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ABSTRACT 

Jong-Hwa Park 

Thermal inequity in urban heat island 

: vulnerable class near the industrial area 

(Under the direction of Gi-Hyoug Cho) 

 

Many urban heat-related studies have focused primarily on the relationship between local heat risk 

level and the physical environment in the field of separate studies such as urban heat island, heat wave, 

and health.  

My thesis suggests a different understanding of urban heat issues and emphasizes the recognition of 

social factors in urban structure. The purpose of my study is to analysis thermal inequity of the 

residential area according to proximity and heat environment difference of the industrial area in the 

urban heat island. Moreover, my thesis found that geographical conditions such as residential area 

adjacent to the old industrial area is associated with the social conditions as well as thermal inequity. 

The findings indicated that (1) the existence of green buffers mitigated the thermal inequity between 

areas adjacent and non-adjacent to old industrial areas. However, the inequality construction of green 

buffers in adjacent areas caused thermal inequity between adjacent regions. (2) Very-small companies 

were found in vulnerable built environments of a higher LST than small and medium-sized companies 

in old industrial complexes, so there was a relationship between the size of the company and the 

vulnerability to heat of the environment. (3) green buffers were found to influence the air temperature 

reduction of old detached housing areas adjacent to old industrial areas. 

From perspective of the study, thermal inequity is determined by the planning factor rather than 

simply being located close to the industrial area. My thesis suggests that the existence of green buffers 

played a role in reducing thermal inequity between the adjacent and the non-adjacent areas. The green 

buffers showed not only temperature reduction effect but also improvement of heat environment in 

adjacent residential areas. In addition, a plan which reduces the thermal inequity should be implemented 

through the link with the old industrial area rather than a single environmental improvement of the 

residential area adjacent to the old industrial area. 
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CHAPTER 1 

1.1 INTRODUCTION 

The rise in urban air temperature has caused public concern about heat-related diseases and mortality 

in densely urban areas. In Korea, the average national heatwave days in 2018 were 31.5 days, which 

led to the heat island phenomenon centering on large cities. The Korea Meteorological Administration 

(KMA) estimated that the death rate from heatwaves will increase from 0.7 people per 100,000 

population in 2006 to 1.5 in 2023~2040 (Korean Climate Change Assessment Report, 2014). Heatwaves 

have been shown to be a high risk for vulnerable populations such as the elderly, children, and the 

disabled (O'Neill 2003; Uejio et al. 2011; Vanos 2015).  

However, as the duration of the heatwave became longer, the heat-related illnesses occurred 

according to class and place apart from the biological difference. According to the report of the Korea 

centers for disease control (2017), the workers who work in the outdoor space with high direct sunlight 

exposure had the highest number of heat illnesses (34.2%), followed that the heat illnesses occurred 

around the residential area (26.9%). The occurrence of a heatwave in workplaces and residential areas 

shows a different point of view in which older people in suburban mainly revealed as heat-related 

victims. The point of view in the workplaces and residential areas means that people in the city may 

differently exposure to heat according to their lifestyle and local conditions. Notably, vulnerable social 

classes were more easily damaged by a heatwave. For instance, among the heat-related illnesses, 

vulnerable social classes receiving medical care were 10.6% and simple worker and unemployed person 

were 16.6% and 16.7%, respectively. 

Thus, the weighted influence of heatwave on the vulnerable social class is related to the uneven 

distribution of heat in the urban space. Some studies have shown that regional land cover composition 

is a significant determinant of spatial variation in land surface temperature (LST) (Connors et al., 2013; 

Zhou et al., 2014). The built environment, including buildings and roads, showed higher land surface 

temperature(LST) than natural surfaces (Zhou et al. 2014). Physical factors influence the spatial 

heterogeneity of heat, but residents of a particular area are exposed differently to heat by social 

conditions. Ethnic minorities, low-income, and low-educated people live in more environmentally 

disadvantaged neighborhoods with, for example, low-accessibility at parks and public transport service; 

thus they experience negative health problem due to relatively more exposed to heat(Bi et al., 2011). 

Therefore, socioeconomically vulnerable groups experience higher LST than other groups (Buyantuyev. 

& Wu. 2010; Jenerette et al. 2011; Huang et al. 2011). 
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Moreover, social conditions can determine people's ability to mitigate and adapt on heat(Uejio et al. 

2010). As those with low-income levels, for instance, can have limited access to air conditioning, to 

mitigating and adapting to heat exposure can be challenging for certain classes. In other words, the 

combination of uneven distribution of urban heat and unequal social vulnerability creates a situation of 

thermal inequity (Mitchell & Chakraborty 2014).  

These local differences and social conditions for differential heat exposure have received limited 

attention in environmental justice study. The intertwining of social difference with environmental 

exposure in different regions is considered as a fundamental element of environmental justice (Walker, 

2012). The discussion of environmental justice has revealed a correlation between the location of 

factories with hazardous facilities and the racial and socioeconomic factors in the surrounding area. 

Most environmental justice studies suggest that socioeconomically vulnerable groups have higher levels 

of negative environmental exposure and health damage (Mohai, p. et al., 2009; Lee, S., & Mohai, P. 

2011). Because, the burden of environmental pollution was imputed to vulnerable social classes while 

the distribution benefits from green area decreased(Jeong, H, 2003).  

The industrial area which has factories and hazardous facilities was considered for discussing 

environmental justice issues. Neighborhoods around the industrial area are exposed to environmental 

problems such as noise, air pollution, water pollution, inconvenience with traffic congestion and 

landscape disturbance. Despite these problems, factories and hazardous facilities with environmental 

problems were located closer to residential areas of vulnerable social classes such as black people. In 

addition, the area adjacent to the industrial area is often regarded as a residential area for vulnerable 

social classes, due to the incorrect location plan of the residential area(Jeong, et al., 2011).  

Thus, industrial areas may not differ significantly from environmental issues related to heat. In other 

words, the area adjacent to industrial areas was affected by relatively negative environmental impacts 

and the vulnerable social classes lived in the adjacent area were more damaged by a negative 

environmental influence such as air pollution. In addition, industrial areas have been founded to be 

urban space where a productive and built environment accelerated the urban heat island effect in 

addition to the existing environmental problems. For instance, many UHI studies have revealed that 

industrial areas have higher land surface temperatures and heat island effects (UHI) in the daytime than 

other land use characteristics (Dousset, B., & Gourmelon, F., 2003; Li, J. et al., 2011; Chakraborty, SD, 

Kant, Y., & Mitra, D., 2015).  

Thus, the industrial area which had been an environmental influence in the environmental inequity 

may create inequity in the neighboring areas even in heat environment. In the city, built environment 
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and anthropogenic heat of the industrial area have been revealed as major region to accelerate UHI 

effect. Nevertheless, the study on heat environment difference according to the internal environment of 

the industrial area was insufficient, and there was a lack of interest in terms of the relationship between 

the industrial area and the surrounding area in study related to heat environment.  

From the perspective of environmental justice, the residential area adjacent to the industrial area 

showed an environmental inequity because of environmental influence from the industrial area in 

addition to the lack of responsiveness and poor housing environment of the vulnerable class. In other 

words, health damage caused by heatwaves was being aggravated to vulnerable class, but vulnerable 

class living in an area adjacent to industrial areas that raise the urban heat island can be in an additional 

heat influence compared to other areas. Thus, the purpose of my study is to analysis thermal inequity 

of the residential area according to proximity and heat environment difference of the industrial area in 

the urban heat island. 
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CHAPTER 2 

2.1 LITERATURE REVIES 

2.1.1 Urban heat island  

The Urban Heat Island (UHI) phenomenon is a by-product of rapid population growth and urban 

development and is attracting attention as one of serious environmental problems that negatively 

impacts on urban activity of citizen. On the study of urban planning, the discussion of ‘urban heat 

islands’ has taken place among scholars since Oke (1982) first introduced the term. Changes in the 

physical environment such as landscape orientation, arrangement and the layout of buildings, and an 

increase in artificial land cover are the leading causes of UHI. Notably, the density of streets and 

buildings alters radiative flux and the flow of air. An increase in the use of automobiles and air 

conditioner and various industrial activities emit anthropogenic heat, creating a vicious cycle of rising 

urban temperatures. 

UHI is affected by the relative ratio of urban impervious surface to natural vegetated land covers. 

Artificial materials by concrete and asphalt which have a high absorption of solar radiation increased 

heat accumulation of land surface(Kim et al, 2011). Unlike natural surface artificial materials, which 

increase sensible heat and interrupt circulation water, have little no evaporation effect. As urban area 

develops and density increases, impervious pavement and building pavements change pervious soils 

and vegetation. Dimoudi et al., (2003) studied that impervious pavement limits the presence of moisture, 

which plays a role in moderating local air temperature. 

Impervious surfaces result in environmental problems related to UHI. Zhang et al., (2011) found that 

for every 10% increase in impervious surface area, average minimum temperature at 5 a.m. were 0.4℃ 

warmer. In contrast, the vegetation such as park, tree and grass contribute to cooling are through 

evaporation and shade. The parks and vegetation are lower than the Land surface temperatures of 

impervious pavement areas (Cao, X. et al., 2010). 

The average land surface temperature(LST) of the urban area showed the highest in the industrial area 

(33.2℃) and the lowest in the green zone (24.9℃). In the residential area, the third general residential 

zone was over 1℃ higher than the second general residential zone(An et al. 2016). In case of industrial 

areas, it has the characteristics of a building designed with flat concrete or iron roof. Moreover, it has 

the highest surface temperature because it lacks the green zone ratio and has the large land area. On the 
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other hand, at night time, the ambient temperature appeared higher in urban core (Rinner, C., & Hussain, 

M., 2011). 

Moreover, Industrial areas are a region generating high anthropogenic heat. Anthropogenic heat is 

one of contributor in urban heat island. Anthropogenic heat which is generated from traffic congestion 

areas and industrial areas can increase the temperature of UHIs by 1-5 ℃ and raise the temperature 

around industrial areas along the wind direction (Fan, H., & Sailor, D. J., 2005). Heat generated from 

industrial regions plays a significant role in contributing to the local climate. Paul Coseo & Larissa 

Larsen (2014) reported a decrease of 0.45 ℃ in neighboring areas when the more increased by one-

kilometer from industrial sites, and the downwind from the industrial area during the day showed a 

tendency to raise the air temperature in the surrounding area. 

2.1.2 Demographic and Social conditions to heat Vulnerability  

The increasing urban temperature has a negative effect on people such as heat-related health problems. 

Especially, those who lack of the ability to use air conditioners are not able to respond an increased heat. 

Several studies have identified that extreme heat exacerbated mortality and morbidity of people and 

decreased performance in the workplace (Singh, S. et al., 2013, Humphreys, M., 2015, Kiefer, M.et al., 

2016). The regional differences of heat vulnerability are determined by mixed physical, socioeconomic, 

and demographic factors (Uejio et al., 2011). They have emphasized the role of socio-demographic 

factors such as age, race, gender, education, health and economic status (Cutter 2009; Reid et al., 2009).  

Age has considered as vulnerable variable for heat-related health. The people under 15 and over 65 

years were vulnerable to heat and they contribute to high temperature vulnerability due to living in 

declined and high-density residential areas (Buscail, C. et al. 2012, Vargo, J. et al. 2016). In particular, 

groups of elderly people who are economically weak with health problems are vulnerable to heat, 

because elderly people have a high residence rate in urban heat island.  

Maras, I. et al. (2014) analyzed the relationship between community and thermal vulnerability through 

a survey. His study showed that people who are socially independent and those who did not own a home 

were more exposed to heat because they have a high proportion of living in inner cities with higher 

building density. On the other hand, the number of retirement communities that represent the stability 

of the neighborhood has a role in protecting the old people from heat stress (Uejio et al. 2011). It means 

that Neighborhood stability is related to conditions such as crime risk, built year, and vacant households, 

which interrupt people`s behavior to cope with high temperature. For instance, high violent crime rate 

may interrupt heat behaviors like leaving a window open overnight (Palecki et al. 2001), and old 
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buildings and vacancies cause urban decline and a lack of heat protection facilities(Smoyer, 1998).As 

a result, low neighborhood stability increases the risk of heat stress and death. 

Among the socioeconomic conditions, income has an important correlation with heat vulnerability. 

Poor people experience negative effects of heatwave, and the area in which they live have relatively a 

low vegetation coverage. Low-income residents were more likely to be vulnerable to heat, because they 

lived in old buildings without wind plan in construction. In contrast, high-income residents showed a 

low heat vulnerability due to improved or increased green area (Chow, W. T. et al. 2012). Residents are 

likely to be exposed to high heat vulnerability because of low incomes and they are in short supply and 

cost to turn on the air conditioner. In addition, strategies to increase green area and albedo are not very 

effective when they applied to low density area with low income (Mushore, T. D. et al. 2017). 

Uejio et al. (2011) showed that health inequality has been found by the relative importance of socio-

economic vulnerability, and heat exposure in areas suffering from heat illness and mortality. On the 

other hand, the strategies to reduce air temperatures such as increasing green area or surface albedo, has 

also been used to assess the impact of indicators related to heat vulnerability and the distribution of 

health benefits (Vargo, J.et al. 2016) The health benefit was clearly different in regional demographic 

distribution, and land cover intervention indicated that there is a difference in mitigation effect about 

heat risk of age, race, and income depending on the regional location. 

2.1.3 Thermal inequity 

a. Inequity for environmental influence 

In previous study of heat vulnerability, the uneven distribution of urban heat is associated with local 

residential environment and social conditions such as income of the vulnerable class. Thus, urban heat 

may unfairly affect to a certain region and class. Likewise, inequity for environmental influence such 

as urban heat has been mainly dealt with in environmental justice study. 

The discussion of environmental justice focused on the correlation between the location of factories 

and hazardous facilities, racial and socioeconomic factors of the surrounding area. According to race, 

class and region, environmental justice on the effects of environmental pollution damage and the 

distribution of benefit is defined to environmental racism, environmental injustice, and environmental 

inequity.  

In the early 1980s, the concept of environmental justice, which raised the issue of environmental 
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justice in the United States, emerged by environmental racism where black people were concentrated 

in areas adjacent to hazardous facility. In other words, blacks have systematically excluded from 

community of an environmental opinion decision for exposure of harmful environments(Mohai, P., & 

Saha, R, 2007). 

Environmental injustice refers the environmental damage which impact on vulnerable class of 

adjacent area as the location selection of factory and the hazardous facility was not properly reflected 

for the opinion of local residents. For instance, most factories moved to suburban areas by post-industry, 

while blacks residing in urban areas migrated back to the suburbs along the factory according to a 

residential discriminatory policy(Massey, D. S., & Denton, N. A., 1993). 

Environmental inequity is a consequence of an environmental benefit reduction to the vulnerable 

class by environmental influence due to urban development. Bullard, R. D. (1994) defined that minority 

community was suffered from discriminative location decision by unfair policies and environmental 

risk. Because, socially vulnerable class who is likely to access low-priced real estate is relatively 

excluded from the market competition for the purchase of house of good environment condition. 

Moreover, low-income households are difficult to be afforded the right to demand equal rights from 

the characteristics of public goods that are provided differently locally due to income inequality (Jeong, 

Hoi-Seong & Nam, Sang-Min, 2003). In other words, environmental problems more exposed to the 

vulnerable social class who has a relatively limited ability to cope with environmental influence such 

as air pollution showed that vulnerable class did not have an equality of environmental service from 

green space such as the responsibility of the environment improvement and the distribution of benefit. 

However, it is hard to find a study that approached the inequity associated with heat in perspective of 

environmental justice. 

b. Thermal inequity for vulnerable class 

Harlan, S. L et al. (2006) was the first to emphasize the unfair exposure to urban heat. To understand 

the relationship between the microclimate, demographic characteristics and the heat environment of 

eight urban residential areas, this study investigated the health inequalities on the heat in a city area. 

This study points out that socioeconomic and ethnic groups have been exposed to more heat stress and 

have difficulties in environmental improvement.  

As the followed study, Jenerette et al. (2007) showed that urban temperature varies widely depending 

on the social characteristics of neighborhoods. The poor neighborhoods experienced higher 

temperatures, and as household income increased, the land surface temperature was lower by 0.28℃. 
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This result shows that the ratio of green areas in a poor neighborhood is insufficient compared to other 

areas. 

Byrne, J. et al. (2016) found that vulnerable classes such as low-income earners and trade workers in 

suburban areas live in dense housing areas without dark roofs and insulation and have difficulty in 

climate adaptation. However, residents strongly demanded urban greening. Previous studies showed 

that their residential area was difficult to obtain environmental benefits with the challenge of responding 

to environmental problems by social conditions. He suggested that thermal inequality varies by place. 

Soja, E. W. (2010) argued that environmental impact and geographic space are unevenly distributed in 

socio-economic groups from injustice based on class and race.  

The increase in the heat risk by location and social condition has focused on the correlation between 

LST and demographic and social conditions in the study of thermal inequity. Research has revealed that 

demographic and socioeconomic factors such as race, population density, and income have a significant 

correlation with the spatial variation of LST (Jenerette et al., 2007, 2011; Buyantuyev & Wu, 2010). 

In the relationship between LST and social conditions, neighborhoods with minority residents, low-

income residents, low-educated residents, and older people, experience higher LST than other regions 

(Healy, K. 2005). Thus, the correlation between LST and social conditions shows as the effect of land 

cover on LST because the land cover characteristics are related to the social conditions. For instance, a 

high rate of green areas is associated with high-income and white residents (Harlan et al., 2008; Schwarz 

et al. 2015) 

Some studies showed that vulnerable social classes are located in the heat-risk area from a social 

condition and land cover relationship (Nichol, JE et al., 2009; Rinner, C. et al., 2010; Uejio et al., 2012). 

Maras et al. (2014) found a high correlation between economic resource and social inequality in health. 

In the case of an old city center, high temperatures at night time (20h-22h) are likely to be caused by 

high building density and heat load. This region is unevenly affected by heat because most of the 

vulnerable populations often live alone.  

Mitchell, BC, & Chakraborty, J. (2015) found that vulnerable social residents related to household 

income, home ownership, and race were distributed in the UHRI (Urban heat risk index) region in three 

large cities with high population density and exposure to climate change risk. In the three cities, this 

study found a significant statistical association that socioeconomic and ethnic minority status is low and 

urban heat risk is high. 

