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ABSTRACT Increasing production variability while maintaining operation efficiency remains a critical issue
in manymanufacturing industries.While the adoption of mixed-model assembly lines enables the production
of high product variety, it also makes the system more complex as variety increases. This paper proposes an
information entropy-based methodology that quantifies and then minimizes the complexity through product
sequencing. The theory feasibility is demonstrated in a series of simulations to showcase the impact of
sequencing in controlling the system predictability and complexity. Hence, the framework not only serves as
a tool to quantitatively assess the impact of complexity on total system performance but also provides means
and insights into how complexity can be mitigated without affecting the overall manufacturing workload.

INDEX TERMS Mixed model assembly line (MMAL), complexity, sequence, information entropy.

I. INTRODUCTION
In an ever-changing market environment, the need for proper
human-machine integration is critical. Furthermore, the role
of humans remains, since in spite of advances made in manu-
facturing automation, humans remain a critical component of
adaptable and flexible manufacturing systems [1]. As tech-
nological advances accelerate, customer demand gets more
sophisticated [2]. To cope with this demand, and to gain
competitive advantage, companies have adopted the mixed-
model assembly system and modular supply chains capable
of handling a large variety of products [3]. On the other
hand, the increase in variety worsens the manufacturing per-
formance due to the complexity borne out of creating and
handling multiple product models [4], [5].

Thus, there is tradeoff between additional gains from
a greater variety of options and higher resources associ-
ated with handling the additional manufacturing complex-
ity. From a decision-making standpoint, however, challenges
arise when trying to estimate the tradeoff because of the lack
of a formal measure of variety induced complexity.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ming Luo.

This paper estimates manufacturing complexity by mea-
suring the information content of assembly sequences.
We introduce a sequence-based measure of manufacturing
complexity in a Mixed Model Assembly Line (MMAL).
Note that MMAL is an assembly line system, often human-
centered, in which various models of a common base product
are manufactured in intermixed sequences. The thought pro-
cess of the proposed complexity measure is centered on the
premise that the operator’s performance is likely to be nega-
tively affected by an increase in the complexity. Indeed previ-
ous research has already found that the efficiency of operators
diminishes as the number of options increases [6], [7].

Thus, the proposed methodology offers a promising tool
that ensures higher product variability, while simultaneously
maintaining the production efficiency. This paper introduces
an entropic measure of complexity that takes into account
the product variety distribution, and their respective sequenc-
ing in assembly operations. Using the measured complexity,
the paper aims to assess the effect of sequencing on assembly
complexity. Using stochastic optimization methodologies,
namely, the multi-objective genetic algorithm we show how
this entropic measure can be used to obtain an optimized
sequence of products that ensures a reduced level of com-
plexity while maintaining a balanced workload by penalizing
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operator’s idle time variation. In this paper, we assume a
balanced line, that is the task sequence for a given product
assembly is already fixed. Here the task sequence refers to the
order at which various components of a given product must
be added to the mainframe, given the precedence constraints.
Thus, as opposed to task sequence, this paper deals with prod-
uct sequence which simply refers to the order at which two
or more individual products are sequenced on the assembly
line.

II. BACKGROUND
A. MANUFACTURING COMPLEXITY
Due to customer sophistication, manufacturers are expected
to offer a high product variety to remain competitive. As a
result, the industry records show an unprecedented increase in
product varieties. For example, Wiendahl and Scholtissek [8]
have noted a 400% increase in the number of part vari-
ants from 1975 to 1990. This increase in variety led to an
increase in complexity and became one of the premier driver
of changes in manufacturing industries in sake of containing
the said complexity. For instance, to control and contain the
variety-induced complexity in the assembly process, manu-
facturers have shifted from single model toMMAL. Note that
a mixed-model Assembly line produces the units of different
products or different varieties of the same products in an
arbitrarily intermixed sequence.

