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Abstract 

The extraordinary properties of graphene have led to intensive research on two-dimensional (2D) 

materials since the discovery of mechanically exfoliated graphene. Especially development of synthesis 

of large-area 2D materials films using chemical vapor deposition (CVD) has extremely enlarged the 

spectrum of potential applications of 2D materials in the fields of various nanotechnology. CVD 

methods, however, also produce various defective structures with slight modifications to the growth 

parameters which influence the intrinsic properties of 2D materials. Although defects on 2D materials 

were often considered as hindrance to degrade the intrinsic properties, if well adjusted, they have huge 

ability to modulate electromagnetic and mechanical property of the materials, with better performance 

as needed. Hence, in-depth knowledge of crystal structures with defects and their formation 

mechanisms must be established to understand the relationship between defects and properties of 2D 

materials.  

In this study, transmission electron microscopy (TEM) have made a significant contribution to 

understanding in the mechanism of defect formation and defect-driven growth of 2D materials, by 

directly imaging the features at atomic scale and dynamics of defect formation in real-time, and 

analyzing information of electron diffraction of crystals, and also examining corresponding change in 

electric property from the defect structure using electron energy loss spectroscopy.  

Among many 2D materials, I have focused on novel defective structures on hexagonal boron nitride 

(hBN). In contrast to the wide spectrum of proposed applications for graphene as an active component 

in nanodevices, hBN is often regarded as a passive material where the range of applications is largely 

confined to substrates or electron barriers for 2D material-based devices due to its electrically insulating 

feature with a large bandgap and thus received less attention. Herein, through a systematic study using 

TEM, I report many interesting features of hBN including controllable hole defects, spiral growth driven 

by screw dislocation at anti-phase boundary, and atomically sharp twin boundary as a promising one-

dimensional hBN conducting channel.   
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Chapter 1: Introduction 

Defects have huge influence on the electromagnetic and mechanical properties of materials, 

especially more strongly on two-dimensional (2D) materials since the defects are all located on the 

surface. Vacancies, dislocations, grain boundaries and other topological defects have been shown to 

alter its chemical and physical properties and, as such, have been extensively investigated1-2. Defects 

on 2D materials were often considered as hindrance despite of potential controllability in 

electromagnetic and mechanical property of the materials3-6. For example, the actual performance of 

graphene devices failed to satisfy the expectations due to the inherent defect in them7. Although many 

efforts to remove the defects in 2D materials8-9 have been performed, it has turned out to be only partial 

healing of the defects. Accordingly, people started to use these inevitable defects to many applications 

using the fact that defects can manipulate the electrical and magnetic properties of 2D materials.  

Among various types of defects, the hole defects that are made from ejection of atoms from the sheet 

were studied for many applications as atomically thin nanopores. In the case of graphene, many studies 

addressed possibility of hole defects as DNA sequencing10-13, gas sensing14, ion and molecules sieve15-

16 and many other applications17-18. Several comparable studies also have been done with hBN19 and 

MoS2
20-22. These studies focus on performance tests at the hole defects without the information of edge 

configuration and chemical stability which may affect to the performance significantly.  

Stacking boundaries or phase boundaries of few-layer 2D materials were also shown to possess 

unique properties which open new ways to control the performance of a material4, 23-27. For example, 

AB/BA stacking boundary with broad range in bilayer graphene showed insulating-like characteristics 

and reversible transport regimes24, and 558 line defect formed at a stacking boundary in graphene was 

reported to act as a metallic wire4. One-dimensional twin boundaries found in tungsten diselenide27, 

molybdenum diselenide28 also revealed bandgap changes. In the meantime Li, Q. C. et al. reported Grain 

boundaries in hBN such as the 5|7 and 4|8 configurations reduce its bandgap to ~3.4 eV and ~4.3 eV, 

respectively29.  

Among many 2D materials, I have deeply studied especially on interesting defective features of hBN. 

HBN is analogous to graphene but is comprised of alternating boron and nitrogen atoms. It shows great 

potential as a substrate for 2D heterostructured devices because of its atomically flat surface, unique 

electrically insulating nature, and high-temperature and chemical stability30-31. Using h-BN as a 

substrate layer for graphene increases the electron mobility by nearly an order of magnitude compared 

to conventional SiO2 substrates30. Although reputable for its interfacing capability with other 2D 

materials and structural similarities to graphene, hBN has been rarely spotlighted to perform an active 

role in 2D electronics as limited by its insulating nature. Thus, I have studied the novel defective 

structures of hBN and postulate the mechanism of defect formation and defect-driven growth of hBN 
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major assistant with transmission electron microscopy (TEM) analysis plus theoretical calculations of 

density functional theory (DFT) and molecular dynamics (MD) simulations. 

Firstly, production of holes by electron beam irradiation in hBN was monitored over time using 

atomic resolution (AR) TEM. The holes appear to be initiated by the formation of a vacancy of boron 

and grow in a manner that retains an overall triangular shape. The hole growth process involves the 

formation of single chains of B and N atoms, and is accompanied by the ejection of atoms and bundles 

of atoms along the hole edges as well as atom migration. hBN hole defects have advantage in shape 

control to triangle, hexagon and randomly shaped hole by managing the number of layers and the 

stacking structure. And it always has N-terminated zigzag edges which make it possible to control the 

electromagnetic properties for nanopore devices.  

Second, the formation of intertwined double-spiral few-layer hBN that are driven by screw-

dislocations is reported. Pairs of screw dislocations initiated at the anti-phase boundaries (APBs) of 

monolayer domains make double-spiral structure. Distinct from other 2D materials with single-spiral 

structures, the double-spiral structure enables the intertwined h-BN layers to preserve the most stable 

AA′ stacking configuration. Unlike commonly reported few layers grown by interfacial nucleation 

where the second layer is grown independently beneath the first, the growth of a spiral structure adopts 

a top growth mechanism where the top layers are an extension from the initial monolayer which spirals 

around an axial dislocation in self-perpetuating steps. I also found that the occurrence of strains between 

merged spiral islands is dependent on the propagation directions of encountering screw dislocations, 

and present the strained features by density functional theory calculations and atomic image simulations. 

This study unveils the unique double-spiral growth of 2D hBN multilayers synthesized in a chemical 

vapor deposition (CVD) chamber. 

And lastly, I will discuss about one-dimensional hBN conducting channel with 6′6′ and 558 

configuration embedded at AA′/AB stacking boundaries of few-layer hBN. In contrast to the electronic 

properties found in pristine hBN, this atomically sharp twin boundary displays a highly reduced 

bandgap close to zero. Such atomic wide channels can potentially create ultimately narrow active 

passages for electrons or form an embedded single-hBN device within an electrically non-conducting 

hBN sheet. Furthermore, formation mechanism of atomically sharp twin boundaries is suggested by 

analogy of stacking combinations of AA′/AB with observations of extended Klein edges at the layer 

boundaries of AB-stacked hBN.    
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Chapter 2. Research background 

2.1. Aberration corrected transmission electron microscopy 

There has been a constant demand for higher resolution of electron microscopy since after its 

invention. With the development of nanoscience and nanotechnology, atomic-scale synthesis requires 

atomic resolution characterization32-33, even higher resolution far below 1 Å to identify individual atoms 

or vacancies in materials. Although a “high resolution” TEM imaging already became a quite common 

technique a few decades ago in materials science34, that was concerned with collective crystal properties 

from atomic columns in bulk crystal structure, rather than real “individual” atomic positions or 

behaviors. In the meantime, the advent of low dimensional materials intensified the needs of atomic 

resolution characterization35.  

Over the last few decades, a huge progress has been made in TEM with the introduction of an 

aberration corrector36-41. Basically, the limitation of resolution of TEM come from a fundamental failure 

of building perfect electron lenses, which cause spherical aberrations. And another type of aberration, 

chromatic aberration, which arise from the electron-energy dependence of the refraction properties of 

magnetic fields, also limits the resolution. Two types of aberrations are illustrated in Figure 1. According 

to Scherzer theorem, correcting the spherical and chromatic aberrations just by combination of ordinary 

lenses is impossible42. Since the electromagnetic focusing fields in TEM are free of space charge, 

cylinder-symmetric, and the optic axis has no point of reversal, spherical aberrations are compensated 

by breaking the cylindrical symmetry or adopting a reflecting device43-45. Hexapole-type spherical 

aberration correctors have been realized successfully in conventional TEM and scanning TEM (STEM) 

and demonstrate their advantages by various applications46-49. For the latter, multiple quadrupole-

octopole systems50-51 are also used. And then, the chromatic aberration can be almost free by using a 

chromatic aberration corrector or monochromator which minimize the energy spreading the electron 

beam52.  

As a consequence, the electron microscopes has undergone a dramatic improvement with achievable 

resolution having more than doubled in a very short time with the development of aberration 

correctors53-55 as illustrated in Figure 2. And due to this revolution by the successful correction of lens 

aberration, now we can probe the individual atoms and defects in low dimensional materials even in the 

low acceleration voltages such as 60 and 80 kV, which significantly minimizes the damaging effect on 

the specimen2, 56. 

Beyond the atomic resolution imaging such as mapping of atomic positions, aberration-corrected 

TEM allows atomic scale imaging of chemical composition and bonding by combining high resolution 

in energy and space with the use of spatially-resolved electron energy loss spectroscopy (EELS) to map 

electron states localized at or between atoms57-59. 
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Figure 1. Schematic illustration of lens aberrations of a converging lens. a, A perfect lens focuses 

a point source to a single point in the image plane. b, Spherical aberration causes electron waves from 

a point source spherically distorted by bending the rays at higher angles to be overfocused. Thus the 

point is images as a disk. c, Chromatic aberration causes rays at different energies (indicated by color) 

to be focused in different planes.  

 

 

 

 

Figure 2. The evolution of resolution in microscopy. Spatial resolution versus year for light and 

electron microscopes. The data is adapted from Reference 53, 54. The figure is reprinted from Yang et 

al. (2012) (Chem. Soc. Rev., 41, 8179-8194). Copyright 2012 Royal Society of Chemistry. 
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2.2. Hole defects on 2D materials induced by electron beam irradiation 

2.2.1. Formation of defect by electron beam and knock-on thresholds of graphene, hBN and MoS2 

Among various methods to make holes on 2D materials16, 60-64, electron beam in TEM is good at size 

control at atomic scale, which is the most important issue for the sensitivity and selectivity of nanopore 

devices. If electron beam irradiation on a 2D specimen with a high electron energy breaks the atomic 

bonds within the material, which is called knock-on voltage, atoms are ejected from the lattice leaving 

holes on the materials. The atom displacement, knock-on thresholds and other structural information of 

graphene65, hBN66 and MoS2
67 are summarized in Table 1. 

 

 

Table 1. The calculated values of displacement threshold and knock-on threshold of graphene, 

hBN and MoS2.  
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2.2.2. Hole defects on graphene 

Figure 3a shows the hole defects of graphene by the electron beam irradiation at 80 kV. To make 

hole defects in graphene, over 86 kV of electron beam energy, the knock-on threshold voltage of 

graphene, needs to be irradiated on the sample. But some studies showed the existence of oxygen or 

other chemicals on the sheet or inside TEM chamber can lower the knock-on threshold of graphene by 

chemical etching effect68. Inherent defects created from the synthesizing process of graphene also lower 

the knock-on threshold voltage69. Once a vacancy is formed, it continuously grows as electron beam 

irradiates to make an enlarged hole in the sheet. The size of hole defect can be controlled by the time of 

electron beam irradiation at a given acceleration voltage.  

The hole defect of graphene has mixed armchair and zigzag atomic configuration at the edge. 

Because the edge configuration of graphene are known to have significant influences to the 

electromagnetic property of graphene70-74, the edge configuration and its stableness become one of 

major interests in studies of graphene hole defect. Direct atomic imaging at the graphene edges using 

aberration corrected TEM gave the insight on the stability of edge configurations64, 75-77. Recently, He 

et al. reported the temperature dependence of graphene edge configuration through in-situ heating 

experiment using TEM64. As shown in Figure 3b, c, armchair and reconstructed 5-7 zigzag 

configurations were predominant above 600 °C which has good agreement with the theoretical 

predictions78. Below 400 °C, zigzag configuration was dominantly observed, which was led by major 

involvement of chemical etching process from contamination of sample. It gives a prospect in edge 

control of graphene hole defect for graphene nanopore devices, though contamination effect still 

remains an issue to be resolved. 

Meanwhile, high reactivity of the edges of graphene hole defect has been a big obstacle to realization 

of graphene nanopore devices. Graphene has high reactivity with chemicals, especially at the hole edges 

that have dangling bonds. For example, DNA would be fond of sticking to the hole edges and surface 

when translocating the graphene nanopore, which makes it complicate to identify the DNA sequence79-

80. Moreover, despite all the efforts to make holes, small holes in graphene are filled with carbon 

adatoms nearby within hours even under ultra-high vacuum conditions of TEM as shown in Figure 3d, 

e81. Thus, fixation or stabilization of hole defects is emerging as a key issue for graphene nanopore 

devices and passivation of hole edges with other atoms was suggested as one potential method as shown 

in Figure 3f-j82. Si-passivated holes in graphene were directly observed using STEM, and proved to be 

stable against carbon filling even under intense electron beam condition and ambient atmospheric 

condition. MD simulations supported this observation, showing that carbon adatoms would stick out of 

the graphene plane preventing filling hole defects. Si passivation opens potential of stabilization of hole 

defects, however, the fabrication methods should be further developed. Additionally, considering the 

binding energy between C-Si at armchair site is higher than that at zigzag site, importance of 
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understanding edge configuration of graphene hole defects is highlighted again. Therefore, in-depth 

studies on the edge configuration and stabilization will make progress toward graphene nanopore 

devices. 
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Figure 3. Features and stability of graphene hole defects. a, AR-TEM image of graphene hole defect. 

