

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

VELOXDFS: ELASTIC BLOCKS IN

DISTRIBUTED FILE SYSTEMS FOR BIG DATA

FRAMEWORKS

Vicente Adolfo Bolea Sánchez

Department of Computer Sciences and Engineering

Graduate School of UNIST

2019

VELOXDFS: ELASTIC BLOCKS IN

DISTRIBUTED FILE SYSTEMS FOR BIG DATA

FRAMEWORKS

Vicente Adolfo Bolea Sánchez

Department of Computer Sciences and Engineering

Graduate School of UNIST

VELOXDFS: ELASTIC BLOCKS IN

DISTRIBUTED FILE SYSTEMS FOR BIG DATA

FRAMEWORKS

A thesis

submitted to the the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master Degree

Vicente Adolfo Bolea Sánchez

24/12/2018

Approved by

Advisor

Professor Young-Ri Choi

VELOXDFS: ELASTIC BLOCKS IN

DISTRIBUTED FILE SYSTEMS FOR BIG DATA

FRAMEWORKS

Vicente Adolfo Bolea Sánchez

This certifies that the thesis of Vicente Adolfo Bolea Sánchez is approved.

24/12/2018

signature

Professor Young-Ri Choi: Advisor

signature

Professor Beomseok Nam: Thesis Committee Member #1

signature

Professor Wongik Baek: Thesis Committee Member #2

Abstract

Big data processing and storage has grown into one of the most important aspects of distributed

computing in the last years. Much of the effort in this area goes into sophisticated algorithms and

architectures which provides a small leap to a more efficient big data system. This works explores a

novel idea in which by modifying a simple component found in most of the distributed systems it leads

to a significant improvement of the overall performance of the underline system which is often blind to

this modification. This small component is file partitioning, and it plays a crucial role in the division of

the workload for a distributed job into small working units.

This work proposes a different view of file partitioning which separates partitions of a file into

conventional simple blocks to a more sophisticated system in which those blocks can change its size at

running time and consequently been able to adjust the amount of input of each of the working units in

the distributed job. The implications that this technique unleashes are enormous since it can be virtually

plugged to any distributed system and improve its system utilization and performance. In this research

we plug our proposed file partitioning system in one the most used data processing system of our time,

Apache Hadoop.

Coincidentally, this thesis also presents a novel distributed file system named VeloxDFS which im-

plements elastic blocks among other remarkable features and can be used as a substitute of the Apache

Hadoop Distributed File System.

Contents

I Introduction . 1

1.1 Background . 1

1.2 Data partitioning . 2

1.3 Elastic Blocks . 4

II VeloxDFS . 5

2.1 Overview . 5

2.2 Goals . 6

2.3 History . 6

2.4 Architecture . 8

2.5 Lean Scheduler . 11

2.6 Static schedulers . 13

2.7 Additional components . 15

III Evaluation . 18

3.1 Setup . 18

3.2 Parameter optimization . 19

3.3 Overhead implications in Lean Scheduler . 22

3.4 Performance in a controlled environment . 24

3.5 Multiple Concurrent jobs . 26

IV Related Works . 28

4.1 EclipseMR: Distributed task processing with consistent hashing 28

4.2 Coalescing HDFS blocks to avoid recurring YARN container overhead 28

V Conclusion . 29

References . 30

List of Figures

1 Hadoop file partition . 3

2 Elastic Block Intuition . 4

3 IO monitoring architecture . 15

4 Task execution time with different α . 20

5 Lean scheduler Aggregate WordCount performance (NONE environment) 20

6 Tuning parameters (NONE environment) . 21

7 Tuning (MEDIUM environment) . 22

8 Map phase time expenditure (NONE environment) . 23

9 Map phase time expenditure (MEDIUM environment) 24

10 Map phase execution time in a idle cluster . 25

11 Map phase execution time in a lightly used cluster . 25

12 Map phase execution time in a highly used cluster . 26

13 Map phase execution time increase percentage in different environments 27

14 Concurrent jobs, Map phase time expressed as triangle 27

List of Tables

1 Velox components . 17

2 Workload environments . 19

I Introduction

Discovery is seeing what everybody else has seen, and thinking what

nobody else has thought

Albert Szent-Gyorgi

1.1 Background

The main purpose of a computer is to generate useful output, or in a more precise word, information.

From a teenager using an smart-phone to check its social networks, to the data scientist in a enormous

bank tuning credit score algorithms, the property of generating information has enabled unthinkable

ways of improving our life and work. At this age, even the least interested person in the intrepid dis-

cipline of computer sciences would be still interested in getting a new smart-phone and computer that

performs its operations in a faster way than its current hardware.

There is not doubt that we not only live at the age of the information, we are currently at the very

growing stage of the big data. Data is being generated at an enormous growth, to give you some idea:

90% of the current data hold in internet was created in the last two years [3]. This unprecedented

phenomenon is not alien to anyone who has been around in the past years. We have embraced big data,

we rely on navigator apps, Netflix movies suggestion, Cloud services, AI devices, smart heaters and

smart-plugs, and a very long list of everyday devices that in the past year have became smart. As scary

as it sounds, every time we enable one device to be connected to a cloud service, we give a part of

our privacy regarding how we interact with such device to whatever company owns that data centers.

Nonetheless, this work is not an essay about the dangers of big data, rather is a malevolent work which

describes a novel way to process data at a faster rate.

Nonetheless, data by itself is useless, you can have a trillion records of the timestamps of when

people turn on their phone screens, but there is not much you could do with that data apart how figuring

out where to store that much data1 You could visualize the CEO of Apple with a several terabytes text

file of those timestamps, would he be able to use this data to come up with a interesting feature for his

new iPhone? Definitely not! He would need to extract insights from this data, he would need to process

this data, and then, he would need to visualize it – which this humble computer scientist knows little

about.
1One billion in the short scale is 1,000,000,000,000 which by using a 16 bytes record would yield 116 TeraBytes of data

1

Hopefully, at this point it might have already became obvious to the reader about the importance of

data processing, or in other words, creating information. It is such an important concept that there is a

relatively popular Computer Sciences specialization named Data engineering which focus on this very

point: How to design systems that can process and store a lots of data.