Despite their reputation as being better equipped for han-
dling the increased variety, a survey by Schleich et al. [9],
shows the majority of manufactures identifying the complex-
ity resulting frommanaging variety as a significant cost driver
in production in MMAL. While the existence of complex-
ity and its challenges are widely acknowledged, a formal
quantification of manufacturing complexity is still a topic for
discussion. In fact, complexity is often thought of as ‘‘the
state of having many different parts connected or related to
each other in a complicated way’’ (Merriam-Webster 2016)
with no systematic way to quantify it. In an attempt to
formally define complexity in MMAL, Falck et al. [10]
categorized the assembly complexity into a number of dis-
crete levels according to few defined features of complexity.
Likewise, [11] introduced a Likert scale measure of worksta-
tion complexity as a function of various elements central to
complexity changes. In addition, to the defining complexity,
these researchers show how an increase complexity in a
manual assembly line often negatively affect the quality and
productivity in MMAL [12].

Likert scale as a measure of complexity, while valuable,
it is constrictive due to the small scale at which the complexity
is defined. To this end, Shannon entropy also known as infor-
mation entropy has become themost prevalent and commonly
accepted theories used as a measure of complexity (For the
remainder of the paper, Shannon entropy will be referred to
as simply ‘‘entropy’’). According to Shannon, the entropy
is a measure of information contained in a message. This
is equivalent to the measure of unpredictability of a random

variable [13], [14]. Notable example use of entropy include
Zeltzer et al. [15] who proposed an entropic complexity
leveling method based on the variation of task cycle time.
Similarly, Fujimoto and Ahmed [16] proposed an entropic
complexity measure for different stages of process planning,
while ElMaraghy et al. [17] demonstrate how the entropy
function can be used in the quantification of complexity in
machining process. While these efforts are worth lauding,
the aforementioned studies of complexity measure pay little
attention to the operator’s choice complexity, its relation to
variety, and how it impacts performance in a mixed model
assembly line.

The above research into complexity measures does not
explain how variety leads to complexity and impacts perfor-
mance as observed in MMAL [6], [7]. To accommodate vari-
ety induced complexity, some studies have proposed entropy
models for the computation of operator choice based on
Hick’s law, that argues that the time it takes for an opera-
tor to make a choice is a linear function of the number of
possible choices available [6], [7], [18], while [19] added
the similarity of options to the mix. For instance, while
there is a merit in models based on Hick’s law, the entropy
calculation is done under the assumption of a random and
independent choice processes [19]. In reality, however, man-
ufacturers can opt to sequence the assembly process in a
predictable manner, thus rending the models inapplicable.
This paper introduces entropic variety-induced complexity
model that considers both part mix along with the assembly
sequence.

B. OPTIMIZATION IN A MIXED MODEL ASSEMBLY LINE
There is an overwhelming number of research works that
cover the balancing of manual assembly lines [20]. Nearly all
their methodologies consider a single-model line with various
objective functions such as (i) maximization of profit [21],
or minimization of (ii) the number of stations for a given
cycle time [22], [23]; (iii) the cycle time for a given number
of stations [24]; or (iv) expected total costs [25], [26].

In addition, some researchers have proposed various
methodologies to mitigate the complexity of a mixed
assembly line. For instance, Wang et al. [27] introduce a
multi-objective optimization to balance product variety and
manufacturing complexity when designing a product family
and its mixed-model assembly system. Using the notion
of relative complexity, they attempt to find the best set of
product variants to be offered while balancing market share
and complexity. Wang et al. [27] and Wang et al. [28]
demonstrated how manufacturing complexity can be miti-
gated through variant differentiation.Wang et al. [27] touches
on the idea of minimizing the complexity, their approach
fails to account for the impact of sequencing, which is
one of the major contributors to system complexity. This
paper introduces an entropy-based methodology in which
the impact of sequencing on complexity is evaluated and
controlled.
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III. COMPLEXITY MODEL FOR ASSEMBLY SEQUENCING
A. ASSEMBLY SEQUENCE IN MMAL
Short-term sequencing problems are common in MMAL.
In fact sequence planning is one of the more critical steps
in ensuring an effective assembly process [29]. Therefore,
within a planning horizon, managers must set sequences
assures that the line do not present a work overload, or the
works are well balanced throughout the stations. Due to sub-
stantial difference in model variants with regards to assembly
difficulty and duration, sequencing rules often specify how
many models should contain a specific variant. For instance,
a variant whose assembly time is equal to the maximum cycle
time of a station of assembly should follow a variant with
lower assembly time to balance the work overload at the
station.

