieure à celle détectée après la première passe; ce qui peut être expliqué par la faible rigidité : dans ces directions, la rigidité de la pièce change significativement par l'enlèvement de la matière; par conséquent, elle fléchit plus. La géométrie 2D de la pièce, illustrée à la Figure 3-25, montre la variation de l'épaisseur de la paroi causant cette variation de l'erreur.

Figure 3-25 : Géométrie 2D de la pièce : principale cause de la variation de l'erreur en deuxième passe par rapport à la première passe.

3.2.2.2 Calcul et résultat de la compensation

Pour pouvoir calculer la correction pour chaque position de la trajectoire de finition, les données discrètes d'inspection nécessitent une approximation par courbes continues. Les rayons programmés pour les deux premières passes sont 35.200 et 35.700. La passe de

finition est de 0.500 mm (rayon 36.200). Le trajet nominal est converti en courbe NURBS et l'erreur numérique de cette conversion est montrée à la Figure 3-26. Avec 25 points de contrôle, l'erreur est inférieure à 1 μ m. La trajectoire nominale est constituée initialement de 262 incréments linéaires, la Figure 3-26 montre les déviations des 262 points, représentant la trajectoire programmée, par rapport à la courbe NURBS.

Figure 3-26 : Erreur de conversion en NURBS de la trajectoire nominale d'outil en finition.

Le même nombre de points de contrôle est utilisé pour approximer les deux résultats d'inspection en deux courbes NURBS. L'erreur maximale d'approximation est de 5 μ m et est montrée à la Figure 3-27.

Figure 3-27: Erreur d'approximation des 72 points mesurés sur le premier profil obtenu.

Il est possible d'augmenter le nombre de points de contrôle pour réduire l'erreur d'approximation, mais avec 25 points de contrôle, les courbes sont lisses et les perturbations locales ne sont pas considérées ce qui est souhaitable car ce bruit n'est pas répétable. L'approximation des deux données d'inspection est montrée à la Figure 3-28.

Figure 3-28: Approximation des erreurs.

La troisième méthode est appliquée pour calculer la correction à ajouter à chaque position de la trajectoire. La correction de trajectoire est un petit ajustement pour chaque position figurant au code G, la procédure ne modifie pas le chemin d'outil proprement dit, mais ajuste les positions nominales pour anticiper l'erreur d'usinage.

Figure 3-29 : Déviation (compensation) programmée en finition par rapport au profil désiré.

La Figure 3-29 montre les deux erreurs ainsi que la compensation de la trajectoire calculée en utilisant la relation (2.52) développée dans le chapitre 2.

Figure 3-30 : Profil obtenu après compensation par la méthode 3

Le résultat de la compensation est montré à la Figure 3-30. On peut remarquer que l'erreur maximale est de 60 µm et détectée après la deuxième passe, l'erreur minimale est de 20 µm détectée pratiquement pour les deux passes à l'engagement de l'outil de coupe. Après compensation, le défaut de forme est réduit, l'erreur est comprise entre 4 et -6 µm. Avant compensation l'erreur dépend de l'épaisseur de la paroi, mais après compensation, en utilisant les relations développées, cette dépendance est éliminée.

3.2.3 Comparaison entre la correction par la troisième méthode proposée et par la méthode de miroir

Pour fins de comparaison, la correction ajoutée par la méthode 3, qui tient compte de la variation de rigidité, et celle calculée par la méthode de miroir sont superposées sur le même graphique, montré à la Figure 3-31.

La différence entre les deux graphiques est plus importante dans les portions où la pièce présente une faible rigidité; ceci est le cas lorsque l'épaisseur de la paroi est faible. Inversement, dans les régions où la paroi est plus épaisse, une plus grande rigidité résulte et la compensation de la faible rigidité est négligeable. De cette comparaison, la technique de miroir peut être considérée comme cas particulier de la technique proposée lorsque la pièce est suffisamment rigide.

Figure 3-31 : Correction de trajet d'outil par la méthode proposée et par la méthode de miroir.

Angle (°C)	ε ₁₁ (μm)	\mathcal{E}_{T2} (µm)	$\lambda = \frac{h_{eff_F}}{h_{eff}}$	$\epsilon_0 + \epsilon_{R2} \lambda$ (µm)	$\Delta \epsilon \lambda^2$ (µm)	$\mathrm{C}_{\mathrm{methode3}} \ (\mu m)$	C _{miroir} (µm)
90	0.0176	0.0207	1.0414	0.021	0.003	0.024	0.021
135	0.0304	0.0304	1.0609	0.031	0.000	0.031	0.030
180	0.0452	0.0509	1.1019	0.054	0.007	0.061	0.051
225	0.0492	0.0570	1.1141	0.061	0.010	0.071	0.057
270	0.0412	0.0452	1.0904	0.047	0.005	0.052	0.045
315	0.0320	0.0325	1.0649	0.033	0.001	0.034	0.033
0	0.0459	0.0488	1.0976	0.051	0.004	0.055	0.049
45	0.0504	0.0582	1.1164	0.062	0.010	0.072	0.058

Tableau 3-5 : Compensation selon les deux méthodes (proposée et de miroir) pour certains points sélectionnés.

Le Tableau 3-5 montre des données numériques pour quelques points sélectionnés sur la trajectoire. Le coefficient λ est le rapport des deux profondeurs effectives de coupe en finition et en semi-finition et $\Delta \varepsilon$ est la différence $\varepsilon_{T2} - \varepsilon_{T1}$.

Le cas où l'épaisseur de la paroi est minimale (3 mm) correspond aux positions localisées par les angles de 45 °et de 225°. À ces angles la correction additionnelle $\Delta \varepsilon \lambda^2$ par la méthode 3 par rapport à la méthode 1 ($\varepsilon_0 + \varepsilon_{R2}\lambda$) est plus importante. Dans ces conditions de test (profondeur de coupe h=0.500 et épaisseur minimale de la paroi 3 mm), la correction de la variation de la rigidité est plus importante que la correction de la faible rigidité calculée selon la méthode 1. Par conséquent, dans ce cas, la méthode 3 est nécessaire pour compenser l'erreur d'usinage.

CONCLUSION

Ce mémoire traite de la compensation des erreurs d'usinage par le processus intermittent d'inspection. Une nouvelle approche est développée qui introduit la profondeur de coupe dans le calcul de la correction de trajectoire d'outil en finition. Les erreurs principales pouvant être détectées par l'inspection sur machine-outil sont celles causées par l'usure de l'outil de coupe, sa mauvaise géométrie et le fléchissement de l'outil et/ou de la pièce. Ces erreurs sont divisées en deux types d'erreur : le premier dépend de la profondeur de coupe, il concerne le fléchissement et le deuxième ne dépend pas de la profondeur de coupe et concerne principalement les défauts de la géométrie de l'outil. L'inspection sur machine-outil fournit l'erreur d'usinage totale. Les deux types d'erreur sont séparés par la technique expérimentale. L'efficacité de la compensation est limitée en partie par la capacité d'inspection de la machine-outil. L'inspection d'un profil sur machine-outil et par comparateur montre que le défaut de forme peut être détecté directement sur machine-outil.

La méthode de compensation proposée est appliquée premièrement pour corriger le défaut de forme linéaire causé par le fléchissement d'une paroi sous l'effort de coupe. Les résultats confirment que le défaut de forme pour une position donnée dépend linéairement de la profondeur de coupe. La compensation par simple inversion de l'erreur (méthode de miroir) montre une importante erreur résiduelle après compensation, cette erreur est prédite par les méthodes proposées.

La méthode 3 est appliquée pour un trajet circulaire où l'objectif est de corriger la taille et la forme. L'inspection montre qu'une erreur de montage apparait avec les données d'inspection, cette erreur est éliminée par le choix d'une géométrie symétrique de la pièce et cette erreur est considérée comme l'excentricité du cercle obtenu par rapport au cercle programmé. Les résultats montrent que la taille et la forme du cercle sont corrigées.

La trajectoire nominale d'outil est obtenue du code G, les données d'inspection sont converties en courbes paramétriques NURBS et la correction du code G pour la passe de finition est effectuée par MATLAB.

La technique de compensation proposée est sous forme de trois méthodes. La troisième est la plus générale, elle inclut la variation de la rigidité de la pièce causée par l'enlèvement de la matière. L'étude expérimentale menée pour valider cette nouvelle technique montre qu'elle est efficace pour compenser les erreurs d'usinage même pour les pièces de faible rigidité, souvent utilisées dans l'industrie aérospatiale.

PERSPECTIVES

La méthodologie de compensation développée dans ce mémoire est une bonne base pour les travaux futurs utilisant l'inspection sur machine-outil pour améliorer la précision. Les travaux futurs peuvent être menés suivant les axes de recherche suivant :

- l'extension de cette méthode pour les profils non usuels 2D et 3D en considérant des systèmes de référence pièce.
- l'étude de l'impact de l'erreur systématique sur l'efficacité de la procédure proposée pour une éventuelle intégration dans le même modèle;
- l'étude de l'erreur de palpage afin de l'éliminer des données d'inspection.

- [1] R. Ramesh, M. A. Mannan, and A. N. Poo, "Error compensation in machine tools

 a review. Part I: Geometric, cutting-force induced and fixture-dependent errors,"
 International Journal of Machine Tools and Manufacture, vol. 40, pp. 1235-1256, 2000.
- [2] X.-J. Wan, C.-H. Xiong, C. Zhao, and X.-F. Wang, "A unified framework of error evaluation and adjustment in machining," *International Journal of Machine Tools and Manufacture*, vol. 48, pp. 1198-1210, 2008.
- [3] R. Schultschik, "Geometrische Fehler in Werkzeugmaschinenstrukturen," *Annals of the CIRP* vol. 24 (1), pp. 361-366-1975.
- [4] ISO, "Test Code for Machine Tools. Part 1. Geometric Accuracy of Machines Operating Under No-Load or Finishing Conditions," *ISO Geneva*, vol. 230-1, 1996.
- [5] R. Mayer, "Modélisation des machines en fabrication mécanique.," Notes de cours MEC 6513. Département de génie mécanique, École Polytechnique de Montréal, Canada, 2008.
- [6] A. C. Okafor and Y. M. Ertekin, "Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics," *International Journal of Machine Tools and Manufacture,* vol. 40, pp. 1199-1213, 2000.

