

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/213600522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

SLM-DB: Single-Level Key-Value Store with

Persistent Memory

Olzhas Kaiyrakhmet

Computer Science and Engineering

The Graduate School of UNIST

2019

SLM-DB: Single-Level Key-Value Store with

Persistent Memory

Olzhas Kaiyrakhmet

Computer Science and Engineering

Graduate School of UNIST

SLM-DB: Single-Level Key-Value Store with

Persistent Memory

A thesis

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Computer Science and Engineering

Olzhas Kaiyrakhmet

12.12.2018

Approved by

Advisor

Young-ri Choi

SLM-DB: Single-Level Key-Value Store with

Persistent Memory

Olzhas Kaiyrakhmet

This certifies that the thesis of Olzhas Kaiyrakhmet is approved.

12.12.2018

signature

Young-ri Choi: Advisor

signature

Sam H. Noh: Thesis Committee Member #1

signature

Beomseok Nam: Thesis Committee Member #2

Abstract

This work investigates possible integration of persistent random access memory (PM) support to key-

value (KV) stores in order to provide more supreme performance and consistency than currently existing

solutions. Due to byte-addressable and persistent benefits of the new memory, a novel type of KV-store

has been born out of a blend B+-tree and Log Structured Merge Tree data structures, which is called

Single-Level Merge DB (SLM-DB). Both of the trees’ benefits have been embraced to the new design

improving IO throughput, and as well as decreasing write and read disk amplification. New architecture

exploits PM to reside B+-tree to index data stored in the disk and write buffer to store all new updates,

which similar to LSM-tree approach. Data stored in the disk are partitioned to files and organized as a

single level, unlike to LSM-tree, and SLM-DB does operate selective compaction on KV pairs in order

to do garbage collection and maintain data sequentiality. Such architectural approach made SLM-DB

have a more superior performance from LevelDB in read throughput for 1.96 and in write throughput

for 2.2, with commensurate range query result, while incurring only 39% of competitor’s disk write on

average. Additionally, KV-store’s architecture secures full consistency of the data, which ensures full

recovery after any crash.

Contents

I Introduction . 1

II Background . 4

2.1 Key-Value Store Operations . 4

2.2 Log Structure Merge Tree . 4

2.3 LevelDB . 5

2.4 Limitations of LevelDB . 7

2.5 Persistent Memory . 9

2.6 B+-tree . 10

III Architecture . 11

3.1 Persistent Memtable . 12

3.2 B+-tree Index on PM . 13

3.3 Selective Compaction . 14

3.4 Crash Recovery . 16

IV Evaluation . 18

4.1 Methodology . 18

4.2 Using a Persistent Memtable . 19

4.3 PM sensitivity . 20

4.4 Results with Microbenchmarks . 20

4.5 Results with YCSB . 22

4.6 Analysis . 24

V Related Work . 27

VI Conclusion . 29

References . 30

List of Figures

1 LSM-tree with K+1 components . 4

2 LevelDB architecture . 5

3 Locating overhead over various value sizes . 8

4 SLM-DB architecture . 11

5 Insertion to a persistent skip-list . 12

6 Random write performance comparison . 19

7 SLM-DB throughput performance with different PM latency over value sizes compared

to LevelDB . 20

8 db_bench performance of SLM-DB normalized to LevelDB with the same setting 21

9 YCSB performance of SLM-DB normalized to LevelDB with the same setting 23

List of Tables

1 Read operations’ overhead breakdown (in us) . 8

2 Comparison of different memory technologies . 9

3 YCSB throughput (operations/sec) results for LevelDB and SLM-DB 24

4 YCSB latency (us/operations) results for LevelDB and SLM-DB 24

I Introduction

Industry reports a fast pace growing demand on data-intensive applications that can handle large read and

write throughput [1, 2]. That issue was presented by Yahoo!, stating that the requirement of application

is becoming data driven by each day [3]. That leads to intensive research and development of key-value

stores.

A key-value store, or key-value database, is a data storing paradigm with the idea of managing associated

data. Data that can be stored varies from small words to documents and pictures, each needing it is own

way of handling it. With an extension of key-value stores with a query language, NoSQL database

can be implemented, such as this [4, 5]. That is why KV-stores have been playing a crucial role in

applications, such as web indexing [6], social networking [7], online shopping [5], and cloud photo

storage [8]. Typical key-value stores are using LSM-tree [9], B-tree [10] and Hash-Table [11]. However,

latter one lacks range query operation due to not maintaining sequential indexing structure. Therefore,

LSM-tree and B-tree data structures are more popular to be used for wide-range purpose applications.

LSM-tree and B-tree fundamentally differ from each other, where each has winning point. First one

excels on write and sequential read, where second performs better for random read [12]. B-tree based

KV-stores, such as KyotoCabinet [13], incur small random writes to disk during key-value insertion

operations and undergo high write amplification to maintain stable structure [14]. Therefore, B-tree is

more suitable for read-intensive applications.

LSM-tree based KV-stores are more suited to application uses with high write throughput demand. Ap-

plications like Bigtable [6], LevelDB [15], RocksDB [7] and Cassandra [4] are widely used for such

purposes, varying from single node database to distributed storage. Tree benefits it’s high write per-

formance to an in-memory buffer and sequential disk writes. Write operations load key-value pairs to

memory and concurrently unload buffer in batches, writing them to disk storage making the sequential

insert. Due to that, structure undergoes high read and write amplification clustering key-value pairs

stored together multiple times. The reason is LSM-tree organized as multiple levels of files, where files

batches get merge-sorted from one level to next, to facilitate a fast search.

Key-value store performance can be increased by using better performing hardware, like replacing HDD

by SSD. However, only that is not enough to fully exploit the benefits of faster hardware, but a redesign

of architecture is needed [16, 17]. Therefore, research of key-value stores for new persistent memory

gains momentum [1, 18, 19]. Persistent memory (PM) is prominent hardware that is going to be both

non-volatile and byte-addressable, such as phase change memory [20], spin transfer torque MRAM [21],

1

and 3D Xpoint [22]. It is projected for the PM to be having near-DRAM read latency, with higher write

latency for up to 5 times and lower bandwidth for up to 5∼10 times compared to DRAM [23–27]. New

memory is going to have a large capacity, and it is expected to coexist with SSD and HDD [24, 25].

With all stated above, persistent memory opposes present storage technologies, like flash-memory and

hard-disk, making it appealing. Withal, it will make more outstandingly attractive to have application

work with it efficiently, using all assets of upcoming memory.

This work presents a new KV store that adopts PM to improve IO throughput, the Single-Level Merge DB

(SLM-DB). Taking advantage of both data structures, B+-tree and LSM-tree, and as well as new memory

architecture, making this DB achieve outstanding results. It performs high results on random query read

operations with high write throughput. On top of that, SLM-DB does low write amplification and near-

optimal read amplification, since it does one block read operation per read query. This is accomplished

due to the persistent B+-tree index that finds a KV pair without any additional disk access, which is

not the case in most of the LSM-tree based databases. High write throughput managed by using LSM-

tree technique of in-memory buffering of KV updates, persisting in PM. Also, DB stores all necessary

metadata in persistent memory. By doing that, SLM-DB can avoid any redundant logging, obtains strong

consistency of the system and faster recovery time.

In SLM-DB, key-value pairs are mainly stored on disks organized in single-level. Having B+-tree in

the system, DB does not have the requirement to keep all KV pairs in sorted order, which significantly

reduces write amplification. Still, obsolete KVs are in need to be garbage collected. Additional to it,

it is preferred to keep some scale of sequentiality of KV pairs on disks to produce adequate results for

range queries. Therefore, a compaction scheme performs a range bound merge of key-value pairs stored

on disks, called selective compaction.

The main contributions of this work are as follows:

• Taking advantage of new memory’s benefits to maintain most of the critical parts of the system.

Those are B+-tree index, in-memory buffer and disks storage’s metadata. First, one gives advan-

tage on indexing KV pairs and relaxes a restriction of fully sorted ordered data, reducing write

amplification. Second, it does buffer recent updates in persistent memory and extra data logging.

And the latter gives the advantage of saving critical information about disk organization in new

memory and employ it for fast recovery after a crash.