Furthermore, the relationship between the factors causing thermal inequity was analyzed. Huang. G. 
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et al. (2016) found that social conditions, particularly race and income, affected the spatial variation of 

LST independently from the land cover (Figure 2.1). The ratio of trees and buildings in the land use 

characteristics determines the race and income of the residents. Landscapes experiencing high LST were 

regions low in trees and high in buildings, low in revenue and high in ethnic minorities.  

 

Figure 2.1 Conceptual models for the relationship between neighborhood social factors, land cover and 

land surface temperature from Huang. G. et al., (2016) 

Areas with high house prices and high educational levels have more green areas and street trees, 

while regions of low income have fewer green areas and fewer street trees (N. Kabisch & D. Haase. 

2014, Apparicio, P. et al., 2017). Economic factors such as income can directly affect the spatial 

variation of LST because they determine responsive capabilities such as utilizing and approaching air 

condition or performing lawn irrigation (Uejio et al., 2010). This study revealed that income and green 

areas were the main factors to explain of thermal inequity.  

On the other hand, a few studies did not show any correlation between local characteristics and 

socioeconomic conditions. Jenerette, G. D., et al. (2016) showed that the symptom of heat-related illness 

was correlated with the daytime LST pattern in but with that of the night. Suburban areas had a relatively 

low intensity urban heat island compared to urban areas, but older people living in suburban areas 

showed higher mortality (Gabriel, K. M., & Endlicher, W. R., 2011; Madrigano, J., et al., 2015). 

Studies have emphasized the need for measures to mitigate thermal inequity, and some have 

suggested that there is a need to reduce the inequality of access to public goods benefits through urban 

greening policies and planning. Policy-based research has suggested a framework for the need and 

strategic decision-making of green infrastructure to mitigate urban heat in relation to climate change 

(Gaffin, S. R., et al., 2012; Norton, B. A., et al.,2015). However, greening should be carried out in a 

way that avoids or exacerbates concerns about environmental inequity.  
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Like the previous study, the existence of green space has a positive effect on environmental 

improvement in many areas, but it is related to social conditions. If vegetation in the low-density area 

is different with income of neighborhood, the higher the income of the region, the more accumulated 

vegetation indices appeared (Jenerette, G. D., et al., 2013). In other words, high-income groups can 

reduce local heat exposure by selecting environmentally a high-quality location or by planting a green 

area. For instance, Lin, B. B., et al. (2017) found that built year and yard size correlated with green 

coverage. High-income groups better maintained green areas of yards and people with higher vegetation 

can benefit more from the yard through passive and active ways. 

Moreover, in socio-economic conditions, urban residents perceived green areas as a factor in 

increased housing prices (Wolch, J. R. et al., 2014; Apparicio. P. et al. 2017) Thus, Wolch, J. et al., 

(2005) analyzed the differences in LA park where parks supplied by racial and income groups and found 

that high-income class over $ 40,000 lived in the region with 21.2% of the park per 1,000 people while 

under $ 20,000 was 0.5%. This result led to the establishment of park and a transportation plan and to 

avoid creating or accelerating concerns about environmental inequity.  

However, urban greening can lead to paradoxical effects such as the local renovation of low-income 

housing (Wolch, Byrne, & Newell, 2014) because the public may not understand the benefits of street 

trees which provide environmental social and economic benefits to urban community(Jenniffer M. et 

al., 2014) which can trigger a negative and unexpected public reaction. Vulnerable areas can be worried 

about the cost of maintaining trees (Heynen et al. 2006). Agyeman, J. (2001) showed that low-income 

and minority group in the UK were neglected regarding living environment improvements and planning 

demands. As a result, construction of parks caused a rise in residential land prices and rental prices and 

the inevitable migration of low-income minorities.  

In the domestic studies, Chu, J., (2008) found that low-income households in suburban areas have 

relatively high access to natural green spaces. Low-income households have been excluded from urban 

development projects, and moved out of suburban areas so that the proportion of low-income 

households has increased in areas with a high natural green space. However, it is difficult to see a natural 

environmental resource that is not parks or street trees according to urban planning as environmental 

benefit distribution. In other words, vulnerable groups have low access to ecosystem service, function, 

and interest of green area even though they live in the residential area with many natural green areas 

(Schwarz, K. et al., 2015). 

Previous studies have shown that social conditions and a plan of green area are important factors in 
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explaining thermal inequity. Because these variables are most frequently used in thermal inequity 

studies, this study uses demographic and resident characteristics identified as a vulnerable social class 

to describe neighboring social conditions.  

Thermal inequity emphasizes that the relationship between land cover and social condition increases 

the heat risk. Since the land cover characteristics that influences the spatial distribution of heat differs 

according to residential areas of the social class, the residential area can be considered as mediation 

effect determining the relationship between land cover, social condition, and a plan of green area. 

Nevertheless, geographical location in existing studies of thermal inequity is focused on neighborhoods 

with high LST. 

Perspective of environmental justice has found environmental inequity from the impact of external 

factors such as factories on surrounding areas. However, the study of thermal inequity has only 

explained the correlation between the physical environment and social conditions in a local area and 

has not sufficiently considered external factors in the local area.  

The purpose of this study is to investigate the thermal inequity in the surrounding area and the 

industrial area, considered as the primary heat source in the UHI studies. My research reveals what the 

geographical conditions of areas proximate to industrial areas, which is a heat source in UHI, more 

increase the thermal inequity with the social conditions and built environment of the residential area. I 

extend the knowledge of thermal inequity by analyzing how a plan green existing in the local area 

affected the surrounding area and the thermal inequity. Also, this study evaluates difference on heat by 

industrial and built environment of old industrial complexes and analyzes the effect of urban planning 

for thermal mitigation in residential areas adjacent to old industrial areas using simulation.  

To these ends, this dissertation presents three papers. The first paper (Chapter 3) examines whether 

the area adjacent to the old industrial complex shows thermal inequity or not and buffer green. The 

second paper (Chapter 4) analyzes LST difference by company size in old industrial complexes, 

considering the industrial and physical environment, and reveals the correlation between high LST of 

factory and adjacent area. The third paper (Chapter 5) evaluates the contribution of buffer green to 

improve the thermal environment in an old residential district adjacent to the old industrial district.   
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CHAPTER 3 

Thermal inequity of the residential area adjacent to the old industrial area in nine cities 

Keywords: proximity of old industrial area, thermal inequity, green buffer facility, long-delayed green facility, 

land surface temperature 

3.1 INTRODUTION 

Industrial area in urban space has been played a role as a major place for urban growth. However, 

industrial area provoked environmental problems such as air pollution and noise, which influence a 

negative effect on health of the residents. In addition, as the change of lands has extended the urbanized 

area, the industrial and the residential areas has near, and the range of negative impacts from industrial 

areas has more expanded. Previous studies on the thermal distribution of urban areas have suggested 

that areas with low vegetation and high building density are thermally vulnerable. In particular, 

industrial areas have the most vulnerable physical environment (Jusuf, S. K., et al., 2007; Radhi, H., 

Fikry, F., & Sharples, S., 2013). 

Residential areas adjacent to industrial sites tend to have more environmental burden than other areas 

due to pollution, noise, harmful substances, odor, etc. coming from factories. The planned industrial 

area in the 1960s and 1970s was planned without the green space itself, and there was a lack of 

consideration of the negative impacts caused by the industrial area in the residential area planning 

process (Kim, J. Y. et al., 2013). As a result, various environmental problems such as noise, air pollution, 

landscape obstruction, and traffic congestion have occurred around the industrial area. Over time, as 

the infrastructure became obsolete and citizens began to recognize environmental issues as important, 

the value of housing around industrial areas fell. Previous studies have shown that the distance from the 

industrial complex has a negative impact on the value of residential real estate (Vor, F. D., & de Groot, 

H. L., 2011), and the decline of industrial complexes is related to the aging of neighboring areas (Son, 

Y. W., 2012, Jin, J. K. & Huh, J. W., 2014). 

Thus, to mitigate the environmental problems occurred from industrial area, the Industrial 

Development Guideline established in 1991 requires that industrial areas have more than a certain 

amount of green buffers space around the industrial area adjacent to the residential area. As a result, 

from the noise, dust and air pollution generated by factories, the green buffers has mitigated the negative 

effect on residential areas(Cho, S. & Kim, H., 2009). However, some areas have left as long-delayed 

green facility for over 20 years because the green buffers was very late planned, after the industrial and 
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residential areas have already been established. Long-delayed green facility is usually caused by lack 

of budget of local government which can`t carry out compensation for private property rights for a long 

time without a valid reason. The existence of long-delayed green facility restricts the development of 

the local area and decreases a land price of neighborhood.  

Moreover, the neighboring area shows a poor residential environment due to no maintenance for a 

long time. For instance, the long-delayed urban planning facility area is illegally occupied by facilities 

such as junk shop and parking lots and they cause an environmental pollution with the hindrance of the 

urban landscape in the neighboring areas. Therefore, since socio-economically vulnerable people have 

no choice but to rent a cheap area in the same urban space, the area adjacent to the industrial area which 

has a high environmental burden is likely to be considered as one of the residential areas of vulnerable 

class. Besides, they may be exposed to higher heat than other areas because the area adjacent to the 

industrial area is located close to the negative heat effects of the industrial area. The presence of green 

buffers has mitigated the negative effects on the surrounding area of the industrial area, but the studies 

are inadequate in terms of the heat environment.  

From the relationship among geographical characteristics, physical environment and vulnerable 

demographic and social characteristics, the purpose of this study is to examine the difference of heat 

environment according to the proximity and non-proximity in the old industrial area, and to reveal 

thermal inequity by the difference of urban planning factors such as green buffers and long-delayed 

green facility. The three main research questions guide thermal inequity for environmental justice. First, 

does the area adjacent to the industrial area have a higher heat environment than the other? Second, how 

do the vulnerable population and socio-economic factors affect relationship among geographic location, 

physical environment, and LST variation? Third, how does urban planning factors such as green buffers 

and long-delayed green facility adjacent to the industrial area make thermal inequity between the 

neighboring areas? 

Figure 3.1 shows that a conceptual diagram with major hypotheses to analyze the thermal inequity 

according to area adjacent or non-adjacent to industrial area and presence of green buffers. The research 

hypotheses are based on the empirical inquiry on each research question and the contents of the previous 

research. Each research hypotheses summarize as Table 3.1.  
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Figure 3.1 conceptual diagram to analyze the proposed research question 

 

Table 3.1 Major hypotheses of the path model by research questions  

Research questions   

Hypotheses  

Q1: Do areas adjacent to industrial sites contain higher heat environments?  

H1 Areas within 600m of industrial sites contain higher LSTs.  

H2 Areas adjacent to industrial sites have higher vulnerable residential environment 

ratios. 
 

Q2: How do population vulnerability and other socioeconomic factors affect the 

relationships between geographical location, the physical environment, and LST 

variation?  

 

H3 Vulnerable populations tend to live in areas adjacent to industrial sites.  

H4 Vulnerable populations tend to choose residential areas with lower housing 

prices that are also vulnerable to heat. 
 

H5 The higher the housing price, the lower the LST.  

H6 Vulnerable residential environments contain high LSTs.  

Q3: How do urban planning factors (e.g., the green buffer facility and long-delayed green 

facility) adjacent to industrial sites affect thermal inequity between neighboring areas? 

 

H1-1 Areas adjacent to green buffer facility have the lowest LSTs, while areas adjacent 

to the long-delayed green facility have the highest LSTs. 
 

H2-1 Areas adjacent to the long-delayed green facility have high ratios of vulnerable 

residential characteristics, green areas, and housing prices. 
 

H3-1 Vulnerable populations tend to reside in areas adjacent to the long-delayed green 

facility. 
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3.2 METHODS 

3.2.1 Study areas 

 

Figure 3.2 location of the old industrial complex and urbanized area in 9 cities. 

The study area in this research contained three metropolitan areas and six cities located in 

GyungSang-do, South Korea (i.e., Pusan, Ulsan, Daegu, Gumi, Changwon, Gimhae, Yangsan, Jinju, 

and Pohang) (Figure 3.2). Each city has grown through the presence of major industrial developments 

and contains geographical characteristic similar to those seen in urbanized areas. Thus, this study 

focused on areas that were divided by the old national and general industrial complex built in 
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Gyungsang-do. The selection criteria were as follows: 

First, residential areas needed to be adjacent to industrial sites. Second, cities were required to contain 

300,000 or more residents. Third, cities in which old industrial complexes were built prior to 1980 were 

selected because local deterioration affected both internal and external factors in the surrounding areas. 

Areas adjacent to old industrial complexes tended to contain poor environments, low population 

densities, and high ratios of old buildings (Song, 2012; Jin and Huh, 2014).  

The studied areas also had the following relationships between local residential zones and old 

industrial complexes. First, the industrial complexes were built prior to residences. However, 

settlements adjacent to the industrial complex were created through city expansion and the demand for 

residential areas near workplaces. Second, adjacent residential areas were created based on industrial 

complex designs. Here, the representative city is Changwon. Finally, industrial complexes were 

established by encroaching on existing residential areas. Here, the representative cities with general 

industrial complexes were Sa-sang, Shinpyeng, and Jang-lim in Busan. The industrial complexes were 

constructed with relatively little consideration of the residential areas, which were likely to be exposed 

to environmental pollution and noise.  

Table 3.2 Geographical and meteorological information for the cities considered in this study 

 City name Area (km2) 
Urbanized area 

(km2) 
Population 

Heatwave 

duration 

(days) 

Avg. max. air 

temperature (℃) 

Metropolitan 

City 

Busan 765.82 183.89 3,440,484 5.4 29.7 

DaeGu 883.48 150.38 2,461,002 16.4 31.6 

Ulsan 1,061.18 92.89 1,166,033 10.1 30.4 

City 

ChangWon 743.77 79.29 1,053,551 9.1 30.6 

GuMi 615.49 33.02 422,237 12.9 30.9 

PoHang 1,129.86 47.06 510,360 9.9 29.6 

JinJu 712.95 17.69 352,807 9.9 30.7 

GimHae 463.36 24.54 532,912 14.9 30.1 

YangSan 485.45 22.95 310,731 15.3 29.6 

Average Heatwave days (Aug. 2010-2017), Average Max Temperature (Aug. 2007-2017), Open weather data portal 
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Table 3.2 shows both geographical and meteorological information for the cities studied in this 

research. These cities experienced high environmental burdens during the summer. Average maximum 

temperatures reached approximately 30℃ (August) over a 10-year period. Heatwaves arrived at 

different times according to geographical location. For instance, heatwaves typically remained in Busan, 

Ulsan, Changwon, and Pohang (which are located in coastal areas) for approximately 10 days, while 

Daegu, Gumi, Jinju, Yangsan, and Gimhae typically experienced heatwaves lasting between 13-16 days. 

In Korea, Daegu metropolitan city experienced the highest air temperature and environmental burden 

during the summer. On the other hand, Busan (which had the most expansive urbanized area and the 

largest population among all studied cities) recorded the shortest heatwave (5.4 days).  

a. Spatial analysis unit 

The analysis unit used in this study was the census output area; the total count was 17,340. The census 

output area is 1/30 the size of the administrative district. This was the smallest statistical unit for which 

population numbers and social conditions were available. Industrial areas were used to analyze the 

sociodemographic characteristics and heat environments of neighboring areas. I thought this was more 

appropriate than the administrative district scale. Here, the considered factors were calculated as means 

values of census output area units.  

Some census output areas were excluded from study because of location or data limitations. First, 

excluding urbanized areas, suburban areas had high ratios of elderly persons who were vulnerable to 

heat environments. This study thus only considered census output areas; these were urbanized areas 

remotely located from old industrial complexes. Urbanized areas were defined as zone units to represent 

actual urban areas that were separated from administrative areas based on population density and land 

use (SGIS, 2017). Second, areas without relevant data (i.e., if the value of the census output area was 

less than five, data were not counted) were excluded from study. Finally, census output areas within 

industrial areas were excluded because of concerns that they could produce overestimated adjacent 

characteristics. 

3.2.2 Site classification according to regional conditions 

a. Neighborhoods classification according to proximity with old industrial complex  

This study used the Centroid containment method to combine (or average) a set of characteristics 

(e.g., population size, social demographics, and physical indicators) at specific distances from the 

census output area near the industrial sites (Mohai, P., & Saha, R. 2007; Lee, S. & Kwon, T., 2013). 

Census output areas extended 600m beyond industrial sites. any area overlapping the census output area 
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exceeded 50% of the counting area, it was considered within 600m of the industrial area (= 1). However, 

if the distance exceeded 600m from the industrial area, it was regarded as non-adjacent (= 0) (Fig. 3.3, 

left).  

b. Neighborhoods classifications within the 600m buffer zones  

The studied areas were classified into three types to analyze the different heat environments among 

the areas adjacent to the industrial areas. These included the census output areas neighboring the green 

buffers (GBs), neighboring census output area to non-planned green buffer (NGB), and neighboring 

census output area to long-delayed green facility (LDG). 

The selection process for neighboring areas of each type was the same as the method used to specify 

the spatial range of areas adjacent to industrial areas. For instance, after confirming a location of created 

or planned green buffers from land-cover data and the urban planning information system (UPIS) in 

Korea, the GB and LDG were selected by considering the census output area within a 600m range in a 

vertical direction from green buffer zone and long-delayed green facility, respectively (Fig. 3.3, right). 

Green areas such as parks, riversides, and small mountains were also considered as green buffers. These 

cases did not necessarily require green buffers because of an exception in the building code. The 

remaining census output areas within 600m were selected as the NGB.  

 

Figure 3.3 Decision of adjacnet area by location condtion in the range within 600m. Proximity area on 

the old industrial area (left), Proximity area on Green buffers and Long-delayed green facility (right) 
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3.2.3 Variables  

LST, physical environment, demographics, and social variables were considered when verifying 

thermal inequity. However, the LST data were difficult to use when explaining the influence of direct 

heat emanating from the industrial site to neighboring areas. This study therefore determined the 

physical characteristics that influenced LST to explain the different heat environments in areas adjacent 

to industrial sites. 

a. Land surface temperature (LST)  

This study examined five days of average LST in the census area to determine the level of thermal 

inequity between adjacent and non-adjacent areas to old industrial sites. The LST data were obtained 

from the TIRS (band 10 & 11) in the cloudless Landsat 8 image, which was suitable for analyzing the 

period from 18, September 2013 to 13, September 2017 (Table 3.3). The Landsat 8 satellite was 

launched by NASA and USGS in March 2013. It contains 11 bands consisting of nine operational 

intelligent sensor (OLI) bands and two thermal infrared sensor (TIRS) bands (10 & 11). The TIRS band 

has a suitable resolution up to 100m, but was provided as 30m pixels to match the OLI sensor data and 

resolution.  

