
energies

Article

Extension of Zero Voltage Switching Capability for
CLLC Resonant Converter

HwaPyeong Park 1, DoKyoung Kim 2, SeungHo Baek 2 and JeeHoon Jung 1,*
1 Ulsan National Institute of Science and Technology (UNIST), Ulsan KS017, Korea; darkrla6@unist.ac.kr
2 LIG Nex1, Seongnam KS009, Korea; kimdokyoung@lignex1.com (D.K.); seungho.baek@lignex1.com (S.B.)
* Correspondence: jhjung@unist.ac.kr; Tel.: +82-052-217-2140

Received: 18 January 2019; Accepted: 27 February 2019; Published: 1 March 2019
����������
�������

Abstract: TheCLLC resonant converter has been widely used to obtaina high power conversion
efficiency with sinusoidal current waveforms and a soft switching capability. However, it has a
limited voltage gain range according to the input voltage variation. The current-fed structure canbe
one solution to extend the voltage gain range for the wide input voltage variation, butit has a limited
zero voltage switching (ZVS) range. In this paper, the current-fed CLLC resonant converter with
additional inductance is proposed to extend the ZVS range. The operational principle is analyzed to
design the additional inductance for obtaining the extended ZVS range. The design methodology
of the additional inductance is proposed to maximize the ZVS capability for the entire load range.
The performance of the proposed method is verified with a 20 W prototype converter.

Keywords: resonant converter; bidirectional power conversion; zero voltage switching; asymmetric
pulse width modulation

1. Introduction

Recently, the small sized power converterhas become significant in various industries, such as
lightings, TVs, computers, and other home appliances [1,2]. A power converter operating at a high
switching frequency is one effective method to improve power density [3–7]. However, the high
switching frequency operation induces a large switching loss for the turn-on and turn-off states.
Therefore, a soft switching capability is important to obtain a high power conversion efficiency in a
high switching frequency operation [8–10]. Resonant power converters, such as LC resonance, LLC
resonance, CLLC resonance, and CLL resonance, can implement the soft switching capability by the
resonance, which can be a good candidate to implement the high switching frequency operation [11–15].
In addition, the wide band-gap device (WBD), such as gallium nitride (GaN) and silicon carbide (SiC),
can increase the switching frequency up to several MHz compared with conventional silicon (Si)-based
switching devices [16–19].

The CLLC resonant converter operating at the inductive region can obtaina zero voltage switching
(ZVS) capability [20–23]. However, the large input voltage variation by the batteryinduces large
switching frequency variation. In addition, the voltage gain fluctuation makes a non-ZVS operation
withthe capacitive operation of the converter [24]. Therefore, the CLLC resonant converter has poor
voltage gain characteristics according to the wide input voltage variation. The current-fed CLLC
resonant converter can overcome the input voltage variation by the battery, since the current-fed
structure compensates the input voltage variation [25,26]. However, the current-fed structure makes a
limited ZVS capability of the low side switch, since the low side switch operates as the boost converter
and resonant converter simultaneously. Therefore, the increase of the ZVS capability is significant to
obtain a high power conversion efficiency for the entire load condition.
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In this paper, the current-fed CLLC resonant converter employing the additional inductance
is proposed to improve the ZVS capability. The operational principle of the proposed additional
inductance is analyzed with the theoretical waveforms. From the operational principle, the design
methodology of the additional inductance is analyzed to obtain the ZVS capability for the entire input
voltage range and load conditions. The experimental results with a 20 W prototype converter verify
the validity of the proposed additional inductance.

2. Operational Principle

Figure 1 shows the scheme of the proposed current-fed CLLC resonant converter. The current-fed
structure regulates the wide input voltage variation with the asymmetric pulse width modulation
(APWM), because it operates as the synchronous boost converter. The CLLC resonant tank provides
the galvanic isolation using the transformer and resonance. The voltage doubler structure of the
secondary side can reduce the turn ratio of the transformer.
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Figure 1. Schematic of the proposed CLLC resonant converter employing additional inductance.

