

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/213600494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

1

Master's Thesis

Pseudo Re-Reference Interval Prediction for Last-

Level Cache Replacement

Taeho Lim

Department of Electrical Engineering

Graduate School of UNIST

2019

2

Pseudo Re-Reference Interval Prediction for Last-

Level Cache Replacement

Taeho Lim

Department of Electrical Engineering

Graduate School of UNIST

3

Pseudo Re-Reference Interval Prediction for Last-

Level Cache Replacement

A thesis

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Taeho Lim

Month/Day/Year of submission

Approved by

Advisor

Seong-Jin Kim

4

Pseudo Re-Reference Interval Prediction for Last-

Level Cache Replacement

Taeho Lim

This certifies that the thesis of Taeho Lim is approved.

12 / 11 / 2018

 signature

 Advisor: Seong-Jin Kim

 signature

Seokhyeong Kang: Thesis Committee Member #1

 signature

 Woongki Baek: Thesis Committee Member #2

5

Abstract

For the last decade, many modern replacement policies for last-level cache (LLC) adopted Static Re-

reference Interval Prediction (SRRIP) as their base algorithm. In the LLC, SRRIP outperforms other

traditional replacement policies like Least-Recently Used (LRU). SRRIP works with a few bits of

counter, called Re-Reference Prediction Value (RRPV), but we find that RRPV can be implemented

with a binary tree.

In this thesis, we propose a new cache replacement policy, Pseudo Re-Reference Interval Prediction

(PRRIP). Our proposed PRRIP mimics SRRIP, so PRRIP outperforms other replacement policies such

as LRU. Moreover, we find that PRRIP becomes more resistant to non-temporal data access pattern

than SRRIP by using binary tree. In terms of overhead, we halve the hardware cost to implement

PRRIP compared to SRRIP. Our experimental results show that PRRIP achieves 1.26% speedup over

LRU while SRRIP gets 0.53% speedup over LRU for single-core workloads. For multi-core

workloads, our experimental results show that the performance difference between PRRIP and SRRIP

is less than 0.3%.

6

Contents

I. Introduction .. 11

II. Background .. 14

A. Re-reference Interval Prediction (RRIP) .. 14

B. Binary Tree-Based Replacement Policies .. 15

(a) Tree-Based PseudoLRU (PLRU) .. 15

(b) Minimal Disturbance Placement and Promotion (MDPP) 15

C. Dynamic Replacement Policies ... 15

III. Pseudo Re-Reference Interval Prediction (PRRIP) .. 17

A. Binary Tree Based Re-Reference Prediction ... 17

B. Sensitivity to Promotion Step .. 21

C. Sensitivity to Order of Insertion ... 22

IV. Experimental Setup and Result .. 24

A. Experimental Setup .. 24

B. Result for Single-Core Workloads ... 28

C. Result for Multi-Core Workloads ... 30

D. Overhead .. 31

V. Extend to Dynamic Replacement Policy .. 32

VI. Conclusion .. 34

References ... 35

7

List of Figures

Figure 1. The behavioral similarity between PRRIP and RRIP. On average, calculated IoUhit for six

benchmarks is 0.97.

Figure 2. The state diagram of RRPV

Figure 3. An example of PLRU tree. Associativity is 8.

Figure 4. State diagram according to the number of shells.

Figure 5. Example PLRU tree. Associativity is 16. For each block, the number of shells is represented.

Figure 6. PRRIP tree when associativity is not a power of two.

Figure 7. Behaviors of LRU (a) and PRRIP (b) for example access pattern. The access pattern is [a0,

a1, a1, a0, b0, b1, b2, b3, a0, a1]. (T=k: time immediately after the k-th access; ‘I’ means invalid data.)

Figure 8. IPC over LRU (%) according to the promotion step (S) and number of shells applied during

placement (M).

Figure 9. Behaviors of SRRIP (a) and PRRIP (b) for example access pattern. The access pattern is [b0,

b1, b2, b3, b4, b5, b6, b7, a0]. (T=k: time immediately after the k-th access; Before the time T<0, a0, a1

are protected in the set as a reused block.)

Figure 10. IPC over LRU for four replacement policies on single-threaded workloads. The order of

benchmark is sorted by ascending order of PRRIP.

Figure 11. IPC over LRU of PRRIP on single-threaded workloads according to number of shells

applied during placement (M). The order of benchmark is sorted by ascending order of SRRIP.

Figure 12. Normalized Weighted IPC over LRU for 4-core workloads. For each policy, workloads are

sorted in ascending order to get S-curves.

8

List of Tables

TABLE I. Experimental Configuration

TABLE II. List of Single-Threaded Workloads

TABLE III. List of 4-Core Workloads

TABLE IV. Overhead Requirements for Various Replacement Policies

TABLE V. Experimental Results of Dynamic Replace Policies

9

Acknowledgements

I would like to thank all of the people who helped make this dissertation possible.

Especially, I would like to express my deep appreciation to my academic advisor Dr. Seokhyeong

Kang. Not only for advising me, but also being my role model. All of the work that I accomplished

during M.S. course have not been possible without his guidance. Also, he showed me a wider vision

of this area.

I would like to thank my colleagues in CAD & SoC Design Lab, Yesung Kang, Seungwon Kim,

Jaemin Lee, Sunmean Kim, Jaewoo Kim, Sanggi Do, Mingyu Woo, Yoonho Park, Daeyeon Kim,

Sunghoon Kim and Sungyun Lee. The knowledge they shared to me inspired me and the time shared

with them support me up when I got tough times.

I would also like to express my appreciation to thesis committee members, Prof. Seong-Jin Kim and

Prof. Woongki Baek for taking their time out to review and evaluate my research work.

Lastly, I have no words to express my unlimited appreciation to my family, Changsook Park and

Taeyong Lim for all the support they have provided me. I dedicate this thesis to them.