- [7] A. H. Slocum, "Precision machine design: Macromachine design philosophy and its applicability to the design of micromachines," Piscataway, NJ, USA, 1992, pp. 37-42.
- [8] J. A. Soons, F. C. Theuws, and P. H. Schellekens, "Modeling the errors of multiaxis machines. A general methodology," *Precision Engineering*, vol. 14, pp. 5-19, 1992.
- [9] Y. Abbaszadeh-Mir, J. R. R. Mayer, G. Cloutier, and C. Fortin, "Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telescoping magnetic ball-bar," *International Journal of Production Research*, vol. 40, pp. 4781-4797, 2002.
- [10] E. L. J. Bohez, B. Ariyajunya, C. Sinlapeecheewa, T. M. M. Shein, D. T. Lap, and
 G. Belforte, "Systematic geometric rigid body error identification of 5-axis
 milling machines," *CAD Computer Aided Design*, vol. 39, pp. 229-244, 2007.
- [11] T. Liebrich, B. Bringmann, and W. Knapp, "Calibration of a 3D-ball plate," *Precision Engineering*, vol. 33, pp. 1-6, 2009.
- [12] R. Ramesh, M. A. Mannan, and A. N. Poo, "Error compensation in machine tools

 a review. Part II: Thermal errors," *International Journal of Machine Tools and Manufacture*, vol. 40, pp. 1257-1284, 2000.
- [13] L. K. M.H. Attia, "Computer simulation of nonlinear thermoelastic behaviour of a joint in machine tool structure and its effect on thermal deformation," *Journal of Engineering for Industry*, vol. 101, pp. 355-361, 1979 1979.

- [14] J. Zhu, J. Ni, and A. J. Shih, "Robust machine tool thermal error modeling through thermal mode concept," *Journal of Manufacturing Science and Engineering, Transactions of the ASME*, vol. 130, pp. 0610061-0610069, 2008.
- [15] X. B. Chen, A. Geddam, and Z. U. Yuan, "Accuracy Improvement of Three-Axis CNC Machining Centers by Quasi-Static Error Compensation," *Journal of Manufacturing Systems*, vol. 16, pp. 323-336, 1997.
- W. T. Lei and M. P. Sung, "NURBS-based fast geometric error compensation for CNC machine tools," *International Journal of Machine Tools and Manufacture*, vol. 48, pp. 307-319, 2008.
- [17] C. C. Lo and C. Y. Hsiao, "CNC machine tool interpolator with path compensation for repeated contour machining," *CAD Computer Aided Design*, vol. 30, pp. 55-62, 1998.
- [18] M.-W. Cho, T.-I. Seo, and H.-D. Kwon, "Integrated error compensation method using OMM system for profile milling operation," *Journal of Materials Processing Technology*, vol. 136, pp. 88-99, 2003.
- Y. A. Mir, J. R. R. Mayer, and C. Fortin, "Tool path error prediction of a five-axis machine tool with geometric errors," *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,* vol. 216, pp. 697-712, 2002.
- [20] S. Engin and Y. Altintas, "Mechanics and dynamics of general milling cutters. Part I: Helical end mills," *International Journal of Machine Tools and Manufacture*, vol. 41, pp. 2195-2212, 2001.

- [21] Y. Altintas and E. Budak, "Analytical prediction of stability lobes in milling," *CIRP Annals - Manufacturing Technology*, vol. 44, pp. 357-362, 1995.
- [22] V. S. Rao and P. V. M. Rao, "Tool deflection compensation in peripheral milling of curved geometries," *International Journal of Machine Tools and Manufacture*, vol. 46, pp. 2036-2043, 2006.
- [23] Z. Yazar, K.-F. Koch, T. Merrick, and T. Altan, "Feed rate optimization based on cutting force calculations in 3-axis milling of dies and molds with sculptured surfaces," *International Journal of Machine Tools & Manufacture*, vol. 34, pp. 365-377, 1994.
- [24] Y. Altintas, "Direct adaptive control of end milling process," *International Journal of Machine Tools & Manufacture*, vol. 34, pp. 461-472, 1994.
- [25] W. A. Kline, R. E. DeVor, and I. A. Shareef, "PREDICTION OF SURFACE ACCURACY IN END MILLING," New York, NY, USA, 1982, p. 7.
- [26] J. W. Sutherland and R. E. DeVor, "IMPROVED METHOD FOR CUTTING FORCE AND SURFACE ERROR PREDICTION IN FLEXIBLE END MILLING SYSTEMS," New York, NY, USA, 1986, p. 11.
- [27] Y. Altintas, "Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design," *Cambridge University Press*, , 2000.
- [28] S. Ratchev, S. Liu, and A. A. Becker, "Error compensation strategy in milling flexible thin-wall parts," *Journal of Materials Processing Technology*, vol. 162-163, pp. 673-681, 2005.

- [29] S. Ratchev, S. Liu, W. Huang, and A. A. Becker, "A flexible force model for end milling of low-rigidity parts," *Journal of Materials Processing Technology*, vol. 153-154, pp. 134-138, 2004.
- [30] L. Kops, M. Gould, and M. Mizrach, "Search for equilibrium between workpiece deflection and depth of cut: Key to predictive compensation for deflection in turning," Chicago, IL, USA, 1994, pp. 819-825.
- [31] M. A. D. H. T. Bandy, D. E. Gilsinn, C. Han, M. Kennedy, A. Ling, N. Wilkin, and K. Yee, "A Methodology for Compensating Errors Detected by Process-Intermittent Inspection," *National Institute of Standards and Technology*, vol. NISTIR 6811.
- [32] T. Pfeifer and R. Wiechern, "MEASUREMENT OF GEARING DEVIATIONS WITH LARGE GEARS," East Kilbride, Scotl, 1980, pp. p-p.
- [33] A. H. Chen, Ph.D.,, "Integrated inspection for precision part production," *Georgia Institute of Technology*, p. 266, 2006.
- [34] X. Qian, W. Ye, and X. Chen, "On-machine measurement for touch-trigger probes and its error compensation," *Key Engineering Materials*, vol. 375-376, pp. 558-563, 2008.
- [35] H. T. Bandy, Donmez, M. A., Gilsinn, D. E., Han, C., Kennedy, M., Ling, A., Wilkin, N. and Yee, K., "A methodology for compensating errors detected by process-intermittent inspection, NISTIR (to appear)," *Nationnal Institute of Standards and Technology.*, 2001.

- [36] T. Aijun and L. Zhanqiang, "Deformations of thin-walled plate due to static end milling force," *Journal of Materials Processing Technology*, vol. 206, pp. 345-351, 2008.
- [37] J. V. L. Lan, "Etude de méthodes simplifiées pour la simulation de l'usinage à l'échelle macroscopique," *PhD thesis,ENSAM ParisTech, CER de Paris, 2007.*
- [38] K.-D. Kim and S.-C. Chung, "Synthesis of the measurement system on the machine tool," *International Journal of Production Research*, vol. 39, pp. 2475-2497, 2001.
- [39] C. M. Shakarji, "Least-Squares Fitting Algorithms of the NIST Algorithm Testing System," *Journal of Research of the National Institute of Standards and Technology*, vol. 103, 1998.
- [40] W. T. Les A. Piegl, "The NURBS Book," *Springer*, vol. Edition: 2, 1997.
- [41] I. Ainsworth, M. Ristic, and D. Brujic, "CAD-based measurement path planning for free-form shapes using contact probes," *International Journal of Advanced Manufacturing Technology*, vol. 16, pp. 23-31, 2000.

ANNEXES

ANNEXE A : Outils mathématiques

A.1 Définition d'une courbe NURBS

Une courbe NURBS C(u) est une courbe paramétrique définie comme suit [40]:

$$C(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u) w_i P_i}{\sum_{i=0}^{n} N_{i,p}(u) w_i} \qquad a \le u \ge b$$

Avec :

 $C(u) = [x(u) \ y(u) \ z(u)]$: les coordonnées d'un point de la courbe;

u : paramètre;

P_i : point de contrôle;

 w_i : poids associé au point de contrôle P_i ;

 $N_{i,p}(u)$: fonction paramétrique de B-Spline de degré p définie récursivement comme suit :

$$N_{i,0}(u) = \begin{cases} 1 & \text{si} & t_i \le u \le t_{i+1} \\ 0 & \text{autrement} \end{cases}$$

$$N_{i,p}(u) = \frac{u - t_i}{t_{i+p} - t_i} N_{i,p-1}(u) + \frac{t_{i+p+1} - u}{t_{i+p+1} - t_{i+1}} N_{i+1,p-1}(u)$$

Les fonctions $N_{i,p}(u)$ sont définies sur un vecteur nodal T tel que :

$$T = \left\{ t_0, t_1, ..., t_{n+p+1} \right\}$$

 $t_0, t_1, ..., t_{n+p+1}$: Sont les (n+p+1) paramètres correspondant aux nœuds.

La relation entre le nombre de nœuds m+1, le dégré de la fonction B-Spline p, et nombre de points de contrôles n+1 est donnée par la relation suivante :

$$T = \left\{ \underbrace{a, ..., a}_{p+1}, t_{p+1}, ..., t_{m-(p+1)}, \underbrace{b, ..., b}_{p+1} \right\}$$

m = n + p + 1

Lorsque des nœuds se multiplient ($t_i = t_{i+1} = ...$), la forme $\frac{0}{0}$ est rencontrée dans le calcul de $N_{i,p}(u)$. Par définition : $\frac{0}{0} = 0$. La figure 2.1 illustre une courbe NURBS contrôlée par six points, les deux points de contrôle extrême appartiennent à la courbe.

