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Abstract 

 

Surface qualities including topography, texture, mechanical, and chemical stabilities have become 

an essential requirement in manufacturing along with a new paradigm of industrial revolution. The 

electron beam irradiation is a special technique for surface modification. Especially, the energy transfer 

through electrons with rapid thermal gradient inducing phase transformation and re-solidification of 

materials is the unique characteristics of large pulsed electron beam (LPEB) irradiation, which makes 

it a potential candidate for surface manufacturing. Despite the previous studies have revealed that the 

LPEB irradiation could reduce surface roughness and modify surface properties, the application of 

LPEB in manufacturing processes is rather limited as the mechanisms of LPEB irradiation and 

corresponding surface modifications are yet to be explored. In order to expand the application area of 

the LPEB irradiation, the dissertation aims at (1) predictive modeling of the LPEB irradiation to firmly 

establish the irradiating mechanisms, (2) fundamental understandings on surface modification factors 

specifying the modification mechanisms, and (3) applying the LPEB irradiation for multiscale and 

hybrid manufacturing processes based on the modification mechanisms. 

The first part of the dissertation will be temperature prediction using a numerical model during the 

LPEB process. The absorptance of electron beam was estimated considering electron scattering, 

backscattering, and transmission to adopt the natural interactions of electrons with substrates. The 

model predicts temperature distributions and molten depths depending on the irradiation conditions. 

The effects of considerations of absorptance containing natural interactions such as scattering, 

backscattering, and transmission on prediction accuracy were explored by comparing the predictive 

results between constant and calculated absorptance versus depth. The estimation of absorptance and 

energy transfer mechanisms resulted in more accurate predictions of molten depths. 

The experimental investigations of LPEB irradiation were mainly performed on mold steels (KP1 

and KP4) and biomedical alloys (Ti-6Al-7Nb) in the second part. The nano-hardness of mold steels 

increased by 316% (KP1), 144% (KP4), and 154% (Ti-6Al-7Nb), respectively under optimized 

experimental parameters, which is affected by the increased dislocations in the re-solidified layer and a 

decreased fraction of the pre-dominant slip plane. Contact angle variations and oxides formation in the 

re-solidified layer projected that the surface became stable. Corrosion resistance of the irradiated surface 

was increased, as evidenced from the improved corrosion parameters. Based on the mechanisms of 

surface hardening, the nitriding process of Ti-6Al-7Nb using the LPEB irradiation was also explored. 

The atomic concentration of nitrogen atoms at the re-solidified layer could be achieved up to ~18% by 

LPEB nitriding. Nano-hardness in the re-solidified layer was improved further by ~75% following the 

LPEB nitriding process, as a result of the formation of TiN. The nitrided layer induced by the LPEB 

nitriding, consisted of TiN, TiO2, and TiOxNy, which modified the corrosion resistance as evidenced 

from the improved electrochemical parameters. An increase in the fraction of TiN at the re-solidified 
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layer was considered responsible for the remarkable improvement of surface properties embedding 

uniformly noble and stable characteristics at the top surface. 

Based on the fundamental mechanisms of LPEB irradiations specified in the first and second parts, 

multiscale and hybrid manufacturing processes using the LPEB will be discussed in the last part. 

The patterned metal masks fabricated by a laser and drilled CFRP composites were selected as a 

microscale application of the LPEB irradiation as a deburring process based on the melting mechanism. 

The generated burrs were tried to be eliminated by a LPEB-assisted hybrid deburring process on metal 

masks. The size of burrs after the process was decreased about 81% from 38.01 μm to 7.2 μm comparing 

to the results of abrasive deburring alone. The distribution of burr size also decreased about 85% and 

surface roughness (Ra) was modified from 640 nm to 121 nm, indicating the formation of a uniform 

surface texture. The optimized irradiation also improved the accuracy of the shapes of the holes, and 

reduced the sizes of the burrs by 97% on drilled CFRP composites. This modified the deviations of hole 

accuracy by 93%. The unique deburring mechanisms started with evaporation of the resin that coats the 

carbon fibers was revealed through experimental observations. 

Moreover, superhydrophobic transformation of patterned metal surfaces was also investigated as one 

of the microscale applications of LPEB based on the surface modification. The Wenzel-to-Cassie 

transition occurred at 140° with a groove depth of 250 μm after the WEDM fabrication which indicated 

the development of a hydrophobic surface. However, the contact angle increased to 166.7° with the 

Cassie state after the LPEB irradiation at a lower depth of groove (200 μm). The modification of surface 

roughness following the LPEB irradiation on the patterns resulted in a decreased the critical angle for 

Wenzel-to-Cassie transition. FT-IR spectroscopy acquired at the ATR mode specified the elimination of 

hydrophilic functional groups on the surface following LPEB irradiation. 

Finally, silver nanowires (AgNWs) were selected as a nanoscale application of LPEB irradiation 

based on the energy transfer mechanism. The welding of silver nanowires to form percolation networks 

using the LPEB irradiation was investigated. The welded AgNWs showed modified electrical and 

mechanical characteristics with a low contact resistance at junctions. Therefore, the LPEB-welded 

AgNW electrode exhibited modified sheet resistance of 12.63 Ω/sq and higher transmittance of 93% (at 

550 nm). Furthermore, the outstanding mechanical flexibility was obtained than other AgNW electrodes 

prepared by thermal annealing. The feasibility of LPEB-welded AgNW electrodes were proved by the 

fabrication of polymer light-emitting diodes (PLEDs). The result supported that the LPEB-welded 

AgNWs could become an alternative to indium tin oxide (ITO). 

The dissertation will explore a comprehensive approach on the LPEB irradiation encompassing 

materials selection, understanding of the underlying multi-physical phenomena, surface modification 

mechanisms, surface qualities, and applications of LPEB irradiation for multiscale and hybrid 

manufacturing processes. This unique research approach will overcome the limitations of conventional 

finishing processes, incorporate subdivided finishing processes into a single step, and bring a new 
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paradigm of finishing systems. It should be anticipated that the outcome of the dissertation will expand 

the application areas of the LPEB irradiation in the overall manufacturing industries including 

automotive, aerospace, biomedical, and semi-conductors in multiscale from macro- to nano-levels.
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1. INTRODUCTION 

 

Manufacturing is one of the oldest and most important aspects of engineering in our machine-based 

civilization after the industrial revolution [1]. At the first, most of manufacturing techniques were highly 

focused on achieving outstanding cost-effectiveness and productivity [2, 3]. However, most recently, 

the quality of products becomes an essential aspect in manufacturing along with the productivity [4]. 

Thus, a lot of researches on manufacturing have emphasized surface qualities including accuracy, 

surface mechanical/chemical properties, and surface finishes, all of which are important factors 

determining the quality of products. However, conventional machining processes, which are the most 

widely used manufacturing process, have clear limitations in the production of high-quality products 

because they can only cut materials into desired shapes, without imparting any quality modification 

effects on products. These increasing demands for high quality products are not only for massive and 

bulk manufacturing processes but also for micro/meso-scale parts, biomedical engineering, and 

precision manufacturing sectors. Thus, it has stimulated much research on manufacturing processes 

aiming at surface finishing, resulting in superior surface properties with fine dimensional tolerances 

regardless of materials. 

In this respect, advanced manufacturing processes and surface finishing which are kinds of energy 

beam-based manufacturing have been highlighted in various industries to satisfy the requirements in 

high-quality products for various applications. There are various types of energy beams which are 

applicable for the manufacturing processes such as laser. The laser is a good candidate for the energy 

beam-based manufacturing due to its high lateral resolution, low heat input, and controllability [5, 6]. 

It has been used for patterning [7-9], turning [10], grooving [11], welding [12-14], cutting [15], and 

melting [16, 17]. Also the lasers have been applied for surface modification including mechanical 

properties modification and surface roughness reduction [18, 19]. However, it is hard to select the proper 

type of laser as the processing parameters such as f-number and wavelength can critically affect the 

processing results [20]. 

Most recently, electron beam (EB)-based manufacturing processes have been introduced as an 

alternating method of lasers. The electron beam manufacturing (EBM) is based on the melting, 

vaporizing, and re-solidification of materials converting the kinetic energy of accelerated electrons to 

thermal energy. In this context, the energy density of EB is one of the most important processing 

parameters in EBM. Firstly, EBs were used for analyzing microstructures of various materials [21-23] 

in various fileds, such as scanning electron microscope (SEM), transmission electron microscope 

(TEM), and electron backscattering diffraction (EBSD) devices because those applications only needed 

low energy densities. Following the enormous advance in energy density of EBs, the application area 

of EBM has been broadened from machining applications such as cutting [24], drilling [25], and 
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welding [26], to advanced applications including lithography [27], additive manufacturing [28], and 

finishing [29]. As the charge-to-mass ratio of electrons is extremely small, EBM is advantageous when 

it is applied for the accurate and precision manufacturing. Furthermore, the surface modifying factors 

which can be achieved simultaneously during the irradiation facilitate the EBM simplifies its processing 

step without post-processing. 

Briefly summarizing, the essential requirements for the future manufacturing and finishing systems 

should be material-independent adoptability, possibility to provide high quality products, and rapid and 

efficient process. In this perspective, the electron beam-based manufacturing processes could be 

appropriate substitutes for the conventional manufacturing and finishing processes. 

 

1.1 Research objectives 

Among the several types of energy beams available, a large pulsed electron beam (LPEB) is believed 

to be a good candidate for various conventional manufacturing and finishing processes due to its unique 

attributes. Despite modifications of the surface roughness [29] and mechanical/chemical properties of 

various types of materials, the application of the LPEB in industrial fields is rather limited because the 

improvements in chemical properties and hardening mechanisms for materials remain unclear. 

To enlarge the application area of the LPEB in manufacturing, a fundamental understanding of multi-

physical mechanisms such as combined energy transfer, temperature elevation, and phase 

transformation phenomena is essential. Although a ‘classical’ solution for temperature fields induced 

by energy beams could be provided by previous heat source models, the direct use of another heat 

source model is not suitable for the LPEB irradiations because such models do not describe the natural 

interactions between irradiated electrons and substrates. Thus, the first objective of this dissertation 

should be a temperature predictive modeling considering the unique interactions between the 

irradiated electrons and substrates. 

As the LPEB interacts with various materials in different ways, the experimental approach is 

necessary for optimizing the process parameters to achieve the targeted properties after the finishing 

process. Furthermore, it is important to evidently specify the mechanisms of surface modification 

induced by the LPEB irradiation so as to utilize the process for the targeted materials and to achieve the 

desired mechanical/chemical properties. Thus, the second objective of this dissertation is 

experimental approaches on the effects of the LPEB irradiation for engineering materials. A 

fundamental understanding of the mechanisms of surface modification induced by the LPEB irradiation 

will facilitate optimization of process parameters and application of this process on micro/nanoscale 

manufacturing processes in industrial fields. 

Following the basic level of experimental approaches, depending on the type of materials and 

purpose of the applications such as melting, finishing, and surface modification, the processing 

parameters could be optimized. Based on the effects investigated from the experimental approaches, 
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the third objective of this dissertation is to propose manufacturing processes using the LPEB 

irradiation overcoming the limitations of conventional finishing and surface modification 

processes. According to the firmly established multi-physical mechanisms induced by the interaction 

between irradiated electrons and substrates, the surface modification by LPEB irradiation could be 

selectively adopted, and its processing parameters could be successfully implemented for micro- and 

nanoscale manufacturing applications. 

 

1.2 Research outline 

This dissertation proposes the optimized manufacturing processes on multi-scale applications with 

various engineering materials such as metallic alloys, polymers, and composites. Based on the 

fundamental investigation of LPEB irradiation mechanisms by energy transfer and temperature 

predictive modeling, the optimum conditions are proposed for the surface modification of metallic 

alloys in terms of surface roughness, mechanical properties, and chemical stabilities. By exploring the 

surface characteristics such as microstructures and chemical components, the surface modification 

mechanisms are clearly defined based the inferences made from the experimental approaches. To 

overcome the limitations of conventional manufacturing processes and a simple LPEB irradiation, the 

hybrid manufacturing processes assisted by the LPEB irradiation are also developed for micro- and 

nanoscale applications. 

The research outline of this dissertation composed of three main topics for pursuing research 

objectives as shown in Figure 1: 

1) Temperature predictive modeling that describes the natural interaction between irradiated 

electrons and substrates for a better understanding of the mechanisms of the LPEB irradiation 

2) Experimental approaches to explore the effects of processing parameters on the characteristics 

of materials after the LPEB irradiation process and propose optimal processing conditions 

depending on the type of materials and their target properties 

3) Multiscale and hybrid manufacturing applications of the LPEB irradiation by selectively using 

proper surface modification techniques by optimally controlling the process parameters 
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Figure 1. Research outline 
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2. LITERATURE REVIEWS 

 

2.1 Conventional surface finishing and treatment processes 

The surface quality of final products is mainly determined by two main factors: 1) surface textures 

and 2) surface properties. The conventional surface finishing methods for engineering materials were 

firstly focused on surface textures. The surface quality can be defined by the surface roughness. 

Accordingly, a lower surface roughness represents a better surface quality with fine dimensional 

tolerances of products in the field of manufacturing processes. Although several surface polishing 

techniques, such as mechanical and chemical polishing [30, 31], are available to achieve finely polished 

surfaces, these conventional polishing techniques cannot satisfy the recent industrial requirements of 

surface finishing, as they solely improve the surface roughness without concerning about the surface 

properties, which are also important factors in determining the surface quality of products. 

In this context, there are increasing interests in improving the mechanical and chemical properties 

of the surface of various products. In most cases, those properties are considered as natural 

characteristics of alloys themselves and hence, numerous efforts have been made in developing new 

alloys with superior mechanical and chemical properties [32]. However, the principles to improve 

mechanical and chemical properties are hugely different. Thus, the previous researches on enhancing 

surface properties were separated in terms of the purpose they wanted to achieve. Heat treatment [33] 

and quenching [34] are the most representative manufacturing processes to enhance the mechanical 

properties of metallic alloys. However, these processes are only suitable to improve the mechanical 

properties of raw materials and they are hard to be adopted either on large sized products or for a target 

selective region. Laser irradiations and shock peening processes [35, 36] are relatively new methods to 

induce surface hardening. The laser-based surface hardening method mainly uses heating, melting, and 

phase transformation induced by laser radiations. In case of laser shock peening, compressive residual 

stresses induced on the surface by laser radiations facilitated surface hardening, similar to conventional 

shock peening processes [36]. 

In case of the other factor on surface quality, chemical properties, most studies on the chemical 

properties of metallic alloys have focused on corrosion protection of materials based on surface 

treatments using organic or inorganic inhibitors [37-39] over the past few decades. It is clear that the 

corrosion on the metallic materials can be protected by the adsorption of inhibitors as they are generally 

much nobler than metals. The prevention of metals from dissolution (anodic reaction) has also been 

studied to modify the corrosion resistance [39]. The metal-inhibitor interactions are the most important 

factors affecting corrosion inhibition and efficiency of the inhibitor by the adsorption [40]. Moreover, 

it was revealed that the corrosion properties can be critically affected by the phase of layer from the 

corrosion inhibition using quantum chemical approaches [41]. Accordingly, quantitative structure–
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activity relationships, which mainly relate to the phase of the surface layer, should be considered. 

Furthermore, surface finishing processess, such as hammer peening [42], electrochemical finishing [43], 

UV illumination [44], and laser shock peening [45], have shown their own effects on improving 

corrosion resistance. 

Although numerous manufacturing processes are available to improve surface quality including 

surface roughness, mechanical and chemical properties, those processes studied in previous should be 

applied independently depending on target properties as shown in Table 1. Moreover, each type of 

surface treatments has special concerns depending on types of materials; for example, laser types should 

be carefully selected considering absorptance of materials and adsorbed inhibitors to prevent corrosion 

reactions can be easily delaminated if mechanical properties of substrates are hugely different from 

those of inhibitors. There is clear need for a flexible, precise, and effective surface treatment process, 

which can simultaneously improve the surface quality as well as the mechanical and chemical properties. 
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Table 1. Literature reviews on conventional surface finishing methods 

Target of 

surface 

qualities 

Method Materials 
Surface 

roughness 

Mechanical 

properties 

Chemical 

properties 
Ref. 

Surface 

roughness 

Chemical 

mechanical 

polishing 

Silicon 

wafer 

42 nm Ra → 

0.66 nm Ra 

(98.4 %) 

Not 

investigated 

Not 

investigated 

Zhou et 

al. [30] 

Ultrasonic 

vibration-

assisted 

polishing 

Tungsten 

carbide 

3.2 nm Ra → 

1.2 nm Ra 

(62.5 %) 

Not 

investigated 

Not 

investigated 

Suzuki 

et al. 

[46] 

Abrasive 

fluid 

machining 

Aluminu

m 

1.8 μm Ra → 

0.8 μm Ra 

(55.6 %) 

Not 

investigated 

Not 

investigated 

Jain et 

al. [47] 

Mechanical 

properties 

Heat 

treatment 

AISI 304 

stainless 

steel 

Not 

investigated 

283 HV →  

1,103 HV 

(290 %) 

Corrosion 

~ 50 mg → 

40.2 mg 

(19.6 %) 

Atik et 

al. [33] 

Quenching 

Dual 

phase 

steels 

Not 

investigated 

UTS 

300~800 

MPa → 

1,500 MPa 

Not 

investigated 

Zhong 

et al. 

[34] 

Laser 

hardening 

Carbon 

steels 

Not 

investigated 

240 HV →  

820 HV 

(70.7 %) 

Not 

investigated 

Pashby 

et al. 

[35] 

Laser shock 

peening 

Aluminu

m 

0.6 μm Ra → 

1.3 μm Ra 

(-116 %) 

~ 160 HV → 

170 HV 

(5.9 %) 

Not 

investigated 

Montro

ss et al. 

[36] 

Chemical 

properties 

Adsorption 

of 

corrosion 

inhibitor 

Carbon 

steels 

Not 

investigated 

Not 

investigated 

Corrosion 

~ 40 mg → 5 

mg 

(87.5 %) 

Boukla

h et al. 

[37] 

Laser & 

Shot 

peening 

Stainless 

steels 

0.05 μm Ra 

→ 1.15 μm 

Ra 

(-2,200 %) 

220 HV →  

250 HV 

(13.6 %) 

Corrosion 

rate 

2 μA/cm2 → 

1.6 μA/cm2 

(20 %) 

Peyre et 

al. [48] 

Zinc-

Magnesium 

coating 

Carbon 

steels 

Not 

investigated 

Not 

investigated 

Corrosion 

fraction 

79 % → 4 % 

(94.9 %) 

Hoskin

g et al. 

[49] 
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2.2 Surface modification processes using an electron beam irradiation 

Electron beams have their own superiority in manufacturing processes, especially for heating 

mechanisms, to other energy sources such as extreme ultraviolet (EUV), X-ray, ion beams, and lasers 

excepting for its controllability and rapid energy transfer gradient [50]. 

The LPEB has firstly been introduced for surface finishing method of metal molds with complicated 

surface shapes [51]. During the repeated melting and re-solidification induced by the LPEB irradiations, 

tool marks and pitches could be erased. Previous reports on LPEB have revealed modifications to the 

surface roughness of steels. Uno et al. [51] investigated the modification of surface roughness in terms 

of glossiness of surfaces as shown in Figure 2. Furthermore, they also reported the possibility of 

improvement in corrosion resistance following the LPEB irradiation. Moreover, Okada et al. [52] 

investigated the effect of LPEB irradiation on orthopedic surgical tools having extremely complicated 

geometrical shapes made of stainless steels. They also reported the modification of surface roughness 

in terms of energy densities and the number of pulses. The simple experimental observations on liquid 

repellency was performed using blood droplets. The contact angle of blood droplets was slightly 

increased, indicating a blood repellency effect. They argued that the change of surface structure can be 

responsible for the change in contact angles. In the following research conducted by Zhang et al. [53], 

it was reported that crater-like defects could be obtained on the surface after the LPEB irradiation on 

carbon steels. Although the generation of craters degraded the surface roughness after irradiation, the 

density of craters can be reduced when the number of pulses is increased. The numerical simulation 

performed by Zou et al. [54] revealed that the melting of irradiated material started at several 

micrometers beneath the surface and this phenomenon can lead a partial evaporation of micro 

irregularities under the molten materials. Thus, the craters could be generated before the irregularities 

are fully evaporated during repeated irradiations. 

Despite these experimental approaches on LPEB irradiations as a surface polishing method, there 

are lots of surface modification factors should be examined following the LPEB irradiation. The surface 

properties could be modified following the phase transformation during the LPEB irradiation as the 

melting and re-solidification occurs at a rapid rate of the order of 107 K/s. Furthermore, the LPEB 

irradiation possibly improves chemical properties on the re-solidified layer as suggested by Uno et al. 

[51]. In spite of its huge potential advantages in surface finishing processes, the application area of 

LPEB irradiation is quite limited to surface polishing of steels as the surface properties and principles 

of modification in mechanical and chemical properties after the LPEB irradiation remained unclear. 