10

Vita

1992 Born, Busan, South Korea

2017 B.S., Electronics Engineering,

Pusan National University, Busan, South Korea

• Taeho Lim, Yoonho Park, Woongki Baek and Seokhyeong Kang, “PRRIP : Pseudo Re-Reference

Interval Prediction for Last-Level Cache Replacement”, Proc. IEEE/ACM Design Automation

Conference, 2019, (submitted).

• Yesung Kang, Yoonho Park, Sunghoon Kim, Taeho Lim and Seokhyeong Kang, “Analysis and

Solution of CNN Accuracy Reduction over Channel Loop Tiling”, Proc. IEEE/ACM Design

Automation Conference, 2019, (submitted).

• Sunmean Kim, Taeho Lim and Seokhyeong Kang, “An Optimal Gate Design for the Synthesis of

Ternary Logic Circuits”, Proc. IEEE/ACM Asia and South Pacific Design Automation Conference,

2018, pp. 476-481.

11

Chapter I

Introduction

Limitations in memory speed impose limitations on the evolution of computing systems. Computing

capability is increasing faster than memory speed, so this gap causes the memory wall problem [1],

[2]. Especially, the last-level cache (LLC) is the last on-chip memory buffer before off-chip memory

is accessed, so large disparity of speed exists between LLC and DRAM. Access to off-chip memory is

costly in both time and energy cost. Thus, reducing the number of off-chip memory accesses increases

computing speed and reduces its energy cost. To achieve this goal, LLC replacement policy is

responsible. The replacement policy is about determining which data to keep and which to evict.

Appropriate selection of data that should stay reduces the number of off-chip memory accesses, and

appropriately released data frees storage space for other data. Currently, LLC occupies up to 50% of

entire chip area [5], so data of LLC must be managed efficiently.

 LLC differs from upper-level cache in several points [3], [4]. First of all, LLC has a large miss

penalty. Second, LLC is in a polluted environment: the ratio of access counts to memory size is much

smaller than in upper-level cache, so LLC has less opportunity than upper-level caches to replace

useless data. LLC keeps many data that are not re-referenced anymore [6]. Third, LLC has high

associativity. A cache that has higher associativity has more options when it evicts data. At the same

time, it requires more information to decide which option to select compared with a cache with low

associativity; e.g., the commonly-used Least Recently Used (LRU) policy stores the access order of

blocks. Therefore, as associativity increases, the overhead to save access order increases rapidly.

Consequently, high associativity complicates the task of designing a replacement policy for LLC.

Finally, LLC is shared by many processing units, so threads on different tasks may interfere with it.

Re-Reference Interval Prediction (RRIP) [7] is a practical replacement policy to compensate for the

characteristics of LLC. Many replacement policies use RRIP as their base algorithm [8], [9], [10],

[11]. However, recent trends of computing such as multi-core, aggressive prefetching and dynamic

replacement policy increase the overhead of the replacement policy for LLC. In this thesis, we

propose a new replacement policy, Pseudo Re-Reference Interval Prediction (PRRIP) for LLC

replacement. Our proposed PRRIP mimics the behavior of RRIP with a binary tree. PRRIP consumes

less than half of the overheads of RRIP while maintaining the performance of RRIP.

12

Figure 1 shows how many cache hits are matched between PRRIP and RRIP on six benchmarks

from SPEC CPU 2006. To evaluate the similarity between PRRIP and RRIP, we use intersection over

union of the hit address (IoUhit). IoUhit is calculated as follows.

𝐼𝑜𝑈ℎ𝑖𝑡 =
𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 ℎ𝑖𝑡𝑠 𝑖𝑛 𝑃𝑅𝑅𝐼𝑃 𝑎𝑛𝑑 𝑅𝑅𝐼𝑃

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 ℎ𝑖𝑡𝑠

Increase in IoUhit indicates increase in agreement of the two policies. If two policies have exactly the

same hit, IoUhit becomes 1.0. We measured IoUhit every 50,000 accesses on LLC. Then, we show the

distribution of IoUhit as a histogram. On average, 88% of entire simulation points yield IoUhit more

than 0.9 for each benchmark and calculated IoUhit equals 0.97. Thus, it is reasonable to say that

PRRIP acts much like RRIP. Moreover, we apply our PRRIP algorithm to a dynamic replacement

policy in Chapter V. Dynamic policies which are based on RRIP [10], [11] also can be implemented

with PRRIP.

Our main contributions are summarized as follows.

• We introduce a PRRIP cache replacement policy that mimics RRIP algorithm with less than half

the overhead that is required to implement RRIP.

• We identify considerations such as reward of re-reference and the initial order of newly-inserted

Figure 1. The behavioral similarity between PRRIP and RRIP. On average, calculated IoUhit for six benchmarks is 0.97.

13

line, when PRRIP is implemented.

• We evaluate PRRIP with SPEC CPU 2006 benchmarks. Our proposed replacement policy

achieved more instructions per cycle (IPC) than other replacement policies.

• We extend PRRIP to dynamic replacement policies which are based on RRIP algorithm. Then, we

compare the performance of ours with the original works.

The remainder of this thesis is organized as follows. Chapter II provides an overview of related

works in the literature. Chapter III describes our proposed replacement policy. Chapter IV presents a

description of our experimental setup and results. Chapter V extends PRRIP to a dynamic replacement

policy that uses RRIP, then compare the performance between them. Chapter VI concludes our work.

14

Chapter II

Background

We build this work on previous research of the cache replacement policy. To give proper

background, we review some closely related works.

A. Re-reference Interval Prediction (RRIP)

RRIP predicts the usage interval of blocks with re-reference prediction value (RRPV). A few bits of

counter represent the RRPV for each block. Figure 2 shows a state diagram of 2-bit RRPV. As RRPV

of a block approaches its maximum value, that block is predicted to have distant usage interval.