• Developing mechanism of selective compaction that deletes unused key-value pairs and keeps

sufficient sequentiality of data for scan operations. The mechanism is based on the following

three schemes: (1) live-key data ratio of a file; (2) a leaf node scans in the B+-tree for data

2

sequentiality; (3) a degree of sequentiality per user’s range query request. This approach prevents

a huge amount of data rewriting and produces reasonable results for range queries.

• Fast recovery mechanism after a system failure, which totally relies on metadata and logs saved

on persistent memory. There is no more rely upon disk logs and MANIFEST file, therefore SLM-

DB can load the system state almost in an instant and recovering some of the error states from

replaying the log. This feature is an extension of the prior study [28].

• Implementing SLM-DB on top of LevelDB codebase and using Hwang et al [24] work of persis-

tent B+-tree. The implementation is designed to be fully consistent on system failure with fast

recovery procedure and strong guaranteed data durability. Evaluation of the work by db_bench

microbenchmark [12, 15] and YCSB benchmark [29] have shown superior performance result up

to 1.96 times in read throughput and up to 2.2 times in write throughput compared to LevelDB,

and with commensurate performance on range query. During the experiment, SLM-DB has done a

less total disk write operations, only 39% and 27% of those of LevelDB on average, for db_bench

and YCSB workloads respectively.

3

II Background

In this section will be discussed background topics of this study. Firstly will be described common key-

value store operations. Next, transcending to log-structured merge tree and it’s famous implementation

- LevelDB. Furthermore, we will be touching about persistent memory and some tricks to work with.

The section will be concluded by covering B+-tree.

2.1 Key-Value Store Operations

Get. Get(key) operation retrieves most relevant data associated with the key. If there is no such data,

an error message gets returned.

Put. Put(key, value) operation inserts value data into the storage, persisting it, and creating an

associated index by key to the value. If there is data already exists in the storage to the associated key,

data gets updated.

Iterators. Most of the key-value stores provide iterators over the entire data. Data usually sorted by

associated index keys, allowing it to iterate in sequential order by next() operation. Also, iterator

allows to jump over to certain key to iterate, calling seek() operation. Additional to it, a user can a

specify special way of sorting data by setting a comparator.

Range Query. RangeQuery(key1, key2) operation returns all the data with index keys in the range

between key1 and key2. Often, a range query is implemented by using iterator by calling its function

seek() and iterating until key2.

2.2 Log Structure Merge Tree

Figure 1: LSM-tree with K+1 components

4

Log Structured Merge tree (LSM-tree) is a data structure with a high-performance attribute for large

volume data insertion that provides indexed access to it. LSM-tree usually maintains key-value pair type

of data storing. The data structure is divided into levels or components, where each corresponds to its

own data structure to effectively manage data in an underlying storage medium.

Conceptually, Log Structure Merge Tree consists of two components, C0 and C1. C0 does reside in

memory and usually referred to as write in-memory buffer. C1 is a disk-based component, where it

holds most of the data in the tree since C0 cannot hold much of data inside of expensive memory.

All instruction always accesses C0 first and C1 next. For insertions of key-values, the tree inserts pair

directly to C0, buffering them into small but fast memory. A large volume of insertion makes C0 grow in

size and when it gets to the certain size threshold. Therefore, memory component will concurrently move

large batch data to C1, merging them together and doing sequential disk insert. For a read instruction,

the tree will query for data C0 first, and if not found, will query C1. This way LSM-tree exploits the

benefits of the leveled approach, sequential disk writes and optimized data structure for underlying

storage mediums, which makes it achieve fast write performance and reasonable read performance.

In real implementations, LSM-tree does have more components than two, which is also suggested by

the data structure authors. Figure 1 shows an LSM-tree of K + 1 components divided into in-memory

component C0 and disk residing components from C1 to CK . Whenever some component Ci is getting

larger than a certain threshold for it, it moves batches of data to Ci+1, merging data. Each component i

has larger data capacity than i−1, making component K largest. Due to the multi-component approach,

each data retrieval should query components from 0 to K until found, making read operation quite

expensive.

2.3 LevelDB

Figure 2: LevelDB architecture

5

LevelDB is most popular LSM-tree implementation inspired by Google’s BigTable [6] that is widely

used in production for many applications. LevelDB supports all basic KV store operations: put, get,

delete. Also, it provides an iterator, which iterates lexicographical among keys and being able to retrieve

values. From Figure 2, LevelDB is divided into memory and disk components, as defined in LSM-tree.

Memory components are Memtable and Immutable Memtable. Main disk components are Sorted String

Table (SSTable) files that organized in multiple level structure. Additionally, data log and manifest log

are persisted on disk to guarantee recoverable state.

Memtables are implemented using a skip-list data structure, which guarantees O(logn) average time for

search and insertion, keeping the ordered sequence of elements. Memtable is used as write in-memory

buffer to speed up input operation. In LevelDB’s Memtable, any delete operation is treated as an update

with tombstone marker. When Memtable’s size caps a threshold, it is marked as immutable and replaced

by new Memtable to continue buffer incoming writes. In the meantime, Immutable Memtable gets

scheduled for disk flush in a background thread, creating new SSTable file. That new SSTable file goes

directly to L0 of disk component in LevelDB.

All key-value updates do not go directly to Memtable, but first being persisted on Write Ahead Log

(WAL). This is done to guarantee recovery of Memtable in case of system crash. Only after being

logged, KV pair will be inserted into Memtable. So, when Memtable gets flushed to disk, data log will

be deleted together with in-memory buffer. However, LevelDB does not commit updates to the WAL

by default, calling fsync() operation. This is done to trade off durability and consistency for write

performance.

Disk component of LevelDB is arranged as multiple level structure, from the lowest L0 level to the

highest LK level. Any level Li is 10 times larger in size capacity than the next lower level Li−1. Each

level consists of SSTable files, and in levels from L1 to LK , files’ key ranges do not overlap with other

to be arranged in sorted order. The exception is L0, as Immutable Memtable flushes new SSTable into

the level without doing any merge because doing so will stall Memtable to be marked as Immutable.

That will lead to pause all update operations in the system. Therefore, LevelDB skips expensive merge

operation between Immutable Memtable and L0.

In order to keep levels L1 to LK organized, LevelDB does compaction operation on the background.

Compaction is the operation that merges one file from Li with Li+1, keeping Li to be oversized. File

from Li and overlapping files from Li+1 are merged together, performing merge sort algorithm. All older

key-value pairs from Li+1 will be overwritten by newer key-value pairs from Li. For compaction, file

from Li is picked in a round-robin manner and Level i is chosen from the most oversized level ratio.

6

Compaction for L0 is almost similar, except when it tries to merge L0 with L1, more than one file from

L0 are picked. There are several files that overlap with each other, which are picked from L0 and being

merged with other overlapping files from L1. In the end, LevelDB uses compaction to keep files sorted

in level for quick search and to perform garbage collection in files.

LevelDB persists LSM-tree organization in a log file called MANIFEST. Each time there is a change of

structure in LSM-tree, like new file(s) created by flush or compaction, that change is logged to manifest

file. Logged information includes changes in levels and new SSTable files’ metadata, which consists of

size, file name and a key range of the file. Once the state gets logged, any existing obsolete files are

purged from the system. Therefore, after each flush and compaction operation, changes in LSM-tree

structure are committed to log, persisting LevelDB’s state to the disk for recovery.

2.4 Limitations of LevelDB

Slow read operations. When LevelDB does read operation (i.e., point query), it sequentially searches

memory components first and if not found, looks in disk components. So, priority is given first to

Memtable, and after to Immutable Memtable, only then it searches in the disk from L0 to LK . That

sequence check from most recent updated component to least recently updated one, retrieving freshest

key-value pair if the same key exists in the system. To query Memtables, it is a straightforward skip-list

search operation. When it searches in the disk, LevelDB needs to find an SSTable file that contains

needed key-value pair and that’s quite expensive for the system.

LevelDB does not contain any per-key indexing, so it needs to search for a file from L0 to LK first. For L0

system does a linear search that might contain the key, and for other levels - binary search. The reason

is that files in L0 might overlap, whereas in levels L1 to LK do not and sorted. By finding a file does not

guarantee the existence of the key in the file. LevelDB looks for index block of the file, which stores the

information of each data block’s first key in the file, to find corresponding data block of the file by doing

a binary search. To avoid unnecessary data block read, which is 4KB or larger, the system can check

Bloom filter of that data block. Only then it reads the data block and tries to retrieve key-value pair from

there. If not found, LevelDB looks for the next file and does that until the key-value pair is discovered.

