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Axioms as Definitions:
Revisiting Poincaré and Hilbert

Laura Fontanella
Université Aix-Marseille, CNRS,

Institut de Mathématiques de Marseille, Marseille (France)

Résumé : Un problème fondamental dans la réflexion sur les fondements des
mathématiques consiste à déterminer ce qu’est un axiome. Cette question est
spécialement importante en vue de l’étude de nouveaux axiomes pour la théorie
des ensembles (tels que les axiomes de grands cardinaux) dont la légitimité est
fortement controversée ; cet article s’insère dans le débat. En analysant les
écrits de Poincaré et de Hilbert, nous observons que, malgré les différences
profondes dans la pensée de ces deux logiciens, ils parvinrent à la même
conception des axiomes de la géométrie qui ne seraient que des définitions
déguisées. Nous généralisons cette conception des axiomes comme définitions
de concepts à n’importe quel système axiomatique (en particulier aux axiomes
de la théorie des ensembles).

Abstract: A fondamental problem in the discussion on the foundations of
mathematics is to clarify what an axiom is. This is especially important in the
light of the most recent advances in set theory where new axioms have been
proposed whose legitimacy is highly controversial (for example, large cardinal
axioms); this paper is a contribution to this discussion. By analysing the
view of Poincaré and Hilbert on axioms, we observe that, despite the deep
differences in their philosophical thinking, the two logicians came to the same
conception of the axioms of geometry as definitions in disguise. We revisit
and generalise this view by arguing that any axiomatic system (set theory in
particular) is the definition of some concepts.

1 Introduction
Before the development of non-Euclidean geometries in the 19th century, the
axioms of Euclid’s Elements were regarded as absolute principles formalising

Philosophia Scientiæ, 23(1), 2019, 167–183.



168 Laura Fontanella

the basic laws of space. The introduction of hyperbolic and elliptic geometries
challenged the dominant view on the a prioricity of geometry; if the principles
of geometry were a priori, their violation would lead to a contradiction,
instead, different geometries are possible. Despite the deep differences in their
philosophical views, Poincaré and Hilbert came to the same conception of the
axioms of geometry: they are definitions in disguise; rather than asserting
undeniable truths, they fix the meaning of the basic terms of geometry (point,
line, etc.) that would otherwise remain undefined. The main purpose of
this paper is to extend Poincaré’s and Hilbert’s account of geometry to any
axiomatic system.

Nowadays, mathematicians no longer consider geometry as a body of
indisputable principles. Pluralism in geometry is safely accepted; in fact,
contemporary geometers study different geometries and this has valuable
applications to physics or even cryptography and coding theory. On the other
hand, it is generally believed that the axioms of theories such as set theory or
arithmetic have a different status, that they should have a non-conventional,
possibly intrinsic, justification. In the words of Feferman:

When the working mathematician speaks of axioms, he or she
usually means those for some particular part of mathematics such
as groups, rings, vector spaces, topological spaces, Hilbert spaces,
and so on. These kinds of axioms have nothing to do with self-
evident propositions, nor are they arbitrary starting points. They
are simply definitions of kinds of structures which have been rec-
ognized to recur in various mathematical situations. I take it that
the value of these kinds of structural axioms for the organization
of mathematical work is now indisputable. In contrast to the
working mathematician’s structural axioms, when the logician
speaks of axioms, he or she means, first of all, laws of valid
reasoning that are supposed to apply to all parts of mathematics,
and, secondly, axioms for such fundamental concepts as number,
set and function that underlie all mathematical concepts; these are
properly called foundational axioms. [Feferman, Friedman et al.
2000, 403]

We will question Feferman distinction between structural and foundational
axioms by presenting a new approach to axioms, inspired by Poincaré’s and
Hilbert’s account of geometry, that considers any axiomatic system as the
definition of some concepts. We will focus in particular on set theory and
argue that this can be regarded as an axiomatic definition of the concept of
“set”.

The paper is structured as follows. In section 2 we briefly explain the
motivations for the present work. In sections 3 and 4, we discuss Poincaré’s
and Hilbert’s conception of geometry, and we outline our broader conceptual
approach to all axiomatic systems. In section 5 we propose a non-literal
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interpretation of the axioms of ZFC that justifies our view of set theory
as a definition. Moreover, in this section we suggest that the very nature
of the concept of “set” should not be sought in the idea of a collection of
objects regarded as a totality in its own right, but rather in the possibility
of performing specific operations on such collections. Finally, in section 6 we
argue that our view point on set theory ties up with set theoretic pluralism.

