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Stroke is the second leading cause of death globally and represents a major cause of 

devastating long-term disability. Despite sustained efforts to develop clinically effective 

neuroprotective therapies, presently there is no clinically available neuroprotective agent for 

stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised 

as a critical neuroprotective target, and as such, provide a focus for developing 

mitochondrial-targeted therapeutics. In recent years, cationic arginine-rich peptides (CARPs) 

have been identified as a novel class of neuroprotective agent with several demonstrated 

mechanisms of action, including their ability to target mitochondria and exert positive effects 

on the organelle. This review provides an overview on neuronal mitochondrial dysfunction in 

ischaemic stroke pathophysiology and highlights the potential beneficial effects of CARPs on 

mitochondria in the ischaemic brain following stroke. 
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1. Stroke Background: Epidemiological ‘Snapshot’ and Need for Neuroprotection 
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Acute stroke is a global epidemic responsible for the second and third leading causes of death 

and disability respectively [1, 2]. In 2010, the global prevalence of stroke was estimated to be 

approximately 33 million, with 16.9 million individuals experiencing their first stroke [3]. A 

significant proportion of stroke survivors are left with cognitive and physical disabilities [4, 

5], or impaired language and verbal communication [6]. The burden of stroke to the global 

community is continuing to increase due to the aging world population and the increasing 

prevalence of risk factors for stroke, such as hypertension [7], diabetes [8], hyperlipidaemia 

[9], heart disease [10], obesity [11] and reduced physical activity [12–14]. As an increasing 

risk factor, the aging world population is a major concern [15], with approximately 900 

million people aged over 60, rising to an expected 1.5 billion by the year 2050 [16]. To make 

matters worse, there are currently no clinically available neuroprotective agents for the acute 

treatment of stroke to minimise brain injury, and current therapies are mainly restricted to 

endovascular recanalisation interventions for a selected subgroup of ischaemic stroke 

patients. However, most patients are ineligible for such interventions due to narrow 

therapeutic time windows (e.g. 4.5h for tPA thrombolysis) and/or the need for specialised 

tertiary hospital facilities to perform the procedure (e.g. mechanical thrombectomy). 

Notwithstanding, the recent DAWN and DEFUSE 3 clinical trials demonstrated that 

thrombectomy, when performed up to 16 to 24 hours post-stroke symptoms, could improve 

outcomes in a subgroup of patients selected on the basis of the presence of potentially 

salvageable penumbral tissue [17, 18]. For this reason it is now recommended that a “tissue 

window” rather than a “time window” be used when considering therapeutic interventions, 

such as thrombectomy and neuroprotection. Furthermore, it highlights the need for a safe 

neuroprotective agent that can be administered early after stroke onset to slow brain 

infarction and preserve penumbral tissue. 

 

Consequently, there is an urgent requirement for the development of new and more widely 

applicable neuroprotective therapies that lessen the neurological impact of stroke and 

increase the number of patients eligible for endovascular treatments. To this end, due to the 

lack of success in the past, there is growing sentiment that new approaches in the discovery 

and development of acute neuroprotection therapies will be required.  

 

The main purpose of this review is to examine the role of mitochondrial dysfunction in stroke 

pathophysiology, and in doing so highlight the beneficial effects that neuroprotective cationic 
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arginine rich peptides (CARPs) may exert on mitochondria in neurons in the ischaemic brain 

following stroke. 

 

2. Mitochondrial Dysfunction in Stroke Pathophysiology 

2.1 Underlying stroke injury mechanisms: The ischaemic cascade 

Ischaemic stroke results from the acute occlusion of a cerebral artery by thrombosis or 

embolism, and constitutes the bulk of stroke events, accounting for approximately 80% of 

cases [19], and as such, will be the main focus of this review. Ischaemic stroke 

pathophysiology is initiated by a sudden reduction in blood flow to the affected brain tissue, 

causing a deficiency in oxygen and glucose supply, triggering what is known as the 

ischaemic cascade (Figure 1) [20, 21]. The ischaemic cascade is influenced by the duration 

and severity of ischaemia [22], which usually culminates in the time-dependent death of 

neuronal tissue. Acute injury occurs within minutes in severely affected brain tissue in the 

ischaemic core, which represents an area of infarcted or irreversibly damaged brain tissue, 

and cannot be salvaged. Surrounding the ischaemic core is the potentially salvageable tissue 

known as the penumbra, which is affected by ischaemia, although to a lesser extent than in 

the core, and consequently has not succumbed to cell death. Brain injury in the penumbra can 

proceed over many hours, and is the target of endovascular recanalisation interventions (tPA 

and thrombectomy) and neuroprotective treatments. However, in the absence of adequate 

reperfusion or a neuroprotective therapy, the on-going and cumulative cellular injury, 

including the demise of mitochondria, reaches a critical threshold, and neurons become 

irreversibly committed to dying and are incorporated into the ischaemic core. 

 

Mitochondria are key regulators in determining the fate of ischaemic brain tissue, as they are 

both affected by and are propagators of ischaemic injury. Furthermore, neuronal 

mitochondrial disturbances have also been identified as key contributors to the 

pathophysiology of several chronic neurological disorders, including Parkinson’s disease  

[23], Alzheimer’s disease [24], and Huntington’s disease [25–33]. Another consideration is 

that mitochondrial bioenergetics naturally decline with age, largely as a result of accumulated 

oxidative damage to mitochondrial DNA, proteins, and lipids [34–37]. As a consequence, 

aged mitochondria are more likely to be vulnerable to the effects of cellular energy 

disturbances, as occurs in ischaemic stroke [38]. This has additional implications in stroke, as 
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most strokes occur in individuals over the age of 65 [39], and age-related decline in 

mitochondrial function may result in an increased susceptibility to ischaemic brain injury. In 

this context, mitochondria represent critical targets for the development of neuroprotective 

strategies for stroke and other neurological disorders, and as such, their role in the ischaemic 

cascade is described in detail below.  

 

2.2 Biomolecular mechanisms underlying mitochondrial dysfunction during stroke 

 

Energy failure and excitotoxicity: Glutamate and calcium  

During ischaemic stroke, neuronal mitochondrial function is severely compromised due to the 

reduced availability of glucose and oxygen necessary for ATP production, a situation which 

is exacerbated by the high energy demand of neuronal tissue [40, 41]. The resulting 

disruption to the mitochondrial electron transport chain (ETC) halts oxidative 

phosphorylation, forcing cells to rely on anaerobic glycolysis for ATP production [42]. 

However, due to the limited supply of glucose, glycolysis is also severely compromised. 

Since ATP is required for the maintenance of ion gradients across neuronal plasma 

membranes [43], the resulting energy failure triggers the depolarisation of neurons and 

uncontrolled release of excitatory neurotransmitters, in particular glutamate, from pre-

synaptic neurons [42]. High extracellular levels of glutamate cause excitotoxicity due to the 

overstimulation of post-synaptic glutamate receptors [44, 45], including N-methyl-D-

aspartate (NMDA) and -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptors, thereby causing prolonged depolarisation and toxic accumulation of calcium and 

sodium within neurons [46–48] (Figure 1). High levels of intracellular calcium are 

particularly toxic to neurons due to its involvement in the activation of proteolytic enzymes 

and lipases, free radical formation and oxidative stress, mitochondrial dysfunction, cell death 

signalling, and cytotoxic oedema [47, 49–52]. It is therefore not surprising that the inhibition 

of excitotoxic intracellular calcium influx is invariably neuroprotective [53–56].  

 

Mitochondria and intracellular calcium  

As a consequence of excitotoxic intracellular calcium disturbances, mitochondria can act as a 

buffer to help regulate cytosolic calcium concentrations and minimise toxic effects [57–60]. 