Scale bar, 2nm. b, Graphene has zig-zag, armchair, reconstructed 5-7 zigzag configuration at the edges. 

c, Percentage of each edge configurations is marked on the graph. It shows temperature dependence of 

edge configurations. d, STEM image of hole defect created near the hydrocarbon contamination. e, The 

hole is filled with C polygons even under ultra high vacuum condition. f,  STEM image and structure 

model of Si-passivated graphene hole defect and binding energy of Si atoms at the edge. Si-passivated 

hole defect is stable against hole filling. g-i, ab initio MD simulations reveal the Si-passivated hole 

forms bonding with C adatoms out of the graphene plane, preventing the hole filling.  

(b and c) Reprinted from He et al. (2015) (ACS Nano 9, 4786-4795) with original copyright holder’s 

permission. Copyright 2015 American Chemical Society.  

(d and e) Reprinted from Zan et al. (2012) (Nano Lett. 12, 3936-3940) with original copyright holder’s 

permission. Copyright 2012 American Chemical Society.  

(f-j) Reprinted from Lee et al. (2014) (PNAS, 111, 7522-7526) with original copyright holder’s 

permission. Copyright 2014 National Academy of Sciences, USA. 
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2.2.3. Hole defects on hBN 

Compared to graphene, hBN has received less attention as a 2D device due to the difficulties in 

getting synthesized large sheet and non-conducting property83. As an insulator, hBN has been used as a 

substrate of graphene to show high electrical performance84, but not much used alone. However, Liu et 

al. remarked hBN may exhibit superior durability and insulating properties in high-ionic strength 

solution compared with graphene and realized hBN nanopore device for DNA sensor19.  

The notable thing is that hBN hole defects have a unique feature in shape, which is controllable 

unlike graphene. Figure 4a-c represent a triangular hole defect in monolayer hBN sheet. Because boron 

has a lower knock-on threshold than nitrogen under transmission electron beam (See the Table 1), 80 

kV of electron beam preferentially knock off the boron atoms first, making B monovacancies with N 

terminated edge along the hole defect edge66, 85-87 (Figure 4a). The hole defect formed by prolonged 

electron beam irradiation at Figure 4a is defined as triangular shape more clearly (Figure 4b). This 

triangular hole defect maintains its shape as it grows which is verified up to area of 110 nm2 (Figure 

4c). Atomic model of triangular hole defect in Figure 4d shows that the edges are terminated with N 

atoms. According to the calculation result of Kotakoski et al., N monovacancy as well as B 

monovacancy is expected to be formed by above 120 kV of electron beam53. Nevertheless, all 

experimental results using TEM have shown N terminated triangular hole defect starting from B 

monovacancy. Yin et al. explained by cohesive energy calculations that N-terminated hole defect is 

more stable than B-terminated one due to the ionic character of the material88. Hole defects created by 

electron beam on monolayer hBN sheet will be more discussed deeply in Chapter 3.  

Furthermore, hexagonal hole defect could be fabricated in AA′-stacked double layer hBN sheet. The 

nature of AA′ stacking structure of hBN, which B atoms are on top of N atoms and vice versa, makes 

the orientation of defects in one layer 180 degree opposite to those in the other layer of hBN sheet87. 

Two opposite triangle defects grow and result in a hexagonal hole defect with N terminated zigzag 

edges (Figure 4e). Because AA′ stacking structure is known to be the most stable structure in bulk hBN 

structure89, AA′-stacked double layer hBN can be easily obtained through the scotch-tape exfoliation90. 

If double layer of hBN is randomly rotated each other by stacking two monolayer of hBN, hole defects 

have no longer triangular or hexagonal shaped hole defects (Figure 4f). The rotated stacking structure 

can be directly inferred from the Moire pattern. To sum up, ultimately we are able to manufacture freely 

the hBN nanopores in shape by managing the number of layer and stacking structure, and in size by the 

irradiation time. Due to these shape and size of hBN hole defects with controllable manners, the 

utilization of the hBN nanopores as a nano-patterning template is promising. Also N-terminated hole 

defect of hBN is found to give enhanced half-metallicity and large magnetism. It suggests the potential 

of hBN nanopore application for spintronics, light emission and photocatalysis91. 
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Figure 4. Hole defects on mono- and double-layer hBN. a-c, In monolayer hBN, hole defects grow 

with maintaining triangular shape from monovacancy (a) to enlarged (~ 110 nm2) hole (c) by electron 

beam irradiation. d, Atomic model of N-terminated edges of hBN hole defect. The pink and blue balls 

represent boron and nitrogen atoms, respectively. e, Hexagonal shape of hole defect is created on AA′-

stacked hBN double layer. f, Randomly shaped hole defect is created on rotated hBN double layer. Scale 

bars, 2 nm. 
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2.2.4 Hole defects on MoS2 

MoS2 has been growing interest as a promising material due to its semiconducting nature which 

makes it facile to make sensing and electronic applications20-22. Especially as a DNA detecting sensor, 

MoS2 nanopore membranes have shown better performance than graphene nanopore membranes for 

transverse detection without special surface treatment process to prevent the interaction between DNA 

and the surface, unlike graphene79. 

MoS2 is commonly found in 2H form in nature among three polytypes: 1T, 2H and 3R. Synthesized 

MoS2 films may have 3R structures92 but most of studies on MoS2 defects are performed with exfoliated 

MoS2, so with 2H structure. The smallest hole in 2H MoS2 can be created by the removal of one Mo 

atom or two S atoms (Figure 5a-c) but much higher concentration of S site holes than Mo site holes are 

found in TEM due to the different knock-on threshold of S and Mo atoms93. 

Figure 5d-f are the serial images of MoS2 hole defect created by 80 kV of electron beam in TEM. 

Because the knock-on thresholds of S and Mo atom are 80 kV and 560 kV respectively as shown in 

Table 1, S vacancies are formed first by slightly focused electron beams. Meanwhile Mo atoms are less 

likely to be ejected by 80 kV electron beam, resulting in the agglomeration of Mo atoms at the edge of 

hole defects. Mo atoms aggregate at the edge under continued electron beam irradiation. Although a 

few papers reported the phenomenon of Mo atoms agglomeration94-95, none reported the corresponding 

effects in electrical or magnetic properties at the edge. According to the theoretical calculations96, Mo-

Mo metallic bonds are formed at S vacancy sites and cancel the magnetism by pairing the unsaturated 

spin electrons. Similarly, the degree of Mo atoms agglomeration may affect to the metallicity so to the 

electrical performance such as the current signals when DNA or molecules transverse the holes. 

Therefore, for MoS2-based nanopore devices, understanding of edge configuration of MoS2 hole defects 

and consequent electrical and magnetic properties is required.  
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Figure 5. Point defect and enlarged hole defect on MoS2. a,b, Structure models of single S atom 

vacancy (a) and double S atoms vacancies (b), creating a point defect. Corresponding TEM image is 

shown in (c). The left and right one are one and double S atoms ejected site, respectively. Scale bar, 5 

Å. d-e, The sequential growth process of a hole defect by electron beam irradiation in monolayer MoS2 

sheet. Mo atoms aggregate at the edge. Scale bar, 2 nm.  

(a-c) Reprinted from Komsa et al. (2012) (Phys. Rev. Lett. 109, 035503) with original copyright holder’s 

permission. Copyright 2012 American Physical Society.  
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2.3. Stacking structure and Stacking boundary of hBN 

2.3.1 Stacking structures of hBN 

Due to its bi-elemental composition, hBN can assemble in various stacking structures, with two 

different types of interlayer orientations. In this study, I use the symbols [BN] and [NB] (a hexagonal 

structure rotated by 60° relative to [BN]) to represent hexagonal structures defined by the order of atoms 

clockwise from the apex (Figure 6a). 

There are six possible stacking structures with high symmetry, depending on the rotation (0° or 60°) 

and translation of the hexagons relative to the bottom layer, termed “A” (Figure 6b). The structure in 

which all atoms in the upper and lower layers are in the same positions and the same orientations is 

termed “AA stacking”. The structures in which the upper layer is translated to the center of a hexagon 

in the lower layer are called either “AB stacking” or “AC stacking”. Both AB and AC stacking are also 

known as “Bernal stacking,” which is easily found in graphite. The AB and AC stackings are 

distinguished in this paper since the consequential atomic configurations at stacking boundaries are 

different even though AB and AC have the same level of structural stability. The configuration in which 

the N atoms are on top of the B atoms is defined as the “AB stacking structure,” and the opposite is true 

for “AC stacking” in this paper. The prime (′) mark indicates that the orientation of the upper layer is 

rotated by 60° relative to the lower layer like [BN]/[NB] or [NB]/[BN]. 

The stability of a stacking structure depends strongly on the interactions between the atoms in the 

upper layer with those in the lower layer. Since differing atoms (B-N) experience an attractive force, 

while identical atoms (B-B or N-N) have a repulsive interaction, AA′ is the most stable structure, and 

AB and AC are less stable97-98. 

 

 

Figure 6. Stacking structure of hBN. a, Atomic models of the [BN] and [NB] configurations. b, High-

symmetry stacking structures of hBN. Boron and nitrogen atoms are represented in pink and blue, 

respectively.  
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2.3.2. Identification of the stacking structure and the number of layers of hBN using DF-TEM 

The stacking structure and the number of layers of hBN can be determined by measuring the intensity 

of dark-field (DF) TEM images. The intensity of the DF-TEM image depends on the interference of 

electron waves produced though the specific lattice periodicity, corresponding to the diffraction spot 

being used in acquiring the DF-TEM image. Thus, it is sensitive to the lateral translation between layers. 

As shown in Figure 7, for AA′ stacking, which has no lateral translation, the intensities of the first- (Φ1) 

and second-(Φ2) order families of diffraction spots increase with the number of layers since the electron 

wave diffracted from one layer always interferes constructively with the wave diffracted from the other 

layers. In contrast, for Bernal stacking, like AB or AC, in which one layer of the lattice is translated 

with a lattice spacing of 3a/2 relative to another, a phase difference is caused depending on the 

diffraction spot. The electron wave interferes destructively along the 2.16 Å (Φ1) lattice periodicity but 

it still interferes constructively along the 1.25 Å (Φ2) lattice periodicity99-100. For ABC stacking, the Ø1 

diffraction spots show completely destructive interference since the phases of the electron wave 

scattered from the AB and AC stackings are opposites101-102.  

Figure 7. Schematics of the AA′ and AB stacking structures of hBN. The lattice periodicity of 2.16 

Å (1. 25 Å) is highlighted in blue (red) and corresponds to the diffraction spot Φ1 (Φ2) in the SAED 

patterns. Displacement vectors for the AB or AC structures are marked in yellow. Boron and nitrogen 

atoms are represented by pink and blue, respectively. 
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2.3.3 Transition region at stacking boundary 

As discussed in the previous section, bright contrast in a DF-TEM image means constructive 

interference of the waves diffracted from a given lattice. Especially for the second-order diffraction 

spots (Φ2), the DF-TEM images always have brighter contrast with increasing numbers of layers if the 

hBN layers are oriented in a high-symmetry stacking structure. Thus, the dark line displayed in Figure 

9c, is the locus of positions of atoms in one layer that are shifted relative to other layers, causing 

destructive interference99, 103-105. Considering that an selected area electron diffraction (SAED) pattern 

shows one set of hexagonal spots (Figure 8d), the relative positions of the atoms shift gradually, without 

any rotation of the dark-line region. That is, the dark line indicates the presence of a transition region at 

the boundary between the two different stacking structures. The higher mag TEM images of Figure 8e, 

f, directly demonstrate this. The red dashed lines are the outlines of triangular defects caused by 

prolonged electron-beam irradiation. The opposite directions of the red outlines, which are divided by 

the black dashed line, indicate a change of phase between [BN] and [NB]; the orientations of triangular 

defects are in opposite directions in [BN] and [NB] structures since the electron beam always creates 

N-terminated triangular defects. The atomic-scale image for the region marked with a black arrow in 

Figure 8f loses the original hexagonal lattice contrast, which indicates a transition region, not in high-

symmetry stacking, between different stacking structures. The various stacking structures noted in 

Figure 8b are identified by using the characteristics of DF-TEM images that the image contrast from 

Φ1a and Φ1b are alternatively bright for odd (even) numbers of layers when they have the AB (AC) 

stacking structure. The AA′/AB stacking boundary of hBN will be discussed in detail in the Chapter 5. 
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Figure 8. Transition region at AA′/AB stacking boundary of hBN. a-c, DF-TEM images from the 

diffraction spots Φ1a, Φ1b, and Φ2, respectively, in (d). The different stacking structures are designated 

in (b), and the numbers of layers are given in (c). e,f, The corresponding TEM images under low (e) 

and high (f) magnification after electron-beam irradiation. The red dashed lines show the triangular 

defects caused by the TEM electron beam. The region indicated by the black dashed lines in (e) and (f) 

matches the region represented by the dark line in (c). 
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Chapter 3. Atomic-scale dynamics of triangular hole growth in monolayer 

hBN  

3.1. Introduction 

Defects are known to influence the intrinsic electronic and mechanical properties of materials. In 

graphene, vacancies, dislocations, grain boundaries and other topological defects have been shown to 

alter its chemical and physical properties and, as such, have been extensively investigated1-2. The defect 

structures in hBN are even more varied and complex because, unlike graphene106-107, its hexagonal 2D 

lattice is occupied by two elements. Indeed, most reports have focused on defect formation and 

characterization86, 108-109 in localized regions of exfoliated hBN. At present, it is known that the edges of 

holes in hBN layers usually adopt zigzag and armchair-type configurations, with the former being more 

common108. Moreover, the zigzag configuration contains two different types of terminated edges due to 

the heterogeneity of hBN, factors that have been shown to affect the material’s intrinsic electrical 

properties110. The growth mechanisms of extended holes in hBN are also not well established. For 

example, unlike graphene, where single chains of carbon atoms and related defects are well 

characterized111-116, single chains made deliberately in hBN sheets via in situ production techniques (i.e., 

inside a transmission electron microscope) have been observed at 650 °C117. 

