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Abstract 

We have previously demonstrated that the poly-arginine peptide R18 can improve 

histological and functional outcomes following traumatic brain injury (TBI) in the Sprague-

Dawley rat. Since D-enantiomer peptides are often exploited in pharmacology for their 

increased stability and potency, the present study compared the effects of R18 and its D-

enantiomer, R18D, following TBI in the Long-Evans rat. Following a closed-head impact 

delivered via a weight-drop apparatus, peptide was administered at a dose of 1000 nmol/kg at 

30 minutes after TBI. Treatment with R18D, but not R18 resulted in significant reductions in 

sensorimotor (p = 0.026) and vestibulomotor (p = 0.049) deficits as measured by the adhesive 

tape removal and rotarod tests. Furthermore, treatment with R18 and R18D resulted in a 

significant reduction in brain protein levels of the astrocytic marker, glial fibrillary acidic 

protein (p = 0.019 and p = 0.048, respectively). These results further highlight the beneficial 

effects of poly-arginine peptides in TBI, however additional studies are required to confirm 

these positive effects. 
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Introduction 

In the absence of an efficacious neuroprotective therapeutic, traumatic brain injury (TBI) 

persists as a global burden. Survivors are often plagued with somatic complaints, cognitive 

dysfunction, and physical impairment for the remainder of their life. TBI also has long-term 

effects on society and the economy such as low return-to-work rates (Gabbe et al. 2016), 

considerable financial burden on the health care system, and proclivity for criminal behaviour 

in both males (Timonen et al. 2002; Schofield et al. 2006; Williams et al. 2010) and females 

(O’Sullivan et al. 2015). Therefore, a neuroprotective treatment that can minimise injury and 

improve outcomes after a TBI is urgently needed. The multifaceted pathophysiology of TBI 

presents significant challenges in developing an effective neuroprotective therapeutic. Thus, 

developing a multifunctional agent that targets several neuroprotective and/or neurodamaging 

pathways will likely provide the best translational opportunity for clinical success.  

 

We have recently demonstrated that cationic arginine-rich peptides (CARP), including poly-

arginine peptides, are highly neuroprotective in excitotoxic and oxygen glucose deprivation 

neuronal cell culture models (Meloni et al. 2015a, b, 2017; MacDougall et al. 2016; Chiu et 

al. 2017a), and in middle cerebral artery occlusion (Milani et al. 2016b, a, 2017, 2018; 

Meloni et al. 2017), hypoxic-ischemic encephalopathy (HIE) (Edwards et al. 2018), and TBI 

(Chiu et al. 2017a) animal models. In addition, our laboratory has also demonstrated that 

CARPs reduce excitotoxic neuronal calcium influx and reduce neuronal surface expression of 

the NMDA receptor subunit protein NR2B9c (MacDougall et al. 2016; Chiu et al. 2017a). 

Other studies have demonstrated that CARPs reduce the activity and/or surface expression of 

other ion channels and receptors (e.g. NCX, CaV2.2, TNFR) (Fotin-Mleczek et al. 2005; 

Brittain et al. 2011; Brustovetsky et al. 2014; Meloni et al. 2015a) that exacerbate ionic 

disturbances or cell death pathways that may be associated with a TBI. Additionally, CARPs 



5 
 

have other properties that may be beneficial in terms of neuroprotection such as the ability to 

target and stabilise mitochondria (Chen et al. 2015), mitigate ROS production (Szeto 2006; 

Dai et al. 2011; Szeto et al. 2011), activate pro-cell survival signalling (Gu et al. 2013; Yang 

et al. 2016), inhibit proprotein convertases that activate matrix metalloproteinases (Cameron 

et al. 2000; Kacprzak et al. 2004; Fugere et al. 2007; Ramos-Molina et al. 2015), and reduce 

inflammation (Laskowitz et al. 2006; Tu et al. 2017). Furthermore, CARPs have cell 

penetrating properties which allow them to cross the blood brain barrier and enter the brain. 