Figure 2 shows the operational waveform of the conventional and the proposed current-fed CLLC
resonant converter where S1and S2 are the primary switches, Vds,S1 and Vds,S2 is the drain-source
voltage of S1 and S2, respectively, ILin is the current passing through the input inductor, Ir,p is the
resonant current in the primary side, ILm is the magnetizing current, IS1 and IS2 are the currents passing
through S1 and S2, respectively, and ILadd is the current in the additional inductance. The current-fed
structure operates as the conventional boost converter by the switching operation of S1 and S2.
The CLLC resonant tank employing the APWM has zero offset current on the magnetizing inductance
which reduces the core and conduction losses of the transformer.

The current-fed structure is proper to compensate the wide input voltage variation. However,
it limits the ZVS range according to the increase of the output load. The switch current of conventional
voltage-fed CLLC resonant converter for the ZVS capability can be derived as follows:

ZVSS1 = Ir

(
tS2,o f f

)
(1)

ZVSS2 = −Ir

(
tS1,o f f

)
(2)

where Ir(ts2,off ) and Ir(ts1,off ) are the resonant current at the turn off state of power switches, respectively.
The negative current of each switch is required to obtain the ZVS condition. In the voltage-fed CLLC
resonant converter, the resonant current onlydetermines the ZVS condition of each switch. In the case
of the current-fed CLLC resonant converter, the input inductor and resonant currents determine the
ZVS current.The switch current of the current-fed CLLC resonant converter for the ZVS capability can
be derived as follows:

ZVSS1,c = Ir

(
tS2,o f f

)
− ILin

(
ts2,o f f

)
(3)

ZVSS2,c = −Ir

(
tS1,o f f

)
+ ILin

(
ts1,o f f

)
(4)

where ILin(ts2,off ) and ILin(ts2,off ) are the input inductor current at the turn off state of power switches,
respectively. The high side switch (S1) has a larger ZVS condition compared with Equation (1).
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However, the low side switch (S2) has a poor ZVS condition compared with Equation (2). Figure 2a
shows the theoretical waveforms of the conventional current-fed CLLC resonant converter, whichhas a
hard switching operation on the S2. The ZVS capability of the proposed CLLC resonant converter can
be derived as follows:

ZVSS1,p = Ir

(
tS2,o f f

)
− ILin

(
ts2,o f f

)
− nILadd(ts2,o f f ) (5)

ZVSS2,p = −Ir

(
tS1,o f f

)
+ ILin

(
ts1,o f f

)
− nILadd

(
ts1,o f f

)
(6)

where ILadd(ts2,off ) and ILadd(ts2,off ) are the additional inductor currents at the turn off state of power
switches, respectively, and n is the transformer turn ratio. Figure 2b shows the theoretical waveforms
of the proposed CLLC resonant converter. The additional inductance extends the ZVS range compared
with the conventional current-fed CLLC resonant converter.
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The turnon current for the ZVS condition of the current-fed CLLC resonant converter can be
calculated with the input inductor current and resonant current. The ZVS condition on the low side
switch can be derived as follows:

Izvs,s2 =
1

1 − Ds2

Vboost
R

+
(Vin − Vboost)

2L
(1 − Ds2)Ts −

Vtr1

Lm

1 − Ds2

2
Ts (7)

where Ds2is the duty ratio of S2, Vboost is the voltage of the current-fed structure, Vin is the input voltage
of the battery, R is the load resistance, L is the input inductance, Ts is the switching time, Lm is the
magnetizing inductance, and Vtr1 is the transformer voltage. The negative value of Izvs,S2 guarantees
the ZVS capability of S2.The decrease of the load resistance makes no ZVS condition of S2. In addition,
the large duty ratio of S2 makes the worst ZVS condition, which means that the low input voltage
condition is the worst ZVS condition.