Furthermore, the predictive model of LPEB irradiation process describing multi-physical phenomena 

that could occur during the irradiation process should be firmly established for a fundamental 

understanding of effects of LPEB irradiation. 
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Figure 2. Optical images on the surfaces before and after the LPEB irradiation on (a) carbon steels 

and (b, c) mold steels [51] 

 

2.3 Theoretical backgrounds on an electron beam irradiation 

The primary phenomenon from an electron emission on the cathode is determined by the thermionic 

emission or field emission [55]. The outer-shell electrons transit to the free-state around the cathode 

surface when an excessive energy is applied to the cathode. This energy level could be described by the 

work function [56]. The speed of these electrons can be accelerated continuously to the one- or two-

third of light passing the hollow anode. And the solenoid can induce a Lorenz force with the 

electromagnetic field [57]. The relationship between the electrons and the fields can be expressed as 

[57]: 

 

[ ( )]q= + F E v B         (1) 

 

2( / ) ( / )( )em dv dt qv c v = − F E
       (2) 

 

0
ˆn=B Iz

         (3) 

 

where, F denotes Lorenz force vector on the electron, E and B denote the electric and magnetic field, 

respectively. From Eq. (1), q is the charge of the electron (-1.6110-19 C) and v is the velocity vector of 

the electron. Eq. (2) is considered as the relativistic equation of motion, written in Newton’s form. me 

is rest mass of the electron (~9.11×10−31 kg), γ is the relativistic factor (1/(1−ν2/c2)1/2), and c is the speed 

of light (~3.00×108 m/s). Then, the uniform magnetic field (B) directed to the emitter or the collector 

( ẑ ) can be expressed with Eq. (3) in terms of the magnetic constant (μ0), the number of turns (n) and 

the current (I). 

Although the acceleration of electron could be explained simply by thermionic emission, the main 

interests on EB-based manufacturing processes are energy transfer from electrons to substrates because 

evaluation of the EB-based manufacturing should be performed on the irradiated substrates and not on 

the electron beam irradiation equipment. Although surface modification using EB irradiations have been 
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explored by a few experimental approaches, a numerical approach to estimate the temperature 

distributions and processing results are still missing. A highly accurate but still simple numerical model 

of the EBM is needed for the pre-test optimization and post-test performance validation. Furthermore, 

this approach can provide appropriate processing parameters including energy density before the 

experiments for the target results such as surface roughness reduction and molten depths needed to 

eliminate pitches on the machined surfaces. The primary mechanisms of LPEB irradiation composed 

of energy transfer, elevation of temperature, melting, and re-solidification mechanisms. The heat-

diffusion process has been modeled using various methods of heat source modeling [58-61] following 

a Gaussian heat source distribution. Pavelic et al. [62] firstly suggested a Gaussian-distributed energy 

source modeling. The corresponding Gaussian-distributed heat source model has been modified to be 

adopted on moving heat source models predicting molten regions during the electron beam welding 

processes. A ‘classical’ solutions for the model on temperature fields were suggested assuming a semi-

infinite body [63]. The following researches tried to estimate expanded solutions for a two-dimensional 

(2D) Gaussian-distributed beam intensity [60]. A finite element model (FEM) for transient temperature 

fields with a three-dimensional (3D) distributed moving heat source has also been solved [61]. Finally, 

an analytical solution that can precisely predict transient temperature fields during the energy beam 

irradiation has been proposed by Nguyen et al. [64] assuming the semi-infinite substrates. The model 

has been widely adopted to predict temperatures after heat transfer processes. However, those models 

could not be directly adopted for pulsed electron beams as they cannot describe the unique interactions 

of accelerated electrons with target substrates. The pulsed electron beam irradiation processes are 

difficult to control and measure due to the extremely rapid pulse duration. Thus, previous researches on 

the modeling assumed the constant energy absorptance for the ease of prediction which is not quite 

accurate approach without considering the natural interactions [65]. Most of previous models have 

adopted experimentally fitted absorptance values. The basis of moving heat source models with a 

constant absorptance is too weak to use with pulsed electron beam irradiations as the interaction 

between electrons and substrates is highly dependent on the intensity of beams and material types. Thus, 

there is clear need to make more efforts to improve model accuracy following the increase of beam 

intensity. Although the prediction of molten pools on bulk metallic alloys could be effectively achieved 

by various simplified models, a numerical model for pulsed electron beam irradiation reflecting the 

characteristics of accelerated electrons is needed to be developed to replace such impractical concerns 

on rapid pulse duration and rapid thermal gradient. For example, the only roughly predicted results 

without specifying the exact absorptance of electron beams cannot describe the melting of micro-sized 

materials and/or patterns as the beam intensity of the electron beam was modified enormously (100 

mA/cm2) and the molten layer induced by irradiation was extremely thin. As this study ultimately 

desires for the LPEB to enlarge its application area into micro- and nano-scale applications, the 

predictive model for the LPEB irradiation with higher predicting accuracy should be developed. 
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3. PREDICTIVE MODEL OF THE LPEB IRRADIATION 

 

The natural interactions between the accelerated electrons and substrates is influenced by several 

physical phenomena, such as elastic and inelastic scattering, backscattering, transmission, and 

absorption. The major factors in determining the absorptance of electron beams can be divided into 

three categories: scattering, backscattering, and transmission of electrons [66-68]. During LPEB 

irradiation of a solid target, backscattering of electrons is the main cause of energy loss, which adversely 

affects the efficiency of the beam [69]. The transmission of electrons also induces a loss of energy at 

the surface layer when they simply pass, without transferring the energy [70]. In spite of numerous 

efforts to formulate scattering, backscattering, and transmission of accelerated electrons by a series of 

experiments as well as by theoretical analyses, prediction of the exact energy absorptance of electron 

beams is yet to be explored. Thus, a three-dimensional temperature prediction model of the LPEB 

irradiation including the energy absorptance in the high-intensity range based on the scattering, 

backscattering, and transmission of electrons has been proposed in this study [71]. 

 

3.1 Interactions between electrons and substrates 

For electron irradiation on a solid target surface, the backscattering phenomenon of the irradiated 

electrons is the largest cause of energy loss. The fractional loss of energy is represented by the 

backscattering coefficient, which is a representative expression for the fraction of backscattered 

electrons from a bulk solid target [69]. Various theoretical and empirical expressions, including Monte 

Carlo simulations have been proposed by previous researchers [72, 73] over a wide range of acceleration 

voltages. To characterize materials with electron beam irradiation techniques, the backscattering 

coefficient, which was validated experimentally in the incident energy range of 0.5 ≤Eo≤ 30 keV, was 

adopted in the empirical expression for the backscattering phenomenon. A curve fit to the experimental 

data was given by [69]: 

 

5/2

0 [1 exp( 0.0066 )]B Z  −= − −
        (4) 

 

where 

 

00.40 0.065ln( )E = +
        (5) 

 

Note that Eq. (4) shows a significant deviation, especially for high-atomic-number materials, due to 

the exclusion of incident energy. However, under the sole influence of Eq. (5), the energy term becomes 

more practical for application to most materials in the periodic table. Figure 3 shows the backscattering 
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coefficient of different materials, as a function of incident energies. As shown in Figure 3, the 

backscattering coefficient of materials with a low-atomic-number was significantly lower than that of 

materials with a high-atomic-number. Furthermore, it decreased exponentially at low incident energy 

regions. Nevertheless, it converged as the incident energy was increased. 

 

 

Figure 3. Backscattering coefficients of materials as a function of incident energies 

 

The transmission of striking electrons refers to the penetration depth of accelerated electrons 

maintaining their energy without energy transfer or loss through scattering and backscattering. Since 

the possibility of collision increases following penetration, the fraction of transmitted electrons 

generally declines rapidly with respect to depth. This was established by Neubert et al. [70], using 

backscattering measurements in the range of 15–60 keV. Then, the total fraction of transmission can be 

expressed as: 

 

2

3

( , )

1 ( , )

( / )
exp ( , )

[1 ( / ) ]

m Z

T m Z

z R
m Z

z R




 

 
= −  

− 
      (6) 

 

where m1, m2 and m3 are experimental constants, z is the depth, and R is the penetration depth of the 

accelerated electrons. An inclusive study about electron penetration corresponding to the basis of energy 

loss included interpretations of the penetration depth of electrons when they were irradiated on a solid 

target in terms of the incident energy, as follows [74]: 
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where E0 is the incident energy, mA is the atomic mass of the solid target, NA is Avogadro’s number, 

and q is the density. For experimental constants m1, m2, and m3, Klassen et al. [75] introduced a least-

squares fit to experimental data using their own ansatz functions, mi(Z,φ), as follows: 

 

0.20.04 0.77

1( , ) 4.17 3.28 (sin ) Zm Z Z  =  − 
      (8) 

 

0.720.4 Z /85 0.7 2

2( , ) (6.12 / ) (cos ) (10 / ) (sin )m Z Z Z  =  − 
    (9) 

 

0.20.72 0.14 1.23

3( , ) (Z / 72) 0.72 (sin ) Zm Z Z  = +  
     (10) 

 

where φ is the incident angle. Figure 4 shows the total fraction of transmitted electrons in terms of 

material types, incident energy, and depth. The maximum penetration depths of materials were highly 

dependent on atomic number. Transmission revealed opposite results with respect to backscattering 

coefficients. For the same incident energy, deeper penetration depth and slower decay of transmission 

were obtained for materials with a lower atomic number. However, the maximum penetration depth and 

transmission increased after the incident energy was increased from 25 to 30 keV. This could be 

attributed to the increased kinetic energy of the accelerated electrons at higher incident energy. 

 

Figure 4. Total transmission of the accelerated electrons of different materials  

at different depths when irradiated with incident energies of (a) 25 keV and (b) 30 keV 
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3.2 Absorptance of the electrons 

The total fraction of absorbed energy (ηA) by scattering can be determined based on the transmission 

and backscattering of accelerated electrons, as follows [68]: 

 

1 ( )A B T  = − +         (11) 

 

To define the fractional absorptance at a certain depth, it is necessary to assume an imaginary plane 

on a bulk solid target. As illustrated in Figure 5, backscattered electrons at a certain imaginary plane 

could be absorbed again at an upper plane. Considering this mechanism of energy transfer, the total 

transmission of electrons from the top surface to a certain depth can be expressed as: 

 

' 2 4 2( 1) 3 2 1 2( ) [ (1 )] / (1 )n n

T T T B T B T B T B T B T B T B B                − −= + + + + − + + + = − −  (12) 

 

Adopting Eq. (12) into (11) as a form of the total fraction from the top surface up to the certain depth, 

the total absorptance in terms of depth can be expressed as: 

 

' '

2

(1 )
1 ( ) (1 )

1

A B B
A T B B

B

  
   



 + −
= − + = −  

− 
     (13) 

 

Finally, the fractional absorptance (dηA
’) at a certain imaginary layer as a function of depth can be 

defined as: 

 

'
' ( )A
A

d d
d

dz


 =          (14) 

 

Figure 6 shows the fractional absorptance of energy transferred as a function of depth. The fractional 

absorptance curves indicate that the atomic number of the material is the most important parameter in 

determining the maximum penetration depth and absorptance of the LPEB. 
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Figure 5. Schematic diagram of the energy transfer from the LPEB to the substrate, illustrating 

backscattering, transmission, and energy absorption 

 

 

Figure 6. Fractional absorptance of the LPEB as a function of depth for different materials at incident 

energies of (a) 25 keV and (b) 30 keV 

 

3.3 Temperature predictive model of the LPEB irradiation 

LPEB irradiation can be analyzed theoretically by describing the heat transfer process between the 

electron beam and the solid substrate. A 3D semi-quantitative transient heat-diffusion equation can be 

used to analyze the heating process of a substrate under LPEB irradiation. The energy transfer and heat 

diffusion, which is the description of heat transfer in a solid substrate, can be formulated simply using 

the general heat conduction equation in a 3D Cartesian coordinate system: 
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( )
T

C k T q
t




=   + 
        (15) 

 

where T is temperature, t is time, q is density, C is the specific heat, k is thermal conductivity, and q 

is heat flux into the target by the LPEB irradiation. This general heat conduction equation directly shows 

the energy transfer mechanisms of electron beam irradiation with assumptions of no convection. The 

radiative heat loss can also be ignored due to the extremely short time scale of LPEB pulses and rapid 

thermal gradient. 

The initial and boundary conditions can be expressed as follows: 

 

0( , , ,0)T x y z T=
         (16) 

 

0
T

z


=

  (at z = 0)         (17) 

 

0( , )T t T =
         (18) 

 

where Eq. (17) accounts for neglecting any types of heat transfers and losses on electron beam-

irradiating surface excepting for the heat input transferred by the LPEB irradiation. The boundary 

condition represented by Eq. (18) can be rationalized on the basis of the size of LPEB equipment, which 

is large enough to maintain the temperature during the irradiations, thus serving as a thermal reservoir. 

Heat source modeling is an important factor because it includes the beam shape and the effective 

radius of the beam. The most frequently used method for a prescribed beam distribution is using the 

heat input as a heat flux at the integrating points, which is then transformed to the nodes as temperature 

fields. A Gaussian distribution is one of the most common heat sources of an energy beam, and is 

expressed in the general form of [61, 76]: 

 

2 2 2 2 2 2( , , ) exp[ ( / )]exp[ ( / )]exp[ ( / )]
nP

I x y z nx a ny b nz c
abc

= − − −    (19) 

 

where P is the maximum power at the beam center, n is a concentrating factor, and a, b, and c are 

characteristic parameters of the beam distribution, corresponding to the x, y, and z axes, respectively. 
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Figure 7. Gaussian-distributed beam intensity 

 

The beam intensity model is as shown in Figure 7, for which parameters were provided for a PF32B 

electron beam surface finishing machine (Sodick, Japan) from experimental measurements of beam 

intensities. In Figure 7, the characteristic parameter r, equivalent to the effective beam radius, is taken 

as r = σ, of which the distributed power density, P, is 13.5% of the maximum power density, measured 

at the center of the beam on the target surface. Since the radius of the beam on the surface was relatively 

large, a plane heat source was assumed to be applied directly to the specimen surface for a short time 

period. Finally, the Gaussian surface-distributed heat source intensity of the incident electron beam, 

I(x,y), was modeled as: 

 

2 2

2 2

2 2( )
( , ) exp

P x y
I x y

 

 +
= − 

 
       (20) 

 

The characteristic parameters, a, b, and c, were taken to be equal to σ and z = 0 at the surface in Eq. 

(19). The heat input originating from the energy absorption of an electron beam pulse during the pulse 

duration for point-wise calculation can be described as: 

 

( , )q I x y x y  =         (21) 

 

The governing equation, Eq. (15), can be solved point-wise, first with an instantaneous Gaussian 

heat source to provide a point heat source solution. Subsequently, spatial integration over the distributed 

region is conducted by the superposition of the point solution as: 
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where α is the thermal diffusivity and τ is a temporal variable. The total increase in temperature is 

then the integration of all contributions with respect to time in a given time interval that is equal to the 

pulse duration [77]. Thus, the temperature variation during the pulse duration can be expressed as: 
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   (23) 

 

where dτ is an infinitesimal time, t is the pulse duration, and z is the heat penetration depth. Assuming 

uniformity of the radial irradiation of the electron beam and homogeneity of the material properties 

involved, the domain of Eq. (23) can be simplified as a two-dimensional (x2 + y2 = r2) coordinate. The 

consequent temperature fields could be approximated adopting the absorptance calculated considering 

backscattering and transmission of electrons by multiplying absorptance to P in Eq. (23). 

With numerical approximations, an investigation was conducted primarily on temperature 

distributions on the material surface and heat penetration into the material depth to determine the 

melting zone during the LPEB irradiation period. The predicted results of molten depths were compared, 

assuming constant absorptance and absorptance corresponding to electron-materials interactions, and 

the effects of the unique relationships between accelerated electrons and substrates were evaluated. 

Finally, numerical models for absorptance and temperature prediction induced during LPEB irradiation 

were validated by directly comparing the molten depths of different metallic alloys, including Al6061T6, 

SM35C, AISI 304 stainless steel (SS), and copper. 

As shown in Figure 6, the depth absorbing the maximum fraction of energy from the accelerated 

electrons can be determined by calculating fractional absorptance versus depth. Then, it is possible to 

define the major imaginary plane of energy absorption to which the governing equation of heat 

conduction could be applied, at the depth with the maximum absorptance (indicated as Zmax in Figure 

6). Consequently, conduction of heat starts from the plane of maximum absorptance to the upper and/or 

lower regions of solid substrates. The most accurate prediction on the temperature fields can be obtained 

by the superposition of the point solutions at each depth considering the depth-dependent absorptance. 

However, for the simplicity of numerical predictions, it is reasonable to assume a symmetric conduction 

of the heat absorbed at Zmax to the upper and/or lower regions as the absorptance distributions are highly 

concentrated at Zmax and symmetrically decreased following the increasing distance from Zmax (shown 

in Figure 6). The temperature fields induced in substrates were solved numerically using Eq. (23) for 
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the representative engineering metals at different incident energy densities and a 2-μs irradiation period 

which is the same period with the experimental pulse duration. As the maximum temperature and molten 

depth could be obtained at the end of pulse duration, the temperature fields were analyzed at 2 μs among 

transient temperature responses. The energy absorption of the substrates and temperature distributions 

were calculated with a normal incident only. The molten depths of materials were evaluated by the 

standard of melting points. 

Table 2 summarizes the thermal properties of engineering metals. Figure 8 shows the 3D and cross-

sectional temperature distributions of materials in terms of incident energy. As the maximum absorption 

of energy was calculated at a certain depth, the maximum temperature in the irradiated substrates was 

not observed on the top surface but at a certain depth, which is simply near the depth of the maximum 

absorptance. Also, the temperature was reduced slightly in the radial directions because the intensity of 

the LPEB follows a Gaussian distribution. The highest and lowest temperatures were observed for AISI 

304 SS and copper, respectively. The thermal diffusivity and specific heat are the most important 

parameters in determining the temperature distribution after LPEB irradiation. When compared with 

other materials, AISI 304 SS has a relatively low thermal diffusivity. This means that the energy 

transferred from the LPEB could not be spread within an extremely short pulse duration. Also, the 

temperature is elevated readily with its low specific heat. Furthermore, this also caused a large 

temperature gradient versus depth, as indicated by the rapid variation in colors. In contrast, copper has 

a much higher thermal diffusivity, although its specific heat is slightly lower than that of the AISI 304 

SS. This induced rapid thermal dissipation in the energy absorbing layer before temperature elevation. 

Thus, the lowest temperature was obtained for copper and the temperature gradient versus depth 

obtained for copper was also much lower than those obtained for other materials. 
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Figure 8. 3D temperature distributions and cross-sectional analyses of molten depth as a function of 

incident energy and material 

 

Table 2. Thermal properties of engineering alloys 

Materials Density (kg/m3) 
Specific heat 

(J/kg-K) 

Thermal 

diffusivity 

(mm2/s) 

Melting point 

(˚C) 

Al6061T6 2700 1100 58.8 660 

SM35C 8000 647.2 5.05 1455 

AISI304SS 8000 598 6.36 1400 

Copper 8960 503.5 63.9 1085 

 

3.4 Prediction of molten depths and experimental validations 

The molten depths were also evaluated and are indicated by the black line on the cross-sectional 

temperature distribution (Figure 8). The molten depths were increased with an increase in the incident 

energy from 7 to 10 J/cm2. The maximum molten depth was predicted for Al6061T6 because its melting 

point was the lowest among the materials considered. In the case of copper, the temperature induced by 

LPEB irradiation with an incident energy of 7 J/cm2 was predicted to be insufficient to melt the material. 

However, a 6.4 μm-thick molten layer was predicted for the incident energy of 10 J/cm2. Following the 
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tendency of temperature, the molten depths were also reduced along the radial direction, affected by the 

Gaussian-distributed beam intensity. 

Several experiments were conducted with four different materials to validate the numerical 

approximations. Specimens having a dimension of 20 x 20 x 10 mm were prepared by mechanical 

machining. LPEB irradiations were performed with conditions equivalent to those used for the 

numerical predictions. Figure 9 shows the schematic diagram of the experimental set-ups and Table 3 

summarizes the details of the experimental parameters of LPEB irradiation. After LPEB irradiation, the 

specimens were cut at the center to analyze the molten depth in cross-sections. Because the molten 

layers were difficult to observe without a grain structural investigation, the specimens were ground 

using 180, 320, 600, and 1200-grit SiC coated abrasive papers and polished using a 1-μm diamond 

suspension. Finally, all specimens were etched with suitable etchants, depending on the material type. 