 

The use of chiral compounds in pharmacology has long been known to enhance stability and 

potency of the compound (Roques et al. 1993; Abadji et al. 1994). In the case of peptides, 

this can result in increased uptake into the brain (Wei et al. 2014). For example, peptides 

synthesised with D-enantiomer amino acids are more resistant to degradation by peptidases 

after intravenous administration (Wei et al. 2014). The poly-arginine peptide R18 (18-mer of 

arginine; R = arginine) and its D-enantiomer R18D have been assessed in both neuronal cell 

culture excitotoxic and in vivo stroke and HIE models in our laboratory (Milani et al., 2018; 

Edwards et al., 2018). The studies revealed a similar neuroprotective efficacy in the in vitro 

excitotoxic and animal HIE models, while a single-dose study in a permanent middle cerebral 

artery occlusion stroke model revealed that R18D reduced infarct volume to a greater extent 

than R18. However, both peptides reduced hemisphere swelling to a similar degree.  

 

Considering our previous studies assessing R18 and/or R18D in TBI and in stroke-related 

models this study had several objectives. The first was to examine R18 and R18D efficacy in 

reducing functional deficits associated with TBI as functional improvement is the ultimate 

goal of any neuroprotective therapy. Secondly, we also examined global changes in the 

inflammatory response following treatment with R18 and R18D by measuring GFAP, IL-6, 
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TNFα, and IL-1β expression in total protein brain lysates following TBI. As only modest 

effects were observed with 300 nmol/kg R18 in our previous study, we increased the dose to 

1000 nmol/kg. Furthermore, neuroprotective effects and injury outcomes can differ in 

different strains of rats. Given that our previous TBI study employed Sprague-Dawley rats, 

the present study used Long-Evans rats. 

 

Methods 

Peptides used in this study 

R18 (H-RRRRRRRRRRRRRRRRRR-OH; net charge +18; R = L-arginine) and R18D 

peptide (H-rrrrrrrrrrrrrrrrrr-OH; net charge +18; r = D-arginine) peptides were purified by 

high performance liquid chromatography to at least 98% and subjected to peptide hydrolysis 

and liquid chromatography-mass spectrometry to obtain a precise measure of peptide content 

(Mimotopes). Lyophilised peptide stocks were resuspended in 0.9% sodium chloride for 

injection (Pfizer) and 650 μL was aliquoted into 3 mL syringes. Reconstituted peptides were 

stored at -20 °C until use.  

 

Traumatic brain injury model and peptide administration 

This study was approved by the Animal Ethics Committee of the University of Western 

Australia and follows the guidelines outlined in the “Australian Code for the Care and Use of 

Animals for Scientific Purposes”. Male Long-Evans rats weighing 375 – 435 g were housed 

in pairs under controlled conditions with a 12-hour light-dark cycle and free access to food 

and water ad libitum before and after surgery. A total of 40 animals underwent the TBI 

procedure. Two animals, one R18- and one R18D- treated animal, experienced breathing 

difficulties during surgical recovery within an hour of removal from ventilation and thus were 

euthanased. Two separate studies examining either R18 or R18D efficacy were performed. 
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The R18 study consisted of 6 peptide, 8 vehicle, and 5 sham treated animals. The R18D study 

consisted of 7 peptide, 9 vehicle, and 5 sham treated animals. 

 

A moderate-severe, diffuse TBI was induced as previously described (Chiu et al. 2017a) 

using a well-characterised weight-drop impact-acceleration model (Foda and Marmarou 

1994; Marmarou et al. 1994). Briefly, animals underwent anaesthetic induction with 5% 

halothane (mix 30% O2/70% N2O gas), intubation, and were maintained using 1 - 2% 

halothane. TBI was induced by releasing a 435 g brass weight from a 180 cm height, onto a 

steel disc (1 cm diameter and 2 mm thick) adhered to the skull of the animal with 

cyanoacrylate. At 30 minutes post-impact, treatments were administered intravenously (600 

μL over 6 min) through the right internal jugular vein using an infusion pump. Treatments 

consisted of the vehicle control (0.9% NaCl for injection), and R18 or R18D at 1000 

nmol/kg. Sham animals underwent the same surgical procedure and received vehicle 

treatment but were not subjected to TBI. All personnel carrying-out treatment administration 

and animal procedures were blinded to treatment status. 

