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Abstract 

 

In general, facial bones are not formed as bones from the beginning. Bone formation occurs 

through endochondral bone formation process after cartilage is formed. Frog face is simpler 

than human or mouse, so it is easy to find which gene is involved in facial formation. For this 

reason, experiments were conducted on Xenopus laevis and other experimental animals. The 

cell is not a major component of cartilage, but the extracellular matrix secreted from the 

chondrocyte is the main component that gives the elasticity and stiffness of cartilage tissue [1]. 

In order to complete cartilage tissue, cartilage cells continuously interact with the extracellular 

matrix surrounding the cells, and the process of secreting cartilage matrix must be accompanied 

for a long time. This process of forming cartilage tissue is called chondrogenesis. Recent 

studies have shown that chondrocytes interact with extracellular matrix through various types 

of integrin molecules, the integrin signal is differentially regulated according to the 

differentiation of chondrocytes and the state of the cartilage, which helps the cartilage cells to 

recognize the surrounding environment [2]. It is also known that the integrin signal can induce 

cartilage-related diseases as well as cartilage differentiation. Integrin signaling is one for the 

major sources of damage to articular cartilage by amplifying the inflammatory response in both 

rheumatoid arthritis and osteoarthritis. Fragmented cartilage ECMs combine with synovial 

fibroblasts and integrins of immune cells in cartilage tissues to exacerbate the inflammatory 

response by increasing catabolic factor secretion such as IL-6, 8, and MMP [3-6]. To 

investigate the process of cartilage formation, we analyzed the genes that differentiation into 

facial cartilage by expressing in cartilage cells of Xenopus laevis. In this research, we have 

discovered that a novel secreted protein ITGBL1 promotes cartilage formation by modulating 

integrin-ECM interactions during chondrogenesis in a model animal and human bone marrow 

stem cell. Further ITGBL1 inhibited catabolic signals induced by IL-1β treatment in primary 
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chondrocytes. We believe ITGBL1 possesses dual functions which promote cartilage 

formation and inhibit catabolic signals in chondrocytes simultaneously. In this study first 

identified the function of ITGBL1 protein, which regulates integrin signaling in cartilage 

formation and chondrocyte differentiation and found that ITGBL1 protein also inhibits 

cartilage damage and promotes cartilage regeneration in arthritic conditions.  
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Chapter 1. Introduction 

 

1-1. Patterning the Xenopus embryo development 

 

1-1-4. An overview of using Xenopus laevis as a model system 

  

Figure 1-1. Overview of Xenopus laevis  
 

Xenopus laevis is one of the animals with the longest history as an experimental animal 

with Drosophila. One of the model systems with important contributions is Xenopus laevis, 

the African clawed frog, a pseudotetraploid vertebrate which lives in fresh water. The reason 

why it is used globally in research is the high level of conservation of the most basic cellular 

and molecular mechanisms, it can be easily manipulated at low cost and it is easy to obtain 

large quantities of substances through various experimental procedures. A life cycle that 

among Amphibian is relatively short, large number and size of eggs suitable for 

microsurgery, and above all its year-round reproductive response to commercial hormone 
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preparations compared to the limited breeding seasons of other amphibians [7], [8]. The 

Xenopus laevis ovary is large, transparent and can easily contain hundreds of large oocytes. 

Like other model systems used in embryology, Xenopus oocytes can be used to facilitate 

transplantation [9], [10]. Because of the large size of the oocyte, enucleation can be easily 

handled. Morpholino or siRNA can be injected into the oocyte to inhibit the expression of 

the gene of interest and to examine its function. 

 

Figure 1-2. Transplantation of nuclei from blastula cells 
 

In addition, Xenopus model system can be used in various fields such as chromatin studies 

small molecule inhibitor screening, microscopy, and drug screening.  
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1-1-2. An overview of Xenopus embryo development 

 

 

Figure 1-3. The relationship of the embryonic dorsal axis to the definitive dorsal axis 
 

Generation of Xenopus starts from axis formation. The first axis of the Xenopus embryo is the 

animal-vegetal axis, which passes through the animally localized egg pro-nucleus, the center 

of the egg and the vegetal poles (Fig. 1-3). The second axis is defined as the sperm penetration 

point and migration of the cortical cytoplasm to the furthest point from the sperm entry point. 

After fertilization, the Xenopus embryo must undergo a cell cycle to have distinctive functions. 

(Fig. 1-3). During the first, 1hour 30minute cell cycle, cortical movement and pro-nuclear 

fusion of male and female occur. And 4000 cells were formed by eleven cleavages for 20-30 

minutes, which fill the blastocoel cavity. The embryo, which is 50-90 minutes later, is called 
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the mid-blastula stage has 3 layers, the animal cap, the marginal zone, and the vegetal mass.  

Next, the process called MBT(mid-blastula transition) starts the zygotic gene transcription. 

And then dorsal lip of blastopore is formed, gastrulation starts, and mitosis stops. By this 

gastrulation, the rounded embryo is transformed into three layers and forms what is called 

anteroposterior and dorsoventral(DV) axis [11].  

 

Figure 1-4. Characteristic of Xenopus laevis early development  
 



12 
 

1-1-3. Craniofacial development 

 

The vertebrate head has a very complicated structure.  In order to form a craniofacial, a 

tissue-tissue interaction between the derivation of all germ layers and the harmonic 

morphogenetic movements of three dimensions is required. Generally, the development of a 

craniofacial structure involves separate steps followed by germ layer patterning. First, the 

neural crest is induced at the ectoderm, neuroectoderm border. This is followed by movement 

of the cranial neural crest into the presumptive facial primordia [12], [13], [14], [15], [16].  

During development of vertebrate craniofacial, neural crest cells contribute to cartilage, bone 

and connective tissue development to form the face. This neural crest cell is a vertebrate 

specific cell population derived from the dorsal part of the neural tube. Following induction, 

neural crest cells delaminate and migrate to different regions of the embryo, where they 

differentiate into a broad range of cell types, including peripheral and enteric neurons, glia, 

melanocytes and smooth muscle [17], [18], [19]. Furthermore, in the cranial region, neural 

crest cell contributes to the cartilage and bone formation of the skull, face and pharyngeal 

skeletons. Interactions between neural crest cells and their local environment are crucial in 

cranial neural crest cells directional migration [20]. The non-canonical Wnt, planar cell polarity 

signaling pathway and cell-cell interaction are involved in controlling the polarity of migrating 

neural crest cells. As the neural crest migrates into the face, the cranial placodes, which are 

specialized ectodermal thickening, differentiate. The moving neural crest cells determines the 

final destination through the surrounding signal. For example, in the case of Xenopus, Twist 
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marks the end position of the cranial neural crest. These signals are preserved between species. 

Subsequently, regional spread of neural crest forms facial prominences. In the pharyngeal 

arches (also called branchial arches) phase of the early stages, vertebrate embryos have 

substantial morphological homology [21], [22]. The pharyngeal arch is a metameric structure 

composed of the ectoderm and endoderm. Mandibular primordium or lower jaw occurs form 

the first pharyngeal arch [23], [22], [21], [24], [25].  

Next, the facial prominences fuse to presage the mature form of the face. Finally, the skeleton 

of the face is formed.  

Figure 1-5. Craniofacial anatomy 
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1-2. Chondrogenesis 

  

 1-2-1. Definition of chondrogenesis 

 

 

Figure 1-6. Process of Chondrogenesis 
 

  Chondrogenesis (also known as chondrification) is the process of cartilage formation. 

Chondrogenesis occurs as a result of mesenchymal cell condensation and chondroprogenitor 

cell differentiation. By chondrogenesis, chondrocyte proceeds the formation of articular 

cartilage or undergo proliferation, terminal differentiation to chondrocyte hypertrophy, and 

apoptosis in a process termed endochondral ossification [26]. The chondrogenesis begins with 

the condensation of prechondrocyte [27, 28]. This initial condensation mediated by both cell-

cell adhesion and cell-ECM interaction [29]. Then, condensed prechondrocytes are dissociated 

while secreting cartilage-specific ECM molecules. During this de-condensation process, 

prechondrocytes have become round shaped mature chondrocytes. Actin cytoskeleton plays an 

important role in this chondrogenesis. There are two downstream mechanisms that regulate 

cytoskeletal regulation in chondrogenesis. First, PKC and ERK1 function as downstream  
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Figure 1-7. Schematic model of RhoA and YAP/TAZ relation 
 

 

 

effectors [30]. And the YAP/TAZ transcription factor RhoA signaling [31]. The factors 

mentioned above are involved in chondrogenesis through regulation of actin cytoskeleton and 

mechanical signaling. MAPKs(including ERK, c-Jun N-terminal kinase, and p38) are also an 

important regulator of chondrogenesis. Among them, it is regulated by integrin which is an 

upstream of MAPK and ERK1/2 and p38 factors which are downstream of MAPK.  
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1-2-2. Integrin 

  

 

Figure 1-8. Structure of integrin 
 

 

 

 

 



17 
 

Integrins are several kinds of α chain and β chain, and there are more than 24 integrins 

depending on the combination of α chain and β chain. Each αβ combination has its own binding 

specificity and signaling properties. Most integrins recognize a variety of ECM proteins, such 

as fibronectin, laminins, collagens, and vitronectins [32].  

 Integrin is a dimer composed of two strands of α chain and β chain, and is a type I 

membrane protein having a short C-terminal structure and an extracellular long N-terminal 

structure. The extracellular domain is present in a state where cations such as Ca2+ and Mg2+ 

are bound [33]. Ligands for integrins include fibronectin, vitronectin, collagen, laminin, and 

the like [32]. Outside-in activation, when the RGD peptide of an artificial ligand bind to the 

extracellular domain of the integrin, the closed dimer is opened in an unfolded state (extended 

state). As a result, the intracellular domain of the integrin is also open. Then the talin can bind 

to the C-terminus of the open integrin [34], [35]. This bond induces assembly of actin filaments 

connected to the C-terminal of the integrin. Conversely, in the inside-out activation, when talin 

is attached to the C-terminus of the integrin, the structure of the integrin is changed and the 

extracellular region is opened and the affinity for the ligand is increased. The function of 

integrins can be broadly divided into the transfer of extracellular changes detected through 

extracellular matrix into cells and the attachment of cells to extracellular matrix. Specific 

functions include cell migration, surveillance of immune cells, and blood clotting, in which 

fibrinogen in the blood binds to GPIIbIIIa [36]. Immobilization to extracellular matrix is the 

most basic and essential process in multicellular organisms. This ensures the stabilization of 

the cells and allows not only immobilization to the ECM, but also signal transmission between 

the extracellular and intracellular regions. In addition to talin, vinculin, paxillin, and α-actinin 

are required for this signal transduction [37].  
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Figure 1-9. Subtype of Integrin 
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1-2-3. Integrin signaling 

 

Integrin signaling refers to the signal transduction pathways in which integrins at the cell 

surface respond to mechanical or biochemical stimuli in the extracellular matrix and transmit 

this information intracellularly to elicit appropriate responses. Integrin signaling is involved in 

processes including embryonic development, tissue remodeling, and repair, host defense, 

hemostasis, cell migration, proliferation and regulation of cellular shape. Integrin acts as a 

bridge between cells and ECM to the intracellular actin cytoskeleton, providing the mechanical 

basis for anchorage, cell shape determination, force transmission, and migration. Cell-mediated 

chemical or mechanical changes are transferred into the cell, causing the intracellular signaling 

reaction to occur, thereby changing the cell cycle, cell shape, and movement (outside-in 

activation). On the contrary, it also transmits the changes inside the cells out-of-cell (inside-

out activation) [38]. The diverse signaling mechanisms triggered by ligand-binding includes 

enzyme phosphorylation, calcium influx and activation of Rho GTPases, which all together 

influence all aspects of cell physiology [39].  