Figure A.1 : Une courbe NURBS : nombre de pôles n+1=6, degré des fonctions B-Spline p=3, les poids W= $[1 \ 1 \ 1 \ 1 \ 1]^T$, le vecteur nodal T= $[0 \ 0 \ 0 \ 0 \ 1/3 \ 2/3 \ 1 \ 1 \ 1]$

A.2 Conversion du profil nominal en courbe NURBS

Le profil nominal peut être représenté par un ensemble discret de points M, le nombre de ces points est défini en respectant une erreur de corde illustrée à la figure 2.2

Les points discrets du profil nominal sont:

$$\mathbf{M} = \begin{bmatrix} x_1 & y_1 \\ \cdot & \cdot \\ \cdot & \cdot \\ x_k & y_k \end{bmatrix}$$

La courbe $C_n(u)$ représentant le profil nominal est définie comme suit :

$$C_n(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u) w_i P n_i}{\sum_{i=0}^{n} N_{i,p}(u) w_i}$$

L'approximation des données nominales M par la courbe $C_n(u)$ est la définition des paramètres suivants :

 Le nombre de points de contrôle, n+1. Ce nombre est choisi selon la précision d'approximation voulue.

- Degré des fonctions B-Spline, p. Généralement les fonctions de degré 3 sont utilisées.
- 3- Les poids w correspondant aux points de contrôle. ils sont utilisés pour contrôler l'effet de chaque point sur la courbe. Si w_i = 0 le point de contrôle P_i n'a pas d'effet sur la courbe. Si w_{i=0:n} =1 les points de contrôles ont le même effet.
- 4- Le vecteur nodal T. La forme de la courbe dépend du choix des nœuds.

T est choisi comme suit :

$$T = \left\{ \underbrace{0, \dots, 0}_{p+1}, t_{p+1}, \dots, t_{m-(p+1)}, \underbrace{1, \dots, 1}_{p+1} \right\} = \left\{ \underbrace{0, \dots, 0}_{p+1}, \frac{1}{n-p-1}, \frac{2}{n-p-1}, \dots, \frac{n-p-2}{n-p-1}, \underbrace{1, \dots, 1}_{p+1} \right\}.$$

Avec $t_0 \le t_1 \le \dots \le t_{n+p+1}$.

5- Les coordonnées des points de contrôle Pn_i. La recherche des points de contrôle revient à résoudre un problème de minimisation au sens de moindre carré [40].

Pour chaque point des données M correspond un paramètre $\overline{u_i}$ i=1:k

Ce paramètre peut être obtenu par la longueur de corde passant par tous les points tel que :

$$\bar{u}_1 = 0$$

$$\overline{u}_{i} = \overline{u}_{i-1} + \frac{|M_{i} - M_{i-1}|}{\sum_{j=2}^{k} |M_{j} - M_{j-1}|}$$
 i=2:k

Les points Q_i appartenant à la courbe $C_n(u)$ associée aux paramètres \overline{u}_i s'expriment comme suit :

$$Q(\bar{u}_{1}) = \frac{\sum_{i=0}^{n} N_{i,p}(\bar{u}_{1}) w_{i} Pn_{i}}{\sum_{i=0}^{n} N_{i,p}(\bar{u}_{1}) w_{i}} = \sum_{i=0}^{n} R_{i,k}(\bar{u}_{1}) Pn_{i} \qquad l=1:k$$

Ou sous la forme matricielle :

$$\mathbf{Q} = \begin{bmatrix} \mathbf{R}_{0,1} & \mathbf{R}_{1,1} & . & \mathbf{R}_{n,1} \\ \mathbf{R}_{0,2} & \mathbf{R}_{1,2} & . & \mathbf{R}_{n,2} \\ . & . & . & . \\ \mathbf{R}_{0,k} & \mathbf{R}_{1,k} & . & \mathbf{R}_{n,k} \end{bmatrix} \begin{bmatrix} \mathbf{P} \mathbf{n}_0 \\ \mathbf{P} \mathbf{n}_1 \\ . \\ \mathbf{P} \mathbf{n}_n \end{bmatrix}$$

Les coordonnées des points de contrôle s'obtiennent par la résolution du système linéaire suivant :

$$\begin{bmatrix} R_{0,1} & R_{1,1} & . & R_{n,1} \\ R_{0,2} & R_{1,2} & . & R_{n,2} \\ . & . & . & . \\ R_{0,k} & R_{1,k} & . & R_{n,k} \end{bmatrix} \begin{bmatrix} Pn_0 \\ Pn_1 \\ . \\ . \\ Pn_n \end{bmatrix} = [M]$$

La figure A.3 illustre la représentation d'un cercle et d'un arc, en courbe NURBS, le choix de nombre de points de contrôle dépend de la précision voulue.

Figure A.3 : Représentation des formes usuelles par NURBS, a) cercle b) arc de cercle Dans ce travail, le profil $C_d(u)$ approximant les données mesurées M' est une NURBS avec les mêmes paramètres du profil nominal $C_n(u)$ (nombre de pôles, vecteur nodal, degré des fonctions B-Spline et poids).

Les points de contrôle Pd_i du profil mesuré sont obtenus par un ajustement de position des coordonnées des points de contrôle du profil nominal [16] comme suit :

 $[R][Pn+\Delta P]=[M']$

$$\begin{bmatrix} R_{0,1} & R_{1,1} & . & R_{n,1} \\ R_{0,2} & R_{1,2} & . & R_{n,2} \\ . & . & . & . \\ R_{0,k} & R_{1,k} & . & R_{n,k} \end{bmatrix} \begin{bmatrix} Pd_0 \\ Pd_1 \\ . \\ Pd_n \end{bmatrix} = [M']$$

A.3 Vecteur normal au profil nominal

Pour chaque position nominale correspond un paramètre *u*. Les poids associés aux points de contrôle sont pris comme suit :

 $w_{i} = 1$

La courbe $C_n(u)$ se simplifie:

$$\mathbf{C}_{\mathbf{n}}(u) = \sum_{0}^{\mathbf{n}} \mathbf{N}_{\mathbf{i},\mathbf{p}}(u) \mathbf{P} \mathbf{n}_{\mathbf{i}}$$

Le vecteur normal $\vec{n}(u)$ pour la position nominale de paramètre *u* est calculé par la relation :

$$\vec{n}(u) = \frac{\vec{k} \wedge \frac{\partial \vec{C}_{n}(u)}{\partial u}}{\left\| \vec{k} \wedge \frac{\partial \vec{C}_{n}(u)}{\partial u} \right\|}$$

Avec \vec{k} le vecteur unitaire suivant Z.

$$\vec{k} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

 $\frac{\partial \vec{C}_n(u)}{\partial u}$ est la dérivée de la fonction $C_n(u)$ et donnée comme suit [40] :

$$\frac{\partial \vec{\mathbf{C}}_{n}(u)}{\partial u} = \frac{\partial (\sum_{0}^{n} \mathbf{N}_{i,p}(u) \mathbf{P} \mathbf{n}_{i})}{\partial u} = \sum_{0}^{n-1} \mathbf{N}_{i,p-1}(u) \mathbf{Q} \mathbf{n}_{i}$$

Avec

$$Qn_i = p \frac{P_{i+1} - P_i}{T'_{i+p} - T'_i}$$

Et T'=
$$\left\{\underbrace{0,...,0}_{p}, \frac{1}{n-p-1}, \frac{2}{n-p-1}, ..., \frac{n-p-2}{n-p-1}, \underbrace{1,...,1}_{p}\right\}$$

A.4 Calcul de la position déviée

Le calcul de la position déviée $C_d(u_1)$ revient au calcul du paramètre u_1 correspondant au point d'intersection entre la droite $D(u_2)$ passant par la position nominale $C_n(u)$ et de direction le vecteur normal $\vec{n}(u)$.

 $D(u_2)$ peut être exprimé sous forme paramétrique comme suit :

 $P=C_n(u)$

 $P'=P+\alpha \vec{n}(u) \qquad \alpha \neq 0$

$$\mathbf{D}(u_2) = (\mathbf{P'} - \mathbf{P})u_2 + \mathbf{P}$$

Au point d'intersection, on a:

$$\mathbf{C}_{\mathbf{d}}(u_1) = \mathbf{D}(u_2)$$

C'est une fonction $F(u_1, u_2)$ paramétrique définie comme suit :

$$F(u_1, u_2) = C_d(u_1) - D(u_2) = \begin{bmatrix} x_1(u_1) - x_2(u_2) \\ y_1(u_1) - y_2(u_2) \end{bmatrix} = \begin{bmatrix} F_x(u_1, u_2) \\ F_y(u_1, u_2) \end{bmatrix} = 0$$

Le jacobéen J de cette fonction est défini comme suit :

$$\mathbf{J} = \begin{bmatrix} \frac{\partial F_x}{\partial u_1} & \frac{\partial F_x}{\partial u_2} \\ \frac{\partial F_y}{\partial u_1} & \frac{\partial F_y}{\partial u_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial x_1}{\partial u_1} & -\frac{\partial x_2}{\partial u_2} \\ \frac{\partial y_1}{\partial u_1} & -\frac{\partial y_2}{\partial u_2} \end{bmatrix}$$

Ce système peut être résolu par la méthode de Newton-Raphson [41] :

$$\begin{bmatrix} u_1^{i+1} - u_1^i \\ u_2^{i+1} - u_2^i \end{bmatrix} = -\mathbf{J}^{-1}(u_1^i, u_2^i)\mathbf{F}(u_1^i, u_2^i)$$

Avec la solution initiale : $\begin{bmatrix} u_1^0 \\ u_2^0 \end{bmatrix} = \begin{bmatrix} u \\ 0 \end{bmatrix}$; *u* est le paramètre de la position nominale.

La figure illustre un profil nominal et un profil dévié, tracés par 'MATLAB'.

La position $C_d(u)$ est l'estimation initiale de la position déviée. $C_d(u_1)$ est la position déviée calculée par la résolution du système d'équations, après quelques itérations.

