

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Doctoral Thesis

Leveraging Emerging Hardware to Improve the
Performance of Data Analytics Frameworks

Moohyeon Nam

Department of Electrical and Computer Engineering

Computer Science and Engineering

Graduate School of UNIST

2019

Leveraging Emerging Hardware to Improve the
Performance of Data Analytics Frameworks

Moohyeon Nam

Department of Electrical and Computer Engineering

Computer Science and Engineering

Graduate School of UNIST

Abstract

The data analytics frameworks have evolved along with the growing amount of data. There

have been numerous efforts to improve the performance of the data analytics frameworks in-

cluding MapReduce frameworks and NoSQL and NewSQL databases. These frameworks have

various target workloads and their own characteristics; however, there is common ground as a

data analytics framework. Emerging hardware such as graphics processing units and persistent

memory is expected to open up new opportunities for such commonality. The goal of this dis-

sertation is to leverage emerging hardware to improve the performance of the data analytics

frameworks.

First, we design and implement EclipseMR, a novel MapReduce framework that efficiently

leverages an extensive amount of memory space distributed among the machines in a cluster.

EclipseMR consists of a decentralized DHT-based file system layer and an in-memory cache layer.

The in-memory cache layer is designed to store both local and remote data while balancing the

load between the servers with proposed Locality-Aware Fair (LAF) job scheduler. The design

of EclipseMR is easily extensible with emerging hardware; it can adopt persistent memory as a

primary storage layer or cache layer, or it can adopt GPU to improve the performance of map

and reduce functions. Our evaluation shows that EclipseMR outperforms Hadoop and Spark for

various applications.

Second, we propose B3-tree and Cache-Conscious Extendible Hashing (CCEH) for the persis-

tent memory. The fundamental challenge to design a data structure for the persistent memory is

to guarantee consistent transition with 8-bytes of fine-grained atomic write with minimum cost.

B3-tree is a fully persistent hybrid indexing structure of binary tree and B+-tree that benefits

from the strength of both in-memory index and block-based index, and CCEH is a variant of

extendible hashing that introduces an intermediate layer between directory and buckets to fully

benefit from a cache-sized bucket while minimizing the size of the directory. Both of the data

structures show better performance than the corresponding state-of-the-art techniques.

Third, we develop a data parallel tree traversal algorithm, Parallel Scan and Backtrack

(PSB), for k-nearest neighbor search problem on the GPU. Several studies have been proposed

to improve the performance of the query by leveraging GPU as an accelerator; however, most

of the works focus on the brute-force algorithms. In this work, we overcome the challenges of

traversing multi-dimensional hierarchical indexing structure on the GPU such as tiny shared

memory and runtime stack, irregular memory access pattern, and warp divergence problem.

Our evaluation shows that our data parallel PSB algorithm outperforms both the brute-force

algorithm and the traditional branch and bound algorithm.

Contents

I Introduction . 1

1.1 Thesis and Contributions . 3

1.2 Thesis Organization . 5

II Background and Related Work . 6

2.1 EclipseMR: Distributed and Parallel Task Processing with Consistent Hash-

ing . 6

2.2 B3-tree: Byte-Addressable Binary B-Tree for Persistent Memory 7

2.3 Write-Optimized Dynamic Hashing for Persistent Memory 8

2.4 Parallel Tree Traversal for Nearest Neighbor Query on the GPU 11

III EclipseMR: Distributed and Parallel Task Processing with Consistent Hashing . . 15

3.1 EclipseMR . 15

3.2 Distributed In-Memory Cache . 17

3.3 Evaluation . 19

IV Index Structures for the Persistent Memory . 24

4.1 B3-Tree: Byte-addressable Binary B-tree 24

4.2 Failure-Atomic B3-Tree Node Update . 25

4.3 Evaluation . 34

4.4 Cacheline-Conscious Extendible Hashing 42

V Parallel Tree Traversal for Nearest Neighbor Query on the GPU 56

5.1 Parallel Scan and Backtrack for kNN Query 56

5.2 Bottom-up Construction of SS-tree . 58

5.3 Experiments . 61

VI Conclusion . 69

References . 70

Acknowledgements . 79

List of Figures

1 Extendible Hash Table Structure . 9

2 Data parallel tree traversal algorithms access a single tree node at a time and each

thread determines whether each branch can be pruned out or not. But in task

parallel tree traversal algorithms, each thread accesses different tree nodes and it

causes significant warp divergence. 13

3 Double-layered Chord ring in EclipseMR. The outer layer is the distributed in-

memory cache layer and the inner layer is the distributed file system layer. 16

4 MapReduce Job Scheduling in EclipseMR . 18

5 IO throughput with varying the number of data nodes 20

6 Performance comparison against Hadoop and Spark 21

7 Execution Time of Iterative Jobs . 22

8 Page Structure of B3-tree . 24

9 Insertion into B3-tree Page . 27

10 Failure-Atomic Page Split in B3-tree . 29

11 Failure-Atomic Redistribution . 31

12 Insertion Performance with Varying Page Sizes 35

13 Search Performance: Balanced Trees vs Skewed Trees 35

14 Deletion Performance with Varying Page Sizes . 36

15 Throughput Comparison with Varying Number of Indexed Data 37

16 Insertion Performance Comparison (Latency) . 38

17 Search Performance with Varying Read Latency 39

18 Insertion(a) and Search(b) Throughputs with Varying Number of Threads 39

19 Performance Comparison with 4 Threads(l) and 16 Threads(r) Using MixedWork-

load . 39

20 Cacheline-Conscious Extendible Hashing . 42

21 Failure-Atomic Segment Split Example . 43

22 MSB segment index makes adjacent directory entries be modified together when a

segment splits . 46

23 Buddy Tree Traversal for Recovery . 47

24 Throughput with Varying Segment/Bucket Size 50

25 Breakdown of Time Spent for Insertion While Varying R/W latency of PM . . . 52

3

26 Performance of concurrent execution: latency CDF and insertion/search through-

put . 54

27 Massively Parallel Scanning and Backtracking : In the root node A, the pruning

distance is initially infinite. In step 1©, we search a leaf node which is closest to

the query point and update the pruning distance while computing the MAXDIST

of child nodes. In the second tree traversal 2©, regardless of whether B or C is

closer to the query point, we fetch the leftmost child node B from global memory

if both B and C are within pruning distance. In node B, we check which child

nodes are within the pruning distance. In the example, suppose D and E are

within the pruning distance. Then 3© we fetch the left child node D. Suppose

H is not within the pruning distance. Then node H will be pruned out, and 4©
we visit node I and kNN points will be updated. After processing node I, 5©
we fetch its sibling nodes J and K. If node K does not update kNN points or

pruning distance, 6© we fetch K’s parent node E from global memory and prune

out child nodes (L in the example) which are farther than the pruning distance.

IfM ’s MINDIST is smaller than the pruning distance, 7© we fetchM and 8© keep

scanning its sibling nodes. If node N does not update kNN points, 9© we move

to its parent node F , which does not have any child nodes within the pruning

distance. Thus 10© we move one level up to node C. If node C does not have any

child nodes within the pruning distance, we will move to the root node and finish

the search. Otherwise, as in the example, we visit the leftmost leaf node G as it

is within the pruning distance. We keep this traversal and visit G, R, and S. . . 57

28 Bottom-up Constructed SS-trees vs Top-down Constructed SR-tree (Parent Link

Tree Traversal) . 61

29 Distribution of Datasets Projected to the First Two Dimensions (N: number of

clusters, σ: standard deviation . 62

30 Query Processing Performance with Varying Input Distribution (100 clusters) . . 63

31 Query Processing Performance with Varying Number of Fan-outs 64

32 Performance with Varying Dimensions (Synthetic Datasets (100 clusters) 65

33 Query Processing Performance with Varying k . 65

34 Query Processing Performance with Real Datasets (NOAA) 66

List of Tables

I Introduction

The amount of data is continuously growing at this moment and demanding data analytics

frameworks to be more efficient and scalable to handle such an enormous amount of data.

There have been many studies on how to process the increasing data size, including MapReduce

frameworks and NoSQL and NewSQL databases. The conventional data analytics heavily relies

on the database systems that model the data into tables and their relations with others so that it

can provide the structured query language (SQL) interface to manipulate the records and schema

of the tables with atomicity, consistency, isolation, and durability. However, as the substantial

portion of the generated data is unstructured and difficult to be molded into tabular form,

the MapReduce programming model becomes very popular as it provides a new abstraction for

programmers to handle the data in an easy and scalable way without the messy details that

complicate the problem. In the MapReduce programming model, programmers can define their

own custom map and reduce functions to process data in a scalable and flexible fashion. NoSQL

databases are based on this MapReduce programming model to provide simplicity of design,

simpler horizontal scaling, and finer control over availability with relaxed consistency model.

However, there are still needs for strong transactional properties and consistency require-

ments that the conventional database systems used to provide. NewSQL databases are modern

relational databases that satisfy both the ACID guarantees of transactional database systems

and the scalability of the NoSQL databases. These systems have different requirements to fulfill

and their own unique workloads, but the frameworks have a common ground as data analytics

frameworks. In this dissertation, we investigate how to leverage emerging hardware to improve

the performance of the data analytics frameworks.

The frameworks have been built on the assumption of block-addressable storage devices,

such as HDD or SSD for decades, which are slow, coarse-grained, but persistent. Despite the

drawbacks of the devices, it is necessary to rely on the devices to ensure the durability of the

data. Fast, byte-addressable DRAM has been used as a buffer to mitigate such deficiencies,

but there is always a trade-off depending on which data is stored on which device due to the

limited capacity of expensive memory space and volatile nature of the device. However, as byte-

addressable persistent memory such as 3D Xpoint, phase-change memory, and STT-MRAM

emerges, now the main memory is not only a volatile buffer but also persistent primary storage

itself. The persistent memory is expected to provide low-latency as DRAM, but it persists data

in the unit of bytes with large storage capacity.

As this byte-addressable persistent memory breaks the barrier separating volatile and non-

volatile storage, it is necessary to design new data structures for this new hierarchy of memory.

The persistent memory requires the data on the CPU cache to be written back to the memory to

ensure the safety of the data, but unfortunately, the unit of atomic write from the cache to the

memory is only 8-byte. Furthermore, as the order of the write instructions is not guaranteed,

it is difficult to provide the consistency of the data structures. These challenges should be

1

dealt with the fine-grained memory management scheme with memory fence and cacheline flush

instructions which barriers the memory write to keep the order between the memory operations

and triggers the flush of cacheline containing the modified data, respectively.

There have been many studies to leverage the byte-addressability, durability, and high per-

formance of persistent memory by re-designing block-based data structures such as B+-trees.

B+-tree variants have been widely adopted in the past decades as they are designed to provide

failure-atomicity, consistency, durability, and concurrency by being updated in block-granularity.

These properties were not the primary concerns of the various byte-addressable in-memory data

structures such as Radix-tree, Skip-list, and T-tree, since they were designed for the volatile

main memory. These data structures are not cache-conscious as old processors have tiny CPU

cache, but as CPU cache size has increased, in-memory B-tree variants that are conscious of

cache locality and arrange sorted keys in hierarchical blocks have been developed [1, 2, 3]. The

legacy in-memory indexes are outperformed by these variants of B-tree as they benefit from

various features of modern processors such as large CPU caches, instruction-level parallelism,

and memory-level parallelism, which means that block-based data structures are efficient as not

only disk-based index, but also in-memory index.

However, B-tree variants are not always the correct solutions due to the growing size of

the tree. There are latency-critical applications that can benefit from the byte-addressable

persistent memory. The increasing level of the tree structure results in increased latency, which

is unacceptable for such applications. Hash-based index structures have static flat structures that

guarantee constant lookup time, which is appropriate for such latency-critical applications. Only

a few of studies have attempted to adapt hash-based data structures to persistent memory. One

of the main challenges in a hash-based structure for the persistent memory is in achieving efficient

dynamic rehashing under the fine-grained failure-atomicity constraint. Dynamic rehashing is

inevitable as predicting the capacity of a hash table is not always possible that the table might

suffer from hash collisions, overflows, and under-utilization. However, rehashing is not desirable

as it degrades total system throughput as the table is not accessible during the rehashing process,

which significantly increases the tail latency of queries. Furthermore, rehashing requires a large

number of writes to persistent memory, and the writes are expected to induce higher latency

and energy consumption in persistent memory.

On the other hand, as the modern processor manufacturers focus on integrating more and

more cores inside a single chip to increase the performance of a processor, the multi-core pro-

cessors have become commodity hardware nowadays, and even the graphics processing units

(GPUs) are widely adopted as SIMD (Single Instruction Multiple Data) accelerators to enhance

the performance of the computations. It is inevitable to take into account the multiple levels of

parallelism to design a data structure; however, it is a difficult task to efficiently exploit multi-

ple cores with limited bandwidth and capacity of the memory hierarchy. Problems become even

worse if we want to traverse tree-based indexes on the GPUs. One of the challenges in traversing

a hierarchical index on the GPU is the tiny shared memory and runtime stack on the GPU. It

2

is necessary to store a tree node that is big enough to efficiently exploit the SIMD units of the

GPU; however, the size of such tree node is too huge for the runtime stack to store multiple nodes

to traverse the tree structure. The irregular memory access pattern of the tree traversal hinders

exploiting parallelism since GPUs are designed for deterministic memory accesses. Traversing

the hierarchical structure requires lots of branch operations that can cause the warp divergence

problem that can decrease both the SIMD efficiency and the GPU utilization. To alleviate such

problems, we have to take advantage of spatial locality and avoid cache invalidation by exploiting

the byte-addressability and fine-grained memory management.

1.1 Thesis and Contributions

In this dissertation, I will show that the data structures for the new emerging hardware should

exploit fine-granularity to improve the performance of the data analytics frameworks while sus-

taining the consistency and increasing the concurrency. To support this goal, I develop and

evaluate a set of data structures and techniques to fully leverage the emerging hardware for the

data analytics frameworks. The key contributions are summarized as follows:

• EclipseMR: Distributed and Parallel Task Processing with Consistent Hashing

We design and implement EclipseMR, a MapReduce framework that can efficiently utilize

large distributed memory space in a cluster and benefit from emerging hardware with the

following set of techniques. EclipseMR has two layers of consistent hash rings, which are

a decentralized DHT-based file system and an in-memory key-value store with consistent

hashing. The in-memory key-value store is designed to cache local data and remote data

so that it can balance the load between the servers in a cluster. In order to efficiently

leverage huge memory space distributed across the cluster with a higher cache hit ratio,

we propose a locality-aware fair (LAF) job scheduler that acts as the load balancer for

the cache. The LAF job scheduler predicts the availability of reusable data and assigns

tasks to the servers with such data while balancing data locality and load balance. Our

evaluation shows that EclispeMR is faster than Hadoop and Spark by a large margin for

various applications.

• B3-tree: Byte-Addressable Binary Block Tree for Persistent Memory

The primary challenge in designing a B+-tree for fast, byte-addressable persistent memory

is transforming a consistent state of the structure into another consistent state with 8-

bytes of atomic write. Previous studies employ the append-only updates with additional

metadata to manage the order of the keys or the selective persistence with hybrid memory

hierarchy of DRAM and PM.

We design and implement the B3-tree, a fully persistent hybrid indexing structure of binary

tree and B+-tree that benefits from the failure-atomicity and byte-addressability of an in-

memory index and the durability, cacheilne consciousness, and balanced tree height of a

3

block-based index. We also develop a logging-less failure-atomic split and merge algorithms

for the B3-tree that significantly reduce the number of cacheline flush instructions caused

by the logging or journaling. B3-tree consistently outperforms wB+-tree, one of the state-

of-the-art B+-tree variant, by a large margin and shows comparable performance with

partially persistent FPtree.

• Write-Optimized Dynamic Hashing for Persistent Memory

In the past few years, many studies have been proposed to leverage the byte-addressability,

durability, and low latency of persistent memory, including, numerous variants of B+-tree

indexes due to the fine-grained I/O for persistent memory. However, only a few have

paid their attention to the hash-based index structures, which have multiple advantages

including constant lookup time and higher memory utilization. The primary challenge of a

hash-based index structure in persistent memory is to achieve efficient dynamic rehashing

under fine-grained failure-atomicity constraint.

In this work, we adapt the extendible hashing for byte-addressable persistent memory by

using cacheline-sized buckets and introducing an intermediate layer of segments to the

extendible hashing. The three-level structure of this Cache-Conscious Extendible Hashing

(CCEH) guarantees to find a record with only two cacheline accesses. We also develop a

failure-atomic rehashing and recovery algorithm for CCEH without using explicit logging.

We evaluate the performance with the state-of-the-art hashing techniques for the persistent

memory, and our CCEH successfully reduces the maximum query latency by over two-

thirds compared to the state-of-the-art hashing techniques.

• Parallel Tree Traversal for Nearest Neighbor Query on the GPU

The nearest neighbor search is a fundamental problem that finds the closest point to a

given query point in multi-dimensional space, and it is used in wide application domains

such as computer graphics, information retrieval, and scientific data processing. Recent

advances of GPGPU (General-Purpose computing on Graphics Processing Units) comput-

ing, several studies have been proposed to accelerate the k-nearest neighbor search using

GPUs, but most of the works focus on enhancing the exhaustive search for the exact k-

nearest neighbors as it is known that the multi-dimensional hierarchical indexing trees are

not suitable for the GPUs due to the tiny shared memory and runtime stack, irregular

memory access pattern of tree traversal, and warp divergence problem.

In this work, we develop a data parallel tree traversal algorithm, Parallel Scan and Back-

track (PSB), for k-Nearest Neighbor query processing on the GPU. The PSB algorithm

avoids the warp divergence problems while traversing the multi-dimensional tree-structured

index to enhance SIMD efficiency. The sibling leaf nodes are linearly scanned to take ad-

vantage of accessing contiguous memory blocks and reducing unnecessary backtracking to

the parent nodes. We also develop the parallel bottom-up construction algorithm for the

4

fast SS-tree construction by parallelizing Ritter’s minimum enclosing circle algorithm [4].

Our evaluation shows that the PSB algorithm outperforms not only the exhaustive brute-

force search but also traditional branch and bound algorithms by a large margin.

1.2 Thesis Organization

The rest of this dissertation is organized as follows. In section II, we present the background

and related work. In section III, we present a novel MapReduce framework EclipseMR that can

benefit from the following emerging hardware. In section IV, we present index structures for the

persistent memory that overcomes the challenge of failure-atomicity. In section V, we present

the multi-dimensional indexing structure, SS-tree and its traversal algorithm for the GPU, called

parallel scan and backtrack algorithm. In section VI, we conclude this dissertation.

5

II Background and Related Work

2.1 EclipseMR: Distributed and Parallel Task Processing with Consistent
Hashing

As the demand for large-scale data analysis frameworks grew in the high performance com-

puting community in the late ’90s, several distributed and parallel data analysis frameworks

such as Active Data Repository [5], which supports the MapReduce programming paradigm and

DataCutter [6], which supports generic DAG workflows, were developed for large scale scientific

datasets. A few years later, industry had a growing demand for large-scale data processing appli-

cations and Google developed Google File System [7] and the MapReduce framework [8]. Since

then, there has been a great amount of effort to extend and improve distributed job processing

frameworks for various data-intensive applications. [9, 10, 11, 12, 13]

Spark [14, 13] shares the same goal as our framework in that it reuses a working set of

data across multiple parallel operations. Resilient Distributed Datasets (RDDs) in Spark are

read-only in-memory data objects that can be reused for subsequent MapReduce tasks. Spark

addresses the conflict between job scheduling fairness with data locality by delaying a job for a

small amount of time if the job can not launch a local task [15]. Our EclipseMR job scheduling

is different from Spark in that EclispeMR employs consistent hashing to determine where to

store and access the cached data objects. Based on the consistent hashing, EclipseMR strikes

a balance between load balancing and data locality. Dache is another MapReduce framework

where a central cache manager uses its best efforts to reuse the cached results of previous jobs [16].

Compared to Dache, EclipseMR is more scalable as it does not have a central directory to keep

the list of cached data objects that can change dynamically at a very fast pace.

Main Memory MapReduce (M3R) proposed by Shinnar et al. [12] is a MapReduce framework

that performs in-memory shuffle by simply storing the intermediate results of map tasks in main

memory instead of the block device storage. They show in-memory shuffle significantly improves

a certain type of applications. however, M3R can not be used if workloads are large and do not

fit in main memory or applications require resilience because the in-memory framework is not

fault tolerant. Moreover, it is questionable if MapReduce is the right programming paradigm

for their target application - sparse matrix vector multiplication. Rahman et al. [17] proposed

HOMR - a hybrid approach to achieve the maximum possible overlapping across map, shuffle,

and reduce phases. Our work is similar to that in the sense that EclispeMR aggressively overlap

three phases by proactive shuffling. The in-memory caching layer of EclipseMR is similar to

Tachyon, which is the cache layer that sits on top of HDFS and acts as a distributed cache for

Spark. The difference between Tachyon and EclipseMR in-memory caching is that EclipseMR

caching evenly distributes popular cached objects via LAF algorithm.

DryadInc [10] is an incremental computation framework that allows computations to reuse

6

partial results of the computations from previous runs. Tiwari et al. [18] proposed the MapReuse

delta engine as an in-memory MapReduce framework that detects input data similarity, reuses

available cached intermediate results and computes only for the new portion of input data. They

show the reuse of intermediate results significantly improves job execution time. ReStore [19] is

another framework that stores intermediate results generated by map tasks in HDFS so that they

can be reused by subsequent jobs. Their works are similar to ours but the conventional fair job

scheduling policies they use do not guarantee balancing the workloads if requested intermediate

results are available only on a small number of overloaded servers.

The MRShare framework proposed by Nykiel et al. [20] merges a batch of MapReduce queries

into a single query so that it takes the benefits of sharing input and output data across multiple

queries. The multiple query optimization problem has been extensively studied in the past, and

it has been proven to be an NP problem. Nevertheless, extensive research has been conducted to

minimize query processing time through data and computation reuse using heuristics or proba-

bilistic efforts [19, 21, 10, 22]. These multiple query optimization studies are complementary to

our work.