Conversely, if the RRPV of a block approaches to zero, the block is predicted to have an immediate

re-reference interval. RRIP works with two key ideas. First, RRIP moves a re-referenced line to the

safest location. This makes reused block safe and the other blocks to age. Second, when a new block

arrives, RRIP inserts the block near the victim. These ideas enable RRIP to resist bursts of references

to non-temporal data and to adapt to upcoming working set. The overhead of SRRIP equals 2𝑛 (in 2-

bit RRPV) or 3𝑛 bits (in 3-bit RRPV) per cache set. RRIP is called Static RRIP (SRRIP) and

Dynamic RRIP (DRRIP) depending on whether Set Dueling [12] is used.

Figure 2. The state diagram of RRPV

15

B. Binary Tree-Based Replacement Policies

(a) Tree-Based PseudoLRU (PLRU)

 Tree-based PLRU [13] is a cost-efficient alternative to LRU. PLRU uses a binary tree in which leaf

nodes are blocks in a set. Two adjacent nodes are connected to an upper node. It contains a single bit

indicator to record which child node is the older one. The oldest data become the victim along the

binary tree. As a node is closer to the root node, a block, which is pointed by that node receives lower

order. Figure 3 illustrates an example of 8-way associative PLRU tree. If the next access misses in the

cache, ‘D’ becomes a victim. For an n-way associative cache, PLRU consumes 𝑛 − 1 bits per cache

set, whereas while LRU consumes 𝑛 log2 𝑛 bits per cache set.

(b) Minimal Disturbance Placement and Promotion (MDPP)

MDPP [14] is the improved version of PLRU based on principles of minimal disturbance placement

and promotion. ‘Placement’ (also known as insertion) is an update of the replacement state so that the

newly-inserted block has a specific order in a set. ‘Promotion’ is an update of the replacement state so

that the re-referenced block has a specific order in a set. When a promotion or a placement occurs,

PLRU modifies the values of all nodes related to the re-referenced block. This process also changes

the order of blocks near the referenced line; this reordering is called ‘disturbance’. MDPP minimizes

this disturbance, when the promotion or the placement occur.

C. Dynamic Replacement Policies

Dynamic replacement policy is a recently popular approach to achieve real-time change in the

behaviors of a policy according to the characteristics of a workload [6], [8], [9], [15], [16], [17], [18],

[19], [20]. For example, DIP [12] and DRRIP [7] change the placement position of the new block.

SHiP [8] and SDBP [6] use Program Counter (PC) information to predict whether the line is reused.

Figure 3. An example of PLRU tree. Associativity is 8.

16

To combine multiple features of a workload, MPPPB [18], Perceptron [19] use perceptron learning.

Hawkeye [15] learns from past decisions of Belady’s algorithm [21]. PACMan [9] and Harmony [22]

are prefetch-aware dynamic replacement policies. However, to learn the features of workloads during

run-time, these policies require more overhead to save information such as PC, which core requested a

line and prefetch status.

17

Chapter III

Pseudo Re-Reference Interval Prediction (PRRIP)

A. Binary Tree Based Re-Reference Prediction

We suggest a new binary tree-based replacement policy that mimics SRRIP. Teran et al. formalize

the protection behavior of PLRU tree [14]. Each node of the binary tree protects the opposite sides of

the lower nodes. When a block is protected by a node, we state that the block got a shell. The block

can be protected by multiple shells. Figure 5 shows the number of shells protecting each block and

where they are located. A total number of shells applied to a block represents the degree of safety, as

RRPV does. With appropriate promotion and insertion, RRPV can be represented using shells (Figure

4). Empirically, we found that applying two more shells from the bottom is appropriate for reward of

promotion when the associativity of a cache equals 16 (most common in LLC). In case of placement,

it is best to give newly-inserted block one shell. Details about promotion and insertion of PRRIP will

be provided in Chapter III-B and the Chapter III-C.

Figure 4. State diagram according to the number of shells.

18

F
ig

u
re 5

. E
x

am
p

le P
L

R
U

 tree. A
sso

ciativ
ity

 is 1
6

. F
o

r each
 b

lo
ck

, th
e n

u
m

b
er o

f sh
ells is rep

resen
ted

.

19

If associativity of a cache is not power of two, we can use a 3-way PRRIP tree node (3-way node) to

construct the binary tree (Figure 6(a)). In this case, we can construct the tree by connecting the pair of

two as usual, if a line is left, we can connect it with 3-way node. Then repeat this until the only root

node remains. When constructing the tree with 3-way node, 3-way node must be spread evenly over

the entire tree. With this method, the maximum number of shells for each line can be maintained.

Figure 7 shows the behavior of LRU and PRRIP for an access pattern with a scan. In the example,

PRRIP gives one shell (root node) to a new block. If a block is promoted, PRRIP gives an additional

shell from the bottom. While executing a scan pattern [b0, b1, b2, b3], LRU evicts useful blocks.

However, PRRIP predicts a frequently reused block (a0, a1) which has near-immediate re-reference

interval. Then, PRRIP resists the scan pattern. Consequently, PRRIP results in two additional hits at

T=8 and 9.

Figure 6. PRRIP tree when associativity is not a power of two.

20

(a) LRU (b) PRRIP

Figure 7. Behaviors of LRU (a) and PRRIP (b) for example access pattern. The access pattern is [a0, a1, a1, a0, b0, b1, b2, b3,

a0, a1]. (T=k: time immediately after the k-th access; ‘I’ means invalid data.)

21

B. Sensitivity to Promotion Step

Promotion step indicates how many additional shells are to be applied when a block is hit. During a

promotion, if the additionally applied number of shells is small, the difference in the number of shells

between reused blocks and non-reused blocks is small. In this case, only frequently-accessed blocks

will have many shells and move to a safe location in the set; i.e., PRRIP gives priority to a block that

has been frequently accessed in a short time. In contrast, if many shells are given in promotion, the

frequently reused block may become difficult to identify. Instead of being insensitive to frequency,

PRRIP with large promotion step can better distinguish Fig. 8. IPC over LRU (%) according to the

promotion step (S) and number of shells applied during placement (M). blocks that have never been

reused. The scan-resistance property is a result of evicting never reused block, not of distinguishing

frequently referenced line accurately [7].