Figure 2.4 : Solution initiale $C_d(u)$ permet de calculer la position déviée $C_d(u_1)$ après quelques itérations

A.5 Approximation des profils par NURBS

Les rayons programmés pour obtenir les deux profils avant compensation sont : $D_1=35.200 \text{ mm}$ et $D_2=35.700 \text{ mm}$. Le rayon final après la troisième passe est $D_3=36.200 \text{ mm}$.

Les deux données d'inspection et le trajet d'outil en finition sont approximées par des courbes NURBS contrôlées par 25 points montrés sur le tableau A.1.

Le vecteur choisi des nœuds est :

 $T = \begin{bmatrix} 0 & 0 & 0 & 0.0455 & 0.0909 & 0.1364 & 0.1818 & 0.2273 & 0.2727 & 0.3182 & 0.3636 \\ 0.4091 & 0.4545 & 0.5000 & 0.5455 & 0.5909 & 0.6364 & 0.6818 & 0.7273 & 0.7727 & 0.8182 \\ 0.8636 & 0.9091 & 0.9545 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \end{bmatrix}$

	Points de contrôle					
	Profil final	Profil inspecté 1	Profil inspecté 2			
1	0 26.6750	-0.0067 32.2253	-0.0063 32.7222			
2	-2.5394 26.6765	-3.0709 32.1958	-3.1177 32.6911			
3	-7.6183 25.9452	-9.2021 31.3249	-9.3435 31.8119			
4	-14.6194 22.7485	-17.6554 27.4655	-17.9275 27.8906			
5	-20.4362 17.7079	-24.6795 21.3841	-25.0599 21.7194			
6	-24.5972 11.2333	-29.6996 13.5656	-30.1620 13.7800			
7	-26.7658 3.8483	-32.3129 4.6486	-32.8061 4.7253			
8	-26.7658 -3.8483	-32.3005 -4.6420	-32.7990 -4.7092			
9	-24.5972 -11.2332	-29.6848 -13.5567	-30.1390 -13.7603			
10	-20.4362 -17.7080	-24.6605 -21.3730	-25.0402 -21.6968			
11	-14.6194 -22.7483	-17.6414 -27.4595	-17.9122 -27.8789			
12	-7.6183 -25.9454	-9.1882 -31.3177	-9.3307 -31.7966			
13	-0.0000 -27.0412	0.0073 -32.6422	0.0067 -33.1446			
14	7.6183 -25.9454	9.2043 -31.3225	9.3454 -31.8092			
15	14.6194 -22.7483	17.6596 -27.4694	17.9305 -27.8947			
16	20.4362 -17.7080	24.6766 -21.3793	25.0578 -21.7141			
17	24.5972 -11.2332	29.7020 -13.5648	30.1597 -13.7782			
18	26.7658 -3.8483	32.3104 -4.6455	32.8079 -4.7222			
19	26.7658 3.8483	32.3024 4.6432	32.8026 4.7105			
20	24.5972 11.2333	29.6857 13.5611	30.1393 13.7626			
21	20.4362 17.7079	24.6597 21.3713	25.0400 21.6968			
22	14.6194 22.7485	17.6375 27.4618	17.9083 27.8782			
23	7.6183 25.9452	9.1854 31.3093	9.3260 31.7862			
24	2.5394 26.6765	3.0587 32.2198	3.1065 32.7139			
25	0 26.6750	-0.0067 32.2253	-0.0063 32.7222			

Tableau A.1 : Points de contrôle des courbes NURBS approximant le trajet d'outil en

finition, la première et la deuxième inspection.

A.6 Exemple numérique (section 2.3)

h= 0.5 mm

$$\varepsilon_0 = 0.020 \text{ mm}$$

$$\mathbf{h}_{\mathrm{eff}} = \mathbf{h} + \mathbf{\varepsilon}_1 - \mathbf{\varepsilon}_2$$

$$h_{eff_F} = h + \epsilon_2$$

Position (mm)	\mathcal{E}_{T1} (μ m)	\mathcal{E}_{T2} (µm)	h _{eff} (mm)	h _{eff_F} (mm)	$\lambda = \frac{h_{eff_F}}{h_{eff}}$
0	0.020	0.020	0.500	0.5200	1.0400
10	0.028	0.032	0.496	0.5320	1.0726
20	0.036	0.044	0.492	0.5440	1.1057
30	0.044	0.056	0.488	0.5560	1.1393
40	0.052	0.068	0.4840	0.5680	1.1736
50	0.060	0.080	0.4800	0.5800	1.2083
60	0.068	0.092	0.4760	0.5920	1.2437
70	0.076	0.104	0.4720	0.6040	1.2797
80	0.084	0.116	0.4680	0.6160	1.3162
90	0.092	0.128	0.4640	0.6280	1.3534
100	0.100	0.140	0.4600	0.6400	1.3913

$$C_{0} = \varepsilon_{2}$$

$$C_{1} = \varepsilon_{0} + \lambda(\varepsilon_{2} - \varepsilon_{0}) = \varepsilon_{0} + \frac{h_{eff_{-}F}}{h_{eff}}(\varepsilon_{2} - \varepsilon_{0})$$

$$C_{2} = \varepsilon_{0} + \frac{h_{eff_{-}F}}{h}(\varepsilon_{2} - \varepsilon_{0})$$

$$C_{3} = \varepsilon_{0} + \lambda(\varepsilon_{2} - \varepsilon_{0}) + \lambda^{2}(\varepsilon_{2} - \varepsilon_{1})$$

C1	C ₂	C ₃	C_0
(µm)	(µm)	(µm)	(µm)
0.0200	0.0200	0.0200	0.0200
0.0329	0.0328	0.0375	0.0320
0.0465	0.0461	0.0563	0.0440
0.0610	0.0600	0.0766	0.0560
0.0763	0.0745	0.0984	0.0680
0.0925	0.0896	0.1217	0.0800
0.1095	0.1052	0.1467	0.0920
0.1275	0.1215	0.1733	0.1040
0.1464	0.1383	0.2018	0.1160
0.1662	0.1556	0.2321	0.1280
0.1870	0.1736	0.2644	0.1400

B.1 Code G initial pour la finition d'un profil circulaire de 36.200 mm de rayon

N 63 X 9.997 Y 16.951 N 64 X 9.985 Y 17.226 N 65 X 9.966 Y 17.501 N 66 X 9.94 Y 17.775 N 67 X 9.906 Y 18.049 N 68 X 9.864 Y 18.321 N 69 X 9.815 Y 18.592 N 70 X 9.758 Y 18.862 N 71 X 9.694 Y 19.13 N 72 X 9.623 Y 19.396 N 73 X 9.545 Y 19.66 N 74 X 9.459 Y 19.922 N 75 X 9.366 Y 20.182 N 76 X 9.265 Y 20.438 N 77 X 9.158 Y 20.692 N 78 X 9.044 Y 20.943 N 79 X 8.923 Y 21.191 N 80 X 8.795 Y 21.435 N 81 X 8.661 Y 21.675 N 82 X 8.52 Y 21.912 N 83 X 8.372 Y 22.145 N 84 X 8.218 Y 22.373 N 85 X 8.058 Y 22.598 N 86 X 7.892 Y 22.817 N 87 X 7.72 Y 23.033 N 88 X 7.541 Y 23.243 N 89 X 7.358 Y 23.448 N 90 X 7.168 Y 23.648 N 91 X 6.973 Y 23.843 N 92 X 6.773 Y 24.033 N 93 X 6.568 Y 24.216 N 94 X 6.358 Y 24.395 N 95 X 6.142 Y 24.567 N 96 X 5.923 Y 24.733 N 97 X 5.698 Y 24.893 N 98 X 5.47 Y 25.047 N 99 X 5.237 Y 25.195 N100 X 5. Y 25.336 N101 X 4.76 Y 25.47 N102 X 4.516 Y 25.598 N103 X 4.268 Y 25.719 N104 X 4.017 Y 25.833 N105 X 3.763 Y 25.94 N106 X 3.507 Y 26.041 N107 X 3.247 Y 26.134

