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Abstract

The development of high-throughput technologies has enabled to produce omics data and it has
facilitated the systemic analysis of biomolecules in cells. In addition, thanks to the vast amount of
knowledge in molecular biology accumulated for decades, numerous biological pathways have been
categorized as gene-sets. Using these omics data and pre-defined gene-sets, the pathway analysis
identifies genes that are collectively altered on a gene-set level under a phenotype. It helps the biological
interpretation of the phenotype, and find phenotype-related genes that are not detected by single gene-
based approach. Besides, the high-throughput technologies have contributed to construct various
biological networks such as the protein-protein interactions (PPIs), metabolic/cell signaling networks,
gene-regulatory networks and gene co-expression networks. Using these networks, we can visualize the
relationships among gene-set members and find the hub genes, or infer new biological regulatory
modules.

Overall, this thesis/dissertation describes three approaches to enhance the performance of pathway
and/or network analysis of transcriptomic and genomic data. First, a simple but effective method that
improves the gene-permuting gene-set enrichment analysis (GSEA) of RNA-sequencing data will be
addressed, which is especially useful for small replicate data. By taking absolute statistic, it greatly
reduced the false positive rate caused by inter-gene correlation within gene-sets, and improved the
overall discriminatory ability in gene-permuting GSEA. Next, a powerful competitive gene-set analysis
tool for GWAS summary data, named GSA-SNP2, will be introduced. The z-score method applied with
adjusted gene score greatly improved sensitivity compared to existing competitive gene-set analysis
methods while exhibiting decent false positive control. The performance was validated using both
simulation and real data. In addition, GSA-SNP2 visualizes protein interaction networks within and
across the significant pathways so that the user can prioritize the core subnetworks for further
mechanistic study. Finally, a novel approach to predict condition-specific miRNA target network by
biclustering a large collection of mRNA fold-change data for sequence-specific targets will be
introduced. The bicluster targets exhibited on average 17.0% (median 19.4%) improved gain in
certainty (sensitivity + specificity). The net gain was further increased up to 32.0% (median 33.2%) by
filtering them using functional network information. The analysis of cancer-related biclusters revealed
that PI3K/Akt signaling pathway is strongly enriched in targets of a few miRNAs in breast cancer and
diffuse large B-cell lymphoma. Among them, five independent prognostic miRNAs were identified,
and repressions of bicluster targets and pathway activity by mir-29 were experimentally validated. The
BiMIR database provides a useful resource to search for miRNA regulation modules for 459 human

miRNAs.
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Chapter I: Introduction

1.1 Omics data

A suffix ‘-ome’ represents the mass of something, and it is frequently used to indicate a group of
biological molecules. For example, genome, transcriptome and proteome represent the complete sets of
DNA, transcripts (RNA) and proteins in a cell, respectively. With the development of high-throughput
technology, it has become possible to produce such omics data within short time. It facilitates the
systematic analysis of genetic and/or epigenetic features of diseases and helps to find therapeutic and
diagnostic targets. Here, the concepts and characteristics of genomic (especially for GWAS data) and

transcriptomic data will be explained.

1.1.1 Genomic data

In a broad sense, the genomic data refers to any data come from genome of such as nucleotide sequences,
annotations or read alignments. Among them, I will focus on the genetic variation data in this
thesis/dissertation. Many diseases are caused by genetic variations (Table 1.1). The variants within
coding region may alter the protein structure, and those in the non-coding regulatory region can affect
to the gene expression regulation. The genomic variants are classified into two groups based on the
variant size. One is the simple nucleotide variation (SNV) including single nucleotide polymorphism
(SNP) and short insert/deletion. Another is the structural variation (SV) including long insert/deletion,
copy number variation (CNV), inversion and translocation. Table 1.1 describes the definition and
example diseases of each variant type.

The genome-wide profiling of human genetic variations has been possible with the construction of
human reference genome ' and two great projects such as International HapMap Projects * and 1000
Genome Project ® that produced reference haplotype data for human genetic variations. In the
International HapMap Project, more than 3 million human common SNPs had been genotyped for 1,301
individuals from 11 populations (Phase III), and identified about 500,000 tag SNPs that represent the
behaviors of each linkage disequilibrium (LD) block. In 1000 Genome Project, whole genome
sequencing (WGS) had been done for 2,504 individuals from 26 population, and discovered an
extensive number of genomic variants including 84.7 million SNPs, 3.6 million indels and 60,000
structural variants *. These reference haplotype panels are great sources for genome-wide association
study that facilitate an efficient genotyping through imputation, which will be explained in the next

section in detail.



Table 1.1. Types of genetic variation

Variation Type Description Example disease

Simple Nucleotide Variation (SNV)

Single nucleotide  Single nucleotide variation found more than 1% of population.  Sickle-cell anaemia®

polymorphism More than 84 millions of SNPs have been found in human Wilson’s disease®
(SNP) genome. Tay-Sachs disease’
Indel Insertion and deletion of base pairs (length: 1~10,000 bp). Cystic fibrosis ®
1.6~2.5 millions of indels are found in human genome. Fragile X syndrome®
muscular dystrophy®
Satellite Repetition of DNA motifs, typically 5-50 times. Huntington’s disease’
e  microsatellites (< 10 bp per repeat) Fragile X syndrome’
e  minisatellites (10—60 bp per repeat) Myotonic dystrophy”

satellites (~hundreds bp per repeat)
e  macrosatellites (several kb per repeat)

Structural variation (SV)

Copy number Copy number change of long DNA segment (>1 kb) Huntington’s disease!®
variation (CNV) Alzheimer disease'!
Autism'?
Inversion Rearrangement of DNA segment to reverse orientation. Haemophilia A3
Translocation Rearrangement of DNA segment to be inserted into different Leukaemia'*
chromosome Ewing’s sarcoma'’

1.1.1.1 Genome-wide association study

The genome-wide association study (GWAS) is carried out to identify the genetic variants (mainly
SNPs) that are associated with a phenotype (e.g., disease) '°. For example, if one type of allele of a SNP
is more frequently observed in patient group compared to the control group, the SNP is regarded as a
marker of the disease of interest. The higher SNP effect size (represented by odds ratio for dichotomous
trait or beta value for continuous trait; figure 1.1) represents the stronger association of that SNP with
the phenotype. The phenotype can be either dichotomous trait where the samples consist of case and
control groups (e.g., disease vs. normal) or continuous trait such as height and BMI. For dichotomous
phenotype, Chi-squared test for independence is widely performed to evaluate a SNP’s association p-
value. Figure 1.1 represents the process of association test using chi-squared test for a SNP and
calculating its effect size. Logistic regression is an alternative method to perform the association test. It
is used to adjust various confounders such as ethnicity and batch effect. For quantitative traits, following

linear regression model is used to perform association test.

N
Y=p5+pBX+ Z OViCi
i=



where, Y is a phenotype vector, X is a (normalized) genotype vector of a SNP, C; is confounding
factors, f, is intercept, [5; is regression coefficient of X and y; is regression coefficient of
confounding factor C;. Here, f; represents the effect size of the SNP.

Although there are more than 84 million SNPs in human genome, we don’t need to perform association
test for all of them. As mentioned in the previous section, the International HapMap Project, launched
in 2003, identified ~500,000 human tag SNPs that represent each haplotype. In typical GWAS, these
tag SNPs are genotyped first using SNP array to find significantly associated tag SNPs (e.g., p <
5 x 1078). Next, association test is performed again for all SNPs in the haplotypes of significant tag
SNPs. In this step, the unknown genotypes are inferred from reference panel constituted from
International HapMap Project or 1000 Genome project. This step is called imputation. It enables to find
more accurate SNP marker without genotyping all SNPs. SNP markers found in this discovery stage
are often further validated using independent cohort.

The SNP markers identified in various phenotypes can be referred from GWAS Catalog page
(https://www.ebi.ac.uk/gwas/). As of December 2018, 89,251 unique SNP-trait associations (p-

value<5 X 1078) are reported in GWAS Catalog.
The result of association test for all SNPs is often provided with summarized format including columns
of SNP ID, genomic position, effect allele, effect size and association p-value. This kind of data is called

‘GWAS summary data’. It is favorably used for further pathway analysis due to its relatively small data

size.
/Observed allele counts )
C T Total i i
Chi-squared test for independence
Cases a b a+b ,
O-E
Controls € d c+d Zu ~)(2 with 1 degree of freedom
Total a+c b+d S E
Expected allele counts . i aj/c ad
Effect size (Odds ratio) = 5/d " be
C T Total / ¢
Cases (a+b)(@a+c)/S (a+b)(b+d)/S a+b
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Total a+c b+d S
/

Figure 1.1. SNP association test using Chi-squared test and effect size evaluation.

The tables represent the observed (denoted as O) and expected (denoted as £) SNP variant counts in
case and control samples. The association p-value of the SNP is evaluated using Chi-squared test for
independence. The effect size of the SNP is calculated by odds ratio of variant counts between case and
control samples.



1.1.2 Transcriptomic data

Various protein coding- and non-coding RNAs are transcribed from DNA in a cell. The transcriptome
means the entire RNA molecules in a cell, but it usually indicates the entire set of specific RNA type
of interest such as messenger RNAs (mRNAs). In this thesis/dissertation, the transcriptome represents
a complete set of mRNAs. Among all RNAs, the majority is composed of ribosomal RNAs (rRNAs)
and transfer RNAs (tRNAs) (95~97%), while the mRNAs that we mainly focus on occupy merely less
than 5% '". Thus, the enrichment of mRNAs (or other RNA type of interest) or depletion of rRNA and
tRNA is carried out after RNA extraction. The purified mRNA expression levels are measured by cDNA
microarray or RNA-sequencing, and this transcriptomic data is used to measure (1) the expression level
of transcripts in a specific condition, (2) alternative splicing to predict the isoform protein levels and (3)

the effect of genomic variants on gene expression '*!.

1.1.2.1 Microarray and RNA-sequencing

Similar to genomic data, the transcriptomic data is measured using (1) cDNA microarray or (2) RNA-
sequencing (RNA-seq). The differences of two methods are represented in figure 1.2. The cDNA
microarray was developed a decade earlier than RNA-seq (The first studies of cDNA microarray and
RNA-seq were published in 1995 and 2008, respectively ***). It measures all known transcripts’ levels
at the same time based on the hybridization. Although useful, there are two limitations in this method.
First, it can’t discover novel transcripts because the probes on a microarray chip are produced only for
known transcripts. Second, it shows high background noises caused by nonspecific hybridization
between transcripts and probes **. The RNA-seq technique was developed to solve these problems. By
aligning the RNA fragments to the reference genome, it can discover de-novo RNA molecules *°. In
addition, it shows quite low background noise and high sensitivity to detect lowly expressed RNA
molecules. In spite of these advantages of RNA-seq, there are several things to be careful in analyzing

RNA-seq data as described in below.
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Figure 1.2. Comparison of cDNA microarray and RNA-sequencing
1.1.2.2 Issues in RNA-sequencing data analysis

The issues in analyzing RNA-seq data arise from its expression measuring method (counting the
number of reads aligned on each gene). First issue is the normalization. It is a process to make the
expression levels comparable within a sample or between samples. For example, the raw read counts
of gene A and gene B within a sample cannot be directly compared because longer genes tend to be

mapped with more reads. To remove this gene length bias, the raw counts of gene A and B are typically

Raw read countx10° _ Fragment countx10°

normalized by RPKM (=

gene lengthxlibrary size

) or FPKM ( ). The gene length

gene lengthxlibrary size
bias is not considered when comparing the gene expression levels between samples (e.g., differential
expression analysis of a gene). Instead, the ‘sequencing depth bias’ must be corrected in this case. Many
‘between-sample’ normalization methods such as DESeq”®, TMM?’ or UQ had been devised
considering the library size factor. Table 1.2 represents how each method normalizes the raw read
counts. Another issue is the statistical evaluation of differential expression. Because RNA-seq read
counts are discrete values, Poisson distribution had been used in the early days. However, the
assumption of Poisson distribution (mean and variance are same) was not fit to the real RNA-seq data
where the gene count variances are often much larger than gene count means. Thus, over-dispersed
Poisson distribution, a.k.a. Negative Binomial (NB) distribution, have been frequently used in modeling

RNA-seq data. In NB distribution, the variance of a i-th gene in the j-th sample (al-zj) is defined as the

sum of expected mean (1;;) and an additional term.
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0f; = wij + il
Here, ¢; is the dispersion coefficient of i-th gene. The size of dispersion coefficient depends on the
data type. For example, the dispersion coefficient of a dataset consisting of samples from unrelated
individuals (e.g., cancer cohort data) will be much higher than that of those consisting of technical
replicates or genetically identical samples (e.g., cell lines). Many RNA-seq DE analysis methods such
as DESeq2 %, edgeR?’, baySeq®’ and EBSeq™ use the negative binomial model. Voom®' is another DE
analysis method that transforms the normalized read counts to log-scale and applies the linear model
which is commonly used in the microarray analysis. There are also non-parametric methods such as

NOISeq™ or SAMseq™.

Table 1.2. Size factor of six between-sample normalization methods.

For each method, raw RNA-seq read count of gene g in j-th sample (Kj;) is normalized by dividing it
with size factor of j-th sample (s;). G and m represent the total number of genes and samples,

respectively. UQ(X) is upper-quartile value of x, and Q; is the upper-quartile count in j-th sample.

Methods Size factor of j-th sample
G
Total count method (TC) . g=1Kygj
NI m
g=1 2:j=1 ng

K.
’ g=1 ng

K,
_ . gj
s; = median (—G K )

Upper-Quartile method (UQ)

Median method (Med)

9=1"g]j
Quantile-normalization (Q) G = 101091001._(%)21%110910%
j

log. ( )_deG’ngng

TMM N
geG’ Wyj

Ni-Ky; = Np—Kgr
Where M,; = 108, ((Ky;/N))/(Kgr/Ny)), Wgj =22+ ——2% N;, N, arethe

NiKgj — NeKgr
total number of reads for j-th sample and reference sample 1, respectively.
G' is set of genes not trimmed by fold change and average expression level cutoff.
DESeq

median (L)
(Uts Kgp)t/m

1.2 Pathway analysis

One basic approach to analyze these omics data is to identify the list of genes significantly altered

between case and control groups. Such analysis is called differential expression (DE) analysis for



transcriptomic, and GWAS for genomic data. This gene-based analysis has been widely performed to
find various disease-causing genes, and extended our biological knowledges.

In addition, the pathway-based (gene-set-based) analysis provides useful information. An organism
maintains its life through the complex interactions among numerous biological pathways.
Dysregulation in some metabolic pathways can lead to chronic diseases or even cancers **. The pathway
analysis is performed to find the genetic difference between case and control groups on gene-set level.
There are several advantages in the pathway analysis. First, it helps easier interpretation of the common
biological function of the significantly altered genes (e.g., DE genes), especially when numerous genes
are significantly detected. Second, it improves the reproducibility of signature genes among
independent studies *°. Third, it reduces the multiple correction burden and increases the detection

power, especially for GWAS data *.

1.2.1  Pathway databases

To perform pathway analysis, a list of pre-defined pathways is required. The Pathguide database
(http://pathguide.org) provides links to 702 pathway databases and their information *’. Among them,

251 were those of human pathway databases. Those databases are classified into 10 categories (protein-
protein interactions, metabolic pathways, signaling pathways, transcription factors/ gene regulatory
networks, protein-compound interactions, genetic interaction networks, protein sequence focused and

others). Table 1.3 describes 13 popular pathway databases.

1.2.2 Pathway analysis methods
The pathway analysis is classified into three types based on the gene-set scoring method as follows.
1.2.2.1 Over-representation analysis

From the omics data with two sample groups, we typically identify differentially altered genes between
groups using a significance cutoff (e.g., FDR<0.05). Let say such genes are signature genes. The over-
representation analysis is to identify gene-sets enriched with the signature genes using hypergeometric
distribution. It was popular in the early times because it was simple and useful to infer the biological
theme of signature genes. DAVID is a popular web-server that performs over-representation analysis

3% However, the biggest problem of this approach is to set the arbitrary cutoff for signature genes.
1.2.2.2 Functional class sorting

The cutoff-free method was devised to avoid setting such ambiguous cutoff for genes. Here, the gene-

set score is directly evaluated by summarizing the gene-set member’ scores obtained from omics data.
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Besides, it is useful to detect gene-sets in which the individual genes show weak but consistent signals.

Such pattern cannot be discovered using over-representation approach.

1.2.2.2.1 Gene-set enrichment analysis

One example pathway analysis method that implements the cutoff-free approach is the Gene-Set
Enrichment Analysis (GSEA)*. Since its paper was published in 2005, it has become the most widely
used pathway analysis method. In GSEA, the input a priori gene-set scores (=enrichment score; ES)
are evaluated using (weighted) Kolmogorov-Smirnov (K-S) statistic, which determines score based on
the relative gene score rank distribution. For example, if members of a gene-set are distributed on the
top ranks, it means that gene-set is up-regulated in overall. Similarly, member gene scores are
concentrated in the bottom ranks, it represents the down-regulation of that gene-set. Detailed description

for GSEA is in 2.3.1-Enrichment Score.

Table 1.3. Popular pathway databases

Database Pathway type URL Reference
Gene Ontology e Metabolic pathways http://www.geneontology.org 40
e  Signalling pathways
e  Protein-protein interaction
KEGG e  Metabolic pathways http://www.genome.jp/kegg/ 4
REACTOME e Metabolic pathways http://www.reactome.org 42
e  Signalling pathways
RegulonDB e  Transcription Factors / Gene http://regulondb.ccg.unam.mx/ 3
Regulatory Networks
PANTHER e  Signalling pathways http://www.pantherdb.org 4
Ingenuity Pathway e  Protein-Protein Interactions https://www.qiagenbioinformatics.com/ &
Analysis e Metabolic Pathways products/ingenuity-pathway-analysis/
e  Signaling Pathways
e  Transcription Factors/ Gene
Regulatory Networks
e  Protein-Compound Interactions
NCI PID e  Signaling Pathways http://pid.nci.nih.gov/ 46

WikiPathways

Metabolic pathways
Signalling pathways

http://wikipathways.org/index.php/Wiki
Pathways

47

Small  Molecule
Pathway DB

Metabolic pathways
Signalling pathways

http://www.smpdb.ca/

48

ConsensusPathDB

Protein-Protein Interactions
Metabolic Pathways
Signaling Pathways
Transcription Factors / Gene
Regulatory Networks

Protein-Compound Interactions

http://cpdb.molgen.mpg.de/CPDB

49

Pathway
Commons

Protein-Protein Interactions
Metabolic Pathways
Signaling Pathways

Protein-Compound Interactions

http://www.pathwaycommons.org

50




1.2.2.3 Pathway topology-based method

In addition to over-representation analysis and functional class sorting, several methods based on
pathway topology have been developed. Signaling Pathway Impact Analysis (SPIA) evaluates pathway
significance by combining two p-values obtained from over-representation test and perturbation test >'.
CePa is a weighted gene-set analysis methods where the weights are determined by network centrality’.
PathNet combines two types of evidences obtained from direct (p-value from DE analysis) and indirect
evidence (inferred from pathway network neighborhood information) to get the signature genes. Then

pathway significance is evaluated by hypergeometric test™

. Bayerlova et al. reported that these pathway
topology-based methods showed better performance than classical enrichment-based methods under
simulation setting with no overlapping gene-sets, but not in other settings **. It means there are rooms

to further develop this type of pathway analysis method (although not covered in this thesis...).

1.2.3 Competitive and self-contained gene-set analysis

Before performing gene-set analysis, we have to choose proper analysis method considering the null
hypothesis. There are two methods mainly concerned: the competitive and self-contained methods. The

null hypothesis (Ho) of each method is as follows:

(1) Hoof competitive method: Genes in a test gene-set are not more strongly associated with phenotype
than the background genes.

(2) Ho of self-contained method: No genes in a test gene-set are associated with phenotype.

Thus, the competitive method tests the relative association of gene-sets compared to others. On the
other hand, the self-contained method can significantly detect a gene-set if only few member genes are
associated with the phenotype. Although it usually yields highly sensitive results, we should be careful
in interpreting the result because gene-sets unrelated to phenotype can be specifically detected. Table
1.4 and 1.5 explains the gene-set analysis methods used for gene expression and GWAS data,

respectively.



Table 1.4. Competitive and self-contained gene-set analysis methods for gene expression data.

Here, t; and P; are t-statistic ad p-value of gene i, respectively, and m is gene-sets size.

Method Statistic Statistical test Reference

Competitive methods

Functional class FCS = Yizq —log (P;)
score (FCS) m
Q1 01= Xiti b
m
PAGE gt H
5/\m
Where p and & is average fold change and standard
deviation of all genes, u is average fold change of genes in
test gene-set, and m is test gene-set size
GSEA Kolmogorov-Smirnov statistic
CATEGORY ot
7=
Vm
GSA YR >0t |ZR I <0) -t
Simax = mMax m , -

Gene permutation

Gene permutation

Null distribution of
Z~N(0,1)

Sample or Gene
permutation

Null distribution of
Z~N(0,1)

Sample permutation

55

56

57

39

58

59

Self-contained methods

Globaltest 141
=— ) —[X/ (Y —w)?
Q=D =]
i=1

Where X/ is gene expression vector of gene i, Y is clinical

outcome, u is expectation of Y and p, is the second

central moment of Y under Ho.
FCS FCS = Y, —log (P;)
Q2 02 = Xzt

m

Sample permutation
or asymptotic

distribution

Sample permutation

Sample permutation

60

55

56
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Table 1.5. Competitive and self-contained gene-set analysis methods for GWAS summary data.

Xi is the gene score of i-th gene, u and o are mean and standard deviation of all gene scores,

respectively, S is gene-set score, and m is gene-set size.

Method Gene and/or gene-set statistic Statistical test Reference

Competitive methods

GSA-SNP X; = —logy(k-th best SNP p-value) Null distribution of Z~N(0,1) 61

—I Xi-u Restandardized GSA
S = GSEA
MAGENTA X;= Best SNP p-value corrected Over-representation of top N- 62
for confounding effects percentile of genes within each
gene-sets is  tested through
comparison with random gene-
sets.

INRICH Genomic intervals associated phenotype are The significance is evaluated 63

estimated first using PLINK LD clumpingor  through permutation process.
tag SNP selection method.

S = the number of intervals (genes)

overlapping with test gene-set.

GOWINDA Top N% SNPs are selected first The significance of  Over- 64
representation with test gene-set is
evaluated by permutations.

MAGMA X;=071(1-p) From following linear model 65

Where p; is gene p-value estimated from Zs = Bo ST +S.Bs+ €

mean or top y?-statistic of SNPs within a [Hy: Bs = 0] is tested.

gene. where [, is the difference in
association between  gene-set
members and background genes.

iGSEA4GWAS X; = —logx(best SNP p-value) SNP-permuting  GSEA  with 66

significant proportion-based
enrichment score (SPES =ES-
k/K ), where k and K are
proportion of significant genes (at
least one SNP is included in the
top 5% SNPs) of the gene-set and
total gene list, respectively.

GSA-SNP2 X; = —log(k-th best SNP p-value) Null distribution of Z~N(0,1) 67

adjusted by SNP size
izg’;lx iTH
S = o im

Self-contained methods

MAGMA Same with MAGMA competitive method. From following linear model 65
Zs=Pol+g
Hy:fo = 0 is tested.
SARTP min (q;,cx) Direct simulation approach (DSA) o8
w® = _ logp©
jk 8P
t=1
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1.3 Biological network

Cells maintains life through consecutive biochemical reactions and interactions occurring among

biomolecules such as metabolites, enzymes, transcription factors, signaling molecules and so on.

Network is defined as a set of nodes and their relationships (edges). The interactions among

biomolecules in a cell can be also represented as a complex network. There are five types of biological

networks that are frequently used in bioinformatics as follows:

1)

2)

3)

4)

5)

Protein-protein interaction network: The protein-protein interaction (PPI) represents the
physical contact between proteins. PPIs occur in extensive cellular processes such as signal
transduction, metabolism, electron transfer, transport across membranes, among others.
Databases such as Database of Interacting Proteins (DIP), Biomolecular Interaction Network
Database (BIND), Biological General Repository for Interaction Datasets (BioGRID), Human
Protein Reference Database (HPRD), IntAct Molecular Interaction Database, Molecular
Interactions Database (MINT) MIPS Protein Interaction Resource on Yeast (MIPS-MPact) and
MIPS Mammalian Protein—Protein Interaction Database (MIPS-MPPI) provides validated PPI
information, *7*. HIPPIE integrated these sources and provide reliable PPI information’.

STRING DB provides both known and predicted PPIs .

Gene-regulatory network: This network includes regulatory relationship between regulators
(e.g., transcription factor, miRNA) and their target genes. Technologies such as ChIP-chip,
ChIP-seq or Clip-seq are used to identify this network. ConsensusPathDB, Ingenuity Pathway
Analysis”’ and Regulon DB provides this type of network.

Gene co-expression network: It represents the co-expression modules of genes in a specific
cell condition. This network is generated from microarray or RNA-seq experiments followed

by gene clustering analysis.

Metabolic network: 1t is the entire set of metabolic and physiological processes (e.g., fatty acid
metabolism). Thus, it comprises the network of chemical compounds and enzymes involved in

various biochemical reactions. KEGG, EcoCyc, and metaTIGER provides these networks 77",

Signaling network: Cell signaling is a series of signal transduction that occurs within a cell or
between cells to control the cellular action (e.g., PI3K/Akt signaling pathway). This process
entails protein binding, phosphorylation, ubiquitination, acetylation and so on. The databases
providing this network is represented in Table 1.3.

12



1.4 Research overview

Although many pathway analysis methods have been devised for gene expression or GWAS summary
data, there have been still some limitations. First, most of the gene-set analysis methods for gene
expression data had been designed for microarray. For RNA-seq data, seqGSEA”, the use of log-
transformed counts *' or pre-ranked GSEA with gene p-values from DE analysis had been suggested.
However, there was a practical matter to apply these methods. That is, large number of RNA-seq data
are composed the small number of samples due to the expensive sequencing cost. In this case, SeqGSEA,
which implements sample permutation, is inappropriate to be used. Also, other two methods with gene
permutation may yield many false positive results caused by inter-gene correlation among genes within
same gene-set. In 2015, it was reported that the absolute statistic can effectively reduce the false positive
rates in gene-permuting gene-set analysis of microarray data. In Chapter 11, I tested whether GSEA with
absolute gene statistic (absolute GSEA) exhibits same effect on RNA-seq data through simulation and
real data analysis. For simulation test, a novel RNA-seq read count simulation method reflecting the
inter-gene correlation was devised in this study. As a result, the absolute GSEA greatly improved the
false positive control and overall discriminatory ability. The contents in this chapter are published in
PLoS ONE in 2016 with the title ‘Improving Gene-Set Enrichment Analysis of RNA-Seq Data with
Small Replicates.” *

Next, I focused on the pathway analysis of GWAS summary data. Many of the competitive pathway
analysis methods for GWAS summary data were too conservative to detect meaningful pathways. Some
self-contained approaches were developed to increase the detection power, but there has been a concern
that those methods may report gene-sets not relevant to phenotype as significant. In Chapter 111, I will
describe a powerful competitive gene-set analysis tools for GWAS summary data, named GSA-SNP2.
By adjusting gene scores based on SNP size, it successfully increased the detection power while
maintaining decent false positive control. The performance of GSA-SNP2 was validated using both
simulation and real data. In addition, the GSA-SNP2 software provides gene network visualization
within a gene-set or across significant gene-sets. The contents in this chapter are published in Nucleic
Acids Research in 2018 with the title ‘Efficient pathway enrichment and network analysis of GWAS
summary data using GSA-SNP2.’

Finally, Chapter IV describes a novel approach to infer cell condition-specific microRNA target
network module by biclustering a large size of gene expression fold change profiles for a set of miRNA
binding targets. The biclusters (network module) represent a set of miRNA binding motif-sharing genes
commonly up-regulated (or down-regulated) under multiple cell conditions. The bicluster targets
improved gain in certainty (sensitivity + specificity), and the net gain was further increased by
incorporating functional network information. The analysis of cancer-related biclusters revealed that
PI3K/Akt signaling pathway is strongly enriched in targets of a few miRNAs in breast cancer and

13



diffuse large B-cell lymphoma. Among them, five independent prognostic miRNAs were identified,
and repressions of bicluster targets and pathway activity by mir-29 were experimentally validated. The

BiMIR database provides useful search engine for biclusters of 459 human miRNAs.
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Chapter II: Improving gene-set enrichment analysis of RNA-seq

data with small replicates

2.1 Abstract

To identify deregulated biological pathways in a disease is important to understand the pathophysiology
and find therapeutic targets of the disease. The gene-set enrichment analysis (GSEA) has been widely
used for biological pathway analysis of microarray data, and it is also being applied to RNA-seq data.
However, due to the high-sequencing cost, most RNA-seq data contain only small number of samples
so far, which leads to perform gene-permuting GSEA method (or preranked GSEA). A critical problem
of this method is that it yields many false positives results originated from the inter-gene correlation
within gene-sets. I demonstrate that taking the absolute gene statistic in one-tailed GSEA greatly
improves the false-positive control and the overall discriminatory ability of the gene-permuting GSEA
methods for RNA-seq data. A novel simulation method to generate correlated read counts within a
gene-set was devised to test performance, and a dozen of currently available RNA-seq enrichment
analysis methods were compared, where the proposed methods outperformed others that do not account
for the inter-gene correlation. Analysis of real RNA-seq data also supported the proposed methods in
terms of false positive control, ranks of true positives and biological relevance. An efficient R package

(AbsFilterGSEA) coded with C++ (Repp) is available from CRAN.