In the assembly process, an operator makes a series of
choices (i.e., module choice, fixture choice, tool choice,
etc.). Oftentimes, the choice comes in form of selection of
a specific variant of a module from a number of alternatives
according to instructions. It follows that for each station, we
can define a random variable X describing the outcome of a
targeted variant in the outcoming assembly. Here, X can be
described as random sequence whose symbols represent all
the possible targeted variants.

The sequencing problem can be formulated as a constraint
satisfaction problem. For instance, in a MMAL with N types
of variants of a given module, each of which has specific
part to be assembled, the sequencing in the assembly can be
represented using a sequence S with symbols si (i = 0, 1,
2, . . . ,N+) from a given alphabet V. For instance, assembly
sequencing can be defined as a three-tuple, (V , S, r) where
• V = {v1, .., vN } is the alphabet whose symbols represent
different variants of a given module. That is V is a set of
all possible variants of the module to be assembled at a
given station.

• S with symbols si (i = 0, 1, 2, . . . ,M), i ∈ N+,
si ∈ V. Note that for any sequence S, there exist a
subsequence SL, of length L, with symbols sLj (j =
0, 1, 2. . . ,L), L ≤ M

• r : V × SL → {0, 1}; that is, if variant vi ∈ sLj ,
then rvisLj = 1; rvisLj = 0, otherwise. In other words,
the function r checks if a given subsequence contains a
given variant.

In this paper we consider a MMAL system consisting of
multiple stations arranged along a conveyor belt. The con-
veyor carries workpieces from one station to another with
a constant speed vc and the assembly is done by operators
while moving along the conveyor. Thus, the cycle time at
the station is fixed, and is determined by the conveyor speed
and the length of the station. As previously mentioned, it is
recommended that variants associated with high workload
should not be successive in a sequence. For instance, this can
be conveyed using the following constraint:

2∑
j

rvipkj < 2, vi ∈ V (1)

Equation (1) would mean that the same variant shall not
be requested successively in any sequence. In other words,
the constraint imposes that, for any subsequence of two
consecutive model on the line, at most one of them may
require vi, for any vi ∈ V . Assuming the cycle time is
fixed, the work overload is marked by conveyor stoppage
(i.e., assembly could not be finished within the boundary of
the station) or operators’ idle time (i.e., concentration of idle
time in a section of the sequence could imply an overload
at a different segment of the sequence). Thus, to balance the
workload of a station, we penalize the conveyor stoppage
while we make sure the idle time, if any, is well balanced
throughout the sequence.

1) ESTIMATING THE ENTROPY OF ASSEMBLY SEQUENCE
The information content in S is predicated to the predictabil-
ity of its symbols at any given time. This predictability,
which sometimes implies the complexity of the sequence,
is measured using entropy [13]:

H = −
∑
si∈V

p(si)log2p(si) (2)

Equation (2) gives information about the distribution of the
variants on the market. Thus, let d = di; i = 1, 2, . . . ,N ;
where di denotes the number of variant type i demanded by
customer in a given time horizon. Thus, the total number of
demand units (D) in the planning horizon is:

D =
N∑
i=1

di (3)

It follows that the probability of producing a given variant
in a given time is

p(vi) =
di
D

(4)

In a random and independent sequence of production, p(vi)
is equivalent to the probability that a given position of
sequence is occupied by module variant vi. For example, let’s
reconsider the previous sequence S with symbols si (i =
0, 1, 2, . . . ,N+), si ∈ V . Here, p(v1) denotes the probability
that si takes the value v1. Thus, (2) can be rewritten as:

Similar to NSGAII, most of MOGA algorithms struggles
to advance toward optimal sequence. As discussed earlier,
the sequence complexity is measured using the information
entropy. Since the information entropy is in a way a measure
of unpredictability of strings of a sequence, it becomes clear
that new individuals (i.e., children) obtained by randomly
copying parents’ strings (genes) will often be as unpredictable
as the parents’ strings, thus making the algorithm move-
ment toward the optimal value very slow. The introducing
of parameter K even at a value as low as 0.1, increase the
odds that small subsequence of parents’ strings with lower
complexity (i.e., low entropy) are copied to children chromo-
somes; thus, accelerating the improvement objective value.

H = −
∑
vi∈V

p(vi)log2 p(vi) (5)
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Again, H gives information about the distribution of the
variants on the market. It does not, however, reflect the order
at which these variants are produced, which is an important
factor determining the uncertainty of the sequence. In order
to incorporate the correlation, (2) has to be generalized to the
so-called block-entropies:

H = −
∑
si∈A

p(si)(m)log2p(si)
(m), (6)

where p(si)(m) are the probabilities of the combinations of m
symbols.

We suppose that the symbolic sequence S is the high-order
Markov chain. That is, the probability of symbol si to have a
certain value vk ∈ V under the condition that all previous
symbols given depend only on M previous symbols. The
sequence A is the M -step Markov chain if it possesses the
following property,

P(Si = αk | . . . , Si−2, Si−1)

= P(Si = αk |Si−M . . . , Si− 2, Si−1) (7)

To estimate the conditional entropy of stationary sequence S
of symbols si, one could use (6) to estimate the entropy per
block of length L,

HL = −
∑

s1,...,sL∈S

p(sLi )log2p(s
L
i ) (8)

The entropy per symbol, is given by

hL = HL+1 − HL (9)

This quantity specifies the degree of uncertainty of the
(L + 1)th symbol occurring and measures the average infor-
mation per symbol if the correlations of (L+1)th symbol with
preceding L symbols are taken into account. The conditional
entropy hL can be represented in terms of the conditional
probability function p(sL+11 |sL1 )

hL = −
∑

s1,...,sL∈S

p(sL+11 |sL1 )p(s
L+1
1 |sL1 ) (10)

FIGURE 1. A simple illustration of choice process in modular assembly as
a Markov sequence of second order. Note that there are two variants of
the module (i.e., v1 = A, v2 = B). This choice process can be represented
using a sequence S with symbols si (i = 0, 1, 2, . . . ,N+) from alphabet
V = {A, B}.

Note that hL is equivalent to the entropy rate when
the sequence length approaches infinity’’. In addition,
the sequence entropy can be estimated through data com-
pression. Assuming a universal compression algorithm
(e.g., L-W-Z), the ratio of compression approaches the
entropy as the length of sequence grow; converging to the
entropy rate when the sequence length goes to infinity.

IV. SEQUENCE BASED OPTIMIZATION OF
VARIETY-INDUCED MANUFACTURING
COMPLEXITY
A. PROBLEM DESCRIPTION AND FORMULATION
Product family can be divided into two categories: scale-
based and module-based. Module-based product family has
been one of the better design approaches to satisfy the accel-
erated demand of product variety. In this approach varieties of
a given product family are obtained by ‘‘adding, substituting,
and/or removing one or more functional modules from the
platform architecture’’ [30].

This problem description is constructed based on MMALs
system architecture. Therefore, the following list of assump-
tions are considered.

(a). The system consists of multiple stations arranged along
a conveyor belt, which is carrying workpieces from one
station to another with a constant speed vc.

(b). Operators move along the workpiece carrying out dis-
tinct tasks, most of which require the ‘‘selection of the
right module variant’’ according to the model at hand.

