
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Doctoral Thesis  
 

 

 

Pathway and Network Analysis of  

Transcriptomic and Genomic Data  

 

 

 

 

 

 

 

 

 

 

Sora Yoon 
 

Department of Biological Sciences 
 

 
 
 

Graduate School of UNIST 

 

2019 



 

 

Pathway and Network Analysis of  

Transcriptomic and Genomic Data 

 

 

 

 

 

 

 

 

 

 

 

 

Sora Yoon 
 

 

 

 

 

 

 
Department of Biological Sciences 

 
 

Graduate School of UNIST 
 

 







 

i 

Abstract 

 

The development of high-throughput technologies has enabled to produce omics data and it has 

facilitated the systemic analysis of biomolecules in cells. In addition, thanks to the vast amount of 

knowledge in molecular biology accumulated for decades, numerous biological pathways have been 

categorized as gene-sets. Using these omics data and pre-defined gene-sets, the pathway analysis 

identifies genes that are collectively altered on a gene-set level under a phenotype. It helps the biological 

interpretation of the phenotype, and find phenotype-related genes that are not detected by single gene-

based approach. Besides, the high-throughput technologies have contributed to construct various 

biological networks such as the protein-protein interactions (PPIs), metabolic/cell signaling networks, 

gene-regulatory networks and gene co-expression networks. Using these networks, we can visualize the 

relationships among gene-set members and find the hub genes, or infer new biological regulatory 

modules. 

Overall, this thesis/dissertation describes three approaches to enhance the performance of pathway 

and/or network analysis of transcriptomic and genomic data. First, a simple but effective method that 

improves the gene-permuting gene-set enrichment analysis (GSEA) of RNA-sequencing data will be 

addressed, which is especially useful for small replicate data. By taking absolute statistic, it greatly 

reduced the false positive rate caused by inter-gene correlation within gene-sets, and improved the 

overall discriminatory ability in gene-permuting GSEA. Next, a powerful competitive gene-set analysis 

tool for GWAS summary data, named GSA-SNP2, will be introduced. The z-score method applied with 

adjusted gene score greatly improved sensitivity compared to existing competitive gene-set analysis 

methods while exhibiting decent false positive control. The performance was validated using both 

simulation and real data. In addition, GSA-SNP2 visualizes protein interaction networks within and 

across the significant pathways so that the user can prioritize the core subnetworks for further 

mechanistic study. Finally, a novel approach to predict condition-specific miRNA target network by 

biclustering a large collection of mRNA fold-change data for sequence-specific targets will be 

introduced. The bicluster targets exhibited on average 17.0% (median 19.4%) improved gain in 

certainty (sensitivity + specificity). The net gain was further increased up to 32.0% (median 33.2%) by 

filtering them using functional network information. The analysis of cancer-related biclusters revealed 

that PI3K/Akt signaling pathway is strongly enriched in targets of a few miRNAs in breast cancer and 

diffuse large B-cell lymphoma. Among them, five independent prognostic miRNAs were identified, 

and repressions of bicluster targets and pathway activity by mir-29 were experimentally validated. The 

BiMIR database provides a useful resource to search for miRNA regulation modules for 459 human 

miRNAs. 
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Chapter I: Introduction 

 

1.1 Omics data 

A suffix ‘-ome’ represents the mass of something, and it is frequently used to indicate a group of 

biological molecules. For example, genome, transcriptome and proteome represent the complete sets of 

DNA, transcripts (RNA) and proteins in a cell, respectively. With the development of high-throughput 

technology, it has become possible to produce such omics data within short time. It facilitates the 

systematic analysis of genetic and/or epigenetic features of diseases and helps to find therapeutic and 

diagnostic targets. Here, the concepts and characteristics of genomic (especially for GWAS data) and 

transcriptomic data will be explained.  

 

1.1.1 Genomic data 

In a broad sense, the genomic data refers to any data come from genome of such as nucleotide sequences, 

annotations or read alignments. Among them, I will focus on the genetic variation data in this 

thesis/dissertation. Many diseases are caused by genetic variations (Table 1.1). The variants within 

coding region may alter the protein structure, and those in the non-coding regulatory region can affect 

to the gene expression regulation. The genomic variants are classified into two groups based on the 

variant size. One is the simple nucleotide variation (SNV) including single nucleotide polymorphism 

(SNP) and short insert/deletion. Another is the structural variation (SV) including long insert/deletion, 

copy number variation (CNV), inversion and translocation. Table 1.1 describes the definition and 

example diseases of each variant type.  

The genome-wide profiling of human genetic variations has been possible with the construction of 

human reference genome 1 and two great projects such as International HapMap Projects 2 and 1000 

Genome Project 3 that produced reference haplotype data for human genetic variations. In the 

International HapMap Project, more than 3 million human common SNPs had been genotyped for 1,301 

individuals from 11 populations (Phase III), and identified about 500,000 tag SNPs that represent the 

behaviors of each linkage disequilibrium (LD) block. In 1000 Genome Project, whole genome 

sequencing (WGS) had been done for 2,504 individuals from 26 population, and discovered an 

extensive number of genomic variants including 84.7 million SNPs, 3.6 million indels and 60,000 

structural variants 4. These reference haplotype panels are great sources for genome-wide association 

study that facilitate an efficient genotyping through imputation, which will be explained in the next 

section in detail.  
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Table 1.1. Types of genetic variation 

Variation Type Description Example disease 
Simple Nucleotide Variation (SNV) 
Single nucleotide 
polymorphism 
(SNP) 

Single nucleotide variation found more than 1% of population. 
More than 84 millions of SNPs have been found in human 
genome. 

Sickle-cell anaemia5 
Wilson’s disease6 
Tay-Sachs disease7 

Indel Insertion and deletion of base pairs (length: 1~10,000 bp). 
1.6~2.5 millions of indels are found in human genome. 

Cystic fibrosis 8 
Fragile X syndrome8 
muscular dystrophy8 

Satellite Repetition of DNA motifs, typically 5-50 times. 
• microsatellites (< 10 bp per repeat) 
• minisatellites (10–60 bp per repeat) 
• satellites (~hundreds bp per repeat) 
• macrosatellites (several kb per repeat) 

Huntington’s disease9 
Fragile X syndrome9 
Myotonic dystrophy9 

Structural variation (SV) 
Copy number 
variation (CNV) 

Copy number change of long DNA segment (>1 kb)  Huntington’s disease10 
Alzheimer disease11 
Autism12 

Inversion Rearrangement of DNA segment to reverse orientation. Haemophilia A13 
Translocation Rearrangement of DNA segment to be inserted into different 

chromosome 
Leukaemia14 
Ewing’s sarcoma15 

 

1.1.1.1 Genome-wide association study 

The genome-wide association study (GWAS) is carried out to identify the genetic variants (mainly 

SNPs) that are associated with a phenotype (e.g., disease) 16. For example, if one type of allele of a SNP 

is more frequently observed in patient group compared to the control group, the SNP is regarded as a 

marker of the disease of interest. The higher SNP effect size (represented by odds ratio for dichotomous 

trait or beta value for continuous trait; figure 1.1) represents the stronger association of that SNP with 

the phenotype. The phenotype can be either dichotomous trait where the samples consist of case and 

control groups (e.g., disease vs. normal) or continuous trait such as height and BMI. For dichotomous 

phenotype, Chi-squared test for independence is widely performed to evaluate a SNP’s association p-

value. Figure 1.1 represents the process of association test using chi-squared test for a SNP and 

calculating its effect size. Logistic regression is an alternative method to perform the association test. It 

is used to adjust various confounders such as ethnicity and batch effect. For quantitative traits, following 

linear regression model is used to perform association test.  

Y = #$ + #&X + ( )*+*

,

*-$
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where, Y is a phenotype vector, 	X is a (normalized) genotype vector of a SNP,	+* is confounding 

factors, #$  is intercept, #&  is regression coefficient of 	X  and )*  is regression coefficient of 

confounding factor +*. Here, #& represents the effect size of the SNP.  

Although there are more than 84 million SNPs in human genome, we don’t need to perform association 

test for all of them. As mentioned in the previous section, the International HapMap Project, launched 

in 2003, identified ~500,000 human tag SNPs that represent each haplotype. In typical GWAS, these 

tag SNPs are genotyped first using SNP array to find significantly associated tag SNPs (e.g., p <

5 × 1056). Next, association test is performed again for all SNPs in the haplotypes of significant tag 

SNPs. In this step, the unknown genotypes are inferred from reference panel constituted from 

International HapMap Project or 1000 Genome project. This step is called imputation. It enables to find 

more accurate SNP marker without genotyping all SNPs. SNP markers found in this discovery stage 

are often further validated using independent cohort. 

The SNP markers identified in various phenotypes can be referred from GWAS Catalog page 

(https://www.ebi.ac.uk/gwas/). As of December 2018, 89,251 unique SNP-trait associations (p-

value<5 × 1056) are reported in GWAS Catalog. 

The result of association test for all SNPs is often provided with summarized format including columns 

of SNP ID, genomic position, effect allele, effect size and association p-value. This kind of data is called 

‘GWAS summary data’. It is favorably used for further pathway analysis due to its relatively small data 

size. 

 

 

Figure 1.1. SNP association test using Chi-squared test and effect size evaluation.  

The tables represent the observed (denoted as O) and expected (denoted as E) SNP variant counts in 
case and control samples. The association p-value of the SNP is evaluated using Chi-squared test for 
independence. The effect size of the SNP is calculated by odds ratio of variant counts between case and 
control samples. 
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1.1.2 Transcriptomic data 

Various protein coding- and non-coding RNAs are transcribed from DNA in a cell. The transcriptome 

means the entire RNA molecules in a cell, but it usually indicates the entire set of specific RNA type 

of interest such as messenger RNAs (mRNAs). In this thesis/dissertation, the transcriptome represents 

a complete set of mRNAs. Among all RNAs, the majority is composed of ribosomal RNAs (rRNAs) 

and transfer RNAs (tRNAs) (95~97%), while the mRNAs that we mainly focus on occupy merely less 

than 5% 17. Thus, the enrichment of mRNAs (or other RNA type of interest) or depletion of rRNA and 

tRNA is carried out after RNA extraction. The purified mRNA expression levels are measured by cDNA 

microarray or RNA-sequencing, and this transcriptomic data is used to measure (1) the expression level 

of transcripts in a specific condition, (2) alternative splicing to predict the isoform protein levels and (3) 

the effect of genomic variants on gene expression 18-21.  

1.1.2.1 Microarray and RNA-sequencing 

Similar to genomic data, the transcriptomic data is measured using (1) cDNA microarray or (2) RNA-

sequencing (RNA-seq). The differences of two methods are represented in figure 1.2. The cDNA 

microarray was developed a decade earlier than RNA-seq (The first studies of cDNA microarray and 

RNA-seq were published in 1995 and 2008, respectively 22-23). It measures all known transcripts’ levels 

at the same time based on the hybridization. Although useful, there are two limitations in this method. 

First, it can’t discover novel transcripts because the probes on a microarray chip are produced only for 

known transcripts. Second, it shows high background noises caused by nonspecific hybridization 

between transcripts and probes 24. The RNA-seq technique was developed to solve these problems. By 

aligning the RNA fragments to the reference genome, it can discover de-novo RNA molecules 25. In 

addition, it shows quite low background noise and high sensitivity to detect lowly expressed RNA 

molecules. In spite of these advantages of RNA-seq, there are several things to be careful in analyzing 

RNA-seq data as described in below. 
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Figure 1.2. Comparison of cDNA microarray and RNA-sequencing 

1.1.2.2 Issues in RNA-sequencing data analysis 

The issues in analyzing RNA-seq data arise from its expression measuring method (counting the 

number of reads aligned on each gene). First issue is the normalization. It is a process to make the 

expression levels comparable within a sample or between samples. For example, the raw read counts 

of gene A and gene B within a sample cannot be directly compared because longer genes tend to be 

mapped with more reads. To remove this gene length bias, the raw counts of gene A and B are typically 

normalized by RPKM (= 789	:;8<	=>?@A×&$B

C;@;	D;@CAE×D*F:8:G	H*I;
) or FPKM (= J:8CK;@A	=>?@A×&$B

C;@;	D;@CAE×D*F:8:G	H*I;
). The gene length 

bias is not considered when comparing the gene expression levels between samples (e.g., differential 

expression analysis of a gene). Instead, the ‘sequencing depth bias’ must be corrected in this case. Many 

‘between-sample’ normalization methods such as DESeq26, TMM27 or UQ had been devised 

considering the library size factor. Table 1.2 represents how each method normalizes the raw read 

counts. Another issue is the statistical evaluation of differential expression. Because RNA-seq read 

counts are discrete values, Poisson distribution had been used in the early days. However, the 

assumption of Poisson distribution (mean and variance are same) was not fit to the real RNA-seq data 

where the gene count variances are often much larger than gene count means. Thus, over-dispersed 

Poisson distribution, a.k.a. Negative Binomial (NB) distribution, have been frequently used in modeling 

RNA-seq data. In NB distribution, the variance of a i-th gene in the j-th sample (L*M
N) is defined as the 

sum of expected mean (P*M) and an additional term. 
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	L*M
N = P*M + Q*P*M

N  

Here, Q* is the dispersion coefficient of i-th gene. The size of dispersion coefficient depends on the 

data type. For example, the dispersion coefficient of a dataset consisting of samples from unrelated 

individuals (e.g., cancer cohort data) will be much higher than that of those consisting of technical 

replicates or genetically identical samples (e.g., cell lines). Many RNA-seq DE analysis methods such 

as DESeq2 28, edgeR27, baySeq29 and EBSeq30 use the negative binomial model. Voom31 is another DE 

analysis method that transforms the normalized read counts to log-scale and applies the linear model 

which is commonly used in the microarray analysis. There are also non-parametric methods such as 

NOISeq32 or SAMseq33.  

 

Table 1.2. Size factor of six between-sample normalization methods.  

For each method, raw RNA-seq read count of gene g in j-th sample (RCM) is normalized by dividing it 

with size factor of j-th sample (SM ). T  and U  represent the total number of genes and samples, 

respectively. VW(x) is upper-quartile value of x, and WM is the upper-quartile count in j-th sample. 

Methods Size factor of j-th sample 

Total count method (TC) 
SM =

∑ RCM
Y
C-&

∑ ∑ RCM
K
M-&

Y
C-&

 

Upper-Quartile method (UQ) 
SM = VW Z

RCM

∑ RCM
Y
C-&

[ 

Median method (Med) 
SM = U\]^_`Z

RCM

∑ RCM
Y
C-&

[ 

Quantile-normalization (Q) 
SM = 10D>Cabcd5(

&
K)∑ D>Cabcf

g
fha  

 

TMM logN(SM) =
∑ lCMmCMC∈Yo

∑ lCMC∈Yo

 

Where mCM = logN((RCM/qM)/(RC:/q:)), lCM =
,d5rsd

,drsd
+

,t5rst

,trst
, qM, q: are the 

total number of reads for j-th sample and reference sample r, respectively.  

Tu is set of genes not trimmed by fold change and average expression level cutoff. 
DESeq 

U\]^_`Z
RCM

(∑ RCv
K
v-& )&/K[ 

 

1.2 Pathway analysis 

One basic approach to analyze these omics data is to identify the list of genes significantly altered 

between case and control groups. Such analysis is called differential expression (DE) analysis for 
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transcriptomic, and GWAS for genomic data. This gene-based analysis has been widely performed to 

find various disease-causing genes, and extended our biological knowledges. 

In addition, the pathway-based (gene-set-based) analysis provides useful information. An organism 

maintains its life through the complex interactions among numerous biological pathways. 

Dysregulation in some metabolic pathways can lead to chronic diseases or even cancers 34. The pathway 

analysis is performed to find the genetic difference between case and control groups on gene-set level. 

There are several advantages in the pathway analysis. First, it helps easier interpretation of the common 

biological function of the significantly altered genes (e.g., DE genes), especially when numerous genes 

are significantly detected. Second, it improves the reproducibility of signature genes among 

independent studies 35. Third, it reduces the multiple correction burden and increases the detection 

power, especially for GWAS data 36.  

 

1.2.1 Pathway databases 

To perform pathway analysis, a list of pre-defined pathways is required. The Pathguide database 

(http://pathguide.org) provides links to 702 pathway databases and their information 37. Among them, 

251 were those of human pathway databases. Those databases are classified into 10 categories (protein-

protein interactions, metabolic pathways, signaling pathways, transcription factors/ gene regulatory 

networks, protein-compound interactions, genetic interaction networks, protein sequence focused and 

others). Table 1.3 describes 13 popular pathway databases. 

 

1.2.2 Pathway analysis methods 

The pathway analysis is classified into three types based on the gene-set scoring method as follows. 

1.2.2.1 Over-representation analysis 

From the omics data with two sample groups, we typically identify differentially altered genes between 

groups using a significance cutoff (e.g., FDR<0.05). Let say such genes are signature genes. The over-

representation analysis is to identify gene-sets enriched with the signature genes using hypergeometric 

distribution. It was popular in the early times because it was simple and useful to infer the biological 

theme of signature genes. DAVID is a popular web-server that performs over-representation analysis 
38. However, the biggest problem of this approach is to set the arbitrary cutoff for signature genes.  

1.2.2.2 Functional class sorting 

The cutoff-free method was devised to avoid setting such ambiguous cutoff for genes. Here, the gene-

set score is directly evaluated by summarizing the gene-set member’ scores obtained from omics data. 
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Besides, it is useful to detect gene-sets in which the individual genes show weak but consistent signals. 

Such pattern cannot be discovered using over-representation approach. 

1.2.2.2.1 Gene-set enrichment analysis 

One example pathway analysis method that implements the cutoff-free approach is the Gene-Set 

Enrichment Analysis (GSEA)39. Since its paper was published in 2005, it has become the most widely 

used pathway analysis method. In GSEA, the input a priori gene-set scores (=enrichment score; ES) 

are evaluated using (weighted) Kolmogorov-Smirnov (K-S) statistic, which determines score based on 

the relative gene score rank distribution. For example, if members of a gene-set are distributed on the 

top ranks, it means that gene-set is up-regulated in overall. Similarly, member gene scores are 

concentrated in the bottom ranks, it represents the down-regulation of that gene-set. Detailed description 

for GSEA is in 2.3.1-Enrichment Score.  

 

Table 1.3. Popular pathway databases 

Database Pathway type URL Reference 
Gene Ontology • Metabolic pathways 

• Signalling pathways 
• Protein-protein interaction 

http://www.geneontology.org 
 

40 

KEGG • Metabolic pathways http://www.genome.jp/kegg/ 41 
REACTOME • Metabolic pathways 

• Signalling pathways 
http://www.reactome.org 42 

RegulonDB • Transcription Factors / Gene 
Regulatory Networks 

http://regulondb.ccg.unam.mx/ 43 

PANTHER • Signalling pathways http://www.pantherdb.org 44 
Ingenuity Pathway 
Analysis 

• Protein-Protein Interactions 
• Metabolic Pathways 
• Signaling Pathways 
• Transcription Factors/ Gene 

Regulatory Networks 
• Protein-Compound Interactions 

https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis/ 
 

45 

NCI PID • Signaling Pathways http://pid.nci.nih.gov/ 46 
WikiPathways • Metabolic pathways 

• Signalling pathways 
http://wikipathways.org/index.php/Wiki
Pathways 

47 

Small Molecule 
Pathway DB 

• Metabolic pathways 
• Signalling pathways 

http://www.smpdb.ca/ 
 

48 

ConsensusPathDB • Protein-Protein Interactions 
• Metabolic Pathways 
• Signaling Pathways 
• Transcription Factors / Gene 

Regulatory Networks 
• Protein-Compound Interactions 

http://cpdb.molgen.mpg.de/CPDB 49 

Pathway 
Commons 

• Protein-Protein Interactions 
• Metabolic Pathways 
• Signaling Pathways 
• Protein-Compound Interactions 

http://www.pathwaycommons.org 50 
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1.2.2.3 Pathway topology-based method 

In addition to over-representation analysis and functional class sorting, several methods based on 

pathway topology have been developed. Signaling Pathway Impact Analysis (SPIA) evaluates pathway 

significance by combining two p-values obtained from over-representation test and perturbation test 51. 

CePa is a weighted gene-set analysis methods where the weights are determined by network centrality52. 

PathNet combines two types of evidences obtained from direct (p-value from DE analysis) and indirect 

evidence (inferred from pathway network neighborhood information) to get the signature genes. Then 

pathway significance is evaluated by hypergeometric test53. Bayerlová et al. reported that these pathway 

topology-based methods showed better performance than classical enrichment-based methods under 

simulation setting with no overlapping gene-sets, but not in other settings 54. It means there are rooms 

to further develop this type of pathway analysis method (although not covered in this thesis…).  

 

1.2.3 Competitive and self-contained gene-set analysis 

Before performing gene-set analysis, we have to choose proper analysis method considering the null 

hypothesis. There are two methods mainly concerned: the competitive and self-contained methods. The 

null hypothesis (H0) of each method is as follows: 

 

(1) H0 of competitive method: Genes in a test gene-set are not more strongly associated with phenotype 

than the background genes. 

(2) H0 of self-contained method: No genes in a test gene-set are associated with phenotype. 

 

Thus, the competitive method tests the relative association of gene-sets compared to others. On the 

other hand, the self-contained method can significantly detect a gene-set if only few member genes are 

associated with the phenotype. Although it usually yields highly sensitive results, we should be careful 

in interpreting the result because gene-sets unrelated to phenotype can be specifically detected. Table 

1.4 and 1.5 explains the gene-set analysis methods used for gene expression and GWAS data, 

respectively.  
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Table 1.4. Competitive and self-contained gene-set analysis methods for gene expression data.  

Here, 	w* and x* are t-statistic ad p-value of gene i, respectively, and U is gene-sets size. 
Method Statistic Statistical test Reference 

Competitive methods 

Functional class 

score (FCS) 
y+z =

∑ −log	(x*)
K
*-&

U
 

Gene permutation 55 

Q1 
W1 =

∑ w*
K
*-&

U
 

Gene permutation 56 

PAGE | =
PY − P

}/√U
 

Where P and } is average fold change and standard 

deviation of all genes, PY is average fold change of genes in 

test gene-set, and U is test gene-set size 

 

Null distribution of 

Z~N(0,1) 

57 

GSEA Kolmogorov-Smirnov statistic Sample or Gene 

permutation 

39 

CATEGORY 
| =

∑ w*
K
*-&

√U
 

Null distribution of 

Z~N(0,1) 

58 

GSA 
zK8� = max	 ÉÑ

∑ Ö(w* > 0) ∙ w*
K
*-&

U
Ñ , Ñ

∑ Ö(w* < 0) ∙ w*
K
*-&

U
Ñâ 

Sample permutation 59 

Self-contained methods 

Globaltest 
W =

1
U

(
1
PN

[ã*
u(å − P)]N

K

*-&

 

Where ã*
u is gene expression vector of gene i, Y is clinical 

outcome, P is expectation of Y and PN is the second 

central moment of Y under H0. 

 

Sample permutation 

or asymptotic 

distribution 

60 

FCS 
y+z =

∑ −log	(x*)
K
*-&

U
 

Sample permutation 55 

Q2 
W2 =

∑ w*
K
*-&

U
 

Sample permutation 56 
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Table 1.5. Competitive and self-contained gene-set analysis methods for GWAS summary data.  

Xi is the gene score of i-th gene, P  and L  are mean and standard deviation of all gene scores, 

respectively, S is gene-set score, and m is gene-set size.  
Method Gene and/or gene-set statistic Statistical test Reference 
Competitive methods 
GSA-SNP ã* = −log2(k-th best SNP p-value) 

z =
a
g

∑ ã^
g
èha 5ê

ë/√K
  

Null distribution of Z~N(0,1) 
Restandardized GSA 
GSEA 
 

61 

MAGENTA ã*= Best SNP p-value corrected 
for confounding effects 

Over-representation of top N-
percentile of genes within each 
gene-sets is tested through 
comparison with random gene-
sets.  
 

62 

INRICH Genomic intervals associated phenotype are 
estimated first using PLINK LD clumping or 
tag SNP selection method. 
z =	 the number of intervals (genes) 
overlapping with test gene-set. 
 

The significance is evaluated 
through permutation process. 

63 

GOWINDA Top N% SNPs are selected first The significance of Over-
representation with test gene-set is 
evaluated by permutations. 

64 

MAGMA ã* = Φ5&(1 − ì*) 
Where ì*  is gene p-value estimated from 
mean or top îN-statistic of SNPs within a 
gene. 

From following linear model 
|H = #$H1ï⃗ + zH#H + ó 

[ò$: #H = 0] is tested. 
where #H  is the difference in 
association between gene-set 
members and background genes. 
 

65 

iGSEA4GWAS ã* = −log2(best SNP p-value) 
 

SNP-permuting GSEA with 
significant proportion-based 
enrichment score ( zxöz = öz ∙
õ/R ), where k and K are 
proportion of significant genes (at 
least one SNP is included in the 
top 5% SNPs) of the gene-set and 
total gene list, respectively. 
 

66 

GSA-SNP2 ã* = −log2(k-th best SNP p-value)  
adjusted by SNP size 

z =
a
g

∑ ã^
g
èha 5ê

ë∗/√K
  

Null distribution of Z~N(0,1) 67 

Self-contained methods 
MAGMA Same with MAGMA competitive method. From following linear model 

|H = #$1ï⃗ + óH  
ò$:#$ = 0 is tested. 
 

65 

sARTP 
lMù

($) = − ( logìM(A)
($)

ûü†	(°d,=¢)

A-&

 
Direct simulation approach (DSA) 68 
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1.3 Biological network 

Cells maintains life through consecutive biochemical reactions and interactions occurring among 

biomolecules such as metabolites, enzymes, transcription factors, signaling molecules and so on. 

Network is defined as a set of nodes and their relationships (edges). The interactions among 

biomolecules in a cell can be also represented as a complex network. There are five types of biological 

networks that are frequently used in bioinformatics as follows:  

 

1) Protein-protein interaction network: The protein-protein interaction (PPI) represents the 

physical contact between proteins. PPIs occur in extensive cellular processes such as signal 

transduction, metabolism, electron transfer, transport across membranes, among others. 

Databases such as Database of Interacting Proteins (DIP), Biomolecular Interaction Network 

Database (BIND), Biological General Repository for Interaction Datasets (BioGRID), Human 

Protein Reference Database (HPRD), IntAct Molecular Interaction Database, Molecular 

Interactions Database (MINT) MIPS Protein Interaction Resource on Yeast (MIPS-MPact) and 

MIPS Mammalian Protein–Protein Interaction Database (MIPS-MPPI) provides validated PPI 

information, 69-74. HIPPIE integrated these sources and provide reliable PPI information75. 