 

Table 3. Parameters of the LPEB irradiation 

Parameter Value 

Effective beam radius (σ) 30 mm 

Incident energy (E0) 25 / 30 keV 

Energy density (Ed) 7 / 10 J/cm2 

Pulse duration 2 μs 

 

 

Figure 9. Schematic diagram of the experimental set-ups for the LPEB irradiation 

 

Figure 10 shows the cross-sectional scanning electron microscopy (SEM) images of materials after 

LPEB irradiation as a function of the incident energy. The molten depths were measured at five different 

points on each specimen to minimize measurement errors, and the range of the molten depth distribution 
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was indicated in Figure 10. Molten layers that could be recognized by phase transformation were 

observed clearly in Figure 10. The tendencies in molten thickness matched well with the numerical 

predictions; the molten depth was increased with an increase in incident energy; the maximum and 

minimum molten depths were obtained for Al60601T6 and copper, respectively. Figure 11 shows a 

direct comparison of molten depth in each material depending on the incident energy. To clearly identify 

the importance of absorptance investigations, numerical predictions of molten depth were carried out 

with two different assumptions in absorptance: perfect absorption on the top surface (represented by 

blue triangle in Figure 11) and a calculated absorptance, considering scattering, backscattering, and 

transmission (represented by red circle in Figure 11). With the assumption of perfect absorption, the 

accuracy of the molten depth prediction was highly variable, depending on the incident energies and 

material types. Most predictions were out of range when compared with the experimentally measured 

molten depths at an incident energy density of 7 J/cm2. In fact, only the predicted molten depth of 

Al6061T6 was within the experimental error bounds. In the case of 10 J/cm2 incident energy, the 

predictions were relatively accurate; however, the predicted molten depth of copper was 45% larger 

than the averaged experimental measurement. 
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Figure 10. Cross-sectional SEM images indicating molten depth of the investigated  

materials as a function of energy density 
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Figure 11. Comparisons of predicted and experimentally measured molten depths 

of different materials obtained at incident energies of (a) 25 keV and (b) 30 keV 

 

The adoption of calculated absorptance versus depth resulted in predictions of thinner molten depths 

than those predicted by assuming perfect absorption. Unlike the values assuming perfect absorption, 

the molten depth predictions agreed well with the experimentally measured molten depths regardless of 

the incident energy and material. Consequently, it can be concluded that the proposed numerical model 

for absorptance, temperature field, and molten depth prediction, corresponding to scattering, 

backscattering, and transmission, can simply and accurately describe natural interactions of LPEB 

irradiation on solid substrates. Furthermore, the model is trustworthy in providing numerical predictions 

of temperature fields and molten depths. 
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4. Fundamental understandings on the effects 

induced by LPEB irradiations 

 

4.1 Surface modification of engineering alloys 

As described in the previous chapter, the surface of substrates briefly melts, erasing tool marks and 

pitches, and then rapidly re-solidify. Due to the extremely rapid heating and cooling of the surface, 

which occurs at a rate of 107 K/s, a phase transformation of the re-solidified layer can occur, causing 

variations in the structural properties of the surface. Despite the several experimental approaches were 

explored on the adoption of LPEB irradiation as finishing and surface modification process as discussed 

in Chapter 2, improvements in surface chemical properties and hardening mechanisms for metallic 

alloys following the LPEB irradiation still remains unclear. It is important to understand the 

modification mechanisms of surface properties following the LPEB irradiation on metallic alloys. In 

addition, the processing parameters should be properly optimized to achieve the targeted properties by 

inducing appropriate effects on the irradiated surface. 

 

4.1.1 Design of experiments and materials 

The LPEB surface finishing and modification process is adopted on the KP1 and KP4 mold steels to 

investigate the surface modification factors [78]. The surface quality of mold steels is an important 

factor to produce high quality products as the defects on the mold surface might generate imperfections 

such as shrinkage cavities on the final products. The surface of molds can be easily degraded due to 

corrosion and wear. Thus, the surface modification process on mold steels is essential to provide 

improved surface properties. KP1 and KP4 mold steels have been widely used especially in injection 

molding industries. KP1 is a low-carbon steel used to produce large molds and has good machinability. 

KP4 is also a low-carbon steel and is used for core and cavities of molds because of its large hardness, 

which is achieved by the use of relatively high chromium and molybdenum contents. Although KP4 

has favorable corrosion resistance and wear resistance, it is less amenable for machining than KP1. The 

chemical components and thermal properties of these steels are summarized in Table 4. 

 

Table 4. Chemical composition (wt. %) and thermal properties of KP1 and KP4 

 Fe Mn C Ni Mo Cr S P 
kC 

(W/m K) 

Cp 

(J/ g C°) 

α 

(mm2/s) 

KP1 98 0.65 0.5 0.4 - - 0.03 0.025 49.8 0.486 13.05 

KP4 97 0.85 0.3 0.4 0.3 1.1 0.035 0.025 37.7 0.519 9.25 

 

The LPEB assembly consisted of an electron acceleration system, a solenoid, and a two-dimensional 

(2D) translation stage enclosed within a vacuum chamber. The chamber was filled with argon gas at 

0.05 Pa, which was used to form plasma. The electron beam was transmitted through the low-pressure 
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argon gas to the surface of the sample. The distance from the electron gun to the surface of the substrate 

was kept constant at 30 mm. During LPEB irradiation, the electrons were accelerated in a spiral path 

using the electric and magnetic fields induced by the solenoid. The energy density used for LPEB 

irradiation was in the range 7 to 10 J/cm2. The spatial cross-section of the beam followed a Gaussian 

distribution, and the diameter of the beam was 60 mm. The size of the KP1 and KP4 substrates was  

40 mm x 40 mm x 5 mm. Each irradiation cycle consisted of 9 pulses, with the translation stage moving 

by 20 mm following each pulse to provide a 3 x 3 grid of irradiation sites to achieve a uniform surface 

coverage with a homogeneous surface finish. 

 

4.1.2 Formation of the re-solidified layer 

The incident electron beam induced a short-lived thermal gradient at the surface of the substrates. 

During this process, the surface of the target gets melted and then re-solidified. The morphology and 

surface properties were therefore varied. The LPEB irradiates the substrate for a pulse duration of 2 μs, 

after which the substrate cools, with a relatively long dwell time of 10 s between irradiations. It follows 

that the LPEB irradiations are independent of each pulse, so that the depth of the re-solidified layer 

following the LPEB irradiation does not significantly vary between irradiations. 

 

 

Figure 12. Cross-sectional SEM images of KP1 and KP4 samples before and after the LPEB 

irradiation 

 

Figure 12 shows cross-sectional SEM images of the untreated and LPEB-irradiated KP1 and KP4. 

The formation of re-solidified layers was clearly observed, and the crystal phases of the re-solidified 

layers differed significantly from those of the initial materials. The depth of the re-solidified layer of 
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KP1 was 4.2 μm at an energy density of 7 J/cm2 and it increased to 5.3 μm when the energy density is 

increased to 10 J/cm2. The depth of the re-solidified layer at the surface of KP4 was 2.4 μm at an energy 

density of 7 J/cm2 and it increased to 4.4 μm when the energy density is increased to 10 J/cm2. 

  

 

Figure 13. Surface roughness as a function of the number of LPEB irradiation cycles 

 

As the formation of re-solidified layers was induced by the repeated melting and re-solidification, 

the surface defects such as tool marks and scratches could be effectively eliminated by the LPEB 

irradiations. The average surface roughness (Ra), shown in Figure 13, is decreased with an increase in 

the number of irradiation cycles at both energy densities (i.e., 7 J/cm2 and 10 J/cm2). The average surface 

roughness decreased the most from Ra = 4 μm to Ra = 0.271 μm for the KP1 sample at an energy density 

of 10 J/cm2 for 30 irradiation cycles. The average surface roughness of the KP4 sample is changed from 

Ra = 3.2 μm to Ra = 0.267 μm following 30 irradiation cycles of LPEB at an energy density of 10 J/cm2. 

 

 

Figure 14. Electron probe micro-analysis on a cross-sectional area of the samples containing 

manganese sulfide inclusions 
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Although the overall surface roughness is decreased following LPEB irradiations following the 

removal of tooling marks, the presence of the eruptive craters on the surface served as artifacts that has 

led to a large surface roughness especially for the KP1 and KP4. During the LPEB irradiation, craters 

may form following eruptions and partial evaporation of non-metallic inclusions, such as manganese 

sulfide (MnS) and carbides [53]. Both KP1 and KP4 contain MnS inclusions, as shown in Figure 14, 

and craters were observed on the surface of the samples following the LPEB irradiation. Figure 15 

shows the crater density on the surface after the LPEB irradiation as a function of the number of 

irradiation cycles. The density of the craters was larger on the surface of the KP4 sample since KP4 

contains more manganese and sulfur than KP1 (see Table 4). During repeated irradiations, the non-

metallic inclusions near the surface could be fully evaporated and decomposed. Thus, the density of 

craters is decreased as the number of irradiation cycles is increased. For the KP1 and KP4 samples 

investigated here, the removal of the tooling marks had a large impact on the surface roughness while 

the eruptive craters had a much smaller effect. Thus, the average surface roughness (Ra) is decreased 

significantly following the LPEB irradiations. 

 

 

Figure 15. Crater densities generated on the surface of KP1 and KP4 after the LPEB irradiation 

 

4.1.3 Mechanical properties 

During the LPEB irradiation process, the rapid thermal gradient could cause phase transformation 

and modification of surface mechanical properties. Figure 16 shows the nano-hardness and elastic 

modulus as a function of the depth from the irradiated surface of KP1 and KP4 samples at an energy 

density of 10 J/cm2. It can be clearly seen that both the nano-hardness and elastic modulus are 
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significantly increased on the LPEB-irradiated surface. The nano-hardness was increased from 3.75 

GPa on the untreated surface to 15.4 GPa on the re-solidified layer for the KP1 sample. Under the same 

irradiation conditions, the elastic modulus was increased from 205.64 GPa to 298.66 GPa following 

LPEB irradiation. For the KP4 sample, under similar irradiation conditions, the nano-hardness on the 

re-solidified layer was increased from 4.9 GPa to 12 GPa, and the elastic modulus was increased from 

222.84 GPa to 271.02 GPa. It is clear that the LPEB irradiation was more effective on the KP1 sample 

than on the KP4 sample. The initial surface hardness and elastic modulus of KP1 were slightly lower 

than those of KP4; however, following LPEB irradiations, both the surface hardness and elastic modulus 

of KP1 were larger than those of KP4. 

 

 

Figure 16. Nano-hardness and elastic modulus as a function of depth on the LPEB-irradiated KP1 and 

KP4 samples 

 

An increase in the hardness and elastic modulus are expected to result in a change in the wear 

resistance. Figure 17 shows the normalized weight loss following wear tests on the surface of the KP1 

and KP4 samples before and after LPEB irradiations. The weight loss was decreased significantly for 

both KP1 and KP4 following the LPEB irradiation. The weight loss of the untreated KP1 sample was 

0.01 g, whereas the weight loss was 0.009 g following LPEB at an energy density of 7 J/cm2, and 0.002 

g at an energy density of 10 J/cm2. The weight loss of the untreated KP4 sample was 0.014 g, which 

decreased to 0.003 following LPEB at an energy density of 7 J/cm2 or 10 J/cm2.  
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Figure 17. Normalized weight loss following pin-on-disc wear tests on the LPEB-irradiation KP1 and 

KP4 samples 

 

The 3D profile and optical microscopy images of the wear track at the surface following the wear 

tests are shown in Figure 18. On the surface of the untreated KP1 sample, the rotating pin has created a 

43-μm-deep wear track, whereas the wear track was only 2 μm deep following LPEB irradiation. The 

untreated KP4 sample exhibited a 125-μm-deep wear track, whereas the KP4 sample that had undergone 

LPEB had a wear track that was only 3.35 μm deep. Additionally, it appears that the wear mechanism 

was changed following the LPEB irradiation. Following sliding wear tests, materials can be deformed 

both elastically and plastically under shear stress. On the untreated samples (with a lower hardness and 

elastic modulus), attachment of wear debris to the wear track was observed (see Figure 18(b) and (f)), 

indicating an adhesive wear mechanism. However, following LPEB irradiations, as shown in Figure 

18(d) and (h), some areas of the surface were not worn out or deformed at all. It follows that the wearing 

pin did not overcome the yield strength of the LPEB-treated KP1 and KP4 samples due to the increased 

hardness and elastic modulus. Thus, the wear mechanism of the LPEB-treated surface was dominantly 

abrasive. Furthermore, since the hardness of the LPEB-treated surfaces was large, the SKD11 pin might 

have been worn out during the wear test, as evidenced by the wide scars observed on the LPEB-treated 

KP1 sample shown in Figure 18(d). 
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Figure 18. 3D surface profiles and optical microscopy images of the wear tracks formed on (a and b) 

untreated KP1, (c and d) LPEB-treated KP1, (e and f) untreated KP4, and (g and h) LPEB-treated 

KP4 

 

4.1.4 Chemical properties 

The chemical stabilities on the LPEB-irradiated surface could be simply represented by the corrosion 

resistance as the corrosion reaction is one of the most representative electrochemical reactions. 

Electrochemical analyses were carried out by potentiodynamic polarization (PDP) test using a standard 

three-electrode cell in 1% NaCl solution to investigate the effects of the re-solidified layer on corrosion 
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resistance of the LPEB-irradiated KP1 and KP4 samples. A standard calomel electrode (SCE) was used 

as the reference electrode, and a platinum electrode was used as the counter electrode. The exposed area 

of the surface of the working electrode was 1 cm2. The surface of each sample was exposed to the 

solution for 30 min prior to the commencement of potentiodynamic polarization test to achieve a stable 

open-circuit potential (OCP). The potentiodynamic polarization tests were then carried out at a scan 

rate of 1 mV/s and in the range of ±400 mV/SCE with respect to the OCP. 

 

 

Figure 19. Potentiodynamic polarization curves of the LPEB-treated surface on (a) KP1 and (b) KP4 

 

Table 5. Corrosion potentials, corrosion current densities, and corrosion rates for KP1 and KP4 before 

and after the LPEB irradiation 

Materials 
Energy density 

(J/cm2) 
Ecorr (mV/SCE) icorr (μA/cm2) 

Corrosion rate 

(mm/y) 

KP1 

Bare -725.4 ± 5.2 0.8122 ± 0.12 0.01873 

7 -685.8 ± 14.6 0.5145 ± 0.13 0.01153 

10 -661.0 ± 11.8 0.2394 ± 0.09 0.00552 

KP4 

Bare -681.8 ± 11.5 0.7320 ± 0.09 0.01688 

7 -664.1 ± 7.4 0.4877 ± 0.17 0.01125 

10 -656.0 ± 9.8 0.3510 ± 0.02 0.00809 

 

 

Figure 19 shows the potentiodynamic polarization curves of KP1 and KP4 before and after the LPEB 

irradiation. The Tafel extrapolation method was used on the curves to calculate the corrosion potentials 

Ecorr and corrosion current densities icorr. The corresponding corrosion potentials and current densities 

are shown in Table 5. The corrosion resistance of the irradiated surfaces was modified, as indicated by 

the shift in Ecorr towards more noble potentials and a decrease in icorr. The corrosion potential is strongly 

related to the activation energy for corrosion, and the active region of the corrosion process occurs at a 

nobler potential than the equilibrium potential [79]. Thus, a nobler corrosion potential following the 

LPEB, when compared to that of bare materials, is indicative of an increase in corrosion resistance. The 
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shift in the corrosion potential towards more noble potentials following the LPEB irradiations was larger, 

with an energy density of 10 J/cm2 when compared to those obtained at 7 J/cm2. The largest change in 

the corrosion potential was observed for the KP1 sample at an energy density of 10 J/cm2 for 20 

irradiation cycles, which caused the corrosion potential to shift from -725 mV/SCE to -661 mV/SCE. 

This improvement in corrosion resistance was almost twice as larger for the KP1 sample than for the 

KP4 sample. Prior to LPEB irradiations, the KP4 sample exhibited a nobler corrosion potential than 

KP1. However, following the LPEB irradiation, the corrosion potentials of the two treated samples were 

almost identical. 

The corrosion current density was decreased following LPEB; the larger the energy density of the 

irradiating beam, the lower is the corrosion current density. The corrosion rate can be calculated using 

the equation (24) [80]: 

 

2

corri kM

dA
 =                (24) 

 

where k is a constant, M is the molar mass, d is the density, and A is the area of the electrode. With the 

exception of the corrosion current, the other parameters were constant in all tests. The corrosion rates 

calculated from different potentiodynamic polarization data are summarized as a function of energy 

density applied in Table 5. It is evident from Table 5 that the corrosion rate is decreased following the 

LPEB irradiation because the corrosion rate is proportional to the corrosion current density. 

 

 

Figure 20. Contact angle before and after the LPEB irradiation on both the KP1 and KP4 samples 

with an energy density of (a) 7 J/cm2 and (b) 10 J/cm2 

 

 

This modification of the corrosion resistance is related to the surface energy. A larger activation 

energy for corrosion corresponds to better corrosion resistance. The surface energy can be characterized 
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using contact angle measurements [81]. Typically, a large contact angle corresponds to a low surface 

energy and also indicates a low reactivity at the surface [82]. Figure 20 shows the change in the contact 

angles of deionized water on the samples before and after the LPEB irradiation. With an energy density 

of 7 J/cm2, the contact angle of the KP1 sample was increased markedly following irradiation; however, 

the change in the contact angle of the KP4 sample was much smaller than KP1. This is in good overall 

agreement with the variation in the corrosion potential before and after the LPEB irradiation. The 

corrosion potential of KP1 was initially lower than that of KP4, and the two became similar following 

LPEB irradiations, as shown in Table 5. Similarly, the contact angle of the KP1 sample was initially 

smaller than that of the KP4 sample; however, the two became more or less similar following the LPEB 

irradiation. Considering these results, it can be concluded that the surfaces of both the KP1 and KP4 

samples (and especially the KP1 sample) were stabilized following the LPEB irradiation. 

Another possible explanation for the improvement in corrosion resistance is the production of an 

established metal oxide on the re-solidified surface [83, 84]. It has been established that passivating 

films, such as metal oxides on the surface of a bulk metal, may inhibit corrosion, since the oxidation 

process cannot readily progress on the oxidized layer [85]. Thus, the potential at which the passive films 

became unstable, as indicated by an increase in the current density, which occur at a nobler potential 

when compared with the bare material [86]. The elevated temperatures during the formation of the re-

solidified layer may lead to a stable oxide layer [87, 88]. Figure 21 shows EPMA data for the cross-

sectional area of the KP1 and KP4 samples following the LPEB irradiation. The fraction of oxygen on 

the re-solidified layer was significantly increased, as indicated by the higher counts for the 

corresponding electrons from the EPMA measurements. This is consistent with the results of the 

potentiodynamic polarization tests, contact angle measurements, and EIS results. An increase in the 

fraction of oxygen on the re-solidified layer after the LPEB irradiation may induce a more passive film 

composed of metal oxides. The re-solidified layer on the LPEB-treated surface exhibited a nobler 

corrosion potential than the untreated surface. 
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Figure 21. EPMA results showing the distribution of oxygen on the cross-sectional area of (a) KP1 

and (b) KP4 following the LPEB irradiation 

 

The EIS spectra were plotted from electrochemical impedance measurements at frequencies in the 

range of 100 kHz–100 MHz at the OCP. The amplitude of the signal was 10 mV. The result was plotted 

in Nyquist plots to compare the charge transfer resistance among samples treated by LPEB. Nyquist 

plots resulting from the EIS measurements strongly indicate an increase in corrosion resistance of the 

LPEB-treated surface. Based on the semi-circular Nyquist plots, we could infer the Ohmic behavior. 

The difference between the real and imaginary impedance components at low and high frequencies 

represents the charge transfer resistance. Thus, the corrosion resistance of the passive re-solidified layer 

can be compared based on the diameter of the semi-circles on the Nyquist plots. 

 

 

Figure 22. Nyquist plots for (a) KP1 and (b) KP4 before and after the LPEB irradiation 
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Figure 23. Optical micrographs of the corrosion-damaged surface morphology of the bare and LPEB-

treated surfaces 

 

 

Figure 24. Illustration of the corrosion mechanism on the surface: (a) untreated, (b) following the 

LPEB irradiation, and (c) progressive pitting corrosion around the crater on the LPEB-irradiated 

surface 

 

Figure 22 shows the Nyquist plots of the KP1 and KP4 steels before and after the LPEB irradiation. 

A comparison of the diameters of semi-circles in the Nyquist plots indicates that LPEB irradiations 
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dramatically increased the charge transfer resistance of the surfaces of both the KP1 and KP4 samples. 