Figure 8. IPC over LRU (%) according to the promotion step (S) and number of shells applied during placement (M).

22

Figure 8 reports the IPC over LRU of PRRIP according to promotion step (S) and number of shells

received initially (M). This result is obtained in the same experimental setup as described in Chapter

IV-A. When there are multiple cases of having shells, we have reported maximum value, minimum

value and the geometric means of all cases. To minimize the effect of displacement caused by

promotion, we apply additional shells from the bottom node when a block is promoted. Compared to

one-step promotion, PRRIP with two-step promotion achieved higher IPC and showed lower

difference between maximum IPC and minimum IPC. Also, its deviation between the maximum value

and minimum values is smaller compared with one step promotion. PRRIP with two-step promotion

also achieved higher IPC compared to PRRIP with three-step promotion. This is because disturbance

has a stronger influence in three-step promotion than in the others. Thus, we conclude that applying

two additional shells achieves a good trade-off point between scan-resistance and minimization of

disturbance.

C. Sensitivity to Order of Insertion

Figure 9. Behaviors of SRRIP (a) and PRRIP (b) for example access pattern. The access pattern is [b0, b1, b2, b3, b4, b5, b6, b7

a0]. (T=k: time immediately after the k-th access; Before the time T<0, a0, a1 are protected in the set as a reused block.)

(a) SRRIP (b) PRRIP

23

When continuous misses occur in the set, the placement position determines the number of new lines

that are kept. For example, if only one shell is applied to a newly-inserted line, then if a miss occurs in

the set, a block that lacks shell is replaced and changes value of a node to receive a shell. Then the

next miss changes the value of the node again and the block that came in the last access becomes the

next victim. Then the victim is evicted in two ways alternately until a hit occurs (Figure 9(b)). When

scan access pattern (b0 to b7) comes, the way-1 and the way-3 alternately evict the blocks. If M shells

are applied during placement, the 2M lines alternate. As M decreases, PRRIP becomes increasingly

resistive to scan pattern but the working set becomes increasingly difficult to replace. In other words,

PRRIP can cope with thrashing access pattern whose length is less than 2M + 1. This is another

characteristic that distinguishes PRRIP from SRRIP. In SRRIP, if a sufficiently long scan pattern is

executed, all data in the set is replaced (Figure 9(a)).

As shown in Figure 8, the smaller the number of shells (M) received at the placement, the better the

performance in terms of the geometric mean. The improvement was greatest when the number of

shells received at the placement is one. If the number of shells received initially is small, blocks that

will not be reused less pollute the cache set. When the number of shells received during the placement

equals to zero, the new block has difficulty remaining in the cache until it is reused, so the IPC drops

significantly. In other words, once a block is moved to a safe position, it becomes difficult to replace

that block. Consequently, when a new block is inserted, one is the optimal number of shells to assign

to it. This conclusion is consistent with [7]. It is known that the highest IPC of SRRIP can be obtained

when insertion RRPV is 𝑅𝑅𝑃𝑉𝑚𝑎𝑥 − 1 (𝑅𝑅𝑃𝑉𝑚𝑎𝑥 is maximum value of RRPV). In the PRRIP

algorithm, 𝑅𝑅𝑃𝑉𝑚𝑎𝑥 − 1 corresponds to one shell. One further decision is to identify the node at

which the value must be changed during the placement. The shell of a node that is located near leaf

nodes can only be obtained by the promotion process; therefore, that kind of shells enables

identification of whether a line is reused at least once. Thus, the best approach is to apply a shell to

the upper-side node.

24

Chapter IV

Experimental Setup and Result

A. Experimental Setup

To compare the performance of replacement policies, we use ChampSim [23], a trace-based

memory-system simulator that was used in the 2nd Cache Replacement Championship (CRC-2) [24]

held at ISCA 2017. ChampSim was also used in state-of-the-art research on replacement policies [20],

[22]. ChampSim models a six-wide pipelined out-of-order processor with a 256-entry instruction

window. The memory hierarchy of ChampSim consists of three level on-chip cache memory and the

main memory. We summarize some details about memory hierarchy in TABLE I. ChampSim also

models behaviors of branch predictor; we use gshare branch predictor [25] in this work.

 We used 20 benchmarks from SPEC CPU 2006 [26] that were used in CRC-2. To put stress on LLC,

its miss per kilo-instructions (MPKI) of selected benchmarks is greater than one. For each benchmark,

we executed 200 million instructions as a warm-up. Then we ran 1 billion instructions to measure the

IPC. On single-core experiments, we normalized results to the IPC of LRU to eliminate the effect of

IPC differences on workload. For four-core experiments, we randomly pick four out of the 20

benchmarks to create 100 of four-core workloads. A thread finishes its workload faster than others

will continue executing to keep competing for shared resources. We measured weighted IPC

normalized by LRU for each four-core workload. Weighted IPC over LRU is commonly-used metric

to evaluate performance of shared caches [14], [15], [18], [19], [22]. Weighted IPC over LRU for

policy 𝑃 can be estimated follows. First of all, for each thread 𝑖 sharing the 8 MB LLC, we

measured 𝐼𝑃𝐶𝑚𝑢𝑙𝑡𝑖.𝑃.𝑖 . Then we computed 𝐼𝑃𝐶𝑠𝑖𝑛𝑔𝑙𝑒.𝐿𝑅𝑈.𝑖 as executing the same workload in

isolation with 8 MB LLC with LRU policy. Then weighted IPC for 𝑃 equals to ∑ 𝐼𝑃𝐶𝑚𝑢𝑙𝑡𝑖.𝑃.𝑖 /

 𝐼𝑃𝐶𝑠𝑖𝑛𝑔𝑙𝑒.𝐿𝑅𝑈.𝑖. Finally, weighted IPC for 𝑃 is normalized by weighted IPC for LRU to calculate the

weighted IPC over LRU for 𝑃.

