

The University of Notre Dame Australia ResearchOnline@ND

Medical Papers and Journal Articles

School of Medicine

2017

Tracking of vitamin D status from childhood to early adulthood and its association with peak bone mass

Kun Zhu

Wendy Oddy

Patrick Holt

Wendy Chan She Ping-Delfos The University of Notre Dame Australia, wendy.chan.she.ping-delfos@nd.edu.au

Jennifer Mountain

See next page for additional authors

Follow this and additional works at: https://researchonline.nd.edu.au/med_article

Part of the Medicine and Health Sciences Commons

This article was originally published as:

Zhu, K., Oddy, W., Holt, P., Chan She Ping-Delfos, W., Mountain, J., Lye, S., Pennell, C., Hart, P., & Walsh, J. (2017). Tracking of vitamin D status from childhood to early adulthood and its association with peak bone mass. *American Journal of Clinical Nutrition*, *106* (1), 276-283.

http://doi.org/10.3945/ajcn.116.150524

This article is posted on ResearchOnline@ND at https://researchonline.nd.edu.au/med_article/905. For more information, please contact researchonline@nd.edu.au.

Authors

Kun Zhu, Wendy Oddy, Patrick Holt, Wendy Chan She Ping-Delfos, Jennifer Mountain, Stephen Lye, Craig Pennell, Prue Hart, and John Walsh *This article has been accepted for publication in* American Journal of Clinical Nutrition *Published by Oxford University Press.*

Zhu, K., Oddy, W., Holt, P., Chan She Ping-Delfos, W., Mountain, J., Lye, S. ... Walsh, J. (2017). Tracking of vitamin D status from childhood to early adulthood and its association with peak bone mass. *American Journal of Clinical Nutrition, 106*(1), 276-283. doi: <u>10.3945/ajcn.116.150524</u>

Tracking of vitamin D status from childhood to early adulthood and its association with peak bone mass

Kun Zhu^{1,2}, Wendy H Oddy³, Patrick Holt⁴, Wendy Chan She Ping-Delfos⁵, Jenny Mountain⁶, Stephen Lye⁷, Craig Pennell⁸, Prue H Hart⁴, John P Walsh^{1,2}

¹Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Perth, Australia;

²School of Medicine and Pharmacology, University of Western Australia, Perth, Australia;

³ Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia;

⁴ Telethon Kids Institute, Perth, Australia;

⁵ University of Notre Dame, Perth, Australia;

⁶ School of Population Health, University of Western Australia, Perth, Australia;

⁷ Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada;

⁸ School of Women's and Infants' Health, University of Western Australia, Perth, Australia

Authors' last names: Zhu, Oddy, Holt, Ping-Delfos, Mountain, Lye, Pennell, Hart, Walsh

Corresponding author: Kun Zhu, PhD, Department of Endocrinology and Diabetes, Sir

Charles Gardiner Hospital, Nedlands, WA 6009, Australia; Email: kun.zhu@uwa.edu.au;

Phone: +61 8 6457 4969; Fax: +61 8 6457 4109

Sources of Support: The University of Western Australia, the Raine Medical Research Foundation, Telethon Kids Institute, Women and Infants Research Foundation, Curtin University, Edith Cowan University, the Australian National Health and Medical Research Council, Lions Eye Institute WA, and the Canadian Institutes of Health Research.

Running title: Vitamin D status during growth and peak bone mass

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; BMC, bone mineral content; BMD, bone mineral density; BMI, body mass index; CV, coefficient of variation; DXA, dual-energy x-ray absorptiometry; ICC, intraclass correlation coefficient; IPAQ, International Physical Activity Questionnaire

1 Abstract

Background: There are few longitudinal studies of vitamin D status from childhood to early
adulthood, and it is uncertain whether vitamin D predicts peak bone mass in young adults.
Objective: The purpose of this longitudinal study was to evaluate long-term stability of
vitamin D status from age 6 to 20 in healthy individuals and to study associations between
serum 25-hydroxyvitamin D (25(OH)D) at different developmental stages and bone mass
measured at age 20.

Design: Participants are offspring of the Western Australian Pregnancy Cohort (Raine) Study.
Serum 25(OH)D was assessed at age 6, 14, 17 and 20, and whole body bone mineral content
(BMC) and density (BMD) measured at age 20 using dual-energy x-ray absorptiometry
(DXA). This analysis included 821 participants (385 females) who had ≥3 serum 25(OH)D
measures and DXA data. Using latent class growth analysis, four vitamin D status trajectories
were identified: consistently lower (n=259), decreasing (n=125), increasing (n=138), and
consistently higher (n=299).

15 **Results:** There were significant correlations between serum 25(OH)D concentrations at different time points in both sexes (r=0.346-0.560, P<0.001), with stronger correlations at 16 adjacent time points. In males, but not females, serum 25(OH)D at 6, 17 and 20 years was 17 positively associated with total body BMC and BMD at 20 years (covariate-adjusted 18 increments of 40.7-53.9 g and 14.7-18.6 mg/cm², respectively, per 25 nmol/L 25(OH)D); 19 when 25(OH)D at all four ages were included in the same model, the level at age 6 remained 20 significant. Males in the "consistently higher" trajectory had 3.2-3.4% higher total body 21 BMC and BMD than those who were "consistently lower", accounting for age, 22 23 anthropometric and lifestyle factors.

2

- 24 **Conclusion:** Within both sexes, there are moderate associations between vitamin D status
- 25 measured in pre-puberty, adolescence and early adulthood. Vitamin D status in childhood is a
- significant predictor of peak bone mass in males but not females.
- 27 Key words: vitamin D status, tracking, early adulthood, peak bone mass, Raine Study

28

29 Introduction

The physiological importance of vitamin D in calcium homeostasis and bone mineralization is well-established (1), but vitamin D deficiency in children and adolescents is common. In cross-sectional studies, the prevalence of vitamin D deficiency in adolescents ranges from 17 to 47% in different countries (2). Even in Australia, a country of low latitude, the 2011-2012 National Health Measures Survey showed that 15% of children aged 12-17 years and 31% of adults aged 18-34 years were vitamin D-deficient (defined as serum 25-hydroxy vitamin D (25(OH)D) < 50 nmol/L) (3).