The increase in the charge transfer resistance was larger, at an energy density of 10 J/cm2 when 

compared to those obtained at 7 J/cm2. It follows that the LPEB irradiation induces a passive re-

solidified layer on the surface of KP1 and KP4 samples, thereby increasing their corrosion resistance in 

NaCl solution. The improvement in corrosion resistance can also be clearly seen in the optical 

microscopy images shown in Figure 23. As the number density of craters on the surface of KP4 was 

larger than that of KP1 (see Figure 15), more corroded pits were observed on the LPEB-treated surface 

of KP4 than KP1. Rust resulting from corrosion was significantly reduced following the LPEB 

irradiations for both steels. In addition, the corrosion that occurred on the LPEB-treated surface was 

concentrated around the craters. As shown in Figure 24, corrosion was initiated around the crater and 

propagated from there. The re-solidified layer above the craters was generally much thinner than in 

other areas because LPEB irradiations creates molten pools around non-metallic precipitates due to 

partial melting and evaporating processes. This thin film can readily be degraded chemically, 

particularly in a solution that contains chloride ions [89]. Once a localized region of the re-solidified 

layer on the LPEB-treated surface has been destroyed by corrosion, this site becomes an anode, and the 

areas around it becomes a cathode. Around the craters, therefore, the remaining MnS inclusions are 

much more susceptible for corrosion than steel, and hence the corrosion becomes concentrated around 

the breaks in the re-solidified layer near craters in this film, while the other areas are under cathodic 

protection [90]. Thus, the corrosion mechanism is governed by pitting corrosion around the craters, 

which can be described as [91]: 

 

2

22MnS Cl MnCl S− −+ → +              (25) 

 

2S H HS− + −+ →                (26) 

 

2HS S H e− + −→ + +               (27) 

 

The corrosion mechanism is summarized in Figure 24 [92]. This is consistent with the difference in 

the density of pits observed on the surface of KP1 and KP4 samples. Because the density of the surface 

craters was higher for the KP4 sample, more pits were observed on the surface of the KP4 sample 

following the LPEB irradiation and corrosion reaction, as shown in Figure 23. Increasing the energy 

density and number of irradiation cycles induced a greater level of corrosion resistance. This behavior 

may be attributed to oxidation of the surface, resulting in the formation of a passivation layer. 

Furthermore, a large number of irradiation cycles could eliminate the craters and harmful inclusions, 

such as MnS and carbides, which facilitates corrosion, due to repeated melting and evaporation. 
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4.1.5 Microstructure 

The modifications on mechanical and chemical properties following the LPEB irradiations are highly 

related to the possible phase transformation on the re-solidified layer. As the heating and cooling rates 

during the irradiation are extremely rapid, a phase transformation and amorphization of steels might 

occur at the surface. Thus, the microstructural analysis on the re-solidified layers were performed to 

clearly specify the surface modification mechanisms on mold steels. 

There are a number of competing factors that can affect the hardness after the LPEB irradiation. One 

of the them is the residual tensile stress [92]. If a martensitic transformation occurs below the surface, 

it could induce tensile residual stress at the surface and reduces the hardness of the material [93]. In 

contrast, a large dislocation density generated at the surface of a material after the LPEB irradiation 

may lead to hardening of the surface [94]. To investigate the presence of such phase behavior, image 

quality maps (IQMs) of EBSD data were collected; the resulting images are shown in Figure 25. 
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Figure 25. IQMs from the EBSD analysis on the cross-sectional area: (a) untreated KP1, (b) LPEB-

treated KP1, (c) untreated KP4, and (d) LPEB-treated KP4 
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During rapid cooling, carbon atoms cannot diffuse out of the crystal structure, and the resulting shear 

deformation produces condensed dislocations; this is a primary strengthening mechanism for steels. 

The quality of the electron diffraction patterns was defined using the ‘image quality factor’ (IQF) of the 

region; it was lower on the LPEB-treated samples. It is possible to specify the dislocation density using 

the IQF. The left column in Figure 25 shows all the IQMs, and the right column shows only images that 

are characterized by an IQF less than the average IQF of other areas of the sample. Condensed 

dislocations emerged on the LPEB-treated surface of both the KP1 and KP4 samples. However, phase 

transformations in the sub-surface were not observed. Thus, residual tensile stress is not expected at the 

surface following the LPEB irradiation. The lower IQF of the LPEB-treated surfaces corresponds to a 

larger density of dislocations, and therefore we may expect that the hardness of a specific region is 

proportional to the density of the dislocations [94]. Comparing Figure 25(b) and (d), the thicker regions 

contain a larger density of dislocations on the LPEB-treated surface and the density of dislocations were 

higher for the KP1 sample than on the KP4 sample. An increased carbon fraction in the KP1 sample 

might have contributed to a higher dislocation density. Carbon atoms that did not diffuse during the 

rapid cooling have led to the formation of a distorted matrix combined with metal atoms, resulting in a 

large density of dislocations at the surface. Accordingly, the larger fraction of carbon in the KP1 sample 

could have caused a larger density of dislocations at the surface. The thermal diffusivity of KP1 is larger 

than that of KP4, which leads to a more rapid cooling rate of KP1 during the LPEB irradiation, and 

consequently, only a shorter time was available for carbon atoms to diffuse. The results of the nano-

indentation tests are consistent with the IQM analysis of the EBSD data. The hardness of the KP1 

surface was greater than that of the KP4 surface following the LPEB irradiation, even though the 

converse relationship was observed prior to the LPEB irradiation. Thus, it can be concluded that the 

major factor leading to the increased hardness of both KP1 and KP4 steels following LPEB irradiations 

is due to an increase in dislocation density following the phase transformation during re-crystallization. 

To investigate the phase transformation, which can affect the corrosion resistance, X-ray diffraction 

(XRD) patterns were obtained following the LPEB irradiation. Figure 26 shows the XRD patterns of 

KP1 following LPEB irradiations as a function of irradiation cycles. The peaks corresponding to α-

phase and γ-phase steel were identified on each peak [95]. The XRD pattern of bare KP1 showed peaks 

all indicating α-phase. After the LPEB irradiation for 5 irradiation cycles, the strongest peaks were still 

α-phase steel. However, with more than 10 irradiation cycles, the largest peak for KP1 was changed to 

a γ-phase peak. The fraction of the α-phase peak was continuously decreased with an increase in the 

number of irradiation cycles. Due to rapid melting and re-solidification during the LPEB irradiation, 

phase transformation to γ-phase could occur with undissolved carbon atoms in the matrix. It has been 

established that the corrosion resistance could be effectively modified with an austempering process by 

increasing the fraction of retained austenite in the material [96]. Also, the effect of the α/γ-phase ratio 

on the corrosion resistance has been studied, and results proved that increasing the γ-phase could 
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improve the corrosion resistance [95, 97]. Thus, the increased fraction of retained austenite in the matrix 

may be responsible for the modification of the corrosion resistance of the LPEB-treated surface of KP1 

and KP4. 

 

 

Figure 26. XRD patterns obtained from the surface of mold steels before and after the LPEB 

irradiation 

 

4.2 Surface modification of biomedical alloys 

In addition to the engineering metallic alloys, the LPEB irradiation is also applied on the surface 

modification of a biomedical material, Ti-6Al-7Nb, which is one of the most superior materials in the 

field of dental and orthopedic implant surgery [50]. In early generations of implants, Co-Cr alloys and    

Ti-6Al-4V (Grade 5) were the most commonly used materials due to their favorable hardness, strength, 

and resistance to wear and corrosion. However, their limitations were clear that Co-Cr alloys are prone 

to fracture as they are brittle, and Ti-6Al-4V leads a formation of vanadium oxide in simulated body 

fluid, which makes it cytotoxic [98]. Ti-6Al-7Nb is similar to Grade 5 in terms of its mechanical 

properties including hardness and modulus. However, replacing vanadium with niobium is expected to 

enhance biocompatibility since niobium oxide is non-toxic and non-allergic [99]. Despite the potential 

benefits of Ti-6Al-7Nb in biomedical applications, there has been very little investigations of possible 

surface modifications to improve the biocompatibility and mechanical properties. In this context, the 

LPEB irradiation could be a good candidate for the biomedical material that it is highly purified process 

only using electrons as the power source without generating any types of cytotoxic chemicals and/or 

byproducts. The extruded rod of Ti-6Al-7Nb is used for the LPEB surface modification process. The 
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diameter of the rod is 25 mm, which is cut into 5-mm-thick slices. The chemical composition of Ti-6Al-

7Nb is summarized in Table 6. 

 

Table 6. Chemical composition of Ti-6Al-7Nb 

 Ti Al Nb Fe Ta O N 

Fraction (wt. %) 85.5 6 7 0.25 0.5 0.2 0.05 

 

The conditions of LPEB irradiations were set to be the same that applied on the mold steels. In case 

of Ti-6Al-7Nb, the irradiation was carried out at the center of the samples as the diameter of the circular 

samples was 25 mm, which is sufficient to provide a uniform coverage by the 60-mm-diamter electron 

beam. 

 

4.2.1 Formation of the re-solidified layer 

Figure 27 shows the optical images of the surface of Ti-6Al-7Nb before and after the LPEB 

irradiation. As shown in the Figure 27, the glossiness of the surface was enhanced further with reduced 

surface roughness erasing surface scratches following the repeated melting and re-solidification 

processes. Figure 28 shows the cross-sectional SEM images of the untreated and LPEB-irradiated Ti-

6Al-7Nb alloy samples obtained using various energy densities and number of pulses. As shown in 

Figure 28(a) and (b), at an energy density of 7 J/cm2, the depth of the re-solidified layer was 5.83 μm 

after five pulses, and 6.41 μm after ten pulses. At an energy density of 10 J/cm2, the depth of the re-

solidified layer was 7.45 μm after five pulses, and 7.99 μm after ten pulses, as shown in Figure 28(c) 

and (d). The depth of the re-solidified layer was more strongly dependent on the pulse energy than on 

the number of pulses. 

 

 

Figure 27. Optical photographs showing the surface texture of Ti-6Al-7Nb before (left) and after 

(right) the LPEB irradiation 
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Figure 28. Cross-sectional SEM images of the Ti-6Al-7Nb after the LPEB irradiation at (a) 7 J/cm2 

for 5 pulses, (b) 7 J/cm2 for 10 pulses, (c) 10 J/cm2 for 5 pulses, and (d) 10 J/cm2 for 10 pulses 
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4.2.2 Mechanical properties 

Figure 29 shows the nano-hardness of LPEB-treated Ti-6Al-7Nb samples as a function of the depth 

from the surface to the bulk. The surface nano-hardness was 4 GPa for the bare surface, which increased 

to 10.14 GPa after LPEB irradiation at an energy density of 7 J/cm2. With an energy density of 10 J/cm2, 

the nano-hardness at the surface was 8.37 GPa. For the LPEB-irradiated samples, the nano-hardness 

was greatest near the surface, and approached that of the untreated alloy further from the surface. 

 

 

Figure 29. Nano-hardness as a function of depth for the LPEB-treated Ti-6Al-7Nb samples 

 

4.2.3 Chemical properties 

Similar to the investigation on mold steels, the chemical stabilities on re-solidified layers with    

Ti-6Al-7Nb were also specified by the corrosion resistance. Figure 30 shows the representative 

potentiodynamic polarization curves of the untreated and LPEB-irradiated Ti-6Al-7Nb alloy. The 

corrosion potential and the corrosion current density were calculated using the potentiodynamic 

polarization curves by Tafel extrapolation method. The corresponding electrochemical parameters, 

including the polarization resistance and corrosion rate, are listed in Table 7 as a function of the 

irradiation energy density. The corrosion potential of the LPEB-treated surface was nobler than the bare 

surface. Among the treated ones, it was nobler for the samples treated at an energy density of 10 J/cm2 

than 7 J/cm2. As listed in Table 7, the largest increase in the corrosion potential was obtained for the Ti-

6Al-7Nb alloy sample treated at an energy density of 10 J/cm2. 
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Figure 30. Potentiodynamic polarization curves of the LPEB-irradiated Ti-6Al-7Nb 

 

Table 7. Polarization electrochemical parameters of Ti-6Al-7Nb before and after the LPEB irradiation 

Energy 

density 

(J/cm2) 

Ecorr 

(mV/SCE) 

icorr 

(nA/cm2) 

βc 

(mV/dec) 

βa 

(mV/dec) 

Rp 

(MΩ cm2) 

Corrosion 

rate 

(mm/y) 

Bare 
-386.7 ± 

9.34 

80.07 ± 

5.67 
90 ± 10 84 ± 16 

0.252 ± 

0.005 
1.3857 

7 
-337.7 ± 

30.6 
5.36 ± 1.78 125 ± 9 210 ± 7 

4.805 ± 

2.226 
0.0928 

10 
-218.1 ± 

3.82 
1.08 ± 0.76 75 ± 9 127 ± 11 

26.683 ± 

13.241 
0.0187 

 

The corrosion current density is decreased significantly following LPEB treatment. Furthermore, the 

corrosion resistance may also be characterized from the variation of the polarization resistance 

following LPEB treatment. The polarization resistance is given by [100] 

 

0

P

E

E
R

i  →

 
=  

 
  (28) 

 

where ΔE is the variation in the applied potential around the corrosion potential and Δi is the change 

in the polarization current. The polarization resistance can be used as a measure of the corrosion 

resistance of the surface. The polarization resistance on the untreated surface of Ti-6Al-7Nb was   

0.252 MΩ cm2 and it was increased to 4.805 MΩ cm2 following LPEB irradiation at an energy density 

of 7 J/cm2 and increased further to 26.683 MΩ cm2 at an energy density of 10 J/cm2. Based on these 

electrochemical measurement, it can be concluded that the corrosion resistance of Ti-6Al-7Nb alloy is 
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increased following LPEB treatment. 

Modifications to the corrosion resistance are related to the chemical composition of the surface. 

Similar to the mold steel, stable and passive oxide layers formed at the surface following LPEB 

irradiation might be responsible for the improvement in the corrosion resistance [101]. Under 

atmospheric conditions, the thickness of the native TiO2 layer that forms at the surface of titanium alloys 

is several angstroms [102]. Such layers passivate the surface, protecting the underlying metal from 

dissolution and corrosion [103]. Figure 31 shows the spatial variation of the chemical composition of 

the Ti-6Al-7Nb samples following LPEB irradiation measured using EPMA. At the LPEB-irradiated 

surface, the total number of counts for electrons corresponding to oxygen almost doubled compared 

with the untreated surface, regardless of the energy density. The fraction of Ti and Al decreased at the 

LPEB-irradiated surface, and the fraction of Nb did not vary significantly. It follows that titanium oxide 

and aluminum oxide were formed in the re-solidified layer, and Nb was not significantly affected. The 

depth of the re-solidified layer containing the metal oxides was similar to the depth of the melted layer 

induced by the LPEB irradiation. 

 

 

Figure 31. EPMA representing the distribution of chemical components on the cross-sectional area of 

Ti-6Al-7Nb following the LPEB irradiation with (a) 7 J/cm2 and (b) 10 J/cm2 

 

Figure 32 shows XPS spectra of titanium and aluminum acquired at the surface of untreated and 

LPEB-irradiated Ti-6Al-7Nb alloy. The peaks for titanium and aluminum indicate the formation of TiO2 

and Al2O3, both of which are passive metal oxides. One interesting observation is the formation of 

titanium nitride (TiN), which is widely used in surface treatments to improve the mechanical and 

chemical properties of titanium alloys [104]. During irradiation with the LPEB, nitrogen was used to 

flush the chamber between pulses to remove the evaporated gases. Some of these gases may be expected 

to remain in the chamber during the following pulse, and hence the nitrogen gas may react with the 
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liquid metal during melting and re-solidification. The formation of TiN at the surface following LPEB 

irradiation could be responsible for the improvement in corrosion resistance of LPEB-irradiated Ti-6Al-

7Nb alloy. 

 

 

Figure 32. XPS spectra of untreated and LPEB-treated Ti-6Al-7Nb for (a) titanium and (b) aluminum 

 

The corrosion-inhibiting effect of the passivation layer can be characterized by the charge transfer 

resistance obtained from a Nyquist plot of the EIS spectra [92]. The log(f)–|Z| plots of the EIS spectra 
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can be used to characterize the resistance to chemical reactions at the surface as a function of frequency. 

Figure 33(a) shows Nyquist plots and Figure 33(b) shows the log(f)–|Z| plots of the Ti-6Al-7Nb samples 

before and after irradiation with the LPEB. It is clear that the LPEB treatment increased the impedance 

of the surface, and that the increase in the impedance is larger at an energy density of 10 J/cm2 than at 

an energy density of 7 J/cm2. However, at an energy density of 7 J/cm2, there was a reduction in the 

impedance at low frequencies when compared with that of the untreated sample. Hence, it can be 

concluded that the LPEB treatment enables the formation of a more chemically stable and nobler Ti-

6Al-7Nb surface that is more resistant to corrosion than the untreated surface. 

 

 

Figure 33. (a) Nyquist plots and (b) log(f)-|Z| plots of Ti-6Al-7Nb before and after the LPEB 

irradiation 
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4.2.4 Microstructure 

The phase changes and microstructural modifications at the LPEB irradiated surface were 

investigated using XRD and SEM as they could influence the mechanical and chemical properties. 

During the LPEB irradiation process, the crystal matrix at the surface could become distorted, resulting 

in surface dislocations and twining, both of which are well-known hardening mechanisms of metal 

alloys [94]. Figure 34 shows the magnified cross-sectional SEM images of the irradiated surfaces, which 

exhibited twin traces at the re-solidified region, both for energy densities of 7 J/cm2 and 10 J/cm2. These 

twin traces are the evidence for the occurrence of a large density of dislocations at the surface following 

LPEB irradiation, which may be expected to lead to hardening of the surface. This is in good overall 

agreement with the distribution of carbon atoms at the surface following LPEB treatment, as shown in 

Figure 31: the carbon fraction at the re-solidified layer increased compared with the untreated material. 

 

 

Figure 34. Cross-sectional SEM images showing twinning traces induced by the LPEB irradiation 

with an energy density of (a) 7 J/cm2 and (b) 10 J/cm2 

 

In addition to the increased density of dislocations at the surface, the crystal planes were rearranged. 

The orientation of the crystal planes is strongly related to the hardness, and materials with crystalline 
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structures can be plastically deformed by slip processes. The XRD peaks shown in Figure 35, exhibit a 

significant decrease in the intensity of (100) and (101) planes following LPEB irradiation. The (101) 

plane is one of the dominant slip planes [105], and hence a reduction in the intensity of the (101) plane 

following LPEB treatment could lead to hardening of the surface, making it less easy for the material 

to be plastically deformed. 

The change in intensity of the XRD peaks following LPEB treatment was also highly related to the 

variation in corrosion resistance. The intensity of the XRD peaks was more or less similar, irrespective 

of the electron beam irradiation conditions. Following the irradiation, a loss in crystallinity was 

observed, supported by the broadening of the diffraction peaks. Furthermore, there was a reduction in 

the intensity of the peaks corresponding to the β-phase. It is well known that the corrosion resistance of 

α-phase titanium is greater than that of the β-phase [106]. Hence, the phase transformation to α-phase 

may be responsible for the increased corrosion resistance. However, the fraction of β-phase in this alloy 

was very small prior to the LPEB irradiation, and so it does not expect that this phase transformation 

would have significantly affected the corrosion resistance. 

 

 

Figure 35. XRD patterns obtained from Ti-6Al-7Nb before and after the LPEB irradiation 
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It appears that the melted surface immediately following electron-beam irradiation was readily 

oxidized, forming a thicker passivation layer when compared to the native oxide layer. The EPMA data 

showed that this passive oxide layer consisted of TiO2, Al2O3, and TiN, and the presence of these 

chemical species may be expected to increase the corrosion resistance of the metal. The larger increase 

in corrosion resistance observed for Ti-6Al-7Nb alloy treated at higher energy density could be 

attributed to the formation of a thicker re-solidified layer at the surface. 

 

4.3 Nitriding process assisted by the LPEB irradiation 

Although Ti-6Al-7Nb is a relatively biocompatible material, some fundamental problems still remain 

unsolved. Damage of the thin oxide layer (1 - 4 nm) could lead to the formation of galvanic cells. As 

Song [107] and Gu et al. [108] pointed out, mechanical properties of corrosion-resistant films have been 

one of the most important concerns on electrochemically stable surface layer. Remarkably, many studies 

have reported that titanium nitride (TiN), used as a hard ceramic coating material, offered an improved 

corrosion resistance with superior surface hardness [109]. 

According to previous results with LPEB irradiation on Ti-6Al-7Nb, it was found that corrosion 

resistance and nano-hardness were improved by LPEB. Additionally, small TiN segments were 

observed on the LPEB-treated surface. In this context, the LPEB irradiation showed its potential 

application on the nitriding process overcoming the limitations of previous nitriding methods such as 

surface defects and low uniformity. As the LPEB irradiation could be adopted as a polishing method, 

this can lead to a defect-free surface re-solidified layer following the irradiation process. However, 

nitrogen implantation was obviously small on the re-solidified with the standard LPEB irradiation. Thus, 

the experiments were designed to develop a crack-less nitriding process by combining a nitrogen ion 

implantation system using LPEB and a cathodic process to improve the corrosion characteristics and 

nano-hardness of Ti-6Al-7Nb. LPEB irradiation was performed using argon (Ar) and N2 plasma gas 

and the results of nitriding effects were evaluated in terms of surface morphology, microstructure, nano-

hardness, wear resistance, and corrosion resistance [110]. 