25

Components Specifics

L1 Instr. Cache Private 32 KB, LRU, 4-cycle latency, 8-way, 64 sets, 64 Bytes lines

L1 Data Cache Private 32 KB, LRU, 4-cycle latency, 8-way, 64 sets, 64 Bytes lines

L2 Cache Private 256 KB, LRU, 8-cycle latency, 8-way, 512 sets, 64 Bytes lines

LLC (Single Core) Private 2 MB, 20-cycle latency, 16-way, 2,048 sets, 64 Bytes lines

LLC (Four Core) Shared 8 MB, 20-cycle latency, 16-way, 8,192 sets, 64 Bytes lines

DRAM

13.75 ns latency for row buffer hits,

41.25 ns latency for row buffer misses,

12.8 GB/s throughput

No. Name
Programming

Language
Job Description

1 GemsFDTD Fortran Computational Electromagnetics

2 astar C++ Path-finding Algorithms

3 bwaves Fortran Fluid Dynamics

4 bzip2 C Compression

5 cactusADM C/Fortran Physics/General Relativity

6 gcc C C Compiler

7 gobmk C Artificial Intelligence: go

8 gromacs C/Fortran Biochemistry/Molecular Dynamics

9 lbm C Fluid Dynamics

10 leslie3d Fortran Fluid Dynamics

11 libquantum C Physics: Quantum Computing

12 mcf C Combinatorial Optimization

13 milc C Physics: Quantum Chromodynamics

14 omnetpp C++ Discrete Event Simulation

15 perlbench C PERL Programming Language

16 soplex C++ Linear Programming, Optimization

17 sphinx3 C Speech recognition

18 wrf C/Fortran Weather Prediction

19 xalancbmk C++ XML Processing

20 zeusmp Fortran Physics/CFD

Table I. Experimental Configuration

Table II. List of Single-Threaded Workloads

26

No. CPU 0 CPU 1 CPU 2 CPU 3

1 gobmk libquantum perlbench xalancbmk

2 astar bwaves lbm zeusmp

3 cactusADM lbm milc perlbench

4 bwaves lbm sphinx3 wrf

5 astar cactusADM GemsFDTD perlbench

6 cactusADM GemsFDTD gobmk soplex

7 astar cactusADM leslie3d sphinx3

8 bwaves libquantum perlbench sphinx3

9 cactusADM gobmk milc soplex

10 bzip2 gobmk lbm perlbench

11 astar gobmk milc soplex

12 gobmk leslie3d libquantum perlbench

13 bwaves bzip2 gobmk wrf

14 gobmk lbm leslie3d milc

15 cactusADM gobmk milc perlbench

16 bwaves bzip2 gobmk leslie3d

17 astar bzip2 leslie3d xalancbmk

18 gobmk libquantum wrf xalancbmk

19 gobmk lbm milc zeusmp

20 milc perlbench wrf zeusmp

21 perlbench soplex xalancbmk zeusmp

22 milc sphinx3 xalancbmk zeusmp

23 bzip2 GemsFDTD gobmk soplex

24 astar bwaves perlbench wrf

25 bwaves bzip2 cactusADM sphinx3

26 bwaves cactusADM lbm wrf

27 astar leslie3d soplex sphinx3

28 cactusADM leslie3d libquantum perlbench

29 bwaves cactusADM milc xalancbmk

30 GemsFDTD libquantum soplex xalancbmk

31 astar bzip2 soplex xalancbmk

32 bzip2 libquantum perlbench xalancbmk

33 cactusADM perlbench wrf xalancbmk

34 leslie3d libquantum sphinx3 xalancbmk

35 bwaves gobmk soplex zeusmp

36 bzip2 milc soplex zeusmp

37 GemsFDTD perlbench soplex zeusmp

38 bwaves gromacs leslie3d zeusmp

39 astar gromacs sphinx3 zeusmp

40 GemsFDTD libquantum milc zeusmp

41 cactusADM soplex wrf zeusmp

42 GemsFDTD gobmk gromacs perlbench

43 gromacs libquantum perlbench wrf

44 bzip2 gromacs libquantum perlbench

45 astar gromacs lbm wrf

46 cactusADM gobmk gromacs perlbench

47 gromacs lbm sphinx3 wrf

48 cactusADM soplex sphinx3 xalancbmk

49 astar gromacs libquantum xalancbmk

50 gcc omnetpp soplex xalancbmk

51 gcc gobmk perlbench zeusmp

52 lbm soplex sphinx3 zeusmp

53 cactusADM GemsFDTD omnetpp perlbench

54 gcc libquantum milc sphinx3

27

55 astar gcc omnetpp wrf

56 cactusADM gromacs libquantum wrf

57 GemsFDTD lbm leslie3d libquantum

58 gcc libquantum milc xalancbmk

59 cactusADM lbm libquantum xalancbmk

60 gromacs lbm leslie3d xalancbmk

61 gobmk omnetpp sphinx3 wrf

62 astar gcc lbm omnetpp

63 gromacs libquantum omnetpp soplex

64 milc omnetpp sphinx3 wrf

65 gromacs leslie3d milc soplex

66 gcc omnetpp sphinx3 xalancbmk

67 bzip2 gcc milc zeusmp

68 cactusADM gromacs libquantum omnetpp

69 GemsFDTD gcc leslie3d sphinx3

70 astar bwaves cactusADM omnetpp

71 astar omnetpp sphinx3 wrf

72 bwaves bzip2 gcc libquantum

73 omnetpp perlbench sphinx3 xalancbmk

74 bwaves gcc libquantum zeusmp

75 leslie3d omnetpp wrf zeusmp

76 bzip2 GemsFDTD gcc zeusmp

77 bwaves cactusADM gcc zeusmp

78 gobmk gromacs leslie3d omnetpp

79 bwaves GemsFDTD gcc lbm

80 gromacs lbm soplex xalancbmk

81 cactusADM gcc sphinx3 xalancbmk

82 gcc gobmk gromacs sphinx3

83 gobmk mcf milc omnetpp

84 gromacs lbm leslie3d omnetpp

85 bzip2 gcc gromacs wrf

86 GemsFDTD gobmk mcf soplex

87 astar bwaves gcc mcf

88 GemsFDTD gobmk mcf wrf

89 gcc lbm mcf sphinx3

90 gcc mcf wrf xalancbmk

91 GemsFDTD mcf omnetpp wrf

92 bwaves leslie3d mcf soplex

93 mcf soplex wrf xalancbmk

94 bwaves libquantum mcf wrf