Mitochondria sequester calcium through several mechanisms including the mitochondrial 

calcium uniporter (MCU) [59–61], mitochondrial sodium-calcium exchanger (mNCX) [62], 
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voltage-dependent anion channel (VDAC) [63], “rapid-mode” of uptake (RaM) [64], and the 

mitochondrial-located ryanodine 1 receptor (mRyR) [65, 66] (Figure 1). However, during 

severe excitotoxicity and ongoing ionic disturbances, the buffering capabilities of 

mitochondria can become overwhelmed, leading to excessive intra-mitochondrial calcium 

concentrations and disruption of mitochondrial function [67, 68]. Although mitochondria are 

capable of extruding excess calcium via the mNCX, this exacerbates the toxic cytosolic 

calcium loading [69, 70]. Mitochondria also co-operate with the endoplasmic reticulum (ER) 

to help maintain cellular calcium homeostasis via the mitochondria-associated ER membrane 

(MAM), allowing the organelles to collaborate in calcium ion exchange [71]. In spite of this, 

the ER can be an additional source of cytosolic calcium following release of excess calcium 

via the ryanodine (RyR) and inositol triphosphate (IP3R) receptors [72]. Furthermore, 

cytochrome c (cyt c), a protein involved in the mitochondrial ETC and apoptosis, is released 

from dysfunctional mitochondria and can translocate to the ER to selectively bind IP3Rs 

(Figure 1), causing prolonged release of calcium from the organelle, and thereby sustaining a 

toxic feedback loop know as calcium-induced calcium release (CICR) [73]. Ultimately, the 

excessive and sustained intra-mitochondrial accumulation of calcium significantly impacts 

mitochondrial function, and is a potent trigger for mitochondrial reactive free radical species 

generation, which further impacts the function of the organelle and cell viability (Figure 2).   

 

Oxidative and nitrosative stress and mitochondria   

Stroke is associated with oxidative stress resulting from the overproduction of reactive 

oxidative species (ROS) and reactive nitrosative species (RNS), which overwhelms 

endogenous neuronal antioxidant defence mechanisms, leading to damage to cellular 

components [74]. During stroke, mitochondria generate an initial burst of ROS, including 

superoxide anion (O2
•-), hydroxyl radical (•OH), and hydrogen peroxide (H2O2) [75–78]. 

Such oxidants cause considerable damage to brain tissue due to the brain’s large 

polyunsaturated fatty acid composition and limited antioxidant defensive capabilities [79]. 

Mitochondrial ROS generation is primarily derived from the ETC, with complexes I and III 

generating the bulk of ROS through ‘electron leak’ [80]. Auto-oxidation of ‘leaked’ electrons 

to oxygen forms the free oxygen radical O2
•- [75, 81], which is converted into H2O2 by 

endogenous manganese superoxide dismutase (MnSOD) [82]. Mitochondrial catalase and 

peroxiredoxin can convert H2O2 into H2O [83]. However, the abundance of iron sulfur 

clusters and iron containing heme groups associated with ETC proteins, such as those present 

in complexes I, II and III [84], provide a bountiful source of iron for generation of •OH from 
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H2O2 via the Fenton reaction [85] (Figure 2). Mitochondria are also major contributors to the 

ROS generation that occurs during spontaneous reperfusion or following therapeutic 

endovascular recanalization after stroke. Although timely restoration of cerebral blood flow is 

of primary importance in preventing further injury during stroke, the sudden reoxygenation of 

brain tissue can trigger what is known as ‘reperfusion injury’. Reperfusion reintroduces 

molecular oxygen to oxygen-starved tissue and provides a fresh source of substrates causing 

a surge in ROS formation [75], which places additional stress on mitochondria already 

affected by ischaemia. 

 

Mitochondria are also the target of RNS due to the excessive production of nitric oxide (NO•) 

during stroke [86, 87]. NO• plays an important role in excitotoxicity-mediated injury and is 

generated through neuronal nitric oxide synthase (nNOS) linked to neuronal NMDA receptor 

signalling [88]. During overactivation of NMDA receptors, calcium influx activates nNOS, 

producing NO•, which then interacts with mitochondrial-generated O2
•- to produce the highly 

volatile peroxynitrite species (ONOO-) [89–91]. Both NO• and ONOO- react with 

mitochondrial membranes and other lipid membranes, as well as eliciting S-nitrosylation and 

activation of pro-death proteins, including caspases and matrix metalloproteinases [89, 92, 

93] (Figure 2). Furthermore, ROS/RNS-induced damage of ETC components, particularly the 

ETC anchoring phospholipid, cardiolipin, exacerbates ROS generation arising from enhanced 

electron ‘leak’, resulting in mitochondria not only acting as propagators of ROS formation, 

but also targets of ROS-induced injury [94, 95].  

 

Free radical oxidation of cardiolipin is particularly detrimental as the phospholipid plays an 

important role in maintaining inner mitochondrial membrane (IMM) structure and anchoring 

ETC complexes to the IMM to ensure optimal mitochondrial bioenergetics [96, 97]. 

Furthermore, due to cardiolipin’s high unsaturated fatty acid content and its close proximity 

to the site of mitochondrial ROS production, it is highly susceptible to oxidative damage [95]. 

As a consequence, oxidised cardiolipin can lead to further destabilisation of the ETC, as well 

as promoting the detachment of cyt c from the IMM and its release from mitochondria [98].  

Furthermore, the interaction of oxidised cardiolipin with cyt c bestows peroxidase activity to 

the protein capable of catalyzing H2O2-dependent peroxidation, causing further oxidation of 

cardiolipin [99]. 
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Together, excessive mitochondrial ROS/RNS generation perpetuates cellular injury by 

attacking mitochondrial and cytoplasmic lipid membranes, proteins and DNA, causing 

cellular damage that contributes to neuronal cell death [100–102]. 

 

The mitochondrial membranes and mitochondrial membrane potential 

The outer mitochondrial membrane (OMM) is a selectively permeable phospholipid bilayer 

that controls the transport of substances in and out of the organelle via membrane-bound 

transporter complexes. For example, the OMM voltage-dependent anion channel (VDAC) 

facilitates the exchange of various ions and small uncharged molecules [103]. Similarly, 

selective cytosolic protein and peptide import across the OMM is achieved via multi-subunit 

conductor complexes known as ‘translocase of outer mitochondrial membrane’ (TOM) 

channels [104]. The inner mitochondrial membrane (IMM) is also a phospholipid bilayer that 

is extensively folded and is embedded with proteins comprising the ETC, as well as other 

conductance protein channels known as ‘translocase of the inner membrane’ (TIMs), which 

form a supercomplex with TOMs that communicate across the intermembrane space, and are 

responsible for the exchange of pre-proteins from the intermembrane space into the 

mitochondrial matrix [105, 106]. Crucially, the ETC is responsible for generating the 

electrochemical gradient across the IMM, known as the mitochondrial membrane potential 

(Δψm), which is necessary for energy production via oxidative phosphorylation [107] (Figure 

2). The Δψm is an integral part of the proton motive force (p) generated by the ETC and 

used by ATP synthase to generate ATP [108, 109]. The Δψm is also critical for mitochondrial 

function and cell viability, as it is a primary factor that determines mitochondrial respiration, 

calcium sequestration capacity, and ROS production, all of which play a critical role in 

determining the fate of neurons during ischaemia [110]. 