 

4.3.1 Design of experiments and materials 

The experimental set-ups used for LPEB irradiations were the same with previous works. For this 

study, the plasma source was changed from Ar to nitrogen (N2) for LPEB nitriding process, which 

represents the LPEB irradiation using N2 plasma gas. Furthermore, a negative DC bias cathodic 

apparatus was attached to the general experimental set-up to attract the N2 plasma from environment to 

the substrates. The Ti-6Al-7Nb sample was connected to a copper electrode to apply a negative DC bias 

as summarized in Figure 36. The detailed parameters of LPEB irradiation are summarized in Table 8. 
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Figure 36. Schematic diagram of the experimental set-up for the LPEB nitriding 

 

Table 8. Parameters of the LPEB nitriding process 

Parameter Value 

Acceleration voltage (Va) 30 kV 

Energy density 10 J/cm2 

Plasma gas pressure (Ar and N2) 0.05 Pa 

Pulse duration 2 μs 

Negative DC bias 0 – 1000 V 

Number of pulses 0 – 200 pulses 

 

4.3.2 Microstructure and chemical components 

Figure 37 shows the SEM images and corresponding roughness at the surface following LPEB 

irradiation using Ar and N2 plasma gas. The surface roughness (Ra) was reduced significantly following 

LPEB irradiation with both Ar and N2 plasma gas. Ra was reduced from ~540 nm to ~90 nm on the 

LPEB irradiated surface both with Ar and N2 plasma gas when compared to the bare surface. This may 

be attributable to surface dissolution by LPEB, which could melt the polishing mark and generate a 

phase transformation on the surface. However, when applying a negative DC bias for the nitriding 

process, Ra on the surface was slightly larger than that on the surface with no DC bias because numerous 

crater-like defects were generated following LPEB irradiation as specified by white-interference 

micrographs in Figure 38. Especially, with a negative DC bias larger than 100 V, the defects were 
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formed frequently and their sizes were larger. The partial evaporation of non-metallic inclusions, such 

as manganese sulfide (MnS) and metal carbide was the major reason for crater generation during the 

LPEB irradiation process on mold steels. However, in the case of Ti-6Al-7Nb, there are almost no non-

metallic inclusions, suggesting that the mechanism of crater generation differs from that of the iron-

base alloys. Thus, SEM images and corresponding EDS analyses were performed to understand the 

crater generation mechanism during the LPEB nitriding process (Figure 39). The EDS results indicated 

that small particles consisted of iron at the center of the craters. Thus, it can be concluded that the 

increasing density of craters with increasing negative DC bias resulted mainly from sputtering effects 

on the surface by generating a glow discharge of plasma ions remaining in the vacuum chamber. Thus, 

it is preferred that the DC bias level should not exceed 100 V, because this is relatively low compared 

with the threshold voltage. 

 

 

Figure 37. SEM images on Ti-6Al-7Nb surfaces (a) before and after LPEB irradiations with (b) 0 V-

biased in Ar gas, (c) 0 V-biased in N2 gas, and (d) -100 V-biased in N2 gas 
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Figure 38. White-interference micrographs on the surface of Ti-6Al-7Nb after the LPEB irradiations 

 

 

Figure 39. A SEM image and EDS result near the crater-generated region corresponding to FIGURE 
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Figure 40. Cross-sectional SEM images of LPEB-irradiated Ti-6Al-7Nb with (a) Ar plasma gas and 

(b) N2 plasma gas 

 

Figure 40 shows the cross-sectional SEM images of Ti-6Al-7Nb alloys following LPEB irradiation 

with Ar and N2 plasma gas. The depth of the re-solidified layer could slightly increase with more pulses; 

however, it did not vary markedly above 10 pulses. The depth of the re-solidified layer induced by 

LPEB irradiation was deeper with Ar than using N2 plasma gas. This could be a result of a change in 

beam energy density transferred to the surface of the substrates. The beam energy induced from the 

electron gun is partially absorbed by plasma gas ionizing atoms. The ionization energy of each plasma 

source used in LPEB irradiation is expressed as: 

 

(1,520.6 / )Ar kJ mol Ar e+ −+ → +              (29) 

 

2

1
(1,874.5 / )

2
N kJ mol N e+ −+ → +              (30) 

 

As shown in Eq. (29) and (30), Ar plasma is induced simply, only consuming the ionized enthalpy 

of 1520.6 kJ/mol in a single ionization step. In contrast, N2 plasma is generated in multiple steps to 

make the same number of electrons by consuming a total enthalpy of 1874.5 kJ/mol to break the 

powerful triple bond of the nitrogen molecule (472.5 kJ/mol) and to ionize it (1402 kJ/mol). Thus, the 

energy absorbed on the surface of substrates is relatively small with N2 plasma gas, leading to a thinner 

depth of the re-solidified layer than the one obtained under Ar plasma. 

In addition to the depth of molten layer and phase transformation, in the case of nitriding processes, 

the fraction of nitrogen available for reaction plays a major role in determining the formation of TiN. 

The EDS results indicating the variations in atomic concentrations following LPEB irradiation are 

summarized in Table 9 and 10, as a function of the negative DC bias and number of pulses, respectively. 

The corresponding variations in nitrogen concentration are shown in Figure 41. When compared with 

bare Ti-6Al-7Nb, the atomic concentration of nitrogen was increased slightly after LPEB irradiation 
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with Ar plasma gas (Figure 41(a)). This could be a result of the flushing gas, which was used to clean 

up the vacuum chamber between pulses. Because nitrogen was used as the flushing gas during LPEB 

irradiation, some of the gas remained in the chamber, forming a small fraction of TiN at the re-solidified 

layer. By changing the plasma source for LPEB from Ar to N2, it was possible to achieve a much higher 

fraction of nitrogen in the re-solidified layer. LPEB nitriding without a negative DC bias increased the 

nitrogen fraction, to 17.08 at. %, at the top surface. Moreover, the nitrogen fraction was increased further 

by applying a negative DC bias to the substrate. It was increased to over 18 at. % with a negative DC 

bias ranging from 0 to 1000 V. The optimized number of pulses in terms of nitrogen fraction was well 

matched to that of the re-solidified depth. The atomic concentration at the re-solidified layer was almost 

unaffected by increasing the number of pulses above 10 (Figure 41(b)). The effect of negative DC bias 

was clear; the nitrogen fraction was increased with 100 V of bias compared with 0 V. However, no 

significant change in nitrogen fraction was observed with various DC biases above 100 V; all substrates 

were similar, ~18.5 at. %. Thair et al. [111] showed that TiN was not formed if the nitrogen 

concentration was lower than ~6 at. %; otherwise, TiN was formed uniformly at the surface if nitrogen 

concentration was ~20 at. %. Thus, it can be concluded that an effective nitriding process could be 

performed using LPEB irradiation with N2 plasma gas and a negative DC bias. Also, 100 V of DC bias 

was the optimal condition because use of a larger bias did not modify the nitrogen concentration 

significantly and induced the small crater-like defects shown in Figure 38. 

 

 

Figure 41. Atomic concentration of nitrogen after the LPEB irradiation in terms of the (a) negative DC 

bias and (b) number of pulses 

 

Moreover, the nitrided layer induced by the LPEB nitriding process showed clearly different 

microstructures when compared to that induced by conventional nitriding processes. Conventional 

nitriding processes such as plasma nitriding, gas nitriding, and solid nitriding induce two main layers; 

1) compound layer (white layer); and 2) diffusion layer as described in Figure 42 (a). Generally, the 
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compound layer with superior surface hardness and chemical stability determines the tribological and 

anti-corrosion characteristics of the nitrided layer. The diffusion layer, generated by the diffusion of 

nitrogen ions inside the bulk at high-temperature is considered to be beneficial to prevent fatigue 

fracture. However, when the thickness of the white layer is about 10 μm or more, problems such as 

cracking and voids could affect its quality resulting in the delamination of the white layer. Unlike the 

conventional nitriding processes, the LPEB nitriding process proceeds at relatively low temperature 

with a rapid thermal gradient. As a result, the diffusion layer is hardly formed while a stable white layer 

can be achieved. 

 

 

Figure 42. (a) Schematic diagram of nitrided layers and (b) cross-sectional SEM images following 

plasma, gas, and solid nitriding processes 

 

Figure 42 shows the cross-sectional SEM images of mold steels after plasma nitriding. It is evident 

that the thickness of the white layer is varied from 5 to 15 μm, and the diffusion layer is irregular. 

Furthermore, it is a well-known problem during plasma nitriding that the surface roughness can be 

adversely affected by the physical exchange of metal ions by nitrogen ions. In case of long time nitriding, 

in order to bring the nitrogen content closer to the theoretical maximum of 20%, formation of a very 

thick white layer (about 10 μm or more) occurs and such a thick nitrided layer is susceptible for cracking 

and generation of voids. To solve these problems, post-processing is essential in most of cases in which 

the thick white layer is removed by mechanical polishing. Consequently, the production efficiency is 

significantly lowered. 
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Figure 43. Cross-sectional SEM images after the plasma nitriding process on mold steels at two 

randomly selected regions 

 

These inferences make it clear that the LPEB nitriding process is highly suitable for forming a white 

layer with a thickness of 10 μm or less (Figure 40), and under optimized processing condition, the 

nitrogen content of the layer reaches about 18 to 19 %, which is similar to the theoretical maximum 

(Figure 41). Most importantly, the LPEB nitriding process favours the formation of a white layer with 

uniform thickness regardless of area and shape of products. Finally, there is a great advantage of the 

process that the surface roughness of the treated component can be decreased when compared to the 

conventional nitriding process (Figure 37). 

 

Table 9. Energy dispersive X-ray spectroscopy of Ti-6Al-7Nb before and after the LPEB irradiation and 

nitriding process in term of the negative DC bias 

Types of plasma 

gas 

Negative DC 

bias (V) 

Atomic concentration (at.%) 

C N O Ti 

Untreated 0 9.86 3.23 13.92 55.77 

Ar 0 5.42 5.87 8.69 63.48 

N2 0 3.81 17.08 3.84 64.75 

N2 -100 3.51 18.27 3.26 63.68 

N2 -500 5.35 18.45 4.17 60.70 

N2 -1000 5.00 18.88 3.09 62.90 

 

Table 10. Energy dispersive X-ray spectroscopy of Ti-6Al-7Nb after the LPEB nitriding process in term 

of the number of pulses 

Types of plasma 

gas 
Pulses 

Atomic concentration (at.%) 

C N O Ti 

N2 10 3.51 18.27 3.26 63.68 

N2 20 5.31 17.80 3.84 61.53 

N2 30 5.95 18.12 3.85 61.84 

N2 50 4.87 17.96 3.21 63.46 

N2 100 5.63 18.36 3.27 64.03 

N2 200 7.07 17.43 3.93 63.02 
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Figure 44. XPS spectra of Ti-6Al-7Nb after the LPEB nitriding with the negative DC bias 
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In addition to EDS analyses, XPS results specified the formation of TiN in the re-solidified layer 

after LPEB nitriding. The XPS results are presented in Figure 44. The spectral data were obtained at the 

top surface and 10 nm-deep regions of Ti-6Al-7Nb samples subjected to LPEB nitriding at 0, 100, 500, 

and 1000 V bias in N2 gas atmosphere. It is clear that TiN and TiOxNy were formed on Ti-6Al-7Nb after 

LPEB nitriding. In Figure 44(a), the binding energy of the Ti-2p3/2 peak or shoulder was shifted from 

the 458-460 eV range to 453-456 eV. Also, the Ti-2p1/2 peak was moved from the 464-465 eV range to 

459-461 eV, with a higher overall intensity of the spectrum. It has been documented that TiN and TiOxNy 

correspond to the Ti-2p3/2 peak appeared at the ~454.5 and the Ti-2p1/2 peak indicating TiN was 

measured at ~460.85 eV. Thus, the shift in the Ti-2p spectrum suggested that TiN was formed inside the 

re-solidified layer while a compound layer, composed mainly of TiOx, was formed at the top surface. 

Additionally, the spectrum of N-1s in Figure 44(b) showed the extent of TiOxNy at the top surface and 

TiN at 10 nm below the top surface. These results were well agreed also with the spectrum of Ti-2p and 

O-1s, as shown in Figure 44(a) and (c). It can be concluded that LPEB nitriding could facilitate nitrogen 

implantation in the re-solidified layers and the formation of TiOxNy layers on the nitrided layers. 

 

4.3.3 Mechanical properties 

TiN is known to have much higher hardness than conventional titanium alloys, such as Ti-6Al-4V 

and Ti-6Al-7Nb. Moreover, surface hardening effect of LPEB irradiations has been firmly established 

in previous chapters. Thus, a comparison of the nano-hardness profiles of the bare and LPEB-treated 

Ti-6Al-7Nb alloy with Ar and N2 plasma gas are appropriate to specify the surface hardening and extent 

of the nitrogen diffusion into the substrates. Figure 45 shows variations in nano-hardness of the Ti-6Al-

7Nb alloy after LPEB irradiation with Ar and N2 plasma gas, as a function of depth from the surface to 

bulk. The nano-hardness near the top surface was increased slightly following LPEB irradiation with 

Ar plasma gas. At the top surface, it was modified by ~15%, and the depth of modification was observed 

to be ~1500 nm. Use of N2 plasma gas during LPEB irradiation without DC bias, a further increase in 

nano-hardness was observed at the top surface. LPEB irradiation with N2 plasma gas with DC bias 

significantly increased the nano-hardness, as shown in Figure 45. Indeed, the nano-hardness at the top 

surface is increased by ~75% (~5.7 GPa) when compared to the bare surface (~3.25 GPa). Although 

there was no major difference in nano-hardness depending on the DC bias, the most improved nano-

hardness was obtained with 100 V. In addition to the increasing fraction of TiN, microstructural changes 

of Ti-6Al-7Nb itself following LPEB irradiation could have possibly favoured an increase in nano-

hardness. The formation of TiN at the re-solidified layer generates a phase transformation during the 

process because the nitrogen atoms are implanted interstitially between the titanium atoms in the re-

solidified layer. Thus, the lattice structures at the re-solidified layer can become distorted, resulting in 

surface dislocations, which are well-established hardening mechanisms of metal alloys [94]. 

Consequently, the nano-hardness of Ti-6Al-7Nb could be effectively modified by LPEB irradiation with 
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the formation of TiN at the re-solidified layer. 

 

 

Figure 45. Variations in nano-hardness at re-solidified layer as a function of depth 

 

4.3.4 Chemical properties 

From the phase, microstructural, and nano-hardness analyses, it was clear that a 100 V DC bias was 

the optimal condition because the fraction of nitrogen did not vary with an increase in DC bias voltage 

larger than 100 V. Thus, the corrosion characteristics were evaluated with a sample irradiated using a 

100 V DC bias. Figure 46 shows the representative potentiodynamic polarization curves of the untreated 

and LPEB-treated Ti-6Al-7Nb alloys under N2 and Ar plasma gas atmospheres and corresponding 

variations of corrosion potentials and corrosion current densities in a 1 wt. % NaCl aqueous solution at 

room temperature. The electrochemical parameters were estimated with the same experimental 

conditions used for the other experiments described in Chapter 4.1 and 4.2. The corresponding 

electrochemical parameters including corrosion potential, corrosion current density, and Tafel slopes, 

are summarized in Table 11. The corrosion potential became nobler following LPEB irradiation under 

N2 and Ar plasma gas atmospheres; the corrosion potential on the LPEB-treated surface with N2 plasma 

gas was nobler than that on the LPEB-treated surface with Ar plasma gas. Moreover, it was possible to 

achieve a positive level of corrosion potential following LPEB nitriding on Ti-6Al-7Nb using a bias of 

100 V. In addition to the corrosion potential, the changes in corrosion current densities also indicated 

an improvement in the corrosion resistance following LPEB irradiation with Ar and N2 plasma gas 

(Figure 46(b)). When compared to the bare surface (194.9 nA/cm2), much lower corrosion current 

density was obtained on LPEB-irradiated surface with Ar plasma gas, N2 plasma gas, and negative DC 
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bias of 100 V (<~50 nA/cm2) (Figure 46(b)). Thus, it can be summarized that the corrosion resistance 

of the Ti-6Al-7Nb can be increased by LPEB irradiation and the extent of corrosion protection can be 

further increased by LPEB nitriding. 

 

 

Figure 46. (a) Potentiodynamic polarization curves of LPEB-irradiated Ti-6Al-7Nb and (b) 

corresponding corrosion parameters 
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Table 11. Polarization electrochemical parameters before and after the LPEB nitriding process 

Types of 

plasma gas 

Negative DC 

bias 

Ecorr 

(mV/SCE) 

icorr 

(nA/cm2) 

βc 

(mV/dec) 

βa 

(mV/dec) 

Untreated 0 V -404.7 ± 5.58 194.9 ± 5.04 -372 ± 10.5 971 ± 20.6 

Ar 0 V -303.5 ± 5.25 49.9 ± 4.60 -602 ± 22.9 1254 ± 22.9 

N2 0 V -243.0 ± 9.45 45.4 ± 2.41 -440 ± 22.0 1450 ± 40.0 

N2 -100 V 43.2 ± 8.00 51.6 ± 5.01 -790 ± 16.0 943 ± 11.0 

 

This further modification of corrosion resistance on the LPEB-nitrided layer comparing to the bare 

and LPEB-irradiated surface is strongly related to the formation of a stable and passive re-solidified 

layer consisted of oxides and nitrides. In order to clearly specify the effect of corrosion-resistant re-

solidified layer induced by LPEB nitriding on corrosion reactions, chronoamperometry (CA) curves 

were analyzed potentiostatically at a certain anodic potential, +100 mV/SCE. Figure 47 shows the CA 

curves on Ti-6Al-7Nb samples before and after LPEB irradiations. The current densities measured from 

samples were increased dramatically in a few seconds immediately after the anodic potential applied. 

This increase of current density is mainly due to the dissolution of a passive oxide film [112]. After the 

momentary increase of current density, the curves soon decreased continuously till the oxide film to be 

fully dissolved. Finally, the current density is stabilized at a certain level, indicating continuous 

dissolution and formation of the passive film on the bare Ti-6Al-7Nb and re-solidified layer. As shown 

in Figure 47, the highest level of current density was obtained on the bare surface indicating the most 

reactive characteristic to corrosion, and it was not saturated until the 30th min of testing. The current 

densities obtained for LPEB-treated samples were significantly lower than that of the bare Ti-6Al-7Nb 

alloy surface. The Ti-6Al-7Nb alloy sample subjected to LPEB-treatment using Ar plasma gas indicate 

a current density of 40 nA/cm2 at first, and it gets saturated at ~10 nA/cm2 after 30 min. The LPEB-

nitrided samples both with and without DC bias showed the lowest current densities; it was initially 

increased up to ~30 nA/cm2, and then saturated at nearly zero after ~200 s, indicating negligible 

corrosion reactions. Thus, CA analyses confirmed that the re-solidified layer on Ti-6Al-7Nb alloy 

induced by LPEB nitriding has superior corrosion resistance. 
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Figure 47. Chronoamperometry of Ti-6Al-7Nb before and after the LPEB irradiation 

 

4.4 Summary 

The fundamental applications of the LPEB irradiations were investigated in this chapter. The surface 

properties including mechanical robustness and chemical stabilities were explored and the mechanisms 

of surface modifications were specified following the changes in microstructure, crystalline structure, 

and chemical components after the LPEB irradiations. Most importantly, three major effect of the LPEB 

irradiation were revealed; (1) rapid surface melting and re-solidification, (2), modifications in surface 

properties, (3) energy transfer through electrons. Based on the predictive model of the LPEB irradiation 

and the optimized parameters for targeted properties on the re-solidified layer extracted by specified 
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mechanisms of surface modifications, the LPEB irradiation can further enlarge its application area in 

manufacturing processes. Based on the fundamental understandings about the LPEB irradiation effects 

and principles discussed in Chapter 4, Chapter 5 will cover manufacturing processes using the LPEB 

irradiation. 

 

  



66 

 

5. Applications of LPEB irradiations on manufacturing processes 

 

5.1 LPEB manufacturing based on the melting mechanisms 

As discussed in Chapter 3, the LPEB irradiation could induce rapid melting and re-solidification of 

materials with a molten depth of several micrometers. Although it is relatively small in terms of bulk 

material-based applications such as automobile and aircraft, this could be effectively adopted for 

precision manufacturing by melting and removing abundant parts of materials (so-called burrs), which 

cannot be removed by conventional finishing methods such as mechanical polishing. 

 

5.1.1 LPEB deburring process on stainless steels 

Patterned metal masks are good candidates to study the deburring process using the melting 

mechanism of LPEB irradiation. Manufacturing processes of electrodes in microelectronic devices such 

as light emitting diodes (LED) mainly focus on deposition using patterned metal masks. The deposition 

process of electrodes is very important in defining the shape of the pixels on the LED devices. Since 

the LEDs are used mainly for displays, the shape of the pixels directly affects the display definition. To 

define a desired shape of pixels on a display, patterned metal masks are widely used during thermal or 

physical deposition and spraying. 