95 cactusADM lbm mcf sphinx3

96 mcf milc sphinx3 wrf

97 bzip2 mcf milc zeusmp

98 gromacs mcf milc omnetpp

99 gromacs libquantum mcf xalancbmk

100 astar bwaves gromacs mcf

Table III. List of 4-Core Workloads

28

B. Result for Single-Core Workloads

To evaluate the performance of PRRIP, we additionally experimented on four replacement policies

(LRU, PLRU, MDPP, SRRIP (2-bit)). Figure 10 shows the results of the single-core experiment.

PRRIP achieved the highest geometric mean of IPC over LRU compared to other four replacement

policies (PLRU -0.03%, MDPP 0.45%, SRRIP 0.53%, PRRIP 1.26%). Non-LRU algorithms achieved

low IPC on zeusmp and GemsFDTD but achieved higher IPC than LRU-based algorithms on sphinx3.

Overall, PRRIP and SRRIP achieve similar IPC but differed in zeusmp, omnetpp, leslie3d, gcc,

libquantum, milc, cactusADM, lbm, mcf and sphinx3. The reason caused this difference can be found

by performance changes of PRRIP according to the M (Figure 11). PRRIP regards thrashing access

pattern longer than 2M as scan pattern (Chapter III-C). In zeusmp, omnetpp, gcc and leslie3d, as M

increases, IPC of PRRIP also increases. In these benchmarks, PRRIP with small M evicts potentially

hittable lines, which are part of the thrashing access pattern. Conversely, in cactusADM, lbm,

libquantum, mcf and milc as M decreases, IPC of PRRIP increases. This is because, PRRIP with large

M, suffers from more pollution due to scan pattern compared to PRRIP with small M. Additionally,

libquantum, lbm, milc, omnetpp and mcf have large total number of accesses to LLC. Average access

counts of these five benchmarks are more than three times compared with average access counts of

the others. These differences in access counts affected the difference in IPC over LRU between

SRRIP and PRRIP. However, although the number of accesses is not large, the difference in IPC over

LRU between PRRIP and SRRIP is large in sphinx3; this difference occurs because LRU performs

poorly with sphinx3. In sphinx3, IPC of PRRIP and SRRIP are divided by the relatively low IPC of

LRU, that results in a relatively big difference.

29

F
ig

u
re 1

1
. IP

C
 o

v
er L

R
U

 o
f P

R
R

IP
 o

n
 sin

g
le

-th
read

ed
 w

o
rk

lo
ad

s acco
rd

in
g

 to
 n

u
m

b
er o

f sh
ells ap

p
lied

 d
u

rin
g

 p
lacem

en
t (M

).

T
h

e o
rd

er o
f b

en
ch

m
ark

 is so
rted

 b
y

 ascen
d

in
g
 o

rd
er o

f S
R

R
IP

.

F
ig

u
re 1

0
. IP

C
 o

v
er L

R
U

 fo
r fo

u
r rep

lacem
en

t p
o

licies o
n

 sin
g

le-th
read

ed
 w

o
rk

lo
ad

s. T
h

e o
rd

er o
f b

en
ch

m
ark

 is so
rted

 b
y

 ascen
d

in
g

 o
rd

er o
f P

R
R

IP
.

30

C. Result for Multi-Core Workloads

Figure 12. Normalized Weighted IPC over LRU for 4-core workloads. For each policy, workloads are sorted in ascending

order to get S-curves.

As in the single-core experiment, we experimented on each replacement policy (LRU, PLRU, MDPP,

SRRIP (2-bit), PRRIP) for multi-core workloads. Figure 12 reports weighted IPC over LRU for five

replacement policies (LRU, PLRU, MDPP, SRRIP, PRRIP). On multi-core workloads, SRRIP and

PRRIP achieved the highest and second-highest weighted IPC over LRU respectively compared to

other replacement policies (PLRU -0.30%, MDPP 0.55%, SRRIP 1.82%, PRRIP 1.6%). The largest

difference of speedup PRRIP over SRRIP was 6.04%, whereas the best speedup of SRRIP over

PRRIP was 4.88%. Although SRRIP achieved higher geometric mean than PRRIP, it is a reasonable

trade-off to consider overhead (will be discussed in Chapter IV-D).

31

D. Overhead

TABLE IV summarizes the hardware overhead for each replacement policies. PLRU, MDPP and

PRRIP are based on a binary tree and require only one bit per block to save a replacement state. We

ignore the additional logic overheads that are used to control the promotion and the placement,

because they can be implemented with existing PLRU-based cache and a simple additional lookup

table. Our proposed PRRIP consumes less than half of overhead of SRRIP but maintains similar IPC

of SRRIP. Moreover, the higher associativity increases the difference in overhead between PRRIP and

SRRIP. Considering that LLC typically has high associativity, PRRIP is an appropriate replacement

policy for LLC.

In our experimental setup (TABLE I), the difference in overhead between PRRIP and SRRIP is 4.25

KB (2-bit RRPV) or 8.25 KB (3-bit RRPV) per core. This difference is not much compared to the

total capacity of LLC, but it can be used to improve the performance of dynamic replacement policy.

