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Abstract

We propose a natural discretisation scheme for classical projective minimal
surfaces. We follow the classical geometric characterisation and classification
of projective minimal surfaces and introduce at each step canonical discrete
models of the associated geometric notions and objects. Thus, we introduce
discrete analogues of classical Lie quadrics and their envelopes and classify
discrete projective minimal surfaces according to the cardinality of the class
of envelopes. This leads to discrete versions of Godeaux-Rozet, Demoulin
and Tzitzéica surfaces. The latter class of surfaces requires the introduction
of certain discrete line congruences which may also be employed in the clas-
sification of discrete projective minimal surfaces. The classification scheme
is based on the notion of discrete surfaces which are in asymptotic corre-
spondence. In this context, we set down a discrete analogue of a classical
theorem which states that an envelope (of the Lie quadrics) of a surface is in
asymptotic correspondence with the surface if and only if the surface is either
projective minimal or a Q surface. Accordingly, we present a geometric defi-
nition of discrete Q surfaces and their relatives, namely discrete counterparts
of classical semi-Q, complex, doubly Q and doubly complex surfaces.
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1. Introduction

Projective geometry is arguably “The Queen of All Geometries”. In
1872, this was recognised by Felix Klein whose pioneering and universally ac-
cepted Erlangen program revolutionised the way (differential) geometry was
approached and treated. Thus, Klein [1] proposed that geometries should
be classified in terms of groups of transformations acting on a space (of
homogeneous coordinates) with projective geometry being associated with
the most encompassing group, namely the group of projective collineations.
Apart from placing Euclidean and affine geometry in this context, this ap-
proach gives rise to projective models of a diversity of geometries such as Lie,
Möbius, Laguerre and Plücker line geometries.

Projective differential geometry was initiated by Wilczynski [2, 3, 4] rep-
resenting the “American School” and later formulated in an invariant man-
ner by the “Italian School” whose founding members were Fubini and Ĉech.
Cartan is but one of a long list of distinguished geometers who were involved
in the development of this subject with monographs by Fubini & Ĉech [5, 6],
Lane [7], Finikov [8] and, most notably, Bol whose first two volumes [9, 10]
consist of more than 700 pages. Recently, there has been a resurgence of
interest in projective differential geometry. Here, we mention the monograph
Projective Differential Geometry. Old and New by Ovsienko and Tabach-
nikov [11] and the Notes on Projective Differential Geometry by Eastwood
[12]. Interestingly, as pointed out in [13], projective differential geometry
also finds application in General Relativity in connection with geodesic con-
servation laws.

Projective geometry has proven to play a central role in both discrete
differential geometry and discrete integrable systems theory [14]. Thus, it
turns out that classical incidence theorems of projective geometry such as
Desargues’, Möbius’ and Pascal’s theorems lie at the heart of the integrable
structure prevalent in discrete differential geometry. Their algebraic incar-
nations provide the origin of the integrability of the associated discrete inte-
grable systems such as the master Hirota (dKP), Miwa (dBKP) and dCKP
equations (see [15, 16] and references therein). A survey of this important
subject may be found in the monograph [14]. Moreover, classical projective
differential geometry has been shown to constitute a rich source of integrable
geometries and associated nonlinear differential equations [17, 18].

Here, in view of the development of a canonical discrete analogue of pro-
jective differential geometry, we are concerned with the important class of
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projective minimal surfaces [10]. These have a great variety of geometric and
algebraic properties and are therefore custom made for the identification of
a general discretisaton procedure which preserves essential geometric and al-
gebraic features. In this connection, it should be pointed out that projective
minimal surfaces have been shown to be integrable (see [17, 19] and references
therein) in the sense that the underlying projective “Gauss-Mainardi-Codazzi
equations” are amenable to the powerful techniques of integrable systems the-
ory (soliton theory) [19]. It turns out that the discretisation scheme proposed
here preserves integrability and even though this important aspect will be
discussed in a separate publication (cf. [20]), we briefly identify and discuss
a discrete analogue of the Euler-Lagrange equations for projective minimal
surfaces.

Projective minimal surfaces may be characterised and classified both ge-
ometrically and algebraically. Here, we mainly focus on geometric notions
and objects with a view to establishing natural discrete counterparts. Even
though, by definition, projective minimal surfaces are critical points of the
area functional in projective differential geometry, these may also be char-
acterised in terms of Lie quadrics and their envelopes [10, 21]. For any (hy-
perbolic) surface Σ in a three-dimensional projective space P3, there exists
a particular two-parameter family (congruence) of quadrics Q which have
second-order contact with Σ. In general, this congruence of quadrics, which
are known as Lie quadrics, admit four additional envelopes Ω which are
termed Demoulin transforms of Σ [10, 21]. If the asymptotic lines on the
surface Σ are mapped via the congruence of Lie quadrics to the asymptotic
lines of at least one envelope Ω then we say that Σ and Ω are in asymptotic
correspondence. In [22], we have proposed the term PMQ surface for a sur-
face Σ which admits at least one envelope Ω (of the associated Lie quadrics)
which is in asymptotic correspondence with Σ. A classical theorem [21, 23]
now states that a PMQ surface is either projective minimal (PM) or a Q
surface [10] (or both). A definition of the interesting but restrictive class of
Q surfaces is given in the next section.

Projective minimal surfaces may be classified in terms of the number
of distinct (additional) envelopes of the Lie quadrics [10, 21, 22]. If two
envelopes are the same then the projective minimal surface Σ is of Godeaux-
Rozet type. If there exists only one envelope (apart from Σ itself) then Σ is of
Demoulin type. This classification may also be formulated in terms of certain
line congruences, which has the advantage that Demoulin surfaces may be
further separated into generic Demoulin surfaces and projective transforms of
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Tzitzéica surfaces. The latter have been discussed in great detail not only in
the classical context of affine differential geometry but also in connection with
the theory of integrable systems and integrability-preserving discretisations
(see [19, 24] and references therein). On the other hand, Q surfaces are
naturally defined in terms of a so-called semi-Q property which gives rise
to the isolation of not only Q surfaces but also other classical classes of
surfaces, namely complex, doubly Q and doubly complex surfaces [10]. The
semi-Q property is defined in terms of special generators of Lie quadrics
which form so-called Demoulin quadrilaterals. This is made precise in the
following section.

In the following, we first briefly review the classical geometric notions and
objects, and classes of surfaces mentioned above and then propose, justify and
analyse in detail all of their discrete analogues. It turns out that the discrete
and classical theories are remarkably close. Moreover, importantly, it may
be argued that the discrete theory is more transparent and, thereby, makes
the classical theory more accessible. In this connection, it is observed that it
is well known that, in many instances, discrete geometries may be generated
from continuous geometries by means of iterative application of transfor-
mations such as Bäcklund transformations, thereby preserving the essential
features of the continuous geometries (see [14] and references therein). In
[22], combinatorial and geometric properties of the afore-mentioned classical
Demoulin transformation have been investigated in detail and it turns out
that the Demoulin transformation applied to classical PMQ surfaces indeed
generates discrete PMQ surfaces of the type proposed here.

2. Projective minimal surfaces

2.1. Algebraic classification of projective minimal surfaces

We are concerned with surfaces Σ in a three-dimensional (real) projective
space P3 represented by [r] : R2 → P3, where (x, y) ∈ R2 are taken to
be asymptotic coordinates on Σ. Since we confine ourselves to hyperbolic
surfaces, the asymptotic coordinates are real. By definition of asymptotic
coordinates, the second derivatives along the coordinate lines are tangent to
Σ so that the vector of homogeneous coordinates r ∈ R4 satisfies a pair of
linear equations

rxx = pry + πr + σrx, ryy = qrx + ξr + χry.
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Then, it is well known [10, 17, 19] and may readily be verified that particular
homogeneous coordinates, known as the Wilczynski lift [2, 3, 4], may be
chosen such that the functions σ and χ vanish. Hence, for convenience,
one may parametrise the remaining coefficients of the “projective Gauss-
Weingarten equations” according to

rxx = pry +
1

2
(V − py)r, ryy = qrx +

1

2
(W − qx)r

in terms of functions p, q, V and W . The latter are constrained by the “pro-
jective Gauss-Mainardi-Codazzi equations”

pyyy − 2pyW − pWy = qxxx − 2qxV − qVx (1)

Wx = 2qpy + pqy (2)

Vy = 2pqx + qpx (3)

which may be derived from the compatibility condition rxxyy = ryyxx. It is
noted that the Wilczynski lift is unique up to the group of transformations

x→ f(x), y → g(y), r →
√
f ′(x)g′(y) r

with

p→ p
g′(y)

[f ′(x)]2
, q → q

f ′(x)

[g′(y)]2
(4)

V → V + S(f)

[f ′(x)]2
, W → W + S(g)

[g′(y)]2
, (5)

where S denotes the Schwarzian derivative

S(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

The quadratic form
pq dxdy

is a projective invariant and is known as the projective metric. Throughout
the paper, we shall assume that Σ is not ruled, i.e., pq 6= 0.