It is noticeable, LevelDB does many disk read operation in order to find a key-value pair for user’s

get operation. For example, Table 1 drop downs all overhead for searching random KV pair in the

system with and without Bloom filter. Results were evaluated by db_bench benchmark [15] on 4GB

DRAM machine setting with 1KB value size and 8GB data pre-inserted into the database. Details of

the environment that have been used are discussed in Section IV. Table sections description: File search

7

KV store File search Block search Bloom filter Unnecessary block read

LevelDB w/o BF 0.79 3.25 0 13.60

LevelDB w BF 0.78 3.05 0.88 10.69

SLM-DB 0.98 0 0

Table 1: Read operations’ overhead breakdown (in us)

- time spent on finding an SSTable file containing searched key; Block search - operation time used

for locating(indexing) a corresponding block in the file; Bloom filter - time to check bloom filter; and

"Unnecessary block read" refers to overhead read of the file and block when the key does not exist there.

The last one causes the most overhead due to not having per-key indexing and a need to query levels

L0 to LK of disk component making expensive disk operation. As is shown in the table, SLM-DB does

insignificantly low overhead locating needed block. After discovering and reading the right data block

from the disk, KV pair gets extracted from the block. For the above results, the average time used to

read and process a data block for all three databases - 320.5 microseconds.

Figure 3: Locating overhead over various value sizes

Figure 3 shows a comparison of LevelDB with and without Bloom filter for overhead portion ratio from

random read operation over various value sizes. The ratio is search overhead’s percentage to the total

read operation latency. The table clearly shows us the direct correlation of value size increase and read

operation’s overhead. LevelDB does much less overhead for large value sizes with enabled Bloom filter.

However, it still high, taking around 24% of the total read time as overhead will significantly grow with

value size. This is a disadvantage of LSM-tree approach for a read operation that requires a system to

do the search of several disk components until the right key-value pair is found.

High write and read amplification.

The community has well investigated an issue of LSM-trees related to high write and read amplification

[2, 14, 17, 30]. High write amplification caused by constantly keeping files sorted in all levels of disk

component hierarchy by continuously doing a merge-sort batch of files. Background thread does merge

8

files from level to level without a stop until files are fully organized, while at the same time serving

incoming KV pair insertions on the foreground. The write amplification ratio, which is described as the

ratio difference between the total size of data written to disk and the total amount of data requested to

insert by a user, can be higher than 10× k for an LSM-tree with k levels [2, 17, 30].

2.5 Persistent Memory

Category Read latency Write latency Random accessing Data persistence

DRAM 60ns 60ns High False

PCM 50 ∼ 70ns 150 ∼ 1000ns High True

ReRAM 25ns 500ns High True

NAND Flash 35us 350us Low True

Table 2: Comparison of different memory technologies

Emerging persistent memory (PM) technologies, such as Phase Change Memory(PCM) [20], Resistive

Memory (ReRAM) [31], Spin Transfer Torque MRAM [21], and 3D Xpoint [22] can provide faster

persistence than traditional Disk and Flash as well as being byte-addressable. Table 2 shows the charac-

teristics of different memory technologies. Read latency is expected to be similar to DRAM, but write

latency to be longer. The high performance of PM is going to be achieved by using the same bus inter-

face as DRAM. For persistence of data on PM, the atomic transaction should be used when there are

memory updates. Failure atomicity unit of PM is expected to be 8 bytes [32, 33]. This should be taken

into consideration when designing persistent data structures, so every update can ensure consistency in

case of a crash.

In current modern processor, memory write operations might be reordered in the unit of a cache line

to maximize memory bandwidth. Also, updates are done in CPU stay in cache until it gets evicted.

Therefore, every update can not ensure data to be written to memory directly. Thus, expensive memory

mfence and cache flush instructions (CLFLUSH and MFENCE in Intel x86 architecture) need to be called

explicitly [19, 24, 32–35]. Also, need to be aware of data size to be flushed, as atomicity unit is 8 bytes.

If data size to be flushed to persistent memory is larger, then only partial data update will be done in

case of failure leading to inconsistency of the data. For that, techniques like COW and logging are used.

So, a software architecture for PM should be designed carefully in order to guarantee consistency.

Persistent Memory opens doors to many possible opportunities in the software world. Especially to the

ones that deal data-intensive computations. That is way, it is crucial to delivering a fast performing KV

store.

9

2.6 B+-tree

Initially, B-tree was designed to be stored on disk, while being buffered into memory in order to provide

efficient and persistent indexing. That allows B-tree to perform a single disk seek each time an uncached

data is requested by a user. Modification B-tree, B+tree, does change the structure of nodes, so key-

value pairs are only stored in leaf nodes. That makes B+-tree key-value iteration more efficient. While

performing efficiently for read and scan requests, it lacked performance on updates, which required to

do expensive disk write operation each time. Therefore, it has a lower demand for high write throughput

application, unlike LSM-tree.

With an advance of storage technologies, like SSD, update operations in B-trees made less overhead.

However, upcoming new persistent memory makes B-tree very appealing. Due to new memory ar-

chitecture, it became possible to avoid the long living disadvantage of B-trees, slow persistent update

performance [24, 33–35].

10

III Architecture

Figure 4: SLM-DB architecture

Design and implementation of our key-value database, Single-Level Merge DB (SLM-DB), is explained

in this section. Overall picture to system architecture is on Figure 4. Alike LevelDB, SLM-DB has

Memtable and Immutable Memtable, but with a change of making them reside on persistent memory.

Therefore, making those component persistent grants ability to avoid write-ahead log (WAL), and pro-

viding strong durability and consistency on any system failure. The developed key-value database has

a disk component organized as a single level of SSTable files, which is different to all common LSM-

tree databases. Thus, it has been named as Single-Level Merge DB. By having an only single level,

the system is not required to do merge operation from level to level and so, making less key-value pair

rewrites. This architecture with persistent buffer component and single-level disk organization allows

to significantly reduce write amplification and have improved write performance. This presented design

architecture has been revised and added with the extra feature of persistent LSM-tree, compared to the

prior work [28].

In order to be able to read data for an associated key from the single level disk component, SLM-DB

has a persistent B+-tree index for that. With that, every key in the system is indexed, so no need of

having fully sorted order in the level to find a key-value pair. Yet, by doing that system does not trigger

compaction, which does garbage collection of obsolete key-value pairs. Additionally, not having to sort

the level, hurts the performance of range queries, which does benefit on sequentiality of key-value pairs.

Accordingly, a selective compaction scheme, which selectively merges SSTable files, is developed in

the SLM-DB. Besides, SLM-DB is fully consistent on system failure, as it ensures that B+-tree and

(single-level) LSM-tree is being consistent by having a back up during every compaction, which is a

compaction log stored on PM.

Source code implementation is done on top of the LevelDB (version 1.20). Memtable implementation

has been upgraded to persist it on PM. SSTable file format and merge-sort algorithm of multiple SSTable

files have been left untouched. The system saves all needed information, like the list of valid files and

11

file metadatas, on the PM, so it can have fast recovery from any crush. Also, read logic implementation

(i.e. random read and range queries) have been completely changed from vanilla LevelDB by using a

persistent B+-tree.

For an implementation of persistent B+-tree, FAST and FAIR B+-tree [24] have been chosen to be in

SLM-DB. It has shown an outperforming result from other state-of-the-art persistent B-trees in range

query workloads since it kept all keys in sorted order. Moreover, FAST and FAIR B+-tree achieves

the highest write throughput by taking advantage of the memory level parallelism and the ordering

constraints of dependent store instructions.

3.1 Persistent Memtable

Figure 5: Insertion to a persistent skip-list

Algorithm 1 Insert(key, value, prevNode)
1: curNode := NewNode(key, value);

2: curNode.next := prevNode.next;

3: mfence();

4: clflush(curNode);

5: mfence();

6: prevNode.next := curNode;

7: mfence();

8: clflush(prevNode.next);

9: mfence();

In SLM-DB, Memtable is implemented using a skip-list data structure. Actual persistence of the

Memtable is achieved by storing the first node level of skip-list on PM, and other link levels on DRAM.