𝐾𝜆𝑛 = 𝑀𝐿𝑛𝑄𝑐𝑎𝑙𝑛 + 𝐴𝐿      eq. 1 

𝐾𝜆𝑛:  TOA spectral Radiance (Watts /(  *srad*  ) 

𝑀𝐿:  RADIANCE_MULT_BAND_n 

𝑄𝑐𝑎𝑙: DN(Digital Number) 

𝐴𝐿:  RADIANCE_ADD_BAND_n 

 

𝑇𝑛 =
𝐾2

𝑙𝑛(
𝐾1

𝐾𝜆𝑛
+1)

 – 273.15      eq. 2 

𝑇𝑛 : At-satellite brightness temperature(K) 

𝐾2, 𝐾1 : Band specific thermal conversion constant from the metadata. 

𝐾𝜆 : TOA spectral Radiance (Watts /(  *srad*  ) 

I converted the TIRS band data from spectral radiance to brightness temperature using the thermal 

constants provided in the resulting metadata file (eq.1). The calculated surface temperature was 

converted to Celsius because it was measured as absolute temperature (K) (°C) (eq.2). Further 
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information and the algorithms used during this process can be found on the US Geological Survey 

website. The LST data used in this study were calculated using Arc GIS 10.4 according to the following 

procedure. 

Table 3.3 Descriptive statistics of Landsat 8 satellite image data 

Date 20150604 20150807 20140905 20170913 20130918 

Land cloud cover (%) 0.03 0.85 0.03 0.13 0.05 

LST Max (℃) 41.3 36.4 33.9 33.5 30.8 

LST Min (℃) 24.4 22.6 22.9 21.6 18.8 

LST Mean (℃) 34.4 29.4 29.0 28.1 26.5 

b. Built environment in the census output area 

The physical environments of the census output area were classified into three types (Table 3.4). 

These included land surface characteristics, vulnerable housing environments, and housing type, which 

was used to control LST impact. First, land surface variables (e.g., roads, slopes, and greens) were 

obtained from the land cover data, while building density was provided by the national spatial data 

portal. Land cover variables were averaged according to the census output area units and then 

recalculated as a ratio by dividing them by the extent of the census output area. Green was an important 

indicator for reducing LST. This study therefore considered it as a major factor for explaining thermal 

inequality. 

Second, the vulnerable housing environments were used to explain the relationship between the 

vulnerable social classes. As vulnerable housing environment variables, data on housing under 60m2 or 

over 30 year of age were obtained from a statistic geographic information service. Houses over 30 years 

of age were considered old.  

Third, housing types were classified into detached (including multi-family houses), multiplexes, and 

apartments. The Korea housing survey (2014) indicated that low-income residents usually lived in low-

rise housing units containing less than five stories (e.g., detached and multi-family houses). More than 

half (57.6%) of all low-income residents lived in detached houses, but only 29.6% lived in apartments. 

On the other hand, high-income residents occupied 76.2% and 14.7% of apartments and detached 

houses, respectively. Apartments had lower LST than detached housing areas in the heat environment 

(Park. J & Cho, G., 2016). Vulnerable housing environments and housing types were determined using 

the statistic geographic information service (2015). The number of houses in each type was divided by 

the total number of houses in the census output area and calculated as a ratio.   



 

 

Table3.4 Variables for census output area 

Independent Variables Descriptions Source Year 

Vulnerable housing 

environment 

under 60m2 (%) 
Number of houses under 60m2/ 

total number of houses in census output area 

Statistical Geographic 

Information Service 

(SGIS) 

2015 

Over 30 years of age (%) 
Number of houses over 30 years of age/ 

total number of houses in census output area 

Housing type 

Detached housing (%) Percentage of detached and multi-family houses 

Apartment (%) Apartments  

Multiple houses Row houses, apartment units in private houses 

Land cover  

Building density Total floor area in census area / total census output area National spatial data portal 2015 

Avg. Slope DEM data 

Land cover (territory 

environmental spatial data) 
2012-2013 Green area (%) Green area land cover / total census output area 

Road area (%) Road area land cover / total census output area 

Population characteristics 

Pop. over 65 (%) Population over the age of 65 (older people) 
Statistical Geographic 

Information Service 

(SGIS) 

2015 Pop. under 5 (%) Population under the age of 5 

Pop. 15 to 39 (%) Population aged between 15 and 39 years (the rising generation) 

Foreign pop. (%)  KOSIS 2015 

Socioeconomic 

characteristics 

Basic living (%) Recipient of national basic living ratio 
KOSIS & government 

white paper 
2013,2015 

Single household (%) Single and non-family household ratio Statistical Geographic 

Information Service 

(SGIS) 

2015 

Rented housing 2010 (%) 
Type of residence (monthly rent paid in advance, monthly rent with 

deposit in advance and without deposit)  
2010 

Housing price 

(10,000won/m2) 
Average housing transaction by census area 

= detached housing transaction + public housing transaction 
National spatial data portal 2012-2017 

2
1
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c. Demographic and socioeconomic characteristics   

Population and household characteristics for the census output area units were obtained from the 

Statistic geographic information service in 2010 and 2015.  

Individual variables were selected from eight types to explain the different heat environments 

according to demographic and socioeconomic characteristics (Table 3.4). Persons over 65 or under 5 

years of age were considered as part of the population vulnerable to heat. Basic living, single and rented 

households, and housing prices were considered vulnerable socioeconomic variables. Foreigners and 

persons aged over 15 and under 39 were considered workers.  

The SGIS data were provided at five-year intervals. Rented household data were from 2010 because 

no information was available from 2015. Housing prices (2012-2017) were also provided in the SGIS 

data. Six-year housing price data were averaged according to census output area after the prices of 

detached houses and apartments were combined. Data on foreigners and basic living conditions were 

determined in Dong-units with larger areas than those in the census output data because census output 

areas did not provide them. To distribute population data according to Dong-units in the census output 

area, the total number of houses in the census output area were first divided by the total number of 

houses in Dong-units and then calculated as a ratio. The calculated value divided by the total population 

of the census output area was then reprocessed as a ratio.  

3.3 ANALYTICAL METHODS 

Figure 3.4 shows the method used to identify thermal inequity in proximity to the industrial area and 

green buffer.  

A t-test was used to verify differences between groups according to physical, demographic, and 

socioeconomic variables, which were determined by geographical location and planning conditions. 

However, it was difficult to consider the correlation among other variables because the t-test analysis 

only measured the mean difference between groups. Moreover, it was necessary to analyze the impacts 

of physical characteristics on LST according to mediation variables (e.g., whether they were within 

600m, GB, or LDG) (Figure 3.1). In addition, the demographic and social characteristics were located 

in high LST areas. 
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Figure 3.4. Conceptural diagram for study anaysis process  

Thus, this study used structural equation modeling (SEM), which was conducted according to three 

mediation variables. The relationship between these variables and the proximity of the industrial areas 

revealed whether neighboring areas were thermally vulnerable. Thermal inequity was explained by 

comparing the proximity of the green buffer and long-delayed green facility. 

a. Structural Equation Modeling (SEM) 

Structural equation modeling (SEM) is an extension of general linear modeling. It allows researchers 

to test causal relationships between variables. These statistics cannot be used to theorize why one factor 

may cause another, but the effects of one factor can likely be determined (Lei and Wu, 2007). SEM was 

thus used to estimate complex causal relationships as well as the direct and indirect effects among the 

variables. 

SEM was implemented using the lavaan function in the R-studio library. This was done to 

comprehensively explain the relationships between the individually analyzed built environments, social 

vulnerabilities, and LST differences. I examined the effects of the study variables on LST and found 

those causing thermal inequity. Model fitness was analysis through an exploratory factor analysis. 

Latent variables were then selected through a confirmatory factor analysis. The final model was 

constructed by determining the path between the variables according to the study hypothesis. 

SEM fitness was also calculated. This was determined using the Goodness of Fit Index (GFI), 

Comparative Fit Index (CFI), Normally Fixed Index (NFI), Root Mean Square Residual (RMR), and 

RMSEA. The GFI, CFI, and NFI criteria were presented as good models with scores over 0.9. RMR 
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and RMSEA were generally reported as model fitness indexes of less 0.1 (Steiger, 1990; Hu and Bentler, 

1999; Genfen et al, 2000). 

b. Principal Component Analysis (PCA) 

An exploratory factor analysis includes a principal component analysis (PCA). Six variables were 

considered in this study’s PCA, which was performed using varimax rotation (Table 3.5). If the 

Cronbach's alpha of the PCA is over 0.50, the model is considered fit; if it is over 0.70, it is considered 

reliable (Kim, K., et al., 2016). KMO test was conducted to confirm the fitness of the PCA (reliability 

was determined at 0.7874). Some variables were excluded from the PCA because they reduced the 

explanatory power of the model.  

Table 3.5 PCA of vulnerable social and housing factors 

Variable Component1 (0.4825) Component 2 (0.7874) 

Pop. Over65  0.6294 

Single household 0.5429  

Rented household 0.5903  

Detached house 0.3963  

APT -0.4429  

Housing over 30 years   0.7005 

 

Factors with eigenvalues over 1 were extracted. The two components showed an explanatory power 

of 78.7%. The first factor was determined according to whether the structure was a single household, 

rented household, detached house, or apartment (vulnerable households were detached). The second 

factor was determined according to the ratio of the population over 65 years old and the housing over 

30 years (vulnerable populations lived in old houses). 

c. Confirmatory factor analysis 

The separate characteristics of the components were mixed as a result of the PCA. A confirmatory 

factor analysis was performed after the mixed factors were reclassified. Component 1 was reclassified 

as the population over 65 years old as well as single and rented households. Component 2 was 

reclassified as detached houses and houses over 30 years (apartments were excluded because they were 

contrary to other variables). Finally, non-latent variables were excluded and instead considered as 

observational variables used to explain thermal inequity. 

The model was considered valid if the average variance extracted (AVE) was over 0.5 and conceptual 
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reliability (Cronbach’s alpha) was over 0.7 (Yoon, C. & Choi, G., 2015). Internal reliability was 

confirmed with an AVE of 0.57 and a Cronbach’s alpha of 0.83. Consequently, the latent variables 

consisted of vulnerable social classes (populations over 65 years old and those living in single or rented 

houses) and descript detached housing (detached houses and houses over 30 years). 

3.4 RESULTS 

3.4.1 Descriptive statistics  

a. Variations in land surface temperature by distance  

LST was averaged over a five-day period and used to determine a proximity boundary from the 

industrial areas to find the heat difference between adjacent and non-adjacent areas. Arc GIS 10.4 was 

then used to create a buffer boundary of 1,200m at intervals of 100m from the outline of the census 

output area in the old industrial complexes. After the LST in each buffer area was calculated to mean 

value, the proximity boundary was first determined from the LST variations according to distance. As 

a result, Figure 2.4 shows that the average LST increased from a point measure at 200m and the highest 

mean LST was evident at boundaries of 400m to 500m. However, the average LST tended to decrease 

between 500m and 600m. I thus determined a boundary 600m as containing the area adjacent to the old 

industrial complexes based on results shown in Figure 3.5. Despite the proximity of the old industrial 

complexes, areas within 200m showed below average LST. 

 

Figure 3.5 5-day average LST of the area adjacent to industrial area (100m intervals)   



 

 

Table 3.6 Descriptive statistics for different built and social environments according to local conditions 

 Beyond 600m 

buffer 
Within 600m buffer 

 Within 600m buffer 

  GB NGB LDG NGB-LDG 

Built Environment Mean Mean Difference1  Mean Mean Difference2 Mean Difference3 Difference4 

Physical Characteristics                

Under 60m2 30.7 34.3 -3.6 ***  35.0 33.5 1.5  22.3 12.7 * 11.2 * 

Hover30Y 16.8 15.6 1.2 *  11.0 26.4 -15.4 *** 29.0 -18.1 *** -2.7  

D_hou 23.9 23.0 0.9   17.5 35.2 -17.7 *** 51.4 -33.9 *** -16.3 ** 

APT 61.9 65.1 -3.2 ***  72.3 49.0 23.3 *** 29.9 42.4 *** 19.1 ** 

Multi_hou 10.7 9.2 1.5 ***  7.9 12.3 -4.4 *** 16.1 -8.2 *** -3.8  

Green 12.6 11.7 0.9 **  13.3 8.1 5.2 *** 5.3 8.0 *** 2.8  

Ave. Slope 3.6 4.1 -0.5 ***  4.2 3.9 0.3  2.9 1.3  1.0  

Road 43.3 46.4 -3.1 ***  48.6 41.2 7.4 *** 40.2 8.4 ** 1.0  

Social Environment                

Population characteristics               

  Pop. over 65 11.4 9.9 1.5 ***  8.6 12.9 -4.3 *** 12.9 -4.3 *** 0.0  

Pop. under 5 4.3 4.7 -0.5 ***  5.0 4.0 1.0 *** 3.5 1.5 *** 0.5  

Pop. between 15 and 39 41.2 41.2 -0.0   40.9 42.0 -1.1 *** 42.8 -1.9 * -0.8  

Foreign pop. 1.1 2.1 -1.0 ***  2.7 2.2 0.5 ** 2.9 -0.2  -0.7 * 

Vulnerable socioeconomic characteristics               

  Basic living 3.2 4.1 -0.9 ***  4.0 4.4 -0.4  3.5 3.1  0.9  

Single household 23.3 23.1 0.2   21.5 26.7 -5.2 *** 30.0 -8.5 *** -3.3 * 

Rented household 19.0 19.0 0.0   17.7 21.3 -3.6 *** 32.4 -14.7 *** -11.1 
**

* 

Housing Price (10,000won/m2) 162.1 143.2 18.9 ***  149.5 130.7 18.8 *** 101.3 48.3 *** 29.5 
**

* 

Number of samples: n = 14,391 n = 3,039, GB(n = 2,145), NGB(n = 837), LDG(n = 57) 

GB: neighborhood adjacent to green buffer facility. NGB: neighborhood adjacent to no green buffer facility. LDG : neighborhood adjacent to long-delayed green facility.  

Difference 1 = beyond 600m – within 600m. Difference 2 = GB-NGB. Difference 3 = GB-LDG. Difference 4 = NGB-LDG 

* p<0.05, ** p<0.01, ***p<0.001 

2
6
 



27 

 

b. Difference between built environments and sociodemographic characteristics according 

to local conditions 

This study considered residential characteristics (e.g., housing aged over 30 years and housing under 

60m2) to explain thermal inequity and compared built environments between areas that were adjacent 

and non-adjacent to old industrial complexes using a t-test.  

Table 3.6 shows the results for built environment, demographics, and socioeconomic characteristics 

according to local conditions. There were few differences between the built environments in areas 

adjacent and non-adjacent to old industrial complexes (only detached housing was not significant). For 

instance, the ratio of housing under 60m2 was 34.3% in the adjacent area, while the non-adjacent area 

contained a ratio of 30.7%. There was a 3.6% difference between the two areas. The ratio of housing 

over 30 year of age was higher than 1.2% in non-adjacent area. On the other hand, the ratio of apartments 

was 65.1% and 61.9% in the adjacent and the non-adjacent area, respectively, while the adjacent area 

contained an additional 3.2%. The ratio of multi-family housing was 1.5% greater in the adjacent areas. 

The adjacent and non-adjacent areas showed 46.4% and 43.3% for ratios of road area, respectively (the 

adjacent area was about 3.1% greater). The green area ratios were 11.7% and 12.6% in the adjacent and 

the non-adjacent area, respectively (the adjacent area was about 1.0% less).  

There were statistically significant differences between the populations over 65 and under 5 years of 

age, foreigners, basic living, and housing prices when looking at the demographic and socioeconomic 

characteristics. However, there were no differences in most of these characteristics (except for housing 

price) between areas. For instance, the population over 65 years of age comprised 11.4% of the total in 

the non-adjacent areas, while the adjacent areas showed 9.9%. There was thus a 1.5% difference 

between the two areas. The ratio of the population under 5 years of age, foreigners, and basic living in 

the adjacent areas was higher than in non-adjacent areas, but the differences were insignificant. Housing 

prices in the adjacent area were lower than 18.9 ten-thousand won per m2 than in the non-adjacent areas. 

The adjacent and non-adjacent areas showed 143.2 ten-thousand won/m2 and 162.1 ten-thousand 

won/m2, respectively. The areas adjacent to old industrial complexes this contained higher LSTs than 

those in non-adjacent areas. However, it is difficult to explain why there was more vulnerability in built 

environments and within the demographic and socioeconomic characteristics seen in adjacent areas. 

c. Differences between built environments and the demographic and socioeconomic 

characteristics according to the presence of green buffers, non-green buffer, and the long-

delayed green facility  
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As shown in Figure 3.5, low LST in the adjacent areas within a 200m buffer was the result of green 

areas (e.g., green buffers). The presence of green buffers may reduce the vulnerable physical and social 

characteristics between adjacent and non-adjacent areas. Table 3.6 shows built environments and 

sociodemographic characteristic among the areas adjacent and non-adjacent to green buffers and the 

long-delayed green facility. 

The ratio of green areas in the GB were 5.2% and 8.0%, respectively. This was greater than in NGB 

and LDG areas. The slope was not significant in all comparisons among these areas. The ratio of housing 

under 60m2 showed that LDG was 12.7% lower than GB, but the difference between NGB and GB was 

not significant. For detached housing, LDG and NGB were 33.9% and 17.7% higher than in GB, 

respectively, while NGB was 16.3% lower than LDG. The ratio of APT showed that LDG was 42.4% 

and 19.1% less than GB and NDG, respectively; the multi-family house ratio of LDG was 8.2% and 

4.4% higher than GB and NGB, respectively. The highest ratios of green areas were in GB zones, which 

were 5.2% and 8.0% higher than NGB and LDG, respectively. As shown in Table 3.6, the difference 

between NGB and LDG was not significant except for the ratio of housing under 60m2, housing over 

30 years of age, and detached housing. 

The differences between demographic and socioeconomic characteristic indicated that LDG contained 

the lowest housing prices and the highest ratio of vulnerable social classes among all three areas. NGB 

and LDG showed a higher ratio of populations over 65 years of age, single households, rented 

households, and lower housing prices than GB zones. Populations over 65 years of age showed that GB 

was 4.3% lower than NGB and LDG, respectively. Foreigners, populations under 5 years of age, and 

populations over 15 and under 39 years of age showed few compositional differences between areas. 