2.2 Introduction

The RNA-sequencing (RNA-seq) technology has facilitated a systematic analysis of the transcriptome
in cells 2 ¥, The biggest advantage of RNA-seq is much lowered background noise compared to the
hybridization method (microarray). Thus, it has enabled more accurate quantification of gene
expression level . However, the differential expression (DE) analysis of RNA-seq data between two
samples is not an easy task due to the different RNA composition and sequencing depth among samples
as well as the discrete nature of RNA-seq data. Several between-normalization methods have been

27,83

devised to make the gene expression levels among different samples comparable , and a variety of

methods have been developed to test the DE of each gene based on discrete probability models. 2*3!-3*:

84-87
The gene-set analysis has been used to interpret the DE analysis result. One approach is the GO analysis
that estimates the over-representation of DE genes in a pre-defined gene-sets such as Gene Ontology

(GO) terms. ¥ The gene-set enrichment analysis (GSEA) is another useful approach®’. Unlike GO
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analysis, it does not use the cutoff threshold to identify the DE genes. Instead, it utilizes the (weighted)
Kolmogorov-Smirnov (K-S) statistic to test whether genes contributing to the phenotype are ‘enriched’
in each gene-set. Therefore, GSEA can detect the subtle but coordinated changes in a gene-set and has
been widely used to find important pathways or functions in various diseases and cell conditions from
microarray data °'-?9%2,

The pathway analysis methods and tools for RNA-seq have recently been devised based on methods
designed for microarray " **°. One of the issues in applying GSEA to RNA-seq data is the
normalization of read count data. Voom method transforms the read counts into microarray-like data
for which most linear-model based methods developed for microarray can be applied *'. GSAAseqSP
tool ** adopted TMM or DESeq normalization methods % which are able to address both the different
depths and RNA compositions between samples. Another important thing to consider is the small
sample sizes in RNA-seq data. Although the sequencing cost has been lowered so fast, it is still
expensive. Thus, most laboratories have no choice but to produce only a few replicates for each
condition °°. The sample-permuting GSEA (GSEA-SP) is inappropriate to apply to such small replicate
data. Instead, the gene-permuting GSEA (GSEA-GP) is used in this case. However, the GSEA-GP
generates a lot of false positive gene-sets due to the inter-gene correlation in the gene expression.

In this study, it was demonstrated that the absolute gene statistic improved the false positive control
and overall discriminatory ability of GSEA-GP of RNA-seq data. Although the property was shown in
microarray data °’, it was not tested in RNA-seq data yet. The RNA-seq read counts were modeled and
simulated using discrete probability (negative binomial distribution) **°%, and a simulation method to
generate ‘correlated’ read counts within a gene-set was newly devised to compare the performance of
GSEA methods for RNA-seq data. Note that the inter-gene correlation has a critical effect on the
performance of gene-set level analysis, but has not been considered so far for the counting data because
of the lack of such a simulation method.

Here, the one-tailed GSEA which takes the maximum positive deviation of the K-S statistic as a gene-
set enrichment score was used for more precise gene-set analysis. Based on this result, I also propose
filtering the GSEA-GP results with those obtained from the absolute GSEA-GP to effectively reduce
false positives. The performances of the absolute GSEA and its filtering method were demonstrated for

simulated and real RNA-seq data.
2.3 Materials and Methods
2.3.1 Absolute gene-permuting GSEA and filtering

In many cases, the replicate size is too small in RNA-seq data to carry out GSEA-SP (e.g., n<10). In
that case, the GSEA-GP is used instead. However, it produces a lot of false positive results because of

the inter-gene correlation within gene-set **'%. Recently, it has been shown that incorporating the
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absolute gene statistic in GSEA-GP considerably reduces the false positive rate and improves the
overall discriminatory ability in analyzing microarray data °’. Therefore, it was tested whether the
absolute statistic shows a similar effect in RNA-seq data analysis. In addition to replacing the gene
statistic with their absolute values '**, the absolute GSEA was modified as a one-tailed test in this study
by considering only the ‘positive’ deviation in the K-S statistic. There are two reasons for this
adjustment. First, simple substitution of gene scores by taking absolute values in GSEA can produce a
small number of ‘down-regulated’ gene-sets which are meaningless in an absolute enrichment analysis.
Second, it gives more precise null distribution of gene-set statistic: In the original GSEA algorithm, the
maximum positive and negative deviation values are compared and only the larger absolute value
between the two is selected for the gene-set score. This means the minor maximum deviation values
are all excluded in constituting the gene-set null distributions. By taking only the positive deviation
values, every gene-set contributes to the null distribution.
Gene scores: Four gene scores were considered for normalized read as follows:
(1) Moderated t-statistic (mod-t): A modified two-sample t-statistic

P o Hi — 1

N

where pi* is the mean read count of ith gene, g; in class n, and §; is a shrinkage estimation of the
standard deviation of g;. This statistic is useful for small replicate data and is implemented using the

limma R package '%°1%

(2) Signal-to-Noise ratio (SNR): The SNR (S;) is calculated as

o Mo
"oal + o}

where a;* is the standard deviation of expression values of g; in class n.

(3) Zero-centered rank sum (Ranksum): This two-sample Wilcoxon statistic is introduced by Li and

Tibshirani®. For g;, the rank sum test statistic (T;) is calculated as,
ny-(n+1)
Ti = 2 R,_] -

y 2
JECy

where R;; is the rank of expression level of jt" sample among all counts of g;, C; is a set of sample
indexes in the first phenotypic class, n; is the sample size of C; and n is the total sample size. Note
that E(T;) = 0.

(4) Log fold-change (logFC): Log fold-change (logFC;) for g; is calculated as

1

logFC; =log, #_12
Hi
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Absolute GSEA: GSEA algorithm identifies functional gene-sets showing a coordinated gene
expression change between case and control samples from gene expression profiles. Given gene scores,
GSEA implements a (weighted) K-S statistic to calculate the enrichment score (ES) of each pre-defined
gene-set.

(1) Enrichment score

Let S be a gene-set and 7; be the gene score of g;. Then, the enrichment score ES(S) is defined as

the maximum deviation of pp;; — Pmiss from zero, that is

max(Phit,i — Prmiss,i)» Lf |m.ax(phit,i - Pmiss,i)| = |m.in(Phit,i - pmiss,i)|
— 2 i i

ES(S) =
ml.m(phit,i — Pmiss,i)» if |ml.ax(phit,i - pmiss,i)| < |miln(phit,i - pmiss,i)|

where

|77|q 1 q
Phit,i = Z —=—,  Dmissi = 2 v~ Ne= 2 |7;]
Ng s (N — Ny)

ngS
Jsi Jsi

N is the total number of genes in the dataset, Ny is the number of genes included in S and q is a
weighting exponent which is set as one in this study as recommended”. (For the classical K-S

statistic, g = 0)

(2) ES for one-tailed absolute GSEA
The absolute GSEA is simply performed by substituting the gene scores by their absolute values, but
the ranks of gene scores are quite different from the original GSEA algorithm in calculating the K-S

statistic. For the one-tailed test, only the positive deviation ES(S) = max(phit_i—pmiss_i) is
l

considered for the gene-set score.

Then, the gene permutations are applied, and the corresponding ES’s are calculated and normalized for
evaluating the false discovery rate of each gene-set®’.

Filtering with absolute GSEA: To decrease the false positive results in the GSEA-GP, it is
recommended to use the absolute GSEA-GP results for filtering false positives from the ordinary
GSEA-GP results. In other words, only the gene-sets that are significant in both ordinary and the one-
tailed absolute GSEA are considered significant. In this way, more reliable gene-sets with directionality
can be obtained. In all the analyses presented in this paper, the same FDR cutoff is applied for both

ordinary and absolute methods, but different cutoffs can also be considered for stricter or looser filtering.
2.3.2 Simulation of the read count data with the inter-gene correlation

High inter-gene correlation within gene-sets severely increases the false positive rates in gene-
permuting gene-set analysis methods (a.k.a. competitive analysis) **'**. The inter-gene correlation of

microarray data can be modelled using multivariate normal distribution °” "'+ '7 but it cannot be
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directly applied for ‘discrete’ read count data. Here, a novel simulation method for read count data with
inter-gene correlation in each gene-set is described. N=10,000 genes are considered and the replicate

sizes for the test and control groups are n; and n,, respectively.

Step 1. Parameter estimation and read count generation: The read count X;; of ith gene in jth
sample has been modeled by an over-dispersed Poisson distribution, called negative binomial (NB)
distribution **>°* denoted by X;;~NB(u;j,0/) where p;; and of; = p;j + @;uf; are the mean and
variance, respectively, and ¢; = 0 is the dispersion coefficient for gene g;. Here, p;; = s;ju;, where
sj is the 'size factor' or 'scaling factor' of sample j and p; is the expression level of g;. In this
simulation, all size factors s; were set as 1 for simplicity. The mean and gene-wise dispersion
parameters of 10,000 genes (average read count>10) were estimated from TCGA kidney cancer RNA-
seq data (denoted as TCGA KIRC) '®®. The edgeR R package was used to estimate both parameters **.
The read counts were generated using the R function 'binom' where the inverse of the estimated
dispersion ¢; was input as the ‘size’ argument. This method generates read counts that are independent
between genes.

Step 2. Generation of read count data with the inter-gene correlation: Given a gene-set S with K
genes, the inter-gene correlation can be generated by incorporating a common variable within the gene-
set. Let y; and ¢;, i=1,2,...K be the mean and tag-wise dispersion of g; in the gene-set and C;j; be
the read count generated from these parameters (Step 1). Let Pg = {pl, P2, Pn 1+n2} be probability

values randomly sampled from the uniform distribution U(0,1). Then, for each g;, the probability

values in Ps are converted to a read count Cjj,

j=1,2,...,n;+n, using the inverse function of the
individual gene's distribution X;~NB(u;, ;) suchthat p; = P(X; < Cij). Inshort, Cj; are generated
from the common uniform distribution via the gene-wise NB distribution. The 'correlated' read count
for ith gene in jth sample is then obtained by the weighted sum of the original count C;; and the
‘commonly generated” count C;; as follows:
Mj:=[1—-a) Cj+a- Cl-*]-]

where o € [0,1] is the mixing coefficient that determines the strength of the inter-gene correlation and
[ ] rounds the value to the nearest integer. One problem with this count is that its variance is reduced as
much as (2a? — 2a + 1) because

Var(My) =~ (1 — a)? - V(C;;) + o® - V(C};) = (20 — 2a+ 1) - o},
To remove this factor, an inflated dispersion ¢; was used derived from the equation

(2a? = 2a + 1) - (u; + Qiuf) = pi + Qiu?

v 1+ @iu; 1
T @2 —2a+ D)
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instead of ¢; in generating C;; and Cj;. The relationship between a and inter-gene correlation is

shown in Figure 2.1.

1.0

Inter—gene correlation
0.4

0.2

Figure 2.1. The relationship between the mixing coefficient (alpha) and the average inter-gene

correlation.

2.3.3 Biological relevance measure of a gene-set

To measure the functional relevance of gene-sets filtered by absolute GSEA, a gene-set score based on
literatures (PubMed abstract) was designed. Here, it was assumed that the significantly altered gene-
sets contain genes playing important roles in the alteration of corresponding cell (tissue) condition. For
a significant gene-set S, its relevance with a specific tissue T is scored by the log geometric average

of the abstract counts as follows:
1
L(S) = £ Ei1 log (Ar) (1)
where K is the gene-set size and Ar; is the number of PubMed abstracts where both the keywords

related to the tissue T and the name of g; co-occur. The literature mining was conducted using

RISmed R package '*.
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2.3.4 RNA-seq data handling and gene-set condition

The RNA-seq raw read counts were normalized by the DESeq *. To make the logFC stable for small
read counts, the lower 5% of normalized counts larger than zero were added to the normalized counts.

Such pseudocount does not change other types of gene scores.

2.3.5 Gene-set size

The ‘gene-set size’ represents the number of overlapping genes between the original pathway and input

RNA-seq dataset. In this study, the gene-set size was constrained to 10~300.

2.3.6 AbsfilterGSEA R package

I developed a CRAN R package ‘AbsFilterGSEA’ that performs both original and absolute gene-
permuting GSEA ''°. Here, the input raw read count matrix is normalized by DESeq method *. It also
accepts an already normalized dataset. It is quite fast because the GSEA part was implemented with

C++. The integration of C++ code to the R package was done by Rcpp package .

2.4 Results
2.4.1 Comparison of gene-permuting GSEA methods for simulated read count data

The performance of twelve GSEA-GP methods for small replicate data were compared using simulation
dataset reflecting the inter-gene correlation within gene-sets (See Section 2.3.2). The simulated read
count data included 10,000 genes and 100 non-overlapping gene-sets each of which contained 100
genes.

First, the false positive rates (FDR < 0.1) of the GSEA-GP methods for the four gene statistics (mod-z,
SNR, Ranksum and FC) and their absolute counterparts were measured using the simulated read count
datasets with four different levels of inter-gene correlation, LOW (0~0.05), 0.1, 0.3 and 0.6 within each
gene-set. Two, three and five replicates in each sample group were tested and no DE genes were
included. This test was repeated twenty times and their average false positive rates were depicted in
Figure 2.2A and 2.2D for three and five replicates, respectively. Figure S2.1A shows the result for two-
replicate case. A recently developed competitive method, Camera combined with the voom

31101 “the bias-adjusted random-set method (RNA-Enrich) > as well as two preranked

normalization
GSEA methods *° were also compared. The preranked GSEA (unweighted) was implemented using the
GSEA R-code *° where the ranks of genes were determined according to either the p-values resulted
from the differential expression analysis using edgeR *® package or the simple absolute fold-changes of
the normalized count data. Note that SeqGSEA " provides only sample—permuting GSEA which is not

useful for small replicates, and GSAAseqSP ** provides a gene-permuting GSEA method which is
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almost same as GSEA-GP described in this paper (I checked they yielded nearly the same results for
the simulated count data). Although it is described that GSA AseqSP uses the absolute gene scores, they
are only used for the step-sizes in K-S statistic, and it is far from the ‘absolute’ enrichment analysis.
The false positive rates of GSEA-GP for the four ordinary gene statistics and the two preranked methods
showed upsurge with the increasing inter-gene correlation. However, the increase rates of false positive

rates for the four absolute GSEA methods were considerably lower than those for the ordinary statistics.
False Positive Rate True Positive Rate
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0.50 -
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Low 0.1 0.3 0.6 Low 0.1 0.3 0.6
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=+ Abs Ranksum/GSEA-GP =%&¢ Ranksum/GSEA-GP %% edgeR/Preranked
=X Abs FC/GSEA-GP 3 FC/GSEA-GP B FC/Preranked

Figure 2.2. Performance comparison of gene-permuting GSEA methods for simulated read

counts.

GSEA-GP methods combined with eight gene statistics, (moderated t-statistic, SNR, Ranksum, logFC
and their absolute versions), Camera combined with voom normalization, RNA-Enrich and two

preranked GSEA methods for edgeR p-values and FCs were compared for false positive rate, true
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positive rate and area under the receiver operating curve using simulated read count data with three (A-

C) and five replicates (D-F).

For example, when three replicates were used, even for a moderate inter-gene correlation 0.1, the false
positive rates for the original statistics were approximately 50% or higher while only a few false positive
sets were detected for the absolute methods (1 ~ 3%). Camera yielded no false positives for each
correlation level. Overall similar trends were observed with five replicates, but the absolute mod-# and
absolute SNR exhibited nearly the same AUCs. RNA-Enrich and the edgeR/preranked methods
exhibited relatively better false positive rates compared to the GSEA-GP and FC/Preranked methods.
Next, 20% of the gene-sets (20 gene-sets) in the data generated above were replaced with differentially
expressed gene-sets to compare the power (true positive rate) and the overall discriminatory abilities
(ROC). These gene-sets included 20~80% (uniformly at random in each gene-set) of DE genes whose
mean counts in the test or control group were multiplied by 1.5~2.0 with which the read counts in the
corresponding group were regenerated. In DE gene-sets, weak inter-gene correlations (0~0.05) were
randomly assigned while the non-DE gene-sets were assigned with four different inter-gene correlation
levels. The corresponding powers and the area under the ROC curves (AUCs) were then obtained for
the twelve methods compared (Fig. 2.2B, 2.2C, 2.2E and 2.2F). The preranked GSEA with FCs and
GSEA-GP methods had the highest levels of power, but their AUCs rapidly declined as the inter-gene
correlation level was increased because of their poor false positive controls. With the inter-gene
correlation of 0.6, their performances were close to a random prediction (AUC= 0.5). On the other
hand, the absolute GSEA-GP methods and Camera exhibited stable and good AUCs irrespective of the
inter-gene correlation level. The ROC curves (average of 20 repetitions) of the twelve gene-permuting
GSEA methods for the inter-gene correlation 0.3 are illustrated in Figure 2.3. For the two-replicate data,
the false positive rates were similar to those of triplicate case, but the powers and AUCs were rather
lowered (Fig. S2.1a). While the mod-z still exhibited best powers and AUCs among the absolute
methods, the power of SNR was considerably lowered, which necessitates the moderated gene statistic
in GSEA of small replicate data. Lastly, different inter-gene correlations were randomly assigned for
gene-sets in a dataset, and two, three and five replicate cases were tested (Fig. S2.1b-d). The absolute
mod-t still exhibited best AUCs in most cases and exhibited overall similar trends as the identical
correlation cases.

Overall, these results indicate that the absolute GSEA-GP provides an excellent false positive control
and improves the overall discriminatory ability of GSEA-GP. Although the ordinary GSEA-GP
methods exhibited best powers, they suffered from prohibitively high false positive rates resulting in
very poor ranks of true positives (AUCs). Compared with Camera, the absolute methods yielded a little

more false positives, but exhibited better power and overall discriminatory ability (correlation<0.6). In
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general, for small replicate datasets, not all of the true positives may be identified perfectly by any

method, but it would be important to discern some of the truly altered gene-sets reliably.
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Figure 2.3. Average receiver operating characteristic (ROC) curves.

The average ROC curves (20 repetitions) of the twelve gene-permuting GSEA methods applied to

simulation data with the inter-gene correlation of 0.3 for (A) three and (B) five replicate cases
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2.4.2 Comparison of GSEA methods for RNA-seq data

The performances of GSEA methods were compared for published RNA-seq datasets in several aspects.
First, two RNA-seq datasets denoted by Pickrell and Li data, respectively, were analyzed for comparing
power and accuracy as follows:

The Pickrell data were generated from the lymphoblastoid cell lines of 69 unrelated Nigerian
individuals (29 male and 40 female) ''2. To analyze the chromosomal differences in expression between
male and female, MSigDB C1 (cytogenetic band gene-sets) '*''° was used for analysis. The GSEA-SP
with SNR gene score was applied for the total dataset which resulted in two significant gene-sets
‘chryql1’ (FDR=0.00143) and ‘chrxp22’ (FDR=0.0514) both of which were sex-specific. These two
gene-sets were significantly up-regulated in male and female groups, respectively. Since the GSEA-SP
controls the false positives well, these two gene-sets were regarded as true positives. Then, five samples
were randomly selected from each group to constitute a small replicate dataset and GSEA-GP methods
with or without absolute filtering, Camera, edgeR/Preranked methods were compared for this small
replicate dataset. This process was repeated ten times. Using mod- and logFC as the gene scores, on
average, the GSEA-GP yielded 33.9 and 19.9 significant (FDR<0.25) gene-sets including 1.5 and 1.1
true positives, respectively. On the other hand, GSEA-GP with the absolute filtering resulted in only
3.67 and 2.9 significant gene-sets which included 1.11 and 1 true positives for the mod-¢ and logFC
gene scores, respectively. For these five-replicate datasets, Camera did not detect any significant gene-
set, and the edgeR/Preranked detected as many as 137.4 which included 1.8 true positives. This result
implies that the absolute filtering method effectively reduces the false positives resulted from GSEA-
GP while maintaining a good statistical power.

A similar trend was observed with the Li dataset. The Li data ''® were generated from LNCaP cell lines
with three samples treated with dihydrotestosterone (DHT) and four control samples. The MSigDB C2
(curated gene-set) was used for analysis and the six gene-sets containing the term ‘androgen’ were
regarded as potential true positives since DHT is a kind of androgen, though there can be other truly
altered gene-sets. When the GSEA-SP with mod-7 and logFC gene score was applied for this small
replicate dataset, as expected, only one and no 'androgen' gene-set was significant (FDR<(.1),
respectively. On the other hand, GSEA-GP with mod-# and logFC gene scores yielded as many as 187
and 569 significant gene-sets, respectively, which included four 'androgen' gene-sets with FDR<0.0067.
When the absolute filtering was applied, the numbers of significant gene-sets were dramatically reduced
to eight (Table 2.1) and 242, which included three and four 'androgen' gene-sets, respectively. Of note,
the top three gene-sets were ‘androgen’ terms for the mod-z score. The absolute GSEA filtering with
SNR score provided a similar result. Camera detected only two 'androgen' gene-sets within 101

significant gene-sets with FDR=0.00836 and 0.0195, respectively. RNA-Enrich and edgeR/Preranked
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were so sensitive for this dataset that 1108 and 782 sets were significant (FDR<0.1). RNA-Enrich and
edgeR/Preranked detected four and three androgen terms within top 52 and 91 gene-sets.

Overall, the results for real data analysis were concordant with the simulation results. GSEA-GP yielded
a large number of significant gene-sets most of which seemed to be false positives. The absolute
filtering method considerably reduced false positives at the cost of only small loss of power. Camera
exhibited a strict false positive control, but its power was relatively weak. In particular, the absolute

filtering with mod-7 score exhibited a high precision and a good power in both datasets.

Table 2.1. Significant gene-sets detected by the absolute GSEA-GP filtering (FDR<0.1) with the
mod-z score (DHT-treated and control LNCaP cell line).

Gene-set name FDR Literature score
Response to androgen (down, Nelson) 0 2.15
Response to androgen (up, Nelson) 0 1.87
Response to androgen (up, Wang) 1.63 x 107* 1.37
PKDI targets (up, Piontek) 2.79 x 107* 1.78
Reactome Amino acid synthesis and 2.27 x 1072 1.94
interconversion transamination

Response to forskolin (up, Wang) 3.02 x 1072 1.42

AML cluster 11 (Valk) 5.12 x 1072 1.17
Breast basal vs. luminal (up, Huper) 440 x 1072 1.53

2.4.3 Effects of the absolute filtering on false positive control and biological relevance

Here, the effects of the absolute filtering were analyzed for real data in two other aspects. The first one

is the false positive rate as investigated with the variance inflation factor (VIF). The false positive rate

of a competitive gene-set analysis method is known to be determined by VIF which is defined as:
Var(gene set statistic) = Var;; 4 (gene set statistic) x VIF

where Var;;q4 1is the variance of a gene-set statistic under the assumption that genes in each gene-set

have independent expression values. For a linear gene-set statistic, the VIF is explicitly represented as

0L 17 a5 follows:

a function of the gene-set size (K) and the average inter-gene correlation ()
VIF=14+(K—-1)p ()

To compare the false positive rates of the GSEA-GP and the absolute GSEA-GP methods

approximately, VIF distributions (2) of the significant gene-sets were compared for two TCGA RNA-

seq datasets (KIRC kidney tumor vs. normal ''® and BRCA breast tumor vs. normal '°®). These datasets

were comprised of a large number of cancer and normal samples (144 and 216 for the KIRC and BRCA,
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respectively) with which the average inter-gene correlation may be accurately estimated. In each dataset,
five cancer samples and five normal samples were randomly drawn to constitute a small replicate
dataset, to which GSEA-GP was applied using the gene scores logFC and absolute logFC, respectively.
Then, the VIFs were compared between two classes of significant gene-sets. One is the gene-sets that
are significant only in the ordinary GSEA-GP (class A) and the other is those that are significant in
both the ordinary and absolute GSEA-GP methods (class B). Note that the total samples in each dataset
were used to calculate p. This process was repeated ten times and the corresponding VIF distributions
were compared. In most cases, VIFs of class B were significantly smaller than those for class A. For
KIRC data, all the ten sub-datasets exhibited significantly smaller VIFs in class B (Wilcoxon ranksum
p-value<0.05; smallest p-value 6.15E-8). Similarly, seven out of ten sub-datasets derived from BRCA
data showed significance (smallest p-value 2.14E-5). This indicates the absolute filtering method
substantially reduces the false positives in real data analysis. The second aspect is the tissue-specific
relevance score (1). As the above case, five samples were randomly selected from each group, and the
literature relevance scores between the class A and B sets were compared for both KIRC and BRCA
datasets. As a result, nine and four out of ten sub-datasets, the relevance scores in class B were
significantly larger for the KIRC and BRCA datasets, respectively (smallest p-values: 7.87E-12 and
1.06E-5, respectively). These results indicate that the absolute filtering results in highly reliable and

biologically relevant gene-sets.

2.5 Discussion

Since the advent of RNA-seq technology until recently, various methods to identify DE genes from the
RNA-seq read count data have been developed *'3*°% ' One notable feature shared by DE analysis
methods is that they yield quite a number of DE genes. Typically, hundreds to thousands genes are
differentially expressed with RNA-seq data of two sample groups. RNA-seq is known to provide a
much improved resolution in quantitating gene expression compared to that of microarray ', which
may have increased the sensitivity of DE analysis for RNA-seq data.

With the increased resolution and sensitivity, the pathway analysis or GSEA are expected to play a
crucial role in genomic studies with their ability to detect the ‘subtle but coordinated’ changes in a
gene-set’’. However, in many cases, only GO analysis has been applied for interpreting RNA-seq data
19 The low application rate of pathway analysis or GSEA for RNA-seq may be ascribed to the lack of
tools that are specifically designed for RNA-seq data. The popularly used GSEA software ** developed
for microarray analysis can be used for RNA-seq data by normalizing the read count data ‘appropriately’
or simply applying the gene-permuting method (preranked GSEA) after ranking the gene differential

scores using another software (e.g. edgeR or DESeq).
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Since the majority of RNA-seq experiments have generated only small replicates, the preranked GSEA
methods were often used for function and pathway analysis. However, gene-permuting methods usually
result in a great number of false positives due to the inter-gene correlation whatever the replicate sizes
are. To date, Camera '°' has been the only method to control the false positive gene-sets caused by the
inter-gene correlation in analyzing small replicate read count data, but its statistical power was quite
weak. In this study, I showed one-tailed absolute GSEA manifests an excellent false positive control
and a good statistical power for analyzing small replicate RNA-seq data.

To compare the performance of GSEA methods, read count data incorporating the inter-gene
correlation were newly simulated. It is crucial to consider the inter-gene correlation in evaluating gene-
set analysis methods. The analysis results for the simulated and RNA-seq data commonly demonstrated
the effectiveness of the suggested method. As such, the method and tool presented in this study may
facilitate the pathway analysis of RNA-seq data with small replicates.
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2.6 Supplementary information of Chapter II
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Figure S2.1. Performance comparison of gene-permuting GSEA methods for simulated read

counts.

GSEA-GP methods combined with eight gene statistics, (moderated t-statistic, SNR, Ranksum, logFC
and their absolute versions), Camera combined with voom quantile normalization, RNA-Enrich and two
preranked GSEA methods for edgeR p-values and FCs were compared for false positive rate, true positive
rate and area under receiver operating curve (a) by increasing the inter-gene correlation of simulated read
count data composed of two replicates, (b) or assigning various random inter-gene correlations (0~0.6) to

each simulation dataset composed of two, (¢) three, (d) and five replicates
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Figure S2.2. Average receiver operating characteristic (ROC) curves for two sample cases.

The average ROC curves of the twelve gene-permuting GSEA methods applied to simulation data

where inter-gene correlation was 0.3 and the number of replicates were two.
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Figure S2.3. The effect of absolute gene-permuting GSEA

Five tumor and matched normal samples were randomly selected from (a,c,e) TCGA KIRC or (b,d,f)
BRCA RNA-seq dataset, and original or absolute gene-permuting GSEA were performed (gene score:
logFC). (a,b) The distributions of variance inflation factor and (c,d) literature score of gene-sets that
were significantly detected (FDR<0.25) only in the original GSEA (ClassA) and both in the original
and absolute GSEA (ClassB) were compared (Wilcoxon ranksum test). This process was repeated ten
times. (e,f) In addition, the ratio of gene-sets containing terms such as ‘cancer’, ‘tumor’, or ‘carcinoma’

were compared between class A and B.
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Two-tailed absolute GSEA produces more false positive results than one-tailed absolute GSEA.
We compared the filtering results by one-tailed and two-tailed absolute GSEA in analyzing Pickrell '
and Li '*° data. Two-tailed absolute GSEA generated more significant gene-sets than one-tailed absolute
GSEA. For example, the GSEA-GP with one-tailed absolute filtering of Pickrell data (gene score:
moderated-t) resulted in 2.6 significant gene sets (FDR<0.25) including one true term (chryqll) on
average, while that of two-tailed filtering yielded 3.3 significant gene sets including one true term on
average. When logFC was used as gene score, the one-tailed and two-tailed absolute filtering produced
3.5 and 3.7 significant terms, respectively, including one true term.

Similar result was observed for the Li data. The GSEA-GP with one-tailed absolute filtering detected 8
significant gene sets (FDR<0.1) with three ‘androgen’-related gene sets as shown in the Table 2.1.
However, when the two-tailed absolute filtering was applied, it detected 14 significant gene sets
including the same three androgen-related terms. When logFC was used as the gene score, the one-
tailed and two-tailed absolute filtering detected 242 and 256 significant terms, respectively, including

four androgen-related terms. These results imply that one-tailed absolute GSEA yields a little more

conservative results.
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Chapter III: A powerful pathway enrichment and network
analysis tool for GWAS summary data

3.1 Abstract

Pathway-based analysis methods in genome-wide association study (GWAS) are being widely used to
uncover novel multi-genic associations. Many of the pathway-based methods tested the enrichment of
the associated genes in the pathways, but exhibited low powers and were highly affected by free
parameters. A novel standalone software GSA-SNP2 was developed in this study for pathway
enrichment analysis of GWAS p-value data. GSA-SNP2 provides high power, decent type I error
control, and fast computation by incorporating the random set model and the SNP-count adjusted gene
score. In a comparative study using simulated and three real GWAS data, GSA-SNP2 exhibited high
power and best discriminatory ability compared to six existing enrichment-based methods and two self-
contained methods which is an alternative pathway analysis approach. Based on these results, the
differences between pathway analysis approaches, and the effects of different correlation structures on
the pathway analysis were also discussed. In addition, GSA-SNP2 visualizes protein interaction
networks within and across the significant pathways so that the user can prioritize the core subnetworks

for further mechanistic study.