There is no surprise that companies that based most of its revenues in the manipulation and trading

of its users data has been key players in the development of such systems. A very good example would

be the ubiquitous distributed processing system or Big Data Framework Apache Hadoop which has its

origins in the Yahoo’s office based on ideas from the Google’s in-house technologies of The Google

File System [4] and MapReduce [1]. There are also multiple other examples such as Apache Kafka and

Linkedin; Apache Storm and Twitter; Apache Hive and Facebook and many others.

It was not just a coincidence that I emphasized the case of Apache Hadoop, most of the work pre-

sented in this study is an improvement over the current Hadoop’s load balancing techniques, this is,

how well is the work distributed among every computer in the cluster such that we get the system best

possible performance. The very interesting part of this work is the means by what it enables a better

load balancing, and this is by modifying one of the simplest components of the Hadoop framework, its

file partitioning model.

1.2 Data partitioning

File partitioning is one of the simplest and most ubiquitous techniques in HPC and Big Data systems.

Due to its simplicity, file partitioning has often not attracted the attention in Academia and industry

circles who would prefer to put its focus in more challenging and apparently complicated aspects of Big

Data Systems. Nonetheless, through this work I attempt to debunk this assumption by proving how file

partitioning is a key concept which determines performance and load balance in distributing systems.

A quick intuition would be that as file partitioning determines the size and the number of the inde-

pendent units of our parallelizable problem. Thus, a sophisticated and customized scheme to partition

our problem might empower us to have the ability to control the workload in each of the parallelizable

units of our problem.

This work deepens into this idea and explores different techniques to make file partitioning a key

process in the improvement of current big data processing and storage systems. The main contribution

of this work results from adding the capacity to each of those partitions to dynamically change its size,

2

allowing them to adjust its size and boundaries to its most optimal configuration upon the very current

workload in the cluster level.

While we might get lost in the details that this study presents, the proposed concept of this work

is rather simple. Consequently, by the end of this very first introduction the reader should be able to

understand it. The rest of the work covers details regarding: the current background of this area, the

different iterations of the idea to the final finding of our ultimate concept, the implementation details, its

evaluation, and finally insight learns from the evaluation and related works.

A very important part of this work is the presentation of a novel Distributed File System named

VeloxDFS which is based on the idea of those Elastic file partitions. As the reader might intuit, when

compared with traditionally distributed File system for MapReduce applications such as Hadoop File

System, the main difference between those two file system at the file partitioning level would be that:

VeloxDFS partitions are dynamic (they might change at any time) whereas Hadoop File System has a

fixed file partitions which are exclusively defined by the time that the file was inserted in its metadata

servers (Namenode instances).

To deepen into this comparison between those two file systems, here is how they approach file

partitioning in each of the cases:

• Hadoop would always split the files in the same (128MB) fixed size chunks, as shown in the

figure 1.2.

• VeloxDFS would split the files in a more sophisticated way, it would try to divide the chunks such

that idle servers would get to read more bytes than straggling servers as seen in the figure 1.2.

Figure 1: Hadoop file partition

3

Figure 2: Elastic Block Intuition

1.3 Elastic Blocks

The idea of elastics blocks has not been the product of a single isolated idea, whereas it has its foundation

in previous works performed at the Data Intensive Computing lab. The elastic block idea is the iteration

of previous works such as logical static blocks which we cover in the following pages and very notably:

Coalescing HDFS blocks in Hadoop [5].

Elastic Blocks carries an additional meaning compared to logical blocks, this is the ability to be

changed at run-time. I proposed the term elastic based on the notion of flexibility since previous ap-

proaches with logical blocks were proved very limited in the sense that our schedulers were only able to

change the file partitions just before running a job.

A very important component for elastic blocks is how to decided which partition must be enlarged

or shrunk. At the very high level we achieve this by first proposing an initial even block distribution

before the job start, to later, as the tasks are progressing, adjust the partitions upon each of their tasks

throughput. This is elegantly achieved by providing the tasks with a shared-like distributed queue where

good performing tasks can ask for more input and enlarge their blocks while straggling task would not.

More explicit details would be discussed later on in this work.

This additional and fundamental feature of being able to change its size on run-time does not come

without a cost, and some part of this work covers the overhead induced by enabling such a distributed

subsystem which monitors and adjust the blocks of the partitioned file.

4

II VeloxDFS

2.1 Overview

Contrary to what to a conventional description would be, I would prefer to introduce VeloxDFS by

deepen into Apache Hadoop since as we have stated in the previous sections, is one of the most impor-

tant Big Data processing framework. At its very high level Apache Hadoop is divided into two main

logical components: Hadoop File System and Hadoop MapReduce, this last one composed of many

other subsystems such as YARN, Registry and more essential services.

VeloxDFS is the component of another framework named Velox Big Data Framework which simi-

larly to Apache Hadoop has the same two main levels: Velox MapReduce or VMR, a MapReduce engine;

and VeloxDFS, a Distributed File System. Nonetheless, VeloxDFS can be also used with Apache Hadoop

(substituting HDFS), and not only that, very interestingly, later versions of VeloxDFS are solely compat-

ible with Hadoop. There are many reasons outside of the scope of this thesis for this decision2.

As previously exposed, a key difference with HDFS is with regards of the elastic blocks, thus I

would not deepen into this topic in this section. Other key differences are regarding the topology of the

network, while HDFS uses a standalone centralized network with a namenode (and a Quorum with High

Availability enabled), in VeloxDFS each node is also a namenode (FileLeader in our naming scheme) or a

small subsets of its files and blocks. We achieve this by representing the nodes and the files in distributed

hash table (DHT) using CHORD-like protocol [9] which ensures safe node entering and joining while

also statistically splitting each of the file metadata evenly across the cluster. Also, similarly to HDFS we

provide data recovery by means of data redundancy using replicas stored in different nodes.