In view of the classification of projective minimal surfaces, it turns out
convenient to define functions α and β by

α = p2W − ppyy +
p2
y

2
, β = q2V − qqxx +

q2
x

2
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so that the Gauss-Mainardi-Codazzi equations (1)-(3) adopt the form

αy
p

=
βx
q

(6)

(ln p)xy = pq +
A

p
, Ay = −p

(
α

p2

)
x

(7)

(ln q)xy = pq +
B

q
, Bx = −q

(
β

q2

)
y

. (8)

This is directly verified by eliminating the functions A and B.

Definition 2.1. A surface Σ in P3 is said to be projective minimal if it is
critical for the area functional

∫∫
pq dxdy.

Theorem 2.2 ([25]). A surface Σ in P3 is projective minimal if and only if

αy
p

=
βx
q

= 0. (9)

There exist classical canonical classes of projective minimal surfaces as
listed below. Thus, a projective minimal surface is said to be

(a) generic if α 6= 0 and β 6= 0.

(b) of Godeaux-Rozet type if α 6= 0, β = 0 or α = 0, β 6= 0.

(c) of Demoulin type if α = β = 0. If, in addition, p = q then Σ is said to
be of Tzitzéica type.

It is noted that, using a gauge transformation of the form (4), (5), one may
normalise α and β to be one of −1, 1 or 0. This normalisation corresponds to
canonical forms of the integrable system (6)-(9) underlying projective mini-
mal surfaces [17].

2.2. Geometric classification of projective minimal surfaces

It turns out that the above algebraic classification of projective minimal
surfaces admits a natural discrete analogue. This is the subject of a separate
publication [20]. Here, our discretisation procedure is of a geometric nature
based on the classical geometric classification scheme of projective minimal
surfaces which involves Lie quadrics and their envelopes.
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Definition 2.3. Let [r] : R2 → P3 be a parametrisation of a surface Σ in
terms of asymptotic coordinates. Let p = r(x, y) be a point on Σ and let p±
be two additional points on the x-asymptotic line passing through p, given by
p± = r(x± ε, y). Let l± and l be the three lines tangent to the y-asymptotic
lines at p± and p respectively. These uniquely define a quadric Qε containing
them as rectilinear generators. The Lie quadric at (x, y) is then the unique
quadric defined by

Q(x, y) = lim
ε→0

Qε(x, y).

It is important to emphasise that the above definition of a Lie quadric may
be shown to be symmetric in x and y, that is, interchanging x-asymptotic
lines and y-asymptotic lines leads to the same Lie quadric Q. This is reflected
in the explicit representation of the Lie quadric Q given below [10, 18]. For
brevity, in the following, notationally, we do not distinguish between a Lie
quadric in RP3 and its representation in the space of homogeneous coordi-
nates R4.

Theorem 2.4. The Lie quadric Q (at a point (x, y)) admits the parametri-
sation

Q = n + µr1 + νr2 + µνr,

where µ and ν parametrise the two families of generators of Q and {r, r1, r2, n}
is the Wilczynski frame given by

r = r, r
1 = rx −

qx
2q

r, r
2 = ry −

py
2p

r

n = rxy −
py
2p

rx −
qx
2q

ry +

(
pyqx
4pq
− pq

2

)
r.

It is observed that the lines (r, r1) and (r, r2) are tangent to Σ, while the
line (r, n) is transversal to Σ and plays the role of a projective normal. It is
known as the first directrix of Wilczynski.

Definition 2.5. A surface Ω parametrised by [ω] : R2 → P3 is an envelope of
the two parameter family of Lie quadrics {Q(x, y)} associated with a surface
Σ if ω(x, y) ∈ Q(x, y) such that Ω touches Q(x, y) at ω(x, y).

We note that, in particular, Σ is itself an envelope of {Q}. Generically,
there exist four additional envelopes as stated below [10].
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Theorem 2.6. If α, β ≥ 0 then the Lie quadrics {Q} possess four real
additional envelopes

ω++ = n + µ̂r1 + ν̂r2 + µ̂ν̂r

ω+− = n + µ̂r1 − ν̂r2 − µ̂ν̂r
ω−+ = n− µ̂r1 + ν̂r2 − µ̂ν̂r
ω−− = n− µ̂r1 − ν̂r2 + µ̂ν̂r,

where

µ̂ =

√
α

2p2
, ν̂ =

√
β

2q2
.

These are distinct if α, β 6= 0.

Remark 2.7. The above envelopes are called the Demoulin transforms of Σ.
We denote them by Σ++, Σ+−, Σ−+ and Σ−−. In general, by construction,
these have first-order contact with the Lie quadrics, while, by definition of
Lie quadrics, the surface Σ has second-order contact. It turns out that there
exists a natural discrete analogue of this classical fact.

As indicated in the above theorem, the expressions for µ̂ and ν̂ imply
that whether α and β vanish or not is related to the number of distinct
envelopes. Accordingly, the geometric interpretation of the algebraic classi-
fication (a)-(c) is then that a projective minimal surface Σ is

(a) generic if the set of Lie quadrics {Q} has four distinct additional en-
velopes.

(b) of Godeaux-Rozet type if {Q} has two distinct additional envelopes.

(c) of Demoulin type if {Q} has one additional envelope.

Remark 2.8. By virtue of the Gauss-Mainardi-Codazzi equation (6), The-
orem 2.6 implies that a surface Σ in P3 is necessarily projective minimal if
there exist less than four additional distinct envelopes. Specifically, if the
Lie quadrics of Σ have only two additional distinct envelopes then Σ is of
Godeaux-Rozet type. If the Lie quadrics of Σ have only one additional en-
velope then Σ is of Demoulin type.
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Remark 2.9. For any fixed (x, y), the points ω++(x, y), ω+−(x, y),ω−−(x, y)
and ω−+(x, y) of the Demoulin transforms of Σ may be regarded as the ver-
tices of a quadrilateral (cf. Figure 1)

[ω++(x, y), ω+−(x, y), ω−−(x, y),ω−+(x, y)]

which is known as the Demoulin quadrilateral [10]. Then, the parametri-
sation of the envelopes set down in Theorem 2.6 shows that the extended
edges [ω++(x, y), ω+−(x, y)], [ω+−(x, y), ω−−(x, y)], [ω−−(x, y), ω−+(x, y)]
and [ω−+(x, y), ω++(x, y)] are generators of the Lie quadric Q(x, y).

Figure 1: The Demoulin quadrilateral

Remarkably, it turns out that the Demoulin transformation acts within the
class of projective minimal surfaces and, specifically, within the classes (a)-(c)
[21, 23].

Theorem 2.10. Let Σ be a projective minimal surface. Then, each of its De-
moulin transforms is projective minimal. Moreover, the number n ∈ {1, 2, 4}
of distinct Demoulin transforms of Σ is preserved by the Demoulin trans-
formation. In particular, if Σ is of Godeaux-Rozet type then each of its
Demoulin transforms is of Godeaux-Rozet type. If Σ is of Demoulin type
then its transform is of Demoulin type.

The following classical theorem lies at the heart of the geometric definition
and analysis of discrete projective minimal surfaces. In order to formulate
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this theorem, we first note that since any point of a surface Σ is mapped
to a point of any envelope Ω via the corresponding Lie quadric, any coordi-
nate system on the surface Σ induces a coordinate system on the envelope
Ω. Hence, we say that a surface Σ and any envelope Ω are in asymptotic
correspondence if the asymptotic lines on Σ are mapped to the asymptotic
lines on Ω. It turns out that the notion of asymptotic correspondence gives
rise to a privileged class of surfaces. Thus, the definition proposed in [22] is
adopted.

Definition 2.11. A surface Σ is termed a PMQ surface if it is in asymptotic
correspondence with at least one associated envelope Ω.

The above-mentioned key theorem therefore reads as follows [10, 21].

Theorem 2.12. The class of PMQ surfaces consists of projective minimal
surfaces and Q surfaces.

The properties of Q surfaces and their relatives have been discussed in
great detail in [10]. Some of those which are pertinent to the discrete theory
developed in the following sections are now briefly mentioned. Thus, in gen-
eral, for any surface Σ, any extended edge of the Demoulin quadrilateral dis-
played in Figure 1 such as [ω++(x, y),ω+−(x, y)] generates a two-parameter
family of lines (i.e., a line congruence) by varying the coordinates (x, y) on
Σ. However, this line congruence may degenerate to a one-parameter family
of lines, in which case Σ is referred to as a semi-Q surface. If this kind of
degeneration is present with respect to two connected edges of the Demoulin
quadrilateral such as the preceding one and [ω++(x, y),ω−+(x, y)] then Σ is
termed a Q surface with respect to the envelope Σ++. In fact, the latter
turns out to be a quadric generated by the two one-parameter families of ex-
tended edges. If the line congruences associated with two “opposite” edges
such as [ω++(x, y),ω+−(x, y)] and [ω−−(x, y),ω−+(x, y)] degenerate then Σ
is known as a complex surface. If three or four line congruences degenerate
then we refer to Σ as doubly Q or doubly complex respectively. However, it
is known that doubly Q surfaces are automatically doubly complex. It turns
out that the same property holds in the discrete case.