STRING DB provides both known and predicted PPIs 76.    

 

2) Gene-regulatory network: This network includes regulatory relationship between regulators 

(e.g., transcription factor, miRNA) and their target genes. Technologies such as ChIP-chip, 

ChIP-seq or Clip-seq are used to identify this network. ConsensusPathDB, Ingenuity Pathway 

Analysis77 and Regulon DB provides this type of network. 

   

3) Gene co-expression network: It represents the co-expression modules of genes in a specific 

cell condition. This network is generated from microarray or RNA-seq experiments followed 

by gene clustering analysis.  

 

4) Metabolic network: It is the entire set of metabolic and physiological processes (e.g., fatty acid 

metabolism). Thus, it comprises the network of chemical compounds and enzymes involved in 

various biochemical reactions. KEGG, EcoCyc, and metaTIGER provides these networks 77-78.  

 

5) Signaling network: Cell signaling is a series of signal transduction that occurs within a cell or 

between cells to control the cellular action (e.g., PI3K/Akt signaling pathway). This process 

entails protein binding, phosphorylation, ubiquitination, acetylation and so on. The databases 

providing this network is represented in Table 1.3. 
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1.4 Research overview 

Although many pathway analysis methods have been devised for gene expression or GWAS summary 

data, there have been still some limitations. First, most of the gene-set analysis methods for gene 

expression data had been designed for microarray. For RNA-seq data, seqGSEA79, the use of log-

transformed counts 31 or pre-ranked GSEA with gene p-values from DE analysis had been suggested. 

However, there was a practical matter to apply these methods. That is, large number of RNA-seq data 

are composed the small number of samples due to the expensive sequencing cost. In this case, SeqGSEA, 

which implements sample permutation, is inappropriate to be used. Also, other two methods with gene 

permutation may yield many false positive results caused by inter-gene correlation among genes within 

same gene-set. In 2015, it was reported that the absolute statistic can effectively reduce the false positive 

rates in gene-permuting gene-set analysis of microarray data. In Chapter II, I tested whether GSEA with 

absolute gene statistic (absolute GSEA) exhibits same effect on RNA-seq data through simulation and 

real data analysis. For simulation test, a novel RNA-seq read count simulation method reflecting the 

inter-gene correlation was devised in this study. As a result, the absolute GSEA greatly improved the 

false positive control and overall discriminatory ability. The contents in this chapter are published in 

PLoS ONE in 2016 with the title ‘Improving Gene-Set Enrichment Analysis of RNA-Seq Data with 

Small Replicates.’ 80 

Next, I focused on the pathway analysis of GWAS summary data. Many of the competitive pathway 

analysis methods for GWAS summary data were too conservative to detect meaningful pathways. Some 

self-contained approaches were developed to increase the detection power, but there has been a concern 

that those methods may report gene-sets not relevant to phenotype as significant. In Chapter III, I will 

describe a powerful competitive gene-set analysis tools for GWAS summary data, named GSA-SNP2. 

By adjusting gene scores based on SNP size, it successfully increased the detection power while 

maintaining decent false positive control. The performance of GSA-SNP2 was validated using both 

simulation and real data. In addition, the GSA-SNP2 software provides gene network visualization 

within a gene-set or across significant gene-sets. The contents in this chapter are published in Nucleic 

Acids Research in 2018 with the title ‘Efficient pathway enrichment and network analysis of GWAS 

summary data using GSA-SNP2.’  

Finally, Chapter IV describes a novel approach to infer cell condition-specific microRNA target 

network module by biclustering a large size of gene expression fold change profiles for a set of miRNA 

binding targets. The biclusters (network module) represent a set of miRNA binding motif-sharing genes 

commonly up-regulated (or down-regulated) under multiple cell conditions. The bicluster targets 

improved gain in certainty (sensitivity + specificity), and the net gain was further increased by 

incorporating functional network information. The analysis of cancer-related biclusters revealed that 

PI3K/Akt signaling pathway is strongly enriched in targets of a few miRNAs in breast cancer and 
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diffuse large B-cell lymphoma. Among them, five independent prognostic miRNAs were identified, 

and repressions of bicluster targets and pathway activity by mir-29 were experimentally validated. The 

BiMIR database provides useful search engine for biclusters of 459 human miRNAs. 
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Chapter II: Improving gene-set enrichment analysis of RNA-seq 

data with small replicates 

 

2.1 Abstract 

To identify deregulated biological pathways in a disease is important to understand the pathophysiology 

and find therapeutic targets of the disease. The gene-set enrichment analysis (GSEA) has been widely 

used for biological pathway analysis of microarray data, and it is also being applied to RNA-seq data. 

However, due to the high-sequencing cost, most RNA-seq data contain only small number of samples 

so far, which leads to perform gene-permuting GSEA method (or preranked GSEA). A critical problem 

of this method is that it yields many false positives results originated from the inter-gene correlation 

within gene-sets. I demonstrate that taking the absolute gene statistic in one-tailed GSEA greatly 

improves the false-positive control and the overall discriminatory ability of the gene-permuting GSEA 

methods for RNA-seq data. A novel simulation method to generate correlated read counts within a 

gene-set was devised to test performance, and a dozen of currently available RNA-seq enrichment 

analysis methods were compared, where the proposed methods outperformed others that do not account 

for the inter-gene correlation. Analysis of real RNA-seq data also supported the proposed methods in 

terms of false positive control, ranks of true positives and biological relevance. An efficient R package 

(AbsFilterGSEA) coded with C++ (Rcpp) is available from CRAN. 

 

2.2 Introduction 

The RNA-sequencing (RNA-seq) technology has facilitated a systematic analysis of the transcriptome 

in cells 23, 81. The biggest advantage of RNA-seq is much lowered background noise compared to the 

hybridization method (microarray). Thus, it has enabled more accurate quantification of gene 

expression level 82. However, the differential expression (DE) analysis of RNA-seq data between two 

samples is not an easy task due to the different RNA composition and sequencing depth among samples 

as well as the discrete nature of RNA-seq data. Several between-normalization methods have been 

devised to make the gene expression levels among different samples comparable 27, 83, and a variety of 

methods have been developed to test the DE of each gene based on discrete probability models. 28, 31, 33, 

84-87. 

The gene-set analysis has been used to interpret the DE analysis result. One approach is the GO analysis 

that estimates the over-representation of DE genes in a pre-defined gene-sets such as Gene Ontology 

(GO) terms. 88-89. The gene-set enrichment analysis (GSEA) is another useful approach39. Unlike GO 
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analysis, it does not use the cutoff threshold to identify the DE genes. Instead, it utilizes the (weighted) 

Kolmogorov-Smirnov (K-S) statistic to test whether genes contributing to the phenotype are ‘enriched’ 

in each gene-set. Therefore, GSEA can detect the subtle but coordinated changes in a gene-set and has 

been widely used to find important pathways or functions in various diseases and cell conditions from 

microarray data 61, 90-92.  

The pathway analysis methods and tools for RNA-seq have recently been devised based on methods 

designed for microarray 31, 93-95. One of the issues in applying GSEA to RNA-seq data is the 

normalization of read count data. Voom method transforms the read counts into microarray-like data 

for which most linear-model based methods developed for microarray can be applied 31. GSAAseqSP 

tool 94 adopted TMM or DESeq normalization methods 27, 85 which are able to address both the different 

depths and RNA compositions between samples. Another important thing to consider is the small 

sample sizes in RNA-seq data. Although the sequencing cost has been lowered so fast, it is still 

expensive. Thus, most laboratories have no choice but to produce only a few replicates for each 

condition 96. The sample-permuting GSEA (GSEA-SP) is inappropriate to apply to such small replicate 

data. Instead, the gene-permuting GSEA (GSEA-GP) is used in this case. However, the GSEA-GP 

generates a lot of false positive gene-sets due to the inter-gene correlation in the gene expression.  

In this study, it was demonstrated that the absolute gene statistic improved the false positive control 

and overall discriminatory ability of GSEA-GP of RNA-seq data. Although the property was shown in 

microarray data 97, it was not tested in RNA-seq data yet. The RNA-seq read counts were modeled and 

simulated using discrete probability (negative binomial distribution) 84, 98, and a simulation method to 

generate ‘correlated’ read counts within a gene-set was newly devised to compare the performance of 

GSEA methods for RNA-seq data. Note that the inter-gene correlation has a critical effect on the 

performance of gene-set level analysis, but has not been considered so far for the counting data because 

of the lack of such a simulation method. 

Here, the one-tailed GSEA which takes the maximum positive deviation of the K-S statistic as a gene-

set enrichment score was used for more precise gene-set analysis. Based on this result, I also propose 

filtering the GSEA-GP results with those obtained from the absolute GSEA-GP to effectively reduce 

false positives. The performances of the absolute GSEA and its filtering method were demonstrated for 

simulated and real RNA-seq data. 

2.3 Materials and Methods 

2.3.1 Absolute gene-permuting GSEA and filtering 

In many cases, the replicate size is too small in RNA-seq data to carry out GSEA-SP (e.g., n<10). In 

that case, the GSEA-GP is used instead. However, it produces a lot of false positive results because of 

the inter-gene correlation within gene-set 99-103. Recently, it has been shown that incorporating the 
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absolute gene statistic in GSEA-GP considerably reduces the false positive rate and improves the 

overall discriminatory ability in analyzing microarray data 97. Therefore, it was tested whether the 

absolute statistic shows a similar effect in RNA-seq data analysis. In addition to replacing the gene 

statistic with their absolute values 104, the absolute GSEA was modified as a one-tailed test in this study 

by considering only the ‘positive’ deviation in the K-S statistic. There are two reasons for this 

adjustment. First, simple substitution of gene scores by taking absolute values in GSEA can produce a 

small number of ‘down-regulated’ gene-sets which are meaningless in an absolute enrichment analysis. 

Second, it gives more precise null distribution of gene-set statistic: In the original GSEA algorithm, the 

maximum positive and negative deviation values are compared and only the larger absolute value 

between the two is selected for the gene-set score. This means the minor maximum deviation values 

are all excluded in constituting the gene-set null distributions. By taking only the positive deviation 

values, every gene-set contributes to the null distribution.  

Gene scores: Four gene scores were considered for normalized read as follows: 

(1) Moderated t-statistic (mod-t): A modified two-sample t-statistic  

w£§ =
P*

& − P*
N

S£§•¶*
 

where P*
@ is the mean read count of ith gene, ß* in class `, and S£§  is a shrinkage estimation of the 

standard deviation of ß*. This statistic is useful for small replicate data and is implemented using the 

limma R package 105-106 

 

(2) Signal-to-Noise ratio (SNR): The SNR (z*) is calculated as 

z* =
P*

& − P*
N

L*
& + L*

N 

where L*
@ is the standard deviation of expression values of ß* in class `.  

(3) Zero-centered rank sum (Ranksum): This two-sample Wilcoxon statistic is introduced by Li and 

Tibshirani33. For ß*, the rank sum test statistic (®*)	is calculated as, 

®* = ( ©*M
M∈™a

−
`& ∙ (` + 1)

2
 

where ©*M  is the rank of expression level of ´AE sample among all counts of ß*, +& is a set of sample 

indexes in the first phenotypic class, `& is the sample size of +& and ` is the total sample size. Note 

that E(®*) = 0. 

(4) Log fold-change (logFC): Log fold-change (logy+*) for ß* is calculated as 

logy+* 	= logN
P*

&

P*
N 
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Absolute GSEA: GSEA algorithm identifies functional gene-sets showing a coordinated gene 

expression change between case and control samples from gene expression profiles. Given gene scores, 

GSEA implements a (weighted) K-S statistic to calculate the enrichment score (ES) of each pre-defined 

gene-set.  

(1) Enrichment score 

Let z be a gene-set and ≠* be the gene score of ß*. Then, the enrichment score ES(z) is defined as 

the maximum deviation of ìE*A − ìK*HH from zero, that is 

öz(z) = Ø
max

*
(ìE*A,* − ìK*HH,*) , ^∞	 ±max

*
(ìE*A,* − ìK*HH,*)± ≥ ±min

*
(ìE*A,* − ìK*HH,*)±

min
*

(ìE*A,* − ìK*HH,*) , ^∞	 ±max
*

(ìE*A,* − ìK*HH,*)± < ±U^`
*

(ìE*A,* − ìK*HH,*)±
 

where 

ìE*A,* = (
µ≠Mµ

°

q7Cd∈∂
M∑*

, ìK*HH,* = (
1

(q − q∏)
Cd∈∂π

M∑*

, q7 = ( µ≠Mµ
°

Cd∈∂

 

q is the total number of genes in the dataset, q∏ is the number of genes included in z and ∫ is a 

weighting exponent which is set as one in this study as recommended39. (For the classical K-S 

statistic,	∫ = 0)  

 

(2) ES for one-tailed absolute GSEA 

The absolute GSEA is simply performed by substituting the gene scores by their absolute values, but 

the ranks of gene scores are quite different from the original GSEA algorithm in calculating the K-S 

statistic. For the one-tailed test, only the positive deviation ES(z) = max
*

ªìE*A,* − ìK*HH,*º	 is 

considered for the gene-set score.  

Then, the gene permutations are applied, and the corresponding ES’s are calculated and normalized for 

evaluating the false discovery rate of each gene-set39. 

Filtering with absolute GSEA: To decrease the false positive results in the GSEA-GP, it is 

recommended to use the absolute GSEA-GP results for filtering false positives from the ordinary 

GSEA-GP results. In other words, only the gene-sets that are significant in both ordinary and the one-

tailed absolute GSEA are considered significant. In this way, more reliable gene-sets with directionality 

can be obtained. In all the analyses presented in this paper, the same FDR cutoff is applied for both 

ordinary and absolute methods, but different cutoffs can also be considered for stricter or looser filtering. 

2.3.2 Simulation of the read count data with the inter-gene correlation 

High inter-gene correlation within gene-sets severely increases the false positive rates in gene-

permuting gene-set analysis methods (a.k.a. competitive analysis) 99, 103. The inter-gene correlation of 

microarray data can be modelled using multivariate normal distribution 97, 101, 107, but it cannot be 
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directly applied for ‘discrete’ read count data. Here, a novel simulation method for read count data with 

inter-gene correlation in each gene-set is described. N=10,000 genes are considered and the replicate 

sizes for the test and control groups are `& and `N, respectively. 

 

Step 1. Parameter estimation and read count generation: The read count ã*M  of ith gene in jth 

sample has been modeled by an over-dispersed Poisson distribution, called negative binomial (NB) 

distribution 84-85, 98 denoted by ã*M~qæ(P*M, L*M
N) where P*M  and L*M

N = P*M + Q*P*M
N  are the mean and 

variance, respectively, and Q* ≥ 0 is the dispersion coefficient for gene ß*. Here, P*M = SMP*, where 

SM  is the 'size factor' or 'scaling factor' of sample j and P*  is the expression level of ß* . In this 

simulation, all size factors SM  were set as 1 for simplicity. The mean and gene-wise dispersion 

parameters of 10,000 genes (average read count>10) were estimated from TCGA kidney cancer RNA-

seq data (denoted as TCGA KIRC) 108. The edgeR R package was used to estimate both parameters 98. 

The read counts were generated using the R function 'rnbinom' where the inverse of the estimated 

dispersion Q* was input as the ‘size’ argument. This method generates read counts that are independent 

between genes. 

Step 2. Generation of read count data with the inter-gene correlation: Given a gene-set S with K 

genes, the inter-gene correlation can be generated by incorporating a common variable within the gene-

set. Let P* and Q*, i=1,2,…K be the mean and tag-wise dispersion of ß*	 in the gene-set and +*M  be 

the read count generated from these parameters (Step 1).  Let x∂ = øì&, ìN,⋯ , ì@a¡@¬√ be probability 

values randomly sampled from the uniform distribution U(0,1). Then, for each ß*	, the probability 

values in x∂ are converted to a read count +*M
∗ , j=1,2,…,	`&+`N using the inverse function of the 

individual gene's distribution ã*~NB(P*,Q*) such that ìM ≈ x(ã* ≤ +*M
∗ ). In short, +*M

∗  are generated 

from the common uniform distribution via the gene-wise NB distribution. The 'correlated' read count 

for ith gene in jth sample is then obtained by the weighted sum of the original count +*M  and the 

‘commonly generated’ count +*M
∗  as follows:  

Mü…:=  (1 − À) ∙ +*M + α ∙ +*M
∗ Õ 

where α ∈ [0,1] is the mixing coefficient that determines the strength of the inter-gene correlation and 

[ ] rounds the value to the nearest integer. One problem with this count is that its variance is reduced as 

much as (2αN − 2α + 1) because 

Var(Mü…) ≈ (1 − À)N ∙ Vª+*Mº + αN ∙ Vª+*M
∗ º = (2αN − 2α + 1) ∙ 	L*M

N  

To remove this factor, an inflated dispersion Q*
u was used derived from the equation 

(2ÀN − 2À + 1) ∙ ªP* + Q*
uP*

Nº = P* + Q*P*
N 

Q*′ =
1 + Q*P*

P* ∙ (2ÀN − 2À + 1)
−

1
P*
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instead of Q* in generating +*M  and +*M
∗ . The relationship between À and inter-gene correlation is 

shown in Figure 2.1. 

 

 
 

Figure 2.1. The relationship between the mixing coefficient (alpha) and the average inter-gene 

correlation. 

 

2.3.3 Biological relevance measure of a gene-set 

To measure the functional relevance of gene-sets filtered by absolute GSEA, a gene-set score based on 

literatures (PubMed abstract) was designed. Here, it was assumed that the significantly altered gene-

sets contain genes playing important roles in the alteration of corresponding cell (tissue) condition. For 

a significant gene-set z, its relevance with a specific tissue ®	is scored by the log geometric average 

of the abstract counts as follows: 

—(z) = &

r
∑ log	(“”,*)

r
*-&        (1) 

where R is the gene-set size and “”,* is the number of PubMed abstracts where both the keywords 

related to the tissue ®  and the name of ß*  co-occur. The literature mining was conducted using 

RISmed R package 109. 
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2.3.4 RNA-seq data handling and gene-set condition 

The RNA-seq raw read counts were normalized by the DESeq 85. To make the logFC stable for small 

read counts, the lower 5% of normalized counts larger than zero were added to the normalized counts. 

Such pseudocount does not change other types of gene scores.  

2.3.5 Gene-set size 

The ‘gene-set size’ represents the number of overlapping genes between the original pathway and input 

RNA-seq dataset. In this study, the gene-set size was constrained to 10~300. 

2.3.6 AbsfilterGSEA R package 

I developed a CRAN R package ‘AbsFilterGSEA’ that performs both original and absolute gene-

permuting GSEA 110. Here, the input raw read count matrix is normalized by DESeq method 85. It also 

accepts an already normalized dataset. It is quite fast because the GSEA part was implemented with 

C++. The integration of C++ code to the R package was done by Rcpp package 111. 

 

2.4 Results 

2.4.1 Comparison of gene-permuting GSEA methods for simulated read count data 

The performance of twelve GSEA-GP methods for small replicate data were compared using simulation 

dataset reflecting the inter-gene correlation within gene-sets (See Section 2.3.2). The simulated read 

count data included 10,000 genes and 100 non-overlapping gene-sets each of which contained 100 

genes.  

First, the false positive rates (FDR < 0.1) of the GSEA-GP methods for the four gene statistics (mod-t, 

SNR, Ranksum and FC) and their absolute counterparts were measured using the simulated read count 

datasets with four different levels of inter-gene correlation, LOW (0~0.05), 0.1, 0.3 and 0.6 within each 

gene-set. Two, three and five replicates in each sample group were tested and no DE genes were 

included. This test was repeated twenty times and their average false positive rates were depicted in 

Figure 2.2A and 2.2D for three and five replicates, respectively. Figure S2.1A shows the result for two-

replicate case. A recently developed competitive method, Camera combined with the voom 

normalization 31, 101, the bias-adjusted random-set method (RNA-Enrich) 95 as well as two preranked 

GSEA methods 39 were also compared. The preranked GSEA (unweighted) was implemented using the 

GSEA R-code 39 where the ranks of genes were determined according to either the p-values resulted 

from the differential expression analysis using edgeR 98 package or the simple absolute fold-changes of 

the normalized count data. Note that SeqGSEA 79 provides only sample–permuting GSEA which is not 

useful for small replicates, and GSAAseqSP 94 provides a gene-permuting GSEA method which is 
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almost same as GSEA-GP described in this paper (I checked they yielded nearly the same results for 

the simulated count data). Although it is described that GSAAseqSP uses the absolute gene scores, they 

are only used for the step-sizes in K-S statistic, and it is far from the ‘absolute’ enrichment analysis. 

The false positive rates of GSEA-GP for the four ordinary gene statistics and the two preranked methods 

showed upsurge with the increasing inter-gene correlation. However, the increase rates of false positive 

rates for the four absolute GSEA methods were considerably lower than those for the ordinary statistics. 

 

 
 

Figure 2.2. Performance comparison of gene-permuting GSEA methods for simulated read 

counts. 

 GSEA-GP methods combined with eight gene statistics, (moderated t-statistic, SNR, Ranksum, logFC 

and their absolute versions), Camera combined with voom normalization, RNA-Enrich and two 

preranked GSEA methods for edgeR p-values and FCs were compared for false positive rate, true 
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positive rate and area under the receiver operating curve using simulated read count data with three (A-

C) and five replicates (D-F). 

 

For example, when three replicates were used, even for a moderate inter-gene correlation 0.1, the false 

positive rates for the original statistics were approximately 50% or higher while only a few false positive 

sets were detected for the absolute methods (1 ~ 3%). Camera yielded no false positives for each 

correlation level. Overall similar trends were observed with five replicates, but the absolute mod-t and 

absolute SNR exhibited nearly the same AUCs. RNA-Enrich and the edgeR/preranked methods 

exhibited relatively better false positive rates compared to the GSEA-GP and FC/Preranked methods. 

Next, 20% of the gene-sets (20 gene-sets) in the data generated above were replaced with differentially 

expressed gene-sets to compare the power (true positive rate) and the overall discriminatory abilities 

(ROC). These gene-sets included 20~80% (uniformly at random in each gene-set) of DE genes whose 

mean counts in the test or control group were multiplied by 1.5~2.0 with which the read counts in the 

corresponding group were regenerated. In DE gene-sets, weak inter-gene correlations (0~0.05) were 

randomly assigned while the non-DE gene-sets were assigned with four different inter-gene correlation 

levels. The corresponding powers and the area under the ROC curves (AUCs) were then obtained for 

the twelve methods compared (Fig. 2.2B, 2.2C, 2.2E and 2.2F). The preranked GSEA with FCs and 

GSEA-GP methods had the highest levels of power, but their AUCs rapidly declined as the inter-gene 

correlation level was increased because of their poor false positive controls. With the inter-gene 

correlation of 0.6, their performances were close to a random prediction (AUC≈ 0.5). On the other 

hand, the absolute GSEA-GP methods and Camera exhibited stable and good AUCs irrespective of the 

inter-gene correlation level. The ROC curves (average of 20 repetitions) of the twelve gene-permuting 

GSEA methods for the inter-gene correlation 0.3 are illustrated in Figure 2.3. For the two-replicate data, 

the false positive rates were similar to those of triplicate case, but the powers and AUCs were rather 

lowered (Fig. S2.1a). While the mod-t still exhibited best powers and AUCs among the absolute 

methods, the power of SNR was considerably lowered, which necessitates the moderated gene statistic 

in GSEA of small replicate data. Lastly, different inter-gene correlations were randomly assigned for 

gene-sets in a dataset, and two, three and five replicate cases were tested (Fig. S2.1b-d). The absolute 

mod-t still exhibited best AUCs in most cases and exhibited overall similar trends as the identical 

correlation cases. 

Overall, these results indicate that the absolute GSEA-GP provides an excellent false positive control 

and improves the overall discriminatory ability of GSEA-GP. Although the ordinary GSEA-GP 

methods exhibited best powers, they suffered from prohibitively high false positive rates resulting in 

very poor ranks of true positives (AUCs). Compared with Camera, the absolute methods yielded a little 

more false positives, but exhibited better power and overall discriminatory ability (correlation<0.6). In 
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general, for small replicate datasets, not all of the true positives may be identified perfectly by any 

method, but it would be important to discern some of the truly altered gene-sets reliably. 

 

 
 

Figure 2.3. Average receiver operating characteristic (ROC) curves. 

The average ROC curves (20 repetitions) of the twelve gene-permuting GSEA methods applied to 

simulation data with the inter-gene correlation of 0.3 for (A) three and (B) five replicate cases 
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2.4.2 Comparison of GSEA methods for RNA-seq data 

The performances of GSEA methods were compared for published RNA-seq datasets in several aspects. 

First, two RNA-seq datasets denoted by Pickrell and Li data, respectively, were analyzed for comparing 

power and accuracy as follows:  

The Pickrell data were generated from the lymphoblastoid cell lines of 69 unrelated Nigerian 

individuals (29 male and 40 female) 112. To analyze the chromosomal differences in expression between 

male and female, MSigDB C1 (cytogenetic band gene-sets) 113-115 was used for analysis. The GSEA-SP 

with SNR gene score was applied for the total dataset which resulted in two significant gene-sets 

‘chryq11’ (FDR=0.00143) and ‘chrxp22’ (FDR=0.0514) both of which were sex-specific. These two 

gene-sets were significantly up-regulated in male and female groups, respectively. Since the GSEA-SP 

controls the false positives well, these two gene-sets were regarded as true positives. Then, five samples 

were randomly selected from each group to constitute a small replicate dataset and GSEA-GP methods 

with or without absolute filtering, Camera, edgeR/Preranked methods were compared for this small 

replicate dataset. This process was repeated ten times. Using mod-t and logFC as the gene scores, on 

average, the GSEA-GP yielded 33.9 and 19.9 significant (FDR<0.25) gene-sets including 1.5 and 1.1 

true positives, respectively. On the other hand, GSEA-GP with the absolute filtering resulted in only 

3.67 and 2.9 significant gene-sets which included 1.11 and 1 true positives for the mod-t and logFC 

gene scores, respectively. For these five-replicate datasets, Camera did not detect any significant gene-

set, and the edgeR/Preranked detected as many as 137.4 which included 1.8 true positives. This result 

implies that the absolute filtering method effectively reduces the false positives resulted from GSEA-

GP while maintaining a good statistical power. 