Therefore, making it persistent linked-list with non-persistent skip-list links and storing necessary data

on PM. This way, data structure’s insertion, update and deletion operations can be done atomically (8-

byte atomicity), like it is shown in Figure 5 with insert operation process. Algorithm 1 explains in detail

the insertion process to PM part of the skip-list. First, a node with the key-value pair and next pointer

12

is created and persisted calling memory fence and cacheline flush instructions. After, next pointer to the

new node is updated on a previous node and persisted as well. Due to pointer size and atomic update unit

size are both 8-byte, there are no complications in the procedure. Update of an existing key in Memtable

is done in the same way as to insert operation, without doing in-place update. Deletion in Memtable

is treated as an update operation, but with a tombstone mark. With all of this, SLM-DB avoids having

WAL for data durability.

3.2 B+-tree Index on PM

To improve the performance of read operations, SLM-DB uses a B+-tree to for index search of KV pairs

stored on SSTable files. When flushing KV pairs in Immutable Memtable to an SSTable file, each key

is inserted to the B+-tree. The key is inserted to a B+-tree’s leaf node with a pointer to object, which is

stored on persistent memory and consists of index information about that key in the disk, like SSTable

file ID, block offset and block size. That object is called index metadata.

Whenever a key is getting updated with a new value, and that data is being flushed to an SSTable file,

updates in B+-tree is needed as well. New index metadata object created and persistent on PM. Then, on

the leaf node of the B+-tree, the pointer of the associated key is being updated from old index metadata

to newly created one, using atomic insertion. Persistent memory operations are handled by PMDK [36],

controlling all the allocations and deallocations on persistent memory pool, as well as garbage collection

of obsolete objects.

Note, likewise to LevelDB, the SLM-DB supports string-type keys, which are converted to integer-type

key to insert into the B+-tree in this work.

Building a B+-tree. Whenever Immutable Memtable is scheduled for flush to L0, index of each key

from new SSTable file is inserted to B+-tree as well. For flush operation, and compaction as well, SLM-

DB creates two background threads, one that makes new files and other inserts indexes from that files to

B+-tree.

In the file creation thread, the system creates a new SSTable file and appends all unique key-value pairs

from Immutable Memtable to the file. Once creation thread has flushed file to disk storage, it creates

file metadata, which consists of file’s id number, size, a range of keys and a total count of keys. That

metadata is flushed to PM. During the creation of the file, key and index list was created. That list is

passed to another thread, B+-tree insertion thread, which processes that list and adds keys and indexes

to the B+-tree. Once the list is processed and all key-indexes are inserted, the insertion thread is done.

Next, new LSM-tree organization (i.e. SSTable metadata) is copied. Copied version of LSM-tree is

13

updated with new metadata and flushed to PM. Then, a pointer for LSM-tree data structure is changed

to new updated one, making the atomic change. In the end, SLM-DB deletes Immutable Memtable.

Scanning a B+-tree. SLM-DB provides an iterator, which can easily be used to scan all KV-pairs in

sorted order, which is alike to LevelDB. Iterator currently has these operations: begin, valid, seek,

next and value. The begin() function makes iterator to point to the smallest key in the system. The

valid() function identifies if an iterator is valid or not, like if it iterated until the end. The seek(k)

method positions an iterator in the KV store, so it points to the key k, or the smallest key that is larger

than k, if k does not exists. The method next() moves iterator to next KV pair, and method value()

returns a value of the key pointed by an iterator.

In order to scan key-value pairs in disk component among SSTable files, a B+-tree iterator is imple-

mented. Iterator of B+-tree has the same functionality of methods as system’s iterator, which is ex-

plained above. In the persistent FAST+FAIR B+-tree, keys are sorted in leaf node and leaf nodes have

sibling pointers. Therefore, iteration in this B+-tree is intuitive. The value() returns index information

for the pointed key, with which the SLM-DB can read KV pair directly from disk.

3.3 Selective Compaction

SLM-DB have no requirement to keep KV pairs sorted in L0, as there a per-key index exists in the system.

However, in order to do garbage collection of obsolete KV pairs and improve sequentiality of KV pairs,

the system has a selective compaction scheme. SLM-DB selects certain SSTable (selection algorithm

will be explained below) and it adds them to a compaction candidate list of SSTables. That list is handled

by background compaction thread, which merges files together producing new files. Compaction thread

can be scheduled when there is a change in SSTable files organization (like, Immutable Memtable is

flushed to disk), or too many seek operations to a certain file (alike in LevelDB), or a number of SSTable

file in the compaction candidate list is larger than a certain threshold. Before merging files, SLM-DB

does pick a subset of files to merge from compaction candidates. That subset has the highest sum of an

overlapping ratio between each of the files in subset compared to other subsets. The overlapping ratio

between the two files is computed by comparing their key ranges. Also, compaction limits number of

SSTables to be merged at once, so that foreground user operations will not be disturbed.

The compaction process is using two threads, one for file creation and other for index insertion to B+-

tree, which similar to Immutable Memtable flush operation discussed above. However, compared to

flush, compaction have to check each KV pair if it is obsolete or not. That is done during the merg-

ing process by querying B+-tree, that checks by comparing B+-tree index information and KV-pair’s

14

merging file. If KV pair is not valid then it will not be appended to new SSTable file.

The difference between compaction and flush, compaction does create one or several SSTable files out

merging other SSTables, unlike to flush which creates SSTable file out of Immutable Memtable. During

each SSTable file creation, per key index list is created, similarly to flush operation. After writing

SSTables and synchronizing it to disk, it creates file’s metadata on PM. Once file’s metadata is persisted,

index list of the file is transferred to B+-tree insertion thread. File creation thread continues with next

file creation from the merge, while B+-tree insertion thread does update indexes from the list. That

process continues until all new files are created from merged files and indexes are updated. Next, a

new version of LSM-tree is created making a copy of the current version and applying new changes,

like deleting obsolete SSTables and adding new ones to the structure. In the end, the system atomically

changes pointer from the current LSM-tree version to new and deletes obsolete SSTable files from the

file system.

Selection of compaction candidates in SLM-DB is done by these three schemes: a live-key ratio of

an SSTable, a leaf node scan in the B+-tree, and a degree of sequentiality per range query. The first

scheme, the live-key ratio of an SSTable does select a candidate based on the ratio of valid KV pairs to

obsolete KV ones store in each SSTable. Thus, an SSTable file will be selected as compaction candidate

for garbage collection to utilize a disk space better, if it’s ratio is lower than a threshold, which is called

live-key threshold. Change of valid key count happens when a key K got updated with a new value

and it is being flushed to a new file Fi. The old value of the key K is in file Fj. So, when the update

of an index happens in B+-tree from file Fj to Fi, the system will decrease the count of valid keys in

Fj. Therefore, SLM-DB can always compute an up-to-date live-key ratio of each SSTable based on the

count of valid keys and the total count of keys.

The second scheme based on the leaf node scans in the B+-tree is used for improving the sequentiality

of KV pairs stored in L0. Whenever there is background compaction is being executed, it enforces a

leaf node scan, which scans B+-tree leaf nodes for certain fixed range of keys in a round-robin fashion.

During a scan, the system counts a number of unique files being indexed by scanned keys, where keys

are always sorted due to persistent FAST-FAIR B+-tree structure. If that number of unique files is larger

than a threshold, called leaf node threshold, SLM-DB does add those files into the compaction

candidate list. The number of keys to be in the range of scan relies on two factors, first is the average

number of KV pairs stored in a single file (which depends on KV pair size), and second is the number

of SSTable files to scan at once.

Third compaction selection scheme, the selection based on the degree of sequentiality per range query

15

have a similar purpose as the second one, but with a distinctive difference of increase sequentiality in

user requested range query operation. Each range query is divided into sub-ranges when operated, which

consists of a predefined number of keys. Each sub-range is tracking of a number of unique files being

accessed, and then sub-range with maximum unique files will be picked. If unique file number in that

sub-range is larger than a threshold, called sequentiality degree threshold, SLM-DB will add

those unique files to the compaction candidate list. This feature is most useful in improving sequentiality

for Zipfian distribution requests (like YCSB [29]), where some keys are more frequent to be accessed or

scanned.