 

During stroke, the excessive accumulation of calcium in the mitochondrial matrix can trigger 

hyperpolarization, and subsequently depolarization of the IMM and dissipation of the Δψm 

[78], leading to impaired ATP production [111, 112]. In an attempt to maintain the multitude 

of Δψm-dependent processes critical for mitochondrial function, mitochondrial ATP synthase 

acts in reverse (F1Fo-ATPase) and hydrolyzes ATP to conserve the Δψm. However, due to 

the ongoing effects of ischaemia, the depletion of mitochondrial and cytosolic ATP further 

exacerbates loss of mitochondrial integrity and activation of cell death cascades [113, 114]. It 

is considered that the complete dissipation of the Δψm in a large proportion of mitochondria 
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within a cell is one of the earliest indicators of irreversible cell death [115]. It is for these 

reasons that interventions that restore and/or preserve the Δψm can improve the likelihood of 

cell survival, and therefore represent potent therapeutic interventions for neuroprotection 

[116–118].  

 

Mitochondrial outer membrane permeabilization and cell death signalling  

Neuronal mitochondrial dysfunction culminates in mitochondrial membrane 

permeabilization, which is a critical event in promoting pro-death signalling pathways via the 

release of cell death-promoting molecules from the intermembrane space into the cytosol. 

Mitochondrial-mediated cell death can proceed by two different mechanisms depending on 

either apoptotic or necrotic stimuli (see comprehensive reviews by [119, 120]). Classic 

mitochondrial-mediated apoptotic cell death is instigated by the recruitment of pro-death Bcl-

2 family member proteins, Bad and Bax, to the OMM [121]. Oligomerization of Bad and Bax 

in the OMM triggers mitochondrial outer membrane permeabilization (MOMP), which 

releases pro-apoptotic factors such as cyt c [122], apoptosis inducing factor protein (AIF) 

[123, 124], second mitochondria-derived activator of caspase/direct inhibitor of apoptosis 

protein (IAP)-binding protein with low pI (Smac/DIABLO), and endonuclease G (Endo G) 

[125] from the intermembrane space into the cytosol [126]. The release of the pro-cell death 

factors together orchestrates an interconnected process resulting in the dismantling of cell 

structures, contributing to the demise of the cell [127] (Figure 1). 

 

Additionally, mitochondria play a role in necrotic cell death associated with elevated ROS 

generation and mitochondrial calcium loading. The toxic effects of ROS and calcium influx 

on mitochondria causes permeabilization of the IMM, known as permeability transition (PT), 

and results in the formation of the highly conductive mitochondrial permeability transition 

pore (mPTP) spanning the inner and outer mitochondrial membranes. The mPTP facilitates 

influx of calcium and other solutes into the mitochondrial matrix [128, 129]. Sustained mPTP 

conduction also contributes to mitochondrial ROS release [130], which in turn maintains 

mPTP opening in a self-propagating cycle known as ROS-induced ROS release (RIRR) (see 

review [78]). Influx of calcium into the matrix causes equilibration of the proton gradient and 

collapse of the Δψm, further enhancing ROS generation and metabolic inhibition [131, 132]. 

Furthermore, the increasing osmotic pressure from mitochondrial calcium accumulation 

causes the matrix to swell beyond the limits of the OMM, eventually rupturing the OMM and 

liberating calcium in addition to the aforementioned mitochondrial pro-death factors into the 
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cytosol. This stimulates proteases, nucleases, and lipases, causing subsequent degradation of 

cellular proteins, DNA, and membrane lipids, leading to necrotic cell death [133, 134].  

 

Mitochondrial fusion and fission 

As an adaptive response to metabolic and oxidative stress, mitochondria can rapidly alter 

their structural architecture through a process of fusion and fission. Mitochondrial fusion 

involves the joining of mitochondria in order to allow compensatory functions between 

healthy and metabolically challenged mitochondria [135], and thereby helps to preserve 

overall mitochondrial integrity [136, 137]. Fused mitochondria have a filamentous 

morphology comprising a large interconnected metabolic network that can span over a 

hundred microns across a single cell to enable the supply of ATP to energy-deficient cellular 

regions [138–140]. The ability of mitochondria to fuse is particularly important in the context 

of post-mitotic cells, such as neurons, as it provides a means of minimising the toxic effects 

of dysfunctional mitochondria without triggering cell death [35]. The process of 

mitochondrial fusion is controlled through the actions of the dynamin GTPase family 

members, mitofusins (Mfn1, Mfn2) and optic atrophy 1 (Opa1), which act on the OMM and 

IMM, respectively [141].  

 

Similarly, mitochondrial fission represents a mechanism whereby the organelle can divide in 

an attempt to segregate mitochondrial damage, and eliminate dysfunctional mitochondria by 

mitophagy. Mitochondrial fission is mediated by the dynamin GTPase family member, Drp1 

[142], as well as Fis1 [143], which act on the OMM and IMM respectively. However, 

mitochondrial fragmentation resulting from excessive mitochondrial fission, as well as the 

altered ability of cells to undergo mitochondrial fission, have been linked to neuronal injury 

and neurodegeneration [144–146]. 

 

With respect to stroke-mediated injury, NMDA receptor overactivation of cultured neurons is 

associated with excessive mitochondrial fragmentation, and promotion of mitochondrial 

fusion reduces excitotoxic cell death [147]. Similarly, Drp1 inhibition, which blocks 

mitochondrial fragmentation, reduces cell death in cortical neuronal cultures subjected to 

glutamate excitotoxicity [148]. In addition, it has been demonstrated in HeLa cells that the 

release of cyt c from mitochondria is accelerated as a consequence of down-regulation of 

OPA1, a dynamin-like GTPase required for mitochondrial fusion, and precedes mitochondrial 

fragmentation [149], indicating a temporal link between induction of mitochondrial pro-death 
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signalling and mitochondrial fragmentation. This is corroborated by several reports 

demonstrating mitochondrial fragmentation coinciding with ischaemic neuronal injury [150–

153]. Taken together, it appears that strategies that promote mitochondrial fusion or inhibit 

excessive fission represent potential neuroprotective interventions to minimize neuronal 

death following stroke and possibly other acute and chronic neurodegenerative disorders.  

 

3. CARPs as Mitochondria-Targeted Neuroprotective Therapeutics   

 

3.1 Neuroprotection in stroke and CARPs: A brief history 

 

In the context of stroke, a ‘neuroprotective agent’ refers to any compound that has the 

capacity to slow and/or halt the progression of infarct development by inhibiting 

neurodamaging processes and/or by stimulating cell survival pathways [154]. To date, while 

over 1000 novel potential neuroprotective therapeutics have been identified, many of which 

demonstrated efficacy in preclinical animal studies [155], none have returned positive 

outcomes in clinical trials. While there are many reasons for previous failures to translate into 

clinical efficacy (e.g. late administration of the agent after stroke, undesirable side-effects, 

ineffective drug targets, single pathway/mechanism of action, and study design), as 

mitochondria are a central component in many of the critical aspects of the ischaemic 

cascade, they represent a key target in the development of neuroprotective strategies. To this 

end, a class of inherently neuroprotective peptides, known as CARPs have emerged as 

candidates for mitochondria-targeted therapeutics in stroke and other acute and chronic CNS 

disorders, as well as ischaemic injury in other tissues, including myocardial and renal tissue 

[156–162]. 