The single household ratio indicated that LDG was the highest (8.5% and 3.3% higher than GB and 

NGB, respectively). In addition, LDG was 14.7% and 11.1% higher than than GB and LDG, 

respectively, regarding the ratio of rented households. Housing prices showed that GBs were the most 

expensive areas, while LDGs were 29.5 and 48.3 ten thousand per m2 more expensive than NGBs and 

GBs (the cheapest of the three areas), respectively. In comparing NGB and LDG, the ratio of populations 

over 65, under 5, over 15, and under 39 years of age were not significant.  

3.4.2 Goodness-to-fit indices for Structural Equation Model 

Figures. 3.6, 3.7 and 3.8 showed all the paths of the model with measured correlations for the area 

adjacent to industrial sites, buffered green and long-delayed green facility. All observed variables were 

shown in a square shape, while latent variables were expressed in an oval shape. Both latent variables 
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were constructed with their observed indicator variables. The coefficient values of the models were 

normalized in order to be an easy comparison with each other. A positive coefficient sign implied that 

the independent variable was directly changed by the dependent variable. on the other hand, a negative 

coefficient sign was expressed using dotted lines and implied that independent variables vary inversely 

by dependent variables. 

Table 3.7 Comparing five model fitness indices on three models 

Fitness Indices Criteria 

Model value 

Within600 model GB model LDG model 

GFI > 0.9 0.951 0.974 0.960 

CFI > 0.9 0.928 0.964 0.928 

NFI > 0.9 0.928 0.963 0.927 

RMR < 0.8 0.055 0.034 0.046 

  

This SEM with standard estimates and significant level are provided in Figure 3.6-3.8. To verify the 

validity of the SEM model results and to show fitness of model, Table 3.7 showed the results of 

evaluating the model fit using five indices. The three models were found to meet the respective 

goodness-of-fit criterion. For instance, within 600m model had the power of explanatory that GFI was 

0.951, CFI was 0.928, NFI was 0.928 and RMR was 0.055. 

3.4.3 Results of Structural Equation Model  

The SEM results showed our hypotheses and explained the relationship between multiple factors 

influencing LST. Moreover, green area and housing price were considered as variables to impact LST 

and explain thermal inequity, simultaneously. 

Fig. 3.6 showed that the old detached house increased the LST and the areas within 600m showed 

higher LST than the areas beyond 600m. On the other hand, housing price and green area had a negative 

relationship with LST. In other words, high housing price and green area rate showed low LST. The 

housing price was considered as an intermediate variable to explain a local LST difference. The green 

area which reduced the LST increases the housing price, while the old detached house which increased 

the LST decreased the housing price. Thus, areas with high housing price had a better thermal condition 

and old detached house was vulnerable area on heat. 
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Moreover, the vulnerable social class mainly resided in the old detached house and vulnerable social 

class indirectly increased LST (Table 3.8). The vulnerable social class had a negative relationship with 

housing price and green area, which was located close to the thermal inequity condition. 

However, the vulnerable social class located in areas within 600m was not in thermal inequity 

condition than areas beyond 600m. First, areas within 600 m had fewer old detached house, and 

vulnerable social classes were more resided in areas beyond 600m than areas within 600m. On the other 

hand, the area within 600m showed a negative relationship with housing price and green area. As a 

result, areas within 600 m have a relatively high LST, but vulnerable social classes indirectly had a 

negative relationship with LST (Table 3.8). As shown in Table 3.6, the areas adjacent to the green buffers 

within 600m played a role in decrease of the thermal inequity between areas within 600m and beyond 

600m. 

 

Figure 3.6 Estimates and significant level in the path diagram of Within 600m model 
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Table 3.8 Direct, indirect and total effect of within 600m model for LST 

Within 600m Model 
LST 

Direct Indirect Total 

Within 600 →(n) → 0.03 0.02 0.05 

Vul.Social → Old → (n) →  0.15 0.15 

Vul.social → Price → (n) →  0.03 0.03 

Vul.social → Green → (n) →  0.11 0.11 

Total   0.29 

Vul.social → 600m→ (n) →  -0.01 -0.01 

(n): old detached house or vulnerable social class or housing price or green area 

a. Green buffers(GB)model and Long-delayed green facility(LDG) model results  

Figure 3.7-3.8 showed the thermal inequity in areas within 600m by the planning conditions such as 

green buffers and long delayed green facility. Table 3.9 showed that in the GB model, the areas adjacent 

to the green buffers showed a directly negative LST, and vulnerable social class which do not live in 

GB showed a positive relationship to LST. Thus, the areas adjacent to the green buffers showed a low 

LST and a relatively better thermal environment under the thermal inequity condition. The areas 

adjacent to green buffers showed direct and indirect positive relationship with housing price and green 

area. On the other hand, the areas adjacent to the green buffers showed a negative relationship to the 

old detached house. In addition, the vulnerable social class lived more in areas non-adjacent to green 

buffers. In other words, the areas adjacent to the green buffers were not considered to be a residential 

area of the vulnerable social class, although the areas adjacent to green buffers had a relatively high 

housing price and green area. Therefore, the vulnerable social class lived in areas where there were no 

green buffers compared to the area adjacent to the green buffers. 

Table 3.9 Direct, indirect and total effect of Vulnerable social class for LST, housing price, green area 

in GB and LDG model 

Model 

LST Housing price Green area 

Direct Indirect Total Direct Indirect Total Direct Indirect Total 

GB→ -0.06 -0.03 -0.09 0.01 0.02 0.03 0.16   0.16 

Vul.social→GB→   0.02 0.02   -0.004 -0.004   -0.03 -0.03 

LDG→ 0.05 0.03 0.08 -0.03 -0.04 -0.07 -0.09   -0.09 

Vul.social→LDG→   0.01 0.01   -0.003 -0.003   -0.01 -0.01 
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Figure 3.7 Estimates and significant level in the path diagram of GB model 

The LDG model conflicted with the GB model. The areas adjacent to the long delayed green facility 

had a higher LST and the old detached house than the areas adjacent to the green buffers. In addition, 

the areas adjacent to the long-delayed green facility had a direct and indirect negative relationship with 

the hosing price and green area, and were considered as a residential area of the vulnerable social class 

(Table 3.9). As a result, the vulnerable social class was indirectly positive to LST in the areas adjacent 

to the long-delayed green facility(Table 3.9). In other words, the vulnerable social class who lived in 

the areas adjacent to the long-delated green facility was relatively affected to heat easily. Because the 

areas adjacent to the long-delayed green facility had a high LST but it was difficult to obtain the 

response ability on heat and the benefit effect of green area. Therefore, thermal inequity has occurred 

due to the difference of planning conditions although areas were equally adjacent to old industrial 

complex and showed a higher LST than areas beyond 600m. 
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Figure 3.8 Estimates and significant level in the path diagram of LDG model 
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3.5 DISCUSSION  

This study revealed inequity in terms of heat environments and existing environmental problems in 

the studied industrial urban spaces. Geographical proximity to the old industrial areas revealed an 

uneven distribution of LST. This enabled an analysis of whether vulnerable social classes were placed 

into high-heat environments. The different heat environments were also analyzed to determine whether 

urban green buffers and the long-delayed green facility in the areas adjacent to old industrial sites caused 

thermal inequity.  

This study showed that local characteristics in areas adjacent to old industrial sites directly influenced 

LST. This explained conditions in areas adjacent to industrial sites. This also explained why areas 

adjacent to industrial sites contained poor residential environments. Vulnerable residential 

environmental factors (e.g., old detached and multi-family houses) increased LST because of high 

artificial surface rates, overcrowded spaces, and narrow distances between buildings (Wong, J. K. W., 

& Lau, L. S. K. 2013; Kim, M. & Moon, E., 2016). 

Low-income classes in Korea mostly reside in residential areas containing small and old low-rise 

detached, public, and non-residential housing (e.g., flophouses and motels) (Hong, I., 2016). Except for 

public housing, vulnerable residential areas were generally of high density, lacked community spaces, 

and had poor parking environments. However, this study showed that the areas adjacent to industrial 

sites were not more vulnerable than the non-adjacent areas. This was unexpected. Nevertheless, the 

higher LST of the adjacent areas was a result of the relatively low ratio of green areas in the land cover.  

Vulnerable social classes chose to live in residential areas adjacent to industrial sites, thus indirectly 

placing themselves in high LST areas. Some classes selected the areas adjacent to industrial sites due 

to environmental burdens. Many of these choices were made based on low housing prices and rent. The 

industrial areas caused a variety of discomforts (e.g., noise and environmental pollution problems, 

traffic congestion, and landscape obstructions) that hindered residential function in the surrounding 

areas (Jung, S. et al., 2011) 

Although the results were relatively limited within a short distance from industrial areas, De Vor, F., 

& De Groot, H. L. (2011) showed a statistically significant negative impact on housing prices in the 

surrounding areas. Vulnerable social classes located in areas with low housing prices and a lack of green 

spaces experienced relative thermal inequity. In addition, housing prices independently influenced the 

spatial variations of LST (e.g., the range of trees and buildings). This supports the result of previous a 

study that showed how areas with low housing prices lacked reactional capacity, had limited air 
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conditioning, and few green areas (G. Huang & M. L. Cadenasso, 2016). However, the areas with higher 

LST that were adjacent to industrial sites were not thermally unequal when compared to the non-

adjacent areas. 

This study found that green buffer zones created between industrial and residential areas reduced 

thermal inequity between the areas that were adjacent and non-adjacent to old industrial sites. After the 

industrial complex was established, a large-scale housing supply policy was implemented to focus on 

efficiency. This was supposed to solve housing problems for local workers. Many apartments were thus 

constructed in adjacent areas. However, green buffers were not initially planned because environmental 

issues were not considered during construction of the industrial complex. The buffer zones were 

implemented due to rising environmental interests beginning in the 1980s. 

Jung, S. & Ko, S., (2010) asserted that, although the green buffers had little impact on neighborhoods 

when compared to parks, residents were generally satisfied with these buffers because they provided 

protection and helped them cope with environmental problems. Even though it is known that the 

adjacent areas contain bad environments, younger people considered them as places of residence due 

to relatively low housing prices and increased accessibility. Yang, G., (2013) showed that green areas 

improved residential comfort in a variety of ways (including the simplicity of greening and separation). 

The green buffer ratio did not appear to significantly increase housing prices. However, green buffers 

did contain higher prices than non-adjacent residential areas (Panduro, T. E., & Veie, K. L. 2013).  

However, it is difficult to explain whether green buffers improved the physical environments of the 

adjacent areas or those considered relatively less vulnerable. For instance, planning and construction 

were not based on different social conditions. Nevertheless, areas adjacent to the green buffer had low 

vulnerable housing conditions, high apartment ratios, and low LST. As a result, areas within 600m and 

which were adjacent to the industrial area showed high LST. The environmental benefits of the green 

buffers thus appear to have reduced thermal inequity between the adjacent and nonadjacent areas.  

Unfortunately, green areas were not constructed in all adjacent areas within 600m of the industrial 

sites. Some areas had already planned to implement green buffers, but development has been limited 

due to the long-delayed green facility. Even though all areas within 600m exhibited geographical 

characteristics similar to those adjacent to the industrial sites, the areas adjacent to the long-delayed 

green facility experienced thermal inequity. 

The areas adjacent to the green buffers had lower LSTs than areas without green buffers. The areas 

adjacent to the green buffer had high ratios of green areas and APT, but housing prices were higher than 

in other areas. Such a housing environment makes it less likely for vulnerable social classes to reside in 
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areas adjacent to green buffers. On the other hand, areas without green buffers or that are adjacent to 

the long-delayed green facility exhibited totally different environments. This indicated that vulnerable 

social classes lived in areas that were cheaper and contained backward residential environments when 

compared to those in areas adjacent to green buffers. It is difficult to empirically understand how the 

vulnerable social classes directly increased LST, but their residential areas were vulnerable to heat. Thus, 

vulnerable social classes who chose to live in areas adjacent to the long-delayed green facility could not 

receive environmental benefits despite the planned green buffer. The areas adjacent to the long-delayed 

green facility also exhibited the highest LST and experienced thermal inequity.  

The long-delayed green facility was not discriminately created in consideration of local socioeconomic 

characteristics such as income or class. Areas not planned to contain green buffers were considered 

exceptions based on the following criteria: According to Article 18 of the Enforcement Rule of the 

Urban Parks and Greenery Act, the existence of other facilities similar to green buffers, areas adjacent 

to roads passing through city centers, and areas where the city had already been constructed [did not 

need such buffers].  

On the other hand, areas containing the long-delayed green facility had the most significant cost 

problems, including land compensation. The industrial complex was planned during the 1960s and 

1970s. The importance of the green area was not recognized at this time. Adjacent residential areas were 

then influenced by environmental problems due to plans that neglected local relationships to the 

settlement area. Green buffers were constructed to separate industrial complexes from adjacent areas 

with the later introduction of green installation criteria (Kim, J. et al., 2013). However, it was difficult 

to secure lands for green buffers because the existing industrial complex had already been urbanized. 

Despite the planned green buffer, the area containing the long-delayed green facility remained 

unestablished for over 20 years because of difficulties resulting from increased land prices.  

This study has several limitations. First, it was difficult to use LST to explain the heat impact from old 

industrial areas. This is because anthropogenic heat is difficult to measure. This study therefore focused 

on whether the built environments in adjacent areas were vulnerable to heat caused by old nearby 

industrial areas. Even though the ratio of low-income classes and foreign factory workers lived close to 

old industrial areas, they were not considered due to limited census output data. Green buffer width was 

considered a major planning factor for mitigating environmental problems, but this study did not 

consider it. Finally, I do not know whether social conditions were considered during the green buffer 

planning stage. 

Nevertheless, this study discovered thermal inequity within a 600m boundary of the old industrial 
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areas and was thus able to explain the relationships between location, social conditions, and built 

environments. It is also important to note that the green buffers reduced thermal inequity between 

adjacent and non-adjacent areas and the discriminately constructed green plan. Although unintended, 

this was a significant step in discovering thermal inequity.  

This study provides certain implications. First, it emphasizes that green buffers not only have the basic 

purpose of mitigating environmental problems, but can also help reduce urban heat. Green buffers 

placed next to heat sources can also mitigate thermal inequity. This study also found that close proximity 

to the industrial area indicated higher LST, but that adjacent areas may not be thermally unequal when 

compared to non-adjacent areas. Although not created according to local social conditions, green buffers 

should be prepared and supported through policy to ensure that residents in adjacent areas are not 

excluded from the environmental benefits. The long-delayed urban planning facility will be allowed in 

2020 through the “sunset” law. This should be a priority because green buffers can reduce environmental 

problems not only in surrounding areas, but also throughout whole cities. 
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3.6 CONCLUSION 

This study resulted in four major findings. First, areas adjacent to old industrial sites exhibited higher 

LST and were primarily occupied by vulnerable social classes, but the green buffers reduced the 

differences between the vulnerable residential environments in areas adjacent and non-adjacent to 

industrial sites. Second, areas that did not benefit from the green buffer contained poor heat 

environments. Third, neighboring areas without green buffers were occupied by vulnerable social 

classes because of low housing prices. Fourth, the long-delayed green facility resulted in the continued 

construction of a poor residential environment in the adjacent areas, which forced vulnerable social 

classes to live with thermal inequity. 

These findings imply that the green buffers played a significant role within the 600m boundary. That 

is, they reduced thermal inequity between the areas that were adjacent and non-adjacent to the old 

industrial sites. In contrast, the long-delayed green facility reduced environmental benefits in the 

adjacent areas to the industrial sites when compared to the areas adjacent to green buffers. This 

contributed to thermal inequity. 
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CHAPTER 4 

Evaluating heat environments according to company size in the old industrial 

complexes through a consideration of industrial and built environments 

Keywords: old industrial complex, heat environment, company size, small land parcel, industrial 

environment  

4.1 INTRODCUTION 

The industrial complex was constructed during the 1970s and 1980s. It led to local economic growth 

in Korea and increased the growth rate of each city. Many residential areas were therefore needed, and 

thus expanded into the areas adjacent to the industrial complex. However, the industrial complex 

contained problems such as traffic congestion, environmental pollution, lack of infrastructure, and 

deterioration that negatively affected nearby cities. An urban heat island then resulted from climate 

change. Here, the industrial area was revealed as one of the contributing heat sources. People are deeply 

worried about these urban problems. 

Young people and workers engaged in manufacturing and outdoor industries are suffering as a result 

of these changes. The Korean Centers for Disease Control & Prevention (KCDC) reported that a total 

of 4,526 people suffered heat-related illness in 2018. Of these incidents, 48 resulted in death. This is the 

highest rate since the surveillance system was introduced in 2012. High proportions of children and 

elderly live in these areas (30%), followed by the unemployed (18%), and manufacturing workers (16%). 

Many studies have analyzed urban development activities that contribute to the rising urban heat 

island effect. Several studies have shown the diverse impacts of land use on urban temperature. 

Commercial and industrial areas with dense populations engaged in land use showed a high LST (43° 

C in summer) (Jusuf, S. K., et al, 2007). Industrial areas have especially poor physical environments 

with low NDVI and high building-coverage rates (Kim, J. et al., 2015). These areas also have high heat 

flux values due to large amounts of energy consumption (Chakraborty, S. D., et al., 2015). Industrial 

areas contain the highest LSTs where there is little vegetation in surrounding free space areas (1%), and 

the lowest LSTs in “green” areas (Rotem-Mindali, O., et al, 2015). Industrial areas also contribute to 

high temperatures and LST in urban areas because they generate significant heat. 

Increased urban heat is aggravated by climate change. It has worsened the thermal environment in 
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manufacturing workplaces and decreased productivity (Kjellstrom, T., & Crowe, J. 2011). The old 

industrial areas are more vulnerable to rising temperatures due to poor physical conditions. The old 

industrial complex exhibits deterioration due to the division of land parcels into smaller areas and 

changing occupancy types. Since the International Monetary Fund (IMF) has been active in Korea, 

industries requiring large-scale parcels have moved or gone bankrupt. Small and medium companies 

have thus begun to occupy large land parcels (Song, J. 2008; Kang, H. 2009). As a result, the proportion 

of small companies involved in Korea's manufacturing industry has steadily increased, moving from 

86.7% in 2005 to 94% in 2017 (Bae, et al, 2017, Open data portal, 2017).  