(c). If the operator reaches the end of station before
completing his task, the conveyor is stopped until
the assembly is completed, after which the operation
resumes as usual.

(d). For simplicity, we assume a serial assembly line in
which only one module is assembled at each station.

(e). The sequence must comply with the customer demand.

FIGURE 2. Depiction of sequencing, assembly time and station boundary.
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(f). Once the operator completes the assembly task, s/he
walks toward the left side of the station. The next
assembly task starts when the operator meets the next
workpiece. If the operator reaches the left edge of the
station before encountering the workpiece, s/he waits
for it at the left entry of the station.

Thus, the optimization problem can be simply stated as:
Minimize:Manufacturing complexity, idle time variation.
With respect to: Product assembly sequencing.
Subject to: Production balancing requirement.
For a clear understanding, we make use of the notations

in Table 1

TABLE 1. List of notations.

The main objective is to minimize the sequence complex-
ity. This objective function can be reiterated in the following
equation.

Minimize−
∑

s1,...,sL∈S

p
(
sL+11 | sL1

)
p
(
sL+11 | sL1

)
(11)

As previously noted, this quantity specifies the degree
of uncertainty of the (L + 1)th symbol occurring

(i.e., proportional to the probability that a given model variant
is next on the assembly sequence) and measures the average
information per symbol if the correlations of (L+1)th symbol
with preceding L symbols are taken into account.

To avoid unwanted downtime, product sequence should
ensure a well-balanced workload throughout the stations.
While It is likely that both the complexity and the work
overload correlate, it is possible that the least complex
sequencewould still lead towork overload. A typical example
is when that overload is a result of factors not considered
in the computation of sequence complexity (e.g., physical
difficulty of a task, task cycle time, etc.). In addition,
the proposed sequence-based complexity considers only the
variety-induced complexity. Thus, to ensure that the selected
sequence does not result in work overload, onemore objective
function is added: the variation of operator’s idle time. Since
the cycle time at the station is fixed by the conveyor speed and
the length of the station, one way to reduce the likelihood
of work overload is to make sure that variants associated
with high workload are not successive in a sequence. Thus,
the second objective function ensures a balanced workload by
minimizing the variation of idle time of subsequences. The
objective function is described in the Eq.(12).

Minimize σ =

√√√√√∑D
L
i (t idle

SLk
− t idleSL )

2

D
L − 1

(12)

In short, the objective of this optimization is to keep the
complexity, and the work overload as low as possible. The
constraints of this problem can be formulated as follow:

N∑
n

Xin = 1 (13)

D∑
i

Xim = dm (14)

t idle
sLi
=
−
∑L

i
min(zij+vctij−vo w

vo+vc
,0)

vc

L
(15)

lj, t ij, zij, dm ≥ 0; Xim ∈ {0, 1} (16)

Eq. (13) ensures that exactly one unit is assigned to
each position in the sequence, while (14) assesses whether
the demand requirements are fulfilled for each model type.
Eq. (15) compute the total idle time (see(f) in the list of
assumption).

B. METHOD
This is a nonlinear multi-objective optimization problem
and can be solved using nonlinear optimization methods.
However, it is very likely that the non-linear search con-
verges to local optima or takes an unreasonable time to
reach to the global optima. In this paper, a multi-objective
genetic algorithm is used due to its efficient balance of
efficiency and effectiveness. Inspired by natural selection,
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it uses a probabilistic search that often overcomes the short-
comings of local optima convergence. Note however that,
like individual genetic algorithm, Multi-Objective genetic
algorithm (MOGA) does not necessarily return the optimal
solution; rather, it ensures a good enough solution in tolerable
time [31]. In this paper, we propose a multi-objective genetic
algorithm that borrows from some well-known MOGA algo-
rithms with high convergence speed. Recall that the biggest
component of evolutionary algorithm reside in how new gen-
erations are generated. Thus, we further discuss the algorithm
used to solve the problem described above, including the
breeding process.