2.2 B3-tree: Byte-Addressable Binary B-Tree for Persistent Memory

As byte-addressable persistent memory is now on the horizon, numerous studies have been

conducted to exploit new opportunities of its beneficial features in various domains including

file systems and database management systems [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38].

Systems on byte-addressable persistent memory has to safeguard against failures with fine-

grained write atomicity. That is, in persistent memory, the granularity of failure-atomic writes

is expected to be 8-bytes, or a cache line if we use hardware transactional memory [39, 33]. In

persistent memory, Such a small write granularity makes it difficult to guarantee consistency

of various data structures including B+-trees because not all 8-byte writes can transform a

consistent index into another consistent index. Moreover, independent store instructions can be

arbitrarily reordered in modern processors. Therefore, a large number of expensive clflush and

mfence instructions are required to guarantee the consistency of data structures [35].

To resolve this problem, Venkataraman et al. [35] proposed to use multi-versioning scheme

so that we can roll back to previous consistent states. Version-based recovery methods, though,

have a limitation in that it requires an expensive garbage collection.

Alternatively, Yang et al. [37] proposed NV-Tree that updates B-tree pages in append-only

manner instead of making a large portion of data structures dirty so that it can reduce the

number of calls to clflush and mfence. While the append-only update mitigates the overhead

of write transactions, read transactions suffer from finding a key in unsorted arrays. The append-

only update scheme has been adopted by other persistent B-tree variants developed later, i.e.,

wB+-tree [40] and FP-tree [41]. wB+-tree proposed to use additional metadata to manage

7

the ordering of keys in order to resolve the problem of unsorted keys. However, the additional

metadata in wB+-tree requires additional cache line flushes, which is sub-optimal. We note that

wB+-tree still relies on expensive logging methods for tree rebalancing operations because it

stores both internal and leaf tree pages in persistent memory.

FPTree, proposed by Oukid et al., is similar to NV-Tree in that it also stores leaf pages in

persistent memory while keeping internal tree pages in DRAM [41]. Different from NV-Tree,

FPTree exploits hardware transactional memory to efficiently handle concurrency of internal

tree page accesses and it reduces the cache miss ratio via fingerprinting, which is one-byte hash

value for keys stored in leaf page. Both NV-Tree and FPTree employ selective persistence where

they store internal pages in volatile DRAM but leaf pages in persistent memory. Therefore, the

internal pages in NV-Tree and FP-Tree may be lost upon system failure. Although the internal

pages can be reconstructed from scratch using the leaf pages in persistent memory, the entire

reconstruction process can hinder the instant use of the index.

Every 8-byte store instruction used in the FAST and FAIR algorithms transforms a B+-tree

into another consistent state or a transient inconsistent state that read operations can tolerate.

By making read operations tolerate transient inconsistency, FAST and FAIR B-tree avoids ex-

pensive copy-on-write and logging. However, a large number of shift operations employed in

FAST and FAIR B-tree make the performance degrade as we increase the tree node size and

aggravate wearing issues of persistent memory.

2.3 Write-Optimized Dynamic Hashing for Persistent Memory

The focus of this subsection is on dynamic hashing, that is, hashing that allows the structure

to grow and shrink according to need. While various methods have been proposed [42, 43, 44],

our discussion concentrates on extendible hashing as this has been adopted in numerous real

systems [45, 46, 47, 48, 49] and as our study extends it for PM.

Extendible Hashing: Extendible hashing was developed for time-sensitive applications

that need to be less affected by full-table rehashing [50]. In extendible hashing, re-hashing

is an incremental operation, i.e., rehashing takes place per bucket as hash collisions make a

bucket overflow. Since extendible hashing allocates a bucket as needed, pointers to dynamically

allocated buckets need to be managed in a hierarchical manner as in B-trees in such a way that

the split history can be kept track of. This is necessary in order to identify the correct bucket

for a given hash key.

Figure 1 shows the legacy design of extendible hashing. In extendible hashing, a hash bucket

is pointed to by an entry of a directory. The directory, which is simply a bucket address table, is

indexed by either the leading (most significant) or the trailing (least significant) bits of the key.

In the example shown in Figure 1, we assume the trailing bits are used as in common practice

and each bucket can store a maximum of five key-value records. The global depth G stores

the number of bits used to determine a directory entry. Hence, it determines the maximum

number of buckets, that is, there are 2G directory entries. When more hash buckets are needed,

8

Figure 1: Extendible Hash Table Structure

extendible hashing doubles the size of the directory by incrementing G. From the example, G

is 2, so we use the low end 2 bits of the key to designate the directory entry in the directory of

size 4 (22). Eventually, when the buckets fill up and split, needing more directory entries, G can

be incremented to 3, resulting in a directory of size 8.

While every directory entry points to a bucket, a single bucket may be pointed to by multiple

directory entries. Thus, each bucket is associated with a local depth (L), which indicates the

length of the common hash key in the bucket. If a hash bucket is pointed by k directory entries,

the local depth of the bucket is L = G− log2k. For example in Figure 1, B2 is being pointed to

by 2 directory entries. For this bucket, as the global depth (G) is 2 and the bucket is pointed

to by two directory entries, the local depth of the bucket (L) is 1.

When a hash bucket overflows, extendible hashing compares its local depth against the

global depth. If the local depth is smaller, this means that there are multiple directory entries

pointing to the bucket, as for bucket B2 in Figure 1. Thus, if B2 overflows, it can be split without

increasing the size of the directory by dividing the directory entries to point to two split buckets.

Thus, G will remain the same, but the Ls for the two resulting buckets will both be incremented

to 2. In the case where the bucket whose local depth is equal to the global depth overflows, i.e.,

B1 or B3 in Figure 1, the directory needs to be doubled. In so doing, both the global depth and

the local depth of the two buckets that result from splitting the overflowing bucket also need to

be incremented. Note, however, that in so doing, overhead is small as rehashing of the keys or

moving of data only occur for keys within the bucket. With the larger global and local depths,

the only change is that now, one more bit of the hash key is used to address the new buckets.

The main advantage of extendible hashing compared to other hashing schemes is that the

rehashing overhead is independent of the index size. Also, unlike other static hash tables, no

extra buckets need to be reserved for future growth that results in extendible hashing having

higher space utilization than other hashing schemes [51]. The disadvantage of extendible hashing

is that each hash table reference requires an extra access to the directory. Other static hashing

schemes do not have this extra level of indirection, at the cost of full-table rehashing. However,

9

it is known that the directory access incurs only minor performance overhead [52, 51].

PM-based Hashing: Recently a few hashing schemes, such as Level Hashing [53], Path

Hashing [54], and PCM-friendly hash table (PFHT) [55] have been proposed for persistent

memory as the legacy in-memory hashing schemes fail to work on persistent memory due to

the lack of consistency guarantees. Furthermore, persistent memory is expected to have limited

endurance and asymmetric read-write latencies. We now review these previous studies.

PFHT is a variant of bucketized cuckoo hashing designed to reduce write accesses to PCM

as it allows only one cuckoo displacement to avoid cascading writes. The insertion performance

of cuckoo hashing is known to be about 20∼ 30% slower than the simplest linear probing [56].

Furthermore, in cuckoo hashing, if the load factor is above 50%, the expected insertion time

is no longer constant. To improve the insertion performance of cuckoo hashing, PFHT uses a

stash to defer full-table rehashing and improve the load factor. However, the stash is not a cache

friendly structure as it linearly searches a long overflow chain when failing to find a key in a

bucket. As a result, PFHT fails to guarantee the constant lookup cost, i.e., its lookup cost is

not O(1) but O(S) where S is the stash size.

Path hashing is similar to PFHT in that it uses a stash although the stash is organized as an

inverted binary tree structure. With the binary tree structure, path hashing reduces the lookup

cost. However, its lookup time is still not constant but in log scale, i.e., O(logB), when B is the

number of buckets.

Level hashing consists of two level hash tables. The top level and bottom level hash tables

take turns playing the role of the stash. When the bottom level overflows, the records stored in

the bottom level are rehashed to a 4× times larger hash table and the new hash table becomes

the new top level, while the previous top level hash table becomes the new bottom level stash.

Unlike path hashing and PFHT, level hashing guarantees constant lookup time.

While, level hashing is an improvement over previous work, our analysis shows that the

rehashing overhead is no smaller than legacy static hashing schemes contrary to the authors’

claim that it is reduced by 1/3. As, at least one of the two hash tables is always almost full in

level hashing, the bottom level hash table often fails to accommodate a collided record resulting

in another rehash. The end result is that level hashing is simply performing a full-table rehash

in two separate steps.

Consider the following scenario. Say, we have a top level hash table that holds 100 records

and a bottom level stash holds 50 records. Hence, we can insert 150 records without rehashing

if a hash collision does not occur. When the next 151th insertion incurs a hash collision in the

bottom level, the 50 records in the bottom level stash will be rehashed to a new top level hash

table of size 200 such that we have 150 free slots. After the rehash, subsequent 150 insertions

will make the top level hash table overflow. However, since the bottom level hash table does not

have free space either, the 100 records in the bottom level hash table have to be rehashed. To

expand a hash table size to hold 600 records, level hashing rehashes total 150 records, that is,

50 records for the first rehashing and another 100 records for the second rehashing.

10

On the other hand, suppose the same workload is processed by a legacy hash table that

can store 150 records as the initial level hash table does. Since 151th insertion requires more

space in the hash table, we increase the hash table size by four times instead of two as the level

hashing does for the bottom level stash. Since the table now has 600 free spaces, we do not need

to perform rehashing until the 601th insertion. Up to this point, we performed rehashing only

once and only 150 records have been rehashed.

Interestingly, the numbers of rehashed records are no different. We note that the rehashing

overhead is determined by the hash table size, not by the number of levels. As we will show in

Section 4.4.7, the overhead of rehashing in level hashing is no smaller than other legacy static

hashing schemes.

2.4 Parallel Tree Traversal for Nearest Neighbor Query on the GPU

2.4.1 Stackless Tree Traversal

In computer graphics, a very large number of rays are concurrently traced by leveraging many

GPU cores. In order for classic recursive tree traversal algorithms to traverse bounding volume

hierarchies, the size of the run-time stack space must be as large as the maximum stack depth

times the number of rays. However, the size of shared memory in modern GPUs is very small (less

than 64KB). Therefore, the computer graphics community has proposed various stackless tree

traversal algorithms such as kd-restart [57], skip pointer [58], rope tree [59], and short stack [60].

The Kd-restart algorithm proposed by Foley et al. [57] divides a query line into multiple

small line segments while navigating a kd-tree. Thereby, it reduces the size of each bounding

box of a line segment. Then, it repeatedly searches the kd-tree with the small bounding box

from its root node again. This restart strategy eliminates backtracking and the need for a large

run-time stack.

The rope tree [59] and the parent link [61] algorithms eliminate the need for a run-time stack

by using auxiliary links. In rope tree, each node stores ropes - pointers to neighboring tree nodes

in each dimension, thus a rope can be followed if a query line segment intersects a face of the

bounding box. Unfortunately kd-restart and rope tree algorithms cannot be directly employed

for kNN query processing because the kNN query is not a line segment. kNN query processing

irregularly traverses an indexing tree and prunes out sub-trees based on the distance between a

query point and the bounding volumes of sub-trees.

The parent link [61] algorithm is a more generic stackless tree traversal algorithm that can be

employed for kNN query processing. In the parent link algorithm, each tree node has a pointer

to its parent node (parent link) [61]. Instead of relying on the run-time stack, the parent link

algorithm allows backtracking to a parent node by following the parent link pointer. A drawback

of the parent link tree algorithm is that the same tree node has to be fetched from slow global

memory multiple times when it backtracks.

Skip pointer is another stackless tree traversal algorithm that employs auxiliary pointers to a

11

right sibling node or a right sibling of its parent node. Unlike parent link, skip pointer does not

allow backtracking to parent nodes. Instead, skip pointer visits right sibling nodes of the same

parent. Only if it visits the rightmost sibling node of the current parent node, it backtracks to

a higher level of the tree and visits the sibling of its parent node. The skip pointer algorithm is

guaranteed to not visit previously accessed tree nodes, and it avoids fetching the same tree node

multiple times from global memory. However, this is also a drawback of skip pointer algorithm

because visiting all sibling nodes requires too many accesses to unnecessary tree nodes, especially

for kNN query processing.

Another solution to the tiny run-time stack problem is to use a fixed size of small shared

memory as a short stack [60]. If the short stack is not deep enough for a tree traversal, the

short stack deletes a tree node from the bottom of the stack and pushes a new tree node on the

top. While traversing a tree with a short stack, we may find a parent node has been evicted

from the short stack. If the deleted parent node has to be visited for backtracking, the short

stack algorithm restarts the tree traversal from the root node again, as in kd-restart. Although

the short stack algorithm increases the chance of reusing previously visited tree nodes, it often

restarts the tree traversal, which adds the overhead of fetching tree nodes from global memory.

The overhead of global memory access is known to offset the benefits of reusing tree nodes

available in the short stack [62]. Moreover, the size of a single SS-tree node becomes larger than

32 Kbytes when the dimension is higher than 32. Considering the tiny shared memory size of

the GPU, the short stack algorithm cannot be used for high dimensional SS-trees.

2.4.2 Data Parallelism vs Task Parallelism

The stackless tree traversal algorithms described in section 2.4.1, kd-restart [57], skip pointer [58],

rope tree [59], and short stack [60] focus on distributing a large number of line intersection

queries across a set of GPU processing units. Such task parallelism is known to improve query

processing throughput, but it does not improve the query response time of individual queries.

Data parallelism contrasts to task parallelism in the sense that a large number of GPU processing

units perform the same task on different parts of an index.

Figure 2 illustrates how a data parallel algorithm and a task parallel algorithm traverse a tree

structure in different ways. In data parallel tree traversal algorithms, a set of threads in a GPU

block concurrently access the same tree node and cooperate to determine which child node to

fetch and visit. But in a task parallel tree traversal algorithm, each thread processes a different

query and follows a different search path. Therefore each GPU processing unit accesses different

parts of global memory and the number of accessed tree nodes varies across GPU processing

units.

In task parallelism, the query response times are determined by the slowest thread in the

block because a block of threads has to wait until all the other threads in the same block finish.

Moreover, task parallelism makes each thread execute a different instruction. But, a warp is the

minimum thread scheduling unit in CUDA architecture. All threads in a warp must execute the

12

(a) Data Parallel Tree Traversal

(b) Task Parallel Tree Traversal

Figure 2: Data parallel tree traversal algorithms access a single tree node at a time and each

thread determines whether each branch can be pruned out or not. But in task parallel tree

traversal algorithms, each thread accesses different tree nodes and it causes significant warp

divergence.

same instruction. If a thread in a warp needs to execute different instructions from the other

threads, it needs to wait for multiple cycles until other threads finish. As more threads diverge,

SIMD efficiency decreases and the utilization of GPU processing units decreases. This problem

is called warp divergence.

In order to avoid such warp divergence and improve individual query response time, we

develop a data parallel tree traversal algorithm and efficiently utilize a large number of GPU

processing units.

2.4.3 SS-Tree

SS-tree [63] is a balanced n-ary multi-dimensional tree structure designed for nearest neighbor

query processing. SS-tree employs bounding spheres instead of bounding rectangles for the

shapes of tree nodes. Employing bounding spheres is not only beneficial for reducing the size of

a tree node but it can also eliminate a number of conditional branches that are required by the

classic branch-and-bound search algorithm [64].

SS-tree has been shown to outperform R-tree and K-D-B-tree for high dimensional datasets in

many prior studies [63, 65]. Although bounding sphere volumes of SS-tree are often much larger

than bounding rectangle volumes of R-trees especially in low dimensions, it is known that the

number of visited tree nodes is often much smaller than that of R-trees in high dimensions [65].

Moreover, SS-trees can prune out child nodes with fewer computations than other indexing

13

structures. That is, rectangular bounding boxes in variants of R-tree or K-D-B-tree require the

calculation of distances to each facet of a bounding shape. As the dimension increases, the

number of facets also increases and the computation overhead to calculate the high-dimensional

distances increases exponentially. Instead, SS-tree just computes the distance between a query

and a centroid and adds or subtracts the radius of the bounding sphere, which significantly

reduces the computation time.

The incremental kNN search algorithm [66] that uses a priority queue is known to perform

faster than the branch-and-bound algorithm. However on the GPU, a block of threads share

the priority queue, which necessitates protecting the priority queue using a lock. The lock

will serialize a large number of threads, which results in high warp divergence and significant

performance degradation.

14

III EclipseMR: Distributed and Parallel Task Processing with

Consistent Hashing

As the more space is available in the main memory, developers have started to adopt in-memory

caching. Hadoop, which is one of the most popular MapReduce frameworks, also introduces in-

memory caching in HDFS to cache local input data. However, the input data caching alone does

not significantly improve the job execution time, especially for compute-intensive applications.

In the database systems field, a considerable amount of studies has been conducted to show

semantic caching successfully reduces query response time and improves system throughput

by exploiting sub-expression commonality across multiple queries. If multiple MapReduce jobs

have some common sub-computations, caching not only the input data but also the intermediate

results for the sub-computations can greatly speed up subsequent tasks.

3.1 EclipseMR

EclipseMR consists of a job scheduler, a resource manager, and double-layered consistent hash

ring structures - a DHT file system and a distributed in-memory key-value store as shown in

Figure 3. The job scheduler is responsible for assigning incoming queries, including MapReduce

tasks, to back-end worker servers, and the resource manager is responsible for server join, leave,

failure recovery, and file upload. The distributed in-memory cache and the DHT file system are

completely decentralized components leveraging consistent hash rings. EclipseMR requires the

job scheduler and resource manager to act as coordinators, but any worker server can take on

the responsibility regardless. Hence, the job scheduler and the resource manager are selected by

a distributed election algorithm.

3.1.1 DHT File System

As in HDFS, DHT file system in EclipseMR partitions an input data file into fixed-sized blocks,

but the partitioned data blocks are distributed across the servers according to their hash keys.

Since the location of the partitioned blocks can be determined by hash functions, the DHT file

system does not need a centralized directory service that manages the location of each block.

Instead, we store metadata about a file including file name, owner, file size, and partitioning

information in a decentralized manner. For example, if a user uploads a file, we generate a hash

key using the file name, and store the metadata about the file in the server (file metadata owner)

whose hash key range includes the file’s hash key. At the same time, the partitioned file blocks

are distributed across servers based on their hash keys.

Later, when an application wants to access a file, it obtains the hash key of the file using

its file name, and accesses the file metadata owner in order to check the access permission, file

size, hash keys of the partitioned blocks, etc. Once the applications reads the file metadata,

it multicasts the block read requests to remote servers. Suppose the hash key ranges of the

15

A

A

B

C

D

E

F

B

C

D

E

F

5

5
11

15

18

26
38

39

47

57

55

outer ring: DHT in-memory cache

inner ring: DHT Filesystem

: Server k’s hash key range

for DHT in-memory cache
k

: Server k’s hash key range

for DHT filesystem
k

server

A

B

C

D

E

F

Hash Key

[55~5)

[5~15)

[15~26)

[26~39)

[39~47)

[47~57)

DHT

finger

table

DHT

finger

table

DHT

finger

table

DHT

finger

table

DHT

finger

table

DHT

finger

table

server E

server F

server A

server B

server C

server D

Job Scheduler

Resource

Manager

heartbeat

DHT

File

System

Finger

Table

Figure 3: Double-layered Chord ring in EclipseMR. The outer layer is the distributed in-memory

cache layer and the inner layer is the distributed file system layer.

DHT file system are as shown in Figure 3. If a file’s hash key is in the range of [5, 15), its file

metadata will be stored in server B. To resolve the input data block skew problem, we distribute

the partitioned file blocks across the ring using their hash keys.

We make DHT file system fault tolerant by replicating the file metadata as well as file blocks

in predecessors and successors. When a worker server fails, either a predecessor or a successor

will take over the faulty server and utilize the replicated blocks and metadata. Hence, unless a

server fails along with its predecessor and successor at the same time, the DHT file system can

tolerate system failures. If a resource manager or a scheduler fails, the rest of the worker servers

execute an election algorithm to choose a new resource manager and a scheduler.

In the DHT file system, each server manages its own routing table, called finger table,

containing m peer servers’ information. m can be determined by system administrators but

it should be chosen so that 2m − 1 > S, where S is the number of servers in the hash ring.

Unless a cluster has more than thousands of servers, as in large scale peer-to-peer file sharing

systems, we set m to the total number of servers to enable the one hop DHT routing [67].

When m is smaller, file IO requests can be redirected and the IO performance can be degraded.

Because most distributed query processing systems are more stationary than dynamic peer-

to-peer file sharing systems and the number of servers is usually less than a couple thousand,

storing complete routing information for entire servers in a DHT routing table does not hurt the

scalability of the system but improves data access performance [67].

Since the local DHT routing table is very small, the table lookup places minimal overhead

on each server. When a server receives a file block access request from a remote server, it checks

if the hash key of the file block is within its own hash key range. If so, it looks up its local

16

disks and serves the data access request. Otherwise, i.e., if zero hop routing is not enabled,

it routes the request to another server that owns the hash key as in the classic DHT routing

algorithm [68].

The DHT routing table is stationary so that it updates neighbor information including

successor and predecessor only when a participating server joins, leaves, or fails. Each server

exchanges heartbeat messages with direct neighbors to detect server failures, and the resource

manager and job scheduler are notified when a server failure is detected. If a server fails, the

resource manager reconstructs the lost file blocks in a take-over server using the replicated data

blocks.

3.2 Distributed In-Memory Cache

In data-intensive computing, it is common for same applications to submit jobs that share the

same input data. For example, database queries often access the same tables. There exist several

prior works [69, 70] that report more than 30% of MapReduce jobs are repeatedly submitted in

a production environment. Over the past decades, there have been a large number of works that

exploit sub-expression commonality across multiple queries and incremental computation [19,

21, 20, 10, 22, 18]. The incremental computation significantly increases the chances of data

reuse, reduces the job response time, and improves the system throughput.