 

3.2 Features and membrane-traversing properties of CARPs 

 

CARPs typically range in size from 4 to 30 amino acids, and are positively charged due to the 

presence of cationic arginine residues, as well as cationic lysine and to a lesser extent 

histidine residues [163, 164] (Table 1). An important feature of CARPs is their ability to 

traverse cell membranes and enter cells and mitochondria, and for this reason they are also 

known as cell-penetrating peptides (CPPs) [165]. The ability of CARPs to traverse cell 

membranes is a direct result of peptide arginine content, namely the positive charge provided 

by the guanidinium head that is unique to the arginine amino acid [166–169]. To this end, the 
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guanidinium head group can form bidentate hydrogen electrostatic interactions with sulphate 

(e.g. in heparin sulphate proteoglycans), phosphate (e.g. in phospholipid head groups) and 

carboxylate (in phospholipid phosphatidylserine and protein receptors) moieties present on 

the plasma membrane or organelle membrane structures, such as those present in 

mitochondria, Golgi apparatus, endoplasmic reticulum, or the nucleus [170–174]. The 

electrostatic interactions between arginine residues and anionic structures present on 

membranes is a critical requirement for CARPs to cross typically impervious membranes, 

including the blood-brain barrier [163, 164, 175, 176], via both endocytic (e.g. 

macropinocytosis, caveolin/lipid-raft-mediated and clathrin-mediated endocytosis) [177, 178] 

and non-endocytic (e.g. passive diffusion, inverted micelle) mechanisms [173, 179–182].  

CARP membrane-traversing efficacy is dependent on peptide arginine content, by increasing 

peptide positive charge and guanidinium head group electrostatic interactions with membrane 

anionic moieties. This was demonstrated by significantly reduced translocation capabilities of 

the TAT CPP when arginine residues were replaced with the alternative cationic amino acids, 

ornithine, histidine, and lysine, which are less basic compared to arginine and lack a 

guanidinium head group [183]. Furthermore, peptide cellular uptake was enhanced when the 

arginine content was increased [184]. With respect to arginine content and peptide length, 

CARP transduction efficiency across the plasma membrane, at least for poly-arginine 

peptides, is detectable with R6 (6 mer arginine) and peaks with R15 [183]. In addition, CARP 

membrane-traversing capabilities can be enhanced by presence of other residues, particularly 

the hydrophobic amino acid, tryptophan [185], and a high transmembrane potential [186]. 

The cell penetrating properties of CARPs are particularly useful in the context of 

neuroprotection, as one of the main obstacles in drug delivery to the CNS is transport across 

the blood-brain barrier and entry into the brain. 

Interestingly, and of particular importance in the context of mitochondria-targeted peptides, is 

that the presence of a transmembrane potential is a crucial element for ability of guanidinium-

rich CARPs to traverse membranes [186]. Regarding mitochondria, the Δψm [163, 166, 187] 

and the presence of the negatively charged mitochondrial membrane phospholipid, 

cardiolipin [188], provides the ideal electrostatic attractive forces that enable CARPs to target 

this organelle. The guanidinium head groups of CARPs is also the likely source of their 

antioxidant capabilities, due to their innate free radical scavenging properties [189–192], 

making them perfectly suited to combat mitochondrial-generated ROS and/or cytosolic ROS 
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originating from membrane-bound NADPH oxidase during ischaemia [193], which is 

encouraged by the deleterious crosstalk between the two sources [194, 195].  

By targeting mitochondria, CARPs can exert mito-protective effects on the organelle and by 

extension help maintain cell viability during times of stress, as occurs following ischaemia 

[196]. To date, a number of CARPs have been shown to target mitochondria, and have been 

examined in stroke and other brain injury models (Figure 3, Table 2), several of which are 

discussed in detail below. It should be noted that while they are outside the scope of this 

review, there are several non-peptide neuroprotective agents that potentially overlap 

mechanistically with CARPs by way of their guanidinium head groups, including metformin, 

phenformin and agmatine [197–201].  

 

3.3 Pharmacokinetics of CARPs 

 

While free CARPs are likely to have a serum half-life of several minutes, CARPs bound to 

serum proteins are likely to have a serum half-life of several hours [202–205]. For example, 

serum proteins such as albumin and α1-acid glycoprotein bind CARPs, providing a reservoir 

of the peptide that prolongs serum half-life and potentially extending peptide therapeutic 

duration [203, 206, 207]. Furthermore, various peptide structural modifications such as 

cyclization and use of D-enantiomer amino acids can enhance resistance to serum proteases, 

and thus improve serum stability [206, 208, 209]. With regards to tissue targeting, CARPs 

and CARP-conjugates generally exhibit preferential distribution in kidney, liver, spleen, lung 

and to a lesser extent brain [203, 204, 210–216]. While the ability of CARPs to target brain 

tissue is relatively modest, this may be advantageous in terms of reducing undesirable 

neurological side effects, while still providing the desired therapeutic effects [203]. 

Furthermore, the increased permeability of the blood-brain barrier during ischaemic stroke is 

likely to increase uptake into the brain and prolong the presence of CARPs within ischaemic 

tissue [217].  

 

3.4 Non-mitochondrial neuroprotective mechanisms of CARPs 

 

There is growing evidence that CARPs, in addition to possessing mito-protective properties 

are plurifunctional in terms of their neuroprotective mechanisms of action. For example, 

studies in our laboratory have demonstrated that CARPs, including the TAT-fused NA-1 
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peptide (TAT-NR2B9c), have the capacity to not only reduce glutamic acid induced 

excitotoxic neuronal death and intracellular calcium influx [160, 161, 218–220], but also 

reduce neuronal surface expression of the NMDA receptor subunit protein NR2B [221]. 

CARPs also have the capacity to reduce the activity and/or surface expression of other ion 

channels and receptors (e.g. AMPAR, NCX, TRPV1, CaV2.2, CaV3.3) that may exacerbate 

excitotoxic ionic disturbances in the brain following stroke [221–231], and is one likely 

mechanism whereby the peptides reduce the damaging effects of glutamate-induced 

excitotoxicity. In addition to the confirmed neuroprotective properties of CARPs, they 

possess other properties that may be beneficial following stroke; they induce the 

internalization of cell surface TNF receptors [231], scavenge free radicals and reduce lipid 

peroxidation [189–192], inhibit the activity of the proteasome [232–234], reduce 

inflammatory responses [235–241], activate pro-cell survival signalling [218, 229, 242], and 

inhibit pro-protein convertases that activate matrix metalloproteinases [243–245].  

 

3.5 Preclinical and clinical efficacy of CARPs as mitochondria-targeted therapeutics 

for stroke 

 

Szeto-Schiller (SS) peptides  

Szeto-Schiller (SS) peptides possess cytoprotective and mitoprotective properties and consist 

of four amino acids in length, with a net positive charge of +3 due to the presence of one 

arginine and one lysine or ornithine residue, and C-terminal amidation [246]. The SS peptides 

are synthesised with alternating cationic and aromatic residues, with five peptides being best 

characterised (SS-01: YrFK-NH2; SS-02: DmtrFK-NH2, SS-20: FrFK-NH2; SS-31: rDmtKF-

NH2; mtCPP-1: rDmtOF-NH2; r = D-arginine, Dmt = 2,6-dimethyltyrosine, O = ornithine). It 

is likely that the combination of the arginine residue and cationic charge are the reason that 

SS peptides are able to traverse plasma and mitochondrial membranes.  

 

In vitro studies examining the cytoprotective properties of SS-peptides have revealed several 

potential mechanisms of actions. With respect to mitochondrial targeting, it has been 

estimated that SS peptides can translocate within mitochondria at a 100-5000-fold higher 

concentrations compared to the extramitochondrial cytosolic compartment [247, 248]. 

Furthermore, SS peptides concentrate in the IMM, where they are believed to interact with 

and stabilize cardiolipin during oxidative stress, and thereby help preserve the IMM 

bioenergetics and reduce ROS production [249]. In addition, the ability of SS peptides to 
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target and stabilise IMM cardiolipin is considered a mechanism that inhibits disengagement 

of cyt c from cardiolipin and its release from mitochondria into the cytosol [248, 250]. While 

the exact mechanisms for the beneficial effects of SS peptides on IMM cardiolipin are not 

fully known, the ability of the cationic guanidinium group present on arginine residues to 

interact with anionic phosphate groups of cardiolipin (−2 net charge) may be involved. 