37

There is evidence that vitamin D status during childhood and adolescence is associated with 38 bone mineral accretion (4-6), but the results have been inconsistent (7, 8). A 3-year, 39 40 longitudinal study of Finnish girls aged 9-15 years showed that vitamin D status at baseline had significant correlation with change in bone mineral density (BMD) at the lumbar spine 41 and femoral neck (4). In the Avon Longitudinal Study of Parents and Children, 25(OH)D₃ 42 43 measured during childhood (9.9 or 11.8 or 7.6 years) positively associated with cortical bone mineral content, cortical thickness and bone strength measured at 50% mid-tibia using 44 peripheral quantitative computed tomography (pQCT) at 15.5 years (9). However, in a 45 cross-sectional study from Northern Ireland of adolescents aged 12 and 15, higher serum 46 25(OH)D was associated with higher forearm (but not heel) BMD in girls, but not in boys (7), 47 48 and in a cross-sectional study of American adolescents, there were no significant associations between vitamin D status and bone mass in males or females (8). It is uncertain whether 49 vitamin D status is stable in individuals during childhood and adolescence, and whether a 50 single measurement (as is typical in cross-sectional and longitudinal studies) is a valid long 51 term measure of vitamin D status. In a longitudinal study of 99 South African adolescents 52 followed from age 11 to 20, there was no significant correlation between 25(OH)D in the 53

earlier and later years of adolescence, and measurement of 25(OH)D at a single time point did not reflect long term vitamin D status (10). By contrast, a large study of Norwegian adults showed significant correlations between serum 25(OH)D concentrations measured 14 years apart (r = 0.42 to 0.52) (11).

58

To our knowledge, tracking of vitamin D status from childhood to early adulthood and its 59 associations with peak bone mass have not been evaluated in a long-term prospective study. 60 In the Western Australian Pregnancy Cohort (Raine) Study, serum 25(OH)D was assessed in 61 the offspring at age 6, 14, 17 and 20 years, and whole body dual-energy x-ray absorptiometry 62 (DXA) scanning was performed at age 20. A longitudinal study of Canadian children showed 63 that whole body peak bone mass was generally achieved by 18.5 years of age in girls and 20 64 years in boys (12). The aims of our study were firstly to determine whether tracking of 65 vitamin D status occurs from childhood to young adulthood, and secondly to examine 66 whether vitamin D status at key developmental stages (childhood, adolescence and skeletal 67 68 maturity) and vitamin D trajectories are predictors of peak bone mass.

69 Subjects and methods

70 Participants

This longitudinal, prospective study included data from 821 offspring (436 males and 385 71 females) from the Western Australian Pregnancy Cohort (Raine) Study. The original study 72 recruited 2900 pregnant women from the antenatal clinic at King Edward Memorial Hospital 73 and nearby private clinics in Perth. Western Australia between May 1989 and November 74 1991. Inclusion criteria were a gestational age between 16 and 20 weeks, English language 75 76 skills sufficient to understand the study demands, an expectation to deliver at King Edward Memorial Hospital, and an intention to remain in Western Australia to enable future follow-77 up of their child (13). All offspring were invited to attend periodic follow-ups. Compared 78 with the general Western Australian population, the Raine cohort at birth was characterized 79 by higher proportions of high-risk births and fathers employed in managerial and professional 80 81 positions, but comparison of participants remaining in the study at the 14-year follow-up suggested that attrition resulted in a cohort comparable with the general population (14). A 82 83 total of 1306 offspring participated in the clinical component of the 20 year follow-up, and 84 1183 had a valid whole body DXA scan. The current study is restricted to participants who had a whole body DXA at 20 years and measurements of serum 25(OH)D at three or more of 85 the study time points at age 6, 14, 17 and 20 years. The study at each follow-up was approved 86 87 by the Human Research Ethics Committee of Princess Margaret Hospital (year 6, 14 and 17) and University of Western Australia (year 20). At each study visit, written informed consent 88 was obtained from parents and/or offspring, as appropriate. 89

90

91 Vitamin D status at 6, 14, 17 and 20 years

92 Fasting venous blood was collected at age 6, 14, 17 and 20, and serum was then securely

stored at -80°C. Serum 25(OH)D at ages 6 and 14 was measured using an enzyme

immunoassay (EIA) (Immunodiagnostic Systems (IDS) Ltd, Scottsdale, AZ, USA), whereas 94 at ages 17 and 20, isotope-dilution liquid chromatography/tandem mass spectrometry (LC-95 MS/MS) was performed by RMIT Drug Discovery Technologies (Melbourne, Victoria, 96 97 Australia) according to published methodology (15). In 12 participants aged 14 years both methods were used, with a strong correlation $(r^2 = 0.933)$ (16). Analysis of 50 samples 98 from participants aged 6 years revealed that EIA overestimated 25(OH)D compared with LC-99 MS/MS, particularly for 25(OH)D values over 100 nmol/L. Therefore an equation developed 100 using Weighted Deming Regression (17) was used to calculate standardized 25(OH)D values 101 at year 6: standardized 25(OH)D = 22.3 + 0.58 * EIA. Since the enzyme immunoassay at the 6 102 and 14-year follow-ups did not differentiate between serum 25(OH)D₂ and 25(OH)D₃, 103 analyses at all four time points were performed on total serum 25(OH)D concentrations (18). 104 105 The inter-assay coefficients of variations (CVs) for the EIA were low standard (40.3 nmol/L) 4.6%, medium standard (72.0 nmol/L) 6.4%, and high standard (132.0 nmol/L) 8.7%. For 106 the LC-MS/MS, the CVs for 25(OH)D₃ were low standard (27.1 nmol/L) 7.1%, medium 107 standard (75.4 nmol/L) 5.0%, and high standard (163.8 nmol/L) 5.3%; the CVs for 108 25(OH)D₂ were low standard (23.4 nmol/L) 8.8%, medium standard (66.0 nmol/L) 6.7%, 109 and high standard (150.1 nmol/L) 6.7%. 110