On top of the DHT file system, EclipseMR deploys a distributed in-memory cache layer to

exploit the incremental computation. The distributed in-memory cache consists of two partitions

- iCache and oCache.

iCache is where input data blocks are implicitly cached. The latest HDFS also implemented

in-memory caching, but HDFS in-memory caching stores only local input data blocks. Since

data skew problem occurs not only in a record level but also in an input block level, HDFS in-

memory caching does not mitigate the skew problem of input blocks. To resolve this problem,

we let iCache allow input data blocks to be cached in peer servers according to their hash keys.

oCache is where intermediate results of map tasks and outputs of iterative jobs are explicitly

cached by user applications. EclipseMR tags the cached data with their metadata (application

ID, user-assigned ID for cached data). oCache helps avoid redundant computations by sharing

the intermediate results among multiple jobs. oCache is similar to RDDS in Spark, but interme-

diate results or outputs for iterative jobs in EclipseMR are cached according to their hash keys,

so it evenly distributes frequently accessed cached data objects across the entire distributed

memories. The cached intermediate results and outputs of iterative jobs are also persistently

stored in the DHT file system according to their hash keys so that long running jobs can survive

faults and restart from the point of failure.

The hash key ranges of in-memory caches are determined by a job scheduler based on work-

load pattern so that popular hash key ranges can use more distributed memories. However, the

hash key ranges of DHT file system are statically determined by consistent hashing and do not

change unless servers join or fail. Therefore, the hash key ranges of the distributed in-memory

17

Job Scheduler
DHT in-memory cache

hash key space

Filesystem Hash = SHA1

A

A

B

C

D

E

F

B

C

D

E

F

5

5
11

15

18

26
38

39

47

57

55

MR

application 1

1

2

3
4

4

5

5

3

6
reduce tasks

schedule6

- accesses a file (hash key=38)

- requires data block 5 & 56

server

A

B

C

D

E

F

Hash Key

[57~5)

[5~11)

[11~18)

[18~39)

[39~48)

[48~57)

4

5

remote file I/O if cache miss occurs

push intermediate results

Figure 4: MapReduce Job Scheduling in EclipseMR

cache layer can be misaligned with the hash key ranges of the DHT file system.

3.2.1 MapReduce Processing

Figure 4 illustrates how EclipseMR processes a MapReduce job on a double layered ring struc-

ture. Suppose a job is submitted to the job scheduler. The job scheduler runs a hash function

with the input file name to find out which server is the file metadata owner. Suppose server D

is the file metadata owner in the example (1©). Then, server D checks the file access permission

and replies how the file is partitioned (step 2©) and what are their hash keys.

If the input file is partitioned into two blocks and their hash keys are 6 and 56, the two

blocks are stored in server A and B’s local disks, respectively. Given the hash keys of the two

blocks, the job scheduler searches the hash key ranges of the distributed in-memory caches, and

assigns a map task to each of server B and server F (step 3©). Note that a map task is scheduled

in server F instead of A even though an input file block 56 is stored in server A’s local disk.

This is because each worker server’s hash key range in the job scheduler’s hash key table are

misaligned with the hash key ranges of the DHT file system.

If server F has the input file block in its iCache, it reuses it. Otherwise, server F reads the

input file block from the DHT file system, i.e., looks up its DHT routing table to find out the

file block 56 exists in remote server A’s local disk. After reading the block from A’s local disks,

server F stores the block in its iCache (step 4©), and runs map tasks.

While map tasks are running, EclipseMR forwards the intermediate results generated by the

map tasks to other servers according to the hash keys of the intermediate results so that they

are persistently stored in the DHT file system (step 5©). EclipseMR stores the intermediate

results in persistent file systems as in Hadoop so that it can restart failed tasks and reuse the

18

intermediate results of the previous failed tasks. Although we store the intermediate results on

disk, they can be cached in oCache for future reuse. Note that we store the intermediate results

on the reducer side, not on the mapper side. The stored intermediate results are invalidated by

time-to-live (TTL) which can be set by applications, and they are not replicated by default.

While map tasks are generating intermediate results, they notify the scheduler with their

hash keys. With the given hash keys, the scheduler schedules reduce tasks where the intermediate

results are stored. Reduce tasks read these intermediate results from oCache or the DHT file

system using the hash keys (step 6©).

If a user application specifies it can reuse intermediate results and they are available in oCache

or the DHT file system, the map tasks skip computation and reducer tasks can immediately reuse

the cached data. If intermediate results are not available, the map tasks search iCache for input

data blocks to reuse. If input data blocks are not available either, they read input data blocks

from the DHT file system. There exist certain applications such as k-means that can not reuse

intermediate results between map tasks and reduce tasks, but they need the results of reduce

tasks from each iteration. For such applications, the EclipseMR allows applications to store the

iteration outputs in oCache or the DHT file system instead of intermediate results.

3.2.2 Proactive Shuffling

Hadoop stores the intermediate results in the local disks of the server where the map tasks run.

The shuffle phase in Hadoop sorts, splits, and sends the intermediate results to reducers. It

is known that the shuffle phase of MapReduce is network intensive and the shuffle phase can

constitute a bottleneck. Hadoop tries to pipeline map, shuffle, and reduce phases by starting

reduce tasks as soon as intermediate result files are available, but Hadoop pipelining is far from

satisfactory, and there have been several previous works that try to aggressively overlap the

shuffle phase with the map phase and decouple from the reduce phase [71, 72, 9, 73, 74].

Unlike Hadoop or Spark, EclipseMR determines where to run reduce tasks based on the hash

keys of the intermediate results. Therefore, the shuffle phase in EclipseMR does not have to wait

until map tasks finish. Instead, EclipseMR lets each mapper pipeline the intermediate results

to the DHT file system in a decentralized fashion while they are being generated. Based on the

hash keys of the intermediate results, each map task stores the intermediate results in a memory

buffer for each hash key range. When the size of this buffer reaches a certain threshold specified

by the application, EclipseMR spills the buffered results to the DHT file system so that they

can be accessed by reducers.

3.3 Evaluation

In this section, we first evaluate the performance of EclipseMR by quantifying the impact of

each feature we presented. We then compare the performance of EclipseMR against Hadoop

2.5 and Spark 1.2.0. We have implemented the core modules of EclipseMR prototype in about

19

 0

 200

 400

 600

 800

 1000

6 14 22 30 38

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

of Nodes

DHT file system
HDFS

(a) AVG IO Throughput (Bytes/Map Task

Exec. Time)

 0

 200

 400

 600

 800

 1000

6 14 22 30 38

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

of Nodes

DHT file system
HDFS

(b) AVG IO Throughput (Bytes/Job Exec.

Time)

Figure 5: IO throughput with varying the number of data nodes

17,000 lines of C++ code. The source code that we used for the experiments is available at

http://github.com/DICL/EclipseMR.

We run the experiments on a 40-nodes (640 vCPUs) Linux cluster that runs CentOS 5.5.

Each node has dual Intel Xeon Quad-core E5506 processors, 20 GBytes DDR3 ECC memory,

and a 5400rpm 256GB HDD for OS and a single 7200rpm 2TB HDD for HDFS and the DHT

file system. 20 nodes are connected via a 1G Ethernet switch, the other 20 nodes are connected

via another 1G Ethernet switch, and another 1G Ethernet switch forms the two level network

hierarchy. We set both the number of map task slots and the number of reduce task slots to 8

(total 640 slots).

We use HiBench [75] to generate 250 GB text input datasets for the word count, inverted

index, grep, and sort applications, 15 GB graph input datasets for page rank, and 250 GB

kmeans datasets. In [76, 77], they report the median input sizes for the majority of data analytics

jobs in Microsoft and Yahoo datacenters are under 14 GBytes. Hence, we also evaluate the

performance of EclipseMR with small 15 GB text input datasets that we collect from Wikipedia

and 15 GB k-means datasets that we synthetically generate with varying distributions.

3.3.1 IO Throughput

In the experiments shown in Figure 5(a), we measure the read throughput (total bytes/map task

execution time) of the DHT file system and HDFS using HDFS DFSIO benchmark while varying

the number of servers. As can be seen in Figure 5(a), HDFS and DHT file system show similar

IO throughput. Note that this metric does not include the overhead of NameNode directory

lookup and job scheduling, but it measures the read latency of local disks. In Figure 5(b), we

measure the read throughput in a different way, i.e., total bytes/job execution time. While the

DHT file system has negligible overhead in decentralized directory lookup and job scheduling,

Hadoop suffers from various overheads including NameNode lookup, container initialization, and

20

 0

 0.2

 0.4

 0.6

 0.8

 1

InvertedIndex

WordCount

Sort
K-Means

LogisticRegression

PageRank

N
o

rm
al

iz
ed

 T
im

e

858s 678s3756s 8051s 2392s 3332s

EclipseMR Spark Hadoop

Figure 6: Performance comparison against Hadoop and Spark

job scheduling.

In order to evaluate the scalability of the DHT routing table and HDFS name node, we

submitted multiple concurrent DFSIO jobs in an experiment that we do not show due to the

page limit, and we observed that the IO throughput of HDFS degrades at a much faster rate

than the DHT file system.

3.3.2 Comparison with Hadoop and Spark

Finally we compare the performance of EclipseMR against Hadoop and Spark. Since all three

frameworks provide different levers for tuning, we performed Hadoop and Spark tunings to our

best efforts according to various performance tuning guides available on the web.

However, it is hard to quantify which design of EclipseMR contributes to the performance

differences because EclipseMR does not share any component with Hadoop software stack. More-

over, Hadoop and Spark are full featured frameworks that provide various generic functionalities

that are usually followed by significant overhead. For an example, Hadoop tasks run in Yarn

containers and each Yarn container spends more than 7 seconds for initialization and authenti-

cation [78]. This overhead becomes significant because the container initialization and authen-

tication repeats for every task. I.e., Hadoop spends 7 seconds for every 128 MB block [79].

Compared to Hadoop and Spark, EclipseMR is a lightweight prototype framework that does not

provide any other functionalities than what we present in this paper.

We use the default fair scheduling in Hadoop, and the delay scheduling in Spark. Again we

submit a single application that accesses 250 GB datasets (or 15 GB datasets for page rank) at

a time after emptying the OS buffer cache and distributed in-memory caches for non-iterative

MapReduce applications. For page rank, kmeans, and logistic regression applications, we

enable distributed in-memory caches and set the size of the cache to 1 GB per server.

Figure 6 shows the normalized execution time to the slowest result. For the non-iterative

MapReduce applications, Spark often shows slightly worse performance than Hadoop, which we

believe is because Spark is specifically tailored for iterative jobs such as page rank, kmeans,

and logistic regression, not for non-iterative ETL jobs such as inverted index. For non-

21

iterative jobs, all three frameworks do not benefit from caching. Therefore, the performance

differences are mainly caused by scheduling decisions.

The performance of sort in Figure 6 shows how efficiently each framework performs the

shuffle phase. Spark is known to perform worse than Hadoop for sort, and our experiments

also confirm it. Spark claims it has improved sort since version 1.1, but our experiments with

version 1.6 show that Spark is still outperformed by Hadoop and EclipseMR.

For iterative applications, we set the number of iterations to 5 for the kmeans application, 2

for the page rank application, and 10 for the logistic regression application. Since Hadoop

is an order of magnitude slower than the other two frameworks, we omit the performance of

Hadoop kmeans and logistic regression.

For kmeans, EclipseMR is about 3.5x faster than Spark, and for logistic regression,

EclipseMR is about 2.5x faster than Spark. Note that our faster C++ implementations of kmeans

and logistic regression contributed to the performance improvement, but there are other

performance factors that are not out of scope of this this research, i.e., Java heap management,

container overhead, and some engineering issues that make Spark tasks unstable also need to be

investigated.

For page rank application, Spark is about 15% faster than EclipseMR. This is because the

size of the input file in page rank is small and our cluster has a large enough number of slots

to run all the mappers concurrently. So, there’s no load balancing issues. Moreover, page rank

generates a very large output for each iteration; the size of iteration outputs in page rank is

often similar to that of input data. While Spark does not store the intermediate outputs in

file systems, EclipseMR writes the large iteration outputs to the persistent DHT file systems to

provide fault tolerance. Therefore, if the size of intermediate results is large, the performance

gap between EclipseMR and Spark decreases and EclipseMR is outperformed by Spark.

3.3.3 Iterative Applications

In the experiments shown in Figure 7 we further analyze the performance of EclipseMR and

Spark for iterative applications - k-means, logistic regression, and page rank. Spark runs

the first iteration of the iterative applications much slower than subsequent iterations because it

constructs RDDs that can be used by subsequent iterations. For subsequent iterations of kmeans

and logistic regression, EclipseMR runs 3x faster than Spark because it does not wait to

be scheduled on the servers that has the iteration outputs in their caches, but it immediately

starts running in a remote server and accesses remote cached data.

Similar to kmeans and logistic regression, page rank also runs subsequent iterations

faster than the first iteration by taking advantage of input data caching. Unlike kmeans,

EclipseMR is outperformed by Spark for subsequent page rank iterations mainly because EclipseMR

writes large iteration outputs to the DHT file system. However, even if EclipseMR writes to slow

disks, EclipseMR is at most 30% slower than Spark. With a small 30% IO overhead, EclipseMR

can restart from the iteration if system crashes.

22

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8 9 10
T
im

e
(s
e
c
)

Iteration

Eclipse
Spark

(a) K-Means

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s
e
c
)

Iteration

Eclipse
Spark

(b) Logistic Regression

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s
e
c
)

Iteration

Eclipse
Spark

(c) Page Rank

Figure 7: Execution Time of Iterative Jobs

Note that Spark runs page rank slower than EclipseMR in the last iteration because Spark

writes its final outputs to disk storage. The last iterations of kmeans and logistic regression

are not slower than the previous iterations because the outputs of these applications are not as

large as page rank.

23

IV Index Structures for the Persistent Memory

The fundamental challenge in designing a data structure for the persistent memory is to

guarantee the failure-atomicity during the transition between one consistent state to the other.

It is necessary to rely on the fine-grained memory management scheme with memory fence

instruction and cache-line flush instruction. However, it is desirable to minimize the number of

these expensive instructions as they hinder the optimization of out-of-order execution and cause

cache invalidation.

4.1 B3-Tree: Byte-addressable Binary B-tree

Figure 8: Page Structure of B3-tree

4.1.1 Node Structure of B3-tree

B3-tree is a hybrid index that combines the positive properties of binary search tree (byte-

addressability) and balanced hierarchical B-tree (cache locality). B3-tree is a self-balancing

binary tree index but its rebalancing operation is similar to that of B-trees rather than the

rotations of AVL-tree or red-black tree. B3-tree groups a set of nearby BST nodes and stores

them in a single B3-tree node. To distinguish internal BST nodes from external B3-tree nodes,

we refer to external B3-tree node as B3-tree page and internal binary nodes as BST nodes

hereafter.

Figure 8 illustrates the structure of B3-tree page. As in B-tree variants, B3-tree is an n-ary

tree, i.e., each tree page has multiple pointers to child pages and the ordering of child pages are

managed by a BST. As shown in Figure 8, each B3-tree page consists of a header and an array

of keys and child pointers.

The header stores three fields; i) the root offset stores the offset of the root BST node, ii)

the page type field indicates whether the current page is a leaf B3-tree page or an internal B3-

tree page, iii) and the sibling pointer points to its external sibling B3-tree page, which we will

describe in Section 4.2.2.1.

24

The array of keys and child pointers stores the binary representation of sorted keys and

child page pointers. In legacy BST, a child pointer is a memory address of another BST node.

However, in our B3-tree page, a child pointer is either the memory address of an external B3-tree

page or the index of a binary node in the same B3-tree page. For example, node[0] in Figure 8

has two BST child nodes. Thus, its child pointers are not the memory address but the index of

BST nodes. In legacy BST, a tree node may have a single child. However, in our B3-tree, we

note that all BST nodes have two children because BSTS nodes are created only when a B3-tree

page splits. For example, if Page 3 splits, a new BST node is created that point to Page 3 and

a new split page. And the new BST node is pointed by node[1].

4.2 Failure-Atomic B3-Tree Node Update

In this section, we discuss how B3-tree achieves failure-atomicity for a single B3-tree page

update. For multiple page updates triggered by page split or merge, we defer our discussion to

Section 4.2.2.1 and 4.2.4.

4.2.1 Failure-Atomic Insertion

An insertion into a BST requires a single atomic 8-byte write operation since a new key is

always added to a leaf node, which can be done by a single pointer update. In such a sense,

BST is failure-atomic and write-optimal for insert operations. Algorithm 1 shows the insertion

algorithm of BST in B3-tree.

First, we check if the current B3-tree page has an available space for a new BST node (line

1–6). If not, we check if there is any BST node that is not pointed by the BST. If so, we garbage

collect it to make a space. If the current page is full, we split. If we found a space, we write

the new BST node to the found space (line 7–12). Even if we write the new BST node in the

node array and increase the number of BST nodes, the new BST node is not exposed to other

transactions unless it is pointed by its parent BST node. To find the parent BST node, we

traverse the BST from root node (line 13). Depending on the key, we add the new BST node as

either a left or right child of the parent BST node according to legacy BST insertion algorithm

(line 14–19).

Let us now discuss how B3-trees tolerates various failures that can occur during the insertion

algorithm that we described above. The ordering of these memory writes must be preserved for

failure-atomicity. Therefore, we call persist() function between each phase, which calls a memory

barrier and a cache line flush instruction.

First, suppose a system crashes while we are finding an available space for a new BST

node (line 1–6). The failure will not result in inconsistency because we have not made any

modifications to the BST. Next, suppose a system crashes while a new BST node is being written

25

Algorithm 1 InsertBSTNode(key, left, right)
1: if count == MAX_COUNT then

2: count = lazyDefragmentation(this);

3: end if

4: if count == MAX_COUNT then

5: return SPLIT_THIS_NODE;

6: else

7: idx = count;

8: node[idx].key = key;

9: node[idx].left = left;

10: node[idx].right = right;

11: persist(&node[idx]);

12: count++;

13: persist(&count);

14: parent = searchParent(key);

15: if key < node[parent].key then

16: node[parent].left = idx;

17: persist(&node[parent].left);

18: else

19: node[parent].right = idx;

20: persist(&node[parent].right);

21: end if

22: end if

(line 7–9). Even if cache line flush instruction is not explicitly called, the dirty cache lines can

be flushed via cache replacement mechanisms. However, it still does not hurt consistency as

the new BST node has not been added to the BST yet. Moreover, we have not increased the

counter variable. Hence, the partially written BST node will be overwritten by a subsequent

write transaction.

In line 11, we increase the number of BST nodes. This operation must not be reordered

with the previous operations. Thus, we call persist() function to make sure the new BST node

is flushed (line 11–12). If a system crashes after the increased counter is flushed to persistent

memory, the new BST node will be a memory leak, which we refer to as (dead node), since it is

not pointed by the BST. That is, the increased counter will waste memory space. However, we

note that it does not violate the invariants of index. In B3-tree, we reclaim such a dead space

in a lazy manner. That is, when a B3-tree page overflows, we scan the array of BST nodes and

check if there are dead nodes that can not be reached from the the root node (line 2). If we

find one, we use the dead space for the new BST node. If there is no such a dead node, we

split the page (line 4). With such a lazy defragmentation scheme, we can reduce the overhead of

26

Figure 9: Insertion into B3-tree Page

searching an available free space for each insertion. We note that writing a child pointer (offest)

in the parent BST node behaves as a commit mark of insert transaction (line 14–19). Since the

child pointer is either 8 bytes, the child pointer can be atomically updated. Hence, an insertion

into a B3-tree node is failure-atomic. If the child pointer is not flushed, the new BST node is

not accessible but we note that it does not violate the invariants of index.

4.2.1.1 Failure-Atomic Deletion

Deletion of a tree node in legacy BST is slightly more complicated than insertion because

the deletion of an internal BST node updates multiple child pointers.

First, we describe how we make the deletion of a BST node in an internal B3-tree page

failure-atomic. In internal B3-tree page, all BST nodes have two children as shown in Figure 9.

A child of BST node can be either another BST node in the same page or another B3-tree page.

Note that the deletion of a BST node is triggered when we delete a B3-tree page. That is, we

do not delete an internal BST node that points to two BST nodes. If a B3-tree page is deleted,

the parent BST node is no longer necessary. Therefore, we simply delete the parent BST node

and make the grand parent point to the other child of the parent BST instead. As such, internal

B3-tree page does not need complicated rotation operations.

Suppose we merge B3-tree page N1 and N3 In Figure 9(b). As we remove B3-tree page N1,

its parent BST node 6 is removed from the current page. Since the BST node 6 has a BST node

as its right child, and the parent of BST node 6 needs to point to the right child BST node. But

in the example, the BST node 6 is the root node. Hence, we set the root offset in the current

B3-tree page to be BST child node 9.

Now, suppose we delete BST node 9 as we remove B3-tree page N3. Similar to the previous

27

case, we make the parent of the BST node to be deleted point to the child of the removed BST

node. Hence, in the example, BST node 6 point to N4. Note that, in our B3-tree, rotation

operation is not necessary and a single pointer update completes a delete operation. Therefore,

delete operation in B3-tree is failure-atomic.

Next, if a leaf page of B3-tree stores key-value records as a BST instead of an array, deleting

a key-value record will remove an internal BST node, which may require updates to multiple

pointers. That is, if the key-value record to be deleted has two sub-trees, we need non-failure

atomic rotation. To avoid this problem, we can use an additional metadata such as ’deleted’

flag as in NV-tree, FP-tree, and wB-tree, or use a sorted array using the Failure-Atomic ShifT

(FAST) algorithm of FAST and FAIR B-tree.

The detail deletion algorithm is shown in Algorithm 2. We use the same example depicted

in Figure 9 to walk through the deletion algorithm. i) The simplest case is when we merge

two pages that are pointed by the same BST node (line 9–12). In this case, we make their

grand parent BST node point to the merged page. I.e., if we merge page N5 and N6 shown in

Figure 9(c), we create a new page N1, copy records from N5 and N6 to N1, and set the left

child of BST node (6) to the address of the new page N1. We note that replacing the left child

of BST node (6) will behave as a commit mark of the deletion operation, and it can be done via

a single 8-byte atomic write, hence it is failure-atomic. ii) More complicated case is when we

merge two pages that are pointed by different BST nodes. Due to the pairwise split and merge

algorithm, the parent of one of the pages must have the other page as its leftmost or rightmost

child. Suppose we merge a left child page N1 and the right sub-tree’s leftmost page N3 shown

in Figure 9(b). In this case, we delete the parent BST node of the left page (BST node (6) in

the example) from the BST (line 13–21). If the parent node is the root node, we make its right

child node a new root node ((9) in the example). Otherwise, we make the grand parent node

point to the right child node.