 

There is also evidence that SS peptides have direct antioxidant properties, which would also 

reduce mitochondrial ROS levels. For example, in vitro studies have demonstrated that SS-31 

quenches the ROS H2O2, •OH and ONOO-, and SS-02 quenches H2O2 [248, 251]. The ROS-

quenching effects of SS-31 have been demonstrated in a mouse model of hypertensive 

cardiomyopathy [252], and its ability to restore mitochondrial ATP production has also been 

shown in a murine model of ischaemic kidney injury [157]. Furthermore, positive results with 

SS-31 have been obtained in a mouse stroke model, as demonstrated by Cho et al. (2007) 

whereby intraperitoneal administration of SS-31 (2 and 5 mg/kg; 3000 and 7150 nmol/kg) 

immediately, as well as 6, 24, and 48 hours after a 30 minute duration of MCAO significantly 

reduced infarct volume [253].  

 

The most recently developed SS peptide, mtCPP-1, has superior mitochondrial uptake and 

superoxide scavenging abilities than SS-31 [254]. The mtCPP-1 peptide differs from SS-31 

by the substitution of the lysine (K) residue with an ornithine (O) residue. While no 

explanation has been provided for the improved mito-protective effects of mtCPP-1 over SS-

31, Rigobello et al. (1995) demonstrated in isolated rat liver mitochondria that the ornithine 

tetramer (OOOO; O4) was more effective than the lysine tetramer (KKKK) at maintaining 

mitochondrial permeability transition and membrane potential induced by calcium. 

Importantly, the arginine tetramer (RRRR; R4) was even more effective than O4 at inhibiting 

the toxic effects of calcium on mitochondrial permeability transition and membrane potential 

[255], which further highlights the critical importance of arginine content for the mito-

protective benefits of CARPs. 

 

Poly-arginine and related CARPs 

In addition to SS peptides, longer chain CARPs, including poly-arginine peptides and cell 

penetrating peptides (CPPs), exhibit neuroprotective properties [219, 256, 257]. Initial reports 

from our laboratory and other laboratories demonstrated that the cationic arginine-rich CPP, 

TAT48-57 (TAT: GRKKRRQRRR; net charge +9; arginine residues 6), displayed modest 
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neuroprotective actions in both in vitro and in vivo stroke models [256, 258–261]. These 

findings were in line with an earlier study by Ferrer-Montiel et al (1998), demonstrating that 

cationic arginine-rich hexapeptides (net charge +3 - +7; Arginine residues 2 - 6) were 

neuroprotective in a hippocampal neuronal NMDA excitotoxicity model [262]. Subsequent 

studies in our laboratory showed that poly-arginine-9 (R9; 9 mer of arginine) and penetratin 

were 17-fold and 4.6-fold respectively, more neuroprotective than TAT in a cortical neuronal 

glutamate excitotoxicity model [256]. Further studies in our laboratory revealed that other 

poly-arginine peptides and CARPs as a group are highly neuroprotective, with efficacy 

increasing with increasing peptide arginine content and positive charge, peaking at R15 to 

R18 for poly-arginine peptides [219]. In addition, we have demonstrated that different amino 

acids can increase (e.g. tryptophan) or decrease (e.g. alanine) the neuroprotective efficacy of 

CARPs following glutamate excitoxicity [257], and that CARPs can reduce excitotoxic 

neuronal calcium influx and cell surface expression of the NR2B NMDA receptor subunit 

protein [221]. Interestingly, it appears that the ability of CARPs to traverse cellular 

membranes is correlated to peptide neuroprotective efficacy [161, 219, 257]. While the exact 

reason for this correlation is not fully known, it may be related to the ability of CARPs to 

modulate plasma receptor function or expression levels [216, 218, 258], and/or the ability of 

CARPs to reach therapeutic concentrations within the cell cytosol and organelles (e.g. 

mitochondria, nucleus, endoplasmic reticulum) by virtue of their cationic charge.  

 

The neuroprotective properties of CARPs, including poly-arginine peptides, was further 

validated by Marshall et al (2015), who demonstrated the ability of CARPs to reduce 

NMDA-induced retinal ganglion cell death in the retina of rats. In addition, an R7 poly-

arginine peptide with a cysteine di-sulphide bridge (C-s-s-C-R7: C-s-s-CRRRRRRR-NH2) 

reduced mitochondrial oxidative stress in retinal ganglion cells following NMDA exposure, 

and localised to mitochondria in HEK293 cells. Furthermore, in HEK cells R7 and C-s-s-C-

R7 reduced mitochondrial respiration, m, and ROS generation, and it was proposed that 

these effects on mitochondria would be neuroprotective for neurons during metabolic stress 

(e.g. excitotoxicity and ischaemia) [264]. 

 

With respect to stroke, we have demonstrated in experimental studies in the rat that the poly-

arginine peptides R9D, R12, R18, R18D (D = D-isoform) and protamine all reduce infarct 

volume following permanent and/or transient middle cerebral artery occlusion (MCAO) and 
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perinatal hypoxia-ischaemia, and also reduce the severity of traumatic brain  injury [162, 

265–269], further confirming the efficacy of CARPs in a pre-clinical stroke setting. 

 

TAT and other cationic arginine-rich CPP-fused neuroprotective peptides  

The TAT peptide was first characterised for its cell penetrating properties by Frankel and 

Pabo (1988) [270]. Since then, many studies have used TAT and related cationic arginine-

rich CPPs (CCPPs) (e.g. R9, penetratin) fused to “putative” neuroprotective peptides for 

application in stroke and other acute CNS injury pre-clinical neuroprotection studies, with 

most returning positive results [258, 260, 261, 271–276]. However, given the unequivocal 

neuroprotective properties of CARPs, several years ago we proposed that the neuroprotective 

effects of “putative” neuroprotective peptides fused to CCPPs, which are CARPs, was 

largely, if not exclusively mediated by the carrier peptide [219, 257]. In this context, it is also 

likely that the cargo peptide can further enhance the neuroprotective efficacy of CCPPs by 

providing additional arginine residues, other positively charged amino acids (e.g. lysine) or 

amino acids that increase CARP neuroprotective efficacy (e.g. tryptophan), as well as 

providing structural stability. Importantly, studies in our laboratory [219, 221, 257] and by 

Marshall et al. (2015), and more recently McQueen et al. (2017), support a CARP-mediated 

neuroprotective mechanism for “putative” neuroprotective peptides fused to CCPPs (e.g. 

TAT-NR2B9c and TAT-NR2Bct) [264, 277] (for more detail on this subject, see Meloni et 

al. 2015b). Therefore, based on the findings from our and other laboratories, we believe that 

past neuroprotective studies that have utilized CCPPs need to be critically re-evaluated.   