Figure 1-10. Schematic of integrin signaling 



20 
 

1-3. ITGBL1(Integrin beta like protein 1) 

 

 

Figure 1-9. Structure of ITGBL1 
 

The gene ITGBL1 is a β	integrin-related extracellular matrix protein which was first cloned 

and characterized from an osteoblast cDNA library [40].   

The ITGBL1 gene is composed of 10 domains and is called the EFG-like repeat domains by 

the secondary structure of the gene. This gene encodes a β integrin-related protein that is a 

member of the EFG-like protein family. The encoded protein contains integrin-like cysteine-

rich repeats and a signal peptide for secretion. Alternative splicing results in multiple transcript 

variants. It has been reported that ITGBL1 is involved in cancer cell migration through TGF-

β, Wnt/PCP, and focal adhesion kinase signaling in cancer cells. However, studies on the 

molecular function of ITGBL1 in the developmental stage have not yet been reported.  
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Chapter 2. ITGBL1 modulates integrin activity to promote cartilage formation and 

protect against arthritis 

 

2-1. Introduction 

Chondrocytes are responsible for the formation of cartilage-specific extracellular matrices 

(ECM), and ECM-driven signaling is critical for the pathophysiology of destructive cartilage 

disorders [41, 42]. ECM-chondrocyte interaction is mainly mediated by integrins, 

heterodimeric receptors for ECM molecules including fibronectin, collagen, and laminin. 

Chondrocytes express various subunits of integrin-α and integrin-β [41], Furthermore, the 

profile of integrin expression is dynamically regulated during chondrogenic differentiation [43, 

44] and development of disease, such as osteoarthritis (OA) [45-48]. 

Recent research indicates that integrin-fibronectin interaction promotes the condensation of 

prechondrocytes [49-51] and is necessary for chondrogenic differentiation [52-56]. Other 

studies, however, reported that chondrogenic differentiation requires reduced integrin signaling 

[31], [57, 58]. Furthermore, several studies suggested that chondrogenesis is differentially 

regulated by integrins in a stage-dependent or context-dependent manner [59-61]. However, 

we do not understand how developing and mature chondrocytes dynamically regulate integrin 

signaling, which may exert negative effects on cartilage formation. Integrin signaling also 

mediates the catabolic reactions responsible for joint destruction in osteoarthritis (OA) 

development [62-65]. Fragmented ECM molecules such as fibronectins (Fn-fs) are known to 

trigger catabolic gene expression such as that of matrix metalloproteinase 3 (Mmp3), Mmp13, 

and Adamts5 (a disintegrin and metallopeptidase with thrombospondin type 1 motif 5; 

aggrecanase-2), and to synergistically accelerate OA development. This Fn-fs-induced 

catabolic gene expression is mediated, in part, by integrins, although there are conflicting 

reports that integrins may not be involved in Fn-fs-mediated chondrolysis [66-68]. ITGBL1 
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was originally called "ten beta integrin EGF(Epidermal Growth Factor)-like repeat domains" 

due to its secondary structure [40]. A recent study implicated ITGBL1 in cancer cell migration 

via TGF-β, Wnt/PCP, and focal adhesion kinase (FAK)/Src signaling [69-71]. Additionally, 

ITGBL1 has been shown to be the key regulator of liver fibrosis [72]. However, the molecular 

functions of ITGBL1 in developing animals have not yet been examined.  

Here, by performing unbiased transcriptome profiling, we found that developing chondrocytes 

secrete ITGBL1 to promote chondrogenesis. We show that ITGBL1 functions as an inhibitor 

of integrin-ECM interaction that is critical for both cartilage formation and OA development. 

ITGBL1 function is highly conserved in vertebrates, including Xenopus laevis, mouse, and 

human. Itgbl1 expression was decreased in damaged articular chondrocytes from OA patients. 

Using a mouse model of surgically-induced OA, we show that ITGBL1 can protect against OA 

development in joint cartilage.  
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2-2. Material and methods 

 

Xenopus embryo manipulation 

Adult female frogs were induced to ovulate by injection of human chorionic gonadotropin, 

and eggs were fertilized in vitro and dejellied in 3 % cysteine (pH 7.9) in 1/3× Marc’s Modified 

Ringer's (MMR) solution. Fertilized eggs were grown in 1/3× MMR. Animals were obtained 

from the Korean Xenopus Resource Center for Research. Adult Xenopus laevis were housed 

under a 12-h light/dark cycle at 18°C in containers according to the guidance of the Animal 

Care and Use Committee of the Institutional Review Board of UNIST. We designed splice-

blocking antisense morpholino for Itgbl1 based on sequences from the Xenbase database. We 

obtained Itgbl1-MO (AGTAGGGAAGATATACAGACCTGCA) from Gene Tools. 

 

Cell culture 

Human PC3 cells (ATCC), HEK293T cells (ATCC), or hBMSCs (ATCC) were cultured in 

1 % L-glutamine, 10 % fetal bovine serum (FBS), 1 % penicillin-streptomycin, RPMI 1640 

medium, Dulbecco’s Modified Eagle Medium (DMEM, Sigma), and α-MEM (Sigma). To 

assess chondrogenesis of hBMSCs, we employed pellet, micromass, or Transwell culture 

systems.  

Articular chondrocytes were isolated from femoral condyles and tibial plateaus of postnatal 

day 5 mice. Cartilage tissues were digested with 0.2 % collagenase type II. Chondrocytes were 

maintained in DMEM containing 10 % FBS and penicillin and streptomycin. Cells on culture 

day 3 used for further treatments.  
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We purchased human chondrocytes from Cell Application, Inc. According to the 

manufactures datasheet, the chondrocytes were isolated from the human fetal femoral 

cartilages of a single donor female at 20 weeks gestation. Human bone-marrow stem cells were 

purchased from the ATCC.  

Micromass cultures of mesenchymal cells were prepared as described previously. 

Mesenchymal cells obtained from E11.5 embryos of ICR mice were digested with 1 % trypsin 

and 0.2 % type II collagenase and maintained to induced chondrogenesis and hypertrophic 

maturation. A total of 2 × 107 cells/ml was suspended in DMEM/F-12 medium (1:1) containing 

10 % (v/v) FBS. The cells were spotted as 15 μl drops on culture dishes and maintained for 6 

days to induce chondrogenesis. Chondrogenesis was confirmed by Alcian blue staining of 

sulfated proteoglycans. 

 

Integrin activation and inactivation 

To activate integrin, we used Mn2+ and DTT (BIOSESANG). After harvesting, the cells were 

resuspended in medium containing 5 mM DTT and incubated for 30 minutes. The cells were 

then centrifuged for 5 min at 70×g, floating cells were removed, and the remaining cells were 

cultured on a cover slip coated with fibronectin. The cells on the cover slip were incubated for 

4 hours at 36 °C and fixed for image analysis. In the case of Mn2+, 0.07 mM or the indicated 

concentration of MnCl2 was included in the medium. Cells were treated with integrin inhibitor 

BIO1211, obtustatin, or ATN-161 (TOCRIS) and incubated at 36 °C for 12 hours followed by 

harvesting for RNA extraction. 
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Adenoviral infection and biochemical analysis 

Adenovirus carrying mouse Itgbl1 (BC020152) (Ad-Itgbl1) or shRNA targeting mouse Itgbl1 

(Ad-Itgbl1 shRNA), eGFP (Ad-eGFP), and empty virus particles (Ad-C) were purchased from 

Vector Biolabs. Articular chondrocytes were isolated from knee cartilage of mice on postnatal 

day 5 mice. On day 2 of culture, chondrocytes were treated with IL-1β or infected with Ad-

Itgbl1 at the indicated multiplicity of infection. Itgbl1 was detected by RT-PCR and measured 

by quantitative PCR with specific primers (human ITGBL1, sense: 5'-

TCATCTGCTCTAATGCAGGTACA-3', antisense: 5'-CGGATCAACATCGTGACAGGTA-

3'; mouse Itgbl1, sense: 5'-GCAGAGTCCGAACGCAGAT-3', antisense: 5'-

ACACAGTGGACCGAAGTAGGT-3; Mouse FAK sense: 5`-

GTGGCCTGCTATGGATTTCG-3`, antisense: 5`-TTGCATGTAGTCACTCTTCACC-3`). 

Col2a1 expression in hBMSCs was detected by quantitative PCR with specific primers (sense: 

5'- GGACTTTTCTCCCCTCTCT -3', antisense: 5'- GCCCGAAGGTCTTACAGGA-3'). 

Other primer sequences for amplifying target genes were as previously described [73].  

Ad-Itgbl1 was used to overexpress ITGBL1 in mesenchymal cells in micromass culture. 

Mesenchymal cells were maintained as micromass culture for 10 hours and infected for 1 hour 

with Ad-Itgbl1. Infected cells were cultured for up to 6 days in serum-free medium. 

Chondrogenesis was determined by Alcian blue staining. 

 

Human OA cartilage and mouse model of OA  

Human cartilage samples were obtained from individuals 45–65 years of age undergoing total 

knee arthroplasty after obtaining written informed consent as approved by the Institutional 

Review Board of the Catholic University of Korea (UC14CNSI0150). Mouse experiments 

were approved by the Animal Care and Use Committee of the Ajou University College of 
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Medicine. Male C57BL/6 mice (10-week old; DBL Co., Ltd., Chungbuk, Korea) were housed 

(n=4 per cage) under controlled temperature (23 °C) and were exposed to a 12-hour light/dark 

cycle. Food and water were provided ad libitum.  