111

Latent class growth analysis which can discern classes defined by different developmental trajectories was used to estimate trajectories of vitamin D status, in which serum 25(OH)D concentrations at each time point were categorized into four groups according to quartile. Sex was used as an active covariate in the models and a series of models with between 1 and 8 trajectories were estimated. Four trajectories were chosen based on a combination of statistical criteria, parsimony and interpretability (19). Participants were assigned to the trajectory class for which they had the highest posterior probability of membership. The four vitamin D status trajectories identified were: consistently lower (most values in the two bottom quartiles, n = 259), decreasing (moving from the two top quartiles to the two bottom quartiles over time, n = 125), increasing (moving from the two bottom quartiles to the two top quartiles over time, n = 138), and consistently higher (most values in the two top quartiles, n = 299).

124

125 Whole body DXA at 20 years

Whole body scanning was performed at the 20 year follow-up visit using DXA on a Norland XR-36 densitometer (Norland Medical Systems, Inc., Fort Atkinson, WI, USA), according to manufacturer-recommended procedures. Analysis of scans was performed using built-in machine software (version $4 \cdot 3 \cdot 0$) which provided estimates of whole body BMC (g), bone area (cm²) and areal BMD (g/cm²). Daily calibration was performed prior to each scanning session, and the inter-scan coefficient of variation was less than 2%.

132

133 *Other assessments*

At age 6, 14, 17 and 20 years, body weight was measured to the nearest 0.1 kg with subjects 134 dressed in light clothes, and height measured with a hypsometer to the nearest 0.1 cm. Body 135 mass index (BMI) was calculated as weight (kg)/height (m)², and data on organized sports 136 participation and TV watching collected using a questionnaire. Month and year of menarche 137 in girls were recorded at 14 years. A validated semi-quantitative food frequency 138 questionnaire from the Cancer Council Victoria (20) was used to assess dietary intake 139 including calcium and alcohol intake at 20 years. Physical activity level at 20 years was 140 assessed using the International Physical Activity Questionnaire (IPAQ), and categorized as 141 low, medium and high according to the IPAQ scoring protocol (21). Information on smoking 142 habit and oral contraceptive using in females at 20 years was collected using a questionnaire. 143

144

145 Statistical analysis

Variables are presented as mean (SD) unless otherwise stated. The normality of continuous 146 variables was checked through the construction of histograms. The characteristics of 147 participants included in the present study were compared with those of the whole Raine Study 148 cohort to determine whether participants were representative of the broader cohort. These 149 comparisons as well as those between male and female participants were made using 150 151 Student's t test and chi-square test. The tracking of vitamin D status was assessed using Pearson's correlation analysis to calculate the correlation coefficients between serum 152 25(OH)D measured at different time points. In addition, intraclass correlation coefficient 153 (ICC) was obtained from a linear mixed model with 25(OH)D measures at all time points as 154 the dependent variable, age as timeline, subject effects as random and season as covariate (for 155 156 models with raw values), and the square root of the ICC is given as an estimate of the correlation between any two 25(OH)D measures for the same individual. Associations 157 158 between serum 25OHD at different ages (6, 14, 17 and 20 years) and total body BMC and 159 BMD at age 20 were evaluated using linear regression analyses in males and females separately, adjusting for covariates including season of blood collection, age, height, body 160 weight, TV watching (22), organized sports participation or physical activity level at the time 161 of 25(OH)D assessment and at age 20, and calcium intake, smoking, alcohol consumption 162 and bone area (for the models for BMC only) at 20 years. To account for seasonal variation 163 of vitamin D status, deseasonalized vitamin D concentrations were calculated using a 164 published formula (23), and the above analyses were repeated using the deseasonalized 165 values (without inclusion of season as a covariate). 166

167

168 Comparisons between those with serum 25(OH)D concentrations below or above the sufficiency level of 50 nmol/L (24) at age 17 and 20 and between the four vitamin D status 169 trajectories (consistently lower, decreasing, increasing, consistently higher) on bone 170 171 outcomes were made by analysis of covariance (ANCOVA) with Bonferroni post hoc test adjusted for age, height, body weight, physical activity, TV watching, calcium intake, 172 smoking, alcohol consumption and bone area (for BMC only) at 20 years (the models for age 173 17 additionally adjusted for covariates at 17 years). In females, further analyses were made 174 including age of menarche and oral contraceptive use as covariates. The homogeneity of 175 variance of each model was checked by Levene's Test. Statistical significance level was set at 176 P < 0.05 (two-tailed). All analyses were performed using IBM SPSS (version 22, IBM, 177 Chicago, IL, USA) and R (version 3.3.3, R Foundation for Statistical Computing, Vienna, 178

179 Austria).

180 **Results**

181 *Characteristics of participants*

In total 821 participants (436 males and 385 females) who underwent whole body DXA 182 scanning at age 20 years, and who had measurements of serum 25(OH)D from three or more 183 study visits at age 6, 14, 17 and 20 were included in this analysis (Supplemental Figure 1). 184 Compared with Raine participants who had whole body DXA at 20 years but were not 185 included in the analysis (n = 362), the subsample included in our study (n = 821) did not 186 differ in age, body weight, BMI and total body BMD. The characteristics of participants at 6, 187 188 14, 17 and 20 are presented in Table 1. Serum 25(OH)D concentrations did not differ significantly between males and females at 6 and 17 years, but at age 14, mean 25(OH)D was 189 significantly higher in males, whereas at age 20 it was higher in females. In girls, the mean 190 191 age of menarche was 12.8 ± 1.1 years, and at age 20, 56.5% of females were using an oral contraceptive. 192