3.2 Introduction

Improving the power of genome-wide association study (GWAS) has been a big challenge for the last
decade. After the multiple testing correction, only a handful of SNP markers were obtained in a typical
GWAS. Analysis of such top-ranked SNPs discarding all except ‘the tip of the iceberg’ was capable of
revealing only a few associated functions. As the sequencing cost keeps dropping, the whole genome
sequencing data are being used for GWAS '*! which poses a much greater multiple testing burden. To
address the problem, a number of multi-loci (gene or pathway) based association analysis methods were
developed. These methods substantially increased statistical power, and revealed many novel genes and
pathways that were not found by the single SNP-based approach '**'?*, In particular, pathway-based
association analysis methods directly provide biologic interpretations, and are capable of detecting
aggregate association of multiple genes even when the individual genes are only moderately associated.
In earlier times, most of the pathway-based GWAS analysis methods incorporated competitive null

9

hypothesis * and tested the relative enrichment of the associated genes in each pathway gene-set.

GenGen ', GSEA-SNP '*, iGSEA4GWAS '¥, SSEA '*® and MAGENTA * implemented modified
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GSEA algorithms which were originally developed for the pathway analysis of gene expression data,
GSA-SNP °' implemented modified Z-test as well as two GSEA algorithms, Aligator '** and Gowinda
%4 provided Gene Ontology over-representation analysis accounting for the gene size (or SNP count),
INRICH ® tested enrichment of pathway gene-sets across independent genomic intervals, and
MAGMA ©° exploited multiple regression models on gene and gene-set analysis. Whereas competitive
methods for GWAS data provided fast and simple implementations, many of them exhibited low powers
and were susceptible to some free parameters.

The pathway-based association analysis methods were then developed for self-contained null
hypothesis in recent years %213 Competitive methods directly target pathway-level aberrations
by testing the enrichment of the associated genes within each pathway, whereas self-contained methods
test the existence of the associated genes therein'®’. Thus, self-contained methods are in general highly
sensitive, so are useful in discovering novel pathways. However, genes typically have multiple
functions and mere existence of associated gene(s) does not always imply a pathway-level aberration.
So, both approaches are useful and complementary to each other.

Besides, protein-protein interaction (PPI) networks were also considered for analyzing GWAS
summary data to identify large modules of associated proteins beyond the pre-defined pathway gene-
sets '*'"%2 In this way, interrogation of GWAS data from different levels of biologic objects (SNP, gene,
pathway and network) has proven useful for revealing novel associations to the phenotype of interest.
Here, a novel C++ standalone tool GSA-SNP2 is presented that accepts GWAS SNP p-values and
implements a powerful competitive pathway analysis as well as PPl network visualization in the
significant pathways. Compared to its previous version®', GSA-SNP2 provides much improved type I
error control by using the SNP-count adjusted gene scores, while preserving high statistical power. The
gene scores are adjusted for the SNP counts for each gene using monotone cubic spline trend curve. It
was critical to remove high scoring (potentially associated) genes before the curve fitting to achieve
high power. The performance of GSA-SNP2 was compared with those of six existing competitive
pathway analysis methods and two recently developed self-contained method using simulated GWAS
data and DIAGRAM consortium data (type II diabetes). Based on these results, the difference between
pathway analysis approaches for GWAS data, and the difference in gene correlation structures between
GWAS and gene expression data and their effects on competitive pathway analysis were also discussed.
GSA-SNP2 visualizes the PPI networks within (local) and across (global) the significant pathways.
These networks suggest how the key proteins interact to each other and affect their neighbors in the
aberrant pathways. The global network, in particular, shows the core PPI structure that cannot be
represented by single pathways suggesting clues for mechanistic study. GSA-SNP2 is freely available

at https://sourceforge.net/projects/gsasnp2.
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3.3 Materials and Methods
3.3.1 Algorithm of GSA-SNP2

GSA-SNP2 employs Z-statistic in evaluating gene sets (pathways) like GSA-SNP. The critical
improvement is resulted from the usage of the gene scores adjusted for the SNP counts for each gene

using monotone cubic spline trend.

Gene score (-log best p)

—— Curve fitting (blue) - = Curve fitting (all)

0 % T T T T T |
0 50 100 150 200 250 300
The number of SNPs

Figure 3.1. The monotone cubic spline trend curves.

Red points represent high scoring genes that have zero correlation coefficient (red dotted line). Both
the trend curves with (purple) or without (blue) red points are represented. The blue curve is used for

calculating the adjusted gene scores.

Adjusted gene scores

SNPs that are located in the range of a gene [gene start — padding, gene end+padding] are assigned
to the gene, where the padding size of a gene is chosen among {0,10000,20000}. Then, the initial
gene score is given as the maximum of —log(SNP p-value) for those SNPs. These gene scores in general
tend to increase as the number of assigned SNPs is increased. Thus, the initial gene scores are adjusted
for the number of assigned SNPs using monotone cubic spline trend as shown in Figure 3.1. Many
genes had very high scores irrespective of the increasing trend for the SNP counts, so such high scoring
(presumably associated) genes are removed before fitting the trend curve. In other words, a range of

top gene scores is searched so that their correlation coefficient becomes zero (red points) and the
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corresponding genes are removed. And then, a monotone cubic spline curve (blue solid curve) is fitted
for the remaining gene scores (blue points). Note that without filtering such high scoring genes, the
trend curve was rather enhanced (purple dash), and the power of our method was much lowered
eventually.

The adjusted gene score for ith gene g; is given as

Adj(g;) = —log (p)) — C(g)

, where p; is the best p-value among the SNPs assigned to g; and C(g;) is the estimated gene score
on the trend curve. Note that the removal of the high scoring genes is only for the curve fitting and they
are all restored when calculating the adjusted gene scores. See Supplementary information of Chapter

IIT for the detailed algorithms for outlier treatment, conversion to monotonic data, curve fitting process.

Pathway statistic
Given a list S ={5,,S,,...,S¢} of K gene-sets (pathways), each gene-set S; (0 < i < K) can be

assessed by Z-statistic as follows:

Xi—m

Z(Si) = o/ JN;

, Where X; is the average of the adjusted gene scores in the gene-set S;, m and o are respectively the
mean and the standard deviation of all the adjusted gene scores, V; is the number of genes in the current
gene-set. Random set theory ' is implemented in GSA-SNP2 to capture more closely the impact of the
set size on the set score. Under the light of random set model, the mean m does not depend on attributes

of the gene-set, but the standard deviation o* depends on the gene-set size N;:
1

. (1GI=N)\2
o =o0. |G|—1

, where |G| is the total number of genes analyzed. The final gene-set statistic is as follows:

Xi—m

0*/\/ﬁi

Z(Si) =

Adjacent gene filtering

Some of the genes in a pathway are closely located on the genome or highly overlapping family genes,
and some of them may belong to the same linkage disequilibrium (LD) block. Such genes exhibit a
positive correlation in their p-values and may contribute to increasing false positive pathways. To
prevent this possibility, the adjacently located genes in a pathway are alternatively removed if they have
high positive genotype correlations (>0.5) in the 1000 genome data. See Supplementary Data for the

detailed algorithm. However, in practice, only a small portion of genes in a pathway were adjacently
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located and at the same time had high correlations. As a result, this filtering process had little effect in

reducing false positives in the type I error control in our tests.
3.3.2 Competitive pathway analysis tools

The type 1 error rate control and statistical power of GSA-SNP2 was compared with other existing
competitive pathway analysis methods that analyze GWAS summary data (Z-test of GSA-SNP (GSA-
SNP1), iGSEA4GWAS, MAGMA, MAGENTA, INRICH and Gowinda). MAGMA was tested for
mean (MAGMA-mean) and topl(MAGMA-topl) SNP statistics as well as their combination
(MAGMA-multi). For MAGENTA, two default enrichment cutoffs (75 and 95 percentiles of all gene
scores) were used. For INRICH, the SNP intervals were constructed for top 1% association p-value.
R?=0.5 was used for another LD-clumping parameter. Gowinda was tested for gene-mode and candidate

SNPs were selected for top 1%, 5% or 10% association p-value. Other parameters were set as default.
3.3.3 Simulation study

The genotypes of 10000 individuals were simulated by randomly pairing the haplotypes of 1000
Genome European samples. The phenotype Y of each individual was calculated based on the linear
model. For type 1 error rate control test, following model was used.
Y =0 X+ BpXy + ¢

where Xi,--+,X; are normalized additive genotypes of & effective SNPs, f;,-:-, Br are SNP effect
(set as one in this study) and ¢ is residual with e~N (0, a?). In the type 1 error rate test, 300 effective
SNPs were randomly selected within gene region. The phenotype variance o2 is determined by the
narrow-sense heritability (h?). In this case, the simulation data were generated for h*=25% or 50%.

For power test, following model was used.

Y =0 X1+ PxXp +y(Gy + -+ Gy) + €

where y is gene-set effect and Gy, -+, Gp are gene effects of M causal genes in the target gene-set.

The gene effect of a gene g (Gy) is defined as Gy=(X,, + ---+XgL)/\/Z where X, ,---, X, are

normalized additive genotypes of L causal SNPs within gene g. In this case, the total heritability was

decomposed into the background heritability (hZ = Yar(p ;zlr?y)ﬁ ka)) and gene-set specific heritability
(hi = Var(y(Git +Gy)) ), assuming that X;,-+,X; and Gj,--,G, have no correlation. Gene-set

Var(y)
effect ¥ and phenotype variance o2 is determined by the combination of hZ and h;. The power
simulation data were generated for hj = 25% or 50% and hZ = 4% or 8%. In this case, 100
background SNPs were randomly selected within the gene regions, and 10~40% of causal genes in a
target pathway were randomly chosen. For each causal gene, one causal SNP was randomly assigned.

674 Reactome pathways (set size: 10~200) were used in the simulation test * %,
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3.4 Results and Discussion
3.4.1 Typel error rate simulation test

False positive (FP) control test was repeated 20 times for each condition and figure 3.2 shows the
number of FP gene-sets (FDR<0.05) detected by each method. Because the causal SNPs were randomly
distributed on the genome, none of gene-sets were enriched under this simulation setting. However,
GSA-SNP1 and iGSEA4GWAS detected many FP sets (Median FP count of iGSEA4GWAS: 59.5 for
h?=25%, 42 for h’=50%; GSA-SNP1: 26 for h’=25%, 35.5 for h’=50% out of 674 pathways). Other
methods were good at FP control. GSA-SNP2 showed highly improved FP control compared to GSA-
SNP1 by applying adjusted gene scoring method. GSA-SNP2 was slightly liberal than INRICH,
MAGMA and MAGENTA that detected almost no FP sets, but it still showed quite decent false positive
control. Its median count of FP set was merely 2 for h>=25% and 1 for h*=50%. The results from
Gowinda varied according to the SNP p-value cutoff. The false positive rate increased as the p-value
cutoff increased. It showed best FP control with top 1% SNPs, but some data generated high FP sets
under this condition (39/674, 5.8%).

3.4.2 Power simulation test

The statistical power of each method was tested for the combination of two background heritability
(h2=25%, 50%) and two set-specific heritability (h§=4%, 8%). One target pathway was assigned for
each simulation and I tested how many target pathways were significantly detected (FDR<0.05) among
50 trials. GSA-SNP1 and iGSEA4GWAS were excluded from the test because they were vulnerable to
the false positive control. Figure 3.3 shows the power of each method for each condition. GSA-SNP2
showed the best power for all conditions (hj = 25%/hZ = 8%: 78.0%, hj = 25%/hZ = 4%: 60.0%,
hi = 50%/h3 = 8% : 65.3%, hj =50%/hZ =4% : 44.0%). The power of MAGMA varied
according to the analysis model. In most cases, MAGMA-topl showed slightly better power than
MAGMA-mean. Their combination (MAGMA-multi) considerably improved the true positive
detection compared to either method, but still its power was quite lower than that of GSA-SNP2 (best
power: 54.5% at h% = 25%/ h; = 8%). INRICH and MAGENTA exhibited low powers compared to
other methods (best power of INRICH: 16.3%, MAGENTA (75%): 22.0%, MAGENTA (95%): 14.3%
at h2 = 25%/ h; = 4%). The results from Gowinda varied according to the SNP p-value cutoffs.
Among three cases, Gowinda showed best power using top 1% SNPs as the candidate SNPs (best power:
33.3%at h% = 25%/h; = 8%).
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Figure 3.2. Type 1 error rate comparison.

The boxplots of the false positive gene-sets count (FDR<0.05) detected by six competitive pathway
analysis methods are shown. The simulation was performed for two heritability values (25% and 50%)
and each simulation was repeated 20 times. MAGMA was tested for three gene models, INRICH was
tested for approximate top 1% of SNPs, Gowinda was tested for approximate top 1%, 5% and 10% and
MAGENTA was tested for 75% and 95% of enrichment cutoff. The red line indicates the 5% of total
pathways.
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Figure 3.3. Statistical power comparison.

The power of each competitive pathway analysis method under the four simulation settings (h2 =
25%/h; = 8% , h2 = 25%/h; = 4% , h2 = 50%/hZ = 8% and h2 = 50%/h; = 4%) are

represented. The parameters of each method were same with those used in the type 1 error rate test.

3.4.3 Performance comparison using real data

The performance of GSA-SNP2 was compared with multiple competitive (GSA-SNP, INRICH (p=1E-
6, and p=1E-8), Gowinda (p=1E-3, p=1E-2 and p=5E-2), iGSEA4AGWAS, MAGENTA (enrichment
cutoff: 75% and 95% gene score), MAGMA-mean, MAGMA-topl and MAGMA-multi) and self-
contained (SARTP and self-contained MAGMA) methods using three public data. I also included GSA-
SNP2 applied with VEGAS2 gene scores in the comparison (GS2VEGAS-all and GS2VEGAS-topl:
all or best SNP(s) in a gene region was(were) used for gene score evaluation).

First, the DIAGRAM consortium stage 1 GWAS p-values were used for comparing the statistical power.
16 curated type II diabetes (T2D) related pathways '** as well as those including the word ‘diabetes’
were regarded as gold standard gold standards and were summarized into 15 categories (Table 3.1). All
the mSigDB C2 pathway gene-sets that correspond to these categories were listed in Supplementary
Information of this chapter (denoted TP pathways). Figure 3.4 shows the comparison results between
different methods: the cumulative gold standard pathway count for each pathway rank were plotted for
each method up to q-value<0.25. Same graph with strict cut-off (q-value<0.05) is shown in figure S3.2.
See also Table S1 of its original paper published in NAR ®’ for the detailed results for each method

compared. GSA-SNP2 exhibited high power and outperformed the other competitive and MAGMA
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self-contained methods in the overall TP rank distribution. It was also showed slightly better gold
standard rank distribution compared with powerful self-contained method sARTP. Except GSA-SNP2,
GSA-SNP and iGSEA4GWAS, other competitive methods detected only small number of gold standard
pathways (<15) due to the low power. GSA-SNP2, GSA-SNP and iGSEA4GWAS detected 41, 47 and
49 TP pathways among 108, 232 and 240 significant pathways (FDR<0.25), respectively. All self-
contained methods exhibited high power. SARTP detected 52 gold standard pathways out of 193
significant terms, and self-contained MAGMA-mean, showing the best precision among MAGMA
series, detected 85 gold standard pathways out of 552 significant sets. The gold standard pathways
significantly detected by each method were counted for 15 categories (Table 3.1). Because the pathways
ranked lower than top 100 may not draw much attention, I counted them up to 100" rank. Here, I focused
on four methods which detected more than 25 gold standard pathways (GSA-SNP2, iGSEA4GWAS,
SARTP and self-contained MAGMA-multi). Those methods detected all gold standard pathways in
‘regulation of beta cell’ category. Except that, GSA-SNP2 best predicted at ‘diabetes’, ‘blood glucose
regulation’, ‘branched chain amino acid metabolism’, ‘inflammation’ and ‘Notch signaling’ pathways;
IGSEA4GWAS best predicted at ‘cell cycle’, ‘unfolded protein response’ and ‘glycolysis and
gluconeogenesis’ pathways; self-contained MAGMA-multi best predicted at ‘diabetes’, unfolded
protein response’, ‘Notch signaling” and ‘mitochondrial dysfunction’ pathways; and SARTP best
predicted as many as six categories such as ‘diabetes’, ‘adipocytokine signaling’, ‘unfolded protein
response’, ‘fatty acid metabolism’, PPARG signaling’ and “WNT signaling’ pathways. Overall, GSA-
SNP2 detected large number of TP terms within top 100 pathways, and showed the comparable
coverage of diverse gold standard categories compared with two powerful self-contained methods.
Next, the height GWAS p-values from GIANT consortium 2010 were analyzed '*°. The 15 gold
standard pathways related height and bone regulation were curated from three independent studies. First,
Pers et al. performed DEPICT pathway analysis using large size of height GWAS data from GIANT
consortium 2012-2015 (sample size: 253,288) '*%'%7. Because large sample size increases the statistical
power, and DEPICT properly controls the type 1 error-rate, it was regarded as a good source for
examining the height-related pathways. From 183 significant pathways (FDR<0.01), 12 gold standard
categories were found reported in the publications such as skeletal system development and
epigenetics**'*?. Second, Marouii et al. analyzed rare and low-frequency coding variant that affected
to human adult height, and suggested several height-associated genes and pathways '*°. Among them,
‘proteoglycan’ and ‘reactive oxygen species’ were experimentally validated in other studies, so those
were included in the gold standard categories '*'"'**. Third, ‘telomerase activity’ that have important
role in chondrocyte proliferation during bone elongation was also included in the gold standard
categories '**. The 15 height-related gold standard categories and related mSigDB C5 gene ontology

terms (v 6.0) are listed in the Supplementary information of this chapter. The detailed analysis result of
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all methods except sSARTP are represented in the Table S2 of its original paper *’. SARTP was not tested
with height data, because it cannot be applied to quantitative trait GWAS data. In this case, the
cumulative gold standard pathway counts were plotted up to g-value<0.05 because most competitive
methods showed greatly increased power compared to previous example due to the large sample size
(183,727, figure 3.4). Similar to the previous case, GSA-SNP2 exhibited the high power and the best
gold standard pathway prioritization. It detected 50 TP pathways out of top 100 significant terms. Other
GSA-SNP series methods including GSA-SNP and GSA-SNP2 applied with VEGAS2 gene scores
(GS2VEGAS-mean, GS2VEGAS-top1) also showed outstanding power and TP pathway prioritization
compared to other methods. GSA-SNP, GS2VEGAS-mean and GS2VEGAS-top1 detected 46, 50 and
53 TP pathways out of top 100 pathways, respectively. Unlike previous example, where relatively small
number of samples (69,033) were used, many competitive methods including MAGMA, MAGENTA
(95%) and Gowinda showed highly increased power in this case. Especially, MAGENTA and MAGMA
exhibited better TP prioritization compared to self-contained MAGMA methods (MAGENTA detected
35 TP pathways out of 73 significant terms; MAGMA-multi detected 40 TP pathways out of top 100
pathways; and self-contained MAGMA-multi detected 37 gold standard pathways out of top 100
pathways). There was difference in preferred TP categories for each method. For example, the
competitive MAGMA methods detected the largest number of ‘skeletal system development’ pathways
such as cartilage and chondrocyte development (e.g., MAGMA-multi detected 23 related terms), and
many of them were in the top ranking. They were also top-ranked in the MAGENTA result. On the
other hand, GSA-SNP series detected the majority of ‘epigenetics’ pathways (21~22 related terms were
detected by all GSA-SNP series), and many of them were placed in the top ranking. All GSA-SNP
series also specifically detected many ‘telomerase activity’ pathways within top 100 terms. The most
‘insulin-like growth factor and growth hormone’ pathways were detected by GS2VEGAS (six terms
were detected by GS2VEGAS-all while other methods detected three or less terms).

I also compared the statistical power using Korean height GWAS p-values where relatively small
samples (8,842) were used '**. In this case, the cumulative gold standard pathway counts were plotted
up to g-value<0.25 due to the lowered powers in overall methods. See figure S3.2 where same graph
was drawn for g-value<0.05. Again, GSA-SNP2 showed high power and outstanding gold standard
pathway prioritization compared to other methods. It detected 44 gold standard pathways out of top 100
terms. Here, GS2VEGAS and MAGENTA (75%) methods showed slightly better gold standard rank
than GSA-SNP2 in the front (~40" rank). Although MAGENTA had low power, it exhibited the highest
gold standard pathway density (25 out of 41 significant terms; 61.0%) showing its great false positive
control. The statistical powers of MAGMA methods were severely decreased compared to GIANT
height case. MAGMA-mean and MAGMA-multi detected no significant pathways and only MAGMA -

topl detected five ‘skeletal system development’ and one ‘epigenetics’ pathways. It implies that
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MAGMA is quite sensitive to GWAS sample size than other methods. The preferred gold standard
categories were similar to the GIANT height case. For example, self-contained MAGMA methods
detected many ‘skeletal system development’ pathways than others (13~16 pathways; GSA-SNP2
detected 11 relevant pathways and others detected eight or less), while GSA-SNP series detected

particularly many ‘epigenetics’ and ‘telomerase’ pathways than others.

DIAGRAM GIANT height data

Gaold standard pathways
Gold standard pathways

10
Pathway ranks

Pamv;aﬂy ranks b 5
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Figure 3.4. Power comparison using real data.

For three public GWAS summary statistics data (DIAGRAM, GIANT height and Korean height data),
the cumulative gold standard pathway count distributions of six competitive and two self-contained
pathway analysis methods were plotted. The results from INRICH were not represented because it failed

to detect more than one gold standard pathway for all cases. The blue dashed line indicates the expected

distribution of the cumulative gold standard pathway count.
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3.4.4 Comparison of competitive and self-contained pathway analysis results

GSA-SNP2 and sARTP results were further compared by the pathways exclusively detected by either
method. The top ten pathways that were significant with GSA-SNP2 but were least significant with
SARTP, and vice versa were selected and the distributions of gene p-values (VEGAS best p option)
were compared in Figure 3.5. In the former case, several genes had similar low p-values which seemed
to collectively represent the pathway-level aberrations. On the other hand, in the latter case, most
pathways contained one or two extreme gene p-values which seemed to dominate those pathways. If
such extreme genes also belong to many other pathways, the association of the corresponding pathway
may not be very reliable. Although competitive methods are also affected by such outlier genes, and
self-contained methods are also capable of detecting pathways composed of moderately associated

genes only, these examples demonstrate the difference of the two GWAS pathway analysis approaches.

a - b -

@) GSA-SNP 2-specific gene-sets (b) sARTP-specific gene-sets
KEGG_CALCIUM_SIGNALING_PATHWAY. sARTP:0.687, GS2: 0.0441 REACTOME_METAL_ION_SLC_TRANSPORTERS. sARTP:0.00541, GS2: 0.938
BIOCARTA_TID_PATHWAY. SARTP:0.593, GS2: 0.0451 REACTOME_ZINC_TRANSPORTERS. sARTP:0.00541, GS2: 0.932

& anboe s
REACTOME_ION_TRANSPORT_BY_P_TYPE_ATPASES. sARTP:0.583, GS2: 0.0336 KEGG_THYROQID_CANCER. sARTP:0.00541, GS2: 0.774
BIOCARTA_G1_PATHWAY. sSARTP:0.564, GS2: 0.0441 REACTOME_KINESINS. sARTP:0.021, GS2: 0.764
o
KEGG_DILATED_CARDIOMYOPATHY. sARTP:0.495, GS2: 0.0434 BIOCARTA _413B_PATHWAY. sARTP:0.0377, GS2: 0.46
> emme 000 © &
KEGG_TYPE_|_DIABETES_MELLITUS. sARTP:0.423, GS2: 0.00621 REACTOME_FATTY_ACID_TRIACYLGLYCEROL_AND_KETONE_BODY. sARTP:0.00947, GS2: 0.423
o
BIOCARTA_AKAP95_PATHWAY. sSARTP:0.37, GS2: 0.0259 REACTOME_ACTIVATION_OF_CHAPERONE_GENES_BY_XBP1S. sARTP:0.00821, GS2: 0.403
2 o
KEGG_GRAFT_VERSUS_HOST_DISEASE. sARTP:0.346, GS2: 0.00534 REACTOME_UNFOLDED_PROTEIN_RESPONSE. sARTP:0.0341, GS2: 0.33
PY S
KEGG_ALLOGRAFT_REJECTION. sARTP:0.335, GS2: 0.00534 REACTOME_CIABETES_PATHWAYS. sARTP:0.0108, GS2: 0.252
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS. sARTP:0.203, GS2: 0.00534 ST_GA13_PATHWAY. sARTP:0.0142, GS2: 0.225
T T T T T T T T T T
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—log10(vegas p-value) -log10(vegas p-value)

Figure 3.5. Comparison of gene p-value distributions in the pathways that are only significant

with (a) GSA-SNP2 or (b) SARTP.

3.4.5 Comparison with the competitive pathway analysis for gene expression data

The core algorithms used for competitive pathway analysis of GWAS data are virtually the same as
those used for gene expression data. It is well known that the competitive methods for gene expression
data suffer from inflated type I errors caused by the inter-gene correlations in each pathway ** '°'.
Interestingly, in the test for GWAS summary data, competitive methods mostly resulted in little false

positives. There is a substantial difference in the inter-gene correlation structure in each pathway
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between the two data types. In the gene expression case, many genes in each pathway are involved in
the same biological process and exhibit positive correlations to each other. However, in the GWAS case,
only adjacently located genes in each pathway that belong to the same LD block exhibit positive
correlations. Indeed, only a small portion of genes were adjacently located in each mSigDB C2
canonical pathway (median=1.4%, mean=4.3%), and only a portion of them had meaningful
correlations (median=0.0%, mean=0.9% for both correlation>0.3 and 0.5). Therefore, inter-gene
correlations in GWAS data seem to exert very limited effect on false positive generation. Note that
GSA-SNP2 removes those highly correlated adjacent genes in calculating pathway scores to further
reduce false positives (Supplementary Information). Many competitive methods for GWAS data based

125-126. 128 merform sample label permutation of genotype data for the purpose of

on GSEA procedure
controlling false positives. The observation in this study suggests that the simple competitive methods
that permute gene or SNP labels reasonably control false positives without the heavy permutation of

genotype data.

(a) (b)
e Global network Sub-network .

c e o ?

Figure 3.6. PPI network
(HIPPIE) from DIAGRAM data. .

3F2BP2
RABSA

(a) Global network from significant sax

TNF

gene-sets (FDR<0.25; gene
score<0.01). (b) A sub-network
composed of eight nodes from the

global network. (c¢) A heatmap
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representing the membership of each
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pathways.
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3.4.6. Comparison of running times

Lastly, the running times for each software were compared for the DIAGRAM data and the C2
canonical pathway sets (Table 3.2). GSA-SNP, GSA-SNP2, MAGMA-mean, INRICH and Gowinda
were quite fast taking only a few minutes, while SARTP took over ten days run on the same PC (Intel

Xeon Processor X5670 @ 2.93GHz, 12 CPUs and 24GB of RAM).

Table 3.2. Running times for seven pathway analysis programs for GWAS summary data.

Method Time Permutation
GSA-SNP2 (command ver.) 1.53 min -
GSA-SNP 1.49 min. -
MAGMA-mean 3.03 min -
MAGMA-top1 34.85 min -
MAGMA-multi 41.85 min -
i-GSEA4GWAS 30 min. -
MAGENTA 114.18 min 10000
Gowinda (p=0.001) 0.62 min. 10000
Gowinda (p=0.01) 0.80 min. 10000
Gowinda (p=0.05) 2.01 min. 10000
INRICH (p1=1E-6) 0.85 min. 10000
INRICH (p1=1E-4) 2.41 min. 10000
SARTP 10.41 days 100000

3.4.6 Network visualization

GSA-SNP2 visualizes protein interaction networks within individual and across significant pathways
Network plots are generated based on STRING '** or HIPPIE ”° networks, and the cut-offs for gene and
pathway scores for visualization are selected by the user. Clicking on the gene node pops up a table
which shows the gene name, mapped SNPs, the neighboring genes, their association scores as well as
further detailed information via the hyperlink to outer databases such as GeneCards '*® and dbSNP '*’.
The network data are also provided as a text file which also shows the pathways that contain the

interacting protein pairs.

In particular, the global network can provide interacting protein pairs that do not belong to any of the
single pathways. Such protein pairs may have drawn relatively less attention, but can provide useful

information for mechanistic study. For example, the global network (extracted from HIPPIE network)
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of the significant pathways (FDR<25%, gene score<(0.01) obtained from DIAGRAM data contained a
sub-network composed of eight genes such as TNF, RAB5SA, CHUK, LTA, CARS, IGF2BP2, HSPAI1L
and HSPA1A (Figure 3.6). Among them, TNF and RABSA have been individually studied and both

148130 "3 key protein that

are known to regulate the insulin-responsive glucose transporter (GLUT4)
regulates the concentration of blood glucose by transporting it to muscle or fat cell. Thus, the
deregulation of GLUT4 can lead to insulin-resistance and T2D '*'"'*2, The global network shows the
two proteins have a medium level of interaction score 0.63 (affinity chromatography technology), and
their interaction may have an important implication in T2D.