4.2.1.2 Defragmentation

Note that the deletion algorithm of B3-tree may leave a hole in the BST nodes array. Such

a fragmentation problem degrades the page utilization and makes a search query access more

cache lines. To solve this problem, B3-tree performs copy-on-write in a lazy manner. That is,

we allocate a new page and copy valid BST nodes from the fragmented page to the new page

if there is no more available space in the page. During defragmentation, we not only delete

invalid BST nodes but also reorganize the tree structure to build a complete binary search tree,

thereby shortening the tree height. Even if a system crashes during defragmentation, the failure

does not affect the correctness of the tree as the changes are made only in the new copy-on-

write page. After we finish the defragmentation, we flush the page and replace the original page

by updating pointers in a particular order that we will describe in Section 4.2.2. Note that

this lazy defragmentation might hurt the response time of an insertion query that triggers the

28

(a) Split (b) Update Parent Page’s BST

(c) Update Left Page’s Sibling Pointer (d) Add BST Node to Parent Page

Figure 10: Failure-Atomic Page Split in B3-tree

defragmentation process. However, subsequent queries benefit from a fewer number of cache

line accesses due to the balanced tree height. Note that there exist self-balancing binary tree

structures such as AVL-tree and T-tree. But all of these self-balancing tree structures perform

rotation operations to balance the height. However, as we described earlier, rotation operations

are not failure-atomic. Hence, we trade off the balanced tree height for failure-atomicity. But

the degree of skewness in BSTs are limited by the size of B3-tree page and the skewed BSTs

regain the balance once in a while via the defragmentation mechanism. As we will show in

Section 5.3, improving the page utilization and balancing the tree height via the opportunistic

defragmentation help the overall indexing performance.

4.2.2 Failure-Atomic Page Split and Merge

Insertions and deletions often result in page overflows and underflows, which requires B3-

tree pages to split and merge respectively. Since splitting and merging modify multiple pages

to balance the tree height. However, multiple pages cannot be updated atomically. Therefore,

legacy B-trees use expensive logging methods, which duplicate dirty pages and increase the write

traffic.

Recently, several studies have been conducted to reduce or eliminate the logging overhead

by employing byte-addressable persistent memory [37, 41, 80]. NV-tree [37] and FPtree [41]

proposed selective persistence, which stores internal tree nodes in volatile DRAM but leaf nodes

in persistent memory. If a system crashes, internal tree nodes can be reconstructed from leaf

29

nodes in a bottom-up fashion, hence logging is not necessary for internal nodes. However, such

selective persistence is far from satisfactory because reconstruction of a large tree structure

is very inexpensive and it makes instant recovery almost impossible [80]. Instead, Hwang et

al. [80] proposed the Failure-Atomic In-place Rebalancing (FAIR) algorithm that eliminates the

necessity of logging and performs in-place rebalancing operations. FAIR algorithm modifies the

structure of FAST and FAIR B-tree in a predefined specific order so that read transactions can

be aware of the ordering and ignore transient inconsistent tree structures.

For B3-tree, we propose a variant of the in-place rebalancing algorithm, i.e., we make B3-tree

split or merge in a particular order so that read transactions can tolerate transient inconsistent

tree structures. Our rebalancing algorithm is different from the FAIR algorithm of FAST and

FAIR B-tree in a sense that rebalancing of B3-tree structures updates BST structures in the

parent page whereas FAST and FAIR B-tree performs shift operations in a sorted array. As

in B-link tree [81], every B3-tree page has a sibling pointer so that all child pages of the same

parent page can be managed as a linked list. When a page overflows, we allocate two new pages,

connect them via a sibling pointer, redistribute the entries from the overflow page into two new

pages, and replace the overflow page with the new pages. That is, the sibling pointer in the new

left page is used to combine the left page and the right page so that they become a logical single

page until their parent page adds a child pointer to the right page. When two pages merge, we

merge them into a newly allocated page and replaces the underflow pages with the new one.

4.2.2.1 Page Split

Figure 21 illustrates the page split algorithm of B3-tree. Suppose an insertion causes the

page m overflows. First, i) we allocate two new pages (m1 and m2), and construct a balanced

complete binary search tree in each page using a half of page m’s key-value entries. Next, we

update the sibling pointers of page m1 and m2 as shown in Figure 21(a). We note that the two

new pages are not added to the tree structure yet because no existing pages in B3-tree has stored

the addresses of the new pages, so the two new pages can not be accessed by other transactions.

Second, ii) we replace the pointer to the overflowing page in the parent page’s BST with the left

sibling of overflowing page. In the example, as shown in Figure 21(b), the BST node p’s left and

right child pointers both point to page l. Although we removed the pointer to the overflowing

page m, we can still access the page m if we consider sibling pages l and m as a logical single

page. We can make transactions follow the right sibling pointer if the parent BST node has the

same left and right child pointers. Or alternatively, we can make transactions follow the right

sibling pointer if a given search key is greater than the largest key in the page. Next, iii) we set

the sibling pointer of page l to the address of page m1. By making the left sibling page point

to the new split pages, we can atomically remove the overflowing page m and add the two new

split pages m1 and m2. We note that three pages l, m1, and m2 are a single logical page as

shown in Figure 10(c). Finally, iv) we add a new BST node for split pages in the parent BST.

30

(a) Redistribute (b) Update Parent Page’s BST

(c) Update Left Page’s Sibling Pointer (d) Update Parent Page’s BST

Figure 11: Failure-Atomic Redistribution

In the example shown in Figure 10(c), we create a BST node s that has page m1 and m2 as

its left and right child. Then, we atomically replace the right child pointer of BST node p with

the address of the new BST node s in the parent page. After completing the split, we insert the

data that caused the overflow. Algorithm 3 describes the details of B3-tree split algorithm.

4.2.3 Crash Recovery During Page Split

While a page is splitting, various system failures can occur at any time. Suppose a system

crashes while allocating two new pages or copying a half of entries to each new page as shown in

Figure 21(a). Since the original overflowing page is not altered, recovery is trivial. That is, we

can simply ignore and deallocate the newly allocated pages. We note that memory allocators for

persistent memory must guarantee the failure atomicity for memory allocation and deallocation,

as was proposed in NVWAL [27].

If a system crashes after we set the parent BST node’s right child pointer to the left child

pointer as shown in Figure 21(b) and 10(c), the recovery process, which scans the entire tree

structure, will detect whether a BST node has identical pointers. If it does, the recovery process

checks if the right sibling page and the sibling of right sibling page are pointed by the parent

BST. If not, we fix the BST so that the child pages can be directly accessed. We note that the

recovery process does not need a separate log file. In addition, read transactions always succeed

finding a key even if a node split has not completed. For example, if a query looking for a key

31

in m2 is submitted when a B3-tree is in the state shown in Figure 10(c), the query will access l

first, m1 next, and then m2.

4.2.4 Failure-Atomic Redistribution

If the utilization of a page drops below a threshold value (e.g., 50% in our implementation),

B-tree variants perform redistribution, that is, the underutilized page borrows some entries from

its sibling page. If the redistribution makes the sibling page also underutilized, the underutilized

page and the sibling page are merged.

To perform redistribution or merge in a failure-atomic way, B3-tree again performs in-place

updates using logical pages. Page merge algorithm is similar to the page split algorithm, but

the order of operations is reversed. First, we remove the pointer to the right sibling page from

the parent page’s BST as shown in Figure 10(c). This will make l, m1, and m2 in the example

a logical single page. Then, we allocate a new page (m in the example) and copy entries from

underutilized pages (m1 and m2) to the new page. Note that we sort the keys and construct a

complete BST in the merged page. When the merged page is ready, we atomically update the

sibling pointer of the left sibling page (l in the example) as shown in Figure 21(b). Finally, we

update the parent page’s BST so that the merged page (m) is pointed by the parent BST.

Redistribution is similar to the merge algorithm. We use the example depicted in Figure 11

to walk through the detailed workings of failure-atomic redistribution. First, i) we allocate two

new pages (n’ and o’) and redistribute entries from the two underutilized pages, as shown in

Figure 11(a). Next, ii) we remove the pointers to underutilized pages (n’ and o’) from the

parent BST, as shown in Figure 11(b). Updating the two child pointers of q does not have to

be atomic. Making the left child pointer point to page m will make page m and n a logical

single page. Then, making the right child pointer point to page m will make three pages - m,

n, and o a logical single page. We note that these operations do not affect the invariants of

the index, hence they are failure-atomic. In the next step, iii) we update the sibling pointer of

the leftmost page in the logical single page (m in the example), as depicted in Figure 11(c)), so

that the underutilized pages are replaced by the redistributed pages - n’ and o’. Finally, iv) we

replace BST node (q) in the parent page with a new BST node (q’ in the example), as shown in

Figure 11(d). Updating the right child pointer of r via atomic 8-byte write operation completes

the redistribution.

4.2.4.1 Rebalancing BST

Each page in B3-tree is represented as a BST. Although there are numerous byte-addressable

in-memory indexing structures such as AVL-tree and T-tree that keep the height of sub-trees

balanced, we propose to use the simple BST because it does not require tree rotation operations.

32

A tree rotation modifies multiple nodes and calls multiple cache line flushes. However, BST

always add a new tree node as a child of a leaf node. Therefore, a single failure atomic cache

line flush is sufficient to insert a new node. However, there is a trade-off. Although BST is

good for failure-atomic insertion, BST suffers from the notorious skew problem. The number of

BST nodes in B3-trees is bounded by the page size. When the page size is 4 KB, maximum 127

8-byte keys can be indexed in our implementation. Therefore, the height of BST can be as high

as 127 in the worst case.

B3-tree bounds the number of comparisons even if BSTs are completely skewed because BSTs

are only used for internal page representation of perfectly balanced B-trees. However, although

the skewness of B3-tree page is bounded, skewed BSTs degrade the page access performance in

terms not only of search but also of insertion as well. To mitigate the skew problem of BST,

we make B3-tree reconstruct a complete BST when a page is split or when sibling pages merge.

Note that splitting or merging modifies a large portion of pages. Hence, we let B3-tree perform

copy-on-write instead of in-place updates even on byte-addressable persistent memory. As such,

the overhead of calling a large number of clflush when rebalancing BSTs is masked by the

overhead of copy-on-write.

To convert a skewed BST into a complete BST, we in-order traverse the skewed BST and

store the result in the BST node array. This optimization takes O(n) time where n is the number

of binary tree nodes. This rebalancing optimization not only shortens the tree height but also

improves cache line locality.

4.2.5 Concurrency Control

With the growing number of cores in modern computer architectures, non-blocking access to

concurrent data structures is drawing more attention in the community. To improve concurrent

access to the index, FP-tree [41] employs the hardware transactional memory (HTM), and FAST

and FAIR B-tree [80] eliminates the necessity of read locks by making read transactions tolerate

transient inconsistent status.

Similar to FAST and FAIR B-tree, a sequence of 8 byte store instructions used by B3-tree also

guarantees the consistency of data structures as described earlier. Hence, access to the shared

B3-tree does not have to be serialized and enables lock-free search as in FAST and FAIR B-tree.

That is, even if a write thread fails or a system crashes while making changes to B3-tree, no read

thread will ever access inconsistent tree nodes because every single store instruction in B3-tree

does not affect the invariants of index and guarantees correct search results. Therefore, read

operations do not have to wait for write transactions to finish updates and to release exclusive

locks.

On the other hand, if multiple write threads update the same tree nodes simultaneously,

B3-tree suffers from write-write conflicts. Suppose a write thread is about to add a BST node to

a leaf node and another thread is trying to delete the leaf node at the same time. If the insertion

succeeds right before the leaf node is deleted, the newly inserted node will not be a part of

33

the index, which leaves the index inconsistent. Therefore, B3-tree does not allow concurrent

modifications to the same page. A write thread must acquire an exclusive lock to modify a page.

In various applications including enterprise database systems, read transactions are much

more popular than write transactions. Hence, lock-free search alone can significantly improve

the query processing throughput even if write threads still need exclusive locks.

4.3 Evaluation

4.3.1 Experimental Setup

We run experiments on a workstation that has four Intel Xeon Haswell-EX E7-4809 v3 processors

(8 cores, 2.0GHz, 8x32KB instruction cache, 8x32 KB data cache, 8x256 KB L2 cache, and 20 MB

L3 cache) and 64 GB of DDR3 DRAM.

Byte-addressable persistent main memory is not commercially available yet. Thus, we emu-

late persistent memory using Quartz [82, 83], a DRAM-based PM latency emulator [82]. Quartz

consists of a kernel module and a user-mode library that models application-perceived latency

by injecting stall cycles into each predefined time interval, called epoch. We configure minimum

and maximum epochs to 5 nsec and 10 nsec for all our experiments. We adjust read latency of

PM from 300 nsec, which is the minimum latency that we can configure in our testbed environ-

ment. We set the maximum PM latency to 900 nsec because current projections indicate that

latencies of most PM technologies will be higher than DRAM but no higher than an order of

magnitude [38]. To emulate write latency, we inject stall cycles after each clflush instructions,

as was done by [84, 27, 33, 39, 85]. Note that PM write latency is often hidden by CPU cache.

Hence, we do not add the software delay to store instructions. As for the PM bandwidth, we

assume that PM bandwidth is no different from that of DRAM since Quartz does not allows us

to emulate both latency and bandwidth at the same time.

We compare the performance of B3-tree against wB+-tree and FPTree. Unlike B3-tree and

wB+-tree, FPtree is not a persistent index in a strict sense because it stores internal tree pages

in volatile DRAM. Thereby, it is less sensitive to a PM latency. Unlike FPtree, B3-tree and

wB+-tree store all tree pages in PM. Hence, their failure-atomic page update algorithms make

instant recovery possible at the cost of slightly slow access to internal pages.

4.3.2 Performance Effect of Page Size

In the experiments shown in Figure 12, we insert 10 million keys in a random order while we

vary the page size of B3-tree. We assume the latency of PM is the same with that of DRAM

and compare the insertion performance of B3-tree against wB+-tree. Figure 12(a) shows the

insertion time of B3-tree is 45% of that of wB+-tree and 41% of that of wB+-tree without a

bitmap. As we increase the page size, the insertion time of B3-tree slightly decreases because of

34

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

A
v
g
.
E

x
ec

u
ti

o
n
 T

im
e

(u
se

c)

Node Size

B
3
 Traversal

B
3
 Writing Entry

B
3
 Split

F+F Traversal

F+F Writing Entry

F+F Split

8192409620481024512

(a) Insertion Time per Query

 0

 10

 20

 30

 40

 50

A
v
g
.
N

u
m

b
er

 o
f

C
lf

lu
sh

Node Size

B
3
-Tree

FAST+FAIR

8192409620481024512

(b) Number of clflush per Query

 0

 5

 10

 15

 20

 25

 30

 35

 40

A
v
g
.
N

u
m

b
er

 o
f

C
ac

h
e

R
ef

er
en

ce
s

Node Size

B
3
 Cache Miss

F+F Cache Miss

8192409620481024512

(c) Number of Cache Line Accesses per Query

Figure 12: Insertion Performance with Varying Page Sizes

 0

 0.2

 0.4

 0.6

 0.8

 1
(a) Randomly-ordered Keys

A
v

g
.

E
x

ec
u

ti
o

n
 T

im
e(

u
se

c)

Node Size

B
3
 with Rebalancing B

3
 w/o Rebalancing

8192409620481024512

 0

 0.2

 0.4

 0.6

 0.8

 1
(b) Sequentially-sorted Keys

Node Size

8192409620481024512

(a) Search Time per Query

 0

 10

 20

 30

 40

 50

 60

 70

 80
(a) Randomly-ordered Keys

A
v

g
.

N
u

m
b

er
 o

f
C

ac
h

e
R

ef
er

en
ce

s

Node Size

B
3
 Cache Miss with Rebalancing B

3
 Cache Miss w/o Rebalancing

8192409620481024512

 0

 10

 20

 30

 40

 50

 60

 70

 80
(b) Sequentially-sorted Keys

Node Size

8192409620481024512

(b) Number of Cache Line Accesses per Query

Figure 13: Search Performance: Balanced Trees vs Skewed Trees

a fewer number of split operations, but not significantly because our rebalancing optimization

restructures BSTs in such a way that a query visits a similar number of BST nodes (O(logk),

where k is the number of BST nodes determined by page size).

On the other hand, the page size of wB+-trees is not adjustable. That is, wB+-tree with

a bitmap can have up to 63 keys (1 KB page size) and wB+-tree without a bitmap can have

only 8 keys. Figure 12(b) shows the average number of clflush instructions. Because of the

bitmap, wB+-tree calls clflush instructions at least four times for normal insertions and dozens

of clflush instructions for split and merge operations due to logging. Overall, wB+-tree with

a bitmap and without a bitmap invoke about seven and six clflush instructions respectively,

but B3-tree calls only two clflush instructions per insertion.

Figure 12(c) shows the number of CPU cache references and the number of LLC misses

per query. B3-tree shows a slightly larger number of cache line access than wB+-trees with a

35

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

A
v
g
.
E

x
ec

u
ti

o
n
 T

im
e

(u
se

c)

Node Size

B
3
 Traversal

B
3
 Deleting Entry

B
3
 Merge

F+F Traversal

F+F Deleting Entry

F+F Merge

8192409620481024512

(a) Deletion Time per Query

 0

 10

 20

 30

 40

 50

 60

 70

A
v
g
.
N

u
m

b
er

 o
f

C
lf

lu
sh

Node Size

B
3
-Tree

FAST+FAIR

8192409620481024512

(b) Number of Cache Line Flushes

 0

 50

 100

 150

 200

A
v
g
.
N

u
m

b
er

 o
f

C
ac

h
e

R
ef

er
en

ce
s

Node Size

B
3
 Cache Miss

F+F Cache Miss

8192409620481024512

(c) Number of Cache Line Accesses per Query

Figure 14: Deletion Performance with Varying Page Sizes

bitmap, and it shows a higher cache miss ratio than wB+-trees. Even though the cache miss

ratio of B3-tree is greater than wB+-trees, B3-tree shows better insertion performance because

of its minimal metadata management and a small number of cache line flushes.

Figure 13 shows how the rebalancing optimization effectively balances the tree height of BSTs

in B3-tree and improves the search performance. The performance of BST is often affected by

the distribution of keys and an insertion order. If we insert keys in a sorted order, BSTs is

often completely skewed and the tree height will be the number of BST nodes (O(n)), which is

the worst case in BST. Therefore, we evaluate the performance of B3-trees using two types of

workloads - monotonically increasing keys and random keys.

If we disable the rebalancing optimization and insert monotonically increasing keys, the

height of BST grows linearly as we increase the page size. However, Figure 13(b) shows that the

rebalancing optimization effectively reduces the number of accessed cache lines and the number

of LLC misses. As a result, the performance of two different workloads are similar.

Figure 14 shows the deletion performance. Similar to the insertion and search performance,

the deletion time of B3-tree is also almost independent of page size because of the rebalancing

optimization. Figure 14(b) shows that B3-tree calls about 2.5 cache line flushes on average.

Although the page merge algorithm of B3-tree requires multiple cache line flushes, most deletions

require only a single cache line flush. Therefore, the average number of cache line flushes is much

smaller than that of wB+-tree.

36

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Number of Indexed Keys

B
3
-Tree

FAST+FAIR
FP-Tree

WB-Tree

10M1M100K10K

(a) Insertion Throughput

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Number of Indexed Keys

B
3
-Tree

FAST+FAIR
FP-Tree

WB-Tree

10M1M100K10K

(b) Search Throughput

Figure 15: Throughput Comparison with Varying Number of Indexed Data

4.3.3 Comparative Performance

In the experiments shown in Figure 15, we insert various numbers of random key-value pairs

and measure the insertion and search throughput of persistent indexes. In terms of the insertion

throughput shown in Figure 15(a), B3-tree consistently outperforms all other indexes. Note

that B3-tree shows up to 45% higher insertion throughput than FAST and FAIR B-tree, and

B3-tree shows about 2x higher insertion throughput than wB+-tree. As the index size becomes

larger, the performance gap between B3-tree and FAST and FAIR B-tree decreases because a

page split in B3-tree performs the copy-on-write for two new sibling pages in order to rebalance

two BSTs, but FAST and FAIR B-tree creates only one sibling page and performs the in-place

update for the overflowing page. As a result, FAST and FAIR modifies a fewer number of cache

lines than B3-tree for split operations. However, note that we run this experiments assuming the

PM latency is no different from that of DRAM. As we will show in the next set of experiments,

the performance gap between B3-tree and FAST and FAIR B-tree widens as we increase the

PM latency because of the leaf page update overhead. We also note that the performance gap

between B3-tree and FPTree also decreases as we index more key-value pairs because FPTree

does not have clflush overhead when updating internal pages and the number of internal pages

increases with a larger index size.

As for the search throughput, shown in Figure 15(b), B3-tree is slightly outperformed by

FAST and FAIR B-tree because leaf pages of B3-tree do not sort the key-value pairs. As a

result, the number of comparison operations in B3-tree leaf pages is higher than FAST and

FAIR B-tree. Interestingly, the search throughput of wB+-tree is higher than that of FPtree

when the index size is small. However, as the index size increases, FPTree benefits from faster

access to internal pages in DRAM and its search throughput becomes higher than wB+-tree

and similar to B3-tree. Again, we note that FPTree is not a persistent index because FPTree

needs to be reconstructed from scratch when a system crahses.