Electric discharge machining (EDM) [113], mechanical machining, and laser cutting processes are 

widely used to produce patterned metal masks in display industries [114-116]. The burrs generated at 

the edges and surfaces of the metal masks, especially during laser cutting, varies in their size depending 

on the type and thickness of the material and the power of the laser [117, 118]. 

The deburring process, which involves mechanical, chemical, and/or thermal processes to remove 

the burrs, has been widely studied. Previous studies have mainly focused on mechanical abrasive 

deburring methods [119], which effectively eliminate burrs larger than the tool used, but smaller burrs 

still remain after the process. Thus, the LPEB irradiation could be adopted for the deburring process of 

patterned metal masks combined with the abrasive deburring [120]. 
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Figure 48. Illustration of a patterned metal mask 

 

The AISI 304 stainless steel (SS304) was selected as the target material. Patterns on the metal masks 

were fabricated using a fiber laser, with the geometry shown in Figure 48. Abrasive deburring and LPEB 

irradiation were performed to remove the burrs induced on patterned metal masks during fiber laser 

cutting. Abrasive deburring involved a step-by-step deburring process using 320, 600, and 1200 grits 

of SiC coated abrasive papers in sequence. The rotating speed of the grinder used for mechanical 

abrasive deburring was set at 15,000 rpm with a grinding pressure of 20 N. The duration of process was 

kept at one minute for each step. The experimental set-up for the LPEB irradiation was illustrated in the 

earlier chapter (Chapter 3.4). The irradiation cycle consisted of four pulses, which formed a 2 x 2 grid, 

to achieve a uniform energy density on irradiated surfaces. To maximize the size of the removed burrs, 

the energy density of LPEB irradiations was set at 10 J/cm2, with an acceleration voltage of 30 kV, as 

this was the maximum voltage available. The number of pulses at each irradiation point was fixed at 10 

pulses. Figure 49 shows the details of each process. The standard sizes, after classifying burrs as large 

or small, as shown in Figure 49, were extracted from the experimental results. 

 



68 

 

 

Figure 49. Schematic diagrams of (a) abrasive deburring and (b) LPEB irradiation 

 

Burrs with various sizes were generated at the edges and on the surfaces after fiber-laser cutting, as 

shown in Figure 50. Points (a)–(c) in Figure 50 correspond to points (a)–(c) in Figure 48. Burr formation 

during fiber laser cutting was intensive at narrow straight surfaces and round edges. Burrs were 

generated by sparks released during melting. The average size of the generated burrs was 145.39 μm, 

with a minimum size of 19 μm and a maximum size of 313.02 μm. Burrs generated during fiber laser 

cutting on a surface can create vacant space between the samples and metal masks, requiring metal 

masks to be tightly secured to the surface of the microelectronic devices. If this happens, the electrodes 

deposited cannot form the exact desired shape and can overlap. Thus, the deburring process on the metal 

mask was adopted for a top surface. 

 

 

Figure 50. SEM images of the surface of patterned metal masks after fiber laser cutting 

 

Figure 51 shows SEM images of metal masks after the abrasive deburring process. The abrasive 

deburring could effectively remove burrs, and was especially effective on top surfaces; but some small 

burrs (<50 μm) and burrs around the edges remained after abrasive deburring. The average size of the 

burrs that remains after abrasive deburring was 38.01 μm, a reduction by 74% when compared to the 



69 

 

average size of the burrs remains after fiber laser cutting (minimum: 11.23 μm; maximum: 52.60 μm). 

Because abrasive deburring uses SiC particles to induce abrasive wear, burrs smaller than SiC particles 

could not be removed. Moreover, the burrs generated on the side faces could not be removed because 

the metal mask was too thin and small to apply abrasive deburring on the side faces. Although abrasive 

deburring is one of the most widely used deburring methods for metal masks, fracture defects are 

commonly observed. Thin metal sheets can be easily damaged by abrasive wear, as shown in Figure 

51(b). 

 

 

Figure 51. SEM images of the surface of patterned metal masks after abrasive deburring 

 

The use of LPEB irradiations to deburr metal masks produced markedly different results from those 

of the abrasive deburring process. Figure 52 shows SEM images of the surface of patterned metal masks 

after LPEB irradiation. As shown in Figure 52, much larger burrs (larger than 100 μm) remained after 

LPEB irradiations when compared to abrasive deburring. However, burrs smaller than 100 μm at the 

edges were effectively removed after deburring using LPEB irradiation. This means that LPEB 

irradiation can melt the connecting points of small burrs and detach them from a metal mask during 

repeated irradiation cycles. Figure 49(b) presents the deburring mechanism using LPEB irradiation in 

detail. The average size of the remaining burrs was 222.92 μm, the maximum size was 283.04 μm, and 

the minimum size was 99.08 μm. Burrs smaller than 100 μm were effectively eliminated by LPEB 

irradiation. The surface texture of metal masks after LPEB irradiation was considerably different from 

those obtained after abrasive deburring, as shown in Figure 51 and Figure 52. The surface roughness of 

LPEB-treated metal masks was 332 ± 93.7 nm, which is relatively less than that of an abrasively 

deburred surface. 
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Figure 52. SEM images of the surface of patterned metal masks after the LPEB deburring 

 

As the experimental results of LPEB irradiation revealed, only burrs smaller than 100 μm could be 

eliminated by LPEB irradiation. Furthermore, it is obvious that bubble-like burrs formed on the surface 

after LPEB irradiation, as shown in Figure 52. Some bubble-like burrs that are formed during the LPEB 

irradiation exhibit an increase in size. This could be attributed to the partial melting of large burrs. LPEB 

irradiation melts burrs, but the energy transferred during LPEB irradiation may not be enough to melt 

the splice of large burrs (>100 μm in size). Meanwhile, partially melted burrs tend to aggregate by 

attraction due to the higher surface tension of liquid metals. Thus, prediction of LPEB irradiation was 

performed to verify the melting thickness induced by the LPEB. 

 

 

Figure 53. Variation in predicted molten depth as a function of acceleration voltage and corresponding 

experimental results 

 

Figure 53 shows the variation in melting depths as a function of acceleration voltages. In the 

prediction of melting, the energy density of LPEB was varied with the change of acceleration voltage 
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from 1 J/cm2 at 15 kV to 10 J/cm2 at 30 kV. For low acceleration voltages, less than 15 kV, the numerical 

model predicted that AISI 304 stainless steel would not melt by LPEB irradiation. Metal masks would 

start to melt at an accelerating voltage of 20 kV, and the melting depth would continuously increase 

from 2.3 to 5.0 μm with an increase in acceleration voltage. From the predicted melting depth induced 

during treatment, it can be concluded that LPEB irradiation is effective in eliminating burrs with a splice 

thickness thinner than 5 μm. Moreover, the experimental observations of the deburring effects of LPEB 

irradiation estimated that burrs smaller than 100 μm have a splice thickness thinner than 5 μm, because 

they were almost perfectly removed by LPEB irradiation at an acceleration voltage of  30 kV. Figure 

54 shows the SEM image of a generated burr after fiber laser cutting with the size of  ~110 μm. The 

splice thickness of this burr is about 5.13 μm. LPEB irradiation is expected to smooth the surface free 

of scratches that are less deep than the melting depth. Thus, it is essential to leave only scratches smaller 

than 5 μm before LPEB irradiation to ensure an effective removal of every scratch from the metal masks. 

 

 

Figure 54. SEM images of a generated burr after fiber laser cutting viewed from (a) above and (b) side 

 

The experimental results and predictions using the numerical model revealed that deburring using 

either abrasive deburring or LPEB irradiation is insufficient to perfectly eliminate burrs generated by 

fiber laser cutting. Therefore, a LPEB-assisted hybrid deburring process was developed to remove burrs 

regardless of their size or location. This hybrid deburring process involves a step-by-step removal by  

abrasive deburring and LPEB irradiation. LPEB irradiation was performed on abrasively deburred metal 

masks as shown in Figure 55. The frequency of the rotating unit used in LPEB-assisted hybrid deburring 

was 3000 rpm and the grinding pressure was 10 N, to avoid generation of any potential fracture defects 

on the thin metal masks. 
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Figure 55. Schematic diagram of the LPEB-assisted hybrid deburring process 

 

Figure 56 shows the SEM images of the surface of a metal mask after the LPEB-assisted hybrid 

deburring process. The hybrid deburring process could successfully eliminate the burrs regardless of 

their size: only burrs smaller than several micrometers are remained. Also, fracture defects were not 

observed on the metal masks after the process due to the relatively slow rotating speed. This result 

comes from combining the advantages of abrasive deburring and LPEB irradiation. During the first step, 

burrs larger than 100 μm and those generated on the surface were mostly removed by mechanical 

abrasive deburring. Subsequently, during the second step, burrs smaller than 100 μm and burrs 

generated at the edges and side faces of the pattern were effectively removed by LPEB irradiation splice 

melting. Consequently, the remaining burrs were the smallest after the hybrid deburring process when 

compared with other methods. 

 

 

Figure 56. SEM images of the surface of patterned metal masks after the LPEB-assisted hybrid 

deburring 
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Figure 57. Scatter of the burr size generated and remaining after the fiber laser cutting and deburring 

processes 

 

Figure 57 shows the distributions of the burr sizes that remains after fiber laser cutting and the 

deburring processes. The abrasive deburring and LPEB irradiation were completely opposite in terms 

of their ranges of distribution in the eliminating burr size. The distribution ranges of burr size were 

significantly decreased by the hybrid deburring process. This means that uniform surface texture and 

edges, with high levels of accuracy, can be achieved using the hybrid deburring process. 

 

5.1.2 LPEB deburring process on CFRP composites 

The deburring process based on the melting mechanisms of LPEB irradiations is not only limited to 

metallic alloys, but also possible to be applied for non-metallic materials. CFRP composites are a good 

candidate of application because they are mainly composed of two completely different materials: 

epoxy resin and carbon fibers. Due to the unique energy transfer mechanism of LPEB irradiation 

through accelerated electrons which enables effective energy transfer regardless of material types, it is 

believed that the LPEB deburring would be one of the most effective methods to finish CFRP 

composites. Although many researchers have reported that CFRPs typically have better mechanical 

properties than conventional metallic alloys, their industrial applications are rather limited because of 

the difficulty in machining them [121]. Drilling is the most widely used machining process in CFRPs. 

The CFRP based products are generally assembled from parts with simple structures [122]. Several 

problems arise when machining CFRPs, the most difficult among them being delamination and burr 

generation. It is not possible to completely avoid delamination and burr generation at the exit side of 
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the holes by controlling the machining parameters and tool geometries [123]. Thus, the optimal drilling 

process must be followed by adopting post processing steps to remove burrs and prevent delamination 

of the drilled CFRP holes. Despite the availability of various deburring processes for CFRP composites, 

their critical limitations prevented them from being directly applied to CFRPs. For example, solution-

based processes can induce delamination if the solution penetrates between the resin and carbon fibers, 

and the large difference in laser absorptivity between resin materials and carbon fibers makes laser 

deburring difficult [124]. The most recent and promising attempt made to overcome those limitations 

is a dry-EDM method [125]. However, there is still no single deburring process that can guarantee the 

required hole quality and burr elimination with no side effects [126]. In this context, the LPEB deburring 

was applied on drilled holes in CFRPs. 

Unidirectional CFRP composites were supplied by the Korea Institute of Carbon Convergence 

Technology. The CFRP composites with 3 mm thickness were fabricated by stacking 11 plies of prepreg. 

In the CFRP composite, the fiber volume fraction was set as 67 %. The remaining fraction of the 

composite was filled with epoxy resin (33%). A water-jet machining was used to cut the CFRP 

composites into pieces with dimensions of 20 mm x 20 mm x 3 mm. For the LPEB irradiations, the 

same experimental set-up described in Chapter 4 were utilized. 

The CFRP composites consisted of two different materials, and they may be affected differently by 

the LPEB irradiation. However, it is necessary to avoid evaporation of the polymer resin at the surface 

of the composite and prevent damage of the carbon fibers. The carbon fibers can be damaged because 

the energy of the LPEB is much higher than the bonding energy of the carbon fibers and epoxy resin. 

Hence, an aluminum metal mask with the same dimension for that of the CFRP composite was cut using 

fiber laser. A hole with the same diameter as that of the drilled holes, namely 9 mm, was made on the 

aluminum metal mask. As shown in Figure 58, the aluminum metal mask was clamped to the drilled 

CFRP composite with a clip prior to LPEB irradiation. This prevented evaporation of the polymer and 

potential damage of the carbon fibers during irradiation, so that only the uncut fibers, or burrs, were 

removed. 
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Figure 58. Schematic diagram of the experimental setups for the large pulsed electron beam 

irradiations 

 

The CFRP composite has a specific orientation, so the fibers in its stacks are unidirectionally aligned. 

It is not possible to remove the fibers that are oriented in the direction of the drill rotation using the drill 

bit [127]. Although fibers at the entrances of holes can be removed by the rest of the drill bit after the 

drill has penetrated into the hole, the burrs at the exits of the holes will remain. This is why burr 

formation mainly occurs on the exit side of drilled holes. In addition, when the composite layers are 

separated and the bending stress exceeds the bending strength limit, uncut fibers can cause the layers to 

fracture, leading to delamination at the exit side of the holes. Figure 59 shows that the drilling process 

created a significant number of burrs. These burrs were distributed symmetrically because the CFRP 

used in these experiments was unidirectional. Furthermore, the burrs had a relatively high aspect ratio, 
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with an average length of 5.09 mm and width of 0.4 mm. 

 

 

Figure 59. Optical images of the generated burrs after the drilling process on CFRP composites 

 

It is well known that electron beams can easily break carbon-carbon bonds [128]. However, the 

energy density of LPEBs is much higher than that of the electron beams used in polymer crosslinking 

[129]. This means that repeated irradiations can break, destroy, and detach carbon-carbon bonds. As the 

burrs on CFRPs are mainly composed of carbon fibers, they should be removed effectively by LPEB 

irradiation. In addition to the parameters investigated in previous chapters including Va and the number 

of pulses, Vs should also be considered that the Lorenz force induced by Vs can differ the helical pathway 

of accelerated electrons. 
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Figure 60. Variations of the burr sizes before and after the LPEB irradiations in terms of (a) 

acceleration voltage, (b) the number of pulses, and (c) solenoid voltage 
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Figure 60 shows the variations in burr size before and after LPEB irradiation as a function of 

acceleration voltage. The solenoid voltage was held constant at 1.0 kV and 10 irradiation pulses were 

used. The average size of the burrs that remains after deburring is slightly decreased with an increase 

in Va. The decrease in the average size of the remaining burrs may be due to the fact that the energy 

density of the LPEB is increased with Va. Figure 60(b) shows the variation in burr size according to the 

number of pulses, with Va and Vs fixed at 30 kV and 1.0 kV, respectively. Increasing the number of 

pulses has caused a greater reduction in the average size of the remaining burrs than increasing Va. The 

average burr size was reduced from 5.09 mm to 1.93 mm after 20 pulses. After 30 irradiation pulses it 

is reduced even further, to 0.61 mm. The largest decrease in average burr size, amounting to 88 %, has 

occurred after 30 irradiation pulses. Only submicro-sized burrs remained after more than 30 pulses of 

LPEB irradiation when the acceleration voltage was greater than 30 kV. Moreover, the quality of the 

drilled holes was also improved significantly, as indicated by the decrease in the error bars on Figure 

60(b). Finally, Figure 60(c) shows the effect of varying Vs on the average size of the burrs remaining 

after LPEB irradiation. As previous investigations revealed that the performance of the deburring 

process improved when Va was larger and more pulses were used, we set Va to 30 kV and used 30 

irradiation pulses while varying Vs. As we used the optimal values of the other parameters when 

increasing Vs, the results of these experiments were different to those of previous experiments. For each 

value of Vs, the remaining burrs were extremely small. Although the remaining burrs were already on 

the submicron level when Vs was 1.0 kV, their size reduced further as Vs increased, as shown in Figure 

60(c). The smallest remaining burrs were observed when Vs was 1.5 keV. The LPEB deburring process 

caused a 97 % reduction in the size of the burrs, from 5.09 mm to 0.17 mm. In other words, the LPEB 

irradiation almost completely removed the uncut fibers generated by the drilling. 

 

 

Figure 61. Schematic diagram and mechanisms of the deburring process for drilled CFRP composites 

using the large pulsed electron beam irradiations 
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Figure 60 shows an important feature of CFRP hole deburring with LPEB irradiation. The error bars 

indicate the distribution of the size of the remaining burrs, which varied significantly with respect to 

the irradiating parameters. The range of variation in burr size increased slightly when Va is increased 

from 20 to 30 kV. This unexpected increase in the size variation may adversely affect the quality of the 

deburred holes. We observed a wide range of burr sizes, from 0.5 to 3.5 mm, when the holes were 

irradiated with up to 20 pulses, as shown in Figure 60 (b). However, the size range is decreased suddenly 

when the number of pulses is increased to 30. Figure 60(c) shows the sizes of the burrs obtained after 

deburring with 30 irradiation pulses as a function of Vs. The variation in burr sizes is extremely small 

in each case. This indicates a uniform deburring performance over all the edges of the drilled holes. 

This could be caused by a special interaction between the accelerated electrons and the CFRP 

composites. CFRP composites are composed of epoxy resin and carbon fiber. As the epoxy resin acts 

as an adhesive and it generally surrounds the carbon fibers. Therefore, the accelerated electrons irradiate 

the resin first. The LPEB irradiation induces a large thermal gradient and extremely high temperatures. 

Hence, if the energy density is sufficient, then the resin could become molten or evaporate within the 

duration of the short pulse. This means that the accelerated electrons can reach the carbon fibers and 

break the carbon-carbon bonds, thus detaching the uncut fibers from the substrate. These mechanisms 

for deburring CFRP composites using LPEB irradiation are described in detail in Figure 61. 

 



80 

 

 

Figure 62. Optical images of the generated and remaining burrs on CFRP composites after the LPEB 

irradiations in terms of Va, Vs, and the number of pulses (N) 

 

However, for all values of Va and Vs, more than 20 pulses were required to evaporate the surrounding 

resin and detach the uncut carbon fibers. The optical microscopic images clearly show the partial 

evaporation of the resin and the breaking of the carbon fibers. Figure 62 shows optical images of burrs 

before and after LPEB irradiation. Instead of the solid and brittle burrs observed on the as-drilled holes, 

the LPEB-irradiated burrs are thin, flexible, and skein-like following less than 20 pulses of irradiation, 

regardless of the other parameters. This may indicate that the resin evaporated partially, so the carbon 

fibers were not broken. In this case either the energy density or number of irradiation pulses was too 

low for the resin to evaporate, so the LPEB irradiation did not remove the uncut fibers completely. 

Although the sizes of the remaining burrs decreased after less than 20 pulses of irradiation, generation 

of the tiny skein-like carbon fibers negatively impacted the quality of the drilled holes. These skein-like 

burrs may have been caused by partially damaged carbon fibers. However, increasing the number of 

irradiation pulses to more than 30 removed almost all of the burrs. Figure 62 shows that the number of 

skein-like carbon fibers decreased as Va and the number of pulses increased up to 30, beyond which 

they were eliminated completely. Hence, repeated irradiation pulses can be used to remove these skein-

like carbon fibers. This result is in good agreement with the distribution of the remaining burr sizes, 

which, as shown in Figure 60(b), reduced significantly as the number of pulses increased beyond 30. 
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Figure 63. Representative 3D scanned geometrical features and diameter deviations of the drilled 

CFRP holes before and after the LPEB irradiations 

 

The quality of holes drilled into CFRP composites can be negatively affected by burrs on their edges 

and surfaces. In particular, CFRP composites intended for use in vehicle bodies or aircrafts should not 

contain even very small burrs, as the uncut fibers can cause cracks and delamination of the stacks. These 

can be accompanied by fractures. Figure 63 shows a representative example of the results from the 3D 

geometrical scanning study, both before and after LPEB irradiation. The blue- and red-colored lines at 

the edge indicate where the diameter of the hole deviates from an ideal circle with a diameter of 9-mm. 

Figure 63 shows that the deviations among LPEB-treated holes were relatively small. It is also clear 

that the skein-like burrs, indicated by red arrows on Figure 63, caused larger diameter deviations. We 

observed a significant reduction in the average diameter deviations of the holes after LPEB irradiation. 

Moreover, Figure 63 (c) and (d) show that LPEB irradiation with high Vs rendered the surfaces of the 

holes markedly smoother. This could be due to the electrons following a spiral path with a small radius, 

which will penetrate material deeper than electrons on a spiral with a larger radius. LPEB irradiation 

with the optimal parameters resulted in drilled holes that were almost completely circular in shape and 

the removal of almost all of the burrs and skein-like carbon fibers. 

