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Abstract

Figure 1: Image reconstruction tasks can be varied across modalities.

Reconstruction is an important module in the image analysis pipeline with purposes of iso-

lating the majority of meaningful information that hidden inside the acquired data. The term

“reconstruction” can be understood and subdivided in several specific tasks in different modal-

ities. For example, in bio-medical imaging, such as Computed Tomography (CT), Magnetic

Resonance Image (MRI), that term stands for the transformation from the, possibly fully or

under-sampled, spectral domains (sinogram for CT and k-space for MRI) to the visible image

domains. Or, in connectomics, people usually refer it to segmentation (reconstructing the se-

mantic contact between neuronal connections) or denoising (reconstructing the clean image).

Figure 1 is a pictorial description of the above image reconstruction applications.

In this dissertation research, I will describe a set of my contributed algorithms from conven-

tional to state-of-the-art deep learning methods, with a transition at the data-driven dictionary

learning approaches that tackle the reconstruction problems in various image analysis tasks.
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I Introduction

1.1 Motivation

Mankind has always been curious and eager to understand everything around it. We start

with rudimentary concepts and expand it in order to answer the questions about our unknown

universe. With that persevering ambition, we have also developed essential tools to follows

the trends. This argument is commonly-known as "Technologies push, applications pull"

which have motivated us to explore our dynamic environment whose data (or its representation)

keeps increasing vastly as time goes by. However, our senses are partially limited in their abili-

ties, especially the vision system. For example, our human eyes cannot perceive waves that are

outside of the visible lights spectrum such as radio, microwave, infrared, or ultraviolet, X-ray,

gamma, etc. However, by mapping the observations, or measurements, such things can be

quantitatively evaluated, e.g., energy range or frequencies of wavelength, we know that those

invisibilities, or insight, exist. At this moment, it is worth defining two separated domains:

observations (measurements) and knowledge (insight) in which the former can be collected

via developing tools and the latter should be explainable to improve the understanding. Trans-

forming inbetween these two spaces can be both relatively simple or complex. This task depends

on how the measurements are acquired and how much for the insight should elevate up to. For

instances, with an ambitious goal of seeing things indoor or outdoor, it is straightforward to

use an identity matrix to map the natural scene(s) via a shutter (or eyes) to form photo(s) that

stored on a film by burning the phosphor layers or image(s) by sending signals through our vision

rod and cone cells to our brains. A little more challenging, with another ambitious goal of seeing

things inside our bodies, we can collect the measurements via CT/MRI scanners, and map those

signals (k-space) to the ones observable (visible image space) with a filter back projection/an

inverse Fourier transform. On an abstract aspect, with the ambitious goal of observing clean

things, we can define noisy and noise-free domains and the transformations inbetween are known

as noise addition/removal tasks. Even more abstract, with the ambitious goal of observing dis-

tinct things (semantic-aware or instance-aware), we need to find proper segmentation algorithms

to perform on the observations (images, users behaviors, etc.). At this time, the transformations

are no-longer linear and complicated to design. They are also computationally-expensive since

many regularizers (constraints) of our prior-knowledge need to be satisfied. Therefore, find-

ing such those insights systematically as well as algorithmically based on some domain-specific

observations poses some challenges and motivates me to work on this dissertation.
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Figure 2: Image-to-image translation tasks can be varied across scales.

1.2 Problem statement

By narrowing down the observations and the insights to discrete and array-like representa-

tions, we can form an overview of image-to-image translation tasks (Figure 2). In a macro aspect,

some examples can be referred as translating the optically astronomical observations to find the

new planets or stars, or translating the satellite terrain image to traversal map. In a common as-

pect, making visual photos more plausible (image super-resolution, converting grayscale to color

images, etc.) or helping to improve the autonomous driving systems are worth mentioning. In

a micro aspect, especially in biomedical and clinical research, segmenting the object of interests

(left/right ventricles, cell nuclei, neuronal structures) is also belonging to image-to-image trans-

lation. In the above examples, biomedical image data draw much attention due to its wide range

of modalities, scales, and many more. And the mapping of such measurements from labora-

tories equipment to understand the image data is now interchangeable with reconstruction.

By framing the image reconstruction into image-to-image translation framework, it is crucial to

define two or more image domains that hold the source of measurements (e.g., k-space

data, raw EM images, etc.) and the target insights (e.g., MR images, neuronal segmentation,

clean EM images, etc.) with/without prior constraints. Furthermore, as the original prob-

lem is highly ill-posed, such translations need not to be unique. It means that some insights

may have a lot of measurements. For example, the full MR images may have various kinds

of under-sampled k-space appearances, or a skeleton of one single neural structure may have

various types of textures on it as time goes by, or some clean images may have different types

of noise-altered sources. Therefore, translations in image reconstruction is highly unbalanced as

mapping inbetween domains can be all-to-one and vice versa. Among the possible paths, there

should be ones that can inversely reveal the insights. These trajectories might be iterative, i.e.,
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loosely refining the reconstructions so that the original measurements are always satisfying;

or one-time predictive phase by leveraging the power of universal approximators (also known

as neural networks) to shift the time-consuming part onto the training phase. Hence, the main

goals of this dissertation are to develop faster and high-quality biomedical image reconstruction

methods, which are representing as three tasks: restoring the image signals from undersampled

Magnetic Resonance k-space data, segmenting the semantic information (membrane, blob-like

cell nuclei), and removing noises from electron microscope images.

1.3 Example of image reconstruction problem: Compressed Sensing MRI

Magnetic resonance imaging (MRI) has been widely used as an in-vivo imaging technique be-

cause it is a non-intrusive high-resolution imaging technology safe to living organisms. Even

though MRI does not use dangerous radiation for imaging, it usually requires a long acquisi-

tion time for high-resolution image reconstruction. This is a significant drawback of MRI in

a clinical setup because a longer acquisition time causes discomfort to patients, and in some

time-critical situations, such as emergency diagnosis, it may not be usable at all. There have

been many approaches to reduce the acquisition time or increase the image resolution by using

parallel acquisition hardware [10]. Recently, the Compressed Sensing (CS) theory [37] has been

successfully adopted to MRI reconstruction [86] to reduce the amount of data needed to acquire

while maintaining the image quality close to the full reconstruction. The idea of CS recon-

struction is that if the original signal is sparse (or at least we can make it sparse by applying

some transformations), the full-resolution signal can be computationally reconstructed from an

under-sampled signal at a sampling rate below its Nyquist rate. Therefore, in order to apply

the CS theory to MRI reconstruction, we need to find a proper sparse transformation to make

the signal sparse, e.g., wavelet transformation, and solve a �1 minimization problem.

In this section, we will briefly overview the basics of Compressed Sensing MRI. We use the

subscript f to denote the result of applying a masked Fourier transform to a given variable. We

denote the under-sampled raw MRI data (k-space measurements) using the sampling mask R

as m. Then, its zero-filling reconstruction s0 can be obtained by the following equation:

s0 = FHRH (m) (1)

where F is the Fourier operator, and superscript H indicates the conjugated transpose of a

given operator. Similarly, turning any image si into its under-sampled measurement msi with

the given sampling mask R can be done via the inverse of the reconstruction process:

msi = RF (si) (2)
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Then, compressed sensing MRI reconstruction, which is a process of generating a full-reconstruction

image s from under-sampled k-space data m, can be described as follows:

min
s

J (s) s.t. RF (s) = m (3)

where F is the Fourier operator, R is the sampling mask, and superscript H indicates the con-

jugated transpose of a given operator. and the above constrained problem can be reformulated

in an unconstrained fashion with weighting parameters as follows:

min
s

‖RF (s)−m‖22 + λJ (s) (4)

where J (s) is a regularizer required for ill-posed optimization problems.

Many classical priors can be used for J (s), such as Tikhonov regularization (IID Gaussian

prior) [25], edge-preserving regularization [120], total variation (TV) [27], non-local mean filter

(NLM) [90], wavelets [98], curvelets [8], etc. By enforcing �p norm where 0 ≤ p ≤ 1 for regular-

ization, compressed sensing theory [21, 37] can be applied to MRI reconstruction from highly

undersampled k-space data [87]. This sparsity-induced image reconstruction method aims to

find the solution (images s) that satisfies not only the under-sampled measurement constraints

but also sparsity in the transformed domain by decomposing the signals with the designated

universal transform sparsity basis. For example, the seminal work by Lustig et al. [86] pro-

posed that J (s) is equal to ‖Ψs‖0, in which Ψ is the wavelet transform, and further relaxed

the �0 norm by �1 norm substitution. Solving such nonlinear optimization problems usually

involves an iterative process to minimize the data consistency energy and the sparsity energy.

The long acquisition time is a fundamental challenge in MRI, so the compressed sensing (CS)

theory has been proposed and successfully applied to speed up the acquisition process. Conven-

tional CS-MRI reconstruction methods have been developed to leverage the sparsity of signal

by using universal sparsifying transforms, such as Fourier transform, Total Variation (TV), and

Wavelets [87], and to exploit the spatio-temporal correlations, such as k − t FOCUSS [70, 71]

This sparsity-based CS-MRI method introduces computational overhead in the reconstruction

process due to solving expensive nonlinear �1 minimization problem, which leads to developing

efficient numerical algorithms [51] and adopting parallel computing hardware to accelerate the

computational time [99]. The nuclear norm and low-rank matrix completion techniques have

been employed for CS-MRI reconstruction as well [95, 123, 135] .

In addition, MRI can be used to monitor dynamic changes of the subject (Figure 3). Such

dynamic MRI can be classified into two groups. One is that the structure of the subject is

moving, as in MRI with a cardiac motion (Figure 3 (a)). In this data, there is a periodic
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(a) Cardiac MRI (b) DCE MRI

(c) CS-MRI reconstruction (right) from ×4 subsampled k-space data (left)

Figure 3: MRI examples. Red line : time axis, Blue-green lines : x-y axis, (a) and (b) : different

types of time-varying dynamic MRI, (c) CS-MRI example

ripple in the temporal profile (along the red axis in the figure). The other is that the structure

is not deforming but the pixel brightness is changing due to the reaction of the subject with

injected chemicals (Figure 3 (b)). Such data is called Dynamic Contrast Enhanced (DCE) MRI.

In both cases, high temporal resolution is important to resolve the subtle changes over time

in dynamic MRI, and therefore the acquisition of a large amount of data is necessary. Even

though CS reconstruction can accelerate the MRI acquisition process by reducing the data size,

it introduces a computational overhead because �1 minimization is a time-consuming nonlinear

optimization problem. Moreover, the reconstruction algorithm iteratively applies Fourier and

wavelet transforms, which is also a very time-consuming process. Therefore, there exists a

need to develop fast CS reconstruction methods to make the entire MRI reconstruction process

practical for time-critical applications.
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1.4 Inspirations

Over the past decade, the graphics processing unit (GPU) has evolved into a powerful computing

platform for high-performance computation. It has opened a new direction for visual computing

so that programmers can potentially increase their applications in both programmability and

performance. On the other hand, science and engineering researchers across many disciplines

have access to exponentially increasing amounts of computing power and research data available

to support their work. State of the art high-performance resources are needed to tackle large

computational problems and to make massive data accessible for superior analysis. Date back to

2012, bio-medical imaging has been one of the most premier fields which adopts high-performance

accelerators such as GPUs to speed up its applications. Therefore, I plans to leverage the high-

performance and massive computing platform such as a GPU cluster for implementing several

image reconstruction algorithms in diverse acquisition contexts.

1.5 Research statement

This work is centered around GPU-accelerated computing on biomedical image processing such

as classical smoothing methods for undersampled MRI data using sparsifying transforms such

as Wavelet transform, or recently leveraging data-driven machine learning methods to deliver

a higher quality of the reconstructed MRI. My developed algorithms focused on unsupervised

learning techniques by introducing a fast alternating method for reconstructing highly under-

sampled dynamic MRI data using convolutional sparse coding which can be 2D or 3D. The

proposed solution leverages Fourier Convolution Theorem to accelerate the process of learning

a set of filters and iteratively refine the MRI reconstruction based on the sparse codes found

subsequently. In contrast to conventional Compressed Sensing methods which exploit the spar-

sity by applying universal transforms such as wavelet and total variation, my approach extracts

and adapts the related information directly from the MRI data using compact shift-invariant

filters. The reconstruction outperforms CPU implementation of the state-of-the-art dictionary

learning-based approaches by up to two orders of magnitude. Recently, I have been working on

Deep learning-based Generative Adversarial Networks (GANs) for reconstructing Compressed

Sensing MRI and achieved the results that outperformed others in term of quality as well as

running times.

Beside the primary work on MRI modality, I also involved in part of the connectomics data

processing such as neuronal segmentation and denoising electron microscope data. The proposed

method leverages the latest advances in machine learning, such as semantic segmentation and
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residual neural networks, with a novel introduction of summation-based skip connections to

allow a much deeper network architecture for a more accurate segmentation, either membrane-

or blob-type delineation. Along side with adversarial training and the introduction of noise-

patch concatenation, an improvement over the unpaired image-to-image translation using cycle-

consistent loss is presented to show that having the prior-knowledge on the noise pattern such

as gridtape film or charge damage is advantageous for the denoising process, compared to direct

translation back and forth inbetween noisy and noise-free image domains.
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II Background and Related Work

2.1 Discrete Wavelet Transform

Original signal

Level 1 Level 2

Mixed-band
Wavelet

Conventional 
Wavelet

Level 3

(a) 2D image

Original 3D MRI signal,
without and with applying 

transfer function

Mixed-band
Wavelet

Conventional 
Wavelet

Level 1 Level 2 Level 3

(b) 3D volume

Figure 4: Examples of conventional (top row) and mixed-band (bottom row) wavelet transform.

The discrete wavelet transform (DWT) has been actively studied in the image processing

domain and is also commonly used as a sparsifying transform in the Compressed Sensing recon-

struction theory [87] in order to reduce noise or outliers in the reconstructed signal. One example

is image compression: One can discard less-important information from a wavelet-transformed

image more effectively, as in JPEG2000 [112]. The Federal Bureau of Investigation (FBI) uses a

wavelet-based compression method for their fingerprint image database, which is one of the most

effective biometric authentication techniques [13]. Another example is feature detection: One

can develop an edge-detection filter via leveraging the high-pass filter of a wavelet transform [89].

Figure 4 illustrates the results of applying DWT to a typical 2D image and 3D medical data.

More comprehensive reviews of wavelet transforms and their applications can be found in [88]

and [35].

Not only has DWT been widely used in various disciplines, but also many of wavelet’s appli-

cations are time-critical, such as in processing streaming video or the real-time reconstruction of

sensor data. In order to accelerate wavelet transforms for such those purposes, special hardware

or accelerators have been used. These include Field Programmable Gate Arrays (FPGAs), [36],

[64], Intel Many Integrated Core (MIC) architecture, [7], and Graphics Processing Units (GPUs).

Among them, GPUs have gained much attention due to their superior performance in terms of

cost and energy consumption. High-level GPU programming APIs, such as NVIDIA CUDA 1

and OpenCL 2, have also promoted wide adoption of GPUs by lowering the learning curve.
1http://docs.nvidia.com/cuda/cuda-c-programming-guide/
2http://www.khronos.org/opencl/
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(a) Haar wavelet

(b) CDF 5/3 wavelet

(c) CDF 9/7 wavelet

Figure 5: Lifting scheme for various wavelet families.
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2.1.1 Wavelet lifting schemes

The lifting scheme [118] is a well-known technique to implement a second-generation wavelet

as a computationally-efficient successor of the first-generation wavelet based on a filter scheme.

Figure 5 is a pictorial description of 1D DWT with a lifting scheme on several wavelet families,

such as Haar, CDF 5/3, and CDF 9/7. Those wavelets have a biorthogonal basis, which allows

us to have more freedom in designing a pair of analysis and synthesis functions (i.e., forward

and inverse transforms). They are also separable, which means multi-dimensional DWT can be

implemented by successively applying a 1D transform along each dimension.

Wavelet lifting schemes consist of multiple steps (e.g., two for Haar and CDF 5/3, four for

CDF 9/7) with an optional normalization step at the end. First, the input signal is split into

two streams of coefficients: even and odd arrays, or conventionally called by approximation and

detail series, which indicate the prospective low- and high-frequencies of the wavelet spectrum.

In other words, the multirate input signal is decomposed into a polyphase representation as

follows:

ak [n] = xk−1 [2n] , dk [n] = xk−1 [2n+ 1] (5)

where ak[n] and dk[n] are the approximation and detail coefficients of the successive transform

level k from k−1, respectively. Next, the detail part is predicted from the current values of both

streams (Equation 6) and the approximation part is then updated (Equation 7) accordingly:

dk [n] = dk [n]− LP

(
ak [n]

)
(6)

ak [n] = ak [n] + LU

(
dk [n]

)
(7)

Simply speaking, LP and LU (illustrated as the black arrow in Figure 5), which are the

prediction and updating lifting operators in Equation 6 and Equation 7, can be represented

as the local weighted sum of the lifting coefficients. Both Haar and CDF 5/3 lifting schemes

use one pair of weights (α and β) while CDF the 9/7 scheme requires two pairs of weights,

(α and β), and (γ and δ), as listed in Table 1. Finally, the resulting coefficients are sent to

the appropriate locations in the merge step, with or without normalization, and one level of

transform is completed (Equation 8). The inverse transform can be by applying the previous

steps in reverse order with weights in opposite signs.

xk [n] = ak [n] , xk [n+ dim/2] = dk [n] (8)

Note that CDF 9/7 is lossy, meaning that the complete round of forward and inverse trans-

forms does not reproduce the input signal. This is due to the non-exact lifting coefficients (see
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Table 1: Lifting coefficients of selected wavelet families

Haar CDF 5/3 CDF 9/7

α −1.0 −0.50 −1.58613434

β +0.5 +0.25 −0.05298012

γ N/A N/A +0.88291108

δ N/A N/A +0.44350685

Original signal

Level 1 Level 2

Mixed-band
Wavelet

Conventional 
Wavelet

Level 3

(a)

Original signal

Level 1 Level 2

Mixed-band
Wavelet

Conventional 
Wavelet

Level 3

(b)

Figure 6: Memory layouts of conventional and mixed-band wavelets in (a) 2D and (b) 3D.

Figure 7: Comparison of memory access patterns in conventional (left) and mixed–band (right)

1D Haar wavelet transforms.
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Table 1). In addition, CDF 9/7 is more computationally expensive because it requires four lift-

ing steps, as opposed to only two steps in Haar and CDF 5/3. Figure 5 also shows that LP and

LU of the Haar wavelet lifting transform can be done locally without reading neighboring values

across the block boundary because both predicting and updating steps use a one-side support,

either left or right, within a group of two pixels for a one-dimensional transform. CDF 5/3 and

CDF 9/7, however, need to predict and update the current element using the neighboring values

from both sides. This means that the implementation of a CDF wavelet on the GPU should

follow the stencil-based computing paradigm [93] because each thread block needs to access a

portion of data slightly larger than the output region, which is called halo. More details about

block dimensions and thread assignments for handling halo will be discussed shortly.

2.1.2 Mixed-band wavelet transform

The motivation of developing a mixed-band algorithm is that the separation of different frequency

bands may not be necessary for many applications as long as forward and inverse transforms work

as expected. For example, the main reason that the wavelet transform is used in compressed

sensing MRI reconstruction is to sparsify the image in wavelet domain and suppress close-to-zero

signals. Hence, for this purpose, the location of each coefficient does not matter. Therefore, the

main idea in the proposed mixed-band algorithm is to allow reading from and writing to the

same memory location without rearranging the result into low- and high-frequency coefficients.

This fits especially well for GPU Haar DWT because the entire single-level transform can be

implemented fully in-place using shared memory without writing intermediate lifting results to

global memory. Figure 6 shows the memory layout of wavelet coefficients in conventional (upper

rows) and mixed-band (bottom rows) wavelet transforms. In the conventional DWT (top rows

in Figure 6), low- and high-frequency wavelet coefficients are spatially separated (for example,

in Figure 6 (a), the upper image of Level 1, the yellow region is the low-frequency coefficients

and the green region is the high-frequency coefficients). In the following level, the low-frequency

region of the previous level will be used as the input to the wavelet transform. In the mixed-band

wavelet, however, high- and low-frequency coefficients are inter-mixed, as shown in Figure 6’s

bottom rows. This unconventional layout does not alter the histogram of the wavelet coefficient

values, and the inverse transform can reconstruct the input image losslessly.

In order to explain the mixed-band approach in detail, without loss of generality, we use a 1D

wavelet example as shown in Figure 38. Let us assume that the input is a 1D array consisting of

eight pixel values. Each wavelet transform converts the input into two half-size arrays: one stores

low-frequency coefficients and the other stores high-frequency coefficients. Therefore there can

12



Figure 8: Bit rotation permutation on an array of 8 pixels: decimal indexing and binary indexing.

be up to log2(N) levels when N is the size of input array (there are three levels in this example).

Blue arrows are reading transactions and red arrows are writing transactions. If we assume that

this process runs on the GPU, then you can consider the input and output pixel arrays as global

memory and the dotted box for wavelet transform as shared memory. As shown in Figure 38

left, reading and writing strides are different in the conventional wavelet transform while those

are identical in the mixed-band wavelet transform. The benefits of mixed-band approach include

1) less memory usage due to in-place filtering, 2) fused multi-level transformation in a single

kernel call without synchronizing using global memory, and 3) reducing the index computation

overhead for shuffling the location of wavelet coefficients.