2 Motivations for this work

Whilst axiomatic set theory was originally meant to provide a foundation for
all mathematics, the development of forcing led to the discovery that many
important mathematical problems cannot be solved within the classical theory
of sets ZF. Several additional axioms have been introduced over the years that
partially answer some of the questions that are independent from ZF: large
cardinals axioms, forcing axioms, the axiom of determinacy and projective
determinacy and others. This variety of strong principles, often incompatible
with each other, led to debate what should be suitable criteria for new axioms
for set theory. Several suggestions have been made which appeal to intrinsic
or extrinsic criterias of various kind [see for instance Maddy 1988a,b], but the
discussion largely depend on some preliminary questions: what foundational
role shall we expect from set theory? Is there one absolute set theory? This
paper is meant as a contribution to this discussion. We will argue that
pluralism in set theory is the natural consequence of our approach to axioms
as definitions: each theory of set is equally legitimate as a definition of the
concept of “set” (see section 6).

Whether or not an axiom system is a definition in disguise is not just
a linguistic matter, but changes the perspective on the role of axioms in
mathematics and the goal of set theory. By arguing that any axiomatic
system is the definition of some concepts, we intend to oppose to the very idea
that the axioms of a theory express absolute mathematical truths. Thus, our
view challenges the foundational role traditionally ascribed to set theory: we
cannot expect for set theory to legitimate mathematical knowledge, although
it can still aim at a fundamental role, namely providing a conceptual basis
for mathematics by determining a concept of “set” as general as possible to
embrace all suitable mathematical notions. More details about our view of the
role of set theory for mathematics will be given in section 6.

We shall first clarify something that may easily lead to a misunderstanding.
Every definition contains a sign or expression which had no meaning before
and whose meaning is given by the definition. In mathematics it is quite
common to introduce axiomatic definitions of symbols that are not included
in the language of the theory considered. More precisely, suppose we have a
theory T written in a language L and we want to define a new symbol R
(a singular term, a predicate or a function) that is not in the language L ;
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we can give a definition of R through sentences in the expanded language
L + {R}. These are called implicit definitions. Beth definability theorem
establishes that, in first order logic, every implicit definition is equivalent to
an explicit definition, namely one that depends on a formula of the original
language L of the theory. Nevertheless, axiomatic definitions of this kind
(implicit or explicit) require a background theory. In what sense then, can
axiomatic systems that do not have a background theory, such as set theory,
be regarded as definitions? We shall answer that in that case, the axioms fix
the very meaning of the non-logical symbols of the language of the theory (i.e.,
the signature of the theory), such as ∈ and = in the case of set theory. These
symbols are defined simultaneously through the axioms which establish their
mutual relations with each other. Thus, as we will see, the axioms provide a
system of relations between the terms so defined. To simplify the terminology,
we will just say that the axioms of set theory define the concept of “set”, or the
axioms of arithmetic define the concept of “number”, where what we actually
mean is that set theory defines the symbols ∈ and =, arithmetic defines 0, S,
+ and ×, and so on.

3 Poincaré’s account of geometry

Let us briefly discuss the evolution of geometry that led to the introduction
of non-Euclidean geometries. Euclid’s Elements is the first axiomatic pre-
sentation of a branch of mathematics; in this work, geometry is developed
through five “axioms” and five “postulates”. It is quite difficult to clarify
the precise distinction between these two notions. For Aristotle an “axiom”
is a self-evident proposition stating some general truth that is common to
all sciences, while a “postulate” concerns only a specific science. It is not
clear what meaning Euclid accorded to these two notions and whether or
not he shared Aristotle’s distinction; in any case, we can grant that in the
philosophical tradition of the ancient Greeks both “axioms” and “postulates”
shared the character of being undeniable statements. Nevertheless, one of
Euclid’s postulates, the fifth, was quite controversial.