Herein, the growth of triangular holes is studied in large, monolayer sheets of hBN from the 

nucleation of a B vacancy to areas that exceed 50 nm2 using AR-TEM. As part of these studies, the 

growth dynamics of single triangular holes as well as the processes by which they merge with other 

holes were explored. The experimental observations were then compared with DFT calculations and 

MD simulations, which provided additional insight into the mechanisms of hole growth. 
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3.2. Experimental section  

Synthesis of hBN and AR-TEM observations. The hBN specimens used in the experiments consisted 

primarily of monolayers and were synthesized using chemical vapor deposition83. Conventional TEMs 

do not have adequate resolution for imaging single atoms of hBN and are often operated at high voltages, 

which lead to immediate irradiation damage in the specimens before reliable observations can be made. 

Furthermore, if experiments are performed at a low voltage such as 60 kV, knock-on damage as well as 

ionization damage should be considered. To avoid these problems, specimens were analyzed using an 

aberration-corrected FEI Titan Cube TEM (FEI Titan3 G2 60-300), which was operated at 80 kV 

acceleration voltage since 80 kV is an intermediate value of the knock-on threshold values of B (74 kV) 

and N (84 kV)118. Therefore, the experiments mainly consider the knock-on damage. The microscope 

provides sub-Angstrom resolution at 80 kV and -21±0.5 μm of spherical aberration (Cs) with a 

monochromator and thus is capable of imaging individual atoms within the hBN lattice. Typical electron 

beam densities were adjusted to around 5x105 e- nm-2. The atomic images are taken with a white atom 

contrast (as opposed to a black atom contrast) in order to obtain actual atom positions under properly 

focused conditions needed for direct image interpretation. 

Time Lapse Microscopy. After acquiring a series of images using the Gatan Digital Micrograph Script, 

structural changes in the observed area were analyzed frame-by-frame. Each of these images was taken 

with an exposure time of 0.5 sec and an interval time of 1.7 sec. To facilitate the identification of the 

holes generated by electron beam irradiation, clean areas that were free of adsorbates and other 

impurities were examined. 

DFT Calculations. Density functional theory calculations were performed using the Vienna ab initio 

simulation package (VASP)119-120. A single k-point (Γ point) for a 15ⅹ15 supercell with a cutoff kinetic 

energy of 400 eV was used. The ions were represented by projector-augmented wave (PAW) 

potentials121-122, and van der Waals (vdW) interactions123 as used in Grimme’s theory were implemented 

into the VASP. A generalized gradient approximation was used to describe the exchange-correlation 

functional124-125. The atomic positions of all structures were relaxed until the Hellmann-Feynman forces 

were lower than 0.01 eV/Å. 

MD Simulations. To explore hole growth in layers of hBN, MD simulations were performed using the 

large-scale atomic/molecular massively parallel simulator (LAMMPS) code32 with reactive force field 

(ReaxFF) potentials126-128. The MD time step was set to 0.25 fs, which was determined from a stability 

test using a microcanonical ensemble (NVE). To properly account for the electron beam irradiation, 

heating was controlled during simulation by increasing the temperature from 1000 K to 4000 K for 

1000 ps using a canonical ensemble (NVT) and the Nose-Hoover chain thermostat. 
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3.3. Results and discussion 

To elucidate the mechanism of hole growth in hBN monolayers, the dynamics of triangular holes 

induced by electron beam irradiation were analyzed using AR-TEM. A large area monolayer of hBN 

was grown by chemical vapor deposition and then transferred to a TEM grid. Figure 9 shows the 

formation and growth of large triangular holes in monolayer hBN by electron beam irradiation.   

The hBN hole growth process was subsequently investigated (Figure 10). A vacancy labeled VB, 

which refers to the site of a missing B atom, is shown in Figure 10a. Through continuous electron beam 

irradiation, B and N atoms were removed from sites adjacent to VB in a manner that maintained an 

overall triangular shape, although some trapezoidal intermediates were observed. For example, while 

the removal of a pair of B and N atoms adjacent to the VB (i.e., VB-BN) resulted in the formation of a 

trapezoidal site, a triangular hole reformed upon the subsequent loss of an additional B atom (e.g., VB-

BN-B), as shown in Figure 10c. This process continued as the hole grew and involved the temporary 

introduction of an atom within the growing hole (c.f., Figure 10d and 11e; see below for a deeper 

discussion of the migration of B and N atoms). 

 

 

Figure 9. Formation and growth of large triangular holes in monolayer hBN by electron beam 

irradiation. The TEM images show (a) the initial defects and (b) an enlarged area of the same region. 

Scale bar, 2nm.  
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Figure 10. The sequential hole growth process from a vacancy in monolayer hBN at atomic 

resolution. The process starts (a) with the development of a B vacancy (VB) and grows as shown in (b) 

to (f). The blue and red dots reflect the N and B atoms, respectively. Scale bar, 1 nm. 
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Efforts were then directed towards assessing whether the holes maintained their triangular shape 

after prolonged periods of electron beam irradiation. As summarized in Figure 11, the growth of a 

triangular hole appeared to be initiated by the removal of B and N atoms near the centers of the hole 

edges. This experimental observation was supported by energy calculations, which indicated that 

triangular holes featuring edges with missing B and/or N atoms are more stable than those with atoms 

missing near a vertex (Figure 12). Regardless, under prolonged electron beam irradiation, the B and N 

atoms next to the vacancies were subsequently ejected in a manner that ultimately restored the overall 

triangular shape of the hole. As shown in Figure 13, the triangular shape of the holes was maintained 

even after two holes merged together. Additionally, exposure of an edge region to electron beam 

irradiation resulted in the formation of triangular holes. Once electron beam irradiates within or at edge 

of a hBN sheet, a N terminated triangular hole is unconditionally formed and its shape is maintained 

during the hole growth process.  

 

 

Figure 11. Sequential atomic resolution images of monolayer hBN showing how the shape and 

orientation of the holes are maintained upon further growth.  
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Figure 12. Comparison of formation energy in missing B-N atoms at a corner, near the corner, 

and near the middle region of a defect edge. a, Models for paired B–N atoms missing at an edge of a 

triangular hole defect in a monolayer hBN sheet with their relative energies: (b) at a corner; (c) near the 

corner; and (d) near the middle region of a defect edge. Paired B–N atoms missing near the middle of 

an edge appear to be more stable than those missing at a corner or near a corner. 



23 

 

 

Figure 13. A series of sequential atomic resolution images of monolayer hBN showing how the 

merging of two holes ultimately maintains a triangular shape. Scale bar, 2 nm. 
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During these studies, it was noted that B and N atoms were often ejected as bundles as opposed to 

individual atoms, between successive imaging time intervals (~0.5 sec), at least under the experimental 

conditions used. Since atom movement is faster than 0.5 sec, DFT calculations and MD simulations 

were performed to gain additional insight into this process. A summary of the calculated bond lengths 

between various atoms in and near a triangular hole in hBN is shown in Figure 14. Note that the 

calculated B–N bond lengths measured perpendicular to the hole edge were longer than those found 

along the hole edge (c.f., positions indicated by 6, 7 and 8 vs. positions indicated by 3, 4 and 5 in Figure 

14a). Moreover, the difference in the calculated B–N bond lengths was found to be consistent regardless 

of the hole size. Hence, when a B and/or N atom is ejected, the B–N bonds perpendicular to the edge 

become weakened and thus are more likely to be broken upon further electron beam irradiation. The 

results derived from the DFT calculations were supported by MD simulations. As shown in Figure 14b, 

the breaking of a B–N bond perpendicular to a hole edge generated a chain of B and N atoms as indicated 

by the yellow dotted box. The chain then became detached and was subsequently knocked off as a 

bundle of atoms, as indicated by the green dotted box. 

Direct evidence of single chain formation, as supported by DFT calculations and MD simulations, 

was observed by AR-TEM in Figure 14c-f. Electron beam irradiation of the triangular hole (Figure 14c) 

resulted in the formation of a single chain comprised of B and N atoms (Figure 14d). The chain 

detachment process appeared to originate from the breaking of a B–N bond perpendicular to a hole edge. 

The chain was found to fluctuate in position (Figure 14e) before being finally knocked off (Figure 14f). 

Based on these observations, B and N atoms do not appear to be ejected individually; rather, B–N bonds 

perpendicular to a triangular hole edge may break first, resulting in the formation of a single chain of 

atoms that is ultimately removed. Compared to the B and N atoms found within the lattice of hBN, 

single chains containing the two heteroatoms are relatively unstable and, under the experimental 

conditions used here, are readily removed. 
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Figure 14. A summary of DFT calculations, MD simulations, and AR-TEM of hole growth 

processes in monolayers of hBN. The blue dots represent N atoms whereas the red dots represent B 

atoms. a, Calculated bond lengths between various atoms in a triangular hole. b, The B–N bonds 

perpendicular to the hole edge are broken first and often bundles of atoms are then knocked off. c-f, A 

series of AR-TEM images taken over time. The images show the formation of a single chain followed 

by its fluctuation in position and ultimate removal. Scale bar, 1 nm. 
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To gain additional insight into the properties of single chains comprised of B and N atoms, efforts 

were directed toward determining whether single chains were formed during the merging of multiple 

holes. A series of consecutive TEM images that captured the merging of two holes is shown in Figure 

15. In general, such processes are too fast to be captured by TEM, as atoms are often ejected and/or are 

repositioned faster than the time elapsed between images; however, adsorbates can pin the hole and thus 

facilitate the capture of an intermediate state. As shown in Figure 15d, the merging of two holes resulted 

in a temporal bright contrast line, which may be due to the local fluctuation of the corresponding hBN 

edges and/or an accelerated ejection rate. Subsequent spreading of the fluctuating region resulted in the 

formation of single chains of B and N atoms inside the hole (Figure 15f) followed by the development 

of two triangular holes (Figure 15g). Loops and stretched chains containing a series of alternating B 

and N atoms were also observed (Figure 15h-k). Collectively, these observations indicate that single 

chains comprised of B and N atoms may be formed when holes in hBN coalesce. Note that some of the 

brighter spots at the edge of the triangular holes may be due to Si atoms. Although the materials 

described herein were not subjected to further chemical analysis, there does not appear to be any metal 

residue during the synthesis or transfer processes. Moreover, Si atoms are commonly observed in 

materials synthesized via CVD in quartz vessels. I conclude that the Si atoms may move around freely 

on the surfaces of hBN, but do not contribute to any hole growth. This conclusion was based in part on 

a report indicating that pure Si is unlikely to exhibit drilling or etching behavior in graphene. Apart from 

silicon or other metal atoms, oxygen containing species may contribute to hole formation mechanism 

because there are much oxygen and water vapor inside TEM even in UHV condition. To avoid oxygen-

mediated etching effect, defect-free regions where oxygen is hard to attach are carefully selected and 

observed from the start of forming a monovacancy. As electron beam is continuously irradiated on the 

hBN sheet as hole grows, oxygen atom may not be able to cling to the defect site of hBN. Therefore, 

only the knock-on damage is addressed in hole forming mechanism in this study. Even though a careful 

selection of defect-free regions, residual oxygen inside TEM may contribute to the hole growth speed 

or atoms migration. But the triangular hole shape was constantly maintained all in the experiments in 

any condition.  
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Figure 15. A series of TEM images showing how two triangular holes merge in a monolayer of 

hBN. The yellow arrows indicate single chains or loops containing B and N. Scale bar, 2nm.  
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As indicated in Figure 16, the migration of atoms along the edges of the holes in hBN was also 

evaluated over time. Although the B and N atoms may be predicted to move faster than the sampling 

time required for sequential imaging, a series of meta-stable configurations at the hole edges was 

observed. For example, the blue arrow in Figure 16b points to a series of missing B and N atoms sites 

whereas subsequent migration changed the shape of the hole as indicated in Figure 16c. In an earlier 

study, it was reported that electron beam irradiation does not induce the migration of B and N atoms in 

hBN129; however, the data presented here clearly show that the migration as well as reconstruction of B 

and N atoms on monolayer hBN is possible. Although the adding atoms to the hole might be derived 

from adventitious carbon adsorbates, it is more likely that B and N atoms migrate because the number 

of adding atoms and missing atoms in hBN sheet are same and the distance between adding atoms and 

missing atoms is shorter than that between adding atoms and carbon adsorbates. As such, holes may not 

grow but may become filled, at least partially, by the migration of B and N atoms over time. Collectively, 

these observations differ from those obtained with graphene. In graphene, various hydrocarbon 

adsorbates adhere to the surface and carbon impurities are often abundant so that the addition of carbon 

atoms to holes and/or migration is relatively more likely to occur under electron beam irradiation. While 

the lack of B and N sources intrinsically limits the addition of such atoms to holes in hBN, the migration 

of such atoms does appear to occur, albeit infrequently. 

 

 

Figure 16. A series of TEM images of triangular holes produced by the prolonged irradiation of 

hBN. The blue dots represent N atoms whereas the red dots represent B atoms. The migration of the B 

and N atoms is observed over time. Scale bar, 2 nm. 
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3.4. Conclusion 

The growth of triangular holes in hBN monolayers was observed using sequential AR-TEM imaging. 

When a monolayer of hBN was subjected to electron beam irradiation, a vacancy formed initially and 

grew while maintaining a triangular shape. Such shapes were observed even when such holes merged. 