This increasing cluster of very small companies has led to several problems, such as a lack of parking 

spaces and increased demand for limited support facilities. Land prices have also risen because the old 

industrial complex is adjacent to the city center. Existing companies have thus begun to lease factories, 

thereby increasing the number of small businesses. The 2017 Survey of Small and Medium Business 

indicated that the lease ratio of medium companies was 16.7%, while the rate for small companies was 

29.0%, and 50.3% for very small companies. 

Unlike the general public, industrial workers are exposed to stronger heat for longer periods 

(Tawatsupa, B. et al., 2010). Even though workers are engaged in the same type of industrial work, the 

deterioration of the industrial environment and the rise of urban temperatures as a result of climate 

change may lead to different levels of high heat exposure depending on company size and physical 

environment. In Korea, the average wage level according to company size revealed big differences; 

very small companies registered at 242.8 thousand won, while small and medium companies registered 

at 319.5 thousand won, and large companies registered at 589.9 thousand won (Employment Labor 

Statistics, 2017). This led to different industrial accident rates (i.e., 1.24% for very small companies and 

0.27% for large companies). 

Industrial areas are major sources of urban heat. While many workers have engaged in such work for 

long periods of time, few studies have conducted micro-scale analyses of the thermal differences by 

considering the physical and industrial environments of the old industrial complex. Despite the 

relationship between the external and internal factors of these industrial areas, their characteristics were 

not considered during attempts to explain thermal inequality. It is therefore necessary to identify 

vulnerable heat environments within these industrial areas in addition to analyzing whether vulnerable 

social classes and vulnerable physical environments are located in the adjacent areas by considering the 

external factors. 
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This study analyzed different heat environments among equal buildings (EQB) according to company 

size. This was accomplished by considering the industrial and physical characteristics of EQBs to reveal 

thermal inequity in adjacent neighborhoods, where vulnerable characteristics seem to result in high LST.  

I. Do equal buildings (EQBs) occupied by very small companies in vulnerable heat environments 

differ compared to EQBs occupied by companies of other sizes?  

II. Are LST differences the result of EQB size (i.e., smaller EQBs exhibit higher LST)? 

III. What relationship does high LST in EQBs located in the old industrial complex have with 

vulnerable physical and sociodemographic characteristics in neighboring areas? 
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4.2 METHODS 

4.2.1 Study area  

This study focused on old industrial complexes, which were selected according to the presence of 

structurally advanced and regenerative businesses among the study areas considered in Chapter 3. A 

structurally advanced and regenerative business indicates the need for environmental improvements to 

solve problems such as low productivity and high physical backwardness. The Korean government has 

promoted regenerative business to recover the functions of the industrial complex for approximately 20 

years. It has designated four target cities since 2009. 

Table 4.1 State of the old industrial complex in 2017 

City 
Industrial 

complex name 

Area 

(1,000m2) 
Worker 

Major industry 

type 

Very 

small/Small 

company (%) 

Num. of operating / 

Moving companies 

DaeGu 

SeongSeo(1st~3rd) 

(1965) 
10,766 48,603 

Machine metal, 

Textiles 
40.6%/52.2% 

2,574/2,595 

(99.2%) 

West-DaeGu 

(1975) 
2,662 14,670 

Textiles, 

Machine metal 
57.7%/37.8% 

2,360/2,360 

(100%) 

Dyeing 

(1980) 
846  5,639  Textiles 15.3%/50.0% 

123/125 

(98.4%) 

DaeGu-3rd  

(1967) 
1,679  12,693  

Machine metal, 

Transportation 

equipment 

58.9%/40.0% 
2,535/2,535 

(100%) 

Busan 

SinPyeong·

JangLim 

(1980) 

2,815  15,485  
Machine metal, 

Textiles 
22.8%/62.8% 

569/630 

(90.3%) 

SaSang 

(1968) 
3,021  - Machine metal 54.3%/42.4% 

2,284/2,284 

(100%) 

Ulsan 
Ulsan·Mipo 

national 

(1962) 

48,444 95,818 

Petrochemistry, 

Vehicle 

manufacturing, 

Other transport 

equipment 

27.7%/48.6% 
758/883 

(85.8%) 

Chang

Won 

ChangWon 

national 

(1974) 

35,435 126,537  
Machine metal, 

Electronics 
35.9%/54.4% 

2,603/2,855 

(91.2%) 

GuMi 
Gumi national 1rd 

(1973) 
10,223 91,360 

Textiles, 

Electronics 
23.9%/64.9% 

1,889/2,224 

(84.9%) 

JinJu 
SangPyeong  

(1977) 
2,135 7,744 Machine metal 61.5%/35.1% 

515/515 

(100%) 

※ Very-small /small company rate: Factory enrollment data(2017) 
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This study examined old industrial complexes that were adjacent to urbanized areas located in Daegu, 

Busan, Ulsan, Gumi, Jinju, and Changwon. Table 4.1 summarizes the current state of old industrial 

complexes according to study area. These target areas were built between the 1960s and 1980s. The 

Dyeing industrial complex in Daegu spans the smallest area (0.846km2), while the Ulsan-Mipo 

industrial complex spans the largest (48.444km2). The Dyeing industrial complex in Daegu had the 

smallest number of workers (5,639), while Changwon national industrial complex had the largest 

(126,537). The major industries were those engaged in machine metal, textiles, transportation 

equipment, vehicle manufacturing, electronics, and petrochemistry.  

Among all companies located in the industrial complex, Gumi (84.9%) had the lowest operating rate, 

followed by Ulsan (85.8%) and Changwon (91.2%). The national industrial complex mainly exhibits 

low operating rates. Approximately 90% of all companies in the complex were small. Over 50% of all 

very small companies were located in Daegu (58.9%), followed by West-daegu (57.7%), Sasang 

(54.3%), and Sangpyeong (61.5%). Very small companies are present at high rates in the general 

industrial complex when compared to the national industrial complex. 

4.2.2 Analysis method and spatial analysis unit 

This study analyzed EQBs in the old industrial complex to determine the thermal environment on a 

micro scale. EQBs comprise two or more buildings. One EQB must provide a street address under 

article 8, section 3 (Road name address, 2017). An EQB is defined according to the following criteria:  

I. The main building and wing are in one building group.  

II. It is zoned as one group surrounded by a fence or wall.  

III. It must be publicly registered as one building or building group.  

This study investigated the EQB environment, industrial characteristics, and the built environment. 

Several factories that were obtained from the factory enrollment data used in this study were not 

classified as EQBs because they were not defined as belonging to one group. I thus complemented the 

dataset with land parcel data that were taken from the national spatial data portal. Some of these data 

had been excluded from the EQB list. Variable industry characteristics and information on built 

environments were obtained through the building register data and factory enrollment status data using 

the spatial join feature in Arc GIS 10.4. However, several EQB data were excluded because some built 

environment and industry characteristic data were omitted. Finally, 5,854 samples were used in this 

study.  
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4.2.3 Variables  

a. Equal Building (EQB) Environment  

Table 4.2 shows the variables used to examine the relationship between LST and the EQB 

environment (e.g., EQB characteristics, industrial characteristics, and the built environment). The 

industrial complexes were built in both coastal and interior regions. Geographical location was therefore 

considered a factor related to urban heat (Jusuf, S. K., et al., 2007; Kolokotroni, M., & Giridharan, R. 

2008). Using Arc GIS 10.4, I thus calculated EQB distance to urbanized and coastal areas. EQB area 

was also used to examine this study’s secondary hypothesis. 

b. Industrial characteristics 

The industrial characteristics of EQBs were obtained from factory enrollment data (2017) that was 

provided by the open data portal (Table 4.2). This included individual factory location, company size, 

and industrial environment characteristics. Company size was classified as small, medium, or large 

according to the number of workers. That is, large companies contained more than 300, medium 

companies contained between 50 and 300, and small companies contained less than 50. 

 A very small company is generally defined as employing less than five workers, but this was raised 

to 10 for the manufacturing industry (SME statistics, 2017). Thus, very small companies were 

considered for examination in EQBs when they contained less than 10 workers. In addition, the 

considered industrial characteristics included air pollution and number of workers.  

Workers engaged in the manufacturing industry are exposed to a variety of dangerous environments 

and hazards, including high temperatures, steam, and chemicals. There are different exposure intensities 

according to the manufacturing process and industry type. For instance, workers in a steel 

manufacturing plant are likely exposed to high temperatures and steam.  

This study therefore considered high temperature exposure as part of the physical working 

environment factors included in the Korea Working Condition Survey (KWCS) data (2014). These data 

have been obtained from the overall working environment according to occupation and business type 

for employees over 15 years of age every three years since 2006. Manufacturing workers in indoor and 

outdoor facilities are also exposed to different work intensities depending on occupation (e.g., manager 

or simple laborer). 



 

 

Table 4.2 The environmental variables of equal buildings (EQBs) 

Variables Unit Calculation  Source 

Equal buildings (EQB) characteristics      

EQB area 𝑘𝑚2  
Road name portal & National spatial data portal, 2017 

Distance to urban area km  National spatial data portal, 2017 

Distance to sea km  Territory environmental spatial data, 2012-2013 

Industry Characteristics    

Number of workers people  

Open data portal, 2017: Factory enrollment data 
Company size dummy 1: Very small, 2: Small, 3: Middle, 4: Big 

Air pollution exhaust dummy 

Total amount of air pollution emission =  

0: None, 1: under 2ton, 2: 2~10ton, 3: 10~20ton,  

4: 20~80ton, 5: Over 80ton 

Avg. high temperature exposure score score 

Throughout working hours: 6, Almost all working hours: 

5, Working hours 3/4: 4, Half of working hours: 3, 

working hours 1/4: 2, Almost no exposure: 1, Never 

exposure: 0 

the Korea working condition survey, 2014  

Built Environment    

Floor area ratio % Total floor area / EQB area * 100 

Private open system of building data, 2017 
Built coverage ratio % Built coverage area / EQB area * 100 

Avg. building Height m  

Avg. built year year 2017 – built year 

Green area % Green area / EQB area * 100 Territory environmental spatial data, 2012-2013 

4
5
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The high temperature score was calculated based on a middle industry classification. This was done 

to compare high temperature differences among EQBs. According to KWCS data, high temperature 

exposure levels are classified according to the level of exposure experienced during all working hours, 

half of all working hours, and no exposure. In this study, high temperature exposure levels were assigned 

on a scale ranging from 0 to 6. For instance, exposure during all working hours scored 6 points, while 

no exposure scored 0 points. This study thus identified that higher LST was present in EQBs with higher 

temperature exposure scores. 

c. Built environment  

Building characteristics were obtained from the building register data provided by the private open 

system for building data. The building register data contained information on individual buildings, 

including area, structure, and location. This study used building coverage ratio, average height, and 

average built year for examination. Building coverage and floor area were calculated into ratios by 

dividing EQB area. Building height was an average of all buildings in a given EQB. Built year indicated 

old level factories and was calculated as an average value of all buildings present in 2017 minus the 

built year of a given building. 

Green area ratio was calculated by dividing the green area created in the EQB by the EQB area. There 

were certain criteria for green areas in industrial complexes. Integration guidelines suggested that green 

area size should be determined according to the size of the industrial complex (a minimum of 5% to a 

maximum of 13%; the minimum area of any public green should be over 500m2) (The national low 

information center, 2017). There were also building codes. Landscaping was required if the land parcel 

area was over 5,000m2. Thus, EQB green area data were extracted from areas where greens were 

included in the EQB land cover as provided by the Environmental spatial information system. 

d. Housing, demographics, and neighborhood social characteristics of areas adjacent to 

EQBs 

The neighborhood characteristics of areas adjacent to industrial complexes included the variables 

listed in Chapter 3. These variables explain the relationship among EQBs with high LSTs and the 

vulnerable physical, demographic, and social characteristics of neighboring areas. However, these 

characteristics were calculated into averages based on individual EQBs because many neighborhoods 

typically surrounded one EQB.  

Moreover, if values were calculated into usual averages, they were very likely to be underestimates. 
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For this reason, the neighborhood characteristics of adjacent areas to individual EQBs were calculated 

into weighted average values in consideration of their distance from a given individual EQB using Excel. 

Weighted values were allocated to each neighborhood at 100m intervals based on EQB location. For 

instance, areas within a 100m distance were assigned the number 5, while areas more than 400m away 

were assigned to Areas that were extracted to within a 500m buffer of each EQB using Arc GIS 10.4. 

Any EQB that was not adjacent to a neighboring area within a 500m buffer boundary was excluded. A 

total of 3,393 EQBs were finally extracted.  

Demographic and social factors included populations over 65 and under 5 years of age, foreigners, 

basic living, rented households, single and unrelated households, and housing transaction prices. 

Physical factors were also considered for housing of less than 60m2 or over 30 years of age to determine 

the existence of poor residential environments. Detached housing and APT were included as housing 

types. All factors were calculated by ratio except housing transaction price data. 

4.3 RESULTS 

4.3.1 Descriptive statistics 

 Table 4.3 shows the results of the descriptive EQB statistics according to company size. EQB 

environments as determined according to company size were divided into 3 categories (i.e., EQB 

characteristics, industry characteristics, and built environment).   

Number of workers was used to determine company size. Very small companies contained an average 

of 4.9 workers, but could contain up to 9. Small companies contained a maximum of 99 workers (22.4 

on average), while medium companies contained a maximum of 298 workers (108 on average). Large 

companies contained a maximum of 4,100 workers (1,438.9 on average). However, the minimum 

number of workers in large companies was similar to that seen in small companies. Some large 

companies contained other small factories within the industrial complex.  

For EQB characteristics, EQBs with extensive areas indicated that the contained company was larger. 

Large companies used a maximum of 4.255km2 (an average of 0.249km2), while medium companies 

used a maximum of 0.161km2 (an average of 0.021km2). On the other hand, small companies used a 

maximum of 0.161km2 (an average of 0.004km2), while small companies used0 a maximum of 

0.009km2 (an average of 0.001km2). 



 

 

Table 4.3 Descriptive statistics according to company size, equal building (EQB) environment, industry characteristics, and built environment  

 
Company Size 

Very Small (n= 2,121)  Small (n= 2,756)  Medium (n=861)  Large (n=116) 

Variable Mean S.D. Min Max  Mean S.D. Min Max  Mean S.D. Min Max  Mean S.D. Min Max 

Equal building (EQB) characteristics     
 

    
 

    
 

    

Equal building area (k𝑚2) 0.001 0.001 0.0001 0.009  0.004 0.007 0.0001 0.161  0.021 0.046 0.0001 0.613  0.249 0.583 0.0021 4.255 

Distance to urbanized area (km) 0.5 0.5 0 3.2  0.6 0.6 0 4.2  0.7 0.6 0 3.9  0.7 0.9 0 3.7 

Distance to sea (km) 16.6 28.4 0.02 90.9  24.2 33.7 0.02 90.9  28.6 35.6 0.01 90.9  29.9 38.0 0.01 90.3 

Industry characteristics                    

Number of workers (people) 4.9 2.6 0 9  22.4 11.1 1 99  108.0 58.8 2 298  1438.9 4507.2 5 41059 

Air pollution exhaust 0.11 0.5 0 5  0.17 0.6 0 5  0.54 1.2 0 5  1.13 1.8 0 5 

Heat exposure score 1.48 0.3 0.8 2.2  1.45 0.3 0.8 2.2  1.40 0.3 0.8 2.2  1.30 0.3 0.8 2.2 

Built environment                    

Built coverage (%) 65.3 13.8 7.9 99.2  63.7 16.1 3.2 99.7  60.9 18.7 3.7 98.6  50.6 22.1 1.9 89.0 

Total floor area (%)                    

Avg. built year 20.1 11.4 0 49.0  19.6 10.7 0 61.3  19.2 9.5 0 45.0  18.9 8.4 0 42.0 

Green area (%) 0.1 1.4 0 37.2  1.1 4.7 0 58.8  4.0 8.2 0 71.6  13.2 15.7 0 72.0 
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For geographical location, old industrial complexes in Korea are typically located adjacent to 

urbanized or coastal regions. There was almost no difference in distance related to company size 

because most old industrial complexes considered in this study were close to urbanized regions.  

On the other hand, distance from the coast revealed differences depending on company size. These 

differences were based on the city in which the industrial complex was built. The average distance of a 

very small company was 16.6km, which was closer than other company size. The average distances of 

medium and large companies to coastal areas was 28.6km and 29.9km, respectively; they were 12.0km 

and 13.3km further from coastal areas than very small companies, respectively. 

The smaller the company size, the higher the built coverage ratio of the built environment in the EQB. 

Very small and small companies had averages of 65.3% and 63.7%, respectively. The medium company 

average was 60.9%, while large companies revealed the lowest average of 50.6%. Total floor area ratio 

was highest at 101.4% for medium companies, and lowest at 84% for large companies. Very small and 

small companies revealed averages of 93.1% and 95.7%, respectively. The floor area ratio was higher 

when apartment-type factories contained several companies. The average building height was 8.6m to 

9.8m when factory work was performed indoors; factory heights were meticulously planned. Very small 

companies had the highest average age (20.1 years), while large firms had the lowest average age (18.9 

years). 

The smaller company size, the lower ratio of green area. Large companies had an average green area 

ratio of 13.2%, while very small companies had an average of 0.1% (a difference of 13.1%). Medium 

and small companies showed averages of 4% and 1.1%, respectively. Compared with large companies, 

green areas seemed to be 9.2% and 12.1% smaller, respectively. Even when considering maximum 

green area ratio, very small companies showed 37.2%, while large companies showed 72%. This was a 

significant difference. 

4.3.2 Result of Multiple Regression Model  

Table 4.4 showed the results of relationship between the LST and the EQB environment of the 

industrial complex. The r-squared value in multiple regression of model was 0.7274. The LST was 

lower as the EQB area was larger. The LST decreased by 0.7 ℃ as the building area increased by 1 km2. 

The LST increased as distance from the urbanized and the coastal areas. In the industrial characteristic, 

the temperature exposure score showed a positive relationship with the LST and the exhaust of air 

pollution was not significant.  
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Table 4.4 Multiple regression model result 

 Model 1(n=29,265) 

Land Surface Temperature Estimate Std.Err t sig. 