2.1.3 Bit rotation permutation

In order to convert a mixed-band wavelet layout to a conventional wavelet layout, we need

to recompute the index of each coefficient. Specifically, after performing the lifting step, the

wavelet coefficients are divided into two groups, i.e., low- and high-frequency coefficients, as

shown in Figure 8. A naive method to compute a new index value involves integer division

and addition operations, which affects the performance. A 2D DWT is even more expensive

because we need to manage four groups of coefficients. In order to reduce this overhead, we

borrow the idea of index shuffling strategy in Fourier transform to rearrange wavelet subbands

more efficiently. The fast DFT introduced in [33] uses bit reversal permutation to rearrange the

Fourier frequency bands. Similar to this, we propose a procedure to perform fast reindexing

on the wavelet spectrum, i.e., bit rotation permutation. Figure 8 right illustrates the 3-bit

rotation to-the-right of each index on an array of 8 pixels. As shown here, the index of the

target location after wavelet transform can be simply computed by rotating (or shifting) source

index’s bits. As a result, only bitwise operations are required to calculate output indices and

the computational cost is lower. For an image of arbitrary size, the number of rotation bits can

be determined by evaluating log(�dim�)/log(2) where �dim� is rounded to the optimal value for

efficient calculation (as in DFT). This pre-calculation can be performed explicitly outside GPU

kernel calls.
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2.2 Multi-GPU Iterative Solver

One research direction for accelerating CS reconstruction has focused on developing efficient

numerical solvers for the �1 minimization. problem [9, 51, 70]. The other direction has been

leveraging the state-of-the-art parallel computing hardware, such as the graphics processing unit

(GPU), to push the performance to the limit [9, 74, 94]. We believe that GPU acceleration is

the most promising approach to make CS-MRI reconstruction clinically feasible, but multi-GPU

acceleration has not been fully addressed in previously published literature. The main challenge

in handling dynamic MRI is its size. Since the data are acquired continuously over time, there

are enormous size of images need to be reconstructed at the end even though CS acquisition

reduces the size of the input raw data to be processed. Moreover, if we consider 3D data, then we

need to handle 4D data which ends up with handling giga– to peta–scale images to reconstruct.

Although using a GPU can accelerate reconstruction time close to real–time, it is not sufficient

to handle the increasing size of high–dimensional dynamic MRI. In addition, as sensitivity and

spatial resolution of MRI is increasing, it is clear that larger image size will be common in the

future. Therefore, employing multiple GPUs is necessary to address this problem.

2.2.1 Multi–GPU parallelization on a shared memory system

First approach is using a system having multiple GPUs connected via a PCI express bus. The

system we tested on is connected to eight NVIDIA Tesla M2090 GPUs installed on a Dell C410x

external enclosure. The host system is NUMA (Non–Uniform Memory Access) architecture with

four six-core AMD Opteron CPUs, and four HICs (Host Interface Card) are connected to the PCI

express bus where each card is connected to two GPUs. We use OpenMP 3 to split the data into

multiple pieces, and distribute them across multiple GPUs to run the reconstruction algorithm

in parallel. OpenMP can create several light–weight CPU threads and each thread will control

one of the GPUs by using cudaSetDevice(omp_get_thread_num()). Since our reconstruction

algorithm uses a finite difference method, we need extra neighbor pixels (i.e., halos) when split

the data. We divide the data only along the time axis because usually x–y resolution is fixed

but the number of slices along the time axis can vary depending on the duration of acquisition.

Therefore, each GPU needs to be assigned with 1/(# of GPUs) of data and halo slices, see

Figure 9.

Per each iteration, halo slices have to be exchanged between adjacent GPUs because the slices

at the boundary become invalid. This data transferring is done using cudaMemcpyPeer2Peer()

3http://openmp.org
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Figure 9: Data splitting based on the number of GPUs.

Figure 10: Halo exchange synchronously between GPUs which belong to the same node

(P2P 4 that has the maximum bandwidth roughly around ∼6 GB/s on our system. The required

halo size is one slice along each direction (left, right) since we use the first–order finite difference

approximation for gradient and Laplacian computation. Therefore, the GPUs in the middle

should have two halo slices (one per each side), but the boundary GPU needs only one halo

slice. To reduce halo communication overhead, we can group multiple slices and send them at

once. In this approach, the halo size is greater than one in order to allow the method runs

multiple iterations without exchanging halos with neighbor GPUs.

If we only use single stream, then all the communication and execution have to be synchro-

nized and run serially (Figure 10). However, if we choose the halo size properly and use multiple

streams, then we can hide data communication overhead by overlapping with execution. Fig-

ure 11 explains this approach where three streams are used to split execution (1 stream) and
4http://docs.nvidia.com/cuda/cuda-runtime-api/
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Figure 11: Hiding P2P overhead using streams by overlapping computation and communication

data communication tasks (2 streams for left and right halo). We employ the approach similar

to Paulius [93] by splitting the data into three regions – external halo (orange), internal halo

(purple), and internal data (red) in Figure 11. Note that external halos are used only to compute

correct values for internal halos, and internal halos are exchanged with neighbor GPUs while

internal data is being computed. If we choose the halo size properly (depending on the com-

munication latency and computing cost), we can hide communication overhead by overlapping

halo exchange and computation.

2.2.2 Multi–GPU parallelization on a distributed memory system

Second approach is using a system having multiple nodes connected via network, see Figure 12.

In this setup, GPUs are connected to each node, and memory on each node is not visible to other

nodes. The system we tested on has two nodes connected via a QDR Infiniband network, and

each node has eight NVIDIA Tesla M2090 GPUs. We use MPI (Message Passing Interface) 5

to communicate between nodes. We use OpenMPI 1.7.2 6 that supports direct communication

interface between GPUs in a distributed memory system. In this setup, the data splitting

strategy is same as in a shared memory system (Figure 9). However, communication between

nodes is more expensive than using a PCI express bus, so we need to pay a special attention

to hide communication latency effectively. We observed that the maximum bandwidth between

different GPUs is roughly around ∼1.2GB/s on our system.

To communicate data between GPUs, which belong to different nodes, we have two main

approaches: the conventional way and the GPU Direct–enabled way. In the conventional one,
5http://www.mpi-forum.org/
6http://www.open-mpi.org/software/ompi/v1.7
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Figure 12: GPU direct version 2.0, function interface and the actual data communication flow

Figure 13: Halo exchange between GPUs which belong to the different nodes

data from the valid regions firstly need to be copied back from GPU to CPU memory (device to

host copy). Then, we use MPI communication functions to transfer those halos to the neighbor

CPU node. Lastly, the neighbor node needs to send data to their appropriate GPUs (host to

device copy). Figure 13 describes this flow. This method serves the naive attempt when the

communication between nodes are blocking (i.e., MPI_Send(...), MPI_Recv(...)). Although,

copy the data from device to host and vice versa are asynchronous, we still have to wait when

the first halo is completely sent, then continue the second halo. As shown in Figure 14, the

GPUs are idling before receiving the valid data in order to proceed the next iteration.

We can further improve this approach by switching to the non–blocking (i.e., MPI_Isend(...),

MPI_Irecv(...)) version. In this case, the CPU process immediately returns to the ready stage

to send the second halo. Therefore, we can save a lot of time and keep the GPU compute en-

gines busy. Figure 15 shows that the big gap between two computing blocks on the main

stream has been reduced a lot. During the optimization process, we observe that the left and

right halo buffer in host memory should be separated by different pointers. That means, we

can not create a large buffer that contains interior halos to be sent and exterior halos to be

received by using only one pointer and a stride from that pointer in the same buffer because

non–blocking communication will recognize this as transferring from the same memory location

and enforce synchronous communication. In addition, either blocking or non–blocking imple-
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Figure 14: Overlap data communication between distributed GPUs, a blocking approach

Figure 15: Overlap data communication between distributed GPUs, a non-blocking approach

mentations should have sophisticated synchronizations, such as cudaEventSynchronize(...)

for device and MPI_Wait(...) for host, to ensure that data transfers have been completed

before resuming the iteration jobs.

Another approach, which is GPU Direct–enabled method, is also worth considering, see 7

for more details. In brief, we have several advantages by utilizing this technique. Version 1.0

provides a fast communication between GPU memories from different nodes, user can send

the data from this device to another device with only once couple invoking MPI_Send(...)and

MPI_Recv(...). The MPI low–level of implementation will do the rest things which are the

same as the conventional approach. The only slightly difference is the memory copy from

device to host and host to device are completely synchronous. This introduces a performance

bottleneck although it splits the data into many small chunks and transfers them in a pipeline

fashion. Version 2.0 provides an improvement for shared memory systems. If two MPI processes

running on two GPUs are belong to the same node, MPI_Send(...)and MPI_Recv(...) can

automatically call cudaMemcpyPeer(...) to have a direct access between those device memories

and the communication time can be reduced. Although our GPU Cluster has Fermi GPUs and

can not use GPU Direct version 3.0, it is worth mentioning here that GPUs from different nodes

can communicate directly without coordination of the CPU by using Remote Direct Memory

Access (RDMA). That means, halo data can directly go to chipset and then transfer via the

network protocol.
7http://developer.nvidia.com/gpudirect
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Figure 16: Decompose an image into a collection of response maps.

2.3 Convolutional Sparse Coding Solver

One of the main problems hinders adopting MRI for time-critical application is its longer ac-

quisition time. There has been much research effort to accelerate MRI acquisition process using

hardware and software. Among them, compressed sensing has been successfully endorsed as a

software approach to reconstruct high-quality images from undersampled raw MRI data (i.e.,

k-space data). Since CS-MRI imposes an additional computation burden and suffers from recon-

struction artifact, CS-MRI research has mostly focused on developing faster numerical algorithms

and improving image quality for low sampling rates. The earlier CS-MRI work mainly focused

on the �1-norm energy minimization problem over sparse signal generated using universal spar-

sifying transforms, such as Total Variation, Wavelet, and Fourier transform, as introduced in

the seminal work by Lustig et al. [86]. Even though such methods may be relatively fast due to

their simplicity, the image quality may not be optimal because such universal transforms may not

represent various local image features effectively. GPU-acceleration has also been well-adopted

to reduce the computing time of such algorithms [99]. On the other hand, recent data-driven

approaches, such as dictionary learning [1], are adopted to CS-MRI reconstruction and showed

significant improvement in image quality [17]. The main novelty of this approach is to derive a

sparsifying transform via a machine learning process, which accurately represent local features

of reconstructed image compared to those of universal transforms. However, a drawback of this

approach is its computational cost because patch-based dictionary learning is a highly time-

consuming process. A recent advance in dictionary learning, convolutional sparse coding [15],

replaces the patch-based dictionary learning process with an energy minimization process using

a convolution operator on the image domain, which leads to an element-wise multiplication in

frequency domain, derived within ADMM framework [12]. Later, a more efficient method based

on a direct inverse problem is proposed by Wohlberg [131]. However, such advanced machine

learning approaches have not been fully exploited in CS-MRI literature yet.
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Figure 17: A 64-atom dictionary generated from natural images.

CSC can be regarded as an alternative to dictionary learning [1], which builds the dictionary

with convolution filters instead of local patches. In this section, we present a brief background

review of CSC for 2D images. For a given image s, we would like to find its best approximation

from the summation of response maps
∑

rk. This reverse problem can be solved if we impose a

constraint that each response map rk is the result of convolution between a filter (or atom) dk

and its associated sparse map xk. The non-linear �p norm (where 0 � p � 1), which is applied

to xk (i.e., xk is sparse), affords a feasible solution of finding such a collection of dk and xk. The

term sparsity is well-known in compressed sensing [37] area – for a given particular signal xk, it

is said to be sparse if most of elements in xk are close to zero. Figure 16 is a pictorial description

of finding dk and xk in CSC problem. As can be seen, most of the pixels in the sparse maps xk

are zeros (black), and there are only a few of non-zero valued (white pixels). Once dk and xk are

obtained properly, we can compute back the response map rk by convolving the corresponding

filter and sparse map.

Mathematically, CSC problem is equivalent to minimize this energy function:

min
d,x

α

2

∥∥∥∥∥s−
∑
k

dk ∗ xk
∥∥∥∥∥
2

2

+ λ
∑
k

‖xk‖1 s.t. : ‖dk‖22 � 1 (9)

where dk is the k-th filter (or atom in the dictionary) and xk is its corresponding sparse map for

s. In Equation 57, the first term measures the difference between s and its sparse approximation
∑

k dk ∗ xk, weighted by α. The second term is the sparsity regularization of xk using an �1

norm with a weight λ instead of an �0 norm as used in [1]. The remaining constraint restricts

the Frobenius norm of each atom dk within a unit length.

If we wish to train dk to generalize for the dictionary and to represent the features of many

images obtained from a database, all the training instances can be fetched and participate in

contributing to the feature extraction. For example, Figure 17 shows a 64-atom dictionary that
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Figure 18: Convolution in image domain equals pixel-wise multiplication in frequency domain.

has been trained using a collection of natural and standard images (lena, barbara, etc.). Their

components in Gabor-like shapes capture directional edges that match the fundamental features

in our human visual perception.

Solving Equation 57 is introduced in the seminal work of [137]. They proposed an alternating

strategy in which a series of convex subproblems between dk and xk is solved until convergence.

Because their solver is completely in the image domain, the linear complexity of convolution

affects the performance of their algorithm. More efficient approaches based on the Fourier

Convolution theorem are also proposed [15, 131, 132] (see Figure 18). The filter is padded

with zeros to make it the same size as the image, and the Fourier transform is applied to

both the padded filter and the image so that the convolution can be computed as a pixel-wise

multiplication in the Fourier domain.

Dictionary can also be in 3D format. As shown in Figure 19, 3D dictionaries are extracted

from the input volumes where each atom in the dictionary represents local feature in the data col-

lected from public domain: MRI-Kiwi, MRT-Aneurysm, CT-Bonsai, low-dose CT-Chest (LdCT-

Chest), CT-Tooth, and EM-Mouse. For example, the atoms in the dictionary of the LdCT-Chest

data represent fine-level details related to bones and surrounding muscle tissues. Similar results

can be found in other datasets as well. They generate the data-dependent learned basis, which

differs significantly from the universal dictionary in the Fourier, cosine and wavelet transforms.

2.4 Deep Learning in Bio-medical Image Reconstruction

2.4.1 Deep Learning in Image Processing and Computer Vision

In the last five years, deep learning [78] has gained much attention, largely because it has

surpassed the human level in solving many complex problems. It is comprised of many perceptron

layers that form a deep neural network. In visual recognition tasks, this type of architecture

can learn to recognize patterns such as handwritten digits and other features of interests [77] in
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(a) Dictionaries of LdCT-Chest dataset

(b) Dictionaries of MRI-Kiwi dataset

(c) Dictionaries of CT-Bonsai dataset

Figure 19: Volume rendering of hierarchical multi-scale 3D dictionaries. From left to right: three

resolutions of 24 atoms (73, 153 and 313).

images hierarchically [136]. However, the main drawback of using deep neural network is that

it requires a huge amount of data for training the network. In order to overcome this issue,

researchers have started to collect a large database [107] which contains millions of images from

hundreds of categories. Since then, many advanced architectures have been introduced including

VGG [111], Googlenet [119]. Computers are now able to mimic artistic painting to produce new

pictures by transferring the style from one image to another [49]. In addition, researchers are

also actively working on extending deep learning methods for medical image data beyond the

scope of natural images [30]. These approaches impose vast changes in automatic classification

and segmentation on other image modalities, such as CT [138] and MRI [66].
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Figure 20: An example of EM image (left) and its cell membrane segmentation result (right).

2.4.2 Deep Learning in Connectomics

“How does the brain work?” This question has baffled biologists for centuries. The brain is con-

sidered the most complex organ in the human body, which has limited our understanding of how

relating its structure is related to its function even after decades of research [83]. Connectomics

research seeks to disentangle the complicated neuronal circuits embedded within the brain.

This field has gained substantial attention recently thanks to the advent of new serial-section

electron microscopy (EM) technologies such as the automated tape-collecting ultramicrotome

(ATUM) [55] (see Figure 20 for an example of EM image and its cell membrane segmentation).

The resolution afforded by EM is sufficient for resolving tiny but important neuronal structures

that are densely packed together, such as dendritic spine necks and synapses. These structures

can be as small as only tens of nanometers in width [59]. Such high-resolution imaging results in

the generation of enormous datasets, approaching one petabyte for only a relatively small tissue

volume of one cubic millimeter. Therefore, handling and analyzing the resulting datasets is one

of the most challenging problems in connectomics.

Early connectomics research focused on the sparse reconstruction of neuronal circuits [11, 14],

i.e., tracing only a subset of neurons in the data by using manual or semi-automatic tools [23, 69,

113]. Unfortunately, this approach requires too much human interaction to scale well over the

vast amount of EM data that can be collected with technologies such as ATUM. Because of this,

the field has been limited in the number of datasets that have been thoroughly annotated and

analyzed. In addition, multi-scale reconstruction, including dense reconstruction in the region

of interest, has gained popularity recently because it can reveal low-level structural information
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that is not available in sparse reconstruction or functional imaging [73]. Therefore, developing

scalable and automatic image analysis algorithms is an important and active research direction in

the field of connectomics. Although some EM image processing pipelines (e.g., RhoANA [73]) use

conventional, light-weight pixel classifiers, the majority of recent automatic image segmentations

for connectomics rely on deep learning. Earlier automatic segmentation work using deep learning

has mainly focused on patch-based pixel-wise classification based on a convolutional neural

network (CNN) for affinity map generation [124] and cell membrane probability estimation [31].

However, one limitation of applying a conventional CNN to EM image segmentation is that

per-pixel network deployment can be highly expensive in consideration of the tera- to peta-scale

EM data size. For this reason, a more efficient, scalable deep neural network will be important

for image segmentation of the large datasets that can now be produced [28, 105]. The main

idea behind these approaches is to extend a fully convolutional neural network (FCN) [85],

which uses encoding and decoding phases similar to an autoencoder for the end-to-end semantic

segmentation problem.

Deep learning has been quickly adopted by connectomics research for automatic EM image

segmentation. One of the earliest applications to EM segmentation was made by Ciresan et

al. [31]. This method involves the straightforward application of a CNN for pixel-wise mem-

brane probability estimation and it won the ISBI 2012 challenge [3]. One notable recent ad-

vancement in the machine learning domain is the introduction of a fully convolutional neural

network (FCN) [85] for the end-to-end semantic segmentation problem. Inspired by this work,

many successive variants of FCN have been proposed for EM image segmentation. Chen et

al. [28] proposed multi-level upscaling layers and their combination for final segmentation. A

new-post processing step, namely lifted multi-cut [5], was also introduced to refine the seg-

mentation. Ronneberger et al. [105] presented skip connections for concatenating feature maps

in their U-net architecture. Although U-net and its variants can learn multi-contextual infor-

mation from the input data, they are limited in the depth of the network they can construct

because of the vanishing gradient problem. Recently, the 3D extension of U-net was proposed

for confocal microscopy segmentation [30]. In the image classification task, on the other hand,

shortcut connections and direction summations [57] allow gradients to flow across multiple layers

during the training phase. Overall, these related studies inspired us to propose a fully residual

convolutional neural network for analyzing connectomic data. Work that leverages recurrent

neural network (RNN) architectures can also accomplish this segmentation task [116]. In fact,

the membrane-type segmentation approach is a crucial step for connected component labeling

to resolve false splits and merges during the post-processing of probability maps [41, 96].
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Modern electron imaging techniques enable comprehensive reconstruction of neural circuits

at nanometer resolution. However, electron microscopy images often have limited contrast, which

can make identification of features ambiguous. In cases where we can model sources of noise,

it may be possible to denoise the data, improving effective signal-to-noise ratios and improving

both manual tracing and automated segmentation accuracy. Conventional approaches do not

usually harness the noise-free samples as ground truth to perform image denoising task. Several

common filter design techniques can be named as a few, such as Bilateral filter [122], Non-Local

Mean filter [16], so on and forth. On the other hand, noise reduction problem can be also defined

as an optimization scheme where Total Variation (TV) [26, 106] either in �1 or �2 norms of the

results as regularizers, Anisotropic Diffusion (Perona–Malik Diffusion) [97] are proposed . Al-

though those methods are less susceptible to the computational burden where intensive data and

heavy training are required, they posed some difficulties for choosing the best parameters via

tuning. Modeling image as sparse linear combination of atoms, such as K-SVD [39], BM3D [34]

is another category of denoising techniques that can robustly remove the noise. A group of

atoms, i.e., dictionary, after being trained offline (with clean data) or blindly online, can be used

to estimate the noisy image in which noise-model can not be captured via sparsity regularizer

and results in the noise-free approximation. However, these methods pose computational ex-

pense in both training and estimating the denoised images in which many iterative minimization

steps are involved for solving a predefined energy functions. Deep learning [52, 78] has emerged

recently when people made advancements and applied them to various tasks of image processing

and computer vision problem such as classification [58, 65, 77], segmentation [85, 105], localiza-

tion [50, 56], translation [67, 140], reconstruction [54, 103], and many more. Among them, cycle

consistent loss has been used to denoise multiphase Coronary CT by direct translating low-dose

to routine-dose CT image [72]. Hence, we can increase the image quality further by leveraging

deep learning power to perform such a reconstruction task like denoising.