For recovery purposes, SLM-DB stores the state of LSM-tree, Memtable, Immutable Memtable in the

persistent memory. LSM-tree stores metadata array of each SSTable (metadata consisting id, size, total

key count, valid key count and a key range of the file) and compaction candidate list. Additional to that,

the system has a compaction log in PM that logs all index updates done during compaction operation.

The information that it logs is an SSTable file id that has a key change index from and SSTable file id

that has key changed to. This is needed to recover the valid key count of files being touched during

compaction because crush might happen during that operation and whole LSM-tree structure is being

persisted only after compaction completed, whereas B+-tree indexes persistently updated on the go.

Therefore, it is crucial to recovering actual count of valid keys in an SSTables, so it will match with

a count of indexing keys to the SSTable by B+-tree. Compaction log works as a write-ahead log for

B+-tree and it is implemented as persistent linked-list, thus the consistency of insert is insured by an

atomic update of last node’s next pointer to a new node. So first, the log entry is put into a new node and

persisted, after atomic update next pointer and then make index update in the B+-tree.

3.4 Crash Recovery

SLM-DB provides strong crash consistency guarantee for data stored in the system, both on-disk data

and in-memory data persisted to PM. In order to know full state of the system, SLM-DB reads PM

memory pool from DAX filesystem. It uses PMDK recovery scheme, which relies on having a header

pointer. Header pointer directs to PM location of root data structure, which saves root pointers of every

data structure saved in PM. This way, SLM-DB easily directs through pointers and recovers PM data

structure, like LSM-tree, Memtables and compaction log with ease.

For all key-value pairs inserted to Memtable, SLM-DB ensures consistency and durability of that data

compared to LevelDB. LevelDB always writes logs to WAL, before writing to in-memory Memtable.

However, by default, WAL is not committed (i.e. fsync()) after every insertion, because committing to

16

the filesystem is a very expensive operation, and thus, some of the recently inserted or updated KV pairs

might become lost under system failure [16, 20, 21]. In contrary, SLM-DB’s skip-list is implemented

as it saves lower level of the skip-list (i.e. linked-list) in PM, whereas other levels are in DRAM. Since

main data is in the lower level of skip-list, it can guarantee consistency with an atomic write or update

of 8 bytes to PM, without any logging. During recovery, other levels of skip-list are being reconstructed

without high overhead.

When recovering, SLM-DB checks if a system failure occurred during compaction or flush. If so, there

is a need to recover of a valid key count in SSTable metadatas that have been touched during operation,

otherwise, B+-tree indexes might be invalid. For that, the system relies on compaction log, through

which it recomputes actual valid key count in SSTable files. The system makes sure, that last log entry

is valid with an updated in the B+-tree, a crash might have happened between log commit and B+-

tree update operation. As to preserve consistency during recovery, SLM-DB copies LSM-tree state and

makes changes to it, updating valid key count, mark for deletion obsolete files and adding new files that

have been created during compaction or flush. In the end, recovery finishes by changing the pointer

of current LSM-tree to the new one, then removing obsolete files from the filesystem, and deleting old

LSM-tree with compaction log from PM.

17

IV Evaluation

4.1 Methodology

For evaluation of the work, two socket machine with 2x Intel Xeon E5-2640v3 processor, 2x 16GB

DRAM and Intel SSD DC S3520 (480GB) has been used. One socket has been totally disabled, pro-

cessor and memory, and remaining 8 core with 16GB DRAM was used. The machine has been set up

with Ubuntu 18.04 LTS and kernel 4.15. As PM is not available on the market, PM emulation has been

done similar to here [18,19,32]. Memory has been restricted by mem kernel parameter to 4GB, and 8GB

has been allocated to emulated PM by memmap kernel parameter. Emulated PM region was configured

as an ext4 file system with enabled DAX. Persistent memory pool was managed by PMDK [36] and

allocated to have 7GB size pool. In default settings, write latency of PM is set to 500ns, which is 5 times

higher than DRAM [19]. Emulation of PM write latency is done by adding CPU pause and counting

delay time by Time Stamp Counter after data is persisted to the memory by memory fence and cacheline

flush instructions. No extra read latency has been added to PM, thus it had same read latency as DRAM.

By default, no bandwidth restriction has been applied to PM, as further below evaluation showed no

significant in Section 4.3.

Evaluation of SLM-DB is done in comparison with LevelDB (version 1.20) over varying value sizes.

Data compression has been turned off for all experiments to avoid any undue impact on the results [30].

Memtable size is configured to 64MB size, and key size is fixed to 20 bytes. All SSTable files are stored

on the SSD for both, SLM-DB and LevelDB. For LevelDB, Bloom filter is set to the size of 10 bytes and

other parameters are set to default. By default, LevelDB does not commit entries to the WAL to achieve

better performance for less data consistency.

For SLM-DB, the live-key threshold is set to be 0.7. Increasing that threshold configuration will

lead to more active garbage collection by the system. For leaf node scan selection, it was set up to

scan the average number of keys stored in two SSTables, and leaf node threshold is set to 10. The

number of key-value pairs stored in files depends on value size. For selection based on the sequentiality

degree per range query, SLM-DB divides total range to sub-ranges of 30 keys, which is the order of

system’s persistent B+-tree, and sequentiality degree threshold is set to 8. The increase of leaf

node threshold and sequentiality degree threshold will lead to less number of compactions

done in SLM-DB. All results presented are the average value of three runs.

To evaluate the performance of SLM-DB against LevelDB, db_bench [15] was used as a microbench-

mark, and YCSB [29] was used as a real-world workload benchmark. For both benchmarks, each run

18

has created a database by inserting 8GB data, where N number of insert operation performed in total.

Then, next workloads perform 0.2×N operations on the database (for instance, if 10M write operations

have been performed, random read workload will perform 2M operations). Note: db_bench does over-

write some portion of the data during write phase (i.e. updates some KV pairs), so the final size of the

database after db_bench write workload is a less than 8GB.

4.2 Using a Persistent Memtable

(a) Write latency (b) Total amount of write

Figure 6: Random write performance comparison

In order to understand the effect of using a PM resident Memtable, LevelDB has been modified to

have persistent Memtable without the write-ahead log, similarly to SLM-DB, which was named as Lev-

elDB+PM. Performances of LevelDB, LevelDB+PM, and SLM-DB on random write workload over

various value sizes are present in Figure 6 for comparison. Figure 6(a) shows a comparison of write

latency and Figure 6(b) shows a comparison of total amount data written to disk (both comparisons are

normalized to LevelDB result).

Generally, LevelDB+PM has similar write latency performance to LevelDB, when it’s the total amount

of write to disk has been reduced by 16% on average, since no WAL has been used. Only when value

inserted to the database gets large as the size of 64KB, the write latency is being reduced by 19% due

to avoiding logging. Additionally, LevelDB+PM achieves stronger data durability, because of strong

write consistency to persistent Memtable. For SLM-DB, write latency got reduced by 49% and total

disk write is reduced by 57%, on average compared to LevelDB. SLM-DB achieves such results due

to significantly reducing write amplification by organizing SSTables in a single level and executing

compaction selectively.

19

Figure 7: SLM-DB throughput performance with different PM latency over value sizes compared to

LevelDB

4.3 PM sensitivity

Figure 7 presents the random write workload throughput result of SLM-DB over different memory

latencies and compared to LevelDB. SLM-DB has been tested on different memory write latencies, same

as DRAM, 300ns, 500ns, and 900ns. Evaluation is done using random write benchmark of db_bench.

In all of the PM latency cases, even with 900ns, SLM-DB outperforms LevelDB on random write. With

PM have same latency as DRAM, SLM-DB reaches up to 3 times better throughput then LevelDB, and

with 900ns PM latency up to 2.1 times. From this results, it is observed that with value size becoming

larger, the effect of a long PM write latency is being diluted.