1) CHROMOSOME CODING
Unlike the traditional MOGA, binary coding is rather inef-
fective in this sequencing problem formulation. In this paper,
a chromosome is simply coded as a sequence of strings where
each string represent a given variant of the module to be
assemble in a given product. The complexity fitness of the
chromosome is the entropy of the sequence, while the idle
time variation fitness is the standard deviation of subsequence
idle time as seen in Eq. (11 & 12).

2) EVOLUTION OF POPULATION
Generally, the population evolves from one generation to
another through two major breeding processes: the crossover
and the mutation. Unfortunately, traditional crossover shown
in Fig.3(1) is not effective since it is likely to produce unfea-
sible sequence. Assuming both parents are feasible, notice
how both children are not feasible. For example, in the one-
point crossover, the variant represented by gene ‘‘A’’ is only

FIGURE 3. Example of traditional crossover method in (1), and the
crossover used in this paper (2).

seen in the sequence of child1 and child2, twice and four
times respectively, instead of three times for both. Due to
the product demand requirement, child 1 is not a feasible
sequence. Thus, to ensure the feasibility of the offspring,
a modified form of two-point ordered crossover is adopted
in this paper (see Fig.3 (2)). The crossover is done as follow:

i. select two non-dominated parents
ii. randomly select two crossover points
iii. generate an empty sequence of the same length as the

individuals of the populations
iv. copy the genes of parent2 located between the two

crossovers points to the child chromosome
v. fill the child’s chromosome with the missing genes in

the same order as seen in parent 2
While the crossover method in Fig.3(2) produce feasible

sequence; the low variability of entropy values of random
sequences makes it more likely that most of crossover
methods produce new individual with same fitness (i.e.,
complexity fitness) as that of the parent individuals. To pro-
mote the convergence to the sequence with the optimal
complexity, a new parameter called convergence parameter
(κ, 0 ≤ κ ≤ 1) is introduced. Therefore, part (v) of the
crossover is modified where for each missing gene, with a
probability p = ê, a gene from parent 2 with the highest value
of p

(
sL+1i |sLi

)
is selected and copied to child’s chromosome.

Otherwise, fill the missing slot with the missing gene in the
same order as seen in parent 2.

Due to its speed and simplicity, the paper uses the
Fast Nondominated Sorting Approach proposed in NSGAII.
However, due to the elitism that NSGAII entails combined
with the lack of variability mentioned above; there is a high
probability that new generations retain too many individu-
als from previous generations, often leading to insignificant
progress. Thus, in this paper unless the parent individual
dominates the child individual, the parent is removed from
the population, thus rending its probability to be selected in
the next generation to zero.

Despite the striking similarities between the algorithm
used in this paper and NSGAII, the modest difference has
a significant improvement due to the nature of the problem.
For instance, Fig.6 shows the difference in pareto values of
NSGAII against the proposed NSGAII-based algorithm. The
general NSGAII consist of a loop where(see Deb et al. [32]
for details):
(a). First, a combined population of size 2N is formed.
(b). The population is sorted according to nondomination

and included into different fronts.
(c). Choose N individuals for new generation. The individ-

uals are chosen from nondominated fronts in the order
of their ranking. The crowding distance is used to break
the tie for individuals in the same front

(d) The new population of size N is then used for selection,
crossover, and mutation to create a new population of
size N. The two new populations are then combined
which is equivalent to (a) thus, completing the loop.
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V. ILLUSTRATIVE EXAMPLE
A. PRODUCT SEQUENCING
1) WEATHERSTRIPPING ASSEMBLY SEQUENCING
Let us consider a MMAL where a number of sedan and
SUV models are being assembled. For the sake of simplic-
ity, we will only look at one hypothetical station in which,
at most, ten variants of weatherstripping are being assembled
according to customer demand. For a clear understanding
of this illustration, refer to the graphical representation of
MMAL offered in Fig 3. In each simulation run, we either
assume an equal demand for each variant on the produc-
tion line, or the demand for each variant is either randomly
generated.