For the intra-articular depletion of ITGBL1 in Fig. 7, we performed intra-articular injections 

(every 3 days for 3 weeks) of Ad-Itgbl1 shRNA (1 × 109 pfu in a total volume of 10 μl) or 

ATN-161. The experiment was repeated a total of five times independently with two mice per 

experimental condition in each independent test. However, one mouse was lost due to 

unforeseen circumstances during the experiment, and so the total number of mice were nine 

(n=9). Mice were sacrificed 3 weeks after the first intra-articular injection. 

For the DMM experiment in Fig. 8, we performed intra-articular injections of Ad-Itgbl1 (1 × 

109 pfu in a total volume of 10 μl) as previously described [74]. The experiment was repeated 

a total of six times independently with two mice per experimental condition in each 

independent test, and so the total number of mice were twelve (n=12). Ten weeks after DMM 

surgery, mice were sacrificed. For rescue experiments, intra-articular injection was initiated 5 

weeks after DMM surgery and performed once per week for 6 weeks. Decalcified cartilage was 

stained with Safranin O and scored using the OARSI grading system. Synovitis was determined 

by Safranin O and hematoxylin staining, and synovial inflammation (grade 0–3) was scored as 

described previously [73] quantified as described previously [74]. Subchondral bone sclerosis 

was determined by measuring the thickness of the subchondral bone plate [75]. Osteophyte 

development was identified by Safranin-O staining, and osteophyte maturity was determined 

by measuring the thickness of the subchondral bone plate [76]. 
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Statistical analysis 

Data based on an ordinal grading system, such as OARSI grade, were analyzed using non-

parametric statistical tests. All values are expressed as mean ± standard error of the mean (SEM) 

and were subjected to Student’s t-test for pairwise comparisons or one-way analysis of variance 

(ANOVA) for multiple comparisons using the SPSS v. 10.1 statistical package or Prism. 
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2-3. Results 

Itgbl1 promotes facial cartilage formation in the Xenopus embryo. 

 



29 
 

 

Figure 2-1-1. ITGBL1 expression pattern in facial cartilage tissues and homology of ITGBL1 

across vertebrates.  

A. The transcriptome of developing pharyngeal arches dissected from Xenopus embryos was analyzed 

by RNA-seq. The colors indicate dissected tissues from the pharyngeal arches. B. ITGBL1 expression 

was analyzed by whole-mount in situ hybridization (WISH). C. ITGBL1 expression in developing 

pharyngeal arches and facial cartilages was analyzed by RNA in situ hybridization in sectioned 

embryonic samples (Br, brain; Eth, ethmoidal plate; Esph, esophagus; Ch, Ceratohyal cartilage). D.

ITGBL1 expression compared to the Col2a1-positive prechondrogenic facial tissues. Sibling embryos 

were sectioned and processed for RNA WISH using antisense probes for ITGBL1 or Col2a1. 

Immunohistochemistry was performed using anti-Col2a1 antibody. E. RT-PCR assay showing ITGBL1 

expression during specific chondrogenesis stages in developing embryos. F. The homology of ITGBL1 

amino acid sequences across vertebrates. 
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Pharyngeal arches of vertebrate embryos develop to form various facial tissues including 

cartilage, bone, muscle, and other connective tissues [77]. The pharyngeal arches of the 

Xenopus embryo provide accessible and tractable tissues to study the interplay among various 

tissues during cartilage formation [78, 79]. Therefore, we used Xenopus pharyngeal arches to 

perform an unbiased transcriptomics search to discover potential therapeutic targets 

Figure 2-1-2. ITGBL1 promotes facial cartilages formation in the Xenopus embryo. 

G. Cartilage separation pattern of Xenopus laevis. H. Morpholino efficiency is shown by agarose gel.  

I. Alcian blue-stained images of craniofacial cartilages in control, ITGBL1-depleted (MO, morpholino), 

and ITGBL1 -rescued embryos. Scale bars: 500um. J. Quantification of facial craniofacial cartilages in 

(I). n: Control=33,  ITGBL1-MO=42, ITGBL1-MO+300pg=31, ITGBL1-MO+500pg=38, ITGBL1-

MO+1000pg=38. 
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in secreted proteins involved in cartilage formation. We dissected each pharyngeal arch and 

analyzed gene expression profiles by performing RNAseq experiments. Subsequently, we 

searched for secreted proteins differentially expressed in pharyngeal arches (Table1). Among 

hundreds of differentially expressed secreted proteins, whole-mount in situ hybridization 

(WISH) and reverse transcription polymerase chain reaction (RT-PCR) analyses revealed that 

Itgbl1 is predominantly and temporally expressed in chondrogenic precartilage tissues (Fig. 2-

1-1B-E). ITGBL1 is highly conserved among vertebrates (Fig. 2-1-1F). Recent studies on the 

function of ITGBL1 implicated it in cancer cell metastasis and cell migration. However, Itgbl1 

Figure 2-1-2. ITGBL1 promotes facial cartilages formation in the Xenopus embryo. 
 

K. Alcian blue-stained images of craniofacial cartilages of control and ITGBL1-overexpressing 

embryos. F. Quantification of facial cartilages in L. n: Control=17, ITGBL1=17, ITGBL1-

Flag+300pg=17. 
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expression profiles and functions in developing vertebrate embryos have not been previously 

examined.  

  

Figure 2-1-3. ITGBL1 promotes facial cartilages formation in the Xenopus embryo 

M. Expression of Sox9 and Col2a1 in control and ITGBL1-overexpressing embryos. N. Neural crest-

cell migration as analyzed by Twist expression. Scale bars: 500um 
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Figure 2-1-4. Neural crest-cell migration, hypertrophic chondrocyte development, and osteogenic 

differentiation after ITGBL1 depletion. 

O-P. Osteogenic differentiation (O) and hypertrophic chondrocyte development (P) analyzed by RNA 

WISH. Q. RT-PCR analysis after ITGBL1 depletion. R. The gene expression shown in (Q) was 

quantified by q-PCR and plotted. 
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To examine whether ITGBL1 is involved in cartilage development, we knocked down Itgbl1 

expression using a splice-blocking morpholino oligo (Itgbl1-MO) in Xenopus laevis embryos. 

Itgbl1-MO injection effectively inhibited the formation of mature Itgbl1 mRNA (Fig. 2-1-2H). 

Alcian blue staining revealed severely hypoplastic craniofacial cartilages in Itgbl1-MO 

injected embryos that were rescued by co-injection of Itgbl1 mRNA (Fig. 2-1-2I, J), suggesting 

that cartilage malformation is a specific phenotype of loss of Itgbl1 expression. By contrast, 

Itgbl1 overexpression via wild-type or C-terminal FLAG-tag fusion proteins increased the 

overall size of craniofacial cartilages significantly (p<0.0001) (Fig. 2-1-3K, L) and elevated 

expression of chondrogenesis markers, such as Sox9 (Sex-Determining Region Y-Box 9 Protein) 

and Col2a1(collagen, type II, alpha 1) (Fig. 2-1-3M). Most craniofacial cartilage originates 

from cranial neural crest cells, which migrate into the pharyngeal arches and condense to form 

prechondrocytes [80]. We found that cranial neural crest cells migrated normally in Itgbl1-

MO-injected embryos (Fig. 2-1-3N). We further assessed the late chondrogenic markers and 

bone formation in ITGBL1-depleted embryos. We observed that Col10a1 (collagen, type X, 

alpha 1) and Ihh (Indian hedgehog) expression was slightly reduced at Stage 40, when 

chondrogenesis starts and cartilages form in the Itgbl1 morphant embryos (Fig. 2-1-4O-R). We 

also observed slightly increased expression of Bglap2 (bone gamma-carboxyglutamate protein 

2) and Ibsp (integrin binding sialoprotein) in the Itgbl1 morphant embryos (Fig. 2-1-4O-R).     

Taken together with our observation that Itgbl1 expression in normal embryos is strongest 

after neural crest cell migration (Fig. 2-1-1E), this finding suggests that Itgbl1 contributes to 

craniofacial cartilage formation after the migration of neural crest cells. 
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ITGBL1 depletion inhibits cartilage-specific ECM deposition.  

Next, we monitored the chondrogenic process in ITGBL1-depleted embryos by 

injecting Itgbl1-MO unilaterally in two-cell-stage embryos (Fig. 2-1-5O) and visualizing 

chondrogenic tissue using an anti-COL2A1 antibody (Fig. 2-1-4J). Cartilage-specific COL2A1 

expression was sharply reduced in Itgbl1-MO-injected tissue (Fig. 2-1-4J), but there were no 

changes in fibronectin deposition (Fig. 2-1-6S), suggesting that ITGBL1 depletion mainly  

 

Figure 2-1-5. ITGBL1 depletion inhibits cartilage-specific ECM deposition.  

O. Schematic illustrating ITGBL1 unilateral injection [contralateral region injected with mGFP 

(membrane-green fluorescent protein)] into two-cell-stage Xenopus embryos to examine the ITGBL1 

loss-of-function phenotype in a mosaic animal. P. Immunostaining for Col2a1 (green) in facial 

cartilages in bilaterally njected embryos (50um sections). p’. mGFP pseudo-colored blue. Histone-red 

fluorescent protein (H-RFP, p´´, p´´´) was co-injected as a tracer. Scale bars: 100 μm. Q-R. High-

magnification images of the ethmoidal plate (Eth in p´´´) in control and Itgbl1-MO-injected embryos. 
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affects cartilage-specific ECM deposition. ITGBL1 knockdown also caused abnormal 

prechondrocyte morphology. The chondrogenic process in facial cartilage begins with the 

condensation of migratory cranial neural crest cells. Then prechondrocytes secrete cartilage-

specific ECM molecules, while changing their morphology into oval-shaped mature 

chondrocytes. Unilateral depletion of ITGBL1 resulted in stark differences in cell morphology 

and ECM secretion. Control chondrocytes secreted cartilage-specific ECM and were well 

dispersed with a typical oval shape (Fig. 2-1-5Q). However, ITGBL1-depleted cells failed to 

secrete ECM and maintained tight contact with neighboring cells (Fig. 2-1-5R), suggesting that 

Figure 2-1-6. ITGBL1 depletion inhibits cartilage-specific ECM deposition. 

S. Fibronectin deposition in facial tissue was visualized by immunostaining after unilateral

injection of Itgbl1-MO. Histone-RFP (H-RFP) was co-injected as a tracer. Scale bars: 100μm. T.