The DIAGRAM data were also analyzed using STRING network. It provided much denser interaction
networks among the high scoring proteins than those for HIPPIE network, and the key T2D proteins
TNF and PPARG were represented as hub proteins. Note that many of the interaction edges from
STRING network were generated from the literature only which included GWAS papers, and should

be carefully analyzed to avoid circular argument.

3.5 Conclusion

GSA-SNP2 is a powerful and efficient tool for pathway enrichment analysis of GWAS summary data.

It provides both local and global protein interaction networks in the associated pathways, and may

facilitate integrated pathway and network analysis of GWAS data. The five features of GSA-SNP2 are

summarized as follows:

1) Reasonable type I error control by incorporating gene scores adjusted to the corresponding SNP

counts using monotone cubic spline trend.

2) High power and fast computation based on the random set model.

3) Without any critical free parameter

4) Protein interaction networks among the member genes were visualized for the significant pathways.
This function enables the user to prioritize core sub-networks within and across significant pathways.
STRING and HIPPIE networks are currently provided.

5) Easy to use: Only requires GWAS summary data (or gene p-values) and takes only a minute or two
to get results. Other powerful self-contained pathway tools also require SNP correlation input and

take much longer time.
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3.6 Supplementary information of Chapter III

In this supplementary information, the ‘Adjusting algorithm’ part was written by Dr. Hai C T Nguyen,
a co-first author of this research. I generated figures and wrote ‘15 biological processes related to height

regulation’ part.

Adjusting algorithm
GSA-SNP2 still employs the Z-statistic method in evaluating gene sets/pathways like GSA-SNP. The

critical improvement is the usage of the adjusted gene scores instead of the direct —log(p-values).

Z-statistic method
Assume that there are a list S of K gene sets/pathways, each gene set S; (0 <i < K) is assessed by a set

score s; following the Z-statistic:

Xi—m
o/ N;

s;=2(85) =

, where X; is the average of the gene scores in gene set S;, m and o are respectively the mean and the
standard deviation of all the gene scores, N; is the number of genes in the current gene set. In this work,
GSA-SNP2 considers the best p-value among all SNP p-values pi (0 < k£ < |Gj|) in a gene G; as the
assessed gene score g;(0 <j <|Sj|). Random set theory is also implemented to capture more closely the
impact of the set size on the set score '°’. Under the light of random set model, the mean m does not
depend on attributes of the category (gene set/pathway), though the variance o* depends on the category
size N;:
1

o <|G| - Ni)E
6] -1
With the enhancement of random set method, the final set score s; is modified by the following equation:
Xi—m
o*/ \/ﬁl

However, adjusted gene scores are essentially required before GSA-SNP2 can evaluate the set scores.

s; =2z(5) =

Zero correlation area detection
Presenting the distribution of gene score over the numbers of SNPs in a gene, zero correlation area is
defined by all scores g; greater than a calculated threshold g; so that there is not a linear relationship

between two mentioned variables. The threshold g; can be identified by continuously examining
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whether the first derivative a of the regressed linear function f{g; > g;) = ag; + b is ‘zero’ with various
candidates g;. Because gene scores are discretely distributed over the numbers of SNPs, a ‘zero’ status
is flexibly accepted when a is very close to 0. GSA-SNP2 will accept a ‘zero’ status if a is in range
[-17"°, 1711, A ‘zero’ status can also be accepted if there is no better a found in 1,000 continuous trials.
To efficiently identify threshold g;, the fastest searching technique ‘binary search’ is applied. With each
g’ = Y2 (Qupper T Qiower), @ regressed linear function f°(gi> g/) = a’g; + b’ is inferred. When conditions of
a ‘zero’ status are still not satisfied, the current first derivative a’ is checked to decide the setting for
the next trial. If ¢* < 0, more data points are required to rise the slope. To add more data points to current
candidate area G-, the new g; needs to be degraded. In ‘binary search’ manner where a g;” is controlled
by the upper and lower boundaries, gi,.- should be degraded first to make the same effect on g;". The
result is the new gy, is degraded to the level of the old g;’. Similarly, if @’ > 0, less data points should
be considered in G..r,. Sequentially, the giowe- needs to be upgraded to a new level. And in ‘binary search’
manner, g,per- is assigned to the level of the old g;”. The new threshold g;” will obtain the average value
of the new setting of gupper and giower. This procedure is continuously repeated until a ‘zero’ status is
reached. In short, the zero correlation area can be detected by the following iteration algorithm:

e Step 0: Begin with a list G of M gene scores: G = {go, g1, ..., gu-1}"", which contains all
unduplicated gene scores from all gene sets. GSA-SNP2 only considers the list G of valid genes,
which are included in at least a gene set/pathway. GSA-SNP2 also only considers the list S of all
appropriate gene sets, which contains at least 10 genes and at most 200 genes in default settings.
However, GSA-SNP2 provides controllable parameters for gene set size to fit user interests.

e  Step 1: The temporary zero correlation threshold g; is set to the average of the maximum and the
minimum gene scores. g = 2 (Qupper T Glower). At this point, Supper = Zmax ANd lower = Gmin.

e  Step 2: A new candidate for zero correlation area G ..., can be determined by:

{9i 2 911 9: € G}

e  Step 3: Perform linear regression on current G ., to obtain the linear function f(g)) = a’g; + b".

e Step 4: Examine whether f°(g;) satisfies the conditions of a ‘zero’ status. If the conditions are
satisfied, the desired zero correlation threshold g; is found: g, = g;”; or else, further investigation is
required. The first derivative a’ is checked to adjust the parameters for the next iteration base on
the following criteria:

{ if a' <0, gupper = 9't

if @' >0, giower =9't
, where g,per and giower are previously initialized with the maximum and minimum values
among available gene scores. In each iteration, only one parameter guyper OF iower 1S adjusted

at a time, the other remains unchanged.
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o  Step 5: Repeat Step 1-4 until a zero correlation area G..., is discovered, or the best solution is
reached. The best solution may not completely satisfy the conditions of a ‘zero’ status but it

remains the same continuously for at least 1,000 iterations.

Outlier treatment

In practice, it is found that genes including extremely significant SNP(s) may cause unexpected
situation where zero correlation area contains very few or even one data point. In these cases, the
extreme gene score is so significant that the regressed first derivative a’ is always much greater than 0
over iterations. That a ‘zero’ status is never reached until the extreme data point is left alone makes the
detecting zero correlation phase meaningless in most cases. This situation also makes the search
progress work in the worst searching case, which takes the longest time. The proposed solution for this
problem is treating the extreme values as outliers and taking them out before detecting zero correlation
area. Statistical mean m ’and standard variance ¢’ of gene scores corresponding to each number of SNPs
are used to identify outliers in each group. A gene score g’ is considered as an outlier when g’ > m’ +
30°.

Dual cubic spline estimation

With assumption that gene score tends to increase when the number of SNPs get greater, GSA-SNP2
uses the monotone cubic spline interpolation to fit the binary data after excluding zero correlation area.
The flexibility of spline model allows the fitting curve to capture almost any potential non-linear trends.
And in theory, the monotonicity characteristic ensures the direction of the trend curve. However, to
practically guarantee the monotonicity, it is found that data to be estimated should not be too much
fluctuated (Figure 3.1). In other words, the monotonicity should have been implied in the input data.
One popular solution is manually select input data points in a monotone manner''’: a heuristically fixed
number of knots is selected monotonically; and these knots are fed as input into a cubic spline
interpolation algorithm. Firstly, the direct drawback of this method is the neglect of an automatic
processing framework. The number of knots is decided merely based on expertise experience, which
may vary from user to user. Secondly, the missing of automatic also leads to the neglect of adaptation
of this method for a wide range of data. To ease the situation, GSA-SNP2 suggests dual cubic spline
estimation method to automatically and adaptively estimate scattered binary data. The general idea of
‘dual cubic spline estimation’ is to avoid the effect of severe fluctuating data (Figure S3.1) on the fitting
curve. Instead of using all data at the same time, GSA-SNP2 classifies data into two strictly monotone
groups: monotonically increasing from the minimum and monotonically decreasing from the maximum.
By this simple procedure, it is easy to realize that a fitting curve in each group will not be affected by
the fluctuation coming from the other group. Further, each group already obeys the monotonicity
characteristic itself. At this point, each of the two fitting curves is able to be used as an adjusting trend

line to adjust all gene scores in G. However, an extreme selection procedure like that clearly ignores
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the integrity and consistency of data. In order to preserve these important characteristics of input data,

another simple integration procedure is implemented to ensure each data item having its part contributed.

At each knot, the average of inferred data from both curves is used as new data for the final cubic spline

estimation. The algorithm can be summarized as followings:

e  Step 0: Binary data D = {d;}, where d; = (x;, y:), s sorted along x-axis. Generally, it can be assumed
that x; < x; when i <j. And yumin, Ymaex are respectively the minimum and the maximum of all y;. As
a Consequence, Xymin, Xymax are respectively the x-axis coordination of the minimum and the
maximum.

e  Step 1: Classify D into two strictly monotone groups Dypper and Diower: monotonically increasing
from the minimum and monotonically decreasing from the maximum. The first member of D,per
1S (Xymin, Ymin). Assume that the second selected member of Dyyperis (x1, ¥1), for any next selected
candidate (x, y1), it is essential to ensure that y; > yu, and y; > y,—;. Similarly, the first member of
Diower 18 (Xymax, Ymax)- Assume that the second selected member of Diower i (X2, ¥2), for any next
selected candidate (x,+7, ya+1), it is essential to ensure that v, < yuex and yu+7 < ya.

e  Step 2: Perform cubic spline interpolation on both D,pe- and Dioyer to obtain two monotone curves:
Cupper and Cigyer.

e  Step 3: For each knot (x; 1), 0 <i <|D|, inferring the new knot (Xi average, Vi average) fOr the final cubic

spline estimation:

Xi_average = %(xi_c_upper + Xi ¢_tower)

Yi_average = %(yi_c_upper + Yi c_iower)
, Where (X; ¢ upper, Vi ¢ upper) a0d (Xi_C tower, Vi C lower) are respectively the inferred data from Cipper
and Ciower.

e  Step 4: Perform cubic spline interpolation again on the new integrated data to obtain the final curve
C as the adjusting trend line to adjust all gene scores of G. As a result, for each g; of G, the
corresponding adjusted score g; agjusea can be defined as:

Ji aajustea = 9i —C(9:) = gi — gi c
, where g; ¢ = C(g;) is the inferred trend score from the estimated curve C.

Data sampling strategy

Usually, data are sampled at a regular interval of data population (percentile) or data distribution (range).

However, when the density of data at a certain area is too high, the samples from the first approach tend

to assemble mostly in that area. That fact will limit the general view of the whole data when an

estimation is employed. Meanwhile, the second approach treats all areas, whose density are too high or
too low, equally. In that way, the meaningful content of data will be simplified while the less important

information may be amplified. Unfortunately, distribution of data of gene scores over the numbers of
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SNPs is in this bad shape where data densely gather at the small numbers of SNPs and quickly become
sparser as the number of SNPs is increasing. In attempt to solve the problem, GSA-SNP2 suggests
another adaptively sampling approach which samples more at crowded area and less at sparse area.
Assume that data D is defined by {d; = (g;, n;)}, where g; is gene score and 7; is the number of SNPs.
Sampling will be made when n; = n; = 2— 1 where k is a natural counting parameter in range [0, kax),
and k., is the minimum number making 2"“— 1 > max(n;). As a consequence, sampled gene score is

defined as:

, where N is the number of data instances whose n; = ni and g; is the corresponding gene scores. Sampled

data instances (g, nx) can be used as active knots feeding into the dual cubic spline estimation algorithm.
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Figure S3.1. Dual cubic spline illustration.

Blue fitting curve, which is severely fluctuated, is obtained when directly applying cubic spline fitting
on all data points (knots) at the same time. Dot and dash-dot fitting curves are obtained when
respectively applying cubic spline fitting on upper-bound and lower-bound monotone groups of knots.
Red fitting curve is the final result when applying cubic spline fitting on inferred average knots of both

upper and lower curves.
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15 biological processes related to height regulation

1) Skeletal system development

The abnormal skeletal system development leads to skeletal dysplasia which is the disorders of cartilage
and bone. Currently, more than 350 skeletal dysplasia have been discovered caused by different types

of genetic mutations '*>.

2) Epigenetics

The epigenetic regulation of height-associated genes is important for developmental process '**. For
example, the defects in the genomic imprinting leads to growth disorder including Silver-Russel and
Beckwith-Wiedemann syndromes '**'>°. Furthermore, some height-associated genes such as DOT1-
like and NSD1 histone methyltranferases, HMGA1, HMGA?2 are involved in the assembly of chromatin
structure. Among these, the malfunction of the histone methyltransferase NSD1 causes the Sotos

syndrome, characterized by overgrowth in childhood and retardation in mental and movement abilities

156

3) Insulin-like growth factor-1 and growth hormone
Insulin-like growth factor-1 mediates the protein anabolic and linear growth prompting effect of

pituitary growth hormone (GH) ',

4) Wnt/B-catenin signaling

Whnt/B-catenin signaling affects to the skeletal development. In the early stage of skeletal development,
this signaling leads mesenchymal progenitor cells to bone-forming osteoblast lineage. Later, Wnt/B-
catenin in the chondrocyte of growth plate promotes the chondrocyte survival, hypertrophic
differentiation and endochondrial ossification. Functional study revealed that the mutation in Wnt

signaling component affected to the bone mass in mice and human ',

5) TGFB signaling
Transforming growth factor- (TGFRB) signaling is important in chondrogenesis and osteogenesis. The

defects in TGFR leads to chondrodysplasias characterized by short stature with short limbs '*°.

6) Platelet-derived growth factor
Platelet-derived growth factor (PDGF)-BB was reported as potent stimulator of proliferation of growth

plate chondrocyte '®.
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7) Extracellular matrix
Growth plate is composed of ordered zone of chondrocyte which secretes extracellular matrix (ECM)
including several types of collagens and proteoglycan. The mutation in ECM contributes to the

abnormal growth plate development '

8) Nuclear matrix
Nuclear matrix protein Satb2 represses Hoxa2 expression and acts with other regulatory proteins to

promote osteoblast differentiation '*,

9) Cell cycle
Cell proliferation is important for the normal development of mammals because their body size is
predominantly determined by the number of cells. The mutations of several genes involved in DNA

repair and replication cause the growth failure in primordial dwarfism ',

10) Androgen
Androgen secretion increases during the puberty and it regulates the rate of height growth during the

adolescence, particularly in males '®.

11) Ubiquitin ligase
E3 ubiquitin ligases c-Cbl and Cbl-b have been reported to interact with receptor tyrosine kinases (RTK)
and other molecules to control the bone cell proliferation, differentiation and survival. The inhibition

of c-Cbl promotes the osteoblast differentiation through the decreased RTK degradation ',

12) Nuclear Factor Kappa B
Nuclear factor kappa B (NF-kB) is expressed in the growth plate chondrocyte and it mediates the
promoting effect of growth hormone and IGF-1 on longitudinal bone growth and growth plate

chondrogenesis '®.

13) Proteoglycan
The proteoglycans are components in the extracellular matrix of cartilage. It is essential during the

differentiation and for maintenance of cartilaginous skeletal elements '*'.

14) Reactive oxygen species
Reactive oxygen species (ROS) are important components that regulate the differentiation and bone-

resorbing function of osteoclast '*2.
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15) Fibroblast growth factor and telomerase activity
Fibroblast growth factor receptor 3 (FGFR3) inhibits chondrocyte proliferation by down-regulating the
telomerase reverse transcriptase (TERT) and reducing the telomerase activity. It suggests the important

role of telomerase activity in the chondrocyte proliferation during the bone elongation '**.
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Table S3.1. Gene Ontology terms (mSigDB C5 v6.0) related to 15 height-related categories

Skeletal system development
GO APPENDAGE DEVELOPMENT

GO BONE CELL DEVELOPMENT

GO BONE DEVELOPMENT

GO BONE GROWTH

GO BONE MATURATION

GO BONE MINERALIZATION
GO BONE MORPHOGENESIS
GO BONE REMODELING

GO BONE RESORPTION

GO BONE TRABECULA MORPHOGENESIS

GO CARTILAGE DEVELOPMENT

GO CARTILAGE DEVELOPMENT INVOLVED IN
ENDOCHONDRAL BONE MORPHOGENESIS

GO CARTILAGE MORPHOGENESIS

GO CHONDROCYTE DEVELOPMENT

GO CHONDROCYTE DIFFERENTIATION
GO CONNECTIVE TISSUE DEVELOPMENT

GO CRANIAL SKELETAL SYSTEM DEVELOPMENT

GO EMBRYONIC CRANIAL SKELETON
MORPHOGENESIS

GO EMBRYONIC FORELIMB MORPHOGENESIS

GO EMBRYONIC HINDLIMB MORPHOGENESIS

GO EMBRYONIC SKELETAL JOINT DEVELOPMENT

GO EMBRYONIC SKELETAL SYSTEM DEVELOPMENT
GO EMBRYONIC SKELETAL SYSTEM MORPHOGENESIS
GO ENDOCHONDRAL BONE MORPHOGENESIS

GO FORELIMB MORPHOGENESIS

GO GROWTH PLATE CARTILAGE DEVELOPMENT
GO HINDLIMB MORPHOGENESIS
GO LATERAL MESODERM DEVELOPMENT

GO LIMBIC SYSTEM DEVELOPMENT

GO MESODERM DEVELOPMENT

GO MESODERM MORPHOGENESIS

GO MESODERMAL CELL DIFFERENTIATION

GO MESODERMAL CELL FATE COMMITMENT

GO NEGATIVE REGULATION OF BONE REMODELING

GO NEGATIVE REGULATION OF BONE RESORPTION

GO NEGATIVE REGULATION OF CARTILAGE
DEVELOPMENT

GO NEGATIVE REGULATION OF CHONDROCYTE
DIFFERENTIATION

Epigenetics

GO ATP DEPENDENT CHROMATIN REMODELING
GO CHROMATIN

GO CHROMATIN ASSEMBLY OR DISASSEMBLY
GO CHROMATIN BINDING

GO NEGATIVE REGULATION OF OSSIFICATION

GO NEGATIVE REGULATION OF OSTEOBLAST
DIFFERENTIATION

GO NEGATIVE REGULATION OF SKELETAL MUSCLE
TISSUE DEVELOPMENT

GO OSSIFICATION

GO OSTEOBLAST DEVELOPMENT

GO OSTEOBLAST DIFFERENTIATION

GO PARAXIAL MESODERM DEVELOPMENT

GO POSITIVE REGULATION OF BONE REMODELING

GO POSITIVE REGULATION OF CARTILAGE DEVELOPMENT

GO POSITIVE REGULATION OF CHONDROCYTE
DIFFERENTIATION

GO POSITIVE REGULATION OF OSSIFICATION

GO POSITIVE REGULATION OF OSTEOBLAST
DIFFERENTIATION

GO POSITIVE REGULATION OF OSTEOBLAST
PROLIFERATION

GO POSITIVE REGULATION OF SKELETAL MUSCLE TISSUE
DEVELOPMENT

GO REGULATION OF BONE DEVELOPMENT
GO REGULATION OF BONE REMODELING
GO REGULATION OF BONE RESORPTION

GO REGULATION OF CARTILAGE DEVELOPMENT

GO REGULATION OF CHONDROCYTE DIFFERENTIATION
GO REGULATION OF MESODERM DEVELOPMENT

GO REGULATION OF OSSIFICATION

GO REGULATION OF OSTEOBLAST DIFFERENTIATION
GO REGULATION OF OSTEOBLAST PROLIFERATION

GO REGULATION OF SKELETAL MUSCLE ADAPTATION

GO REGULATION OF SKELETAL MUSCLE CELL
DIFFERENTIATION

GO REGULATION OF SKELETAL MUSCLE CELL
PROLIFERATION

GO REGULATION OF SKELETAL MUSCLE CONTRACTION

GO REGULATION OF SKELETAL MUSCLE TISSUE
DEVELOPMENT

GO REPLACEMENT OSSIFICATION

GO SKELETAL MUSCLE ADAPTATION

GO SKELETAL MUSCLE CELL DIFFERENTIATION
GO SKELETAL MUSCLE CONTRACTION

GO SKELETAL MUSCLE ORGAN DEVELOPMENT
GO SKELETAL MUSCLE TISSUE REGENERATION
GO SKELETAL SYSTEM DEVELOPMENT

GO SKELETAL SYSTEM MORPHOGENESIS

GO HISTONE METHYLTRANSFERASE ACTIVITY H3 K4
SPECIFIC

GO HISTONE METHYLTRANSFERASE COMPLEX
GO HISTONE MONOUBIQUITINATION
GO HISTONE MRNA CATABOLIC PROCESS
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GO CHROMATIN DISASSEMBLY
GO CHROMATIN DNA BINDING
GO CHROMATIN MODIFICATION
GO CHROMATIN ORGANIZATION
GO CHROMATIN REMODELING
GO CHROMATIN SILENCING

GO CHROMATIN SILENCING AT RDNA

GO COVALENT CHROMATIN MODIFICATION

GO DNA PACKAGING

GO DNA PACKAGING COMPLEX

GO DNA REPLICATION DEPENDENT NUCLEOSOME
ORGANIZATION

GO DNA REPLICATION INDEPENDENT NUCLEOSOME

ORGANIZATION
GO EUCHROMATIN

GO GENE SILENCING

GO H4 HISTONE ACETYLTRANSFERASE ACTIVITY
GO H4 HISTONE ACETYLTRANSFERASE COMPLEX
GO HETEROCHROMATIN

GO HETEROCHROMATIN ORGANIZATION

GO HISTONE ACETYLTRANSFERASE BINDING

GO HISTONE BINDING

GO HISTONE DEACETYLASE ACTIVITY H3 K14
SPECIFIC

GO HISTONE DEACETYLASE BINDING
GO HISTONE DEACETYLASE COMPLEX
GO HISTONE DEMETHYLASE ACTIVITY
GO HISTONE DEUBIQUITINATION

GO HISTONE EXCHANGE

GO HISTONE H2A ACETYLATION

GO HISTONE H2A MONOUBIQUITINATION
GO HISTONE H2A UBIQUITINATION

GO HISTONE H3 ACETYLATION

GO HISTONE H3 DEACETYLATION

GO HISTONE H3 K4 METHYLATION

GO HISTONE H3 K4 TRIMETHYLATION
GO HISTONE H3 K9 MODIFICATION

GO HISTONE H4 ACETYLATION

GO HISTONE H4 K16 ACETYLATION

GO HISTONE KINASE ACTIVITY
GO HISTONE LYSINE N METHYLTRANSFERASE
ACTIVITY

GO HISTONE METHYLATION
GO HISTONE METHYLTRANSFERASE ACTIVITY

Insulin-like growth factor-1 and growth hormone

GO CELLULAR RESPONSE TO GROWTH HORMONE
STIMULUS

GO INSULIN LIKE GROWTH FACTOR BINDING

GO HISTONE MRNA METABOLIC PROCESS
GO HISTONE PHOSPHORYLATION

GO HISTONE UBIQUITINATION

GO LYSINE ACETYLATED HISTONE BINDING
GO METHYLATED HISTONE BINDING

GO METHYLATION DEPENDENT CHROMATIN SILENCING

GO NEGATIVE REGULATION OF CHROMATIN
MODIFICATION

GO NEGATIVE REGULATION OF GENE EXPRESSION
EPIGENETIC

GO NEGATIVE REGULATION OF GENE SILENCING
GO NEGATIVE REGULATION OF HISTONE ACETYLATION

GO NEGATIVE REGULATION OF HISTONE METHYLATION

GO NEGATIVE REGULATION OF HISTONE MODIFICATION

GO NUCLEAR CHROMATIN

GO NUCLEAR EUCHROMATIN

GO NUCLEAR HETEROCHROMATIN
GO NUCLEAR NUCLEOSOME

GO NUCLEOSOME BINDING

GO PERICENTRIC HETEROCHROMATIN

GO POSITIVE REGULATION OF CHROMATIN
MODIFICATION

GO POSITIVE REGULATION OF GENE EXPRESSION
EPIGENETIC

GO POSITIVE REGULATION OF HISTONE DEACETYLATION

GO POSITIVE REGULATION OF HISTONE H3 K4
METHYLATION

GO POSITIVE REGULATION OF HISTONE METHYLATION
GO POSTTRANSCRIPTIONAL GENE SILENCING

GO PROTEIN HETEROTETRAMERIZATION

GO PROTEIN LOCALIZATION TO CHROMATIN

GO REGULATION OF CHROMATIN BINDING

GO REGULATION OF CHROMATIN ORGANIZATION
GO REGULATION OF CHROMATIN SILENCING

GO REGULATION OF GENE EXPRESSION EPIGENETIC
GO REGULATION OF GENE SILENCING

GO REGULATION OF HISTONE DEACETYLATION

GO REGULATION OF HISTONE H3 K4 METHYLATION
GO REGULATION OF HISTONE H3 K9 ACETYLATION
GO REGULATION OF HISTONE H3 K9 METHYLATION
GO REGULATION OF HISTONE H4 ACETYLATION

GO REGULATION OF HISTONE METHYLATION

GO REGULATION OF HISTONE PHOSPHORYLATION

GO REGULATION OF POSTTRANSCRIPTIONAL GENE
SILENCING

GO TRANSCRIPTIONALLY ACTIVE CHROMATIN

GO POSITIVE REGULATION OF INSULIN LIKE GROWTH
FACTOR RECEPTOR SIGNALING PATHWAY

GO REGULATION OF GROWTH HORMONE SECRETION
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GO INSULIN LIKE GROWTH FACTOR RECEPTOR
BINDING

GO INSULIN LIKE GROWTH FACTOR RECEPTOR
SIGNALING PATHWAY

GO JAK STAT CASCADE INVOLVED IN GROWTH
HORMONE SIGNALING PATHWAY
Wnt/B-catenin signaling

GO BETA CATENIN BINDING

GO BETA CATENIN DESTRUCTION COMPLEX
GO BETA CATENIN DESTRUCTION COMPLEX
DISASSEMBLY

GO BETA CATENIN TCF COMPLEX ASSEMBLY

GO CANONICAL WNT SIGNALING PATHWAY

GO NEGATIVE REGULATION OF CANONICAL WNT
SIGNALING PATHWAY

GO NEGATIVE REGULATION OF WNT SIGNALING
PATHWAY

GO NON-CANONICAL WNT SIGNALING PATHWAY

GO POSITIVE REGULATION OF CANONICAL WNT
SIGNALING PATHWAY

GO POSITIVE REGULATION OF NON-CANONICAL WNT

SIGNALING PATHWAY
TGEFB signaling
GO NEGATIVE REGULATION OF TRANSFORMING

GROWTH FACTOR BETA RECEPTOR SIGNALING
PATHWAY

GO POSITIVE REGULATION OF CELLULAR RESPONSE

TO TRANSFORMING GROWTH FACTOR BETA
STIMULUS

GO POSITIVE REGULATION OF TRANSFORMING
GROWTH FACTOR BETA PRODUCTION

GO REGULATION OF CELLULAR RESPONSE TO

TRANSFORMING GROWTH FACTOR BETA STIMULUS

GO REGULATION OF TRANSFORMING GROWTH
FACTOR BETA PRODUCTION

Platelet-derived growth factor

GO PLATELET DERIVED GROWTH FACTOR BINDING
GO PLATELET DERIVED GROWTH FACTOR RECEPTOR

BINDING

GO PLATELET DERIVED GROWTH FACTOR RECEPTOR

SIGNALING PATHWAY
Extracellular matrix

GO BANDED COLLAGEN FIBRIL
GO BASEMENT MEMBRANE

GO BASEMENT MEMBRANE ORGANIZATION

GO CHONDROITIN SULFATE PROTEOGLYCAN
BIOSYNTHETIC PROCESS

GO CHONDROITIN SULFATE PROTEOGLYCAN
METABOLIC PROCESS

GO COLLAGEN BINDING

GO COLLAGEN FIBRIL ORGANIZATION
GO COLLAGEN TRIMER

GO COMPLEX OF COLLAGEN TRIMERS

GO DERMATAN SULFATE PROTEOGLYCAN
METABOLIC PROCESS

GO EXTRACELLULAR MATRIX
GO EXTRACELLULAR MATRIX ASSEMBLY

GO EXTRACELLULAR MATRIX BINDING

GO REGULATION OF INSULIN LIKE GROWTH FACTOR
RECEPTOR SIGNALING PATHWAY

GO RESPONSE TO GROWTH HORMONE

GO POSITIVE REGULATION OF WNT SIGNALING PATHWAY

GO REGULATION OF CANONICAL WNT SIGNALING
PATHWAY

GO REGULATION OF NON CANONICAL WNT SIGNALING
PATHWAY

GO REGULATION OF WNT SIGNALING PATHWAY
GO REGULATION OF WNT SIGNALING PATHWAY PLANAR
CELL POLARITY PATHWAY

GO WNT ACTIVATED RECEPTOR ACTIVITY

GO WNT PROTEIN BINDING

GO WNT SIGNALING PATHWAY
GO WNT SIGNALING PATHWAY CALCIUM MODULATING
PATHWAY

GO WNT SIGNALOSOME

GO RESPONSE TO TRANSFORMING GROWTH FACTOR
BETA

GO TRANSFORMING GROWTH FACTOR BETA BINDING

GO TRANSFORMING GROWTH FACTOR BETA RECEPTOR
BINDING

GO TRANSFORMING GROWTH FACTOR BETA RECEPTOR
SIGNALING PATHWAY

GO REGULATION OF PLATELET DERIVED GROWTH
FACTOR RECEPTOR SIGNALING PATHWAY

GO RESPONSE TO PLATELET DERIVED GROWTH FACTOR

GO EXTRACELLULAR MATRIX DISASSEMBLY

GO EXTRACELLULAR MATRIX STRUCTURAL
CONSTITUENT

GO HEPARAN SULFATE PROTEOGLYCAN BINDING

GO HEPARAN SULFATE PROTEOGLYCAN BIOSYNTHETIC
PROCESS

GO HEPARAN SULFATE PROTEOGLYCAN METABOLIC
PROCESS

GO POSITIVE REGULATION OF EXTRACELLULAR MATRIX
ORGANIZATION

GO PROTEINACEOUS EXTRACELLULAR MATRIX
GO PROTEOGLYCAN BINDING
GO PROTEOGLYCAN BIOSYNTHETIC PROCESS

GO PROTEOGLYCAN METABOLIC PROCESS

GO REGULATION OF EXTRACELLULAR MATRIX
ASSEMBLY

GO REGULATION OF EXTRACELLULAR MATRIX
DISASSEMBLY

GO REGULATION OF EXTRACELLULAR MATRIX
ORGANIZATION
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GO EXTRACELLULAR MATRIX COMPONENT
Nuclear matrix