 

Post-surgical animal care and monitoring 

At the end of surgery, pethidine (IM: 1 mg in 0.2 mL saline) and bupivacaine were 

administered (SC: 0.1 mg in 0.2 mL saline per site) to the head surgical wound. A 2 mL 

volume of injectable saline was also administered subcutaneously to aid hydration. Cages 

were placed on a heating mat during a 1 to 2 hours post-surgical monitoring period, and 

subsequently housed in a holding room maintained at 26 - 28°C. Animals were monitored at 

least twice a day and provided with sweetened cereal and gel packs to encourage food intake. 

 

Functional assessments 
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The functional assessments were used to identify deficits in spatial learning and memory 

(Barnes maze), sensorimotor (adhesive tape removal), and vestibulomotor (rotarod) function 

as previously described (Chiu et al. 2017a). All three assessments were carried out in the 

order described above on the day prior to surgery (day -1; baseline), and days 2 and 4 post-

TBI. Each animal had three attempts and a maximum of 180 seconds to complete the Barnes 

maze and adhesive tape removal tests, while no time limit was set for the rotarod test. 

Functional recovery of each animal was determined by comparing the post-surgery latency 

for days 2 and 4 post-TBI for each test to its own pre-surgery (day -1; baseline) latency and 

expressed as percentage change from baseline. An animal recording a positive or a negative 

value on days 2 or 4 post-TBI indicated an improvement or decline in functional recovery, 

respectively. 

 

Protein extraction and Western blotting 

After the completion of functional measurements on day 4 post-TBI, animals were 

administered a lethal injection of pentobarbitone (325 mg/mL; Virbac), and transcardially 

perfused with ice-cold 0.9% saline. The brain was extracted, and total protein isolated from 

fresh frozen brain tissue using RIPA lysis buffer (10 mM Tris-HCl, pH 8.0; 1 mM EDTA; 

1% Triton X-100; 0.1% sodium deoxycholate; 0.1% SDS; 140 mM NaCl; 1 mM PMSF) 

containing protease inhibitor (one tablet in 10 mL; Roche). Protein lysates were centrifuged 

to collect supernatant which was subsequently stored at -80°C. Representative protein 

samples from each treatment group were then probed via Western blot. 

 

Western blotting was performed as previously described (MacDougall et al. 2016). Briefly, 

proteins were separated by SDS-PAGE, transferred to PVDF membranes, and blocked in 

PBS-Tween 20 (0.1%) containing 1 mg/mL ovalbumin for 1 h. Membranes were then 
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incubated overnight at 4 °C in GFAP (1:1000; Sigma-Aldrich), IL-6 (1:1000; Invitrogen), 

TNFα (1:1000; Invitrogen), IL-1β (1:1000; Bio-Rad), or β-tubulin (1:3000; Invitrogen) 

primary antibodies prepared in PBS-Tween 20 (0.1%) with 1 mg/mL ovalbumin. Protein was 

detected by incubating for at least an hour at room temperature in goat anti-mouse DyLight 

800 (1:10000; Bio-Rad) or goat anti-rabbit StarBright 700 (1:3000; Bio-Rad) with added 

hFab-Rhodamine (β-tubulin 1:10000; Bio-Rad) as the loading control. For β-tubulin, a HRP-

conjugated goat anti-mouse secondary antibody (1:20000; Bio-Rad) was used. Blots were 

visualised using the ChemiDoc system (Bio-Rad). Quantification and band densitometry of 

Western blots was performed using ImageJ software (v1.51j8; National Institutes of Health, 

USA). 

 

Statistical analysis 

All statistical analyses of functional assessments and densitometry were conducted in R 3.5.1 

and presented as mean ± standard error of the mean (SEM). An analysis of variance 

(ANOVA) was performed, followed by a Fisher’s LSD post-hoc test. For statistical analysis 

of functional outcome and western blots, peptide treatment groups were compared to the 

vehicle treatment group. A value of p < 0.05 was considered statistically significant for all 

data sets. 