ITGBL1-FLAG fusion proteins expressed in craniofacial prechondrocytes. Immuno-fluorescent 

staining was performed with anti-FLAG antibody (Green). mGFP was pseudo-colored as red. Scale 

bars: 20 μm. U. Control and ITGBL1-overexpressing Xenopus embryo (stage 37) sections stained for 

Col2a1 (Green). Scale bars: 500 μm. Data are shown as mean ± SEM (** p<0.005, *** p<0.0005). 
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chondrogenesis was halted at the condensation stage. We also examined ITGBL1 localization 

in prechondrocytes by expressing FLAG-tagged ITGBL1 in Xenopus embryos. ITGBL1-

FLAG localized to the cell periphery as puncta (Fig. 2-1-6T). Furthermore, ectopic expression 

of ITGBL1 in embryonic prechondrocytes promoted chondrogenic ECM deposition earlier 

than in control prechondrocytes (Fig. 2-1-6U). 
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ITGBL1 function is necessary for chondrogenic differentiation of human BMSCs. 

 

 

Figure 2-2-1. ITGBL1 function in chondrogenic differentiation of human bone-marrow stem cells 

(BMSCs) and mouse limb-bud mesenchymes.  

A. ITGBL1 and aggrecan (Acan) expression quantified by q-PCR analysis during chondrogenesis. B.

ITGBL1 and alkaline phosphatase (ALP) expression quantified by q-PCR analysis during osteogenesis. C, 

D. Frozen sections (10 μm) of control or ITGBL1-depleted hBMSC-derived chondrogenic pellets stained 

with anti-Col2a1 antibody (C) or Alcian blue (D). Scale bars: 100 μm. 
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Having exploited the in vivo capabilities of the Xenopus embryo to identify a novel regulator 

of cartilage development, we next sought to explore its mechanism of action in chondrogenic 

differentiation of hBMSCs (bone marrow-derived mesenchymal stem cells). RT-PCR 

experiments revealed that Itgbl1 expression in chondrogenic hBMSCs gradually increased and 

reached a peak on day 12 of differentiation (Fig. 2-2-1A), whereas Itgbl1 expression had 

decreased by this time point in osteogenic hBMSCs (Fig. 2-2-1B). When we carried out 

siRNA-mediated Itgbl1 knockdown and induced chondrogenesis in hBMSCs, Itgbl1 

expression was effectively decreased, although it was gradually restored by day 5 (fig. S4A-

B). Alcian blue and COL2A1 immunostaining showed that control hBMSC pellets deposited 

chondrogenic ECM normally, whereas Itgbl1 knockdown reduced chondrogenic ECM and 

COL2A1 expression (Fig. 2-2-1C-D). We further tested whether Itgbl1 overexpression 

promotes chondrogenesis in a non-chondrogenic condition. Itgbl1 overexpression increased 

Sox9 expression without chondrogenic inducers such as TGF-β (Fig. 2-2-2E). However, 

Figure 2-2-2. ITGBL1 is not an instructive signal to promote chondrogenesis without 

chondrogenic inducer from hBMSC. 

E. Chondrogenic gene expression in hBMSCs after ITGBL1 overexpression. 
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expression of other chondrogenic genes, such as Col2a1 and Acan (Aggrecan) were not 

consistently sustained in Itgbl1-overexpressing hBMSCs (Fig. 2-2-2E).   Because Itgbl1 

overexpression promoted chondrogenic differentiation in embryonic cartilage tissue, and not 

in hBMSCs, we reasoned that ITGBL1 may need other specification signals to promote 

chondrogenesis. We tested ITGBL1 function in promoting chondrogenesis in the ATDC5 cell 

line and mouse chondrogenic mesenchymes isolated from limb buds, because these cells are 

already specified to differentiate into chondrocytes. Indeed, Itgbl1 overexpression consistently 

promoted chondrogenesis in ATDC5 cells (Fig. 2-2-2F, G and fig. S5B) and in limb-bud 

mesenchyme (data not show). Furthermore, Itgbl1 expression in chondrogenic ATDC5 cells 

prevented Col10a1 expression, which suggests that hypertrophic differentiation is suppressed 

by ITGBL1 (fig. S5F, G). These results suggest that ITGBL1 enhances chondrogenesis and 

that the function of ITGBL1 is well conserved across vertebrates, including humans, although 

it may not be a master regulator of chondrogenic differentiation. 

Figure 2-2-3. ITGBL1 function is necessary for chondrogenic differentiation of mouse 

chondrocyte. 

F. Chondrogenic gene expression upon ITGBL1 overexpression with increasing doses in the absence 

of differentiation medium analyzed by RT-PCR. (F) Chondrogenic gene expression Sown in (G) 

quantified by q-PCR. G: data are shown as mean ± SEM from three biological replicate experiments. 

 



41 
 

ITGBL1 inhibits integrin-ECM interactions. 

Cartilage phenotypes in Itgbl1 morphants suggested that ITGBL1 may be necessary to 

progress past the condensation stage of chondrogenesis (Fig 1I). Prechondrocyte condensation 

is mainly mediated by integrin-fibronectin interaction [49-51]. However, integrin-mediated 

outside - in signaling needs to be inhibited for during chondrogenic differentiation [31, 57, 58]. 

Furthermore, increased FAK signaling negatively regulates cartilage formation [81]. These 

seemingly conflicting observations may be explained by the timing of integrin-ECM 

interaction, as integrin signaling may serve distinct roles at different stages of chondrogenesis 

[59-61]. Whereas early integrin-ECM interaction may be required to promote prechondrocyte 

Figure 2-3-1. ITGBL1 reduces cell-ECM adhesion. 

A. PC3 prostate cancer cells highly expressed ITGBL1. B. siRNA transfection decreased ITGBL1 

expression in PC3 cells. C-D. Ectopic expression of ITGBL1 inhibited cell attachment to collagen-

coated plates. 
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condensation, prechondrocyte-ECM interactions need to be inhibited for further ECM 

molecule secretion and changes in cell shape to occur during chondrogenesis. We then 

speculated that ITGBL1 might inhibit integrin-ECM interactions to decrease integrin-mediated 

outside-in signaling and to facilitate chondrogenesis after prechondrocyte condensation. In this 

situation, ITGBL1 may function as an integrin inhibitor. We predicted that siRNA-mediated 

ITGBL1 depletion would affect integrin-mediated cell behaviors, such as cell spreading and 

binding to the ECM-coated plates. To test this hypothesis, we used siRNA to transfect PC3 

human prostate cancer cells, which express Itgbl1 at a high level (Fig. 2-3-1A, B). As expected, 

ITGBL1 depletion increased cell size, whereas Itgbl1 overexpression caused cells to detach 

from collagen-coated plates (Fig. 2-3-2E, F).  

Figure 2-3-2. ITGBL1 inhibits active integrin-ECM complex formation 

E. Immunofluorescent staining of FAK-positive focal adhesion complexes in control or ITGBL1-

depleted PC3 cells. F. The expression intensity and number of FAK-positive focal adhesion (FA) 

complexes in (E). n: Control (CTL)=18, Itgbl1-siRNA=21. G. Immunofluorescent staining of integrin-

β1-positive FA complexes in control and ITGBL1-depleted PC3 cells. H. The intensity of integrin-β1 

expression and the size of the cells in (G). Scale bars: 10 μm (*** p<0.0005). 
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Figure 2-3-3. ITGBL1 inhibits integrin-ECM complex formation in PC3 cells. 

I. FACS analysis using active integrin-β1-specific antibodies (HUTS-4) in control, ITGBL1-depleted, 

or ITGBL1-overexpressing PC3 cells. J. Active integrin-β1-specific antibody staining in control or 

ITGBL1-depleted PC3 cells. K. Co-immunoprecipitation of ITGBL1-HA and integrin-β-Flag in the 

presence or absence of Ca2+. Transfection of C-terminal HA-tag fusion construct of ITGBL1 yielded 

two major products of 63 kDa and 48 kDa, which were ITGBL1-L and ITGBL1-S, respectively. L.

ITGBL1 overexpression inhibited FAK and ERK 1/2 phosphorylation. Data are shown as mean ± SEM.
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Figure 2-4-1. ITGBL1-induced integrin inactivation is not recovered by integrin-activating 

antibody. 

A-B. Cell adhesion and spreading were analyzed in control, ITGBL1-depleted, or ITGBL1-

overexpressed human articular chondrocytes. Increasing doses of 9EG7 antibody were applied to the 

ITGBL1-overexpressed cells to activate integrins. n: Control=20, siRNA=25, Itgbl1-OE=17, Itgbl1-

OE+312 ng/ml=25, Itgbl1-OE+390 ng/ml=24, Itgbl1-OE+468 ng/ml=23. Scale bars: 20 μm. Data 

are shown as mean ± SEM (** p<0.005, *** p<0.0005). 
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Figure 2-4-2. . ITGBL1 inhibits integrin-ECM complex formation in various cell types including 

chondrocytes. 

C-D. Images of cell adhesion and spreading and quantification of cell size in control, ITGBL1-depleted, 

or ITGBL1-overexpressing PC3 cells. Increasing doses of Mn
2+ 

were added to the ITGBL1-

overexpressing cells to activate integrins. n: Control=54, siRNA=60, Itgbl1-OE=54, Itgbl1-OE+0.1 

mM=45, Itgbl1-OE+0.2 mM=43, Itgbl1-OE+0.4 mM=37. Scale bars: 20 μm. 
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Integrin mediates cell-ECM binding through its extracellular domain and recruits proteins 

such as FAK and vinculin through its intracellular domain to form focal adhesion complexes 

and to transduce downstream signals. ITGBL1 depletion increased the number of FAK-positive 

focal adhesion complexes remained on collagen-coated plates, when we isolated focal adhesion 

complexes after removing cell bodies as previously described. Likewise, ITGBL1 depletion 

increased focal adhesion in PC3 cells as shown by integrin-β1 antibody staining (Fig. 2-3-2G, 

H). Using an active-form-specific integrin-β1 antibody and fluorescence-activated cell sorting 

(FACS), we saw that Itgbl1 overexpression reduced the amount of active integrin-β1, whereas 

siRNA-mediated ITGBL1 depletion increased the amount of active integrin-β1 (Fig. 2-3-3I, J). 

In co-immunoprecipitation assays, ITGBL1 bound strongly to integrin-β1 in the presence, but 

not in the absence, of Ca2+ (Fig. 2-3-3K). Although we do not understand the physiological 

importance of this Ca2+-dependent binding, the EGF domain has been shown to change its 

conformation upon calcium binding [82-84]. Furthermore, Notch signaling is regulated by the 

EGF domain in a Ca2+-dependent manner [85, 86]. We further observed that Itgbl1 

overexpression reduced the phosphorylation of FAK and ERK 1/2 (Fig. 2-3-3L).  