2.4.3 Deep Learning for Compressed Sensing MRI Reconstruction

Deep learning-based CS-MRI is aimed to design fast and accurate method that reconstruct high-

quality MR images from under-sampled k-space data using multi-layer neural networks. Earlier

work using deep learning in CS-MRI is mostly about the direct mapping between a zero-filling

reconstruction image to a full-reconstruction image using a deep convolutional autoencoder net-

work [128]. Lee et al. [79] proposed a similar autoencoder-based model but the method learns

noise (i.e., residual) from a zero-filling reconstruction image to remove undersampling artifacts.

Another interesting deep learning-based CS-MRI approach is Deep ADMM-Net [117], which is a
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deep neural network architecture that learns parameters of the ADMM algorithm (e.g., penalty

parameters, shrinkage functions, etc.) by using training data. This deep model consists of mul-

tiple stages, each of which corresponds to a single iteration of the ADMM algorithm. Recently,

Generative Adversarial Nets [52] (GANs), a general framework for estimating generative models

via an adversarial process, has shown outstanding performance in image-to-image translation.

Unsupervised variants of GANs, such as DiscoGAN [75] and CycleGAN [140], have been pro-

posed for mapping different domains without matching data pairs. Inspired by their success in

image processing, GANs have been employed for reconstructing zero-filling under-sampled MRI

with [91] and without [134] the consideration of data consistency during the training process.

As shown above, deep learning has proven itself very promising in CS-MRI as well for reduc-

ing reconstruction time while maintaining superior image quality. However, its adaptation in

CS-MRI is still in its early stage, which leaves room for improvement.
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III GPU-based DWT with Hybrid Parallelism

3.1 GPU Optimization stategies

In this section, various optimization strategies for GPU implementation of lifting DWT are

discussed in detail, and an optimal implementation strategy using hybrid parallelism will be

proposed at the end.

3.1.1 Using shared memory

Shared memory is commonly used in GPU programs to reduce the longer memory latency of

global memory (DRAM), and it is effective if data is reused multiple times. Another important

role of shared memory is to serve as a communication medium between threads. The lifting

scheme requires multiple computation steps, in which each step updates only a half of the input

data (either even- or odd-indexed data), and newly updated data is used as an input to the next

update step. Figure 22 (a) shows CDF 5/3 lifting wavelet implementation using shared memory

for interthread communication. In the figure, red arrows represent shared memory read/write

transactions and gray dotted arrows represent no memory transaction. Because only even- or

odd-indexed values are updated concurrently at any given lifting step, there is no read-write

conflict. Shared memory is even more effective for wavelets with large supports, such as CDF

9/7, because many update iterations must be performed.

Special care should be taken when data is copied from global memory to shared memory,

since global memory access is an expensive operation on the GPU. Most wavelet bases other

than Haar have a large support that extends beyond the computing domain, which is called

halo. Due to halo, the tile dimension is not aligned with that of the thread block. For example,

as shown in Figure 21, for a {32, 16} thread block, the required tile size including the halo

for CDF 5/3 will be {35, 19} because the halo size along one axis is 3 (2 for left/top, and 1

for right/bottom). In order to load the entire tile region from global memory, we first linearize

2D thread indices to 1D, and then assign threads to appropriate global memory locations in

a row-major order (Figure 21). Because our tile dimension is not a multiple of 128 Bytes (L1

cache line size), we disable L1 cache and use the non-caching global memory load to reduce the

memory transaction granularity to 32 Bytes. The entire tile can be copied from global to shared

memory in two loading steps for 512 threads (only 153 threads participate the data copy in the

second step).
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Tile size {35, 19}

Reading pass 1

Reading pass 2

Writing pass 1

Valid size {32, 16} Block size {32, 16}

Figure 21: Region of reading and writing on using only shared memory strategy.

3.1.2 Using registers

In this optimization, we reduce shared memory transactions by loading necessary neighboring

values to registers and perform computation only on registers. The main idea behind is that

register’s memory bandwidth is much higher than that of shared memory even though both

are on-chip memory [127], so reducing shared memory transactions is beneficial although more

registers are required.

Figure 22 (a) is a shared memory-based CDF 5/3 implementation, in which in-place compu-

tation of the lifting scheme is done via writing back and forth from shared memory. This is a

commonly used technique for interthread communication, but we can optimize even further by

using registers as shown in Figure 22 (b), in which registers are used as a temporary per-thread

buffer to hold the result of each lifting step computation. As shown in the illustration, the

total number of shared memory transactions (drawn in red arrows) is reduced in the register-

based implementation. The shared memory-based implementation shown in Figure 22 (top)

(a) requires 6 reads (two sets of three reads in lifting with α are done in parallel), 3 writes to

shared memory and two __syncthreads() calls. But the register-based implementation shown

in Figure 22 (bottom) requires only 5 reads and 2 writes of shared memory per thread with

only one __syncthreads() call at the end. Although there is extra data copy between registers

in the register-based implementation, we observed an overall performance improvement over

shared memory-based implementation about 20%. Note that the strategy described here does

not exploit instruction level parallelism (ILP) yet. It can further improve the performance as

shown in the following sections.
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(a) Shared memory-based approach

(b) Register-based approach

Figure 22: Two lifting scheme implementations of biorthogonal CDF 5/3 wavelet and their

NVIDIA CUDA code snippets.

Block size {32, 16}

Reading pass 1

Reading pass 2

Reading pass 3

Reading pass 4

Writing pass 1

Writing pass 2

Writing pass 3

Writing pass 4

Tile size {64, 32}

Valid size {60, 28}

Figure 23: Region of reading and writing on using instruction level parallelism strategy.
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3.1.3 Exploiting Instruction level parallelism (ILP)

In the previous optimization strategies, about a half of GPU cores are idling during DWT lifting

steps. We can further reduce that inefficiency by leveraging ILP, which reduces the number of

threads and let each thread do more work. For example, if we reduce the thread block size by

half, then the thread block can cover the same output region without idling by doubling each

thread’s workload. Therefore, all the GPU cores will participate in each even- or odd-lifting

step.

The ILP setup for CDF 5/3 is shown in Figure 23 where the thread block size is {32, 16}

and the tile size, which is equivalent to the shared memory size, is {64, 32}. In this setup,

the effective output size becomes {60, 28} due to the halo of size 2 on each side. Note that

in this setup we match the shared memory dimension to a multiple of thread block dimension,

which is different from the shared memory strategy. Each thread covers a {2, 2} region, which

is 4× more memory transactions and 2× more lifting computations per thread. For the CDF

9/7 DWT case, we can keep the same thread block and tile dimension by reducing the output

size to {56, 24} because the halo size is 4 on each side. The thread block size is then tuned

empirically by fixing the x dimension to 32 and testing various y dimensions from 2 to 60. In

our experiment, 20 produced the best result, i.e., 20 warps per a thread block.

Note that in this approach we did not use a register technique. Even so, we observed about 5×
performance boost compared to the shared memory-based approach introduced in Section 3.1.1,

which is due mainly to hiding memory and instruction latency and reducing unnecessary idling

in the lifting steps.

3.1.4 Exploiting warp shuffles on Kepler GPUs

Recent NVIDIA GPUs (Kepler and later) support warp shuffle instructions, which allow for the

rapid exchange of data between threads in a same warp. Currently, four warp shuffle instruc-

tions are provided: __shfl_up, __shfl_down, combined with __shfl_xor, and __shfl. Using

warp instructions, a thread can directly read another thread’s register values without explicitly

exchanging them via shared memory. In the shared memory-based strategy introduced above,

each lifting step was required to write the intermediate result back to shared memory so that

neighboring threads can use it for the next lifting step. Therefore, by organizing the tile size as

a multiple of warp size and declaring registers to hold the intermediate pixel values, we can elim-

inate effectively the expensive synchronization which can happen on shared memory in lifting

steps.
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Figure 24: Three variants of hybrid parallelism of DWT: Full-Shuffles, Semi-Shuffles and Full-

Register.

In order to exploit warp shuffles, we need to align the warp and the lifting direction, e.g., a

horizontal warp for horizontal lifting step (Figure 24 left). In addition, the y dimension of the

tile size should be a multiple of a warp size so that a warp can process columns without thread

idling. In our setup, the tile size is {64, 32} and the thread block size is {32, 32}. As shown

in Figure 24, a warp processes one row for a horizontal lifting and two columns for a vertical

lifting so that each thread is processing {2, 1} output regions. In each lifting step, every thread

must read one register value from its neighboring thread using a warp shuffling instruction, so

we call this strategy Full-Shuffles. Note that this warp shuffle can eliminate shared memory

access during lifting steps, but all the data must be written back to shared memory twice: one

is between horizontal and vertical lifting and the other is immediately before the final output is

written to global memory. The former instance is for inter-warp communication, and the latter

instance is for coalesced global memory writes.
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3.1.5 Combining all: hybrid approach

In this hybrid approach, we combine all the previously discussed techniques, such as leveraging

shared memory, registers, warp shuffles and ILP to maximally hide the latency of memory oper-

ations. This method declares more registers per thread, e.g., an array of 4 by 2, and uses a {32,

8} thread block (8 warps) to cover a {64, 32} tile. Hence, there are 8× of memory operation-ILP

(MILP) and 4× of computation-ILP (CILP). Regarding the lifting steps during the horizontal

pass, it operates similar to Full-Shuffles. The slight difference is that each thread must perform

DWT 4× the amount of work compared to Full-Shuffles. Thereafter, the intermediate result of

the horizontal transform is written back into shared memory so that warps can later access the

vertical pixels in aligned orders.

Subsequently, the lifting steps along the vertical pass will take place as a combination of

registers and warp shuffles. The computation, which happens inside each thread, requires

register-read only (Figure 24 center, orange arrows). At the top or bottom of the thread’s

array, neighboring pixel values must be fetched via warp shuffles (Figure 24 center, red arrows).

This configuration is called hybrid or Semi-Shuffles. In fact, the degree of ILP can be modified

by adjusting the number of warps per tile. Further, when the number of warps per tile is reduced

to one and each thread holds enough registers to proceed lifting steps vertically (an array of 32

by 2), this will be similar to the setup used by Enfedaque et al. [40]. This particular setup is

named Full-Register (Figure 24 right). Note that in Full-Register, shared memory is completely

removed and more warps can be grouped to form a single block.

3.1.6 Fused multi-level Haar DWT

As mentioned earlier, Haar DWT has only one-side local supports and its lifting-scheme is

completely fit onto CUDA blocks because halos across the block boundary are not needed. If we

modify the memory layout of the conventional Haar DWT to that of the mixed-band approach,

multiple levels of Haar wavelet can be processed in a single kernel call, i.e., fused multi-level

transformation. The main idea behind this is that the mixed-band approach allows Haar DWT

to be processed in-place, where a group of four pixel is read, lifted and written onto the same

memory location. Therefore, once a chunk of processing block is loaded to shared memory,

wavelet transform can be applied on shared memory iteratively without writing intermediate

results back to global memory. The first level of transform takes place as normal mixed-band

Haar DWT where implementation is exactly same as the hybrid approach except we do not

reshuffle the location of wavelet coefficients. In the following levels, the method simply reads
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the appropriate coefficients from shared memory, performs lifting steps, and stores the result

back to shared memory. Note that ILP will decrease after each level because less number of

coefficients need to be processed. In addition, there is a limit for the tile size per block, so the

maximum DWT level should be chosen appropriately. In our implementation, we chose four

levels of transformation to be fused into a single kernel call.

3.2 Result

3.2.1 Comparison of various strategies

We verified the performance of the proposed method by performing one level of 2D DWT on

images of different sizes. We selected a computer equipped with an NVIDIA GK110 GPU to

collect the running times for all measurements. Note that in this evaluation, all of the pre- and

post-transfers from CPU to GPU (and vice versa) were omitted (only the kernel timing was taken

into account). We conducted the experiment using various strategies, in both directions (analysis

and synthesis kernels, and then averaging the running times) and on three commonly distinct

orthogonal wavelet families (Haar, CDF 5/3 and CDF 9/7). Each strategy was tested multiple

times (at least 200 times) to measure the average running time. The proposed optimization

strategies are summarized as follows:

Using global memory only (gmem): In this strategy, global memory was used to hold all

buffers and perform the 2D DWT without considering any support of the GPU’s on-chip memory

(i.e., shared memory, cache, or registers). This approach is a naive GPU implementation, and

shows a moderate increase in speed compared to a serial CPU implementation. The results of

using only global memory were considered as the baseline to evaluate the efficiency of other

optimization techniques.

Using shared memory (smem): It is essential to move all of the frequently accessed data

to a common place, which is shared by a thread block, in order to increase the performance. All

the threads within a block copy a tile of the image (plus halo) from global memory and transfer

it to shared memory. This helps to reduce the tremendous cost of accessing global memory.

Using registers (reg): Instead of invoking __syncthreads() after each level of a lifting step

in shared memory as above, registers are used for inter-thread communication within a block.

This approach allows each GPU thread to work more independently of its neighbors without

synchronization.

Using instruction level parallelism (ilp): The total number of threads is reduced by a

factor of 4 and each of them performs more work on either memory operations or wavelet lifting
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(c) CDF 9/7 DWT

Figure 25: Running times (in msecs) of various strategies, on NVIDIA Kepler GPUs.
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Table 2: Running times (in msecs) of various optimization strategies for CDF 9/7 DWT on

NVIDIA Kepler GPUs

CDF 9/7 gmem smem reg ilp warp hybrid

512x512 0.2572 0.2119 0.1751 0.0484 0.0329 0.0201

1024x1024 0.9219 0.8072 0.6667 0.1612 0.1081 0.0580

1920x1080 1.8157 1.6061 1.3269 0.3065 0.2052 0.1069

2048x2048 3.5802 3.2048 2.6476 0.6046 0.4049 0.2076

4096x4096 14.1514 12.7280 10.5169 2.3916 1.5946 0.8066

steps. In this case, the instruction pipeline suffers less from stalls, which leads to higher com-

putational throughput. In addition, it allows thread blocks to leverage more on-chip resources

such as registers and shared memory / L1 caches.

Using warp shuffles (warp): With the thread block configured as {32, 32} on a {64, 32}

tile, the input pixels are first read directly from global memory to registers (declared as an array

of 2 by 1 per thread) without __syncthreads(). The horizontal pass can proceed with the

support of warp shuffles and save the temporary results into shared memory. Then 32 warps

can process 64 columns in the vertical pass to complete one level of DWT.

Using hybrid method (hybrid): We further extended our strategy to the hybrid parallelism

which is a fusion of using registers, warp shuffles, TLP and ILP together. The degree of TLP/ILP

was chosen empirically after testing potential configurations in order to have the best choice of

representation (see Section 3.2.2).

As shown in Table 2 and illustrated in Figure 25, the running times of various strategies

(measured in milliseconds, visualized on a logarithmic scale) are decreasing in the order of

approaches (gmem, smem, reg, ilp, warp, hybrid). The results show that those steps we followed

leads to a better DWT performance on the GPU.

3.2.2 Comparison with different hybrid configurations

In this section, we show that combining the advantages of TLP (by increasing number of threads)

and ILP (by assigning more work per thread) will result in a better DWT performance. As

mentioned earlier, the degree of ILP can be adjusted on the basis of the amount of work eligible

for one thread, which is the interpolation of Full-Shuffles and Full-Register. Table 3 specifies

the sizes of thread block and the amount of computational work per thread on DWT CDF 9/7,
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Table 3: Different block and tile configurations of hybrid approach.

TLP \ILP 1 4 8 16 32

32×1 64×1 64×4 64×8 64×16 64×32

(32×4) – – – 64×40 64×104

32×4 64×4 64×8 64×16 64×32 64×64

32×8 64×8 64×16 64×32 64×64 64×128

32×16 64×16 64×32 64×64 64×128 64×256

32×32 64×32 64×64 64×128 64×256 64×512

Table 4: Running times (msecs) of hybrid CDF 9/7 DWT on a Kepler GPU, image size 1024×1024.

TLP \ILP 1 4 8 16 32

32×1 – – – 0.08728 0.23954

32×4 – – 0.08594 0.06403 0.11589

32×8 – 0.09809 0.06033 0.08215 0.14014

32×16 0.14144 0.06940 0.07224 0.12643 –

32×32 0.11320 0.07807 0.10729 – –

where the position from left to right indicates an increasing degree of ILP (or a decreasing degree

of TLP), and the position from top to bottom indicates the thread block size. Note that some

of the configurations (in gray) will be invalid due to either the number of necessary pixels along

the vertical axis for a valid tile or the hardware limitations (shared memory resource per block).

The first row indicates the configuration of the Full-Register without the involvement of shared

memory. We can assign either one or more warps per blocks to increase the occupancy. The

first column covers the Full-Shuffles case where 16 warps handle a {64, 16} tile and 32 warps

handle a {64, 32} tile. The other configurations belong to the Semi-Shuffles where lifting along

y is a mixture between intra-thread read and intra-warp data exchange.

We conducted the experiment on various image sizes, e.g., 512×512, 1024×1024 (Table 4),

1920×1080 (Table 5), 2048×2048 and 4096×4096, and observed that the best configuration was

using eight warps per block while letting each thread do eight times the amount of computation,

i.e., 32×8 block size and 64×32 tile size (marked in boldface).
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Table 5: Running times (msecs) of hybrid CDF 9/7 DWT on a Kepler GPU, image size 1920×1080.

TLP \ILP 1 4 8 16 32

32×1 – – – 0.16205 0.45436

32×4 – – 0.16094 0.11829 0.21642

32×8 – 0.18526 0.11145 0.15333 0.26044

32×16 0.27010 0.12919 0.13411 0.23910 –

32×32 0.21490 0.14499 0.20212 – –

Table 6: Running times (msecs) of CPU implementations (MATLAB and GSL) and various optimization

strategies for CDF 9/7 DWT on a Kepler GPU (including data transfer time).

CDF 9/7 gsl matlab gmem smem reg ilp warp hybrid

512x512 3.309 22.600 0.539 0.501 0.491 0.372 0.380 0.356

1024x1024 16.911 91.800 2.222 2.172 2.085 1.589 1.566 1.539

1920x1080 - 167.400 4.632 4.345 4.308 3.325 3.310 3.195

2048x2048 132.794 349.700 9.051 8.846 8.531 6.614 6.416 6.389

4096x4096 635.031 1202.800 35.222 34.090 33.311 25.779 24.961 24.776

3.2.3 Comparison with CPU implementations

In this evaluation, we compare the proposed GPU DWT with several existing CPU DWT im-

plementations to see how much speed up can be achieved from the GPU. The wall-clock running

times of each method, which include all the data transfer overhead on GPU implementation

for fair comparison, are collected. We chose the DWT implementations available in MATLAB

2015b 8 and GNU Scientific Library (GSL), version 1.16 [48] for this experiment. Table 6 lists

the running time of each method measured on various image sizes for one level of CDF 9/7

DWT. As shown in this table, our hybrid approach running on a single NVIDIA Kepler GPU

K40 (745 MHz) outperforms gsl and matlab running on an Intel i7-4790K CPU (4.20 GHz) by

a large margin – our GPU DWT achieved up to 25× and 65× speed up, respectively.
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Figure 26: Overlapping regions of Full-Shuffles or Semi-Shuffles, compared to Full-Register.

Table 7: Running times (in msecs) of other GPU DWT methods and the proposed methods for CDF

9/7 DWT.

CDF 9/7 GF100 (Fermi) GK110 (Kepler)

[92] [46] [115] [125] [114] ilp [40] hybrid

512 × 512 0.51 0.35 0.46 0.25 0.16 0.107 0.0545 0.0204

1024 × 1024 1.31 1.08 1.05 0.66 0.46 0.387 0.1452 0.0594

1920 × 1080 2.36 2.14 1.79 1.21 0.86 0.747 – 0.1114

2048 × 2048 4.51 3.86 2.54 1.98 1.68 1.489 0.4812 0.2227

4096 × 4096 17.25 16.38 14.15 7.18 6.44 5.924 1.7919 0.8678

3.2.4 Comparison with other GPU DWT methods

We compared our method with the most recent GPU wavelet work using Fermi GPUs [114]

and its references therein. In other to make direct comparisons, we ran our CDF 9/7 DWT on

an NVIDIA GF100 GPU (Tesla C2050) and compared our results with the results of methods

from [114].

To be more specific, Matela [92] and our early work [100] used a symmetric block-based

approach, which disregards the halo across a block boundary, and hence acts as an approximation

of the classical filter scheme. The other methods, including our proposed method, are an exact
8http://www.mathworks.com/products/wavelet/
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implementation of non-Haar DWT. Among those, Franco et al. [45], Song et al. [115], and Laan

et al. [126] split the horizontal and vertical pass into two cascaded stages, which differs in the

handling of the intermediate result before performing the vertical transform. Franco et al. [45]

included the transposition after each pass so that on the next stage of wavelet transform, data

would already be laid out the same as on the horizontal pass. Song et al. [115] did not have the

transposition step, but instead processed the vertical pass in column segment fashion. As showed

in Table 7, Franco et al. [45] was faster than Song et al. [115] only on small image (512×512)

where the data was actively cached on the transpose operation. It suffered from the memory

bottleneck, however, due to the data movement for larger images. Laan et al. [126] proposed a

slab approach (sliding window) to achieve a fast column transform where enough data would be

stored in the top and the bottom of the slab, and multi-column could be processed at the same

time to maximize the use of shared memory. Overall, those three methods involved expensive

global memory in-between and that impaired their performance.