Technically most the core of VeloxDFS is written in C++14. This is a key decision since using C++14

allows us to easily access multiple low-level resources that are normally opaque to other languages. Nev-

ertheless, peripheral components are written in several programming languages such as: Java, Python,

and very extensively shell scripts. Key technologies used in this project are the BOOST ASIO and SE-

RIALIZATION library which are the bases of our networking project library, also as we will see in the

next sections, we extensively use Apache Zookeeper for locking and metrics purposes.

2Sadly, a MapReduce framework conveys a lot of work which due to our limitation as a research lab we had to choose to

narrow the scope of our requirements for now. However, new students are starting to work in the MapReduce level

5

2.2 Goals

As in many other parallel problems, MapReduce systems can be quantified by a set of variables which

describes how well does the system use its resources compared to a different one. In this work we will

focus in two key metrics:

• Job Execution time that we try to tackle by reducing the variance of Map Task execution time.

• Load Balancing that we try to tackle by shifting input data from straggling tasks to better per-

forming tasks.

It is important to mention that in many occasions, higher load balancing implies less job execution

time and vice versa. Thus, by attacking one of the goals we can transitively achieve the second one.

2.3 History

Elastic blocks enabled VeloxDFS is the last iteration of many iterations of the Velox Big Data framework.

The development of this framework has taken several years and its genesis might be traced back to the

study of my colleagues and I (in a lesser manner) regarding distributed in-memory caches circa 2012 [6]

and later studies regarding novel MapReduce schedulers using DHT caches [2]. During those studies

we have been considering the ideas to of writing a MapReduce framework which benefits from all the

lessons learning during our studies of distributed cached and MapReduce cache aware schedulers. For

that purpose I participated in the implementation of a prototype named EclipseMR [8] to deepen our

studies and to complete a proof of concept of our previous ideas into a real system. EclipseMR was a

major milestone in the project and implemented a MapReduce engine which used a cache aware sched-

uler and a in-memory DHT cache which its boundaries could be shifted to adjust to the current system

workload. This design proved exceptional, offering a greater performance compared to other MapRe-

duce systems such as Hadoop and Spark in many of the single and multiple jobs standard benchmarks

(such as Terasort, WordCount, and Kmeans). EclipseMR was published at the IEEE Cluster 2017 at

Honolulu, HW [8].

EclipseMR was a great piece of software that proved many of our ideas, however, as in many suc-

cessful software, EclipseMR was a victim of its own success. Its fast development left a big technical

debt which by the end of its first internal release, adding non trivial features had become nearly impos-

sible. With this new situation, it became clear that we needed a new design and a new project which was

6

implemented in a more generic foundation in which we can easily grow and iterate ideas. In 2015 we

decided to go a step forward and create an industry capable Big Data Framework utilizing all the novel

techniques used in our previous research and prototypes. The code-name for such framework was Velox

(From the Latin Fast).

Velox requirements were: Double-ring Distributed hash table shaped in-memory cache and dis-

tributed file system; easily extensible design; programmable client API in Python, Java, and C++; and

most importantly iterative and DAG MapReduce jobs support and iterative Maps work-flow.

Having all of those features in our backlog, I was assigned to design the system as a whole and

started the implementation in early 2015 with few more colleagues. Concurrently, we moved to Berkeley

in California where we enrolled in an startup incubator program where we tried to gain traction to our

open source Velox Big Data Framework and potentially find ways to monetize our work similarly to

many other Apache foundation Big Data projects. During that year most of our work was focus on

finishing several milestones to honor our funding promises and gain traction.

Unfortunately, while we implemented most of our backlog, due to multiple technical issues. the final

performance was very poor compared to our rival systems (Such as Hadoop and Spark). Our personnel

to implement this system was very limited, mostly composed of undergraduate and graduate students

who could only participate in the implementation during their spare time. For all those reason, at the end

of 2016, we eventually gave up the idea of finding monetary ways to our projects and moved towards

narrowing the scope of our requirements.

We noticed that while the MapReduce engine was very promising3, the Distributed file system was

easier to tweak due to its simplicity. In the summer of 2017, we explored the idea of enhancing current

MapReduce frameworks throughput by using a custom underline Distributed file system which locates

blocks at more convenient positions. This idea has an strong inspiration from previous works of some

of my colleagues about reducing container initialization cost by coalescing blocks in Hadoop [5].

For that purpose we moved a step forward and decided to make VeloxDFS generate logical block

distributions consisting on the underline physical distributions. Those logical blocks could then have

arbitrary sizes, customized by a new logical block scheduler engine embedded in each FileLeader within

the VeloxDFS network.

After several iteration, we explored the idea about having arbitrary sized logical blocks in which

3We stalled the development of the MapReduce engine, shortly after we finishing its first working version

7

their size changes dynamically at run-time (while a MapReduce job is running). Hence, for once we

studied the idea of elastic blocks distributed file system. This work explores in detail about this idea and

present what opportunities and challenges this idea brings.

2.4 Architecture

At its core, VeloxDFS is a decentralized userspace distributed file system written in C++. A very impor-

tant aspect of this file system is that it relies in a CHORD-like protocol to index its files metadata and

node information. This is crucial since it provides a consistent routing method to index its files and nodes

while also enabling nodes leaving and entering the network without affecting the system consistency4.

VeloxDFS architecture of the server side service strongly reassembles an asynchronous RPC system

since it is designed based on the pro-actor pattern. This was a key decision early in the development

which allows us to: avoid multi-threading while providing concurrency; use our in-house network library

(libvelox) while not locking VeloxDFS to it; and to separate business rules with networking issues.

File Metadata

An essential component of any file system is how to deal with its file metadata. To find effective ways

to manage metadata we first need to understand how it is and how it is used in MapReduce systems.

In MapReduce systems files are normally write once read many (WORM) , this give us a hint of how

metadata is frequently accessed but rarely written. Additionally, regarding its shape file metadata is

often much smaller than the data its refer.