A similar trend was observed with the Li dataset. The Li data 116 were generated from LNCaP cell lines 

with three samples treated with dihydrotestosterone (DHT) and four control samples. The MSigDB C2 

(curated gene-set) was used for analysis and the six gene-sets containing the term ‘androgen’ were 

regarded as potential true positives since DHT is a kind of androgen, though there can be other truly 

altered gene-sets. When the GSEA-SP with mod-t and logFC gene score was applied for this small 

replicate dataset, as expected, only one and no 'androgen' gene-set was significant (FDR<0.1), 

respectively. On the other hand, GSEA-GP with mod-t and logFC gene scores yielded as many as 187 

and 569 significant gene-sets, respectively, which included four 'androgen' gene-sets with FDR≤0.0067. 

When the absolute filtering was applied, the numbers of significant gene-sets were dramatically reduced 

to eight (Table 2.1) and 242, which included three and four 'androgen' gene-sets, respectively. Of note, 

the top three gene-sets were ‘androgen’ terms for the mod-t score. The absolute GSEA filtering with 

SNR score provided a similar result. Camera detected only two 'androgen' gene-sets within 101 

significant gene-sets with FDR=0.00836 and 0.0195, respectively. RNA-Enrich and edgeR/Preranked 
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were so sensitive for this dataset that 1108 and 782 sets were significant (FDR<0.1). RNA-Enrich and 

edgeR/Preranked detected four and three androgen terms within top 52 and 91 gene-sets.  

Overall, the results for real data analysis were concordant with the simulation results. GSEA-GP yielded 

a large number of significant gene-sets most of which seemed to be false positives. The absolute 

filtering method considerably reduced false positives at the cost of only small loss of power. Camera 

exhibited a strict false positive control, but its power was relatively weak. In particular, the absolute 

filtering with mod-t score exhibited a high precision and a good power in both datasets. 

Table 2.1. Significant gene-sets detected by the absolute GSEA-GP filtering (FDR<0.1) with the 

mod-t score (DHT-treated and control LNCaP cell line). 

 

2.4.3 Effects of the absolute filtering on false positive control and biological relevance 

Here, the effects of the absolute filtering were analyzed for real data in two other aspects. The first one 

is the false positive rate as investigated with the variance inflation factor (VIF). The false positive rate 

of a competitive gene-set analysis method is known to be determined by VIF which is defined as: 

Var(gene	set	statistic) = Varü.ü.Ÿ.(gene	set	statistic) × VIF 

where Varü.ü.Ÿ. is the variance of a gene-set statistic under the assumption that genes in each gene-set 

have independent expression values. For a linear gene-set statistic, the VIF is explicitly represented as 

a function of the gene-set size (K) and the average inter-gene correlation (‹̅) 101, 117 as follows: 

fiÖy = 1 + (R − 1)‹̅        (2) 

To compare the false positive rates of the GSEA-GP and the absolute GSEA-GP methods 

approximately, VIF distributions (2) of the significant gene-sets were compared for two TCGA RNA-

seq datasets (KIRC kidney tumor vs. normal 118 and BRCA breast tumor vs. normal 108). These datasets 

were comprised of a large number of cancer and normal samples (144 and 216 for the KIRC and BRCA, 

Gene-set name FDR Literature score 

Response to androgen (down, Nelson) 0 2.15 

Response to androgen (up, Nelson) 0 1.87 

Response to androgen (up, Wang) 1.63 × 105· 1.37 

PKD1 targets (up, Piontek) 2.79 × 105· 1.78 

Reactome Amino acid synthesis and 

interconversion transamination 

2.27 × 105N 1.94 

Response to forskolin (up, Wang) 3.02 × 105N 1.42 

AML cluster 11 (Valk) 5.12 × 105N 1.17 

Breast basal vs. luminal (up, Huper) 4.40 × 105N 1.53 
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respectively) with which the average inter-gene correlation may be accurately estimated. In each dataset, 

five cancer samples and five normal samples were randomly drawn to constitute a small replicate 

dataset, to which GSEA-GP was applied using the gene scores logFC and absolute logFC, respectively. 

Then, the VIFs were compared between two classes of significant gene-sets. One is the gene-sets that 

are significant only in the ordinary GSEA-GP (class A) and the other is those that are significant in 

both the ordinary and absolute GSEA-GP methods (class B). Note that the total samples in each dataset 

were used to calculate ‹̅. This process was repeated ten times and the corresponding VIF distributions 

were compared. In most cases, VIFs of class B were significantly smaller than those for class A. For 

KIRC data, all the ten sub-datasets exhibited significantly smaller VIFs in class B (Wilcoxon ranksum 

p-value<0.05; smallest p-value 6.15E-8). Similarly, seven out of ten sub-datasets derived from BRCA 

data showed significance (smallest p-value 2.14E-5). This indicates the absolute filtering method 

substantially reduces the false positives in real data analysis. The second aspect is the tissue-specific 

relevance score (1). As the above case, five samples were randomly selected from each group, and the 

literature relevance scores between the class A and B sets were compared for both KIRC and BRCA 

datasets. As a result, nine and four out of ten sub-datasets, the relevance scores in class B were 

significantly larger for the KIRC and BRCA datasets, respectively (smallest p-values: 7.87E-12 and 

1.06E-5, respectively). These results indicate that the absolute filtering results in highly reliable and 

biologically relevant gene-sets. 

 

2.5 Discussion 

Since the advent of RNA-seq technology until recently, various methods to identify DE genes from the 

RNA-seq read count data have been developed 31, 84, 98, 116. One notable feature shared by DE analysis 

methods is that they yield quite a number of DE genes. Typically, hundreds to thousands genes are 

differentially expressed with RNA-seq data of two sample groups. RNA-seq is known to provide a 

much improved resolution in quantitating gene expression compared to that of microarray 81, which 

may have increased the sensitivity of DE analysis for RNA-seq data. 

With the increased resolution and sensitivity, the pathway analysis or GSEA are expected to play a 

crucial role in genomic studies with their ability to detect the ‘subtle but coordinated’ changes in a 

gene-set39. However, in many cases, only GO analysis has been applied for interpreting RNA-seq data 
119. The low application rate of pathway analysis or GSEA for RNA-seq may be ascribed to the lack of 

tools that are specifically designed for RNA-seq data. The popularly used GSEA software 39 developed 

for microarray analysis can be used for RNA-seq data by normalizing the read count data ‘appropriately’ 

or simply applying the gene-permuting method (preranked GSEA) after ranking the gene differential 

scores using another software (e.g. edgeR or DESeq).  
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Since the majority of RNA-seq experiments have generated only small replicates, the preranked GSEA 

methods were often used for function and pathway analysis. However, gene-permuting methods usually 

result in a great number of false positives due to the inter-gene correlation whatever the replicate sizes 

are. To date, Camera 101 has been the only method to control the false positive gene-sets caused by the 

inter-gene correlation in analyzing small replicate read count data, but its statistical power was quite 

weak. In this study, I showed one-tailed absolute GSEA manifests an excellent false positive control 

and a good statistical power for analyzing small replicate RNA-seq data.  

To compare the performance of GSEA methods, read count data incorporating the inter-gene 

correlation were newly simulated. It is crucial to consider the inter-gene correlation in evaluating gene-

set analysis methods. The analysis results for the simulated and RNA-seq data commonly demonstrated 

the effectiveness of the suggested method. As such, the method and tool presented in this study may 

facilitate the pathway analysis of RNA-seq data with small replicates. 
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2.6 Supplementary information of Chapter II 

  
 

 

Figure S2.1. Performance comparison of gene-permuting GSEA methods for simulated read 

counts. 

GSEA-GP methods combined with eight gene statistics, (moderated t-statistic, SNR, Ranksum, logFC 

and their absolute versions), Camera combined with voom quantile normalization, RNA-Enrich and two 

preranked GSEA methods for edgeR p-values and FCs were compared for false positive rate, true positive 

rate and area under receiver operating curve (a) by increasing the inter-gene correlation of simulated read 

count data composed of two replicates, (b) or assigning various random inter-gene correlations (0~0.6) to 

each simulation dataset composed of two, (c) three, (d) and five replicates  

 

 

(a) 

(b) (c) (d) 
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Figure S2.2. Average receiver operating characteristic (ROC) curves for two sample cases.  

The average ROC curves of the twelve gene-permuting GSEA methods applied to simulation data 

where inter-gene correlation was 0.3 and the number of replicates were two.  
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(a) 

 
(b) 

 
(c) 
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(d) 

 
 

 (e)                                     (f) 

         
 

Figure S2.3. The effect of absolute gene-permuting GSEA 

Five tumor and matched normal samples were randomly selected from (a,c,e) TCGA KIRC or (b,d,f) 

BRCA RNA-seq dataset, and original or absolute gene-permuting GSEA were performed (gene score: 

logFC). (a,b) The distributions of variance inflation factor and (c,d) literature score of gene-sets that 

were significantly detected (FDR<0.25) only in the original GSEA (ClassA) and both in the original 

and absolute GSEA (ClassB) were compared (Wilcoxon ranksum test). This process was repeated ten 

times. (e,f) In addition, the ratio of gene-sets containing terms such as ‘cancer’, ‘tumor’, or ‘carcinoma’ 

were compared between class A and B.    
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Two-tailed absolute GSEA produces more false positive results than one-tailed absolute GSEA.  

We compared the filtering results by one-tailed and two-tailed absolute GSEA in analyzing Pickrell 112 

and Li 120 data. Two-tailed absolute GSEA generated more significant gene-sets than one-tailed absolute 

GSEA. For example, the GSEA-GP with one-tailed absolute filtering of Pickrell data (gene score: 

moderated-t) resulted in 2.6 significant gene sets (FDR<0.25) including one true term (chryq11) on 

average, while that of two-tailed filtering yielded 3.3 significant gene sets including one true term on 

average. When logFC was used as gene score, the one-tailed and two-tailed absolute filtering produced 

3.5 and 3.7 significant terms, respectively, including one true term.  

Similar result was observed for the Li data. The GSEA-GP with one-tailed absolute filtering detected 8 

significant gene sets (FDR<0.1) with three ‘androgen’-related gene sets as shown in the Table 2.1. 

However, when the two-tailed absolute filtering was applied, it detected 14 significant gene sets 

including the same three androgen-related terms. When logFC was used as the gene score, the one-

tailed and two-tailed absolute filtering detected 242 and 256 significant terms, respectively, including 

four androgen-related terms. These results imply that one-tailed absolute GSEA yields a little more 

conservative results. 
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Chapter III: A powerful pathway enrichment and network 

analysis tool for GWAS summary data 

 

3.1 Abstract 

Pathway-based analysis methods in genome-wide association study (GWAS) are being widely used to 

uncover novel multi-genic associations. Many of the pathway-based methods tested the enrichment of 

the associated genes in the pathways, but exhibited low powers and were highly affected by free 

parameters. A novel standalone software GSA-SNP2 was developed in this study for pathway 

enrichment analysis of GWAS p-value data. GSA-SNP2 provides high power, decent type I error 

control, and fast computation by incorporating the random set model and the SNP-count adjusted gene 

score. In a comparative study using simulated and three real GWAS data, GSA-SNP2 exhibited high 

power and best discriminatory ability compared to six existing enrichment-based methods and two self-

contained methods which is an alternative pathway analysis approach. Based on these results, the 

differences between pathway analysis approaches, and the effects of different correlation structures on 

the pathway analysis were also discussed. In addition, GSA-SNP2 visualizes protein interaction 

networks within and across the significant pathways so that the user can prioritize the core subnetworks 

for further mechanistic study. 

 

3.2 Introduction 

Improving the power of genome-wide association study (GWAS) has been a big challenge for the last 

decade. After the multiple testing correction, only a handful of SNP markers were obtained in a typical 

GWAS. Analysis of such top-ranked SNPs discarding all except ‘the tip of the iceberg’ was capable of 

revealing only a few associated functions. As the sequencing cost keeps dropping, the whole genome 

sequencing data are being used for GWAS 121 which poses a much greater multiple testing burden. To 

address the problem, a number of multi-loci (gene or pathway) based association analysis methods were 

developed. These methods substantially increased statistical power, and revealed many novel genes and 

pathways that were not found by the single SNP-based approach 122-124. In particular, pathway-based 

association analysis methods directly provide biologic interpretations, and are capable of detecting 

aggregate association of multiple genes even when the individual genes are only moderately associated. 

In earlier times, most of the pathway-based GWAS analysis methods incorporated competitive null 

hypothesis 99 and tested the relative enrichment of the associated genes in each pathway gene-set. 

GenGen 125, GSEA-SNP 126, iGSEA4GWAS 127, SSEA 128 and MAGENTA 62 implemented modified 
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GSEA algorithms which were originally developed for the pathway analysis of gene expression data, 

GSA-SNP 61 implemented modified Z-test as well as two GSEA algorithms, Aligator 129 and Gowinda 
64 provided Gene Ontology over-representation analysis accounting for the gene size (or SNP count), 

INRICH 63 tested enrichment of pathway gene-sets across independent genomic intervals, and 

MAGMA 65 exploited multiple regression models on gene and gene-set analysis. Whereas competitive 

methods for GWAS data provided fast and simple implementations, many of them exhibited low powers 

and were susceptible to some free parameters. 

The pathway-based association analysis methods were then developed for self-contained null 

hypothesis in recent years 68, 99, 123, 130. Competitive methods directly target pathway-level aberrations 

by testing the enrichment of the associated genes within each pathway, whereas self-contained methods 

test the existence of the associated genes therein103. Thus, self-contained methods are in general highly 

sensitive, so are useful in discovering novel pathways. However, genes typically have multiple 

functions and mere existence of associated gene(s) does not always imply a pathway-level aberration. 

So, both approaches are useful and complementary to each other.  

Besides, protein-protein interaction (PPI) networks were also considered for analyzing GWAS 

summary data to identify large modules of associated proteins beyond the pre-defined pathway gene-

sets 131-132. In this way, interrogation of GWAS data from different levels of biologic objects (SNP, gene, 

pathway and network) has proven useful for revealing novel associations to the phenotype of interest. 

Here, a novel C++ standalone tool GSA-SNP2 is presented that accepts GWAS SNP p-values and 

implements a powerful competitive pathway analysis as well as PPI network visualization in the 

significant pathways. Compared to its previous version61, GSA-SNP2 provides much improved type I 

error control by using the SNP-count adjusted gene scores, while preserving high statistical power. The 

gene scores are adjusted for the SNP counts for each gene using monotone cubic spline trend curve. It 

was critical to remove high scoring (potentially associated) genes before the curve fitting to achieve 

high power. The performance of GSA-SNP2 was compared with those of six existing competitive 

pathway analysis methods and two recently developed self-contained method using simulated GWAS 

data and DIAGRAM consortium data (type II diabetes). Based on these results, the difference between 

pathway analysis approaches for GWAS data, and the difference in gene correlation structures between 

GWAS and gene expression data and their effects on competitive pathway analysis were also discussed. 

GSA-SNP2 visualizes the PPI networks within (local) and across (global) the significant pathways. 

These networks suggest how the key proteins interact to each other and affect their neighbors in the 

aberrant pathways. The global network, in particular, shows the core PPI structure that cannot be 

represented by single pathways suggesting clues for mechanistic study. GSA-SNP2 is freely available 

at https://sourceforge.net/projects/gsasnp2. 
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3.3 Materials and Methods 

3.3.1 Algorithm of GSA-SNP2 

GSA-SNP2 employs Z-statistic in evaluating gene sets (pathways) like GSA-SNP. The critical 

improvement is resulted from the usage of the gene scores adjusted for the SNP counts for each gene 

using monotone cubic spline trend. 

 

 

Figure 3.1. The monotone cubic spline trend curves. 

Red points represent high scoring genes that have zero correlation coefficient (red dotted line). Both 

the trend curves with (purple) or without (blue) red points are represented. The blue curve is used for 

calculating the adjusted gene scores. 

 

Adjusted gene scores 

SNPs that are located in the range of a gene [gene	start − padding, gene end+padding] are assigned 

to the gene, where the padding size of a gene is chosen among {0, 10000, 20000}. Then, the initial 

gene score is given as the maximum of –log(SNP p-value) for those SNPs. These gene scores in general 

tend to increase as the number of assigned SNPs is increased. Thus, the initial gene scores are adjusted 

for the number of assigned SNPs using monotone cubic spline trend as shown in Figure 3.1. Many 

genes had very high scores irrespective of the increasing trend for the SNP counts, so such high scoring 

(presumably associated) genes are removed before fitting the trend curve. In other words, a range of 

top gene scores is searched so that their correlation coefficient becomes zero (red points) and the 
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corresponding genes are removed. And then, a monotone cubic spline curve (blue solid curve) is fitted 

for the remaining gene scores (blue points). Note that without filtering such high scoring genes, the 

trend curve was rather enhanced (purple dash), and the power of our method was much lowered 

eventually. 

The adjusted gene score for ith gene ß* is given as 

“]´(ß*) = −log	(ì*) − +(ß*) 

, where ì* is the best p-value among the SNPs assigned to ß* and +(ß*) is the estimated gene score 

on the trend curve. Note that the removal of the high scoring genes is only for the curve fitting and they 

are all restored when calculating the adjusted gene scores. See Supplementary information of Chapter 

III for the detailed algorithms for outlier treatment, conversion to monotonic data, curve fitting process. 

 

Pathway statistic 

Given a list S = {z&, zN, … , zr} of K gene-sets (pathways), each gene-set z*  (0 ≤ i < K) can be 

assessed by Z-statistic as follows:   

|(z*) =
ã* − 	U

L/•q*
 

, where Xi is the average of the adjusted gene scores in the gene-set z*, m and σ are respectively the 

mean and the standard deviation of all the adjusted gene scores, Ni is the number of genes in the current 

gene-set. Random set theory 100 is implemented in GSA-SNP2 to capture more closely the impact of the 

set size on the set score. Under the light of random set model, the mean m does not depend on attributes 

of the gene-set, but the standard deviation σ* depends on the gene-set size Ni : 

L∗ = L. Z
|T| − q*

|T| − 1
[

&
N
 

, where |T| is the total number of genes analyzed. The final gene-set statistic is as follows: 

|(z*) =
ã* − 	U

L∗/•q*
 

 

Adjacent gene filtering 

Some of the genes in a pathway are closely located on the genome or highly overlapping family genes, 

and some of them may belong to the same linkage disequilibrium (LD) block. Such genes exhibit a 

positive correlation in their p-values and may contribute to increasing false positive pathways. To 

prevent this possibility, the adjacently located genes in a pathway are alternatively removed if they have 

high positive genotype correlations (>0.5) in the 1000 genome data. See Supplementary Data for the 

detailed algorithm. However, in practice, only a small portion of genes in a pathway were adjacently 
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located and at the same time had high correlations. As a result, this filtering process had little effect in 

reducing false positives in the type I error control in our tests.  

3.3.2 Competitive pathway analysis tools 

The type 1 error rate control and statistical power of GSA-SNP2 was compared with other existing 

competitive pathway analysis methods that analyze GWAS summary data (Z-test of GSA-SNP (GSA-

SNP1), iGSEA4GWAS, MAGMA, MAGENTA, INRICH and Gowinda). MAGMA was tested for 

mean (MAGMA-mean) and top1(MAGMA-top1) SNP statistics as well as their combination 

(MAGMA-multi). For MAGENTA, two default enrichment cutoffs (75 and 95 percentiles of all gene 

scores) were used. For INRICH, the SNP intervals were constructed for top 1% association p-value. 

R2=0.5 was used for another LD-clumping parameter. Gowinda was tested for gene-mode and candidate 

SNPs were selected for top 1%, 5% or 10% association p-value. Other parameters were set as default.  

3.3.3 Simulation study 

The genotypes of 10000 individuals were simulated by randomly pairing the haplotypes of 1000 

Genome European samples. The phenotype Y of each individual was calculated based on the linear 

model. For type 1 error rate control test, following model was used. 

å = #&ã& + ⋯#ùãù + ó		 

where ã&,⋯ , ãù are normalized additive genotypes of k effective SNPs, #&,⋯ , #ù are SNP effect 

(set as one in this study) and ó is residual with ó~q(0, LN). In the type 1 error rate test, 300 effective 

SNPs were randomly selected within gene region. The phenotype variance LN is determined by the 

narrow-sense heritability (h2). In this case, the simulation data were generated for h2=25% or 50%.  

For power test, following model was used. 

å = #&ã& + ⋯#ùãù + )(T& + ⋯+ TÍ) + ó 

where ) is gene-set effect and T&,⋯ , TÍ are gene effects of M causal genes in the target gene-set. 

The gene effect of a gene g (TC ) is defined as TC =(ãCa + ⋯+ ãCÎ)/√—  where ãCa,⋯ , ãCÎ  are 

normalized additive genotypes of — causal SNPs within gene g. In this case, the total heritability was 

decomposed into the background heritability (ℎF
N = Ì8:(ÓaÔa¡⋯Ó¢Ô¢)

Ì8:()
) and gene-set specific heritability 

(ℎC
N = Ì8:(Ò(Ya¡⋯¡YÚ))

Ì8:()
), assuming that ã&,⋯ , ãù  and T&,⋯ , TÍ  have no correlation. Gene-set 

effect ) and phenotype variance LN is determined by the combination of ℎF
N and ℎC

N. The power 

simulation data were generated for ℎF
N = 25%	Ù≠	50%  and ℎC

N = 4%	Ù≠	8% . In this case, 100 

background SNPs were randomly selected within the gene regions, and 10~40% of causal genes in a 

target pathway were randomly chosen. For each causal gene, one causal SNP was randomly assigned. 

674 Reactome pathways (set size: 10~200) were used in the simulation test 42, 133.    
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3.4 Results and Discussion 

3.4.1 Type I error rate simulation test 

False positive (FP) control test was repeated 20 times for each condition and figure 3.2 shows the 

number of FP gene-sets (FDR<0.05) detected by each method. Because the causal SNPs were randomly 

distributed on the genome, none of gene-sets were enriched under this simulation setting. However, 

GSA-SNP1 and iGSEA4GWAS detected many FP sets (Median FP count of iGSEA4GWAS: 59.5 for 

h2=25%, 42 for h2=50%; GSA-SNP1: 26 for h2=25%, 35.5 for h2=50% out of 674 pathways). Other 

methods were good at FP control. GSA-SNP2 showed highly improved FP control compared to GSA-

SNP1 by applying adjusted gene scoring method. GSA-SNP2 was slightly liberal than INRICH, 

MAGMA and MAGENTA that detected almost no FP sets, but it still showed quite decent false positive 

control. Its median count of FP set was merely 2 for h2=25% and 1 for h2=50%. The results from 

Gowinda varied according to the SNP p-value cutoff. The false positive rate increased as the p-value 

cutoff increased. It showed best FP control with top 1% SNPs, but some data generated high FP sets 

under this condition (39/674, 5.8%).   

3.4.2 Power simulation test 

The statistical power of each method was tested for the combination of two background heritability 

(ℎF
N=25%, 50%) and two set-specific heritability (ℎC

N=4%, 8%). One target pathway was assigned for 

each simulation and I tested how many target pathways were significantly detected (FDR<0.05) among 

50 trials. GSA-SNP1 and iGSEA4GWAS were excluded from the test because they were vulnerable to 

the false positive control. Figure 3.3 shows the power of each method for each condition. GSA-SNP2 

showed the best power for all conditions (ℎF
N = 25%/ℎC

N = 8%: 78.0%, ℎF
N = 25%/ℎC

N = 4%: 60.0%, 

ℎF
N = 50%/ℎC

N = 8% : 65.3%, ℎF
N = 50%/ℎC

N = 4% : 44.0%). The power of MAGMA varied 

according to the analysis model. In most cases, MAGMA-top1 showed slightly better power than 

MAGMA-mean. Their combination (MAGMA-multi) considerably improved the true positive 

detection compared to either method, but still its power was quite lower than that of GSA-SNP2 (best 

power: 54.5% at ℎF
N = 25%/ℎC

N = 8%). INRICH and MAGENTA exhibited low powers compared to 

other methods (best power of INRICH: 16.3%, MAGENTA (75%): 22.0%, MAGENTA (95%): 14.3% 

at ℎF
N = 25%/ℎC

N = 4%). The results from Gowinda varied according to the SNP p-value cutoffs. 

Among three cases, Gowinda showed best power using top 1% SNPs as the candidate SNPs (best power: 

33.3% at ℎF
N = 25%/ℎC

N = 8%).  
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Figure 3.2. Type 1 error rate comparison.  

The boxplots of the false positive gene-sets count (FDR<0.05) detected by six competitive pathway 

analysis methods are shown. The simulation was performed for two heritability values (25% and 50%) 

and each simulation was repeated 20 times. MAGMA was tested for three gene models, INRICH was 

tested for approximate top 1% of SNPs, Gowinda was tested for approximate top 1%, 5% and 10% and 

MAGENTA was tested for 75% and 95% of enrichment cutoff. The red line indicates the 5% of total 

pathways. 
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Figure 3.3. Statistical power comparison.  

The power of each competitive pathway analysis method under the four simulation settings (ℎF
N =

25%/ℎC
N = 8% , ℎF

N = 25%/ℎC
N = 4% , ℎF

N = 50%/ℎC
N = 8%  and ℎF

N = 50%/ℎC
N = 4%)  are 

represented. The parameters of each method were same with those used in the type 1 error rate test.  

 

3.4.3 Performance comparison using real data 

The performance of GSA-SNP2 was compared with multiple competitive (GSA-SNP, INRICH (p=1E-

6, and p=1E-8), Gowinda (p=1E-3, p=1E-2 and p=5E-2), iGSEA4GWAS, MAGENTA (enrichment 

cutoff: 75% and 95% gene score), MAGMA-mean, MAGMA-top1 and MAGMA-multi) and self-

contained (sARTP and self-contained MAGMA) methods using three public data. I also included GSA-

SNP2 applied with VEGAS2 gene scores in the comparison (GS2VEGAS-all and GS2VEGAS-top1: 

all or best SNP(s) in a gene region was(were) used for gene score evaluation). 

First, the DIAGRAM consortium stage 1 GWAS p-values were used for comparing the statistical power. 