The same way an evaluation has been done to see the system sensitivity to PM bandwidth. Bandwidth

have been tested are 2GB/s, 5GB/s, and 8GB/s, similar to [19]. Write operations had a fluctuation of

5%, as it most of the write performance does not depend on Memtable insertion but on a background

thread, which stalls write operation if it is over-scheduled by flush and compaction operations. Thus, as

a Memtable being resident on PM, it should have affected the performance of the write operations, but

due to stalls that are done by background thread it does not. For read performance, there has been no

effect on the result as well. The main reason is that the major time of the read operation is done by disk

and PM modules (i.e. Memtable read and B+-tree query) have shown to be the part of only 0.3 % from

the total read.

4.4 Results with Microbenchmarks

Figure 8 displays throughput performance results of SLM-DB for random write, random read, range

query, and sequential read workloads, which are normalized to the performance of LevelDB. In each

workload figure, the number presented on top of the bars are throughput result numbers of LevelDB

in thousands of operations per second. Range query workload has tested short range with an average

20

(a) Random Write (b) Random Read

(c) Range Query (d) Sequential Read

Figure 8: db_bench performance of SLM-DB normalized to LevelDB with the same setting

count of 100 keys. For the random read, range query, and sequential read workloads, write workload

have been run to populate a database with data, and then paused before continuing, waiting for all

compaction processes to finish.

From the results, the following can be observed:

• For random write operations, SLM-DB outperforms LevelDB in an average of 2 times higher

across different value sizes. This is achievable by SLM-DB, because of the notable decrease of

data rewrites done by compaction. As B+-tree key and index insertion happen on background,

overhead that it produces is minimal. Thus, B+-tree insertion does not interfere with the perfor-

mance of SLM-DB

• For random read operations, SLM-DB performs similarly or better than LevelDB, which depends

on the value size. As was discussed above in Section 2.3, the overhead of finding data block in

LevelDB is not high, when the value size is 1KB. Therefore, the SLM-DB surpasses LevelDB’s

throughput by only 7%. With an increase of value size, the performance difference between SLM-

21

DB and LevelDB start to have a larger gap due to the more efficient search of the key-value pair

using persistent B+-tree index. However, as value size gets large as 64KB, the time to data block

read becomes significantly large compared to smaller value sizes. Therefore, the performance gap

between SLM-DB and LevelDB gets down to 25%.

• For short range query operations, LevelDB, with fully sorted order of KV pairs in each level, can

read KV pairs sequentially in a given range and have better performance for 1KB and 4KB value

sizes. For 1KB value size, a data block with a default size of 4KB can contain up to 4 KV pairs.

Thus, when the block has been read from the disk, it is cached to the memory and next key-value

pair can be retrieved from the same cached block during the scan. Nevertheless, in order to start

scanning range, need to perform a random read query to the first key in a range. There, SLM-DB

provides high performance. Also, it takes a relatively long time to read a data block for a large

value size. Thus, SLM-DB can have comparable performance for range queries even with fewer

disk data sequentiality. For instance, when running a range query workload with the range of

1000 keys with 4KB value sizes, SLM-DB’s throughput performs better than LevelDB’s for about

57.7%.

• For sequential read workload, it scans all KV pair sequentially from the database. SLM-DB

achieves better performance than LevelDB, except for 1KB value size.

While running the random read, range query and sequential read workloads, both LevelDB and SLM-

DB performed additional compaction operations on disk components. Therefore, total disk writes from

the creation of the database until the end of each workload have been measured for both. SLM-DB

performed 2.56 times less disk writes on average of all workloads than LevelDB, because of selectively

compacting SSTables. Even excluding WAL, LevelDB would make on average only 14% less of total

amount disk writes.

4.5 Results with YCSB

YCSB benchmark consists of six workloads, where each captures different real-world scenario [29]. In

order to efficiently run the YCSB workloads, the db_bench source code has been changed to run traces

of YCSB’s workloads with various value sizes (alike to [14]).

Figures 9 (a) and (b) show the throughput of operations and the total amount of disk writes for both

LevelDB and SLM-DB over the six YCSB workloads [29]. In figure 9(a), numbers presented on top

of the bars are the operation throughput of SLM-DB in operations per second. After the end of each

workload run, the cumulative amount of disk writes have been measured and charted on figure 9(b).

22

(a) Throughput (b) Total amount of write

Figure 9: YCSB performance of SLM-DB normalized to LevelDB with the same setting

The execution of YCSB benchmark was suggested by authors in this order: load database, workload A,

workload B, workload C, workload F, workload D, purge database, load database, workload E.

Workloads properties:

• Load: 100% insert, Zipfian distribution

• Workload A: 50% read and 50% update, Zipfian distribution

• Workload B: 95% read and 5% update, Zipfian distribution

• Workload C: 100% read, Zipfian distribution

• Workload D: 95% read and 5% insert, latest read

• Workload E: 95% scan and 5% insert, Zipfian distribution

• Workload F: 50% read and 50% read-modify-write, Zipfian distribution

In Figure 9(a), SLM-DB shows higher throughput performances than those of LevelDB for all work-

loads, except for workload E with 1KB value size. For other value sizes in workload E, SLM-DB does

better than LevelDB for 15.6% on average. That’s because each range query needs a random query for

the first key in range, in which SLM-DB is superior and also providing some level of sequentiality for

disk data. For workload A composed of 50% read and 50% update, the update operation is performed

only when the updating key exists in the database. In other words, the update is “insert if only exists“

operation. For this, SLM-DB needs only to execute query operation on B+-tree, without having to access

the disk components. On contrary, LevelDB has to search all the way to disk component, retrieving the

KV pair from disk, to make sure that key exists. Therefore, for workload A, SLM-DB is able to achieve

on average 2.7 times higher performance that LevelDB does. Detailed throughput results are displayed

on Table ??, and details of latency results are on Table ??.

23

Figure 9(b) shows clearly that SLM-DB makes a much smaller amount of disk writes that LevelDB in

all the workloads. Especially after executing workload D with 1KB values size, SLM-DB shows 7.7

times less of disk writes. If WAL is excluded from the LevelDB in YCSB workloads, the total amount

of disk writes are reduced by only 11%.

1kb 4kb 16kb 64kb

LevelDB SLM-DB LevelDB SLM-DB LevelDB SLM-DB LevelDB SLM-DB

Load 23,919.8 40,370.3 6,409.3 16,565.2 1,726.5 4,712.4 350.5 1,127.2

A 1,250.0 3,485.7 1,185.0 3,782.2 911.5 1,893.4 295.1 826.1

B 1,647.2 2,072.1 1,633.5 3,240.0 1,111.2 2,534.4 678.1 1,501.4

C 1,842.3 2,006.9 2,503.8 3,126.9 1,419.1 2,835.0 714.9 1,383.5

F 1,778.8 2,811.9 1,824.2 3,657.6 1,796.0 2,226.4 905.0 1,021.3

D 2,956.2 4,464.4 2,436.7 6,552.1 3,059.5 4,724.1 1,367.9 2,526.1

Load 23,145.1 45,765.2 6,367.8 14,247.0 1,734.3 5,287.5 345.6 1,151.9

E 54,366.5 43,293.8 28,011.5 29,955.1 10,836.0 13,020.3 2,375.9 2,846.1

Table 3: YCSB throughput (operations/sec) results for LevelDB and SLM-DB

1kb 4kb 16kb 64kb

LevelDB SLM-DB LevelDB SLM-DB LevelDB SLM-DB LevelDB SLM-DB

LoadA 41.8 24.8 156 60.4 579.2 212.2 2853.3 887.1

A 800 286.9 843.9 264.4 1097 528.1 3388.9 1210.6

B 607.1 482.6 612.2 308.6 899.9 394.6 1474.7 666

C 542.8 498.3 399.4 319.8 704.7 352.7 1398.9 722.8

F 562.2 355.6 548.2 273.4 556.8 449.2 1105 979.2

D 338.3 224 410.4 152.6 326.8 211.7 731 395.9

LoadE 43.2 21.9 157 70.2 576.6 189.1 2893.2 868.2

E 18.4 23.1 35.7 33.4 92.3 76.8 420.9 351.4

Table 4: YCSB latency (us/operations) results for LevelDB and SLM-DB

4.6 Analysis

Space Amplification. SLM-DB marks an SSTable file as compaction candidate for garbage collection

when the live-key ratio of the file hits a threshold. Therefore, if the system detects the ratio of

obsolete KV pairs in several files are larger than a certain threshold, it performs the selective compaction

on that files, leading to poor sequentiality. Analyze the space amplification on db_bench’s random write

workload showed that SLM-DB does utilize 13% more of disk space.