We next examined whether activation of integrin could overcome the ITGBL1-mediated loss 

of integrin-ECM binding. To that end, we treated the Itgbl1-overexpressed cells with integrin-

activating antibody 9EG7 (Fig2-4-1A-B); however, the activating antibody did not efficiently 

recover cell spreading and attachment to the fibronectin-coated plates in the Itgbl1-

overexpressed cells. We suspected that ITGBL1 may physically block the binding of the 

activating antibody to the integrin, or that structural changes in integrin induced by ITGBL1 

may hinder the integrin-antibody interaction. Using Mn2+ [87] or DTT [88], which are pan 

integrin activators [89], we treated Itgbl1-overexpressing PC3 cells and performed a cell-

spreading assay. As expected, activation of integrins by Mn2+ ions almost completely reversed 

integrin-ECM interactions in Itgbl1-overexpressing cells (Fig. 2-4-2C, D). PC3 cells are 
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prostate cancer cells and may intrinsically differ from chondrocytes. Therefore, we examined 

whether ITGBL1 also functions as an integrin inhibitor in human chondrocytes isolated from 

fetal femoral cartilages. Consistent with the PC3 cell data, ITGBL1 depletion significantly 

(p<0.0005) increased focal adhesion formation, whereas overexpression of Itgbl1 reduced it  

Figure 2-4-3. ITGBL1 inhibits integrin-ECM complex formation in various cell types including 

chondrocytes. 

F-G. Immunofluorescent images using anti-FAK antibody (C) and the quantification of FAK intensity 

(D) in control, ITGBL1-depleted, or ITGBL1-overexpressing human chondrocytes. n:Control=13, 

siRNA=8, Itgbl1-OE=14. Scale bars: 10 μm. 
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Figure 2-4-4. ITGBL1 inhibits integrin-ECM complex formation in various cell types including 

chondrocytes. 

H-I. Images of cell adhesion and spreading and quantification of cell size in control, ITGBL1-depleted, 

or ITGBL1-overexpressing human articular chondrocytes. Increasing doses of Mn
2+ 

were added to the 

ITGBL1-overexpressing cells to activate integrins. n: Control=70, siRNA=48, ITGBL1-OE=81, 

ITGBL1-OE+0.1 mM=53, ITGBL1-OE+0.2 mM=54, ITGBL1-OE+0.4 mM=31. Scale bars: 20 μm. 

Data are shown as mean ± SEM (** p<0.005, *** p<0.0005). 
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(Fig. 2-4-3F, G). Furthermore, this reduction of integrin-ECM interaction was fully recovered 

by activation of integrin by Mn2+ treatment (Fig. 2-4-4H, I). We also confirmed that ITGBL1 

functions in a similar manner in hBMSCs and in prechondrocytes in Xenopus facial cartilage 

(Fig. 2-4-5J-M). Thus, our results suggest that ITGBL1 has a conserved role in inactivating 

integrin. 

 

Figure 2-4-5. ITGBL1 inhibits focal adhesion-complex formation. 

J-K. FAK-positive focal adhesion complexes were visualized in control, ITGBL1-depleted, or 

ITGBL1-overexpressed human BMSCs. L-M. ITGBL1 depletion increased vinculin-positive foci in 

prechondrocytes of Xenopus embryos at stage 37. Scale bars: 20 μm. 
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ITGBL1 promotes chondrogenesis via integrin inactivation. 

Next, we investigated the possibility that integrin inactivation by ITGBL1 is a major 

mechanism promoting chondrogenesis. To this end, we exploited the ability of Mn2+ and DTT 

to activate integrin in Itgbl1-overexpressing ATDC5 cells. Upregulation of chondrogenic 

markers, such as Sox9, Acan, and Col2al, was reduced upon activation of integrins by Mn2+ 

and DTT in the Itgbl1-overexpressing ATDC5 cells (Fig. 2-5-1A, B). Consistent with the 

chondrogenic gene expression data, the glycosaminoglycan (GAG) level and the average size 

of cartilage micromasses were significantly (p<0.005) reduced by the activation of integrin in 

Itgbl1-overexpressing micromasses (Fig. 2-5-2C-E). It was previously reported that isolated 

chondrocytes dedifferentiate in adherent monolayer-culture, whereas less adhesive culture 

methods such as suspensions or culture in agarose gel promote re-differentiation of the 

dedifferentiated chondrocytes [90-92]. Integrin activation has also been suggested to mediate 

non-chondrogenic ECM deposition in dedifferentiated chondrocytes [93]. FAK activation 

Figure 2-5-1. ITGBL1 promotes chondrogenesis via integrin inhibition.  

A-B. Chondrogenic protein expression in ITGBL1-overexpressing ATDC5 cells treated with Mn2+

or DTT. B. Quantification of A; three replicate experiments). 
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during chondrogenesis impairs proper cartilage formation, and integrin-mediated cell adhesion 

components are among the major enriched proteins in OA samples [94]. In contrast, 

chondrocytes express diverse integrin subunits, such as integrins α1, α3, α5, α10, αV, β1, β3, 

and β5 [42]. Given the ECM-rich environment and the expression of various integrins in 

chondrocytes, this contradictory circumstance in chondrogenic tissues suggests that ITGBL1 

may possess a unique function as an integrin inhibitor during chondrogenesis. To determine 

which integrins are critical for the ITGBL1-mediated promotion of chondrogenesis, we first 

analyzed the expression of integrin subunits α1, α3, α5, α10, and β1, which are known to be 

expressed in monolayer-cultured chondrocytes [42]. Subunits α1, α5, and β1 were strongly 

expressed compared with subunits α3 and α10 in human chondrocytes (Fig. 2-5-3H). siRNA 

mediated knockdown of each integrin subunit in monolayer-cultured human chondrocytes 

confirmed that each siRNA effectively reduced the expression of the corresponding integrin 

subunit (fig. S10B). Integrin-β1 or integrin-α3 depletion most effectively increased Sox9 

expression (Fig. 2-5-2F), although integrin-α5β1 was most strongly expressed (Fig. 2-5-3H). 

Figure 2-5-2. ITGBL1 promotes chondrogenesis via integrin inhibition. 

C. Alcian blue staining in micromass cultures of control and ITGBL1-overexpressing ATDC5 cells in 

the presence of Mn2+ or DTT. Scale bars: 0.5mm D-E. The average size of micromasses and GAG/total 

protein ratio in C. n=6 for each experimental sample. 
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Figure 2-5-3. ITGBL1 promotes chondrogenesis via integrin inhibition. 

F. Sox9 expression in human chondrocytes upon depletion of integrin-α1, 3, 5, or 10 in combination 

with β1 subunits analyzed by q-PCR. G. Sox9 expression in human chondrocytes upon depletion of 

integrin-α1β1, α3β1, α5β1, or α10β1 in combination with ITGBL1 overexpression analyzed by q-PCR. 

Data are shown as mean ± SEM from three replicate experiments (* p<0.05, ** p<0.005, *** p<0.0005) 

 

However, co-depletion of each integrin-α subunit, which forms a heterodimer with integrin-

β1, and β1 subunit synergistically induced Sox9 expression at a similar extent (Fig. 2-5-3F). 

As expected, ectopic expression of Itgbl1 increased Sox9 expression synergistically with the 

depletion of every integrin subunit that we examined (Fig. 2-5-3G). Although our data are not 

able to conclusively verify the major integrin subunits interacting with ITGBL1, they strongly 

suggest that integrin signaling may exert negative effects on chondrogenesis and that ITGBL1 

is an intrinsic factor promoting chondrogenesis via integrin inactivation. We suspect that 

ITGBL1 may inhibit a broad range of integrin subunits due to its synergy with various integrins. 
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Figure 2-5-4. Relative expression of integrin subunits in human primary chondrocytes and 

efficacy of siRNA used in Figure 2-5-3F and 2-5-3G. 

H. Integrins α1 and α5 are highly expressed along with integrin-β1 in human primary chondrocytes. I.

siRNA transfection effectively decreased integrin expression.  
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ITGBL1 suppresses catabolic gene expression in chondrocytes.  

 

 Integrin signaling not only modulates chondrogenesis but also is critically involved in 

destructive cartilage diseases. Fragmented ECM molecules, including fibronectin, activate 

inflammatory signals in various cells in articular cartilage tissue and promote the expression of 

catabolic factors, such as Mmp13, Adamts5, Cox-2 (Cyclooxygenase-2), IL-6 (Interleukin-6), 

and IL-8 [66, 95]. Thus, we examined the potential protective function of ITGBL1 in arthritis 

development using human chondrocytes. Treatment of human chondrocytes with the N- 

terminal 29-kDa fragment of fibronectin (29-kDa Fn-fs) induced Mmp3 and Mmp13 expression  

Figure 2-6-1. ITGBL1 protects chondrocytes form catabolic gene expression. 

A. Structure of Fibronectin. B. Mmp3 and Mmp13 expression analyzed by RT-PCR after treatment of 

control or ITGBL1-overexpressing human chondrocytes with 29-kDa Fn-f. ITGBL1-overexpressing 

cells were treated with Mn2+ or DTT to activate integrins. C-D. Quantification of Mmp3 C or Mmp13 

expression shown in B. 
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(Fig. 2-6-1B). In contrast, overexpression of Itgbl1 reduced Mmp3 and Mmp13 expression, and 

these reductions were abolished by activation of integrins (Fig. 2-6-1B-D). The protective 

function of ITGBL1 against catabolic gene expression is likely due to integrin inactivation and 

subsequent reduction in fragmented ECM molecules binding to the chondrocytes. To directly 

examine this idea, we treated human chondrocytes with Alexa Fluor 488-conjugated 29-kDa 

Fn-fs (Fig. 2-6-2E). Depletion of ITGBL1 significantly (p<0.05) promoted binding of the 29-

kDa Fn-fs compared to control cells (Fig. 2-6-2F, G), whereas overexpression of Itgbl1 reduced 

binding (Fig. 2-6-2F, G). Furthermore, activation of integrin in Itgbl1-overexpressing 

chondrocytes restored the binding of Fn-fs to the cells (Fig. 2-6-2F, G). 

Figure 2-6-2. ITGBL1 protects chondrocytes form catabolic gene expression. 

E. Alexa Fluor 488-conjugated 29-kDa Fn-fs. F. N-terminal 29-kDa Fn-f expression in control, 

ITGBL1-knockdown, and ITGBL1-overexpressing human chondrocytes. ITGBL1-overexpressing 

chondrocytes were treated with Mn2+ or DTT to activate integrins. G. Quantification of fluorescence 

intensity in F. n: Control=14, siRNA=16, ITGBL1-OE=17, ITGBL1-OE+Mn2+=16, ITGBL1-
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Next, we examined which integrin subtypes are mainly responsible for the catabolic gene 

expression using treatment with fragmented fibronectin and subtype-specific integrin inhibitors 

Bio1211 (integrin-α4β1 inhibitor), obtustatin (integrin-α1β1 inhibitor), and ATN-161 

(integrin-α5β1 inhibitor). Although treating cells with all inhibitors together was most effective, 

among the inhibitors ATN-161 was more effective than the others in reducing Mmp3 and 

Mmp13 expression increased by ITGBL1 depletion (Fig. 2-6-3H-J). These data suggest that 

ITGBL1 has a dual function in chondrocytes, promoting chondrogenesis and protecting against 

catabolic gene expression, mediated through modulation of integrin activities. 