Figure 64 shows the diameter deviations after LPEB irradiation with respect to Va, Vs, and the number 

of pulses. The relationships between the diameter deviations and LPEB parameters were similar to those 

between the sizes of the remaining burrs and the LPEB parameters. The significant reduction of 

diameter deviations was observed especially with increasing pulses. The surface smoothing effect of 

the LPEB irradiation caused further reductions in the diameter deviation as Vs increased. It was obtained 

that these improvements in the accuracy of the hole shapes by varying the parameters in the same way 

as when the sizes of the remaining burrs were reduced. Specifically, holes with smaller remaining burrs 
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and more accurate hole shapes were achieved by increasing Va, Vs and the number of pulses. It is 

important to note that the improvements seem to be most sensitive to the number of pulses. In the case 

of drilled holes in CFRP composites, the deburring performance should be assessed in terms of the 

geometrical accuracy of the holes. The remaining uncut fibers may degrade the quality of the holes by 

distorting their shape. The proposed LPEB deburring process improves the geometrical accuracy of 

drilled holes on CFRP composites. 
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Figure 64. The diameter deviations of the drilled CFRP holes comparing to the ideal circle before and 

after the LPEB irradiations in terms of (a) acceleration voltage, (b) the number of pulses, and (c) 

solenoid voltage 
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5.2 LPEB manufacturing based on surface modification mechanisms 

In Chapter 4, several effects of the LPEB irradiation were specified through in depth investigations 

on the re-solidified layer induced by rapid melting and re-solidification processes. The LPEB irradiation 

was turned out to have simultaneous modification effects on mechanical properties and surface 

stabilities. Furthermore, as illustrated in Chapter 5.1, the electron showering principle of LPEB 

irradiation with spiral pathway of accelerated electrons induced by solenoid voltages facilitate it to be 

simply adopted on complex surface patterns without any special experimental set-ups. These prevailing 

advantages of LPEB irradiation could be maximized when it is adopted in the field that require robust 

surface characteristics and superior chemical stabilities on complicated surface patterns which cannot 

be covered with conventional surface modification methods. 

 

5.2.1 Superhydrophobic transformation of metallic patterns 

Hydrophobic surfaces characteristic of certain metallic alloys has been intensively studied because 

of potential applications such as self-cleaning surfaces, for reduced liquid drag in pipes and 

microchannels, as the outer surface of vehicles, and for corrosion protection [130]. The fabrication of 

superhydrophobic surfaces has significantly advanced through the use of techniques including layer-

by-layer deposition [131], electrochemical treatment [132], photolithography [133], 

micro/nanofabrication processes [134, 135]. The layer-by-layer deposition of hydrophobic materials on 

metallic alloys is one way to produce superhydrophobic surfaces. However, the bonding force between 

the hydrophobic film and metals is rather weak because polymers are used as the deposited materials. 

Micro/nano-pillars have been fabricated on a surface by laser ablation [134], wire-electric discharge 

machining (WEDM) [136], chemical etching [137] and micromachining [138]. Metals generally require 

post-processing, such as etching, to render their surfaces hydrophobic. Most of the post-processing 

techniques have used nonmetals to lower the surface energy, but delamination of the surface layer can 

lead to metal aging. However, lowering the surface energy of patterned metals directly has not been 

adequately investigated. 

To solve certain limitations of the previous methods to fabricate durable hydrophobic surfaces, the 

LPEB irradiation was applied on the micropatterns of stainless steel as it can simultaneously improve 

mechanical properties and hydrophobicity on the metallic alloys [139]. Micropatterns were fabricated 

with various groove depths (d) on standard AISI 304 stainless steel using WEDM (SL400G, Sodick 

Inc.,Tokyo, Japan) (Figure 65). The width (w) and pitch (p) of the patterns were fixed to specifically 

investigate the effect of d on superhydrophobic transformation. Patterns having various depths (50, 100, 

150, 200 and 250 μm) were fabricated on SS304. Three independent samples were fabricated for each 

depth. Water was used as the working fluid for the WEDM fabrication process. The general 

experimental set-ups for the LPEB were also used for the irradiations. 
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Figure 65. Schematic diagram of wire electric-discharge machining (WEDM) and variables 

corresponding to pattern structures 

 

A perfectly square patterned area could not be fabricated because of the circular spark gap around 

the brass wire and the SS304 substrate. Figure 66 shows cross-sectional OM images of the WEDM-

fabricated patterns before and after LPEB irradiation. Figure 67 indicates the measured d and width of 

land in terms of the d set in the tool path. The exact depths of the patterns following WEDM fabrication 

were relatively well matched to the d set in the tool path (within 10%). However, that was not the case 

for the land widths, which varied from 200 to 50 μm as d increased from 50 to 250 μm. This may have 

resulted from the increasing size of the areas affected by the spark gap as the penetration depth of the 

wire increased during discharge. Furthermore, the pattern depths were slightly less after LPEB 

irradiation of the WEDM-fabricated surfaces. LPEB irradiation is a process that induces rapid melting 

and/or evaporation of the top surface layer, followed by re-solidification. During repeated melting and 

re-solidification of the alloy, the pitches of the grooves could have melted and slightly evaporated, 

thereby reducing the pattern depth. Molten metal could flow down along the groove and re-solidify. 

This could account for the land widths after LPEB irradiation of the WEDM-fabricated patterns being 

slightly higher. 
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Figure 66. Cross-sectional optical microscopy images of WEDM-fabricated patterns before and after 

large pulsed electron beam (LPEB) irradiation 

 

 

Figure 67. Measured (a) groove depth, d and (b) land width of WEDM-fabricated patterns before and 

after LPEB irradiation as a function of tool path groove depth 
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Surface roughness is one of the most important factors for controlling wetting characteristics [140]. 

Therefore, typically several skim cuts were made to reduce the surface roughness during WEDM 

fabrication. Bae et al. [136] needed at least four skim cuts to produce a roughness less than about 0.5 

μm. However, in this experiment, only one skim cut was performed because the LPEB irradiation 

reduced the surface roughness. Figure 68 shows SEM images of the WEDM-fabricated patterns before 

and after LPEB irradiation. Figure 68(a) shows the surface morphology of the WEDM-fabricated 

patterns after only one skim cut; the surface was rough with many overthrust-like faults induced by 

irregular discharge along the 20-mm long wire. LPEB irradiation provided much smoother and cleaner 

surfaces. The surface roughness greatly decreased following the LPEB irradiation, e.g., from 4.23 ± 1.2 

μm to 0.54 ± 0.2 μm, indicating a much smoother and more uniform surface texture of the treated 

patterns. 

 

 

Figure 68. SEM images of WEDM-fabricated patterns (a) before and (b) after LPEB irradiation 

 

Figure 69 shows the variation in the static contact angles (CAs) of the WEDM-fabricated patterns as 

a function of d before and after LPEB irradiation. The CA was measured using the sessile drop method 

and a drop shape analyzer (DSA100; KRÜSS Optronic GmbH, Hamburg, Germany) on three different 

spots for each sample at room temperature. The drop volume was fixed at 5 μl that the droplet was 
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placed over the least number of groove(s) when it formed Cassie-state using the volume of 5 μl. The 

measurements were performed in a dark room for the best DSA performance. 

 

 

Figure 69. Contact angles of WEDM-fabricated patterns as a function of groove depth before and after 

LPEB irradiation 

 

 

Figure 70. Variation of droplet shape as a function of groove depth before and after LPEB irradiation 

 

The static CAs tended to increase with increasing d. Most of the CAs was higher than those measured 

for bare and LPEB-treated unpatterned SS304 surfaces. The CA increased from 88.7° (d: 50 μm) to 140° 

(d: 250 μm) for the untreated WEDM-fabricated patterns. Up to a d of 200 μm, water droplet testing 

indicated a Wenzel-state CA, with hemi-wicking behavior (Figure 70). A Cassie-state CA, which is also 

one of the most necessary characteristics to make surface hydrophobic, was observed only for those 

patterns with a d of 250 μm. It was possible to achieve a Cassie-state CA at a d of 200 μm for the LPEB-
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irradiated patterns following WEDM fabrication. This d was smaller than that observed for the untreated 

WEDM-fabricated patterns (Figure 69). The static CA of the LPEB-irradiated patterns increased to over 

160° at higher d than 200 μm. The CA measurements of the WEDM-fabricated patterns before and after 

LPEB irradiation were in good agreement with theoretical descriptions of wetting transition criteria 

using surface energy models that included the effect of groove shape, droplet radius and surface 

roughness factor. Reyssat et al. [141] assumed that grooved surfaces would be wet when the droplet in 

the groove contacted the bottom surface of the substrate. Based on this assumption, the following 

expression was derived: 

 

2 /w R =                 (31) 

 

where δ denotes the penetration depth of a droplet in the groove, w denotes the width of groove, and 

R is the radius of the droplet. For Wenzel-state wetting, penetration of a water droplet into a groove 

occurs when δ > d. Thus, the wetting condition that penetration of a water droplet occurs could be 

expressed as 

 

2 /R w d=                 (32) 

 

where d denotes the depth of groove. Eq. (32) indicates that a higher d would reduce the penetration 

of water into the grooves and maintain a Cassie-state CA on the patterns. 

Although Eq. (31) and (32) describe the effect of d on the wetting properties of the patterns, the 

effect of LPEB irradiation on the hydrophobicity of the patterns remained unclear. Surface roughness 

was the greatest visualized difference between patterns before and after LPEB irradiation; thus, a simple 

modeling of the surface energy considering the roughness factor was adopted. Bae et al. [136] and 

Quéré [142] described surface energy models that considered the roughness factor, i.e. 

 

( (2 )cos )LAdE w r d w dx = − +              (33) 

 

where dE is the change of surface energy, γLA is the surface energy of the liquid/air interface, and r 

is the roughness factor. The roughness factor is a ratio of the real surface area to the geometric surface 

area; it could be affected by the pattern structures and the surface roughness of patterns [143]. All 

systems seek the lowest energy level at system boundaries. Thus, the critical transition criterion for the 

Wenzel-to-Cassie state transition can be expressed as [136] 
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where θc denotes the critical angle of the Wenzel-to-Cassie transition; a water droplet can maintain 

a Cassie-state CA above the critical angle. From Eq. (34), a lower roughness factor leads to a lower 

critical angle for the Wenzel-to-Cassie transition in a hydrophilic region (θ < 90°). Most engineering 

stainless steels are barely hydrophilic; thus, it is reasonable to evaluate the effect of surface roughness 

on the wetting transition using Eq. (34). 

 

Table 12. Roughness factors, radius of droplets, and w2/d of WEDM-fabricated patterns before and after 

the LPEB irradiation 

Depth of 

grooves 

(μm) 

WEDM WEDM+LPEB 

Roughness 

factor (r) 

Droplet 

radius (μm) 
w2/d 

Roughness 

factor (r) 

Droplet 

radius (μm) 
w2/d 

50 4.13 1344 ± 320 5000 1.51 1210 ± 270 5000 

100 4.72 974 ± 110 2500 1.73 1090 ± 96 2500 

150 5.31 1096 ± 43 1667 1.95 1006 ± 22 1667 

200 5.9 1199 ± 31 1250 2.17 1233 ± 25 1250 

250 6.49 1236 ± 29 1000 2.38 1333 ± 14 1000 

 

 

Figure 71. Quantitative comparisons between theoretical descriptions and experimental contact angles 

for Wenzel-to-Cassie transition 
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Our measurement of static CAs supported these predictions. Table 12 shows roughness factors, 

radius of droplets, and w2/d values corresponding to Eq. (32) and (34). Figure 71 shows quantitative 

comparisons between theoretically estimated wetting conditions and critical angles of Wenzel-to-Cassie 

transition in terms of d and roughness factors [142]. The roughness factors on WEDM-fabricated 

patterns before and after LPEB irradiation were measured and calculated from white-interference 

micrographs. As the patterns with d between 50 and 150 μm (blue shaded in Figure 71) attained much 

larger value of w2/d than R, Wenzel-state CAs were achieved on those patterns before and after LPEB 

irradiation (Figure 70). For pattern with groove depth of 250 μm (red shaded in Figure 71), in contrast, 

w2/d value was smaller than R indicating Cassie-state and it was well matched to experimental results 

(Figure 70). Although the structural effect of the patterns affecting the states of droplets could be clearly 

explained by Eq. (31) and (32), the obscure region indicated by w2/d�� R (green shaded in Figure 71) 

was needed to be described further considering roughness variation (Eq. (34)). The effect of reduced 

roughness factor on the state of CA was clearly shown at the w2/d�� R region. The only LPEB-irradiated 

pattern showed Cassie-state when w2/d�� R. This could be resulted from the decrease of Wenzel-to-

Cassie transition critical angle after LPEB irradiation as illustrated in Figure 71; the critical angle on 

WEDM-fabricated surface which was higher than CA of the bare surface was significantly reduced to 

lower than CA of the bare surface. Thus, it is reasonable to conclude that reduced roughness factor 

following LPEB irradiation contributed to achieve Cassie-state at lower d on LPEB-irradiated patterns. 

Figure 72 shows the direct comparison of droplet shape for the untreated and LPEB-irradiated WEDM-

fabricated patterns. Although both samples were fabricated with the same groove depth (200 μm), water 

penetration was observed only for the non-irradiated WEDM-fabricated patterns. This was attributed to 

the lower surface roughness factor and smaller θc caused by the LPEB irradiation. 

 

 

Figure 72. Comparison of liquid spread along the grooves of a WEDM-fabricated surface before and 

after LPEB irradiation (d = 200 μm) 
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Structural wettability can modify the shape of patterns on SS304, as noted above. Changes in 

chemical wettability can also affect the Wenzel-to-Cassie CA transition. The chemical wettability of a 

material is directly related to the surface functional groups. Functional groups affect wetting 

characteristics because they are hydrophilic or hydrophobic, depending on their polarities. Figure 73 

shows the attenuated total reflection infrared (ATR-IR) spectra of WEDM-fabricated patterns before 

and after LPEB irradiation and changes of spectra before and after 2 h wetting. Major absorption bands 

detected on the as-prepared WEDM-fabricated patterns (Figure 73(a)) was attributed to C-O functional 

group, which is considered as hydrophilic group. After 2 h wetting with distilled water, major absorption 

bands were significantly changed to C=O, C-O, C-H and N-H and O-H functional groups, respectively. 

Those groups have bent and polarized structures. These are also considered as hydrophilic groups [144]. 

In contrast, those hydrophilic functional groups were either absent or significantly reduced by the LPEB 

irradiation (Figure 73(c)). Only small amount of the C=O peak was observed after 2 h wetting (Figure 

73(d)). These variations of surface contaminations are highly related to the stability of hydrophobicity 

[145, 146], and were well matched to the transient CAs measured during 2 h. 

 

 

Figure 73. Attenuated total reflection infrared (ATR-IR) spectra of WEDM-fabricated patterns (a) 

before and (b) after LPEB irradiation 
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Figure 74 shows the variation of CAs on WEDM-fabricated pattern (d = 250 μm) before and after 

LPEB irradiation in terms of time. The WEDM-fabricated pattern which initially had Cassie-state 

showed Wenzel-state transition after ~10 min contact with droplet, and the transient CA ratio to initial 

CA decreased continuously to 0.3 after 2 h. However, LPEB-irradiated pattern maintained Cassie-state 

during 2 h of CA measurement; transient CA ratio to initial CA was only reduced to 0.85 after 2 h. It is 

likely that large amount C and O was emerged after WEDM process due to sparks as summarized in 

Table 13. However, C-, O- and N- bonds were broken by the large kinetic energy of LPEB electrons. 

Thus it is easier for hydrophilic functional groups to be formed on WEDM-fabricated pattern comparing 

to LPEB-irradiated pattern. The reduction in C and O after LPEB irradiation on WEDM-fabricated 

pattern could lead outstanding stability of hydrophobicity preventing hydrophilic contaminations on the 

surface. 

 

Figure 74. (a) Transient CA ratios to initial CA on WEDM-fabricated patterns before and after LPEB 

irradiation and (b) optical microscopy images of droplets during two hours of CA measurements (d = 

250 μm) 
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Table 13. EDX chemical compositions of bare and WEDM-fabricated patterns before and after the 

LPEB irradiation 

Element 

Atomic % 

Bare WEDM WEDM + LPEB 

C 13.56 25.64 12.16 

O 5.31 19.16 6.86 

Cr 16.03 10.33 15.62 

Ni 8.29 11.31 8.5 

Fe 56.81 33.56 56.86 

 

To conclude, a durable hydrophobic surface was fabricated on SS304 using WEDM and LPEB 

irradiation; the measured CA was 166.7°. The hydrophobicity with Cassie-state CA was obtained at a 

shallower groove depth after LPEB irradiation. This water-repellent characteristic was attributed to the 

smoother surface caused by the LPEB irradiation. Moreover, hydrophilic functional groups on the 

surface were mostly eliminated by LPEB irradiation, which further increased the hydrophobicity of the 

pattered surfaces. The hydrophobicity on the LPEB-irradiated surface was maintained during long-term 

contact with droplets. The electrochemical stability of the surface was also greatly improved by LPEB 

irradiation. 

 

5.3 LPEB manufacturing based on charge transfer mechanisms 

In Chapter 4, the LPEB irradiation was applied on bulk materials and the macroscale application of 

the process was examined specifying modification principles of surface properties. In Chapter 5.1 and 

5.2, microscale applications of the LPEB irradiation on eliminating micro-sized burrs of metallic alloys 

and CFRP composites were investigated based on the melting mechanisms induced by the irradiations. 

Furthermore, the special energy transfer mechanism of the LPEB through accelerated electrons, 

nanoscale applications of LPEB irradiations on manufacturing processes could be studied based on the 

charge transfer mechanisms of the electron beam irradiation. 

 

5.3.1 Design of experiments and materials 

A welding process of metal nanowires (NWs) is one of the most promising manufacturing process 

which can be further modified by replacing previous method with LPEB irradiations. Most recently, 

noble metal NWs such as Cu and Ag percolation networks have been widely used as transparent and 

flexible conductors. Randomly distributed percolating networks of NWs are relatively easy to produce, 

as they use a simple, reproducible solution process including spin- or spray-coating. Despite high 

transmittance and low sheet resistance (Rs), spin-coated NWs are weak under bending or stretching 

forces, as the junctions have poor mechanical resilience with weak attractive forces between each NW, 

resulting in an extremely large contact resistance. Hence, they can be easily broken under shear stress 



95 

 

and strain. Many studies have suggested flexible electronic devices using NWs, however these devices 

showed performance degradation under cyclic deformation through fractures in NWs and junctions 

[147, 148]. In this context, post processing techniques have been adopted for NW percolating networks, 

to enhance mechanical properties by inducing welded junctions. The most widely used methods are 

thermal-annealing. However, the uniformity of welded NW percolation networks cannot be guaranteed 

because the thermal annealing transfers the same amount of heat to a randomly distributed NWs having 

different density of junctions. 

Thus, the LPEB irradiation was attempted for fabrication of flexible and transparent conductor with 

welded AgNW percolation networks [149]. In this approach, AgNW networks above the percolation 

threshold were welded using LPEB irradiations to enhance mechanical flexibility without significant 

reduction in transmittance and increase in Rs during bending cycles. The LPEB-welded AgNW 

electrodes were compared to pristine and thermally annealed AgNW electrodes in terms of the change 

in Rs over a number of bending cycles. Furthermore, polymer based light-emitting diodes (PLEDs) and 

resistive touch-panels fabricated using the LPEB-welded electrodes are demonstrated to confirm the 

mechanical durability and the potential applicability of the resultant transparent flexible electrode in 

practical optoelectronic applications. 

The AgNW percolation networks were first constructed by spin-coating above the percolation 

threshold. A 0.5 wt. % isopropyl alcohol (IPA)-based suspension of AgNWs (Nanopyxis) with a length 

25 ± 5 μm and diameter 36 ± 5 nm was prepared. The AgNW networks were obtained on a thin 

polyethylene terephthalate (PET) film (thickness: 0.1 mm) with dimensions of 15 mm x 15 mm (Figure 

75). The spin rate and time were fixed at 1500 rpm and 90 s respectively, as these are optimized 

conditions in terms of uniformity, transmittance, and electrical conductivity. On the spin-coated AgNW 

percolation networks, thermal-annealing and LPEB irradiation were adopted. Thermal-annealing was 

performed under ambient conditions at 130 °C for 10 min. LPEB irradiation was conducted for a single 

pulse at an acceleration voltage of 5 kV. 

 



96 

 

 

Figure 75. Photograph of spin-coated flexible AgNW electrode fabricated on a polyethylene 

terephthalate (PET) film 

 

5.3.2 Nanostructures of welded AgNWs 

The pristine AgNWs showed relatively low electrical conductivity, likely resulting from high contact 

resistance and weak junctions in NW−NW bonding. Figure 76 shows a schematic diagram of AgNW 

welding processes using thermal-annealing and LPEB irradiation. Thermal-annealing heats the entire 

AgNW network simultaneously whereas LPEB irradiation uses accelerated electrons to transfer energy. 