16 curated type II diabetes (T2D) related pathways 134 as well as those including the word ‘diabetes’ 

were regarded as gold standard gold standards and were summarized into 15 categories (Table 3.1). All 

the mSigDB C2 pathway gene-sets that correspond to these categories were listed in Supplementary 

Information of this chapter (denoted TP pathways). Figure 3.4 shows the comparison results between 

different methods: the cumulative gold standard pathway count for each pathway rank were plotted for 

each method up to q-value<0.25. Same graph with strict cut-off (q-value<0.05) is shown in figure S3.2. 

See also Table S1 of its original paper published in NAR 67 for the detailed results for each method 

compared. GSA-SNP2 exhibited high power and outperformed the other competitive and MAGMA 
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self-contained methods in the overall TP rank distribution. It was also showed slightly better gold 

standard rank distribution compared with powerful self-contained method sARTP. Except GSA-SNP2, 

GSA-SNP and iGSEA4GWAS, other competitive methods detected only small number of gold standard 

pathways (≤15) due to the low power. GSA-SNP2, GSA-SNP and iGSEA4GWAS detected 41, 47 and 

49 TP pathways among 108, 232 and 240 significant pathways (FDR<0.25), respectively. All self-

contained methods exhibited high power. sARTP detected 52 gold standard pathways out of 193 

significant terms, and self-contained MAGMA-mean, showing the best precision among MAGMA 

series, detected 85 gold standard pathways out of 552 significant sets. The gold standard pathways 

significantly detected by each method were counted for 15 categories (Table 3.1). Because the pathways 

ranked lower than top 100 may not draw much attention, I counted them up to 100th rank. Here, I focused 

on four methods which detected more than 25 gold standard pathways (GSA-SNP2, iGSEA4GWAS, 

sARTP and self-contained MAGMA-multi). Those methods detected all gold standard pathways in 

‘regulation of beta cell’ category. Except that, GSA-SNP2 best predicted at ‘diabetes’, ‘blood glucose 

regulation’, ‘branched chain amino acid metabolism’, ‘inflammation’ and ‘Notch signaling’ pathways; 

iGSEA4GWAS best predicted at ‘cell cycle’, ‘unfolded protein response’ and ‘glycolysis and 

gluconeogenesis’ pathways; self-contained MAGMA-multi best predicted at ‘diabetes’, unfolded 

protein response’, ‘Notch signaling’ and ‘mitochondrial dysfunction’ pathways; and sARTP best 

predicted as many as six categories such as ‘diabetes’, ‘adipocytokine signaling’, ‘unfolded protein 

response’, ‘fatty acid metabolism’, PPARG signaling’ and ‘WNT signaling’ pathways. Overall, GSA-

SNP2 detected large number of TP terms within top 100 pathways, and showed the comparable 

coverage of diverse gold standard categories compared with two powerful self-contained methods.  

Next, the height GWAS p-values from GIANT consortium 2010 were analyzed 135. The 15 gold 

standard pathways related height and bone regulation were curated from three independent studies. First, 

Pers et al. performed DEPICT pathway analysis using large size of height GWAS data from GIANT 

consortium 2012-2015 (sample size: 253,288) 136-137. Because large sample size increases the statistical 

power, and DEPICT properly controls the type 1 error-rate, it was regarded as a good source for 

examining the height-related pathways. From 183 significant pathways (FDR<0.01), 12 gold standard 

categories were found reported in the publications such as skeletal system development and 

epigenetics138-139. Second, Marouii et al. analyzed rare and low-frequency coding variant that affected 

to human adult height, and suggested several height-associated genes and pathways 140. Among them, 

‘proteoglycan’ and ‘reactive oxygen species’ were experimentally validated in other studies, so those 

were included in the gold standard categories 141-142. Third, ‘telomerase activity’ that have important 

role in chondrocyte proliferation during bone elongation was also included in the gold standard 

categories 143. The 15 height-related gold standard categories and related mSigDB C5 gene ontology 

terms (v 6.0) are listed in the Supplementary information of this chapter. The detailed analysis result of 



 

43 

all methods except sARTP are represented in the Table S2 of its original paper 67. sARTP was not tested 

with height data, because it cannot be applied to quantitative trait GWAS data. In this case, the 

cumulative gold standard pathway counts were plotted up to q-value<0.05 because most competitive 

methods showed greatly increased power compared to previous example due to the large sample size 

(183,727; figure 3.4). Similar to the previous case, GSA-SNP2 exhibited the high power and the best 

gold standard pathway prioritization. It detected 50 TP pathways out of top 100 significant terms. Other 

GSA-SNP series methods including GSA-SNP and GSA-SNP2 applied with VEGAS2 gene scores 

(GS2VEGAS-mean, GS2VEGAS-top1) also showed outstanding power and TP pathway prioritization 

compared to other methods. GSA-SNP, GS2VEGAS-mean and GS2VEGAS-top1 detected 46, 50 and 

53 TP pathways out of top 100 pathways, respectively. Unlike previous example, where relatively small 

number of samples (69,033) were used, many competitive methods including MAGMA, MAGENTA 

(95%) and Gowinda showed highly increased power in this case. Especially, MAGENTA and MAGMA 

exhibited better TP prioritization compared to self-contained MAGMA methods (MAGENTA detected 

35 TP pathways out of 73 significant terms; MAGMA-multi detected 40 TP pathways out of top 100 

pathways; and self-contained MAGMA-multi detected 37 gold standard pathways out of top 100 

pathways). There was difference in preferred TP categories for each method. For example, the 

competitive MAGMA methods detected the largest number of ‘skeletal system development’ pathways 

such as cartilage and chondrocyte development (e.g., MAGMA-multi detected 23 related terms), and 

many of them were in the top ranking. They were also top-ranked in the MAGENTA result. On the 

other hand, GSA-SNP series detected the majority of ‘epigenetics’ pathways (21~22 related terms were 

detected by all GSA-SNP series), and many of them were placed in the top ranking. All GSA-SNP 

series also specifically detected many ‘telomerase activity’ pathways within top 100 terms. The most 

‘insulin-like growth factor and growth hormone’ pathways were detected by GS2VEGAS (six terms 

were detected by GS2VEGAS-all while other methods detected three or less terms).  

I also compared the statistical power using Korean height GWAS p-values where relatively small 

samples (8,842) were used 144. In this case, the cumulative gold standard pathway counts were plotted 

up to q-value<0.25 due to the lowered powers in overall methods. See figure S3.2 where same graph 

was drawn for q-value<0.05. Again, GSA-SNP2 showed high power and outstanding gold standard 

pathway prioritization compared to other methods. It detected 44 gold standard pathways out of top 100 

terms. Here, GS2VEGAS and MAGENTA (75%) methods showed slightly better gold standard rank 

than GSA-SNP2 in the front (~40th rank). Although MAGENTA had low power, it exhibited the highest 

gold standard pathway density (25 out of 41 significant terms; 61.0%) showing its great false positive 

control. The statistical powers of MAGMA methods were severely decreased compared to GIANT 

height case. MAGMA-mean and MAGMA-multi detected no significant pathways and only MAGMA-

top1 detected five ‘skeletal system development’ and one ‘epigenetics’ pathways. It implies that 
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MAGMA is quite sensitive to GWAS sample size than other methods. The preferred gold standard 

categories were similar to the GIANT height case. For example, self-contained MAGMA methods 

detected many ‘skeletal system development’ pathways than others (13~16 pathways; GSA-SNP2 

detected 11 relevant pathways and others detected eight or less), while GSA-SNP series detected 

particularly many ‘epigenetics’ and ‘telomerase’ pathways than others.  

 

 

Figure 3.4. Power comparison using real data.  

For three public GWAS summary statistics data (DIAGRAM, GIANT height and Korean height data), 

the cumulative gold standard pathway count distributions of six competitive and two self-contained 

pathway analysis methods were plotted. The results from INRICH were not represented because it failed 

to detect more than one gold standard pathway for all cases. The blue dashed line indicates the expected 

distribution of the cumulative gold standard pathway count. 
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3.4.4 Comparison of competitive and self-contained pathway analysis results 

GSA-SNP2 and sARTP results were further compared by the pathways exclusively detected by either 

method. The top ten pathways that were significant with GSA-SNP2 but were least significant with 

sARTP, and vice versa were selected and the distributions of gene p-values (VEGAS best p option) 

were compared in Figure 3.5. In the former case, several genes had similar low p-values which seemed 

to collectively represent the pathway-level aberrations. On the other hand, in the latter case, most 

pathways contained one or two extreme gene p-values which seemed to dominate those pathways. If 

such extreme genes also belong to many other pathways, the association of the corresponding pathway 

may not be very reliable. Although competitive methods are also affected by such outlier genes, and 

self-contained methods are also capable of detecting pathways composed of moderately associated 

genes only, these examples demonstrate the difference of the two GWAS pathway analysis approaches. 

 

 

Figure 3.5. Comparison of gene p-value distributions in the pathways that are only significant 

with (a) GSA-SNP2 or (b) sARTP. 

 

3.4.5 Comparison with the competitive pathway analysis for gene expression data 

The core algorithms used for competitive pathway analysis of GWAS data are virtually the same as 

those used for gene expression data. It is well known that the competitive methods for gene expression 

data suffer from inflated type I errors caused by the inter-gene correlations in each pathway 99, 101. 

Interestingly, in the test for GWAS summary data, competitive methods mostly resulted in little false 

positives. There is a substantial difference in the inter-gene correlation structure in each pathway 

0 2 4 6 8

−log10(vegas p−value)

KEGG_CALCIUM_SIGNALING_PATHWAY. sARTP:0.687, GS2: 0.0441

BIOCARTA_TID_PATHWAY. sARTP:0.593, GS2: 0.0451

REACTOME_ION_TRANSPORT_BY_P_TYPE_ATPASES. sARTP:0.583, GS2: 0.0336

BIOCARTA_G1_PATHWAY. sARTP:0.564, GS2: 0.0441

KEGG_DILATED_CARDIOMYOPATHY. sARTP:0.495, GS2: 0.0434

KEGG_TYPE_I_DIABETES_MELLITUS. sARTP:0.423, GS2: 0.00621

BIOCARTA_AKAP95_PATHWAY. sARTP:0.37, GS2: 0.0259

KEGG_GRAFT_VERSUS_HOST_DISEASE. sARTP:0.346, GS2: 0.00534

KEGG_ALLOGRAFT_REJECTION. sARTP:0.335, GS2: 0.00534

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS. sARTP:0.203, GS2: 0.00534

GSA−SNP 2−specific gene−sets

0 2 4 6 8

−log10(vegas p−value)

REACTOME_METAL_ION_SLC_TRANSPORTERS. sARTP:0.00541, GS2: 0.938

REACTOME_ZINC_TRANSPORTERS. sARTP:0.00541, GS2: 0.932

KEGG_THYROID_CANCER. sARTP:0.00541, GS2: 0.774

REACTOME_KINESINS. sARTP:0.021, GS2: 0.764

BIOCARTA_41BB_PATHWAY. sARTP:0.0377, GS2: 0.46

REACTOME_FATTY_ACID_TRIACYLGLYCEROL_AND_KETONE_BODY. sARTP:0.00947, GS2: 0.423

REACTOME_ACTIVATION_OF_CHAPERONE_GENES_BY_XBP1S. sARTP:0.00821, GS2: 0.403

REACTOME_UNFOLDED_PROTEIN_RESPONSE. sARTP:0.0341, GS2: 0.33

REACTOME_DIABETES_PATHWAYS. sARTP:0.0108, GS2: 0.252

ST_GA13_PATHWAY. sARTP:0.0142, GS2: 0.225

sARTP−specific gene−sets(a) (b)



 

47 

between the two data types. In the gene expression case, many genes in each pathway are involved in 

the same biological process and exhibit positive correlations to each other. However, in the GWAS case, 

only adjacently located genes in each pathway that belong to the same LD block exhibit positive 

correlations. Indeed, only a small portion of genes were adjacently located in each mSigDB C2 

canonical pathway (median=1.4%, mean=4.3%), and only a portion of them had meaningful 

correlations (median=0.0%, mean=0.9% for both correlation>0.3 and 0.5). Therefore, inter-gene 

correlations in GWAS data seem to exert very limited effect on false positive generation. Note that 

GSA-SNP2 removes those highly correlated adjacent genes in calculating pathway scores to further 

reduce false positives (Supplementary Information). Many competitive methods for GWAS data based 

on GSEA procedure 125-126, 128 perform sample label permutation of genotype data for the purpose of 

controlling false positives. The observation in this study suggests that the simple competitive methods 

that permute gene or SNP labels reasonably control false positives without the heavy permutation of 

genotype data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. PPI network 

(HIPPIE) from DIAGRAM data. 

(a) Global network from significant 

gene-sets (FDR<0.25; gene 

score<0.01). (b) A sub-network 

composed of eight nodes from the 

global network. (c) A heatmap 

representing the membership of each 

gene node in the significant 

pathways. 
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3.4.6. Comparison of running times 

Lastly, the running times for each software were compared for the DIAGRAM data and the C2 

canonical pathway sets (Table 3.2). GSA-SNP, GSA-SNP2, MAGMA-mean, INRICH and Gowinda 

were quite fast taking only a few minutes, while sARTP took over ten days run on the same PC (Intel 

Xeon Processor X5670 @ 2.93GHz, 12 CPUs and 24GB of RAM). 

 

Table 3.2. Running times for seven pathway analysis programs for GWAS summary data. 

Method Time Permutation 

GSA-SNP2 (command ver.) 1.53 min - 

GSA-SNP 1.49 min. - 

MAGMA-mean 3.03 min - 

MAGMA-top1 34.85 min - 

MAGMA-multi 41.85 min - 

i-GSEA4GWAS 30 min. - 

MAGENTA 114.18 min 10000 

Gowinda (p=0.001) 0.62 min. 10000 

Gowinda (p=0.01) 0.80 min. 10000 

Gowinda (p=0.05) 2.01 min. 10000 

INRICH (p1=1E-6) 0.85 min. 10000 

INRICH (p1=1E-4) 2.41 min. 10000 

sARTP 10.41 days 100000 

 

3.4.6 Network visualization 

GSA-SNP2 visualizes protein interaction networks within individual and across significant pathways 

Network plots are generated based on STRING 145 or HIPPIE 75 networks, and the cut-offs for gene and 

pathway scores for visualization are selected by the user. Clicking on the gene node pops up a table 

which shows the gene name, mapped SNPs, the neighboring genes, their association scores as well as 

further detailed information via the hyperlink to outer databases such as GeneCards 146 and dbSNP 147. 

The network data are also provided as a text file which also shows the pathways that contain the 

interacting protein pairs.  

In particular, the global network can provide interacting protein pairs that do not belong to any of the 

single pathways. Such protein pairs may have drawn relatively less attention, but can provide useful 

information for mechanistic study. For example, the global network (extracted from HIPPIE network) 
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of the significant pathways (FDR<25%, gene score<0.01) obtained from DIAGRAM data contained a 

sub-network composed of eight genes such as TNF, RAB5A, CHUK, LTA, CARS, IGF2BP2, HSPA1L 

and HSPA1A (Figure 3.6). Among them, TNF and RAB5A have been individually studied and both 

are known to regulate the insulin-responsive glucose transporter (GLUT4) 148-150, a key protein that 

regulates the concentration of blood glucose by transporting it to muscle or fat cell. Thus, the 

deregulation of GLUT4 can lead to insulin-resistance and T2D 151-152. The global network shows the 

two proteins have a medium level of interaction score 0.63 (affinity chromatography technology), and 

their interaction may have an important implication in T2D.  

The DIAGRAM data were also analyzed using STRING network. It provided much denser interaction 

networks among the high scoring proteins than those for HIPPIE network, and the key T2D proteins 

TNF and PPARG were represented as hub proteins. Note that many of the interaction edges from 

STRING network were generated from the literature only which included GWAS papers, and should 

be carefully analyzed to avoid circular argument. 

 

3.5 Conclusion 

GSA-SNP2 is a powerful and efficient tool for pathway enrichment analysis of GWAS summary data. 

It provides both local and global protein interaction networks in the associated pathways, and may 

facilitate integrated pathway and network analysis of GWAS data. The five features of GSA-SNP2 are 

summarized as follows: 

1) Reasonable type I error control by incorporating gene scores adjusted to the corresponding SNP 

counts using monotone cubic spline trend. 

2) High power and fast computation based on the random set model. 

3) Without any critical free parameter 

4) Protein interaction networks among the member genes were visualized for the significant pathways. 

This function enables the user to prioritize core sub-networks within and across significant pathways. 

STRING and HIPPIE networks are currently provided.  

5) Easy to use: Only requires GWAS summary data (or gene p-values) and takes only a minute or two 

to get results. Other powerful self-contained pathway tools also require SNP correlation input and 

take much longer time. 
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3.6 Supplementary information of Chapter III 

In this supplementary information, the ‘Adjusting algorithm’ part was written by Dr. Hai C T Nguyen, 

a co-first author of this research. I generated figures and wrote ‘15 biological processes related to height 

regulation’ part.  

 

 

Adjusting algorithm 

GSA-SNP2 still employs the Z-statistic method in evaluating gene sets/pathways like GSA-SNP. The 

critical improvement is the usage of the adjusted gene scores instead of the direct –log(p-values). 

 

Z-statistic method 

Assume that there are a list S of K gene sets/pathways, each gene set Si (0 ≤ i < K) is assessed by a set 

score si following the Z-statistic:   

S* = ˆ(z*) =
ã* − 	U

L/•q*
 

, where Xi is the average of the gene scores in gene set Si, m and σ are respectively the mean and the 

standard deviation of all the gene scores, Ni is the number of genes in the current gene set. In this work, 

GSA-SNP2 considers the best p-value among all SNP p-values pk (0 ≤ k < |Gj|) in a gene Gj as the 

assessed gene score gj (0 ≤ j < |Si|). Random set theory is also implemented to capture more closely the 

impact of the set size on the set score 100. Under the light of random set model, the mean m does not 

depend on attributes of the category (gene set/pathway), though the variance σ* depends on the category 

size Ni: 

L∗ = L. Z
|T| − q*

|T| − 1
[

&
N
 

With the enhancement of random set method, the final set score si is modified by the following equation: 

S* = ˆ(z*) =
ã* − 	U

L∗/•q*
 

However, adjusted gene scores are essentially required before GSA-SNP2 can evaluate the set scores. 

 

Zero correlation area detection 

Presenting the distribution of gene score over the numbers of SNPs in a gene, zero correlation area is 

defined by all scores gi greater than a calculated threshold gt so that there is not a linear relationship 

between two mentioned variables. The threshold gt can be identified by continuously examining 
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whether the first derivative a of the regressed linear function f(gi ≥ gt) = agi + b is ‘zero’ with various 

candidates gt. Because gene scores are discretely distributed over the numbers of SNPs, a ‘zero’ status 

is flexibly accepted when a is very close to 0. GSA-SNP2 will accept a ‘zero’ status if a is in range 

[−1−10, 1−10]. A ‘zero’ status can also be accepted if there is no better a found in 1,000 continuous trials. 

To efficiently identify threshold gt, the fastest searching technique ‘binary search’ is applied. With each 

gt’ = ½ (gupper + glower), a regressed linear function f’(gi ≥ gt) = a’gi + b’ is inferred. When conditions of 

a ‘zero’ status are still not satisfied, the current first derivative a’ is checked to decide the setting for 

the next trial. If a’ < 0, more data points are required to rise the slope. To add more data points to current 

candidate area Gzero, the new gt’ needs to be degraded. In ‘binary search’ manner where a gt’ is controlled 

by the upper and lower boundaries, gupper should be degraded first to make the same effect on gt’. The 

result is the new gupper is degraded to the level of the old gt’. Similarly, if a’ > 0, less data points should 

be considered in Gzero. Sequentially, the glower needs to be upgraded to a new level. And in ‘binary search’ 

manner, gupper is assigned to the level of the old gt’. The new threshold gt’ will obtain the average value 

of the new setting of gupper and glower. This procedure is continuously repeated until a ‘zero’ status is 

reached. In short, the zero correlation area can be detected by the following iteration algorithm: 

• Step 0: Begin with a list G of M gene scores: G = {g0, g1, …, gM−1}70, which contains all 

unduplicated gene scores from all gene sets. GSA-SNP2 only considers the list G of valid genes, 

which are included in at least a gene set/pathway. GSA-SNP2 also only considers the list S of all 

appropriate gene sets, which contains at least 10 genes and at most 200 genes in default settings. 

However, GSA-SNP2 provides controllable parameters for gene set size to fit user interests.  

• Step 1: The temporary zero correlation threshold gt
’ is set to the average of the maximum and the 

minimum gene scores. gt’ = ½ (gupper + glower). At this point, gupper = gmax and glower = gmin. 

• Step 2: A new candidate for zero correlation area G’zero can be determined by: 

{ß* ≥ ßA
u: ß* ∈ T} 

• Step 3: Perform linear regression on current G’zero to obtain the linear function f’(gi) = a’gi + b’.  

• Step 4: Examine whether f’(gi) satisfies the conditions of a ‘zero’ status. If the conditions are 

satisfied, the desired zero correlation threshold gt is found: gt = gt’; or else, further investigation is 

required. The first derivative a’ is checked to adjust the parameters for the next iteration base on 

the following criteria: 

˜
	^∞	_u < 0, ß?¯¯;: = ß′A
	^∞	_u > 0, ßD>9;:		 = ß′A

 

, where gupper and glower are previously initialized with the maximum and minimum values 

among available gene scores. In each iteration, only one parameter gupper or glower is adjusted 

at a time, the other remains unchanged. 
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• Step 5: Repeat Step 1-4 until a zero correlation area Gzero is discovered, or the best solution is 

reached. The best solution may not completely satisfy the conditions of a ‘zero’ status but it 

remains the same continuously for at least 1,000 iterations. 

Outlier treatment 

In practice, it is found that genes including extremely significant SNP(s) may cause unexpected 

situation where zero correlation area contains very few or even one data point. In these cases, the 

extreme gene score is so significant that the regressed first derivative a’ is always much greater than 0 

over iterations. That a ‘zero’ status is never reached until the extreme data point is left alone makes the 

detecting zero correlation phase meaningless in most cases. This situation also makes the search 

progress work in the worst searching case, which takes the longest time. The proposed solution for this 

problem is treating the extreme values as outliers and taking them out before detecting zero correlation 

area. Statistical mean m’ and standard variance σ’ of gene scores corresponding to each number of SNPs 

are used to identify outliers in each group. A gene score g’ is considered as an outlier when g’ ≥ m’ + 

3σ’.  

Dual cubic spline estimation 

With assumption that gene score tends to increase when the number of SNPs get greater, GSA-SNP2 

uses the monotone cubic spline interpolation to fit the binary data after excluding zero correlation area. 

The flexibility of spline model allows the fitting curve to capture almost any potential non-linear trends. 

And in theory, the monotonicity characteristic ensures the direction of the trend curve. However, to 

practically guarantee the monotonicity, it is found that data to be estimated should not be too much 

fluctuated (Figure 3.1). In other words, the monotonicity should have been implied in the input data. 

One popular solution is manually select input data points in a monotone manner119: a heuristically fixed 

number of knots is selected monotonically; and these knots are fed as input into a cubic spline 

interpolation algorithm. Firstly, the direct drawback of this method is the neglect of an automatic 

processing framework. The number of knots is decided merely based on expertise experience, which 

may vary from user to user. Secondly, the missing of automatic also leads to the neglect of adaptation 

of this method for a wide range of data. To ease the situation, GSA-SNP2 suggests dual cubic spline 

estimation method to automatically and adaptively estimate scattered binary data. The general idea of 

‘dual cubic spline estimation’ is to avoid the effect of severe fluctuating data (Figure S3.1) on the fitting 

curve. Instead of using all data at the same time, GSA-SNP2 classifies data into two strictly monotone 

groups: monotonically increasing from the minimum and monotonically decreasing from the maximum. 

By this simple procedure, it is easy to realize that a fitting curve in each group will not be affected by 

the fluctuation coming from the other group. Further, each group already obeys the monotonicity 

characteristic itself. At this point, each of the two fitting curves is able to be used as an adjusting trend 

line to adjust all gene scores in G. However, an extreme selection procedure like that clearly ignores 



 

53 

the integrity and consistency of data. In order to preserve these important characteristics of input data, 

another simple integration procedure is implemented to ensure each data item having its part contributed. 

At each knot, the average of inferred data from both curves is used as new data for the final cubic spline 

estimation. The algorithm can be summarized as followings: 

• Step 0: Binary data D = {di}, where di = (xi, yi), is sorted along x-axis. Generally, it can be assumed 

that xi < xj when i < j. And ymin, ymax are respectively the minimum and the maximum of all yi. As 

a consequence, xymin, xymax are respectively the x-axis coordination of the minimum and the 

maximum.  

• Step 1: Classify D into two strictly monotone groups Dupper and Dlower: monotonically increasing 

from the minimum and monotonically decreasing from the maximum. The first member of Dupper 

is (xymin, ymin). Assume that the second selected member of Dupper is (x1, y1), for any next selected 

candidate (xt, yt), it is essential to ensure that y1 > ymin and yt > yt−1. Similarly, the first member of 

Dlower is (xymax, ymax). Assume that the second selected member of Dlower is (xn, yn), for any next 

selected candidate (xn+1, yn+1), it is essential to ensure that yn < ymax and yn+1 < yn. 

• Step 2: Perform cubic spline interpolation on both Dupper and Dlower to obtain two monotone curves: 

Cupper and Clower.  

• Step 3: For each knot (xi, yi), 0 ≤ i < |D|, inferring the new knot (xi_average, yi_average) for the final cubic 

spline estimation: 

˘
˙*_8v;:8C; = &

N
(˙*_™_?¯¯;: + ˙*_™_D>9;:)

¸*_8v;:8C; = &
N
(¸*_™_?¯¯;: + ¸*_™_D>9;:)

 

, where (xi_C_upper, yi_C_upper) and (xi_C_lower, yi_C_lower) are respectively the inferred data from Cupper 

and Clower. 

• Step 4: Perform cubic spline interpolation again on the new integrated data to obtain the final curve 

C as the adjusting trend line to adjust all gene scores of G. As a result, for each gi of G, the 

corresponding adjusted score gi_adjusted can be defined as: 

ß*_8<M?HA;< = ß* − +(ß*) = ß* − ß*_™  

, where gi_C = C(gi) is the inferred trend score from the estimated curve C.  

Data sampling strategy 

Usually, data are sampled at a regular interval of data population (percentile) or data distribution (range). 