3. Lattice Lie quadrics

3.1. The frame of a discrete asymptotic net

Definition 3.1 ([14]). A Z2 lattice of points in P3 whose stars are planar is
termed a discrete asymptotic net.
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Let r : Z2 → R4 be a homogeneous coordinate representation of a discrete
asymptotic net in P3. We usually suppress the arguments in r = r(n1, n2)
and denote an increment of nk by a subscript k and a decrement of nk by
a subscript k̄, that is, rk and rk̄ respectively, as illustrated in Figure 2. We

Figure 2: Labeling of a discrete asymptotic net

introduce the frame

V =


r
r1

r2

r12

 (10)

so that the planar star condition on the lattice gives rise to the frame equa-
tions

V 1 =


r
r1

r2

r12


1

=


0 1 0 0
α0 α1 0 α3

0 0 0 1
0 β1 β2 β3




r
r1

r2

r12

 = LV (11)

V 2 =


r
r1

r2

r12


2

=


0 0 1 0
0 0 0 1
γ0 0 γ2 γ3

0 δ1 δ2 δ3




r
r1

r2

r12

 = MV , (12)

where we note that in order to exclude the degenerate case of three points
connected by two edges being collinear, we demand that only α1, β3, γ2 and
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δ3 be allowed to be zero. L and M are not arbitrary but are constrained by
the compatibility condition V 12 = V 21, that is

M1L = L2M (13)

which equates to
0 0 0 1

0 β1 β2 β3

0 β1γ3
1 + γ0

1 γ3
1β

2 β3γ3
1 + γ2

1

δ1
1α

0 α1δ1
1 + β1δ3

1 δ3
1β

2 α3δ1
1 + β3δ3

1 + δ2
1



=


0 0 0 1

0 α3
2δ

1 δ2α3
2 + α0

2 δ3α3
2 + α1

2

0 δ1 δ2 δ3

β2
2γ

0 β3
2δ

1 γ2β2
2 + δ2β3

2 γ3β2
2 + δ3β3

2 + β1
2

 .

(14)

These may be regarded as the “Gauss-Mainardi-Codazzi equations” in dis-
crete projective differential geometry.

3.2. Lattice Lie quadrics

For each quadrilateral of a discrete asymptotic net, there exists a one-
parameter family of quadrics passing through the edges of that quadrilat-
eral. Analogously to the continuous Lie quadric for projective minimal and
Q surfaces, these “lattice quadrics” play a central role in defining discrete
Demoulin transforms.

Definition 3.2.

(i) A quadric associated with a quadrilateral of a discrete asymptotic net
is a quadric that passes through the edges of the quadrilateral. For
any given quadrilateral, there exists a one parameter family of such
quadrics.

(ii) Let Q and Q̂ be two quadrics associated with neighbouring quadrilat-
erals of a discrete asymptotic net. Q and Q̂ are said to satisfy the C1

condition if their tangent planes coincide at each point of the common
edge.

12



Figure 3: Combinatorial picture of a quadrilateral of a discrete asymptotic net and the
star of an envelope touching an associated lattice Lie quadric

(iii) A set of quadrics {Q} associated with the quadrilaterals of a discrete
asymptotic net is termed a set of lattice Lie quadrics if the C1 condition
holds for all neighbouring pairs of quadrics.

(iv) A discrete envelope of a set of lattice Lie quadrics {Q} is a dual lattice of
Z2 combinatorics such that each star touches the corresponding lattice
Lie quadric (cf. Figure 3).

(v) A discrete PMQ surface is a discrete asymptotic net which admits a
discrete envelope of an associated set of lattice Lie quadrics.

We parametrise a quadric passing through the edges of the quadrilateral
[r r1 r2 r12] by

Q(s, t) = pr12 + sr1 + tr2 + str, (15)

where p is fixed and labels Q among the one-parameter family of quadrics
associated with the quadrilateral, and s and t are the parameters of Q which
parametrise its generators.

Remark 3.3. The four (extended) edges of any quadrilateral of a discrete
asymptotic net lying on the corresponding lattice Lie quadric may be re-
garded as a discrete analogue of second-order contact, while any planar star
of a discrete envelope touching the corresponding lattice Lie quadric consti-
tutes a discrete analogue of first-order contact.
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In order to establish the existence of lattice Lie quadrics, we first recall a
key theorem established in [26] and prove it algebraically.

Theorem 3.4. Given a fixed quadric Q, the C1 condition uniquely deter-
mines a quadric Q1 associated with the neighbouring quadrilateral.

Proof. We parametrise Q by (15) and Q1 by

Q1(s1, t1) = p1r112 + s1r11 + t1r12 + s1t1r1 (16)

so that, by virtue of (11), (12),

Q1 = (β3p1 + α3s1 + t1)r12

+ (β1p1 + α1s1 + s1t1)r1 + β2p1r2 + α0s1r.
(17)

A point X on the edge common to Q and Q1 is parametrised by ps1 = s and
t = 0, t1 =∞. The C1 condition is then∣∣∣∣X, r12,

∂

∂t
Q

∣∣∣∣
X
,

∂

∂t̂1
Q̂1

∣∣∣∣
X

∣∣∣∣ = 0,

where, to obtain a finite tangent vector, we have scaled Q1 according to
Q̂1 = t̂1Q1 with t̂1 = 1/t1. This yields

|s1r1, r12, r2 + ps1r, p1r112 + s1r11| = 0. (18)

On use of the system (11), (12), this is shown to determine p1 according to

p1 =
α0

β2p
. (19)

Remark 3.5. We note that Theorem 3.4 makes use of the fact that Q and
Q1 share tangents plane at the points r1 and r12. Moreover, since (19) is
independent of s, it follows that the tangent planes of Q and Q1 coincide
everywhere along the common edge, confirming the following known result.

Theorem 3.6 ([26]). Let Q and Q1 be quadrics associated with two neigh-
bouring quadrilaterals of a discrete asymptotic net. If the tangent planes
of Q and Q1 coincide at a point on their common edge other than any of
the vertices connected by the common edge then the tangent planes to both
quadrics coincide everywhere along the common edge.
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Remark 3.7. Let Q2 be the quadric passing through the edges of the quadri-
lateral [r2, r12, r22, r122] which satisfies the C1 condition with Q. Let Q12

and Q21 be the quadrics passing through the edges of the quadrilateral
[r12, r112, r122, r1122] which satisfies the C1 condition with Q1 and Q2 re-
spectively (cf. Figure 4). Then, expressions similar to (19) show that the
parameters p12 and p21 associated with Q12 and Q21 respectively coincide.
Thus, Q12 = Q21 and, hence, given one fixed quadric associated with one
quadrilateral of a discrete asymptotic net, the C1 condition uniquely de-
termines all other quadrics on the lattice [26]. The implication of this is
summarised below.

Figure 4: Quadrics on a patch of a discrete asymptotic net related by the C1 condition

Theorem 3.8. A set of lattice Lie quadrics is uniquely determined by a
quadric associated with one quadrilateral of a discrete asymptotic net.

3.3. Generators shared by lattice Lie quadrics

In view of classifying discrete PMQ surfaces and their envelopes, we now
investigate the properties of quadrics associated with the quadrilaterals of a
discrete asymptotic net.

Theorem 3.9. Let Q and Q1 be two neighbouring quadrics on a discrete
asymptotic net which satisfy the C1 condition. Then, Q and Q1 share
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two (possibly complex or coinciding) generators (transversal to the common
edge). Conversely, if there exists a generator common to Q and Q1 then the
C1 condition is satisfied.

Proof. At points common to Q and Q1, we have Q(s, t) ∼ Q1(s1, t1), which
yields the equations

s

p
=
β1p1 + α1s1 + s1t1
β3p1 + α3s1 + t1

(20)

t

p
=

β2p1

β3p1 + α3s1 + t1
(21)

st

p
=

α0s1

β3p1 + α3s1 + t1
. (22)

One solution to these equations is t = 0, t1 = ∞ and ps1 = s, which
parametrises the common edge. Hence, if Q and Q1 have a common gen-
erator then, necessarily, the corresponding parameters s and s1 are related
by ps1 = s. As a result, relations (21) and (22) imply that p1 = α0/(β2p),
which is precisely the C1 condition (19). This is geometrically evident since
at the point of intersection of the common edge and generator, the generator
and edge span the coinciding tangent planes of Q and Q1 so that, as a result
of Theorem 3.6, the tangent planes to Q and Q1 coincide along their common
edge. Hence, if Q and Q1 have a shared generator then they satisfy the C1

condition.
Conversely, since any common generator is “labelled by ps1 = s”, that

is, the labels s and s1 of a generator common to Q and Q1 are related by
ps1 = s, the C1 condition (19) implies that (21) and (22) coincide, thereby
relating the parameters t and t1 but leaving one of them arbitrary, and the
remaining relation (20) reduces to the condition

α3β2(s)2 + s(α0β3 − α1β2p)− α0β1p = 0. (23)

The discriminant of the latter is

D1 = (α0β3 − α1β2p)2 + 4α0α3β1β2p (24)

and determines whether the roots of (23) are real, complex conjugates or
coinciding. Accordingly, the proof is complete and the following corollary
holds.
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Corollary 3.10. Let Q and Q1 be two neighbouring quadrics on a discrete
asymptotic net which satisfy the C1 condition and

D1 = (α0β3 − α1β2p)2 + 4α0α3β1β2p (25)

be the associated discriminant. If

(i) D1 > 0 then Q and Q1 share two distinct real generators.