193

194 Tracking of vitamin D status

There were significant correlations between serum 25(OH)D concentrations measured at 195 different time points in both males (raw values r = 0.360-0.560; deseasonalized values r =196 0.440-0.673, all P<0.001) and females (raw values r = 0.346-0.537; deseasonalized values r 197 = 0.399-0.629, P<0.001), and the associations were stronger at adjacent time points (Table 198 199 2). The square root of ICC range was 0.667-0.697 for these values (Table 2), and were very similar (0.684 for males and 0.667 for females) when using the unstandardized (measured) 200 values at year 6 in the models. When analyzed according to whether serum 25(OH)D was 201 below or above the median at age 6, it was found that the majority of participants (64.4-69.7% 202 of males and 58.9-66.5% of females) remained in the same group (i.e. below or above the 203 median) at age 14, 17 and 20 (Supplemental Table 1). 204

205

207

206 Relationship between vitamin D status and peak bone mass

positively associated with total body BMC and BMD at age 20, with regression coefficients 208 of 40.7-53.9 g for BMC and 14.7-18.6 mg/cm² for BMD per 25 nmol/L increase in 25(OH)D 209 (all P<0.05) after adjustment for season of blood collection, age, height, weight, TV watching, 210 organized sports participation or physical activity level at the time of 25(OH)D assessment 211 and at age 20, and calcium intake, smoking, alcohol consumption and bone area (for BMC 212 213 only) at age 20 (Table 3). When measured (unstandardized) 25(OH)D values at year 6 were used instead for the year 6 models, the regression coefficient (95% CI) was slightly lower as 214 31.3 (3.6, 59.0) g for BMC, and 10.8 (1.1, 20.5) mg/cm² for BMD. Serum 25(OH)D 215 concentrations at age 14 in males and at age 6, 14, 17 and 20 in females were not 216 significantly correlated with total body bone measures at 20 years (Table 3). In females, the 217 results remained similar after further adjustment for age of menarche and oral contraceptive 218 219 use (data not shown). Using deseasonalized 25(OH)D values yielded similar results (Table 3). 220

In males, serum 25(OH)D concentration using the raw values at age 6, 17 and 20 years was

In a further regression model in males where 25(OH)D at the four different ages were

simultaneously included, only 25(OH)D at year 6 remained significant, with regression

223 coefficient (95% CI) of 50.6 (6.7, 94.4) g for BMC, and 18.1 (2.6, 33.6) mg/cm² for BMD per

224 25 nmol/L increase in serum 25(OH)D. When measured (unstandardized) 25(OH)D values at

year 6 were used instead, the regression coefficient (95% CI) was slightly lower at 29.3 (3.9,

54.8) g for BMC, and 10.5 (1.5, 19.5) mg/cm² for BMD. Using deseasonalized 25(OH)D

227 values yielded similar results (data not shown).

228

- There were 1.0%, 3.9%, 15.4% and 16.7% participants with serum 25(OHD) below 50
- nmol/L at age 6, 14, 17 and 20, respectively. Comparing to those with serum 25(OHD) below
- 50 nmol/L, those with serum $25(OHD) \ge 50$ nmol/L had 3.8-4.1% higher total body BMC
- and BMD at age 17 and 20 (**Table 4**).
- 233
- 234 Vitamin D trajectories and peak bone mass

The mean serum 25(OH)D values at each time point for the four vitamin D status trajectories

identified (consistently lower, decreasing, increasing and consistently higher) are presented

in Figure 1. At age 20, males in the "consistently higher" vitamin D trajectory had 3.2% and

- 3.4% higher total body BMC and BMD, respectively, compared with those in the
- 239 "consistently lower" category, after accounting for age, height, body weight, physical activity,

240 TV watching, calcium intake, smoking, alcohol consumption and bone area (for BMC only)

at 20 years (BMC 3222 ± 21 vs 3123 ± 24 g, P = 0.013; BMD 1135 ± 7 vs 1098 ± 8 mg/cm²,

242 P = 0.008) (Figure 2). In females, there were no significant differences between the four

- trajectory classes in total body bone measures at 20 years after adjustment for these
- covariates (Figure 2), or after further adjustment for age of menarche and oral contraceptive
- use (data not shown).

246 **Discussion**

In this longitudinal study of 821 boys and girls examined at age 6, 14, 17 and 20, we found 247 evidence of tracking of vitamin D status, with significant associations between vitamin D in 248 individuals assessed at pre-puberty, adolescence and early adulthood in both genders. In 249 males, but not females, serum 25(OH)D at age 6, 17 and 20 was a significant predictor of 250 total body BMC and BMD at 20 years, with the level at age 6 remaining significant when 251 252 25(OH)D at four different ages were included in the same model. Males in the "consistently higher" vitamin D trajectory had significantly higher total body BMC and BMD than those in 253 254 the "consistently lower" category, after accounting for age, anthropometric and lifestyle factors. Childhood and adolescence are critical periods for bone mineral accretion, and 255 achieving optimal peak bone mass at skeletal maturity is considered an effective strategy 256 257 against osteoporosis in later life. An increase in peak bone mass by one standard deviation is estimated to reduce the osteoporotic fracture risk in later life by 50% (25). Therefore the 258 magnitude of the difference observed in total body BMD in our study (~ 0.35 SD) may be 259 260 clinically relevant, with implications for reducing the fracture risk in later life.