37

4.3.4 PM Latency Effect

 0

 1

 2

 3

 4

 5

 6

 7

 8

A
v
g
.
E

x
ec

u
ti

o
n
 T

im
e(

u
se

c)

Write Latency(nsec)

B
3
-Tree

FAST+FAIR
FP-Tree

WB-Tree

900600300120

(a) Insertion with Varying Write Latency

 0

 2

 4

 6

 8

 10

 12

 14

A
v
g
.
E

x
ec

u
ti

o
n
 T

im
e(

u
se

c)

Read/Write Latency(nsec)

B
3
-Tree

FAST+FAIR
FP-Tree

WB-Tree

900/900600/600300/300120/120

(b) Insertion with Varying R/W Latency

Figure 16: Insertion Performance Comparison (Latency)

Now, we index 10 million random keys and measure the average insertion time with varying

the latency of PM. In the experiments shown in Figure 16(a), we set the read latency of PM

to that of DRAM but we vary the write latency of PM. As we increase the write latency of

PM, FAST and FAIR B-tree suffers from a larger number of cache line flushes caused by shift

operations. Therefore, its insertion time increases at a faster rate than that of B3-tree. If

the write latency of PM is equal to that of DRAM, B3-tree and FPTree show comparable

insertion performance. However, as the write latency increases, B3-tree shows about 45% faster

performance than FPTree although FPTree benefits from faster DRAM latency. This is because

B3-tree does not perform expensive logging and it calls a fewer number of cache line flushes than

FPTree. However, if we increase both read and write latency, as shown in Figure 16(b), FPTree

shows a similar insertion performance with B3-tree because the logging overhead of FPTree is

masked by faster access to internal pages.

4.3.5 Concurrency

In the experiments shown in Figure 18 and 19, we evaluate the performance of multi-threaded

versions of B3-tree, FAST and FAIR B-tree, and FPTree. While B3-tree and FAST and FAIR

B-tree enables lock-free search, FPTree employs Intel’s Transactional Synchronization Extension

(TSX).

In Figure 18, we measure the insertion and search throughput with varying the number

of concurrent threads. We insert 10 million keys into the index that already has 10 million

keys. Our testbed machine has 16 vCPUs. Therefore, the speed up from concurrent threads

becomes saturated when we run more than 16 threads. We note that B3-tree shows higher

insertion throughput than FAST and FAIR B-tree when the number of threads is smaller than

16. We note that the performance of B3-tree outperforms FPtree in terms of both insertion and

search throughputs as we increase the number of threads. Although the single-threaded read

38

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

A
v
g
.
E

x
ec

u
ti

o
n
 T

im
e(

u
se

c)

Read Latency(nsec)

B
3
-Tree

FAST+FAIR
FP-Tree

WB-Tree

550450350250120

Figure 17: Search Performance with Varying Read Latency

 0

 1000

 2000

 3000

 4000

 5000

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Number of Threads

(a)Write Throughput

B
3
-Tree

FAST+FAIR
FP-Tree

168421
 0

 5000

 10000

 15000

 20000

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Number of Threads

(b)Read Throughput

B
3
-Tree

FAST+FAIR
FP-Tree

168421

Figure 18: Insertion(a) and Search(b) Throughputs with Varying Number of Threads

performance of B3-tree is shown to be lower than FPtree in Figure 17, B3-tree takes advantage

of a higher level of concurrency than FPTree. Since read threads of B3-tree and FAST and

FAIR B-tree do not need to acquire read locks, both indexes achieve linear scalability while read

threads using FPTree suffer from thread contention.

In the experiment shown in Figure 19, we measure the average execution time of 10 million

queries. We vary the number of read and write transactions in order to vary the read/write ratio.

As we increase the write ratio, the total execution time increases. However, FPtree suffers the

most from the higher write ratio, because write threads in FPtree suspend read threads while

the other two indexes allow read transactions to access index without being blocked. Note that

if we run 32 threads concurrently, the total execution time of FPTree is 5x longer than that of

B3-tree.

 0

 1000

 2000

 3000

 4000

 5000

 6000

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Number of Threads

(a) Read/Write ratio of 25/75

B
3
-Tree

FAST+FAIR
FP-Tree

168421
 0

 2000

 4000

 6000

 8000

 10000

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Number of Threads

(b) Read/Write ratio of 75/25

B
3
-Tree

FAST+FAIR
FP-Tree

168421

Figure 19: Performance Comparison with 4 Threads(l) and 16 Threads(r) Using Mixed Workload

39

Algorithm 2 MergeTreePages(leftPage, rightPage)

1: lp = parentBSTNode(leftPage);

2: rp = parentBSTNode(rightPage);

3: mergedPage = merge(leftPage, rightPage);

4: leftSibling = findLeftSiblingPage(leftPage);

5: lp→swapAndPersist(leftPage, leftSibling);

6: rp→swapAndPersist(rightPage, leftSibling);

7: leftSibling→sibling = mergedPage;

8: persist(&leftSibling→sibling);

9: if lp == rp then

10: // if two merged pages share the same parent

11: grandParent = parentBSTNode(lp);

12: grandParent→swapAndPersist(lp, mergedPage);

13: else if lp.left == leftPage then

14: rp.left = mergedPage;

15: persist(&rp.left);

16: if node→root == lp then

17: node→root = lp.right;

18: persist(&node→root);

19: else

20: grandParent = parentBSTNode(lp);

21: grandParent→swapAndPersist(lp, lp.right);

22: end if

23: else if lp.right == leftPage then

24: lp.right = mergedPage;

25: persist(&lp.right);

26: if node→root == rp then

27: node→root = rp.left;

28: persist(&node→root);

29: else

30: grandParent = parentBSTNode(rp);

31: grandParent→swapAndPersist(rp, rp.left);

32: end if

33: end if

34: node→delete_cnt++;

40

Algorithm 3 SplitPage(parent, n)

1: n1 = alloc();

2: n2 = alloc();

3: m = findMedian(n);

4: copyEntries(n, 0, m, n1);

5: copyEntries(n, m, ∞, n2);

6: n1.sibling = &n2.id;

7: n2.sibling = n.sibling;

8: persist(&n1);

9: persist(&n2);

10: leftSibling = findLeftSiblingPage(node);

11: swapAndPersist(parent, n, leftSibling);

12: leftSibling→sibling = n1;

13: persist(&leftSibling→sibling);

14: InsertBinaryTreeNode(m, n1, n2);

41

4.4 Cacheline-Conscious Extendible Hashing

In this section, we present Cacheline-Conscious Extendible Hashing (CCEH), a variant of ex-

tendible hashing that overcomes the shortcomings of traditional extendible hashing by guar-

anteeing the failure-atomicity and reducing the number of cacheline accesses for the benefit of

byte-addressable PM.

Figure 20: Cacheline-Conscious Extendible Hashing

4.4.1 Three Level Structure of CCEH

In byte-addressable PM, the unit of an atomic write is a word but the unit of data transfer

between the CPU and memory corresponds to a cacheline. Therefore, the write-optimal size of

a hash bucket is a cacheline. However, a cacheline, which is typically 64 bytes, can hold no more

than four key-value pairs if the keys and values are word types. Considering that each cacheline

sized-bucket needs an 8-byte pointer in the directory, the directory can be the tail wagging the

dog, i.e., if each 64-byte bucket is pointed by a single 8-byte directory entry, the directory can

be as large as 1/8 of the total bucket size. If multiple directory entries point to the same bucket,

the directory size can be even larger. To keep the directory size under control, we can increase

the bucket size. However, there is a trade-off between bucket size and lookup performance as

increasing bucket size will make lookup performance suffer from the large number of cacheline

accesses and failure to exploit cache locality.

In order to strike a balance between the directory size and lookup performance, we propose

to use an intermediate layer between the directory and buckets, which we refer to as a segment.

That is, a segment in CCEH is simply a group of buckets pointed to by the directory. The

structure of CCEH is illustrated in Figure 20. To address a bucket in the three level structure,

42

(a) Step 1: Create Sibling (b) Step 2: Split and Lazy Deletion

Figure 21: Failure-Atomic Segment Split Example

we use the G bits (which represents the global depth) as a segment index and an additional B

bits (which determines the number of cachelines in a segment) as a bucket index to locate a

bucket in a segment.

In the example shown in Figure 20, we assume each bucket can store two records (delimited

by the solid lines within the segments in the figure). If we use B bits as the bucket index, we can

decrease the directory size by a factor of 1/2B (1/256 in the example) compared to when the

directory addresses each bucket directly. Note that although the three level structure decreases

the directory size, it allows access to a specific bucket (cacheline) without accessing the irrelevant

cachelines in the segment.

Continuing the example in Figure 20, suppose the given hash key is 10101010...11111110(2)
and we use the least significant byte as the bucket index and the first two leading bits as the

segment index since the global depth is 2. We will discuss why we use the leading bits instead

of trailing bits as the segment index later in Section 4.4.4. Using the segment index, we can

lookup the address of the corresponding segment (Segment 3). With the address of Segment 3

and the bucket index (11111110(2)), we can directly locate the address of the bucket containing

the search key, i.e., (&Segment3+64 × 11111110(2)). Even with large segments, the requested

record can be found by accessing only two cachelines - one for the directory entry and the other

for the corresponding bucket (cacheline) in the segment.

4.4.2 Failure-Atomic Segment Split

A split performs a large number of memory operations. As such, a segment split in CCEH

cannot be performed by a single atomic instruction. Unlike full-table rehashing that requires a

single failure-atomic update of the hash table pointer, extendible hashing is designed to reuse

most of the segments and directory entries. Therefore, the segment split algorithm of extendible

hashing performs several in-place updates in the directory and copy-on-writes.

In the following, we use the example depicted in Figure 21 to walk through the detailed

workings of our proposed failure-atomic segment split algorithm. Suppose we are to insert key

1010...11111110(2). Segment 3 is chosen as (the local depth is 1 and) the leftmost bit is 1, but

43

the 255th (11111110(2)th) bucket in the segment has no free space, i.e., a hash collision occurs.

To resolve the hash collision, CCEH allocates a new Segment and copies key-value records not

only in the collided bucket of the segment but also in the other buckets of the same segment

according to their hash keys. In the example, we allocate a new Segment 4 and copy the records,

whose key prefix starts with 11, from Segment 3 to Segment 4. We use the two leading bits

because the local depth of Segment 3 will be increased to 2. If the prefix is 10, the record remains

in Segment 3, as illustrated in Figure 21(a).

In the next step, we update the directory entry for the new Segment 4 as shown in Fig-

ure 21(b). First, (1) the pointer and the local depth for the new bucket are updated. Then,

(2) we update the local depth of the segment that we split, Segment 3. I.e., we update the

directory entries from right to left. The ordering of these updates must be enforced by inserting

mfence instruction in between each instruction. Also, we must call clflush when it crosses

the boundary of cachelines, as was done in FAST and FAIR B-tree [80]. Enforcing the order of

these updates is particularly important to guarantee recovery. Note that these three operations

cannot be done in an atomic manner. That is, if a system crashes during the segment split, the

directory can be recovered to a partially updated inconsistent state. For example, the updated

pointer to a new segment is flushed to PM but two local depths are not updated in PM. However,

we note that this inconsistency can be easily detected and fixed by a recovery process without

explicit logging. We detail our recovery algorithm later in Section 4.4.5.

A potential drawback of our split algorithm for three level CCEH is that a hash collision may

split a large segment even if other buckets in the same segment have free space. To improve space

utilization and avoid frequent memory allocation, we can employ ad hoc optimizations such as

linear probing or cuckoo displacement. Although these ad hoc optimizations help defer expensive

split operations, they increase the number of cacheline accesses and degrade the index lookup

performance. Thus, they must be used with care. In modern processors, serial memory accesses

to adjacent cachelines benefit from hardware prefetching and memory level parallelism [80].

Therefore, we employ simple linear probing that bounds the number of buckets to probe to four

cachelines to leverage memory level parallelism.

Similar to the segment split, a segment merge performs the same operations, but in the

reversed order. That is, (1) we migrate the records from the right segment to the left segment,

as shown in Figure 21(b). Next, (2) we decrease the local depths and update pointers of the two

segments in the directory, as shown in Figure 21(a). Note that we must update these directory

entries from left to right, which is the opposite direction to that used for segment splits. This

ordering is particularly important for the recovery. Details about the ordering and recovery will

be discussed in Section 4.4.5.

4.4.3 Lazy Deletion

In legacy extendible hashing, a bucket is atomically cleaned up via a page write after a split

such that the bucket does not have migrated records. For failure-atomicity, disk-based extendible

44

hashing updates the local depth and deletes migrated records with a single page write.

Unlike legacy extendible hashing, CCEH does not delete migrated records from the split

segment. As shown in Figure 21(b), even if Segments 3 and 4 have duplicate key-value records,

this does no harm. Once the directory entry is updated, queries that search for migrated records

will visit the new segment and queries that search for non-migrated records will visit the old

segment but they always succeed in finding the search key since the split Segment 3 contains all

the key-value records, with some unneeded duplicates.

Instead of deleting the migrated records immediately, we propose lazy deletion, which helps

avoid the expensive copy-on-write and reduce the split overhead. Once we increase the local

depth of the split segment in the directory entry, the migrated keys (those crossed-out keys in

Figure 21(b)) will be considered invalid by subsequent transactions. Therefore, there is no need

to eagerly overwrite migrated records because they will be ignored by read transactions and

they can be overwritten by subsequent insert transactions in a lazy manner. For example, if

we insert a record whose hash key is 1010...11111110(2), we access the second to last bucket of

Segment 3 (in Figure 21(b)) and find the first record’s hash key is 1000...11111110(2), which is

valid, but the second record’s hash key is 1101...11111110(2), which is invalid. Then, the insert

transaction replaces the second record with the new record. Since the validness of each record

is determined by the local depth, the ordering of updating directory entries must be preserved

for consistency and failure-atomicity.

4.4.4 Segment Split and Directory Doubling

Although storing a large number of buckets in each segment can significantly reduce the direc-

tory size, directory doubling is potentially the most expensive operation in large CCEH tables.

Suppose the segment pointed to by the first directory entry splits, as shown in Figure 22(a).

To accommodate the additional segment, we need to double the size of the directory and make

each existing segment referenced by two entries in the new directory. Except for the two new

segments, the local depths of existing segments are unmodified and they are all smaller than the

new global depth.

For disk-based extendible hashing, it is well known that using the least significant bits (LSB)

allows us to reuse the directory file and to reduce the I/O overhead of directory doubling because

we can just copy the directory entries as one contiguous block and append it to the end of the

file as shown in Figure 22(b). If we use the most significant bits (MSB) for the directory, new

directory entries have to be sandwiched in between existing entries, which makes all pages in

the directory file dirty.

Based on this description, it would seem that making use of the LSB bits would be the

natural choice for PM as well. In contrary, however, it turns out when we store the directory

in PM, using the most significant bits (MSB) performs better than using the LSB bits. This is

because the existing directory entries cannot be reused even if we use LSB since all the directory

entries need to be stored in contiguous memory space. That is, when using LSB, we must

45

(a) Directory with Global Depth=2

(b) Directory Doubling with LSB

(c) Directory Doubling with MSB

Figure 22: MSB segment index makes adjacent directory entries be modified together when a

segment splits

allocate twice as much memory as the old directory uses, copy the old directory to the first

half as well as to the second half. This is aggravated by the expensive cacheline flushes that

are required when doubling the directory. In fact, the overhead of doubling the directory with

two memcpy() function calls and iterating through a loop to duplicate each directory entry is

minimal compared to the overhead of clflush. In conclusion, LSB does not help reduce the

overhead of enlarging the directory size unlike the directory file on disks.

The main advantage of using MSB over LSB comes from reducing the overhead of segment

splits, not from reducing the overhead of directory doubling. If we use MSB for the directory,

as shown in Figure 22(c) and 26(a), the directory entries for the same segment will be adjacent

to each other such that they benefit from spatial locality. That is, if a segment splits later,

multiple directory entries that need to be updated will be adjacent. Therefore, using MSB

as segment index reduces the number of cacheline flushes no matter what local depth a split

segment has. Even though preserving the spatial locality has little performance effect on reducing

46

(a) Tree Representation of Segment Split History (b) Split: Update Pointer and Level for new Seg-

ment from Right to Left

(c) Split: Increase Level of Split Segment from

Right to Left

Figure 23: Buddy Tree Traversal for Recovery

the overhead of directory doubling because both MSB and LSB segment index call the same

number of clflush instructions in batches when doubling the directory, MSB segment index has

a positive effect of reducing the overhead of segment splits, which occur much more frequently

than the directory doubling. As we will see next, using MSB has another benefit of allowing for

easier recovery.

4.4.5 Recovery

Various system failures such as power loss can occur while hash tables are being modified. Here,

we present how CCEH achieves failure-atomicity by discussing system failures at each step of

the hash table modification process.

Suppose a system crashes when we store a new record into a bucket. First, we store the value

and its key next. If the key is of 8 bytes, the key can be atomically stored using the key itself as

a commit mark. Even if the key is larger than 8-bytes, we can make use of the leading 8 bytes

of the key as a commit mark. For example, suppose the key type is a 32 byte string and we use

the MSB bits as the segment index and the least significant byte as the bucket index. We can

write the 24 byte suffix first, call mfence, store the leading 8 bytes as a commit mark, and call

clflush. This ordering guarantees that the leading 8 bytes are written after all the other parts

of the record have been written. Even if the cacheline is evicted from the CPU cache, partially

written records will be ignored because the key is not valid for the segment, i.e., the MSB bits

are not a valid segment index. This is the same situation as when our lazy deletion considers a

slot with any invalid MSB segment index as free space. Therefore, the partially written records

47

without the correct leading 8 bytes will be ignored by subsequent transactions. Since all hash

tables including CCEH initialize new hash tables or segments when they are first allocated, there

is no chance for an invalid key to have a valid MSB segment index by pure luck. To delete a

record, we change the leading 8 bytes to make the key invalid for the segment. Therefore, the

insertion and deletion operations that do not incur bucket splits are failure-atomic in CCEH.

Making use of the MSB bits as a segment index not only helps reduce the number of cacheline

flushes but also makes the recovery process easy. As shown in Figure 23, with the MSB bits,

the directory entries allow us to keep track of the segment split history as a binary buddy tree

where each node in the tree represents a segment. When a system crashes, we visit directory

entries as in binary tree traversal and check their consistency, which can be checked by making

use of G and L. That is, we use the fact that, as we see in Figure 21, if G is larger than L then

the directory buddies must point to the same segment, while if G and L are equal, then each

must point to different segments.

Let us now see how we traverse the directories. Note that the local depth of each segment

and the global depth determines the segment’s stride in the directory, i.e., how many times

the segment appears contiguously in the directory. Since the leftmost directory entry is always

mapped to the root node of the buddy tree because of the in-place split algorithm, we first visit

the leftmost directory entry and check its buddy entry. In the walking example, the buddy of S1

(directory[0]) is S5 (directory[2]) since its stride is 2G−L = 2. After checking the local depth and

pointer of its right buddy, we visit the parent node by decreasing the local depth by one. I.e.,

S1 in level 2. Now, the stride of S1 in level 2 is 2G−L = 4. Hence, we visit S3 (directory[4]) and

check its local depth. Since the local depth S3 is higher (4 in the example), we can figure out

that S3 has split twice and its stride is 1. Hence, we visit directory[5] and check its consistency,

continuing this check until we find any inconsistency. The pseudo code of this algorithm is shown

in Algorithm 4.

Suppose a system crashes while splitting segment S2 in the example. According to the split

algorithm we described in Section 4.4.2, we update the directory entries for the split segment

from right to left. Say, a system crashes after making directory[11], colored red in the Fig-

ure 23(b), point to a new segment S11. The recovery process will traverse the buddy tree and

visit directory[8]. Since the stride of S2 is 4, the recovery process will make sure directory[9],

directory[10], and directory[11] have the same local depth and point to the same segment. Since

directory[11] points to a different segment, we can detect the inconsistency and fix it by restor-

ing its pointer. If a system crashes after we update directory[10] and directory[11] as shown in

Figure 23(c), we can either restore the two buddies or increase the local depth of directory[8]

and directory[9].

4.4.6 Concurrency and Consistency Model

Rehashing is particularly challenging when a large number of transactions are concurrently run-

ning because rehashing requires all concurrent write threads to wait until rehashing is complete.

48

Algorithm 4 Directory Recovery
1: while i < Directory.Capacity do

2: DepthCur ← Directory[i].Depthlocal

3: Stride← 2(Depthglobal−DepthCur)

4: j ← i+ Stride . Buddy Index

5: DepthBuddy ← Directory[j].Depthlocal

6: if DepthCur < DepthBuddy then

7: for k ← j − 1; i < k; k ← k − 1 do

8: Directory[k].Depthlocal ← DepthCur

9: end for

10: else

11: if DepthCur = DepthBuddy then

12: for k ← j + 1; k < j + Stride; k ← k + 1 do

13: Directory[k]← Directory[j]

14: end for

15: else . DepthCur > DepthBuddy; Shrink

16: for k ← j + Stride− 1; j <= k; k ← k − 1 do

17: Directory[k]← Directory[j + Stride− 1]

18: end for

19: end if

20: end if

21: i← i+ 2(Depthglobal−(DepthCur−1))

22: end while

To manage concurrent accesses in a thread-safe way in CCEH, we adapt and make minor modifi-

cations to the two level locking scheme proposed by Ellis [86], which is known to show reasonable

performance for extendible hashing [87]. For buckets, we protect them using a reader/writer

lock. For segments, we have two options. One option is that we protect each segment using a

reader/writer lock as with buckets. The other option is the lock-free access to segments.

Let us first describe the default reader/writer lock option. Although making use of a

reader/writer lock for each segment access is expensive, this is necessary because of the in-

place lazy deletion algorithm that we described in Section 4.4.2. Suppose a read transaction T1

visits a segment but goes to sleep before reading a record in the segment. If we do not protect

the segment using a reader/writer lock, another write transaction T2 can split the segment and

migrate the record to a new segment. Then, another transaction accesses the split segment and

overwrites the record that the sleeping transaction is to read. Later, transaction T1 will not

find the record although the record exists in the new buddy segment.

The other option is lock-free access. Although lock-free search cannot enforce the ordering

of transactions, which makes queries vulnerable to phantom and dirty reads problems [51], it is

49

 0

 200

 400

 600

 800

 1000

 1200

 1400

256B 1KB 4KB 16KB 64KB 256KB

T
h

ro
u

g
h

p
u

t
(O

p
s/

m
se

c)

Segment Size for CCEH/Bucket Size for EXTH

CCEH(MSB) CCEH(LSB) EXTH(LSB)

(a) Insertion Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

256B 1KB 4KB 16KB 64KB 256KB

A
v

g
.