Consequently, both of the properties: being accessed frequently and being small makes its a perfect

candidate to be cached in memory and be easily indexed and replicated using our Chord like DHT

file system. To deal with the peculiarities of the metadata, we developed a complementary isolated

component named FileLeader which implements all the business logic regarding metadata store and

validation. It is very important to note that each file has its own FileLeader which is determined by the

position of its file name hash value.

Fault recovery is done by FileLeaders gossiping its file metadata to its nearest neighbors which in

4As for November of 2018, the chord protocols for joining and exiting the network are to be implemented and it our

backlog. Reasons are that so far we are still developing VeloxDFS and much of our efforts comes into finding novel ways to

distribute the blocks

8

case of failure one of the would take over its data range and thus being able to reply any incoming query

from clients.

Blocks and Chunks

The secret of the elastic logical blocks is that they are composed of smaller physical blocks which are

continuously shifted to create the illusion of a block that change its size. To ease the explanation from

this part of the work I would refer to logical blocks as Blocks and physical blocks Chunks. Blocks and

chunks has different characteristics, one very important is that while chunks never cease to exist, blocks

are ethereal, they only live in a job, e.g. every jobs have potentially different blocks. This is important

since blocks are an illusion given to Hadoop that give us control of where are the tasks placed and the

input per each tasks.

On the other hand, chunks are real, and they are stored in each ChunkNode server and managed by an

instance named ChunkNode5. Those ChunkNode instances would accept clients and FileNode requests

to PUT, APPEND, GET, and DELETE chunks.

Another important concept is that while blocks are composed of chunks. Those chunks can be in any

order. This adds a new requirement in which the initial file partition must be careful to split the file into

chunks so that records are not cut between two chunks. This is a key challenge and we solved by adding

support to different file formats, making PUT and APPEND functions aware of the input file format6.

Network

Networking is the backbone of our distributed file system and it has some peculiarities. Early on the

design phase of this project much of the discussion was focus regarding the problem of which technology

stack to use for our network parts. This was not an easy problem since using a very high level technology

such as a RPC library while easing the development could easily lock our system to a single technology

and not let us perform fine tuning, contrarily a very low level approach such as using TCP or UDP

sockets would make the development very long and error prone.

A middle solution was found with BOOST ASIO and its pro-actor model since ASIO is nothing

else than a socket library for TCP with the support of a programming model named pro-actor [7] pat-

5It was previously named BlockNode
6Currently we only support LineFormat

9

uint64_t write(std:: string& file_name , const char* buf , uint64_t off , uint64_t len);

uint64_t read(std:: string& file_name , char* buf , uint64_t off , uint64_t len);

int append(std:: string file_name , std:: string buf);

int upload(std:: string file_name , bool is_binary);

bool exists(std:: string);

int remove(std:: string);

bool rename(std::string , std:: string);

model:: metadata get_metadata(std:: string& fname);

Listing 1: extracted from DFS.h

tern. ASIO implementation of the pro-actor pattern consists in operating system abstraction named

IO_SERVICE which holds a thread pool and release them to the specified functions by the user when an

event (such as a incoming client action) is received. This library proved very suitable for our purpose

since small overhead, its underline network low-level primitives being accessible to us, and more im-

portantly pro-actor relies on asynchronous operation which allows us to use a single thread per machine

which remove synchronization and race condition problems from our designs.

API

VeloxDFS can be interacted at two different levels: by using its API, as shown in the listing 1, in C++,

Java, and Python; or by using its command-line utility veloxdfs showed at the listing 2.

VELOXDFS (VELOX File System CLI client controler)

Usage: veloxdfs [options] <ACTIONS > FILE

ACTIONS

put <FILE > Upload a file

get <FILE > Download a file

rm <FILE > Remove a file

cat <FILE > Display a file 's content

show <FILE > Show block location of a file

ls -H|-g|-o [FILE] List all the files

format Format storage and metadata

rename <FILE1 > <FILE2 > Rename file

...

Data Intensive Computing Lab at <SKKU/UNIST >, ROK. ver :1.8.6 Builded at: Oct 31 2018

10

Listing 2: extracted from veloxdfs –help

Logical block schedulers

So far most of the conversation has skipped a very important idea: how and when to change the logical

block sizes. This is the task of the block scheduler which upon its input and its logic will generate an

optimal logical block distribution based on its own heuristics of the system workload.

The remaining part of this work will focus on the following three block schedulers and its evalua-

tions.

• Lean scheduler which enables total or partial elastic blocks at run-time execution.

• Multiwave block scheduler which generate multiple ever smaller waves of map tasks to address

skewed tasks duration.

• IO aware block scheduler which generates a logical block distribution which mimics the moni-

tored system load of the cluster.

2.5 Lean Scheduler

The mechanism to assign the initial elastic blocks distribution and to control its resizing is done by the

Lean scheduler. The scheduler is situated in both the client and the server side. In the server side the

scheduler arranges its initial block distributions explicitly at the Fileleader making its best guesses using

different techniques to construct logical blocks using locally accessible physical blocks. The client side

of the lean scheduler is implemented at several levels: at the client side of VeloxDFS API to Hadoop, at

the VeloxDFS client API, and at a distributed lock system instance.

Due to the fact of having two types of schedules call, one initial and one (or more) at run-time, we

need a way to partition the input data among the different scheduler calls. At the highest level, we split

the input data into two segments: one for the initial block assignment and the remaining input data for

the consequently run-time elastic block adjustment. The initial block assignment percentage is noted as

the Degree of pre-assigned input (α) in this work.

11

Server side lean scheduler

The server side of the lean scheduler role is to write the initial allocation of physical blocks to logical

blocks mappings, e.g. the initial logical block distributions. This scheduler invocation is done at the file

own FileLeader. As explained in the previous section the server side of the lean scheduler will commit

a certain percentage α such that: α = {0.00..1.00} of the input data during the initial phase. In this

phase given N chunks for our input file, the FileLeader scheduler will allocate α×N chunks of the file

in round robin manner to the servers containing each replicas.