The recent improvement from Song et al. [114] employed the block-based (or tiling) technique,

which is same as ours, to eliminate the intermediate results being stored in global memory. This

approach performs a two-pass transform in one kernel call, and hence establishes a 2D stencil-

based processing procedure. Song et al. also implicitly used the ILP where the block was

configured as {60, 1} and the tile was set as {60, 32}. Equivalently, they assigned 2 warps (64

threads) for one tile of the image and hence 4 threads out of 64 were idling. Note that this

approach did not fully leverage the GPU resource when the block size was not divisible by the

warp size (32), which left more room to optimize further.

Our ilp approach is faster (Table 7) than the recent method from Song et al. [114] because

we employed ILP and used fast bitwise computation to calculate the subband’s locations. It also

showed that the advantages of giving more work per thread will lead to better performances.

Because we just need to store the valid coefficients (neglect the halo) to global memory, there

are still idling threads during the last pass of writing (see Figure 23). The ratio between the

active and the total threads of our method is 88.5%, however, which is much higher than 79.4%

from Song et al. [114].

On NVIDIA Kepler architecture

We also compared our method with the most recent register-based GPU DWT algorithm [40].

In order to make a direct comparison, we downloaded their source code from the web repository

(available at 9) and compared it with our hybrid version on an NVIDIA K40 GPU. Again, one
9http://github.com/PabloEnfedaque/
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level of CDF 9/7 DWT was used as a test case to stress the computing power of the GPU. As

shown in Table 7, our hybrid method consistently outperformed Enfedaque et al. [40].

The main reason behind that result is that once ILP is saturated and the maximum per-

formance is reached, then assigning more work to a thread cannot increase the performance.

Since ILP and TLP are inversely proportional to each other for the fixed problem size, if ILP

is increased then TLP is decreased, and vice versa. Just maximizing ILP would hurt TLP

significantly. In [127], Volkov et al. showed that maximizing ILP can result in an optimal per-

formance even though occupancy becomes very low, i.e., the degree of TLP is low. Along this

line, Enfedaque et al. [40] introduced a GPU DWT that maximized ILP using registers only.

As shown in the recent study by Fatehi and Gratz [44], however, there exists an upper bound

of ILP for total memory and computation instructions. Therefore, we believe that combining

TLP with ILP can be more effective because memory and instruction latency can be further

hidden by concurrent threads once ILP reaches its peak. We also believe that there should be

enough concurrent warps running on a Streaming Multiprocessor (SMX) of the GPU for optimal

performance. For example, on NVIDIA Kepler architecture, up to two independent instructions

from each of the four concurrent warps can be issued per clock cycle 10, which makes the setup

of eight warps per block in the hybrid optimization fit better to Kepler GPUs than did the four

warps per block in Enfedaque et al [40].

Another important point is that our hybrid method used both warp shuffles and registers for

vertical (along y axis) lifting steps, which allowed fewer overlapping regions than Enfedaque et

al [40]. For example, consider the case of performing CDF 9/7 DWT on an image: its {64, 96}

portion must use four blocks (each has 8 warps) to proceed (as Full-Shuffles or Semi-Shuffles).

This results in a ratio of the overlapping halo region to the output size of 45.83%. By comparison,

Full-Registers requires three blocks (each has 4 warps) and hence, has 112.5% of the overlapping

ratio. This is mainly because the working area of Full-Shuffles or Semi-Shuffles is per-block

while Full-Registers or Enfedaque et al. [40] is per-warp.

3.2.5 Comparison on multi-level GPU DWT

In this section, we assess the actual application-level running time of the proposed GPU DWT for

multi-level transformation to see how the proposed method performs under realistic conditions.

Table 8 shows the running times of CUDA kernels measured using a wall-clock timer for up to

four levels of CDF 9/7 DWT in our hybrid approach and Enfedaque et al. [40]. We used test

images at various resolutions ranging from 512×512 to 4096×4096. For accuracy, we ran the same
10http://docs.nvidia.com/cuda/kepler-tuning-guide/
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Table 8: Running times (in msecs) of [40] and hybrid for multi-level CDF 9/7 DWT.

CDF 9/7 Enfedaque et al. [40] hybrid

level 1 2 3 4 1 2 3 4

512x512 0.0545 0.0835 0.1107 0.1364 0.0204 0.0407 0.0544 0.0670

1024x1024 0.1452 0.2006 0.2259 0.2533 0.0594 0.1015 0.1197 0.1334

2048x2048 0.4812 0.6251 0.6770 0.7064 0.2227 0.3505 0.3878 0.4057

4096x4096 1.7919 2.2756 2.4170 2.4733 0.8678 1.3525 1.4717 1.5086

Table 9: Running times (in msecs) of hybrid and mb-hybrid for multi-level Haar DWT, on an

NVIDIA Kepler GPU.

Haar hybrid mb-hybrid (fused kernel)

level 1 2 3 4 1 2 3 4

512x512 0.0150 0.0298 0.0414 0.0524 0.0129 0.0152 0.0182 0.0192

1024x1024 0.0458 0.0753 0.0901 0.1016 0.0333 0.0417 0.0522 0.0560

2048x2048 0.1810 0.2810 0.3106 0.3251 0.1139 0.1472 0.1888 0.2039

4096x4096 0.7162 1.1165 1.2181 1.2479 0.4470 0.5690 0.7336 0.7934

test multiple times and collected the average running time. Each test includes running times for

both forward and inverse transformations. As shown here, our proposed method achieved higher

performance compared to the state-of-the-art method [40] measured on an NVIDIA Kepler GPU

(K40). We observed that our hybrid method runs up to 2.6× faster than Enfedaque et al., and

its performance gap is slowly reduced as the number of transform levels and image size increase.

Table 9 shows the running times of our previous hybrid optimization on the conventional

memory layout (hybrid) and the mixed-band layout (mb-hybrid) for fused multi-level Haar DWT.

In the hybrid approach, the transformation result at every level is written to global memory, but

the mb-hybrid approach transforms the input image up to four levels without accessing global

memory. This results in a significant performance improvement, up to 2.7× speed up over the

hybrid approach that is the most optimized version for single level wavelet transformation.
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Figure 27: Full 3D k-space (a), ×4 undersampling k-space (c) and their reconstructions (b), (d).

3.3 Application: 3D CSMRI reconstruction

To further assess the usability of the proposed GPU mixed-band lifting wavelet transform, we

applied our wavelet transform as a regularizer in a 3D CSMRI reconstruction problem, which

can be generally formulated as follows:

min
s

{J (s)} s.t.
∑

‖RFs−m‖22 < σ2 (10)

where J(s) stands for the energy function we want to minimize, f is the measurement of the

MRI data (i.e., k-space), and K = RF is the matrix multiplication that combines a sampling

pattern R and a Fourier matrix F for 3D data. Examples of k-spaces and their reconstructions

are shown in Figure 27. J(s) can comprise many terms, for example Total Variation (TV) [51],

Wavelet constraint [51, 86], Fourier constraint [71, 86], and the fidelity of the data. More recent

GPU implementations on MRI reconstructions with different solvers can be found in [94] and

references therein.

For instance, a 3D CSMRI energy function is described as follows:

J (s) = ‖∇xyzs‖1 + ‖Wxyzs‖1 (11)

In this equation, ∇ is the gradient operator that enforces the smooth variation of pixel intensity

in spatial dimensions, and W is a 3D DWT. In order to solve the minimization problem of Eq. 12

using the energy function given above, we use the Split Bregman iterative algorithm [51].

We include the wavelet term in J(s) and compare its reconstruction to the zero filling version

and without wavelet, on 3D fruit MRI in term of Peak-Signal-To-Noise ratio (PSNR) to the full

reconstruction. The experiments are conducted with ×4 and ×8 mask patterns on the kiwi and

tangerine data set (size 128×128×128). It took ∼7 seconds to run the solver on the GPU with

the number of inner and outer loops are 32 and 16, respectively. Kim et al. [74] reported a
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Table 10: PSNRs of 3D CSMRI reconstruction on 128×128×128 datasets. Unit: dB

Dataset Mask Zero filling No Wavelet With Wavelet

Kiwi
×4 18.7245 27.8483 28.3488

×8 17.2263 25.6509 26.1510

Tangerine
×4 22.0418 35.6646 43.6321

×8 20.6875 33.3996 36.2106

Full reconstruction Zero filling No wavelet With wavelet

Figure 28: CSMRI reconstruction on 3D data with ×4 mask with kiwi and tangerine datasets

similar study result (3D Split Bregman on the GPU) in [74]. Although it is difficult to make a

direct comparison between two methods since the testing environment and energy function are

different, we concluded that our method is roughly ∼2.5× faster than their method after proper

scaling of parameters. Note that Kim et al. did not include wavelet transform so our CSMRI

solver is heavier in arithmetic intensity, but still outperforms Kim’s method for the same number

of iterations.

As shown in Table 10, adding a 3D wavelet term can effectively increase the PSNR of the

reconstructed images. Figure 28 visualizes the CSMRI 3D volumes of kiwi and tangerine data

which have been cut at the middle to show the inside. It can be seen that the wavelet term

helps to decrease the noise-like effects and enhance the quality of 3D MRI reconstruction.
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3.4 Summary

In this work, we introduced various optimization strategies for 2D discrete wavelet transforms on

the GPU. The proposed strategies leverage fast on-chip memories (shared memory and registers),

warp shuffle instructions, and thread- and instruction-level parallelism. We showed that, unlike

other state-of-the-art GPU DWTs, hybrid parallelism that exploits both ILP and TLP together

results in the most optimal performance. We also showed that the mixed-band layout of Haar

DWT outperformed the conventional DWT especially when multi-level transformation is taken

into account. For future work, we plan to apply our proposed GPU DWT to various wavelet

applications, e.g., compressed sensing MRI reconstruction and sparse coding using dictionary

learning, and investigate the performance benefits in large-scale data processing applications.
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IV Multi-GPU Reconstruction of dCS-MRI

4.1 Method

The input to our system is 2D DCE MRI data (a collection of 2D k-space data over time) defined

on a 3D domain by the parameter (x, y, t), where x and y are spatial coordinates for 2D k-space

data, and t denotes a temporal coordinate on the time axis. In the following, the subscript of

an operator represents its dimension, e.g., Fxy stands for a Fourier operator applied to a 2D x-y

grid.

4.1.1 Compressed Sensing formulation for DCE-MRI

Let S be a collection of 2D MRI k-space data si, i.e., S = {s1, s2, ..., sn}, acquired over time.

Then the general CS formulation for DCE-MRI reconstruction problem can be described as

follows:

min
S

{J (S)} s.t.
∑
i

‖Ksi −mi‖22 < ε (12)

where J(S) is the �p-norm energy function to minimize (i.e., regularizer), fi is the measurement

at time i from the MRI scanner, and K = RF is the sampling matrix that consists of a sampling

mask R and a Fourier matrix F for 2D data. Since DCE-MRI does not change abruptly along

the time axis, we enforce the temporal coherency by introducing a total variation energy along

t axis and decouple the sparsifying transform on the x-y plane and temporal axis as follows:

J (S) = ‖WxyS‖1 + ‖∇xyS‖1 + ‖∇tS‖1 (13)

where W is the wavelet transform. Then Equation 12 can be solved as a constrained opti-

mization problem using a Bregman iteration [51] where each update of Sk+1 in line 3 solves an

unconstrained problem as shown in Algorithm 1.

Algorithm 1 Constrained CS Optimization Algorithm

1: k = 0, s0i = m0
i = 0 for all i

2: while
∑
i

∥∥RiFxys
k
i −mi

∥∥2
2
> ε do

3: Sk+1 = min
S

{J(S) + μ
2

∑
i

∥∥RiFxysi −mk
i

∥∥2
2
}

4: mk+1
i = mk

i +mi −RiFxys
k+1
i for all i

5: end while

Using the Split Bregman algorithm [51], we can decouple �1 and �2 components in line 3

in Algorithm 1 and iteratively update using a two-step process (more details can be found

in [51]). Note that in the original Split-Bregman algorithm, S and J(S) are defined on the same
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dimensional grid, i.e., if S is a 3D volume then J(S) is a hybrid of 3D total variation (TV) and

wavelet regularizers, which allows a closed-form solution for Sk+1. However, because our J(S)

consists of 1D and 2D operators, the same closed-form solution is not applicable. To be more

specific, Sk+1 can be updated by solving the linear system defined as follows:

(μF−1
xy RTRFxy − λΔxy − θΔt + ω)Sk+1 = rhsk (14)

where the parameters λ, θ, ω and μ are used to control the amount of regularization energy,

and refer to [51] for the definition of rhsk. Goldstein et al. [51] proposed a closed form solution

to invert the left-hand side of the given linear system using the forward and inverse 3D Fourier

transforms, but we cannot apply the same method since the k-space data is 2D in our formulation.

Since the left-hand side of Equation 14 is not directly invertible, we can use iterative methods,

such as the fixed-point iteration or the conjugate gradient method, that converge slower than

the explicit inversion in the original method. In order to speed up the convergence, we propose

a single iteration method, which further reduces the iteration cost by splitting the left-hand side

of Equation 14 and solve for Sk+1 directly in a single step. If we separate 1D and 2D operators

in the left-hand side, then Equation 14 can be represented as follows:

(A1 +A2)S
k+1 = rhsk (15)

where A1 = (μF−1
xy RTRFxy − λΔxy) and A2 = −θΔt + ω. If we treat A2 as the operator

applied to S from the previous iteration, i.e., Sk at (k+1)-th iteration, then Equation 15 can be

expressed as follows:

A1S
k+1 +A2S

k = rhsk (16)

Because Sk is known, we can move it to the right-hand side to make the update rule for

Sk+1

Sk+1 = A−1
1 (rhsk −A2S

k) (17)

This assumption holds for a sufficiently large k because Sk and Sk+1 will converge. Then, A1

can be inverted by making the system circulant as shown in [51]

Sk+1 = F−1
xy K−1Fxy(rhs

k + (θΔt − ω)Sk) (18)

where K is the diagonal operator defined as K = μRTR− λFxyΔxyF
−1
xy .

We evaluated the convergence rates of three different minimization strategies for Sk+1 –

fixed-point iteration, conjugate gradient, and single iteration methods (Fig. 29). We observed

that the conjugate gradient method converges about twice faster than the fixed-point iteration,

and our single iteration converges about 2∼3-fold faster than the conjugate gradient method to

reach the same PSNR.
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Figure 29: PSNR vs. CPU (left) and GPU running times (right) of various methods.
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4.1.2 Multi-GPU Implementation

As the temporal resolution of DCE-MRI increases, the entire k-space can not be mapped onto a

single GPU. We decompose the domain along the t-axis into chunks where each chunk consists

of three parts: interior, exterior, and ghost, similar to [93]. Interior and exterior regions form a

computational domain for a given chunk, and ghost is the region extends to its neighbor chunk

that is required for computation (Fig. 30 left). In our method, we increase the ghost and exterior

size (up to 5 slices in our experiment) in order to run the algorithm multiple iterations without

communication.

Data communication between adjacent GPUs is performed as follows (see Fig. 30 bottom

right): First, we perform the computation on the exterior regions, which are the ghost regions

of the neighborhood GPU, using the main stream (stream 0, Fig. 30 cyan). Note that we can

run n iterations in this step for the ghost size n (one slice of ghost region is invalidated per each

iteration, so we can run up to n iterations). Next, the other concurrent streams (stream 1 and
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2) will perform the peer copies from GPU (device) to CPU (host) memory, one stream per an

exterior region (Fig. 30 green). Because streams run in parallel, stream 0 can continue to compute

on the interior region during the communication (Fig. 30 yellow). Then each exterior region data

on the CPU will be transferred to the ghost region of its neighborhood CPU via MPI send and

receive (Fig. 30 magenta). Because the MPI process becomes available right after invoking the

GPU asynchronous calls, it can be used to perform a non-blocking transaction across the GPUs

(note that stream 2 is overlapped with MPI transfer). Finally, the valid ghost data is copied

from the host to device asynchronously to complete one round of ghost communication (Fig. 30

purple). By doing this, we can effectively hide the communication latency by allowing the ghost

transfers occur on the different GPU streams while the main stream continues the computation

on the interior region. If GPUs are in the same physical node, this communication can be

implemented using asynchronous peer-to-peer device communication via PCI bus. If the system

supports infiniband network, we can use NVIDIA GPUDirect for RDMA communication.

4.2 Result

We used an NVIDIA GeForce GTX 680 GPU with Jacket for MATLAB for the single GPU

evaluation (same environment as Bilen’s). We ran our scalability test on a 6-node GPU cluster

system with two NVIDIA K20m per node, 12 GPUs in total. Gd-DTPA contrast agent was used

for data preparation, and the CS-undersampling factor is ×8.

4.2.1 Image Quality and Running time Evaluation

We compared our methods with IMPATIENT [47], kt-SPARSE [86], kt-FOCUSS [71], GPU

Split-Bregman [74] and GPU ADMM [9], and our method is comparable to or outperforms

those. Among them, we discuss Bilen et al. [9] in detail because it is the most recent work

close to our method in the sampling strategy, energy function, numerical method, and GPU

implementation. For a direct comparison with Bilen’s, the wavelet term in the formulation is

ignored in this experiment.

Figure 31 (a) compares Akep maps [63] of reconstructed images at different points in time.

The Akep maps in the bottom row (our method) is much closer to the ground truth (Full Akep

on the left) than those in the upper row at the same point in time, which implies our method

converges faster. Figure 31 (b) and (c) show the least-square fitting curve to the temporal profile

of the region of interest in the Akep map (A and B, high vascularity regions), which is also a

commonly used quality measure to characterize the perfusion and permeability in DCE-MRI

data. For this test, we ran each method until its reconstruction image reaches the same PSNR.
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Figure 31: Comparison between Bilen’s method and the proposed solution

While both methods generate the curves similar to that of the full reconstruction, our result is

more accurate (i.e., close to the full reconstruction curve), which is due to the different numerical

characteristics of the algorithm. Table 11 shows the running time of each method on several

tumor datasets until convergence (i.e., reaching a steady state). The result also confirms that

our method converges much faster than Bilen’s, up to 6.9× in GPU implementation.

4.2.2 Multi-GPU Performance Evaluation

In this evaluation, we check the scalability up to 12 GPUs on a distributed GPU cluster. We

first measure the computation-only time to obtain the best possible running times, and then

measure the total running times including data communication (i.e., ghost region exchange).

As shown in Figure 32, the total time including the ghost exchange is approximately close to

the computation-only time, in both strong and weak scaling tests. This result confirms that our

multi-GPU implementation can effectively hide the communication latency while performing the

CS DCE-MRI reconstruction solver on distributed systems.
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Table 11: Running times of Bilen’s and the proposed method on datasets of size 128×128×256.

Metrics
Tumor 1 Tumor 2 Tumor 3 Tumor 4

Bilen Ours Bilen Ours Bilen Ours Bilen Ours

PSNR(dB) 30.598 30.636 40.169 39.931 39.678 39.479 33.559 34.174

CPU time(s) 448.451 360.689 797.056 340.143 719.187 327.868 715.004 407.461

GPU time(s) 292.341 61.637 475.155 68.002 394.241 66.125 367.759 63.276
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Figure 32: Strong (a) and weak scaling (b) on a distributed GPU cluster.

4.3 Summary

In this work, we presented our new CS-based DCE-MRI reconstruction system for the multi-

GPU computing environment. The proposed method delivered a new numerical method in order

to apply the Split-Bregman algorithm to CS-based time-variant DCE-MRI problem. We also

introduced a scalable implementation of the proposed CS-MRI reconstruction method on a dis-

tributed multi-GPU system. As discussed, the proposed method outperforms the existing GPU

CS-reconstruction algorithm in quality and running time. For future work, we plan to extend

the proposed CS-MRI method to large-scale dynamic 3D DCE-MRI reconstruction. Assessing

the clinical feasibility of the proposed method would be another interesting future research.
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V 2D Convolutional Sparse Coding Reconstruction of dCS-MRI

In this part, we introduce a novel application of convolutional sparse coding to reconstruct un-

dersampled DCE-MRI. We leverage the property of DCE-MRI that many similar local features

may appear over time due to its temporal coherency so that learning a dictionary from the

images over the range of time can improve the reconstruction quality better than using the

temporal Total Variation energy only. In contrast to the conventional dictionary learning-based

CS-MRI [17], our method can avoid expensive patch-based learning by embedding the convo-

lution operator directly into the energy function and its solution can be efficiently computed

in the frequency domain, i.e., k-space, using an alternating method. We also show that the

proposed method maps well to data-parallel architecture, such as GPUs, for further accelerat-

ing its running time significantly. To the best of our knowledge, this is the first CS-DCE-MRI

reconstruction method based on convolutional sparse coding and GPU acceleration.