 

Despite the confounding neuroprotective effects of the carrier peptide in studies using 

“putative” neuroprotective peptides fused to CCPPs, it is likely that due to their cationic and 

arginine-rich properties, these peptides have the capacity to target and exert beneficial effects 

on neuronal mitochondria following stroke. While it will be important for future studies to 

confirm the mito-protective properties of neuroprotective peptides fused to CCPPs, it is 

encouraging that so many studies have returned positive results in stroke and other acute and 

chronic neuronal injury models [226, 256, 274, 278–291]. To this end, the TAT-fused 

neuroprotective peptide TAT-NR2B9c, now known as NA-1, is currently being assessed in 

two Phase III clinical stroke trials (ESCAPE-NA-1 and FRONTIER). It is noteworthy in this 

regard that based on studies from our and other laboratories, other CARPs including poly-

arginine peptides (e.g. R18) display even greater neuroprotective efficacy than NA-1 in 

stroke and related neuronal injury models [162, 257, 264, 265, 267].  
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Borna disease virus X protein  

The X protein derived from the Borna virus (BVD-X) is a cationic protein containing 11 

arginine residues that has mitochondriotropic and mito-protective capabilities. It was 

demonstrated to localise in mitochondria in rat C6 astroglioma cells, and was shown to 

prevent apoptosis in response to both extrinsic (10 µg/mL α-Fas) and intrinsic (50 µM 

peroxynitrite) pathway stimuli in HEK293T and mouse L929 cells, respectively [292].   

 

In relation to neuroprotection, Szelechowski et al. (2014) demonstrated that in neurons over-

expressing BVD-X, the protein localised to mitochondria and reduced rotenone–induced 

axonal fragmentation. Furthermore BVD-X preserved mitochondrial bioenergetics by 

preventing rotenone-induced loss of Δψm and subsequent ROS generation. In addition, it was 

demonstrated that when administered stereotaxically into the substantia nigra pars compacta, 

BVD-X provided neuroprotection in a mouse MPTP Parkinson’s disease model [293]. A 

peptide derived from BVD-X (SRPAPEGPQEEPLHDLRPRPANRKGAAVE) and fused to a 

CCPP and mitochondrial penetrating peptide (FRchaKFRchaK; cha = cyclohexyl-alanine), 

termed PX3, (net charge +4.1, arginine residues = 6), when administered intranasally also 

reduced MPTP-induced neurodegeneration in mice. PX3 also accumulated within 

mitochondria of cultured neurons and protected axons against rotenone-induced axonal 

fragmentation, which corresponded to reduced levels of mitochondrial fission and the 

retention of a greater proportion of filamentous over fragmented mitochondria within 

neurons. Interestingly, both BVD-X and PX3 were shown to reduce Drp1 phosphorylation in 

neurons exposed to rotenone, which is a signalling event known to stimulate mitochondrial 

fission [293]. In a subsequent study, the same group demonstrated that introduced mutations 

of the BVD-X protein designed to enhance mitochondrial localization resulted in greater 

efficacy against rotenone-induced mitochondrial stress in cortical neuronal cultures, an effect 

that correlated with enhanced mitochondrial filamentation and reduced fragmentation [294]. 

 

It is important to note that while the efficacy of the BVD-X derived peptide PX3 has yet to be 

explored in stroke injury models, its neuroprotective actions in terms of maintaining 

mitochondrial structural integrity provides further insight into the potential mechanisms 

whereby CARPs may be neuroprotective in stroke. 

 

4. Conclusions and Future Perspectives 
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With ischaemic stroke constituting one of the leading causes of global morbidity and 

mortality, the development of effective neuroprotective therapeutics is of paramount 

importance and an urgent priority. Mitochondria are an exciting focus for developing novel 

neuroprotective agents, particularly in view of the critical role they play in homeostatic 

cellular processes, including the generation of cellular ATP and regulation of intracellular 

calcium homeostasis. Furthermore, as a consequence of cerebral ischaemia, damaged 

mitochondria play a key role in contributing to oxidative stress and the activation of pro-

death signalling cascades in neurons post-ischaemia. At present, CARPs represent an exciting 

new class of pluripotent therapeutic for acute stroke due to their mitochondria-targeting and 

mitoprotective properties, as well as other neuroprotective actions. In particular, poly-

arginine peptides (such as R18 and R18D), which have been shown to have potent 

neuroprotective properties in experimental stroke models, warrant further preclinical 

evaluation prior to progressing to clinical trials. In addition, due to their multiple 

neuroprotective mechanisms of action, CARPs may have broader potential clinical 

application for the treatment of other forms of acute brain injury, as well as chronic 

neurodegenerative disorders.   
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Figure Legends 

 

Figure 1. Major biochemical pathways of the ischaemic cascade , which inevitably lead to 

irreversible cell death via apoptosis and necrosis. Insufficient oxygen for aerobic energy 

production results in diminished ATP levels, necessary for preservation of critical 

homeostatic functions, particularly maintenance of cellular ionic gradients. This disruption 

triggers mass release of excitatory neurotransmitters, which overstimulates calcium-

permeable ion channel receptors on post-synaptic neurons, causing massive calcium influx. 

This in turn triggers a number of key destructive events, collectively known as the ischaemic 

cascade, and include activation of calcium-sensitive proteases, free radical formation, and 

mitochondrial dysfunction. Mitochondria are central modulators in this cascade, and are both 

targets and contributors of the resulting injurious effects. 

 

AMPA, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; ASIC, acid-sensing ion 

channel; Apaf-1, apoptotic protease activating factor 1; CICR, calcium-induced calcium 

release; cyt c, cytochrome c; CypD, cyclophilin D; ER, endoplasmic reticulum; I-V, 

mitochondrial ETC complexes; IP₃ R, inositol triphosphate receptor; MCU, mitochondrial 

calcium uniporter; MAM, mitochondria associated membranes; mNCX, mitochondrial 

sodium-calcium exchanger; mPTP, mitochondrial permeability transition pore; mRyR, 

mitochondrial ryanodine receptor; NCX, sodium-calcium exchanger; NMDA, N-methyl-D-

aspartate; PMCA, plasma membrane Ca²⁺ -ATPase; RaM, rapid mode calcium uptake; RyR, 

ryanodine receptor, TRPM, transient receptor potential ion channel; Smac, second 

mitochondria-derived activator of caspase; VDAC, voltage-dependent anion channel. 
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Figure 2. Mitochondrial ROS generation contributes to oxidative stress during ischaemic 

stroke. The IMM contains mitochondrial complexes I to V, which comprise the ETC. 

Electrons are transferred along the ETC in a stepwise fashion via electron carriers, including 

CoQ and cyt c, thereby releasing protons (H⁺ ) into the IMS. This accumulation of cations 

comprises the mitochondrial membrane potential (Δψm), which is required for ATP 

production by complex V. This process naturally generates low levels of ROS as a by-

product, which are metabolized by endogenous catabolic enzymes. However, during 

ischaemic stroke additional cellular stress turns mitochondria into the largest contributor of 

ROS in the brain. Consequently, electron ‘leak’ from complexes I and III are responsible for 

excess superoxide radical (O₂ •⁻ ) formation, which further reacts with endogenous 

manganese superoxide dismutase (MnSOD), or undergoes spontaneous dismutation to form 

toxic levels of hydrogen peroxide (H₂ O₂ ). H₂ O₂  subsequently reacts with transitional 

metals to further form hydroxyl radicals (•OH) via the Fenton reaction. Furthermore, NO• 

generated from nNOS as a result of calcium influx during ischaemic stroke are able to 

translocate to the mitochondria and react with O₂ •⁻  to form the highly toxic peroxynitrite 

(ONOO⁻ ). Collectively, the overproduction of these ROS plays a key role in cell death 

during stroke. 

 

CL, cardiolipin; CoQ, Coenzyme Q; e⁻ , electrons; H₂ O₂ , hydrogen peroxide; IMM, inner 

mitochondrial membrane; I-V, mitochondrial ETC complexes; IMS, intermembrane space; 

NO•, nitric oxide; O₂ •⁻ , superoxide; •OH, hydroxyl radical; OMM, outer mitochondrial 

membrane; ONOO⁻ , peroxynitrite; Δψm, mitochondrial membrane potential. 