N108	Х	2.985	Y	26.22
N109	Х	2.721	Y	26.298
NT110	v	2 466	v	26 260
	~	2.400	1	20.309
NIII	Х	2.18/	Y	26.433
N112	Х	1.917	Y	26.49
N113	Х	1.646	Y	26.539
N114	Х	1.374	Y	26.581
N115	х	1.1	Y	26,615
N116	x	0 826	v	26 641
N117	v	0.020	v	20.011
	л 77	0.001	T	20.00
NTT8	X	0.2/6	Y	26.672
NII9	Х	0.	Y	26.675
N120	Х	-0.46	Y	26.672
N121	Х	-0.921	Y	26.66
N122	Х	-1.381	Y	26.64
N123	Х	-1.84	Y	26.612
N124	Х	-2.299	Y	26.576
N125	Х	-2.758	Y	26.533
N126	x	-3 215	Y	26 481
N127	x	-3 672	v	26 422
NT1 2 0	v	1 1 2 7	v	26.122
NIZO	A V	-4.12/	T V	20.354
NIZ9	х 	-4.582	ĭ	20.279
NI30	Х	-5.035	Y	26.196
N131	Х	-5.486	Y	26.105
N132	Х	-5.936	Y	26.007
N133	Х	-6.384	Y	25.9
N134	Х	-6.83	Y	25.786
N135	Х	-7.274	Y	25.665
N136	х	-7.716	Y	25.535
N137	x	-8 156	v	25 398
NT1 2 Q	v	_8 503	v	25.350
N1 20	A V	-0.595	T V	23.237
N140	A V	-9.02/	1 V	23.102
N140	A V	-9.459	1 V	24.942
NI41	A	-9.000	ĭ	24.775
NI42	X-	10.315	Y	24.601
NI43	Х-	10.738	Y	24.419
N144	Х-	-11.158	Y	24.23
N145	X-	11.574	Y	24.034
N146	X-	11.987	Y	23.83
N147	X-	12.397	Y	23.62
N148	X-	12.803	Y	23,402
N149	x-	13,205	Y	23.178
N150	x-	13 603	v	22 947
N1 5 1	v	12 007	v	
	A-	14 207	1 .,	22./08
NT27	X-	-14.387	Y	22.463
N153	X-14.772	Υ	22.212	
-----------------	-------------	---------	-----------	
	V 1 C 1 C 2	37	21 054	
N154	X-12.123	ĭ	21.954	
N155	X-15.53	Υ	21.689	
N156	x-15 902	v	21 417	
NT 20	A 15.902	т	21.11/	
N157	X-16.269	Υ	21.14	
N158	X-16.632	Y	20.856	
	X 1C 000			
NI 59	X-10.989	Y	20.566	
N160	X-17.342	Υ	20.269	
M161	V-17 680	v	10 067	
NTOT	X-17.009	т	19.907	
N162	X-18.031	Υ	19.659	
N163	X-18 368	Y	19 344	
111 6 4	II 10.500		10 005	
N164	X-18.699	Y	19.025	
N165	X-19.025	Υ	18.699	
M166	x_19 344	v	18 368	
NICO	X 1).JH	т	10.500	
N167	X-19.659	Υ	18.031	
N168	X-19.967	Y	17.689	
NT1 C O	x 20 200	37	17 240	
NT09	X-20.209	ĭ	1/.342	
N170	X-20.566	Υ	16.989	
N171	X-20 856	v	16 632	
111/1	X 20.050		10.052	
N172	X-21.14	Υ	16.269	
N173	X-21.417	Υ	15,902	
NT1 7 4	v 01 600	- 	1 5 5 5 5	
$N \perp / 4$	X-21.009	ĭ	12.22	
N175	X-21.954	Υ	15.153	
N176	x-22 212	Y	14 772	
	N 00 462		14 200	
$N \perp / /$	X-22.463	Y	14.38/	
N178	X-22.708	Υ	13.997	
NT1 7 Q	v_22 0/7	v	12 602	
	A-22.94/	т	13.005	
N180	X-23.178	Υ	13.205	
N181	x-23,402	Y	12.803	
NT1 0 0	v 00 C0	37	10 207	
NT87	X-23.02	ĭ	12.397	
N183	X-23.83	Υ	11.987	
N184	x-24 034	v	11 574	
11101	71 21.031	- 	11 150	
NT82	X-24.23	Y	11.158	
N186	X-24.419	Υ	10.738	
NT1 0 7	V 24 601	v	10 215	
NTO /	X-24.001	т	10.313	
N188	X-24.775	Y	9.888	
N189	X-24.942	Υ	9.459	
NT1 0 0	V 25 102	v	0 0 2 7	
NT 90	X-23.102	т	9.027	
N191	X-25.254	Υ	8.593	
N192	X-25.398	Y	8.156	
NT1 0 2		-	7 716	
NT 93	X-25.535	ĭ	/./10	
N194	X-25.665	Υ	7.274	
M195	X-25 786	v	6 83	
11100	X 25.700		6.05	
NI96	X-25.9	Y	6.384	
N197	X-26.007	Υ	5.936	
NT1 Q Q	V-26 105	v	5 196	
11120	A 20.103	T -	5.400	
N199	X-26.196	Y	5.035	
N200	X-26.279	Y	4.582	
NTO 0 1	v 06 0F4		1 1 0 7	
ти∠От	A-20.354	Ţ	4.12/	
N202	X-26.422	Y	3.672	
N203	X-26 481	Y	3,215	
NTO 0 /	V 06 500	- .,		
N∠04	A-20.533	Y	2./58	
N205	X-26.576	Y	2.299	
N206	X-26 612	v	1 84	
ти <u>с</u> О О	43 ZU.UIZ	+	T.01	

N207	X-26.64	Y 1.38	1
N208	X-26.66	Y 0.92	1
N209	X-26.672	Y 0.46	
N210	X-26.676	Y 0.	
N211	X-26.672	Y -0.46	
N212	X-26.66	Y -0.92	1
N213	X-26.64	Y -1.38	1
N214	X-26.612	Y -1.84	
N215	X-26.576	Y -2.299	9
N216	X-26.533	Y -2.758	8
N217	X-26.481	Y -3.21	5
N218	X-26.422	Y -3.672	2
N219	X-26.354	Y -4.12	7
N220	X-26.279	Y -4.582	2
N221	X-26.196	Y -5.03	5
N222	X-26.105	Y -5.480	б
N223	X-26.007	Y -5.93	б
N224	X-25.9	Y -6.384	4
N225	X-25.786	Y -6.83	
N226	X-25.665	Y -7.274	4
N227	x = 25,535	Y = 7 716	б
N228	$x = 25 \cdot 398$	Y = 8 150	б
N229	$x = 25 \cdot 254$	$Y = 859^{\circ}$	2 2
N230	$x = 25 \cdot 102$	Y -9 02	7
N231	x = 24 942	V _9 450	ģ
N232	x = 24 775	V _9 889	R
M233	X 24.773 X-24 601	v_{-10} 31	5
M233	x_{-24} 419	v_{-10} 739	g
MJJ2	x_{-24} , 419 x_{-24} , 22	v_{-11} 159	
MJJJ	X-24.23	V 11 57	л
M230	X-24.034	v_{-11} 00'	т 7
M230	$x_{-23.03}$	v_{-12} 20'	7
M220	x 23.02	V 12 90'	, 2
N239	X = 23.402 V 22 170	V 12 201	5
NZ40	$X = 23 \cdot 170$	1 - 13.20	כ ר
NZ41	X = 22.947	1-13.00. V 12.00'	5 7
NZ4Z	X-22.708	1-13.99 V 14 20'	7
NZ43	X = 22.403	1 - 14.50 V 14 77	/ ว
NZ44	$X = 22 \cdot 212$	1-14.772	2
NZ45	X-21.954	Y-15.15.	3
NZ40	X-21.089	1-15.53 X 15 00	
NZ4/	X = 21.417	Y-15.90	2
N248	X-21.14	Y-16.269	9
N249	X-20.856	Y-16.632	2
N250	X-20.566	Y-16.989	9
N251	X-20.269	Y-17.342	2
N252	X-19.967	Y-17.689	9
N253	X-19.659	Y-18.03	L
N254	X-19.344	Y-18.368	8
N255	X-19.025	Y-18.699	9
N256	X-18.699	Y-19.02	5
N257	X-18.368	Y-19.344	4
N258	X-18.031	Y-19.659	9
N259	X-17.689	Y-19.96	7
N260	X-17.342	Y-20.269	9

NTO C 1	77 1 6	- 000	
NZØT	X-16	.989	Y-20.566
N262	X-16	5.632	Y-20.856
N263	X-16	5.269	Y-21.14
N264	x_15	5 902	Y-21 417
NOGE	v 10	5 5 2	Y 21 600
NZOD	A-13		1-21.009
N266	X-15	5.153	Y-21.954
N267	X-14	1.772	Y-22.212
N268	X-14	1.387	Y-22.463
N269	x-13	3 997	Y-22 708
ND 70	v 13		Y 22.047
NZ/U	A-13	.005	1-22.947
N271	X-13	3.205	Y-23.178
N272	X-12	2.803	Y-23.402
N273	X-12	2.397	Y-23.62
N274	X-11	987	Y-23.83
M275	v _11	574	V-24 034
MODC	X 11	1 - 0	I 24.004
NZ/6	X-T1		1-24.23
N277	X-10	0.738	Y-24.419
N278	X-10).315	Y-24.601
N279	X -9	.888	Y-24.775
N280	x _ c	459	Y-24 942
NT201	v	007	V 25 102
NZOI	A -3	.027	1-25.102
N282	X - 8	5.593	Y-25.254
N283	X -8	8.156	Y-25.398
N284	X -7	7.716	Y-25.535
N285	X -7	2.274	Y-25.665
N286	X -6	5 83	Y-25 786
NT200	v 6	2 201	V 25.000
NZ07	A -0		1-25.9
N288	X -5	0.936	Y-26.007
N289	X -5	5.486	Y-26.105
N290	X -5	5.035	Y-26.196
N291	X -4	1.582	Y-26.279
N292	x _4	127	Y-26 354
NT202	v	670	v 26 422
11293	A - 3	015	1-20.422
N294	X - 3	3.215	Y-26.481
N295	X -2	2.758	Y-26.533
N296	X -2	2.299	Y-26.576
N297	X -1		Y-26.612
N298	X -1	381	Y-26 64
NT200	v _0	0.001	v_26 66
NZ99	A - C	.94	1-20.00
N300	X - (1.46	Y-26.6/2
N301	X ().	Y-26.676
N302	X ().46	Y-26.672
N303	X C	.921	Y-26.66
N304	X 1	381	Y-26 64
M205	v 1	Q /	v_{-26} 612
11202			1-20.012 W 26 F76
10300	A 2	4.299	1-20.5/6
N307	X 2	2.758	Y-26.533
N308	X 3	3.215	Y-26.481
N309	х З	3.672	Y-26.422
N310	x 4	1.127	Y-26 354
N211	x /	L 500	V-26 270
	v ·		1 20.219 V 26 100
	A 5	0.035	1-20.190
N313	X 5	.486	Y-26.105
N314	X 5	5.936	Y-26.007