The fifth postulate, also called “parallel postulate”, can be stated as
follows: Given a straight line and a point outside the line, there is one and
only one straight line passing through the point which is parallel to the given
one. Unlike the other principles of Euclid’s axiomatisation, the legitimacy of
the parallel axioms as a postulate was repeatedly questioned. While it was
generally believed to be true, the common opinion seems to have been that it
ought to be proved. There is evidence that Euclid himself tried to derive it
from the other axioms and postulates before including it in his axiomatisation.
Over the centuries, several attempts to find a demonstration of the parallel
postulate (from the other axioms) were made, unsuccessfully. Then, in the
19th century, Lobachevskii, Bolyai, Gauss and Riemann considered various
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negations of the fifth postulate: the parallel postulate was replaced by the
statements asserting the existence of more than one straight line (hyperbolic
geometry) or no straight line (elliptic geometry) passing through the point
and parallel to the given one. The resulting geometries were later proven
to be consistent by Beltrami in 1868 (assuming the consistency of Euclid’s
geometry). For instance, the consistency of elliptic geometry can be proven by
considering a sphere as a model, where the plane is identified with the surface
of the sphere, the straight lines are the great circles, and points at each other’s
antipodes are taken to be equal.

Poincaré’s analysis of these results is quite unassailable [see Poincaré 1902]:
the axioms of Euclid’s geometry do not establish experimental facts, because
we do not have experience of ideal straight lines and points, nor they express
a priori knowledge for otherwise it would not be possible to violate the fifth
postulate without contradiction. What is, then, the nature of these axioms?
Poincaré’s answer is “they are definitions in disguise”.

The axioms of geometry are therefore neither synthetic a priori
intuitions nor experimental facts. They are conventions. Our
choice among all possible conventions is guided by experimental
facts; but it remains free and is only limited by the necessity
of avoiding every contradiction [...]. In other words, the axioms
of geometry (I do not speak of those of arithmetic) are only
definitions in disguise. [Poincaré 1902, 75–76, translation mine]

Viewed as definitions the axioms are neither true, nor false.

What, then, are we to think of the question: Is Euclidean
geometry true? It has no meaning. One geometry cannot be more
true than another; it can only be more convenient [...] because
it sufficiently agrees with the properties of natural solids, those
bodies which we can compare and measure by means of our senses.
[Poincaré 1902, 76, translation mine]

Pluralism in geometry is the natural consequence of this approach which grants
absolute freedom for the formulation of new axiomatisations, provided they
do not lead to a contradiction. No geometrical system is absolute, although
one can be more appropriate than others for modelling certain aspects of the
physical universe. For instance, Euclidean geometry conforms to our daily
experience of the distance, length, dimension of the objects around us, while
elliptic geometry gives a better account for larger portions of the Earth: if we
consider any three items in our apartment and measure the sum of the internal
angles of the triangle formed by these items, the result of our measurement
would be 180◦ (approximatively) in accordance with the laws of Euclidean
geometry, on the contrary if we take one item in Paris, the second in Sidney
and the third in Buenos Aires the resulting value would be larger than 180◦
as elliptic geometry predicts.
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In this view, geometry is not concerned with the properties of the objects
to which the geometrical system is applied, but rather with the set of relations
that hold between the primitive terms. We shall then stress another important
aspect of Poincaré’s conception of geometry: the meaning of the basic terms
can only be fixed through their relations with each other, thus if we take a
primitive term out of the axiomatic system it would lose all meaning.

If one wants to isolate a term and exclude its relations with other
terms, nothing will remain. This term will not only become
indefinable, it will become devoid of meaning. [Poincaré 1900,
78, translation mine]

As we will see in section 4, analogous considerations can be found in Hilbert’s
writings: geometry defines a system of relations between the primitive terms
which are meaningless outside the axiomatic system.

Poincaré’s analysis of the other branches of mathematics is surely different.
In his view, arithmetic is actually synthetic a priori and its certainty is
guaranteed by the intuition. Mathematical induction, he says, is a synthetic
a priori principle which is “imposed upon us with such a force that we could
not conceive of the contrary proposition” [Poincaré 1902, 48]. Nevertheless,
we shall object that it is actually possible to consider an arithmetic where the
induction principle fails. For instance, Robinson Arithmetic Q is a version of
arithmetic without induction [see Robinson 1950], and one can easily exhibit a
model of Q where induction fails.1 In principle, then, we can extend the same
approach for geometry to arithmetic and regard its axioms not as absolute
indisputable truths but as mere definitions of certain terms, namely “zero”,
“successor”, “sum” and “product”. The very meaning of these terms changes
with the axiomatisations, thus “successor” means something different in Peano
Arithmetic and Robinson Arithmetics.

Concerning set theory, Poincaré was one of the most famous opponents
of modern set theory for its use of impredicative concepts. We will discuss
his criticisms in more detail in Section 5 and we will appeal precisely on
impredicative concepts to endorse our view that the axioms of set theory should
be regarded as definitions.