However, when the density of data at a certain area is too high, the samples from the first approach tend 

to assemble mostly in that area. That fact will limit the general view of the whole data when an 

estimation is employed. Meanwhile, the second approach treats all areas, whose density are too high or 

too low, equally. In that way, the meaningful content of data will be simplified while the less important 

information may be amplified. Unfortunately, distribution of data of gene scores over the numbers of 
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SNPs is in this bad shape where data densely gather at the small numbers of SNPs and quickly become 

sparser as the number of SNPs is increasing. In attempt to solve the problem, GSA-SNP2 suggests 

another adaptively sampling approach which samples more at crowded area and less at sparse area. 

Assume that data D is defined by {di = (gi, ni)}, where gi is gene score and ni is the number of SNPs. 

Sampling will be made when ni = nk = 2k – 1 where k is a natural counting parameter in range [0, kmax), 

and kmax is the minimum number making 2kmax− 1 ≥ max(ni). As a consequence, sampled gene score is 

defined as: 

ßù =
1
qù

(ß*

,¢

*-&

 

, where Nk is the number of data instances whose ni = nk and gi is the corresponding gene scores. Sampled 

data instances (gk, nk) can be used as active knots feeding into the dual cubic spline estimation algorithm. 

 

Figure S3.1. Dual cubic spline illustration.  

Blue fitting curve, which is severely fluctuated, is obtained when directly applying cubic spline fitting 

on all data points (knots) at the same time. Dot and dash-dot fitting curves are obtained when 

respectively applying cubic spline fitting on upper-bound and lower-bound monotone groups of knots. 

Red fitting curve is the final result when applying cubic spline fitting on inferred average knots of both 

upper and lower curves. 
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15 biological processes related to height regulation 

1) Skeletal system development 

The abnormal skeletal system development leads to skeletal dysplasia which is the disorders of cartilage 

and bone. Currently, more than 350 skeletal dysplasia have been discovered caused by different types 

of genetic mutations 153.  

 

2) Epigenetics 

The epigenetic regulation of height-associated genes is important for developmental process 154. For 

example, the defects in the genomic imprinting leads to growth disorder including Silver-Russel and 

Beckwith-Wiedemann syndromes 139, 155. Furthermore, some height-associated genes such as DOT1-

like and NSD1 histone methyltranferases, HMGA1, HMGA2 are involved in the assembly of chromatin 

structure. Among these, the malfunction of the histone methyltransferase NSD1 causes the Sotos 

syndrome, characterized by overgrowth in childhood and retardation in mental and movement abilities 
156. 

 

3) Insulin-like growth factor-1 and growth hormone 

Insulin-like growth factor-1 mediates the protein anabolic and linear growth prompting effect of 

pituitary growth hormone (GH) 157. 

 

4) Wnt/ß-catenin signaling 

Wnt/ß-catenin signaling affects to the skeletal development. In the early stage of skeletal development, 

this signaling leads mesenchymal progenitor cells to bone-forming osteoblast lineage. Later, Wnt/ß-

catenin in the chondrocyte of growth plate promotes the chondrocyte survival, hypertrophic 

differentiation and endochondrial ossification. Functional study revealed that the mutation in Wnt 

signaling component affected to the bone mass in mice and human 158.  

 

5) TGFß signaling 

Transforming growth factor-ß (TGFß) signaling is important in chondrogenesis and osteogenesis. The 

defects in TGFß leads to chondrodysplasias characterized by short stature with short limbs 159. 

 

6) Platelet-derived growth factor 

Platelet-derived growth factor (PDGF)-BB was reported as potent stimulator of proliferation of growth 

plate chondrocyte 160. 
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7) Extracellular matrix 

Growth plate is composed of ordered zone of chondrocyte which secretes extracellular matrix (ECM) 

including several types of collagens and proteoglycan. The mutation in ECM contributes to the 

abnormal growth plate development 161. 

 

8) Nuclear matrix 

Nuclear matrix protein Satb2 represses Hoxa2 expression and acts with other regulatory proteins to 

promote osteoblast differentiation 162. 

 

9) Cell cycle 

Cell proliferation is important for the normal development of mammals because their body size is 

predominantly determined by the number of cells. The mutations of several genes involved in DNA 

repair and replication cause the growth failure in primordial dwarfism 138.  

 

10) Androgen 

Androgen secretion increases during the puberty and it regulates the rate of height growth during the 

adolescence, particularly in males 163. 

 

11) Ubiquitin ligase 

E3 ubiquitin ligases c-Cbl and Cbl-b have been reported to interact with receptor tyrosine kinases (RTK) 

and other molecules to control the bone cell proliferation, differentiation and survival. The inhibition 

of c-Cbl promotes the osteoblast differentiation through the decreased RTK degradation 164. 

 

12) Nuclear Factor Kappa B   

Nuclear factor kappa B (NF-kB) is expressed in the growth plate chondrocyte and it mediates the 

promoting effect of growth hormone and IGF-1 on longitudinal bone growth and growth plate 

chondrogenesis 165.  

 

13) Proteoglycan 

The proteoglycans are components in the extracellular matrix of cartilage. It is essential during the 

differentiation and for maintenance of cartilaginous skeletal elements 141. 

 

14) Reactive oxygen species 

Reactive oxygen species (ROS) are important components that regulate the differentiation and bone-

resorbing function of osteoclast 142.  
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15) Fibroblast growth factor and telomerase activity 

Fibroblast growth factor receptor 3 (FGFR3) inhibits chondrocyte proliferation by down-regulating the 

telomerase reverse transcriptase (TERT) and reducing the telomerase activity. It suggests the important 

role of telomerase activity in the chondrocyte proliferation during the bone elongation 143. 
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Table S3.1. Gene Ontology terms (mSigDB C5 v6.0) related to 15 height-related categories 

 



 

59 

 



 

60 
 



 

61 
 



 

62 

 



 

63 

 
 

 

 

 

 



 

64 

Table S3.2. Canonical pathways (mSigDB C2 v6.0) related to 15 T2D-related pathways 
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Figure S3.2. Power comparison using real data with strict significance cutoff.  

DIAGRAM and Korean height data were re-analyzed using stricter cutoff (pathway q-value<=0.05). 

Methods that failed to detect TP terms were not represented.  
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Chapter IV: Biclustering analysis of transcriptome big data 

identifies condition-specific miRNA targets 

4.1 Abstract 

Here, a novel approach was devised to identify human microRNA (miRNA) regulatory modules 

(mRNA targets and relevant cell conditions) by biclustering a large collection of mRNA fold-change 

data for sequence-specific targets. Bicluster targets were assessed using validated mRNA targets and 

exhibited on an average 17.0% (median 19.4%) improved gain in certainty (sensitivity + specificity). 

Net gain was further increased up to 32.0% (median 33.4%) by incorporating functional networks of 

targets. The cancer-specific biclusters were analyzed and it was found that PI3K/Akt signaling pathway 

was strongly enriched with targets of a few miRNAs in breast cancer and diffuse large B-cell lymphoma. 

Indeed, five independent prognostic miRNAs were identified, and repression of bicluster targets and 

pathway activity by mir-29 was experimentally validated. In total, 29,898 biclusters for 459 human 

miRNAs were collected in the BiMIR database where biclusters are searchable for miRNAs, tissues, 

diseases, keywords, and target genes. 

 

4.2 Introduction 

MicroRNAs (miRNAs) are small non-coding RNA molecules (19 - 23nt) that regulate gene expression 

by binding to miRNA response elements in mRNA at the post-transcription level 166-167. Since their 

discovery, extensive studies have revealed their key roles in regulating cell cycle and differentiation, 

chronic diseases, cancer progression, and other processes 168-171. As the function of a miRNA is 

characterized by its target genes, there have been efforts to systematically identify these target genes 

based on the binding sequences 172-176. Although these methods provide hundreds to thousands of 

potential targets, they yield a great number of false positives and do not suggest specific targets related 

to the cell condition in question.                                                                    

To select more reliable mRNA targets of each miRNA, expression profiles of mRNAs and miRNAs 

(denoted paired expression profiles) have been incorporated taking into account the anticorrelation 

between miRNA and its target mRNA. Besides the simple Pearson and Spearman correlation methods, 

a number of computational methods that integrated both the binding sequence and paired expression 

data have been developed to infer the miRNA-mRNA regulatory relationships including penalized 

regressions and Bayesian method 177-179 (denoted anticorrelation-based methods). Many of them used 

multivariate linear model where multiple miRNAs regulate their common target gene. These methods 

not only improved the target prediction but provided the cellular condition where the paired expression 
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data were generated. However, anticorrelation-based methods require highly costly paired expression 

profiles and only a limited number of such paired data are publicly available at present. 

Another line of efforts to improve the miRNA target prediction was the inference of miRNA regulation 

modules. Based on the binding sequence information, a bipartite graph between miRNAs and mRNAs 

was constructed and the maximum bicliques (or biclusters) were identified 180-181. These bicliques 

represent miRNA regulation modules where multiple miRNAs may coregulate their common targets. 

By incorporating paired expression data, these modules were further refined for specific cell conditions 
182-185. Considering the modular nature of cellular processes, these modules were regarded to represent 

more reliable miRNA regulations 186. Recent methods incorporated additional information such as 

protein-protein (or gene-gene) interaction, copy number variation, as well as methylation data to better 

understand miRNA regulation 187. The myriad of computational methods for miRNA target prediction 

are reviewed and categorized in the literature 179, 184, 187, and some of them are summarized in Table S4.1. 

In this study, a novel approach was proposed to identify miRNA targets for a variety of cell conditions 

by biclustering a large collection of mRNA profiles for sequence-specific targets. To this end, I and 

three students (Hyeong Goo Kang, Jinhwan Kim, Seon-Young Hwang) collected 5,158 human 

microarray expression datasets with diverse test and control conditions from the Gene Expression 

Omnibus (GEO) database 188 and compiled corresponding fold-change (FC) profiles representing the 

5,158 cell conditions. Whereas the existing methods for miRNA regulation modules biclustered 

miRNAs and mRNA targets under a given cell condition (Figure 4.1a), a different dimension that 

biclusters mRNA targets and cell conditions (i.e. FC profiles) for a given miRNA of interest was 

considered in this study (Figure 4.1b). This approach is able to provide more reliable miRNA target 

groups that are robustly regulated across different cell conditions without using paired expression 

profiles. Of course, there is a related approach that incorporated coexpression of sequence-specific 

targets using 250 microarray datasets to prioritize true targets 189, but it clustered only target genes and 

did not suggest relevant cell conditions.  

Typically, biclustering algorithms seek to identify a complete association (namely, biclique) between 

two sets of nodes (e.g., set of target genes and set of cell conditions) 190-191. Taking into account the 

noise in microarray data, I developed a progressive bicluster extension (PBE) algorithm that allows for 

a small portion of unassociated connections between two  

(a)                                     (b)   
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Figure 4.1. Two approaches for miRNA regulation module discovery.  

Red, yellow, and blue nodes represent miRNA regulators, mRNA target genes, and cell conditions, 

respectively. (a) Existing approach. For a given cell condition (here, C1), down (or up)-regulated 

mRNAs are selected and biclusters between multiple miRNAs and these mRNA targets are sought. (b) 

Our approach. For a given miRNA, mRNAs with corresponding binding sequences are selected and 

biclusters between these mRNAs and multiple cell conditions are searched for. 

 

node sets but yields biclusters of much larger sizes. In the initial step, PBE identifies bicliques using 

bimax algorithm 191. These bicliques are used as seeds which are extended by competitively adding 

dense rows and columns. Then, less dense rows and columns are removed based on a threshold. By 

progressively applying tight to less tight thresholds during the iteration of bicluster extension, PBE was 

able to identify the bicluster structures from noisy data more accurately than the-state-of-the-art 

algorithms 181, 191-195. QUBIC 193 takes a similar approach that it searches for seed biclusters which are 

then extended. However, QUBIC only apply a threshold for minimum column density which does not 

change during extension. 

The biclusters resulted from our method represent the miRNA target genes that show concurrent 

expression changes across multiple cell/tissue conditions (namely, constant biclusters). The biclusters 

were assessed using experimentally validated targets and exhibited substantially improved accuracy 

compared to the purely sequence-based method. The accuracy was even further improved by selecting 

the targets having functional interactions with other target genes. Notably, these gains were obtained 

using only publicly available gene expression and protein functional interaction data, but were 

compared favorably with those obtained from the anticorrelation-based methods that require costly 

mRNA-miRNA profiling. Moreover, our predictions are available for 459 human miRNAs and a variety 

of cell conditions from our bicluster database, called BiMIR. This approach was further validated by 

analyzing pathways of cancer biclusters and prognosis of associated miRNAs followed by confirmatory 

experiments. 



 

70 

4.3 Materials and Methods 

4.3.1 Collection of expression fold-change data 

First, the CEL files of 2019 GEO series produced using the Affymetrix U133 Plus 2.0 chip were 

downloaded 196. Next, Robust Multi-array Average (RMA) normalization was applied to each CEL file 

using ‘justRMA’ function in R ‘affy’ package 197. The intensities of the probes for each gene were 

collapsed by their average value. Then, two sample experiments (test/control) were curated for each 

experimental series and the logarithmic FC (denoted logFC) of the average expression in each group 

was calculated. In total, logFC profiles for 5,158 (test/control) cell conditions were collected for 20,639 

human gene symbols. The logFC matrix and cell condition information is available from our bimir R 

package (https://github.com/unistbig/bimir). 

4.3.2 Sequence-specific miRNA targets 

The sequence-specific miRNA targets were obtained from the seven sequence-based target prediction 

databases (TargetScan 198, miRanda 199, mirSVR 200, PITA 201, DIANA-microT 202-203, miRDB 204 and 

TargetRank 205). I only used sequence-specific mRNA targets that were reported to have a binding 

sequence from three or more databases out of the seven. The number of mRNA:miRNA interactions, 

parameters used, and the download sites for the sequence-specific targets are available from 

Supplementary information of Chapter IV (‘Collection of sequence-based miRNA targets’ section). 

4.3.3 miRNA target prediction using a Progressive Bicluster Extension (PBE) algorithm 

The overview of biclustering-based miRNA target prediction is shown in Figure 4.2. First, 5,158 mRNA 

microarray datasets with two sample groups (test/control) were collected from Gene Expression 

Omnibus database188, 196, and corresponding logarithmic FC (LFC) data were compiled for 20,639 

human genes (columns) and 5,158 FC cell conditions (rows). These LFC data are quantized into up-, 

neutral-, and down-regulated genes (denoted by 1, 0, and -1, respectively) using ± log21.3 (FC) 

thresholds. For each miRNA, sequence-specific targets predicted in at least three out of seven miRNA 

target databases were selected (denoted as background set). 

 



 

71 

 

Figure 4.2. Overview of the biclustering-based miRNA target prediction. 

(a) The gene expression fold-change compendium. (b) Sequence-specific targets for each miRNA were 

obtained from seven miRNA target databases. (c) The MIR profile is composed of binarized logarithmic 

fold-change values of sequence-specific targets for selected cell conditions. (d) From MIR profile, seed 

biclusters are extracted using BIMAX algorithm, and then are extended using PBE algorithm. (e) 

Finally, merged biclusters are generated by hierarchical clustering of extended biclusters and removing 

the noisy rows and columns. 

 

Then, LFC profiles are assigned to the background set based on the enrichment of up-regulated genes 

in the background set (hypergeometric test, FDR < 5%). The resulting LFC submatrix is converted to a 

binary matrix by replacing -1 with 0, and is dubbed MIR profile for the given miRNA. First, the the 

bimax biclustering algorithm 191 is applied to the MIR profile to obtain a number of small biclusters 

completely filled with 1 (called seed biclusters). These biclusters are then ‘progressively’ extended 

using PBE algorithm (extended biclusters, see Progressive Bicluster Extension (PBE) algorithm in 

Supplementary Information of Chapter IV, Figure S4.1); rows and columns with many 1’s are 

competitively added to the seed bicluster and then relatively noisy rows and columns are removed, and 
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this process is repeated by slightly increasing the threshold for zero proportion in biclusters (strict to 

less strict). The extended biclusters are then clustered using average-linkage hierarchical clustering 

(merged bicluster) to remove redundant results. Testing the three distance cutoffs (0.3, 0.5 and 0.7) for 

clustering, I found that the cutoff had almost no effect to the result, so the cutoff=0.5 was used. After 

the merging, the rows or columns that contain more than 10% of zeros are trimmed off one by one to 

finally yield the 'merged biclusters'. The pseudocode of PBE algorithm is written in Figure S4.2. 

The resulting biclusters represent predicted target genes (bicluster columns) up-regulated across a 

number of cell conditions (bicluster rows). Down-regulated biclusters are also generated in the 

symmetrical way. Detailed features of the biclusters are described in Table S4.2 and Figure S4.3. Up 

(down)-regulated biclusters imply the corresponding miRNA is down (up)-regulated in the captured 

test conditions. The analysis results for ±log1.3 thresholds are mainly reported here, but the biclusters 

were also generated under ±log1.5 and ±log2.0 thresholds and analyzed. An example of let-7c 

bicluster for stem cell conditions are described in Supplementary information of this chapter. 

4.4 Results 

4.4.1 Comparison with existing biclustering algorithms 

Compared with seed biclusters, PBE algorithm yields much larger biclusters by allowing for a small 

portion of noise (Figure S4.3). Its performance was compared with those of five existing biclustering 

algorithms such as ISA192, QUBIC206, FABIA194, BIBIT195 and HOCCLUS2181 that detect ‘up-regulated’ 

constant biclusters. Detailed information of each method is described in the Supplementary information 

of Chapter IV (‘Comparison of biclustering algorithms’ section). First, the size and signal density of 

biclusters generated from a real MIR profile (hsa-let-7c-5p) were compared (Table S4.3). PBE yielded 

large biclusters with high densities (small proportion of zeros), whereas existing algorithms yielded 

biclusters with either smaller sizes or poorer densities. PBE also captured the stem cell bicluster better 

than existing algorithms (Figure S4.4). Detailed result for real data analysis is described in 

Supplementary Information (‘Comparison of biclustering algorithms – Real data analysis’ section) 

Next, I tested sensitivity and specificity of six biclustering methods using simulation binary profile 

reflecting the average size and density of real MIR profiles (700 rows, 300 columns and 20% density) 

(Figure 4.3). The simulation profile contained seven biclusters of which row and column sizes were 

between 20~80, and each bicluster included 1~3% of zeros (noise). Some of biclusters were overlapped 

to each other by less than 20% of the bicluster sizes. The simulation was repeated 50 times. Here, ‘true’ 

was defined as the elements included in the seven biclusters, and ‘false’ was the others in the profile. 

Thus, the sensitivity was defined as the number of true elements within all resulting biclusters divided 

by the number of all true elements. The precision was defined as the proportion of the true elements 

within all resulting biclusters. 
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PBE showed perfect precision (median=100%) with high sensitivity (median=95.6%). The performance 

of ISA depended on the row (TG) and column (TC) thresholds. When TG=TC=1, it showed high 

sensitivity (median=97.2%) but relatively low precision (median=87.7%). When both TG and TC 

increased to 2, the precision was increased (median=96.8%) but the sensitivity was lowered 

(median=86.1%). The QUBIC results were affected by the consistency parameter c. As this value 

increased, the precision was increased while the sensitivity was decreased. It showed the best 

performance with default parameter (c=0.95, median precision=80.8%, median sensitivity=100%). 

BIMAX and BiBit do not allow zeros in the biclusters. When they were run once, they exhibited quite 

low sensitivity (median BIMAX sensitivity = 10.2%, median BIBIT sensitivity = 14.5%). However, the 

sensitivity of BIMAX increased to 86.7% as it was run 30 times, while that of BiBit was not changed. 

FABIA yielded very noisy biclusters for all tested sparseness parameters (a=0.01 and 0.05) resulting in 

low precision (median=46.6%) and sensitivity (66.0%). For a>=0.1, it did not create biclusters. 

HOCCLUS2 was also tested but excluded in the graph because it didn’t generate any bicluster under 

this simulation setting. These results indicate that the progressive extension process in PBE algorithm 

is an efficient way to find biclusters from noisy data.  

 

Figure 4.3. Simulation test for biclustering algorithm. 

(a) Example simulation profile. Orange and gray elements indicate 1 and 0, respectively. (b) Precision 

and (c) sensitivity of tested biclustering methods.  

4.4.2 Accuracy of the biclustering target prediction 

The bicluster targets were assessed using validated miRNA targets. miRTarBase207 provides hundreds 

of thousands of experimentally validated miRNA-target relations with ‘strong’ evidences (Reporter 

assays or Western blot) and ‘less strong’ (or weak) evidences (pSILAC or microarray experiment). 

Among the sequence-specific targets (background set) of a given miRNA, those validated with ‘strong’ 

evidences were regarded as gold positive (GP) targets, whereas those having neither strong nor weak 
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evidences were set as gold negative (GN) targets. For evaluation, I selected miRNAs having more than 

30 GPs whose fraction within the background set was not less than 5%. 11 miRNAs that satisfied these 

criteria were analyzed (Figure 4.4a).  

For each miRNA, all the resulting bicluster targets, whether up- or down-regulated, were pooled as 

predicted targets, and corresponding sensitivity, specificity, as well as GP enrichment and GN depletion 

were calculated (Table S4.5-S4.8). When 1.3 FC threshold was used to quantize the FC data, the average 

sensitivity and specificity of the 11 miRNAs were 0.704 and 0.466, respectively (summation = 1.170), 

hence 17.0% (median 19.4%) improved gain compared with the sequence-based target prediction. 

Although positive gains were obtained for all the 11 miRNAs for 1.3 FC (Figure 4.4a), the relative 

performances for each miRNA were quite different for different FC cutoffs (Table S4.5). For example, 

the gain of miR-34a-5p was decreased as the FC cutoff was increased because of the rapid decline in 

sensitivity (gains for 1.3 FC: 20.8%, 1.5 FC: 13.3%, 2.0 FC: 7.2%). In contrast, the gain of miR-21-5p 

increased as the cutoff was increased because the specificity was relatively more increased (gains for 

1.3 FC: 16.4%, 1.5 FC: 26.5% and 2.0 FC: 31.3%). It presumably represents the different miRNA 

regulation patterns. The former case corresponds to the ‘fine tuners’ that moderately regulate many 

genes. Therefore, using lower cutoff helps detect subtle changes in target expressions. However, 

miRNAs for the latter case seem to more strongly regulate relatively small number of targets. Among 

the three thresholds, 1.3 FC exhibited the best overall gain with the largest sensitivity.  

MiRNA targets tend to be functionally related to each other 208. Therefore, I incorporated the protein 

functional interaction networks from STRING database 76 (edge threshold ≥150) between the bicluster 

target genes to improve the prediction. Among the bicluster targets, those with k or more functional 

interactions with other targets were further selected, and the corresponding gains were measured. 

Intriguingly, the specificity rapidly increased as k was increased (Figure 4.4b), and the maximum gain 

reached up to 32.0% when k = 3 (specificity = 77.8%, Figure 4.4c). The maximum median gain was 

even higher (33.4% when k = 4). These results show that applying the network information considerably 

improves the miRNA target prediction. 
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Figure 4.4. Performance of miRNA target prediction using binding sequence, biclustering, and 

functional networks.  

(a) Sensitivity and specificity of pooled bicluster targets of eleven miRNAs. Targets with binding 

sequence were used as background (diagonal black dash). Blue nodes represent biclustering results. 

Red/yellow/green/purple nodes represent the results obtained using both the biclustering and network-

based target selection with node-degrees 2, 3, 4 and 5, respectively. (b) Average sensitivity and 

specificity for different node degrees of target networks. (c) Average gains in certainty of methods using 

binding sequence, biclustering, and network information. Bars in (b) and (c) represent standard error.   

 

4.4.3 Comparison with anticorrelation-based methods in cancer 

mRNA-miRNA profiling has been commonly used to predict condition-specific miRNA targets based 

on the anticorrelation between miRNA and its mRNA targets. Therefore, I compared the biclustering 

method with seven anticorrelation-based methods (GenMiR++177, Pearson correlation, Spearman 

correlation, Lasso209-210, Elastic Net211, IDA212 and Tiresias213) in predicting cancer-specific miRNA 

targets. Pearson, Spearman correlation, Lasso, Elastic Net and IDA were implemented using miRLAB 

R package213-214 and GenmiR++ and Tiresias were run using MATLAB and Perl software, respectively. 

For the 11 miRNAs evaluated in the previous section, biclusters where at least 30% of the rows are 

about ‘tumor vs. normal’ or ‘aggressive vs. non-aggressive tumor’ conditions were selected. These 

biclusters represented 33 miRNA-cancer pairs for five cancer types (breast, brain, lung, colon, or blood 

cancer). All of these cancer types had both the mRNA and miRNA data in TCGA, so it was possible to 

test anticorrelation-based methods. For the biclustering method, I pooled the bicluster targets in the 

order of proportion of the specific cancer condition in each bicluster. Thus, the true and false positive 

rates of bicluster targets in each pooling step were shown, while ROC (receiver operating characteristic) 

curves were depicted for the anticorrelation-based methods (Figure 4.5). After removing six cases 

where none of the all AUCs (areas under the curves) exceeds 0.6 and the maximum biclustering gain 

was less than 1.1, twenty cases that were coherent with the known expression of corresponding miRNAs 
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(quantitative PCR results) were selected for comparison. In other words, up (down)-regulated biclusters 

were chosen if the corresponding microRNA is known to be down (up)-regulated in cancer. Table S4.9 

lists the literature reporting the expression levels of miRNAs in cancers.  

Overall, the biclustering method was compared favorably with the mRNA-miRNA profile based 

methods (Figure 4.5). For 11 out of the 20 cases, the biclustering method exhibited better gains 

compared with the anticorrelation-based methods; in other 6 cases, both approaches exhibited similar 

performances; in the remaining 3 cases, the biclustering method was inferior to the best anticorrelation-

based method, mostly because of its low sensitivity. As seen in the previous section, incorporating 

network information tended to increase the specificity (and the gain) of the biclustering method. Among 

the four anticorrelation-based methods, Genmir++ performed best for most cases.  

These results show that our biclustering approach, if miRNA expression information is provided, 

overall performs better than anticorrelation-based methods in prioritizing condition-specific miRNA 

targets. The miRNA expression is relatively easily obtained from the literature or quantitative PCR 

experiment. 
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Figure 4.5. Performance comparison between biclustering and anticorrelation-based methods.  