EQB Environment     

EQB_Area -0.732 0.133 -5.5 *** 

Distance to urbanized area 0.118 0.020 5.9 *** 

Distance to sea 0.014 0.000 38.4 *** 

Industry Characteristics     

Heat exposure score 0.293 0.048 6.2 *** 

Air pollution -0.014 0.015 -0.9  

 Built Environment in the EQB     

Total floor area  -0.005 0.000 -20.7 *** 

Building coverage 0.023 0.001 28.3 *** 

Ave. Built Year 0.006 0.001 5.7 *** 

Green space in EQB  -0.025 0.002 -11.1 *** 

Company Size     

Very small     

Small  -0.222 0.025 -9.0 *** 

Medium  -0.255 0.036 -7.1 *** 

Large  -0.023 0.090 -0.3  

Industry type     

Petrochemistry & textile -0.418 0.046 -9.0 *** 

Electrical & electronic     

Machine & transportation & metal -0.056 0.046 -1.2  

Etc. -0.488 0.049 -9.9 *** 

Day     

  Jun.4, 2015 8.633 0.035 250.2 *** 

  Aug.7, 2015 1.605 0.035 46.5 *** 

  Sept.5, 2014 2.934 0.035 85.0 *** 

  Sept.13, 2017 1.841 0.035 53.4 *** 

  Sept.18, 2013     

Cons_ 29.101 0.083 350.8 *** 

R-square 0.7274 

* p<0.05, ** p<0.01, ***p<0.001 
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In the industrial characteristic, the higher the high temperature exposure score, the higher the LST, 

but the air pollution emission was not significant. As the high temperature exposure score increased by 

1 point, the LST increased by 1℃. In other words, the positive relationship between the high-

temperature exposure score and the LST indicated that the working environment of the worker was in 

a poor heat environment, internally and externally. In the building environment, as the building coverage 

and built year were increased, the LST was decreased, while as the total floor area and green space 

increased, the LST decreased. Petrochemistry & textile and etc. in industrial types were lower than 

electrical & electronic by about 0.4℃. On the other hand, machine & transportation & metal industry 

was not significant.  

By controlling previous variables, the LST difference by company size was founded. Very small 

company which have the most vulnerable working environment showed the highest LST. Compared to 

the very small company, the small company was lower about 0.2℃ and the medium company was lower 

about 0.3℃. Large company did not significant. 

4.3.3 Correlation between the LST of the EQB and adjacent areas. 

Table 4.5 showed the correlation between the LST of the EQB and the demographic and social 

characteristics of the area adjacent to the old industrial complex. In terms of population and social 

characteristic, foreigner, basic livelihood recipient, single and rent household showed a positive 

correlation with the LST. In the housing environment, housing under 60m2 and housing over 30 years 

showed a positive correlation with the LST. In particular, rent household showed a strong correlation 

coefficient of 0.35. However, population over 65 and under 5, detached house, and APT were not 

significant. Green area and housing price showed negative correlation with LST. 

As a result, areas adjacent to the high LST of the EQB relatively presented vulnerable housing types 

and vulnerable social classes who except for the population over 65 and under 5 located close to areas 

adjacent to the high LST of EQB. In addition, the respectively negative correlation between the LST of 

EQB and green area and housing price showed that the adjacent to the old industrial complex had a 

thermal inequity condition. 



 

 

Table 4.5 Correlation between the LST of the EQB and housing environment, demographic and social characteristics of areas adjacent to old industrial complex  

 LST Over65 Under5 Forg Basic H_price Single Rent Under60m2 Over30Y Green D_hou APT 

LST 1                         

Demographic and social characteristics               

over65 -0.03  1                       

under5 -0.01  -0.68 *** 1                     

Forg 0.17 *** -0.20 *** 0.15 *** 1                   

Basic 0.07 *** 0.38 *** -0.32 *** -0.12 *** 1                 

H_price -0.25 *** -0.28 *** 0.28 *** -0.10 *** 0.09 *** 1               

Single 0.08 *** 0.12 *** -0.41 *** 0.36 *** 0.05 ** -0.18 *** 1             

Rent 0.35 *** -0.02  -0.17 *** 0.16 *** -0.05 ** -0.71 *** 0.09 *** 1           

Housing environment               

under60m2 0.13 *** -0.01  0.02  0.31 *** 0.01  -0.26 *** 0.08 *** 0.21 *** 1         

over30Y 0.13 *** 0.57 *** -0.40 *** 0.29 *** 0.20 *** -0.11 *** 0.43 *** -0.05 ** 0.05 ** 1       

Green -0.11 *** -0.21 *** 0.12 *** -0.15 *** -0.29 *** 0.01  -0.03 * 0.06 *** 0.09 *** -0.34 *** 1     

D_hou -0.01  0.52 *** -0.52 *** -0.07 *** 0.10 *** -0.20 *** 0.47 *** 0.03  -0.43 *** 0.47 *** -0.12 *** 1   

APT 0.03  -0.57 *** 0.60 *** 0.15 *** -0.15 *** 0.23 *** -0.48 *** -0.06 *** 0.38 *** -0.46 *** 0.12 *** -0.84 *** 1 
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4.4 DISCUSSION  

This study did not consider occupation or industry type. However, different heat environments were 

found in different working environments. Very small companies had poorer heat environments than 

small and medium companies located in old industrial complexes, but large companies exhibited the 

highest LST. This was unexpected. 

This study found that very small companies were exposed to high heat not only in working areas, but 

also in outdoor environments. In terms of the built environment, very small companies showed physical 

characteristics that were likely to result in poor thermal conditions. Very small companies occupied 

factory buildings at high rates due to less than average EQB areas (1,000m2). Factory buildings between 

very small companies were of close proximity. This design exploits narrow EQB areas to their 

maximum capacity. Narrowly divided land parcels were used for the planned blocks. Building layouts 

thus resulted in high LST through a widening of the building area across the land space.  

The very small and small companies divided land parcels in old industrial complexes to build 

factories, thus making the best use of limited space. This included straight building configurations along 

adjoining roads, while factory buildings on different land parcels were built in mostly facing 

configurations (Bae, et al., 2003). Buildings should generally be constructed at least 1m off the property 

and under 6m according to building code-related criteria concerning property and building lines. 

However, the building code does not apply to factory buildings in industrial complexes (The national 

low information center, 2018). In other words, very small companies could easily be situated in higher 

LST environments compared to other company types. 

I did not consider working conditions according to company size, but some previous studies have 

pointed out that small companies contain poor heat environments. Unlike the general public, 

manufacturing workers are exposed to strong heat for long periods of time. These workers usually 

operate indoors. Although they are not exposed to direct solar radiation, they experience very high 

thermal stress due to insufficient air conditioning and high heat levels (Lundgren, K., et al., 2013). Lee. 

J and Ahn. J, (2016) examined the Korea working conditions survey. They revealed that the smaller the 

company, the higher the exposure risk. Thus, small companies find it difficult to pay attention to safety 

and health improvements because of long working hours. Low-wage workers are more likely to 

experience heat stress (Srivastava, A., et al., 2000; Bhanarkar, A. D., et al., 2005; Tawatsupa. B. et al., 

2010). These studies support my results. That is, very small companies tend to contain poor built 

environments for heat. 
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4.4.1 Different heat environments according to EQB area  

Large company factories are typically built on large parcels of land. Large EQBs can thus be 

constructed to contain relatively low LST. For instance, although this study did not consider a detailed 

industry types, the petrochemical industry is typified by low coverage rates due to storage tanks and 

pipelines. This industry type has tended to contain wide open spaces and a high ratio of green areas, 

thus exhibiting the lowest LST among all industries. On the other hand, electronic, automobile, and 

metal-related industries located in large EQB areas tend to contain huge factories alongside relatively 

large green spaces. 

While there was no significance difference, large companies exhibited higher LST than small 

companies. This was because large companies had huge factories to accommodate production and 

workforce needs. Some companies had relatively high or low LSTs because they occupied relatively 

wide or narrow building areas. For instance, several very small companies exhibited relatively low LST 

because they occupied larger EQB areas. The reasons for this are as follows. 

First, several very small companies shared factories within the same EQB area. Very small companies 

rented factories at high rates because they could not afford their own (Song, J.. 2008). Apartment-type 

factories have recently appeared. Very small and small companies are thus able to perform industrial 

activities in better environments. The second reason involves downsizing. That is, companies downsize 

as economic conditions worsen; this is done by reducing the number of employees (Jeon, K, 2018). 

Consequently, physical EQB areas are major variables in explaining different heat environments. This 

is because larger EQB areas enable companies to use building components that result in lower LST. 

Although large companies exhibit high LST, they do not seem to contain vulnerable heat 

environments. The larger the company, the higher the number of workers. However, large companies 

tend to employ safety supervisors; longer breaks are thus ensured during heatwave warnings 

(HanKyoReh, 2018). In addition, small and medium companies cannot afford to cope with heat under 

the current system, in which the demand for labor is high and high-risk jobs are transferred to 

subcontractors.  

Regarding the industrial characteristics, this study did not consider occupation (e.g. 

administrative position or simple laborer) or working environment (e.g. indoor or outdoor). However, 

high temperature exposure exhibited a positive relationship to EQBs with high LST. This indicates that 

companies experiencing high temperatures may have poor thermal conditions. High temperature 

exposure is mainly the result of production activities involving hot machines, furnaces, and molten 
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metals. This varies depending on industry type and occupation (Lee, J. & Ahn, J., 2016). Thus, 

manufacturing workers in factories with high temperature exposure rates are positioned in very 

vulnerable heat environments due to high LST, which is also a problem in outdoor spaces. 

4.4.2 Green space affects on company size 

This study showed that larger companies were more easily affected by the positive aspects of green 

spaces. Very small and small companies with land parcels of less than 1,500m2 and 5,000m2, 

respectively, had green area rates of less than 1%. The smaller the company, the less likely they can 

afford to secure green spaces. This is the result inefficient expenses and development spaces. 

Consequently, workers at large companies are easily influenced based on green areas, which are not 

typically present at very small and small companies. 

Furthermore, very small and small companies located in old industrial complexes receive little 

influence from green areas. Industrial complexes built prior to the 1970s and 1980s were not required 

to secure green areas. They thus operated below current criteria that necessitate green space creation 

(Kim, et al., 2013). Large companies are likely situated in better thermal environments because they 

have secured sufficient green spaces. Article 27 of the building code indicates that, if the land parcel 

area is more than 5,000m2 or the total floor area of building is more than 1,500m2, landscaping should 

be secured in the factory area (The national low information center, 2018a). Since the land parcel and 

total floor areas of very small companies are below these criteria, they are not obligated to secure 

landscaping, and can likely not afford it.  

A high demand for factory expansion and limited industrial complex space in Korea resulted in the 

“Article 26 Special Act on Deregulation for Business Activities” in 2011. This was designed to mitigate 

problems associated with obligatory landscaping (The national low information center, 2018b). Green 

areas are thus rarely secured within factory areas. Although green areas are important aspects for 

improving urban heat environments, industrial areas tend to place less emphasis on them compared to 

residential areas.  

4.4.3 Thermal inequity in neighborhoods adjacent to EQBs with high LSTs  

Vulnerable social classes tend to live in output areas that are adjacent to old industrial complexes. 

They thus live near high heat sources. This study showed that several vulnerable social classes lived in 

poor thermal environments even when outside (the exceptions where persons over 65 years of age living 

in single households). 
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Vulnerable social classes lived near heat sources related to the residential environment. Areas 

adjacent to EQBs with high LSTs tended to contain old or detached houses that were vulnerable to heat. 

Detached and old housing is insufficient compared to APT. They were adjacent to high heat sources but 

showed high LST due to the difficulty involved in creating green areas in narrow outside spaces. On 

the other hand, houses under 60m2 contained some of the poorest environments. These were adjacent 

to EQBs with low LST (similar to APT). This indicates that old detached housing in areas adjacent to 

old industrial complexes had poor external heat environments. This was also discussed in Chapter 3. 

High ratios of green space were established adjacent to EQBs with high LST. As mentioned in other 

studies, green buffers are placed between industrial and residential areas to mitigate the air pollution 

generated by factories. Among the sites considered in this study, national industrial complexes 

containing large companies in Daegu, Ulsan, and Gumi had high green buffer ratios. 

This study has several limitations. Various types of industries exist within the manufacturing industry, 

but these were not considered. Since most industries (except the petrochemical) have similar plant 

layouts and shapes, LST is difficult to use when explaining heat differences. I could also not explain 

anthropogenically generated factory heat. Because it was difficult to obtain asset information based on 

company size, this study only classified companies according to the number of workers. It was difficult 

to explain why vulnerable social classes chose to live in areas adjacent to EQBs (e.g., factories) with 

high LSTs. I could not explain thermal inequity in the industrial areas because industry and occupation 

types were not considered due to insufficient data. 

This study has two implications. LST differences were analyzed according to company size. This was 

done by considering the built environment and industrial characteristics. Many UHI studies have 

focused on land-use characteristics as causes. This indicates that company size is related to higher heat 

exposure based on different built environments and existing working conditions that tend to produce 

high levels of heat.  
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4.5 CONCLUSION 

This study analyzed different heat environments according to company size by examining industrial 

characteristics and building environments in EQBs located in old industrial complexes. Very small 

companies exhibited higher LSTs than small or medium companies. Different heat environments 

throughout old industrial complexes can be explained by examining the presence of green spaces, EQB 

area, and proximity between buildings. Results indicated that smaller EQB areas and company sizes 

contained concentrated buildings and lacked green spaces. EQB area was the main factor in explaining 

different heat environments according to company size. While this did not apply to persons over 65 

years of age who lived in single households, areas adjacent to factories with high LSTs tended to contain 

vulnerable social classes. 
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CHAPTER 5 

Effect of the green buffer zone to improve thermal environment in the residential 

area adjacent to the old industrial area: A case study in Busan, South Korea 

Keyword: ENVI-met v4.0, buffer green zone, thermal environment, street canyon, old residential and 

industrial areas 

5.1 INTRODUCTION 

Changes in the thermal environment due to heat and urban heat island primarily threaten the health 

of vulnerable populations (Patz et al., 2000; Jeon, H., 2011). According to the 2018 thermal disease 

surveillance system, the number of patients suffering from fever was high in the elderly living alone 

and the elderly population was high, and the incidence of fever was high in the low- income population 

receiving medical care. Among the total 4,526 patients, the elderly accounted for about 30.6% (1,386). 

In the case of low-income households, the risk of death from heatwave was 19.4% higher than that of 

the general population (Kim, E., & Kim, H, 2017). 

Most of the housing types in the aged residential area are composed of single-family houses, and the 

spaces and fences within 50cm width are formed in the narrow side space. These conditions act as 

factors that exacerbate the thermal environment in residential areas. Moreover, residential areas where 

vulnerable groups live are often lacking in greenery and hydroponics facilities, which makes it 

impossible to eliminate the thermal stress of residents. In the residential area already formed, it is 

difficult for the urban environment to be improved immediately, such as a large-scale spatial structure 

change or expansion of the infrastructure. Therefore, in the case of the aged housing area, the housing 

environment becomes worse due to the change of the thermal environment. In particular, the area 

adjacent to the aged industrial complex is a region with generally vulnerable surroundings in urban 

space and is in a region of higher thermal stress than other regions because it is close to the effects of 

anthropogenic heat generated by factories (Shashua-Bar & Hoffman, 2000; Britter & Hanna, 2003; Fan 

& Sailor, 2005). 

Considering the additional influences (e.g. noise, dust, etc.) from the factory, areas near the old 

industrial complex are often equipped with buffered green unlike other residential areas. Most green 

bufferss are linearly formed between residential and industrial areas. Basically, the green buffers is 

intended to mitigate the influence of the main pollution such as noise and dust generated in the industrial 

area on the residential area. For this reason, it is difficult to find a study on the thermal reduction effect 
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of green buffers on the area adjacent to old industrial complex 

On the other hand, the research on the thermal reduction effect of the green space itself has been 

carried out variously. The results of previous studies clearly show the effect of green space on the 

thermal side. Cao, X. et al., (2010) showed that linear greenhouse can improve the microclimate by 

preventing the formation of high-temperature air masses in the street. Cao, X. et al., (2010) & Feyisa, 

G. L., et al., (2014) revealed that the thermal effect of the green area is affected by the area and shape 

of the area. Greenbelt significantly reduced the UHI effect compared to round, rectangular or other 

forms of green space. In addition, J. Park, & Cho, (2016) study focused on the distribution of urban heat 

island and the range of influence of greenery. Using land use and satellite data, they suggest that linear 

green space can have a clear impact on urban thermal conditions up to 150 m. 

Previous studies used LST data to analyze the effect of green space, so the spatial unit is wide. In 

terms of microclimate, roadside trees can contribute to people's thermal stress relief through cooling 

effect by shading and evapotranspiration (Oliveira, S., et al., 2011). However, it is difficult to find a 

study on the thermal mitigation effects of green spaces at the microclimate level. Considering 

microclimate is important to analyze the thermal effect in the buffered green area which is not large 

scale. In other words, evaluation of microclimate scale is needed for the effect of temperature reduction 

and thermal stress relaxation of green buffers. 

The purpose of this study is to evaluate the thermal reduction effect of green buffers in the adjacent 

area of old industrial complex at micro level. Considering that the area adjacent to the industrial area 

has a poor residential environment and the occupancy rate of vulnerable groups is high, we will look at 

how green buffers space can be utilized as a way to mitigate thermal inequality. The case study area 

was selected as the residential districts adjacent to the Sasang-gu complex in Busan Metropolitan City 

and the simulation is used to analyze how the green buffers space contributes differently to the 

atmospheric temperature and comfort of the suburban settlements. This study has three research 

questions as follows. 

First, does the green buffers have a positive effect on the thermal environment (temperature, comfort) 

of the industrial area and the adjacent residential area? 

Second, what is the difference of heat reduction in residential area according to the width of green 

buffers? 

Third, how does the thermal mitigation effect of green buffers change over time?  
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5.2 METHODS 

5.2.1 Study site and measurement days 

Location of this study area is Sam-rakdong (6,651 residents in 2018) of Sa-sanggu, mid-west of 

Busan metropolitan city, in south Korea. Sam-rakdong is a residential area with high of basic living 

recipients (1,280 residents in 2015). The residential district is adjacent to Sa-sang industrial complex 

and old area where most of houses are built in the late 1970`s. The study area is a low cost detached 

housing area with a housing price of 915 thousand won. Demographic and social characteristics lived 

in the study area are as follows: 17% for elderly people, 39% for single households, 40% for rent 

households.  