(ii) D1 < 0 then Q and Q1 share two distinct complex conjugate generators.

(iii) D1 = 0 then Q and Q1 share two coinciding real generators.

Remark 3.11. Similarly, in the n2 direction, Q and Q2 share two generators
labelled by pt2 = t and

γ3δ1(t)2 + t(γ0δ3 − γ2δ1p)− γ0δ2p = 0 (26)

with discriminant

D2 = (γ0δ3 − γ2δ1p)2 + 4γ0γ3δ1δ2p. (27)

In the case D1 = 0 (or D2 = 0), we also have the following useful property.

Corollary 3.12. Let Q and Q1 be two neighbouring quadrics on a discrete
asymptotic net which satisfy the C1 condition and assume that D1 = 0.
Then, Q and Q1 touch along their shared generator.

Proof. Since D1 = 0, the proof of Theorem 3.9 implies that the shared gen-
erator is labelled by ps1 = s, where

s =
α1β2p− α0β3

2α3β2
.

Let X = Q1(s1, t1) be a fixed point on the shared generator which does not
also lie on the common edge so that (21) leads to

t =
2α0β2p

α1β2p+ 2β2pt1 + α0β3
.

Along a common generator, we then have, trivially,∣∣∣∣X,
∂

∂s
Q

∣∣∣∣
X
,
∂

∂t
Q

∣∣∣∣
X
,

∂

∂t1
Q1

∣∣∣∣
X

∣∣∣∣ = 0

and it is easy to verify that∣∣∣∣X,
∂

∂s
Q

∣∣∣∣
X
,
∂

∂t
Q

∣∣∣∣
X
,

∂

∂s1

Q1

∣∣∣∣
X

∣∣∣∣ = 0.

Hence, the tangent planes of Q and Q1 coincide at X.

17



4. Discrete projective minimal surfaces

We now intend to establish under what circumstances envelopes of sets
of lattice Lie quadrics exist.

4.1. The tangency condition

Definition 4.1. Let Q and Q1 be neighbouring quadrics on a discrete asymp-
totic net. Then, ω ∈ Q and ω1 ∈ Q1 are said to satisfy the tangency condi-
tion if the line joining ω and ω1 is tangent to both quadrics at the respective
points.

Theorem 4.2. Let Q and Q1 be two neighbouring quadrics on a 3×2 patch
of a discrete asymptotic net that satisfy the C1 condition. Let ω ∈ Q be a
generic point. Then, there exists a unique point ω1 ∈ Q1 such that ω and
ω1 satisfy the tangency condition (cf. Figure 5).

Figure 5: The tangency condition

Proof. Set ω = Q(s, t), ω1 = Q1(s1, t1). The tangency condition is then
encapsulated in the pair ∣∣∣∣ω, ω1,

∂

∂s
Q

∣∣∣∣
ω
,
∂

∂t
Q

∣∣∣∣
ω

∣∣∣∣ = 0 (28)∣∣∣∣∣ω, ω1,
∂

∂s1

Q1

∣∣∣∣
ω1

,
∂

∂t1
Q1

∣∣∣∣
ω1

∣∣∣∣∣ = 0, (29)

18



which yields

(ps1 − s)(α1β2pt+ 2β2ptt1 − 2α0β2p+ α0β3t) = 0 (30)(
ps1 −

α1β2p− α0β3

2α3β2

)(
s− α1β2p− α0β3

2α3β2

)
− 1

(2α3β2)2
D1 = 0. (31)

If ps1 = s then equation (31) reduces to equation (23) and, hence, ω and ω1

lie on a common generator so that ω is non-generic. If ps1 6= s then

s1 =
α1β2ps+ 2α0β1p− α0β3s

p(2α3β2s− α1β2p+ α0β3)
=: S1(s) (32)

t1 =
2α0β2p− α1β2pt− α0β3t

2β2pt
=: T 1(t), (33)

where genericity implies that 2α3β2 − α1β2ps+ α0β3 6= 0.

Remark 4.3. Applying the tangency condition to a generic point ω in the
n2 direction generates the pair of equations

(pt2 − t)(γ2δ1ps+ 2δ1pss2 − 2γ0δ1p+ γ0δ3s) = 0 (34)(
pt2 −

γ2δ1p− γ0δ3

2γ3δ1

)(
t− γ2δ1p− γ0δ3

2γ3δ1

)
− 1

(2γ3δ1)2
D2 = 0. (35)

If pt2 = t then equation (35) gives rise to equation (26) and labels the shared
generators in the n2 direction. In the generic case, (34) and (35) yield a point
ω2 = Q2(s2, t2) with

s2 =
2γ0δ1p− γ2δ1ps− γ0δ3s

2δ1ps
=: S2(s) (36)

t2 =
γ2δ1pt+ 2γ0δ2p− γ0δ3t

p(2γ3δ1t− γ2δ1p+ γ0δ3)
=: T 2(t). (37)

Thus, in the generic case, the tangency condition induces 4 maps taking
(s, t) to (s1, t1) and (s2, t2) which we have denoted by S1, T 1 and S2, T 2

respectively.
We also note that if ps1 6= s, and (31) cannot be solved for either s or s1

then, necessarily,

D1 = (α0β3 − α1β2p)2 + 4α0α3β1β2p = 0 (38)
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and (31) becomes(
ps1 −

α1β2p− α0β3

2α3β2

)(
s− α1β2p− α0β3

2α3β2

)
= 0. (39)

This turns out to give rise to an algebraic characterisation of canonical dis-
crete analogues of Godeaux-Rozet and Demoulin surfaces as discussed in
Section 9. Here, we merely observe that if D1 = 0 and ω is a generic point
then (39) implies that

ps1 = s∗, s∗ =
α1β2p− α0β3

2α3β2
,

which is a root of (23) and, hence, ω1 lies on the shared generator of Q and
Q1. On the other hand, (39) may also be satisfied by setting s = s∗ and,
hence, ω lies on the shared generator.

The expressions (32) and (36) for s1 and s2 respectively are independent
of t. Similarly, by virtue of (33) and (37), t1 and t2 are independent of s.
Thus, we have come to the following conclusion.

Corollary 4.4. Let Σ be a discrete asymptotic net. Then, the tangency
condition maps generators to generators in the sense that generic points on
a generator of Q are mapped to points on a generator of Q1 (of the same
type).

4.2. Discrete projective minimal surfaces

In analogy with the continuous theory, we are interested in investigating
the existence and properties of envelopes of a set of lattice Lie quadrics
associated with a discrete asymptotic net Σ. Let Q be a quadric associated
with a quadrilateral of Σ and choose a generic point ω on Q. Then, by
Theorem 4.2, the tangency condition uniquely determines points ω1 and ω2

on the neighbouring quadrics Q1 and Q2 respectively. Subsequent imposition
of the tangency condition now generates two points ω12 and ω21 on Q12 and
these are required to coincide if they are to be part of an envelope.

Theorem 4.5. Let Σ be a 3×3 patch of a discrete asymptotic net, Q,Q1, Q2

and Q12 lattice Lie quadrics of Σ as in Figure 6. Let ω be a generic point
on Q and ω1,ω2,ω12,ω21 be points on the respective quadrics related by the
tangency condition. Then, the commutativity conditions S2

1 ◦ S1 = S1
2 ◦ S2
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Figure 6: (Non-)closure under the tangency condition

and T 2
1 ◦ T 1 = T 1

2 ◦ T 2 associated with the closing condition ω21 = ω12

coincide and impose one scalar constraint on Σ which is independent of the
choice of ω.

In order to derive a compact form of the above constraint, we require the
following lemma.

Lemma 4.6. Let V be the frame of a discrete asymptotic net given by (10).
Then, V admits a gauge such that

(1− p2)
β2δ1

β1δ2
= 1.

Proof. Under a gauge transformation

V → V g =


xr
x1r1

x2r2

x12r12

 (40)
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the matrices L and M become

Lg =


0 1 0 0

x11α
0

x

x11α
1

x1

0
x11α

3

x12

0 0 0 1

0
x112β

1

x1

x112β
2

x2

x112β
3

x12



Mg =



0 0 1 0
0 0 0 1

x22γ
0

x
0

x22γ
2

x2

x22γ
3

x12

0
x122δ

1

x1

x122δ
2

x2

x122δ
3

x12

 .