Black asterisks represent bicluster predictions. Green and red asterisks represent bicluster targets with 

at least one and three network degrees, respectively. Solid lines represent ROCs of the seven 

anticorrelation-based methods. The title of each panel represents the cancer type, miRNA, and target 

regulation direction (parenthesized). Blue, green, and red titles represent the 11, 6, and 3 cases where 

the biclustering method performed better than, similar to, and worse than anticorrelation-based methods, 

respectively. Dashed black lines represent the background results when only sequence-specific targets 

were used. BRCA, DLBC, GBMLGG and LAML represent breast invasive carcinoma, diffuse large B-

cell lymphoma, glioma and acute myeloid lymphoma, respectively. 
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4.4.4 miRNAs targeting PI3K/Akt signaling in cancer 

I further analyzed the bicluster targets corresponding to the 20 cancer-miRNA pairs (Fig. 4.5). Among 

them, breast cancer and DLBCL yielded the largest numbers of biclusters. In breast cancer, bicluster 

targets of miR-1, miR-29a/b/c, miR-34a, and miR-145 were upregulated in aggressive cancer; in 

DLBCL, the targets of miR-29a/b/c, miR-34a, and miR-145 were also upregulated. I pooled those 

bicluster targets in each cancer type and performed pathway enrichment analysis (KEGG annotation) 

using the DAVID tool38 to identify six and five significant pathways (FDR<0.05) in breast cancer and 

DLBCL, respectively (Table S4.10 and S4.11). Interestingly, the bicluster targets in both cancer types 

were strongly enriched with ‘PI3K/Akt signaling pathway’ (FDR = 1.3E-8 for breast cancer; FDR = 

9.1E-8 for DLBCL). This pathway is known to be frequently hyperactivated in many cancers to promote 

cell cycle and survival, proliferation, and epithelial-mesenchymal transition of tumor cells 215-216. In 

addition, extracellular matrix (ECM)-receptor interaction and focal adhesion pathways were commonly 

caught in both cancer types, but all the corresponding bicluster targets except two (CAV2, BIRC2) were 

also included in PI3K/Akt signaling pathway. 

Figures 4.6a and S4.5a show PI3K/Akt pathway where the bicluster targets are highlighted for breast 

cancer and DLBCL, respectively. In both cancer types, the miRNAs targeted multiple ligands including 

genes encoding growth factors (e.g., VEGFA and PDGFC targeted by miR-29) and ECM (e.g., 

COL1A1, LAMC1, THBS2 by miR-29); signal transducers such as receptor tyrosine kinase (e.g., MEK 

and/or PDGFRA by miR-34a), G-proteins (GNB4 and GNG12 by miR-29), toll-like receptor (TLR4 

by miR-34a and miR-145) and integrin (e.g., ITGB1 by miR-29); as well as downstream effectors such 

as NRAS (by miR-29 and miR-145) and CDK6 (by miR-29). In addition, AKT3 was targeted by mir-

29 in breast cancer, and cytokine receptor (IL2RB and IL6R) and one component of the PI3K complex 

(PIK3R3) were also targeted by miR-34a and mir-29, respectively, in DLBCL. Indeed, it was previously 

shown that mir-29b upregulation in breast cancer considerably inhibited metastasis by repressing targets 

related to the tumor microenvironment217 (including some genes listed above). In the present study, the 

bicluster targets of mir-29 were experimentally validated using the human breast cancer cell line, MDA-

MB 231, which is a well-established metastatic and invasive cancer cell line (done by Woobeen Cho, a 

Ph.D student in Prof. Ji-young Park’s Lab.). Transcript levels of nine bicluster targets related to ECM 

or PI3K were analyzed 2 days after transient transfection with either miR-29 or control miRNA. All the 

nine targets were considerably downregulated by miR-29b or -29c transfection compared to that of the 

control (Figure 4.6c). Furthermore, the activation of ECM related downstream pathways such as focal 

adhesion kinase (FAK) and AKT were also considerably attenuated by miR-29 (Figure 4.6d) 

demonstrating the capability of biclustering analysis to capture relevant pathways for disease. Detailed 

experimental methods are available in Supplementary Information of Chapter IV. 
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Figure 4.6. miRNA targets in PI3K/Akt pathway (breast cancer).  

(a) MiRNA targets predicted from breast cancer biclusters are highlighted by red borders. For each target molecule, 

corresponding miRNA names and target gene symbols are represented. (b) Distant relapse-free survival analysis for 210 

patients with breast cancer exhibiting high and low miR-29a, miR-29b, and miR-29c levels. The patients were divided into 

two groups based on their best splits at top 33.8%, 40% and 66% values, respectively. (c) Transcript levels of miR-29 target 

gene candidates were analyzed by qRT-PCR. MDA-MB-231 breast cancer cells were transiently transfected with either 

scrambled miRNA (control) or miR-29 (29b-3p or 29c-3p). 2-days after transfection, total RNAs were subjected to analyze 

target gene candidates. Genes were normalized with B2M. All the tested genes were considerably downregulated by miR-29b 

and/or 29c. ITGB1, LAMC1 and PDGFC were more effectively repressed by miR-29b, and vice versa.  (d-e) Activation of 

downstream pathway candidates such as AKT and FAK were analyzed by immunoblotting. (d) Total cell lysates extracted 

from either scrambled miRNA or miR-29b-3p (d), as well as miR-29c-3p (e) transfected MDA-MB-231 cells were analyzed 

for the levels of pAKT, AKT, pFAK and FAK. GAPDH was used as lading control. Quantified results were represented as a 

bar graph. Statistical significance was evaluated by unpaired one-tailed Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001 vs. 

scrambled miRNA.  
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Finally, I analyzed the prognostic values of these miRNAs using public miRNA expression datasets. 

The distant-relapse-free survival was tested for 210 patients with breast cancer (GEO database, 

GSE22216218). Among the six miRNAs analyzed, the three miR-29 family miRNAs had significant 

prognostic values (mCPH p-values of miR-29a = 0.0042, miR-29b = 0.0064, miR-29c = 0.0038; 

adjusted for age, tumor size, lymph nodes involved, ER, and grade). Then, the overall survival of 116 

patients with DLBCL (GSE40239187) was also analyzed for five miRNAs. Among them, two exhibited 

significant prognostic values (mCPH p-values for miR-34a = 0.0185 and miR-145 = 0.0041; adjusted 

for International Prognostic Index (IPI) and gender). See Table S4.12 and S4.13 for detailed results. 

Kaplan-Meier plots contrasting the effects of high and low miRNA levels on survival are also shown 

in Figures 4.6 and S4.5.  

Overall, by analyzing cancer biclusters, the key pathways (PI3K/Akt signaling, ECMs, and focal 

adhesion), and five associated prognostic miRNAs (mir-29a, mir-29b, and mir-29c in breast cancer; 

mir-34a and mir-145 in DLBCL) that are repressive of tumor progression (hazard ratios 0.593 – 0.745) 

were identified. In particular, the effects of mir-29b/c on these pathways were experimentally validated. 

4.4.5 BiMIR: a bicluster database for condition-specific miRNA targets 

In total, 29,815 biclusters were generated for 451 human miRNAs using PBE algorithm (13,921 for 1.3 

FC; 10,958 for 1.5 FC, 4,936 for 2.0 FC thresholds) and complied in BiMIR database 

(http://www.btool.org/bimir_dir/; constructed by Dr. Hai C. T. Nguyen) where biclusters are searchable 

for miRNAs, tissues, diseases, keywords, target genes of interest, and their combinations. BiMIR can 

be used for investigating novel miRNA functions, targets, and related cell conditions. 

Along with the list of searched biclusters, the function enrichment results for bicluster targets are 

provided based on the MSigDB113 pathway (C2) and gene ontology (C5) categories. If biclusters are 

searched for a specific organ/tissue or disease, the proportion of corresponding condition in each 

bicluster is also reported. These help the user to find most relevant biclusters. The heatmaps for each 

bicluster are visualized (Figure S6) and corresponding target genes and cell conditions are hyperlinked 

to Genecards146, 219 and GEO196, 220 databases for detailed information, respectively. For bicluster target 

genes, the network node degrees, experimental evidences from miRTarBase207, protein network 

visualization based on STRING database76 are provided. In addition, the entire mRNA FC profiles, 

biclustering R code, and all the biclusters are downloadable from BiMIR database. 
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4.5 Discussion 

Here, a novel framework was presented that prioritize miRNA targets by biclustering sequence-specific 

targets and cell conditions, a dimension rarely explored before. This is based on the idea that miRNA 

targets, like other cellular molecules, have a modular activity and will be repeatedly captured across 

different cell conditions. Indeed, the bicluster targets exhibited substantially improved accuracy 

compared with purely sequence-based targets and were often enriched with well-known pathways 

characterizing the modules identified. Moreover, the functionally connected targets exhibited even 

higher accuracy, further confirming the modular activity of miRNA targets.  

I analyzed cancer biclusters and found that PI3K/Akt signaling pathway was intensively targeted by a 

few miRNAs in two cancer types. Further, prognostic values of those miRNAs and the regulatory 

effects of mir-29 were also validated. These results demonstrate that biclustering analysis is able to 

reveal key pathways regulated by miRNAs in disease. BiMIR database provides miRNAs and targeted 

pathways for dozens of diseases.  

Given the miRNA expression, the prediction using biclustering method was favourably compared with 

seven anticorrelation-based methods in cancer conditions. This demonstrates the practical value of this 

approach in that bicluster results can provide fairly good target predictions for a variety of cell 

conditions without generating costly paired expression profiles. BiMIR database was designed so as to 

explore the modular regulatory networks of miRNAs by connecting miRNAs, cell conditions (or 

disease), mRNA targets, and associated pathways. The user may find candidate miRNA and target 

genes for the cell condition of interest. The knowledge of miRNA expression level will help select the 

right direction of biclusters (up or down). 

Despite the improvements and usefulness shown in this study, there remain difficulties in our approach 

regarding free parameters that need to be optimized. First, the minimum seed size of 10 by 10 was 

determined in an ad hoc manner, and its optimal size may be affected by the size of the fold-change 

data. Second, the iteration number of 20 in BIMAX algorithm was used to compromise the computation 

time; using a higher iteration number yielded more biclusters. However, other parameters seemed to be 

less sensitive. For example, I slightly increased the threshold of zero proportion from 0.01 to 0.1 (step 

size 0.01) during ten iterations of bicluster extension. This may seem to allow 10% of zeros in the end, 

but the final zero proportion was only about 1.5% because of the trimming process. The cutoff of 

hierarchical clustering of the extended clusters was also a less sensitive parameter. In addition, the 

biclusters were generated under a rather strict criterion (for targets in three or more databases); therefore, 

BiMIR can be used for selecting a small number of highly likely targets for the cell condition of interest.  

The biclustering approach presented here can also be applied for predicting the condition-specific 

targets of other sequence-specific regulators such as transcription factors or RNA binding proteins. In 

this regard, the entire 5,158 mRNA fold-change profiles for 20,639 genes are provided for general 
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systems biology research. These mRNA fold-change data are different from the GTEx transcriptome 

data 221 in that GTEx data represent transcription levels in normal tissues, whereas our fold-change data 

represent gene expression ‘changes’ for a variety of cell conditions such as disease, chemical treatment, 

tissues, and differentiations. Thus, these fold-change data can also be used for clustering or regulatory 

network analysis for a specific group of genes or cell conditions.  

Another possible future work is coregulatory network of miRNAs. Whereas existing methods to 

identify miRNA regulation modules bicluster multiple miRNAs and multiple target genes representing 

coregulatory networks, my current work is focused on prioritizing highly likely target genes of a single 

miRNA commonly detected across multiple cell conditions. This approach can also be extended to 

tackle the miRNA coregulatory networks by overlapping biclusters for different miRNAs. A significant 

overlap implies coregulated mRNA targets under multiple cell conditions. I hope that this approach and 

data contribute to disentangling the modular structure of complex regulatory networks. 
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4.6 Supplementary information of Chapter IV 

Table S4.1. Existing miRNA target prediction tools 

Sequence-based target prediction methods 

Method Features used in target prediction References 

TargetScan Seed match, Conservation 198 

PITA Seed match, Conservation, Free energy, Site accessibility, Target-site 

abundance 

201 

miRDB Seed match, Conservation, Free energy, Machine learning 204 

mirSVR Seed match, Conservation, Free energy, Site accessibility, Machine learning 200 

miRanda Seed match, Conservation, Free energy 199 

DIANA-microT-CDS Seed match, Conservation, Free energy, site accessibility, Target-site 

abundance, Machine learning 

202-203 

TargetRank Seed match, Conservation, Base composition at position t9, flanking AU 

content 

205 

Correlation/Causality-based target prediction methods 

Method Features References 

Pearson correlation Pearson correlation between an mRNA and miRNA 222 

Spearman correlation Spearman correlation between an mRNA and miRNA 223 

Lasso Lasso regression coefficient between an mRNA and miRNA 209-210 

ElasticNet ElasticNet regression coefficient between an mRNA and miRNA 211 

GenMIR++ Bayesian learning algorithm 177 

Tiresias Two-stage artificial neural network 213 

IDA Causal structure learning and causal inference 212 

Biclustering-based target prediction methods 

Method Features References 

BIMIR Biclustering sequence-specific targets and cell conditions using large log 

expression fold change table. 

- 

HOCCLUS2 Biclustering mRNA and miRNA using mRNA:miRNA interaction score 

matrix   

181 

miRmap Biclustering mRNA and miRNA using mRNA:miRNA correlation matrix 224 

cMonkey2 Biclustering gene expression table and miRNA binding site enrichment test 

for bicluster genes 

225 

 

Data collection 

1) Collection of expression fold-change data: Described in the Materials and Methods section in 

Chapter IV. 

2) Collection of sequence-based miRNA targets 
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The sequence-based miRNA targets were set as those predicted from three or more miRNA target 

prediction databases listed below. 

- TargetScan (version 7.0): TargetScan data (Conserved site context++ scores) provided 253,132 

miRNA-target interaction data. It was downloaded from TargetScan homepage 

(http://www.targetscan.org ).  

- PITA (version 6): PITA data (PITA_targets_hg18_0_0_ALL.txt) provided 4,095,751 miRNA-

target interaction data. Among them, 716,486 interactions were used of which free energy 

scores were less than -10. The data was downloaded from  

https://genie.weizmann.ac.il/pubs/mir07/mir07_data.html.  

- miRDB (version 5.0): miRDB data (miRDB_v5.0_prediction_result.txt) provides 1,873,265 

miRNA-mRNA interaction data. Among them, 1,314,352 interactions were used of which 

scores were greater than 60. The data was downloaded from 

http://www.mirdb.org/download.html.  

- mirSVR: mirSVR Targets provided 728,288 miRNA-target interactions. The data was 

downloaded from http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/ but not 

available now.  

- miRanda (microRNA.org) : miRanda provided 1,097,064 conserved miRNA-mRNA 

interactions with high mirSVR score (human_prediction_S_C_aug2010.txt). The data was 

downloaded from http://www.microrna.org/microrna/getDownloads.do but not avaliable now. 

- DIANA-microT-CDS (version 5.0): DIANA-microT-CDS provides 7,337,705 miRNA-

mRNA interactions. Among them, 1,457,011 interactions were used of which scores were 

larger than 0.7.  

- TargetRank: TargetRank provides 1,006,494 miRNA-mRNA interactions. The data was 

downloaded from 

(http://hollywood.mit.edu/targetrank/hsa_miRBase_miR_ranked_targets.txt ). 

 

Progressive Bicluster Extension (PBE) algorithm 

The overall process of PBE algorithm is shown in Figure S4.1 (graphical scheme), and Figure S4.2 

(pseudocode). PBE algorithm is composed of two parts: the extension step and the trimming step. 

Briefly, the seed bicluster is extended by adding the background rows or columns that have the 

minimum zero rate (extension step) and then noisy rows and columns (showing high zero rate) of the 

extended bicluster are removed (trimming step). This two-step process is applied R times, and the 

bicluster is also updated R times accordingly (in this study, R=10). The final zero rate allowed in the 

extended bicluster (|=?A) is set as 10%, but note that the final zero rate was only less than 1.5% on 

average (Fig S4.3).  
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Extension step. In the sth step of extension (S = [1,⋯ , ©]), the intermediate zero rate (Zcut,s) allowed in 

extending the current bicluster is defined as: 

|=?A,H = 	
|=?A

©
× S 

For example, if |=?A=0.1 and a seed bicluster is extended through R=10 steps, the |=?A,H for the first 

extension step will be 0.1*1/10 = 0.01. In other words, stricter criteria are applied in the earlier extension 

steps to obtain biclusters with high densities. Let m be the matrix of the MIR profiles, and ©(S) and 

+(S) be the indexes of the rows and columns of the bicluster that sth extension step is done, respectively. 

M[R(0), C(0)] denotes the seed bicluster. After calculating the zero rates in every column vector in 

M[R(s − 1), +(S − 1)™] and row vector in M[©(S − 1)™, +(S − 1)], the rows or columns with the 

minimum zero rate are added to the current bicluster. The same extension process is repeated until the 

zero rate reaches |=?A,H, when the bicluster enters the trimming step.  

Trimming step. If any row or column vector with the maximum zero rate exceeds |=?A,H, such vector 

is removed from the bicluster one by one resulting in the updated bicluster M[R(s), C(s)]. 

Prevention of lengthening out in one direction. Some biclusters tend to keep lengthening out in one 

direction if one side of the bicluster becomes too small compared with the other side during the 

extension process. To ameliorate this, a penalty is given to the longer side if it is more than twice longer 

than the other side. When the row and column vectors outside the bicluster compete with each other, 

the following modified zero rate is applied for the longer side vectors. 

 

	modified	zero	rate = 	
#	ˆ\≠ÙS	^`	wℎ\	$\%wÙ≠ + ∞&ÙÙ≠(≠)

&\`ßwℎ	Ù∞	wℎ\	$\%wÙ≠
 

where,  

≠ =
&\`ßwℎ	Ù∞	&Ù`ß\≠	S^]\	Ù∞	'^%&(Sw\≠
&\`ßwℎ	Ù∞	SℎÙ≠w\≠	S^]\	Ù∞	'^%&(Sw\≠ 
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Figure S4.1. Progressive bicluster extension (PBE) algorithm.  

The final zero rate cut off (Zcut) in the extended bicluster should be determined in advance. In the MIR 

profile, the orange and the grey cells represent 1 and 0 respectively, and the seed bicluster is represented 

in the black box. The seed bicluster is extended by repeating the following extension and trimming 

process R times. (Extension step) Among the addable vectors (in the yellow shadow), those with the 

minimum zero rate are simultaneously attached to the current bicluster. If the zero rate in the extended 

bicluster is less than intermediate zero rate cut-off (Zcut,s=Zcut*s/R, s means sth repetition step), the 

extension process is repeated. (Trimming step) If the zero rate exceeds the Zcut,s, the rows and columns 

whose zero rate is larger than Zcut,s are searched for and removed from the most noisy vectors to yield 

the updated bicluster. The updated bicluster enters next extension/trimming step with updated parameter.  
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Figure S4.2. Pseudocode of Progressive Bicluster Extension 

Algorithm : Progressive Bicluster Extension 

Input: Vr (condition), Vc (target gene); Mnxm (MIR profile); parameters S (The number of extension steps), Z (Final 
zero rate allowed in the bicluster) 

for (i=1 to S) do 

    )*+,- = () .)⁄ × 0 

.112 ← 4[56][57]  

# Seed extension process 

function zero_ratio(array A) 

   return (The # of zeros in A) / |A| 

end function 

function modified_zero_ratio(array A, integer N) 

   return (The # of zeros in A + N) / |A| 

end function 

while (zero ratio of SEED < )*+,-) do 

Vr ← Conditions in seed bicluster 

Vc ← Target genes in seed bicluster  

RowCandidates← 4[(56)8][57] 

ColumnCandidates← 4[56][(57)8] 

9: ← |56|/|57| ; 9; ← :/9: 

if (9:>= 2) then 

 Row_zero ← Values from modified_zero_ratio() for all row vectors in RowCandidates with N=n1 

else 

 Row_zero ← Values from zero_ratio() for all row vectors in RowCandidates 

end if 

If (9;>= 2) then 

 Col_zero ← Values from modified_zero_ratio() for all column vectors in ColumnCandidates with N=n2 

else 

 Col_zero ← Values from zero_ratio() for all column vectors in ColumnCandidates 
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end if 

Min_row_zero ← minimum of Row_zero 

Min_col_zero ← minimum of Col_zero 

New_conditions ← conditions (rows) in M that corresponds to Row_zero==Min_row_zero 

New_target_genes ← Targets (columns) in M that corresponds to Col_zero==Min_col_zero 

L1 = |New_conditions|; L2 = |New_target_genes| 

if((Min_row_zero < Min_col_zero) OR (MIN_row_zero==Min_col_zero AND L1>=L2)) then 

SEEDtemp← M[56 ∪New_condition][ [57] 

else 

SEEDtemp ← M[56][ [57 ∪New_target_genes] 

end if 

if(zero ratio of SEEDtemp > )*+,-) then 

   break 

else 

SEED ← SEEDtemp 

56 ← 56 ∪ New_conditions 

57 ← 57 ∪ New_target_genes 

end if 

end while 

# Bicluster Trimming Process 

Row_zero ← Values from zero_ratio() for all row vectors in SEED 

Col_zero ← Values from zero_ratio() for all column vectors in SEED 

Max_row_zero ← maximum of Row_zero 

Max_col_zero ← maximum of Col_zero 

While (max_row_zero>)*+,-OR max_col_zero>)*+,-) do 

         if (max_row_zero >= max_col_zero) then 

             conditions_to_delete = SEED conditions (rows) whose zero ratios are equal to max_row_zero 

Vr ← Vr – Conditions_to_delete 

             SEED ←SEED[Vr ][	57] 
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         else 

targets_to_delete = SEED target genes (columns) whose zero ratios are equal to max_col_zero 

 Vc ← Vc – targets_to_delete 

             SEED ← SEED[Vr ][	57] 

         end if 

Row_zero ← Values from zero_ratio() for all row vectors in SEED 

Col_zero ← Values from zero_ratio() for all column vectors in SEED 

Max_row_zero ← maximum of Row_zero 

Max_col_zero ← maximum of Col_zero 

If(max_row_zero<)*+,- AND max_col_zero<)*+,-) then 

   break 

end if 

end while 

end for 

Return SEED 
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Bicluster statistics 

By progressively extending the seed biclusters and merging similar ones, many of missing associations 

can be restored to yield biologically meaningful results. Figure S4.3 represents the distributions of 

bicluster size (number of conditions and genes) and density (1-zero ratio; 1.3-fold cut-off). For 1.3-fold 

cutoff bicluster, 11.5 conditions and 10.5 genes were included in the seed biclusters on average. After 

extending them, the average number of conditions and genes were increased to 19.4 and 28.4, 

respectively. Finally, merged biclusters had slightly more increased sizes. However, the zero ratio of 

the merged biclusters was only less than 1.5% on average. Increasing FC cutoff resulted in less extended 

but slightly denser biclusters (Fig S4.3). Compared with other biclustering methods, PBE was able to 

identify larger and/or cleaner biclusters from noisy data as shown in the next section. 

BiMIR (http://btool.org/bimir_dir/) provides 29,898 biclusters for 459 human microRNAs. These 

biclusters cover in total 2,259 fold change (FC) conditions (~43% of total cell conditions). Table S4.2 

shows six statistics of BiMIR biclusters for three binarization cutoffs (1.3, 1.5 and 2.0 FC). Note that 

for each miRNA, six MIR profiles were generated (up- and down-regulated profiles for three FC 

cutoffs). If no biclusters were generated from MIR profile, corresponding miRNA was not counted in 

Table S4.2. 

 

 

Figure S4.3. Distribution of the number of conditions, genes and density in biclusters with three 

different fold-change cut-offs. 
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Table S4.2. Statistics of BiMIR biclusters. 

Binarization cut-off 1.3 FC 1.5 FC 2.0 FC 

Number of miRNAs 459 414 348 

Number of biclusters 13,949 10,999 4,950 

Number of FC conditions 2,259 1,828 1,057 

Average number of conditions 20.5 15.3 14.1 

Average number of genes 30.8 26.7 26.8 

Average bicluster density 0.985 0.986 0.988 

 

Comparison of biclustering algorithms 

The performance of PBE and other ‘up-regulated’ constant biclustering algorithms were compared in 

two ways: (1) the size and density comparison using MIR profile of hsa-let-7c-5p and (2) precision and 

sensitivity comparison using simulated data. In this section, I describe the tested biclustering algorithms, 

and real data analysis result. Simulation analysis is described in Chapter IV (refer to 4.4.1 Comparison 

with existing biclustering algorithms). 

(1) Compared biclustering algorithms 

- Iterative signature algorithm (ISA)192: It was developed to find transcriptional modules from 

microarray gene expression profiles. It aims to detect a set of genes showing similar up- or down-

regulation patterns across a set of samples. To achieve the modules, ISA iteratively updates the 

rows (genes) and columns (conditions) that satisfies the criterion until the result converges. ISA 

has two parameters: row (TG) and column (TC) threshold parameters. In this study, both parameters 

were adjusted from 1 to 3 by 0.5. It was run by ‘isa’ function in ‘isa2’ R package 

- QUBIC206: It is a qualitative or semi-quantitative biclustering algorithm. It automatically converts 

the continuous input gene expression matrix into signed integer matrix based on the parameters r 

(e.g., 1=up-regulated, 0=not regulated and -1=down-regulated) and then constructs the gene 

network in which the edges represent the number of co-regulated conditions. It finds non-

overlapping seed biclusters from this network and expand the biclusters based on the consistency 

parameter that controls the ratio of identical non-zero values in each column. In this study QUBIC 

biclusters were generated using BCQUD function in QUBIC R package with three consistency 

levels (c=0.92, 0.95 and 0.98). 
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- FABIA194: It is a generative multiplicative model designed for gene expression data considering 

the heavy tails in the distribution. It returns biclusters with ranks evaluated according to the 

information content. FABIA biclusters were generated using ‘fabia’ function in fabia R package 

with sparseness loading parameters 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. Parameter p (the 

number of bicluster) was set as 30 for real data analysis and 7 for simulation data. 

- BiBit195: it was developed for biclustering of binary matrix. It transforms input binary matrix to 

integer matrix by dividing every rows into bit words of same size and then converting each bit 

word into decimal number. It is fast by searching biclusters from this reduced integer matrix. It 

was run using ParBiBit program226 which accelerated the running time of BiBit algorithm by 

implementing MPI parallel programming. 