For example, SDBP predictor [6], Hawkeye predictor [15], Signature History Counter Table (SHCT)

of SHiP [8] and prefetching status for PACMan approach [9] can be implemented within 4 KB of

storage. Furthermore, storage for replacement state is usually implemented using 8T SRAM cells; the

size of an 8 KB 8T SRAM is roughly the same as a moderate dual-ported branch direction predictor

or branch target buffer [27].

Policies
Overhead for

n-way (bits)

Overhead for

2 MB LLC (KB)

Overhead for

8 MB LLC (KB)

PLRU 𝑛 − 1 3.75 15

MDPP 𝑛 − 1 3.75 15

PRRIP 𝑛 − 1 3.75 15

SRRIP
2𝑛 (2-bit RRPV) 8 32

3𝑛 (3-bit RRPV) 12 48

LRU 𝑛 log2 𝑛 16 64

Table IV. Overhead Requirements for Various Replacement Policies

32

Chapter V

Extend to Dynamic Replacement Policy

The PRRIP is one of the static replacement policy that does not adjust its behavior according to real-

time change of workload. Although the static policies are still widely-used, research on dynamic

replacement policy has been active in recent years. Thus, we extend PRRIP to dynamic replacement

policy. SHiP++ [10] and ReD [11] are state-of-the-art replacement policies that ranked second and

third in CRC-2. Additionally, SHiP++ and ReD policies are based on SRRIP so we apply PRRIP to

SHiP++ (P-SHiP++) and ReD (P-ReD). SHiP++ is a modified version of SHiP [8], that use Signature

History Counter Table (SHCT) to adjust placement position. To replace SRRIP used in SHiP++ to

PRRIP, we apply all shells to a line that is requested by positively trained PC and add no shell to a

line requested by negatively trained PC. ReD is an aggressive block selection algorithm, that bypasses

all blocks predicted not to be reused. Since ReD bypasses the first requested blocks, ReD is robust to

scan access pattern. To reflect this characteristic, PRRIP in ReD apply three shells to give more

opportunity to the newly-inserted line.

Policies
IPC over LRU

(1-core)

Weighted IPC

over LRU (4-core)

Overhead for

2 MB LLC (KB)

SHiP++ 4.98% 8.18% 16

P-SHiP++ 3.33% 6.59% 11.75

ReD 3.00% 9.56% 31.875

P-ReD 2.59% 7.98% 27.625

We evaluate P-SHiP++ and P-ReD through experiments described in Chapter IV. Then, we compare

the speedup over LRU with original SHiP++ and ReD. TABLE V shows the summary of

experimental results for each dynamic policy. With PRRIP, we can reduce the hardware overhead

from 16 KB to 11.75 KB and from 31.875 KB to 27.625 KB in SHiP++ and ReD, respectively. P-

SHiP++ achieves lower speedup over LRU than original SHiP++. PRRIP with one shell placement

allows the promotion of the newly-inserted line within two accesses in a set. This induces more

misses than SRRIP in some benchmarks (zeusmp, leslie3d, omnetpp), disturbs training SHCT of P-

SHiP++. Consequently, miss-trained SHCT of P-SHiP++ degrades the performance. On single-core

experiments, PReD achieves comparable IPC over LRU with that of ReD. However, ReD achieves

Table V. Experimental Results of Dynamic Replace Policies

33

1.58% higher speedup than P-ReD. As we discussed in Chapter III-C, PRRIP is more resistant to long

scan pattern than SRRIP. Since ReD is robust to scan pattern, PRRIP relatively becomes

disadvantageous with ReD.

34

Chapter VI

Conclusion

Practical cache replacement policy for LLC should consider both performance and overhead at the

same time. In this thesis, we proposed PRRIP; it reduced the overhead of SRRIP by less than half, but

achieved similar IPC to SRRIP. Our experimental results confirmed that PRRIP mimics SRRIP.

Moreover, our experimental results show that PRRIP achieves 1.26% speedup over LRU while

SRRIP gets 0.53% speedup over LRU for single-core workloads. For multi-core workloads, our

experimental results show that the performance difference between PRRIP and SRRIP is less than

0.3%. We also study details to consider when implementing PRRIP such as promotion step and

position of the newly-inserted line. By replacing SRRIP to PRRIP, we extend PRRIP to dynamic

replacement policy. Our ongoing work seeks to develop a dynamic replacement algorithm which is

suitable for PRRIP.

35

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications of the Obvious”, ACM

SIGARCH Computer Architecture News 23(1) (1995), pp. 20-24.

[2] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang and Y. Solihin, “Scaling the Bandwidth

Wall: Challenges in and Avenues for CMP Scaling”, ACM SIGARCH Computer Architecture News

37(3) (2009), pp. 371-382.

[3] G. Keramidas, P. Petoumenos and S. Kaxiras, “Where Replacement Algorithms Fail: a Thorough

Analysis”, Proc. ACM International Conference on CF, 2010, pp. 141-150.

[4] N. Beckmann and D. Sanchez, “Modeling Cache Performance Beyond LRU”, Proc. IEEE

International Symposium on HPCA, 2016, pp. 225-236.

[5] N. A. Kurd, S. Bhamidipati, C. Mozak, J. L. Miller, T. M. Wilson, M. Nemani and M. Chowdhury,

“Westmere: A Family of 32nm IA Processors”, Proc. IEEE International Conference on ISSCC, 2010,

pp. 96-97.

[6] S. Khan, Y. Tian and D. A. Jim´enez, “Sampling Dead Block Prediction for Last-Level Caches”,

Proc. IEEE/ACM International Symposium on MICRO, 2010, pp. 175-186.

[7] A. Jaleel, K. B. Theobald, S. C. Steely Jr. and J. Emer, “High Performance Cache Replacement

Using Re-Reference Interval Prediction (RRIP)”, Proc. IEEE International Symposium on ISCA,

2010, pp. 60-71.

[8] C. Wu, A. Jaleel, M. Martonosi, S. C. Steely Jr. and J. Emer, “PACMan: Prefetch-Aware Cache

Management for High Performance Caching”, Proc. IEEE/ACM International Symposium on MICRO,

2011, pp. 442-453.