 

 

 

 

Figure 3. Neuroprotective targets of CARPs during ischaemic stroke. A summation of 

documented and potential neuroprotective targets of CARPs that result from either direct 

and/or indirect mitochondrial protection, thereby preventing cell death. 
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Table 1. CARP sequences, cationic charge and arginine content of peptides named in review. 
 

Peptide Sequence1 

Net 
cha
rge 
(at 
pH
7) 

Argi
nine 
resid
ues 

Perce
ntage 

Argini
ne 

SS-
peptide
s 

    

SS-01, 
SS-02, 
SS-20, 
SS-31, 
mtCPP-
1 

YrFK-NH2, DmtrFK-NH2, FrFK-NH2, rDmtKF-NH2, rDmtOF-NH2 3 1 25% 

Poly-
arginin
e 
peptide
s 

    

R4 RRRR 4 4 100% 

R6 - R7 RRRRRR-NH2 - RRRRRRR-NH2 -1 
7-

Jun 
100% 

C-s-s-C-
R7 

C-s-s-CRRRRRRR-NH2 8 7 
77.80

% 

R9D rrrrrrrrr-NH2 10 9 100% 

R12 RRRRRRRRRRRR 12 12 100% 

R15 RRRRRRRRRRRRRRR 15 15 100% 

R18 
and 
R18D 

RRRRRRRRRRRRRRRRRR, rrrrrrrrrrrrrrrrrr 18 18 100% 
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Other 
CARPs 

        

Penetra
tin 

RQIKIWFQNRRMKWKK-NH2 8 3 
18.80

% 

Protami
ne 

PRRRRSSSRPVRRRRRPRVSRRRRRRGGRRRR 21 21 
65.60

% 

Hexape
ptides     

Hexape
ptides 

Ac-LCRRKF- NH2, Ac-RRWWIR- NH2, Ac-MCRRKR- NH2 -1 
3-

Feb 
33.3 - 
50% 

R4W2 RRRRWW- NH2 5 4 
66.70

% 

r4W2 rrrrWW- NH2 5 4 
66.70

% 

R5W RRRRRW- NH2 6 5 
83.30

% 

r5W rrrrrW- NH2 6 5 
83.30

% 

TAT 
and 
TAT-
fused 
peptide
s 

        

TAT48-57 

(TAT) 
GRKKRRQRRR 8 6 60% 

TAT-
NR2B9c 
(NA-1) 

YGRKKRRQRRR-KLSSIESDV 7 6 
31.60

% 

TAT-
NR2Bct 

GRKKRRQRRR-NRRRNSKLQHKKY 
14.

1 
9 

39.10
% 
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BVD-X 
protein 
and 
PX3 
peptide 

    

BVD-X2 
MSSDLRLTLLELVRRLNGNATIESGRLPGGRRRSPDTTTGTTGVTKTTEGPK
ECIDPTSRPAPEGPQEEPLHDLRPRPANRKGAAVE 

2 11 
12.60

% 

   SRPAPEGPQEEPLHDLRPRPANRKGAAVE-FRchaKFRChaK 
   

PX33 
  

4.2 6 
16.20

% 

 
 

 

1
Dmt = 2,6-dimethyltyrosine; O = ornithine; r = D-arginine;  Ac and NH2 = acetyl and amine side groups; cha = 

cyclohexyl-alanine. 
2
 BVD-X protein region used for PX3 peptide (bold). 

3
BVD-X-derived peptide fused to cell 

and mitochondrial penetrating peptide (underlined).  
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Table 2. Neuroprotective CARPs utilized in stroke and related CNS injury models. 

S
S

-p
e
p

ti
d

e
s 

Injury model  Route and 
schedule of 

administration 

Dose  Neuroprotection  Refs 

Hypoxia: 24h. 

 
H2O2 oxidative 

stress. 
 

G93A familial 
ALS model. 

 

Stroke (Rat): 
30min tMCAO. 

4h pre-

treatment. 
 
1h post H2O2. 
 

IP: daily. 
 
IP: multiple 

injections at 
immediately 
post (0h), 6, 
24, & 48h 

post-MCAO 

SS-31: 10 µM. 

 
SS-31: 1, 10, 100 µM. 
 
SS-31: 5 mg/kg/day. 

 
SS-31 and SS-20: 2 mg/kg.  
SS-31: 2 or 5 mg/kg.  

Reduced cell death, cytochrome c release, 

oxidative stress, and caspase-3 activation; 
prevented p66Shc activation. 
Reduced cell death. 
 

Improved survival and motor performance; 
reduced cell loss in spinal cord, and levels of 
lipid peroxidation and protein nitration. 

SS-31 only prevented ischaemia-induced 
cortical GSH depletion; reduced infarct 
volume 

[250] 

 
[251] 

 
[251] 

 
[253] 

P
o

ly
-a

rg
in

in
e
 p

e
p

ti
d

e
s 

 
Glutamate 

excitotoxicity. 
 

 
 
Oxygen-glucose 

deprivation. 

 
 

 
Stroke (Rat): 

30min pMCAO. 
 
                       
                        

 
 
                       

90min tMCAO. 
                     
120min tMCAO. 
                     

180min tMCAO.  
 
NMDA 

excitotoxicity. 

 
 
 
Kainic acid 

excitotoxicity. 

 
10-15min 

peptide pre-
treatment 

and/or during 
glutamate 
exposure. 

10min peptide 

pre-treatment 
at 1-6h prior 
or 0-45min 
post-

glutamate 
exposure. 

Concurrent 
peptide 

incubation with 
OGD. 
24h exposure 

post-OGD. 
15min exposure 
post-OGD. 
10min exposure 

pre-OGD 1-3h 
prior. 
IV: 30min post-
MCAO onset. 

 
 
 
IV: 60min post-

MCAO onset. 
IV: 120min 
post-MCAO 

onset . 
IV: 150min 
post-MCAO 
onset . 

ICA: 120min 
post-MCAO 
onset . 
IV: 300min 

post-MCAO 
onset . 
 
5min prior and 

during NMDA 
exposure. 
Intravitreal 

injections (3 
µL) of C-s-s-
C-R7 peptide 
2h prior to 

 
R6 to R15, R18 and 
tryptophan-containing poly-
arginine peptides 0.5-15 µM. 

 
 
R6 to R15, R18 and 
tryptophan-containing poly-

arginine peptides 0.5-15 µM. 
 
 
R18 or R12W8: 1000 

nmol/kg; R9D; 30 nmol/kg. 
 
R12, R15, or R18: 1000 
nmol/kg; R18 and R18D: 

1000 nmol/kg. 
R18: 100, 300, 1000 
nmol/kg. 

R18: 1000 nmol/kg. 
R18: 30, 100, 300, 1000 
nmol/kg. 
R18: 100 nmol/kg R18. 

R18: 1000 nmol/kg R18. 
 
R12: 1 or 2 µM R12. 
Cyclic poly-arginine 

peptides: 1.5, 3, 6 nM. 
 
 
R9: 1, 5, 10, 15 µM. 

 
Protected against excitotoxicity and reduced 
calcium influx. 
 

Protected against excitotoxicity up to 6h prior 
to and 45min post-glutamate. 
Protected against OGD. 
Protected against OGD. 

Protected against OGD. 
Protected against OGD up to 2h prior. 
Reduced infarct volume and cerebral oedema; 
reduced hemisphere swelling. 

R12 and R18, and to a greater extent, R18D, 
reduced total infarct volume. 
Reduced infarct volume and improved 
functional outcomes. 

Reduced cerebral oedema and improved 
neurological score. 
Reduced infarct volume and hemisphere 

swelling. 
Mild reduction in infarct volume. 
Mild reduction in cerebral oedema and 
improvement in neurological score with R18. 