- HOCCLUS2181: it was developed to bicluster microRNAs and target genes on binary data 

(experimentally validated or predicted interaction networks). In the first step, the initial bi-cliques 

are generated based on the minimum interaction score. Then, the overlapping biclusters are 

progressively merged based on the cohesiveness parameter which measures the quality of each 

bicluster by the functional similarity of genes. HOCCLUS2 has two input parameters such as α (a 

cohesiveness threshold) and β (a minimum interaction score). Because 0<β<1 does not affect the 

result when applied to a binary data, it was fixed to 0.5 and only α was changed from 0.4 to 0.9. 

(2) Real data analysis 

The up-regulated MIR profile of hsa-let-7c-5p (FC cut-off=log2(1.3); 1526 conditions x 801 genes) 

was used to compare the performance of different algorithms. Table S4.3 shows the average 

row/column size, density and the number of detected biclusters of each algorithm. PBE identified 17 

biclusters having average sizes of 23.3 conditions and 38.9 genes and 98.1% density. ISA was applied 

to both continuous FC data and binarized data (based on 1.3-fold). The density of biclusters from 

continuous data were estimated using 1.3-fold cut-off. ISA generated smaller and denser biclusters as 

the TC and TG were increased. For example, when both parameters were set as 1, the average numbers 

of conditions and genes were as large as 174 and 119, respectively, but the density was quite low (50.0%) 

for biclusters from continuous profile. When both parameters were set as 3, the average density 

increased to 80.8%, but the average size was quite small (26.1 conditions and 9.2 gene). The average 

size of BiMIR bicluster was between those of ISA (continuous) biclusters with parameters TC=2.5, TG 

=1.5~2.0. In that case, however, the average density was much lower than that of PBE (70.3%~71.9%). 

When same parameters were applied to binary data, it usually generated larger but sparser biclusters 

than those from continuous profile. QUBIC was implemented with three consistency parameter c 

(c=0.98, 0.95 and 0.92). When c=0.92, the QUBIC biclusters included the largest number of 1 on 
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average with quite high density (row size=15.2, column size=61.3, density=97.96%). It tended to 

contain lesser rows and more columns compared to PBE. It is because to extend rows satisfying the 

consistency level (the minimum ratio of 1 in each column) for all columns in the seed bicluster is not 

that easy. It seems appropriate for finding relatively small number of genes co-regulated under large 

number of samples, but not for our case to find biclusters including many target genes as well as many 

conditions. Also, QUBIC biclusters sometimes contain noisy rows (See the undermost row in fig. 

S4.4b). FABIA was tested for both continuous and binarized profiles using various sparseness 

parameters (alpha=0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The continuous biclusters were quite sparse for 

all conditions (density=31.8%~38.8%). The binarized biclusters showed higher density compared to 

that of continuous biclusters (35.8%~72.3%), but it was still sparser than that of PBE. BiBit resulted in 

huge number of small biclusters full of 1 (1227 biclusters, row size=13.5 and column size=12.4).  

For HOCCLUS2 biclusters, the size and density depended on the bicluster overlapping levels and α 

(cohesiveness). For all α, the level 1 biclusters were small (row size=13, column size=10) with 100% 

density. Except for the cases of α = 0.8 and 0.9 with which biclusters were barely extended, most 

biclusters became larger containing more zero proportions as the level was increased. The level 2 

biclusters had 23 conditions and 19 genes on average for α = 0.4 - 0.7 and were most similar to those 

of PBE biclusters. However their average density was rather lower (84.4% ~ 86.3%) compared with 

that of PBE biclusters (98.1%). From level 3 (α = 0.4 - 0.7), the biclusters showed very low densities 

which were far from useful to predict regulatory modules (Table S4.3). 

All methods found the homogenous biclusters that mostly consist of ESC/iPSC vs. somatic cell 

conditions. PBE showed the best performance with respect to size and/or density (51 conditions and 

126 genes with 97.6% density) compared with other methods. The largest ISA bicluster had 71 

conditions and 154 genes with only 83.4% density when TC = 2, TG = 1, and the densest one had only 

35 conditions and 37 genes with 95.6% density when TC = 4, TG = 2. QUBIC bicluster had 47 conditions 

and 109 genes with 98.2% density. FABIA generated big bicluster (44 conditions and 293 genes) but 

the density was very low (80.2%) and BiBit yielded small bicluster (23 condition and 35 genes) with 

full of 1. The level 2 bicluster of HOCCLUS2 had only 26 conditions and 84 genes with 97.3% density 

(tests with a= 0.4 ~ 0.9 yielded same results) (Fig S4.4).  
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Figure S4.4. ESC/iPSC biclusters searched by multiple biclustering methods.  

All biclustering methods detected biclusters containing homogeneous ESC/iPSC vs. somatic cell 

condition. (a) PBE detected large and dense bicluster (51 conditions and 126 targets with 97.6% density). 

(b) QUBIC detected rather small but dense bicluster (47 conditions and 109 targets with 98.2% density) 

(c) ISA found large but noisy bicluster (71 conditions and 154 targets with 83.4% density). (d) The 

densest ISA biclusters showed relatively small size (35 conditions and 37 targets with 95.6% density). 

(e) BiBit detected a small bicluster full of 1 (23 conditions and 35 genes with 100% density) (f) 

HOCCLUS2 found dense bicluster but the size was quite small (26 conditions and 84 genes with 97.3% 

density) (g) FABIA detected large but very noisy bicluster (44 conditions and 293 targets 80.2% density) 
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2
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6
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AP
8

p_9865_3
p_9865_2
p_9709_2
p_9709_1
p_37896_2
p_28406_3
p_27280_1
p_23968_3
p_23968_1
p_23583_6
p_23583_4
p_23583_3
p_22246_1
p_20033_6
p_15176_2
p_15175_2
p_15148_3
p_15148_2
p_14897_4
p_14897_2
p_14711_1
p_13471_1
p_13828_2

BiBit

(b)

(d)

(f)

(g)
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Table S4.3. Real data analysis.  

For PBE, QUBIC, BiBit, FABIA, ISA and HOCCLUS2, the average size of row/column, density, and 

the number of biclusters were measured using up-regulated MIR profile of hsa-let-7c-5p. 
PBE 

 Row Column Density N 

23.3 38.9 98.1 17 

QUBIC 

Consistency Row Column Density N 

1.0 17.2 41.9 1.0 46 

0.98 16.9 42.0 0.9997 44 

0.95 14.2 43.4 0.9989 36 

0.92 15.2 61.3 0.9796 24 

BiBit (minimum row and column size = 10) 

 Row Column Density N 

13.5 12.4 1.0 1227 

FABIA 

 Continuous input Binary input 

Sparseness loading Row Column Density N Row Column Density N 

0.01 80.1 219.4 0.318 30 55.5 226.3 0.358 22 

0.05 64.1 195.5 0.330 26 25.8 291.1 0.548 27 

0.1 25.9 189.6 0.355 26 15 285.2 0.653 25 

0.15 28.5 198.3 0.359 28 10.9 265.6 0.714 23 

0.2 25.8 198.7 0.368 25 12.2 268.1 0.723 15 

0.25 19.1 201.2 0.388 27 14.4 272 0.701 11 

0.3 28.2 195.8 0.361 23 11.9 266.8 0.719 10 

ISA 

  Continuous input Binary input 

TG TC Row Column Density N Row Column Density N 

1.0 1.0 174.0 119.3 0.500 4 192.7 116.2 0.464 6 

 1.5 176.7 60.7 0.526 7 191.8 70.2 0.498 9 

 2.0 196.5 27.7 0.493 15 200.8 39.5 0.534 13 

 2.5 202.8 11.4 0.546 22 216.9 18.9 0.532 22 

 3.0 189.5 5.6 0.672 28 221.0 10.2 0.582 18 

1.5 1.0 106.4 118.6 0.486 7 95.0 118.0 0.486 9 

 1.5 106.7 60.1 0.530 12 94.8 66.8 0.511 9 

 2.0 100.1 28.3 0.582 15 113.2 39.5 0.560 11 

 2.5 101.6 12.4 0.623 22 127.7 21.2 0.591 24 

 3.0 105.2 6.2 0.707 23 133.6 11.1 0.647 16 

2.0 1.0 58.1 112.0 0.482 11 59.2 113.8 0.509 12 

 1.5 52.5 58.4 0.554 17 58.3 69.5 0.533 13 

 2.0 52.3 27.0 0.621 21 72.4 43.2 0.605 11 

 2.5 54.3 12.3 0.641 28 66.6 20.9 0.569 29 

 3.0 59.2 8.1 0.744 18 74.1 13.0 0.676 18 

2.5 1.0 25.8 110.8 0.529 30 28.6 109.0 0.529 24 

 1.5 25.8 58.3 0.632 28 32.7 71.3 0.581 23 

 2.0 32.0 28.3 0.703 22 33.0 42.1 0.599 29 
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 2.5 34.9 14.3 0.719 21 38.6 22.0 0.635 30 

 3.0 37.2 8.7 0.770 13 45.7 10.1 0.694 44 

3.0 1.0 14.7 105.2 0.638 37 15.0 120.6 0.619 41 

 1.5 17.1 52.7 0.701 33 16.1 72.5 0.645 45 

 2.0 18.3 27.5 0.744 32 18.4 42.7 0.658 42 

 2.5 23.0 14.9 0.804 19 21.2 25.2 0.654 46 

 3.0 26.1 9.2 0.806 9 26.9 12.3 0.669 43 

HOCCLUS2 

Level Beta Row Column Density N 

1 0.4 13 10 1.0 60 

0.5 13 10 1.0 60 

0.6 13 10 1.0 60 

0.7 13 10 1.0 60 

0.8 13 10 1.0 60 

0.9 13 10 1.0 60 

2 0.4 23.5 19 0.844 30 

0.5 23.5 19 0.844 30 

0.6 23 19 0.855 31 

0.7 23 18.5 0.863 32 

0.8 19 16.5 0.986 40 

0.9 12 11 1.0 53 

3 0.4 45 38 0.687 15 

0.5 45 38 0.687 15 

0.6 41.5 33 0.742 18 

0.7 24 19 0.805 25 

0.8 18 17 1.0 35 

0.9 12 10.5 1.0 52 

4 0.4 80 63 0.578 8 

0.5 71 58 0.575 9 

0.6 45 40 0.682 13 

0.7 23 19 0.797 22 

0.8 18 17 1.0 34 

0.9 12 10 1.0 51 
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Example: hsa-let-7c and pluripotency  

Let-7 is known to play an essential role in differentiation of embryonic stem cells (ESCs). Sustained 

expression of let-7 inhibits the reprogramming, and its inhibition promotes the human induced 

pluripotent stem cell (iPSC) reprogramming227. PBE algorithm was applied to the let-7c MIR profile, 

and I found a stem cell specific bicluster comprising 126 target genes and 51 FC conditions (Figure 

S4.4a and Figure S4.6). This bicluster was quite homogeneous in that 50 of the 51 FC conditions were 

ESC/iPSC (test) vs. somatic cell (control) conditions suggesting many of the 126 genes are specifically 

regulated by let-7c or its family microRNAs in stem cells. Indeed, these targets included 49 genes that 

were reported to have a specific role in ESC (e.g., self-renewal) or upregulated in ESC (Supplementary 

Table S4.4). Among them, 21 genes (ACVR2B, ARID3B, 228CCND2, CCNF, CDC25A, DIAPH2, 

E2F5, HMGA1, IGF2BP1, IGF2BP3, LIN28A, LIN28B, MAPK6, MYCN, PAK1, POU2F1, 

SERPINB9, SLC5A6, STRBP, USP44 and VAV3) were validated targets of let-7229-244. In particular, 

MYCN is regulated by let-7 under ESC condition245, and LIN28B is also fine-tuned by let-7 in hESC228. 

PLAGL2 which promotes self-renewal in neural stem cell and glioma was also a known target of let-

7246. This illustrates the capability of bicluster analysis to identify a specific regulatory module.  
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Table S4.4. Let-7c bicluster targets regulating pluripotency or up-regulated in ES/iPS cells.  

Genes reported to be regulated by let-7 is marked in bold. 
Gene symbol Description Ref. 

ACVR2B Activin A binds to ActRIIA or ActRIIB and recruits ALK4. ALK4 interacts with 

SMAD2/3 and activates FGF2 pathways that stimulates self-renewal in human iPS cells 

by activating target genes including Nanog. 

247 

ACTA1 Overexpressed in pooled human ES cells compared to huURNA (universal human 

reference RNA) 

248 

AMT Overexpressed in pooled human ES cells compared to huURNA 248 

ANKRD46 Ankyrin repeat domain 46. It shows lower CpG methylation and higher gene expression 

level in pluripotent stem cell compared to somatic cell. 

249 

ARID3B ARID3B complex regulates the expression of stemess genes and upregulates the let-7 

target genes. Multiple steps in biogenesis of ARID3B-ARID3A complex are regulated by 

let-7. 

250 

B3GNT7 The gene expression level of B3GNT7 was 5.84 and 3.16-fold higher in BG02 and BG01  

human ES cell line, respectively, compared with the huURNA. 

251 

C6orf211 Overexpressed in pooled human ES cells compared to huURNA 248 

CCND2 CCND2 is a common target of OCT4, SOX2 and NANOG and its overexpression 

enhances the regenerative potency of hIPSC-derived cardiomyocytes. 

252-253 

CCNF CCNF (Cyclin F) plays a role in cell cycle event and is essential for embryonic 

development. 

254 

CDC25A NANOG regulates S-phase entry in human ES cells through direct binding of two cell 

cycle genes CDK6 and CDC25A 

255 

CDH1 CDH1 regulates open chromatin and pluripotency of embryonic stem cell. 256 

CDYL CDYL is involved in histone modification. It inhibits the neuronal differentiation of iPS 

cells. 

257-258 

CTPS2 Overexpressed in pooled human ES cells compared to huURNA 248 

DIAPH2 DIAPH2 is involved in actin cytoskeleton pathway and specifically expressed in ES cells. 232, 259 

E2F5 E2F4, E2F5 and E2F6 may control E2F target genes during the DNA damage response in 

human ES cells 

260 

FZD3 Overexpressed in pooled human ES cells compared to huURNA 248 

GALNT13 Overexpressed in pooled human ES cells compared to huURNA 248 

GYG2 Overexpressed in pooled human ES cells compared to huURNA 248 

HIC2 Overexpressed in pooled human ES cells compared to huURNA 248 

HMGA1 HMGA1 is a transcription factor highly expressed in ES cells. 261 

HOMER1 Overexpressed in pooled human ES cells compared to huURNA 248 

IGF2BP1 IGF2BP1 is highly expressed in ES cells and have important role in human pluripotent 

stem cell survival. 

262 

IGF2BP3 IGFBP3 is highly expressed in ES cells compared to differentiated cells. 263 

IGSF1 Overexpressed in pooled human ES cells compared to huURNA 248 

KIAA1274 Overexpressed in pooled human ES cells compared to huURNA 248 
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LIN28A LIN28A regulates mouse iPSC metabolism by let-7-dependent and -independent manner. 

It is also involved in nucleologenesis during early embryonic development. 

264-265 

LIN28B LIN28B have equivalent function with LIN28A 265 

MAPK6 Disruption of PI3K/Akt, MAPK/ERK and NFkB signaling pathway results in loss of 

pluripotency and/or loss of viability. Expression level of MAPK6 was downregulated 

during the differentiation process. 

266 

MCM5 MCM5 is involved in DNA replication and up-regulated during the initiation phase of 

reprogramming. 

267 

MED28 A mediator subunit, MED28, is required for the acquisition and maintenance of 

pluripotency during reprogramming 

268 

MYCN MYCN maintains embryonic stem cell pluripotency and self-renewal and regulated by let-

7. 

245, 269 

NAP1L1 NAL1L1 regulates the proliferation of murine iPS cells 270 

PAK1 PAK1 is involved in actin cytoskeleton pathway and regulates self-renewal activity 232, 271 

PLA2G3 Overexpressed in pooled human ES cells compared to huURNA 248 

PLAGL2 PLAGL2 promotes self-renewal by regulating Wnt signaling in neural stem cells and 

glioma 

272 

POU2F1 Overexpressed in pooled human ES cells compared to huURNA 248 

PPP1R16B PPP1R16B is hypo-methylated and highly expressed in iPS and ES cells 273 

RFWD3 Overexpressed in pooled human ES cells compared to huURNA 248 

SERPINB9 Overexpressed in pooled human ES cells compared to huURNA 248, 274 

SLC16A9 SLC16A9 is a downstream target of OCT4 and upregulated in ES cells. 275 

SLC5A6 The gene expression level of SLC5A6was 3.06 and 3.46-fold higher in BG02 and BG01 

hES cell line, respectively, compared with the huRNA (universal human RNA) 

251 

SMARCAD1 SMARCAD1 regulates naïve pluripotency by interacting with histone citrullination. 276 

SMARCC SMARCC1 is involved in chromatin remodeling and highly induced in iPS cells 277 

STRBP Overexpressed in pooled human ES cells compared to huURNA 248 

TAF5 TAFs are highly expressed in ES and iPS cells and regulates pluripotency. 278 

TARBP2 Overexpressed in pooled human ES cells compared to huURNA 248 

TIA1 Overexpressed in pooled human ES cells compared to huURNA 248 

THAP9 Overexpressed in pooled human ES cells compared to huURNA 248 

USP44 USP44 is highly expressed in ES and IPS cells and it regulates histone H2B ubiquitylation 

patterns for appropriate ESC differentiation. 

279-280 

VAV3 Overexpressed in pooled human ES cells compared to huURNA 248 
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Table S4.5. The accuracy for bicluster targets of eleven test miRNAs 

  1.3-fold 1.5-fold 2.0-fold 

miRNA Sensitivity Specificity Gain Sensitivity Specificity Gain Sensitivity Specificity Gain 

hsa-miR-1-3p 0.723 0.455 17.81% 0.511 0.559 6.94% 0.489 0.647 13.68% 

hsa-miR-21-5p 0.717 0.447 16.41% 0.696 0.57 26.53% 0.674 0.639 31.33% 

hsa-miR-125b-5p 0.694 0.5 19.35% 0.371 0.733 10.35% 0.226 0.909 13.47% 

hsa-miR-29a-3p 0.727 0.467 19.40% 0.682 0.497 17.88% 0.561 0.656 21.62% 

hsa-miR-29b-3p 0.776 0.479 25.48% 0.469 0.726 19.57% 0.531 0.695 22.59% 

hsa-miR-29c-3p 0.773 0.438 21.03% 0.75 0.55 30.01% 0.636 0.676 31.28% 

hsa-miR-34a-5p 0.73 0.478 20.78% 0.603 0.53 13.34% 0.365 0.707 7.17% 

hsa-miR-145-5p 0.7 0.417 11.65% 0.52 0.521 4.11% 0.44 0.651 9.14% 

hsa-miR-155-5p 0.556 0.481 3.68% 0.374 0.679 5.29% 0.394 0.637 3.05% 

hsa-miR-204-5p 0.737 0.461 19.81% 0.789 0.443 23.26% 0.684 0.619 30.37% 

hsa-miR-221-3p 0.639 0.439 7.81% 0.639 0.457 9.61% 0.333 0.649 -1.80% 

  



 

101 

Table S4.6. The accuracy of 1.3-fold bicluster targets filtered by node degree 

Sens.=sensitivity, Spec.=specificity, Gain=Gain in certainty, Overlap P=Overlap p-value, Deplete 

P=Depletion p-value 
 Node degree=1 Node degree=2 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.702 0.582 28.40% 1.53E-03 5.06E-09 0.596 0.678 27.40% 3.46E-03 3.55E-11 

hsa-miR-21-5p 0.696 0.582 27.76% 1.47E-03 9.10E-04 0.630 0.725 35.58% 6.21E-05 5.45E-06 

hsa-miR-29a-3p 0.712 0.566 27.86% 1.35E-05 4.12E-04 0.621 0.660 28.13% 1.52E-05 1.76E-05 

hsa-miR-29b-3p 0.755 0.578 33.35% 1.02E-05 5.05E-06 0.755 0.683 43.85% 7.33E-09 6.58E-10 

hsa-miR-29c-3p 0.750 0.549 29.85% 1.06E-04 6.74E-03 0.727 0.675 40.22% 2.40E-07 7.68E-05 

hsa-miR-34a-5p 0.714 0.618 33.27% 4.12E-07 5.77E-05 0.619 0.714 33.35% 2.26E-07 2.67E-05 

hsa-miR-125b-5p 0.629 0.663 29.18% 2.50E-05 1.93E-06 0.516 0.773 28.94% 6.07E-06 1.35E-05 

hsa-miR-145-5p 0.540 0.543 8.31% 1.88E-01 4.72E-02 0.500 0.651 15.14% 2.56E-02 4.68E-02 

hsa-miR-155-5p 0.485 0.609 9.39% 2.77E-01 3.38E-05 0.374 0.734 10.81% 2.15E-01 1.56E-06 

hsa-miR-204-5p 0.711 0.582 29.21% 4.08E-04 2.16E-02 0.684 0.656 33.99% 4.36E-05 3.76E-03 

hsa-miR-221-3p 0.611 0.561 17.19% 2.97E-02 2.69E-01 0.583 0.664 24.77% 2.20E-03 1.54E-01 
 

Node degree=3 Node degree=4 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.511 0.742 25.24% 4.12E-03 6.93E-09 0.447 0.771 21.75% 7.24E-03 5.25E-06 

hsa-miR-21-5p 0.478 0.791 26.92% 3.58E-04 6.72E-03 0.478 0.861 33.89% 1.88E-06 6.59E-04 

hsa-miR-29a-3p 0.576 0.727 30.23% 1.68E-06 8.91E-06 0.561 0.782 34.31% 2.24E-08 3.22E-07 

hsa-miR-29b-3p 0.714 0.760 47.46% 1.84E-10 5.95E-12 0.694 0.793 48.68% 1.19E-11 8.22E-10 

hsa-miR-29c-3p 0.705 0.743 44.72% 4.41E-09 1.62E-05 0.682 0.794 47.53% 1.15E-10 1.23E-05 

hsa-miR-34a-5p 0.540 0.795 33.44% 3.46E-08 3.18E-05 0.492 0.842 33.42% 4.71E-09 3.99E-05 

hsa-miR-125b-5p 0.468 0.864 33.21% 1.60E-08 6.19E-08 0.371 0.919 28.96% 9.38E-09 1.27E-06 

hsa-miR-145-5p 0.420 0.721 14.11% 2.82E-02 6.26E-02 0.320 0.794 11.45% 4.93E-02 6.75E-02 

hsa-miR-155-5p 0.333 0.802 13.53% 7.81E-02 1.27E-07 0.303 0.850 15.27% 1.27E-02 1.10E-06 

hsa-miR-204-5p 0.632 0.725 35.65% 1.04E-05 4.73E-03 0.553 0.787 34.01% 1.18E-05 2.58E-03 

hsa-miR-221-3p 0.556 0.770 32.58% 3.08E-05 5.81E-02 0.389 0.840 22.90% 9.80E-04 1.04E-01 
 

Node degree=5 Node degree=6 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.362 0.823 18.44% 1.72E-02 4.11E-06 0.362 0.850 21.14% 4.76E-03 6.87E-07 

hsa-miR-21-5p 0.457 0.898 35.41% 2.00E-07 1.15E-04 0.391 0.914 30.52% 2.16E-06 3.07E-04 

hsa-miR-29a-3p 0.530 0.837 36.72% 3.00E-10 2.97E-08 0.485 0.875 35.95% 8.18E-11 6.09E-09 

hsa-miR-29b-3p 0.612 0.845 45.69% 2.43E-11 8.27E-10 0.612 0.880 49.24% 1.23E-13 1.71E-12 

hsa-miR-29c-3p 0.659 0.855 51.43% 6.77E-13 3.68E-09 0.614 0.895 50.89% 5.56E-14 8.21E-10 

hsa-miR-34a-5p 0.444 0.886 33.00% 6.43E-10 5.55E-06 0.381 0.907 28.75% 8.59E-09 2.01E-05 

hsa-miR-125b-5p 0.323 0.952 27.41% 1.41E-09 8.29E-08 0.274 0.969 24.32% 1.20E-09 2.94E-07 

hsa-miR-145-5p 0.200 0.855 5.50% 2.15E-01 1.11E-01 0.200 0.901 10.09% 3.71E-02 1.74E-02 

hsa-miR-155-5p 0.242 0.882 12.46% 2.39E-02 1.53E-05 0.212 0.920 13.19% 1.71E-02 8.81E-08 

hsa-miR-204-5p 0.526 0.827 35.33% 1.88E-06 3.74E-03 0.447 0.873 32.05% 3.68E-06 1.37E-03 

hsa-miR-221-3p 0.389 0.860 24.92% 2.59E-04 6.60E-02 0.333 0.896 22.97% 2.66E-04 4.55E-02 
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Table S4.7. The accuracy of 1.5-fold bicluster targets filtered by node degree 

Sens.=sensitivity, Spec.=specificity, Gain=Gain in certainty, Overlap P=Overlap p-value, Deplete 

P=Depletion p-value 
 

Node degree=1 Node degree=2 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.426 0.690 11.53% 2.09E-01 5.37E-06 0.383 0.759 14.21% 1.11E-01 7.21E-07 

hsa-miR-21-5p 0.609 0.689 29.72% 7.98E-04 1.41E-04 0.522 0.824 34.55% 4.01E-05 1.67E-06 

hsa-miR-29a-3p 0.636 0.616 25.27% 9.88E-05 2.02E-04 0.576 0.713 28.87% 6.15E-06 8.08E-06 

hsa-miR-29b-3p 0.449 0.812 26.11% 1.44E-04 5.70E-06 0.429 0.864 29.25% 7.79E-06 5.20E-08 

hsa-miR-29c-3p 0.727 0.650 37.75% 1.80E-06 2.21E-05 0.659 0.744 40.33% 2.46E-07 2.37E-07 

hsa-miR-34a-5p 0.587 0.664 25.18% 8.94E-05 2.42E-03 0.508 0.772 28.03% 5.91E-06 5.88E-05 

hsa-miR-125b-5p 0.306 0.822 12.82% 2.67E-02 1.49E-03 0.274 0.886 15.99% 2.09E-03 3.89E-04 

hsa-miR-145-5p 0.420 0.631 5.12% 3.17E-01 9.06E-02 0.340 0.741 8.13% 1.49E-01 1.16E-01 

hsa-miR-155-5p 0.333 0.784 11.78% 1.04E-01 8.27E-06 0.253 0.840 9.21% 1.28E-01 2.45E-04 

hsa-miR-204-5p 0.737 0.583 32.00% 1.11E-04 1.30E-02 0.684 0.675 35.97% 1.16E-05 8.29E-03 

hsa-miR-221-3p 0.611 0.579 18.99% 2.38E-02 4.28E-02 0.528 0.703 23.05% 3.41E-03 1.86E-01 
 