Through a series of TEM images that were supported by DFT calculations and MD simulations, the 

mechanism for the growth of these holes appeared to involve the ejection of B and N atoms near the 

centers of the hole edges and also the ejection of bundles of atoms. Such processes involve the breaking 

of B–N bonds perpendicular to the hole edges and result in the formation of single chains containing B 

and N atoms. Multiple chains containing B and N were also observed when two holes merged together, 

while previous studies have focused primarily on the observation of a single chain of C atoms in holes 

in graphene. Moreover, the migration of B and N atoms in monolayers of hBN was observed using AR-

TEM, as indicated by edge reconstruction, although such phenomena occur less frequently when 

compared to analogous carbon-based materials (i.e., graphene). 
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Chapter 4. Screw dislocation-driven growth of double-spiral hBN 

4.1. Introduction 

HBN has emerged as a critical building block for 2D heterostructured devices in which hBN serves 

as a substrate, electron barrier, or passivation material130-132 . The controllable and large-scale synthesis 

of hBN films for use in scalable electronic devices has been achieved using CVD on various catalytic 

metals83, 133-135. Among metal substrates, Cu is most commonly used because of its abundance and its 

closely matched lattice constant with hBN that enables epitaxial growth, resulting in relatively high-

quality films136-137. It also facilitates hBN growth by catalyzing the decomposition of BN precursors138-

139. Furthermore, the relatively low solubilities of B and N in Cu allow a more controllable surface-

mediated growth135. Planar and lateral growth has been observed in many studies for the first layer of 

hBN135, 140-141. A monolayer domain then nucleates on the Cu surface and grows laterally by the 

attachment of BN atoms to its edges. Following the Wulff construction, the resulting 2D single crystals 

often adopt well-defined shapes, e.g., triangles135, 141 and hexagons140, 142, depending on the edge 

attachment energies and the chemical potentials of the constituent elements143-145.  

As reported in previous studies, the growth of hBN does not cease after the formation of a 

monolayer135, 142. However, a complete study of the growth mechanisms of multilayer hBN films has 

not yet been made. Only a few studies have discussed further growth processes. In one of the first 

studies on monolayer hBN grown on Cu, Kim et al. reported that the growth was not self-limited and 

multilayer islands were observed after extended growth periods135. They concluded that the growth 

mechanism changed to the Stranki–Krastanov model (island on layer) after the completion of the first 

layer. In contrast, based on the in situ observation of Cu lattice expansion during hBN growth, Kidambi 

et al. proposed that the second hBN layer grows beneath the first layer in an inverted wedding cake 

structure formed by the incorporation of B atoms into bulk Cu146. Ji et al. grew few-layer hBN domains 

and proposed that the growth of the subsequent layers originated from the same nucleation center as the 

monolayer domain thereby suggesting that growth of multilayers may be caused by defects147, similar 

to previous reports on graphene adlayers148-151. Here I show that multilayer hBN islands can also be 

formed from screw dislocations at APB6, 152-153. Unlike the single-spiral screw dislocation-driven growth 

in nanoplates and other 2D materials154-158, a pair of screw dislocations always exist along an hBN APB 

resulting in a double-spiral structure for isolated islands. Strained boundaries, a consequence of merged 

adjacent multilayer islands when the screw dislocations propagate in opposite directions, were 

commonly observed. Using a combination of TEM and DFT calculations, I propose what are the most 

stable strained features such as width, magnitude, and direction between spiral clusters at the atomic 

scale. 
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4.2. Experimental Section 

Synthesis of multilayer hBN spirals. hBN was grown on resolidified Cu by CVD at atmospheric 

pressure142. W foil (Alfa Asear; product no. 10417; thickness = 50 μm) was used as a supporting 

substrate for the Cu. Three pieces of Cu foil (Alfa Asear; product no. 13382; thickness = 25 μm) were 

cut to 2 cm × 1.5 cm and placed on top of the W foil. The stack was then loaded into a 1-inch quartz 

tube. The temperature of the furnace was first increased to 1000°C in 50 min and then to 1090°C in 10 

min under a constant Ar/H2 flow (200:5 sccm). Subsequently, the temperature was maintained at 1090°C 

for 30 min and then gradually decreased to 1075°C at a rate of 1°C/min. For hBN growth, ~8 mg of 

ammonia borane (Sigma Aldrich, 97%) was placed in a ceramic boat upstream of the heating zone and 

heated at ~85°C using a heating belt for 30 min. After the growth, the temperature was quickly decreased 

by opening the lid of the furnace. 

TEM characterization of the hBN spiral structure. CVD-grown multilayer hBN was directly 

transferred onto a TEM grid159. TEM analysis was conducted on an aberration-corrected TEM (FEI 

Titan3 G2 60-300) operated at 80 kV. Atomic resolution was successfully obtained at −21 μm ± 0.5 μm 

of spherical aberration (Cs) using a monochromator. The AR-TEM images were acquired with an 

exposure time of 0.2 s and an electron dose of approximately 5 × 105 e− nm−2s -1 (8 A/cm2). The DF-

TEM images were taken from a second-order diffraction spot to identify the multilayer structures 

because the intensity of the SAED and DF-TEM images improves with increasing number of layers 

when multilayers are stacked with high symmetry such as AA′ or AB stacking160-161. An objective 

aperture with a radius of 1.28 nm−1 was placed on the back focal plane of the diffraction spots to collect 

electrons diffracted from the crystallographic plane of interest.  

TEM image processing and simulations. For better visualization, some DF-TEM images were 

colorized by a lookup table using ImageJ. TEM image simulation was implemented in MacTempasX 

under experimental imaging conditions. 

Computational modeling. The DFT-based calculations within the VASP119-120 were performed to 

optimize the AA′-stacked hBN. The electronic exchange and correlation were described by the Perdew–

Burke–Ernzerhof162 functional in the generalized gradient approximation. The interaction between the 

valence electrons and ion cores was embodied in the projected augmented-wave method163-164 with a 

cutoff energy of 400 eV. The Grimme DFT-D2 method165 was used to modify the contribution of 

interlayer interactions. A supercell volume of 2.50 × 108.40 × 20.00 Å3 made the vacuum space 

sufficiently large to void image interference. Accordingly, 9×1×1 k-points were uniformly sampled in 

the Brillouin zone using the Monkhorst–Pack method166 to ensure an energy convergence of less than 

0.1 meV/atom. For simplification, the following optimizations and deductions are based on bilayer hBN: 

the bottom layer was fixed, and a uniformly distributed shear was imposed along the zigzag direction 

on the top layer. This is in accordance with the experimental observations. The shortest dislocation 
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length along the zigzag direction was one periodic unit (i.e., 2.50 Å). All structures were optimized 

using the conjugate gradient algorithm until the convergence reached 0.01 eV/Å.  

 

4.3. Results and discussion 

4.3.1. Synthesis and characterization of double-spiral hBN.  

Self-aligned monolayer hBN films with multilayer islands were grown on resolidified Cu by 

atmospheric pressure (AP) CVD. In the scanning electron microscopy image (SEM) shown in Figure 

17a, hexagonal multilayer islands are easily distinguished by their bright contrast. Multilayer islands 

tend to grow along defect lines (white lines in Figure 17a) with some as isolated individual islands while 

others are clustered and merged. The microstructures of these multilayer islands were elucidated using 

DF-TEM and AR-TEM. The DF-TEM image in Figure 17b reveals all the hexagonal multilayer islands 

grown along the defect lines are spiral-shape islands; an isolated multilayer island has a double-spiral 

structure while more complex spiral structures are formed when multiple islands are situated close 

together and merge along the defect lines. The one set of hexagonal diffraction spots (inset of Figure 

17b) indicates that all the monolayer hBN domains and multilayers in Figure 17b share the same 

orientation. While, the spiral contours of the multilayer islands are divided by defect lines, which means 

these defect lines are APBs that are created where two monolayer domains having different polarities, 

i.e. [BN]/[NB] (60 ° rotation angle difference), meet (Figure 18). I demonstrated that hBN monolayer 

single crystals grown by CVD primarily have the same orientation and comprise both [BN] and [NB] 

domains, with defect lines along the APBs142. Also note that the isolated spiral islands tend to be bigger 

in lateral size (~1 μm) than clustered ones and their hexagonal edges are usually aligned to the zigzag 

direction as verified by the orientation of diffraction pattern (inset of Figure 17b). This indicates the 

presence of alternating B- and N-terminated edges140. Whereas, clustered spiral islands show slightly 

mixed edges where they merge. Both left- and right-handed spirals were observed and found up to 7 

layers as far as I have searched.  

Figure 17c shows an AR-TEM image at the interlayer boundary region of a double-spiral multilayer 

island as indicated by the red box in Figrue 401b. The number of hBN layers was determined by etching 

the layers by prolonged electron-beam irradiation. The left and right regions were determined to be two 

and three layers respectively, confirming that the number of hBN layers increases by one for each 

rotation. The interlayer boundary was identified from the intensity profile (Figure 17d) across the blue 

line shown in the AR-TEM image in Figure 17c. Fast Fourier transforms (FFTs) of the bilayer and 

trilayer regions (insets in Figure 17c) indicate the same hexagonal structure with no difference in 

orientation. The layer boundary has zigzag termination as suggested earlier in Figure 17b that spiral 

islands grow along the zigzag direction. The stacking structure was evaluated from the orientation of 



33 

 

the triangular defects created by electron beam irradiation. Since the triangular hole defects of hBN 

have N-terminated edges88, 167-168, the opposite orientation of the triangular defects between adjacent 

layers indicates that the hBN layers were AA′-stacked (i.e., [BN]/[NB]/[BN]/[NB]; Figure 1E), which 

is the most energetically favorable stacking configuration in bulk hBN (37-38). The above analyses 

suggest that the double-spiral multilayer island was formed with AA′ stacking with two intertwined 

hBN domains, which spiral around each other one layer per step across the APB. 
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Figure 17. Spiral growth of multilayer hBN islands. a, SEM image of multilayer hBN islands grown 

on a resolidified Cu substrate. Both isolated (yellow dotted circle) and clustered (blue dotted rectangles) 

spirals exist along defect lines in monolayer hBN. b, DF-TEM image showing the spiral structure of 

the hBN islands. The islands have a double-spiral structure along APB. The inset shows the SAED 

pattern of the entire area of (b). c, AR-TEM image of the area indicated by a red square in (b). The red 

dotted line represents a layer boundary. Insets are FFTs over bi- and tri-layer region, respectively. d, 

Intensity profile along the blue line in (c). One layer increases for each spiral contour. e, The opposite 

direction of an electron beam-induced triangular hole defect in the neighboring layers demonstrates the 

AA′ stacking configuration of multilayer hBN. Scale bar (a), 1 μm. (b), 0.2 μm, (c), 2nm.  
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Figure 18. Multilayer hBN islands grown along APB. Contrast to seamless stitching of [BN]/[BN] 

(or [NB]/[NB]) domains, coalescence of [BN]/[NB] domains leaves defect line. The boundary of 

[BN]/[NB] is called APB. Scale bar, 1μm.  
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4.3.2. Growth mechanism of screw dislocation-driven double spiral hBN.  

Based on the results of TEM characterization in Figure 17, the mechanism for the double-spiral 

growth of isolated multilayer islands is inferred. Figure 19a shows a false-colored DF-TEM image of 

an isolated double-spiral multilayer hBN island which is schematically depicted in Figure 19b showing 

the layer numbers and the domain orientations. The formation mechanism of double-spiral hBN 

multilayers is illustrated in Figure 19c. At first, monolayer domains nucleate and then grow epitaxially 

along the (110) Cu surface by edge attachment (EBSD shows that the resolidified Cu has a surface 

orientation of (110)). Because of the prolific nucleation of hBN, there are numerous instances where 

the edges of neighboring domains meet. If domains coalescence with the same polarity ([BN]/[BN]), 

they can stitch seamlessly together, while those with different polarities ([BN]/[NB]) cannot, leaving 

exposed edges and an APB instead. When the APCVD growth of hBN continues after the monolayer 

has fully covered the Cu surface, an abundance of multilayer hBN spiraling islands is formed along the 

APBs, where a pair of dislocations is initiated and causes the hBN domains to simultaneously grow and 

extend over each other. Growth progressed by spiraling in the vertical direction as the BN atoms 

attached to the active edges, leaving slipped planes in the bottom layer (i.e., generating screw defects). 

Once each spiral reached the domain boundary, another layer grew on top of the existing one. This 

process continued perpetually. TEM observations have shown that the spirals climbed one layer per 

step, which is equivalent to one elemental Burgers vector of hBN. Because the top layer was the last to 

form and had the least time to grow, the multilayer islands formed pyramid-like structures in which the 

layers became progressively smaller while moving toward the top (Figure 19d). Each of the two 

spiraling domains grew independently across the boundary and retained its orientation, thereby 

maintaining the energetically favorable AA′ stacking at each side of domains to the APB. This is 

possible because of the unique double-spiral system that was initiated at the APB. Although spiral 

growth has been observed in other 2D materials, including graphene154, molybdenum disulfide155-156, 

and tungsten diselenide157, the growth process in these materials usually involves a single screw 

dislocation. In these cases, AA-like stacking configurations (which means AA, or AB, or with 

translation but not twisted in-between layers) were formed in a single spiral because the crystal 

orientation remained unchanged.  
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Figure 19. Growth mechanism of hBN spirals. a, False-colored DF-TEM image of multilayer hBN 

with a double-spiral structure along the APB (scale bar, 0.2 μm). b, Illustration of (a) with information 

of the number of layers and domain orientations. c, Illustration of growth mechanism of hBN spirals. d, 

Side view of top growth of multilayer island from the substrate.   
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Furthermore, it is verified that the spiral islands grow upward from the initial monolayer by spiraling 

around the axial dislocation located at the APB as BN atoms are attached to the active edges. It is 

experimentally demonstrated by comparing the orientations of triangular defects on each side of 

domains to 2|3 layer boundary as shown in Figure 20. This demonstration is possible due to the 

characteristic behavior of hBN defect growth under an 80 kV electron beam. (1) Under an 80 kV 

electron beam, atoms are knocked out leaving an N-terminated triangular hole defect88, 167-168. 