GO NUCLEAR MATRIX

Cell cycle

GO CELLCYCLE

GO CELL CYCLE ARREST
GO CELL CYCLE CHECKPOINT

GO CELL CYCLE DNA REPLICATION
GO CELL CYCLE G1 S PHASE TRANSITION
GO CELL CYCLE G2 M PHASE TRANSITION

GO CELL CYCLE PHASE TRANSITION

GO CELL CYCLE PROCESS

GO CHROMOSOME ORGANIZATION INVOLVED IN
MEIOTIC CELL CYCLE

GO DNA DEPENDENT DNA REPLICATION

GO DNA DEPENDENT DNA REPLICATION
MAINTENANCE OF FIDELITY

GO DNA REPLICATION
GO DNA REPLICATION CHECKPOINT

GO DNA REPLICATION DEPENDENT NUCLEOSOME
ORGANIZATION

GO DNA REPLICATION FACTOR A COMPLEX

GO DNA REPLICATION INDEPENDENT NUCLEOSOME
ORGANIZATION

GO DNA REPLICATION INITIATION

GO DNA STRAND ELONGATION INVOLVED IN DNA
REPLICATION

GO ESTABLISHMENT OF MITOTIC SPINDLE
LOCALIZATION

GO ESTABLISHMENT OF MITOTIC SPINDLE
ORIENTATION

GO MEIOTIC CELL CYCLE
GO MEIOTIC CELL CYCLE PROCESS

GO MITOTIC CELL CYCLE

GO MITOTIC CELL CYCLE ARREST

GO MITOTIC CELL CYCLE CHECKPOINT

GO MITOTIC CHROMOSOME CONDENSATION
GO MITOTIC CYTOKINESIS

GO MITOTIC DNA INTEGRITY CHECKPOINT

GO MITOTIC G2 DNA DAMAGE CHECKPOINT

GO MITOTIC G2 M TRANSITION CHECKPOINT
GO MITOTIC NUCLEAR DIVISION

GO MITOTIC RECOMBINATION

GO MITOTIC SISTER CHROMATID COHESION

GO MITOTIC SISTER CHROMATID SEGREGATION
GO MITOTIC SPINDLE

GO MITOTIC SPINDLE ASSEMBLY
GO MITOTIC SPINDLE ORGANIZATION

GO NEGATIVE REGULATION OF CELL CYCLE ARREST

GO NEGATIVE REGULATION OF CELL CYCLE G1 S PHASE
TRANSITION

GO NEGATIVE REGULATION OF CELL CYCLE G2 M PHASE
TRANSITION

GO NEGATIVE REGULATION OF CELL CYCLE PHASE
TRANSITION

GO NEGATIVE REGULATION OF CELL CYCLE PROCESS

GO NEGATIVE REGULATION OF DNA DEPENDENT DNA
REPLICATION

GO NEGATIVE REGULATION OF DNA REPLICATION
GO NEGATIVE REGULATION OF MEIOTIC CELL CYCLE

GO NEGATIVE REGULATION OF MITOTIC CELL CYCLE

GO NEGATIVE REGULATION OF MITOTIC NUCLEAR
DIVISION

GO POSITIVE REGULATION OF CELL CYCLE

GO POSITIVE REGULATION OF CELL CYCLE ARREST

GO POSITIVE REGULATION OF CELL CYCLE G1 S PHASE
TRANSITION

GO POSITIVE REGULATION OF CELL CYCLE G2 M PHASE
TRANSITION

GO POSITIVE REGULATION OF CELL CYCLE PHASE
TRANSITION

GO POSITIVE REGULATION OF CELL CYCLE PROCESS

GO POSITIVE REGULATION OF DNA DEPENDENT DNA
REPLICATION

GO POSITIVE REGULATION OF DNA REPLICATION

GO POSITIVE REGULATION OF G1 S TRANSITION OF
MITOTIC CELL CYCLE

GO POSITIVE REGULATION OF MEIOTIC CELL CYCLE

GO POSITIVE REGULATION OF MITOTIC CELL CYCLE

GO POSITIVE REGULATION OF MITOTIC NUCLEAR
DIVISION

GO POSITIVE REGULATION OF MITOTIC SISTER
CHROMATID SEPARATION

GO REGULATION OF CELLCYCLE
GO REGULATION OF CELL CYCLE ARREST
GO REGULATION OF CELL CYCLE CHECKPOINT

GO REGULATION OF CELL CYCLE G1 S PHASE TRANSITION

GO REGULATION OF CELL CYCLE G2 M PHASE
TRANSITION

GO REGULATION OF CELL CYCLE PHASE TRANSITION

GO REGULATION OF CELL CYCLE PROCESS

GO REGULATION OF DNA DEPENDENT DNA REPLICATION
GO REGULATION OF DNA REPLICATION

GO REGULATION OF MEIOTIC CELL CYCLE

GO REGULATION OF MITOTIC CELL CYCLE

GO REGULATION OF MITOTIC SPINDLE CHECKPOINT

GO REGULATION OF NUCLEAR CELL CYCLE DNA
REPLICATION

GO REGULATION OF TRANSCRIPTION INVOLVED IN G1 S
TRANSITION OF MITOTIC CELL CYCLE
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GO NEGATIVE REGULATION OF CELL CYCLE
Androgen
GO ANDROGEN BIOSYNTHETIC PROCESS

GO ANDROGEN METABOLIC PROCESS

GO ANDROGEN RECEPTOR BINDING

Proteoglycan

GO CHONDROITIN SULFATE PROTEOGLYCAN
BIOSYNTHETIC PROCESS

GO CHONDROITIN SULFATE PROTEOGLYCAN
METABOLIC PROCESS

GO DERMATAN SULFATE PROTEOGLYCAN
METABOLIC PROCESS

GO GLYCOSAMINOGLYCAN BINDING

GO HEPARAN SULFATE PROTEOGLYCAN BINDING
Reactive oxygen species

GO CELL DEATH IN RESPONSE TO OXIDATIVE STRESS

GO CELLULAR RESPONSE TO OXIDATIVE STRESS

GO CELLULAR RESPONSE TO REACTIVE OXYGEN
SPECIES

GO NEGATIVE REGULATION OF OXIDATIVE STRESS
INDUCED INTRINSIC APOPTOTIC SIGNALING
PATHWAY

GO NEGATIVE REGULATION OF REACTIVE OXYGEN
SPECIES BIOSYNTHETIC PROCESS

GO NEGATIVE REGULATION OF REACTIVE OXYGEN
SPECIES METABOLIC PROCESS

GO NEGATIVE REGULATION OF RESPONSE TO
OXIDATIVE STRESS

GO NEGATIVE REGULATION OF RESPONSE TO
REACTIVE OXYGEN SPECIES

GO POSITIVE REGULATION OF OXIDATIVE STRESS
INDUCED CELL DEATH

GO POSITIVE REGULATION OF REACTIVE OXYGEN
SPECIES BIOSYNTHETIC PROCESS

GO POSITIVE REGULATION OF REACTIVE OXYGEN
SPECIES METABOLIC PROCESS

GO POSITIVE REGULATION OF RESPONSE TO
OXIDATIVE STRESS

Fibroblast growth factor and telomerase activity
GO CHROMOSOME TELOMERIC REGION

GO FIBROBLAST GROWTH FACTOR BINDING

GO FIBROBLAST GROWTH FACTOR RECEPTOR
BINDING

GO FIBROBLAST GROWTH FACTOR RECEPTOR
SIGNALING PATHWAY

GO NEGATIVE REGULATION OF FIBROBLAST
GROWTH FACTOR RECEPTOR SIGNALING PATHWAY
GO NEGATIVE REGULATION OF TELOMERASE
ACTIVITY

GO NEGATIVE REGULATION OF TELOMERE
MAINTENANCE

GO NEGATIVE REGULATION OF TELOMERE
MAINTENANCE VIA TELOMERASE

GO NEGATIVE REGULATION OF TELOMERE
MAINTENANCE VIA TELOMERE LENGTHENING

GO NUCLEAR CHROMOSOME TELOMERIC REGION

GO POSITIVE REGULATION OF TELOMERASE
ACTIVITY

GO POSITIVE REGULATION OF TELOMERE CAPPING
GO POSITIVE REGULATION OF TELOMERE
MAINTENANCE

GO POSITIVE REGULATION OF TELOMERE
MAINTENANCE VIA TELOMERE LENGTHENING

GO ANDROGEN RECEPTOR SIGNALING PATHWAY

GO NEGATIVE REGULATION OF ANDROGEN RECEPTOR
SIGNALING PATHWAY

GO REGULATION OF ANDROGEN RECEPTOR SIGNALING
PATHWAY

GO HEPARAN SULFATE PROTEOGLYCAN BIOSYNTHETIC
PROCESS

GO HEPARAN SULFATE PROTEOGLYCAN METABOLIC
PROCESS

GO PROTEOGLYCAN BINDING

GO PROTEOGLYCAN BIOSYNTHETIC PROCESS
GO PROTEOGLYCAN METABOLIC PROCESS

GO REACTIVE OXYGEN SPECIES BIOSYNTHETIC PROCESS

GO REACTIVE OXYGEN SPECIES METABOLIC PROCESS

GO REGULATION OF OXIDATIVE STRESS INDUCED CELL
DEATH

GO REGULATION OF OXIDATIVE STRESS INDUCED
INTRINSIC APOPTOTIC SIGNALING PATHWAY

GO REGULATION OF OXIDATIVE STRESS INDUCED
NEURON DEATH

GO REGULATION OF REACTIVE OXYGEN SPECIES
BIOSYNTHETIC PROCESS

GO REGULATION OF REACTIVE OXYGEN SPECIES
METABOLIC PROCESS

GO REGULATION OF RESPONSE TO OXIDATIVE STRESS

GO REGULATION OF RESPONSE TO REACTIVE OXYGEN
SPECIES

GO RESPONSE TO OXIDATIVE STRESS
GO RESPONSE TO REACTIVE OXYGEN SPECIES

GO REGULATION OF TELOMERASE ACTIVITY

GO REGULATION OF TELOMERASE RNA LOCALIZATION
TO CAJAL BODY

GO REGULATION OF TELOMERE CAPPING

GO REGULATION OF TELOMERE MAINTENANCE

GO REGULATION OF TELOMERE MAINTENANCE VIA
TELOMERE LENGTHENING

GO RESPONSE TO FIBROBLAST GROWTH FACTOR

GO TELOMERASE HOLOENZYME COMPLEX

GO TELOMERASE RNA BINDING

GO TELOMERE CAP COMPLEX

GO TELOMERE CAPPING

GO TELOMERE LOCALIZATION

GO TELOMERE MAINTENANCE VIA RECOMBINATION

GO TELOMERE MAINTENANCE VIA TELOMERASE

GO TELOMERE MAINTENANCE VIA TELOMERE
LENGTHENING
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GO PROTEIN LOCALIZATION TO CHROMOSOME
TELOMERIC REGION

GO REGULATION OF FIBROBLAST GROWTH FACTOR
RECEPTOR SIGNALING PATHWAY

GO REGULATION OF PROTEIN LOCALIZATION TO
CHROMOSOME TELOMERIC REGION

Ubiquitin ligase

GO CUL3 RING UBIQUITIN LIGASE COMPLEX

GO CUL4 RING E3 UBIQUITIN LIGASE COMPLEX
GO CULLIN RING UBIQUITIN LIGASE COMPLEX
GO CYTOPLASMIC UBIQUITIN LIGASE COMPLEX

GO ER ASSOCIATED UBIQUITIN DEPENDENT PROTEIN
CATABOLIC PROCESS

GO HISTONE DEUBIQUITINATION

GO HISTONE H2A MONOUBIQUITINATION
GO HISTONE H2A UBIQUITINATION
GO HISTONE MONOUBIQUITINATION

GO HISTONE UBIQUITINATION

GO K63 LINKED POLYUBIQUITIN BINDING
GO NUCLEAR UBIQUITIN LIGASE COMPLEX
GO POLYUBIQUITIN BINDING

GO PROTEIN AUTOUBIQUITINATION

GO PROTEIN K11 LINKED UBIQUITINATION
GO PROTEIN K48 LINKED DEUBIQUITINATION

GO PROTEIN K48 LINKED UBIQUITINATION

GO PROTEIN K63 LINKED DEUBIQUITINATION
GO PROTEIN K63 LINKED UBIQUITINATION
GO PROTEIN MONOUBIQUITINATION

GO PROTEIN POLYUBIQUITINATION

Nuclear Factor Kappa B

GO ACTIVATION OF NF KAPPAB INDUCING KINASE
ACTIVITY

GO IKAPPAB KINASE NF KAPPAB SIGNALING

GO NEGATIVE REGULATION OF I KAPPAB KINASE NF
KAPPAB SIGNALING

GO NEGATIVE REGULATION OF NF KAPPAB IMPORT
INTO NUCLEUS

GO NEGATIVE REGULATION OF NF KAPPAB
TRANSCRIPTION FACTOR ACTIVITY

GO NF KAPPAB BINDING
GO NIK NF KAPPAB SIGNALING

GO TELOMERE ORGANIZATION

GO TELOMERIC DNA BINDING

GO PROTEIN UBIQUITINATION

GO PROTEIN UBIQUITINATION INVOLVED IN UBIQUITIN
DEPENDENT PROTEIN CATABOLIC PROCESS

GO REGULATION OF PROTEASOMAL UBIQUITIN
DEPENDENT PROTEIN CATABOLIC PROCESS

GO REGULATION OF PROTEIN POLYUBIQUITINATION

GO REGULATION OF PROTEIN UBIQUITINATION
INVOLVED IN UBIQUITIN DEPENDENT PROTEIN
CATABOLIC PROCESS

GO REGULATION OF UBIQUITIN PROTEIN LIGASE
ACTIVITY

GO SCF DEPENDENT PROTEASOMAL UBIQUITIN
DEPENDENT PROTEIN CATABOLIC PROCESS

GO SCF UBIQUITIN LIGASE COMPLEX

GO THIOL DEPENDENT UBIQUITIN SPECIFIC PROTEASE
ACTIVITY

GO UBIQUITIN DEPENDENT PROTEIN CATABOLIC
PROCESS VIA THE MULTIVESICULAR BODY SORTING
PATHWAY

GO UBIQUITIN LIGASE COMPLEX

GO UBIQUITIN LIKE PROTEIN BINDING

GO UBIQUITIN LIKE PROTEIN CONJUGATING ENZYME
ACTIVITY

GO UBIQUITIN LIKE PROTEIN CONJUGATING ENZYME
BINDING

GO UBIQUITIN LIKE PROTEIN LIGASE ACTIVITY

GO UBIQUITIN LIKE PROTEIN LIGASE BINDING

GO UBIQUITIN LIKE PROTEIN SPECIFIC PROTEASE
ACTIVITY

GO UBIQUITIN LIKE PROTEIN TRANSFERASE ACTIVITY
GO UBIQUITIN SPECIFIC PROTEASE BINDING
GO UBIQUITIN UBIQUITIN LIGASE ACTIVITY

GO POSITIVE REGULATION OF I KAPPAB KINASE NF
KAPPAB SIGNALING

GO POSITIVE REGULATION OF NF KAPPAB IMPORT INTO
NUCLEUS

GO POSITIVE REGULATION OF NF KAPPAB
TRANSCRIPTION FACTOR ACTIVITY

GO POSITIVE REGULATION OF NIK NF KAPPAB SIGNALING

GO REGULATION OF I KAPPAB KINASE NF KAPPAB
SIGNALING

GO REGULATION OF NF KAPPAB IMPORT INTO NUCLEUS
GO REGULATION OF NIK NF KAPPAB SIGNALING
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Table S3.2. Canonical pathways (mSigDB C2 v6.0) related to 15 T2D-related pathways

Diabetes

KEGG MATURITY ONSET DIABETES OF THE YOUNG
KEGG TYPE I DIABETES MELLITUS

Regulation of beta cell

REACTOME REGULATION OF BETA CELL DEVELOPMENT

REACTOME REGULATION OF GENE EXPRESSION IN BETA

CELLS
Insulin/blood glucose level
REACTOME REGULATION OF INSULIN SECRETION

REACTOME REGULATION OF INSULIN SECRETION BY
GLUCAGON LIKE PEPTIDE1

KEGG INSULIN SIGNALING PATHWAY

SIG INSULIN RECEPTOR PATHWAY IN CARDIAC
MYOCYTES

REACTOME INSULIN RECEPTOR RECYCLING

REACTOME REGULATION OF INSULIN SECRETION BY
ACETYLCHOLINE

REACTOME INHIBITION OF INSULIN SECRETION BY
ADRENALINE NORADRENALINE

PID INSULIN GLUCOSE PATHWAY

BIOCARTA INSULIN PATHWAY

REACTOME SIGNALING BY INSULIN RECEPTOR
REACTOME INSULIN RECEPTOR SIGNALLING CASCADE
REACTOME INSULIN SYNTHESIS AND PROCESSING
PID INSULIN PATHWAY

Adipocytokine signaling

KEGG ADIPOCYTOKINE SIGNALING PATHWAY
BIOCARTA LEPTIN PATHWAY

PIDIL6 7 PATHWAY

Cell cycle

REACTOME G0 AND EARLY Gl

KEGG CELL CYCLE

REACTOME CELL CYCLE CHECKPOINTS
REACTOME REGULATION OF MITOTIC CELL CYCLE
BIOCARTA G1 PATHWAY

REACTOME G1 PHASE

SA G1 AND S PHASES

REACTOME MITOTIC G1 G1 S PHASES

REACTOME G1 S SPECIFIC TRANSCRIPTION

REACTOME P53 DEPENDENT G1 DNA DAMAGE RESPONSE
REACTOME CYCLIN E ASSOCIATED EVENTS DURING G1 S

TRANSITION
Circadian rhythm

PID CIRCADIAN PATHWAY

KEGG CIRCADIAN RHYTHM MAMMAL

REACTOME RORA ACTIVATES CIRCADIAN EXPRESSION
Unfolded protein response

REACTOME UNFOLDED PROTEIN RESPONSE
Branched-chain amino acid metabolism

KEGG TYPE Il DIABETES MELLITUS
REACTOME DIABETES PATHWAYS

PID HNF3B PATHWAY

REACTOME GLUCAGON SIGNALING IN METABOLIC
REGULATION

REACTOME POTASSIUM CHANNELS
REACTOME VOLTAGE GATED POTASSIUM CHANNELS
REACTOME ION CHANNEL TRANSPORT

REACTOME INWARDLY RECTIFYING K CHANNELS

REACTOME TANDEM PORE DOMAIN POTASSIUM
CHANNELS

REACTOME INHIBITION OF VOLTAGE GATED CA2
CHANNELS VIA GBETA GAMMA SUBUNITS
REACTOME ADENYLATE CYCLASE ACTIVATING
PATHWAY

REACTOME ADENYLATE CYCLASE INHIBITORY
PATHWAY

REACTOME GLUCAGON TYPE LIGAND RECEPTORS
KEGG CALCIUM SIGNALING PATHWAY
REACTOME ION TRANSPORT BY P TYPE ATPASES

BIOCARTA IL6 PATHWAY
PID TNF PATHWAY
ST TUMOR NECROSIS FACTOR PATHWAY

REACTOME P53 INDEPENDENT GI1 S DNA DAMAGE
CHECKPOINT

REACTOME MITOTIC M M G1 PHASES
REACTOME G1 S TRANSITION
REACTOME M G1 TRANSITION
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Figure S3.2. Power comparison using real data with strict significance cutoff.

DIAGRAM and Korean height data were re-analyzed using stricter cutoff (pathway g-value<=0.05).
Methods that failed to detect TP terms were not represented.
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Chapter IV: Biclustering analysis of transcriptome big data
identifies condition-specific miRNA targets

4.1 Abstract

Here, a novel approach was devised to identify human microRNA (miRNA) regulatory modules
(mRNA targets and relevant cell conditions) by biclustering a large collection of mRNA fold-change
data for sequence-specific targets. Bicluster targets were assessed using validated mRNA targets and
exhibited on an average 17.0% (median 19.4%) improved gain in certainty (sensitivity + specificity).
Net gain was further increased up to 32.0% (median 33.4%) by incorporating functional networks of
targets. The cancer-specific biclusters were analyzed and it was found that PI3K/Akt signaling pathway
was strongly enriched with targets of a few miRNAs in breast cancer and diffuse large B-cell lymphoma.
Indeed, five independent prognostic miRNAs were identified, and repression of bicluster targets and
pathway activity by mir-29 was experimentally validated. In total, 29,898 biclusters for 459 human
miRNAs were collected in the BiMIR database where biclusters are searchable for miRNAs, tissues,

diseases, keywords, and target genes.

4.2 Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules (19 - 23nt) that regulate gene expression
by binding to miRNA response elements in mRNA at the post-transcription level 17 Since their
discovery, extensive studies have revealed their key roles in regulating cell cycle and differentiation,
chronic diseases, cancer progression, and other processes '®*'"'. As the function of a miRNA is
characterized by its target genes, there have been efforts to systematically identify these target genes
based on the binding sequences '"*'7®. Although these methods provide hundreds to thousands of
potential targets, they yield a great number of false positives and do not suggest specific targets related
to the cell condition in question.

To select more reliable mRNA targets of each miRNA, expression profiles of mRNAs and miRNAs
(denoted paired expression profiles) have been incorporated taking into account the anticorrelation
between miRNA and its target mRNA. Besides the simple Pearson and Spearman correlation methods,
a number of computational methods that integrated both the binding sequence and paired expression
data have been developed to infer the miRNA-mRNA regulatory relationships including penalized

regressions and Bayesian method """

(denoted anticorrelation-based methods). Many of them used
multivariate linear model where multiple miRNAs regulate their common target gene. These methods

not only improved the target prediction but provided the cellular condition where the paired expression
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data were generated. However, anticorrelation-based methods require highly costly paired expression
profiles and only a limited number of such paired data are publicly available at present.

Another line of efforts to improve the miRNA target prediction was the inference of miRNA regulation
modules. Based on the binding sequence information, a bipartite graph between miRNAs and mRNAs
was constructed and the maximum bicliques (or biclusters) were identified '**'®!. These bicliques
represent miRNA regulation modules where multiple miRNAs may coregulate their common targets.
By incorporating paired expression data, these modules were further refined for specific cell conditions
182185 " Considering the modular nature of cellular processes, these modules were regarded to represent
more reliable miRNA regulations '*. Recent methods incorporated additional information such as
protein-protein (or gene-gene) interaction, copy number variation, as well as methylation data to better
understand miRNA regulation '*. The myriad of computational methods for miRNA target prediction

179,184,187 "and some of them are summarized in Table S4.1.

are reviewed and categorized in the literature
In this study, a novel approach was proposed to identify miRNA targets for a variety of cell conditions
by biclustering a large collection of mRNA profiles for sequence-specific targets. To this end, I and
three students (Hyeong Goo Kang, Jinhwan Kim, Seon-Young Hwang) collected 5,158 human
microarray expression datasets with diverse test and control conditions from the Gene Expression
Omnibus (GEO) database '** and compiled corresponding fold-change (FC) profiles representing the
5,158 cell conditions. Whereas the existing methods for miRNA regulation modules biclustered
miRNAs and mRNA targets under a given cell condition (Figure 4.1a), a different dimension that
biclusters mRNA targets and cell conditions (i.e. FC profiles) for a given miRNA of interest was
considered in this study (Figure 4.1b). This approach is able to provide more reliable miRNA target
groups that are robustly regulated across different cell conditions without using paired expression
profiles. Of course, there is a related approach that incorporated coexpression of sequence-specific
targets using 250 microarray datasets to prioritize true targets '*°, but it clustered only target genes and
did not suggest relevant cell conditions.

Typically, biclustering algorithms seek to identify a complete association (namely, biclique) between
two sets of nodes (e.g., set of target genes and set of cell conditions) '**'°!. Taking into account the
noise in microarray data, I developed a progressive bicluster extension (PBE) algorithm that allows for

a small portion of unassociated connections between two

(a) (b)
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Biclustering

Figure 4.1. Two approaches for miRNA regulation module discovery.

Red, yellow, and blue nodes represent miRNA regulators, mRNA target genes, and cell conditions,
respectively. (a) Existing approach. For a given cell condition (here, C1), down (or up)-regulated
mRNAs are selected and biclusters between multiple miRNAs and these mRNA targets are sought. (b)
Our approach. For a given miRNA, mRNAs with corresponding binding sequences are selected and

biclusters between these mRNAs and multiple cell conditions are searched for.

node sets but yields biclusters of much larger sizes. In the initial step, PBE identifies bicliques using
bimax algorithm '°'. These bicliques are used as seeds which are extended by competitively adding
dense rows and columns. Then, less dense rows and columns are removed based on a threshold. By
progressively applying tight to less tight thresholds during the iteration of bicluster extension, PBE was
able to identify the bicluster structures from noisy data more accurately than the-state-of-the-art
algorithms "1 QUBIC ' takes a similar approach that it searches for seed biclusters which are
then extended. However, QUBIC only apply a threshold for minimum column density which does not
change during extension.

The biclusters resulted from our method represent the miRNA target genes that show concurrent
expression changes across multiple cell/tissue conditions (namely, constant biclusters). The biclusters
were assessed using experimentally validated targets and exhibited substantially improved accuracy
compared to the purely sequence-based method. The accuracy was even further improved by selecting
the targets having functional interactions with other target genes. Notably, these gains were obtained
using only publicly available gene expression and protein functional interaction data, but were
compared favorably with those obtained from the anticorrelation-based methods that require costly
mRNA-miRNA profiling. Moreover, our predictions are available for 459 human miRNAs and a variety
of cell conditions from our bicluster database, called BiMIR. This approach was further validated by
analyzing pathways of cancer biclusters and prognosis of associated miRNAs followed by confirmatory

experiments.
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4.3 Materials and Methods
4.3.1 Collection of expression fold-change data

First, the CEL files of 2019 GEO series produced using the Affymetrix U133 Plus 2.0 chip were
downloaded '*°. Next, Robust Multi-array Average (RMA) normalization was applied to each CEL file
using ‘justRMA’ function in R ‘affy’ package '’’. The intensities of the probes for each gene were
collapsed by their average value. Then, two sample experiments (test/control) were curated for each
experimental series and the logarithmic FC (denoted logFC) of the average expression in each group
was calculated. In total, logFC profiles for 5,158 (test/control) cell conditions were collected for 20,639
human gene symbols. The logFC matrix and cell condition information is available from our bimir R

package (https://github.com/unistbig/bimir).

4.3.2 Sequence-specific miRNA targets

The sequence-specific miRNA targets were obtained from the seven sequence-based target prediction
databases (TargetScan '**, miRanda ', mirSVR 2, PITA *°!, DIANA-microT **% miRDB ** and
TargetRank *%°). I only used sequence-specific mRNA targets that were reported to have a binding
sequence from three or more databases out of the seven. The number of mRNA:miRNA interactions,
parameters used, and the download sites for the sequence-specific targets are available from

Supplementary information of Chapter IV (‘Collection of sequence-based miRNA targets’ section).
4.3.3 miRNA target prediction using a Progressive Bicluster Extension (PBE) algorithm

The overview of biclustering-based miRNA target prediction is shown in Figure 4.2. First, 5,158 mRNA
microarray datasets with two sample groups (test/control) were collected from Gene Expression

Omnibus database!'®® 1%

, and corresponding logarithmic FC (LFC) data were compiled for 20,639
human genes (columns) and 5,158 FC cell conditions (rows). These LFC data are quantized into up-,
neutral-, and down-regulated genes (denoted by 1, 0, and -1, respectively) using +log,1.3 (FC)
thresholds. For each miRNA, sequence-specific targets predicted in at least three out of seven miRNA

target databases were selected (denoted as background set).
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Figure 4.2. Overview of the biclustering-based miRNA target prediction.

(a) The gene expression fold-change compendium. (b) Sequence-specific targets for each miRNA were
obtained from seven miRNA target databases. (c) The MIR profile is composed of binarized logarithmic
fold-change values of sequence-specific targets for selected cell conditions. (d) From MIR profile, seed
biclusters are extracted using BIMAX algorithm, and then are extended using PBE algorithm. (e)
Finally, merged biclusters are generated by hierarchical clustering of extended biclusters and removing

the noisy rows and columns.

Then, LFC profiles are assigned to the background set based on the enrichment of up-regulated genes
in the background set (hypergeometric test, FDR < 5%). The resulting LFC submatrix is converted to a
binary matrix by replacing -1 with 0, and is dubbed MIR profile for the given miRNA. First, the the

bimax biclustering algorithm '*!

is applied to the MIR profile to obtain a number of small biclusters
completely filled with 1 (called seed biclusters). These biclusters are then ‘progressively’ extended
using PBE algorithm (extended biclusters, see Progressive Bicluster Extension (PBE) algorithm in
Supplementary Information of Chapter IV, Figure S4.1); rows and columns with many 1’s are

competitively added to the seed bicluster and then relatively noisy rows and columns are removed, and
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this process is repeated by slightly increasing the threshold for zero proportion in biclusters (strict to
less strict). The extended biclusters are then clustered using average-linkage hierarchical clustering
(merged bicluster) to remove redundant results. Testing the three distance cutoffs (0.3, 0.5 and 0.7) for
clustering, I found that the cutoff had almost no effect to the result, so the cutoff=0.5 was used. After
the merging, the rows or columns that contain more than 10% of zeros are trimmed off one by one to
finally yield the 'merged biclusters'. The pseudocode of PBE algorithm is written in Figure S4.2.