Node degree=3 Node degree=4 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.362 0.811 17.29% 3.29E-02 1.08E-06 0.340 0.840 18.05% 1.59E-02 6.23E-06 

hsa-miR-21-5p 0.435 0.873 30.77% 1.99E-05 1.88E-04 0.348 0.918 26.59% 5.97E-05 9.69E-05 

hsa-miR-29a-3p 0.530 0.781 31.13% 2.93E-07 4.87E-06 0.515 0.823 33.84% 1.05E-08 9.61E-08 

hsa-miR-29b-3p 0.429 0.898 32.65% 1.24E-07 6.38E-09 0.408 0.920 32.83% 1.46E-08 1.57E-08 

hsa-miR-29c-3p 0.659 0.803 46.19% 8.74E-10 1.91E-08 0.591 0.841 43.22% 2.62E-09 1.51E-08 

hsa-miR-34a-5p 0.444 0.833 27.73% 1.25E-06 1.29E-04 0.397 0.870 26.66% 5.56E-07 2.66E-04 

hsa-miR-125b-5p 0.258 0.936 19.41% 3.40E-05 2.96E-06 0.242 0.963 20.51% 4.57E-07 1.62E-06 

hsa-miR-145-5p 0.320 0.811 13.10% 2.65E-02 3.31E-02 0.240 0.864 10.42% 4.53E-02 4.27E-02 

hsa-miR-155-5p 0.222 0.897 11.95% 4.22E-02 9.91E-07 0.192 0.925 11.67% 1.61E-02 8.24E-06 

hsa-miR-204-5p 0.553 0.758 31.05% 6.72E-05 1.86E-02 0.553 0.812 36.48% 1.37E-06 3.80E-03 

hsa-miR-221-3p 0.444 0.791 23.50% 1.64E-03 9.20E-02 0.389 0.845 23.35% 7.65E-04 8.56E-02 
 

Node degree=5 Node degree=6 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.298 0.867 16.49% 1.94E-02 1.22E-05 0.213 0.886 9.91% 1.16E-01 4.03E-04 

hsa-miR-21-5p 0.261 0.934 19.53% 8.89E-04 1.52E-03 0.239 0.947 18.59% 5.52E-04 3.40E-03 

hsa-miR-29a-3p 0.470 0.867 33.68% 1.87E-09 8.90E-09 0.394 0.893 28.67% 1.46E-08 1.21E-05 

hsa-miR-29b-3p 0.388 0.942 33.01% 1.67E-09 5.47E-10 0.347 0.950 29.66% 1.78E-08 8.02E-10 

hsa-miR-29c-3p 0.568 0.874 44.18% 2.48E-10 2.69E-09 0.545 0.894 43.91% 4.25E-11 3.11E-08 

hsa-miR-34a-5p 0.333 0.896 22.94% 2.14E-06 3.41E-03 0.317 0.921 23.85% 2.08E-07 4.49E-04 

hsa-miR-125b-5p 0.194 0.977 17.03% 2.84E-06 1.17E-06 0.129 0.983 11.16% 1.20E-04 1.25E-03 

hsa-miR-145-5p 0.200 0.894 9.36% 4.07E-02 1.64E-01 0.160 0.910 7.01% 8.46E-02 2.22E-01 

hsa-miR-155-5p 0.182 0.945 12.67% 3.46E-03 3.63E-06 0.131 0.955 8.62% 3.39E-02 5.23E-05 

hsa-miR-204-5p 0.474 0.852 32.54% 6.02E-06 1.50E-03 0.368 0.886 25.47% 9.61E-05 5.30E-03 

hsa-miR-221-3p 0.333 0.885 21.85% 5.93E-04 8.49E-02 0.306 0.914 22.00% 2.62E-04 2.51E-02 
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Table S4.8. The accuracy of 2.0-fold bicluster targets filtered by node degree 

Sens.=sensitivity, Spec.=specificity, Gain=Gain in certainty, Overlap P=Overlap p-value, Deplete 

P=Depletion p-value 
 Node degree=1 Node degree=2 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.404 0.771 17.50% 2.67E-02 7.89E-05 0.298 0.830 12.83% 9.10E-02 2.55E-05 

hsa-miR-21-5p 0.543 0.770 31.40% 8.53E-05 9.21E-04 0.413 0.877 29.01% 8.47E-05 6.60E-05 

hsa-miR-29a-3p 0.515 0.745 25.99% 2.47E-05 1.08E-04 0.455 0.810 26.42% 6.33E-06 1.85E-05 

hsa-miR-29b-3p 0.510 0.793 30.31% 2.14E-05 3.36E-07 0.469 0.870 33.92% 1.88E-07 1.83E-08 

hsa-miR-29c-3p 0.614 0.773 38.71% 3.08E-07 5.47E-06 0.568 0.832 40.02% 2.02E-08 5.91E-06 

hsa-miR-34a-5p 0.333 0.804 13.73% 7.25E-03 2.47E-01 0.317 0.851 16.88% 7.00E-04 8.91E-02 

hsa-miR-125b-5p 0.210 0.955 16.51% 2.06E-05 6.87E-04 0.177 0.986 16.39% 7.24E-08 2.86E-05 

hsa-miR-145-5p 0.340 0.756 9.60% 1.13E-01 2.57E-02 0.300 0.835 13.49% 1.98E-02 1.77E-02 

hsa-miR-155-5p 0.333 0.774 10.78% 1.04E-01 1.70E-04 0.273 0.842 11.48% 4.49E-02 1.79E-04 

hsa-miR-204-5p 0.605 0.733 33.84% 2.19E-05 1.24E-02 0.474 0.815 28.92% 7.47E-05 2.42E-02 

hsa-miR-221-3p 0.306 0.755 6.01% 2.31E-01 7.12E-01 0.278 0.824 10.21% 8.51E-02 4.42E-01 
 

Node degree=3 Node degree=4 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.298 0.869 16.69% 1.25E-02 1.70E-04 0.255 0.892 14.74% 1.68E-02 5.32E-04 

hsa-miR-21-5p 0.391 0.914 30.52% 1.53E-06 5.54E-04 0.283 0.934 21.70% 7.75E-05 8.04E-03 

hsa-miR-29a-3p 0.439 0.855 29.44% 1.03E-07 3.09E-06 0.409 0.897 30.64% 2.56E-09 3.23E-07 

hsa-miR-29b-3p 0.408 0.904 31.20% 1.40E-07 4.69E-07 0.367 0.942 30.97% 6.33E-09 2.59E-08 

hsa-miR-29c-3p 0.523 0.869 39.18% 6.77E-09 5.68E-06 0.455 0.903 35.75% 8.32E-09 3.60E-05 

hsa-miR-34a-5p 0.254 0.887 14.08% 1.31E-03 2.53E-01 0.238 0.916 15.39% 1.89E-04 1.44E-01 

hsa-miR-125b-5p 0.113 0.994 10.71% 6.55E-06 2.98E-04 0.113 0.996 10.90% 2.13E-06 1.04E-04 

hsa-miR-145-5p 0.200 0.879 7.89% 1.04E-01 3.55E-02 0.200 0.916 11.56% 1.43E-02 1.24E-02 

hsa-miR-155-5p 0.242 0.910 15.22% 2.08E-03 2.83E-06 0.182 0.935 11.67% 4.21E-03 1.93E-04 

hsa-miR-204-5p 0.395 0.888 28.27% 1.47E-05 8.50E-03 0.316 0.918 23.34% 7.18E-05 1.24E-02 

hsa-miR-221-3p 0.250 0.876 12.61% 2.49E-02 5.03E-01 0.250 0.919 16.89% 2.39E-03 1.13E-01 
 

Node degree=5 Node degree=6 

miRNA Sens. Spec. Gain Overlap P Deplete P Sens. Spec. Gain Overlap P Deplete P 

hsa-miR-1-3p 0.213 0.929 14.15% 1.23E-02 9.00E-05 0.170 0.950 12.01% 1.54E-02 2.87E-04 

hsa-miR-21-5p 0.196 0.955 15.06% 1.44E-03 2.13E-02 0.109 0.975 8.41% 1.19E-02 1.60E-01 

hsa-miR-29a-3p 0.348 0.921 26.99% 8.85E-09 3.54E-06 0.318 0.944 26.23% 1.64E-09 5.97E-07 

hsa-miR-29b-3p 0.347 0.957 30.40% 2.20E-09 1.06E-09 0.327 0.963 28.95% 1.47E-09 3.34E-08 

hsa-miR-29c-3p 0.432 0.928 35.94% 8.15E-10 8.18E-06 0.432 0.948 37.94% 8.08E-12 8.13E-07 

hsa-miR-34a-5p 0.206 0.936 14.19% 2.08E-04 7.75E-02 0.190 0.950 14.05% 1.02E-04 2.99E-02 

hsa-miR-125b-5p 0.048 0.996 4.45% 8.10E-03 3.87E-02 0.048 0.998 4.64% 3.49E-03 1.77E-02 

hsa-miR-145-5p 0.180 0.938 11.76% 5.73E-03 2.31E-02 0.140 0.952 9.23% 1.47E-02 3.42E-02 

hsa-miR-155-5p 0.131 0.957 8.87% 1.70E-02 1.86E-04 0.111 0.972 8.35% 1.53E-02 5.06E-05 

hsa-miR-204-5p 0.237 0.946 18.25% 3.81E-04 9.29E-03 0.158 0.969 12.66% 2.78E-03 9.28E-03 

hsa-miR-221-3p 0.222 0.941 16.37% 1.29E-03 9.01E-02 0.194 0.968 16.29% 3.04E-04 1.49E-02 
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Table S4.9. microRNA expression patterns in cancers reported from the literature 

microRNA Cancer Direction Reference 

hsa-miR-1-3p Breast cancer Down-regulation 281 

hsa-miR-21-5p Breast cancer Up-regulation 282 

hsa-miR-29a-3p Acute Myeloid Leukemia Down-regulation 283-284 

 Breast cancer Down-regulation 285 

 Diffuse Large B-cell Lymphoma Down-regulation 286 

 Glioblastoma/glioma Down-regulation 287 

hsa-miR-29b-3p Acute Myeloid Leukemia Down-regulation 288 

 Breast cancer Down-regulation 289 

 Diffuse Large B-cell Lymphoma Down-regulation 286 

 Glioblastoma/glioma Down-regulation 290 

hsa-miR-29c-3p Breast cancer Down-regulation 291 

 Diffuse Large B-cell Lymphoma Down-regulation 286 

 Glioblastoma/glioma Down-regulation 290 

hsa-miR-34a-5p Breast cancer Down-regulation 292 

 Diffuse Large B-cell Lymphoma Down-regulation 293 

hsa-miR-125a-5p Acute Myeloid Leukemia Up-regulation 294 

hsa-miR-145-5p Acute Myeloid Leukemia Down-regulation 295 

 Breast cancer Down-regulation 296 

 Diffuse Large B-cell Lymphoma Down-regulation 297 

hsa-miR-155-5p Breast cancer Up-regulation 298 

hsa-miR-221-3p Breast cancer Up-regulation 299 
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Figure S4.5. microRNA targets in PI3K/Akt pathway (DLBCL).  

(a) MicroRNA targets predicted from DLBCL biclusters in PI3K/Akt pathway are highlighted by red 

borders. For each target molecule, corresponding microRNAs and target gene symbols are represented. 

(b, c) Overall survival analysis for the 116 DLBCL patients (GSE40239) of high (red) and low (blue) 

(b) miR-34a and (c) miR-145 expression levels. The patients were divided into two groups based on 

their best splits (both at bottom 20% values). 
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Table S4.10. Functional enrichment test for miR-29, miR-34a, miR-145 targets in DLBCL 

Term Count P-value FDR 

hsa04151:PI3K-Akt signaling pathway 31 4.19E-10 9.09E-08 

hsa04510:Focal adhesion 22 1.46E-08 1.59E-06 

hsa04512:ECM-receptor interaction 13 8.66E-07 6.26E-05 

hsa04974:Protein digestion and absorption 13 9.82E-07 5.33E-05 

hsa05146:Amoebiasis 12 4.03E-05 1.75E-03 

hsa04014:Ras signaling pathway 17 9.00E-05 3.25E-03 

hsa05218:Melanoma 8 1.44E-03 4.35E-02 

hsa05222:Small cell lung cancer 8 4.03E-03 1.04E-01 

hsa04015:Rap1 signaling pathway 13 4.31E-03 9.89E-02 

hsa05214:Glioma 7 4.37E-03 9.06E-02 

hsa05162:Measles 10 4.40E-03 8.33E-02 

hsa04066:HIF-1 signaling pathway 8 8.74E-03 1.47E-01 

hsa04060:Cytokine-cytokine receptor interaction 13 8.76E-03 1.37E-01 

hsa05200:Pathways in cancer 18 1.23E-02 1.74E-01 

hsa05215:Prostate cancer 7 1.83E-02 2.35E-01 

hsa05212:Pancreatic cancer 6 1.91E-02 2.30E-01 

hsa04115:p53 signaling pathway 6 2.15E-02 2.42E-01 

hsa04360:Axon guidance 8 3.19E-02 3.24E-01 

hsa04611:Platelet activation 8 3.56E-02 3.39E-01 

hsa04668:TNF signaling pathway 7 4.08E-02 3.64E-01 

hsa05223:Non-small cell lung cancer 5 4.41E-02 3.72E-01 

hsa04144:Endocytosis 12 4.43E-02 3.60E-01 

hsa04150:mTOR signaling pathway 5 4.91E-02 3.78E-01 

hsa05205:Proteoglycans in cancer 10 4.96E-02 3.69E-01 

hsa04550:Signaling pathways regulating pluripotency of stem cells 8 4.98E-02 3.58E-01 

hsa04540:Gap junction 6 5.88E-02 3.97E-01 

hsa05219:Bladder cancer 4 7.37E-02 4.59E-01 

hsa04110:Cell cycle 7 7.58E-02 4.57E-01 

hsa05166:HTLV-I infection 11 8.54E-02 4.87E-01 

hsa05220:Chronic myeloid leukemia 5 9.27E-02 5.05E-01 

hsa05231:Choline metabolism in cancer 6 9.34E-02 4.97E-01 
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Table S4.11. Functional enrichment test for miR-1, miR-29, miR-34a, miR-145 targets in breast 

cancer 

Term Count P-value FDR 

hsa04510:Focal adhesion 23 7.33E-12 1.38E-09 

hsa04512:ECM-receptor interaction 16 2.15E-11 2.02E-09 

hsa04151:PI3K-Akt signaling pathway 27 2.11E-10 1.32E-08 

hsa05146:Amoebiasis 12 2.42E-06 1.14E-04 

hsa04974:Protein digestion and absorption 11 3.09E-06 1.16E-04 

hsa05200:Pathways in cancer 21 1.71E-05 5.35E-04 

hsa05222:Small cell lung cancer 10 1.77E-05 4.74E-04 

hsa05205:Proteoglycans in cancer 12 8.22E-04 1.91E-02 

hsa04611:Platelet activation 9 2.13E-03 4.35E-02 

hsa05219:Bladder cancer 5 5.82E-03 1.04E-01 

hsa04360:Axon guidance 8 7.32E-03 1.18E-01 

hsa05218:Melanoma 6 8.41E-03 1.24E-01 

hsa05215:Prostate cancer 6 2.00E-02 2.53E-01 

hsa05212:Pancreatic cancer 5 2.81E-02 3.18E-01 

hsa05166:HTLV-I infection 10 3.84E-02 3.88E-01 

hsa05220:Chronic myeloid leukemia 5 3.89E-02 3.73E-01 

hsa05161:Hepatitis B 7 4.43E-02 3.94E-01 

hsa04014:Ras signaling pathway 9 4.79E-02 4.01E-01 
hsa00532:Glycosaminoglycan biosynthesis - chondroitin sulfate / 
dermatan sulfate 3 4.85E-02 3.88E-01 

hsa05144:Malaria 4 5.61E-02 4.19E-01 

hsa05145:Toxoplasmosis 6 5.89E-02 4.19E-01 

hsa04152:AMPK signaling pathway 6 6.60E-02 4.42E-01 

hsa05223:Non-small cell lung cancer 4 7.73E-02 4.82E-01 

hsa05202:Transcriptional misregulation in cancer 7 7.87E-02 4.74E-01 

hsa04150:mTOR signaling pathway 4 8.39E-02 4.83E-01 

hsa04010:MAPK signaling pathway 9 8.41E-02 4.70E-01 

hsa04915:Estrogen signaling pathway 5 9.95E-02 5.18E-01 
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Table S4.12. Multivariate Cox regression analysis of microRNAs in the DLBCL dataset 

Variable Hazard ratio 95% CI. * p-value 

miR-29a    

miR-29a 0.903 0.662-1.231 5.18.E-01 

IPI * 1.720 1.231-2.404 1.48.E-03 

Gender 2.498 1.043-5.982 3.98.E-02 

miR-29b    

miR-29b 0.912 0.664-1.252 5.68.E-01 

IPI 1.751 1.27-2.412 6.20.E-04 

Gender 2.558 1.063-6.154 3.61.E-02 

miR-29c    

miR-29c 0.833 0.581-1.193 3.19.E-01 

IPI 1.721 1.242-2.386 1.12.E-03 

Gender 2.609 1.084-6.277 3.23.E-02 

miR-34a    

miR-34a 0.691 0.508-0.94 1.85.E-02 

IPI 1.687 1.225-2.322 1.35.E-03 

Gender 2.983 1.171-7.6 2.20.E-02 

miR-145    

miR-145 0.593 0.415-0.848 4.13.E-03 

IPI 1.787 1.312-2.434 2.28.E-04 

Gender 3.075 1.266-7.466 1.31.E-02 

*CI=Confidence Interval, IPI=International prognostic index 
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Table S4.13. Multivariate Cox regression analysis of microRNAs in the breast cancer dataset 

 Hazard ratio 95% CI. * p-value 

miR-1    

miR-1 1.034 0.848-1.261 7.43.E-01 

Age 1.036 1.011-1.061 4.22.E-03 

Tumor size 1.206 1.018-1.43 3.08.E-02 

Lymph nodes involved 1.194 1.125-1.268 6.13.E-09 

ER * 0.666 0.396-1.12 1.25.E-01 

Grade 1.603 1.099-2.339 1.43.E-02 

miR-29a    

miR-29a 0.745 0.609-0.911 4.22.E-03 

Age 1.039 1.014-1.065 2.36.E-03 

Tumor size 1.213 1.03-1.428 2.05.E-02 

Lymph nodes involved 1.213 1.141-1.289 5.70.E-10 

ER 0.605 0.356-1.027 6.28.E-02 

Grade 1.477 1.012-2.156 4.29.E-02 

miR-29b    

miR-29b 0.717 0.565-0.911 6.42.E-03 

Age 1.041 1.016-1.067 1.02.E-03 

Tumor size 1.245 1.058-1.465 8.40.E-03 

Lymph nodes involved 1.209 1.136-1.287 2.08.E-09 

ER 0.713 0.424-1.2 2.03.E-01 

Grade 1.712 1.176-2.49 4.96.E-03 

miR-29c    

miR-29c 0.715 0.57-0.897 3.80.E-03 

Age 1.037 1.014-1.061 1.75.E-03 

Tumor size 1.256 1.064-1.483 7.15.E-03 

Lymph nodes involved 1.195 1.127-1.267 2.06.E-09 

ER 0.796 0.467-1.356 4.01.E-01 

Grade 1.469 1.012-2.13 4.29.E-02 

miR-34a    

miR-34a 1.023 0.795-1.316 8.62.E-01 

Age 1.036 1.011-1.062 4.10.E-03 

Tumor size 1.216 1.034-1.429 1.80.E-02 

Lymph nodes involved 1.193 1.124-1.266 5.43.E-09 

ER 0.669 0.398-1.124 1.29.E-01 

Grade 1.573 1.083-2.286 1.75.E-02 

miR-145    

miR-145 1.168 0.921-1.482 2.00.E-01 

Age 1.038 1.013-1.063 2.92.E-03 

Tumor size 1.224 1.042-1.437 1.37.E-02 

Lymph nodes involved 1.195 1.126-1.267 2.90.E-09 

ER 0.702 0.418-1.181 1.83.E-01 

Grade 1.631 1.126-2.362 9.69.E-03 

*CI=Confidence Interval, ER=Estrogen receptor 



 

110 

MicroRNA regulation of PI3K/Akt pathways in the literature 

The microRNAs detected in cancer biclusters were able to suppress PI3K/Akt pathway and metastasis 

in multiple cancer types. For example, up-regulated miR-29a inhibited the lung cancer proliferation by 

targeting NRAS which is a key downstream effector of PI3K/Akt pathway300. Up-regulated MiR-29b 

suppressed the breast cancer metastasis by targeting VEGFA, PDGFC and ITGB1217, and it also reduced 

angiogenesis of endometrial cancer by targeting VEGFA301. MiR-34a inhibited gastric cancer growth, 

invasion, and metastasis by targeting two signal transducers of the pathway, PDGFR and MET302. Mir-

1 also acted as a tumor suppressor in gastric cancer by targeting VEGFA and MET303-304. Lastly, miR-

145 inhibited PI3K/Akt pathway by targeting NRAS in melanoma305. The same targets and microRNAs 

were detected in our bicluster results for breast cancer and DLBCL, suggesting these microRNAs are 

also able to suppress PI3K/Akt pathway and metastasis in these cancer types. Indeed, it was shown in 

vivo that mir-29b considerably inhibits breast cancer metastasis by suppressing tumor 

microenvironment related targets217. Our biclustering result suggests collagen and other genes in 

PI3K/Akt pathway are also targets of mir-29 in breast cancer and DLBCL.  

 

miRNA mimic transfection assays 

miR-29c-3p mimic and miRNA scramble control were purchased from Genolution. 100nM of miR-

29c-3p mimic and miRNA scramble were transfected into MDA-MB231 using G-fectin Reagent 

(Genolution). Experiments were performed 48 hours after transfection. 

 

Real-Time Quantitative PCR 

One microgram of total RNA from MDA-MB231 cell was reverse transcribed with oligo dT and M-

MLV RT reverse transcriptase (Invitrogen). Real-time quantitative PCR was performed using a 

GENETBIO SYBR Green Prime Q-master Mix and the QuantStudio 5 PCR system (ThermoFisher). 

All runs were accompanied by the internal control HPRT or B2M gene. The samples were run in 

duplicate and normalized to HPRT or GAPDH using a DD cycle threshold-based algorithm, to 

provide arbitrary units representing relative expression. 

 

immunoblot assays 

For immunoblot assay, cells were lysed in RIPA buffer. Protein concentrations were determined with 

the BCA Protein Assay (ThermoFisher). Quantified lysates were loaded on SDS-PAGE, transferred 

onto NC membrane and probed with rabbit anti-human FAK (1:1000, cell signaling), phosphor FAK 

(1:1000, cell signaling), Akt (1:1000, cell signaling), phosphor Akt (1:1000, cell signaling) and mouse 

anti-human GAPDH (1:1000, cell signaling) followed by incubation with secondary fluorescent 

antibodies (1:5000, Li-COR). 
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Figure S4.6. BiMIR database.  

(a) Heatmap of hsa-let-7c-5p bicluster up-regulated under embryonic stem cell/iPS cell/somatic cell 

conditions. Row and column represent the symbols of experimental conditions and target gene symbols, 

respectively. For each target gene, the user can check the node-degree for target PPI network and 

whether it is experimentally validated. (b) Detailed condition information (test and control group info.) 

is represented. Wordcloud for conditions is also provided. (c) PPI network for bicluster targets are 

visualized. The nodes with bright red color are connected with many other targets.  
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Chapter V: Discussion and conclusion 

In this dissertation, the algorithms to improve the pathway analysis of RNA-seq data with small 

replicates and GWAS summary data were addressed, as well as an approach to predict cell condition-

specific miRNA targets by biclustering the big transcriptomic data.  

In Chapter II, the effect of absolute statistic in reducing the false positive results from gene-permuting 

GSEA was confirmed through simulation and real data analysis. It was observed that the absolute 

statistic reduced the variance inflation factor when tested with TCGA cancer data. Based on this 

observation, I developed an R package named ‘AbsFilterGSEA’. It provides a useful function that filters 

significant gene-sets detected by original gene-permuting GSEA with those detected by absolute GSEA, 

so that users obtain reliable gene-sets with known directionality. However, the reason why absolute 

statistic relieves the variance inflation factor is still in question and it should be mathematically proved 

through further study. 

In Chapter III, it was observed that the z-score method applied with modified gene scores (adjusted by 

SNP size) greatly improved sensitivity compared to existing competitive and some of self-contained 

gene-set analysis methods, while exhibiting decent false positive control. Also, it was good at 

prioritizing phenotype-related pathways, and showed outstanding performance when the sample size is 

relatively small (KARE data, < 9000 samples). In addition, it provides gene network visualization 

within a gene-set or across significant gene-sets. From the global network (across significant gene-sets), 

users can identify hub gene or core sub-network that may affect to multiple pathways, and thus plays a 

central role in corresponding disease. Currently, it provides only two PPI database (STRING and 

HIPPIE). In the update version, more PPI sources need to be included. Also, using the extended PPI 

network, it might be possible to infer the biological role of unannotated genes showing meaningful 

association signals.  

In Chapter IV, a novel approach to predict condition-specific miRNA target network by biclustering 

the transcriptomic big data was addressed. Compared to pure sequence-based method, biclustering 

improved the target prediction and the accuracy was further improved by filtering the bicluster targets 

using network information. In addition, the bicluster targets were favorable when compared with targets 

predicted from TCGA mRNA-miRNA paired expression data. The cancer bicluster analysis revealed 

that few miRNAs’ targets were enriched in ‘PI3K/Akt signaling pathway’, and it was experimentally 

validated that miR-29 suppresses nine genes involved in the pathway. There are two future works for 

this project. First, I can also apply this approach to other types of regulators that binds to DNA in a 

sequence-specific manner such as transcription factor. Second, it is possible to construct and infer 

miRNA co-regulation network using significantly overlapping biclusters.
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고통을 함께 나눈 현모오빠, 상호, 진영 언니, 정말 수고했어요!! 마지막으로, 항상 저와 함께 
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