5.1 Method

Figure 33 is a pictorial description of the proposed method. If the inverse Fourier transform

is directly applied to undersampled DCE-MRI k-space data (Fig. 33a, ×8 undersampling), the

reconstructed images will suffer from artifacts (Fig. 33b). The zero-filling reconstruction shown

above will serve as an initial guess (Fig. 33c) for our iterative reconstruction process with ran-

domly initialized filters, e.g., a collection of 100 atoms of size 21×21 as shown in Fig. 33d. Then

the image and filters are iteratively updated until they converge as shown in Fig. 33e and f. The

proposed CS-DCE-MRI reconstruction algorithm is a process of finding Si (i.e., DCE MR image

at the time step i) of the energy minimization problem defined as follows:

min
Dk,Xk,i,Si

α

2

∥∥∥∥∥
∑
k

Dk ∗Xk,i − Si

∥∥∥∥∥
2

2

+ λ
∑
k

‖Xk,i‖1 + θ‖∇tSi‖1

s.t. ‖RiFSi −Mi‖22 < ε, ‖Dk‖22 ≤ 1 (19)

where Dk is the k-th filter (or atom in the dictionary) and Xk,i is its corresponding sparse code

for Si. In order to reconstruct the entire DCE MR images for t time steps, we should solve

Equation (19) for i = 0, ..., t− 1.

In Equation (19), the first term measures the difference between Si and its sparse approx-

imation
∑

k Dk ∗Xk,i − Si weighted by α. The second term is the sparsity regularization of

Xk,i using an �1 norm with a weight λ instead of an �0 norm as used in [1, 17]. The third

term θ‖∇tSi‖1 is the Total Variation energy that enforces the temporal coherence of DCE data,

which is widely used in conventional CS-DCE-MRI reconstruction algorithms [86, 99]. The rest

of the equation is the collection of constraints – the first constraint enforces the consistency

51



(a) Undersample k-space (b) Zero-filling reconstruction

(c) Initial guess (d) Ramdomly initialized filters

(e) Converged solution (f) Converged filters

Figure 33: CS-DCE-MRI Reconstruction using convolutional sparse coding. Red line: t axis,

Blue–green lines: x∼y axis
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between each undersampled measurement Mi and the undersampled reconstructed image using

the mask Ri and the Fourier operator F , and the second constraint restricts the Frobenius norm

of each atom Dk within a unit length. In the following sections, we split Equation (19) into

two sub optimization problems and alternate between them to find the global minimum solution

for S = {S0, S1, ..., St−1}. In the following discussion, we will use a simplified notation without

indices k and i and replace the result of Fourier transform of a given variable by using the

subscript f to derive the solution of Equation (19).

5.1.1 Subproblem for convolutional sparse coding

The first sub optimization problem of Equation (19) is the formulation of convolutional sparse

coding as follows:

min
D,X,S

α

2

∥∥∥
∑

D ∗X − S
∥∥∥
2

2
+ λ

∑
‖X‖1

s.t. ‖RSf −M‖22 < ε, ‖D‖22 ≤ 1 (20)

Problem (20) can be rewritten using auxiliary variables Y and G for X and D:

min
D,G,X,Y,S

α

2

∥∥∥
∑

D ∗X − S
∥∥∥
2

2
+ λ

∑
‖Y ‖1

s.t. X = Y, ‖RSf −M‖22 < ε, G = Proj(D), ‖G‖22 ≤ 1 (21)

where G and D are related by a projection operator as a combination of a truncated matrix

followed by a padding-zero matrix in order to make the dimension of G same as that of X. Since

we will leverage Fourier transform to solve this problem, G should be padded to zero to make

its size same as Gf and Xf . The above constraint problem can be rebuilt in an augmented

Lagrangian form with dual variables U , H, and further regulates the measurement consistency

and the dual differences with γ, ρ, and σ, respectively:

min
D,G,X,Y,S

α

2

∥∥∥
∑

D ∗X − S
∥∥∥
2

2
+

γ

2
‖RSf −M‖22 + λ

∑
‖Y ‖1 +

ρ

2
‖X − Y + U‖22 +

σ

2

∑
‖D −G+H‖22

s.t. G = Proj(D), ‖G‖22 ≤ 1 (22)

Then we can solve problem (22) by iteratively finding the solution of independent smaller prob-

lems, as described below:

Solve for X:

min
X

α

2

∥∥∥
∑

D ∗X − S
∥∥∥
2

2
+

ρ

2
‖X − Y + U‖22 (23)

If we apply the Fourier transform to the (23), it becomes:

min
Xf

α

2

∥∥∥
∑

DfXf − Sf

∥∥∥
2

2
+

ρ

2
‖Xf − Yf + Uf‖22 (24)
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Then the minimum solution of (24) can be found by taking the derivative of (24) with respect

to Xf and setting it to zero as follows:
(
α
∑

DH
f Df + ρI

)
Xf = α

∑
DH

f Sf + ρ (Yf − Uf ) (25)

Solve for Y :

min
Y

λ
∑

‖Y ‖1 +
ρ

2
‖X − Y + U‖22 (26)

Y for �1 minimization problem can be found by using a shrinkage operation:

Y = Shrinkλ/ρ (X + U) (27)

Solve for U : The update rule for U can be defined as a fixed-point iteration with the difference

between X and Y (U converges when X and Y converge each other) as follows:

U = U + (X − Y ) (28)

Solve for D: Similar to (25) , D can be solved in the Fourier domain:
(
α
∑

XH
f Xf + σI

)
Df = α

∑
XH

f Sf + σ (Gf −Hf ) (29)

Solve for G: G can be found by taking the inverse Fourier transform of Df . This projection

should be constrained by suppressing the elements which are outside the filter size Dk, and

followed by normalizing its �2-norm to a unit length.

min
G

σ

2
‖D −G+H‖22 s.t G = Proj(D), ‖G‖22 ≤ 1 (30)

Solve for H: Similar to U , the update rule for H can be defined as follows:

H = H + (D −G) (31)

Solve for S:

min
S

α

2
‖D ∗X − S‖22 +

γ

2
‖RSf −M‖22 s.t. Sf = F (S) (32)

Similar to (24), the objective function of (32) can be transformed into Fourier domain:

min
Sf

α

2

∥∥∥
∑

DfXf − Sf

∥∥∥
2

2
+

γ

2
‖RSf −M‖22 (33)

Then Sf can be found by solving the following linear system:

(
γRHR+ αI

)
Sf = γRHM + α

∑
DfXf (34)

Note that the efficient solutions of (25), (29) and (34) can be obtained via the Sherman-Morrison

formula for independent linear systems as shown in [131].

54



5.1.2 Subproblem for Total Variation along t

The second sub optimization problem of Eq (19) is the regularizer with a temporal Total Vari-

ation energy. In order to solve this problem, we need to minimize the following energy for the

entire set of images S = {S0, S1, ..., St−1} collectively with the image consistency energy for the

measurement M = {M0,M1, ...,Mt−1} and the sampling mask R = {R0, R1, ..., Rt−1} as shown

below:

min
s

θ ‖∇tS‖1 s.t. ‖RFS−M‖22 < ε (35)

By introducing the auxiliary variable P, the above problem becomes:

min
P

θ ‖P‖1 s.t. ‖RFS−M‖22 < ε, ∇tS = P (36)

By adding dual variable Q, it results in an unconstrained problem as following:

min
S,P

θ ‖P‖1 +
γ

2
‖RFS−M‖22 +

δ

2
‖∇tS−P+Q‖22 (37)

Solve for P:

min
P

θ ‖P‖1 +
δ

2
‖∇tS−P+Q‖22 (38)

P = Shrinkθ/δ (∇tS+Q) (39)

Solve for S:

min
S

γ

2
‖RFS−M‖22 +

δ

2
‖∇tS−P+Q‖22 (40)

(
γFHRHRF − δΔt

)
S = γFHRHM+ δ∇H

t (P−Q) (41)

Since the dimension of operator F is 2D but that of Δt is 1D, an efficient update rule for S can

be obtained using a single iteration method as shown in [99].

Solve for Q: The update rule for Q is defined using a fixed point iteration as follows:

Q = Q+ (∇tS−P) (42)

Note that the dual variable Q and others (U , H) are equivalent to Bregman variables used

in [99], in term of terminology.

5.2 Result

In order to assess the performance of the proposed method, we ran our algorithm and [17] on

four tumor DCE-MRI datasets. In the experiment, we used 2D atoms (i.e., filters) of size 16×16.

The MRI datasets used in this experiment were perfusion dynamic tumor images processed with

the Gd-DTPA agent to reconstruct the contrast profiles overtime. The CS-undersampling factor

was set to ×8.
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Figure 34: Convergence rate evaluation based on PSNRs.

Convergence evaluation: As showed in Figure 65, the achieved Peak Signal-To-Noise-

Ratios (PSNRs) of the proposed method are significantly higher than those of Caballero et

al. [17]. In addition, our approach also converged faster to the steady stage on both datasets

although our initial filter values are chosen randomly while Caballero et al. used the discrete

cosine transform (DCT) basis at the beginning. The difference results are mainly from the

numerical solver and the energy formulation.

Running time evaluation: The wall-clock running times are measured on a PC equipped

with an Intel i7 CPU with 16 GB main memory and an NVIDIA GTX Geforce 980 Ti GPU.

The prototype code is written in MATLAB 2015b including GPU implementation. As shown

in Figure 35, we observed that our method is about 7× to 9× faster than the stage-of-the-art

dictionary learning based CS-MRI reconstruction method [17] for 100 epochs (i.e., the number

of learning iterations).

Quality evaluation: Figure 38 visualizes the first 64 (out of 256) atoms, the reconstructed

images, and the errors compared to the full reconstruction, respectively. Our learning method

can generate atoms that capture details of the image features much better than the patch-based

learning method (Fig. 38a). Because the patch-based learning method generate smoother atoms

(e.g., Gabor-like edges), the reconstruction process relies more on accurate sparse coding, which

results in less-optimal convergence in the minimization process and higher error rates compared

to our method.
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Figure 35: Running times of 100 epochs.

5.3 Summary

In this part, we introduced an efficient CS-MRI reconstruction method based on convolutional

sparse coding and a temporal Total Variation regularizer. The proposed numerical solver is

derived under the ADMM framework by leveraging the Fourier convolution theorem, which can

be effectively accelerated using GPUs. As a result, we achieved faster convergence rate and

higher PSNRs compared to the state-of-the-art CS-MRI reconstruction method using a patch-

based dictionary learning. In the future, we plan to extend this method to include the temporal

coherency directly on the atoms and assess its feasibility in clinical applications.
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(a)

(b)

(c)

Figure 36: Left: the patch-based dictionary learning method [17]. Right: the proposed method.

(a) generated dictionaries, (b) reconstructed images, (c) error plots (red: high, blue: low).
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VI 3D Convolutional Sparse Coding Reconstruction of dCS-MRI

Dynamic cardiac MRI is considered as the gold standard among several imaging modalities

in heart function diagnosis. However, due to its long acquisition time, its clinical application

has been limited to non-time-critical ones. Recent research advances in Compressed Sensing

(CS) [37] have been successfully applied to MRI [87] to reduce acquisition time. Nevertheless,

CS-MRI poses a new challenge – the reconstruction time also increases because it needs to solve

an in-painting inverse problem in the frequency domain (i.e., k-space). Therefore, accelerating

the reconstruction process is a top priority to adopt CS framework to fast MRI diagnosis.

Conventional CS-MRI reconstruction methods have exploited the sparsity of signal by apply-

ing universal sparsifying transforms such as Fourier (e.g., discrete Fourier transform (DFT) or

discrete cosine transform (DCT)), Total Variation (TV), and Wavelets (e.g., Haar, Daubechies,

etc.). This research direction has focused on accelerating the sparsity-based energy minimiza-

tion problem, with [99] or without hardware supports [70]. Some strategies were designed to

accelerate the minimization process such as using TV plus nuclear norm [135] or proposed the

solver in other sparsity domain such as low-rank technique [95, 123] More recently, the other

approaches leveraging the state-of-the-art data-driven method, i.e., dictionary learning [1] (DL),

have been proposed to further enhance the reconstruction quality [17, 19, 104? ]. However,

the existing learning-based methods suffer from the drawback of patch-based dictionary (i.e.,

redundant atoms and longer running times).

Convolutional sparse coding (CSC) is a new learning-based sparse representation that ap-

proximates the input signal with a superposition of sparse feature maps convolved with a col-

lection of filters. This advanced technique replaces the patch-based dictionary learning process

with an energy minimization process using a convolution operator on the image domain, which

leads to an element-wise multiplication in frequency domain, derived within Alternating Di-

rection Method of Multiplier (ADMM) framework [15], and later its direct inverse problem is

introduced by Wohlberg [131]. CSC can generate much compact dictionaries due to its shift-

invatiant nature of filters, and the pixel-wise computation in Fourier domain maps well to

parallel architecture. However, such advanced machine learning approaches have not been fully

exploited in CS-MRI literature yet. Therefore, in this work, we propose a novel CS dynamic

MRI reconstruction that exploits the compactness and efficiency of 3D CSC. The proposed 3D

CSC directly encodes both spatial and temporal features from dynamic cardiac 2D MRI using

a compact set of 3D atoms (i.e., filters) without regularizers enforcing temporal coherence (e.g.,

total variation along the time axis). We also show that the proposed method maps well to
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(a) ×4 subsampled k-space (b) Initial reconstruction (c) Converged solution

(d) Initial filters (e) Converged filters

( ) g

(f) 3D view

Figure 37: An overview of CS-MRI reconstruction using 3D CSC method.

data-parallel architecture, such as GPUs, for further accelerating its running time significantly,

up to two orders of magnitude faster compared to the state-of-the-art CPU implementation of

CS-MRI using patch-based dictionary learning. To the best of our knowledge, this is the first

CS-MRI reconstruction method based on GPU-accelerated 3D CSC.

6.1 Method

Figure 37 is a pictorial description of the proposed method. If the inverse Fourier transform

is directly applied to undersampled MRI k-space data (Figure 37a ×4 undersampling), the

reconstructed images will suffer from artifacts (Figure 37b). The zero-filling reconstruction will

serve as an initial guess for our iterative reconstruction process with randomly initialized filters,

e.g., a collection of 16 atoms of size 9×9×9 as shown in Figure 37d. Then the image and filters

are iteratively updated until they converge as shown in Figure 37c and e, f.
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The proposed CS-MRI reconstruction algorithm is a process of finding s (i.e., a stack of 2D

MR images for a given time duration) in the energy minimization problem defined as follows:

min
d,x,s

α

2

∥∥∥∥∥s−
∑
k

dk ∗ xk
∥∥∥∥∥
2

2

+ λ
∑
k

‖xk‖1

s.t. : ‖RF2s−m‖22 < ε2, ‖dk‖22 � 1 (43)

where dk is the k-th filter (or atom in the dictionary) and xk, is its corresponding sparse code for

s. In Equation 43, the first term measures the difference between s and its sparse approximation

s−∑
k dk ∗ xk, weighted by α. The second term is the sparsity regularization of xk using an �1

norm with a weight λ instead of an �0 norm as used in [1, 17, 20]. The rest of the equation is

the collection of constraints - the first constraint enforces the consistency between undersampled

measurement m and the undersampled reconstructed image using the mask R and the Fourier

operator F , and the second constraint restricts the Frobenius norm of each atom dk within a

unit length. In the following discussion, we will use a simplified notation without indices k and

replace the result of Fourier transform of a given variable by using the subscript f (for example,

df is the simplified notation for Fd in 3D domain and sf2 is the simplified notation for F2s in 2D

spatial domain) to derive the solution of Equation 43. Therefore, problem 43 can be rewritten

using auxiliary variables y and g for x and d as follows:

min
d,x,g,y,s

α

2

∥∥∥s−
∑

d ∗ x
∥∥∥
2

2
+ λ ‖y‖1

s.t. : x− y = 0, ‖RF2s−m‖22 < ε2, g = Proj(d), ‖g‖22 � 1 (44)

where g and d are related by a projection operator as a combination of a truncated matrix

followed by a padding-zero matrix in order to make the dimension of g same as that of x. Since

we will leverage Fourier transform to solve this problem, g should be zero-padded to make its

size same as gf and xf . The above constrained problem can be rebuilt in an unconstrained

form with dual variables u, h, and further regulates the measurement consistency and the dual

differences with γ, ρ, and σ, respectively:

min
d,x,g,y,s

α

2

∥∥∥s−
∑

d ∗ x
∥∥∥
2

2
+ λ ‖y‖1 +

γ

2
‖RF2s−m‖22 +

ρ

2
‖x− y + u‖22 +

σ

2
‖d− g + h‖22

s.t. : g = Proj(d), ‖g‖22 � 1 (45)

Then we can solve problem 45 by iteratively finding the solution of independent smaller problems,

as described below:
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Solve for x:

min
x

α

2

∥∥∥
∑

d ∗ x− s
∥∥∥
2

2
+

ρ

2
‖x− y + u‖22 (46)

If we apply the Fourier transform to the 46, it becomes:

min
xf

α

2

∥∥∥
∑

dfxf − sf

∥∥∥
2

2
+

ρ

2
‖xf − yf + uf‖22 (47)

Then the minimum solution of 47 can be found by taking the derivative of 47 with respect to

xf and setting it to zero as follows:

(
αDH

f Df + ρI
)
xf = DH

f sf + ρ (yf − uf ) (48)

Note that the notation Df stands for the concatenated matrix of all diagonalized matrices dfk

as follows: Df = [diag(df1), ..., diag(dfk)] and DH
f is the complex conjugated transpose of Df .

Solve for y:

min
y

λ‖y‖1 +
ρ

2
‖x− y + u‖22 (49)

y for �1 minimization problem can be found by using a shrinkage operation:

y = Sλ/ρ (x+ u) (50)

Update for u: The update rule for u can be defined as a fixed- point iteration with the difference

between x and y (u converges when x and y converge each other) as follows:

u = u+ x− y (51)

Solve for d:

min
d

α

2

∥∥∥
∑

d ∗ x− s
∥∥∥
2

2
+

σ

2
‖d− g + h‖22 (52)

Similar to x, d can be solved in the Fourier domain:

min
df

α

2

∥∥∥
∑

dfxf − sf

∥∥∥
2

2
+

σ

2
‖df − gf + hf‖22 (53)

(
αXH

f Xf + σI
)
df = XH

f sf + σ (gf − gf ) (54)

where Xf stands for the concatenated matrix of all diagonalized matrices xfk as follows: Xf =

[diag(xf1), ..., diag(xfk)] and XH
f is the complex conjugated transpose of Xf .

Solve for g:

min
g

σ

2
‖d− g + h‖22 s.t. : g = Proj(d), ‖g‖22 � 1 (55)
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g can be found by taking the inverse Fourier transform of df . This projection should be con-

strained by suppressing the elements which are outside the filter size dk, and followed by nor-

malizing its �2-norm to a unit length.

Update for h: Similar to u, the update rule for h can be defined as follows:

h = h+ d− g (56)

Solve for s:

min
s

α

2

∥∥∥s−
∑

d ∗ x
∥∥∥
2

2
+

γ

2
‖RF2s−m‖22 (57)

The objective function of 57 can be transformed into 2D Fourier domain:

min
sf2

α

2

∥∥∥sf2 − FH
t

∑
dfxf

∥∥∥
2

2
+

γ

2
‖Rsf2 −m‖22 (58)

Since df and xf obtained previously in 3D Fourier domain, we need to bring it onto the same

space by applying an inverse Fourier transform along time-axis FH
t . Then sf2 can be found by

solving the following linear system:

(
γRHR+ αI

)
sf2 = γRHm+ αFH

t

∑
dfxf (59)

Note that the efficient solutions of 48, 54 and 59 can be determined via the Sherman-Morrison

formula for independent linear systems as shown in [131]. To this end, after the iteration process,

s will be the results of applying a 2D inverse Fourier transform FH
2 on sf2 .

Implementation details: Since the above derivation consists only Fourier transform and

element-wise operations, it maps well to data-parallel architecture, such as GPUs. We used

MATLAB to implement the proposed method using the GPU. We set α = 1, γ = 1, λ = 0.1,

ρ = 10, σ = 10 and keep refining the filter banks as well as the reconstruction iteratively until

they converge.

6.2 Result

In order to assess the performance of the proposed method, we compared our algorithm with the

stage-of-the-art dictionary learning-based CS reconstruction from Caballero et. al. [17], and the

conventional CS reconstruction using wavelet and total variation energy from Quan et. al. [99].

We used three cardiac MRI datasets from The Data Science Bowl 11 – 2 chamber view (2ch), 4

chamber view (4ch), and short axis view (sax). Each dataset consists of 30 frames of a 256×256
11https://www.kaggle.com/c/second-annual-data-science-bowl/data
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image across the cardiac cycle of a heart. In the experiment, we used 3D atoms of size 9×9×9

and CS-undersampling factor was set to ×4.