The parameters of the quadric Q transform according to

pg =

(
x1x2

xx12

)
p, sg =

x2

x
s, tg =

x1

x
t.

The expression (1− p2
g)β

2
gδ

1
g/(β

1
gδ

2
g) = 1 then becomes[

1−
(
x1x2

xx12

)2

p2

]
β2δ1

β1δ2
= 1 (41)

and “solving” this expression for the gauge function x defines the gauge.

We now present the proof of Theorem 4.5.

Proof. Set ω = Q(s, t), ω1 = Q1(s1, t1), ω2 = Q2(s2, t2), where the expres-
sions for s1, t1, s2 and t2 are given by (32), (33), (36) and (37) respectively.
The two points ω12 = Q12(s12, t12) and ω21 = Q12(s21, t21) arise from the
tangency condition associated with Q12 and Q1 and Q12 and Q2 respectively.
The closing condition is encapsulated in the two constraints s12 = s21 and
t12 = t21 or, equivalently, S2

1 ◦S1(s) = S1
2 ◦S2(s) and T 2

1 ◦T 1(t) = T 1
2 ◦T 2(t).

By virtue of (32) and (36), the condition s12 = s21 is given by

α1
2β

2
2p2s2 + 2α0

2β
1
2p2 − α0

2β
3
2s2

p2(2α3
2β

2
2s2 − α1

2β
2
2p2 + α0

2β
3
2)

=
2γ0

1δ
1
1p1 − γ2

1δ
1
1p1s1 − γ0

1δ
3
1s1

2δ1
1p1s1

.
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Remarkably, evaluation modulo (32), (36), the Gauss-Mainardi-Codazzi equa-
tions (14), the relation (19) and its counterpart p2 = γ0/δ1p produces a
condition which is independent of s and may be best formulated as(

1− β1δ2

β2δ1

)
T 1

2 = p2T 1,

where

T 1 =
D1

(α0β2p)2
=

(
β3

β2p
− α1

α0

)2

+ 4
α3β1

α0β2p

and D1 is the discriminant (25). If we now utilise the gauge of Lemma 4.6
then the above condition reduces to

∆2T
1 := T 1

2 − T 1 = 0. (42)

By symmetry, the closing condition t12 = t21 leads to

∆1T
2 := T 2

1 − T 2 = 0, (43)

where

T 2 =
D2

(γ0δ1p)2

with the discriminant D2 given by (27). Moreover, the two constraints (42)
and (43) turn out to be equivalent due to the relation

β1

β2
∆1T

2 =
δ2

δ1
∆2T

1 (44)

which may be extracted from the discrete Gauss-Mainardi-Codazzi equations
(14). Finally, we note that the algebraic constraint (42) (or (43)) is indepen-
dent of s and t, i.e., independent of the choice of ω.

Remark 4.7. Relation (44) is the discrete analogue of the Gauss-Mainardi-
Codazzi equation (6) and the equivalent constraints (42), (43) may be re-
garded as the discrete version of the Euler-Lagrange condition (9) in the
classical Theorem 2.2.

The above theorem gives rise to the following natural algebraic definition
of discrete projective minimal surfaces.
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Definition 4.8. A discrete asymptotic net is a discrete projective minimal
surface if ∆1T

2 = 0 or, equivalently, ∆2T
1 = 0, where

T 1 =
D1

(α0β2p)2
, T 2 =

D2

(γ0δ1p)2

in the admissible gauge

(1− p2)
β2δ1

β1δ2
= 1

of Lemma 4.6.

A detailed discussion of the discrete system (14), (42) (or (43)) underly-
ing discrete projective minimal surfaces, including the determination of its
integrability and an analogue of the algebraic classification scheme presented
in Section 2, is the subject of a separate publication (cf. [20]).

5. A Cauchy problem

The algebraic discrete projective minimality condition may be exploited
to state the following well-posed geometric Cauchy problem.

Theorem 5.1. A discrete projective minimal surface Σ represented by
r : Z2 → R4 is uniquely determined by the Cauchy data {C , Q0}, where

C = {r(n) : n = (0, ∗), (1, ∗), (∗, 0), (∗, 1)}

is constrained by the planar star property and Q0 is a fixed quadric associated
with one of the quadrilaterals of C (Figure 7).

Proof. We note that the Cauchy data given by C define part of a discrete
asymptotic net consisting of two strips as in Figure 7. Without loss of gener-
ality, let Q0 be the quadric associated with the quadrilateral [r, r1, r2, r12].
As a result of the C1 condition, Q0 uniquely determines the quadric associ-
ated with each quadrilateral along the strips. We now show that the vertex
r1122 is uniquely determined by the projective minimality condition. The
planar star condition implies that the point r1122 lies on the line of intersec-
tion of the planes spanned by {r12, r11, r112} and {r12, r22, r122} as indicated
in Figure 7. For a fixed r1122 on this line, the quadric Q12 is uniquely deter-
mined by the C1 condition with respect to Q1 or Q2. Let ω ∈ Q0 be a generic
point. Then, the tangency condition uniquely determines points ω1 ∈ Q1,
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ω2 ∈ Q2 and ω12, ω21 ∈ Q12. As shown in Theorem 4.5, the closing condi-
tion ω12 = ω21 reduces to a single scalar condition and this determines the
position of r1122 on the line of intersection. Specifically, modulo the represen-
tation of discrete asymptotic nets in terms of homogeneous coordinates, that
is, modulo gauge transformations of the type (40) and their action on the
matrix-valued functions L and M , specifying the quadrilaterals [r, r1, r2, r12]
and [r1, r11, r12, r112], [r2, r12, r22, r122] modulo the planar star property is
equivalent to prescribing [r, r1, r2, r12] and the corresponding matrices L and
M . The associated lattice Lie quadrics Q0 and Q1, Q2 are uniquely deter-
mined by the prescription of the parameter p. The Gauss-Mainardi-Codazzi
equations (14) supplemented by the projective minimality condition (42) or,
equivalently, (43) then determine algebraically the matrices L2 and M1 and
therefore the vertex r1122 via the compatible frame equations (11), (12). We
can then iterate this procedure to construct simultaneously all vertices of the
discrete asymptotic net, the associated family of lattice Lie quadrics and the
associated envelope.

Since the Cauchy data include a fixed quadric which in turn determines
a set of lattice Lie quadrics, the natural question arises as to whether a given
discrete projective minimal surface admits more than one set of lattice Lie
quadrics.

Theorem 5.2. A discrete projective minimal surface admits only one set of
lattice Lie quadrics.

Proof. Consider the 4 × 3 patch of a discrete projective minimal surface in
Figure 8. Let Q be a fixed member, labelled by p, of the one-parameter
family of quadrics passing through the quadrilateral [r, r1, r2, r12]. We note
that, as a result of the C1 condition, all other quadrics in the set of lattice
Lie quadrics which contains Q are determined. Let ω be a generic point
on Q. The tangency condition then delivers points ω1 ∈ Q1, ω2 ∈ Q2

and ω12,ω21 ∈ Q12 and the closing condition ω12 = ω21 determines r1122

uniquely. It turns out that r1122 is a quadratic function of p. If we now
assume that r1122(p) ∼ r1122(p̂) for another quadric Q̂ labelled by p̂ then we
obtain a quadratic equation in p̂ which we denote by q(p̂) = 0. Similarly, the
vertex r1̄22 generates a quadratic q̄(p̂) = 0. It is then easy to check that the
only common root of q and q̄ is p and, hence, Q̂ = Q.
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Figure 7: The evolution of Cauchy data for discrete projective minimal surfaces

6. A local classification of the envelopes of discrete PMQ surfaces

In order to produce a geometric characterisation of discrete projective
minimal surfaces, it is necessary to classify all surfaces which admit envelopes,
i.e., by definition, it is necessary to classify discrete PMQ surfaces. Let
Σ be a discrete PMQ surface and denote by Ω an envelope of the set of
associated lattice Lie quadrics of Σ. Bearing in mind the continuum limit,
from now on we exclude “hybrids” of different types of surfaces by imposing a
homogeneity condition on the envelope in the sense that if a property related
to the envelope holds for pairs of neighbouring quadrics then it holds for
all neighbouring quadrics of the same type. In the following, whenever this
principle is applied, the relevant property is identified.

In the examination of different types of envelopes, the maps S i and T i
play an essential role. Consider a 3 × 3 patch of Σ as displayed in Figure 9
and the associated quadrilateral of Ω. The vertices of Ω are labelled by
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Figure 8: A 4× 3 patch of a discrete projective minimal surface

ω = Q(s, t), ω1 = Q1(s1, t1), ω2 = Q2(s2, t2) and ω12 = Q12(s12, t12). De-
pending on whether or not the maps S i and T i are defined, whereby the
homogeneity condition is taken into account, the possible cases are:

1. The generic case where all maps S i and T i are defined and, hence,
the closing conditions are satisfied due to the existence of the discrete
envelope Ω. Σ is then discrete projective minimal by Theorem 4.5.
This is the case where none of the edges of the quadrilateral of Ω are
shared generators of the associated pairs of quadrics.