Assuming that a company has an obligation to comply
with the demand, the scheduling problem of the assembly of
weatherstripping that aims to minimize the complexity of the
system, can be formulated using (11) – (16). In this example,
the demand for car is fixed while the proportion of the car
(in the demand) containing a given weatherstripping type is
either i) random, provided that each type is represented or
ii) uniform; i.e., all types of weatherstripping are demanded
on equal (or almost equal) proportion. The number of variants
of weatherstripping considered in the simulation were varied
from two to ten. In each case, the multi-objective genetic
algorithm is used to generate a sequence that minimizes the
objective function complexity in accordance with procedure
method described in the previous section

2) RESULT
ince the entropy measures the uncertainty or the predictabil-
ity, it is fair to assume that, all things being equal, a system
with many states is less predictable than that of small number
of states. The sequencing problem in this paper is represented
as a Markov process. Thus, more variants lead to more states
resulting in less predictable (more complex) system. As seen
in Fig 4 the increase in number of variants in a MMAL
undoubtedly increase the complexity of the sequence.

FIGURE 4. Graphical representation of MMAL.

Fig.5 (up) shows the change of complexity as the number
of model variants increases. From the same figure (down),
notice how a good sequence lowers the complexity, regardless
of the number of varieties under production. In addition,
the impact of an increased number of varieties in the assem-
bly line is far steeper when the production sequence is not
optimized.

FIGURE 5. Sequence entropy estimates as a function of number of model
variants.

Using ‘‘Jensen Inequality’’ shown in Eq(17), it can be
shown that the maximum entropy corresponds to the scenario
in which the demand for all varieties is equiprobable.

hL = −
∑

s1,...,sL∈S

p(sL+11 |sL1 )p(s
L+1
1 |sL1 ) ≤ −log2

N
D

(17)

where N is the total number of variant whereas D is the
combined demand of all variant. That notion is corroborated
in Fig.5 (down) which shows the sequence entropy to be
higher when the demand for varieties is uniformly distributed.
Notice, however, how in Fig.5 (down) the level of increase
of complexity due to the demand distribution can be lim-
ited or nullified by optimizing the sequence.

As discussed in the previous section, the nature of this
problem makes it difficult for existing evolutionary algo-
rithms to converges to the optimal sequence with regard to
the sequence complexity. For instance, the following fig-
ure shows the effect of introducing the convergence param-
eter K. Here with K= 0.1, there is a significant improvement
of the pareto results as shown in Fig.6
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FIGURE 6. Comparison of pareto fronts obtained using different
algorithms.

B. COMPLEXITY AND ASSEMBLY PERFORMANCE
1) OVERVIEW
There is enough evidence that showcases the negative impact
of complexity on system performance. For manual assembly,
the impact of complexity is manifested in the extra time the
operator requires to identify and locate the part or tool for the
task at hand. According to Hick’s law [33], [34], the average
reaction time (RT) can be approximately formulated as a
linear function of the information entropy conveyed by the
stimulus

RT = a+ bhL (18)

where a and b are ergonomic parameters, while hL is the
complexity as shown in (10).

According to (20), as the complexity increases, operators
become less effective. That is, in a complex environment,
operators have a slower reaction time, prompting an increase
in the cycle time of a given task. For example, it takes longer
time for the operator to select the right module from a number
of options.

2) EXPERIMENT DESCRIPTION
This section aims to demonstrate the relationship between
the proposed sequence-based complexitymeasure and human
performance. First, a hypothetical product family was gener-
ated. The goal was to optimize the sequencing with respect to

the complexity of the system. We conducted an experiment,
in which an operator receives stimuli instructing him or her to
perform a given task following certain guidelines. Practically,
the form of these stimuli varies from one instance to another.
For example, the operator may receive instructions that
include a coded name or an image of the part to be assembled
with the mainframe. In this experiment, the stimulus was
given in the form of an image. Once the operator received
the stimulus, he or she had to click on the matching option
according to the guidelines (see Fig.7).