 

Results 

Functional assessments 

The adhesive tape and rotarod tests demonstrated significant sensorimotor and 

vestibulomotor deficits in the TBI injured animal groups (Figures 1 – 2). In contrast, sham 

animals not subjected to TBI did not show deficits across any of the functional assessments 

(Figures 1 – 3). 
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For the adhesive tape test, at day 2 post-TBI, R18D-treated animals performed significantly 

better (p = 0.026) than vehicle-treated animals (Figure 1a), while there was no difference in 

performance between R18 and vehicle treated animals (Figure 1b). At day 4 post-TBI, R18D-

treated animals demonstrated an improvement in performance from baseline, however this 

was not significantly different in performance from vehicle-treated animals, which remained 

below baseline (Figure 1c). Additionally, R18-treated animals demonstrated an improvement 

in performance approaching baseline, however this was not significantly different from 

vehicle treated animals, which remained below baseline (Figure 1d).  

 

For the rotarod test, at day 2 post-TBI, R18D-treated animals performed significantly better 

(p = 0.049) than vehicle-treated animals (Figure 2a), while there was no difference in 

performance between R18 and vehicle treated animals (Figure 2b). At day 4 post-TBI, R18D-

treated animals demonstrated an improvement in performance compared to vehicle treated 

animals, albeit not to a statistically significantly level (Figure 2c), while there was no 

difference in performance between R18 and vehicle treated animals (Figure 2d).  

 

At days 2 and 4 post-TBI, Barnes maze performance remained above baseline and did not 

differ significantly between peptide and vehicle treated and sham animals (Figure 3a – d).  

 

Western blot analysis for neuroinflammatory response 

Western blot analysis of brain lysates collected on day 4 post-TBI, demonstrated that 

treatment with R18D (p = 0.048) and R18 (p = 0.019) resulted in significantly reduced GFAP 

expression by 52% and 67% respectively, compared to treatment with vehicle (Figures 4a). 

However, neither peptide was significantly better than the other (p = 0.50) at reducing GFAP 
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expression. Treatment with R18D (p = 0.11) and R18 (p = 0.37) also reduced cytokine IL-6 

protein levels by 44% and 23% respectively in the brain, albeit not to a statistically 

significant level (Figures 4b). Contrastingly, R18 (p = 0.062) treatment increased TNFα 

(Figure 4c), and IL-1β increased in both R18 (p = 0.59) and R18D (p = 0.19) treatment 

groups (Figure 4d), however none were significant when compared to vehicle. 

 

Discussion 

The present study has demonstrated that treatment with R18D reduced TBI-associated 

sensory and vestibular motor deficits in the Long-Evans rat. Moreover, both R18 and R18D 

reduced TBI-associated reactive astrocytic cellular (GFAP) responses. These findings are 

consistent with our proposed application of CARPs as a therapeutic in TBI (Chiu et al. 

2017b), and previous data from our laboratory which has demonstrated that treatment of 

Sprague-Dawley rats with R18 following a TBI reduced the extent of axonal injury and 

provided positive trends for functional recovery (Chiu et al. 2017a). While the present study 

has confirmed that both the L- and D-isoform R18 peptides can provide beneficial outcomes 

following TBI, the more favourable effects observed following R18D treatment could be 

related to the superior stability of the D-enantiomer peptides. Interestingly, the Barnes maze 

test did not demonstrate any obvious deficits in performance following TBI, which suggests 

that it may not be sufficiently sensitive for use following this TBI model in the Long-Evans 

rat. 

 

Increased levels of GFAP within the brain is associated with the proliferation of astrocytes 

and gliosis, which play a key role regulating neuroinflammation, and can have both 

detrimental and regenerative functions following brain tissue injury. Elevated GFAP 

expression following TBI is a commonly used biomarker of astrocytic activation and 
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neuronal degeneration (Huang et al. 2015), and correlates with TBI severity (Hsieh et al. 

2017). Therefore, measurement of GFAP is a good pre-clinical biomarker for the assessment 

of potential neuroprotective treatments in TBI. In this regard, the present study has for the 

first time demonstrated that R18 and R18D can reduce GFAP levels in the brain following 

TBI, which is in line with previous studies demonstrating that other CARPs such as 

COG1410 (AS[Aib]LRKL[Aib]KRLL; net charge +4) (Hoane et al. 2007) and APP96-110 

(NWCKRGRQCKTHPH; net charge +5) (Plummer et al. 2018) also reduced GFAP 

expression following brain injury. The exact mechanism whereby CARPs such as R18 and 

R18D reduce GFAP expression is not known but may be due to the neuroprotective actions 

of the peptide limiting neural injury directly, or by inhibiting pathways responsible for 

astrocyte activation and inflammation.  