2. The map S2 is defined. There are then two subcases:

(a) S1 is defined. Then, since Ω is a discrete envelope, the closing
condition S2

1 ◦ S1 = S1
2 ◦ S2 is satisfied and, hence, Σ is discrete

projective minimal.

(b) S1 is not defined. By virtue of (31), (32), this is the case when
2α3β2s− α1β2p+ α0β3 = 0 and, hence,

s =
α1β2p− α0β3

2α3β2
(45)

and D1 = 0. Accordingly, ∆2T
1 = 0 and, thus, Σ is discrete

projective minimal. Moreover, since D1 = 0, by Corollary 3.10,
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Figure 9: A 3× 3 patch of a discrete asymptotic net and an associated quadrilateral of an
enevelope

neighbouring quadrics in the n1 direction have a coinciding shared
generator which is labelled by ps1 = s and (45). Thus, this case
corresponds to the edges of Ω in the n1 direction consisting of
(coinciding) shared generators of neighbouring pairs of quadrics.

3. S2 is not defined. By (34), this is the case when pt2 = t and, hence, by
Remark 4.3, the edges of Ω in the n2 direction are shared generators.
The remaining cases are then:

(a) T 2 is defined. There are then two additional sub-cases:

(i) T 1 is defined. Then similarly to 2.(a), Σ is discrete projective
minimal as the projective minimality condition T 2

1 ◦ T 1 =
T 1

2 ◦ T 2 is satisfied.

(ii) T 1 is not defined. By (30) and (33), T 1 not being well defined
corresponds to the case ps1 = s which, by the proof of The-
orem 3.9, implies that the edges of Ω in the n1 direction are
shared generators of neighbouring quadrics. Thus, this case
corresponds to all of the edges of the envelope Ω consisting of
shared generators. This envelope always exists locally, that
is, for a 3× 3 patch, and is no restriction on Σ which may or
may not be discrete projective minimal.
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(b) T 2 is not defined. This case is similar to 2.(b) and leads to D2 = 0.
Σ is then discrete projective minimal since ∆1T

2 = 0.

7. Geometric characterisation of discrete projective minimal sur-
faces and classification of discrete PMQ surfaces

As a result of the discussion of Section 6, we have the following geometric
characterisation of discrete projective minimal surfaces.

Theorem 7.1. Let Σ be a discrete asymptotic net. If there exists a set
of lattice Lie quadrics which admits an envelope Ω whose edges are not all
shared generators of the lattice Lie quadrics then Σ is a discrete projective
minimal surface. Conversely, if Σ is a discrete projective minimal surface
and D1 6= 0 or D2 6= 0 then there exists an envelope Ω whose edges are not
all shared generators of the lattice Lie quadrics.

Proof. By the discussion of Section 6, if Ω does not entirely consist of shared
generators then Σ is discrete projective minimal. Conversely, suppose that Σ
is discrete projective minimal. In the general case D1 6= 0 and D2 6= 0, any
choice of a generic point ω ∈ Q gives rise to an envelope Ω since the maps
S i and T i in (32), (33), (36) and (37) are defined and compatible by virtue
of the algebraic minimality condition. Due to the genericity of ω, the edges
of Ω are not shared generators. If, for instance, D1 = 0 but D2 6= 0 then the
map S1 simplifies to (cf. (32))

S1(s) = s1 =
α1β2p− α0β3

2α3β2p
(46)

(which is, in fact, independent of s), provided that

s 6= α1β2p− α0β3

2α3β2
(47)

and the maps S i and T i are still compatible. Even if the condition (47) is
violated then we may regard (46) as a definition of the map S1 (with the
associated tangency condition (31) being satisfied) and the maps S i and T i
remain compatible since the constraint (47) does not enter the compatibility
condition. In this case, both ω and ω1 lie on the generator shared by Q and
Q1 but regardless of whether (47) holds or not, since the (initial) parameter
t is arbitrary, we may choose it in such a manner that the edges of the
corresponding envelope Ω in n2 direction are not shared generators.
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Remark 7.2. If we refer to envelopes which do not consist entirely of shared
generators as being generic, then the above theorem implies that, in general,
discrete projective minimal surfaces admit a two-parameter family of generic
envelopes.

While Theorem 7.1 characterises all discrete projective minimal surfaces,
there also exist surfaces with an associated set of lattice Lie quadrics which
admit envelopes but may not be discrete projective minimal.

Definition 7.3. A discrete Q surface is a discrete asymptotic net which ad-
mits an envelope Ω whose (extended) edges are shared generators of the as-
sociated lattice Lie quadrics so that the coordinate polygons of Ω are straight
lines.

Figure 10: A discrete Q surface and the associated envelope

Remark 7.4. It follows from the definition of a Q surface that each straight
coordinate polygon of the given envelope is a generator common to all quadrics
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along a strip of the Q surface. In analogy with the continuous theory, this
envelope is a discrete quadric as it consists of two 1-parameter (discrete)
families of lines. In fact, it is evident that their exists a unique (continu-
ous) quadric which passes through those lines. If a discrete Q surface admits
an envelope which is not entirely made up of shared generators then, by
Theorem 7.1, it is discrete projective minimal. Thus, the classes of discrete
projective minimal and discrete Q surfaces are, a priori, not disjoint.

In order to establish in what sense the class of discrete PMQ surfaces
consist only of discrete projective minimal and discrete Q surfaces, we make
use of the fact that if there exists an envelope whose edges along a strip are
shared generators then these shared generators are identical. Hence, by the
homogeneity condition, if two quadrics Q and Q1 have a (coinciding) shared
generator which forms part of an envelope then all quadrics along that strip
are assumed to have the same (coinciding) generator. Then, as a result of
Theorem 7.1, Definition 7.3 and the homogeneity condition, we can draw the
following conclusion.

Corollary 7.5. The class of discrete PMQ surfaces consists of discrete pro-
jective minimal and discrete Q surfaces.

8. Discrete semi-Q, complex, doubly Q and doubly complex sur-
faces

We now investigate in more detail the geometric nature of Q surfaces and
classes intimately related to Q surfaces. The elementary building block of
the notion of a Q surface is the notion of a semi-Q surface.

Definition 8.1. A discrete asymptotic net is said to be a discrete semi-Q
surface if it admits a set of lattice Lie quadrics such that quadrics associ-
ated with each strip of a given type share a generator, as in the top left of
Figure 11. We call the direction (n1 or n2) along which quadrics share a
generator the semi-Q direction.

We now examine surfaces which are semi-Q in more than one way.

8.1. Discrete complex, doubly Q and doubly complex surfaces

Definition 8.2. As illustrated in Figure 11, a discrete asymptotic net with
an associated set of lattice Lie quadrics is said to be a discrete
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(i) complex surface if all quadrics on each strip of a given type share two
(possibly coinciding) generators, that is, if it is doubly semi-Q in one
direction.

(ii) doubly Q surface if it is a discrete complex surface with respect to
one direction and a discrete semi-Q surface with respect to the other
direction, that is, if it is doubly semi-Q in one direction and semi-Q in
the other.

(iii) doubly complex surface if it is a discrete complex surface in both di-
rections, that is, if it is doubly semi-Q in both directions.

Remark 8.3. By definition, discrete Q surfaces are discrete asymptotic nets
which are semi-Q in both directions.

As in the continuous theory, it turns out that not all of these classes of
surfaces are distinct. Firstly, we need the following well-known fact.

Lemma 8.4. Let Q̂ be a quadric, L a line. Then,

(i) if L intersects Q̂ at three points then it is a generator of Q̂,

(ii) if L intersects Q̂ at a point and touches Q̂ at a different point then it
is a generator of Q̂.

Theorem 8.5. A discrete doubly Q surface is doubly complex.

Proof. Without loss of generality, we assume that the surface is discrete semi-
Q in the n2 direction and discrete complex in the n1 direction. Let Q̂ be the
unique quadric passing through three neighbouring shared generators W , W1

and W11 as in Figure 12. Denote by U and V the generators common to the
quadrics of the n1 strip containing the quadric Q as in Figure 12. Since
U and V and their shifts in the n2 direction intersect W , W1 and W11, by
Lemma 8.4, U , V and their n2 shifts are all generators of Q̂. Now, consider
the three quadrics Q, Q2, and Q2̄ in an n2 strip as in Figure 12. We treat
the cases of coinciding and non-coinciding generators in the n1 direction
separately.