N
u

m
b

er
 o

f
cl

fl
u

sh

Segment Size for CCEH/Bucket Size for EXTH

CCEH(MSB) CCEH(LSB) EXTH(LSB)

(b) Number of clflush

 0

 2000

 4000

 6000

 8000

 10000

 12000

256B 1KB 4KB 16KB 64KB 256KB

T
h

ro
u

g
h

p
u

t
(O

p
s/

m
se

c)

Segment Size for CCEH/Bucket Size for EXTH

CCEH(MSB) CCEH(LSB) EXTH(LSB)

(c) Search Throughput

Figure 24: Throughput with Varying Segment/Bucket Size

useful for certain types of queries, such as OLAP queries, that do not require a strong consistency

model because lock-free search helps reduce query latency.

To enable lock-free search in CCEH, we cannot use the lazy deletion and in-place updates.

Instead, we can copy-on-write (CoW) split segments. With CoW split, we do not overwrite

any existing record in the split segment. Therefore, a lock-free query accesses the old split

segment until we replace the pointer in the directory with a new segment. Unless we immediately

deallocate the split segment, the read query can find the correct key-value records even after the

split segment is replaced by two new segments. To deallocate the split segment in a thread-safe

way, we keep count of how many read transactions are referencing the split segment. If the

reference count becomes zero, we ask the persistent heap memory manager to deallocate the

segment. As such, a write transaction can split a segment even while it is being accessed by

read transactions.

We note that the default CCEH with lazy deletion has a much smaller overhead for seg-

ment split than the CCEH with CoW split, which we denote as CCEH(C), because it reuses the

original segment so that it can allocate and copy only half the amount required for CCEH(C). If

a system failure occurs during a segment split, the recovery cost for lazy deletion is also only

half of that of CCEH(C). On the other hand, CCEH(C) that enables lock-free search at the cost

of weak consistency guarantee and higher split overhead shows faster and more scalable search

performance, as we will show in Section 4.4.7. Another benefit of CCEH(C) is that its probing

cost for search operations is smaller than that of CCEH with lazy deletion because all the invalid

keys are overwritten as NULL.

For more scalable systems, lock-free extendible hashing has been studied by Shalev et al. [88].

However, such lock-free extendible hashing manages each key-value record as a split-ordered list,

which fails to leverage memory level parallelism and suffers from a large number of cacheline

accesses.

To minimize the impact of rehashing and reduce the tail latency, numerous hash table imple-

mentations including Java Concurrent Package and Intel Thread Building Block partition the

hash table into small regions and use an exclusive lock for each region [89, 90, 91, 92], hence

avoiding full-table rehashing. Such region-based rehashing is similar to our CCEH in the sense

that CCEH rehashes only one segment at a time. However, we note that the existing region-

50

based concurrent hash table implementations are not designed to guarantee failure-atomicity for

PM. Furthermore, their concurrent hash tables use separate chaining hash tables, not dynamic

hash tables [89, 90, 91, 92].

4.4.7 Experiments

We run experiments on a workstation that has four Intel Xeon Haswell-EX E7-4809 v3 processors

(8 cores, 2.0GHz, 8×32KB instruction cache, 8×32KB data cache, 8×256KB L2 cache, and

20MB L3 cache) and 64GB of DDR3 DRAM. Since byte-addressable persistent main memory

is not commercially available yet, we emulate persistent memory using Quartz, a DRAM-based

PM latency emulator [83, 82]. To emulate write latency, we inject stall cycles after each clflush

instructions, as was done in previous studies [84, 39, 27, 33, 85].

A major reason to use dynamic hashing over static hashing is to dynamically expand or

shrink hash table sizes. Therefore, we set the initial hash table sizes such that they can store

only a maximum of 2048 records. For all experiments, we insert 16 million random keys, whose

keys and values are of 8 bytes. Although we do not show experimental results for non-uniformly

distributed keys such as skewed distributions due to the page limit, the results are similar

because well designed hash functions convert a non-uniform distribution into one that is close

to uniform [93].

4.4.7.1 Quantification of CCEH Design

In the first set of experiments, we quantify the performance effect of each design of CCEH.

Figure 24 shows the insertion throughput and the number of cacheline flushes when we insert 16

million records into variants of the extendible hash table, while increasing the size of the memory

blocks pointed by directory entries, i.e., the segment in CCEH and the hash bucket in extendible

hashing. We fix the size of the bucket in CCEH to a single cacheline, but employ linear probing

and bound the probing distance to four cachelines to maximize memory level parallelism.

CCEH(MSB) and CCEH(LSB) show the performance of CCEH when using MSB and LSB bits,

respectively, as the segment index and LSB and MSB bits, respectively, as the bucket index.

EXTH(LSB) shows the performance of legacy extendible hashing that uses LSB as the bucket

index, which is the popular practice.

When the bucket size is 256 bytes, each insertion into EXTH(LSB) calls clflush instructions

about 3.5 times on average. Considering an insertion without a collision requires only a single

clflush to store a record in a bucket, 2.5 cacheline flushes are the amortized cost of bucket

splits and directory doubling. Note that CCEH(LSB) and EXTH(LSB) are the same hash tables

when a segment can hold a single bucket. Therefore, their throughputs and number of cacheline

accesses are similar when the segment size of CCEH(LSB) and the bucket size of EXTH(LSB) are

256 bytes.

As we increase the bucket size, EXTH(LSB) splits buckets less frequently, decreasing the

51

number of clflush down to 2.3. However, despite the fewer number of clflush calls, the

insertion throughput of EXTH(LSB) decreases sharply as we increase the bucket size. This is

because EXTH(LSB) reads a larger number of cachelines when finding a record as the bucket size

increases.

 0

 0.5

 1

 1.5

 2

C
C
EH

C
C
EH

(C
)

LE
VL

LI
N
P

C
U
C
K

BC
H

LE
VL(

O
)

PATH

A
v

g
.

E
x

ec
.

T
im

e
(u

se
c)

Write
Rehash

Cuckoo Displacement

(a) 120/120

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

C
C
EH

C
C
EH

(C
)

LE
VL

LI
N
P

C
U
C
K

BC
H

LE
VL(

O
)

PATH

A
v

g
.

E
x

ec
.

T
im

e
(u

se
c)

Write
Rehash

Cuckoo Displacement

(b) 240/300

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

C
C
EH

C
C
EH

(C
)

LE
VL

LI
N
P

C
U
C
K

BC
H

LE
VL(

O
)

PATH

A
v

g
.

E
x

ec
.

T
im

e
(u

se
c)

Write
Rehash

Cuckoo Displacement

(c) 240/500

 0

 1

 2

 3

 4

 5

C
C
EH

C
C
EH

(C
)

LE
VL

LI
N
P

C
U
C
K

BC
H

LE
VL(

O
)

PATH

A
v

g
.

E
x

ec
.

T
im

e
(u

se
c)

Write
Rehash

Cuckoo Displacement

(d) 240/700

Figure 25: Breakdown of Time Spent for Insertion While Varying R/W latency of PM

In contrast, as we increase the segment size up to 16KB, the insertion throughput of

CCEH(MSB) and CCEH(LSB) increase because a segment split occurs less frequently while the

number of cachelines to read, i.e., LLC misses, is not affected by the large segment size. How-

ever, if the segment size is larger than 16KB, the segment split results in a large number of

cacheline flushes, which starts degrading the insertion throughput.

Figure 24(b) shows CCEH(MSB) and CCEH(LSB) calling a larger number of clflush than

EXTH(LSB) when a segment or bucket splits. This is because CCEH(MSB) and CCEH(LSB) store

records in a sparse manner according to the bucket index whereas EXTH(LSB) sequentially stores

rehashed records without fragmented free spaces. Thus, the number of updated cachelines

written by EXTH(LSB) is only about half of CCEH(LSB) and CCEH(MSB). From the experiments,

we observe the reasonable segment size is in the range of 4KB to 16KB.

When the segment size is small, the amortized cost of segment splits in CCEH(MSB) is up

52

to 29% smaller than that of CCEH(LSB) because CCEH(MSB) updates adjacent directory entries,

minimizing the number of clflush instructions. However, CCEH(LSB) accesses scattered cache-

lines and fails to leverage memory level parallelism, which results in about 10% higher insertion

time on average.

4.4.7.2 Comparative Performance

For the rest of the experiments, we use a single byte as the bucket index such that the bucket size

is 16 Kbytes, and we do not show the performance of CCEH(LSB) since CCEH(MSB) consistenty

outperforms CCEH(LSB). We compare the performance of CCEH against legacy hash table with

linear probing (LINP), cuckoo hashing [56] (CUCK), bucketized cuckoo hashing (BCH) [94], path

hashing [54] (PATH), and level hashing [53] (LEVL and LEVL(O)).1

For path hashing, we set the reserved level to 8, which guarantees 92% maximum load factor

as suggested by the authors [54]. For BCH, we set the bucket size to a cacheline where we can

store four key-value records of <word, word> type. We choose a small bucket size for BCH

because we observed BCH suffers from more cacheline accesses and shows worse performance as

we increase the bucket size. Cuckoo hashing and BCH perform full-table rehashing when they

fail to displace a collided record 16 times, which shows the fastest insertion performance on our

testbed machine. Linear probing rehashes when the load factor reaches 95%.

In the experiments shown in Figure 25, as the latency for reads and writes of PM are changed,

we insert 16 million records in batches and breakdown the insertion time into (1) the bucket

search and write time (denoted as Write), (2) the rehashing time (denoted as Rehash), and (3)

the time to displace existing records to another bucket, which is necessary for cuckoo hashing

(denoted as Cuckoo Displacement).

CCEH shows the fastest average insertion time throughout all read/write latencies. Even if

we disable the lazy deletion but perform copy-on-write for segment splits, denoted as CCEH(C),

CCEH(C) outperforms LEVL when PM read/write latencies are no different from DRAM latencies.

Note that the Rehash overhead of CCEH(C) is twice higher than that of CCEH that reuses the split

segment via lazy deletion. However, as the write latency of PM increases, CCEH(C) is slightly

outperformed by LEVL because of frequent memory allocations and expensivce copy-on-write

operations. The total allocated memory space for both CCEH(C) and LEVL are similar whereas

the total allocated memory space for CCEH is about half since it benefits from reusing split
1We downloaded the author’s level hashing, path hashing, and BCH implementations from

https://github.com/Level-Hashing/level-hashing. However, we found these implementations from the authors

are much slower than our extendible hashing, even slower than the simplest linear probing because they do

not align buckets to cachelines. For fair comparisons, we made minor changes to their implementations such

that buckets are aligned to cachelines. For reference purpose, we show the performance of original level hash

implementation from the authors, denoted as LEVL(O) and compare it with our modified level hash implemen-

tation LEVL. Our modified level hashing (LEVL), BCH (BCH), and path hashing (PATH) codes are available

at http://github.com/ccehtable/CCEH. Our own implementations of CCEH, linear probing (LINP), and cuckoo

hashing (CUCK) are also available there.

53

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60 80 100 120 140 160 180 200 220

C
D

F

Insertion Latency (ms)

CCEH

LEVL

LINP

CUCK

PATH

(a) Insertion Latency CDF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(O

p
er

at
io

n
s/

u
se

c)

Number of Threads

CCEH
CCEH(C)

LEVL
LINP

CUCK
PATH

(b) Insertion Throughput

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(O

p
er

at
io

n
s/

u
se

c)

Number of Threads

CCEH
CCEH(C)

LEVL
LINP

CUCK
PATH

(c) Search Throughput

Figure 26: Performance of concurrent execution: latency CDF and insertion/search throughput

segments.

Interestingly, the rehashing overhead of LEVL is even higher than that of LINP, which is just

a single array that employs linear probing for hash collisions. Although LINP suffers from a large

number of cacheline accesses due to the open addressing, its rehashing overhead is not more

significant than other static hashing schemes that perform full-table rehashing including LEVL.

As we discussed in Section II, the bottom level hash table in LEVL often fails to accommodate a

collided record resulting in another rehash. As such, LEVL performs rehashing for 1/3 records,

which is soon followed by another rehashing for the rest. Therefore, the average rehashing cost

of LEVL is similar to other hashing schemes.

CUCK also uses a single array as in LINP but performs the cuckoo displacements using two

hash functions. While a hash function in CUCK determines the exact location of a record, hash

functions in BCH compute the location of a bucket that can store multiple records. Although the

average insertion times of CUCK and BCH are similar when PM latency is equal to DRAM latency,

CUCK displaces a larger number of records and shows higher Cuckoo Displacement overhead than

BCH. That is, BCH can accommodate collided records in its large buckets instead of displacing it

to another bucket. However, BCH has higher rehashing overhead than CUCK because the BCH

implementation calls clflush to rehash each record but our CUCK implementation calls a batch

clflush in a lazy manner to synchronize all dirty cachelines after rehashing is done. Such lazy

synchronization is known to decouple the volatile memory order from the persist order [27] and

help improving the performance.

PATH hashing shows the worst performance throughout all our experiments mainly because

its lookup cost is not constant, but O(log2N).

4.4.7.3 Concurrency and Latency

Full-table rehashing is particularly challenging when multiple queries are concurrently accessing

a hash table because full-table rehashing requires exclusive access to the entire hash table, which

blocks subsequent queries and increases the response time. Therefore, we measure the latency

of concurrent insertion queries including the waiting time, whose CDF is shown in Figure 26(a).

For the workload, we generated query inter-arrival patterns using Poisson distribution where the

λ rate is set to the batch processing throughput of LINP.

54

While the average batch insertion times differ by only up to 130%, the maximum latency of

PATH is up to 8× higher than that of CCEH (25 msec vs. 200 msec), as shown in Figure 26(a).

This is because full-table rehashing blocks a large number of concurrent queries and significantly

increases their waiting time. The length of each flat region in the CDF graph represents how

long each full-table rehashing takes. PATH takes the longest time for rehashing whereas LEVL,

LINP, and CUCK spend similar amounts of time on rehashing. In contrast, we do not find any

flat region in the graph for CCEH. Compared to LEVL, the maximum latency of CCEH is reduced

by over two-thirds.

For the experimental results shown in Figure 26(b) and (c), we evaluate the performance of

the multi-threaded versions of the hashing schemes. Each thread inserts 16/k million records

in batches where k is the number of threads. Overall, as we run a larger number of insertion

threads, the insertion throughputs of all hashing schemes improve slightly but not linearly due

to lock contention.

Individually, CCEH shows slightly higher insertion throughput than CCEH(C) because of smaller

split overhead. LEVL, LINP, CUCK, and PATH use a fine-grained reader/writer lock for each sub-

array that contains 256 records, which is even smaller than the segment size of CCEH, but they

fail to scale because of the rehashing overhead. We note that these static hash tables must obtain

exclusive locks for all the fine-grained sub-arrays to perform rehashing. Otherwise, queries will

access a stale hash table and return inconsistent records.

In terms of search throughput, CCEH(C) outperforms CCEH as copy-on-write lock-free search.

Since the read transactions of CCEH(C) are non-blocking, the search throughput of CCEH(C)

is 1.46x, 2.2x, and 4.6x higher than that of CCEH, CUCK, and LEVL, respectively. Interestingly,

LEVL, our modified version of LEVL(O), shows the worst search throughput not only in these

experiments, but also in batch search experiments as well, which we do not show due to the

page limit. We note that LEVL(O) shows even worse search performance than LEVL. Our analysis

of the level hashing implementation found in github shows that level hashing is using the cuckoo

displacement, which accesses discontiguous cachelines multiple times, fails to leverage memory

level parallelism, and increases the LLC misses. In addition, level hashing uses a small bucket

and performs linear probing inside the bucket, which also increases the number of cacheline

accesses and hurts the search performance even more. As a result, LEVL shows the worst search

throughput. In these experiments, all queries lookup keys that exist in the hash table. However,

if queries are made to keys that do not exist in the hash table, making use of long probing,

cuckoo displacement, and stash hurts search performance even more. Although the results are

not presented in the interest of space, we find that our CCEH significantly outperforms other

hashing schemes even for non-existent key lookups.

55

V Parallel Tree Traversal for Nearest Neighbor Query on the

GPU

The nearest neighbor search, also known as proximity search or similarity search is a fundamental

problem that finds the closest point to a given query point in multi-dimensional space. The

problem of this nearest neighbor search is that the bruteforce algorithm usually outperforms the

indexing as the dimension increases. This is due to the curse of dimensionality, the exponential

growth of hyper-volume as a function of the number of dimensions. As GPU has been widely

adopted as a cost-effective solution in various computing domains, we studied several multi-

dimensional indexes on the accelerator. One of the challenges to use such data structures is the

small shared memory on the GPU. The small size of the shared memory in modern GPUs does

not allow storage of more than one tree node in the run-time stack, and the traditional recursive

tree traversal algorithms fail due to the stack overflow. Therefore, the tree traversal on the GPU

should avoid recursive search algorithms while efficiently using the computation resources on it.

5.1 Parallel Scan and Backtrack for kNN Query

In this section, we propose a novel tree traversal algorithm, Parallel Scan and Backtrack (PSB),

for kNN search on the GPU. The PSB algorithm does not use a runtime stack in shared memory

since the main purpose of shared memory on the GPU is to coordinate concurrent threads and

the shared memory is better reserved for application specific purpose, such as, the k-nearest

points. Instead, PSB requires each tree node to have a parent link pointer but PSB makes its

best efforts to avoid revisiting already visited parent nodes.

The PSB algorithm is shown in Algorithm 5. For a given query point Q and bounding

spheres of child nodes, we compute the minimum distances (MINDIST) and maximum distances

(MAXDIST) between the query point and the closest faces of child bounding spheres. If the

minimum MAXDIST (MINMAXDIST) is smaller than the current pruning distance, we set the

pruning distance to MINMAXDIST. As in the classic branch-and-bound kNN query processing

algorithm, the PSB algorithm visits the child node whose MINDIST is smallest until it reaches

a leaf node. In the leaf node, the PSB algorithm updates its pruning distance, and restarts

the tree traversal from the root node with the small pruning distance. In the second traversal,

unlike the classic branch-and-bound kNN search algorithm, the PSB search algorithm visits the

leftmost child node in the tree node within the pruning distance. The sub-trees on the left side

of the chosen child node are not within the pruning distance, so they can be pruned out without

hurting the correctness of the algorithm.

Once the search path reaches the leftmost leaf node within the pruning distance, the PSB

algorithm updates its pruning distance and kNN points if it finds closer data points to the query.

While the classic branch-and-bound kNN search algorithm goes back to the parent node after

it visits a leaf node, the PSB algorithm starts scanning sibling leaf nodes. This is because the

56

A

B C

D E F G

H I J K L NM O P Q R S

Figure 27: Massively Parallel Scanning and Backtracking : In the root node A, the pruning

distance is initially infinite. In step 1©, we search a leaf node which is closest to the query point

and update the pruning distance while computing the MAXDIST of child nodes. In the second

tree traversal 2©, regardless of whether B or C is closer to the query point, we fetch the leftmost

child node B from global memory if both B and C are within pruning distance. In node B, we

check which child nodes are within the pruning distance. In the example, suppose D and E are

within the pruning distance. Then 3© we fetch the left child node D. Suppose H is not within

the pruning distance. Then node H will be pruned out, and 4© we visit node I and kNN points

will be updated. After processing node I, 5© we fetch its sibling nodes J and K. If node K does

not update kNN points or pruning distance, 6© we fetch K’s parent node E from global memory

and prune out child nodes (L in the example) which are farther than the pruning distance. If

M ’s MINDIST is smaller than the pruning distance, 7© we fetch M and 8© keep scanning its

sibling nodes. If node N does not update kNN points, 9© we move to its parent node F , which

does not have any child nodes within the pruning distance. Thus 10© we move one level up to

node C. If node C does not have any child nodes within the pruning distance, we will move

to the root node and finish the search. Otherwise, as in the example, we visit the leftmost leaf

node G as it is within the pruning distance. We keep this traversal and visit G, R, and S.

sibling nodes have a high chance of having points spatially close to the query point because the

leaf nodes are likely to be clustered in the problem space. If we encounter a leaf node that does

not update the kNN points while scanning the sibling leaf nodes, there is no point in scanning

further. Thus the PSB algorithm stops scanning sibling leaf nodes and follows its parent link

so that it fetches the parent node of the last visited leaf node. Due to the leaf node scanning,

the parent node is less likely to have been already visited. If the parent node has unvisited

child nodes within the pruning distance, again we choose and visit the leftmost node among the

unvisited child nodes. Otherwise we repeatedly move to the upper-level parent node following

parent links. The PSB tree traversal algorithm visits leaf nodes in a sequential fashion, and a

large number of GPU cores helps process them in a massively parallel fashion. Figure 2 shows

an example of the PSB tree traversal algorithm.

57

5.2 Bottom-up Construction of SS-tree

The classic SS-trees construct hierarchical tree structures in a top-down fashion. That is, when a

point is inserted, the SS-tree insertion algorithm determines which subtree’s centroid is closest to

the point and inserts it into that sub-tree. When a node overflows, the split algorithm calculates

the coordinate variance from the centroid in each dimension. Based on the variance, it chooses

the dimension with the highest variance and splits the overflown node along that dimension.

This split algorithm is known to divide multi-dimensional points into isotropic bounding spheres

and greatly reduces the sizes of bounding spheres. As a heuristic optimization, SS-tree employs

forced reinsertion, as in R*-tree, so that it dynamically reorganizes the tree structure and reduces

the amount of overlap between bounding spheres.

Such a top-down and sequential construction algorithm requires serialization of insert op-

erations and excessive locking. If a data point is inserted online, top-down insertion will do

the work, but when we need to create an index in batches, bottom-up construction can cre-

ate an index an order of magnitude faster, as in Packed R-tree [95]. Moreover, the bottom-up

construction can take advantage of high level parallelism on the GPU.