Running time evaluation: In order to make this direct performance comparison of learning-

based methods between the proposed one and Caballero et al. [17], we measured wall clock

running time of both methods on a PC equipped with an Intel i7 CPU with 16 GB main memory

and an NVIDIA GTX Geforce Titan X GPU. Our prototype code is written in MATLAB 2015b

including GPU implementation, and we used the author-provided MATLAB code for Caballero

et al. [17]. As shown in Table 12, we observed that our CPU-based method is about 54×
to 73×, or about two orders of magnitude, faster than the stage-of-the-art DL-based CS-MRI

reconstruction method for 100 epochs (i.e., the number of learning iterations). In addition, our

GPU-based accelerated implementation also outperforms the CPU version about 1.25× to 3.82×,

which is greatly reduced to a level closer to be ready for clinical application. We expect that the

performance of our method can improve further by using CUDA C/C++ without MATLAB.

Table 12: Reconstruction times of learning-based methods (100 epochs)

Methods 2ch 4ch sax

Caballero et al. [17] 558 Min 475 Min 427 Min

Our method (CPU) 7.67 Min 7.73 Min 7.94 Min

Our method (GPU) 6.14 Min 2.70 Min 2.08 Min

Quality evaluation: Figure 38 visualizes the reconstruction errors compared to the full recon-

struction of each method, respectively. As can be seen, our approach generated less error com-

pared to the stage-of-the-art method of [17] and conventional CS-reconstruction using wavelet

and TV energy [99]. Their glitches on the temporal profile are clearly observed since total vari-

ation along time axis may smooth out the temporal features that move quickly, especially near

the heart boundary. In our case, the learned atoms are in 3D with larger supports, which helps

to capture the time trait better even under fast motion and reduces errors in the reconstructed

images. In addition, shift-invariance of CSC helps to generate more compact filters compared

to the patch-based method.

Figure 65 shows the achieved PSNRs measured between the CS-reconstruction results and

the full reconstruction. As shown in this figure, our method requires more iterations (epochs)

to converge to the steady state, but the actual running time is much faster than the others due

to GPU acceleration. In the mean time, our method can reach much higher PSNRs.
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(a) (b) (c)

Figure 38: Error plots (red: high, blue: low) between full reconstruction and the result from (a)

the proposed method, (b) the DL-based method [17], and (c) wavelet and total variation energy

method [99].
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Figure 39: Convergence rate evaluation based on PSNRs.
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6.3 Summary

In this work, we introduced an efficient CS-MRI reconstruction method based on pure 3D con-

volutional sparse coding where shift-invariant 3D filters can represent the temporal features of

the MRI data. The proposed numerical solver is derived under the ADMM framework by lever-

aging the Fourier convolution theorem, which can be effectively accelerated using GPUs. As a

result, we achieved faster running time and higher PSNRs compared to the state-of-the-art CS-

MRI reconstruction methods, such as using a patch-based dictionary learning and conventional

wavelet and total variation energy. In the future, we plan to conduct a proper controlled-study

of tuning-parameters and assess its feasibility in clinical applications.
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VII GAN-based Reconstruction of CS-MRI with Cyclic Loss

7.1 Method
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Figure 40: Overview of the proposed method: it aims to reconstruct the images which are satis-

fied the constraint of under-sampled measurement data; and whether those look similar to the

fully aliasing-free results. Additionally, if the fully sampled images taken from the database go

through the same process of under-sampling acceleration; we can still receive the reconstruction

as expected to the original images.

7.1.1 Problem Definition and Notations

We denote the under-sampled raw MRI data (k-space measurements) using the sampling mask

R as m. Then, its zero-filling reconstruction s0 can be obtained by the following equation:

s0 = FHRH (m) (60)

where F is the Fourier operator, and superscript H indicates the conjugated transpose of a

given operator. Similarly, turning any image si into its under-sampled measurement msi with

the given sampling mask R can be done via the inverse of the reconstruction process:

msi = RF (si) (61)

Then, compressed sensing MRI reconstruction, which is a process of generating a full-

reconstruction image s from under-sampled k-space data m, can be described as follows:

min
s

J (s) s.t. RF (s) = m (62)

where J (s) is a regularizer required for ill-posed optimization problems. In our method, this

energy minimization process is replaced by the training process of the neural network.
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Figure 41: Two learning processes are trained adversarially to achieve better reconstruction from

generator G and to fool the ability of recognizing the real or fake MR image from discriminator

D.
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Figure 42: The cyclic data consistency loss, which is a combination of under-sampled frequency

loss and the fully reconstructed image loss.

7.1.2 Overview of the Proposed Method

Figure 40 represents an overview of the proposed method: Our generator G consists of two-fold

chained networks that generate the full MR image directly from a zero-filling reconstruction

image (i.e., image generated from under-sampled k-space data), in which each input can be

up to 2-channel to represent real- and imaginary image of the complex-valued MRI data. The

generated result is favorable to the fully-sampled data taken from an extensive database and

put through the same under-sampling process. In contrast, the discriminator D attempts to

differentiate between the real MRI instances from the database and the fake results output

generated by G. The entire system involves training G and D adversarially until a balance is

reached at the convergence stage. Details of each component will be discussed shortly.

7.1.3 Generative Adversarial Loss

Our objective is to train generator G, which can transform any zero-filling reconstruction s0 =

FHRH(m), m ∈ M , where M is the collection of under-sampled k-space data, to a fully-

reconstructed image s under the constraint that s is indistinguishable from all images s ∈ S

reconstructed from full k-space data. To accomplish this aim, a discriminator D is attached to
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distinguish whether the image is synthetically generated from s0 by G (s, which is considered

fake) or is reconstructed from fully-sampled k-space data (s, which is considered real). In

other words, at each epoch, G tries to produce a reconstruction that can fool D whereas D

avoids to be fooled. This kind of training borrows the win-lose strategy which is very common

in game theory. We wish to train D so that it can maximize the probability of assigning the

correct true or false label to images. Note that the objective function for D can be interpreted

as maximizing the log-likelihood for estimating the conditional probability, where the image

comes from: D (s) = D (G (s0)) = 0 (fake), and D (s) = 1 (real). Simultaneously, generator G

is trained to minimize [1− logD (s)] or [1− logD (G (s0))]. This can be addressed by formally

defining an adversarial loss Ladv, for which we wish to find the solutions of its minimax problem:

min
G

max
D

Ladv (G,D) (63)

where

Ladv (G,D) = E
m∈M

[1− logD (G (s0))] + E
s∈S

[logD (s)] (64)

Figure 41 is a schematic depiction of our adversarial process: G tries to generate images

s = G (s0) look similar to the images s that have been reconstructed from full k-space data,

while D aims to distinguish between s and s. Once the training converges, G can produce

the result s that is close to s, and D is unable to differentiate between them, which results in

bringing the probability for both real and fake labels to 50%. In practice, Wasserstein GAN [4]

energy is commonly used to improved the stability of the training processes and is also adopted

to our method.

7.1.4 Cyclic Data Consistency Loss

In an extreme case, with large enough resources and data, the network can map the zero-filling

reconstruction s0 to any existing fully reconstructed images s ∈ S. Therefore, the adversarial loss

alone is not sufficient to correctly map the under-sampled data s0[n] and the full reconstruction

s[n] for all n. To strengthen the bridge connection between s0[n] and s[n], we introduce an

additional constraint, the data consistency loss Lcyc, which is a combination of under-sampled

frequency loss Lfreq and fully reconstructed image loss Limag in a cyclic fashion. The first term

Lfreq guarantees that when we perform another under-sampled operator RF on reconstructed

images s[i] to get m[i], the difference between m[i] and m[i] should be minimal. The second

energy term Limag ensures that for any other images s[j] ∈ S taken from the fully reconstructed

data, if s[j] goes through the under-sampling process (by applying RF ), and the generator G

takes zero-filling reconstruction s0[j] (by applying FHRH to m[j]) to produce the reconstruction
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Figure 43: Generator G, built by basic building blocks, can reconstruct inverse amplitude of the

residual component causes by reconstruction from under-sampled k-space data. The final result

is obtained by adding the zero-filling reconstruction to the output of G

(a) ReconGAN (b) RefineGAN

Figure 44: One-fold (a) and two-fold architectures (b) of the generator G.

s[j], then both s[j] and s[j] should appear to be similar. Those two losses are described in a

cyclic fashion in Figure 42. In practice, various distance metrics, such as mean-square-error

(MSE), mean-absolute-error (MAE), etc, can be employed to implement Lcyc:

Lcyc (G) = Lfreq (G) + Limag (G) = d (m [i] ,m [i]) + d (s [j] , s [j]) (65)

Note that the data consistency loss only affects the generator G and not the discriminator D.

Furthermore, each individual loss Lfreq or Limag is evaluated on its own samples: m[i] and

s[j] are drawn independently from M and S. Since they are non-complex pixel-wise distance

metrics, they will return scalars regardless the input data are either magnitude- or complex-

valued numbers.
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7.1.5 Model Architecture

In this section, we introduce the details of our neural network architecture, which is a variant

of a convolutional autoencoder and deep residual network.

Fundamental blocks To begin discussing the model architecture, we first introduce three

fundamental components in our generative adversarial model: encoder, decoder, with the in-

sertion of the residual block. The details of each block are described pictorially in Figure 43.

The encoder block, shaded in red, accepts a 4D tensor input and performs 2D convolution with

filter_size 3×3, and stride is equal to 2 so that it performs down-sampling with convolution

without a separate max-pooling layer. The number of feature maps filter_number is denoted

in the top. The decoder block, shaded in green, functions as the convolution transpose, which

enlarges the resolution of the 4D input tensor by two times. The residual block, shaded in vio-

let, is used to increase the depth of generator G and discriminator D networks, and it consists

of three convolution layers: the first layer conv_i with filter_size is 3×3, stride is 1 and

the number of feature maps is nb_filters, which reduces the dimension of the tensor by half.

The second layer conv_m performs the filtering via a 3×3 convolution with the same number of

feature maps nb_filters/2. The remaining conv_o, which has filter_size 3×3, stride is 1

and nb_filters, feature maps, retrieves the input tensor shape so that they can be combined

to form a residual bottleneck. This residual block allows us to effectively construct a deeper

generator G and discriminator D without suffering from the gradient vanishing problem [57].

Generator architecture Figure 43 illustrates the architecture of our generator G. It is

built based upon the design of a convolutional autoencoder, which consists of an encoding

path (left half of the network) to retrieve the compressed information in latent space, and a

symmetric decoding path (right half of the network) that enables the prediction of synthesis.

The convolution mode we used is “same”, which leads the final reconstruction to have a size

identical to the input images. The encoding and decoding paths consist of multiple levels, i.e.,

image resolutions, to extract features across different scales. Three types of introduced building

blocks (i.e., encoder, residual, decoder and their related parameters) are used to construct the

proposed generator G.

It is worth noting that the proposed generator G does not attempt to reconstruct the im-

age directly. Instead, it is trained to produce the inverse amplitude of the noise caused by

reconstruction from under-sampled data. The final reconstruction is obtained by adding the

zero-filling input to the output from the generator G, which is similar to other current machine

learning-based CS-MRI methods [79, 91, 134].
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Discriminator architecture For the discriminator D, we use an architecture identical to

that of the encoding path of the generator G. The output of the last residual block is used to

evaluate the mentioned adversarial loss Ladv (Equation 64). To reiterate, if the discriminator re-

ceives the image s ∈ S, it will result in D (s) = 1, as a true result. Otherwise, the reconstruction

s will be recognized as a fake result, or equivalently, D (s) = D (G (s0)) = 0.

Full Objective Function and Training Specifications In summary, our system involves

two sub-networks which are trained adversarially to minimize the following loss:

Ltotal = Ladv (G,D) + αLfreq (G) + γLimag (G) (66)

where α and γ are the weights which help to control the balance between each contribution.

We set α = 1.0 and γ = 10.0 for all the experiments. The Adam optimizer [76] is used with

the initial learning rate of 1e−4, which decreases monotonically over 500 epochs. The entire

framework was implemented using a system-oriented programming wrapper (tensorpack 12) of

the tensorflow 13 library.

Chaining with Refinement Network The proposed generator G by itself can perform

an end-to-end reconstruction from the zero-filling MRI to the final prediction. However, in

the real-world setup, many iterative methods also take extra steps to go through the current

result and then attempt to “correct” the mistakes. Therefore, we introduce an additional step

in refining the reconstruction by concatenating a chain of multiple generators to resolve the

ambiguities of the initial prediction from the generator. For example, Figure 44 shows the two-

fold chaining generator in a self-correcting form. By forcing the desired ground-truth between

them, the entire solution becomes a target-driven approach. This enables our method to be

a single-input and multi-output model, where each checkpoint in between attempts to produce

better a reconstruction. Because the architecture of each sub-generator is the same, we can think

of the proposed model is another variant of the recurrent neural network that treats the entire

sub-generator as a single state without sharing the weights after unfolding. The loss training

curves of the checkpoints decrease as the number of checkpoints increases, and they eventually

converge as the number of training iterations (epochs) increases. Interestingly, our generator can

be considered a V-cycle in the multigrid method that is commonly used in numerical analysis,

where the contraction in the encoding path is similar to restriction heads from fine to coarse grid.

The expansion in the decoding path spans along the prolongation toward the final reconstruction,

and the skip connections act as the relaxation. We refer to the first check point as ReconGAN
12http://tensorpack.readthedocs.io/
13http://www.tensorflow.org/
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Figure 45: PSNR curves of RefineGAN with different undersampling rates on the brain training

set over 500 epochs.

and the second check point in our two-fold chaining network as RefineGAN. The entire chaining

structure (with 2 generators) is trained together. Each individual cycle has its own variable

scope and hence, their weight are updated differently. The later structure serves as a boosting

module which improves results.

7.2 Result

7.2.1 Results on real-valued MRI data

We trained many versions of the proposed networks with different factors of under-sampling

masks (10%, 20%, 30%, 40%) on the training sets. As shown in Figure 45, those trained

models (for RefineGAN) reach a convergence stage in a few hundred training iterations. The

performances on the test sets are expected to show similar results.

We used two sets of MR images from the IXI database14 (the brain dataset) and from the

Data Science Bowl challenge 15 (the chest dataset) to assess the performance of our method by

comparing our results with state-of-the-art CS-MRI methods (e.g., Convolutional sparse coding-

based [101, 102], patch-based dictionary [18, 19, 104], deep learning-based [79, 110, 117, 128],

and GAN-based [91, 134]). The image resolution of each image is 256x256. From each database,
14http://brain-development.org/ixi-dataset/
15https://www.kaggle.com/c/second-annual-data-science-bowl/data
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(a) 10% (b) 20% (c) 30% (d) 40%

Figure 46: Radial sampling masks used in our experiments.

Table 13: Running time comparison of various CS-MRI methods (in seconds).

Abbreviation Methods Brain Chest

CSCMRI [101, 102] 8.56808 9.37082

DLMRI [18, 19, 104] 604.24623 613.84531

DeepADMM [117] 0.31725 0.28677

DeepCascade [110] 0.22182 0.25627

SingleGAN [91, 134] 0.064599 0.075529

ReconGAN — 0.060753 0.068871

RefineGAN — 0.106157 0.111607

we randomly selected 100 images for training the network and another 100 images for testing

(validating) the result. We conducted the experiments for various sampling rates (i.e., 10%, 20%,

30%, and 40% of the original k-space data), corresponding to 10×, 5×, 3.3×, and 2.5× factors

of acceleration. We assume the target MRI data type is static, and radial sampling masks

are applied (Figure 46). It is worth noting that our experimental data are real-valued MRI

images, which require pre-processing of the actual acquisition from the MRI scanner because

the actual MRI data is complex-valued. Additional data preparation steps, such as data range

normalization and imaginary channel concatenation, are also required.

Running Time Evaluation: Table 13 summarizes the running times of our method and

other state-of-the-art learning-based CS-MRI methods. Even though dictionary learning-based

approaches leverage pre-trained dictionaries, their reconstruction time depends on the numerical

methods used. For example, CSCMRI by Quan and Jeong [101, 102] employed a GPU-based

ADMM method, which is considered one of the state-of-the-art numerical methods, but the

running time is still far from interactive (about 9 seconds). Another type of dictionary learning-
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(a) Brain 10% (b) Chest 10%

(c) Brain 20% (d) Chest 20%

(e) Brain 30% (f) Chest 30%

(g) Brain 40% (h) Chest 40%

Figure 47: PSNRs evaluation on the brain and chest test set. Unit: dB
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(a) Brain 10% (b) Chest 10%

(c) Brain 20% (d) Chest 20%

(e) Brain 30% (f) Chest 30%

(g) Brain 40% (h) Chest 40%

Figure 48: SSIMs evaluation on the brain and chest test set
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(a) Brain 10% (b) Chest 10%

(c) Brain 20% (d) Chest 20%

(e) Brain 30% (f) Chest 30%

(g) Brain 40% (h) Chest 40%

Figure 49: NRMSEs evaluation on the brain and chest test set
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Figure 50: Image quality comparison on the brain (a) and chest dataset (b) at a sampling rate

10% (top 3 rows) and 30% (bottom 3 rows): Reconstruction image, zoom in result and 10×
error map compared to the full reconstruction.
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based method, DLMRI [18, 19, 104], solely relies on the CPU implementation of a greedy

algorithm, so their reconstruction times are significantly longer (around 600 seconds) than those

of the others with GPU-acceleration. Deep learning-based methods, including DeepADMM,

DeepCascade, and our method, are extremely fast (e.g., less than a second) because deploying

a feed-forward convolutional neural network is a single-pass image processing that can be ac-

celerated using GPUs reasonably well. DeepADMM significantly accelerated time-consuming

iterative computation to as low as 0.2 second. The running times of SingleGAN [91, 134] and

our ReconGAN are, all similarly, about 0.07 second because they share the same network archi-

tecture (i.e., single-fold generator G). The running time of RefineGAN is about twice as long

because two identical generators are serially chained in a single architecture, but it still runs at

an interactive rate (around 0.1 second). As shown in this experiment, we observed that deep

learning-based approaches are well-suited for CS-MRI in a time-critical clinical setup due to

their extremely low running times.

Image Quality Evaluation: To assess the quality of reconstructed images, we use three im-

age quality metrics, such as Peak-Signal-To-Noise ratio (PSNR), Structural Similarity (SSIM)

and Normalized root-mean-square error (NRMSE) Figure 65, 48 and 66 show their PSNRs,

SSIMs and NRMSEs error graphs, respectively. Additionally, Figure 50 shows the representa-

tive reconstruction of the brain and chest test sets, respectively, using various reconstruction

methods at different sampling rates (10% and 30%) and their 10× magnified error plots using a

jet color map (blue: low, red: high error). Overall, our methods (ReconGAN and RefineGAN)

are able to reconstruct images with better PSNRs, SSIMs and NRMSEs. Note that we used

the identical generator and discriminator networks (i.e., the same number of neurons) for Sin-

gleGAN, and our own method for a fair comparison. We observed that our cyclic loss increases

the PSNR by around 1dB, and the refinement network further reduces the error to a similar

degree. By qualitatively comparing the reconstructed results, we found that deep learning-based

methods generate more natural images than dictionary-based methods. For example, CSCMRI

and DLMRI produce cartoon-like piecewise linear images with sharp edges, which is mostly due

to sparsity enforcement. In comparison, our method generates results that are much closer to

full reconstructions while edges are still preserved; in addition, noise is significantly reduced.

Note also that, comparing to the other CS-MRI methods, our method can generate superior

results especially at extremely low sampling rates (as low as 10%, see Figure 50).
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Figure 51: Image quality comparison on the knees dataset (top 2 rows: magnitudes, and bottom

2 rows: phases) at a sampling rate 10% : Reconstruction images and zoom-in results

Figure 52: NRMSEs evaluation on the knees test set at sampling rate 20% with various masks
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7.2.2 Results on complex-valued MRI data

The proposed method can accept 2-channel complex-valued zero-filling image as an input and

return a 2-channel complex-valued reconstruction without loss of generality. We used another

public database of MR k-space 16 (referred as the knees dataset) to evaluate our model. This

opensource images consists of 20 cases of fully-sampled 3D Fast Spin Echo MR Images. We also

chose randomly 10 slices in the middle of each case and further divided them into 2 sets: training

and testing, 100 images each. Figure 51 depicts the representative reconstructions of knees test

sets at the sampling rates 10% and their 10× magnified error plots on the image magnitude (top

3 rows) and phase (bottom 3 rows). As can be seen, the proposed RefineGAN can fruitfully

reconstruct the result which has less error compared to other methods.

RefineGAN also consistently outperforms SingleGAN and ReconGAN for various sampling

strategies. For example, Figure 52 visualizes the NRMSEs curves of the knees dataset using

radial, cartesian, random and spiral sampling strategies (rate 20%). We observed that the radial

sampling pattern results in the best performance among all. Moreover, our method reduces

sampling-specific effects, i.e., difference between sampling strategies become less severe.

7.3 Summary

We introduced a novel deep learning-based generative adversarial model for solving the Com-

pressed Sensing MRI reconstruction problem. The proposed architecture, RefineGAN, which

is inspired by the most recent advanced neural networks, such as U-net, Residual CNN, and

GANs, is specifically designed to have a deeper generator network G and is trained adversarially

with the discriminator D with cyclic data consistency loss to promote better interpolation of the

given undersampled k-space data for accurate end-to-end MR image reconstruction. We demon-

strated that RefineGAN outperforms the state-of-the-art CS-MRI methods in terms of running

time and image quality, thus indicating its usefulness for time-critical clinical applications.