Client side lean scheduler

The client side of the lean scheduler role is to dynamically adjust the initially given logical blocks. This

adjustment takes places for the remaining (1−α)×N chunks. To understand how this client side run-

time adjustment works. Whenever a tasks finish processing its initially allocated chunks at the server

side, it will try to allocate dynamically one of the remaining (1−α)×N chunks which is local. This

operation is done by the client being given the information of which of those remaining chunks are local,

and by providing a distributed lock system which lock each of the already processed remaining chunks,

so that we do not perform redundant computations, such as in the case of Hadoop with speculative maps.

There are several implications for using a distributed lock system, the very important one is regarding

overhead, through this paper we will deepen into this idea and we offer some solutions in the form of

tuning and future ideas.

Overhead considerations

The design of the lean scheduler obviates a particular bottleneck located at the distributed lock system.

Such distributed lock system must maintain as much locks as physical chunks in the file that we are

currently processing. Additionally, each of the tasks would concurrently attempt to lock the locks of its

assigned physical chunks. This can be a problem when we scale our cluster to have more then 10000

slots, with each slots having hundreds of physical chunks. Several approaches can be determined such

as partitioning the locks across multiple nodes, and buffering the lock request a transaction of multiple

requests. In the evaluation section we quantify this overhead and we propose different solutions for its

future work.

12

2.6 Static schedulers

Our earlier approaches where based on the idea that we can only generate an static block distribution

which can not be changed while the job is running. The reason was solely based on the implementation

issues, our initial Hadoop API consisted in a FileSystem API so that Hadoop would internally call

VeloxDFS during the job in the same manner as it interacts with HDFS. The main drawback with this

approach is that by default jobs in Hadoop only ask once at the beginning regarding the block locations

and its sizes. This seriously limited our degree of action and restricted our logical scheduler to only have

one chance of generating a logical block distribution.

Having in mind this strong limitation, we first explored the idea of monitoring the system workload

in each of the servers and generate a block distribution countering this system workload to later explore

the idea of generating logical block distributions base on an interesting find of how tasks ending time

differs on average.

IO aware block scheduler

The first block scheduler that we considered creates a logical block distribution upon of the current

IO/CPU workload of the given cluster. For that purpose, we collected Exponential Weighted Moving

Averages (EWMA) of the current IO usage percentage, obtained from UNIX tools such as iostat, for

every machine in the cluster every certain user specified time period. We also kept track of the load

average of each machine to determine how many free cores each server has on average in the past few

minutes, this architecture can be visualize at the figure3. Upon this given information to the IO aware

schedule, the IO aware scheduler will generate a logical block distribution which mimics the cluster-

wide system load.

The exact way of how this block distribution was generated can be seen at the listing 3 in which

given the few servers containing each of the replicas of a chunk. Only the server with the high score

will get the replica assigned. This score considered local system IO. local system workload, and very

importantly a ratio of its current assigned chunks v.s. other servers.

IO aware scheduler results remained very inconsistent since the optimized block distribution proved

to become outdated soon after the heuristics were taken, this was a key challenge that resulted in us

eventually giving up this idea and moving to a new one.

13

double score(int id) {

double alpha = get_alpha ();

double beta = get_beta ();

double delta = 1.00 - alpha - beta;

double io = get_io ();

double load = get_sysload ();

return 1.00 - (delta*usage[id] +

io[id]*alpha +

load[id]*beta);

}

int get_highest_id(VEC_INT nodes_containing_replicas) {

vector <double > score_vec;

// We get each replicas ' score

for (auto node_id : node_containing_replicas) {

score_vec = score(node_id);

}

// Finally get the id of the highest replica 's score

return max_element(score_vec.begin(), score_vec.end ());

}

Listing 3: IO aware score algorithm

14

Figure 3: IO monitoring architecture

Multiwave block scheduler

A breakthrough came into the form of realizing that in a moderately used cluster most of the map tasks

end time differs each other on average from 30% to 5% of its total task execution time –also seen at the

last figure at the grid 4. This inspired the creation of the multiwave block scheduler which addresses

this problem by creating ever smaller logical blocks to produce ever smaller map waves which in theory

would reduce this tail problem at the tasks ending time previously mentioned.

The idea is that it takes only one straggling task to delay the whole job execution time. The approach

to address this problem was to generate a logical block distribution consisting in initial large logical

blocks followed by one or more waves of recursively smaller logical blocks. By doing that we hoped

Hadoop to start scheduling those large blocks first and start allocating the smaller blocks in the slots

which are free, this is, the good performing slots.

This idea gave good load balance results, however, often Hadoop would not honor our request to

schedule first the large logical blocks sabotaging our idea and finally rendering our scheduler useless,

specially in heavy workload situations.

2.7 Additional components

As previously mentioned, VeloxDFS should not be seen as a single monolithic piece of software, rather,

as a composite of many small component working together. This architecture follows the UNIX philos-

ophy of decomposing your program into small programs which perform a single operation very well to

gain the flexibility of later being able to expand your system without significantly increasing its com-

15

const int MIN_BLOCK_SIZE = 8 // MiB

const int CHUNK_SIZE = 4 // MiB

bool schedule(int** SLOTS , int CHUNKS []) {

if (LEN(CHUNKS)/LEN(SLOTS) * CHUNK_SIZE < MIN_BLOCK_SIZE) {

return false;

}

int *C_1 , *C_2;

// Divide the chunks into two equal chunk sets

split_chunks(CHUNKS , &C_1 , &C_2);

// Recursively call itself until we reach the MIN_BLOCK_SIZE ,

// then we rejoin the separated chunks of C_2 to C_1

if (! schedule(SLOTS , C_2)) {

arr_append (&C_1 , C_2);

}

assign_chunks_to_slots (&SLOTS , C_1);

return true;

}

Listing 4: Recursively generate waves

16

Project Description GitHub URL

VeloxMR Experimental MapReduce engine based on VeloxDFS DICL/VeloxMR

eclipsed Deployment/debugging helper script DICL/eclipsed

velox-hadoop VeloxDFS JAVA library for Hadoop DICL/velox-hadoop

velox-deploy-ansible Automatize deployment of VeloxDFS DICL/velox-deploy-ansible

hadoop-etc Hadoop configuration files to use VeloxDFS vicentebolea/hadoop-etc

velox-report Suit to Benchmark, profile and log VeloxDFS vicentebolea/velox-report

Table 1: Velox components

plexity.