(i) Suppose firstly that U 6= V . We know by Theorem 3.9 that Q and
Q2 have a second shared generator G (which may or may not coincide
with W ). G intersects U2, V2, U (and V ) and, hence, by Lemma 8.4,
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Figure 11: Discrete semi-Q (t-l), complex (t-r), doubly Q (b-l) and doubly complex (b-r)
surfaces

G is a generator of Q̂. Thus, by extension, G also intersects U2̄ and
V2̄. Moreover, since the edge [r, r1] is a generator of Q2̄ and since G
intersects this edge as well and, thus, intersects three generators of Q2̄,
by Lemma 8.4, G is also a generator of Q2̄.

(ii) Suppose now that U = V . Denote by H the point of intersection of
U and W , by H1 the point of intersection of U and W1 etc. Then,
since the tangent plane of Q at H is spanned by U and W , Q and Q̂
touch at H . Similarly, Q̂ and Q1 touch at H1 and Q̂ and Q11 touch
at H11. Moreover, by Corollary 3.12, the tangent planes of Q at H1

and H11 coincide with those of Q1 and Q11 respectively. Consequently,
the tangent planes of Q̂ and Q coincide at the three points H , H1 and
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H11 and, therefore, Q̂ touches Q along U . Then, since G is a generator
of Q and Q2, it intersects U and U2 at points K and K2, say, and,
hence, touches Q̂ at K and K2. Thus, by Lemma 8.4, G is a generator
of Q̂. By extension, G intersects Q2̄ at a point on the edge [r, r1] and
touches Q2̄ at K 2̄ (being the intersection of G and U2̄) since Q̂ touches
Q2̄ along U2̄. Thus, G is a generator of Q2̄.

Figure 12: A 4× 4 patch of a discrete doubly Q surface

9. Discrete Godeaux-Rozet, Demoulin and Tzitzéica surfaces

We now turn to an investigation of special types of discrete projective
minimal surfaces and define discrete analogues of Godeaux-Rozet, Demoulin
and Tzitzéica surfaces.
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9.1. Discrete Godeaux-Rozet and Demoulin surfaces

In view of the classification of Section 6, we propose the following alge-
braic definition.

Definition 9.1. A discrete asymptotic net Σ is a

(i) discrete Godeaux-Rozet surface if D1 = 0 or D2 = 0.

(ii) discrete Demoulin surface if D1 = D2 = 0.

Let Σ be a discrete PMQ surface and Ω an envelope corresponding to
a set of lattice Lie quadrics of Σ. We may associate with each vertex ω of
Ω four lines passing through ω and the four vertices of the corresponding
quadrilateral of Σ. Taking one of these lines and its shifts along the lattice
generates a discrete line congruence. Hence, there exist four such discrete
line congruences L , L 1, L 2 and L 12 as displayed in Figure 13. A pri-
ori, generically, there exists a two-parameter family of each line congruence
generated by moving the point ω around on a fixed lattice Lie quadric.

Figure 13: Four types of line congruences

In order to produce a geometric characterisation of discrete Godeaux-
Rozet and Demoulin surfaces in terms of these line congruences, it is conve-
nient to introduce the following definition.

Definition 9.2. A discrete line congruence L ∗ = {l(n1, n2)} is said to have
the intersection property in the direction n1 (or n2) if neighbouring lines in
the n1 (or n2) direction intersect, that is, l ∩ l1 6= ∅ (or l ∩ l2 6= ∅).
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Theorem 9.3. Let Σ be a discrete projective minimal surface with an as-
sociated discrete envelope Ω such that the edges of Ω in the n1 direction are
not shared generators of the lattice Lie quadrics of Σ. Then, D1 = 0 if and
only if there exists a line congruence which possesses the intersection prop-
erty in the n1 direction. Moreover, if L (or L 1) admits such an intersection
property then so does L 2 (or L 12) and vice versa. These statements apply,
mutatis mutandis, if one considers the direction n2.

Proof. Consider the patch of Σ in Figure 14. Since the edges of Ω in the
n1 direction are not shared generators, given two vertices of Ω, ω ∈ Q and
ω1 ∈ Q1, it follows that either ω or ω1 does not lie on a generator common
to Q and Q1. Without loss of generality, we assume that ω does not lie on
a shared generator. Then, ω1 = Q1(s1, t1), where s1 and t1 are given by
(32) and (33). We now consider the line congruence L (defined by the line
through ω and r and its shifts) and assume that the lines l = [ω, r] and
l1 = [ω1, r1] intersect. Their point of intersection, I1, is then determined by
fr + gr1 + hω + ω1 = 0, that is,

r(f + hst+ α0s1) + r1(g + hs+ β1p1 + α1s1 + s1t1)

+ r2(h+ β2p1) + r12(hp+ β3p1 + α3s1 + t1) = 0.
(48)

Equating each component equal to zero then yields four conditions which
may be formulated as:

r : f = α0

(
s

p
− s1

)
r1 : g =

α0β1

β2p
− α0s

pt
+ α1s1 + s1t1

r2 : h = −α
0

pt

r12 : (α0β3 − α1β2p)2 + 4α0α3β1β2p = 0, i.e., D1 = 0.

Conversely, if D1 = 0 then choosing f , g and h as above implies that (48)
holds so that I1 exists. By symmetry, the above arguments also hold for the
line congruence L 2.

As a result of Theorem 9.3, it follows that discrete Godeaux-Rozet sur-
faces are essentially characterised by the intersection property of their line
congruences.
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Figure 14: Intersection of lines belonging to the line congruence L

Corollary 9.4. Under the assumption of Theorem 9.3, a discrete projective
minimal surface is a discrete Godeaux-Rozet surface if and only if there
exists a line congruence associated with any envelope which possesses the
intersection property in the n1 or n2 direction.

Remark 9.5. In the proof of Theorem 9.3, since ω does not lie on a shared
generator, D1 = 0 implies by virtue of (31) that

s1 =
α1β2p− α0β3

2α3β2p

and, hence, by Remark 4.3, ω1 is on the shared generator of Q and Q1. I1

is then given by

I1 = ω +
f

h
r = pr12 + sr1 + tr2 + ps1tr. (49)

On the other hand, if ω1 does not lie on the generator common to Q and
Q1 then D1 = 0 implies that ω lies on the shared generator. In this case,
the line congruences which have the intersection property are L 1 and L 12.
Accordingly, by virtue of the homogeneity assumption, if D1 = 0 and ω
does not lie on the generator common to Q and Q1 then it must lie on the
generator common to Q1̄ and Q. Thus, for a discrete Godeaux-Rozet surface,
the set of generic envelopes (cf. Remark 7.2) consists of two one-parameter
families. It turns out that these two families coincide in the following sense.

Theorem 9.6. Let Ω with vertices labelled by ω be an envelope associated
with a set of lattice Lie quadrics {Q} of a discrete Godeaux-Rozet surface for
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which the line congruence L has the intersection property in the n1 direction
and for which any vertex ω does not lie on a generator shared by the lattice
Lie quadrics Q and Q1. The discrete asymptotic net Ω̃ defined by ω̃ = ω1

then constitutes another envelope for which L̃ 1 has the intersection property
in n1 direction and L̃ 1 3 l̃ = l1 ∈ L (cf. Figure 15).

Proof. By Remark 9.5, if ω and ω1 are two vertices of the envelope Ω asso-
ciated with quadrics Q and Q1 respectively, then ω1 must lie on the shared
generator of Q and Q1 since, by assumption, ω does not. Hence, ω1 may be
regarded as a point ω̃ of the quadric Q. Since the quadrics Q and Q1 touch
along the common generator, the tangent planes of Q and Q1 at ω̃ = ω1

coincide. Hence, the envelope Ω, having the intersection property with re-
spect to L , may also be interpreted as an envelope Ω̃, having the inter-
section property with respect to the congruence L̃ 1 consisting of the lines
l̃ = [ω̃, r1] = [ω1, r1] = l1 ∈ L .

Figure 15: Coinciding envelopes of discrete Godeaux-Rozet surfaces – shared generators
are represented by dashed-dotted lines

Remark 9.7. We note that, for a discrete Godeaux-Rozet surface corre-
sponding to D1 = 0, if ω and ω1 are vertices of a generic envelope such that
ω = Q(s, t) does not lie on the generator common to Q and Q1 then ω1 as
a point on Q is represented by ω1 = Q(s̃, t̃), where s̃ is given by (45) and,
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remarkably, t̃ = t. Specifically, evaluation of ω1 = Q1(s1, t1) with s1 and t1
given by (32) and (33) yields

ω1 ∼ pr12 + s̃r1 + tr2 + s̃tr

so that, indeed, ω1 is the point of intersection of the generator common to
Q and Q1 and the generator of Q of the other type, passing through ω and
labelled by t.

The above discussion shows that we can also characterise discrete De-
moulin surfaces in terms of line congruences. In particular, since a discrete
Demoulin surface is a Godeaux-Rozet surface with respect to both the n1 and
n2 directions, as a result of Theorem 9.3 and the fact that we may always
choose ω ∈ Q such that it does not lie on a generator common to Q and Q1

or Q and Q2, the following holds true.