In the future, we plan to conduct an in-depth analysis of RefineGAN to better understand

the architecture, as well as constructing incredibly deep multi-fold chains with the hope of

further improving reconstruction accuracy based on its target-driven characteristic. Extending

RefineGAN to handle dynamic MRI is an immediate next research direction. Developing a

distributed version of RefineGAN for parallel training and deployment on a cluster system is

another research direction we wish to explore.

16http://mridata.org/fullysampled/knees
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VIII Fully residual convolutional neural network for image seg-

mentation in connectomics

8.1 Method

The motivation for the work presented here was the need for end-to-end neuron segmentation

with higher accuracy. We observed, as discussed by others previously [57], that the current state-

of-the-art U-net deep neural network [105] and conventional CNNs share a limitation in network

depth due to gradient vanishing. To address this, we propose novel extensions of U-net that

increase network depth through addition of residual layers in each network level with summation-

based skip connections and incorporation of a chaining approach to further compensate for errors

that arise in a single network. Our segmentation method achieves highly accurate results that

outperform current state-of-the-art ssEM segmentation methods. The contributions of this work

can be summarized as follows:

• We introduce W-net, a new end-to-end automatic ssEM image segmentation method using

deep learning. Our solution is based on the combination of U-net and residual CNN

properties with a novel chaining approach, resulting in an architecture that supports a

self-correcting and self-refining model. Leveraging residual properties within and across

levels in this fashion makes it possible to build a deeper network for achieving higher

accuracy.

• We evaluate the performance of the W-net architecture by comparing it with current state-

of-the-art methods listed in the leader board of the ISBI 2012 EM segmentation challenge.

For segmentation accuracy, W-net outperformed all other top-ranked methods.

• We establish a data enrichment approach for ssEM data that collects all the orientation

variants of input images. For the three-dimensional (3D) case, this yields sixteen total

permutations via a combination of flipping, rotation, and re-ordering of adjacent slices

(sections) in bins of three. The same process can be used during deployment, generating

a final output that can contain many different probability values to enhance accuracy.

• We demonstrate the flexibility of W-net through two different ssEM segmentation tasks:

cell nucleus segmentation and cellular membrane segmentation.
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8.1.1 Data preparation

Data construction: To form a training instance, we leverage the 3D context in ssEM image

stacks by grouping three consecutive slices including the current target and its adjacent neigh-

bors. This makes it possible to resolve ambiguities in the z dimension (perpendicular to the

ssEM sectioning plane). When the current target slice occupies the first or the last position in

the stack, we use reverse optical flow with the target and existing neighbor image to estimate

the empty third slice. The same strategy is applied when deploying for target segmentation.

Note that this data construction method uses a two-dimensional (2D) convolution-based neural

network, as opposed to the 3D version from Lee et al. [80].

Data enrichment: Distinct EM images frequently share similar orientation-independent tex-

tures associated with sub-cellular neuronal structures including mitochondria, axons, synapses,

and more. We take advantage of this fact to enrich our training data for each slice by forming

an additional fifteen other images and corresponding labels. For 2D enrichment, we generate

eight permutations for each slice by rotating the original image by 90◦, 180◦, and 270◦ and then

reflecting each case. Figure 53 shows the variants of these eight orientation changes. To take into

account 3D information, we generate 3-slice bins for a every 2D orientation case with a sliding

window along the z dimension. For each bin, the segmentation result is necessarily direction-

independent from the top to bottom slice or the opposite. This enables us to further double the

existing 8× enrichment by adding the reverse z ordering for each bin. Note that because the

images and labels are enriched 16× in total, other on-the-fly data augmentation techniques—

including random rotation, flipping, or transposition—are unnecessary with the exception of

elastic deformation.

Elastic field deformation: To avoid an over-fitting case where the network remembers the

training data, we perform per-instance elastic deformation over the entire enriched dataset for

every training epoch. This strategy is common in machine learning, especially for deep networks,

to overcome limitations of small training dataset sizes.

We first initialize a flow map consisting of a random sparse vector field (12×12) whose

amplitudes at the boundaries have vanished (zero amplitude). This field is then interpolated to

match the original image size and used to warp both image data and the corresponding labels.

Figure 54 illustrates this procedure. The flow map is randomly generated so that deformations

are independent in each training epoch.
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Figure 53: Data enrichment through these eight orientation variations would increase the input

training data size by a factor of eight. The letter ‘g’ is overlaid for easier comparison.

(a) Before image warp (left), after warp (middle), and the difference (right).

(b) Before label warp (left), after warp (middle), and the difference (right).

Figure 54: Elastic field deformation example.
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Random noise, boundary extension, random shuffle, data normalization and cross-

validation: During the training phase, we randomly add Gaussian noise to the raw image

(mean μ = 0, variance σ = 0.1). Prior to the training phase, we perform a simple data normal-

ization by scaling the image data in the range between [0, 1]. To this end, before fetching the

enriched data for the model, we also shuffle the order of the dataset and perform a three-fold

cross validation to improve the generalization of our method.

8.1.2 Chain of FusionBlocks: W-net architecture

Figure 55: A chain of 4-fold concatenated FusionBlocks.

As can be seen, the proposed FusionBlock by itself, can perform an end-to-end segmentation

from the input EM data to the final prediction of the segmentation. However, in the real

world case, manual segmentation from human expert also takes another step to go through the

detected labels and attempts to “correct” the mistakes. Therefore, we propose another step

of refining the segmentation by concatenating a chain of several FusionBlocks to resolve the

disambiguities of the first time predicted target probabilities. For example, figure 55 shows the

4-fold chaining FusionBlocks in a self-correcting form (W-net4). By forcing the desired labels

in between, the entire solution becomes target-driven approach. This enables our method to be

a single-input and multi-output model, where each checkpoint in between attempts to produce

better segmentation. Since the architecture of each individual FusionBlock is same, we can

think of the proposed model is another variant of recurrent neural network which treats entire

FusionBlock as a single state but the weights do not share after unfolding. The interesting point

of view is FusionBlock can be considered as a V-cycle in the multi-grid method commonly used

in numerical analysis, where the contraction in the encoding path is similar to restriction heads

from fine to coarse grid, the expansion in the decoding path spans along the prolongation toward

the final segmentation, and the skip connections play as the relaxation.

During the training, the weights of each FusionBlock are updated independently as opposed

to the strategy of averaging the gradients from shared weights in Recurrent Neural Networks.

Without loss of generality, let assume that we are training W-net4 with the input images S and
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their corresponding manual labels L. Each FusionBlock in W-net4 is indexed as W-net4[i] where

i = 1, 2, 3, and 4, and it generates the prediction P [i] by minimizing the mean-absolute-error

(MAE) loss between its prediction values and the target labels L. Per epoch, we incrementally

train W-net4[i] and fix its weights before moving to the next W-net4[i+ 1]. This procedure can

be summarized as follows:

min
W-net4[1]

MAE (P [1], L) s.t. P [1] = W-net4 [1] (S) (67)

min
W-net4[2]

MAE (P [2], L) s.t. P [2] = W-net4 [2] (P [1]) (68)

min
W-net4[3]

MAE (P [3], L) s.t. P [3] = W-net4 [3] (P [2]) (69)

min
W-net4[4]

MAE (P [4], L) s.t. P [4] = W-net4 [4] (P [3]) (70)

The loss training curves decrease as i increases, and they are eventually converged as the

number of training iterations (epoch) increases.

8.2 Result

8.2.1 Experimental Setup

The proposed deep network is implemented using Keras open-source deep learning library 17.

This library provides an easy-to-use high-level programming API written in Python, where

Theano or TensorFlow can be chosen for a backend deep learning engine. Training and deploy-

ment of the network is conducted on a PC equipped with an Intel i7 CPU with a 64 GB main

memory and an NVIDIA GTX Geforce Titan X (Pascal) GPU. Since we use a data enrichment

method that duplicates the input data by applying rotation and mirroring transformations for

training, we apply the same transformations for deployment and average the results. We fixed

all of the training parameters as the same across the experiments: using Nadam optimizer with

learning rate is set to 0.0001 and the loss function is mean-absolute-error.

8.2.2 Larval zebrafish ssEM data

The larval zebrafish ssEM data analyzed here was taken from a publicly available database18.

It was captured from a 5.5 days post-fertilization specimen. This specimen was cut into ∼18000

serial sections and collected onto a tape substrate with an ATUM [55]. A series of images span-

ning the anterior quarter of the larval zebrafish was next acquired at 56.4×56.4×∼60 nm3vx−1

17http://keras.io
18http://zebrafish.link/hildebrand16/
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(a)

(b) (c)

(d) (e)

Figure 56: Visual comparison of the larval zebrafish ssEM volume segmentation; (a) input ssEM

volume; (b) manual segmentation (ground truth); (c) U-net [105] result; (d) RDN [43] result;

and (e) W-net416 result. Red arrows are erroneous regions.
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Figure 57: Cell nucleus segmentation results overlaid onto larval zebrafish ssEM dataset cross-

sections through the transverse (top, blue to red color map for cell sphericity) and horizontal

(bottom) planes.
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Table 14: Segmentation accuracy on zebrafish ssEM dataset.

Methods W-net RDN [43] U-net [105]

Vrand 0.998648782 0.991844302 0.987366177

Vinfo 0.996929124 0.994208722 0.992482059

Vdice 0.963047248 0.946099985 0.908491647

resolution from 16000 sections using scanning EM [60]. All images were then co-registered into

a 3D volume using an FFT signal whitening approach [129].

For training, two small sub-region dataset crops were extracted from a near-final iteration of

the full volume alignment in order to avoid ever deploying the segmentation on the training data.

Two volumes were chosen to train on different tissue features. One volume was 512×512×512

and the other was 512×512×256. The features of interest—neuronal nuclei—were manually

segmented as area-lists in each training volume using the Fiji [109] TrakEM2 plug-in [23]. These

area-lists were exported as binary masks for use in the training procedure. For accuracy as-

sessments, an additional non-overlapping 512×512×512 sub-volume test dataset was manually

segmented. To differentiate various configurations of our method, we use the superscript to

indicate how many FusionBlocks are inside W-net and the subscript to show the initial number

of feature maps in the original resolution. For example, W-net416 is the network that chains four

FusionBlocks, each of them has nb_filters is equal to 16. Figure 56 displays volume renderings

of the ssEM data, its manual nucleus segmentation, and segmentation results from U-net, RDN,

and our model W-net416. As shown, the proposed architecture introduced less false prediction

compared to U-net and RDN (indicated by red arrows). Table 14 compares U-net and W-net416

using three quality metrics, e.g., foreground-restricted Rand scoring after border thinning Vrand

and foreground-restricted information theoretic scoring after border thinning Vinfo and the Dice

coefficient Vdice, which also confirms that W-net416 more accurate results than U-net [105] and

RDN [43].

We deployed the trained network to the complete set of 16000 sections of the larval zebrafish

brain imaged at 56.4×56.4×∼60 nm3vx−1 resolution, which is around 1.2 terabytes in data size.

We discovered that there are approximately 180,000 cell bodies in the larval zebrafish brain.

Figure 57 shows ssEM dataset cross-sections in the transverse (top, x-y) and horizontal (bottom,

x-z) planes of the larval zebrafish overlaid with cell nucleus segmentation. The transverse view

also shows the sphericity (i.e., roundness) of each segmented cell nucleus in a blue to red color
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Figure 58: Correlation of statistical features: volume, surface area and sphericity, with horizontal

coordinates of the centroids.

map, which helps to identify the location of non-nucleus false positives. We have conducted

a statistical analysis of the cell morphological properties, such as volume, surface area, and

sphericity. Those features are then clustered with a K-means algorithm and plotted in the

form correlations, along side with their corresponding centroid coordinates. As illustrated in

Figure 58, the outliers in the magenta cluster, correspond to cells with large volumes and surface

areas, are clearly observed and can be eliminated by thresholding. We also observed that the

feature distribution appears to be mirror symmetric across the midline of the larval zebrafish.

This implies that the organization of neurons in the left and right brain hemisphere is likely to

be very similar.

8.2.3 Larval Drosophila ssEM data

The Drosophila ventral nerve cord ssEM data analyzed here was captured from a first instar

larva [22]. Training and test datasets were provided as part of the ISBI 2012 EM segmentation

challenge [3]. Each was acquired at anisotropic 4×4×∼50 nm3vx−1 resolution with transmission

EM. The datasets were chosen in part because they contained noise and small image alignment

errors that frequently occur in ssEM. For training, the provided set included a 2×2×1.5 um3
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Figure 59: Example results of cellular membrane segmentation on test data from the ISBI 2012

EM segmentation challenge (slice 22/30) illustrating an input EM image (left), the probability

prediction from our W-net264 (middle), and the thinned probability prediction after applying

LMC [6] post-processing (right).

Table 15: Accuracy of various segmentation methods on the Drosophila ssEM dataset (ISBI

2012 EM segmentation challenge leaderboard, March 2017)

Methods Vrand Vinfo

W-net264 LMC 0.983651122 0.991303595

IAL MC/LMC [6] 0.982616131 0.989461939

IAL LMC [5] 0.982240005 0.988448278

W-net264 0.981586186 0.990099898

PolyMtl [38] 0.980582825 0.988163049

KUnet [29] 0.980222514 0.988967601

FusionBlock (W-net164) 0.978042575 0.989945379

IAL IC [84] 0.977345721 0.989240736

Masters [130] 0.977141154 0.987534429

CUMedVision [28] 0.976824580 0.988645822

ICNN [133] 0.976546913 0.988341665

DIVE-SCI [42] 0.976229111 0.987392123

LSTM [116] 0.975366444 0.987425430

U-net [105] 0.972760748 0.986616590

91



volume imaged from 30 sections and publicly available manual segmentations. For testing, the

provided set included only image data, with segmentations kept private for the assessment of

segmentation accuracy [3]19.

Figure 59 illustrates the results of our probability map extraction from test data without

any post-processing step (middle) and with application of the lifted multicut (LMC) algorithm

(right) [6], which resulted in its thinning. As depicted, our method, as with other state-of-

the-art methods, is able to remove non-cellular membrane structures belonging to mitochondria

(appearing as dark shaded textures) and vesicles (appearing as small circles). An uncertain

region in the version without post-processing is illustrated by a gray region. In this case, the

proposed network must decide whether the highlighted pixels should be segmented as membrane,

but the region is ambiguous because of membrane smearing due to anisotropy in the data.

Our W-net approaches outperformed previous state-of-the-art methods on several standard

metrics. These including foreground-restricted Rand scoring after border thinning (Vrand) and

foreground-restricted information-theoretic scoring after border thinning (Vinfo), more detailed

descriptions of which are available elsewhere [3]. Quantitative results for these metrics are sum-

marized in Table 15. Even when a single FusionBlock module is used (W-net164, nb_filter = 64),

we achieved better results compared to many well-known methods, such as U-net [105], the

network-in-network approach [84], the fused-architecture approach [28], and the long-short term

memory (LSTM) approach [116]. If we use a W-net with two FusionBlock modules (W-net264,

nb_filter = 64), then our method outperformed the previous state-of-the-art deep learning

methods without post-processing [29, 38]. These results confirm that chaining a deeper archi-

tecture with a residual bottleneck helps to increase the accuracy of the ssEM segmentation task.

By applying the LMC post-processing to the result of W-net264, our method ranked at the top

in the ISBI 2012 EM segmentation challenge leaderboard (as of March 2017).

8.3 Discussion

Several recent work share related ideas with our W-net. Chen et al. [29] proposed concatenat-

ing multiple fully convolutional network to build RNN mainly for extracting inter-slice context.

Unlike our W-net, Chen et al.’s approach feeds different resolutions of the input (multi-input) to

produce the segmentation (single-output) for a single loss function. Wu proposed iteratively ap-

plying a pixel-wise CNN (ICNN) to refine membrane detection probability maps (MDPM) [133].

In this method, a regular CNN for generating MDPM from the raw input images and an iterative

CNN for refining MDPM are trained independently, but our method trains as a single chained
19http://brainiac2.mit.edu/isbi_challenge/
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network. In addition, our method can refine errors in MDPM better using a chained network

(i.e., correcting errors in the error-corrected results), and scales better for a larger image size

due to the end-to-end nature of the network.

Those related work and our proposed method try to leverage multiple input and output

concurrently to improve accuracy. More in-depth analysis of why such approaches are beneficial

to improve deep network’s prediction accuracy is left for future work.

8.4 Summary

In this chapter, we introduced a novel deep network architecture for image segmentation that

specifically targets ssEM image segmentation for connectomics analysis. The proposed architec-

ture, W-net, was built by combining and extending U-net and residual CNN architectures to

develop a deeper network for more accurate end-to-end image segmentation. We demonstrated

the flexibility of W-net through its application to both cell nucleus (blob-type) and cellular

membrane (membrane-type) segmentation tasks. In addition, we found that W-net achieved

state-of-the-art performance in several standard quality metrics.

In the future, we plan to conduct an in-depth analysis of W-net to better understand the

architecture and construct extremely deep W-net chains with the hope of further improving

segmentation accuracy. We also intend to apply W-net to other connectomics segmentation

tasks such as synapse detection. Developing a distributed version of W-net for parallel training

and deployment on a cluster system is another research direction we wish to explore.
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IX Deep Feature-aware Prior Denoising for Connectomics data

Electron microscopy (EM) is a crucial imaging technique in the neuroscience field of ’connec-

tomics’ research because only EM can provide sufficient image resolution to resolve densely

packed neuronal structures that are nanometers in size [59, 83]. Such high-resolution imaging

traditionally required human interaction for sample preparation and microscope operation, which

served as bottlenecks in the data acquisition process. Recent advances in automatic tissue collect-

ing and imaging techniques, such as the automated tape-collecting ultramicrotome (ATUM) [55]

and the transmission electron microscope camera array (TEMCA) [11, 81, 121, 139], significantly

reduce these acquisition burdens to make peta-scale data collection feasible. With the benefits of

these high-throughput imaging techniques, however, also comes the introduction of various im-

age artifacts that can make data analysis more challenging. For example, recent high-throughput

transmission EM (TEM) techniques use a perforated tape covered with an electron-lucent sup-

port film to hold tissue samples and to convey them into the microscope for automatic and

uninterrupted imaging (see Figure 60) [53, 62]. We observed that electron absorption property

of some electron-lucent films is not spatially homogeneous, causing coherent noise as shown in

Figure 61. Another example is electron beam charge damage artifacts, which are sometimes ob-

served in the scanning EM (SEM). The thickness of tissue sections cut by an ATUM is typically

about 30−50 nm, so electrons accumulated on the sample during imaging at high beam currents

can cause permanent damage and leaves blob-like artifacts (see Figure 62). These artifacts are

difficult to remove using conventional denoising filters developed for specific noise models.

We propose a novel semi-supervised learning-based denoising method that learns sources of

image artifacts (i.e., noise) and removes them from unseen images. Unlike other deep learning-

based noise removal methods that use supervised training to minimize the difference between

the output of the network and the noise-free (clean) image, the proposed method uses noise

examples selected from empty regions of EM images (that lack biological tissue) as a prior and

constructs a network that can learn how to consume or extract that noise pattern. Our method

consists of a three-way asymmetrically cyclic constraints in an adversarial deep network with

two generators. One approximates the noise model (adding noise to a clean image), while the

other is the inverse of the noise model (removing noise from a noisy image). The network is

trained without paired ground truth data. This approach can avoid collecting ground truth

clean and noisy image pairs, which are not feasible in many automatic imaging workflows, while

providing a more general learning-based denoising model that can handle various unconventional

EM imaging artifacts. The results show that the proposed method is more effective at removing
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Figure 60: Schematic of SEM (left) and TEM (right) image acquisition workflows accompanied

by examples of their artifacts (noise).

EM artifacts than current state-of-the-art denoising methods, including BM3D [34], dictionary-

based [24], Noise2Noise [82], and CyclicGAN [140].

9.1 Method

9.1.1 Data preparation

Data for two example cases were prepared for our experiment; one is intra-EM type (i.e., same

TEM for clean and noisy images) for film noise, and the other is inter-EM type (i.e., TEM for

clean image and SEM for noisy image) for charge noise.

Selection of intra-type and Film noise samples: Thousands of thin sections of chemically

fixed and stained mouse cortex tissue were collected onto two different support film substrates

compatible with TEM: pioloform or LUXfilm�. The TEMDR5 dataset was acquired from mouse

visual cortex tissue sections collected onto pioloform support film. The TEMPPC dataset was

acquired from mouse posterior parietal cortex tissue sections collected onto LUXfilm� support

film (Luxel Corporation). Pioloform supports films are thinner and more fragile, but contribute

little noise to the images. LUXfilm� support films are more robust and better suited for

automatic sectioning workflows [53] but can add substantial noise to the images. TEM images

were acquired at 4.3×4.3× ∼ 40 nm3vx−1 resolution using a modified JEOL 1200CX system. To

model the film noise, we also captured images of LUXfilm� support films lacking tissue sections.
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(a) TEMDR5 (b) Film noise (c) TEMPPC

Figure 61: Example of intra-type and film noise images. (a) is a clean TEM image, (b) is a film

noise image, and (c) is a noisy TEM image.