N315	Х	6.384	Y-25.9
N316	Х	6.83	Y-25.786
N317	Х	7.274	Y-25.665
N318	Х	7.716	Y-25.535
N319	Х	8.156	Y-25.398
N320	Х	8.593	Y-25.254
N321	Х	9.027	Y-25.102
N322	х	9.459	Y-24.942
N323	x	9.888	Y-24.775
N324	x	10 315	Y = 24 601
N325	x	10.738	v_{-24} 419
M326	v	11 158	v_{-24} 23
M320	v	11 574	v_{-24} 034
M220	v	11 007	V_22 83
M220	v	10 207	1 23.05 V 22 62
N229	A V	10 000	1-23.02 V 22 402
UCCN	A V	12.003	I-23.402
TSSN MSST	X	13.205	Y 22 047
N33Z	A V	12.003	1-22.94/ W 22 700
N333	х 	13.997	Y-22.708
N334	Х	14.387	Y-22.463
N335	Х	14.772	Y-22.212
N336	Х	15.153	Y-21.954
N337	Х	15.53	Y-21.689
N338	Х	15.902	Y-21.417
N339	Х	16.269	Y-21.14
N340	Х	16.632	Y-20.856
N341	Х	16.989	Y-20.566
N342	Х	17.342	Y-20.269
N343	Х	17.689	Y-19.967
N344	Х	18.031	Y-19.659
N345	Х	18.368	Y-19.344
N346	Х	18.699	Y-19.025
N347	Х	19.025	Y-18.699
N348	Х	19.344	Y-18.368
N349	Х	19.659	Y-18.031
N350	Х	19.967	Y-17.689
N351	Х	20.269	Y-17.342
N352	Х	20.566	Y-16.989
N353	х	20.856	Y-16.632
N354	х	21.14	Y-16.269
N355	х	21.417	Y-15.902
N356	x	21.689	Y-15.53
N357	x	21 954	Y-15 153
N358	x	22.001	v_{-14} 772
N359	x	22.212 22 463	v_{-14} 387
M360	v	22.103	v_13 007
N261	v	22.700	v_{-13} 603
TOCM	A V	ムム・フォ/ クク 1 7 0	x = 12.003
	A V	23.1/8 22 /02	1 - 13.205
LOCA	A V	23.4UZ	1-12.0U3
N364	X	43.04	I-IZ.39/
N305	X	43.83	I-II.98/
N366	X 	24.034	x-11.5/4
N367	Х	24.23	Y-11.158
N368	Х	24.419	Y-10.738

N369	Х	24.601	Y-	-10.315
N370	Х	24.775	Υ	-9.888
M371	x	24 942	v	-9 459
	v	21.912	v	0 0 0 7
11372	л 	25.102	ĭ	-9.027
N373	Х	25.254	Y	-8.593
N374	Х	25.398	Y	-8.156
N375	Х	25.535	Y	-7.716
M376	v	25 665	v	_7 274
	37		1 77	6 02
N3//	A	25.780	ĭ	-0.83
N378	Х	25.9	Y	-6.384
N379	Х	26.007	Y	-5.936
N380	Х	26.105	Y	-5.486
N381	x	26 196	v	-5 035
NT202	v	20.120	v	4 600
11202	л 	20.279	ĭ	-4.502
N383	Х	26.354	Y	-4.127
N384	Х	26.422	Y	-3.672
N385	Х	26.481	Y	-3.215
N386	х	26.533	Y	-2.758
M387	v	26 576	v	_2 299
11307		20.570	1	1 04
N388	Х	26.612	Y	-1.84
N389	Х	26.64	Y	-1.381
N390	Х	26.66	Y	-0.921
N391	Х	26.672	Y	-0.46
N392	x	26 676	v	0
11202	v	20.070	v	0.46
N393	х 	20.072	ĭ	0.46
N394	Х	26.66	Y	0.921
N395	Х	26.64	Y	1.381
N396	Х	26.612	Y	1.84
N397	Х	26.576	Y	2.299
N398	x	26 533	v	2 758
NT200	v	26.333	v	2.750
11399	л 77	20.401	1	3.213
N400	х 	20.422	ĭ	3.072
N401	Х	26.354	Y	4.127
N402	Х	26.279	Y	4.582
N403	Х	26.196	Y	5.035
N404	x	26 105	Y	5 486
N/05	v	26 007	v	5 936
M40C	77	20.007	1 77	6 204
N406	A	25.9	ĭ	0.384
N407	Х	25.786	Y	6.83
N408	Х	25.665	Y	7.274
N409	Х	25.535	Y	7.716
N410	Х	25.398	Y	8.156
M411	x	25 254	v	8 593
NT410	77	25.254	1 77	0.000
N41Z	л 	25.102	ĭ	9.027
N413	Х	24.942	Y	9.459
N414	Х	24.775	Y	9.888
N415	Х	24.601	Y	10.315
N416	Х	24.419	Y	10.738
N417	x	24 22	v	11 158
N110	21 V	21.22	T V	11 574
TATO	A 	24.034	1	11 000
N419	Х	23.83	Y	TT.987
N420	Х	23.62	Y	12.397
N421	Х	23.402	Y	12.803
N422	Х	23.178	Y	13.205

N423	Х	22.947	Y	13.603
N424	Х	22.708	Y	13.997
N425	Х	22.463	Y	14.387
N426	Х	22.212	Y	14.772
N427	х	21,954	Y	15,153
N428	v	21 689	v	15 53
N720	N V	21.007	v	15.000
N429	л 77	21.41/ 01 14	ĭ	10.902
N430	X	21.14	Y	16.269
N431	Х	20.856	Y	16.632
N432	Х	20.566	Y	16.989
N433	Х	20.269	Y	17.342
N434	Х	19.967	Y	17.689
N435	Х	19.659	Y	18.031
N436	Х	19.344	Y	18.368
N437	Х	19.025	Y	18.699
N438	х	18.699	Y	19.025
N439	x	18 368	Y	19 344
N440	v	18 031	v	10 650
N///1	v	17 699	v	10 067
NTTTT	N	17 242	T V	19.907
N44Z	A	16 000	ĭ T	20.209
N443	X	16.989	Y	20.566
N444	Х	16.632	Y	20.856
N445	Х	16.269	Y	21.14
N446	Х	15.902	Y	21.417
N447	Х	15.53	Y	21.689
N448	Х	15.153	Y	21.954
N449	Х	14.772	Y	22.212
N450	Х	14.387	Y	22.463
N451	Х	13.997	Y	22.708
N452	Х	13.603	Y	22.947
N453	х	13,205	Y	23,178
N454	x	12 803	Ŷ	23 402
N455	x	12 397	v	23.62
M/E6	v	11 007	v	23.02
N450	A V	11 574	T	43.03
N45/	A	11.5/4	ĭ T	24.034
N458	X	11.158	Y	24.23
N459	Х	10.738	Y	24.419
N460	Х	10.315	Y	24.601
N461	Х	9.888	Y	24.775
N462	Х	9.459	Y	24.942
N463	Х	9.027	Y	25.102
N464	Х	8.593	Y	25.254
N465	Х	8.156	Y	25.398
N466	Х	7.716	Y	25.535
N467	Х	7.274	Y	25.665
N468	x	6 83	Y	25 786
N469	x	6 384	v	25 9
N470	v	5 024	v	25.5
	A V	5,930	T T	20.007
1N4 /⊥ M470	A 37	5.400	I V	20.105
N4/2	X Y	5.035	ľ	20.196
N4/3	X	4.582	Y	20.279
N474	Х	4.127	Y	26.354
N475	Х	3.672	Y	26.422
N476	Х	3.215	Y	26.481

N477	Х	2.758	Υ	26.533
N478	Х	2.299	Y	26.576
N479	Х	1.84	Y	26.612
N480	Х	1.381	Y	26.64
N481	Х	0.921	Y	26.66
N482	Х	0.46	Y	26.672
N483	Х	Ο.	Y	26.675

Ν	63	Х	10.	03	00	Y	16.9524
Ν	64	Х	10.	01	79	Y	17.2283
Ν	65	Х	9.	99	89	Y	17.5041
Ν	66	Х	9.	97	27	Y	17.7791
Ν	67	Х	9.	93	86	Y	18.0540
Ν	68	Х	9.	89	65	Y	18.3269
Ν	69	Х	9.	84	73	Y	18.5988
Ν	70	Х	9.	79	01	Y	18.8697
Ν	71	Х	9.	72	59	Y	19.1385
Ν	72	Х	9.	65	46	Y	19.4054
Ν	73	Х	9.	57	64	Y	19.6703
Ν	74	Х	9.	49	01	Y	19.9331
Ν	75	Х	9.	39	67	Y	20.1941
Ν	76	Х	9.	29	54	Y	20.4508
Ν	77	Х	9.	18	80	Y	20.7056
Ν	78	Х	9.	07	37	Y	20.9575
Ν	79	Х	8.	95	22	Y	21.2063
Ν	80	Х	8.	82	38	Y	21.4511
Ν	81	Х	8.	68	94	Y	21.6919
Ν	82	Х	8.	54	79	Y	21.9297
Ν	83	Х	8.	39	93	Y	22.1635
Ν	84	Х	8.	24	49	Y	22.3921
Ν	85	Х	8.	08	43	Y	22.6179
Ν	86	Х	7.	91	78	Y	22.8376
Ν	87	Х	7.	74	51	Y	23.0544
Ν	88	Х	7.	56	56	Y	23.2650
Ν	89	Х	7.	38	19	Y	23.4707
Ν	90	Х	7.	19	13	Y	23.6713
Ν	91	Х	6.	99	57	Y	23.8669
Ν	92	Х	6.	79	50	Y	24.0576
Ν	93	Х	6.	58	94	Y	24.2411
Ν	94	Х	6.	37	86	Y	24.4208
Ν	95	Х	6.	16	19	Y	24.5933
Ν	96	Х	5.	94	21	Y	24.7599
Ν	97	Х	5.	71	65	Y	24.9203
Ν	98	Х	5.	48	.7.7	Y	25.0749
N	99	Х	5.	25	39	Y	25.2234
NJ	_00	Х	5.	01	61	Y	25.3648
N1	.01	Х	4.	77	53	Y	25.4992
NI	.02	Х	4.	53	05	Y	25.6277
NI	_03	X	4.	28	16	Y	25.7490
NI	_04	X	4.	02	98	Y	25.8634
N	.05	X	3.	-77	51	Y	25.9707
NJ	_06	Х	3.	51	81	Y	26.0721
N1	.07	X	3.	25	73	Y	26.1654
N]	80.	Х	2.	99	44	Y	26.2516
N]	-09	Х	2.	12	95	Y	26.3299
N]	10	Х	2.	46	27	Y	26.4011
Ν1	.11	Х	2.	19	38	Y	26.4653