Since this work prioritizes the research per se and not the underline software I would briefly describe

the main component of VeloxDFS in the following table with links to its Repository pages

17

III Evaluation

This section will cover in detailed the empirical study of the different block schedulers proposed in this

work. We will cover several relevant aspects ranging from the load balance and job execution time, to

the internal overheads of the insides of the proposed algorithms. We present some relevant metrics of

the performance of each of the schedulers in a few predefined different scenarios which each have a

different degree of pre-existing workload. This section will be structured in the following manner:

1. Parameter Optimization, since our schedulers can perform greatly different upon its configuration.

2. Overhead consideration, a quantitatively analysis of the overhead implication of our design.

3. Evaluation in an idle and busy environment.

4. Evaluation in environment where few applications are running concurrently.

3.1 Setup

In this evaluation we measure several metrics of the running jobs of the following applications: Grep,

WordCount, AggregateWordCount7, Join, Sort. We perform each of the experiments with the following

resources:

• VeloxDFS + Velox-Hadoop

• 100GiB Input text file

• Intel(R) Xeon(R) CPU E5506 @ 2.13GHz (w/ HT)

• 16GiB RAM

• CentOS 7

• 30 Nodes + Master(ResourceManager, NameNode, and Client)

Very importantly, in order to explore the performance of different studied schedulers, I pre-defined a

few different testing environments in which a variable number of the nodes of the cluster are performing

some IO intensive applications. This allows us to control the degree of pressure in the computer cluster,

7It is a different version of WordCount which uses Hadoop optimization’s from the Aggregation library

18

Workload Environment Busy nodes Description

NONE 0 Idle cluster with no existing significant IO

LOW 6 Moderately busy cluster

HIGH 12 Extensively used cluster

Table 2: Workload environments

and accurately observe how each of the scheduler react to such situations. A complete description of the

three different environment is displayed at the table 2.

3.2 Parameter optimization

Both Lean scheduler and Multiwave scheduler have important parameters which significantly alter the

behavior of the scheduler. The reason to include those parameters is that there are variables which does

not really have a final optimal value whereas they have different optimal values in different conditions.

In this section we will cover two parameters and their effect in load balance, internal overhead, job

execution time and map execution time. Here are the two parameters:

• Degree of pre-asigned input, meaning which percentage of input should be statically and dynam-

ically allocated.

• Minimum block size, meaning the minimum sized logical blocks to be created.

Load balance implications in Lean Scheduler

Degree of pre-assigned input (α) allows us to determine which percentage of chunks are to be allocated

to its logical block statically and which to be allocated dynamically while the job is running.

As we can see in the figure 4, there is no surprise that for values of α near zero, meaning that all the

chunks are being dynamically allocated on-demand, the load balance seems nearly perfect. On the other

hand, for values of α approaching 1, meaning that most of the data will be statically allocated before

running the job which translates in a rigid block distribution which will not be able to adapt to the

changing workload of a large cluster.

Counter-intuitively, near-zero values of α does not actually always translate in best performance,

figure 5, the reason is that dynamical chunk allocation incurs in an expensive penalty which depending

19

on the situation might or might not be beneficial to the the total performance. This very issue will be

explored in the following sections.

Figure 4: Task execution time with different α

Figure 5: Lean scheduler Aggregate

WordCount performance (NONE envi-

ronment)

None environment

In this section, we explore how to tune and optimize the value of α and min_block_size for Lean

scheduler and Multiwave scheduler in an idle cluster (None environment).

In the figure 6, Join and Sort applications does not shows a consisting correlation between α and its

job execution time since those applications are REDUCER, and PARTITIONER heavy applications. Our

schedulers are designed to improve map tasks, not reduce tasks or shuffling procedures.

In the rest of the applications, in the figure 6, Lean scheduler performs its best in this environment

when the value of α goes about 0.7−0.9. This can be explained since in a non existing IO environment

load balancing does not play a significant role. Thus, while residual different between the throughput of

the slots will still exist, those are not significant, thus a near 1.0 value of α will allow the scheduler to

correct those small differences while not incurring in extra overhead.

As for the Multiwave scheduler, we can conclude that in this workload environment the optimal

value of min_block_size varies greatly. Nevertheless, small values of min_block_size undoubtedly have

a negative impact on the performance which can be explained since having many small blocks will incur

in initialization overhead.

20

On the other hand in some of the applications high values of min_block_size does also translates in

worse performance, which could be explained with the fact that in those applications there might occur

small differences on the throughput of their slots. Big blocks will imply coarse granularity to correct the

balance by map waves.

Figure 6: Tuning parameters (NONE environment)

Medium environment

Similarly to the previous section, in this section we explore how to tune and optimize the value of α and

min_block_size for Lean scheduler and Multiwave scheduler in a moderately used cluster (Medium

environment). The results are shown in the figure 7.

For the Lean scheduler the very apparent different with the none environment is that optimal values

of α lies on the values near to 0.00. This proves our hypothesis, that alpha can control how well does

our algorithm addresses the load balance of a job.

Similarly for the Multiwave scheduler, we also obtain its best performance when the value of its

parameter, min_block_size, approaches its minimum. This proves that small blocks does translate on a

better load balance in a cluster with moderate pre-existing IO8.