[9] C. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr. and J. Emer, “SHiP: Signature-

based Hit Predictor for High Performance Caching”, Proc. IEEE/ACM International Symposium on

MICRO, 2011, pp. 430-441.

[10] V. Young, C. Chou, A. Jaleel and M. Qureshi, “SHiP++: Enhancing Signature-based Hit

Predictor for Improved Cache Performance”, 2017. [Online]. Available: http://crc2.ece.tamu.edu/

[11] P. Faldu and B. Grot, “Reuse-aware Management for Last-Level Caches”, 2017. [Online].

Available: http://crc2.ece.tamu.edu/

36

[12] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely and J. Emer, “Adaptive Insertion Policies for

High Performance Caching”, Proc. IEEE International Symposium on ISCA, 2007, pp. 381-391.

[13] J. Handy, The Cache Memory Book, Morgan Kaufmann, 1993.

[14] E. Teran, Y. Tian, Z. Wang and D. A. Jim´enez, “Minimal Disturbance Placement and

Promotion”, Proc. IEEE International Symposium on HPCA, 2016, pp. 201-211.

[15] A. Jain and C. Lin, “Back to the Future: Leveraging Beladys Algorithm for Improved Cache

Replacement”, Proc. IEEE International Symposium on ISCA, 2016, pp. 78-89.

[16] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero and A. V. Veidenbaum, “Improving

Cache Management Policies Using Dynamic Reuse Distances”, Proc. IEEE/ACM International

Symposium on MICRO, 2012, pp. 389-400.

[17] N. Beckmann and D. Sanchez, “Maximizing Cache Performance Under Uncertainty”, Proc. IEEE

International Symposium on HPCA, 2017, pp. 109-120.

[18] D. A. Jim´enez and E. Teran, “Multiperspective Reuse Prediction”, Proc. IEEE/ACM

International Symposium on MICRO, 2017, pp. 436-448.

[19] E. Teran, Z. Wang and D. A. Jim´enez, “Perceptron Learning for Reuse Prediction”, Proc.

IEEE/ACM International Symposium on MICRO, 2016, pp. 1-12.

[20] J. Kim, E. Teran, P. V. Gratz, D. A. Jim énez, S. H. Pugsley and C. Wilerson, “Kill the Program

Counter: Reconstructing Program Behavior in the Processor Cache Hierarchy”, Proc. ASPLOS, 2017,

pp. 737-749.

[21] L. A. Belady, “A Study of Replacement Algorithms for a Virtual-storage Computer”, IBM

Systems Journal 5(2) (1996), pp. 78-101.

[22] A. Jain and C. Lin, “Rethinking Belady’s Algorithm to Accommodate Prefetching”, Proc. IEEE

International Symposium on ISCA, 2018, pp. 110-123.

[23] “The ChampSim Simulator”, [Online]. Available: https://github.com/ChampSim/ChampSim/

[24] “2nd Cache Replacement Championship”, 2017. [Online]. Available: http://crc2.ece.tamu.edu/

[25] S. McFarling, “Combining Branch Predictors”, Digital Western Research Laboratory, Tech. Rep.,

1993.

37

[26] “SPEC CPU 2006”, 2006. [Online]. Available: http://www.spec.org/cpu2006.

[27] E. Teran, “Principled Approaches to Last-Level Cache Management”, Doctoral Dissertation of

Texas A&M University, Aug. 2017.

[28] G. Keramidas, P. Petoumenos and S. Kaxiras, “Cache Replacement Based on Reuse-Distance

Prediction”, Proc. IEEE International Conference on ICCD, 2007, pp. 245-250.

[29] D. A. Jim´enez, “Insertion and Promotion for Tree-Based PseudoLRU Last-Level Caches”, Proc.

IEEE/ACM International Symposium on MICRO, 2013, pp. 284-296.

[30] N. Beckmann and D. Sanchez, “Talus: A Simple Way to Remove Cliffs in Cache Performance”,

Proc. IEEE International Symposium on HPCA, 2015, pp. 64-75.

[31] A. Pablo, P. Prieto, V. Puente, and J. Gregorio, “Improving Last Level Shared Cache

Performance through Mobile Insertion Policies (MIP)”, Parallel Computing 49 (2015), pp. 13-17.

	I. Introduction
	II. Background
	A. Re-reference Interval Prediction (RRIP)
	B. Binary Tree-Based Replacement Policies
	(a) Tree-Based PseudoLRU (PLRU)
	(b) Minimal Disturbance Placement and Promotion (MDPP)

	C. Dynamic Replacement Policies

	III. Pseudo Re-Reference Interval Prediction (PRRIP)
	A. Binary Tree Based Re-Reference Prediction
	B. Sensitivity to Promotion Step
	C. Sensitivity to Order of Insertion

	IV. Experimental Setup and Result
	A. Experimental Setup
	B. Result for Single-Core Workloads
	C. Result for Multi-Core Workloads
	D. Overhead

	V. Extend to Dynamic Replacement Policy
	VI. Conclusion
	References

<startpage>2
I. Introduction 11
II. Background 14
 A. Re-reference Interval Prediction (RRIP) 14
 B. Binary Tree-Based Replacement Policies 15
 (a) Tree-Based PseudoLRU (PLRU) 15
 (b) Minimal Disturbance Placement and Promotion (MDPP) 15
 C. Dynamic Replacement Policies 15
III. Pseudo Re-Reference Interval Prediction (PRRIP) 17
 A. Binary Tree Based Re-Reference Prediction 17
 B. Sensitivity to Promotion Step 21
 C. Sensitivity to Order of Insertion 22
IV. Experimental Setup and Result 24
 A. Experimental Setup 24
 B. Result for Single-Core Workloads 28
 C. Result for Multi-Core Workloads 30
 D. Overhead 31
V. Extend to Dynamic Replacement Policy 32
VI. Conclusion 34
References 35
</body>