Figure 2-6-3. ITGBL1 protects chondrocytes form catabolic gene expression. 

H. Mmp3 and Mmp13 expression analyzed by RT-PCR in control and ITGBL1-depleted human 

chondrocytes treated with various integrin inactivation. I-J. Quantification of (H). (* p<0.05, ** 

p<0.005, *** p<0.0005). Scale bars: 20 μm. 
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ITGBL1 depletion results in OA-like cartilage damage in knee joints. 

Next, we examined whether depletion of ITGBL1 causes cartilage damage in vitro and in a 

mouse model in vivo. We confirmed that ITGBL1 is expressed in chondrogenic limb 

mesenchyme and presumptive articular cartilage tissue and localizes to protrusions of ATDC5 

cells, consistent with the Xenopus data (Fig. 2-1-1A-E). Although it localizes to the cell 

protrusions, ITGBL1 does not co-localize with the vinculin-positive stable focal adhesion 

complexes. In mouse chondrocytes, Sox9 and Col2a1 expression were reduced by adenoviral 

Itgbl1-shRNA (Ad-Itgbl1 shRNA) infection and increased by ectopic Itgbl1 expression using 

an adenoviral (Ad-Itgbl1) delivery system. Prior to the in vivo experiment, we tested the 

cytotoxicity and gene delivery of the adenoviral system. Ad-Itgbl1-infected cells showed no 

observable cytotoxicity based on MTT assay. Also, we confirmed by Ad-eGFP injection that 

the adenoviral system effectively delivered genes into mouse joint tissues. We speculated that 

depletion of ITGBL1 in mouse knee joint cartilage may result in OA-like phenotypes. Intra-

articular injection of Ad-Itgbl1 shRNA into wild-type mouse knee joints caused osteoarthritic 

cartilage destruction and reduced expression of COL2A1 and SOX9 in the joint cartilage. 

Furthermore, this OA-like cartilage destruction was partially recovered by inhibiting integrin 

activity by co-injecting integrin-α5β1 inhibitor ATN-161. We also observed that the catabolic 

genes MMP3/13 and ADAMTS5 were strongly induced in the ITGBL1-depleted cartilage 

whereas, in contrast, co-injection of ATN-161 reduced expression, consistent with the in vitro 

data shown in Fig. 2-5 and 2-6. However, we did not observe any change in osteophyte 

formation or subchondral bone thickness, although we observed a mild increase of synovial 

inflammation. 
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ITGBL1 protects cartilage tissue from OA development in the DMM mouse model. 

We next examined if Itgbl1 expression is affected by IL-1β treatment in mouse chondrocytes. 

IL-1β is an inflammatory factor involved in OA development and symptoms, and has been 

frequently used to examine OA pathogenesis [96]. Surprisingly, Itgbl1 expression in mouse 

chondrocytes decreased upon IL-1β treatment, even before the reduction in Col2a1 expression. 

Furthermore, overexpression of Itgbl1 restored Col2a1 and Sox9 expression and reduced Mmp3 

and Mmp13 expression in IL-1β-treated mouse chondrocytes (Fig. 2-6-1B-D), which is 

consistent with the human chondrocyte data (Fig. 6A-E). This result is surprising because IL-

1β induces Mmp expression by signaling through the IL receptor and not through integrins. 

We hypothesize that the reduction of Mmp expression by ITGBL1 in IL-1β-treated mouse 

chondrocytes is due to synergistic interaction between IL-1β signaling and integrin signaling, 

as suggested in a recent study [97] which reported that IL-1β-responsive enhancer elements in 

Mmp1 require ERK1/2 phosphorylation for Mmp1 gene expression upon IL-1β treatment. 

Consistent with that hypothesis, Itgbl1 overexpression strongly reduced ERK1/2 

phosphorylation, and ITGBL1 depletion alone increased Mmp3/13 expression (Fig.2-6-3H-J). 

Upregulation of anabolic factors and downregulation of catabolic factors upon ectopic Itgbl1 

expression under pathological conditions suggested a possible protective role of ITGBL1 in 

OA development. We therefore collected joint cartilage tissue from human OA patients to 

analyze the expression of Itgbl1. Itgbl1 expression was significantly (p=0.0001) reduced in 

cartilage from most OA patient. We next directly examined the role of ITGBL1 in OA 

pathogenesis using the surgical destabilization of the medial meniscus (DMM) mouse model 

of osteoarthritis. Intra-articular injection of Ad-Itgbl1 into DMM-induced OA mice resulted in 

less severe OA-like cartilage damage and enhanced COL2A1 and SOX9 expression. We also 

observed reduced osteophyte formation, thickening of the subchondral bone plate, and 
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catabolic gene expression in Ad-Itgbl1-injected DMM-induced OA mice. Although DMM-

induced OA was not strongly correlated with synovial inflammation, it was previously reported 

that DMM induces a low level of synovitis [98]. We observed a mild increase of synovial 

inflammation in Ad-Itgbl1 infected joints; however, synovitis scores were not different 

between Ad-Itgbl1-infected samples regardless of DMM-operation, suggesting that ITGBL1 

protects the cartilages directly rather than secondarily by modulating synovial inflammation. 

Taken together, our findings suggest that ITGBL1 not only promotes chondrogenesis in normal 

development but also exerts protective effects against cartilage damage. 
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2-4. Discussion 

 

Here, we elucidated molecular functions of ITGBL1 in cartilage formation and OA 

development. ITGBL1 is transiently and specifically expressed in developing chondrocytes 

and promotes chondrogenesis. Our data suggest that ITGBL1 inhibits integrin signaling in 

developing chondrocytes. Developing chondrocytes constantly contact and interact with the 

surrounding ECM, and the major receptors for the ECM are integrins. Integrin-ECM 

interaction were shown to be necessary and to positively regulate prechondrocyte condensation 

[52-55], whereas other studies reported conflicting data about the functions of integrins in 

chondrogenic differentiation [31, 57, 58]. Integrin-ECM interactions promote osteogenic 

differentiation while inhibiting chondrogenesis in mesenchymal stem cells [31]. Increased 

FAK activation prevents chondrogenesis [81], and intrinsic FAK expression is actively 

downregulated in developing chondrocytes [99]. Furthermore, increased cell-ECM contacts is 

a key signal for dedifferentiation of chondrocytes [93, 100, 101]. These previous studies 

suggest that developing chondrocytes must dynamically regulate integrin activities for cartilage 

formation and for protection against dedifferentiation and OA. Given the complex ECM-rich 

environment and the expression of multiple integrin subunits, it is a challenge for chondrocytes 

to minimize integrin-ECM interactions to proceed through chondrogenic differentiation and 

also to maintain chondrogenic properties despite dedifferentiation signals. Our data suggest 

that developing chondrocytes accomplish this task by expressing ITGBL1 and actively 

inhibiting surface integrins that may otherwise mediate ECM-driven negative signaling.  

Cell-ECM interaction is also critically involved in the pathology of destructive cartilage 

disorders. Cartilage damage induces expression of catabolic genes, such as Mmp and Adamts, 

which further damage cartilage and release fragmented ECM molecules into the synovial fluid.     
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These fragmented ECM molecules, such as fragmented fibronectin, are known to trigger 

catabolic gene expression in various cells in the articular tissues [62, 64]. Although there are 

conflicting reports regarding whether integrins are receptors for fragmented ECM molecules 

[62, 66-68], our data suggest that ITGBL1 reduces catabolic gene expression by inhibiting 

integrin activation. Further, we showed that ITGBL1 significantly reduces the binding of 29-

kDa Fn-fs to chondrocytes. Fluorescence-labeled 29-kDa Fn-fs strongly localized to focal 

adhesions, which is interesting because that fragment binds fibrin or heparin but not the 

integrins [102]. Although a previous study showed differential distribution of Fn-fs to the cell 

surface [103], here we show that the Fn-fs binds to focal adhesion sites in human chondrocytes. 

Our data is most compatible with the hypothesis that integrin-mediated focal adhesions may 

recruit other unknown receptors for fibronectin fragments to the focal adhesomes, or integrins 

may have as yet unidentified binding sites for fragmented ECMs. Further in-depth study is 

needed to address these interesting questions.  

We confirmed the protective role of ITGBL1 against OA development using an in vivo mouse 

model. The depletion of ITGBL1 induced OA-like damage in joint cartilages, which was 

partially recovered by the inhibition of integrin-α5β1 activity by ATN-161 peptide. Those 

results are consistent with a previous report that the chondrocyte-specific deletion of integrin-

α5 protects against OA development [76]. Although ATN-161 co-injection did not fully 

recover the OA-like damage induced by ITGBL1 depletion, the lack of full recovery may have 

been due to the activation of other types of integrins that were not inhibited by ATN-161. We 

further confirmed the protective functions of ITGBL1 in a DMM-induced OA model. 

Compared with the severe loss and damage to the joint cartilages in DMM-operated mouse 

knee joints, ITGBL1 overexpression by viral transfection significantly reduced joint cartilage 

damage, suggesting ITGBL1 has therapeutic utility for improving OA symptoms. For the 

DMM model, we used 10-week-old male mice, as the sex and age are critical in OA 
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development. Although the age of mice at the time of DMM operation varies from 8 weeks to 

12 weeks in the published literature, there is possibility that the skeletal system in 10-week-old 

mice is not fully mature and that the developmental program may affect the OA development. 

One study showed that DMM operation generally causes more severe OA in older mice than 

in younger mice [104], which suggests that the protective effects of ITGBL1 function may need 

to be examined further in older mice.  

One limitation in the current study is the viral transfection system used, which does not 

specifically target chondrocytes in the joint tissues. Although 50% of chondrocytes were GFP 

positive, indicating transfection, synovial cells were also targeted by the viral transfection. 