The turn on current for ZVS condition of the low side switch with the proposed converter can be
derived as follows:

Izvs,s2,p =
1

1 − Ds2

Vboost
R

+
(Vin − Vboost)

2L
(1 − Ds2)Ts −

Vtr1

Lm

1 − Ds2

2
Ts −

Vo1

nLadd

1 − Ds2

2
Ts (8)

where Vo1is the voltage on the output capacitor as shown in Figure 1. The proposed converter extends
the ZVS condition with the additional inductor on the secondary side as shown in Figure 2b. Figure 3
shows the ZVS capability according to the additional inductance. The ZVS current is the turn on
current of S2, which is required to have a negative value in order to obtain the ZVS capability. The small
additional inductance is proper to extend the ZVS range. However, the small additional inductance
increases the conduction loss on the primary side.Therefore, the design methodology of the additional
inductanceis required to obtain the ZVS capability for the entire load range.
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Figure 3. ZVS capability comparison between the conventional current-fed CLLC resonant converter
and the proposed current-fed CLLC resonant converter.

The voltage gain according to the duty ratio can be described in Figure 4. The proposed converter
has similar voltage gain to that of the conventional boost converter, which shows wide duty ratio
variations to regulate the output voltage. The additional inductance can be designed at the worst duty
ratio case, which is the maximum duty ratio of S2.
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3. Design Methodology of Additional Inductance

The small additional inductance induces the conduction loss with large circulating current.
The large additional inductance cannot obtain the ZVS capability of primary switches. Therefore,
the maximum additional inductance is required to obtain the ZVS capability and the minimum
conduction loss on the additional inductance, which can be derived with Equation (8) as follows:

Ladd = Vo1
nA

1−Ds2
2 Ts

A = 1
1−Ds2

Vboost
R + (Vin−Vboost)

2L (1 − Ds2)Ts − Vtr1
Lm

1−Ds2
2 Ts

(9)

The proper additional inductance can be designed from Equation (9). Figure 5 shows the
additional inductance according to the output load condition. The increment of output load requires
smaller additional inductance. The design specification is shown in Table 1. The input voltage has a
large variation by the state of charge (SOC) of the battery. The load voltage is fixed, and rated load is
20 W. The resonant frequency(fr) is 200 kHz. The APWM requires the small resonant inductance to
obtain the linear voltage gain according to the duty variation.The turn ratio is determined with the
input voltage and output voltage ratio. The additional inductance is determined by (9).
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Table 1. Design specification.

Parameter Value

Vin 12 V–17 V
Load 32 V, 20 W

fr 200 kHz
Lr 1 µH
Lm 30 µH
Cr 633 nF

Turn ratio 1:1
Ladd 25 µH

4. Simulation and Experimental Results

The simulation results show the ZVS capability according to the additional inductance, as shown
in Figure 6. The conventional current-fed CLLC resonant converter has no ZVS capability on the
bottom side switch. However, the proposed CLLC resonant converter employing the additional
inductance can achieve the ZVS condition for both the power switches.
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Figures 7–9 show the steady state waveforms of the conventional CLLC resonant converter
according to the input voltage variation and load condition. The duty ratio regulates the output
voltage according to the load conditions and input voltages.At the light load condition, it shows the
ZVS operation. However, the CLLC resonant converter has a partial and no ZVS operation for the
middle load and full load conditions, respectively. For allthe input voltage range, the ZVS can be
achieved at only the light load condition.
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Figures 10–12 show the steady state waveforms of the proposed CLLC resonant converter
according to the input voltages and load conditions.The proposed converter shows the ZVS operation
for the entire load and input voltage conditions.The extended soft switching capability improves the
power conversion efficiency compared with the partial or no ZVS cases. The power loss of the partial
and no ZVS cases can be calculated as follows:

PnoZVS ∼=
1
2

Vds,c Ionton fsw (10)
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where PnoZVS is the power loss according to the partial or no ZVS conditions, Vds,c is the drain-source
voltage at the turn on state, Ion is the switch current at the turn on state, ton is the turn on time duration,
and fsw is the switching frequency. Figure 13 shows the comparison of the power conversion efficiency
between the conventional current-fed CLLC resonant converter and the proposed converter. For the
light load condition, the proposed and conventional methods can obtain ZVS capability at the light load
condition, which makes no difference in terms of the efficiency. However, the proposed converter has a
higher power conversion efficiency for the middle to full load conditions. The maximum improvement
of power conversion efficiency is 1% at the middle load condition.
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In this paper, the current-fed CLLC resonant converter employing the additional inductance is
proposed to extend the ZVS capability. The operational principle and the design methodology of the
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