5.2.1 Bottom-up Construction using Hilbert Curve

The Hilbert curve is a space filling curve that is widely used in many computing domains because

it is known to preserve good spatial locality [96]. Using the Hilbert space filling curve, we can

determine the ordering of multi-dimensional points. With the sorted ordering, we cluster nearby

points, enclose the nearby points in a small bounding sphere, and store them in a leaf node.

Although the Hilbert space filling curve can assign distant index values to spatially close data

points, it guarantees that it does not assign similar index values to distant data points. This is

the desirable property that helps generate tight bounding spheres in leaf nodes.

The Hilbert index values of multi-dimensional points can be concurrently calculated via

task parallelism. Moreover, the Hilbert index values can be efficiently sorted in parallel on the

GPU. Parallel sorting on the GPU has been extensively studied in the past decade. In our

implementation, we employ the parallel radix sort available in the Thrust [97] CUDA library.

5.2.2 Bottom-up Construction using K-Means Clustering

In addition to the parallel construction using the Hilbert curve, we develop an alternative parallel

SS-tree construction algorithm using k-means clustering. K-means clustering partitions a given

set of multi-dimensional points into k clusters, and we store each cluster in a SS-tree leaf node.

A challenge in using the k-means clustering method is to determine the number of k since it is

not known a priori. In general, increasing k results in reducing the potential errors. As a rule of

thumb, we can set k to the number of leaf nodes (NumberOfPoints/CapacityOfLeafNode).

However, the k-means clustering algorithm does not guarantee that all clusters have an equal

number of data points. Also, as k increases, the time to compute the clusters increases expo-

58

nentially because its time complexity is O(ndk+1logn), where n is the number of points and d

is the number of dimensions. With a small k, data points in a single cluster can be distributed

across multiple leaf nodes. In our implementation, we set k to
√
n/2, where n is the number of

points, as proposed by Mardia et al. [98].

5.2.3 Bottom-up Construction of Hierarchical Minimum Enclosing Bounding Spheres

Once we classify data points and store them in leaf nodes, we repeat recursive construction of

minimum enclosing bounding spheres for internal tree nodes until we create a bounding sphere

for the root node. The smallest enclosing circle in 2D space can be found in O(n) time. However,

its time complexity increases sharply as the dimension increases, i.e., the complexity of Megiddo’s

linear programming algorithm is O((d+ 1)(d+ 1)!n) [99]. For high dimensional points, a large

number of approximation algorithms, including Ritter’s algorithm [4], have been proposed. The

approximation algorithms generate bounding spheres fast but the bounding spheres are slightly

larger than optimum. That is, Ritter’s algorithm is known to generate 5∼20% larger bounding

spheres. Although the tree construction is only a one time job, running an O((d+ 1)(d+ 1)!n)

algorithm is not practical in practice. Thus, we employ Ritter’s approximation algorithm which

is easy to parallelize as we describe in Algorithm 6. To the best of our knowledge, not much

but just a little research [100, 101, 102] has been conducted to parallelize the construction of

minimum enclosing bounding spheres, especially in high dimensions. We believe this is the first

work that develops a parallel version of Ritter’s algorithm. The parallel Ritter’s algorithm is

described in Algorithm 6.

In our parallel Ritter’s algorithm, we choose a random point p from a set of points S, and

compute the distances between p and the rest of the points in parallel. Once the distances are

computed, we perform parallel reduction to choose the point q that has the largest distance from

p. From q, we compute the distances between q and the rest of the points in parallel, and choose

the farthest point r. Once we find q and r, we create an initial sphere using qr as its diameter.

Next, we check if all points in S are included in the sphere by simply checking the distances

between the centroid (C1) and each point in parallel. If a point s is outside of the sphere, we

draw a line between C1 and s and extend the sphere toward s just enough to include s. We

repeat this process until all the points are included in the sphere.

Note that our bottom-up parallel construction algorithm enforces 100 % node utilization of

leaf nodes even if we can significantly reduce the volume by storing some points in a sibling tree

node. However, as the node utilization of the bottom-up constructed SS-tree is higher than that

of the classic SS-tree, the number of tree nodes is smaller than the classic SS-tree, which results

in a shorter search path.

59

5.2.4 Performance Evaluation of Bottom-up Constructed SS-tree

In the experiments shown in Figure 28, we compare the search performance of SS-trees con-

structed in a bottom-up fashion using the Hilbert curve and k-means clustering. We run the

experiments using NVIDIA K40 GPUs for the bottom-up SS-tree implementations, and we set

the degree of a SS-tree node to 128 so that each processing unit in a shared multiprocessor pro-

cesses four branches, i.e., a total of 32 branches are processed in parallel. We also compare the

search performance of bottom-up constructed SS-tree on the GPU with that of top-down con-

structed SR-tree on a CPU. The SR-tree is an improved version of the SS-tree [65]. For SR-tree,

we run the experiments with an Intel Xeon E5-2690 v2 CPU, and set the size of a tree node to

a disk page size - 8 Kbytes. However, the search time comparison on two different architectures

is like a comparison of apples and oranges. Therefore, we compare the search performance in

terms of the number of accessed bytes as well.

We synthetically generate 100 sets of multi-dimensional points in normal distributions with

various average points and standard deviations. Each distribution consists of 10,000 data points.

Therefore, the total number of points in the dataset is one million. We describe how the dis-

tribution of a dataset affects the performance of indexing in more detail in section 5.3. For the

k-means clustering algorithm, we vary the k from 400 to 10,000 at the leaf node level. For the

clustering of internal tree nodes, we decrease k by a factor of 1/100 since the number of internal

tree nodes is much less than that of leaf nodes.

As for the tree traversal algorithm, we use the classic branch-and-bound kNN query pro-

cessing algorithm [64] for all indexes because the goal of the experiments is to evaluate how the

construction algorithm affects the tree structures. However, because the SS-tree on the GPU

does not allow backtracking, we let the SS-tree on the GPU use auxiliary parent links so that it

can backtrack to the parent nodes.

As shown in Figure 28, SS-trees that we construct via k-means clustering algorithms (SS-tree

(k-means)) consistently outperform SS-trees that we construct via Hilbert curve clustering

(SS-tree (Hilbert)). In four dimensions, the bottom-up SS-tree (Hilbert) accesses about

16 times more tree nodes than the bottom-up SS-tree (k-means), which results in 7.1 times

slower average query response time. Compared to SR-tree, SS-trees constructed via the Hilbert

curve and k-means clustering access about a 4∼16 times larger number of tree nodes. This is

because Ritter’s algorithm does not find the optimal minimum bounding spheres, and it is also

because SS-trees visit the same tree nodes multiple times using parent links. Although SS-trees

on the GPU access a much larger number of tree nodes, they outperform SR-trees in terms of

search response time due to massive parallelism.

As for the k-means clustering, k = 400 shows the best performance but as k is larger or

smaller than that, the performance slightly degrades. Since the distribution of the datasets is

not known a priori most of the time, it is a hard problem to choose the optimal k as we discussed.

However, although we choose k far from the optimal value, the SS-tree with k-means clustering

60

 0.01

 0.1

 1

 10

 100

4 16 64Q
u
er

y
 R

es
p

o
n

se
 T

im
e

(m
se

c)

Dimensions

Top-down SR-tree (CPU)
SS-tree (Hilbert)

SS-tree (kmeans k=10000)

SS-tree (kmeans k=2000)
SS-tree (kmeans k=400)
SS-tree (kmeans k=200)

(a) Average Query Response Time

 0.1

 1

 4

 16

 64

 256

 1024

4 16 64

A
cc

es
se

d
 B

y
te

s
(M

B
)

Dimensions

(b) Accessed Bytes

Figure 28: Bottom-up Constructed SS-trees vs Top-down Constructed SR-tree (Parent Link Tree

Traversal)

algorithm consistently outperforms the SS-tree that employs the Hilbert curve as shown in the

experiments.

5.3 Experiments

5.3.1 Experimental Setup

In this section, we evaluate and analyze the performance of the PSB (Parallel Scan and Back-

track) tree traversal algorithm for the nearest neighbor query processing algorithm on the GPU.

We conduct the experiments on a CentOS Linux machine that has dual Intel Xeon E5-2640v2

2.0GHz processors and 64 GB DDR3 memory with an NVIDIA Tesla K40 GPU which has 2880

CUDA cores. We use CUDA 6.5 for all the experiments. In our implementation of SS-trees, we

store the bounding spheres of child nodes as the structure of array (SOA) instead of the array

of structure so that memory coalescing can be naturally employed. We compiled the codes with

default optimization options using nvcc 6.5.12 and gcc 4.4.7.

The datasets of our primary concern are the non-uniform clustered datasets since the nearest

neighbor search in high dimensional uniform distribution is not even meaningful; that is, Beyer

et al. proved in [103] that the distance to the farthest neighbor and the distance to the nearest

neighbor converge as the dimension increases to infinity. We evaluate the performance of the

proposed algorithm with various synthetic multi-dimensional datasets. We vary the number of

dimensions from 2 to 64, and we also vary the distribution of the points by changing the number

61

(a) N = 100/σ = 2560 (b) N = 100/σ = 640 (c) N = 100/σ = 160

(d) N = 100/σ = 40 (e) NOAA

Figure 29: Distribution of Datasets Projected to the First Two Dimensions (N: number of clus-

ters, σ: standard deviation

of normal distribution clusters and also by changing the variance of each cluster. We carefully

adjusted the number of clusters and the variance of the synthetic datasets so that the probability

density function of the distances between two arbitrary points is not concentrated.

As we increase the number of clusters and their variances, the distribution of data points be-

comes similar to the uniform distribution. Figure 29 shows the distributions of the synthetically

generated datasets while varying the standard deviation of each cluster’s normal distribution.

In addition to the synthetic datasets, we also evaluate the indexing performance using real

datasets - Integrated Surface Database (ISD) point datasets available at NOAA National Cli-

matic Data Center. The NOAA datasets consist of numerous sensor values such as wind speed

and direction, temperature, pressure, precipitation, etc, collected by over 20,000 geographically

distributed stations. The sensor values are tagged with time and two-dimensional coordinates

(latitude and longitude).

As for the performance metrics, we measure the average kNN query response time, which

is the time for the GPU kernel function to return the search results back to the CPU host for

a single query. We also measure the warp efficiency of the GPU and the number of accessed

memory bytes.

62

 0.2

 0.4

 0.8

 1.6

 3.2
 4

10 40 160 640 2560 10240

Standard Deviation

Average Query Response Time (msec)

 20

 40

 80

 160

 320

 500

10 40 160 640 2560 10240

Standard Deviation

Average Accssed Bytes (MB)

SS-Tree (PSB) SS-Tree (Branch&Bound)

Figure 30: Query Processing Performance with Varying Input Distribution (100 clusters)

5.3.2 Dataset Distribution

For the experiments shown in Figure 30, we combined 100 normal distributions that have differ-

ent average points in 64 dimensions. With varying the standard deviations of the distributions,

we evaluate the performance of PSB algorithm and the classic branch-and-bound algorithm using

bottom-up constructed SS-trees. We submit 240 kNN queries, and each query selects 32 near-

est neighbor points from a million data points for the rest of the experiments unless explicitly

specified.

In the experiments, we observe the data distribution significantly affects the efficiency of

indexing schemes; when the standard deviation is 10240, the query response time is about 8

times higher than when the standard deviation is 40. As the standard deviation increases, the

distribution becomes similar to the uniform distribution. With high standard deviation, both the

branch-and-bound algorithm and the PSB algorithm visit almost all leaf nodes due to the curse

of dimensionality problem. When the standard deviation is higher than 640 in the experiments,

the classic branch-and-bound algorithm and the PSB algorithm access a similar number of

tree nodes. However, in terms of the query response time, the PSB algorithm consistently

outperforms the branch-and-bound algorithm because the PSB algorithm benefits from fast

linear scanning.

5.3.3 Data Parallel n-ary SS-Tree vs Task Parallel Binary Kd-Tree

In the experiments shown in Figure 31 we vary the number of child nodes (degree) and measure

the average query execution time, global memory access, and the warp execution efficiency.

For the experiments, we index the 64 dimensional synthetic dataset that combines 100 normal

distributions, and we set the standard deviations of the distributions to 160. To validate the

proposition of this work, we compare the performance of data parallel SS-trees with the PSB

algorithm against task parallel binary kd-trees optimized for GPU [104].

When the degree is 32, we let 32 GPU threads concurrently access the same SS-tree node, i.e.,

the distances between a given query point and 32 bounding spheres of child nodes are calculated

63

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

32 64 128 256 512

W
ar

p
 E

ff
ic

ie
n
cy

 (
%

)

Degree of Node

KD-Tree
SS-Tree (PSB)

(a) Warp Efficiency

 5

 10

 15

 20

 25

 30

 35

32 64 128 256 512A
cc

es
se

d
 B

y
te

s
(M

B
)

Degree of Node

KD-Tree
SS-Tree (PSB)

(b) Number of Accessed Bytes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

32 64 128 256 512

T
im

e(
m

se
c)

Degree of Node

KD-Tree
SS-Tree (PSB)

(c) Average Query Response Time

Figure 31: Query Processing Performance with Varying Number of Fan-outs

in parallel. The binary kd-tree uses only one core of an SM. Therefore, the warp efficiency of

the binary kd-tree is just 3%, but the warp efficiency of the data parallel SS-tree is higher than

50%.

As we increase the degree of a tree node, the SS-tree accesses more global memory due to a

larger tree node size. When the degree of the SS-tree node is 4 times larger than the warp size,

the query response time slightly degrades because each core has to process more comparisons.

But when the degree of the SS-tree node is too small (less than 128), the query response time

also slows because the search path length increases.

As we increase the degree of the SS-tree, an SM has more work to do and the idle time of the

GPU cores decreases. Although we do not show the query processing throughput results due to

space limitation, the data parallel SS-tree shows comparable query processing throughput with

the task parallel kd-tree.

5.3.4 Performance in Varying Dimensions

In the experiments shown in Figure 32, we compare the performance of bottom-up constructed

SS-tree with the PSB, the branch-and-bound, and the brute-force scanning algorithm on the

GPU while varying the dimensions of the data points.

When the datasets are in uniform or Zipf’s distribution, it is known that brute-force ex-

haustive scanning often performs better than indexing structures in high dimensions. However,

for the clustered datasets, SS-trees access fewer bytes in global memory and yield faster query

response time, as shown in Figure 32. In 64 dimensions, the PSB algorithm performs kNN

queries about 4 times faster than brute-force exhaustive scanning, and about 25% faster than

64

 0.05

 0.1

 0.2

 0.4

 0.8

 1.6

 3.2

2 4 8 16 32 64

Dimension

Average Query Response Time (msec)

 0.1

 1

 10

 100

 256

 1000

2 4 8 16 32 64

Dimension

Average Accssed Bytes (MB)

Bruteforce
SS-Tree (PSB)

SS-Tree (Branch&Bound)

Figure 32: Performance with Varying Dimensions (Synthetic Datasets (100 clusters)

 0.1

 1

 10

 100

1 8 64 256 1920

K

Average Query Response Time (msec)

 10

 20

 40

 80

 160

 320

1 8 64 256 1920

K

Average Accssed Bytes (MB)

Bruteforce
SS-Tree (PSB)

SS-Tree (Branch&Bound)

Figure 33: Query Processing Performance with Varying k

the classic branch-and-bound algorithm.

5.3.5 Performance Effect of K

In the experiments shown in Figure 33, we compare the performance of the PSB, the branch-

and-bound algorithm, and the brute-force scanning method while varying the number of nearest

neighbor points (k). Interestingly, as we increase k, the query response time increases expo-

nentially although it does not significantly increase the number of accessed tree nodes. This is

because we store k of pruning distances in the shared memory because they must be shared and

updated by a block of GPU threads.

As we use more shared memory to store more distances and nearest neighbors, the number

of active threads per SM (GPU occupancy) decreases. Hence, even the brute-force scanning

method suffers from the large k. In order to maximize the GPU occupancy, the shared memory

usage must be limited. As an ad hoc optimization, if a large number of nearest neighbors need

to be stored, we can keep only a couple of large pruning distances in the shared memory but the

rest of the small pruning distances in global memory because the large pruning distances are

more likely to be accessed and updated while the small pruning distances are rarely updated.

65

 0.05

 0.1

 0.2

 0.4

 0.8

Average Query Response Time (msec)

 0.04
 0.08
 0.16
 0.32
 0.64
 1.28
 2.56
 5.12

 10.24

Average Accssed Bytes (MB)

Bruteforce
SS-Tree (PSB)

SS-Tree (Branch&Bound)
SR-Tree (CPU)

Figure 34: Query Processing Performance with Real Datasets (NOAA)

We leave this improvement as our future work.

5.3.6 Real Datasets

In the experiments shown in Figure 34, we construct bottom-up constructed SS-trees using real

clustered datasets - NOAA. Similar to our synthetic datasets, the PSB algorithm shows superior

performance to the branch-and-bound algorithm and the brute-force scanning algorithm. Also,

we show the search performance of SR-trees on the GPU. Although the top-down constructed

SR-tree accesses a much smaller amount of memory than the bottom-up constructed SS-tree,

SR-tree on the CPU shows the worse query response time than the SS-tree on the GPU because

of the lack of parallelism.

66

Algorithm 5 psb algorithm for knn query processing
procedure
SearchKNN(Point Q, int k)

1: Node n ← root
2: kNNs ← { inf }
3: float pruningDist ← getInitialPruningDistance(Q, ClosestLeaf)
4: int lastleafid ← the sequence id of the rightmost leaf node
5: int visitedleafid ← 0
6: while visitedleafid < lastleafid do // we visit leaf nodes from left to right
7: while n.level ! = leaf do
8: parfor tid← 1, numchildnodes do
9: maxdist[tid] ← getmaxdistance(q,n.child[tid])
10: mindist[tid] ← getmindistance(q,n.child[tid])
11: end parfor
12: maxdist[0] ← parreducefindkthminmaxdist(maxdist)
13: pruningdist ← min(maxdist[0],pruningdist) // parallel reduction to find minmaxdist
14: for i← 1, numchildnodes do
15: if mindist[i] < pruningdist then
16: n ← n.child[min(i)]
17: if n.subtreemaxleafid < visitedleafid then // already visited leaf nodes of this subtree
18: continue
19: else
20: break
21: end if
22: end if
23: end for
24: if i == numchildnode then // no child node is within pruning distance
25: n ← n.parent // backtrack
26: end if
27: end while
28: while n is a leaf node do
29: parfor tid← 1, numthreads do
30: dist[tid] ← getdistance(q,n.dataptr[tid])
31: end parfor
32: update knns with dist[]
33: update pruningdist with dist[]
34: visitedleafid ← n.leafid
35: if there was any change to knns then // scan to the right sibling leaf node
36: n ← n.rightsibling
37: else// backtrack to the parent node
38: n ← n.parent
39: end if
40: end while
41: end while
42: return knns

67

Algorithm 6 Parallel Ritter’s Algorithm
procedure
ParallelRitter(Node n)

1: float distances[] ← { inf }
2: parfor t← 0, n.count do
3: distances[t] ← Distance(n.child[0], n.child[t])
4: end parfor
5: distances[0] = parReduceFindMaxDist(distances)
6: int pIdx ← Child node index of distances[0] // pIdx is the farthest point from 0
7: parfor t← 0, n.count do
8: distances[t] ← Distance(n.child[pIdx], n.child[t])
9: end parfor
10: distances[0] = parReduceFindMaxDist(distances[])
11: int pIdx2 ← Child node index of distances[0] // pIdx2 is the farthest point from pIdx
12: n.center ← Midpoint of n.child[pIdx] and n.child[pIdx2]
13: n.radius ← distances[0]/2
14: bool isUpdated ← True
15: while isUpdated = True do
16: isUpdated ← False
17: parfor t← 0, n.count do
18: distances[t] ← Distance from n.center to n.child[t]
19: end parfor
20: distances[0] = parReduceFindMaxDist(distances)
21: if n → radius < distances[0] then
22: isUpdated ← True
23: n.radius ← (n.radius + distances[0])/2
24: n.center ← n.center + ((distances[0] - n.radius)/2)*|~v|
25: // |~v| is a unit vector from n.center to the farthest point
26: end if
27: end while

68

VI Conclusion

In this dissertation, we investigate the problem of leveraging emerging hardware to improve

the performance of the date analytics frameworks. There are various types of data analytics

frameworks with different characteristics and target workloads. To improve the performance of

the various frameworks, we enhance the common ground with emerging hardware.

We first design and implement EclipseMR, a novel MapReduce framework with a distributed

in-memory cache for data-intensive applications. We design a robust and scalable DHT-based file

system. We adopt a distributed in-memory cache that adapts its boundary to improve the load

balance and the probability of data reuse. We propose a LAF job scheduling policy for consistent

hashing. Our experimental study shows that each components of EclispeMR contributes to

enhancing the performance of the MapReduce framework. EclipseMR outperforms Hadoop and

Spark for various applications in our evaluation including iterative applications.

To leverage persistent memory in the data analytics frameworks, we propose B3-tree, a B+-

tree variant that combines the strength of in-memory binary tree and block-based B+-tree while

guaranteeing failure-atomicity without explicit logging. B3-tree employs the append-only update

strategy with binary tree structure inside a node so that the order of the keys can be preserved

without expensive sorting and the number of memory fence and cacheline flush instructions can

be reduced. As B3-tree is based on B+-tree, it can take advantage of balanced tree height

and cache-awareness. We can also exploit the sibling pointer of B+-tree to split or merge tree

nodes atomically. Our performance study shows that B3-tree outperforms the state-of-the-art

persistent index - wB+-tree by a large margin, and it shows a comparable performance with

selective persistent FPtree.

For the latency-critical applications, we develop Cache-Conscious Extendible Hashing (CCEH)

scheme, a variant of extendible hashing, that benefits from the cacheline-sized buckets for byte-

addressable persistent memory while providing failure-atomicity. An intermediate layer between

the directory and the bucket called segment is introduced to reduce the size of the directory and

find a record with minimal cacheline accesses. Our evaluation shows that CCEH successfully

eliminates the full-time rehashing overhead so that it can provide two-thirds of query latency

compared to the state-of-the-art level hashing scheme.