8Analogously to the previous case, both Join and Sort application does benefit from our scheduler, for the very same reasons

previously stated

21

Figure 7: Tuning (MEDIUM environment)

3.3 Overhead implications in Lean Scheduler

It might have became clear to the reader, that the lean scheduler does improve load balance, but it does

it to a high cost. Thus, its extremely important to tune it correctly so that the cost of dynamic chunk

allocation does not exceed the gained reduction of job execution time.

Such is the importance of this overhead that a full section needs to be dedicated to this very issue. It

is important to understand the the overhead of the lean scheduler comes from two independent aspects.

• Early implementation, its implementation has been done very quickly to meet the deadline of

this work.

• Distributed lock overhead, network and synchronization overhead.

The overhead from the implementation comes from the fact that Hadoop source code for key areas

regarding reading from local and remote files among others has been greatly optimized for over a decade.

The implementation analyzed in this work is just around a month old and can not compete with such

optimized system. Fortunately, the good news is that a solution for this problem is very possible and it

will solely consist in optimizing the current implementation.

As implementation issues are something that could be potentially easily solved in the future, I will

22

focus the study of the overhead of lean scheduler in the parts that are a consequence of its architecture,

e.g. its synchronization overhead.

In the figure 8, I quantify the overhead of reading from disk or remotely versus the time spend locking

the chunks (Using Apache Zookeeper in our implementation) in a idle cluster (None environment).

Surprisingly the overhead, while present, is clearly not significant for the total execution time of the

job. Nevertheless, this measures only show the time that the tasks spends waiting for zookeeper to lock

each of the chunks. This does not measure very important indirect aspects such as: network contention

from thousand of connections to this central log system; and the repercussions of having many sizable

interruptions in the map task.

While for an idle environment the measured time used to lock chunks with zookeeper is notice-

able, for a busy cluster (Medium environment), as shown in the figure 9, the time spend with Apache

Zookeeper compared to the reading time or the total is not event noticeable in the chart. This implies

that the little overhead spent communicating with Apache Zookeeper is actually even more insignifi-

cant in a busy cluster. Naturally, the unmeasured overhead from those indirect repercussions previously

explained will also become more insignificant in this situation.

Figure 8: Map phase time expenditure (NONE environment)

23

Figure 9: Map phase time expenditure (MEDIUM environment)

3.4 Performance in a controlled environment

In this section, I quantify the final map phase execution time using different applications with different

algorithms in the three different environment previously mentioned at the beginning of this chapter.

Idle environment

This environment will server as the base case for the following environments. As we can see in the

figure 10, three of the study schedulers shows a very similar execution time for the three applications.

There is not a decisive conclusion other that Lean scheduler seems to perform better at the WordCount

application. This can be explained since in this application the produced intermediate data is very

significant which translates in Hadoop producing multiple spills during the map phase for every tasks.

This multiple spills produces a load balance challenge that Lean scheduler seems to address better than

other schedulers.

Busy environment

In this experiment we will analysis the map phase execution time for both the MEDIUM and HIGH

environment. As shown in the figure 11 and 12, the most apparent conclusion is HDFS shows a better

performance than the two proposed schedulers in this work. While this might look quite disappointing,

24

Figure 10: Map phase execution time in a idle cluster

specially since this work tries to present schedulers which achieve good load balance, there are many

things that those two figure reveals:

Firstly, while Lean Scheduler performs the worst at the medium environment, at the high environ-

ment performs the second best, after HDFS, and it gets much closer to HDFS. This suggest that:

• Lean scheduler performs better than Multiwave scheduler in highly used clusters.

• Lean scheduler performance approaches HDFS in highly used clusters.

Figure 11: Map phase execution time in a lightly used cluster

25

Figure 12: Map phase execution time in a highly used cluster

Scalability to existing workload

From the previous section, one of the key points that we inferred was that compared to a moderately used

cluster, Lean Scheduler approaches HDFS when the cluster usage is high. This can be visually sensed

by viewing the figures 11 and 12, however, a deeper data analysis is needed to quantify this approaching

to HDFS.

In the figure 13, we can see the increment of map phase execution time from NONE to MEDIUM

environment compared to MEDIUM to HIGH environment. Very interestingly, Lean scheduler shows a

much lower increment in execution time from MEDIUM to HIGH.

This lower increment is one of the most important findings of this work which is that: Lean scheduler

does adapts better to a higher existing workload, e.g. Lean scheduler shows a better load balance,

however, due to its current implementation overhead it does not translate to a lower map phase execution

time.

3.5 Multiple Concurrent jobs

The last of the experiments consists in the concurrent execution of multiple applications simultaneously.

For this experiment we ran three applications: WordCount, AggregateWordCount, and Grep. Each of the

applications uses its own input file stored in each of its corresponding distributed file system.

The figure 14 shows a stack bar plot in which each of the color represents the map phase execution

time of each application, and the triangle represents the total map phase execution time. As it can

26

Figure 13: Map phase execution time increase percentage in different environments

be seen, Lean Scheduler approaches the performance of HDFS on its optimal values of α which lies

between 0.4 to 0.7. While it approaches the performance of HDFS, it does not surpass it while it

remains approximately same as to HDFS performance.

Figure 14: Concurrent jobs, Map phase time expressed as triangle

27

IV Related Works

4.1 EclipseMR: Distributed task processing with consistent hashing

EclipseMR [8] is the previous published research from this very same author which presents a whole new

MapReduce framework named EclipseMR. Such framework’s signature is the usage of a double-ring to

store data and metadata. In the upper layer of the ring, it utilizes a distributed in-memory key-value

cache implemented using consistent hashing, and at its lower layer it uses a DHT type of distribute file

system. Velox framework is the successor of EclipseMR, which was conceived as a solution from the

increasing difficulty in maintaining a prototype implementation such as EclipseMR.

4.2 Coalescing HDFS blocks to avoid recurring YARN container overhead

Coalescing HDFS [5] is the other foundation of the idea for the abstraction of logical blocks authored

by one of the creator of VeloxMR. This work studies the idea of combining Hadoop splits which are

assigned to the same hosts. Thus, in this manner instead of creating a new YARN container for each

of the splits, this work propose to combine them together so that the same container can process all the

splits allocated to the given slot. VeloxDFS logical blocks is an iteration on this idea which proposes

not only the ability to join small blocks into larger logical blocks but to change their size at run-time to

adapt to the current cluster balance.