Hexagonal hole defects with B-terminated edges can be created at elevated temperature169 or at higher 

current density170, but in the TEM image condition it is confirmed that N-terminated triangular hole 

defects are always created with TEM image simulations using MacTempasX. (2) Since hBN has an AA′ 

stacking structure, the orientation of the triangular defects are rotated 180 ° between layers (refer to the 

schematic in Figure 17e). (3) Atoms are normally ejected from the bottom layer first, and the triangular 

defects grow layer by layer. Therefore, the smallest triangular defects are found in the top layer87. Based 

on these characteristics of electron beam-induced hBN defects, triangular defects for both top and 

bottom growth are illustrated in Figure 20. Note that the hBN layers are turned upside down when 

transferred onto the TEM grid (Figure 20a) by a direct transfer method159. Figure 20b, c show the 

features of the triangular defects corresponding to top and bottom growth, respectively, including the 

layer boundary of the double layer and trilayer, for a comparison of the orientation of the triangular 

defects in the AR-TEM image in Figure 20d. As illustrated in Figure 20b, c, the orientations of the 

smallest triangular defect on the left and right of the layer boundary should be the same as that in the 

case of top growth and opposite in the case of bottom growth. In Figure 20d, the empty regions with no 

atom contrast after the top layer is etched out are marked as purple triangles. The orientations of the 

purple triangles over the layer boundary are the same, which proves the top growth of hBN layers. There 

are exceptions such as small vacancies possessing the opposite orientation to the others like the green 

triangle marked in Figure 20D because of sputtering caused by the large momentum transfer so atoms 

exit the surface in the forward direction87, but this is very rare. 

Therefore, unlike bottom growth caused by the substrate’s catalytic effect, which results in the 

“inverted wedding cake” structure and is commonly found in few-layer graphene148-151, growth by screw 

dislocations occurs by a top growth mechanism in which the growth extends from the first layer and 

spirals upward around an axial dislocation, forming multiple layers of perpetuating steps, which agree 

to my recent study of spiral growth in graphene171. 
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Figure 20. Top growth of hBN spirals. a, Schematic of multilayer hBN grown upward from the Cu 

substrate. The hBN layers are turned upside down after being transferred onto the TEM grid. b,c, 

Schematic showing the features of triangular defects for top growth (b) and bottom growth (c). d, AR-

TEM image with triangular holes formed by prolonged electron beam irradiation. The image shows the 

area indicated by a red box in Figure 1b and corresponds to the area indicated by a green dashed box in 

(a). Scale bar, 5 nm. 
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4.3.3. Shear strain between hBN spiral clusters.  

Typically, hBN spiral islands cluster along defect lines as a result of the many screw dislocation sites 

situated along the APBs (Figure 17a). Interestingly, these clusters exhibited different features, as 

observed in the DF-TEM images in Figure 21a, b. Some clusters were smoothly connected (Figure 21a), 

whereas others showed dark lines in between merged multilayer regions (Figure 21b). The DF-TEM 

images in both Figure 21a, b were acquired by selecting a second-order diffraction spot in the SAED 

pattern. This should result in increased intensity of the DF-TEM image with increasing number of layers 

when the layers are well ordered without misorientation (AA′-stacked) by constructive interference of 

waves between layers160-161. Hence, the dark lines in Figure 21b indicate strained regions that have lost 

the high-symmetry stacking configuration (not AA′-stacked). The absence or presence of these dark 

lines in Figure 21a, b are related to the rotation direction of neighboring islands. When two neighboring 

islands grow in opposite spiraling directions (i.e., one left-handed and one right-handed), they coalesce 

smoothly because the encountering screw dislocations propagate in the same direction (Figure 21c). 

However, when they have the same spiraling direction (i.e., both are right- or left- handed spirals), the 

counter-directional propagation of screw dislocations at the merging region results in a strained 

boundary between them (Figure 21d), from the APB to merging apex.  
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Figure 21. Merging of hBN spirals and creation of strain. a, b, False-colored DF-TEM images of 

spiral clusters. Two islands smoothly merge in (a), whereas dark lines are formed between the merging 

regions of three islands in (b). c, d, Schematics showing the merging of two islands: (c) is for the case 

in (a), where the two spirals have opposite directions (right- and left-handed spirals) and (d) is for the 

case in (b), where the two spirals have the same direction (both left-handed). The right- and left-handed 

spirals are represented by black and white curved arrows, respectively, and the propagation directions 

of the screw dislocations are indicated by an arrow with the same color of the corresponding spiral 

direction. The black dashed lines are the APBs formed between the [NB] (blue) and [BN] (orange) 

domains. The solid black line indicates strain applied in-between two merging spiral islands. Scale bar, 

0.2 μm. 

  



42 

 

The regions with dark lines were further investigated at in the TEM at the atomic scale. An AR-TEM 

image of the white rectangular area including a dark line in Figure 22a is shown in Figure 22b. A strained 

region along the zigzag direction was observed, as indicated by the red dashed lines. The FFT (inset of 

Figure 22b) shows only one set of hexagonal diffraction spots, indicating that the strained structure was 

caused by a gradual shift in the relative atomic position between layers with no interlayer twisting172. 

Figure 22c shows a magnified atomic resolution image within the area indicated by a cyan rectangle in 

Figure 22b. The square pattern observed in the center of Figure 22c gradually becomes ‘wiggly’ moving 

away from the center before returning to the stable hexagonal configuration. By fitting the atomic 

models with different widths and magnitude of the shear strain (Figure 23 and Figure 24), I replicated 

the experimental dimensions of the strained region using a shear strain value of 1 unit cell of hBN (2.50 

Å) on the upper layer of AA′-stacked bilayer hBN, with a width of approximately 10 nm along the 

zigzag direction (Figure 22d). The simulated TEM image shown in Figure 22e closely resembles the 

experimental image. The strained region had a width of approximately 10 nm (including approximately 

2 nm of square patterns, 4 nm of wiggly patterns, and 4 nm of slightly misfit hexagonal patterns), 

consistent with the width of the dark lines observed in the DF-TEM image (Figure 22a).  
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Figure 22. Shear strain in hBN spirals. a, DF-TEM image of strained hBN (strain displayed by dark 

lines). b, AR-TEM image of the area indicated by a white box in (a). The inset shows the FFT over the 

whole area. The region highlighted by the red dotted lines along the zigzag direction shows a square-

like moiré pattern instead of the original hexagonal lattice of hBN with AA′ stacking configuration. c, 

Setting 1 hBN unit cell (2.50 Å) strength of shear strain along the zigzag direction makes similar feature 

with AR-TEM result of (b), including hexagonal, wiggle-like, and square-like parts over a width of ~10 

nm. d,e, Magnified AR-TEM image (d) and simulated image of DFT calculations (e) from the structure 

in (c) are well matched together. f, The increase in total energy (ΔEtotal) resulting from the shear strain 

depends on shear width. ΔEtotal is minimized when the shear width is 9.56 nm. Scale bar (a), 1 μm, (b), 

2nm.   
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Figure 23. Relation between shear width and the width of the square-like region. “x” is the width 

where shear is applied in the hBN bilayer with fixed shear strength of  1 hBN unit cell (2.50 Å) in y-

direction. The red arrows indicate the square-like region resulting from shear. Larger “x” results in a 

wider square-like region. 

 

 

Figure 24. Relation between shear strength and the periodicity of the square-like region. The 

periodicity of square-like region increases per 1 hBN unit cell (2.50 Å) of shear strain in the y-direction. 

Shear width (x) is fixed for the three models. 
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To obtain the general value of shear strain in an hBN spiral, the total increase in energy was 

calculated for the shear of a 1 hBN unit cell in AA′-stacked hBN. In the most stable configuration of 

hBN (i.e., AA′ stacking), shear causes elastic deformation and the formation of other stacking sequences. 

Therefore, the increase in total energy is comprised of two parts: the change in elastic deformation 

energy (ΔEED) and the change in van der Waals interaction (ΔEvdW) between adjacent hBN layers. 

ΔEtotal = ΔEED + ΔEvdW                                                (1) 

ΔEED can be expressed as follows: 

ΔEED = G × (a/b)2 × (h × b × a),                           (2) 

where G is the shear modulus, a is the length of the displacement of hBN along the zigzag direction, b 

is the width of the sheared region in the armchair direction, and h is the layer distance in hBN. Thus, 

(a/b) is the shear strain and (h * b * a) is the effective volume of the sheared material (Figure 25). 

The increase of total energy resulting from the vdW term (ΔEvdW) could be written as:  

ΔEvdWΔEvdW = α * b * a,                              (3) 

where α is the scaling factor, which is equal to the reduction in vdW energy per area. 

Thus, ΔEtotal can be obtained as follows: 

ΔEtotal = G * a3 * h/b + α * a * b.                          (4) 

ΔEtotal is minimized when 
∂∆𝐸𝑡𝑜𝑡𝑎𝑙

∂𝑏
= 0. Therefore, the width of the sheared region at equilibrium can 

be expressed as follows: 

beq = (G * h/α)1/2 * a.                              (5) 

To calculate beq, the shear modulus G and the scaling factor α are estimated theoretically. The value G 

was obtained using the definition in Eq. (2). Four different supercells of hBN were designed. The lattice 

constants are listed in Table S1. All supercells had same a and h but different b because they had 

different periodic units along the armchair direction. Shear was imposed along the zigzag direction with 

a displacement of 2.50 Å, which is equal to a. The value of h was set as the interlayer distance of hBN 

(3.40 Å). By only adjusting b, different values of ΔEED were obtained using DFT calculations and 

determined the average value of G to be 1036.48 meV/Å3.  
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Figure 25. Theoretical model used to calculate the increase in total energy caused by shear strain 

in the hBN system. 

 

 

 

Table 2. Lattice constants and shear modulus for the chosen supercells. 

  



47 

 

The scaling factor α represents the increase in energy per area caused by the reduction in the vdW 

interaction between adjacent hBN layers. To calculate α, a bilayer hBN containing a total of four N 

atoms and four B atoms is designed. The volume of the supercell was 2.50 × 4.33 × 20.00 Å3. The 

bottom layer was fixed, and the atoms in the top layer were slid in 0.1 Å steps until the distance was of 

a full hBN unit cell, 2.50 Å along the zigzag direction. The relation between the step distance and ΔEvdW 

is shown in Figure 26. 

The value of α can then be estimated as the average of the vdW energy difference with the step distance: 

𝛼 =
∑ ∆𝐸𝑣𝑑𝑤∗∆𝑥

∑ ∆𝑥
= 2.41 meV/Å2.                                           (6) 

The dependence of ΔEtotal, ΔEED, and ΔEvdW on the width of the sheared region are shown in Figure 22f. 

Having obtained G and α, b in the equilibrium state can be estimated as follows: 

beq = (α × h/α)1/2 × a = 95.6 Å = 9.56 nm.                                     (7) 

 

Figure 26. Relation between the vdW energy difference and step distance. The step increment is 

0.1 Å. The inset shows the model used to calculate α. 
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Based on Eq. (3), the total increase in the energy attributed to the shear strain can be obtained from b, 

i.e., the width of the shear region (Figure 22f). The width of the shear region corresponds to the local 

minimum in total energy and was calculated to be 9.56 nm, which is in agreement with the experimental 

results and image simulation model (Figure 22d, e). This explains why many of the observed dark lines 

had similar widths (9–10 nm). Thus, the merging of hBN spiral islands grown from counter-directional 

screw dislocations induces a shear stress over a distance of 9.56 nm between the islands, generating 

moiré patterns in the AR-TEM image and dark lines in the DF-TEM image. 

 

4.4. Conclusion 

In this study, growth was carried out at atmospheric pressure with 200:5 sccm of Ar:H2 flow,  

potentially leading to the overgrowth at the exposed edges of APBs. Since the gas flow rate is higher to 

low pressure CVD, there are more collisions between the gas molecules/precursor leading to more 

active precursor species to be absorbed at the exposed edges of APBs. Furthermore, the growth was 

controlled by feeding small amounts of precursor (8 mg of ammonia borane heated at 85 °C) to the 

system, fostering low supersaturation conditions which enable the growth of multilayers by screw 

dislocation. According to the Burton–Cabrera–Frank theory, crystal growth is dominated by 

dislocations at low supersaturation condition173-175. And dislocations are also known to form along the 

grain boundaries of merged monolayer domains, especially APBs of aligned hBN domains in this case. 

Therefore, the spiral growth extends from the first layer as the BN atoms attached to the active edges 

of APBs, and grow upward spiraling around the axial dislocation in the vertical direction. 

In summary, multilayered hBN spiral islands were grown along the APBs of aligned hBN on 

resolidified Cu substrates by APCVD at low supersaturation condition. Paired screw-dislocations 

initiated at the APBs resulted in intertwined spiraling hBN domains which climb one layer per step 

across the APB by growing from the active edges. The unique double-spiral structure means that the 

hBN multilayer preserves AA′ stacking configuration throughout the entire region unlike other 2D 

materials with a single spiral structure. Shear strains along boundaries between merged multilayer 

regions were commonly observed arising from neighboring islands with counter-directional screw 

dislocations. The strained regions, which are typically 9-10 nm wide, generate moiré patterns at the 

boundaries between adjacent multilayer spirals. This study provides understanding of the growth 

mechanism of spiral hBN multilayers and explains the shear strain between spiral clusters. 
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Chapter 5. Atomically sharp AA′/AB stacking boundary of hBN as one-

dimensional conducting channel 

5.1 Introduction 

In contrast to the wide spectrum of proposed applications for graphene as an active component in 

nanodevices, hBN is often regarded as a passive material where the range of applications is largely 

confined to substrates or electron barriers for 2D material-based devices due to its electrically insulating 

feature with a large bandgap ~5 eV176. Many attempts to lower bandgap of hBN by substitutional doping 

(e.g., with carbon or oxygen atoms) have been mostly ineffective because of the strong covalent BN 

bonds and chemical inertness177-179, while hBNC, in-planar compound of graphene and hBN synthesized 

by Gong et al. showed semiconducting property with tunable bandgap29.  