261

Vitamin D has well-established physiological roles in calcium absorption and bone 262 mineralization, and an association between vitamin D status in childhood/adolescence and 263 peak bone mass is biologically plausible. The basis for the sex difference observed in the 264 265 present study is uncertain, but may arise from differences in sex hormone effects in bone between males and females. Estrogens and androgens influence the growth and maintenance 266 of bones and muscles and are responsible for sexual dimorphism. Estrogen is needed for 267 268 closure of epiphyseal growth plates in both sexes (26), and the more rapid epiphyseal maturation in girls compared with boys is mostly due to higher circulating estradiol levels 269 (27). Estrogen stimulates renal 1- α hydroxylase activity, converting 25(OH)D to the more 270

biologically active hormone 1,25(OH)₂D (28), stimulates vitamin D receptor expression via 271 activation of the ERK 1/2 signaling pathway (29), and increases intestinal calcium absorption 272 through vitamin D-dependent, and possibly vitamin D-independent mechanisms (30). 273 Estrogen also reduces circulating levels of sclerostin, an inhibitor of Wnt signaling, which 274 has anti-anabolic effects on bone (31). It is thus possible that in females, estrogenic effects 275 may counteract the effects of lower 25(OH)D levels, whereas in males this compensatory 276 effect is absent, explaining the sex difference in our results. In the same cohort, associations 277 between vitamin D status, atopy and asthma at age 6 and 14 years were seen mainly in boys 278 279 (16). Another possible explanation is that males experience a longer period of bone mineral accretion and require a greater amount of calcium than females (12), and therefore may be 280 more at risk from suboptimal intestinal calcium absorption associated with lower vitamin D 281 282 levels. Consistent with our findings, in a Korean study of 1926 men and 2350 women aged 10-40 years, significant positive associations between serum 25(OH)D and BMD of spine 283 and hip were observed in men but not women (32). 284

285

The significant, moderate correlations observed between serum 25(OH)D concentrations at 286 age 6, 14, 17 and 20 in our West Australian cohort differ from a study of South African 287 adolescents, in which no association was found between 25(OH)D values measured in early 288 and late adolescence (10). Our results are consistent with data from Norwegian adults, in 289 290 whom, after seasonal adjustment, the correlation coefficients of serum 25(OH)D concentrations measured 14 years apart ranged between 0.42 to 0.52, similar to those seen for 291 cardiovascular risk factors, blood pressure and lipids (11), and close to the coefficients 292 observed in our study. In the majority of our participants, vitamin D status at 6 years with 293 respect to the quartile they were in predicted their vitamin D status at subsequent visits. Such 294 tracking in vitamin D status from childhood to young adulthood may be due to multiple 295

factors known to affect vitamin D status, including genetic factors, body fatness, and lifestyle
factors such as dietary intake and sunlight exposure (18, 33). In a meta-analysis of six
randomized controlled trials of vitamin D supplementation in healthy children, there was no
significant effect of vitamin D on BMC or BMD overall, but there was a significant positive
effect on total body BMC in children with low baseline 25(OH)D levels (<35 nmol/L) (34).
Therefore, optimizing vitamin D status in children and adolescents could play an important
role in promoting the attainment of optimal peak bone mass.

303

304 A strength of this study is the measurement of serum 25(OH)D at multiple time points, allowing the longitudinal analysis of vitamin D at different developmental stages and use of 305 trajectories as predictors of peak bone mass. Other strengths include the large sample size, 306 307 prospective, detailed data collection and assessment of bone mass at the age of accrual of peak bone mass (12). Our study also has limitations. Firstly, its observational nature means 308 we cannot assume that the relationships between vitamin D status and bone are causal. 309 Although we adjusted for important confounding variables including anthropometric 310 measures and lifestyle factors, the significant associations observed may be due to potential 311 residual or uncontrolled confounders. Secondly, the majority of participants were Caucasian, 312 with median serum 25(OH)D concentrations between 70 and 80 nmol/L at different time 313 points; the study findings may not be applicable to other ethnic groups or communities with 314 substantially different vitamin D status. Thirdly, two different methods were used to measure 315 serum 25(OH)D. This may affect measured 25(OH)D values, but should have minimal or no 316 effect on ranking and trajectory. In addition, we used standardized values at age 6 to correct 317 for between-method differences and also presented analyses results using unstandardized 318 values, whereas at age 14 there was good agreement between the methods. Finally, we did 319 not measure BMD at fracture-relevant sites such as spine and hip, but previous studies have 320

shown the value of total body BMD in predicting hip fracture (35) and a close relationship 321 between BMD measures of total body, lumbar spine and hip (36). 322

323

330

In conclusion, we found moderate associations between serum 25(OH)D measured at pre-324 puberty, adolescence and early adulthood in both genders, and evidence of tracking of 325 vitamin D status across key developmental stages. In males, but not females, vitamin D status 326 in childhood and adolescence was a significant, independent predictor of peak bone mass at 327 age 20. Optimizing vitamin D status during childhood may play a role in achievement of 328 optimal peak bone mass, particularly in males, which may in turn reduce the risk of fracture 329 in adult life.

17

331 Acknowledgments

We gratefully acknowledge the efforts of the Raine Study participants, the Raine Study team

- for study co-ordination and data collection, and Denise Anderson for developing the
- 334 Weighted Deming Regression equation for calculating standardized 25(OH)D values at 6
- 335 years.
- Authors' contributions: KZ, CP, and JPW designed research; WO, PH, WCSP-D, JM, SL,
- 337 CP, PHH conducted research; KZ analyzed data; KZ and JPW wrote the paper and had

primary responsibility for final content. All authors read and approved the final manuscript.

339 Conflict of Interest Statement: KZ, WO, PH, WCSP-D, JM, SL, CP, PHH, and JPW

- 340 declare that they have no conflict of interest.
- **Role of the Sponsor:** None of the funding agencies had any role in the design and conduct of

the study; collection, management, analysis, and interpretation of the data; preparation,

review, or approval of the manuscript; and decision to submit the manuscript for publication.

References

- DeLuca HF. Evolution of our understanding of vitamin D. Nutr Rev. 2008;66(10 Suppl 2):S73-87.
- 2. Golden NH, Abrams SA, Committee on Nutrition. Optimizing bone health in children and adolescents. Pediatrics. 2014;134(4):e1229-43.
- ABS. 4364.0.55.006 Australian Health Survey: Biomedical Results for Nutrients, 2011-12. Internet:

http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.006Chapter2002011-12 (accessed 3 October 2016).

- Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr. 2002;76(6):1446-53.
- El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Khalife H, Choucair M, Arabi A, Vieth R. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006;91(2):405-12.
- Farrar MD, Mughal MZ, Adams JE, Wilkinson J, Berry JL, Edwards L, Kift R, Marjanovic E, Vail A, Webb AR, et al. Sun Exposure Behavior, Seasonal Vitamin D Deficiency, and Relationship to Bone Health in Adolescents. J Clin Endocrinol Metab. 2016;101(8):3105-13.
- Cashman KD, Hill TR, Cotter AA, Boreham CA, Dubitzky W, Murray L, Strain J, Flynn A, Robson PJ, Wallace JM, et al. Low vitamin D status adversely affects bone health parameters in adolescents. Am J Clin Nutr. 2008;87(4):1039-44.

- Abrams SA, Griffin IJ, Hawthorne KM, Gunn SK, Gundberg CM, Carpenter TO. Relationships among vitamin D levels, parathyroid hormone, and calcium absorption in young adolescents. J Clin Endocrinol Metab. 2005;90(10):5576-81.
- Sayers A, Fraser WD, Lawlor DA, Tobias JH. 25-Hydroxyvitamin-D3 levels are positively related to subsequent cortical bone development in childhood: findings from a large prospective cohort study. Osteoporos Int. 2012;23(8):2117-28.
- Poopedi MA, Norris SA, Micklesfield LK, Pettifor JM. Does vitamin D status track through adolescence? Am J Clin Nutr. 2015;102(5):1025-9.
- Jorde R, Sneve M, Hutchinson M, Emaus N, Figenschau Y, Grimnes G. Tracking of serum 25-hydroxyvitamin D levels during 14 years in a population-based study and during 12 months in an intervention study. Am J Epidemiol. 2010;171(8):903-8.
- Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729-39.
- Newnham JP, Evans SF, Michael CA, Stanley FJ, Landau LI. Effects of frequent ultrasound during pregnancy: a randomised controlled trial. Lancet. 1993;342(8876):887-91.
- Robinson M, Oddy WH, McLean NJ, Jacoby P, Pennell CE, de Klerk NH, Zubrick SR, Stanley FJ, Newnham JP. Low-moderate prenatal alcohol exposure and risk to child behavioural development: a prospective cohort study. BJOG. 2010;117(9):1139-50.
- 15. Maunsell Z, Wright DJ, Rainbow SJ. Routine isotope-dilution liquid chromatographytandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin Chem. 2005;51(9):1683-90.

- Hollams EM, Hart PH, Holt BJ, Serralha M, Parsons F, de Klerk NH, Zhang G, Sly PD, Holt PG. Vitamin D and atopy and asthma phenotypes in children: a longitudinal cohort study. Eur Respir J. 2011;38(6):1320-7.
- Manuilova E, Schuetzenmeister A, Model F. mcr: Method Comparison Regression. R package version 1.2.1. Internet: <u>http://CRAN.R-project.org/package=mcr</u> (accessed 23 June 2014).
- Black LJ, Burrows SA, Jacoby P, Oddy WH, Beilin LJ, Chan She Ping-Delfos W, Marshall CE, Holt PG, Hart PH, Mori TA. Vitamin D status and predictors of serum 25-hydroxyvitamin D concentrations in Western Australian adolescents. Br J Nutr. 2014;112(7):1154-62.
- 19. Jung T, Wickrama KAS. An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass. 2008;2(1):302-17.
- 20. Hodge A, Patterson AJ, Brown WJ, Ireland P, Giles G. The Anti Cancer Council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust N Z J Public Health. 2000;24(6):576-83.
- 21. IPAQ. Internet: <u>http://www.ipaq.ki.se/scoring.htm</u> (accessed 3 October 2016).
- McVeigh JA, Zhu K, Mountain J, Pennell CE, Lye SJ, Walsh JP, Straker LM.
 Longitudinal Trajectories of Television Watching Across Childhood and Adolescence
 Predict Bone Mass at Age 20 Years in the Raine Study. J Bone Miner Res. 2016;
 31(11):2032-2040.
- Gelfand JM, Cree BA, McElroy J, Oksenberg J, Green R, Mowry EM, Miller JW, Hauser SL, Green AJ. Vitamin D in African Americans with multiple sclerosis. Neurology. 2011;76(21):1824-30.

- 24. Institute of Medicine. *Dietary Reference Intakes for Calcium and Vitamin D.*Washington, DC: National Academy of Sciences, 2010.
- Bonjour JP, Chevalley T. Pubertal timing, bone acquisition, and risk of fracture throughout life. Endocr Rev. 2014;35(5):820-47.
- Vaananen HK, Harkonen PL. Estrogen and bone metabolism. Maturitas. 1996;23
 Suppl:S65-9.
- 27. Cutler GB, Jr. The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol. 1997;61(3-6):141-4.
- Gallagher JC, Riggs BL, DeLuca HF. Effect of estrogen on calcium absorption and serum vitamin D metabolites in postmenopausal osteoporosis. J Clin Endocrinol Metab. 1980;51(6):1359-64.
- 29. Gilad LA, Bresler T, Gnainsky J, Smirnoff P, Schwartz B. Regulation of vitamin D receptor expression via estrogen-induced activation of the ERK 1/2 signaling pathway in colon and breast cancer cells. J Endocrinol. 2005;185(3):577-92.
- Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci. 2010;47(4):181-95.
- Papapoulos SE. Targeting sclerostin as potential treatment of osteoporosis. Ann Rheum Dis. 2011;70 Suppl 1:i119-22.
- 32. Lim JS, Kim KM, Rhee Y, Lim SK. Gender-dependent skeletal effects of vitamin D deficiency in a younger generation. J Clin Endocrinol Metab. 2012;97(6):1995-2004.
- DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S-96S.
- Winzenberg T, Powell S, Shaw KA, Jones G. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ. 2011;342:c7254.