Corollary 9.8. Under the assumptions of Theorem 9.3, a discrete projec-
tive minimal surface Σ is a discrete Demoulin surface if and only if there
exists a line congruence associated with any envelope which has the inter-
section property in both directions (as indicated in Figure 16 for the line
congruence L ).

Remark 9.9. Remark 9.5 implies that for a discrete Demoulin surface and
a given generic envelope Ω, each vertex of Ω lies on a shared generator with
one of the two neighbouring quadrics in the n1 direction and on a shared
generator with one of the two neighbouring quadrics in the n2 direction.
Thus, a discrete Demoulin surface has four generic envelopes, the four vertices
of which associated with a quadric Q constitute the points of intersection
A,B,C,D of the four generators of Q shared with the neighbouring four
quadrics as depicted in Figure 17. By Remark 9.7, the point A1 is the
intersection of the generator common to Q and Q1 and the generator common
to Q and Q2̄. Hence, it follows that A1 = D. Similarly, B1 = C and for
reasons of symmetry, A2 = B and D2 = C. We conclude that the four
envelopes of a discrete Demoulin surface coincide in the sense of Theorem 9.6
with A12 = C.

In summary, the following statement may be made.

Corollary 9.10. Discrete projective minimal surfaces and their subclasses
may be characterised in terms of the number of envelopes of the associated
set of lattice Lie quadrics.
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Figure 16: Intersection of three members of the line congruence L which has the inter-
section property in both directions.

(i) In general, a discrete projective minimal surface admits a two-parameter
family of generic envelopes.

(ii) In general, a discrete Godeaux-Rozet surface admits two one-parameter
families of generic envelopes. The two families coincide modulo a rela-
belling of vertices.

(iii) In general, a discrete Demoulin surface admits four generic envelopes
which coincide modulo a relabelling of their vertices.

9.2. Discrete Tzitzéica surfaces

We have shown that discrete Demoulin surfaces admit four envelopes
which coincide modulo a relabelling of the vertices and that the four as-
sociated line congruences which possess the intersection property in both
directions consist of the same lines. In the following, we therefore focus
without loss of generality on the envelope of a discrete Demoulin surface for
which L possesses the intersection property as depicted in Figure 16. As in
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Figure 17: The vertices of the four envelopes of a discrete Demoulin surface regarded as
the points of intersection of shared generators.
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the preceding, we denote by I1 the point of intersection of a line l ∈ L and
the neighbouring line l1 and, similarly, the point of intersection of the line l
and the neighbouring line l2 is labelled by I2. It is natural to examine the
case when the points I1 and I2 coincide. Since I1 and I2 lie on l, this corre-
sponds to one additional condition on the discrete Gauss-Mainardi-Codazzi
equations. Comparison of the parametrisation (49) of I1 and its counterpart
for I2, namely

I2 = pr12 + sr1 + tr2 + pt2sr,

shows that this condition is given by

s1t = t2s. (50)

Likewise, there exists only one condition for the points I1 and I1
1 to coincide

since both I1 and I1
1 lie on the line l1. Specifically, evaluation of I1

1 modulo
the frame equations (11) leads to

I1
1 = p1r112 + s1r11 + t1r12 + p1s11t1r1

=

(
α0β3

pβ2
+ α3s1 + t1

)
r12 +

(
α0β1

pβ2
+ α1s1 +

α0s11t1
pβ2

)
r1

+
α0

p
r2 + α0s1r

(51)

which needs to be compared with

I1 ∼ α0

t
r12 +

α0

p
str1 +

α0

p
r2 + α0s1r. (52)

The coefficients of r and r2 in the expansions (51) and (52) match and
the r12-components are likewise identical modulo the expressions for s1 and
t1 given by (32) and (33) respectively since D1 = 0. Hence, as expected,
matching the coefficients of r1 produces the only condition which may be
formulated as

s11t1 = t12s1.

Comparison with (50) shows that this encodes the coincidence of the points
I1

1 and I2
1. Hence, for reasons of symmetry, we have established the following

theorem.
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Theorem 9.11. Let Σ be a discrete Demoulin surface and I1 and I2 be
the points of intersection of neighbouring lines of the line congruence L . If
the points I1 and I2 coincide for each quadrilateral then I1 = I2 does not
depend on the quadrilateral so that all lines of the line congruence L meet
in a point.

In light of the above theorem, we define a special subclass of discrete
Demoulin surfaces which may be regarded as discrete analogues of (projective
transforms of) Tzitzéica surfaces (see, e.g., [19] and references therein).

Definition 9.12. A discrete projective minimal surface Σ is said to be a
projective transform of a discrete Tzitzéica surface if there exists an envelope
and an associated line congruence such that all lines of the line congruence
meet in a point.

Remarkably, the particular discrete projective minimal surfaces Σ defined
above constitute projective transforms of the integrable discrete Tzitzéica
surfaces proposed in [24] in an entirely different context. Indeed, we first
note that the condition of coinciding points of intersection I1 and I2, namely
s1t = t2s, guarantees the existence of a potential ϕ related to s and t by

ϕ1 = −tϕ, ϕ2 = −sϕ. (53)

This potential ϕ turns out to be a scalar solution of the discrete asymptotic
net conditions (cf. (11))

r11 = α0r + α1r1 + α3r12, r22 = γ0r + γ2r2 + γ3r12. (54)

For instance, substitution of ϕ into (54)1 and evaluation by means of (53)
yield

t1t = α0 − α1t+ α3s1t, (55)

which is indeed satisfied by virtue of the expressions for t1 and s1 obtained
from (33) and (31) respectively. Accordingly, in the affine gauge

r̂ =
r

ϕ
, (56)

the discrete asymptotic net conditions adopt the form

r̂11 − r̂1 = α̂1(r̂1 − r̂) + α̂3(r̂12 − r̂1)

r̂22 − r̂2 = γ̂2(r̂2 − r̂) + γ̂3(r̂12 − r̂2).
(57)
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On the other hand, the constancy of the point of intersection I1 = I2 may
be formulated as

I1 ∼ e4, e4 = (0 0 0 1)T (58)

modulo an appropriate projective transformation so that the parametrisation
(49) gives rise to

p
ϕ12ϕ

ϕ1ϕ2

(r̂12 + r̂)− (r̂1 + r̂2) ∼ e4. (59)

If we now interpret the first three components ra of r̂ as the position vector
of a representation Σa in centro-affine geometry of the discrete surface Σ
then, by virtue of (57), Σa constitutes a discrete asymptotic net which is
constrained by

ra12 + ra = h(ra1 + ra2), h =
ϕ1ϕ2

pϕ12ϕ
. (60)

The latter may be interpreted geometrically if we define a discrete affine nor-
mal N a associated with a quadrilateral [ra, ra1, r

a
2, r

a
12] to be the line connect-

ing the midpoints of the diagonals of the quadrilateral. Thus, the constraint
(60) shows that all affine normals N a meet at a point (namely the origin of
the coordinate system). This is precisely the property on which the definition
of the discrete affine spheres proposed in [24] is based.
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[6] G. Fubini, E. Ĉech, Geometria projettiva differenziale, Vol. 2, Zanichelli,
1927.

[7] E. Lane, Treatise on projective differential geometry, University of
Chicago Press, 1942.

[8] S. Finikov, Projective differential geometry, ONTI, Moscow-Leningrad,
1937.

[9] G. Bol, Projektive Differentialgeometrie. 1. Teil, Vandenhoeck &
Ruprecht, Göttingen, 1950.

[10] G. Bol, Projektive Differentialgeometrie. 2. Teil, Vandenhoeck &
Ruprecht, Göttingen, 1954.

[11] V. Ovsienko, S. Tabachnikov, Projective differential geometry. Old and
new, Vol. 165 of Cambridge Tracts in Mathematics, Cambridge Univer-
sity Press, 2005.

[12] M. Eastwood, Notes on projective differential geometry, in: Symmetries
and Overdetermined Systems of Partial Differential Equations, Vol. 144
of The IMA Volumes in Mathematics and its Applications, 2008, pp.
41–60.

[13] G. Prince, M. Crampin, Projective differential geometry and geodesic
conservation laws in general relativity. I: Projective actions; II: Conser-
vation laws, Gen. Rel. Grav 16 (1984) 921–942; 1063–1075.

[14] A. I. Bobenko, Y. B. Suris, Discrete differential geometry, Vol. 98
of Graduate Studies in Mathematics, American Mathematical Society,
Providence, RI, 2008.

[15] W. K. Schief, Lattice geometry of the discrete Darboux, KP, BKP and
CKP equations. Menelaus’ and Carnot’s theorems, J. Nonlinear Math.
Phys. 10 (Supplement 2) (2003) 194–208.

[16] A. D. King, W. K. Schief, Application of an incidence theorem for conics:
Cauchy problem and integrability of the dCKP equation, J. Phys. A:
Math. Gen. 39 (2006) 1899–1913.

45



[17] E. V. Ferapontov, W. K. Schief, Surfaces of Demoulin: differential geom-
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