4 The Frege-Hilbert controversy
Hilbert’s first reference to axioms as definitions appears in his Grundlagen Der
Geometry [Hilbert 1899] where he says that his axiomatization of geometry

1. It is enough to consider the natural numbers plus two additional elements a and
b, then we interpret s and + as the natural successor function and addition operation
on the natural numbers, but we impose s(a) = a, s(b) = b, and for every natural
number n, a + n = a, b + n = n, for every element in the domain x, x + a = b
and x + b = a. This model can be easily shown to satisfy the axioms of Q, and the
induction fails as 0 + a = a while induction would imply for every x, 0 + x = x.
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should be intended as the definition of the concepts of “point”, “line” and
“plane”. Puzzled by this statement, Frege asks for an explanation [see Frege
1980]; the exchange that followed enlighten us about the two logicians’ general
views on the role of axioms in mathematics.

Frege objects that axioms should be assertions, while definitions do not
assert anything, but lay down something. Hilbert replies:

In my opinion, a concept can be fixed logically only by its
relations to other concepts. These relations formulated in certain
statements, I call axioms, thus arriving at the view that axioms
(perhaps together with propositions assigning names to concepts)
are the definitions of the concepts. [Hilbert, letter to Frege
22.09.1900, translated in [Frege 1980, 51]]

Furthermore, the meaning of the terms so defined is tangled with the
axioms chosen, and a different axiomatisation would change the meaning of
the terms.

[...] to try to give a definition of a point in three lines is to my mind
an impossibility, for only the whole structure of axioms yields
a complete definition and hence every new axiom changes the
concept. [Hilbert, letter to Frege 29.12.1899, translated in [Frege
1980, 40]]

We shall rephrase this thought. Imagine we were asked to provide a precise
definition for every geometrical notion. Then, for instance, we would define the
notion of “triangle” as a “polygon” with three “edges” and three “vertexes”.
The notion of “polygon” is defined from the notion of “plane”, the notion of
“edge” can be defined from the notion of “line”, and “vertex” is defined from
“point”. At this point we are supposed to define “plane”, “line” and “point”,
but if we find a concept χ (or more concepts) that defines these notions, we
will have to find a definition for χ and so on, leading to an infinite regress.
Thus, as Hilbert says, we can define a concept only if we put it in relation to
other concepts. We can stop this process, if we define the notions of “point”,
“line” and “plane” axiomatically, namely by describing their relations to one
another through certain axioms.

This is apparently where the cardinal point of the misunderstand-
ing lies. I do not want to assume anything as known in advance;
I regard my explanation in sec. 1 as the definitions of the concepts
point, line, plane—if one adds again all the axioms of groups I to
V as characteristic marks. If one is looking for other definitions of
a “point”, e.g., through paraphrase in terms of extensionless, etc.,
then I must indeed oppose such attempts in the most decisive way;
one is looking for something one can never find, because there is
nothing there and everything gets lost and becomes vague and
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tangled and degenerates into a game of hide-and-seek. [Hilbert,
letter to Frege 29.12.1899, translated in [Frege 1980, 39]]

Analogous considerations can be made for the axioms of set theory. We
can define every mathematical notion, including the notion of “function” and
“number” from the notions of “set” and “membership” which can then be
“defined” trough a series of axioms (the case of set theory will be discussed
more extensively in section 5). In modern terms we say that the concept of
“set” is a primitive notion as it is not defined in terms of other concepts.
Nevertheless, the terminology “primitive notion” refers to something which is
undefined as it is in no need for a definition, because its meaning is immediately
understood; on the contrary, the view point that we want to defend here is
that primitive notions are actually “defined” through axioms in the sense that
the axiomatic system fixes their meaning in a formal and rigorous way.

Frege’s conception of axioms represents the dominant view at the time of
this correspondence with Hilbert:

I call axioms propositions that are true but are not proven because
our knowledge of them falls from a source very different from the
logical source, a source which might be called spatial intuition.
From the truth of the axioms it follows that they do not contradict
one another. There is therefore no need for a further proof.
[Hilbert, letter to Frege 27.12.1899, translated in [Frege 1980, 37]]

This evokes the delicate problem of mathematical truth. As we have seen,
after claiming that geometry is a definition, Poincaré concludes that, as such,
geometry is just a convention and its axioms are therefore neither true nor
false. Hilbert, instead, does not intend to give up the idea that geometry is a
body of truths. So in his reply to Frege, he does not deny the truth of axioms,
but explains that their correctness has to be demonstrated by showing that
they do not contradict each other.