24

Persistent memory cost. Persistent memory is utilized for Memtable, Immutable Memtable, B+-tree

index and LSM-tree with compaction log, in SLM-DB. As 8GB data is inserted into the database in all

of the experiments, a smaller value size leads to a larger number of records, which increases the size

of the B+-tree index and compaction log. With 1KB value size, SLM-DB utilizes utmost 750MB of

PM, whereas with 64KB value size - 200MB. The cost of PM is expected to be cheaper than DRAM

(similar discussion about NVM block devices [37]), and so, SLM-DB achieves higher performance with

a reasonable small cost of extra PM.

Effects of compaction candidate selection schemes. The selection schemes based on the leaf node

scans and sequentiality degree per range query can improve the sequentiality of KVs stored on disks.

Using workload E of YCSB, which is composed of a large number of range query operations, the effects

of these schemes have been analyzed by disabling them in turn. Disabling both of the schemes lead to

increase the result of latency in 10 times, compared when both enabled. Disabling only the sequentiality

degree per range query, which activates only during range query operations, while other is enabled,

lead to 50% latency increase on average. When another way around, with the sequentiality degree per

range query is enabled and the leaf node scan is disabled, the result showed around 15% performance

degradation. This implies that selection based on the leaf node scans will play an important role for a

real-world workload that is composed of a mix of “point queries, updates and occasional scans” as was

described in [3].

Effects of varying live-key ratios In all the above experiment results shown, the threshold of 0.7 is

used for the live-key ratio. As ratio increases, SLM-DB performs more aggressive garbage collection.

The experiments conducted to see the difference of effect over varying live-key ratios of 0.6, 0.7 and

0.8. To analyze, db_bench’s random write and range query workloads with 1KB were executed. With

ratio=0.7, the range query performance is increased by 8%, while decreasing performance of write by

17%, compared to ratio=0.6. With ratio=0.8, no difference in performance of range query is observed in

contrast to ratio=0.7. However, write performance is severely degraded (for instance, twice slower than

ratio=0.6), due to SLM-DB being overflown by compaction candidates, which makes it stall incoming

write to finish some compaction.

Recovery cost. In order to analyze the cost of recovery for SLM-DB, the worst case scenario has been

assumed to happen, and that is when Memtable and Immutable Memtable are being full and compaction

is in process. To recover Memtable, need to read root pointer of linked-list and start iterative rebuilding

skip-list nodes. That is not integrated into the current system yet, but the prototype algorithm run showed

0.02ms rebuild time for each full Memtable (64MB and 1KB value size). Similarly have done with LSM-

tree recovery, using prototype algorithm to measure it’s recovery time. For that, the average number of

25

files being compacted and being produced after compaction has been used. The algorithm goes through

all compaction log, checking B+-tree index changes from old to a new file and recovering live-key count

of files. In the end, it creates and persists a new LSM-tree version. All of LSM-tree recovery takes

around 0.05ms, which results in total recovery time to little less than 0.1ms. On contrary, LevelDB

spends 0.5ms on average to recover after a failure and can take longer than that with the increased size

of Memtable.

26

V Related Work

There are several works on KV stores utilizing PM [18,19,38]. HiKV key-value store assumes utilization

of hybrid memory system of DRAM and PM, where data is persisted and save only on PM, which

eliminates any usage of disks [18]. HiKV maintains a persistent hash index on PM to process both read

and write operations efficiently and also supporting a range query operations by maintaining B+-tree

index on DRAM. Therefore, there is need of rebuilding the B+-tree in need if the system happens to get

a crush or failure. Contrary to HiKV, this work considers a system where PM coexists with HDDs or

SSDs, which is similar to NoveLSM [19].

NVMRocks [38] and NoveLSM [19] optimized and redesigned an LSM-tree to use the advantage of

persistent memory to store key-value pairs. In NVMRocks, the Memtables are fully stored on PM,

eliminating any logging cost and also adding PM cache layer to improve read performance. NoveLSM

[19] proposes to have a persistent Memtable with DRAM Memtable, so they co-exist to reduce stall time

caused by compaction. Since DRAM Memtable must have a WAL, there must be careful maintenance

of consistency needed, so a version of KV pairs in both Memtables will be up-to-date after a failure

recovery. In both of the works, NoveLSM and NVMRocks, PM is used to store some portion or all of

the SSTables. However, this work proposes a new structure of employing a persistent B+-tree index for

the fast query, persistent LSM-tree-like structure to save up-to-date SSTable files statuses, and a single

level disk component of SSTable files with selective compaction. Using this design structure, the system

significantly is able to reduce read and write amplification compared to most of traditional LSM-tree

based KV stores, while providing high read and write throughput.

Optimization techniques to enhance the overall performance of an LSM-tree structure have been inten-

sively studied for conventional memory and disks systems [2, 14, 16, 30, 39–41]. Also, there are works

proposing optimization for certain H/W like SSD. For instance, WiscKey [30] provides an optimized

technique for SSD by separating keys and values, where the value stored without any hierarchical level

similarly to SLM-DB, which in the end reduces I/O amplification. Since decoupling keys and values

hurts the performance of range queries, WiscKey utilizes the parallel random reads of SSD to efficiently

prefetch the values. Another similar example is HashKV [1], which also does separate keys and val-

ues stored on SSDs. HashKV uses a hash function to group KV to optimize garbage collection for

update-intensive workloads. Other work named LOCKS does leverage open-channel SSDs to increase

the performance of KV-stores based on LSM-tree.

Further, works on optimizing design structure, like VT-tree [41], that uses stitching optimization that

avoids rewriting already sorted data and maintaining sufficient sequentiality of KVs to provide efficient

27

performance of range queries, which similar to SLM-DB. However, VT-tree still needs to maintain KV

pairs in multiple levels, and read performance was out focus. Redesign from tree to trie, LSM-trie [2]

focuses on reducing write amplification, having a particular focus on large-scale KV-stores with small

value sizes. However, LSM-trie has no support of scan workloads as it is based on hash function. On the

other hand, PebblesDB [14] proposes a Fragmented LSM-tree, which fragments KVs into smaller files

and reduces write amplification at the same level. Introduction of a small in-memory buffer on top of

the Memtable by FloDB [40] optimized the memory component in LSM-tree, which increased support

on skewed read-write workloads. TRIAD [39] have done similarly focusing on skewed workloads by

keeping hot keys in the memory without flushing to the disk.

Some work on optimizing B+-tree based system have been done as well. The fractal index tree investi-

gates the reduction of I/O amplification. Also, with PM introduction to the arena, works on optimization

of persistent B+-tree have become large [24, 33–35]. Other indexes on PM have been evolving as well,

like radix tree [32] and a hashing scheme [27]. Above PM data structures have proposed write optimal

techniques while providing consistency and durability.

28

VI Conclusion

This work presents a novel and intuitive redesign of classical LSM-tree based key-value store, which is

called Single-Level Merge DB. Main key uniqueness of SLM-DB lies on leveraging B+-tree index with

LSM-tree together, in order to perform out better. Also, DB uses persistent memory to make use of both

tree structures to the fullest, guarantying both strong consistency and superior performance than classical

approaches. Moreover, storing main data structures in PM allows the system recovery by fast and steady.

Also, single level structure of disk component lowers the number of merge operations executed, and also

providing some level of sequentiality by having selection compaction scheme. Evaluation of this work

demonstrates high read and write throughput with the comparable performance of range query, although

having very low write amplification and near-optimal read amplification.

29

References

[1] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. Hashkv: Enabling efficient

updates in KV storage via hashing. In 2018 USENIX Annual Technical Conference (USENIX ATC

18), pages 1007–1019, Boston, MA, 2018. USENIX Association.

[2] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-trie: An lsm-tree-based ultra-large key-

value store for small data. In Proceedings of the 2015 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’15, pages 71–82, Berkeley, CA, USA, 2015. USENIX As-

sociation.

[3] Russell Sears and Raghu Ramakrishnan. blsm: A general purpose log structured merge tree.

In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’12, pages 217–228, New York, NY, USA, 2012. ACM.

[4] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage system.

SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[5] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Laksh-

man, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:

Amazon’s highly available key-value store. In Proceedings of Twenty-first ACM SIGOPS Sympo-

sium on Operating Systems Principles, SOSP ’07, pages 205–220, New York, NY, USA, 2007.

ACM.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Bur-

rows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system

for structured data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[7] Rocksdb. https://rocksdb.org/.

[8] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. Finding a needle in

haystack: Facebook’s photo storage. In Proceedings of the 9th USENIX Conference on Operating

30

Systems Design and Implementation, OSDI’10, pages 47–60, Berkeley, CA, USA, 2010. USENIX

Association.

[9] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured merge-

tree (lsm-tree). Acta Inf., 33(4):351–385, June 1996.

[10] Rudolf Bayer and Edward McCreight. Organization and maintenance of large ordered indexes. In

Software pioneers, pages 245–262. Springer, 2002.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms. MIT Press, 3rd edition, 2009.

[12] Google. Leveldb benchmarks. http://www.lmdb.tech/bench/microbench/benchmark.

html, 2011.

[13] Kyoto cabinet: a straightforward implementation of dbm. http://fallabs.com/

kyotocabinet/.

[14] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. Pebblesdb: Building key-

value stores using fragmented log-structured merge trees. In Proceedings of the 26th Symposium

on Operating Systems Principles, SOSP ’17, pages 497–514, New York, NY, USA, 2017. ACM.

[15] Leveldb. https://github.com/google/leveldb.

[16] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang, and Jason Cong.

An efficient design and implementation of lsm-tree based key-value store on open-channel ssd. In

Proceedings of the Ninth European Conference on Computer Systems, EuroSys ’14, pages 16:1–

16:14, New York, NY, USA, 2014. ACM.

[17] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju Rangaswami.

NVMKV: A scalable, lightweight, ftl-aware key-value store. In 2015 USENIX Annual Techni-

cal Conference (USENIX ATC 15), pages 207–219, Santa Clara, CA, 2015. USENIX Association.

[18] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. Hikv: A hybrid index key-value store for dram-

nvm memory systems. In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pages

349–362, Santa Clara, CA, 2017. USENIX Association.

[19] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau, and Remzi Arpaci-

Dusseau. Redesigning lsms for nonvolatile memory with novelsm. In 2018 USENIX Annual Tech-

nical Conference (USENIX ATC 18), pages 993–1005, Boston, MA, 2018. USENIX Association.

31

[20] H. . P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E.

Goodson. Phase change memory. Proceedings of the IEEE, 98(12):2201–2227, Dec 2010.

[21] Yiming Huai. Spin-transfer torque mram (stt-mram): Challenges and prospects. 2009.

[22] Intel and micron produce breakthrough memory technology. https://newsroom.intel.com/

news-releases/intel-and-micron-produce-breakthrough-memory-technology/.

[23] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh

Sankaran, and Jeff Jackson. System software for persistent memory. In Proceedings of the Ninth

European Conference on Computer Systems, EuroSys ’14, pages 15:1–15:15, New York, NY, USA,

2014. ACM.

[24] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. Endurable transient incon-

sistency in byte-addressable persistent b+-tree. In 16th USENIX Conference on File and Storage

Technologies (FAST 18), pages 187–200, Oakland, CA, 2018. USENIX Association.

[25] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan. Heteroos - os design for heterogeneous

memory management in datacenter. In 2017 ACM/IEEE 44th Annual International Symposium on

Computer Architecture (ISCA), pages 521–534, June 2017.

[26] E. Küay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating stt-ram as an energy-

efficient main memory alternative. In 2013 IEEE International Symposium on Performance Anal-

ysis of Systems and Software (ISPASS), pages 256–267, April 2013.

[27] P. Zuo and Y. Hua. A write-friendly and cache-optimized hashing scheme for non-volatile memory

systems. IEEE Transactions on Parallel and Distributed Systems, 29(5):985–998, May 2018.

[28] Slm-db: Single-level key-value store with persistent memory. In 17th USENIX Conference on File

and Storage Technologies (FAST 19), Boston, MA, 2019. USENIX Association.

[29] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Bench-

marking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on Cloud

Computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[30] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Wisckey: Separating keys from values in ssd-conscious storage. In Proceed-

ings of the 14th Usenix Conference on File and Storage Technologies, FAST’16, pages 133–148,

Berkeley, CA, USA, 2016. USENIX Association.

32

[31] IG Baek, MS Lee, S Seo, MJ Lee, DH Seo, D-S Suh, JC Park, SO Park, HS Kim, IK Yoo, et al.

Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric

unipolar voltage pulses. In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE Inter-

national, pages 587–590. IEEE, 2004.

[32] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh. Wort: Write

optimal radix tree for persistent memory storage systems. In Proceedings of the 15th Usenix

Conference on File and Storage Technologies, FAST’17, pages 257–270, Berkeley, CA, USA,

2017. USENIX Association.

[33] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bingsheng He.

Nv-tree: Reducing consistency cost for nvm-based single level systems. In Proceedings of the 13th

USENIX Conference on File and Storage Technologies, FAST’15, pages 167–181, Berkeley, CA,

USA, 2015. USENIX Association.

[34] Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main memory. Proc. VLDB Endow.,

8(7):786–797, February 2015.

[35] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. Fptree:

A hybrid scm-dram persistent and concurrent b-tree for storage class memory. In Proceedings of

the 2016 International Conference on Management of Data, SIGMOD ’16, pages 371–386, New

York, NY, USA, 2016. ACM.

[36] pmem.io persistent memory programming. https://pmem.io/.

[37] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong, Kim Hazel-

wood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing dram footprint with nvm in face-

book. In Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, pages 42:1–42:13, New

York, NY, USA, 2018. ACM.

[38] Nvmrocks: Rocksdb on non-volatile memory systems. http://istc-bigdata.org/index.

php/nvmrocks-rocksdb-on-non-volatile-memory-systems/.

[39] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng Yuan, Aashray

Arora, Karan Gupta, and Pavan Konka. TRIAD: Creating synergies between memory, disk and

log in log structured key-value stores. In 2017 USENIX Annual Technical Conference (USENIX

ATC 17), pages 363–375, Santa Clara, CA, 2017. USENIX Association.

33

[40] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis, and Igor Zablotchi. Flodb: Unlocking

memory in persistent key-value stores. In Proceedings of the Twelfth European Conference on

Computer Systems, EuroSys ’17, pages 80–94, New York, NY, USA, 2017. ACM.

[41] Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Malpani, Binesh Andrews, Justin Seyster, and

Erez Zadok. Building workload-independent storage with vt-trees. In Presented as part of the 11th

USENIX Conference on File and Storage Technologies (FAST 13), pages 17–30, San Jose, CA,

2013. USENIX.

34

Acknowledgements

Many thanks to everybody

35

	I Introduction
	II Background
	2.1 Key-Value Store Operations
	2.2 Log Structure Merge Tree
	2.3 LevelDB
	2.4 Limitations of LevelDB
	2.5 Persistent Memory
	2.6 B+-tree

	III Architecture
	3.1 Persistent Memtable
	3.2 B+-tree Index on PM
	3.3 Selective Compaction
	3.4 Crash Recovery

	IV Evaluation
	4.1 Methodology
	4.2 Using a Persistent Memtable
	4.3 PM sensitivity
	4.4 Results with Microbenchmarks
	4.5 Results with YCSB
	4.6 Analysis

	V Related Work
	VI Conclusion
	References

<startpage>12
I Introduction 1
II Background 4
 2.1 Key-Value Store Operations 4
 2.2 Log Structure Merge Tree 4
 2.3 LevelDB 5
 2.4 Limitations of LevelDB 7
 2.5 Persistent Memory 9
 2.6 B+-tree 10
III Architecture 11
 3.1 Persistent Memtable 12
 3.2 B+-tree Index on PM 13
 3.3 Selective Compaction 14
 3.4 Crash Recovery 16
IV Evaluation 18
 4.1 Methodology 18
 4.2 Using a Persistent Memtable 19
 4.3 PM sensitivity 20
 4.4 Results with Microbenchmarks 20
 4.5 Results with YCSB 22
 4.6 Analysis 24
V Related Work 27
VI Conclusion 29
References 30
</body>