Figure 77 shows SEM images of the as-prepared, thermally annealed and LPEB-welded AgNW 

percolation networks. As shown in Figure 77(a), the NW−NW junctions of the as-prepared AgNWs 

showed only physical contact; however, the AgNW junctions were clearly welded following thermal 

annealing (Figure 77(b)) and LPEB irradiation (Figure 77(c)). These welded junctions may lead to 

continuously connected AgNW networks under substrate bending and significantly reduce the contact 

resistance when compared with that of the as-prepared AgNWs. Although larger LPEB acceleration 

voltages could improve the mechanical properties, a voltage of 5 kV was used, as higher voltages could 

degrade the surface texture and result in the formation of metallic bubbles at the end of the NWs (Figure 

77(d)), which is a similar phenomenon observed during the LPEB deburring. 
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Figure 76. Schematics of thermal annealing and LPEB welding on AgNWs 

 

 

Figure 77. SEM images of AgNW junctions on percolation networks following (a) spin-coating, (b) 

thermal annealing, (c) LPEB welding and (d) bubbles generated on the edges of AgNWs after the 

LPEB welding process at acceleration voltage over 5 kV 
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Thermal-annealing and LPEB irradiation may also modify the mechanical properties of AgNWs and 

junctions. The most significant difference is that of the heat transfer mechanism. In the case of thermal-

annealing, melting and re-solidification of the AgNWs at junctions are relatively slow due to continuous 

heat transfer across the whole processing time. In contrast, LPEB irradiation induces a rapid thermal 

gradient on substrates, leading to a fast melting and re-solidification process. As well explained in 

previous chapters, metals can also attain a phase transformation with amorphous structure; this phase 

transformation is commonly considered as a primary cause of modified mechanical properties including 

hardness and modulus. 

 

 

Figure 78. XRD peaks of as-prepared, thermally annealed, and LPEB-welded AgNWs 

 

Figure 78 compares XRD patterns of the as-prepared, thermally annealed, and LPEB-welded 

AgNWs. The pristine AgNWs possess a face-centered cubic(FCC) structure synthesized with a certain 

preferred plane immediately after spin-coating. After thermal-annealing, the crystallinity of AgNWs is 

decreased slightly, as evidenced by the decrease in relative intensity of the (200) plane. However, no 

significant change in texture (preferred orientation) is observed following thermal-annealing. In case of 

the LPEB-welded AgNWs, a clear change in texture from (200) to (111) plane and a further reduction 

in the relative intensity when compared with those of as-prepared and thermally annealed AgNWs are 

observed. Moreover, changes in crystallinity can be estimated from the Bragg angle (θ) and full width 

at half-maximum (FWHM) of the main peak. Using Scherrer equation, the size of ordered crystalline 

domains (τ) can be estimated: τ = Kλ/β cos θ, where K is a dimensionless shape factor, λ is the X-ray 
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wavelength, and β is the FWHM [150]. As described in the Scherrer equation, a larger value of β and 

smaller θ denote smaller crystallites. The FWHM of the thermally annealed AgNWs is increased slightly 

to 0.354 (θ = 22.074°) and that of the LPEB-welded AgNWs is increased significantly to 0.421 (θ = 

13.93°), when compared with that of the as-prepared AgNWs (β = 0.310 at θ = 22.074°). 

 

5.3.3 Electrical properties of welded AgNWs 

There are two competing effects arising from the decreased crystallinity. First, the loss of crystallinity 

is strongly related to the mechanical properties of each AgNWs, as metals with crystalline structures 

can be plastically deformed, or fail through slip processes. The change in XRD patterns of the three 

samples indicate that the mechanical properties of the AgNW percolation networks is likely to be 

enhanced most after LPEB irradiation. This could be due to the simultaneous loss of crystallinity and 

reduction in crystallite size [151]. In contrast, the higher crystallinity of conductive metals leads to a 

higher electrical conductivity [152]. Consequently, the significant decrease in crystallinity following 

LPEB irradiation could adversely affect the electrical conductivity of AgNWs initially synthesized in a 

single crystalline direction. The main advantages of LPEB irradiation for welding of AgNW percolation 

networks are demonstrated from changes in Rs following thermal-annealing and LPEB welding. Despite 

competing effects following changes in crystallinity, Rs was reduced considerably after thermal-

annealing and LPEB irradiation. It appears that the reduction in electrical conductivity caused by the 

loss of crystallinity after LPEB irradiation was compensated by the decreased contact resistance at 

NW−NW junctions. The as-prepared AgNWs showed a relatively high Rs (~28.08 Ω/sq) because of the 

high contact resistance of NW−NW junctions in this structure. After thermal-annealing, Rs was reduced 

to ~18.57 Ω/sq because of the decrease in junction contact resistance after welding, as shown in Figure 

77. A further reduction in Rs was observed after LPEB welding, down to 12.63 Ω/sq. In addition to the 

improved Rs of AgNWs following this process, there was almost no loss of optical transmittance and 

haze after each welding process (transmittance >90%), as shown in Figure 79. 
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Figure 79. (a) Transmittance and (b) haze of the as-prepared, thermally annealed, and LPEB-welded 

AgNWs fabricated on a PET film 

 

This could be a result of the different mechanisms arising from each welding method. Thermal-

annealing is a bottom-to-top heat conduction process that continuously transfers heat through the whole 

area; hence different points on the surface would receive the same amount of heat from the heat source 

even if the density of the AgNW at each point is different. However, the heat needed to weld AgNWs 

is proportional to the density of NW-NW junctions; thus, the melting level varies depending on the 

uniformity of AgNWs during thermal-annealing as shown in Figure 80(a). In contrast, LPEB irradiation 

is a top-to-bottom energy transfer process, using accelerated electrons, with a larger amount of energy 

transferred in a much shorter time (~2 μs). Some electrons transfer their energy directly and induce 

temperature elevation due to joule heating; thus, the AgNW itself acts as a heat source. This implies 

that, during LPEB irradiation, heat is induced and spread along AgNWs depending on AgNW and 

junction density (Figure 76). 

 

 

Figure 80. SEM images on AgNWs at five different points following (a) thermal annealing and (b) 

LPEB welding 
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Figure 81. Experimental setup for the nano-scratch tests 

 

The mechanical properties of the AgNW percolation networks before and after the welding processes 

were investigated by nano-scratch tests using nano-indentation equipment (UNHT3 HT, Anton Paar). 

Figure 81 shows the photograph of the experimental setup used for nano-scratch test. The scratching 

equipment consisted of a diamond-coated nano-indentation tip (θtip = 100°), a force transducer, X/Y 

translation stages, and an optical microscope to capture the panorama images on the scratched tracks. 

The tests were performed at a normal force of 10 mN applied at a scratching speed of 1 mm/min along 

a total scratching length of 1 mm. The tests were performed inside a vacuum chamber. 
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Figure 82. Optical micrographs on the scratch tracks after tests on (a) as-prepared, (b) thermal-

annealed, and (c) LPEB-welded AgNW percolation networks 

 

Figure 82 shows the panorama images and magnified images acquired on the scratch tracks after the 

nano-scratch tests performed on the as-prepared, thermal-annealed, and LPEB-welded AgNW 

percolation networks. Several delamination defects were observed after the scratch test on the as-

prepared AgNWs due to disconnection of the physically contacted NW-NW junctions and lack of 

sufficient mechanical properties. In contrast, a reduced density of delamination was observed for 

thermally annealed AgNWs due to the modified mechanical properties at the welded junctions. 
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However, some delamination defects and partially damaged areas were still observed irregularly 

following the scratch test. These inferences indicate that thermal annealing cannot provide a uniform 

welding quality on randomly distributed AgNW percolation networks, which is well described in Figure 

80(a). In contrast, the LPEB-welded AgNWs showed only few damaged areas after the scratch test. As 

shown in Figure 82(c), most of the regions were protected from delamination and damage of percolation 

networks. Also, the scratched track formed on the LPEB-welded AgNWs showed a uniform width along 

the scratching length. This indicates an uniform welding of AgNWs during LPEB as indicated in Figure 

80(b). 

 

 

Figure 83. Penetrating depths of the nano-indentation tip in terms of the scratching distance 

 

In addition, for the quantitative evaluations of mechanical properties, penetrating depths were 

simultaneously measured during the scratch tests. Figure 83 shows the penetrating depth of nano-

indentation tip in terms of the scratching distance. The tip penetrated over 300 nm along a 1-mm 

scratching length on the as-prepared AgNWs, which means that the AgNWs were perfectly damaged at 

a normal force of 10 mN. In case of thermally annealed and LPEB-welded AgNWs, the penetration 

depths were similar at the end of tests. The penetrating depth was reduced by about 38 % following the 

welding of NW-NW junctions. However, a large fluctuation of penetrating depth could be observed as 

indicated by blue arrows in Figure 83. This reflects the irregular mechanical properties on the  

thermally annealed AgNWs. Thus, it could be concluded that much stronger junction contacts could be 
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formed by the LPEB welding, resulting in a stable connection of the percolation networks. Furthermore, 

the uniformity of AgNW percolation networks can be guaranteed as the LPEB welding has resulted in 

sufficiently and uniformly re-solidified junctions throughout the whole area of percolation thresholds. 

The modified mechanical properties were well reflected under cyclic bending and matched to the 

theoretical arguments about the superior mechanical properties of LPEB-welded AgNWs (Figure 84). 

The modified mechanical flexibility of welded AgNW percolation networks was well projected in the 

change in Rs during the cyclic bending test at a rb of 500 μm. The Rs of as-prepared AgNWs increased 

significantly, up to ~35% of the initial value, as soon as the bending was initiated, and then increased 

continuously following repeated bending cycles, reaching 2.3 times the initial Rs value after 1000 

bending cycles (Figure 84(b)). The thermally annealed AgNWs maintained a constant value of Rs at the 

start of bending cycles, but showed a continuous increase with repeated bending cycles. In contrast, Rs 

of LPEB-welded AgNWs remained at a relatively low level after the cyclic bending test. An increase in 

Rs of around 30% was observed after 1200 bending cycles. The stability of LPEB-welded AgNWs was 

also demonstrated in a slow single bending cycle. As shown in Figure 84(c), the Rs of as-prepared 

AgNWs was increased by up to 50% upon bending at a rb as small as 500 μm. Since the as-prepared 

AgNWs contain only physical contacts, the junctions are highly susceptible to stress and strain, hence 

Rs may be highly irregular even with each individual bend in the same test. This irregular change in Rs 

in a single bending cycle was also observed in the thermally annealed AgNWs. The variation in Rs was 

significantly different for each cycle, between ~10% to ~40%. In contrast, the LPEB-welded AgNWs 

showed superior flexibility, preserving Rs within ~5% upon each bending cycle. 
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Figure 84. Experimental set-ups for cyclic bending tests and corresponding (b) trend lines of relative 

changes in a sheet resistance and (c) relative changes of sheet resistance after each individual bending 
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5.3.4 Performance of welded AgNWs 

The mechanical flexibility of conductors is important for maintaining a good performance of electric 

devices during their lifetime without degradation. In particular, the stability of the resistance of the top 

electrode of a resistive touch-panel under repeated bending cycles is directly related to device stability, 

as multidirectional distortion of the top electrode occurs each time when users touch the surface. Thus, 

a resistive touch-panel was fabricated using the LPEB-welded AgNW percolation networks as a flexible 

transparent electrode (Figure 85). The operation of this device was confirmed by writing the word 

“UNIST”. The fabrication of the touch-panels verified that the LPEB welding process can be 

successfully applied for the fabrication of semiconducting devices. It was confirmed that LPEB welding 

could modify the mechanical flexibility of devices without any significant compensation in the 

performance of PLED. Figure 86 shows photographs of green-emissive flexible PLED (operated at 7 

V), fabricated using the as-prepared, thermally annealed, and LPEB-welded AgNWs electrodes under 

bending stress. The flexible PLED with LPEB-welded AgNW electrode exhibited a good device 

performance. Moreover, Figure 86(c) showed that PLED with LPEB welded AgNWs exhibited 

outstanding mechanical stability as the same tendency with electrode characteristics. 

 

 

Figure 85. Fabrication of resistive touch-screen panels using LPEB-welded AgNWs and 

corresponding performance evaluation 
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Figure 86. Series of photograph of PLEDs with (a) as-prepared, (b) thermally annealed, and (c) 

LPEB-welded AgNWs electrodes under bending stress following different bending radius 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

In this study, the LPEB irradiation on engineering materials were investigated from the fundamental 

understandings of the mechanisms of the LPEB irradiation to the multiscale and hybrid manufacturing 

applications. A numerical model of temperature fields is proposed to predict the molten depth induced 

by LPEB irradiation, including energy absorptance, which is dependent on scattering, backscattering, 

and transmission. The overall consideration of natural interactions between accelerated electrons and 

substrates to specify the exact absorptance and energy transfer facilitated a better understanding of the 

multi-physical mechanisms induced during the LPEB irradiation. The numerical model describing 

depth-dependent absorptance greatly modified the accuracy of temperature and molten depth 

predictions, within an error range of ~5%, regardless of incident energy and type of materials. Thus, it 

can be concluded that the proposed model is extensively adaptable for a pulsed electron beam irradiation 

process to predict the depth of the treated zone before LPEB irradiation. 

The LPEB irradiation was adopted for the surface modification of mold steels (KP1 and KP4) and 

Ti-6Al-7Nb, biomedical alloys. The LPEB irradiation not only produce a high surface quality with 

reduced surface roughness, also modified the mechanical and chemical properties of the surface 

including surface hardness, wear resistance, and corrosion resistance. Although the degree of 

improvement in surface properties varied depending on the type of materials, basically, the LPEB 

irradiation induced the formation of a metastable re-solidified layer with increased density of 

dislocations and elimination of pre-dominant slip planes, leading to the surface hardening. Furthermore, 

a passive and stable re-solidified layer formed by the rapid melting and re-solidification during the 

LPEB irradiation has resulted in the modification of corrosion resistance on the surface with a nobler 

corrosion potential, lower corrosion current density, and higher charge transfer resistance. The 

optimized LPEB conditions for different metallic alloys were extracted from the experimental results; 

acceleration voltage of 30 keV, solenoid voltage of 1.5 keV, and 10 irradiation cycles. 

Especially for Ti-6Al-7Nb alloys, a formation of TiN was observed following the LPEB irradiation. 

To enhance the performance of surface modification, nitriding process using the LPEB irradiation was 

designed with the nitrogen plasma gas and a negative DC bias. The atomic concentration of nitrogen at 

the re-solidified layer could be achieved near the theoretical maximum, ~ 18%. The nano-hardness was 

improved by about 75% and the charge transfer resistance increased over 180 times following the LPEB 

nitriding process. The fundamental applications of the LPEB irradiations were investigated and the 

mechanisms of surface modifications were specified following the changes in microstructure, 

crystalline structure, and chemical composition after the LPEB irradiations. Most importantly, 

experimental approaches of the LPEB irradiation revealed three major effects; melting mechanisms, 
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surface modifications, and energy transfer through electrons. Based on these effects, the LPEB 

irradiation can further enlarge its application area in manufacturing processes. 

The deburring processes for micropatterns were designed and performed on metals and composites. 

The LPEB deburring successfully reduced the size of the burrs that remained after the laser fabrication 

and drilling on metals and composites, respectively. Based on the melting mechanisms induced by the 

LPEB irradiation, micro-sized burrs were selectively eliminated from the products. Most of cases, the 

number of pulses was the most important parameter in determining the deburring performance. 

For the micro-application based on the surface modification factors, a durable super-hydrophobic 

surface micropatterns were fabricated using the LPEB irradiation. The contact angle on the LPEB-

irradiated micropattern was increased up to 166.7˚ with non-wetting characteristic. The reduction of 

surface roughness following the LPEB irradiation effectively reduced the critical angle for Wenzel-to-

Cassie transition. The hydrophobicity on the LPEB-irradiated patterns was maintained during long-term 

contact with droplets. 

Finally, the silver nanowire (AgNW) welding process was proposed based on the unique energy 

transfer mechanisms of the LPEB irradiation to fabricate a flexible and transparent electrode. Due to an 

uniform energy transfer through accelerated electrons, the flexible and transparent AgNW electrodes 

showed a lower sheet resistance (12.63 Ω/sq), higher transmittance, and an excellent mechanical 

flexibility comparing to other AgNW percolation networks prepared by conventional thermal annealing. 

The fabrication of PLEDs using AgNW by LPEB irradiation proved that the AgNW electrode obtained 

by LPEB irradiation could serve as an alternative to ITO electrodes in the field of flexible semi-

conducting devices. 

As summarized in Figure 87, this dissertation contributes to widen the application areas of the LPEB 

irradiation in manufacturing industries. Based on the fundamental mechanisms revealed in the 

dissertation, the LPEB irradiation can be utilized as a promising method for manufacturing processes, 

not only for the applications introduced in this dissertation, but also for numerous kinds of 

manufacturing processes including precision, biomedical, and surface manufacturing. 
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Figure 87. Schematic describing the contributions of the dissertation in manufacturing applications 

 

6.2 Recommendations 

In this dissertation, the mechanisms and effects of LPEB irradiations were clearly specified and the 

possible applications were investigated. In the predictive modeling of LPEB irradiation process, it was 

possible to analyze the multi-physical phenomena induced during the LPEB irradiation. The following 

experimental approaches revealed the fundamental effects of the LPEB irradiation on engineering 

materials. Consequently, it was possible to propose various multiscale and hybrid manufacturing 

applications using the LPEB irradiation, thanks to the firmly established theoretical descriptions of the 

process and clearly specified mechanisms of processing. Although those investigations were highly 

limited to the LPEB in this dissertation, the methodology of this research can be extended to other types 

of energy beam-based manufacturing process such as ion beam and laser. 

Furthermore, there is still a problem that needs to be solved to further applications in surface 

manufacturing. It is obvious that craters can be generated on the surface by the inclusions present in the 

material. Although optimization of LPEB parameters, such as increasing number of cycles, can 

effectively reduce the generation of craters, it cannot be perfectly removed by only controlling the 

experimental conditions. In Chapter 4.1.2, the mechanisms of the crater generation have been evidently 

specified. The partial evaporation of non-metallic inclusions can lead the formation of craters following 

the LPEB irradiation. It is also clear that the resulting craters can have an adverse effect on the products 

as described in Figure 24. The generation of craters is caused by the inherent characteristics of the 

material, and no clear solution has been presented to date. The hybrid manufacturing process can be a 

good approach for solving this critical limitation. 
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Preliminary results 

 

A hybrid surface modification process using a high power diode laser (HPDL) and LPEB was 

proposed to modify surface mechanical and chemical properties without generation of craters. A square-

shaped hat-top laser was irradiated before the LPEB irradiation to remove the non-metallic inclusions. 

The hybrid surface treatment was applied on stainless steels that were commonly used in many 

industrial applications and seriously suffered from pitting corrosion. 

A fiber-coupled HPDL (Direct photonics, Germany) having a square beam shape and hat-top energy 

profile was used for the laser irradiation. The size of beam was set as 200 μm. The power of laser beam 

was fixed at 100 W. The feed rate was varied from 150 to 600 mm/min. 

The LPEB irradiation was applied on the laser-treated surfaces. An accelerating voltage of 30 kV 

with an energy density of 10 J/cm2 was used. The beam pulse was irradiated over a 3 x 3 grid size 

moving 20 mm apart for each pulse, which matches well with the effective diameter of the beam     

(60 mm) so that uniform energy can be transferred on the whole surface area. Thus, one cycle of LPEB 

irradiation consisted of 9 pulses. In total, 9 cycles of LPEB irradiations were performed on each sample, 

following the laser irradiation. 

 

 

Figure 88. White-interference micrographs and corresponding surface roughness before and after the 

hybrid surface treatment using HPDL and LPEB 

 

Figure 88 shows the white-interference micrographs and the corresponding variations of surface 

roughness before and after the hybrid surface treatment. The surface roughness was slightly reduced 

following the LPEB irradiation in spite of the generation of craters. However, the density and size of 

craters generated during LPEB irradiation were reduced if laser irradiation is preceded before the LPEB 
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irradiation. A decrease in feed rate of the laser irradiation before the LPEB irradiation has led to a 

continuous reduction in the density and size of craters. For a laser feed rate of 300 mm/min, the surface 

roughness was reduced about 53.2 % following the hybrid surface treatment. Furthermore, only 

submicro-sized craters were found to remain after the LPEB irradiation. Hence, it can be concluded that 

employing laser irradiation before the LPEB irradiation could effectively eliminate the non-metallic 

inclusions, preventing the generation of craters. For a laser feed rate of 150 mm/min, however, the 

surface roughness was increased due to the formation of scallops induced by overlapped molten regions. 

 

As described in Preliminary results above, the hybrid surface manufacturing process between two 

different energy beams can be highly effective to complement limitations of each beam. Although more 

investigations are needed in depth, the manufacturing processes using LPEB irradiation can be further 

improved by approaching with the methodology presented here. 
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