Lastly, we develop a data parallel tree traversal algorithm for k-nearest neighbor query

processing on the GPU, Parallel Scan and Backtrack (PSB). PSB algorithm successfully traverses

multi-dimensional SS-tree without tiny runtime stack problem and warp divergence. By linearly

scanning the relevant leaf nodes, PSB algorithm can benefit from contiguous memory blocks

while increasing the chances to optimize SIMD units. Our experiments show that the PSB

algorithm outperforms the branch-and-bound kNN query processing algorithm.

69

References

[1] J. Rao and K. A. Ross, “Cache conscious indexing for decision-support in main memory,”

in Proceedings of the 25th International Conference on Very Large Data Bases (VLDB),

1999.

[2] ——, “Making B+-trees cache conscious in main memory,” in Proceedings of 2000 ACM

SIGMOD International Conference on Management of Data (SIGMOD), 2000.

[3] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee, S. A.

Brandt, and P. Dubey, “FAST: Fast architecture sensitive tree search on modern CPUs and

GPUs,” in Proceedings of 2010 ACM SIGMOD International Conference on Management

of Data (SIGMOD), 2010.

[4] J. Ritter, “Graphics gems.” Academic Press Professional, Inc., 1990, ch. An Efficient

Bounding Sphere, pp. 301–303.

[5] T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz, “Querying very large multi-

dimensional datasets in ADR,” in Proceedings of the ACM/IEEE SC1999 Conference,

1999.

[6] M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz, “DataCutter: Middleware

for filtering very large scientific datasets on archival storage systems,” in Proceedings of

the Eighth Goddard Conference on Mass Storage Systems and Technologies/17th IEEE

Symposium on Mass Storage Systems, Mar. 2000, pp. 119–133.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in Proceedings of

the 19th ACM Symposium on Operating Systems Principles (SOSP), 2003.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” in

Proceedings of the 4th USENIX conference on Operating Systems Design and Implemen-

tation (OSDI), 2004.

[9] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein, “MapReduce Online,” in the 7th

USENIX symposium on Networked Systems Design and Implementation (NSDI), 2010.

[10] L. Popa, M. Budiu, Y. Yu, and M. Isard, “Dryadinc: Reusing work in large-scale computa-

tions,” in Proceedings of the 2009 USENIX Conference on Hot Topics in Cloud Computing

(HotCloud), 2009.

70

[11] S. Sakr, A. Liu, and A. G. Fayoumi, “The family of MapReduce and large-scale data

processing systems,” ACM Computing Surveys, vol. 46, no. 1, pp. 11:1–11:44, 2013.

[12] A. Shinnar, D. Cunningham, B. Herta, and V. Saraswat, “M3R: Increased performance for

in-memory Hadoop jobs,” Proceedings of the VLDB Endowment (PVLDB), vol. 5, no. 12,

pp. 1736–1747, 2012.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

computing with working sets,” in Proceedings of the 2010 USENIX Conference on Hot

Topics in Cloud Computing (HotCloud), 2010.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing,” in Proceedings of the 9th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), 2012.

[15] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Delay

scheduling: A simple technique for achieving locality and fairness in cluster scheduling,”

in Proceedings of the 5th European Conference on Computer Systems (EuroSys), 2010.

[16] Y. Zhao and J. Wu, “Dache: A data aware caching for big-data applications using the

MapReduce framework,” in Proceedings of INFOCOM, 2013, pp. 271–282.

[17] M. W. Rahman, X. Lu, N. S. Islam, and D. K. Panda, “HOMR: A hybrid approach to

exploit maximum overlapping in MapReduce over high performnace interconnects,” in

Proceedings of the 28th ACM International Conference on Supercomputing (ICS), 2014.

[18] D. Tiwari and Y. Solihin, “MapReuse: Reusing computation in an in-memory MapRe-

duce system,” in 28th IEEE International Parallel and Distributed Processing Symposium

(IPDPS), 2014.

[19] I. Elghandour and A. Aboulnaga, “ReStore: Reusing results of MapReduce jobs,” Proceed-

ings of the VLDB Endowment (PVLDB), vol. 5, no. 6, pp. 586–597, 2012.

[20] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas, “Sharing across multiple

MapReduce jobs,” ACM Transactions on Database Systems, vol. 39, no. 2, pp. 12:1–12:46,

2014.

[21] Y. A. Liu, S. D. Stoller, and T. Teitelbaum, “Static caching for incremental computation,”

ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 20, no. 3,

pp. 546–585, 1998.

[22] W. Pugh and T. Teitelbaum, “Incremental computation via function caching,” in the 16th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),

1989.

71

[23] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage & recovery methods

for non-volatile memory database systems,” in Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data. ACM, 2015, pp. 707–722.

[24] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Opti-

mistic crash consistency,” in Proceedings of the 24th ACM Symposium on Operating Sys-

tems Principles (SOSP), November 2013.

[25] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang, “High performance database logging

using storage class memory,” in Proceedings of the 27th International Conference on Data

Engineering (ICDE), 2011, pp. 1221–1231.

[26] W.-H. Kim, B. Nam, D. Park, and Y. Won, “Resolving journling of journal anomaly in

Android I/O: Multi-version B-tree with lazy split,” in Proceedings of the 11th USENIX

conference on File and Storage Technologies (FAST), 2014.

[27] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, “NVWAL: Exploiting NVRAM

in write-ahead logging,” in Proceedings of 21st International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2016.

[28] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-performance transac-

tions for persistent memories,” in Proceedings of the 21st International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS), 2016,

pp. 399–411.

[29] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and journaling layers with

non-volatile memory,” in Proceedings of the 11th USENIX conference on File and Storage

Technologies (FAST), 2013.

[30] W. Lee, K. Lee, H. Son, W.-H. Kim, B. Nam, and Y. Won, “WALDIO: Eliminating the

filesystem journaling in resolving the journaling of journal anomaly,” in Proceedings of the

2015 USENIX Anual Technical Conference, 2015.

[31] S. Mittal and J. S. Vetter, “A survey of software techniques for using non-volatile memories

for storage and main memory systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 5, pp. 1537–1550, Jun. 2015.

[32] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches for managing

embedded dram and non-volatile on-chip caches,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 6, pp. 1524–1537, Jun. 2015.

[33] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-atomic slotted paging for

persistent memory,” in Proceedings of the 22nd International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2017.

72

[34] K. Shen, S. Park, and M. Zhu, “Journaling of journal is (almost) free,” in Proceedings of

the 11th USENIX conference on File and Storage Technologies (FAST), 2014.

[35] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, “Consistent and

durable data structures for non-volatile byte-addressable memory,” in Proceedings of the

9th USENIX conference on File and Storage Technologies (FAST), 2011.

[36] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang, and S. Cho, “Barrier-Enabled IO Stack

for Flash Storage ,” in Proceedings of the 11th USENIX Conference on File and Storage

(FAST), 2018.

[37] J. Yang, Q. Wei, C. Chen, C. Wang, and K. L. Yong, “NV-Tree: reducing consistency

const for NVM-based single level systems,” in Proceedings of the 13th USENIX conference

on File and Storage Technologies (FAST), 2015.

[38] Y. Zhang and S. Swanson, “A study of application performance with non-volatile main

memory,” in Proceedings of the 31st International Conference on Massive Stroage Systems

(MSST), 2015.

[39] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT: Write optimal radix tree

for persistent memory storage systems,” in Proceedings of the 15th USENIX conference on

File and Storage Technologies (FAST), 2017.

[40] S. Chen and Q. Jin, “Persistent B+-Trees in non-volatile main memory,” Proceedings of

the VLDB Endowment (PVLDB), vol. 8, no. 7, pp. 786–797, 2015.

[41] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “FPTree: A hybrid SCM-

DRAM persistent and concurrent B-tree for storage class memory,” in Proceedings of 2016

ACM SIGMOD International Conference on Management of Data (SIGMOD), 2016.

[42] G. D. Knott, “Expandable open addressing hash table storage and retrieval,” in Proceedings

of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and

Control. ACM, 1971, pp. 187–206.

[43] P.-Å. Larson, “Dynamic hashing,” BIT Numerical Mathematics, vol. 18, no. 2, pp. 184–201,

1978.

[44] W. Litwin, “Virtual hashing: A dynamically changing hashing,” in Proceedings of the fourth

international conference on Very Large Data Bases-Volume 4. VLDB Endowment, 1978,

pp. 517–523.

[45] Oracle, “Architectural Overview of the Oracle ZFS Storage Appli-

ance,” 2018, https://www.oracle.com/technetwork/server-storage/ sun-unified-

storage/documentation/o14-001-architecture-overview-zfsa-2099942.pdf.

73

[46] S. Patil and G. A. Gibson, “Scale and concurrency of giga+: File system directories with

millions of files.” in Proceedings of the USENIX Conference on File and Storage Technolo-

gies (FAST), vol. 11, 2011, pp. 13–13.

[47] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file system for large computing

clusters.” in Proceedings of the USENIX Conference on File and Storage Technologies

(FAST), vol. 2, no. 19, 2002.

[48] S. R. Soltis, T. M. Ruwart, and M. T. OKeefe, “The global file system,” in 5th NASA

Goddard Conference on Mass Storage Systems and Technologies, vol. 2, College Park,

Maryland, 1996, pp. 319—-342.

[49] S. Whitehouse, “The gfs2 filesystem,” in Proceedings of the Linux Symposium. Citeseer,

2007, pp. 253–259.

[50] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible hashing - a fast access

method for dynamic files,” ACM Trans. Database Syst., vol. 4, no. 3, Sep. 1979.

[51] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Concepts. McGraw-Hill,

2005.

[52] H. Mendelson, “Analysis of extendible hashing,” IEEE Transactions on Software Engineer-

ing, no. 6, pp. 611–619, 1982.

[53] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance hashing index scheme

for persistent memory,” in 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), Carlsbad, CA, 2018.

[54] P. Zuo and Y. Hua, “A write-friendly hashing scheme for non-volatile memory systems,”

in Proceedings of the 33st International Conference on Massive Storage Systems and Tech-

nology (MSST), 2017.

[55] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and C. Ungureanu, “Revisiting hash

table design for phase change memory,” in Proceedings of the 3rd Workshop on Interactions

of NVM/FLASH with Operating Systems and Workloads, ser. INFLOW ’15, 2015, pp. 1:1–

1:9.

[56] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol. 51, no. 2, pp.

122–144, 2004.

[57] T. Foley and J. Sugerman, “KD-tree acceleration structures for a gpu raytracer,” in ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, 2005.

[58] B. Smits, “Efficiency issues for ray tracing,” Journal of Graphics Tools, vol. 3, no. 2, pp.

1–14, 1998.

74

[59] V. Havran, J. Bittner, and J. Zara, “Ray tracing with rope trees,” in 14th Spring Conference

on Computer Graphics (SCCG), 1998.

[60] D. Horn, J. Sugerman, M. Houston, and P. Hanrahan, “Interactive k-d tree gpu raytracing,”

in Symposium on Interactive 3D Graphics and Games (I3D), 2007.

[61] M. Hapala, T. Davidoiv, I. Wald, V. Havran, and P. Slusallek, “Efficient stack-less bvh

traversal for ray tracing,” in the 27th Spring Conference on Computer Graphics (SCCG

’11), 2011.

[62] J. Kim, W.-K. Jeong, and B. Nam, “Exploiting massive parallelism for indexing multi-

dimensional datasets on the gpu,” IEEE Transactions on Parallel and Distributed Systems,

vol. 26, no. 8, pp. 2258–2271, 2015.

[63] D. A. White and R. Jain, “Similarity indexing with the SS-tree,” in Proceedings of the 12th

International Conference on Data Engineering (ICDE), 1996, pp. 516–523.

[64] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” in Proceedings of

1995 ACM SIGMOD International Conference on Management of Data (SIGMOD), 1995,

pp. 71–79.

[65] N. Katayama and S. Satoh, “The SR-tree: An index structure for high-dimensional

nearest neighbor queries,” in Proceedings of 1997 ACM SIGMOD International Conference

on Management of Data (SIGMOD), May 1997, pp. 369–380. [Online]. Available:

http://www.dbl.nii.ac.jp/∼katayama/homepage/research/srtree/

[66] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,” ACM Transac-

tions on Database Systems, vol. 24, no. 2, pp. 265–318, Jun. 1999.

[67] A. Gupta, B. Liskov, and R. Rodrigues, “One hop lookups for peer-to-peer overlays,” in

Ninth Workshop on Hot Topics in Operating Systems (HotOS), Lihue, Hawaii, May 2003,

pp. 7–12.

[68] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A scalable

Peer-To-Peer lookup service for internet applications,” in Proceedings of the 2001 ACM

SIGCOMM Conference, 2001, pp. 149–160.

[69] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander, “Relational

query co-processing on graphics processors,” ACM Transactions on Database Systems,

vol. 34, no. 4, pp. 21–39, 2009.

[70] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang, “Nectar: Automatic

management of data and computation in datacenters,” in 9th USENIX Symposium on

Operating Systems Design and Implementation, (OSDI), 2010, pp. 75–88.

75

[71] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar, “Tarazu: Opti-

mizing mapreduce on heterogeneous clusters,” in 17th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS), 2012.

[72] ——, “ShuffleWatcher: Shuffle-aware scheduling in multi-tenant MapReduce clusters,” in

USENIX Annual Technical Conference, 2014.

[73] Y. Guo, J. Rao, and X. Zhou, “iShuffle: Improving hadoop performance with shuffle-

on-write,” in 10th USENIX International Conference on Autonomic Computing (ICAC),

2013, pp. 107–117.

[74] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal, “Hadoop acceleration through

network levitated merge,” in Proceedings of the ACM/IEEE SC2011 Conference, 2011.

[75] “HiBench,” https://github.com/intel-hadoop/HiBench.

[76] R. Appuswamy, C. Gkantsidis, D. Narayana, O. Hodson, and A. Rowstron, “Scale-up vs

scale-out for Hadoop: Time to rethink?” in 4th annual Symposium on Cloud Computing

(SOCC), 2013.

[77] K. Elmeleegy, “Piranha: Optimizing short jobs in Hadoop,” Proceedings of the VLDB

Endowment (PVLDB), vol. 6, no. 11, pp. 985–996, 2013.

[78] W. Kim, Y. ri Choi, and B. Nam, “Mitigating YARN container overhead with input splits,”

in 17th International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2017.

[79] ——, “Coalescing HDFS blocks to avoid recurring yarn container overhead,” in 10th In-

ternational Conference on Cloud Computing (IEEE Cloud), 2017.

[80] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable Transient Inconsistency in Byte-

Addressable Persistent B+-Trees,” in Proceedings of the 11th USENIX Conference on File

and Storage (FAST), 2018.

[81] P. L. Lehman and S. B. Yao, “Efficient locking for concurrent operations on B-trees,” ACM

Transactions on Database Systems, vol. 6, no. 4, pp. 650–670, 1981.

[82] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A lightweight performance

emulator for persistent memory software,” in Proceedings of the 15th Annual Middleware

Conference (Middleware ’15), 2015.

[83] H. E. Lab, “Quartz,” 2018, https://github.com/HewlettPackard/quartz.

[84] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-aware logging in transaction systems,”

Proceedings of the VLDB Endowment, vol. 8, no. 4, 2014.

76

[85] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persistent memory,” in

Proceedings of the 16th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2011.

[86] C. S. Ellis, “Extendible hashing for concurrent operations and distributed data,”

in Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database

Systems, ser. PODS ’83. New York, NY, USA: ACM, 1983, pp. 106–116. [Online].

Available: http://doi.acm.org/10.1145/588058.588072

[87] M. M. Michael, “High performance dynamic lock-free hash tables and list-based sets,” in

Proceedings of the 14th ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA), 2002.

[88] O. Shalev and N. Shavit, “Split-ordered lists: Lock-free extensible hash tables,” J. ACM,

vol. 53, no. 3, pp. 379–405, May 2006.

[89] B. Goetz, “Building a better HashMap: How ConcurrentHashMap of-

fers higher concurrency without compromising thread safety,” 2003,

https://www.ibm.com/developerworks/java/library/j-jtp08223/.

[90] Intel, “Intel Threading Building Blocks Developer Reference ,” 2018,

https://software.intel.com/en-us/tbb-reference-manual.

[91] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman, “Algorithmic improvements

for fast concurrent cuckoo hashing,” in Proceedings of the Ninth European Conference on

Computer Systems. ACM, 2014, p. 27.

[92] Oracle, “Java Platform, Standard Edition 7 API Specification,”

2018, https://docs.oracle.com/javase/7/docs/api/java/util/conc ur-

rent/ConcurrentHashMap.html.

[93] J. L. Carter and M. N. Wegman, “Universal classes of hash functions (extended abstract),”

in Proceedings of the ACM 9th Symposium on Theory of Computing (STOC), 1977, pp.

106–112.

[94] K. A. Ross, “Efficient hash probes on modern processors,” in Proceedings of the 23rd

International Conference on Data Engineering (ICDE), 2007.

[95] I. Kamel and C. Faloutsos, “On Packing R-trees,” in Proceedings of the second international

conference on Information and knowledge management, 1993, pp. 490–499.

[96] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering prop-

erties of the hilbert space-filling curve,” IEEE Transactions on Knowledge and Data En-

gineering, vol. 13, no. 1, pp. 124–141, 2001.

77

[97] NVIDIA, “Thrust,” https://developer.nvidia.com/thrust.

[98] K. V. Mardia, J. Kent, and J. M. Bibby, Multivariate Analysis. Academic Press, 1979.

[99] N. Megiddo, “Linear-time algorithms for linear programming in r3 and related problems,”

in 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 329–338.

[100] M. Gordon, “Parallel computation of minimal enclosing circle using MPI and OpenMP,”

http://www-personal.umich.edu/ msgsss/mec/mec.pdf.

[101] M. Karlsson, O. Winberg, and T. Larsson, “Parallel construction of bounding volumes,”

in Proceedings of the Annual Swedish Computer Graphics Association Conference., 2010.

[102] K. Fischer, B. Gärtner, and M. Kutz, “Fast smallest-enclosing-ball computation in high

dimensions,” in Algorithms-ESA 2003. Springer, 2003, pp. 630–641.

[103] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is nearest neighbor mean-

ingful?” in Proceedings of 7th International Conference on Database Theory (ICDT), 1999.

[104] S. Brown, “Superfast Nearest Neighbor Searches using a Minimal KD-tree,” 2010, gPU

Technology Conference (GTC 2010) (http://www.gpuptechconf.com).

78

Acknowledgements

I would like to first express my deep appreciation to Prof. Beomseok Nam and Prof. Young-ri

Choi, my advisors, for their guidance, encouragement, and advice. I couldn’t make it this far

without their support. I would also like to thank my thesis committees, Prof. Sam H. Noh,

Prof. Woongki Baek, and Prof. Won-ki Jeong, for their valuable critiques of this work.

I am lucky to have good friends and colleagues who are always willing to help me and share

their time. I would like to thank Wookhee Kim for devoting him to the laboratory and always

helping me. I would also like to thank Eunji Hwang for always kindly treating me. I appreciate

my other good friends in CISSR group for their time and support.

My grateful thanks are extended to my dear friends who have been together for a long time

– Woohyuk Choi, Imdo Jeong, Inwoo Hwang, Soyoung Park, Seil Jeong, Yesung Kang, Dasom

Jeong, Hyungsuk Choi, Muyoung Lee, Sumin Hong, Byeongju Han, Seontae Kim, Kyu-Yul Lee,

and many more.

I am also very fortunate to have my lover, Jin Yeong Kim. She has provided the emotional

support that I needed to overcome all the difficulties I had. She has always been there for me

so that I can get through it. Without her, I could not have done all of this.

Finally, I am very grateful for all the love and support of my family, Girak Nam, Mija Lee,

and Joonghyeon Nam.

79

	1. Introduction
	1.1 Thesis and Contributions
	1.2 Thesis Organization

	2. Background and Related Works
	2.1 EclipseMR: Distributed and Parallel Task Processing with Consistent Hashing
	2.2 B^3-Tree: Byte-Addressable Binary B-Tree for Persistent Memory
	2.3 Write-Optimized Dynamic Expansion for Persistent Memory
	2.4 Parallel Tree Traversal for Nearest Neighbor Query on the GPU

	3. EclipseMR: Distributed and Parallel Task Processing with Consistent Hashing
	3.1 EclipseMR
	3.2 Distributed In-Memory Cache
	3.3 Evaluation

	4. Index Structures for the Persistent Memory
	4.1 B^3-Tree: Byte-Addressable Binary B-Tree for Persistent Memory
	4.2 Failure-Atomic B^3-Tree Node Update
	4.3 Evaluation
	4.4 Cacheline-Conscious Extendible Hashing

	5. Parallel Tree Traversal for Nearest Neighbor Query on the GPU
	5.1 Parallel Scan and Backtrack for kNN Query
	5.2 Bottom-up Construction of SS-tree
	5.3 Experiments

	6. Conclusion
	References

<startpage>12
1. Introduction 1
 1.1 Thesis and Contributions 3
 1.2 Thesis Organization 5
2. Background and Related Works 6
 2.1 EclipseMR: Distributed and Parallel Task Processing with Consistent Hashing 6
 2.2 B^3-Tree: Byte-Addressable Binary B-Tree for Persistent Memory 7
 2.3 Write-Optimized Dynamic Expansion for Persistent Memory 8
 2.4 Parallel Tree Traversal for Nearest Neighbor Query on the GPU 11
3. EclipseMR: Distributed and Parallel Task Processing with Consistent Hashing 15
 3.1 EclipseMR 15
 3.2 Distributed In-Memory Cache 17
 3.3 Evaluation 19
4. Index Structures for the Persistent Memory 24
 4.1 B^3-Tree: Byte-Addressable Binary B-Tree for Persistent Memory 24
 4.2 Failure-Atomic B^3-Tree Node Update 25
 4.3 Evaluation 34
 4.4 Cacheline-Conscious Extendible Hashing 42
5. Parallel Tree Traversal for Nearest Neighbor Query on the GPU 56
 5.1 Parallel Scan and Backtrack for kNN Query 56
 5.2 Bottom-up Construction of SS-tree 58
 5.3 Experiments 61
6. Conclusion 69
References 70
</body>