Protected against excitotoxicity. 
Inhibited NMDA-induced PARP-1 activation; 
reduced mitochondrial oxidative stress and 
attenuated mitochondrial membrane 

hyperpolarization. 
Protected against excitotoxicity. 
 

 
[156, 
160, 
161, 

256] 
[219] 

 
[219] 

[256] 
[219] 
[219] 
[161, 

219] 
 

[265, 
269] 

 
[266] 
[267] 

[162] 
[267] 
[267] 

 

[219] 
[264] 

 
 

[256] 
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successive 
injection with 
NMDA (20 
nM). 

15min pre-
treatment. 

P
e
n

e
tr

a
ti

n
, 

P
ro

ta
m

in
e
 a

n
d

  
H

e
x

a
p

e
p

ti
d
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s 

 
Glutamate 

excitotoxicity. 
 

 
Kainic acid 

excitotoxicity. 

Oxygen-glucose 
deprivation. 

Stroke (Rat): 
30min pMCAO. 

 
NMDA 

excitotoxicity. 

 
15min prior to 

glutamic acid 
exposure. 

10min peptide 
incubation 0, 
1, and 2h 

prior to 
glutamic acid 
exposure. 

15min prior to 

kainic acid 
exposure. 

Concurrent 
peptide 

incubation 
with OGD. 

IV: 30min post-
MCAO onset.  

 
Concurrent 

treatment 

with NMDA 
exposure for 
20min. 

 
Penetratin: 1, 5, 10, 15 µM.  
Protamine and Pmt1-4: 1, 2, 
5 µM  

 
Penetratin: 1, 5, 10, 15 µM. 
Penetratin: 1, 2, 5, 10 µM. 

Protamine 1000 nmol/kg. 
 
Hexapeptides: 10 µM. 

 
Protected against excitotoxicity. 
Protected against excitotoxicity up to 2h prior 
to glutamate. 

 
Protected against excitotoxicity. 
Protected against OGD. 

Reduced infarct volume and cerebral oedema; 
improved neurological score. 
Protected against excitotoxicity. 
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Glutamate 

excitotoxicity. 

 
 
Kainic acid 

excitotoxicity. 
Oxygen-glucose 

deprivation. 
NMDA 

excitotoxicity. 

 
Stroke (Rat): 
30min pMCAO. 

                      
90min tMCAO. 
                    
120min tMCAO. 

                    
180min tMCAO. 

 

 
10-15min prior 

to or at 
intervals (0, 
15, 30, 45, or 
60min) post 

glutamic acid 
exposure. 

15min prior to 
kainic acid 

exposure. 
Concurrent 

peptide 
incubation. 

Simultaneous 
TAT 
treatment or 
15min prior 

to and during 
NMDA 
exposure. 

IV: 60min post-
MCAO onset. 

IV: 150min 
post-MCAO 

onset. 

 
TAT or TAT-conjugated 

peptides, both L- and D-
isoforms: 0.1-15 µM; TAT-
NR2B9c: 1, 2, 5, 10 µM. 

 
D-TAT and TAT-conjugates: 
1-15 µM. 
D-TAT: 1, 2, 5, 10 µM. 
TAT and D-TAT pre-

treatment: 5, 10 µM; 
TAT-NR2B9c: 2, 5, 10 µM. 
TAT-NR2B9c: 100, 300, 
1000 nmol/kg. 

TAT-NR2B9c: 30, 100, 300, 
1000 nmol/kg. 
TAT-NR2B9c: 100 nmol/kg. 
TAT-NR2B9c: 1000 

nmol/kg. 

 

 
Protected against excitotoxicity. 

  
 
Reduced calcium influx. 
Protected against OGD. 

Protected against excitotoxicity. 

 
Reduced infarct volume and improved 
functional outcomes. 

Mild reduction in infarct volume and 
hemisphere swelling. 
No neuroprotection. 
No neuroprotection; therapeutic window <2h. 

 

 
[219, 

256, 
258, 
259] 

 
[256] 
[219, 
256] 
[219] 

 
[266] 
[162] 
[267] 

[267] 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ICA: 120min 
post-MCAO 
onset. 

IV: 300min 

post-MCAO 
onset. 
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e
 

 
Fas-mediated 

apoptosis. 
 
Glucose oxidase 

(GOX)-

induced death-
receptor-
independent 
apoptosis. 

MPTP PD 
neurodegenerat
ion model 
(Mouse) 

 
 
 

 
 
 
 

MPP+ toxicity. 
 
Rotenone-induced 

oxidative 

stress. 

 
10µg/mL α-Fas 

antibody to 
stimulate Fas-
induced 
apoptosis. 

1.5 or 2h 
incubation 
with 
2mU/mL 

GOX. 
 
 
Stereotaxic 

injection 
with WT 
(LV-XWT) or 

mutant X 
protein 
(XA6A7) 2wk 
prior to 

MPTP 
intoxication 
model. 

ICV: PX3 

daily, 1 day 
before IP 
MPTP 
intoxication 

and during 
first 4 days 
post-MPTP. 

Intranasal 
administratio
n: PX3 daily, 
1 day before 

IP MPTP 
intoxication 
and during 
first 4 days 

post-MPTP. 
WT (BVDWT) 

or mutant 
(BDV-XA6A7) 

X protein. 
WT or mutant 

X protein 
(XA6A7), or 

un-
transfected 
neurons 

receiving 
PX3 peptide. 

WT (BVDWT) 
or mutant 

(BDV-XA6A7) 
X protein. 

Neurons 
expressing 

non-
mitochondria
l XA6A7 
(control) or 

mutant X 

 
Transfection. 

 
Transfection. 
 
 

1.10
6
TUs of vectors in 1 μl 

at flow rate of 0.1 μl/min. 
 
 

T ransfection or PX3 peptide 
treatment (2 nM in 2 
µL/injection at flow rate of 
0.5 μl/min. 

 
T ransfection or PX3 peptide 
treatment. 

 
 
Transfection. 
 

Transfection or PX3 peptide 
treatment  
 
 

Transfection. 
 
Transfection. 
 

 

 
Reduced DX2-Fas-induced apoptosis. 

 
Reduced receptor-independent, 
mitochondrial-dependent apoptosis. 
 

Reduced lesions and protection against 
MPTP-induced neurodegeneration. 
 
Reduced lesions and protection against 

MPTP-induced neurodegeneration. 
 
Reduced lesions and protection against 
MPTP-induced neurodegeneration. 

 
Reduced axonal fragmentation. 
 

Increased mitochondrial filamentation and 
elongation, and reduced rotenone-induced 
fission, and reduced axonal fragmentation. 
Neuroprotection against axonal fragmentation 

and reduced rotenone-induced ROS and 
oxidative stress with WT only. 
Near-complete prevention of rotenone-
induced axonal fragmentation. 
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ICA = intracerebral artery; ICV = intracerebral vessel; IP = intraperitoneal; IV = intravenous; MCAO = middle cerebral artery occlusion; OGD = 
oxygen-glucose deprivation; PD; Parkinson’s disease. 

  

proteins (X, 
XΔ2-4 and 
XA4). 
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Highlights 

 There are currently no clinically effective neuroprotective therapeutics available for 

stroke patients. 

 Mitochondria have been highlighted as a critical central mediator in determining the 

cellular fate of neuronal and glial cells during stroke. 

 Cationic arginine-rich peptides (CARPs) are an emerging class of novel 

neuroprotective agents that have demonstrated potent neuroprotection by targeting 

mitochondria during stroke. 

 Mito-protection may represent a new avenue of targeted drug development, and 

translate to better clinical outcomes in stroke trials. 
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