By superimposing film noise onto clean images (from TEMDR5) via pixel-wise multiplication, we

created synthetic noisy images for validating the trained network. These synthetic noise images

were not used for training our model. Figure 61 shows examples of typical TEMDR5, Film noise,

and TEMPPC images.

Selection of inter-type and Charge noise samples: Images were acquired from 5−7 days

post-fertilization larval zebrafish brain tissue with both TEM and SEM methods. The TEMZB

images were captured at a resolution of 4.0×4.0× ∼ 40 nm3vx−1 using a modified JEOL 1200CX

TEM system. The SEMZB images were captured at a resolution of 4.0× 4.0× ∼ 60 nm3vx−1

using a FEI Magellan XHR 400L SEM system [61]. Note that these patches were extracted

randomly with the given criteria in the collected image section. Figure 62 shows examples of

typical clean TEMZB images and SEMZB noise patterns and noisy tiles. In addition, the tissue

samples in this selection are different from above (zebrafish versus fly). We abbreviate these

indicators in the subscriptions of the dataset names (DR5, PPC, ZB).

9.1.2 Overview of the proposed method

Figure 63 describes the architecture overview of the proposed denoising method. The input

to our method is a collection of three types of images; clean EM images (such as TEMZB or

TEMDR5), pure noise images cut out from the empty region of noisy EM images (film or charging

noise patterns), and noisy EM images (such as SEMZB or TEMPPC). Note that those three

input images are acquired independently and we do not use paired data to train the proposed

network.
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(a) TEMZB (b) Charge noise (c) SEMZB

Figure 62: Example of inter-type and charge noise images. (a) is a clean TEM image, (b) is a

charge noise image, and (c) is a noisy SEM image.

The generator G in our model consists of two end-to-end convolutional-autoencoder net-

works: G1 synthesizes a noisy-like image If from a 2-channel image, i.e., a merge between the

clean image Ct and the noise pattern Nt that were sampled randomly from big tiles of truly

clean image and noise motif training datasets; G2 decomposes the input noisy image It, sampled

randomly from real noisy EM training images, into a 2-channel image, which is a concatenation

of the clean-like image Cf and the noise-like image Nf . Mathematically, the above descrip-

tions can be formalized defined as follows, in which G1 and G2 are considered being universal

approximate functions:

If = G1(Ct, Nt)

Cf , Nf = G2(It)
(71)

Cr, Nr = G2(If )

Ir = G1(Cf , Nf )
(72)

There are two different paths for training; The upper direction encourages the reconstruction

of input clean image and noise pattern after going through G1 and G2. The lower path acts

similarly but in reverse order: it attempts to reassemble the input noisy image by subsequently

proceeding over G2 and G1. This serves as strong constraints for three independently generated

input images.

The discriminators D including DI, DC, DN for recognizing clean images C, noise patterns

N and noisy images I, respectively, attempt to differentiate between the real instances from the

database and the fake results output generated by G. It is worth noting that although G1,

G2 are sharing the similar architecture of a convolutional-autoencoder and the same structure

of such a binary classifier is used to construct DC, DN, DI, each of them has its own variable
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Figure 63: The architecture of the proposed model

scope and hence will be updated differently during the training. The inner configurations,

such as number of filters, residual bottlenecks, etc., are made identical to CycleGAN [140] and

therefore allow to conduct direct comparisons afterward. The entire system involves training G,

D adversarially until a balance is reached at the convergence stage.

9.1.3 Loss definition

We wish to train D so that it can maximize the probability of assigning the correct true or false

label to clean, noise and noisy images. Note that the objective function for D can be interpreted

as maximizing the log-likelihood for estimating the conditional probability, where the image

comes from: DI (It) = DI (G1 (Ct, Nt)) = 0 (fake), and DI (I) = 1 (real). Simultaneously,

generator G1 is trained to minimize [1− logDI (It)] or [1− logDI (G1 (Ct, Nt))]. This can be

addressed by formally defining an adversarial loss Ladv:

Ladv = [1− logDC (Cf )] + [logDC(Ct)]

+ [1− logDN (Nf )] + [logDN(Nt)]

+ [1− logDI (If )] + [logDI(It)]

(73)

In an extreme case, with large enough resources and data, the network can overkill the sig-

nificant feature on reconstruction Cf . To avoid this case, we introduce an additional constraint,
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the data consistency loss Lcyc, which is a combination of each input image Lclean, Lnoise and

Lnoisy in a cyclic fashion. This mean that the noise pattern can be consolidated with the clean

image to make the noisy-like image and separated thereafter in order to satisfy the conservative

energy consumption. In practice, various distance metrics, such as mean-square-error (MSE),

mean-absolute-error (MAE), etc, can be employed to implement Lcyc. Note that the cyclic loss

only affects the generator G and not the discriminator D.

Lclean = d(Ct, Cr), Lnoise = d(Nt, Nr), Limage = d(It, Ir) (74)

Lcyc = Lclean + Lnoise + Limage (75)

In summary, our system involves two sub-networks which are trained adversarially to mini-

mize the following loss:

Ltotal = Ladv + λLcyc (76)

where λ is used to control the balance between each contribution. We set λ = 10 for all

the experiments. The Adam optimizer [76] is used with the initial learning rate of 1e−4, which

decreases monotonically over 500 epochs. The entire framework was implemented using a system-

oriented programming wrapper (tensorpack 20) of the tensorflow 21 library.

9.2 Training and Testing specification

Training phase: The proposed model accepts a certain sizes of Field of View (FoV) as 512×512

meanwhile the actual collected images have much larger size. For each kind of dataset, i.e.,

clean, noise and noisy images, we randomly sample an image patch that has exactly the size of

512×512 to train the proposed GAN method. Due to this strategy, highly likely that we can

avoid overfitting case since the training instances are always renewed for each iteration. The

Adam optimizer has been employed with the initial learning rate is set at 2e−4. We train our

model in 2000 epochs and periodically save the checkpoints.

Testing phase: To deploy the trained model on the test noisy image and obtain the denoised

tile, we subdivide it into many overlapped patches which have the same FoV 512×512 and the

step stride is 256. The prediction of each patch is then multiplied by a Gaussian weight and

the result is obtained by dividing weighted estimation to the total per-pixel weight. Figure 64

shown an example of the final weight maps on a typical noisy image 2048×2048. By doing this,

we can effectively avoid the window artifact from a naive subdivision approach with or without

the halo extensions.
20http://tensorpack.readthedocs.io/
21http://www.tensorflow.org/
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Figure 64: Fully weighted map of overlapping 5122 blocks on a 20482 image with a stride 256

9.3 Result

9.3.1 Experiment setup

Table 16: Specifications of our cases for examination

Clean Images Noise types Noisy Images (types)

1 TEMZB Gaussian TEMZB + Gaussian (Synthetic)

2 TEMZB Charge TEMZB + Charge (Synthetic)

3 N/A Charge SEMZB (Real)

4 TEMDR5 Film TEMDR5 * Film (Synthetic)

5 N/A Film TEMPPC (Real)

Table 16 summarizes the experiments we conducted to assess the performance of our method.

There are three types of noise, i.e., Gaussian noise, charge noise, and film noise. Even though

Gaussian noise is not the main target of our denoising method, it serves as a standard metric to

compare with other existing denoising methods specifically designed for that noise model.

We conducted both quantitative and qualitative evaluations. For quantitative evaluations

(cases 1, 2, and 4), we generated synthetic noisy images by adding (or multiplying) either syn-

thetic Gaussian noise (μ = 0.0, σ = 0.05) or real charge and film noise patterns to clean TEM
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(a) Case 1 (b) Case 2 (c) Case 4

Figure 65: PSNRs (in dB) of related methods compared to the ground truth images.

(a) Case 1 (b) Case 2 (c) Case 4

Figure 66: NRMSEs of related methods compared to the ground truth images.

(TEMZB and TEMDR5), applied denoising methods (ours, BM3D [34], CSC [24], Noise2Noise [82],

and CycleGAN [140]), and compared the results with the ground truth clean images using the

Peak-Signal-to-Noise-Ratio (PSNR) (Figure 65) and the Normalized Root Mean square Error

(NRMSE) (Figure 66) metrics. For cases 3 and 5, we do not have ground truth clean images,

so we made visual comparisons between denoised results. We used 128 test images for each

experiment.

9.3.2 Quantitative and qualitative evaluations

Case 1 (TEMZB and Gaussian noise):

As we can see, results from case 1 (Gaussian additive noise, Figure 65a and Figure 66a)

show that performance of CSC [24] is less susceptible to recover the noise-free inputs. Among

all, since our approach inherits both benefits from prior distribution (noise model assumed to

be known as Gaussian) and hard complementary distribution (input noise should be able to

regain), it outperforms Noise2Noise [82], and CycleGAN [140] by a little margins. As results,

the differences between the reconstruction and the ground truth from our method are less severe

compared to others (see Figure 67). Hence, we conclude that training a denoiser with hard

constraint to recover the input noise delivers competitive image quality under the assumption

of incoherent noise-type like additive Gaussian.
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Figure 67: Comparison on TEMZB dataset in case 1.
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Figure 68: Comparison on TEMZB dataset in case 2.

SEM BM3D CSC Noise2Noise CycleGAN Proposed

Figure 69: Comparison on SEMZB dataset in case 3.
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Case 2 (TEMZB and Charge noise): By switching from Gaussian to Charge noise (case

2, Figure 65b and Figure 66b), although the artifact-interference strategy is still addition as

before, it is not easy to achieve the PSNRs > 22 dB except CycleGAN [140] and the proposed

method. Figure 68 pictorially confirms that the coherence electric charge damage noise caused

by the photon-beam is effectively removed with the presence of cyclic loss in which our model

elevates for. This type of coherent noise has blob-like artifacts on top of the Gaussian pattern

scattered across the image and cannot be well-defined by mathematical formulas, which leads to

the fact that designing such a series of hand-crafted filters is not easy. Therefore, approximating

the forward and inverse noise models by neural networks has certain benefits in which locations

and sizes of electric charge damages can be incorporated as conditions for the learning process.

Case 3 (SEMZB and Charge noise): We used the model trained with TEMZB data

and Charge noise to blindly deploy on unseen SEMZB images. Figure 69 illustrates side-by-side

the comparison of results from mentioned methods including ours. We can visually assess that

CycleGAN and our method can effectively remove background blob-like charge noise as well

as increase signal-to-noise of SEM images because our discriminators are trained using clean

TEM images. One can also find subtle differences between ours and CycleGAN; ours tends to

reconstruct background clearer and edges are sharper than CycleGAN, which could be due to

the separate discriminators for clean and noise images in the proposed method.

Case 4 (TEMDR5 and Film noise): Similar achievements are obtained if the multiplica-

tive noise is used to assess the reconstruction performance in case 4. Figure 65c and Figure 66c

show that the proposed method is not only superior across image modalities (TEMZB versus

SEMZB in case 2 and 3) but also within the same scope of imaging method aside from differ-

ent image types and noise behaviors, i.e., TEMDR5 and TEMPPC and Film noise. Significant

improvements from CycleGAN [140] and our model over the rest indicate that the noise-like

photon-absorption artifacts of the film can not be estimated via any noise assumptions, and

therefore cyclically reconstructing the noise-altered and noise-free images can maintain the DC

components (i.e., low frequency intensities) of the data. Overall, as shown in Figure 70, the

proposed method generates less errors compared to the ground truth than the others.

Case 5 (TEMPPC and Film noise): Figure 71 visually compares the results of ours and

the others. Overall, the results seem similar to case 3, except that TEMPPC is in general darker

because the film noise suppresses the contrast of the image and our method and CycleGAN

restored the contrast closer to that of clean TEM images. It is clearly shown that ours and

CycleGAN outperform the rest, and ours is less blurry than CycleGAN (especially, vesicles and

synaptic clefts are clearer in our result).
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Figure 70: Comparison on TEMDR5 dataset in case 4.

PPC BM3D CSC Noise2Noise CycleGAN Proposed

Figure 71: Comparison on TEMPPC dataset in case 5.

9.4 Summary

In this work, an asymmetrically cyclic adversarial network is proposed to perform denoising

tasks, specifically designed for Electron Microscopic (EM) analysis pipeline. Unlike other com-

mon deep learning methods that have been trained with pairs in which the target instances

are usually noise-free images, our work focuses on empirical observations where the noise-only

patterns (on films or electric charge distribution) can be estimated during the imaging process,

and uses those as priors, along side with generative adversarial loss, to consolidate noisy-like

images and delineate to reconstruct the original noise. We demonstrated that the proposed

method outperform CycleGAN which is an unpaired image-to-image translation method, and

other state-of-the-art deep learning-based approaches on the unseen images which have coher-

ent distributions. Thanks to the nature of one-time feedforward deployment on trained neural

networks, it will have a potential to be applied to a massive number of image sections generated

in high-throughput EM imaging workflow.
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X Conclusion and Future Work

10.1 Summary of Dissertation Research

In this dissertation, I have presented several approaches to tackle and solve diverse biomedi-

cal image reconstruction tasks including restoration/enhancement, segmentation and denoising.

Recently, however, new methods for measuring the activity and determining the structure of

neural circuits developed by a diverse group of scientists is enabling unprecedented exploration

of how the most complicated organ in our body generates our complex behaviors. During a joint

work with Harvard Medical School, I came to respect the highly complex nature of neural data,

the analysis of which requires combining the knowledge of wide range interdisciplinary research

fields such as biology, engineering, and many other natural sciences. The data collected from

state-of-the-art neuroscience techniques (e.g., serial-section EM, ECG, EEG) are massive and

very high-dimensional in general. From this work, I have come to appreciate that the key to

successful exploration of neural data is the use of computationally efficient and interactive design

tools for scientific computing and visualization. This is where I see big potential for computer

science to enhance neuroscience investigations through the use of many-core GPU accelerators.

In our modern world these days, seeing or visualizing data gains much more attentions for

clarifying the theory of domain specific knowledge. For instance, in connectomics, with the

help of Electron Microscope, scientists are able to discover the very complex structures such

as neurons and their corresponding axons, synapses, vesicles and so on. Therefore, they can

construct experimental proofs that support or protest our ancients’ classical observations with

an absence of nano-scaled instruments.

The term connectomics stands for a brand-new and cutting-edge research direction in basic

sciences, for more specific, neuroscience. People who work in this field are particularly interested

in how our human brains work and wish to understand the way that our memory is stored and

processed. They started by investigating the worm C. elegans which has a modest neural system

including around 7000 connections between roughly 300 neurons (in 1970s), then subsequently

approached to bigger species like zebra fishes, mice, chimpanzees, etc. but rarely to human. At

this moment, with the stage of the art medical equipment explosion, we are about to enter the

era of revealing our most complex organ’s behaviors: the brain.

Research ideas for using GPGPU to solve problems in biomedical image reconstruction are

numerous, and my research so far has just scraped the surface of these possibilities. To this end,

I believe that this dissertation would provide a perfect place to exchange my PhD research on

the use of many-core accelerator GPUs to solve problems in biomedical image reconstruction. It
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will open the door to interact with engineers and researchers and improve my knowledge of GPU

technologies, therefore significantly improving the outcomes of my work. I also believe that my

research would provide insights for other people to explore the many CUDA-enabled applica-

tions in the biomedical scientific domain. Finally, the proposed directions are expected to help

scientists and other related fields’ researchers to grasp their complex data through interactive

computation and visualization.

10.2 Limitations and Cautions of the current work

Despite the fact that the current work has potential impact in the field of bio-medical imaging,

it also poses some limitations and cautions when one attempts to use it as a black box without

diving deep inside to the methodologies. As can be seen in the conventional methods using iter-

ative scheme, it introduced a computational overhead either from enhancing the measurement

or restoring the insight and therefore leads to quality trade-offs. Even though training adver-

sarially with a cyclic deep neural network can generate much more realistic results, it can also

output the non-physical image in the case that the training set is bias to one domain (normal MR

images) versus the unseen domain (abnormal MR images that indicate cancer). One promising

direction is to give the ability for each perceptron (locally) or the entire neural network (globally)

can output the results with some uncertainties for its decisions. In addition, it is really easy to

fool the deep neural network model by embedding the gradients of the counterfeit image to the

target. Therefore, this kind of attack must be accompanied by a defense mechanism.

On the other hands, although the current work leveraged the state-of-the-art approaches

to solve bio-medical image reconstruction, devising such these methods still incorporates some

parameter tuning and architecture choices (e.g., number of feature maps, number of neurons, or

activation type at each layer, etc.). Furthermore, the myriads of moving objectives to choose

correct loss functions and the initialization should be taken into account. This work, more or

less, still targeted to supervised (deep neural network) and unsupervised (dictionary learning)

techniques. However, the big picture of true artificial intelligence covers a larger scope with

many other areas, such as Bayesian learning, Gaussian processes, etc. Thus, combining these

to create a uniquely golden method is still an open-end direction. Last but not least, the

(deeper) neural network models are not essentially better than other methods (TV regularizers,

dictionary learning, etc.,) when we know well the insights that we are going to reconstruct. The

future of harnessing powers of artificial intelligence has much more room to explore, rather than

focusing on the artificial hand-crafting feature design. It is hence getting much excitement but

introducing many more challenges.
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Figure 72: Segmentation module in connectomic segmentation pipeline.

10.3 Future work

Reinforcement Learning (RL) is the area of applying Machine Learning techniques to optimal

control problems. RL models usually consist of agents and interactive environments. They fo-

cus on acting and decision making at each time step to change the state of the environment in

order to achieve an optimal result when the interactivity (episode) finished. The applications

of RL are massive-fold, in various domains which need decision making, from robotics to social

advertisements. There are interesting examples that can be listed, such as self-learning robotics

(Google AI), DeepRL for autonomous driving car, Google HVAC, Recommender systems, Vi-

sual question answering (VQA), DeepRL for chatbots, AlphaGo Zero, autoML, JPMorgan, etc.

However, gamifying the image processing applications is still not straightforward since the pool

of actions is not well defined and its solution is not yet robust compared to end-to-end solutions

(e.g., using Fully Convolutional Networks). In the future research work, I wish to use an RL

algorithm (Deep Q Network or more advanced methods) to solve an image segmentation prob-

lem for connectomic analysis pipeline, which is still in an early stage of interest, by working to

design a proper set of actions.

In connectomics research, seminal work has focused on the reconstruction of neuronal wiring

diagrams from 3D electron microscopy images of neural tissue. The brain is imaged at high

resolution with an electron microscope, and then several image analysis problems need to be

solved in order to generate a wiring diagram of the portion of the brain that was imaged: aligning

consecutive 2D image slices into a coherent 3D volume, tracing wires to their parent cell body,

detecting and characterizing synapses. Among them, the segmentation part (Figure 72) is the

most time-consuming since it required domain expertise to complete, even for a small portion

of the brain.
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Figure 73: Quadtree decomposition for an agent can solve a landmark detection problem

And there are several solutions that can perform this task well but they are lacking of the abil-

ity of correcting the segmentation at different scales. Therefore, developing such an environment

and leverage freelancers to join in this platform to annotate each individual neuronal structure is

required 22). Nevertheless, we need to pass a certain levels of experience(s) by achieving positive

results compared to neuroscience experts’ manual annotations before actually being accepted to

perform the segmentation on other regions of the brain. Perhaps, the most recent method that

implicitly tackles the connectomic segmentation problem automatically is Flood-filling Network

published by Google [68], in which an agent attempts to refine and completely segment a single

neuronal structure overtime before starting to delineate other instances.

To begin addressing this proposal to solve the connectomic segmentation problem in an

interactive gaming environment, I have implemented a simple demo example to find the center

of heart (landmark detection). This scenario is well-defined in [2], where the authors have built

an agent and used Deep Q Network to reduce Euclidean distance overtime when it attempts

to navigate pixel-by-pixel within the environment. This leads to the total cost may get into

O(n) where n is the number of total pixels in the environment. My solution, on the other

hand, is much more efficient than the former when I leverage the Quad-Q-Learning [32] (applied

for fractal image compression) to reduce the number of steps that the agent needs to perform,

i.e., O(logn). I started to construct a quadtree to represent the image environment and step

forward with a random action of choosing the current leaf. The episode will be split further

until it reaches the smallest areas (Figure 73). The delayed reward will be evaluated based on

the inverse of smaller distance overtime. As results, it outperformed the solution from [2] in

term of running times.

I also found that there are similar attributes sharing between landmark localization and a

simple heart segmentation problem such as the action pool is still relatively small and finite,

i.e., if the current area if this leaf has non-unique mask then the agent need to split and push
22https://eyewire.org/explore
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Figure 74: Quadtree decomposition for an agent can solve a heart segmentation problem

those active leaves to the queue, otherwise, it pops the node from the queue and assign either

foreground or background (Figure 74).

However, due to my early study on RL and limited amount of time for implementation, the

results I got from this demo of heart segmentation, before diving into connectomics data, is not

good enough. This can be explained due to the fact the RL excels at decision making but not

at pixel assignment in fine-detailed resolution and my current choices of reward is not properly

designed. Furthermore, the idea of replacing the network used to approximate the Q-table by

Capsule Network [108] is also of great interest.

To end, I wish to continue and pursue this direction, right after my PhD study, in which

that I can collaborate with other researchers to accomplish the gamification of connectomics

segmentation. I believe that the outcome will make a great contribution not only in the computer

vision/machine learning community, but also in neuroscience study.
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