I was very much interested in your sentence: “From the truth of
the axioms it follows that they do not contradict one another”,
because for as long as I have been thinking, writing, lecturing
about these things, I have been saying the exact reverse: if the
arbitrarily given axioms do not contradict one another with all
their consequences, then they are true and the things defined
by the axioms exist. This is for me the criterion of truth and
existence. [Hilbert, letter to Frege 29.12.1899, translated in [Frege
1980, 42]]

We should point out (as C. Franks brilliantly observes in [Franks 2009]) that,
despite this insistence on the necessity to prove the consistency of the axioms—
not just for geometry but in general—, Hilbert was not skeptical about the
correctness of mathematics, he simply had higher standard for what counts as
a proof of it. While he was convinced that mathematical experience speaks
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for the consistency of axioms, his goal was to show that mathematics could
stand on its own and prove its own consistency without appealing to extra-
mathematical justifications. Now, while the consistency of geometry can
be reduced to the consistency of analysis, it became clear very quickly to
Hilbert himself that the direct consistency of analysis (i.e., not relative to
another theory) would face significant difficulties. Hilbert hoped to ultimately
reduce all mathematics to a unique axiomatic system and then prove its direct
consistency. Today we know from Gödel’s incompleteness results that Hilbert’s
program cannot be accomplished.

For our part, by claiming that any axiomatic system is a definition, we
oppose to the very idea that axioms express absolute truths. While any axiom
takes the form of a sentence, it does not assert anything, it is meaningful only
insofar as it contributes with the other axioms of the system to the definition of
a concept. Thus, no axiom system expresses profound absolute mathematical
truths, it only defines certain concepts which may be more or less suitable for
modelling different things. Whatever is the source of mathematical knowledge,
or whether mathematics is simply not a body of truths, is not the object of
the present paper.

Hilbert further illustrates his view of the nature of the definition provided
by the axioms in yet another passage of this correspondence. Frege objects
that the basic concepts that are claimed to be defined by his axioms (“point”,
“line”, “plane”) are not unequivocally fixed. For instance, a “point” could be
a pair of numbers, a triple, a tuple and so on. Hilbert replies:

You say that my concepts, e.g., “point”, “between” are not
unequivocally fixed; e.g., “between” is understood differently on
p. 20, and a point is there a pair of numbers. But it is surely
obvious that every theory is only a scaffolding or schema of
concepts together with their necessary relations to one another,
and that the basic elements can be thought in any way one likes.
If in speaking of my points I think of some system of things, e.g.,
the system: love, law, chimney-sweep... and then assume all my
axioms as relations between these things, then my propositions,
e.g., Pythagoras’ theorem, are also valid for these things. [...]
At the same time, the further a theory has been developed and
the more finely articulated its structure, the more obvious the
kind of application it has in the world of appearances and it takes
a very large amount of ill will to want to apply the more subtle
propositions of plane geometry or of Maxwell’s theory of electricity
to other appearances than the ones for which they were meant...
[Hilbert, letter to Frege 29.12.1899, translated in [Frege 1980, 42]]

Thus the axioms do not point out concrete systems of things, altogether
they define a schema of concepts. To explain this view, we may consider,
as an analogy, the distinction between an individual and its shape: distinct
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individuals can have the same shape, since the axioms define the “shape” so
to speak, not the individuals.

Both Poincaré and Hilbert refer to the axioms of geometry as fixing the
relations between the primitive terms. In this attention for the structural
aspects of the axioms, we can perhaps see in the two logicians a hint of
modern structuralism. In fact, Shapiro refers to Hilbert’s kind of axiomatic
definitions as “structural definitions” [Shapiro 1999]. Nevertheless, one of
the main concerns of Ante Rem structuralism is categoricity, which does not
seem any of Hilbert’s worries as far as geometry is concerned2: in fact, in
the above passage, Hilbert seems to suggest that no system of things is the
unique possible interpretation of the axioms. Thus, in this view, the axioms
of geometry would most certainly not define an Ante Rem structure.

In the case of set theory, Shapiro’s structuralist approach to axioms
as definitions would be especially problematic, because neither ZFC, nor
second-order ZFC are categorical3 as Ante Rem Structuralism requires. More
importantly, Shapiro replaces the requirement of consistency of a theory with
the one of “satisfiability”, namely the existence of a model4, but as Shapiro
himself points out, satisfiability requires a background set theory where such
a model can be found, hence it cannot work as a reasonable criterion for set
theory itself.