The study area consists of one or two-stories detached house with flat roofs and street canyon with 

concrete of grey color, asphalt and no trees (Figure 5.1). Buildings of the factory district have planned 

to be average 11m of building height with slide roofs of blue color. There are very small companies of 

mechanic and metal manufacture.  

 

Figure 5.1 Study area and locations of field measuring point (P1 to P3) on 3 August 2018 (Old detached 

housing area: white dot-outline).  
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The study area is a detached residential area with a low housing price of 91.5 thousand won/m2. In 

Busan in 2018, it was the heat wave days of 19th from July 20 to August 15, and the heat wave days 

had been continued for 11 days until the measurement day(open weather data portal, 2018). Thus, the 

simulation was conducted for 3-4 August 2018 using the ENVI-met v4.0. 

5.2.2 ENVI-met v4.0 model  

ENVI-met is a micro-climate analysis program that divides urban space into grids and predicts the 

results of the meteorological phenomena in a 2·3-dimensional form through the physical processes for 

a precise simulation. The ENVI-met has been applied to simulate urban green space, building and 

landscape planning for microclimate and human biometeorological impact. ENVI-met support a 

detailed representative of CDF model and the modeling of 3-demensional vegetation and surface cover 

property. this simulation has the advantage that numerical information for evaluating the contribution 

of the atmospheric environment can be compared and analyzed and describes to the changes in the 

atmospheric environment caused by change of vegetation in microscale(Huttner et. Al., 2009). 

a. Thermal comfort  

Mean radiant temperature(Tmrt) 

The study site allows for validation of the human-biometeorological performance of the applied 

model in terms of Tmrt and PET. It was based on thermal comfort, which were conducted at 4 

measurement points on 3, 4 August 2018.  

The Mean radiant temperature(Tmrt), which combines atmospheric shortwave and longwave 

radiation flux, is one of the important weather parameters that determine human energy balance and 

human thermal comfort(Lindberg, F., et al., 2008). Mean radiant temperature(Tmrt) was calculated from 

the value of the field measurements using the equation as followed (Thorsson, S., et al., 2007): 

𝑇𝑚𝑟𝑡 = [(𝑇𝑔 + 273.15)
4 1.335 × 108𝑊𝑆0.71

𝜀𝐷0.4
× 𝑇𝑔 − 𝑇𝑎]0.25 − 273.15 

where Ta is the air temperature (℃), Tg is the globe temperature (℃), D is the globe diameter (m), 

WS is the wind speed(ms-1) and 𝜀 is the globe emissivity (𝜀 = 0.95). 

Physiologically equivalent temperature(PET) 

This study used the BioMet (v1.0), a sub-model provided in the ENVI-met v4.0 model, to estimate 
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PET. BioMet (v1.0) calculates PET according to the method described by Höppe (1999). PET refers to 

pedestrian sensory perception index proposed in Germany for urban and regional planners. This index 

is useful for assessing climate change. The PET better describes the effect of thermal condition on 

pedestrians than temperature only. The thermal comfort for PET index is evaluated according to the 

criteria given in Table 5.1. 

Table 5.1 Ranges of the physiological equivalent temperature (PET) for different grades of thermal 

perception by human beings and physiological stress on human beings;(According to Matzarakis & 

Mayer, 1999)   

PET(℃) Thermal perception Grade of physiological stress 

 
Very cold Extreme cold stress 

4 

Cold Strong cold stress 

8 

Cool Moderate cold stress 

13 

Slightly cool Slight cold stress 

18 

Comfortable No thermal stress 

23 

Slightly warm Slight heat stress 

29 

Warm Moderate heat stress 

35 

Hot Strong heat stress 

41 

Very Hot Extreme heat stress 
 

Additionally, the human metabolic heat rate and other personal parameters need to be considered (e.g. 

age, gender, clothing, weight and height). For this study, using the BioMet(1.0v), PET was calculated 

with standardized data (i.e. age: 35 years, height: 1.75; metabolic rate: 80w/ m2; clothing: 0.9; weight: 

75 kg; sex: man) as a default setting value.   

5.2.3 Simulation configuration 

The meteorological data and model parameter used in configuration file of ENVI-met are 

summarized in Table 5.2. The simulation area was subdivided into a 3-D grid. Its horizontal area 

consisted of 130 by 130 grids of 2m resolution. The vertical grid size was also 2 m. The horizontal area 

considered a total area of 6.76ha in this simulation. In the model, the boundary of domain shows a large 

variation according to the wind speed and wind direction. This influences the correct interpretation on 
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the results. Therefore, the simulation domain is additionally secured by 20 m at each boundary. The 

configuration file value is initial modeling timing data. The analysis date is from 4:00 am on 3, August, 

2018 to 8:00 am on 4, August, 2018, and the weather data is simulated for 28 hours at 1-h interval. In 

order to increase the accuracy of the model, the simulation was performed at 4:00 am, which is 4 hours 

before the actual measurement time. The results of the modeling were obtained at 1.4m agl. 

Table 5.2 Description of the meteorological boundary and input parameter for model  

Model parameter Run time: 28h   

Main model area(x,y,z) 130, 130, 30 

Grid size(dx,dy,dz) 2, 2, 2 

Soil profiles Concrete & Asphalt pavement 

Building profiles 
Default(concrete) /  

factory: Steel sandwich panel (Blue & gray) 

Position on earth Busan/south Korea, 37.17, 128.98 

Model rotation out of north 4° 

Meteorological data  Date: 3.August. 2018 

Wind speed (10 m .agl) 2.8m/s 

Wind direction 340 

Specific humidity (2,500m a.g.l) 7.0g/kg 

Roughness length 0.1 

Material emissivity 
Buildings: 0.90, concrete & asphalt: 0.90, grasslands: 0.95 

trees: 0.95  

a. Meteorological data  

The meteorological data had been measured at three points(P1-P3) for two days of a clear sky (Figure 

5.1). The field measurement was carried out for a total of 31 hours from 8 am on August 3 to 4 pm on 

August 4. All sensors recorded data every 1-min in each site and data were averaged hourly to use in 

simulation. The meteorological data of the simulation was taken from the P1 point measurement data. 

Using weather devices, the following meteorological variables were measured: air temperature(Ta), 

Relative humidity(RH), Wind speed(WS), Wind direction(WD) and globe temperature(Tg). Sensors at 

each station were installed at height 1.5m from the ground.  
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 Ta and RH were recorded from HOBO temperature RH smart sensor with solar radiation shield. Tg 

measurement was conducted using a 40mm table tennis ball painted with grey color (RAL 7001) with 

a T-type copper-thermocouple sensor inside the middle of the ball(Thorsson et al. 2007). WS and WD 

were measured with other variables, but ENVI-met is used wind speed at 10m above ground. In this 

study, WS at 10m above ground and WD are derived from the Sa-sang AWS(Automatic weather station). 

This station is located in about 4 km south-west away from the study area. The accuracy of each sensor 

for the measurements is as follows: ± 0.21℃ and ±1.0 for Ta and Tg, ± 2.5% for RH, and ± 1.1m/sec 

and ±7degrees for WS and WD, respectively. 

b. Buildings material data  

ENVI-met can describe specific building characteristic using 3-D input data. To consider the thermal 

effects on the building skin, the default value of concrete was applied to the residential buildings and 

the sandwich panel was applied to the factory buildings. The sandwich panel is a combination of 

stainless steel or aluminum on both sides of the insulation. In this study, reflectance, emissivity and 

thickness of sandwich panels were considered. 

Emissivity and reflectance are major factors affecting surface temperature. The higher the emissivity 

and reflectivity, the lower the surface temperature. Emissivity and reflectivity of sandwich panels were 

obtained from the American Society for Testing and Materials (ASTM) (Lee, U., et al., 2012). In this 

study, stainless steel was considered as the material of the factory building, and light gray and blue color 

were applied to the wall and roof color. The emissivity was 0.9 and the reflectance was 0.33 (light gray) 

and 0.28 (blue) depending on the color. The wall and roof thicknesses were considered 100T and 150T, 

respectively. Materials were added to the material properties for the factory building in the Manage 

database of ENVI-met.  

c. Green buffers planning  

This study is applied to the scenarios based on the status of the green buffers surveyed in the previous 

study. Main planting species of buffered green area are composed of evergreen trees such as strobus 

pine, pine, zelkova, cherry, pine and acacia. Plant density is suggested to be 0.22 tree/m2 for arbor, 0.15 

tree/m2 for arborescent and 0.67 tree/m2for bush(Han, B. H., et al. 2010). Na, Y., et al. (2015) presents 

the required planning criteria for construction of the green buffers. Green buffers should be secured 

height at least 4 m and the ratio of evergreen to deciduous tree is 8:2. However, this study did not 

consider tree density.  
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Figure 5.2 The basic species in ENVI-met; Plant name and geometry(Image: VAN DEN BERK, 2018) 

This study area creates a buffered green zone with grassland and tree after removing the existing 

buildings, because there is no free space to create green buffers. In order to evaluate the effect of green 

buffers space, the width of 10m and 20m of green buffers are simulated. Vegetation species of green 

buffers considered the basic species provided in ENVI-met(Figure 5.2); pine, pinus pinea, robin 

pseudoacacia, Koelreuteria paniculate. The plant height is 10-15m and the crown diameter is 7-13m.  

4.3.4 Simulation scenarios  

The study area is a typical residential area adjacent to small businesses in the old industrial area. 

Three scenarios are simulated on August 3, 2018 to assess the impact of current spatial structure on heat 

and thermal comfort and to quantify the thermal contribution of green buffers (Figure 5.3). Case 1 

simulates the configuration of the current residential area and evaluates the thermal environment in the 

backward residential environment adjacent to the factory. Case 2a evaluates domain applying a green 

buffers of 10m width by removing detached housings within 10m of a residential area adjacent to the 

factory. CASE 2b extends the buffer area to 20m and simulates to find the effect of the buffered 

greenhouse compared to CASE 2a.  

The difference of Ta, Tmrt, and PET between Case 1 and Case 2 show the thermal mitigation effect 

of the green buffers. The difference between Case 2a and 2b explains the impact of green buffers width. 
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Finally, the between Case 1 and Case 2 shows the difference of effect on the thermal comfort in outdoor 

space by green buffers. A wind direction of 340 degrees, which is the windward from the industrial 

district, is applied to the model to analyze the thermal effects of the factory. The thermal comfort is 

compared to the four points of the street considering the street orientation and width, the distance to the 

green buffers, and the land use characteristic (Table 5.3).   

 

Figure 5.3 Visualization of the area input file for the ENVI-met simulations related to CASE 1 (current 

site configuration), CASE 2(a: green buffers 10m, b: green buffers 20m). 

Table 5.3 Characteristics of street canyons within the simulation domain for examining thermal comfort  

 R1-NS R2-NS R3-WE RI-WE 

Length(m) 88 100 150 160 

Width(m) 4 8 8 12 

Distance from  

Green buffers(m) 
14 14 82 4 

Road materials Concrete Asphalt Asphalt Asphalt &Concrete 
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5.3 RESULTS 

5.3.1 ENV-met model validation 

The results of ENVI-met model on 3 to 4 August 2018 for case 1 is carried out validation compared 

with field measurement data. To validity each variable between simulated and measured values, this 

study considered 1-hour values of Ta and Tmrt at height of 1.4m agl based on 75 pairs collected at 3 

points in site. In case of Tmrt, globe temperature was limited to 25 pairs collected at p1 point as a limit 

of equipment and the time between 8 am and 8 am was considered. 

The accuracy of the simulation performance in the ENVI-met model was tested using the error 

measurement of model evaluation (Yang, X., et al., 2013; Lee, H. et al., 2016): Root mean square error 

(RMSE), mean absolute error (MAE), mean bias error (MBE), and coefficient of determination (R2). 

The verification value of each RMSE, MAE and MBE are closer to 0, which means that the results of 

measured and simulated value are similar to each other. 

Table 5.4 showed that RMSE showed a 6.0℃ and 0.7℃ difference in Tmrt and Ta, respectively. 

MAE was relatively low for Ta (0.2℃) and high for Tmrt (5.6℃). On the other hand, MBE showed 

4.2℃ underestimated for Ta and 0.1℃ overestimated for Tmrt. 

Table 5.4 Validation of quantitative measures between the ENVI-met model and field for Ta and Tmrt 

values (sample pairs: Ta= 75, Tmrt= 25); 

 RMSE(℃) MAE(℃) MBE(℃) R2 

Simulation - Field     

Ta 0.7 0.2 0.1 0.91 

Tmrt 6.0 5.6 - 4.2 0.93 

 

Figure 5.4 showed the linear regressions between 1-h simulated and measured values were derived 

for Ta. The R2 values were strongly correlated between simulated and measured Ta (0.91) and Tmrt 

(0.93). The regression showed a concentrated scatter patterns on linear. Evaluation results of the 

performance of ENVI-met model explains to be suited to simulate in complex environment of 

residential area on heat wave days.  
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Figure 5.4 Comparison between 1hour simulated and measured values of Ta and Tmrt (at a height of 

1.4m agl) on 3 to 4 August 2018 in am.8-am.8 (25h)  
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5.3.2 Microclimate of current site configuration 

In this study, Ta, Tmrt, and PET values of 1.4m height were extracted from the model results in order 

to evaluate microclimate changes in green buffers composition. Figure 5.6-5.13 were created by 

LEONARDO software in ENVI-met model. The spatial maps show spatial variations for each scenario 

based on the hottest time of day (14h). The results of the simulation values represent by color-coded 

ranges and the white color means buildings. To analyze the differences between the scenarios, Ta, Tmrt 

and PET values were compared (Table 5.5-6). Also, to compare the difference between day and night, 

the time zone was divided into 14-16h and 22-00h. 

As the results of CASE1, Figure 5.6-5.8 show the spatial variation of Ta, Tmrt and PET at 14h. The 

range for Ta was 26.7℃-37.5℃, the range for Tmrt was 39.1℃- 68.9℃ and the range for PET was 

36.8℃- 62.0℃. The building condition was more influential on Tmrt and PET than Ta. This means that 

various forms of shading and sunlight resulting from physical condition can affect ventilation in the 

outdoor space. 

 
Figure 5.5 Difference of air temperature between residential and industrial district   

Figure 5.5 shows the temperature changes over time in the industrial and residential districts. As 

shown in Figure 5.5, the maximum temperature was around 14:00. The temperature in the factory area 

was 36.6 ℃ and the temperature in the residential area was 34.8 ℃. On the other hand, the lowest 

temperature appeared around 6:00. The temperature in the residential area was 29.0 ℃ and the 



70 

 

temperature in the factory area was 28.5 ℃. During the daytime the factory area was higher than the 

residential area, but at night it was reversed. Daytime factory area was 1.5 ° C higher than that in 

residential area. The difference began to appear at 9 o'clock, and the largest difference was observed at 

1.8℃ at 14 o'clock. The residential area was 0.1℃ higher than the factory site at 20 o'clock, and 0.3℃ 

higher at night time (22h-00h). 

The mean daytime Ta of the N-S street canyon and the W-E street canyon did not differ by 34.5 ℃ 

and 34.6 ℃. However, the average W-E street canyon between the plant and the residence is 34.8°C, 

which is slightly higher than the streets in the residential area. The difference in Ta values between the 

street canyons is due not only to the direction of the street but also to the surface material and the height 

of the surrounding buildings. The Ta value of the N-S street canyon in the residential district at night 

was analyzed to be 30.7 ° C, indicating that the tropical night phenomenon occurred. 

Tmrt shows the thermal change of the space according to the pattern of the shade area and the sun 

exposure area formed by the buildings. As a result, Tmrt shows a great difference in the direction of 

street canyons. The average Tmrt of the W-E street canyon is 58.8 ℃ which is significantly higher than 

the N-S street canyon (average 40.9℃). The average Tmrt of the W-E street canyon located between 

factories and houses was 67.7 ℃. Within the same street canyon (W-E), the mean Tmrt of the sidewalk 

facing north was 65.7℃, while the mean Tmrt of the sidewalk facing south was 51.9℃. 

PET refers to the level of sensible temperature felt by a person in the external space. The weekly 

average PET of the W-E street canyon is 44.6 ℃, which represents a "very hot" grade thermal perception 

by PET classification. On the other hand, the weekly average PET of the N-S street canyon is 37.5 ℃, 

which belongs to the "hot" grade thermal perception by the PET classification standard. For the W-E 

street canyon located between factories and homes, the average PET is 51.6 ℃. At night, mean PET in 

W-E and N-S street canyons were 27.3 ℃ and 26.6 ℃, respectively.  
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Figure 5.6 Simulated Ta values at a height of 1.4 m agl for case 1 (current site configuration) at 14h on 

the heat wave day of 3 August 2018 (white areas: buildings). 

 
Figure 5.7 Simulated Tmrt values at a height of 1.4 m agl for case 1 (current site configuration) at 14h 

on the heat wave day of 3 August 2018 (white areas: buildings).  
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Figure 5.8 Simulated PET values at a height of 1.4 m agl for case 1 (current site configuration) at 14h 

on the heat wave day of 3 August 2018 (white areas: buildings). 

5.3.3 Green buffer zone effect  

The existence of green buffers influenced the temperature reduction of adjacent residential areas. 

Table 5.4 illustrates the temperature reduction in streets measured every 10m from Green buffers. As 

shown in Table 5.4, the closer to the green buffers, the greater the temperature reduction effect. In the 

case of Green buffers formed by 10 m width in the daytime, the maximum decrease of 0.3℃ from the 

point 10m away from the green buffers and 0.1℃ decrease from the point 60m away from the green 

buffers. Green buffers formed at a width of 20m decreased 0.4℃ at 10m from Green buffers and 0.3℃ 

at 20m from Green buffers. Compared with 10m interval, Green buffers formed with 20m width showed 

0.1℃ lower temperature than Green buffers formed with 10m width. Regardless of the width of the 

green buffers, at night, the temperature decreased 0.2℃ from the point 30m away from the green buffers 

and decreased 0.1℃ from the point 40m away. 
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Table 5.5 Difference of air temperature by distance in old detached housing district with graph 

 

CASE 1-2a 

(Width: 

10m) 
Day(14-16h) night(22-00h) 

Green buffers 

(10m-20m) 

CASE 1-2b 

(Width: 20m) 
Day(14-16h) Night(22-00h) 

10m 0.3 0.2 -  - - 

20m 0.2 0.2 0.1 10m 0.4 0.2 

30m 0.2 0.2 0.1 20m 0.3 0.2 

40m 0.2 0.1 0.1 30m 0.3 0.2 

50m 0.2 0.1 0.1 40m 0.3 0.1 

60m 0.1 0.1 0.1 50m 0.2 0.1 

70m 0.1 0.1 0.1 60m 0.2 0.1 

 
Figure 5.9 Differences in simulated Ta values at a height of 1.4 m agl at 14h between cases 1 and 2a 

(effect of green buffers, width: 10m). 