The resulting biclusters represent predicted target genes (bicluster columns) up-regulated across a
number of cell conditions (bicluster rows). Down-regulated biclusters are also generated in the
symmetrical way. Detailed features of the biclusters are described in Table S4.2 and Figure S4.3. Up
(down)-regulated biclusters imply the corresponding miRNA is down (up)-regulated in the captured
test conditions. The analysis results for +logl.3 thresholds are mainly reported here, but the biclusters
were also generated under +logl.5 and +10g2.0 thresholds and analyzed. An example of let-7¢

bicluster for stem cell conditions are described in Supplementary information of this chapter.
4.4 Results
4.4.1 Comparison with existing biclustering algorithms

Compared with seed biclusters, PBE algorithm yields much larger biclusters by allowing for a small
portion of noise (Figure S4.3). Its performance was compared with those of five existing biclustering
algorithms such as ISA'?, QUBIC*®, FABIA", BIBIT'" and HOCCLUS2'®' that detect ‘up-regulated’
constant biclusters. Detailed information of each method is described in the Supplementary information
of Chapter IV (‘Comparison of biclustering algorithms’ section). First, the size and signal density of
biclusters generated from a real MIR profile (hsa-let-7¢c-5p) were compared (Table S4.3). PBE yielded
large biclusters with high densities (small proportion of zeros), whereas existing algorithms yielded
biclusters with either smaller sizes or poorer densities. PBE also captured the stem cell bicluster better
than existing algorithms (Figure S4.4). Detailed result for real data analysis is described in
Supplementary Information (‘Comparison of biclustering algorithms — Real data analysis’ section)

Next, I tested sensitivity and specificity of six biclustering methods using simulation binary profile
reflecting the average size and density of real MIR profiles (700 rows, 300 columns and 20% density)
(Figure 4.3). The simulation profile contained seven biclusters of which row and column sizes were
between 20~80, and each bicluster included 1~3% of zeros (noise). Some of biclusters were overlapped
to each other by less than 20% of the bicluster sizes. The simulation was repeated 50 times. Here, ‘true’
was defined as the elements included in the seven biclusters, and ‘false’ was the others in the profile.
Thus, the sensitivity was defined as the number of true elements within all resulting biclusters divided
by the number of all true elements. The precision was defined as the proportion of the true elements

within all resulting biclusters.
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PBE showed perfect precision (median=100%) with high sensitivity (median=95.6%). The performance
of ISA depended on the row (TG) and column (TC) thresholds. When TG=TC=1, it showed high
sensitivity (median=97.2%) but relatively low precision (median=87.7%). When both TG and TC
increased to 2, the precision was increased (median=96.8%) but the sensitivity was lowered
(median=86.1%). The QUBIC results were affected by the consistency parameter c. As this value
increased, the precision was increased while the sensitivity was decreased. It showed the best
performance with default parameter (c=0.95, median precision=80.8%, median sensitivity=100%).
BIMAX and BiBit do not allow zeros in the biclusters. When they were run once, they exhibited quite
low sensitivity (median BIMAX sensitivity = 10.2%, median BIBIT sensitivity = 14.5%). However, the
sensitivity of BIMAX increased to 86.7% as it was run 30 times, while that of BiBit was not changed.
FABIA yielded very noisy biclusters for all tested sparseness parameters (a=0.01 and 0.05) resulting in
low precision (median=46.6%) and sensitivity (66.0%). For a>=0.1, it did not create biclusters.
HOCCLUS?2 was also tested but excluded in the graph because it didn’t generate any bicluster under
this simulation setting. These results indicate that the progressive extension process in PBE algorithm

is an efficient way to find biclusters from noisy data.
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Figure 4.3. Simulation test for biclustering algorithm.

(a) Example simulation profile. Orange and gray elements indicate 1 and 0, respectively. (b) Precision

and (c) sensitivity of tested biclustering methods.
4.4.2 Accuracy of the biclustering target prediction

The bicluster targets were assessed using validated miRNA targets. miR TarBase?”’ provides hundreds
of thousands of experimentally validated miRNA-target relations with ‘strong’ evidences (Reporter
assays or Western blot) and ‘less strong’ (or weak) evidences (pSILAC or microarray experiment).
Among the sequence-specific targets (background set) of a given miRNA, those validated with ‘strong’

evidences were regarded as gold positive (GP) targets, whereas those having neither strong nor weak
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evidences were set as gold negative (GN) targets. For evaluation, I selected miRNAs having more than
30 GPs whose fraction within the background set was not less than 5%. 11 miRNAs that satisfied these
criteria were analyzed (Figure 4.4a).

For each miRNA, all the resulting bicluster targets, whether up- or down-regulated, were pooled as
predicted targets, and corresponding sensitivity, specificity, as well as GP enrichment and GN depletion
were calculated (Table S4.5-S4.8). When 1.3 FC threshold was used to quantize the FC data, the average
sensitivity and specificity of the 11 miRNAs were 0.704 and 0.466, respectively (summation = 1.170),
hence 17.0% (median 19.4%) improved gain compared with the sequence-based target prediction.
Although positive gains were obtained for all the 11 miRNAs for 1.3 FC (Figure 4.4a), the relative
performances for each miRNA were quite different for different FC cutoffs (Table S4.5). For example,
the gain of miR-34a-5p was decreased as the FC cutoff was increased because of the rapid decline in
sensitivity (gains for 1.3 FC: 20.8%, 1.5 FC: 13.3%, 2.0 FC: 7.2%). In contrast, the gain of miR-21-5p
increased as the cutoff was increased because the specificity was relatively more increased (gains for
1.3 FC: 16.4%, 1.5 FC: 26.5% and 2.0 FC: 31.3%). It presumably represents the different miRNA
regulation patterns. The former case corresponds to the ‘fine tuners’ that moderately regulate many
genes. Therefore, using lower cutoff helps detect subtle changes in target expressions. However,
miRNAs for the latter case seem to more strongly regulate relatively small number of targets. Among
the three thresholds, 1.3 FC exhibited the best overall gain with the largest sensitivity.

MiRNA targets tend to be functionally related to each other 2°*. Therefore, I incorporated the protein
functional interaction networks from STRING database ’® (edge threshold >150) between the bicluster
target genes to improve the prediction. Among the bicluster targets, those with k or more functional
interactions with other targets were further selected, and the corresponding gains were measured.
Intriguingly, the specificity rapidly increased as k was increased (Figure 4.4b), and the maximum gain
reached up to 32.0% when k = 3 (specificity = 77.8%, Figure 4.4c). The maximum median gain was
even higher (33.4% when k =4). These results show that applying the network information considerably

improves the miRNA target prediction.
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Figure 4.4. Performance of miRNA target prediction using binding sequence, biclustering, and

functional networks.

(a) Sensitivity and specificity of pooled bicluster targets of eleven miRNAs. Targets with binding
sequence were used as background (diagonal black dash). Blue nodes represent biclustering results.
Red/yellow/green/purple nodes represent the results obtained using both the biclustering and network-
based target selection with node-degrees 2, 3, 4 and 5, respectively. (b) Average sensitivity and
specificity for different node degrees of target networks. (¢) Average gains in certainty of methods using

binding sequence, biclustering, and network information. Bars in (b) and (c) represent standard error.

4.4.3 Comparison with anticorrelation-based methods in cancer

mRNA-miRNA profiling has been commonly used to predict condition-specific miRNA targets based
on the anticorrelation between miRNA and its mRNA targets. Therefore, I compared the biclustering
method with seven anticorrelation-based methods (GenMiR-++'"", Pearson correlation, Spearman
correlation, Lasso””?' Elastic Net*'', IDA*'? and Tiresias*") in predicting cancer-specific miRNA
targets. Pearson, Spearman correlation, Lasso, Elastic Net and IDA were implemented using miRLAB
R package?'*?'* and GenmiR++ and Tiresias were run using MATLAB and Perl software, respectively.
For the 11 miRNAs evaluated in the previous section, biclusters where at least 30% of the rows are
about ‘tumor vs. normal’ or ‘aggressive vs. non-aggressive tumor’ conditions were selected. These
biclusters represented 33 miRNA-cancer pairs for five cancer types (breast, brain, lung, colon, or blood
cancer). All of these cancer types had both the mRNA and miRNA data in TCGA, so it was possible to
test anticorrelation-based methods. For the biclustering method, I pooled the bicluster targets in the
order of proportion of the specific cancer condition in each bicluster. Thus, the true and false positive
rates of bicluster targets in each pooling step were shown, while ROC (receiver operating characteristic)
curves were depicted for the anticorrelation-based methods (Figure 4.5). After removing six cases
where none of the all AUCs (areas under the curves) exceeds 0.6 and the maximum biclustering gain

was less than 1.1, twenty cases that were coherent with the known expression of corresponding miRNAs
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(quantitative PCR results) were selected for comparison. In other words, up (down)-regulated biclusters
were chosen if the corresponding microRNA is known to be down (up)-regulated in cancer. Table S4.9
lists the literature reporting the expression levels of miRNAs in cancers.

Overall, the biclustering method was compared favorably with the mRNA-miRNA profile based
methods (Figure 4.5). For 11 out of the 20 cases, the biclustering method exhibited better gains
compared with the anticorrelation-based methods; in other 6 cases, both approaches exhibited similar
performances; in the remaining 3 cases, the biclustering method was inferior to the best anticorrelation-
based method, mostly because of its low sensitivity. As seen in the previous section, incorporating
network information tended to increase the specificity (and the gain) of the biclustering method. Among
the four anticorrelation-based methods, Genmir++ performed best for most cases.

These results show that our biclustering approach, if miRNA expression information is provided,
overall performs better than anticorrelation-based methods in prioritizing condition-specific miRNA
targets. The miRNA expression is relatively easily obtained from the literature or quantitative PCR

experiment.
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Figure 4.5. Performance comparison between biclustering and anticorrelation-based methods.

Black asterisks represent bicluster predictions. Green and red asterisks represent bicluster targets with

at least one and three network degrees, respectively. Solid lines represent ROCs of the seven

anticorrelation-based methods. The title of each panel represents the cancer type, miRNA, and target

regulation direction (parenthesized). Blue, green, and red titles represent the 11, 6, and 3 cases where

the biclustering method performed better than, similar to, and worse than anticorrelation-based methods,

respectively. Dashed black lines represent the background results when only sequence-specific targets

were used. BRCA, DLBC, GBMLGG and LAML represent breast invasive carcinoma, diffuse large B-

cell lymphoma, glioma and acute myeloid lymphoma, respectively.

77



4.4.4 miRNAs targeting PI3K/Akt signaling in cancer

I further analyzed the bicluster targets corresponding to the 20 cancer-miRNA pairs (Fig. 4.5). Among
them, breast cancer and DLBCL yielded the largest numbers of biclusters. In breast cancer, bicluster
targets of miR-1, miR-29a/b/c, miR-34a, and miR-145 were upregulated in aggressive cancer; in
DLBCL, the targets of miR-29a/b/c, miR-34a, and miR-145 were also upregulated. I pooled those
bicluster targets in each cancer type and performed pathway enrichment analysis (KEGG annotation)
using the DAVID tool*® to identify six and five significant pathways (FDR<0.05) in breast cancer and
DLBCL, respectively (Table S4.10 and S4.11). Interestingly, the bicluster targets in both cancer types
were strongly enriched with ‘PI3K/Akt signaling pathway’ (FDR = 1.3E-8 for breast cancer; FDR =
9.1E-8 for DLBCL). This pathway is known to be frequently hyperactivated in many cancers to promote
cell cycle and survival, proliferation, and epithelial-mesenchymal transition of tumor cells *'>*'°. In
addition, extracellular matrix (ECM)-receptor interaction and focal adhesion pathways were commonly
caught in both cancer types, but all the corresponding bicluster targets except two (CAV2, BIRC2) were
also included in PI3K/Akt signaling pathway.

Figures 4.6a and S4.5a show PI3K/Akt pathway where the bicluster targets are highlighted for breast
cancer and DLBCL, respectively. In both cancer types, the miRNAs targeted multiple ligands including
genes encoding growth factors (e.g., VEGFA and PDGFC targeted by miR-29) and ECM (e.g.,
COL1A1, LAMCI1, THBS2 by miR-29); signal transducers such as receptor tyrosine kinase (e.g., MEK
and/or PDGFRA by miR-34a), G-proteins (GNB4 and GNG12 by miR-29), toll-like receptor (TLR4
by miR-34a and miR-145) and integrin (e.g., ITGB1 by miR-29); as well as downstream effectors such
as NRAS (by miR-29 and miR-145) and CDK6 (by miR-29). In addition, AKT3 was targeted by mir-
29 in breast cancer, and cytokine receptor (IL2RB and IL6R) and one component of the PI3K complex
(PIK3R3) were also targeted by miR-34a and mir-29, respectively, in DLBCL. Indeed, it was previously
shown that mir-29b upregulation in breast cancer considerably inhibited metastasis by repressing targets
related to the tumor microenvironment’'” (including some genes listed above). In the present study, the
bicluster targets of mir-29 were experimentally validated using the human breast cancer cell line, MDA -
MB 231, which is a well-established metastatic and invasive cancer cell line (done by Woobeen Cho, a
Ph.D student in Prof. Ji-young Park’s Lab.). Transcript levels of nine bicluster targets related to ECM
or PI3K were analyzed 2 days after transient transfection with either miR-29 or control miRNA. All the
nine targets were considerably downregulated by miR-29b or -29c¢ transfection compared to that of the
control (Figure 4.6¢). Furthermore, the activation of ECM related downstream pathways such as focal
adhesion kinase (FAK) and AKT were also considerably attenuated by miR-29 (Figure 4.6d)
demonstrating the capability of biclustering analysis to capture relevant pathways for disease. Detailed

experimental methods are available in Supplementary Information of Chapter IV.
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Figure 4.6. miRNA targets in PI3K/Akt pathway (breast cancer).
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(a) MiRNA targets predicted from breast cancer biclusters are highlighted by red borders. For each target molecule,
corresponding miRNA names and target gene symbols are represented. (b) Distant relapse-free survival analysis for 210
patients with breast cancer exhibiting high and low miR-29a, miR-29b, and miR-29c¢ levels. The patients were divided into
two groups based on their best splits at top 33.8%, 40% and 66% values, respectively. (c) Transcript levels of miR-29 target
gene candidates were analyzed by qRT-PCR. MDA-MB-231 breast cancer cells were transiently transfected with either
scrambled miRNA (control) or miR-29 (29b-3p or 29c-3p). 2-days after transfection, total RNAs were subjected to analyze
target gene candidates. Genes were normalized with B2M. All the tested genes were considerably downregulated by miR-29b
and/or 29c. ITGB1, LAMCI1 and PDGFC were more effectively repressed by miR-29b, and vice versa. (d-e) Activation of
downstream pathway candidates such as AKT and FAK were analyzed by immunoblotting. (d) Total cell lysates extracted
from either scrambled miRNA or miR-29b-3p (d), as well as miR-29¢c-3p (e) transfected MDA-MB-231 cells were analyzed
for the levels of pAKT, AKT, pFAK and FAK. GAPDH was used as lading control. Quantified results were represented as a
bar graph. Statistical significance was evaluated by unpaired one-tailed Student’s #test. “p < 0.05; **p < 0.01; *p < 0.001 vs.
scrambled miRNA.



Finally, I analyzed the prognostic values of these miRNAs using public miRNA expression datasets.
The distant-relapse-free survival was tested for 210 patients with breast cancer (GEO database,
GSE22216*'®). Among the six miRNAs analyzed, the three miR-29 family miRNAs had significant
prognostic values (mCPH p-values of miR-29a = 0.0042, miR-29b = 0.0064, miR-29¢ = 0.0038;
adjusted for age, tumor size, lymph nodes involved, ER, and grade). Then, the overall survival of 116
patients with DLBCL (GSE40239'*7) was also analyzed for five miRNAs. Among them, two exhibited
significant prognostic values (mCPH p-values for miR-34a = 0.0185 and miR-145 = 0.0041; adjusted
for International Prognostic Index (IPI) and gender). See Table S4.12 and S4.13 for detailed results.
Kaplan-Meier plots contrasting the effects of high and low miRNA levels on survival are also shown
in Figures 4.6 and S4.5.

Overall, by analyzing cancer biclusters, the key pathways (PI3K/Akt signaling, ECMs, and focal
adhesion), and five associated prognostic miRNAs (mir-29a, mir-29b, and mir-29¢ in breast cancer;
mir-34a and mir-145 in DLBCL) that are repressive of tumor progression (hazard ratios 0.593 — 0.745)

were identified. In particular, the effects of mir-29b/c on these pathways were experimentally validated.
4.4.5 BiMIR: a bicluster database for condition-specific miRNA targets

In total, 29,815 biclusters were generated for 451 human miRNAs using PBE algorithm (13,921 for 1.3
FC; 10,958 for 1.5 FC, 4,936 for 2.0 FC thresholds) and complied in BiMIR database

(http://www.btool.org/bimir_dir/; constructed by Dr. Hai C. T. Nguyen) where biclusters are searchable

for miRNAs, tissues, diseases, keywords, target genes of interest, and their combinations. BIMIR can
be used for investigating novel miRNA functions, targets, and related cell conditions.

Along with the list of searched biclusters, the function enrichment results for bicluster targets are
provided based on the MSigDB'"* pathway (C2) and gene ontology (C5) categories. If biclusters are
searched for a specific organ/tissue or disease, the proportion of corresponding condition in each
bicluster is also reported. These help the user to find most relevant biclusters. The heatmaps for each
bicluster are visualized (Figure S6) and corresponding target genes and cell conditions are hyperlinked
to Genecards'***'” and GEO'**** databases for detailed information, respectively. For bicluster target
genes, the network node degrees, experimental evidences from miRTarBase?”’, protein network
visualization based on STRING database’® are provided. In addition, the entire mRNA FC profiles,

biclustering R code, and all the biclusters are downloadable from BiMIR database.
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4.5 Discussion

Here, a novel framework was presented that prioritize miRNA targets by biclustering sequence-specific
targets and cell conditions, a dimension rarely explored before. This is based on the idea that miRNA
targets, like other cellular molecules, have a modular activity and will be repeatedly captured across
different cell conditions. Indeed, the bicluster targets exhibited substantially improved accuracy
compared with purely sequence-based targets and were often enriched with well-known pathways
characterizing the modules identified. Moreover, the functionally connected targets exhibited even
higher accuracy, further confirming the modular activity of miRNA targets.
I analyzed cancer biclusters and found that PI3K/Akt signaling pathway was intensively targeted by a
few miRNAs in two cancer types. Further, prognostic values of those miRNAs and the regulatory
effects of mir-29 were also validated. These results demonstrate that biclustering analysis is able to
reveal key pathways regulated by miRNAs in disease. BIMIR database provides miRNAs and targeted
pathways for dozens of diseases.
Given the miRNA expression, the prediction using biclustering method was favourably compared with
seven anticorrelation-based methods in cancer conditions. This demonstrates the practical value of this
approach in that bicluster results can provide fairly good target predictions for a variety of cell
conditions without generating costly paired expression profiles. BIMIR database was designed so as to
explore the modular regulatory networks of miRNAs by connecting miRNAs, cell conditions (or
disease), mRNA targets, and associated pathways. The user may find candidate miRNA and target
genes for the cell condition of interest. The knowledge of miRNA expression level will help select the
right direction of biclusters (up or down).
Despite the improvements and usefulness shown in this study, there remain difficulties in our approach
regarding free parameters that need to be optimized. First, the minimum seed size of 10 by 10 was
determined in an ad hoc manner, and its optimal size may be affected by the size of the fold-change
data. Second, the iteration number of 20 in BIMAX algorithm was used to compromise the computation
time; using a higher iteration number yielded more biclusters. However, other parameters seemed to be
less sensitive. For example, I slightly increased the threshold of zero proportion from 0.01 to 0.1 (step
size 0.01) during ten iterations of bicluster extension. This may seem to allow 10% of zeros in the end,
but the final zero proportion was only about 1.5% because of the trimming process. The cutoff of
hierarchical clustering of the extended clusters was also a less sensitive parameter. In addition, the
biclusters were generated under a rather strict criterion (for targets in three or more databases); therefore,
BiMIR can be used for selecting a small number of highly likely targets for the cell condition of interest.
The biclustering approach presented here can also be applied for predicting the condition-specific
targets of other sequence-specific regulators such as transcription factors or RNA binding proteins. In
this regard, the entire 5,158 mRNA fold-change profiles for 20,639 genes are provided for general
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systems biology research. These mRNA fold-change data are different from the GTEx transcriptome
data **! in that GTEx data represent transcription levels in normal tissues, whereas our fold-change data
represent gene expression ‘changes’ for a variety of cell conditions such as disease, chemical treatment,
tissues, and differentiations. Thus, these fold-change data can also be used for clustering or regulatory
network analysis for a specific group of genes or cell conditions.

Another possible future work is coregulatory network of miRNAs. Whereas existing methods to
identify miRNA regulation modules bicluster multiple miRNAs and multiple target genes representing
coregulatory networks, my current work is focused on prioritizing highly likely target genes of a single
miRNA commonly detected across multiple cell conditions. This approach can also be extended to
tackle the miRNA coregulatory networks by overlapping biclusters for different miRNAs. A significant
overlap implies coregulated mRNA targets under multiple cell conditions. I hope that this approach and

data contribute to disentangling the modular structure of complex regulatory networks.
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4.6 Supplementary information of Chapter IV

Table S4.1. Existing miRNA target prediction tools

Sequence-based target prediction methods

Method Features used in target prediction References

TargetScan Seed match, Conservation 198

PITA Seed match, Conservation, Free energy, Site accessibility, Target-site 2!
abundance

miRDB Seed match, Conservation, Free energy, Machine learning 204

mirSVR Seed match, Conservation, Free energy, Site accessibility, Machine learning 2%

miRanda Seed match, Conservation, Free energy 199

DIANA-microT-CDS  Seed match, Conservation, Free energy, site accessibility, Target-site 202203

abundance, Machine learning

TargetRank Seed match, Conservation, Base composition at position t9, flanking AU %

content

Correlation/Causality-based target prediction methods

Method Features References

Pearson correlation Pearson correlation between an mRNA and miRNA 222

Spearman correlation  Spearman correlation between an mRNA and miRNA 223

Lasso Lasso regression coefficient between an mRNA and miRNA 209-210

ElasticNet ElasticNet regression coefficient between an mRNA and miRNA 2

GenMIR++ Bayesian learning algorithm 177

Tiresias Two-stage artificial neural network 213

IDA Causal structure learning and causal inference 212

Biclustering-based target prediction methods

Method Features References

BIMIR Biclustering sequence-specific targets and cell conditions using large log -
expression fold change table.

HOCCLUS2 Biclustering mRNA and miRNA using mRNA:miRNA interaction score '#!
matrix

miRmap Biclustering mRNA and miRNA using mRNA:miRNA correlation matrix 224

cMonkey?2 Biclustering gene expression table and miRNA binding site enrichment test 2%

for bicluster genes

Data collection

1) Collection of expression fold-change data: Described in the Materials and Methods section in
Chapter IV.

2)  Collection of sequence-based miRNA targets
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The sequence-based miRNA targets were set as those predicted from three or more miRNA target

prediction databases listed below.

TargetScan (version 7.0): TargetScan data (Conserved site context++ scores) provided 253,132
miRNA-target interaction data. It was downloaded from TargetScan homepage
(http://www.targetscan.org ).

PITA (version 6): PITA data (PITA targets hgl8 0 0 ALL.txt) provided 4,095,751 miRNA-

target interaction data. Among them, 716,486 interactions were used of which free energy
scores were less than -10. The data was downloaded from
https://genie.weizmann.ac.il/pubs/mirQ7/mirQ07_data.html.

miRDB (version 5.0): miRDB data (miRDB_v5.0 prediction_result.txt) provides 1,873,265

miRNA-mRNA interaction data. Among them, 1,314,352 interactions were used of which
scores  were  greater than  60. The data  was downloaded  from

http://www.mirdb.org/download.html.

mirSVR: mirSVR Targets provided 728,288 miRNA-target interactions. The data was

downloaded from http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/ but not

available now.

miRanda (microRNA.org) : miRanda provided 1,097,064 conserved miRNA-mRNA
interactions with high mirSVR score (human_prediction S C aug2010.txt). The data was
downloaded from http://www.microrna.org/microrna/getDownloads.do but not avaliable now.

DIANA-microT-CDS (version 5.0): DIANA-microT-CDS provides 7,337,705 miRNA-

mRNA interactions. Among them, 1,457,011 interactions were used of which scores were
larger than 0.7.

TargetRank: TargetRank provides 1,006,494 miRNA-mRNA interactions. The data was
downloaded from

(http://hollywood.mit.edu/targetrank/hsa_miRBase_miR_ranked targets.txt ).

Progressive Bicluster Extension (PBE) algorithm

The overall process of PBE algorithm is shown in Figure S4.1 (graphical scheme), and Figure S4.2

(pseudocode). PBE algorithm is composed of two parts: the extension step and the trimming step.

Briefly, the seed bicluster is extended by adding the background rows or columns that have the

minimum zero rate (extension step) and then noisy rows and columns (showing high zero rate) of the

extended bicluster are removed (trimming step). This two-step process is applied R times, and the

bicluster is also updated R times accordingly (in this study, R=10). The final zero rate allowed in the

extended bicluster (Z.,;) is set as 10%, but note that the final zero rate was only less than 1.5% on

average (Fig S4.3).
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Extension step. In the s™ step of extension (s = [1, -+, R]), the intermediate zero rate (Zcus) allowed in
extending the current bicluster is defined as:

Zcut

Z cut,s —

For example, if Z.,,,=0.1 and a seed bicluster is extended through R=10 steps, the Z.,¢ for the first
extension step will be 0.1*1/10 = 0.01. In other words, stricter criteria are applied in the earlier extension
steps to obtain biclusters with high densities. Let M be the matrix of the MIR profiles, and R(s) and
C(s) be the indexes of the rows and columns of the bicluster that s™ extension step is done, respectively.
M[R(0),C(0)] denotes the seed bicluster. After calculating the zero rates in every column vector in
M[R(s — 1),C(s — 1)¢] and row vector in M[R(s — 1), C(s — 1)], the rows or columns with the
minimum zero rate are added to the current bicluster. The same extension process is repeated until the
zero rate reaches Z. ¢, when the bicluster enters the trimming step.

Trimming step. If any row or column vector with the maximum zero rate exceeds Z.y; s, such vector
is removed from the bicluster one by one resulting in the updated bicluster M[R(s), C(s)].

Prevention of lengthening out in one direction. Some biclusters tend to keep lengthening out in one
direction if one side of the bicluster becomes too small compared with the other side during the
extension process. To ameliorate this, a penalty is given to the longer side if it is more than twice longer
than the other side. When the row and column vectors outside the bicluster compete with each other,

the following modified zero rate is applied for the longer side vectors.

# zeros in the vector + floor(r)
length of the vector

modified zero rate =

where,

_ lengthof longer side of bicluster
r= length of shorter side of bicluster
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Figure S4.1. Progressive bicluster extension (PBE) algorithm.