In our view, the axioms of a theory do not entail any ontological
commitment to the schema of concepts so defined, the axioms only fix the
conditions for a certain system of things to match the schema. We shall
discuss this more precisely in the next section.

5 On the meaning of existential quantifiers

We mentioned Poincaré’s skepticism about set theory due to the use of
impredicative concepts. An example is given by the Powerset axiom which is
formally stated as ∀x∃y∀z(z ∈ y ⇐⇒ z ⊆ x). This sentence, if interpreted as

2. On the other hand, categoricity was for Hilbert an important issue in connection
with the reals.

3. Shapiro, however, remarks that second-order ZFC is quasi-categorical, namely if
M andM ′ are two standard models of second order ZFC, then eitherM is isomorphic
to M ′ or else one of them is isomorphic to an initial segment of the other. Quasi-
categoricity is enough to fix certain references, for example the empty set ω, and
others are unique up to isomorphism.

4. This is motivated by the observation that in second-order logic a theory can
be consistent and yet not have a model. In fact, there is no completeness theorem,
so if T is the conjunction of the second order axioms of Peano arithmetic and G is a
standard Gödel sentence that states the consistency of T, then by the incompleteness
theorem P ∧ ¬G is consistent, but it has no models because every model of P is
isomorphic to the natural numbers, hence G is true in all such models. Therefore,
despite its consistency, P ∧ ¬G fails at describing a possible structure.
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“given a set x, the set of all subsets of x exists”, involves a circularity, because
for this statement to make sense, one needs to assume the very possibility of
a totality of all subsets of x, precisely the Powerset of x. For this reason, if we
think of this axiom as legitimating the totality of all subsets of x, we run into a
circle. On the other hand, if one thinks that of statement as a way of “singling
out” something which is already available as a legitimate mathematical notion,
then the axiom is not problematic. In other words, for the axiom to make sense,
we need to assume that in the domain of discourse over which the variables
may range we already have something that plays the role of the the Powerset
of x, the axiom does not literarily establish its existence or legitimate it as a
valid mathematical notion, but only label it as a “set”. In this sense, the most
appropriate interpretation of the Powerset axiom would be “given a set x, the
Powerset of x is a set”.

In other words, the existential quantifiers in set theoretic sentences act as
filters of sets, namely as a way of selecting sets from other collections that
should not be regarded as sets. This interpretation is supported by Zermelo’s
terminology in his original axiomatisation of set theory:

Set theory is concerned with a “domain” of individuals, which
we shall call simply “objects” and among which are the “sets”.
[Zermelo 1908, 262] as translated in [Van Heijenoort 1967, 203]

Since we do not want to make any ontological commitment to the mathematical
notions that are involved in set theory, we will avoid the locution “object” and
we will talk of a “domain of legitimate mathematical notions” among which
are the “sets”. We shall not discuss the nature of the “legitimate mathematical
notions” (whether they exist as part of a platonic reality immutable and
independent from human thinking or they are just useful fictions) as this is
irrelevant to the main thesis of the present work that any axiom system is a
definition in disguise. Nor we will propose suitable criteria for establishing
the legitimacy of a given mathematical notion. We will simply assume that
the legitimate mathematical notions are previously available in the domain
of individuals where “sets” are selected. Analogous considerations can be
made for arithmetic where the existential quantifiers would act as “filters of
numbers”. Thus, in general, the existential quantifiers in a mathematical
sentence filter out the legitimate notions that fall into the concept defined
through the relevant axiom system.

Based on these considerations, we propose the following non-literal
interpretation of the axioms of ZFC.

– (Extensionality) Two sets are equal if they contain the same sets as
elements.

– (Pairing) Given two sets a and b, the pair {a, b} (the collection containing
exactly a and b as elements) is a set;

– (Separation) Given a formula ϕ(x, ~p) with sets parameters ~p, and given
a set a, the collection of all x in a that satisfy ϕ(x, ~p) is a set;
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– (Union) Given a set a, the union of a (the collection of all sets that
belong to some element of a) is a set;

– (Power Set) Given a set a, the collection of all subsets of a is a set;
– (Replacement) Given a function f(x) (defined with set parameters) and

a set a, the collection of all f(x) with x ∈ a is a set;
– (Foundation) A collection of sets that does not have an ∈-minimal

element is not a set;
– (Infinity) Consider all the collections of sets that contain the empty

set and are closed by the operation x 7→ x ∪ {x}, at least one of such
collections is a set;

– (Choice) For every family of nonempty sets which is itself a set, the
image of the choice function is a set.