Green buffer 

buffers 
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a. Thermal comfort by an oriented street canyon 

Simulation results of CASE1 and CASE2a show that the thermal comfort is changed due to increase 

of wind speed and interception of heat transfer caused by the formation of green buffers between 

residential area and industrial area. Table 5.5 shows the Tmrt and PET values for the thermal reduction 

effect of green buffers in oriented street canyon. Changes in Tmrt and PET show more spatial 

differences than Ta. The pattern of PET was similar with the Tmrt pattern and showed the greatest 

temperature reduction effect at the point near the green buffers. Figure 5.10-13 showed spatial change 

in Tmrt and PET with the existence of green buffers. 

Table 5.6 Mean values of Tmrt and PET (each in ◦C) at a height of 1.4 m agl for case 1 and the differences 

between case 1 and 2a (effect of green buffers 10m), 2a and 2b (green buffers 20m) 

 
14-16h   22-00h  

CASE1 1-2a(10m) 2a-2b(20m)  CASE1 1-2a(10m) 2a-2b(20m) 

R1_N-S Tmrt 40.6 1.2 0.2  22.9 0.0 0.0 

 PET 37.2 0.5 0.1  26.6 -0.1 0.0 

R2_N-S Tmrt 41.9 1.2 0.1  23.1 -0.1 -0.1 

 PET 37.9 0.5 0.2  26.7 0.0 0.0 

R3_W-E Tmrt 52.0 1.3 0.2  23.5 0.0 0.0 

 PET 44.9 0.6 0.2  27.5 0.0 0.0 

RI_W-E Tmrt 67.4 24.3 0.1  23.5 -2.0 -0.3 

 PET 52.3 13.8 0.0  27.2 -0.7 -0.1 

 

The R1_W-E oriented street canyon showed the greatest temperature reduction effect due to the 

canopy effect caused by the formation of green buffers. The mean daily Tmrt decreased by 24.3℃ and 

the mean PET decreased by 13.8℃ (Table 5.5). In contrast, the temperature reductions in R1_N-S 

oriented street canyon and R2_N-S oriented street canyon were very low. The average weekly Tmrt 

decreased by 1.2℃ and the average PET decreased by 0.5℃. Although the floor material is different, 

it does not show much difference in thermal comfort. 
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In the R3_W-E oriented street canyon, the decreased mean Tmrt and PET were 1.3℃ and 0.6℃, 

respectively. This street was relatively far away from the green buffers compared to the R1_W-E 

oriented street canyon, so the effect of temperature reduction was minimal. The R3_W-E oriented street 

canyon had an average higher Tmrt and PET value than the N-S street canyon, but the temperature 

reduction was similar. 

As a result of the comparison between CASE 2a and CASE 2b, when the green buffers of 10m width 

was formed, the temperature decreased about 0.1-0.2 ℃ during daytime. However, the effect of 

temperature reduction was not observed at night, and the temperature was rather increased. For the 

R1_W-E oriented street canyon closest to the green buffers, the average Tmrt increased by 2.0 ° C and 

the average PET increased by 0.7 ° C. This negative effect did not differ even when compared to the 

case of Green buffers with a width of 20 m. 

 
Figure 5.10 Differences in simulated Tmrt values at a height of 1.4 m agl at 14h between cases 1 and 

2a (effect of green buffers, width: 10m). 

Green buffer 

buffers 
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Figure 5.11 Differences in simulated PET values at a height of 1.4 m agl at 14h between cases 1 and 2a 

(effect of green buffers, width: 10m). 

 
Figure 5.12 Differences in simulated Tmrt values at a height of 1.4 m agl at 14h between cases 2a and 

2b (effect of green buffers, width: 20m). 

Green buffer 

buffers 

Green buffer 

(20m) 
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Figure 5.13 Differences in simulated PET values at a height of 1.4 m agl at 14h between cases 2a and 

2b (effect of green buffers, width: 20m). 

 

5.4 DISCUSSION 

Simulation results in the heatwave condition showed the effect of green buffers on thermal reduction 

in the poor housing area adjacent to the old industrial area. In general, urban greening has proven to be 

an effective way to mitigate local heat stress (Santamouris, M. 2014; Norton, B. A., et al., 2015). This 

study extended existing knowledge on improvement of the thermal environment in urban areas, in 

addition to the existing role of green buffers established between industrial and residential areas 

including Tmrt and PET. A typical street canyon in study area was selected in the simulation area to 

examine the heat reduction effect of the green buffers space by distance and orientation. 

  Prior to the green buffers scenario, the air temperature between the old residential and industrial 

district on the current scenario varied by time of day. The high air temperature in daytime in industrial 

areas is due to factories of steel material and wide road of asphalt, which are easily heated by solar 

radiation. Because anthropogenic heat generated in a factory could not be implemented in simulation, 

the effect of heat flux on the building material was considered (Yang, X., et al., 2013). On the other 

Green buffer 

(20m) 
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hand, the air temperature of the residential district was reversed at night time. The streel material of the 

industrial district was cooled rapidly, while the concrete material of the residential district released heat 

flux more slowly. Another reason is the windward from the industrial district. The windward from the 

north priorly cooled the industrial district, and the residential district reduced the cooling effect due to 

the slow wind speed by the dense buildings and the narrow side. In other words, the outdoor space plan 

was not enough. 

Green buffers zone scenarios shown that green buffers contributed to local cooling. The size of spatial 

and temporal variation simulated by Ta, Tmrt, and PET varied greatly depending on the building 

environment, green area, and time due to the difference in energy budget. Thus, the spatial variation of 

Ta, Tmrt, and PET was greater in daytime than nighttime (Lee, H., et al., 2016). In the daytime, the 

spatial variation in the simulation domain could be explained by the shade and the evaporation effect 

by the green buffers zone (Georgi, J. N., & Dimitriou, D., 2010; Oliveira et al 2011). 

Notably, the point value for Ta closer to the buffer zone showed a strong reduction effect and the 

further away from the its effect decreased. As a result of this study, the reduction effect of Ta shown up 

to 70m from green buffers zone. As the width of the green buffers zone extended, the reduction effect 

intensity increased slightly due to the overall weather condition change on the site. Unlike CASE 1, the 

green buffers increased the wind velocity by 0.1m /s in the street between the residential and industrial 

district and the relatively low Ta and RH within green buffers zone influenced the cooling effect of 

surrounding area. The closer to the green buffers zone, the difference of RH by point was increased. 

However, due to the narrow width of 3m, there was no increase in the wind speed in the single residential 

area due to buffered greenery. On the other hand, in the R2 N-S oriented street canyon of asphalt, the 

green buffers scenario showed a higher air temperature at a certain time(13-14h). Unfortunately, the 

reason for this is difficult to explain in this study. 

The difference of simulation results between CASE 1 and 2a showed overall mitigation effect of 

green buffers on human heat stress. In general, the W-E oriented street is exposed to solar radiation for 

a longer time than the N-S oriented street, and it showed higher temperature and heat stress. However, 

except for the street of green buffers, the typical width considered in this study showed a similar 

mitigation effect for heat stress regardless of orientation. RI W-E oriented canyon showed the largest 

cooling effect during the day because of high trees and canopies than existing buildings. The heat stress 

in a north-facing sidewalk was mitigated due to shadows created from the existence of green buffers 

located on the south facing the factory. This is the most effective mitigation strategy by shading the 

direct solar radiation. This reversed result of the nighttime pattern in the local scale implied that trees 

trap a heat and the building released a heat more quickly at night (Myint, S. W., et al. 2015).  
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The extended width of the green buffers zone slightly increased the thermal cooling effect on the 

adjacent residential district and the heat stress mitigation did not show greater effect compared with the 

10m green buffers zone. As the width increased, the amount of tree and grassland increased, and the 

evaporation effect was risen by an increased RH (C.Zhu et al., 2017). However, the result of this study 

revealed that the green buffers zone of 20m width was not more stable to get over the influence of the 

long-wavelength surface radiation than 10m width. Construction of green buffers contributed to local 

reduction for Ta but it was limited to mitigate local heat stress except for the very near area. Although 

the criteria for the width of the buffer zone is provided by the size of the industrial complex, where the 

residential district has already been constructed was limited to expand the buffer zone in the area due 

to compensation or private property infringement. Nevertheless, this study showed that green buffers 

contributed to the reduction for Ta in the backward residential district.  

This study has the following limitations. ENVI-met is relatively simple and easy to express such as 

green area and land cover in program characteristic. However, since the expression of the material 

related to the building skin is limited, ENVI-met is difficult to implement such as a real environment. 

In addition, although the skin material of the factory was used in this study, the anthropogenic heat 

generated by the factory was not considered. Finally, we did not consider density and species of trees 

when designing green buffers zone. 

In general, two implications such as the shading and ventilation are proposed to improve thermal 

environment of the microclimate. Shading has been considered as an important strategy for mitigation 

of heat stress and created by building and green area (Lee, H., et al., 2013). In order to improve the 

thermal environment, a street tree should be considered at a specific point exposed to the sun in addition 

to the construction of green buffers. Furthermore, the green buffers need to be evaluated considering 

various width and empirical evaluation should be done through the field measurement in the area 

adjacent to green buffer. If the green buffers are difficult to construct in the region such as this study 

area according to the legal exception criteria, the surface temperature of the region should be reduced 

by increasing the number of small parks or street trees. Moreover, since the green buffers created to the 

linear, it is required to play an important role in forming a network of urban green. 
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5.5 CONCLUSION 

This study evaluated the potential of green buffers zone to improve the thermal environment of old 

residential areas adjacent to the Sa-sang industrial complex. Ta and Tmrt and PET were examined in 

terms of spatial and temporal changes. Scenarios were tested in different width to investigate the cooling 

effect of green buffers zone. The results showed that the green buffers zone affected the reduction of air 

temperature in the adjacent old detached housing area and the increase of width slightly raised the 

effectiveness of reduction. In addition, the green buffers zone showed the effect in mitigating human 

heat stress next to area.  
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CHAPTER 6 

SUMMARY AND CONCLUSION  

The studies in this paper were based on the assumption that old industrial complexes increase the 

urban heat island and may influence the physical and social condition of the adjacent areas. My thesis 

found that geographical conditions and green buffers play a role in the thermal inequity of adjacent 

areas. 

The main results of each paper can be summarized as follows. The first paper (Chapter 3) shows that 

the existence of green buffers mitigated the thermal inequity between areas adjacent and non-adjacent 

to old industrial areas. However, the inequality construction of green buffers in adjacent areas caused 

thermal inequity between adjacent regions. According to the results of the second paper (Chapter 4), 

very-small companies were found in vulnerable built environments of a higher LST than small and 

medium-sized companies in old industrial complexes, so there was a relationship between the size of 

the company and the vulnerability to heat of the environment. In the third paper (Chapter 5), green 

buffers was found to influence the air temperature reduction of old detached housing areas adjacent to 

old industrial areas, and the extended width of green buffers was slightly reduced on the effect of green 

buffers. 

My thesis found several significant results through its three studies. First, existing urban planning, 

which lacked the consideration for environmental issues between residential and industrial areas, 

established inequality in residential settlement patterns. Cities selected for the study areas have changed 

while growing around the industrial areas. Areas adjacent to industrial areas naturally developed as 

worker-residential areas due to their geographical proximity, but environmental problems, and aging of 

the industrial areas led to aging of the adjacent residential areas. In Chapter 3, the existence of green 

buffers was found to reduce the thermal inequity between the adjacent and the non-adjacent regions, 

but in the aging areas which are not adjacent to the green buffers of the adjacent areas lived mainly 

vulnerable classes. Thus, a lack of consideration for the environmental impact on surrounding 

residential areas in the planning phases of the industrial complexes, and an imbalanced construction of 

green buffers affected to vulnerable residential area on the heat in the adjacent area. 

Second, the increase of very small and small companies due to the deterioration of the industrial areas 

led to the rise of the LST. In general, industrial areas are presented as a significant heat source in studies 

on UHI, but detailed considerations of the physical environment in the industrial area was lacking in 

the research. Chapter 3 analyzed the heat differences in the old industrial complex based on the company 
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size. The result showed that workers in very small companies were exposed to high heat not only in 

indoor working conditions but also outdoor. Small companies with the smallest building areas have 

high LST compared to other sizes of company, due to insufficient green areas and high coverage rate. 

Small companies that occupied divided land parcels have poor working environments because of the 

very narrow distance between buildings. 

Third, the areas adjacent to old industrial complexes are placed in thermal inequity due not only to 

the inside but also the outside conditions. Chapter 3 described the thermal inequity of an adjacent area 

with a focus on the locational characteristics of the old industrial complex. Therefore, Chapter 4 

evaluated the heat environment in old industrial complexes and found a correlation between factories 

with high LST and residential areas of the weak class. The characteristics of old and detached houses 

in areas adjacent to old industrial complexes was found to have a higher heat environment of inside and 

outside condition. Jin, J. & Hun, J., (2014) showed that the decline by the aging of the industrial 

complex was related to the old buildings in the adjacent residential area. While old industrial complexes 

have not necessarily seen a decline of industry, the relatively poor inside industry environment led to 

the aging of surrounding areas, and residential areas could be created to vulnerable heat environment. 

As a result, although there is a difference depending on the planning condition in the adjacent area, the 

vulnerable classes were placed in thermal inequity both inside and outside. 

Lastly, green buffers were analyzed as an essential factor in the mitigation of thermal inequity in the 

areas adjacent to old industrial areas, and the thermal inequity and the heat reduction effects of the green 

buffers were a different range of explanatory benefits. In the second chapter, areas adjacent to old 

industrial areas is considered as 600m, and the buffer zone plays a vital role in reducing the thermal 

inequality. On the other hand, in Chapter 5, the green buffers showed a slight reduction effect of air 

temperature within a range of about 100 m. It is not surprising that the range of impacts in the two 

studies is not consistent because the spatial scale and the measurement data for the heat of the two 

studies were different. However, the green buffers have a positive effect in addition to the heat reduction 

effect. Green buffers which was initially planned to block environmental pollution solved some other 

environmental problems such as noise, and provides a visual barrier and psychological relief from 

harmful facilities. 

Moreover, according to the results of Chapter 3, the area adjacent to the green buffers showed 

relatively affordable housing prices, and there were a high rate of apartments and multi-family housing. 

Therefore, it was understood that the inequity was decreased because the surrounding area was adjacent 

to the industrial area and the type of the house and the class change. However, there is no evidence to 

suggest that the construction of green areas has led to the increase of less vulnerable apartments on heat 
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or green area in the region. Thus, it is inadequate to generalize the range of influence of green buffers. 

Nevertheless, this study expanded the knowledge of thermal inequity by discovering the role of green 

buffers.  

Finally, my study suggests that the existence of green buffers played a role in reducing thermal 

inequity between the adjacent and the non-adjacent areas. The green buffers showed not only 

temperature reduction effect but also improvement of heat environment in adjacent residential areas. 

Second, thermal inequity is determined by the planning factor rather than simply being located close 

to the industrial area. In other words, the green buffers played a role in reducing the thermal inequity of 

between adjacent and non-adjacent areas, but green buffers areas were unevenly distributed in the actual 

plan. In addition, areas adjacent to the long-delayed green facility which has most poor heat 

environment have been not received the environment benefit in spite of green planning area. 

Lastly, both the industrial and adjacent areas should simultaneously be considered to effectively 

reduce thermal inequity by proximity. My study found that factories with a high LST in the old industrial 

area were associated with the vulnerable physical and social characteristics of the adjacent areas. For 

instance, in terms of the relationship between industrial and adjacent area, the declined the industrial 

area related to old houses of surrounding areas(Jin, JK & Hur, JW, 2014). In other words, the physical 

environment which is related to a poor heat environment showed a correlation between neighboring 

land use characteristics. Therefore, a plan which reduces the thermal inequity should be implemented 

through the link with the old industrial area rather than a single environmental improvement of the 

residential area adjacent to the old industrial area.  

My thesis has some common limitations. First, it is not known whether the areas adjacent to old 

industrial complexes have a high rate of heat-related illness or mortality. Health problems are related to 

a wide variety of factors apart from the thermal condition. If the proximity to the old industrial complex 

is related to the occurrence of heat-related illnesses, the explanation of heat exposure for areas adjacent 

to the heat source may become evident. Second, because income data is not available for each resident, 

the residential area of the vulnerable class by the socioeconomic condition is decided by the housing 

price. If income and housing price information are complementarily considered, the reason why 

vulnerable socioeconomic groups choose areas adjacent to old industrial complexes and areas without 

green buffers can be supplemented. Third, as with previous studies, the effect of anthropogenic heat in 

industrial areas cannot be explained since the LST is challenging to describe the heat transfer due to the 

surface temperature data indicated by the land cover characteristic. Therefore, my study tried to explain 

the influence relationship considering the locational condition close to the region with high heat because 

the industrial area is a significant area for enhancing UHIs. Finally, whether the green buffers are 
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unevenly constructed according to the specific conditions is difficult to explain. The inequality of 

distribution in environmental justice means that public benefits are not evenly distributed to social 

conditions such as race, class, and income. In this study, however, is it is difficult to explain whether 

the existence of green buffers and long-delayed green facilities are the result of policies that are socially 

discriminative. Therefore, this is inevitable to infer from the present result. For now, the enforcement 

of the plan is merely related to the financial limitations of the local government. 

Despite the limitations described above, this study explored the inequity of urban heat. The previous 

studies have focused primarily on the relationship between local heat risk level and the physical 

environment in the field of separate studies such as urban heat island, heat wave, and health. However, 

this study suggests a different understanding of urban heat issues and emphasizes the recognition of 

social factors in urban structure. Moreover, my thesis found that geographical conditions such as 

proximity to the old industrial complex is associated with the social conditions as well as thermal 

inequity. In my thesis, it is difficult to ascertain whether social conditions cause distribution inequality, 

but the unequal construction of green buffers is a significant factor in generating thermal inequity in the 

areas adjacent to old industrial complexes.  
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