FIGURE 7. Selection task.

The operator (subject) was requested to select the matching
image, after which the next matching command appeared.
The task began when the stimulus was displayed on top
of the options and finished when the subject clicked on one
of the options. Once the subject clicked on one of the options,
the experiment proceeded by displaying the next stimulus.
A stimulus is uniformly selected from the set of all available
options. The experiment was run on a desktop with a 21-inch
monitor and there was a total of 10 participants each of which
took over 25 minutes to finish the experimental runs. We note
that number of participants (i.e., 10) in the experiment could
be regarded as relatively low; however due to the nature of
the analysis, the number of observations is more important
to establish the relationship between product sequence and
the response speed. In this experiment the data collected
consist ofmore than 3,400 observationswhich are sufficiently
enough to capture the reaction time trends as the sequencing
information changes.

3) RESULT
Table 2 summarizes the results of this experiment. As the
complexity of the sequence increased, so did the opera-
tor’s reaction time. Notice how, rather than the number of
module variants, the sequence complexity as measured by
the entropy, is the major predictor of an operator’s reaction
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TABLE 2. Summary of experimental results.

TABLE 3. ANOVA table of entropy vs. reaction time.

time, as shown in the ANOVA table (see Table 3). The high
correlation between the entropy-based sequence complexity,
and the operator’s part selection time is a vindication of the
proposed model (see Fig.8. That is, this correlation is a direct

FIGURE 8. Entropy vs. Reaction time.

link between the complexity and the operator’s effective-
ness. In comparison to other existing complexity measure in
MMAL, the proposed sequence-based complexity measure
does a better job predicting the operator’s reaction time. For
instance [18] utilized the product mix as the principal factor
in the complexity computation while [19] extended on the
part mix to include the similarity of variants as two major
determinant of operator’s choice complexity. According to
our result, our proposed model outperforms both models
in predicting the human reaction time: The coefficient of
determination (R2) is 0.48, 0.64 and 0.96 for Hu et al. [18],
Busogi et al. [19], and our proposed model, respectively.
While the difference is minimal for a random sequence,
the existing model fail to capture the patterns in the sequences
that would increase the predictability in the operator’s choice
process.

VI. CONCLUSION
Customer driven markets have led to an overwhelming
increase in product varieties, thus inducing a wide range of
complexities in manufacturing systems. In addition, due to
flexible market demands, manufactures are not only required
to handle the unprecedented variety, but also the fluctuating
demand. However, the lack of formal quantifiable methods of
manufacturing complexity puts a limit in the ability to contain
that complexity. In this paper, we presented a sequence-based
method to compute manufacturing complexity in a MMAL.
The complexity measure introduced in this work is based
on the well-known information entropy model. Along with
a numerical example, we conducted an experimental design
to demonstrate the impact of manufacturing complexity on
operator’s choice effectiveness.

The use of task sequence as the main input in the com-
putation of complexity is rather compelling since the infor-
mation (e.g., demand mix) often used in existing complexity
computation models is a portion of the information contained
in a sequence. For instance, from a given sequence, we can
infer the information about the number of modules being
assembled, the total demand of each module and the order in
which they are being assembled at the station level. Based on
the experimental results, the sequence-based complexity has
a strong correlation to human reaction time, thus can serve as
one of the major predictors of operators’ effectiveness in the
assembly process.

The proposed complexity model can potentially serve as
a sequence evaluation tool in relation to system complexity.
For example, this tool can be used to investigate the state
of complexity, and the choice complexity in particular, if a
series of policies were to take effect. That is, in an envi-
ronment where the demand keeps shifting and new varia-
tions of a product is often added to the assembly line, this
tool allows a decision maker to theoretically assess such
scenarios as it relates to choice complexity. The sequence
optimization in this paper, while practical, could be extended
to include several factors important to decision makers
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(e.g., inventory cost). In addition, cost and time impacts on
a decision maker should be further explored.
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