Under this interpretation, the axioms of ZFC are not meant as instructions
for constructing mathematical objects, but rather as an axiomatic definition
of the word “set”.

The basic set theoretic operations such as the union, or the power set
of a set are not legitimated by the axioms, instead the possibility of those
operations is assumed in advance. The axioms state that the resulting
collections can be considered to be “sets”.

Formal existence is really a matter of what the axioms, taken as a whole,
determine to be a “set”. In fact, when we apply the existential quantifier to
a certain collection, we make the collection available for the other axioms. In
this sense, the whole theory ZF (or ZFC) defines the word “set”. Now, we
argue that the very nature of the concept of set should not be sought in the
idea of a collection of objects regarded as a totality in its own right, but rather
in the possibility of performing specific operations on such collections. To
support this claim, let us go back to the very origin of the concept of set, that
historians of mathematics date back to Cantor’s “derived point-set”.

It is a well determined relation between any point in the line and
a given set P to be either a limit point of it or no such point,
and therefore with the point-set P the set of its limit point is
conceptually co-determined; this I will denote P ′ and call the first
derived point-set of P . [Cantor, as quoted in [Ferreirós 2007, 143]]

At this point, Cantor applied the operation of derivation to the derived point-
set P ′, obtaining “the second derived point-set P ′′ and reiterated the process.
What is crucial here is that, before Cantor, there was already talk of sets and
collections of points. Therefore, Cantor’s original contribution should not be
sought in the concept of collections intended as totalities in their own right,
but rather in the very idea that such collections were available for certain
mathematical operations such as the derivation. In this spirit, we consider the
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concept of “set” to be related to the possibility of applying specific operations
to a given collection of objects.

To further illustrate this view, we should consider for instance the Axiom
of Choice, AC. The fact that AC was implicitly used in many mathematical
proofs, even before Zermelo’s explicit formulation, suggests that this was
generally accepted as a natural principle. Thus the choice function can be
regarded as a perfectly legitimate operation and the debate should not concern
the legitimacy of this function, but rather the idea that the collection of objects
derived from such a collection (namely the image of the choice function) can
be taken to be a “set”, that is whether it can be made available for the set
theoretic operations definable from the other axioms.

We shall, then, reconsider our approach to the thorny problem of the
choice of new axioms for set theory. When discussing the axiom of choice
or large cardinals axioms, we wonder whether or not a choice function exists,
inaccessible cardinals exist and so on. This leaves us under the impression that
the foundational goal of set theory is to detect which mathematical entities do
or do not exist, are or aren’t legitimate mathematical notions. But again it
would be naïve to think that set theory can dictate the terms for an ontology
of mathematics. In our perspective, the discussion over large cardinal axioms
should not be phrased in terms of existence or non-existence of large cardinals,
but rather as the problem of whether a certain “large” collection of ordinals can
be made available for the operations defined by the axioms of ZFC (or ZF)
without contradiction. In fact, in second-order logic one can define being
“(strongly) inaccessible” as a property of classes then, for instance, the class
of ordinals is inaccessible in this sense (provided this class is accepted as a
legitimate mathematical notion). Thus the legitimacy of large cardinals axioms
concerns the problem of whether or not any inaccessible collection can be taken
to be a set, namely whether one can apply the other set-theoretic operations
to such a collection without contradiction.

6 A multitude of concepts of set

We have outlined our view of the axioms of set theory as definitions in disguise.
In this perspective, a single axiom is not an assertion inherently true or false,
but the whole system of axioms defines the concept of “set”. It follows that by
adding or removing one or more axioms, we change the concept defined. So, in
particular, the concept of set defined by the theory ZF is different than the one
defined by the theory ZFC, or ZF+V=L, or ZF + ∃κ(κ is measurable). Now,
a definitional view point of axioms does not necessarily lead us to embrace a
wild formalist view of mathematics considered to be a meaningless game where
random theories are investigated together with their logical consequences. We
cannot rule out, for instance, the possibility of an inter-subjective or innate



180 Laura Fontanella

concept of set that would make some set theories “truer” than others to the
extent that they conform to the intended concept.