Stacking boundaries or phase boundaries of few-layer 2D materials were shown to possess unique 

properties which open new ways to control the performance of a material4, 23-26. For example, AB/BA 

stacking boundary with broad range in bilayer graphene showed insulating-like characteristics and 

reversible transport regimes24, and 558 line defect formed at a stacking boundary in graphene was 

reported to act as a metallic wire4. One-dimensional twin boundaries found in tungsten diselenide27, 

molybdenum diselenide28 also revealed bandgap changes. In the meantime Li, Q. C. et al. reported Grain 

boundaries in hBN such as the 5|7 and 4|8 configurations reduce its bandgap to ~3.4 eV and ~4.3 eV, 

respectively29. However, there is no further report on few-layer hBN stacking boundaries. Although the 

most stable stacking structure in bulk hBN is AA′ stacking98, 180, few-layer hBN can also exist as AB-

stacked, which is the next-most stable configuration according to theoretical calculations97 and have 

been experimentally observed in both chemically exfoliated181 and synthesized hBN99, 182.  

Herein, one-dimensional hBN conducting channel at AA′/AB stacking boundaries of few-layer hBN 

grown by CVD was studied through a systematic analysis using TEM. Using a combination of DF-

TEM and AR-TEM, both AB-stacked and AA′-stacked hBN regions were identified, enabling us to 

observe the boundary structure with atomic precision. The experimental TEM results were further 

complemented by image simulations, DFT calculations, and MD simulations to investigate the 

structural stability of specific stacking boundary configurations. The bandgap tuning of hBN with the 

atomically sharp twin boundaries was also confirmed theoretically and experimentally. In addition the 

formation mechanism of atomically sharp stacking boundaries was deduced by observations of 

extended Klein (EK) edges at the layer boundary of hBN. 
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5.2. Experimental section 

Synthesis and transfer of hBN films. Cu foils (Alfa Asear, product no. 13382, 25 μm thick) was used 

as growth substrates for the hBN films. The Cu foil was first dipped into dilute nitric acid for a few 

seconds and then rinsed with deionized water. It was next loaded into a 1 in. quartz tube and placed 

within the heating zone of the furnace. The furnace was heated to 1050 °C for 40 min and kept constant 

for another 2 h to anneal Cu and remove the surface oxide under a constant Ar/H2 flow of 200:20 sccm. 

After annealing the sample, 8 mg of an ammonia borane complex (Sigma-Aldrich, product no. 682098, 

97%) was placed in a ceramic boat upstream from the quartz tube, outside the heating zone, and heated 

this compound at 85 °C to begin hBN growth. The typical growth time needed to achieve a complete 

hBN film over the entire Cu substrate was 30 min. After the growth of the film was complete, the lid of 

the furnace was lifted to allow rapid cooling. The hBN was then transferred onto the TEM grid using 

the direct-transfer method159. That is, the hBN/Cu was directly transferred onto a quantifoil TEM grid 

without Poly(methyl methacrylate) by sticking them by isopropyl alcohol, and then Cu was etched out 

in sodium persulfate overnight. The hBN transferred onto the TEM grid was rinsed and dried at ambient 

conditions. 

TEM analysis. All TEM work was performed using an aberration-corrected FEI Titan Cube TEM (FEI 

Titan3 G2 60-300). The microscope provides sub-Ångstrom resolution at 80 kV with a monochromator 

and −21 ± 0.5 μm of spherical aberration (Cs). The DF-TEM images were taken from first-and second-

order diffraction spots of the hexagonal lattice of hBN using an objective aperture of a 1.28 nm−1 for 10 

s of acquisition time. The AR-TEM images were obtained in 0.2 s of exposure time at electron-beam 

densities around 5 × 105 e−nm−2. Individual atoms are imaged in white to get the actual atomic positions 

for direct interpretations of the atomic configurations. The STEM-EEL spectra were obtained in the 

same TEM system (FEI Titan3 G2 60-300) with Gatan Quantum 965 dual EELS system at 80 kV. The 

energy spread of a monochromated zero-loss peak was 0.15 eV in full-width at half-maximum at 0.01 

eV/ch energy dispersion. The convergence angle was 26.6 mrad. Each spectrum was acquired for 

0.00053s with 0.1 energy dispersion. Zero-loss peaks were subtracted to 2 eV due to the tails and plural 

scattering is removed using Fourier-log method using Gatan Digital Micrograph software. 

Image processing and simulations. Some TEM images presented in this study were processed to 

emphasize interesting features as described below. I applied false-color for better visualization using a 

color-look-up table and performed bandpass filtering with 40- and 3-pixel filtering for large and small 

structures, respectively, to make the image contrast even using the Image J software. Fourier filter built 

in Gatan Digital Micrograph was used to confirm the edge configuration. Inverse FFT (IFFT) image 

was obtained from the filtered FFT image after negatively masking all the hexagonal spots representing 

the hBN lattice in real space. The TEM image simulations were performed using MacTempasX under 

the experimental TEM imaging condition.  
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Computational methods. To explain the atomic and electronic structure of twin boundary of BN 

nanoribbons, the DFT calculation was performed within generalized gradient approximation (GGA) 

using the VASP183-185. The PAW potentials, as implemented in the VASP, were employed to describe the 

potentials from atom centers. The energy cutoff for the plane-wave basis was set to 400 eV in GGA. 

Geometries were optimized until the Hellman-Feynman forces acting on the atoms became smaller than 

0.01 eV/Å. To include weak vdW interactions among them, the Grimme's DFT-D2 vdW correction was 

adopted based on a semi-empirical GGA-type theory123. For the Brillouin-zone interaction a (9x1x1) 

and (20x1x1) grid was used for atomic relaxation and band states calculation in Gamma centered special 

k-point scheme, respectively. The super cell of 558, 44 and 6′6′ configuration is consisting of 26 boron, 

28 nitrogen and 4 hydrogen atoms. 

To investigate the temperature dependence of the structural deformation behaviors of twin boundary of 

BN nanoribbons, MD simulations was performed at temperatures of 10 ~ 1000 K. NVT-MD simulations 

was performed using the LAMMPS with a ReaxFF potential186 for 40 ps.  
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5.3. Results and discussion 

5.3.1. Synthesized few-layer films of hBN with AA′ and AB stacking structures 

A few-layer hBN films was synthesized on a copper substrate using CVD and transferred them onto 

TEM grids140, 187. First, DF-TEM was performed on oriented, few-layer hBN films to determine their 

structural characteristics. Figures 501a, b are DF-TEM images obtained using a second-order (Φ2) and 

first-order (Φ1) spot from a SAED pattern (inset of Figure 27a). Triangular, multi-layered hBN islands 

are grown on continuous monolayer hBN film with the same orientation. The intensities of the islands 

acquired from diffraction spot Φ2 increase with the number of layers, regardless the AA′ or AB stacking 

structure (Figure 27a). However, the intensity obtained from diffraction spot Φ1 is determined by the 

stacking structure (Figure 27b). In Figure 27b, some regions show brighter contrast with the increasing 

number of layers, indicating that they have the AA′ stacking structure, while the darker regions despite 

having the same number of layers as the AA′-stacked region have the AB stacking structure. The darkest 

region outlined with white solid line represents an ABC-stacked region because all the diffracted waves 

interfere destructively and cancel out each other for this region. However, DF-TEM hardly verifies that 

an AA′-stacked region is not AA-stacked or that an AB-(AC-) stacked region is not an AB′-(AC′-) 

stacked region since those images have similar diffraction conditions99. Hence, the stacking structures 

were confirmed directly using AR-TEM images (Figure 27c-e). The AA′-stacked bilayer region shows 

the same hexagonal lattice contrast but brighter than the monolayer region, while the AB-stacked bilayer 

region reveals a triangular shape with alternating contrast188-189 (Figure 27c). The AA′ and AB stacking 

were further confirmed by the relation of orientation of the triangular defects in two different layers. 

Triangular hole created by 80 kV electron-beam irradiation always show N-terminated edges88, 167-168. 

Thus, triangular defects in adjoined layers have the same orientations in AB stacking ([BN]/[BN]) 

(Figure 27d), while those in AA′ stacking ([BN]/[NB]) point in opposite directions (Figure 27e). 

Therefore, a combination of DF-TEM and AR-TEM clearly proves that AA′- and AB-stacked, few-layer 

hBN films have been grown in this CVD system.  

Recent experimental works have suggested the possibility of AB-stacked hBN99, 181-182 but none 

reports coexistence of AA′- and AB-stacked hBN in one continuous island. Note that coexistence and 

even perfect stitching of AA′ and AB stacking structures of the hBN islands is shown in the upper right 

part of Figure 1b. Many studies have reported the existence of transition regions without high symmetry 

structures between different phases or stacking structures103-105.  

Transition regions which lost high symmetry stacking structure (neither AA′ nor AB) appear dark in 

DF-TEM images acquired from the second-order diffraction spot, Φ2 (refer to Figure 8), but 

surprisingly no dark line was detected between the AA′ and AB stacking structures in our DF-TEM 

image in Figure 27a (yellow dash-lined regions in Figure 27b). This represents an abrupt change of 

stacking structure without any transition region between AA′ and AB stacking. The stacking boundary 
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was further studied under high magnification. Conditions whether it forms the atomically sharp stacking 

boundary or broad transition region will be discussed in the Chapter 5.3.4.   

 

Figure 27. TEM images of few-layer AA′- and AB-stacked hBN films. a,b, False-color DF-TEM 

images of triangular, few-layer hBN islands from (a) a second-order diffraction spot [Ф2, inset of (a)] 

and (b) a first-order diffraction spot [Ф1, inset of (a)]. In (a), regions with one layer (1L) and two layers 

(2L) are identified, while different stacking structures (AA′, AB, etc.) are shown in (b). The outer part 

of the rim on the right side of each image is an amorphous-carbon mesh on the TEM grid. c-e, AR-TEM 

images of AA′- and AB-stacked hBN. Triangular defects grow in the same orientation in AB-stacked 

hBN (d) and in the opposite direction in AA′-stacked hBN (e). Scale bar (a,b), 0.1 μm, (c-e), 1 nm. 
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5.3.2. Twin boundary at the AA′ and AB stacking boundaries 

Figure 28a is an AR-TEM image taken from the white-boxed area in the false-color DF-TEM image 

in Figure 28b, which has no dark line between islands having different stacking structures. The 

magnified atomic images on each side of the insets in Figure 28a clearly show the AA′ and AB stacking 

structures on the left and right sides of the figure. Both sides contain three layers, as confirmed by 

counting the etched layers after prolonged electron-beam irradiation (Figure 29). In addition, the “ABA” 

stacking structure on the right side instead of an “ABC” structure is proved by the contrast difference 

in the TEM image simulation (Figure 30). Hence, the tri-layers of AA′A- and ABA-stacked hBN are 

stitched together perfectly, forming an atomically sharp stacking boundary along zigzag direction. 

Figure 28c displays the stacking boundary in a false-color image of the black-boxed region in Figure 

28a. 

 

 

Figure 28. Atomically sharp AA′/AB stacking boundary. a, AR-TEM image of the stacking 

boundary of a tri-layer ABA/AA′A-stacked hBN film, from the white-boxed region in (b). b, False-

color DF-TEM image. c, False-color image of the black-boxed region in (a). d,e, Atomic models of the 

stacking boundary of AA′A/ABA-stacked hBN (d) and of the middle layer A′/B (e) after removing two 

“A” layers each from the top and bottom. Boron and nitrogen atoms are represented by pink and blue 

spheres, respectively. f, Inverse fast Fourier transform image displays the 6′6′ configuration at the 

boundary. Scale bar in (a), 1 nm and (b), 0.1 µm.  
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Figure 29. AR-TEM image of the same region as in Figure 28a after tens of seconds of electron-

beam irradiation. A few layers in some regions are etched out by the electron beam. Raw image (a) 

and colorized image (b) for better visualization of the numbers of layers. Colors change from green to 

blue as the number of layers decreases from 3 L to 0 L (vacuum) in each of the AA′- and AB-stacked 

regions. Both the AA′- and AB-stacked regions are tri-layers. Scale bar, 1 nm. 

 

Figure 30. AR-TEM image from Figure 28a and simulated images of the ABA and ABC stacking 

configurations. The ABA stacking shows stronger contrast in positions where three atoms are 

superimposed, weaker contrast for two atoms, and faint for one atom at the given position. There is no 

contrast difference for ABC stacking because two atoms are piled up at all positions. The AR-TEM 

image matches the ABA stacking configuration. Scale bar, 2 nm. Boron and nitrogen atoms are 

represented by pink and blue, respectively. 
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To determine the atomic configuration at this boundary, a corresponding atomic model is made 

(Figure 28d) and subtracted two “A” layers, one each from the top and bottom, leaving only the middle 

A′ and B layers (Figure 28e). This shows that the boundary acts as a mirror plane for the A′ and B 

regions, i.e., a twin boundary. The deduction of the atomic configurations in Figure 28d, e starts from 

the four possible structures of AA′A/ABA stacking boundary along zigzag direction (Figure 31). 

Depending on the orientation of [BN] or [NB] and the stacking order of AB or AC, the AA′A/ABA 

stacking boundary in zigzag direction can have four different types of twin boundaries. They are denoted 

by (1) 6′6′-N, (2) 44-B, (3) 6′6′-B, and (4) 44-N, where 6′6′ (44) represents an oblong hexagonal 

(rhombal) ring and -N(-B) denotes the N(B) mirror plane at the twin boundary. The 6′6′-N (44-B) twin 

boundary is formed at the center of an A′/B (A′/C) layer when the first layer A has [BN] orientation. 