The final zero rate cut off (Zcu) in the extended bicluster should be determined in advance. In the MIR
profile, the orange and the grey cells represent 1 and 0 respectively, and the seed bicluster is represented
in the black box. The seed bicluster is extended by repeating the following extension and trimming
process R times. (Extension step) Among the addable vectors (in the yellow shadow), those with the
minimum zero rate are simultaneously attached to the current bicluster. If the zero rate in the extended
bicluster is less than intermediate zero rate cut-off (Zews=Zcu*s/R, s means s™ repetition step), the
extension process is repeated. (Trimming step) If the zero rate exceeds the Zcus, the rows and columns
whose zero rate is larger than Z..s are searched for and removed from the most noisy vectors to yield

the updated bicluster. The updated bicluster enters next extension/trimming step with updated parameter.
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Figure S4.2. Pseudocode of Progressive Bicluster Extension

Algorithm : Progressive Bicluster Extension

Input: V- (condition), Ve (target gene); M™" (MIR profile); parameters S (The number of extension steps), Z (Final
zero rate allowed in the bicluster)

for (i=1 to S) do
Ziemp = (Z/s)xi
SEED < M[V,][V.]
# Seed extension process
Sfunction zero_ratio(array A)
return (The # of zeros in A) / |A|
end function
Sunction modified zero ratio(array A, integer N)
return (The # of zeros in A + N) / |A|
end function
while (zero ratio of SEED < Zemyp) do
V. « Conditions in seed bicluster
V. « Target genes in seed bicluster
RowCandidates— M[(V,.)][V]
ColumnCandidates— M[V,.][(V.)]
ny < [Vi[/IVe| 5 np « 1/ny
if (ny>=2) then
Row zero < Values from modified_zero_ratio() for all row vectors in RowCandidates with N=n;
else
Row _zero < Values from zero_ratio() for all row vectors in RowCandidates
end if
If my>=2) then
Col zero < Values from modified_zero_ratio() for all column vectors in ColumnCandidates with N=n;
else

Col zero < Values from zero_ratio() for all column vectors in ColumnCandidates
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end if
Min_row_zero < minimum of Row_zero
Min_col zero « minimum of Col _zero
New _conditions < conditions (rows) in M that corresponds to Row zero==Min_row_zero
New _target genes « Targets (columns) in M that corresponds to Col zero==Min_col zero
L1 = |New_conditions|; L2 = |New _target genes)|
if{(Min_row zero < Min_col zero) OR (MIN row zero==Min_col zero AND L1>=L2)) then
SEED emp— M|V, UNew_condition][ [V ]
else
SEED:eny < M[V.][ [V. UNew_target_genes]
end if
if(zero ratio of SEEDremp > Ztemy) then
break
else
SEED < SEEDi
V. « V. U New_conditions
V. < V.U New target genes
end if
end while
# Bicluster Trimming Process
Row zero « Values from zero_ratio() for all row vectors in SEED
Col _zero < Values from zero_ratio() for all column vectors in SEED
Max_row zero < maximum of Row_zero
Max_col zero < maximum of Col zero
While (max_row _zero>Z ey OR max_col zero>Z omy) do
if (max_row zero >= max_col zero) then
conditions_to_delete = SEED conditions (rows) whose zero ratios are equal to max_row_zero
V, « V.— Conditions_to_delete

SEED «SEED[V,][V.]
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else
targets to_delete = SEED target genes (columns) whose zero ratios are equal to max_col _zero
Ve <« V.—targets to delete
SEED « SEED[V. ][V ]
end if
Row zero « Values from zero_ratio() for all row vectors in SEED
Col _zero < Values from zero_ratio() for all column vectors in SEED
Max_row zero < maximum of Row_zero
Max_col zero < maximum of Col zero
If(max_row zero<Ziemy AND max_col zero<Ziemp) then
break
end if
end while
end for

Return SEED
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Bicluster statistics

By progressively extending the seed biclusters and merging similar ones, many of missing associations
can be restored to yield biologically meaningful results. Figure S4.3 represents the distributions of
bicluster size (number of conditions and genes) and density (1-zero ratio; 1.3-fold cut-off). For 1.3-fold
cutoff bicluster, 11.5 conditions and 10.5 genes were included in the seed biclusters on average. After
extending them, the average number of conditions and genes were increased to 19.4 and 28.4,
respectively. Finally, merged biclusters had slightly more increased sizes. However, the zero ratio of
the merged biclusters was only less than 1.5% on average. Increasing FC cutoff resulted in less extended
but slightly denser biclusters (Fig S4.3). Compared with other biclustering methods, PBE was able to
identify larger and/or cleaner biclusters from noisy data as shown in the next section.

BiMIR (http://btool.org/bimir_dir/) provides 29,898 biclusters for 459 human microRNAs. These
biclusters cover in total 2,259 fold change (FC) conditions (~43% of total cell conditions). Table S4.2

shows six statistics of BIMIR biclusters for three binarization cutoffs (1.3, 1.5 and 2.0 FC). Note that
for each miRNA, six MIR profiles were generated (up- and down-regulated profiles for three FC

cutoffs). If no biclusters were generated from MIR profile, corresponding miRNA was not counted in

Table S4.2.

Lom Lk LA

_t N A
P e e

log2(Number of conditions)
IS »

log2(Number of genes)

Density

Seed  Extended Merged Seed  Extended Merged Seed  Extended Merged
Bicluster level

Figure S4.3. Distribution of the number of conditions, genes and density in biclusters with three
different fold-change cut-offs.
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Table S4.2. Statistics of BIMIR biclusters.

Binarization cut-off 1.3 FC 1.5 FC 2.0 FC
Number of miRNAs 459 414 348
Number of biclusters 13,949 10,999 4,950
Number of FC conditions 2,259 1,828 1,057
Average number of conditions 20.5 15.3 14.1
Average number of genes 30.8 26.7 26.8
Average bicluster density 0.985 0.986 0.988

Comparison of biclustering algorithms

The performance of PBE and other ‘up-regulated’ constant biclustering algorithms were compared in
two ways: (1) the size and density comparison using MIR profile of hsa-let-7¢c-5p and (2) precision and
sensitivity comparison using simulated data. In this section, I describe the tested biclustering algorithms,
and real data analysis result. Simulation analysis is described in Chapter IV (refer to 4.4.1 Comparison

with existing biclustering algorithms).
(1) Compared biclustering algorithms

- Iterative signature algorithm (ISA)'*: It was developed to find transcriptional modules from
microarray gene expression profiles. It aims to detect a set of genes showing similar up- or down-
regulation patterns across a set of samples. To achieve the modules, ISA iteratively updates the
rows (genes) and columns (conditions) that satisfies the criterion until the result converges. ISA
has two parameters: row (Tc) and column (T¢) threshold parameters. In this study, both parameters

were adjusted from 1 to 3 by 0.5. It was run by ‘isa’ function in ‘isa2’ R package

- QUBIC™: It is a qualitative or semi-quantitative biclustering algorithm. It automatically converts
the continuous input gene expression matrix into signed integer matrix based on the parameters r
(e.g., 1=up-regulated, O=not regulated and -l1=down-regulated) and then constructs the gene
network in which the edges represent the number of co-regulated conditions. It finds non-
overlapping seed biclusters from this network and expand the biclusters based on the consistency
parameter that controls the ratio of identical non-zero values in each column. In this study QUBIC
biclusters were generated using BCQUD function in QUBIC R package with three consistency
levels (¢=0.92, 0.95 and 0.98).
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- FABIA™*: It is a generative multiplicative model designed for gene expression data considering
the heavy tails in the distribution. It returns biclusters with ranks evaluated according to the
information content. FABIA biclusters were generated using ‘fabia’ function in fabia R package
with sparseness loading parameters 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. Parameter p (the

number of bicluster) was set as 30 for real data analysis and 7 for simulation data.

- BiBit': it was developed for biclustering of binary matrix. It transforms input binary matrix to
integer matrix by dividing every rows into bit words of same size and then converting each bit
word into decimal number. It is fast by searching biclusters from this reduced integer matrix. It
was run using ParBiBit program®® which accelerated the running time of BiBit algorithm by

implementing MPI parallel programming.

- HOCCLUS2"™!: it was developed to bicluster microRNAs and target genes on binary data
(experimentally validated or predicted interaction networks). In the first step, the initial bi-cliques
are generated based on the minimum interaction score. Then, the overlapping biclusters are
progressively merged based on the cohesiveness parameter which measures the quality of each
bicluster by the functional similarity of genes. HOCCLUS2 has two input parameters such as o (a
cohesiveness threshold) and  (a minimum interaction score). Because 0<p<1 does not affect the

result when applied to a binary data, it was fixed to 0.5 and only a was changed from 0.4 to 0.9.

(2) Real data analysis

The up-regulated MIR profile of hsa-let-7¢c-5p (FC cut-off=log2(1.3); 1526 conditions x 801 genes)
was used to compare the performance of different algorithms. Table S4.3 shows the average
row/column size, density and the number of detected biclusters of each algorithm. PBE identified 17
biclusters having average sizes of 23.3 conditions and 38.9 genes and 98.1% density. ISA was applied
to both continuous FC data and binarized data (based on 1.3-fold). The density of biclusters from
continuous data were estimated using 1.3-fold cut-off. ISA generated smaller and denser biclusters as
the Tc and T were increased. For example, when both parameters were set as 1, the average numbers
of conditions and genes were as large as 174 and 119, respectively, but the density was quite low (50.0%)
for biclusters from continuous profile. When both parameters were set as 3, the average density
increased to 80.8%, but the average size was quite small (26.1 conditions and 9.2 gene). The average
size of BIMIR bicluster was between those of ISA (continuous) biclusters with parameters Tc=2.5, Tg
=1.5~2.0. In that case, however, the average density was much lower than that of PBE (70.3%~71.9%).
When same parameters were applied to binary data, it usually generated larger but sparser biclusters
than those from continuous profile. QUBIC was implemented with three consistency parameter c

(¢=0.98, 0.95 and 0.92). When ¢=0.92, the QUBIC biclusters included the largest number of 1 on
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average with quite high density (row size=15.2, column size=61.3, density=97.96%). It tended to
contain lesser rows and more columns compared to PBE. It is because to extend rows satisfying the
consistency level (the minimum ratio of 1 in each column) for all columns in the seed bicluster is not
that easy. It seems appropriate for finding relatively small number of genes co-regulated under large
number of samples, but not for our case to find biclusters including many target genes as well as many
conditions. Also, QUBIC biclusters sometimes contain noisy rows (See the undermost row in fig.
S4.4b). FABIA was tested for both continuous and binarized profiles using various sparseness
parameters (alpha=0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The continuous biclusters were quite sparse for
all conditions (density=31.8%~38.8%). The binarized biclusters showed higher density compared to
that of continuous biclusters (35.8%~72.3%), but it was still sparser than that of PBE. BiBit resulted in
huge number of small biclusters full of 1 (1227 biclusters, row size=13.5 and column size=12.4).

For HOCCLUS?2 biclusters, the size and density depended on the bicluster overlapping levels and a
(cohesiveness). For all o, the level 1 biclusters were small (row size=13, column size=10) with 100%
density. Except for the cases of a = 0.8 and 0.9 with which biclusters were barely extended, most
biclusters became larger containing more zero proportions as the level was increased. The level 2
biclusters had 23 conditions and 19 genes on average for o = 0.4 - 0.7 and were most similar to those
of PBE biclusters. However their average density was rather lower (84.4% ~ 86.3%) compared with
that of PBE biclusters (98.1%). From level 3 (o = 0.4 - 0.7), the biclusters showed very low densities
which were far from useful to predict regulatory modules (Table S4.3).

All methods found the homogenous biclusters that mostly consist of ESC/iPSC vs. somatic cell
conditions. PBE showed the best performance with respect to size and/or density (51 conditions and
126 genes with 97.6% density) compared with other methods. The largest ISA bicluster had 71
conditions and 154 genes with only 83.4% density when Tc =2, Tg = 1, and the densest one had only
35 conditions and 37 genes with 95.6% density when Tc =4, Tg =2. QUBIC bicluster had 47 conditions
and 109 genes with 98.2% density. FABIA generated big bicluster (44 conditions and 293 genes) but
the density was very low (80.2%) and BiBit yielded small bicluster (23 condition and 35 genes) with
full of 1. The level 2 bicluster of HOCCLUS2 had only 26 conditions and 84 genes with 97.3% density
(tests with a= 0.4 ~ 0.9 yielded same results) (Fig S4.4).

93



(b)

Wl

.

ISA (largest)
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Figure S4.4. ESC/iPSC biclusters searched by multiple biclustering methods.

All biclustering methods detected biclusters containing homogeneous ESC/iPSC vs. somatic cell
condition. (a) PBE detected large and dense bicluster (51 conditions and 126 targets with 97.6% density).
(b) QUBIC detected rather small but dense bicluster (47 conditions and 109 targets with 98.2% density)
(¢) ISA found large but noisy bicluster (71 conditions and 154 targets with 83.4% density). (d) The
densest ISA biclusters showed relatively small size (35 conditions and 37 targets with 95.6% density).
(e) BiBit detected a small bicluster full of 1 (23 conditions and 35 genes with 100% density) (f)
HOCCLUS?2 found dense bicluster but the size was quite small (26 conditions and 84 genes with 97.3%
density) (g) FABIA detected large but very noisy bicluster (44 conditions and 293 targets 80.2% density)
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Table S4.3. Real data analysis.

For PBE, QUBIC, BiBit, FABIA, ISA and HOCCLUS?2, the average size of row/column, density, and

the number of biclusters were measured using up-regulated MIR profile of hsa-let-7¢-5p.

PBE
Row Column Density N
233 389 98.1 17
QUBIC

Consistency Row Column Density N
1.0 17.2 41.9 1.0 46
0.98 16.9 42.0 0.9997 44
0.95 142 434 0.9989 36
0.92 152 61.3 0.9796 24

BiBit (minimum row and column size = 10)

Row Column Density N
13.5 12.4 1.0 1227
FABIA
Continuous input Binary input
Sparseness loading Row Column Density N Row Column Density N
0.01 80.1 219.4 0318 30 55.5 226.3 0.358 22
0.05 64.1 195.5 0.330 26 25.8 291.1 0.548 27
0.1 259 189.6 0.355 26 15 285.2 0.653 25
0.15 28.5 198.3 0.359 28 10.9 265.6 0.714 23
0.2 25.8 198.7 0.368 25 12.2 268.1 0.723 15
0.25 19.1 201.2 0.388 27 144 272 0.701 11
0.3 28.2 195.8 0.361 23 11.9 266.8 0.719 10
ISA
Continuous input Binary input
Tc Tc Row Column Density N Row Column Density N
1.0 1.0 174.0 119.3 0.500 4 192.7 116.2 0.464 6
1.5 176.7 60.7 0.526 7 191.8 70.2 0.498 9
2.0 196.5 27.7 0.493 15 200.8 39.5 0.534 13
2.5 202.8 114 0.546 22 216.9 18.9 0.532 22
3.0 189.5 5.6 0.672 28 221.0 10.2 0.582 18
1.5 1.0 106.4 118.6 0.486 7 95.0 118.0 0.486 9
1.5 106.7 60.1 0.530 12 94.8 66.8 0.511 9
2.0 100.1 28.3 0.582 15 1132 39.5 0.560 11
2.5 101.6 124 0.623 22 127.7 212 0.591 24
3.0 105.2 6.2 0.707 23 133.6 11.1 0.647 16
2.0 1.0 58.1 112.0 0.482 11 59.2 113.8 0.509 12
1.5 52.5 58.4 0.554 17 58.3 69.5 0.533 13
2.0 52.3 27.0 0.621 21 72.4 432 0.605 11
2.5 54.3 12.3 0.641 28 66.6 20.9 0.569 29
3.0 59.2 8.1 0.744 18 74.1 13.0 0.676 18
2.5 1.0 25.8 110.8 0.529 30 28.6 109.0 0.529 24
1.5 25.8 58.3 0.632 28 32.7 71.3 0.581 23
2.0 32.0 28.3 0.703 22 33.0 42.1 0.599 29
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2.5 349 14.3 0.719 21 38.6 22.0 0.635 30
3.0 372 8.7 0.770 13 45.7 10.1 0.694 44
3.0 1.0 14.7 105.2 0.638 37 15.0 120.6 0.619 41
1.5 17.1 52.7 0.701 33 16.1 72.5 0.645 45
2.0 18.3 275 0.744 32 18.4 42.7 0.658 42
2.5 23.0 14.9 0.804 19 21.2 252 0.654 46
3.0 26.1 9.2 0.806 9 26.9 12.3 0.669 43
HOCCLUS2
Level Beta Row Column Density N
1 04 13 10 1.0 60
0.5 13 10 1.0 60
0.6 13 10 1.0 60
0.7 13 10 1.0 60
0.8 13 10 1.0 60
0.9 13 10 1.0 60
2 0.4 235 19 0.844 30
0.5 235 19 0.844 30
0.6 23 19 0.855 31
0.7 23 18.5 0.863 32
0.8 19 16.5 0.986 40
0.9 12 11 1.0 53
3 0.4 45 38 0.687 15
0.5 45 38 0.687 15
0.6 41.5 33 0.742 18
0.7 24 19 0.805 25
0.8 18 17 1.0 35
0.9 12 10.5 1.0 52
4 0.4 80 63 0.578 8
0.5 71 58 0.575 9
0.6 45 40 0.682 13
0.7 23 19 0.797 22
0.8 18 17 1.0 34
0.9 12 10 1.0 51
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Example: hsa-let-7c and pluripotency

Let-7 is known to play an essential role in differentiation of embryonic stem cells (ESCs). Sustained
expression of let-7 inhibits the reprogramming, and its inhibition promotes the human induced
pluripotent stem cell (iPSC) reprogramming®’. PBE algorithm was applied to the let-7c MIR profile,
and I found a stem cell specific bicluster comprising 126 target genes and 51 FC conditions (Figure
S4.4a and Figure S4.6). This bicluster was quite homogeneous in that 50 of the 51 FC conditions were
ESC/iPSC (test) vs. somatic cell (control) conditions suggesting many of the 126 genes are specifically
regulated by let-7c or its family microRNAs in stem cells. Indeed, these targets included 49 genes that
were reported to have a specific role in ESC (e.g., self-renewal) or upregulated in ESC (Supplementary
Table S4.4). Among them, 21 genes (ACVR2B, ARID3B, **CCND2, CCNF, CDC25A, DIAPH2,
E2F5, HMGAI1, IGF2BP1, IGF2BP3, LIN28A, LIN28B, MAPK6, MYCN, PAKI1, POU2FI,
SERPINBY, SLC5A6, STRBP, USP44 and VAV3) were validated targets of let-7*****, In particular,
MYCN is regulated by let-7 under ESC condition**, and LIN28B is also fine-tuned by let-7 in hRESC**,
PLAGL2 which promotes self-renewal in neural stem cell and glioma was also a known target of let-

7*%_ This illustrates the capability of bicluster analysis to identify a specific regulatory module.
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Table S4.4. Let-7c¢ bicluster targets regulating pluripotency or up-regulated in ES/iPS cells.

Genes reported to be regulated by let-7 is marked in bold.

Gene symbol | Description Ref.

ACVR2B Activin A binds to ActRIIA or ActRIIB and recruits ALK4. ALK4 interacts with | 24
SMAD?2/3 and activates FGF2 pathways that stimulates self-renewal in human iPS cells

by activating target genes including Nanog.

ACTALl Overexpressed in pooled human ES cells compared to huURNA (universal human | 248
reference RNA)
AMT Overexpressed in pooled human ES cells compared to huURNA 248

ANKRD46 Ankyrin repeat domain 46. It shows lower CpG methylation and higher gene expression | 24

level in pluripotent stem cell compared to somatic cell.

ARID3B ARID3B complex regulates the expression of stemess genes and upregulates the let-7 | 2°°
target genes. Multiple steps in biogenesis of ARID3B-ARID3A complex are regulated by
let-7.

B3GNT7 The gene expression level of B3GNT7 was 5.84 and 3.16-fold higher in BG02 and BGO1 | 2°!
human ES cell line, respectively, compared with the huURNA.

Céorf211 Overexpressed in pooled human ES cells compared to huURNA 248

CCND2 CCND2 is a common target of OCT4, SOX2 and NANOG and its overexpression | 292253
enhances the regenerative potency of hIPSC-derived cardiomyocytes.

CCNF CCNF (Cyclin F) plays a role in cell cycle event and is essential for embryonic | 2**
development.

CDC25A NANOG regulates S-phase entry in human ES cells through direct binding of two cell | 2%
cycle genes CDK6 and CDC25A

CDH1 CDHI regulates open chromatin and pluripotency of embryonic stem cell. 236

CDYL CDYL is involved in histone modification. It inhibits the neuronal differentiation of iPS | 257-2%8
cells.

CTPS2 Overexpressed in pooled human ES cells compared to huURNA 248

DIAPH2 DIAPH2 is involved in actin cytoskeleton pathway and specifically expressed in ES cells. | 232:2%

E2F5 E2F4, E2F5 and E2F6 may control E2F target genes during the DNA damage response in | 2%
human ES cells

FZD3 Overexpressed in pooled human ES cells compared to huURNA 248

GALNTI13 Overexpressed in pooled human ES cells compared to huURNA 248

GYG2 Overexpressed in pooled human ES cells compared to huURNA 248

HIC2 Overexpressed in pooled human ES cells compared to huURNA 248

HMGAL1 HMGAL is a transcription factor highly expressed in ES cells. 261

HOMERI Overexpressed in pooled human ES cells compared to huURNA 248

IGF2BP1 IGF2BP1 is highly expressed in ES cells and have important role in human pluripotent | 262
stem cell survival.

IGF2BP3 IGFBP3 is highly expressed in ES cells compared to differentiated cells. 263

IGSF1 Overexpressed in pooled human ES cells compared to huURNA 248

KIAA1274 Overexpressed in pooled human ES cells compared to huURNA 248
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LIN28A LIN28A regulates mouse iPSC metabolism by let-7-dependent and -independent manner. | 264265
It is also involved in nucleologenesis during early embryonic development.

LIN28B LIN28B have equivalent function with LIN28A 265

MAPKG6 Disruption of PI3K/Akt, MAPK/ERK and NFkB signaling pathway results in loss of | 26
pluripotency and/or loss of viability. Expression level of MAPK6 was downregulated
during the differentiation process.

MCM5 MCMS is involved in DNA replication and up-regulated during the initiation phase of | 2¢7
reprogramming.

MED28 A mediator subunit, MED28, is required for the acquisition and maintenance of | 26
pluripotency during reprogramming

MYCN MYCN maintains embryonic stem cell pluripotency and self-renewal and regulated by let- | 24526
7.

NAPILI NALI1LL1 regulates the proliferation of murine iPS cells 270

PAKI1 PAK1 is involved in actin cytoskeleton pathway and regulates self-renewal activity 232,271

PLA2G3 Overexpressed in pooled human ES cells compared to huURNA 248

PLAGL2 PLAGL2 promotes self-renewal by regulating Wnt signaling in neural stem cells and | 27
glioma

POU2F1 Overexpressed in pooled human ES cells compared to huURNA 248

PPP1R16B PPP1R16B is hypo-methylated and highly expressed in iPS and ES cells 273

RFWD3 Overexpressed in pooled human ES cells compared to huURNA 248

SERPINBY Overexpressed in pooled human ES cells compared to huURNA 248,274

SLC16A9 SLC16A9 is a downstream target of OCT4 and upregulated in ES cells. 275

SLC5A6 The gene expression level of SLC5A6was 3.06 and 3.46-fold higher in BG02 and BGO1 | 2°!
hES cell line, respectively, compared with the huRNA (universal human RNA)

SMARCADI | SMARCADI regulates naive pluripotency by interacting with histone citrullination. 276

SMARCC SMARCCI is involved in chromatin remodeling and highly induced in iPS cells 27

STRBP Overexpressed in pooled human ES cells compared to huURNA 248

TAF5 TAFs are highly expressed in ES and iPS cells and regulates pluripotency. 278

TARBP2 Overexpressed in pooled human ES cells compared to huURNA 248

TIAL Overexpressed in pooled human ES cells compared to huURNA 248

THAP9 Overexpressed in pooled human ES cells compared to huURNA 248

USP44 USP44 is highly expressed in ES and IPS cells and it regulates histone H2B ubiquitylation | 27928
patterns for appropriate ESC differentiation.

VAV3 Overexpressed in pooled human ES cells compared to huURNA 248
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Table S4.5. The accuracy for bicluster targets of eleven test miRNAs

1.3-fold 1.5-fold 2.0-fold

miRNA Sensitivity Specificity Gain Sensitivity ~ Specificity Gain Sensitivity ~ Specificity Gain

hsa-miR-1-3p 0.723 0.455 17.81% 0.511 0.559 6.94% 0.489 0.647 13.68%
hsa-miR-21-5p 0.717 0.447 16.41% 0.696 0.57 26.53% 0.674 0.639 31.33%
hsa-miR-125b-5p 0.694 0.5 19.35% 0.371 0.733 10.35% 0.226 0.909 13.47%
hsa-miR-29a-3p 0.727 0.467 19.40% 0.682 0.497 17.88% 0.561 0.656 21.62%
hsa-miR-29b-3p 0.776 0.479 25.48% 0.469 0.726 19.57% 0.531 0.695 22.59%
hsa-miR-29¢-3p 0.773 0.438 21.03% 0.75 0.55 30.01% 0.636 0.676 31.28%
hsa-miR-34a-5p 0.73 0.478 20.78% 0.603 0.53 13.34% 0.365 0.707 7.17%
hsa-miR-145-5p 0.7 0.417 11.65% 0.52 0.521 4.11% 0.44 0.651 9.14%
hsa-miR-155-5p 0.556 0.481 3.68% 0.374 0.679 5.29% 0.394 0.637 3.05%
hsa-miR-204-5p 0.737 0.461 19.81% 0.789 0.443 23.26% 0.684 0.619 30.37%
hsa-miR-221-3p 0.639 0.439 7.81% 0.639 0.457 9.61% 0.333 0.649 -1.80%
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Table S4.6. The accuracy of 1.3-fold bicluster targets filtered by node degree

Sens.=sensitivity, Spec.=specificity, Gain=Gain in certainty, Overlap P=Overlap p-value, Deplete

P=Depletion p-value

Node degree=1 Node degree=2
miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.702 0.582 28.40% 1.53E-03 5.06E-09 0.596 0.678 27.40% 3.46E-03 3.55E-11
hsa-miR-21-5p 0.696 0.582 27.76% 1.47E-03 9.10E-04 0.630 0.725 35.58% 6.21E-05 5.45E-06
hsa-miR-29a-3p 0.712 0.566 27.86% 1.35E-05 4.12E-04 0.621 0.660 28.13% 1.52E-05 1.76E-05
hsa-miR-29b-3p 0.755 0.578 33.35% 1.02E-05 5.05E-06 0.755 0.683 43.85% 7.33E-09 6.58E-10
hsa-miR-29¢-3p 0.750 0.549 29.85% 1.06E-04 6.74E-03 0.727 0.675 40.22% 2.40E-07 7.68E-05
hsa-miR-34a-5p 0.714 0.618 33.27% 4.12E-07 5.77E-05 0.619 0.714 33.35% 2.26E-07 2.67E-05
hsa-miR-125b-5p 0.629 0.663 29.18% 2.50E-05 1.93E-06 0.516 0.773 28.94% 6.07E-06 1.35E-05
hsa-miR-145-5p 0.540 0.543 8.31% 1.88E-01 4.72E-02 0.500 0.651 15.14% 2.56E-02 4.68E-02
hsa-miR-155-5p 0.485 0.609 9.39% 2.77E-01 3.38E-05 0.374 0.734 10.81% 2.15E-01 1.56E-06
hsa-miR-204-5p 0.711 0.582 29.21% 4.08E-04 2.16E-02 0.684 0.656 33.99% 4.36E-05 3.76E-03
hsa-miR-221-3p 0.611 0.561 17.19% 2.97E-02 2.69E-01 0.583 0.664 24.77% 2.20E-03 1.54E-01

Node degree=3 Node degree=4
miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.511 0.742 25.24% 4.12E-03 6.93E-09 0.447 0.771 21.75% 7.24E-03 5.25E-06
hsa-miR-21-5p 0.478 0.791 26.92% 3.58E-04 6.72E-03 0.478 0.861 33.89% 1.88E-06 6.59E-04
hsa-miR-29a-3p 0.576 0.727 30.23% 1.68E-06 8.91E-06 0.561 0.782 34.31% 2.24E-08 3.22E-07
hsa-miR-29b-3p 0.714 0.760 47.46% 1.84E-10 5.95E-12 0.694 0.793 48.68% 1.19E-11 8.22E-10
hsa-miR-29¢-3p 0.705 0.743 44.72% 4.41E-09 1.62E-05 0.682 0.794 47.53% 1.15E-10 1.23E-05
hsa-miR-34a-5p 0.540 0.795 33.44% 3.46E-08 3.18E-05 0.492 0.842 33.42% 4.71E-09 3.99E-05
hsa-miR-125b-5p 0.468 0.864 33.21% 1.60E-08 6.19E-08 0.371 0.919 28.96% 9.38E-09 1.27E-06
hsa-miR-145-5p 0.420 0.721 14.11% 2.82E-02 6.26E-02 0.320 0.794 11.45% 4.93E-02 6.75E-02
hsa-miR-155-5p 0.333 0.802 13.53% 7.81E-02 1.27E-07 0.303 0.850 15.27% 1.27E-02 1.10E-06
hsa-miR-204-5p 0.632 0.725 35.65% 1.04E-05 4.73E-03 0.553 0.787 34.01% 1.18E-05 2.58E-03
hsa-miR-221-3p 0.556 0.770 32.58% 3.08E-05 5.81E-02 0.389 0.840 22.90% 9.80E-04 1.04E-01

Node degree=5 Node degree=6
miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.362 0.823 18.44% 1.72E-02 4.11E-06 0.362 0.850 21.14% 4.76E-03 6.87E-07
hsa-miR-21-5p 0.457 0.898 35.41% 2.00E-07 1.15E-04 0.391 0.914 30.52% 2.16E-06 3.07E-04
hsa-miR-29a-3p 0.530 0.837 36.72% 3.00E-10 2.97E-08 0.485 0.875 35.95% 8.18E-11 6.09E-09
hsa-miR-29b-3p 0.612 0.845 45.69% 2.43E-11 8.27E-10 0.612 0.880 49.24% 1.23E-13 1.71E-12
hsa-miR-29¢-3p 0.659 0.855 51.43% 6.77E-13 3.68E-09 0.614 0.895 50.89% 5.56E-14 8.21E-10
hsa-miR-34a-5p 0.444 0.886 33.00% 6.43E-10 5.55E-06 0.381 0.907 28.75% 8.59E-09 2.01E-05
hsa-miR-125b-5p 0.323 0.952 27.41% 1.41E-09 8.29E-08 0.274 0.969 24.32% 1.20E-09 2.94E-07
hsa-miR-145-5p 0.200 0.855 5.50% 2.15E-01 1.11E-01 0.200 0.901 10.09% 3.71E-02 1.74E-02
hsa-miR-155-5p 0.242 0.882 12.46% 2.39E-02 1.53E-05 0.212 0.920 13.19% 1.71E-02 8.81E-08
hsa-miR-204-5p 0.526 0.827 35.33% 1.88E-06 3.74E-03 0.447 0.873 32.05% 3.68E-06 1.37E-03
hsa-miR-221-3p 0.389 0.860 24.92% 2.59E-04 6.60E-02 0.333 0.896 22.97% 2.66E-04 4.55E-02
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Table S4.7. The accuracy of 1.5-fold bicluster targets filtered by node degree

Sens.=sensitivity, Spec.=specificity, Gain=Gain in certainty, Overlap P=Overlap p-value, Deplete