- 35. Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G. How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int. 1998;8(3):247-54.
- Franck H, Munz M. Total body and regional bone mineral densitometry (BMD) and soft tissue measurements: correlations of BMD parameter to lumbar spine and hip. Calcif Tissue Int. 2000;67(2):111-5.

	Male	Female	\mathbf{P}^{1}
6 years	<i>n</i> = 271	<i>n</i> = 228	
Age, year	5.9 ± 0.2	5.9 ± 0.2	0.822
Weight, kg	21.4 ± 3.6	20.9 ± 2.8	0.031
Height, cm	116.1 ± 5.1	115.5 ± 4.5	0.186
25(OH)D measured, nmol/L	105.4 ± 34.3	101.2 ± 28.8	0.138
25(OH)D standardized, nmol/L	83.4 ± 19.9	81.0 ± 16.7	0.138
25(OH)D deseasonalized, nmol/L	83.2 ± 18.9	81.3 ± 15.7	0.226
Watch TV \geq 2 hours/day, %	25.1	19.2	0.057
Participated in organized sports, %	35.9	32.6	0.363
14 years	<i>n</i> = 412	n = 366	
Age, year	14.1 ± 0.2	14.1 ± 0.2	0.285
Weight, kg	57.4 ± 12.6	56.0 ± 10.4	0.091
Height, cm	165.9 ± 8.5	162.8 ± 6.3	< 0.001
25(OH)D, nmol/L	89.6 ± 31.0	83.7 ± 28.6	0.005
25(OH)D deseasonalized, nmol/L	89.9 ± 26.6	83.3 ± 25.4	< 0.001
Watch TV \geq 2 hours/day, %	47.7	44.5	0.391
Participated in organized sports, %	94.0	87.6	0.002
17 years	n = 409	n = 366	
Age, year	17.0 ± 0.2	17.1 ± 0.3	0.037
Weight, kg	70.7 ± 13.2	62.8 ± 10.9	< 0.001
Height, cm	177.5 ± 7.0	166.7 ± 6.6	< 0.001
25(OH)D, nmol/L	74.7 ± 28.6	75.1 ± 26.2	0.857
25(OH)D deseasonalized, nmol/L	75.4 ± 25.2	75.1 ± 23.9	0.871

Table 1 Characteristics of male and female participants at each time point

Watch TV \geq 2 hours/day, %	31.3	28.8	0.497
Participated in organized sports, %	85.5	72.3	< 0.001
20 years	n = 436	<i>n</i> = 385	
Age, year	20.0 ± 0.4	20.0 ± 0.4	0.312
Weight, kg	76.8 ± 14.1	65.5 ± 12.7	< 0.001
Height, cm	178.3 ± 7.1	166.3 ± 6.4	< 0.001
BMI, kg/m ²	24.1 ± 3.9	23.7 ± 4.6	0.198
25(OH)D, nmol/L	70.6 ± 24.3	75.2 ± 26.2	0.009
25(OH)D deseasonalized, nmol/L	71.3 ± 22.2	$75.6\ \pm 24.8$	0.010
Watch TV \geq 2 hours/day, %	26.5	26.1	0.931
Physical activity, %			
Low	8.0	13.1	< 0.001
Moderate	33.6	52.6	
High	58.4	34.4	
Current smoker, %	15.6	12.5	0.274
Alcohol intake ≥3 units/day, %	16.6	4.6	< 0.001
Calcium intake, mg/day	1029.6 ± 435.8	803.4 ± 334.9	< 0.001
Total body BMC, g	3182 ± 429	2719 ± 325	< 0.001
Total body bone area, cm ²	2830 ± 192	2649 ± 181	< 0.001
Total body BMD, mg/cm ²	1122 ± 107	1025 ± 83	< 0.001

Values are mean \pm SD unless otherwise stated. 25(OH)D, 25 hydroxyvitamin D; BMC, bone mineral content; BMD, bone mineral density.

¹ Student's t-test or chi-square test.

	Raw values		Deseasonalized values			
	Year 14	Year 17	Year 20	Year 14	Year 17	Year 20
Male	<i>n</i> = 412	n = 409	<i>n</i> = 422	<i>n</i> = 412	<i>n</i> = 409	<i>n</i> = 422
Year 6 (n = 271)	0.441 ¹	0.455 1	0.399 ¹	0.483 1	0.473 1	0.440 1
Year 14 (n = 412)		0.560 ¹	0.360 ¹		0.577 1	0.483 1
Year 17 (n = 409)			0.501 1			0.673 1
Square root of ICC ²		0.667			0.691	
Female	n = 366	n = 366	n = 371	n = 366	n = 366	n = 371
Year 6 (n = 228)	0.473 1	0.394 1	0.358 1	0.493 1	0.430 1	0.399 ¹
Year 14 (n = 366)		0.412 1	0.346 1		0.463 1	0.487 1
Year 17 (n = 368)			0.537 1			0.629 1
Square root of ICC ²		0.667			0.697	

Table 2 Correlations between individual participants' 25(OH)D concentrations

measured at 6, 14, 17 and 20 years

 $^{-1}$ P < 0.001, Pearson correlation coefficients.

² Square root of ICC (intraclass correlation coefficient) obtained from linear mixed model with subject effects as random, age as timeline and adjusted for season for raw values.