 

The suggestion that R18 and R18D could reduce levels of the pro-inflammatory cytokine IL-

6 in the brain of rats following TBI is of potential interest. IL-6 expression increases in rodent 

brain (Taupin et al. 1993; Shohami et al. 1994) and in human serum soon after TBI 

(Yousefzadeh-Chabok et al. 2015; Gill et al. 2017), with increased levels associated with 

worse outcomes. Clinically, serum IL-6 has been implicated in elevated intracranial pressure 

following TBI (Hergenroeder et al. 2010), however the exact role of elevated brain levels of 

the cytokine with respect to brain injury is poorly understood (Chakraborty et al. 2016). Other 

CARPs administered following neurotrauma such as COG133 (Ac-

LRVRLASHLRKLRKRLL-NH2, net charge +7.1), CN-105 (Ac-VSRRR-NH2, net charge 

+3), and PACAP (Ac-HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK-NH2, 

net charge +10.1) have demonstrated downregulation of IL-6 mRNA (Laskowitz et al. 2017) 

and/or expression of other inflammatory cytokines (Lynch et al. 2003; Mao et al. 2012). In 

addition, CARPs can reduce the release of IL-6 from C2C12 myotubes exposed to TNF-α 
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(Lightfoot et al. 2015), synovial fluid mononuclear cells of rheumatoid arthritis patients 

exposed to VEGF (Yoo et al. 2005), dendritic cells stimulated with toll-like receptor ligands 

(Kandler et al. 2006), and reduce serum levels in collagen-induced arthritic mice (Yoo et al. 

2005).  

 

Both TNFα and IL-1β were elevated in the brain following treatment with R18 and/or R18D, 

but not to statiscally significant levels. Although there is still uncertainty surrounding the 

exact role of the neuroinflammatry response after injury, there are suggestions that cytokines 

may have both deleterious and beneficial effects at different phases of secondary injury 

(Shohami et al. 1999; Ziebell and Morganti-Kossmann 2010). Given that sensorimotor and 

vestibulomotor deficits were significantly reduced, but profound changes were not observed 

in IL-6, TNFα, or IL-1β may be attributable to their dual role in the inflammatory reponse. 

Similarly, CN-105 demonstrated neuroprotective properties in TBI, despite not reducing 

mRNA levels of IL-6 and TNFα (Laskowitz et al. 2017). 

 

There are several mechanisms whereby CARPs may suppress the acute inflammatory 

response following a TBI. For example, CARPs can inhibit the TLR4/MyD88/NF-κβ 

signalling pathway (Mao et al. 2012) through specific inhibition of NF-κβ. In support of this, 

the CARP AIP6 (RLRWR, net charge +3) can block binding of the NF-κβ p65 sub-unit to 

DNA and inhibit the transcription of pro-inflammatory genes (Wang et al. 2011). 

Furthermore, proteasomal activity increases following TBI, and CARPs such as R8 

(RRRRRRRR, net charge +8) (Kloß et al. 2009), PR39 

(RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP, net charge +10) (Gao et al. 2000), 

and PR11 (RRRPRPPYLPR, net charge +5) (Gaczynska et al. 2003; Anbanandam et al. 

2008) are potent inhibitors of the proteasome, an effect that would inhibit proteasomal 
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degradation of the NF-κβ inhibitory sub-unit I-κβ and maintain NF-κβ in an inactive state. In 

addition, CARPs may affect the cell-surface levels of receptors and/or interfere with binding 

of ligands to cell-surface receptors such as tumour necrosis factor receptor (Fotin-Mleczek et 

al. 2005), vascular endothelial growth factor receptor (Yoo et al. 2005), and toll-like receptor 

(TLR) (Mao et al. 2012) that mediate inflammatory responses. In this regard, the 

TLR4/MyD88/NF-κβ signalling pathway is also known to activate the JAK-STAT pathway, 

which is known to regulate GFAP and astrogliosis (Woodcock and Morganti-Kossmann 

2013).  