N112	x	1	91	229	v	26	52	25
N113	x	1	61	510	v	26	57	125
N114	x	1	יס. צי	781	v	26	61	37
N115	x	1	. 5	131	v	26	64	179
N116	x	0	۰±۰ ۵٬	283	v	26	67	129
N117	x	0	502	524	v	20.	60	120
N118	x	0	2	774	v	20.	70	50
N110	x v	_0	. 2)))))	v	20.	70	180
N120	x v	_0	.00	502	v	20.	71	27
M121	v	_0	۰ ۱ (221	v	20.	70	174
N122	x v	_1	. 29	242	v	20.	60) 121
N122	x	_1	. 30	145	v	20.	66	31 397
M124	x	-2	. U 3(147	v	20.	63	272
N125	x	-2	. 50	553	v	20.	50	970
M126	v	_ 2	2	225	v	20.	54	168
N120	x v	-3	<u>د م</u>	220	v	20.	48	200
M128	x v	_4	1	280	v	20.	42)) 1 (1
M120	x v	_4	• ⊥ •	342	v	20.		156
N130	x	-5	.04	182	v	20.	26	150
N131	x	-5	. U 5(102	v	20.	16	(93) (97)
N132	x	-5	. J(500	v	20.		396
N133	x	-6	.). २0	995	v	20.	96	508
N134	x	-6		160	v	25	84	49
N135	x	-7	20	207	v	25	72	19
N136	x	-7	- 2-	222	v	25	50	102
N137	x	- 8	. / . 1 '	737	v	25	45	317
N138	x	-8	۰ ــــ	114	v	25	30) /) 6 5
M130	x	_9	04	160	v	25	1 5	34
N140	x	_9	. U 4'	787	v	23.	a c)] I 1] [
N141	x	_9	90	, o , 183	v	21.	82	20
N142	-X	.10		362	v	21.	65	502
N143	-X	-10		592	v	21.	46	576
N144	-X	-11	18	306	v	21.	27	790 780
N145	-X	.11	(374	v	21.	0.2	×14
N146	-X	-12	0-	111	v	21.	87	70
N147	-X	-12	۔ ۰ . ۲	219	v	23.	66	564
M148	-X	-12	. 12 8'	285	v	23.	44	178
N149	-X	-13	22	312	v	23.	22	22
N150	-x	-13	6	300	v	22.	ac	115
N151	-X	-14	0.	245	v	22.	75	18
N152	-X	.14	<u>د</u> م.	151	v	22.	50) E U
N153	-X	.14	. 1.		v	22.	25	344
N154	-X	.15	19	207	v	22.	g c	956
N155	- X	.15	(500	v	21	72	000
N156	х-	-15	.د. م	222	v	21 21	45	570
N157	х-	-16	・ノ、 つ(202	v	21 21	17	,, Z 194
N158	х-	-16	- 23 64	522	v	2⊥. 2∩	т / дс)46
N159	- X	-17	01	207	v	20.	60	137
N160	х-	- 1 7	יע. יצי	741	v	20.	20	, , , ,) , Q
		/		<i>i</i> <u> </u>	+	<u> </u>		

B.2 Code G corrigé pour la finition d'un profil circulaire de 36.200 mm de rayon

NT1 C 1	V 17 7014	37	20 0020
NTOT	X-1/./214	ĭ	20.0029
N162	X-18.0637	Y	19.6939
N163	X-18.4008	Y	19.3780
N164	X-18.7320	Y	19.0580
N165	X-19 0582	Y	18 7310
N166	v_10 2772	v	18 2000
N1C7	X 10 C022	T V	10.3990
NIC/	X-19.6923	ĭ	18.0610
NI68	X-20.0006	Y	17.7182
N169	X-20.3028	Y	17.3705
N170	X-20.6001	Y	17.0167
N171	X-20.8905	Y	16.6590
N172	X-21.1750	Y	16.2954
N173	x-21 4525	Y	15 9279
N17/	x_{-21} 7251	v	15 5552
	X 21.7251	1 77	15.3333
NI/5	X-21.9907	1 	15.1//8
N176	X-22.2493	Y	14.7963
N177	X-22.5009	Y	14.4108
N178	X-22.7465	Y	14.0203
N179	X-22.9862	Y	13.6257
N180	X-23.2178	Y	13.2272
N181	x-23.4424	Y	12.8247
N182	x-23 6610	v	12 4180
NT102	X 23.0010	v	12.4100
NTO 2	X-23.0/10	1	12.0075
N184	X-24.0/62	Y	11.5939
N185	X-24.2729	Y	11.1773
N186	X-24.4626	Y	10.7568
N187	X-24.6454	Y	10.3331
N188	X-24.8204	Y	9.9057
N189	X-24.9890	Y	9.4764
N190	X-25 1507	v	9 0441
NT1 Q 1	x_25.2047	v	8 6007
NI 0 0	X-2J.3047	T V	0 1704
NI9Z	X-25.4508	1 	8.1/24
NT93	X-25.5899	Y	7.7322
N194	X-25.7222	Y	7.2896
N195	X-25.8455	Y	6.8452
N196	X-25.9618	Y	6.3988
N197	X-26.0711	Y	5.9500
N198	X-26.1713	Y	5.4994
N199	X-26.2645	Y	5.0476
N200	X-26.3496	Y	4.5936
N201	X-26,4266	Y	4.1379
N202	x-26 4965	v	3 6816
NT202	x_26 5573	v	2 2227
N207	x 26.5575	v	2 7652
NOOF	X = 20.0110	T V	2.7055
NZU5	X-20.0550	ĭ	2.3052
NZU6	X-26.6930	Y	1.8449
N207	X-26.7224	Y	1.3846
N208	X-26.7436	Y	0.9232
N209	X-26.7567	Y	0.4607
N210	X-26.7617	Y	-0.0007
N211	X-26.7585	Y	-0.4623
N212	X-26.7471	Y	-0.9248
N213	X-26.7276	Y	-1.3863
N214	X-26.7000	Y	-1.8469
		_	

N215	X-26.6642	Y -2.3073
N216	X-26.6213	Y -2.7680
N217	X-26.5693	Y -3.2264
N218	X-26.5102	Y -3.6852
N219	X-26.4421	Y -4.1415
N220	X-26.3670	Y -4.5981
N221	X-26.2838	Y -5.0527
N222	X-26.1928	Y -5.5051
N223	X-26.0947	Y -5.9570
N224	X-25.9879	Y -6.4065
N225	X-25.8741	Y -6.8540
N226	X-25.7533	Y -7.3000
N227	X-25.6236	Y -7.7436
N228	X-25.4868	Y -8.1853
N229	x-25.3430	Y -8.6242
N230	X-25.1911	Y -9.0600
N231	x = 25, 0.312	Y -9 4937
N232	x = 24 8642	Y -9 9244
N233	x-24 6900	Y = 10 3533
N234	x = 24 5078	v = 10.7780
N235	x_{-24} 3185	v_11 1997
N236	x = 24 1221	v_11 6175
N230	X_23_0177	v_{-12} 0319
M238	x_23.7177	v_{-12} 4438
M230	X_23.7071	v_{-12} 9512
N239	x = 23.4000 y = 23.2620	$V_{12} 2540$
N240	$x = 23 \cdot 2039$ $x = 23 \cdot 2039$	1 = 13.2549 V_12 6547
N241	x - 23.0322	1-13.0547 V 14 0502
N242	X-22.7920	1 - 14.0302
N243	X 22.3409	1 - 14.4417
NZ44	X-22.2952	1 - 14.0203
NZ45	X = 22.0304	1-15.2109 V 16 6006
NZ40	X-21.//04	I-15.5095
NZ4/	X-21.4976	I-15.9020
NZ48	X-21.2195	Y-16.3312
NZ49	X-20.9343	Y-16.6956
N250	X-20.6430	Y-17.0538
NZ51	X-20.3448	Y-17.4079
NZ5Z	X-20.0414	Y-17.7560
NZ53	X-19./319	Y-18.0991
NZ54	X-19.4155	Y-18.4369
N255	X-19.0949	Y-18./689
N256	X-18./6/3	Y-19.0959
N257	X-18.4349	Y-19.4156
N258	X-18.0963	Y-19.7315
N259	X-17.7528	Y-20.0403
N260	X-17.4044	Y-20.3431
N261	X-17.0499	Y-20.6409
N262	X-16.6913	Y-20.9318
N263	X-16.3267	Y-21.2165
N264	X-15.9583	Y-21.4940
N265	X-15.5846	Y-21.7667
N266	X-15.2060	Y-22.0322
N267	X-14.8233	Y-22.2907
N268	X-14.4366	Y-22.5420