28

V Conclusion

This work presents a novel data partitioning technique which aims to improve the performance of dis-

tributed systems. The premise defended at this work is that we can greatly improve load balance by

elastically adapting the input partitions to the workload presented in the distributed cluster.

To achieve an optimal input distribution we explored different block schedulers with different pe-

culiarities. In this study we present three different block schedulers and evaluate two of them. While

we cover the three different schedulers in this work, much of the emphasis has been paid to the Lean

Scheduler since it is an evolution of the two previous block schedulers.

The evaluation of Lean Scheduler shows that it can effectively address and correct a strong load

imbalance, however, due to its design and current early implementation, in relatively balanced clusters

it does actually incur in a negative performance and it has shown to perform a worse than HDFS and

Multiwave scheduler.

This evaluation also shows how the parameter Degree of pre-assigned input has a significant effect

on the balancing power of Lean Scheduler and propose optimal values for different balance scenarios.

Lastly, my most sincere wish that the study presented in this document will remain useful and would

reveal new ideas in the mind of the reader which would translates into meaningful advancement of the

humankind.

29

References

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Com-

munications of the ACM, 51(1):107–113, 2008.

[2] Youngmoon Eom, Deukyeon Hwang, Junyong Lee, Jonghwan Moon, Minho Shin, and Beomseok

Nam. Em-kde: A locality-aware job scheduling policy with distributed semantic caches. Journal of

Parallel and Distributed Computing, 83:119–132, 2015.

[3] Borko Furht and Flavio Villanustre. Big data technologies and applications. Springer, 2016.

[4] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system, volume 37.

ACM, 2003.

[5] Wonbae Kim, Young-Ri Choi, and Beomseok Nam. Coalescing hdfs blocks to avoid recurring yarn

container overhead. In Cloud Computing (CLOUD), 2017 IEEE 10th International Conference on,

pages 214–221. IEEE, 2017.

[6] Beomseok Nam, Deukyeon Hwang, Jinwoong Kim, and Minho Shin. High-throughput query

scheduling with spatial clustering based on distributed exponential moving average. Distributed

and Parallel Databases, 30(5-6):401–414, 2012.

[7] Irfan Pyarali, Tim Harrison, Douglas C Schmidt, and Thomas D Jordan. Proactor-an object be-

havioral pattern for demultiplexing and dispatching handlers for asynchronous events. Citeseer,

1997.

[8] Vicente AB Sanchez, Wonbae Kim, Youngmoon Eom, Kibeom Jin, Moohyeon Nam, Deukyeon

Hwang, Jik-Soo Kim, and Beomseok Nam. Eclipsemr: Distributed and parallel task processing

with consistent hashing. In Cluster Computing (CLUSTER), 2017 IEEE International Conference

on, pages 322–332. IEEE, 2017.

30

[9] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer Commu-

nication Review, 31(4):149–160, 2001.

31

Acknowledgements

While I am the person who authored this, this works has been indirectly done by a set of people to whom

I dedicate this section.

The most influential person at this research is my long time advisor and laboratory Prof. Beomseok

Nam, a person that without his support and empathy, this work and my career could have not gone this

far. Year after year, he has guided me to become a better person. I would always be grateful to him.

Very important figure is my current advisor Prof. Youngri Choi, whose help has been fundamental to

carry my studies and my research during my time at UNIST. She has always offered me her help without

any hesitance.

There has not been any other person that has contributed more at this work than my long term partner

Heo Suhyun. She has provided the very needed emotional support in my career that has allowed me to

effectively perform this work. She was there at those endless nights of works, she was there to drive me

home at late times at night from my laboratory. She blindly followed me through the curious paths I

crosses in foreign lands without any hesitation. In short, she has always given me her best while taking

away my worst.

Lastly, I would not literally be able to enroll in this master program without the infinite love of my

family. During all these years they have endured the painful decision of me living in a foreign and

remote land because they have always believed on me. They have always accepted every path I have

taken in my life and they have always helped me every bit they could.

Utmost proud of fulfilling a promise, my Grandfather, Adolfo Bolea.

Terminé!

The Author,

Vicente Adolfo Bolea Sánchez

32

	I Introduction
	1.1 Background
	1.2 Data partitioning
	1.3 Elastic Blocks

	II VeloxDFS
	2.1 Overview
	2.2 Goals
	2.3 History
	2.4 Architecture
	2.5 Lean Scheduler
	2.6 Static schedulers
	2.7 Additional components

	III Evaluation
	3.1 Setup
	3.2 Parameter optimization
	3.3 Overhead implications in Lean Scheduler
	3.4 Performance in a controlled environment
	3.5 Multiple Concurrent jobs

	IV Related Works
	4.1 EclipseMR: Distributed task processing with consistent hashing
	4.2 Coalescing HDFS blocks to avoid recurring YARN container overhead

	V Conclusion
	References

<startpage>12
I Introduction 1
 1.1 Background 1
 1.2 Data partitioning 2
 1.3 Elastic Blocks 4
II VeloxDFS 5
 2.1 Overview 5
 2.2 Goals 6
 2.3 History 6
 2.4 Architecture 8
 2.5 Lean Scheduler 11
 2.6 Static schedulers 13
 2.7 Additional components 15
III Evaluation 18
 3.1 Setup 18
 3.2 Parameter optimization 19
 3.3 Overhead implications in Lean Scheduler 22
 3.4 Performance in a controlled environment 24
 3.5 Multiple Concurrent jobs 26
IV Related Works 28
 4.1 EclipseMR: Distributed task processing with consistent hashing 28
 4.2 Coalescing HDFS blocks to avoid recurring YARN container overhead 28
V Conclusion 29
References 30
</body>