The 6′6′-B (44-N) twin boundary is formed at the center of the A′/C (A′/B) layer when the first layer A 

has the [NB] orientation.  

Two verification steps were performed to determine which of the four possible structures best fit the 

observations shown in Figure 28a. First, the orientation of the N-terminated triangular defect 

highlighted in yellow in Figure 28a matches that of either (1) 6′6′-N or (2) 44-B. In addition, the 

intensity profile across the twin boundary (Figure 32) proves that the 6′6′-N structure matches the 

experimental result shown in Figure 28a. Therefore, an atomically sharp twin boundary, with N atoms 

as the mirror plane and novel oblong hexagons (6′6′), is formed at the middle layer of the AA′A/ABA 

stacking boundary (Figure 28e). IFFT image (Figure 28f), obtained by inversing the filtered FFT after 

removing the typical hBN lattice information, also shows the 6′6′ configuration (Figure 33). 
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Figure 31. Atomic structures of the four possible stacking boundaries. Each top-view image is from 

the middle layer of the stacking structure represented below it. A 6′6′-N (44-B) twin boundary is formed 

at the center of an A′/B (A′/C) layer when the first layer A has the [BN] orientation. A 6′6′-B (44-N) 

twin boundary is formed at the center of an A′/C (A′/B) layer when the first layer A has the [NB] 

orientation. Boron and nitrogen atoms are represented by pink and blue spheres, respectively. 
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Figure 32. Intensity profiles along the blue and red lines in the experimental image (left) and the 

two simulated images (middle and right) of the 6′6′-N and 44-B structures, respectively. Yellow 

triangles are drawn by connecting three brighter sites of hexagonal lattice to highlight the difference 

between intensity of the 6′6′-N and 44-B structures. Boron and nitrogen atoms are represented by pink 

and blue spheres, respectively. 
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Figure 33. The 6′6′ configuration in a Fourier-filtered image at the A′/B boundary. Since it is not 

easy to directly observe the 6′6′ configuration sandwiched within three layers, additional filtering was 

applied to extract the 6′6′ configuration from the original image (Figure 28a). IFFT image was obtained 

by inversing the filtered FFT after removing the typical hBN hexagonal diffraction spots. The resulting 

image thus shows only the mismatched lattice from a typical hBN lattice. The result confirms the 

formation of the 6′6′ configuration at the A′/B boundary. 
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5.3.3. 6′6′ vs. 558 configurations: DFT, MD, and image simulations 

The N atoms at the mirror plane of the 6′6′-N structure are doubly coordinated with one dangling 

bond. This obviously raises a question about the stability of the structure. Using DFT calculations the 

stabilities of the four possible atomic configurations at the twin boundary were tested (Figure 34): (1) 

6′6′-N, (2) 44-B, (3) 6′6′-B, and (4) 44-N. As a result, the 6′6′-N configuration changes into 558-N (two 

pentagons and one octagon), a fully-coordinated, stable structure, with the uncoordinated N atoms 

bonding together (Figure 34a, c). There is no shift in the positions of the atoms on the left and right, 

except for a slight in-plane movement (<1 Å) of the uncoordinated N atoms in the middle layer. The 

44-B structure (Figure 34b) also changes to 558-N by shifting all atoms on the right side of the boundary, 

as indicated by the red arrow marked in Figure 3c. Similarly, the stable form of 6′6′-B (Figure 34d) 

becomes 558-B (Figure 34f), with the uncoordinated B atoms at the mirror plane saturating each other. 

The structure 44-N (Figure 34e) could not retain the original bonding due to large distortions, with the 

atoms kicked from the plane. The 558 structure is more stable than 6′6′ for the monolayer, bilayer, and 

trilayer cases.  

Nevertheless, the intensity profiles along the lines at the AA′A/ABA stacking boundary in the 

experimental (purple), simulated 6′6′ (red), and simulated 558 (olive) images indicate that the structure 

observed by TEM are more likely 6′6′ configuration than 558 as shown in Figure 35a. There are 

distinctive height differences between the peaks in the experimental and simulated 558 image, whereas 

little difference between the experimental and simulated 6′6′ images. The height differences of the peaks 

in the 558 configuration are thought to be due to differences in the electron densities in the pentagon 

and octagon regions. The same analysis were performed but in the opposite defocus to prove the 

tendency of line profile is consistent with defocus condition (Figure 35b).  
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Figure 34. Illustration of the atomic configurations at a twin boundary by DFT calculations. The 

optimized structures (c,f,g) of the initial four possible structures at the stacking boundary (a,b,d,e) show 

the construction of the 558 configurations as a twin boundary. The symbols -B(-N) stand for B(N) atoms 

in the mirror plane at the twin boundary. Boron and nitrogen atoms are represented by pink and blue, 

respectively.  

 

 

Figure 35. a, Intensity profiles along the AA′/AB stacking boundary in the experimental images 

(purple), simulated images of the 6′6′ (red) and 558 (olive) configurations. b, Intensity profiles along 

the AA′/AB stacking boundary in the experimental image and simulated images of 6′6′ and 558 

configurations at the opposite defocus to (a). In this representation, atoms appear black.  
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To explain the discrepancy between the results of the DFT calculations and the experimental 

observations, MD simulations were performed monitoring N-N atom distances along the 558-N twin 

boundary at temperature of 10 K, 100 K, 300 K, and 1000 K. Figure 36a is one representative result 

among 400 frames of the MD simulation performed at 100 K with varying N-N atom distances. The 

measurements of the N-N bond length over 400 frames at 10, 100, 300, and 1000 K are summarized in 

Figure 36b. The results of MD simulations at 10 K accord with DFT calculations that the 558 

configuration is preferred. As temperature increase to 100 K, a few 558 configurations break their N-N 

bonds and turn to 6′6′ configuration. At temperature of 300 K, almost all of N-N bonds are broken to 

have 6′6′ configuration. The results of MD simulations with raising temperature from 0 K to 300 K 

suggest the thermal energy delivered to the system serves to break N-N bonds of 558 configurations. 

Additional thermal energy in the system with a higher temperature, for example 1000 K, make 6′6′ 

configurations more vigorous. The experimental observations agree with the results of MD simulations 

at temperature of 300~1000 K, which covers the experimental temperature conditions. Interswitching 

of 558 and 6′6′ configurations (but dominant 6′6′) is further confirmed experimentally by IFFT images 

(Figure 37).  
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Figure 36. A summary of MD simulations of the structure of a 558-N twin boundary at 10, 100, 

300, 1000 K. a, A frame selected from the 400 steps of the MD simulations at 300K shows varying N-

N atom distances. b, Measurements of the N-N atom distances (marked in black arrows in (a)) over the 

400 frames of MD simulations at 10, 100, 300, and 1000K are summarized. The points indicated by 

blue, green, and pink dotted lines represent the distance between N-N atoms of 1.7, 2.5, and 3.3 Å along 

the twin boundary, respectively.  

 

 

Figure 37. Interswitching of 558 and 6′6′ configuration. IFFT images at twin boundary from two 

different frames show the interswitching of 558 and 6′6′ configurations. 
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There is little structural difference between the 558 and 6′6′ configurations. However, there is a 

significant difference in electrical properties because of the presence of free electrons (dangling bonds). 

Figure 38 shows the electronic band structures calculated for both the 558-N and 6′6′-N hBN 

nanoribbons. N atoms along the twin boundary are fixed and the other atoms are fully relaxed through 

the structure for the calculation of band gap. The bandgap of the 558-N configuration is 3.44 eV, while 

the bandgap of 6′6′-N is zero (Figure 38a, b). The red circles in the band structures represent 

contribution of N atoms in twin boundary region. The bandgap of hBN nanoribbon decreases as the 

distance of N-N bond of 558 configuration increases from 558-N to 6′6′-N configuration (Figure 38c). 

The calculated band structure for 558-B hBN nanoribbon also shows a reduced bandgap of 2.64 eV 

(Figure 39).  
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Figure 38. Band structure of hBN nanoribbons with 558-N and 6′6′-N configurations at a twin 

boundary. a,b, The atomic model and corresponding band structure for the 558-N (a) and 6′6′-N (b) 

configurations, respectively. The red circles in band structure represent contribution of N atoms in twin 

boundary region. Boron, nitrogen, and hydrogen atoms are represented by pink, blue, and cyan spheres, 

respectively. c, Conduction and valence bands to varying N-N atom distance from 558-N to 6′6′-N along 

the N atom twin boundary.  

 

 

Figure 39. Atomic model of an hBN nanoribbon with a 558-B configuration and its associated 

band structure. The red circles in band structure represent the contribution of B atoms in twin boundary 

region. Boron, nitrogen, and hydrogen atoms are represented by pink, blue, and cyan spheres, 

respectively. 
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The bandgap at twin boundaries was experimentally assessed using EELS to compare to the 

calculated value. General instruments for bandgap measurement by optical methods offer high energy 

resolution but very poor spatial resolution (~μm)152, 190-193. Spatial resolution using optical methods is 

clearly insufficient to measure bandgap of one atom-wide AA′/AB stacking boundary and ~50 nm in 

length. Meanwhile EELS has proved to be a powerful tool for measuring bandgaps194-197. The bandgap 

can be assessed by applying a linear fit and directly reading the cross point between the extrapolated 

line and the bottom line from the first peak after zero-loss peak (ZLP) in EELS197. EEL spectra were 

acquired using Gatan Quantum 965 dual EELS system with energy resolution of 0.15 eV. The bandgap 

was assessed using linear fit method after subtracting ZLP and eliminating plural scattering using 

Fourier-log method. The limit of used EELS system is that ZLP needs to be subtracted to 2 eV due to 

the tail, thus a bandgap less than 2 eV is hardly assessed exactly. But still, a quite notable difference in 

EELS edge was found at AA′/AB stacking boundaries compared to pristine hBN. 

Figure 40 shows four EEL spectra acquired near atomically sharp AA′/AB stacking boundary. The 

black EEL spectrum is from clean and pristine hBN, orange and green EEL spectra are from pristine 

hBN covered with hydrocarbon adsorbates on the surface, and red EEL spectrum is from the atomically 

sharp stacking boundary of hBN. The cross points where the extrapolated lines (blue dashed lines) meet 

with the bottom lines at the black, orange, and green spectra are all around 5eV, which represent the 

bandgap of pristine hBN. However, the red EEL spectrum acquired from the atomically sharp stacking 

boundary shows gradual decrease in the intensity of the front edge without steep falling to x-axis of 2 

eV. Small intensity around 2 to 4 eV turning up at the orange and green EEL spectra (blue circled region) 

is due to the unavoidable amorphous hydrocarbon on the surface of hBN, which can be judged by the 

appearance of carbon K-edge around 300 eV at high energy loss region. To prevent misinterpretation 

of EELS signal in front of 5 eV, areas with small amount of hydrocarbon were carefully selected. The 

sample was heated up at 200 °C for a few hours and vacuumed overnight in ultrahigh vacuum TEM 

system. In addition, EEL spectra were acquired for the minimal time of 0.00053s per one position to 

minimize the deposition of hydrocarbon on the surface by intense electron beam (even in the high 

vacuum system) and overlap of the positions was avoided. Nevertheless, a small amount of deposition 

of hydrocarbon was unavoidable. The signals from 2-4 eV in the orange and green EEL spectra are 

distinctive but still the falling slopes are not changed and the cross point to x-intercept are 5 eV, even 

with the higher amount of hydrocarbon compared to that detected at the stacking boundary, which can 

be evaluated by the peak intensity ratio of B-K edge (~200 eV) to C-K edge (~300 eV). In contrast, the 

red EEL spectrum acquired at the stacking boundary shows lower slope with gradual decrease to 2 eV 

or further. Another example of line scanning EELS across the stacking boundary (Figure 41) also shows 

the gradual decrease of the front edge of peak to 2 eV at the stacking boundary.    

The EELS results at the stacking boundaries could be from the 6′6′-N configurations with the 
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bandgap of 0 eV, or 558-B (N) configurations with 2.64 (3.44) eV bandgap, or mixed 6′6′ and 558 

configurations included within converged electron beam. Since ZLP has been subtracted to 2 eV, the 

exact onset of signal where the delayed front edge starts before 2 eV is not read. But, at least, the reduced 

bandgap at the atomically sharp stacking boundary was experimentally detected by using EELS.  

Considering that a pure hBN nanoribbon has a wide bandgap ~ 5 eV176, the twin boundary can act 

as an atomically thin electronic channel. The present observations of dominance of 6′6′ configuration 

at twin boundaries open a new possibility for single-hBN nanoelectronic devices. Lahiri et al. have 

reported that this type of grain boundary in graphene can act as a metallic wire4. Similarly, the 

AA′A/ABA twin boundary in hBN can be a one-dimensional conducting channel embedded in the 

original insulating hBN, which is expected to be much more effective than a metallic wire in a 

conductive graphene sheet. 
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Figure 40. Bandgap measurement at an atomically sharp stacking boundary by EELS. Four EEL 

spectra are deconvoluted by subtraction of zero-loss peak and plural scattering from the original spectra. 