P=Depletion p-value

Node degree=1 Node degree=2
miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.426 0.690 11.53% 2.09E-01 5.37E-06 0.383 0.759 14.21% 1.11E-01 7.21E-07
hsa-miR-21-5p 0.609 0.689 29.72% 7.98E-04 1.41E-04 0.522 0.824 34.55% 4.01E-05 1.67E-06
hsa-miR-29a-3p 0.636 0.616 25.27% 9.88E-05 2.02E-04 0.576 0.713 28.87% 6.15E-06 8.08E-06
hsa-miR-29b-3p 0.449 0.812 26.11% 1.44E-04 5.70E-06 0.429 0.864 29.25% 7.79E-06 5.20E-08
hsa-miR-29¢-3p 0.727 0.650 37.75% 1.80E-06 2.21E-05 0.659 0.744 40.33% 2.46E-07 2.37E-07
hsa-miR-34a-5p 0.587 0.664 25.18% 8.94E-05 2.42E-03 0.508 0.772 28.03% 5.91E-06 5.88E-05
hsa-miR-125b-5p 0.306 0.822 12.82% 2.67E-02 1.49E-03 0.274 0.886 15.99% 2.09E-03 3.89E-04
hsa-miR-145-5p 0.420 0.631 5.12% 3.17E-01 9.06E-02 0.340 0.741 8.13% 1.49E-01 1.16E-01
hsa-miR-155-5p 0.333 0.784 11.78% 1.04E-01 8.27E-06 0.253 0.840 9.21% 1.28E-01 2.45E-04
hsa-miR-204-5p 0.737 0.583 32.00% 1.11E-04 1.30E-02 0.684 0.675 35.97% 1.16E-05 8.29E-03
hsa-miR-221-3p 0.611 0.579 18.99% 2.38E-02 4.28E-02 0.528 0.703 23.05% 3.41E-03 1.86E-01

Node degree=3 Node degree=4
miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.362 0.811 17.29% 3.29E-02 1.08E-06 0.340 0.840 18.05% 1.59E-02 6.23E-06
hsa-miR-21-5p 0.435 0.873 30.77% 1.99E-05 1.88E-04 0.348 0.918 26.59% 5.97E-05 9.69E-05
hsa-miR-29a-3p 0.530 0.781 31.13% 2.93E-07 4.87E-06 0.515 0.823 33.84% 1.05E-08 9.61E-08
hsa-miR-29b-3p 0.429 0.898 32.65% 1.24E-07 6.38E-09 0.408 0.920 32.83% 1.46E-08 1.57E-08
hsa-miR-29¢-3p 0.659 0.803 46.19% 8.74E-10 1.91E-08 0.591 0.841 43.22% 2.62E-09 1.51E-08
hsa-miR-34a-5p 0.444 0.833 27.73% 1.25E-06 1.29E-04 0.397 0.870 26.66% 5.56E-07 2.66E-04
hsa-miR-125b-5p 0.258 0.936 19.41% 3.40E-05 2.96E-06 0.242 0.963 20.51% 4.57E-07 1.62E-06
hsa-miR-145-5p 0.320 0.811 13.10% 2.65E-02 3.31E-02 0.240 0.864 10.42% 4.53E-02 4.27E-02
hsa-miR-155-5p 0.222 0.897 11.95% 4.22E-02 9.91E-07 0.192 0.925 11.67% 1.61E-02 8.24E-06
hsa-miR-204-5p 0.553 0.758 31.05% 6.72E-05 1.86E-02 0.553 0.812 36.48% 1.37E-06 3.80E-03
hsa-miR-221-3p 0.444 0.791 23.50% 1.64E-03 9.20E-02 0.389 0.845 23.35% 7.65E-04 8.56E-02

Node degree=5 Node degree=6
miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.298 0.867 16.49% 1.94E-02 1.22E-05 0.213 0.886 9.91% 1.16E-01 4.03E-04
hsa-miR-21-5p 0.261 0.934 19.53% 8.89E-04 1.52E-03 0.239 0.947 18.59% 5.52E-04 3.40E-03
hsa-miR-29a-3p 0.470 0.867 33.68% 1.87E-09 8.90E-09 0.394 0.893 28.67% 1.46E-08 1.21E-05
hsa-miR-29b-3p 0.388 0.942 33.01% 1.67E-09 5.47E-10 0.347 0.950 29.66% 1.78E-08 8.02E-10
hsa-miR-29¢-3p 0.568 0.874 44.18% 2.48E-10 2.69E-09 0.545 0.894 43.91% 4.25E-11 3.11E-08
hsa-miR-34a-5p 0.333 0.896 22.94% 2.14E-06 3.41E-03 0.317 0.921 23.85% 2.08E-07 4.49E-04
hsa-miR-125b-5p 0.194 0.977 17.03% 2.84E-06 1.17E-06 0.129 0.983 11.16% 1.20E-04 1.25E-03
hsa-miR-145-5p 0.200 0.894 9.36% 4.07E-02 1.64E-01 0.160 0.910 7.01% 8.46E-02 2.22E-01
hsa-miR-155-5p 0.182 0.945 12.67% 3.46E-03 3.63E-06 0.131 0.955 8.62% 3.39E-02 5.23E-05
hsa-miR-204-5p 0.474 0.852 32.54% 6.02E-06 1.50E-03 0.368 0.886 25.47% 9.61E-05 5.30E-03
hsa-miR-221-3p 0.333 0.885 21.85% 5.93E-04 8.49E-02 0.306 0.914 22.00% 2.62E-04 2.51E-02
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Table S4.8. The accuracy of 2.0-fold bicluster targets filtered by node degree

Sens.=sensitivity, Spec.=specificity, Gain=Gain in certainty, Overlap P=Overlap p-value, Deplete

P=Depletion p-value

Node degree=1

Node degree=2

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.404 0.771 17.50% 2.67E-02 7.89E-05 0.298 0.830 12.83% 9.10E-02 2.55E-05
hsa-miR-21-5p 0.543 0.770 31.40% 8.53E-05 9.21E-04 0.413 0.877 29.01% 8.47E-05 6.60E-05
hsa-miR-29a-3p 0.515 0.745 25.99% 2.47E-05 1.08E-04 0.455 0.810 26.42% 6.33E-06 1.85E-05
hsa-miR-29b-3p 0.510 0.793 30.31% 2.14E-05 3.36E-07 0.469 0.870 33.92% 1.88E-07 1.83E-08
hsa-miR-29¢-3p 0.614 0.773 38.71% 3.08E-07 5.47E-06 0.568 0.832 40.02% 2.02E-08 5.91E-06
hsa-miR-34a-5p 0.333 0.804 13.73% 7.25E-03 2.47E-01 0.317 0.851 16.88% 7.00E-04 8.91E-02
hsa-miR-125b-5p 0.210 0.955 16.51% 2.06E-05 6.87E-04 0.177 0.986 16.39% 7.24E-08 2.86E-05
hsa-miR-145-5p 0.340 0.756 9.60% 1.13E-01 2.57E-02 0.300 0.835 13.49% 1.98E-02 1.77E-02
hsa-miR-155-5p 0.333 0.774 10.78% 1.04E-01 1.70E-04 0.273 0.842 11.48% 4.49E-02 1.79E-04
hsa-miR-204-5p 0.605 0.733 33.84% 2.19E-05 1.24E-02 0.474 0.815 28.92% 7.47E-05 2.42E-02
hsa-miR-221-3p 0.306 0.755 6.01% 2.31E-01 7.12E-01 0.278 0.824 10.21% 8.51E-02 4.42E-01
Node degree=3 Node degree=4
miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.298 0.869 16.69% 1.25E-02 1.70E-04 0.255 0.892 14.74% 1.68E-02 5.32E-04
hsa-miR-21-5p 0.391 0.914 30.52% 1.53E-06 5.54E-04 0.283 0.934 21.70% 7.75E-05 8.04E-03
hsa-miR-29a-3p 0.439 0.855 29.44% 1.03E-07 3.09E-06 0.409 0.897 30.64% 2.56E-09 3.23E-07
hsa-miR-29b-3p 0.408 0.904 31.20% 1.40E-07 4.69E-07 0.367 0.942 30.97% 6.33E-09 2.59E-08
hsa-miR-29¢-3p 0.523 0.869 39.18% 6.77E-09 5.68E-06 0.455 0.903 35.75% 8.32E-09 3.60E-05
hsa-miR-34a-5p 0.254 0.887 14.08% 1.31E-03 2.53E-01 0.238 0.916 15.39% 1.89E-04 1.44E-01
hsa-miR-125b-5p 0.113 0.994 10.71% 6.55E-06 2.98E-04 0.113 0.996 10.90% 2.13E-06 1.04E-04
hsa-miR-145-5p 0.200 0.879 7.89% 1.04E-01 3.55E-02 0.200 0.916 11.56% 1.43E-02 1.24E-02
hsa-miR-155-5p 0.242 0.910 15.22% 2.08E-03 2.83E-06 0.182 0.935 11.67% 4.21E-03 1.93E-04
hsa-miR-204-5p 0.395 0.888 28.27% 1.47E-05 8.50E-03 0.316 0.918 23.34% 7.18E-05 1.24E-02
hsa-miR-221-3p 0.250 0.876 12.61% 2.49E-02 5.03E-01 0.250 0.919 16.89% 2.39E-03 1.13E-01
Node degree=5 Node degree=6
miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P
hsa-miR-1-3p 0.213 0.929 14.15% 1.23E-02 9.00E-05 0.170 0.950 12.01% 1.54E-02 2.87E-04
hsa-miR-21-5p 0.196 0.955 15.06% 1.44E-03 2.13E-02 0.109 0.975 8.41% 1.19E-02 1.60E-01
hsa-miR-29a-3p 0.348 0.921 26.99% 8.85E-09 3.54E-06 0.318 0.944 26.23% 1.64E-09 5.97E-07
hsa-miR-29b-3p 0.347 0.957 30.40% 2.20E-09 1.06E-09 0.327 0.963 28.95% 1.47E-09 3.34E-08
hsa-miR-29¢-3p 0.432 0.928 35.94% 8.15E-10 8.18E-06 0.432 0.948 37.94% 8.08E-12 8.13E-07
hsa-miR-34a-5p 0.206 0.936 14.19% 2.08E-04 7.75E-02 0.190 0.950 14.05% 1.02E-04 2.99E-02
hsa-miR-125b-5p 0.048 0.996 4.45% 8.10E-03 3.87E-02 0.048 0.998 4.64% 3.49E-03 1.77E-02
hsa-miR-145-5p 0.180 0.938 11.76% 5.73E-03 2.31E-02 0.140 0.952 9.23% 1.47E-02 3.42E-02
hsa-miR-155-5p 0.131 0.957 8.87% 1.70E-02 1.86E-04 0.111 0.972 8.35% 1.53E-02 5.06E-05
hsa-miR-204-5p 0.237 0.946 18.25% 3.81E-04 9.29E-03 0.158 0.969 12.66% 2.78E-03 9.28E-03
hsa-miR-221-3p 0.222 0.941 16.37% 1.29E-03 9.01E-02 0.194 0.968 16.29% 3.04E-04 1.49E-02
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Table S4.9. microRNA expression patterns in cancers reported from the literature

microRNA Cancer Direction Reference
hsa-miR-1-3p Breast cancer Down-regulation 281
hsa-miR-21-5p Breast cancer Up-regulation 282

283-284

hsa-miR-29a-3p

hsa-miR-29b-3p

hsa-miR-29¢-3p

hsa-miR-34a-5p
hsa-miR-125a-5p

hsa-miR-145-5p

hsa-miR-155-5p
hsa-miR-221-3p

Acute Myeloid Leukemia

Breast cancer

Diffuse Large B-cell Lymphoma
Glioblastoma/glioma

Acute Myeloid Leukemia

Breast cancer

Diffuse Large B-cell Lymphoma
Glioblastoma/glioma

Breast cancer

Diffuse Large B-cell Lymphoma
Glioblastoma/glioma

Breast cancer

Diffuse Large B-cell Lymphoma
Acute Myeloid Leukemia

Acute Myeloid Leukemia

Breast cancer

Diffuse Large B-cell Lymphoma
Breast cancer

Breast cancer

Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Down-regulation
Up-regulation

Down-regulation
Down-regulation
Down-regulation
Up-regulation

Up-regulation

285

286

287

288

289

286

290

291

286

290

292

293

294

295

296

297

298

299
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Figure S4.5. microRNA targets in PI3K/Akt pathway (DLBCL).

(a) MicroRNA targets predicted from DLBCL biclusters in PI3K/Akt pathway are highlighted by red
borders. For each target molecule, corresponding microRNAs and target gene symbols are represented.
(b, ¢) Overall survival analysis for the 116 DLBCL patients (GSE40239) of high (red) and low (blue)
(b) miR-34a and (c¢) miR-145 expression levels. The patients were divided into two groups based on

their best splits (both at bottom 20% values).
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Table S4.10. Functional enrichment test for miR-29, miR-34a, miR-145 targets in DLBCL

Term Count P-value FDR

hsa04151:PI3K-Akt signaling pathway 31 4.19E-10 9.09E-08
hsa04510:Focal adhesion 22 1.46E-08 1.59E-06
hsa04512:ECM-receptor interaction 13 8.66E-07 6.26E-05
hsa04974:Protein digestion and absorption 13 9.82E-07 5.33E-05
hsa05146: Amoebiasis 12 4.03E-05 1.75E-03
hsa04014:Ras signaling pathway 17 9.00E-05 3.25E-03
hsa05218:Melanoma 8 1.44E-03 4.35E-02
hsa05222:Small cell lung cancer 8 4.03E-03 1.04E-01
hsa04015:Rapl signaling pathway 13 4.31E-03 9.89E-02
hsa05214:Glioma 7 4.37E-03 9.06E-02
hsa05162:Measles 10 4.40E-03 8.33E-02
hsa04066:HIF-1 signaling pathway 8 8.74E-03 1.47E-01
hsa04060:Cytokine-cytokine receptor interaction 13 8.76E-03 1.37E-01
hsa05200:Pathways in cancer 18 1.23E-02 1.74E-01
hsa05215:Prostate cancer 7 1.83E-02 2.35E-01
hsa05212:Pancreatic cancer 6 1.91E-02 2.30E-01
hsa04115:p53 signaling pathway 6 2.15E-02 2.42E-01
hsa04360:Axon guidance 8 3.19E-02 3.24E-01
hsa04611:Platelet activation 8 3.56E-02 3.39E-01
hsa04668:TNF signaling pathway 7 4.08E-02 3.64E-01
hsa05223:Non-small cell lung cancer 5 4.41E-02 3.72E-01
hsa04144:Endocytosis 12 4.43E-02 3.60E-01
hsa04150:mTOR signaling pathway 5 4.91E-02 3.78E-01
hsa05205:Proteoglycans in cancer 10 4.96E-02 3.69E-01
hsa04550:Signaling pathways regulating pluripotency of stem cells 8 4.98E-02 3.58E-01
hsa04540:Gap junction 6 5.88E-02 3.97E-01
hsa05219:Bladder cancer 4 7.37E-02 4.59E-01
hsa04110:Cell cycle 7 7.58E-02 4.57E-01
hsa05166:HTLV-I infection 11 8.54E-02 4.87E-01
hsa05220:Chronic myeloid leukemia 5 9.27E-02 5.05E-01
hsa05231:Choline metabolism in cancer 6 9.34E-02 4.97E-01
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Table S4.11. Functional enrichment test for miR-1, miR-29, miR-34a, miR-145 targets in breast

cancer

Term Count P-value FDR

hsa04510:Focal adhesion 23 7.33E-12 1.38E-09
hsa04512:ECM-receptor interaction 16 2.15E-11 2.02E-09
hsa04151:PI3K-Akt signaling pathway 27 2.11E-10 1.32E-08
hsa05146: Amoebiasis 12 2.42E-06 1.14E-04
hsa04974:Protein digestion and absorption 11 3.09E-06 1.16E-04
hsa05200:Pathways in cancer 21 1.71E-05 5.35E-04
hsa05222:Small cell lung cancer 10 1.77E-05 4.74E-04
hsa05205:Proteoglycans in cancer 12 8.22E-04 1.91E-02
hsa04611:Platelet activation 9 2.13E-03 4.35E-02
hsa05219:Bladder cancer 5 5.82E-03 1.04E-01
hsa04360: Axon guidance 8 7.32E-03 1.18E-01
hsa05218:Melanoma 6 8.41E-03 1.24E-01
hsa05215:Prostate cancer 6 2.00E-02 2.53E-01
hsa05212:Pancreatic cancer 5 2.81E-02 3.18E-01
hsa05166:HTLV-I infection 10 3.84E-02 3.88E-01
hsa05220:Chronic myeloid leukemia 5 3.89E-02 3.73E-01
hsa05161:Hepatitis B 7 4.43E-02 3.94E-01
hsa04014:Ras signaling pathway 9 4.79E-02 4.01E-01
512:;1&(2:5:S(l}lg;t(;saminoglycan biosynthesis - chondroitin sulfate / 3 4 85E-02 3 .88E-01
hsa05144:Malaria 4 5.61E-02 4.19E-01
hsa05145:Toxoplasmosis 6 5.89E-02 4.19E-01
hsa04152: AMPK signaling pathway 6 6.60E-02 4.42E-01
hsa05223:Non-small cell lung cancer 4 7.73E-02 4.82E-01
hsa05202: Transcriptional misregulation in cancer 7 7.87E-02 4.74E-01
hsa04150:mTOR signaling pathway 4 8.39E-02 4.83E-01
hsa04010:MAPK signaling pathway 9 8.41E-02 4.70E-01
hsa04915:Estrogen signaling pathway 5 9.95E-02 5.18E-01
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Table S4.12. Multivariate Cox regression analysis of microRNAs in the DLBCL dataset

Variable Hazard ratio 95% CI. * p-value
miR-29a

miR-29a 0.903 0.662-1.231 5.18.E-01
IPI * 1.720 1.231-2.404 1.48.E-03
Gender 2.498 1.043-5.982 3.98.E-02
miR-29b

miR-29b 0.912 0.664-1.252 5.68.E-01
IPI 1.751 1.27-2.412 6.20.E-04
Gender 2.558 1.063-6.154 3.61.E-02
miR-29¢

miR-29¢ 0.833 0.581-1.193 3.19.E-01
IPI 1.721 1.242-2.386 1.12.E-03
Gender 2.609 1.084-6.277 3.23.E-02
miR-34a

miR-34a 0.691 0.508-0.94 1.85.E-02
IPI 1.687 1.225-2.322 1.35.E-03
Gender 2.983 1.171-7.6 2.20.E-02
miR-145

miR-145 0.593 0.415-0.848 4.13.E-03
IPI 1.787 1.312-2.434 2.28.E-04
Gender 3.075 1.266-7.466 1.31.E-02

*CI=Confidence Interval, [PI=International prognostic index

108



Table S4.13. Multivariate Cox regression analysis of microRNAs in the breast cancer dataset

Hazard ratio 95% CI. * p-value

miR-1

miR-1 1.034 0.848-1.261 7.43.E-01
Age 1.036 1.011-1.061 4.22.E-03
Tumor size 1.206 1.018-1.43 3.08.E-02
Lymph nodes involved 1.194 1.125-1.268 6.13.E-09
ER * 0.666 0.396-1.12 1.25.E-01
Grade 1.603 1.099-2.339 1.43.E-02
miR-29a

miR-29a 0.745 0.609-0.911 4.22.E-03
Age 1.039 1.014-1.065 2.36.E-03
Tumor size 1.213 1.03-1.428 2.05.E-02
Lymph nodes involved 1.213 1.141-1.289 5.70.E-10
ER 0.605 0.356-1.027 6.28.E-02
Grade 1.477 1.012-2.156 4.29.E-02
miR-29b

miR-29b 0.717 0.565-0.911 6.42.E-03
Age 1.041 1.016-1.067 1.02.E-03
Tumor size 1.245 1.058-1.465 8.40.E-03
Lymph nodes involved 1.209 1.136-1.287 2.08.E-09
ER 0.713 0.424-1.2 2.03.E-01
Grade 1.712 1.176-2.49 4.96.E-03
miR-29¢

miR-29¢ 0.715 0.57-0.897 3.80.E-03
Age 1.037 1.014-1.061 1.75.E-03
Tumor size 1.256 1.064-1.483 7.15.E-03
Lymph nodes involved 1.195 1.127-1.267 2.06.E-09
ER 0.796 0.467-1.356 4.01.E-01
Grade 1.469 1.012-2.13 4.29.E-02
miR-34a

miR-34a 1.023 0.795-1.316 8.62.E-01
Age 1.036 1.011-1.062 4.10.E-03
Tumor size 1.216 1.034-1.429 1.80.E-02
Lymph nodes involved 1.193 1.124-1.266 5.43.E-09
ER 0.669 0.398-1.124 1.29.E-01
Grade 1.573 1.083-2.286 1.75.E-02
miR-145

miR-145 1.168 0.921-1.482 2.00.E-01
Age 1.038 1.013-1.063 2.92.E-03
Tumor size 1.224 1.042-1.437 1.37.E-02
Lymph nodes involved 1.195 1.126-1.267 2.90.E-09
ER 0.702 0.418-1.181 1.83.E-01
Grade 1.631 1.126-2.362 9.69.E-03

*CI=Confidence Interval, ER=Estrogen receptor
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MicroRNA regulation of PI3K/AKkt pathways in the literature

The microRNAs detected in cancer biclusters were able to suppress PI3K/Akt pathway and metastasis
in multiple cancer types. For example, up-regulated miR-29a inhibited the Iung cancer proliferation by
targeting NRAS which is a key downstream effector of PI3K/Akt pathway’”. Up-regulated MiR-29b
suppressed the breast cancer metastasis by targeting VEGFA, PDGFC and ITGB1?", and it also reduced
angiogenesis of endometrial cancer by targeting VEGFA*"!. MiR-34a inhibited gastric cancer growth,
invasion, and metastasis by targeting two signal transducers of the pathway, PDGFR and MET**?. Mir-
1 also acted as a tumor suppressor in gastric cancer by targeting VEGFA and MET*%~*, Lastly, miR-
145 inhibited PI3K/Akt pathway by targeting NRAS in melanoma®®. The same targets and microRNAs
were detected in our bicluster results for breast cancer and DLBCL, suggesting these microRNAs are
also able to suppress PI3K/Akt pathway and metastasis in these cancer types. Indeed, it was shown in
vivo that mir-29b considerably inhibits breast cancer metastasis by suppressing tumor
microenvironment related targets®'’. Our biclustering result suggests collagen and other genes in

PI3K/Akt pathway are also targets of mir-29 in breast cancer and DLBCL.

miRNA mimic transfection assays
miR-29¢-3p mimic and miRNA scramble control were purchased from Genolution. 100nM of miR-
29¢-3p mimic and miRNA scramble were transfected into MDA-MB231 using G-fectin Reagent

(Genolution). Experiments were performed 48 hours after transfection.

Real-Time Quantitative PCR

One microgram of total RNA from MDA-MB231 cell was reverse transcribed with oligo dT and M-
MLYV RT reverse transcriptase (Invitrogen). Real-time quantitative PCR was performed using a
GENETBIO SYBR Green Prime Q-master Mix and the QuantStudio 5 PCR system (ThermoFisher).
All runs were accompanied by the internal control HPRT or B2M gene. The samples were run in
duplicate and normalized to HPRT or GAPDH using a DD cycle threshold-based algorithm, to

provide arbitrary units representing relative expression.

immunoblot assays

For immunoblot assay, cells were lysed in RIPA buffer. Protein concentrations were determined with
the BCA Protein Assay (ThermoFisher). Quantified lysates were loaded on SDS-PAGE, transferred
onto NC membrane and probed with rabbit anti-human FAK (1:1000, cell signaling), phosphor FAK
(1:1000, cell signaling), Akt (1:1000, cell signaling), phosphor Akt (1:1000, cell signaling) and mouse
anti-human GAPDH (1:1000, cell signaling) followed by incubation with secondary fluorescent
antibodies (1:5000, Li-COR).
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l Ci ition Details
Symbol| Control [ Test |
12390_6  human B (Donor line) 8) HIPS, 6p9
12583_3  Human foreskin fibroblast KIPSC, obtained from human 3 factors treated
12583_4  Human foreskin fibroblast KIPSC, obtained from human 24 factors ye) treated
13828_2 Human Fibroblast cells, SMA patients iPSC derived from SMA (Spinal muscular atrophy)
14711_1 fibroblasts induced pluripotent stem cells , virus-carrying
14711_2 fibroblasts induced pluripotent stem cells , factor-free
14897_2 human foreskin fibroblasts WAO9 human ESC, differentiated, day 20

20033_5

Human newborn fibroblast
Human foreskin fibroblast (HFF1)
fibroblast

Foreskin Cells, Parental

adipose stem cells, parental

14897_4 human foreskin fibroblasts ATCC CRL2097(iPSC derived from human foreskin fibroblasts), undifferentiated
15148_2 Foreskin Cells Parental Embryonic Stem Cells

15148_3 Foreskin Cells Parental 1PS cells from episomal vectors

15175_2 Foreskin Cells, Parental Foreskin iPS cells from episomal vectors

15176_2 Foreskin Cells, Parental Foreskin 1PS cells from episomal vectors
15220_1  Normal testis cell Cancer testis cell

16093_1 ?Human newborn fibroblast

16093_2 Human newborn fibroblast

Human IPSC, Direct Delivery of Reprogramming Proteins.
retroviral of ing genes

fully reprogrammed IPS cell line

iPS

iPSC, from episomal vectors

1PSC, derived from hASC, using minicircle reprogramming vector

(d)

Figure S4.6. BIMIR database.

Enriched Information

[ Pathway
KINSEY_TARGETS_OF_EWSR1_FLII_FUSION_UP (C2) 2.533¢-09 1.2¢-05
MUELLER_PLURINET (C2) 3.774e-08 8.941¢-05
BENPORATH_ES_1 (€2) 8.365¢-08 1321604
BOYERINAS_ONCOFETAL_TARGETS_OF_LET7A1 (C2) 6.311e-07 7.476e-04
KORKOLA_TERATOMA (€2) 3.817e-06 3.617¢-03
BOYAULT_LIVER_CANCER_SUBCLASS_G1_UP (C2) 6.039¢-06 4.769¢-03
RICKMAN_TUMOR_DIFFERENTIATED_WELL_VS_POORLY_UP (C2) 1.481¢-05 1.002¢-02
CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_UP (C2) 2.059¢-05 1.219¢-02
DODD_NASOPHARYNGEAL_CARCINOMA_DN (C2) 2.828¢-05 1.489¢-02
FISCHER_DREAM_TARGETS (C2) 5.046e-05 2.391e-02
LIM_MAMMARY_STEM_CELL_DN (C2) 6.432¢-05 2.555¢-02
LI_WILMS_TUMOR_VS_FETAL_KIDNEY_1_DN (C2) 6.472e-05 2.555¢-02
CAIRO_HEPATOBLASTOMA_CLASSES_UP (C2) 8.559¢-05 3.12e-02
BENPORATH_ES_2 (C2) 1.0216-04 3.455¢-02

|_WTAP_TARGETS_DN (C2) 1.227¢-04 3.876-02

(a) Heatmap of hsa-let-7¢c-5p bicluster up-regulated under embryonic stem cell/iPS cell/somatic cell

conditions. Row and column represent the symbols of experimental conditions and target gene symbols,

respectively. For each target gene, the user can check the node-degree for target PPI network and

whether it is experimentally validated. (b) Detailed condition information (test and control group info.)

is represented. Wordcloud for conditions is also provided. (¢) PPI network for bicluster targets are

visualized. The nodes with bright red color are connected with many other targets.
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Chapter V: Discussion and conclusion

In this dissertation, the algorithms to improve the pathway analysis of RNA-seq data with small
replicates and GWAS summary data were addressed, as well as an approach to predict cell condition-
specific miRNA targets by biclustering the big transcriptomic data.

In Chapter II, the effect of absolute statistic in reducing the false positive results from gene-permuting
GSEA was confirmed through simulation and real data analysis. It was observed that the absolute
statistic reduced the variance inflation factor when tested with TCGA cancer data. Based on this
observation, I developed an R package named ‘AbsFilterGSEA’. It provides a useful function that filters
significant gene-sets detected by original gene-permuting GSEA with those detected by absolute GSEA,
so that users obtain reliable gene-sets with known directionality. However, the reason why absolute
statistic relieves the variance inflation factor is still in question and it should be mathematically proved
through further study.

In Chapter III, it was observed that the z-score method applied with modified gene scores (adjusted by
SNP size) greatly improved sensitivity compared to existing competitive and some of self-contained
gene-set analysis methods, while exhibiting decent false positive control. Also, it was good at
prioritizing phenotype-related pathways, and showed outstanding performance when the sample size is
relatively small (KARE data, < 9000 samples). In addition, it provides gene network visualization
within a gene-set or across significant gene-sets. From the global network (across significant gene-sets),
users can identify hub gene or core sub-network that may affect to multiple pathways, and thus plays a
central role in corresponding disease. Currently, it provides only two PPI database (STRING and
HIPPIE). In the update version, more PPI sources need to be included. Also, using the extended PPI
network, it might be possible to infer the biological role of unannotated genes showing meaningful
association signals.

In Chapter IV, a novel approach to predict condition-specific miRNA target network by biclustering
the transcriptomic big data was addressed. Compared to pure sequence-based method, biclustering
improved the target prediction and the accuracy was further improved by filtering the bicluster targets
using network information. In addition, the bicluster targets were favorable when compared with targets
predicted from TCGA mRNA-miRNA paired expression data. The cancer bicluster analysis revealed
that few miRNAs’ targets were enriched in ‘PI3K/Akt signaling pathway’, and it was experimentally
validated that miR-29 suppresses nine genes involved in the pathway. There are two future works for
this project. First, I can also apply this approach to other types of regulators that binds to DNA in a
sequence-specific manner such as transcription factor. Second, it is possible to construct and infer

miRNA co-regulation network using significantly overlapping biclusters.
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