	Regression coefficients (95% CI) per 25 nmol/L increase in serum 25(OH)D concentration					
	Year 6	Year 14	Year 17	Year 20		
	(M = 271, F = 228)	(M = 412, F = 366)	(M = 409, F = 366)	(M = 422, F = 371)		
Male (raw values)						
Total body BMC, g	53.9 (6.2, 101.6) ¹	12.8 (-10.6, 36.2)	40.7 (13.5, 68.0)	43.5 (12.0, 74.9)		
Total body BMD, mg/cm ²	18.6 (1.9, 35.3)	4.7 (-3.5, 13.0)	14.7 (5.1, 24.3)	15.7 (4.7, 26.7)		
Male (deseasonalized value	es)					
Total body BMC, g	48.4 (0.01, 96.8)	6.0 (-19.8, 31.9)	42.6 (13.4, 71.7)	38.8 (6.1, 71.6)		
Total body BMD, mg/cm ²	16.6 (-0.3, 33.5)	2.2 (-6.9, 11.3)	15.2 (5.0, 25.5)	14.0 (2.6, 25.5)		
Female (raw values)						
Total body BMC, g	2.4 (-39.8, 44.6)	1.6 (-16.4, 19.7)	-8.1 (-31.1, 14.8)	7.9 (-13.0, 28.8)		
Total body BMD, mg/cm ²	1.1 (-15.1, 17.2)	0.02 (-6.9, 6.9)	-2.2 (-11.0, 6.6)	2.7 (-5.2, 10.7)		
Female (deseasonalized va	lues)					
Total body BMC, g	-5.2 (-50.6, 40.2)	5.5 (-14.0, 25.0)	-4.3 (-27.5, 19.0)	6.1 (-14.9, 27.2)		
Total body BMD, mg/cm ²	-2.4 (-19.7, 14.9)	1.2 (-6.3, 8.7)	-0.8 (-9.6, 8.1)	2.1(-5.9, 10.1)		

Table 3 Associations between serum 25-hydroxyvitamin D at each time point and 20 year total body bone measures

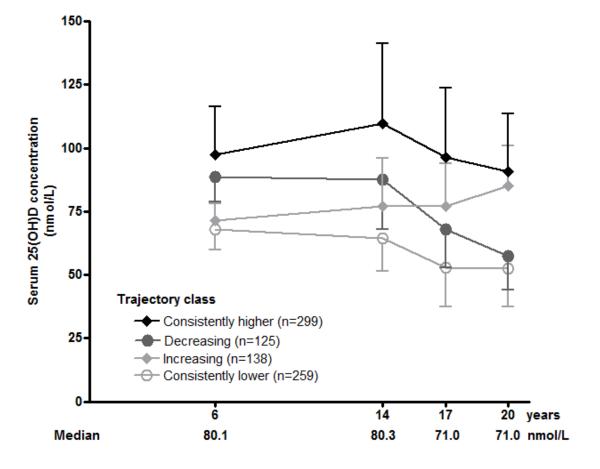
BMC, bone mineral content; BMD, bone mineral density.

¹ Multiple linear regression models adjusted for age, height, weight, TV watching, organised sports participation or physical activity level at time of 25(OH)D measurement and 20 year, calcium intake, smoking, and alcohol consumption at 20 years, and additionally adjusted for bone area for the models for BMC and season of blood collection for models using raw values.

	25(OH)D at year 17		25(OH)D at year 20		
	<50 nmol/L	≥50 nmol/L	<50 nmol/L	≥50 nmol/L	
Male, n	65	344	76	346	
Total body BMC, g	3106 ± 37	3226 ± 16^{-1}	3096 ± 32	3215 ± 15^{2}	
Total body BMD, mg/cm ²	1094 ± 13	1136 ± 6^{-1}	1088 ± 11	1133 ± 5^{2}	
Female, n	54	312	56	315	
Total body BMC, g	2672 ± 30	2718 ± 12	2701 ± 29	2707 ± 11	
Total body BMD, mg/cm ²	1006 ± 11	1025 ± 5	1018 ± 11	1023 ± 4	

Table 4 Comparisons between those with 25-hydroxyvitamin D below or above 50nmol/L at 17 and 20 years and total body bone measures at age 20

Values are estimated mean ± SEM. BMC, bone mineral content; BMD, bone mineral density.


 1 P = 0.004, 2 P = 0.001 compared with 25(OH)D < 50 nmol/L at the same age, analysis of covariance (ANCOVA) adjusted for season of blood collection, age, height, weight, TV watching, organised sports participation or physical activity level at time of 25(OH)D measurement and 20 year, calcium intake, smoking, and alcohol consumption at 20 years, and additionally adjusted for bone area for the models for BMC.

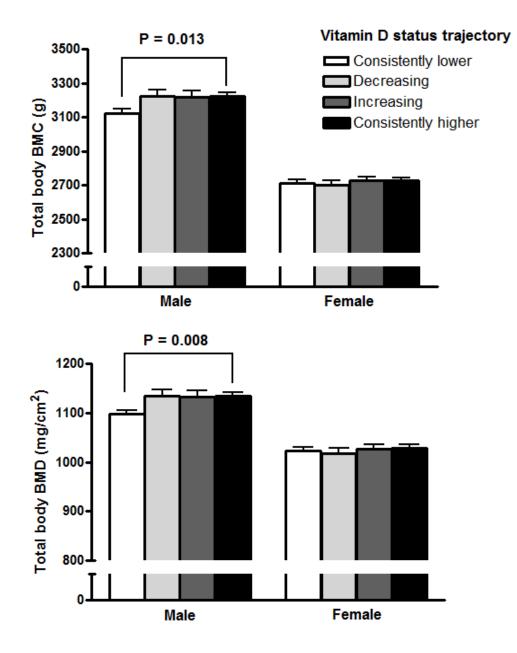

Figure legends

Figure 1 Mean serum 25-hydroxy vitamin D (25(OH)D) both sexes combined at each time point by trajectory classes, error bar represents standard deviation.

Figure 2 Comparison of estimated means of total body bone mineral content (BMC) and density (BMD) by vitamin D status trajectory classes. N = 136, 62, 64 and 174 for males and 123, 63, 74 and 125 for females in the consistently lower, decreasing, increasing and consistently higher groups, respectively. Error bar represents standard error, analysis of co-variance with Bonferroni post hoc test, adjusted for age, height, body weight, bone area (for the models for BMC only), physical activity, TV watching, calcium intake, smoking and alcohol consumption at 20 years.