 

Limitations 

Two separate studies examining R18 and R18D efficacy at only one dose were performed, 

thereby precluding a direct side-by-side dose and statistical comparison between the two 

peptides. In addition, relatively low animal numbers were used, and the study had a short 4-

day end point. Future studies examining peptide mechanisms of action, dosing regimen, 

extended end-points, and additional functional tests (e.g. ladder test, Morris water maze, wire 

hang) are needed to confirm peptide efficacy after TBI. It would be important in future 

studies to undertake histological analysis of brain tissue following TBI to confirm that 

improvements in functional parameters correlate with reductions in brain injury, and to 

confirm efficacy in other models of TBI. Furthermore, a more segmented analysis of the 

inflammatory markers may have uncovered more differential effects in different brain 

regions. 

 

Additionally, the current study did not include sham control animals treated with R18 and 

R18D as we were not anticipating any confounding effects from the peptides given we have 

never observed side effects from peptide treatment. Regardless, we acknowledge that the 
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inclusion of these groups would have been beneficial in understanding the safety and 

tolerability of intravenously administered R18 and R18D in healthy, male Long-Evans rats. 

 

Conclusions 

In line with CARPs having multiple potential mechanisms of neuroprotection following TBI 

(Chiu et al. 2016, 2017b), we have demonstrated in a weight-drop impact-acceleration model 

of TBI that both R18 and R18D poly-arginine peptides can reduce GFAP and, to a lesser 

extent, IL-6 expression in brain tissue, and that R18D reduced the severity of functional 

deficits after TBI. These findings provide further evidence that CARPs represent a novel 

class of neuroprotective agent with promising application as an acute treatment for TBI.  
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Figure legends 

Fig. 1 Adhesive tape test. Performance at days 2 and 4 post-TBI as determined by comparing 

percentage change of each animal’s own latency prior to surgery. (a) R18D-treated animals at 

day 2 post-TBI. (b) R18-treated animals at day 2 post-TBI.  (c) R18D-treated animals at day 

4 post-TBI. (d) R18-treated animals at day 4 post-TBI. R18 cohort: sham N = 5, vehicle N = 

8, R18 N = 6; R18D cohort: sham N = 5, vehicle N = 9, R18D N = 7. Data are presented as 

mean ± SEM. *p < 0.05 when compared to vehicle treatment group 

 

Fig. 2 Rotarod test. Performance at days 2 and 4 post-TBI as determined by comparing 

percentage change of each animal’s own latency prior to surgery. (a) R18D-treated animals at 

day 2 post-TBI. (b) R18-treated animals at day 2 post-TBI.  (c) R18D-treated animals at day 

4 post-TBI. (d) R18-treated animals at day 4 post-TBI. R18 cohort: sham N = 5, vehicle N = 

8, R18 N = 6; R18D cohort: sham N = 5, vehicle N = 9, R18D N = 7. Data are presented as 

mean ± SEM. *p < 0.05 when compared to vehicle treatment group 

 

Fig. 3 Barnes maze test. Performance at days 2 and 4 post-TBI post-TBI as determined by 

comparing percentage change of each animal’s own latency prior to surgery. (a) R18D-

treated animals at day 2 post-TBI. (b) R18-treated animals at day 2 post-TBI.  (c) R18D-

treated animals at day 4 post-TBI. (d) R18-treated animals at day 4 post-TBI. R18 cohort: 

sham N = 5, vehicle N = 8, R18 N = 6; R18D cohort: sham N = 5, vehicle N = 9, R18D N = 

7. Data are presented as mean ± SEM 

 

Fig. 4 Western blot analysis of total brain lysates from representative animals treated with 

vehicle (N = 3), R18D (N = 3), R18 (N = 3) and subjected to TBI or sham (N = 1) surgical 

procedure. Brain samples collected at day 4 post-TBI or sham surgery  (a) GFAP, (b) IL-6, 
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(c) TNFα, and (d) IL-1β protein expression in peptide treatment groups are presented relative 

to vehicle treatment group, which was set at 1-fold. Data are presented as mean ± SEM. *p < 

0.05 when compared to vehicle treatment group. 
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