Nevertheless, the panorama of theories defended nowadays leaves little
hope for a universal agreement on a unique concept of set. Conflicting
intuitions are behind the most promising enrichments of ZF: on the one hand,
we have the idea that sets must be obtained by a cumulative process, namely
at each stage we throw in “the basket of sets” only those collections that
are obtained from the previous stages with operations that are definable
in a somehow “canonical” way—it is the case, for instance, of V=L or
V=Ultimate L—, on the other hand, we have more “liberal” axioms, such
as Forcing Axioms, where roughly anything that can be forced by some “nice”
forcing notions is in V, in other words it is a “set”.

This pluralism of concepts of sets brings us to support Feferman’s thesis
that the continuum hypothesis is an inherently vague question [see Feferman
2011–2012], although our arguments are somewhat different. The very
meaning of the continuum changes over the theories, indeed we may even agree
on what is a collection of natural numbers5, but which of those collections
are “sets” depends on the concept of “set” considered. Thus for instance,
in the framework of forcing axioms, all the collections of natural numbers
that can be forced by nice forcing notions are “sets”, thus the continuum is
quite large and, not surprisingly, CH fails (the strongest forcing axioms imply
that the continuum is ℵ2). On the contrary, the concept of “set” defined by
the theory ZF+V=L is more restrictive, thus only few collections of natural
numbers are sets in this theory, and in fact CH holds.

Now, if set theory is not a body of absolute truths, but a mere definition
of some concept, it is natural to wonder in what rests its role for mathematics.
The answer may be sought in the richness or abstractness of the concept
defined, as all the basic mathematical notions such as groups, vector spaces,
even numbers can be regarded as sets and can be made available for the set
theoretic operations definable from the axioms of the theory ZF. Thus the
goal of set theory does not consist in justifying the existence of mathematical
notions or the truth of mathematical propositions, the aim of a theory of sets
should be to define a notion of “set” as rich as possible to embrace every useful
mathematical notion.

On the basis of the “richness” of the underlying concepts of sets, we may
come to prefer one theory over the others. This line of thought brings us
to evoke a fact that is often considered to be a natural motivation for large
cardinals axioms. As pointed out by Steel,

The language of set theory as used by the believer in V=L
can certainly be translated into the language of set theory as
used by the believer in measurable cardinals, via the translation

5. The continuum is the size of R, or equivalently the size of the powerset of N.
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ϕ 7→ ϕL. There is no translation in the other direction. [Feferman,
Friedman et al. 2000, 423]

In other words, the concept of set carried by V=L can be expressed in the
theory of measurable cardinals, while the converse seems to be prima facie
impossible. Thus, the notions of “set” underlying the theory of large cardinals
is more expressive than V=L.

Nevertheless, Hamkins presented a serious challenge to this argument. He
showed that:

Even if we have very strong large cardinal axioms in our current
set-theoretic universe V, there is a much larger universe V + in
which the former universe V is a countable transitive set and the
axiom of constructibility holds. [Hamkins 2014, 29]

Thus, even the axiom of constructibility is rich enough to allow us to talk
about the concept of sets underlying large cardinals axioms within a model of
V = L.

It follows that the natural outcome of our definitional perspective is
pluralism, which in contemporary set theory is represented by the “multiverse
conception” (of which Hamkins is one of the main supporters [Hamkins
2012]). This can be described as the view that there are many distinct
and equally legitimate concepts of sets, as opposed to the “one universe
view” which in contrast asserts that there is only one absolute set concept
with a corresponding absolute set-theoretic universe where every set-theoretic
question has a definite answer. We should, however, add an important note:
some set theorists endorse the multiverse view as an extreme form of Platonism
where not just one, but many universes exist as an independent reality; our
view, on the contrary, does not entail any ontological commitment to the
concept defined through the axioms.

7 Conclusion

In conclusion, we have revisited Poincaré’s and Hilbert’s view of geometry as
a definition in disguise and we have extended this approach to all axiomatic
systems. Then, we have proposed an interpretation of the axioms of ZFC
where the existential quantifiers are intended as filters of sets, namely as ways
of singling out sets from collections that are not worth the title of “set”. This
naturally leads us to regard set theory as an axiomatic definition of the concept
of set. Furthermore, we have argued that the very nature of this concept
should not be sought in a collection of objects regarded as a totality in its own
right, but rather in the idea that certain collections are available for specific
operations definable from the other axioms. We have observed that the concept
of set so defined changes if one adds or removes one or more axioms from the
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theory. This leads to a pluralism of concepts of sets varying with the theories.
Finally, we have claimed that despite pluralism, set theory can still play a
fundamental role for mathematics, and this is to be sought in the “richness”
of the concept of set underlying the theory, which is meant to embrace all
suitable mathematical notions.
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