Increasing recognition of the role of synovial inflammation in OA development has led to the 

concept that synovial inflammation is an active player in OA progression and increased pain 

[105]. Based on previous reports showing that fragmented ECM can affect various cell types 

in joint tissues, the ITGBL1 transfections may have not only reduced catabolic gene expression 

from chondrocytes but also reduced the production of proinflammatory factors from synovial 

cells or synovial fibroblasts. We believe that further tissue-specific induction of ITGBL1 will 

address this important issue. Fragmented ECM molecules not only target chondrocytes but also 

trigger inflammatory responses in other cells, such as synovial fibroblasts, macrophages, and 

immune cells, in inflammatory conditions such as rheumatoid arthritis [106]. This feed-forward 

cycling is mediated by the interaction between integrin and fragmented ECM molecules in a 

broad range of cell types in joint tissues. Several integrin inhibitors have been examined for 

the treatment of inflammatory arthritis [107-109]. Dozens of integrin subunits are dynamically 

expressed in various cell types involved in arthritis development. Given the subtype-specific 

nature of integrin inhibitors, it is very challenging to reduce integrin-mediated destructive 

signals from all cell types. 
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Increasing numbers of patients suffer from OA. However, most current treatments only 

relieve symptoms, and no approved medicines can effectively restore damaged cartilage. Here, 

we found that ITGBL1 expression in human chondrocytes from patients with OA is decreased. 

Our in vivo experiments showed that ITGBL1 not only has functions in cartilage development 

but also actively participates in maintaining cartilage and protecting it from destructive signals. 

Unlike other known integrin inhibitors, such as ICAP1, DOCK1, and SHARPIN1, ITGBL1 is 

secreted and reduces integrin signaling by physically interacting with integrin. The unique 

function of ITGBL1 as a secreted integrin inhibitor points toward new approaches to treat 

integrin-mediated human diseases and destructive cartilage disorders. 
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Chpater3. Concluding and Remarks 

 

 

3.1 Summary and Conclusions 

 

As started chapter1, this part describes the basic knowledge required for the understanding of 

experiments used in this doctoral dissertation. The experimental animals and signaling pathway 

for the study of the craniofacial development were briefly described.  

In addition, chondrogenesis and integrin involved in cartilage formation important for facial 

formation were also described. And ITGBL is described briefly. 

At chapter2, I described the function and role of ITGBL1 in the RNAseq of the pharyngeal 

arch of Xenopus laevis. ITGBL1 is β-integrin-related extracellular matrix protein which was 

first cloned and characterized from an osteoblast cDNA library. It contains ten EGF-like repeat 

domains and signal peptide for secretion. Functional studies using Morpholino confirmed that 

ITGBL is essential for cartilage formation. In addition, it has the same function in human 

cartilage formation process. Based on several papers that early integrin-ECM interaction may 

be required to promoted prechondrocyte condensation. And integrin-ECM interaction need to 

be inhibited for further decondensation, ECM secretion and cell shape change to complete 

chondrogenesis. In this process, ITGBL1 inhibits integrin-ECM interactions and this integrin 

inhibition enables chondrogenesis after prechondrocyte condensation. In this situation, I 

confirmed that ITGBL1 acts as an integrin inhibitor. As well as cartilage differentiation, the 

abnormal integrin signal can induce cartilage-related diseases. Fragmented ECM in OA 

patients binds to integrin of chondrocyte, synovial fibroblasts and immune cells. And, this 

binding increase catabolic factors and proinflammatory factor expression. Then this 

inflammation damages ECM again, and increases fragmented-ECM again. In this process, 
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ITGBL1 breaks the vicious circle of aggravating reaction and causing continuous cartilage, and 

promotes cartilage regeneration. Unlike known integrin inhibitory protein, ITGBL1 is secreted  

And reduces integrin signaling by physically interacting with integrin. The unique function 

of ITGBL1 as a secreted integrin inhibitor points toward new approaches to treat integrin-

mediated human diseases and destructive cartilage disorders. And it can be used as a 

biopharmaceutical and used as a cell therapy agent.  
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Supplements 

 

 

 

 

 

Figure S1. ITGBL1 expression during chondrogenesis analyzed after siRNA transfection. 

A-B. ITGBL1 expression in human bone-marrow stem cells (hBMSCs) was analyzed by RT-PCR (A) 

and q-PCR (B) after siRNA transfection. Data are shown as mean ± SEM from three biological

replicates. 
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Figure S2. ITGBL promotes chondrogenesis. 

A. Chondrogenic differentiation of micromass-cultured ATDC5 cells was analyzed by Alcian blue 

staining, and glycosaminoglycan (GAG) production was measured. 
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Figure S2-1. ITGBL promotes chondrogenesis. 

B. FAK expression during chondrogenic differentiation of hBMSCs. The FAK level is almost 

completely repressed by Day 5 after chondrogenic induction. C-D. Hypertrophic maturation markers 

were analyzed during chondrogenic differentiation of ATDC5 cells in micromass culture after ITGBL1 

overexpression (G). Data are shown as mean ± SEM from three replicate experiments 
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Supplementary Table S1. List of top 100 putative secreted proteins identified from 

transcriptome analysis. 

List of top 100 putative secreted proteins that are differentially expressed in developing 

pharyngeal arches (Arch1, Arch2, and Arch3) and the dorsal/ventral parts of this region (ArchD 

and ArchV)   

 

SeqID 
log2F

C 
Arch1 Arch2 Arch3 ArchD ArchV 

LOC100491886.L|HS=TLL2|40|Xelaev18021897

m 
7.943 32.731 0.133 0.238 2.657 4.3 

sst.S|HS=SST|100|Xelaev18029613m 7.869 43.723 0.611 0.187 1.929 8.099 

clec19a.S|HS=CLEC19A|93|Xelaev18047527m 7.825 0.012 0.073 2.722 0.013 1.884 

fstl3.L|HS=FSTL3|86|Xelaev18006463m 7.311 0.065 1.509 
10.31

8 
0.383 8.008 

LOC100493098.L|HS=DNASE1L2|94|Xelaev180

45463m 
7.21 5.923 0.04 0.124 0.138 1.051 

unnamed|HS=CA14|77|Xelaev18042787m 7.102 10.163 0.425 0.074 0.131 0.89 

unnamed|HS=HGFAC|84|Xelaev18005068m 6.664 0.179 0.184 
18.14

8 
19.627 14.491 

unnamed|HS=C4orf48|46|Xelaev18005037m 6.647 3.908 0.111 0.039 0.24 0.179 

unnamed|HS=FETUB|74|Xelaev18029648m 6.635 0.115 1.254 
11.42

7 
46.345 10.328 

unnamed|HS=FETUB|66|Xelaev18027506m 6.349 0.144 1.23 
11.73

5 
56.671 8.782 

dct.L|HS=DCT|97|Xelaev18013152m 6.202 4.713 0.196 0.064 3.466 0.307 

tyr.S|HS=TYR|100|Xelaev18016340m 6.135 2.178 0.048 0.031 1.507 0.117 

unnamed|HS=TLL2|42|Xelaev18021894m 5.989 26.165 0.608 0.412 1.347 3.602 

fgfbp3.L|HS=FGFBP3|86|Xelaev18034766m 5.668 6.202 0.122 0.593 0.229 0.735 

c17orf67.L|HS=C17orf67|80|Xelaev18043803m 5.557 2.543 0.253 0.054 0.544 0.415 

serpinc1.L|HS=SERPINC1|93|Xelaev18023232m 5.493 0.746 2.766 
33.60

3 
28.227 27.363 
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unnamed|HS=C4orf48|46|Xelaev18008874m 5.407 3.395 0.228 0.08 0.352 0.233 

Xetrov90010415m.S|HS=NA|00|Xelaev18024389

m 
5.366 0.079 3.257 2.948 1.784 3.945 

LOC101733976.S|HS=EDN3|55|Xelaev18046257

m 
5.293 6.859 0.175 0.198 1.025 1.698 

unnamed|HS=CRISP3|77|Xelaev18028198m 5.239 2.115 0.056 0.19 0.222 0.451 

unnamed|HS=AGR3|85|Xelaev18044817m 5.171 31.098 5.1 0.863 2.592 19.559 

gbp6.1|HS=GBP1|70|Xelaev18001671m 5.037 0.095 0.636 3.119 0.55 2.308 

LOC100490489.L|HS=NA|00|Xelaev18027216m 4.89 7.381 0.756 0.249 0.983 0.864 

pcdh8.2.S|HS=PCDH8|70|Xelaev18015747m 4.856 0.334 2.276 9.672 3.254 6.536 

npb.L|HS=NPB|84|Xelaev18043747m 4.783 3.552 0.285 0.129 0.153 0.208 

slurp1l.L|HS=NA|00|Xelaev18023882m 4.659 5.888 0.233 0.287 0.34 1.482 

LOC100485272-

like.S|HS=ANGPT2|97|Xelaev18015134m 
4.625 0.169 2.106 4.171 0.465 4.39 

Xetrov90021952m.L|HS=TLL2|43|Xelaev180401

94m 
4.555 27.59 1.174 3.595 1.248 5.305 

gdf7.L|HS=GDF6|85|Xelaev18028105m 4.507 0.239 1.846 5.436 6.902 0.795 

pmel-like.S|HS=PMEL|58|Xelaev18015875m 4.109 22.369 4.832 1.296 7.076 4.256 

tyrp1.L|HS=TYRP1|97|Xelaev18006806m 4.076 3.525 0.562 0.209 2.119 0.427 

vwde.L|HS=VWDE|78|Xelaev18030909m 3.993 4.473 1.18 0.281 0.756 1.698 

mcam-like.1|HS=MCAM|96|Xelaev18000065m 3.986 1.822 28.877 4.827 12.698 5.902 

sfrp1.L|HS=SFRP1|88|Xelaev18018658m 3.951 3.629 14.22 
56.13

7 
21.051 53.337 

apoc1-like.L|HS=NA|00|Xelaev18036025m 3.926 
396.08

3 

124.12

1 

26.05

8 

112.82

8 

124.84

2 

mxra5.L|HS=MXRA5|43|Xelaev18011748m 3.876 3.993 1.212 0.272 0.62 1.325 

unnamed|HS=TLL1|44|Xelaev18021890m 3.871 80.83 17.585 5.526 18.007 37.359 

fstl3.S|HS=FSTL3|87|Xelaev18009939m 3.871 0.41 1.178 6 0.503 5.87 

hebp2.L|HS=HEBP2|79|Xelaev18026611m 3.862 7.083 0.976 0.487 0.71 1.197 

apoe.L|HS=APOE|85|Xelaev18036024m 3.792 53.004 16.025 3.827 5.81 16.975 

slc8a1-

like.S|HS=SLC8A1|100|Xelaev18028910m 
3.791 0.553 0.749 7.653 0.558 6.617 
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cpn1.S|HS=CPN1|87|Xelaev18037048m 3.728 20.386 2.279 1.539 6.064 4.589 