N269	Х-	-14.0451	Y-22.7872
N270	X-	-13.6492	Y-23.0266
N271	X-	-13,2495	Y-23.2578
M272		12 8459	v_23 4820
		10 4201	1 23.4020
NZ/3	X-	-12.4381	Y-23.7003
N274	Х-	-12.0267	Y-23.9104
N275	X-	-11.6121	Y-24.1148
N276	X-	-11.1945	Y-24.3112
M277		10 7731	v_{-24} 5007
	77	10.7751	1 21.0007
NZ/8	Х-	-10.3485	1-24.6833
N279	Х	-9.9202	Y-24.8578
N280	Х	-9.4899	Y-25.0253
N281	Х	-9.0564	Y-25.1858
N282	x	-8 6208	Y-25 3383
11202	v	0 1004	V DE 4007
11203	л 	-0.1024	1-25.462/
N284	Х	-7.7410	Y-25.6199
N285	Х	-7.2972	Y-25.7502
N286	Х	-6.8518	Y-25.8712
N287	Х	-6.4043	Y-25,9851
M288	v	_5 9545	V-26 0920
11200	77		1 20.0920
N289	Х 	-5.5031	1-20.1897
N290	Х	-5.0504	Y-26.2803
N291	Х	-4.5958	Y-26.3629
N292	Х	-4.1394	Y-26.4373
N293	x	-3 6827	Y-26 5047
NT20/	v	-3 22/3	v_{-26} 5630
NOOF	л 17	-3.2243	1-20.5030
N295	Х	-2.7656	1-26.6143
N296	Х	-2.3053	Y-26.6564
N297	Х	-1.8448	Y-26.6915
N298	Х	-1.3844	Y-26.7184
N299	х	-0.9230	Y-26.7373
M300	v	-0 4607	v_{-26} 7480
ND00	77	0.4007	1 20.7400
TOCM	Λ	0.0008	1-20.7507
N302	Х	0.4619	Y-26.7452
N303	Х	0.9241	Y-26.7317
N304	Х	1.3853	Y-26.7102
N305	х	1.8454	Y-26.6807
N306	x	2 3053	V-26 6431
11300	37	2.3035	X 26 F006
N307	Х 	2.7055	1-20.5980
N308	Х	3.2233	Y-26.5451
N309	Х	3.6814	Y-26.4847
N310	Х	4.1371	Y-26.4155
N311	x	4 5931	Y-26 3394
NT212	v	E 0470	V 26 2555
	л 	5.0470	1-20.2555
N3T3	Х	5.4988	Y-26.1636
N314	Х	5.9498	Y-26.0647
N315	Х	6.3986	Y-25.9570
N316	Х	6.8453	Y-25.8422
N317	x	7 2902	y_{-25} 7204
NO10	v	,.2,03	V 25 F00C
ATC NI	A 	1.1330	1-72.20,00
N319	Х	8.1737	Y-25.4518
N320	Х	8.6116	Y-25.3070
N321	Х	9.0463	Y-25.1542
N322	Х	9.4790	Y-24.9933

N323	Х	9.9086	Y-24.8255
N324	Х	10.3364	Y-24.6507
N325	Х	10.7600	Y-24.4678
N326	Х	11.1806	Y-24.2781
N327	Х	11.5974	Y-24.0813
N328	Х	12.0109	Y-23.8767
N329	Х	12.4217	Y-23.6661
N330	Х	12.8284	Y-23.4475
N331	х	13.2311	Y-23.2229
N332	х	13.6299	Y-22.9913
N333	x	14.0245	Y-22.7518
N334	x	14 4151	Y-22 5061
N335	x	14 8008	Y-22 2545
N336	x	15 1824	Y-21 9958
M337	v	15 5600	v_{-21} 7301
M230	v	15 0225	v_{-21} 4574
M330	v	16 3000	v_{-21} 1706
ND 2 M	A V	16 6625	V 20 00/0
N340	A V	17 0010	1-20.0940 V 20.6040
N341	A V	17.0210	Y-20.6040
N342	X	17.3/44	Y-20.3062
N343	X	17.7219	Y-20.0035
N344	X	18.0644	Y-19.6947
N345	Х	18.4019	Y-19.3792
N346	Х	18.7335	Y-19.0595
N347	Х	19.0601	Y-18.7329
N348	Х	19.3797	Y-18.4014
N349	Х	19.6953	Y-18.0637
N350	Х	20.0040	Y-17.7212
N351	Х	20.3065	Y-17.3736
N352	Х	20.6041	Y-17.0200
N353	Х	20.8947	Y-16.6623
N354	Х	21.1793	Y-16.2986
N355	Х	21.4567	Y-15.9310
N356	Х	21.7293	Y-15.5583
N357	Х	21.9948	Y-15.1806
N358	Х	22.2534	Y-14.7990
N359	Х	22.5050	Y-14.4134
N360	Х	22.7506	Y-14.0228
N361	Х	22.9903	Y-13.6281
N362	Х	23.2222	Y-13.2296
N363	Х	23.4471	Y-12.8272
N364	Х	23.6662	Y-12.4207
N365	х	23.8773	Y-12.0103
N366	х	24.0825	Y-11.5968
N367	х	24.2797	Y-11.1804
N368	х	24.4699	Y-10.7599
N369	x	24.6531	Y-10.3362
N370	x	24.8283	Y -9.9088
N371	x	24 9965	Y _9 4792
N372	x	25 1576	Y -9 0465
N372	x	25 3107	Y -8 6117
N274	v	25.3107	Y = 8 1740
N375	n V	25.4557	x = 7 7222
M276	A V	23.323/ 25 70/7	x = 7.7333
0 / C M	Δ	27.1241	1 -1.2903

M377	v	25 8466	v	-6 8455
	N V	25.0400	T V	6 2007
	л 77	25.9015	T	-0.3907
N3/9	X	26.0695	Y	-5.9496
N380	Х	26.1684	Y	-5.4988
N381	Х	26.2604	Y	-5.0468
N382	Х	26.3443	Y	-4.5928
N383	Х	26.4201	Y	-4.1369
N384	Х	26.4890	Y	-3.6806
N385	x	26 5487	v	-3 2227
N286	v	26 6015	v	-2 7644
TO CM	A V	20.0013	T	-2.7044
N387	х 	20.0451	1	-2.3044
N388	Х	26.681/	Y	-1.8443
N389	Х	26.7103	Y	-1.3841
N390	Х	26.7307	Y	-0.9228
N391	Х	26.7432	Y	-0.4606
N392	Х	26.7477	Y	0.0006
N393	Х	26.7442	Y	0.4619
N394	Х	26.7327	Y	0.9242
N395	Х	26.7132	Y	1.3855
N396	х	26.6859	Y	1.8458
N397	x	26 6507	v	2 3060
M200	v	26.6086	v	2.3000
M200	A V	20.0000	T V	2.7000
N399	л 77	20.55//	1 V	3.2249
N400	X	26.4997	Ү 	3.6836
N401	Х	26.4328	Y	4.1400
N402	Х	26.3589	Y	4.5966
N403	Х	26.2769	Y	5.0513
N404	Х	26.1869	Y	5.5038
N405	Х	26.0898	Y	5.9558
N406	Х	25.9836	Y	6.4054
N407	Х	25.8704	Y	6.8530
N408	Х	25.7499	Y	7,2990
N409	х	25.6205	Y	7.7426
N410	v	25.0209	v	8 1843
N111	n v	25.4055	v	0.1045
NHII M410	A V	25.3402	T	0.0232
N412	X	25.1884	Y	9.0590
N413	Х	25.0286	Y	9.4927
N414	Х	24.8618	Υ	9.9234
N415	Х	24.6878	Y	10.3523
N416	Х	24.5058	Y	10.7771
N417	Х	24.3167	Y	11.1989
N418	Х	24.1205	Y	11.6167
N419	Х	23.9164	Y	12.0312
N420	Х	23,7059	Y	12,4431
N421	x	23 4875	Y	12 8506
N422	x	23 2629	v	13 2543
NT/ 22	v	23.2025	v	12 6540
M423	A V	23.0311 22.7015	T V	14 0404
N424	X 	22./915	ľ	14.0494
N425	X	22.5457	Y	14.4409
N426	Х	22.2938	Y	14.8274
N427	Х	22.0349	Y	15.2099
N428	Х	21.7689	Y	15.5884
N429	Х	21.4961	Y	15.9617
N430	Х	21.2182	Y	16.3302

N431	Х	20.9333	Y	16.6948
N432	Х	20.6426	Y	17.0534
N433	Х	20.3449	Y	17.4080
N434	Х	20.0422	Y	17.7567
N435	Х	19.7334	Y	18.1006
N436	х	19.4178	Y	18,4392
N437	x	19 0980	Ŷ	18 7720
N438	x	18 7711	v	19 0998
M439	x	18 4393	v	19 4203
N1440	v	19 1012	v	10 7270
N440	N V	17 7502	ı v	20 0465
N441	A V	17 /101	T V	20.0403
N442	A V	17.4101	ĭ	20.3499
N445	A V	16 6075	ĭ	20.0403
N444	х 	16.69/5	Y	20.9397
N445	X	16.3331	Y	21.2249
N446	Х	15.9649	Y	21.5030
N447	Х	15.5913	Y	21.7762
N448	Х	15.2128	Y	22.0423
N449	Х	14.8303	Y	22.3014
N450	Х	14.4438	Y	22.5535
N451	Х	14.0524	Y	22.7994
N452	Х	13.6567	Y	23.0394
N453	Х	13.2570	Y	23.2713
N454	Х	12.8534	Y	23.4959
N455	Х	12.4454	Y	23.7146
N456	Х	12.0339	Y	23.9249
N457	Х	11.6188	Y	24.1292
N458	Х	11.2008	Y	24.3252
N459	Х	10.7789	Y	24.5141
N460	Х	10.3536	Y	24.6958
N461	Х	9.9247	Y	24.8692
N462	х	9.4936	Y	25.0355
N463	x	9.0595	Y	25.1947
N464	x	8 6232	v	25 3458
N465	x	8 1842	v	25 4886
N466	x	7 7423	v	25.1000
M467	v	7 2980	v	25.0213
M468	v	6 8521	v	25.7550
N460	v	6 4027	v	25.0725
N409	A V	0.4037 E 0E21	T V	25.9020
N470	A V	5.9521	ĭ	26.0010
N471	A V	5.4994	ĭ	20.1/12
N472	A	5.0459	ĭ T	20.2555
N4/3	X	4.5909	Y	26.3328
N474	X	4.1343	Y	26.4029
N475	Х	3.6778	Y	26.4668
N476	Х	3.2197	Y	26.5224
N477	Х	2.7616	Y	26.5718
N478	Х	2.3019	Y	26.6128
N479	Х	1.8422	Y	26.6474
N480	Х	1.3825	Y	26.6744
N481	Х	0.9219	Y	26.6937
N482	Х	0.4602	Y	26.7053
N483	Х	0.0002	Y	26.7080