The black EEL spectrum is from clean and pristine hBN, orange- and green EEL spectra are from 

pristine hBN covered with hydrocarbon adsorbates on the surface, and red EEL spectrum is from the 

atomically sharp stacking boundary of hBN. The blue dotted lines depict extrapolation of the peaks to 

x-axis. Signals marked with blue circle around 2-4 eV arise due to the unavoidable hydrocarbon on 

surface of the sample. 
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Figure 41. EELS line profile across an atomically sharp AA′/AB stacking boundary. On the 

contrary to the other EELS edges that have steep slopes to meet x-intercept around 5 eV, the front edges 

from the stacking boundary gradually decrease to 2 eV region with lower slopes. Space of each scan is 

1.5 nm.  
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5.3.4. Stability of exposed and sandwiched 6′6′ twin boundary 

Atomically sharp AA′/AB stacking boundaries are commonly found and clearly visible in tri-layer 

case as shown in Figure 42a. Atomically sharp AA′/AB stacking boundary in bi-layer, where one side 

of twin boundary should be exposed to ambient condition, are found but the “bare” 6′6′ configuration 

is not revealed under TEM since the boundary is always covered by hydrocarbon as shown in Figure 

42b. This is because such “defect” line imbedded in perfect hBN hexagonal lattice has higher chemical 

reactivity. This suggests that a twin boundary sandwiched in the middle of a tri-layer, and thus protected 

by the top and bottom layers is much more stable than that lying in a bi-layer, wherein the twin boundary 

is exposed to ambient conditions. This does not mean monolayer 6′6′ twin boundary cannot exist alone. 

According to DFT calculations, the formation energy of hBN sheet embedding atomically sharp twin 

boundaries (558-N, 558-B) are all stable in mono-, bi-, and tri-layer. And MD simulations for 558 

configuration in mono- and tri-layer turned to 6′6′ configuration favorably. In other words, 6′6′ twin 

boundary itself is theoretically stable to exist alone, if no foreign atom is wandering around as the 

system of simulations. In the real system, however, the exposed side was always covered by 

hydrocarbon. Therefore, the 6′6′ twin boundary is only clearly observable in tri-layer or more layer if 

sandwiched, since the top and bottom layer are protecting the twin boundary from the attachment of 

hydrocarbon outside onto the surface.    

Next, the stability of sandwiched 6′6′ twin boundary was further studied under electron beam. Figure 

43a-c show defect growth on the tri-layer AA′A/ABA staking boundary region by prolonged electron 

beam irradiation and Figure 43d-f are IFFT images of Figure 43a-c using the same method described in 

Figure507 for better visibility of the 6′6′ twin boundary. Note that defect growth speed in pristine AA′- 

or AB-stacked region are much faster than the atomically sharp stacking boundary region. Before I 

detect etching out of the protecting layers and see exposed 6′6′ configuration in the stacking boundary, 

the sheet was torn out due to the faster growth of defects in pristine AA′- or AB-stacked region. The 

stacking boundary region was undamaged under electron beam over 7 min. Similarly, in Figure 44, 

triangular defect growth at stacking boundary is slower than defect growth within pristine grains. A few 

atoms are sputtered out from the boundary region in this case, but still immature to observe exposed 

6′6′ configuration since still one protecting layer is hindering to resolve the bare 6′6′ configuration. 

Triangular pits in IFFT images are from the defects sputtered, not representing a distortion of 6′6′ 

configuration. 6′6′ configurations near the defects along the stacking boundary remain stable. 

To summarize, the sandwiched 6′6′ twin boundary is very stable for a long time of electron beam 

irradiation and even when some atoms are knocked out of the surface, compared to AA′ and AB-stacked 

intra-grain regions. However, I am being very careful to explain the reason of retarded defect growth in 

twin boundaries. This may be another evidence that the 6′6′ boundary acts as one-dimensional electron 

channel. But, interpretation of interaction of electron beams with electron clouds in atoms at the 6′6′ 
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boundary is not simple to conclude a definitive answer. It needs further study for deeper understanding 

of electron beam damage mechanism of materials under electron beam irradiation. 

 

 

Figure 42. Atomically sharp stacking boundary in tri-layer and bi-layer hBN. a, Another example 

of a tri-layer AA′A/ABA stacking boundary. The stacking boundary is clearly visible. b, AA′- and AB-

stacked hBN bi-layers stitch together perfectly without any transition region, although the boundary is 

covered by adsorbates on the surface (white-boxed area). Scale bar, 2 nm.   
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Figure 43. Defect growth by prolonged electron beam irradiation at tri-layer AA′A/ABA stacking 

boundary. False-colored AR-TEM images (a-c) and IFFT images (d-f) of defect growth over time. The 

twin boundary with 6′6′ configuration pointed by white arrow has remained stable while the defects 

grow fast within AA′- and AB-stacked grains.  
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Figure 44. Defect growth by prolonged electron beam irradiation at AA′/AB stacking boundary. 

False-colored AR-TEM images (a,b) and IFFT images (c,d) of defect growth over time. A few atoms 

are sputtered out from the stacking boundary but the 6′6′ twin boundary remains its line between AA′- 

and AB-stacked hBN. White arrows point a 6′6′ twin boundary. 
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5.3.5. Formation mechanism of atomically sharp twin boundaries and EK edges 

Atomically sharp stacking boundaries are commonly found in the hBN samples synthesized as 

described in experimental section, but some have a wide transition region in an AA′/AB stacking 

boundary. The probability of finding stacking boundary with an abrupt change or with a transition 

region was about half-and-half (Figure 45). I elicit that the formation of atomically sharp stacking 

boundaries is determined by certain combinations of AA′ and AB stacking during crystal growth from 

observations of EK edges at monolayer/bilayer boundaries of an AB-stacked region, as shown in Figure 

46.  

Figure 46a is an AR-TEM image of the hBN monolayer (1L) and bilayers (2L) with the layer 

boundary (1|2-layer boundary). The atomic configurations of the blue-boxed area containing the 1|2-

layer boundary and the green-boxed area ([NB]-AC bilayer containing one edge of a triangular defect) 

are closely analyzed to confirm the edge configuration in Figure 47. Compared to the relative positions 

of the hexagonal and triangular patterns (orange lines) along bright contrast at the 1|2-layer boundary, 

the experimental image matches with the AC stacking structure. Thus, it is confirmed that the bilayer 

region in Figure 46a has [NB]-AC stacking. In addition, with the contrast difference at the positions 

here atoms exist or not along the boundary, the hexagonal edge is determined as ‘closed’ as usual, or 

‘open’ also known as the EK edge. In Figure 46b, there is no contrast in the area marked by red dotted 

circles at the 1|2-layer boundary, whereas the white contrast is obvious where the N atoms exist at the 

edges of the triangular defect. The atomic model of the 1|2-layer boundary in Figure 46b is displayed 

with the stacking notation (Figure 46c), and the first layer ([NB]-A) is removed (Figure 46d). The result 

shows that the edge of the second layer ([NB]-C) is not terminated by N atoms, which is also known as 

an EK edge198-199. The EK edge was predicted as the fourth type of periodic edge, after the zigzag, 

reconstructed 5-7, and armchair edge for graphene200 but there has been no report of EK edge for hBN. 

Now, suppose that a second layer of [BN]-A′ is grown on top of the monolayer region with AA′ stacking 

(the upper part of Figure 46e). If it meets the EK edge of the second layer of [NB]-C (the lower part of 

Figure 46e), a 6′6′-B twin boundary is created. 
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Figure 45. Probability of finding stacking boundary with an abrupt change or with a transition 

region. Yellow marked areas indicate atomically sharp stacking boundaries, where show no dark line 

in DF-TEM images acquired from the second order diffraction spot (Φ2). And red marked areas present 

stacking boundaries with transition regions with dark lines in Φ2 DF-TEM images. Among 29 regions, 

14 atomically sharp stacking boundaries and 15 stacking boundaries with transition regions were 

observed (almost half-half probability).  
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Figure 46. EK edge at a 1|2-layer boundary in AB-stacked hBN. a, AR-TEM image of mono- and 

bilayer hBN with an AB stacking structure. The white arrow points to the 1|2-layer boundary. Scale bar, 

1nm. b, Experimental images from the blue-boxed (1|2-layer boundary) and green-boxed area (a 

triangular defect) inside (a), and the corresponding simulation image and atomic model. c-e, Formation 

mechanism of a twin boundary from observations of an EK edge. Boron and nitrogen atoms are 

represented in pink and blue, respectively.  
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Figure 47. Comparison of experimental AR-TEM image with simulated images of open- and 

closed-edge conformations at the 1|2-layer boundary of AB-stacked hBN. The experimental image 

matches the open (EK) edge conformation. Boron and nitrogen atoms are represented by pink and blue 

spheres, respectively. 
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Note that a 6′6′-B twin boundary is formed only for the combination of AA′ and [NB]-AC stacking, 

as described in Figure 48. HBN has two types of EK edges: a B-atom EK edge for [NB]-oriented hBN 

and an N-atom EK edge for [BN]-oriented hBN (Figure 48a, d). The B-atom EK edge sits on the N 

atoms below when the structure has [NB]-AC stacking (Figure 48b, left), while it terminates at the 

hollow sites of the hexagonal lattice of the first layer when it has [NB]-AB stacking (Figure 48c, left). 

If the B-atom EK edge of the second layer meets the second layer of AA′-stacked hBN, [NB]-AC forms 

an atomically sharp 6′6′-B twin boundary (Figure 48b). However, the [NB]-AB configuration makes 

44-N, which cannot maintain its structure, thus expected to form a transition region at the stacking 

boundary (Figure 48c). Moreover, the results of DFT calculations show that B-atom EK edge 

terminating at the N atoms below (Figure 48b, left) is much more stable than that terminating at the 

hollow sites of the hexagonal lattice of the first layer (Figure 48c, left) as described in Figure 49. 

Likewise, an N-atom EK edge of [BN]-AB creates an atomically sharp 6′6′-N twin boundary, while that 

of [BN]-AC forms a 44-B configuration. As previously explained in Figure 34, transformation of 44-B 

to 558-N requires overall shift of all the atoms of the half system as much of red arrow in Figure 34 by 

overcoming the van der Waals force. In addition, it causes a change in the stacking order, which 

convinces a creation of transition region. Notably, all four pairs of stacking structures for the EK edges 

and the consequential 6′6′ or 44 twin boundaries coincide with the structures as shown in Figure 31. 

Therefore, I conclude that atomically sharp stacking boundaries are formed only when AA′- and AB-

stacked hBN meet with the certain combinations such as Figure 48b, e during crystal growth. It may 

open the way to synthesis of one atomic wide electronic channel by controlled manipulation of stacking 

structures. 
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Figure 48. Two types of EK edges and the formation of different stacking boundaries depending 

upon the positions of atoms at the EK edges. a-c, A B atom EK edge of [NB]-AC creates an atomically 

sharp 6′6′-B twin boundary, while that of [NB]-AB forms a 44-N configuration. d-f, An N-atom EK 

edge of [BN]-AB creates an atomically sharp 6′6′-N twin boundary, while that of [BN]-AC forms a 44-

B configuration. The atomic model to the left in each of panels (b,c,e,f) shows an hBN structure with 

an EK edge at the 1|2-layer boundary, while the panels to the right depict an AA′/AB stacking boundary 

configuration for the second layer, provided that it grows above the upper part of the first layer with the 

AA′ stacking structure and knits with the EK edge at the 1|2-layer boundary. Boron and nitrogen atoms 

are represented in pink and blue, respectively. 
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Figure 49. Relative energies of EK edge structures having B and N atoms in different stacking 

orders. Boron and nitrogen atoms are represented by pink and blue spheres, respectively. 
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5.4 Conclusion 

The coexistence of AA′ and AB stacking structures in CVD-grown few-layer hBN islands was 

observed using AR-TEM. I found atomically sharp twin boundaries along zigzag direction at the 

AA′/AB stacking boundaries. DFT calculations suggest that the 558 configuration is the stable structure 

for twin boundary. However, the experimental results claim the existence of 6′6′ configuration (major) 

as well as 558 configuration (minor) and interswitching of them at the stacking boundary. Further study 

using MD simulations explains transition of dominant configurations from 558 to 6′6′ with increased 

thermal energy with raising temperature from 0 to 1000 K. While 558-N shows a reduced bandgap of 

3.44 eV compared to ~5 eV of pristine hBN, 6′6′-N has zero bandgap. The reduced bandgap at stacking 

boundaries was also experimentally detected by using EELS. Moreover, I postulate that atomically 

sharp stacking boundaries are created from given stacking combinations of AA′/AB, which is inferred 

from the EK edges of hBN layer boundaries. This gives an insight for the fabrication of atomic wide 

electronic channel. Ultimately, the twin boundary of AA′/AB-stacked hBN is promising as a one-

dimensional conducting channel embedded in the original insulating hBN sheet, i.e. single-hBN 

electronic device. 
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Chapter 6: Conclusion 

I have studied on defect formation mechanism and growth mechanism of 2D materials using 

advanced TEM. Based on the characterization of various types of defects and novel features on 2D 

materials using AR-TEM, DF-TEM, EELS, the growth mechanisms and defect formation mechanisms 

in given growth conditions and/or stacking structures, domain boundaries were inferred. TEM image 

simulations, DFT calculations and MD simulations were further performed to support the observations 

in TEM.  

In summary, hole defects on hBN were systematically controlled in triangular, hexagonal, and 

random shape by controlling the stacking structures. Saw-teeth shaped triangular hole defects in AB-

stacked hBN is now being further studied. Spiral growth of hBN was also studied including finding of 

initiation of screw-dislocations at APB and explanation of the conditions whether the shear strain is 

created between merging spiral islands. Moreover, I postulate that atomically sharp stacking boundaries 

are created from given stacking combinations of AA′/AB, which is inferred from the EK edges of hBN 

layer boundaries. Bandgap close to 0 eV at the atomic-wide twin boundary was measured using EELS, 

suggesting potential possibility as a one-dimensional electronic channel embedded in original insulating 

hBN matrix. This is meaningful that TEM study is able to explain the relation between structure and 

property, as well as to characterize the crystal structures.  

Besides the study described above, growth mechanism of multilayer graphene was established by 

comparing spiral growth and concentric growth synthesized by atmospheric CVD171. Overlapping and 

folding of single crystal graphene in merging area synthesized on Cu-Ni substrate was also confirmed201. 

I believe these studies provide more clear understanding in the mechanism of defects formation and 

defect-driven growth of 2D materials and make a step forward for practical use of 2D materials. 
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