LOC100496022.1|HS=PRSS27|92|Xelaev180016

42m 
3.708 21.708 7.858 1.661 3.825 13.988 

c8b.L|HS=C8B|93|Xelaev18023028m 3.61 0.502 1.028 6.13 14.667 7.128 

unnamed|HS=RBP4|89|Xelaev18037044m 3.608 17.786 15.571 1.459 9.927 4.092 

itga7-like.L|HS=ITGA7|95|Xelaev18013342m 3.573 0.694 0.799 8.258 0.479 5.348 

lrrn4.S|HS=LRRN4|97|Xelaev18028812m 3.506 0.337 0.967 3.828 1.595 5.497 

LOC100487362.L|HS=LY9|32|Xelaev18040478m 3.505 2.838 1.656 0.25 0.178 0.367 

rspo2.L|HS=RSPO2|100|Xelaev18032283m 3.424 6.911 2.565 0.644 1.476 1.476 

pyy.S|HS=NPY|96|Xelaev18046061m 3.418 0.355 0.218 2.33 0.794 0.257 

f2.S|HS=F2|98|Xelaev18024485m 3.414 0.39 0.933 4.157 4.675 3.267 

sel1l3.S|HS=SEL1L3|95|Xelaev18008974m 3.29 2.298 0.685 0.235 0.336 1.208 

unnamed|HS=LCN15|99|Xelaev18038205m 3.213 19.124 3.417 2.063 4.538 6.52 

unnamed|HS=ANGPT1|101|Xelaev18032282m 3.155 0.28 0.597 2.494 1.191 1.104 

nrn1.S|HS=NRN1|75|Xelaev18033414m 3.09 2.291 0.584 0.269 0.787 0.153 

fibin.S|HS=FIBIN|100|Xelaev18024379m 3.049 1.484 12.282 3.127 6.681 3.054 

olfml2a.S|HS=OLFML2A|96|Xelaev18041818m 3.046 7.192 1.606 0.871 1.836 2.419 

tgfb2.S|HS=TGFB2|100|Xelaev18028671m 3.035 1.73 6.055 
14.17

5 
6.469 18.302 

unnamed|HS=GP1BB|57|Xelaev18010547m 3.032 0.354 0.441 2.895 3.358 2.148 

unnamed|HS=TECPR1|7|Xelaev18036521m 3 4.055 2.121 0.507 0.423 2.221 

LOC100489571.S|HS=MMP8|97|Xelaev1801625

9m 
2.96 1.139 8.863 4.084 0.027 3.147 

ITGBL1.S|HS=ITGBL1|95|Xelaev18015636m 2.952 2.569 0.842 0.332 0.565 0.789 

unnamed|HS=SCN4B|90|Xelaev18035439m 2.871 0.958 2.188 7.008 2.412 5.981 

unnamed|HS=TMEM213|58|Xelaev18002504m 2.865 3.455 13.317 
25.16

6 
26.303 16.039 

unnamed|HS=TNNT3|67|Xelaev18024361m 2.857 1.944 6.248 
14.08

3 
4.678 8.964 

unnamed|HS=CRISP3|79|Xelaev18030177m 2.852 6.094 1.635 0.844 1.303 2.18 

unnamed|HS=ANGPTL5|64|Xelaev18021227m 2.835 5.622 1.554 0.788 0.778 1.391 

unnamed|HS=LOXL4|96|Xelaev18034711m 2.823 2.066 0.468 0.292 0.698 0.539 
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prrt3-like.L|HS=PRRT3|67|Xelaev18024053m 2.819 3.727 1.313 0.528 0.91 0.589 

Xetrov90018420m.1|HS=ROBO4|99|Xelaev1800

3883m 
2.79 2.325 3.695 

16.08

2 
8.331 10.299 

Xetrov90024887m.L|HS=NA|00|Xelaev18043270

m 
2.786 6.387 1.799 0.926 0.743 2.384 

fgf3.S|HS=FGF3|78|Xelaev18024490m 2.763 4.625 0.833 5.655 8.273 3.668 

unnamed|HS=APELA|100|Xelaev18003936m 2.747 3.911 8.978 
26.24

9 
11.39 22.66 

Xetrov90018420m.L|HS=ROBO1|17|Xelaev1803

5307m 
2.712 2.853 3.26 

18.69

6 
13.616 8.351 

nov.S|HS=NOV|88|Xelaev18033972m 2.691 0.99 3.13 6.393 6.832 2.166 

unnamed|HS=NELL2|93|Xelaev18017595m 2.688 3.539 0.549 1.623 1.913 1.051 

cdh15.S|HS=CDH15|96|Xelaev18024865m 2.654 6.662 15.01 2.384 5.413 7.229 

igdcc3.L|HS=IGDCC3|89|Xelaev18018436m 2.64 4.418 2.005 0.709 2.334 1.009 

fgf8.L|HS=FGF8|79|Xelaev18034665m 2.609 19.454 3.188 9.32 11.654 11.125 

unnamed|HS=ATP6AP1|92|Xelaev18017668m 2.608 0.643 1.909 3.919 4.359 2.667 

c6.2.L|HS=C6|100|Xelaev18008334m 2.588 0.925 1.463 5.56 6.348 4.378 

unnamed|HS=CA4|90|Xelaev18010514m 2.569 2.391 0.566 0.403 0.673 0.462 

clec19a.L|HS=CLEC19A|83|Xelaev18045207m 2.558 0.525 1.552 3.091 0.9 2.85 

unnamed|HS=CACNA2D4|93|Xelaev18003010m 2.556 1.986 1.461 8.592 6.055 3.817 

unnamed|HS=NELL2|93|Xelaev18021119m 2.541 2.218 0.381 0.39 1.124 0.573 

unnamed|HS=KDR|96|Xelaev18009068m 2.525 1.047 5.879 6.025 3.959 7.705 

fam132a.S|HS=FAM132A|107|Xelaev18037500m 2.514 0.426 0.895 2.433 0.411 2.035 

LOC101733976.L|HS=EDN3|53|Xelaev18043542

m 
2.449 2.544 1.992 0.466 2.728 1.195 

nog2.S|HS=NOG|95|Xelaev18047671m 2.448 2.93 1.76 0.537 0.86 0.411 

npr3-like.L|HS=NPR3|90|Xelaev18008385m 2.429 8.499 3.773 1.578 2.862 2.916 

unnamed|HS=LY86|82|Xelaev18031614m 2.396 2.379 0.482 0.452 0.929 0.547 

Xetrov90000623m.L|HS=SHISA3|93|Xelaev1800

5242m 
2.381 7.436 6.743 1.428 1.119 4.449 

ramp2.L|HS=RAMP2|61|Xelaev18043825m 2.377 1.44 3.696 7.482 5.008 3.22 

igfbpl1.L|HS=IGFBPL1|74|Xelaev18006653m 2.372 4.945 8.355 1.614 6.356 4.638 
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stc2.L|HS=STC2|104|Xelaev18017248m 2.37 42.763 18.002 8.272 11.249 12.744 

LOC100496170-

like.1|HS=IZUMO1R|68|Xelaev18000799m 
2.37 11.898 2.97 2.301 3.944 4.662 

prtn3-like.1.L|HS=PRTN3|85|Xelaev18006264m 2.367 0.524 1.797 2.704 0.556 1.014 

fgfbp2.L|HS=FGFBP2|99|Xelaev18005148m 2.359 15.019 14.741 2.928 0.936 12.958 

unnamed|HS=CFI|105|Xelaev18005652m 2.32 3.237 7.08 
16.16

7 
28.023 12.637 

mmp11.S|HS=MMP11|92|Xelaev18010511m 2.316 3.304 2.639 
13.13

7 
1.768 11.177 
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Acknowledgements 

지난 7 년동안 느리고 많이 부족하지만 믿어주시고 기다려주신 교수님께 감사합니다. 박사 과정 

동안 많은 것을 배웠고 제가 살아가면서 좋은 경험과 밑거름이 될 것이라 생각합니다.  

 바쁘신 일정에도 박사 학위 심사에 참여 해주신 권태준 교수님, 박찬영 교수님, 김정범 교수님 

그리고 경북대 이현식 교수님 이 자리를 빌어 감사의 말씀 전하고 싶습니다. 저에게 주신 따끔한 

충고 흘려 버리지 않고 살이 될 수 있도록 더 노력하고 배우겠습니다. 그리고 유니스트에서 정말 

많은 동료들을 알게 되었습니다. 저에게 언니 같이 선생님 같이 충고해 주시고 관심을 가져주신 

혜경언니, 지은언니, 그리고 우리 막내 현아 정말 감사하고 이분들 덕분에 학교생활이 즐거웠고 

뜻 깊었습니다.  

 7 년 동안 함께 했던 효정아 실험실의 궂은 일과 업무를 투정하지 않고 다른 멤버들에게 피해가 

가지 않도록 잘 해 주고 배려해 줘서 정말 고맙다. 그리고 언니가 하는 모든 부탁 언제나 웃으며 

도와 주고, 힘들 때 함께해 줘서 박사 과정이 힘들지 않았어. 넌 어디서든 가서 사랑 받을 거야.  

 그리고 7 년 동안 함께 했던 동길아 언제나 누나들 배려해 주고 생각해주는 마음 정말 고마웠어. 

알아 가면서 더더욱 유쾌하고 누나들 즐겁게 해줬던 동길이 덕분에 실험실이 즐거웠고 웃음이 

떠나가질 않았던 것 같아.  

 항상 아픈 손가락 근영아. 누나 눈치 보면서 생활하느라 고생했다. 누나가 쓴 소리 해도 웃어 

넘기며 배려해주는 마음 말 안 해도 누나는 알고 있어. 이제 박사과정이니깐 너가 맡은 일에 

좀더 적극적이고 최선을 다했으면 좋겠다. 그리고 하은아 막내로서 많은 일은 하면서 언니, 

오빠들 눈치 보느라 고생이 많다. 항상 먼저 다가와 언니가 뭐가 필요한지 물어봐 주고 언니 바 

쁠 때 눈치껏 알아서 척척해가는 하은이 힘들겠지만 열심히 하는 너의 모습 정말 보기가 좋아.  

 모든 저의 랩 멤버들 힘들 때 마다 서로 격려해주고 제가 마지막 논문을 내기까지 많이 참아 

주고 자기 일처럼 걱정해주고 양보해 주었습니다. 정말 최고의 랩 멤버였다고 다시 한번 할 하고 

싶습니다. 
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 제가 늦은 나이에 과정을 시작하여 많이 걱정하시고 아낌없이 지원해주신 저의 부모님께 정말 

감사하며, 그리고 항상 걱정하는 마음과 같은 일은 하면서 묵묵히 지켜 봐주고 의지할 수 있게 

든든한 동반자로서의 역할을 해준 저의 남편에게도 고맙다는 말을 하고 싶습니다. 

 모두 언급을 하지 못했지만 저를 도와 주신 모든 분들께 이 기회를 통해 감사의 말씀을 

드립니다. 마지막으로 이 논문을 마무리 할 수 있게 도와 주신 저의 교수님께 다시 한번 감사 

드립니다.  
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