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Abstracts 

In this thesis, I observe the methods to overcome the low energy density in the supercapacitor system 

which is the crucial issue in energy storage industries. I challenge simple and easy approaches to 

achieve better capacitor properties than before by fabricating the three-dimensional structure of 

current collector and colloid structure of active material. First, rational design of the current collector 

with large surface area and high electrical conductivity is the very important factor in the hybrid-

capacitor system for high performance. Nickel particles-coated three-dimensional graphene foam 

current collector (Ni-GF) was fabricated by two simple steps from cost-effective commercial cotton 

and nickel chloride, based on the growth of graphene on the surface of nickel particles. The welded 

nickel particles on graphene sheets and three-dimensional graphene networks enhance the electrical 

conductivity and various pores in graphitic carbon domains gives the high surface area, generated by 

the thermal decomposition of organic precursors during a carbonization or pyrolysis process. This 

strategy provides the high performance in the supercapacitor system as the current collector. The high 

surface area of Ni-GF supports a lot of reaction sites of active materials and high electrical 

conductivity helps the good rate capability and long-term cycle life. The prepared Ni(OH)2/Ni-

GF//MnO2/Ni-GF capacitor exhibited an excellent energy density of 175 Wh kg
-1

 at a power density 

of 722 W kg
-1

 for a two-electrode system. 

Also, I improve the weakness of supercapacitors such as low energy density by utilizing cobalt and 

nickel ion colloidal electrodes on a carbonized cotton. Ni
2+

 and Co
2+

-coated carbonized cotton 

(NC/CC) were prepared by simple and rapid fabrication process. The metal colloidal electrode on 

three-dimensional carbon foam provides many active sites, which leads to a lot of redox reactions in 

whole colloids of CNFs. CNFs were optimized by adjusting the contents of Co
2+

 and Ni
2+ 

on carbon 

foams, and it showed high capacitance and stable cycle stability. The optimized NC/CC//Mn/CC 

capacitor leads to overcome a limitation of supercapacitor and to achieve the enhancement of 

capacitor properties. The outstanding performance of NC/CC//Mn/CC is attributed to the increased 

active sites of metal colloidal electrodes as well as to the good stability for carbon foams. These 

excellent electrochemical results have the great potential for energy storage devices with high values 

of energy density and power density. 
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Chapter 1. Literature review 

 

1.1 Motivation 

We use various types of energy sources such as fossil fuel oils, natural energy, and coals. Among 

many energy sources, there is only one difference that is renewable sources or not
1
. According to 

Figure 1.2, it has been used to consume energy sources in the world: Oil 33%, Coal 30%, Natural Gas 

24%, Hydro 7%, Nuclear 4%, and Others 2%
2
. Among energy consumption by fuel, Renewable 

sources are only 6% that is Hydro and Others. Fossil fuel oils are a kind of non-renewable sources, 

which are confirmed that it causes our world a lot of problems such as global warming and depletion 

as well as that it is not abundant. Many researchers have developed substitutes to overcome a 

limitation of fossil fuel oils. Recently, it shows that the rapid increase in demand for electric devices 

using electric energy with the fast-growing electric market in Figure 1.3
3
. In the case of electric 

energy, it has advantages of eco-friendly, no condition to be working, and no limitation. With many 

advantages, it takes attention the development of various energy storage device for green energy 

source. 

There are two types of energy storage devices which are lithium ion battery and supercapacitor. 

Lithium ion battery has high energy density and low self-discharge relatively, which has been mainly 

used in the wide range of electric device. However, lithium ion battery suffers from low safety, 

possibility of an explosion, and low power density compared to supercapacitor. Many electric devices 

need high safety, high energy density, and high stability of a long cycle to be widely used. For these 

reasons, supercapacitor is on the rise, which can be expected to use many electric devices. 

Supercapacitor takes center stage as the future energy storage system due to high power density, long 

cycle life, and fast charge-discharge process. There are many different properties in comparison of 

battery and supercapacitors (Figure 1.4 and Table 1.1)
4-5

. Power density is very important factor of 

energy storage system for electrical device such as electric vehicle and potable laptop. Because of this 

factor, I will study a supercapacitor, which has higher energy density than before. 
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Figure 1. 1. Two categories of energy sources: renewable energy and non-renewable energy.
1
 

 

 

 

 

 

 

 
 

Figure 1. 2. World total primary energy consumption by fuel in 2015.
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Figure 1. 3. Typical daily consumption of electrical power in Germany.
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Figure 1. 4. Ragone plot of energy density vs. power density for various energy-storing devices.
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Table 1. 1. Comparison of the properties of battery, electrostatic capacitor and EC.
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1.2 Capacitor : electrochemical energy storage 

Supercapacitor is composed of a positive electrode, a negative electrode, a current collector, a 

separator, and an electrolyte in a two electrode system (Figure 1.5). When the devices were charged, 

the positive electrode and the negative electrode attracted reverse ions. It caused charge separation on 

the each electrodes. As a result, the surface of the two electrodes was stored up positively charged 

ions and negatively charged ions. Based on the storage principle, the supercapacitors are classified 

into three categories: Electrical double-Layer capacitors (EDLCs)
6
, pseudo-capacitors

7
, and hybrid 

capacitors
8
. There are a difference that is method of storing up charges. EDLCs store the charges by 

physically static forces that works on the surface of electrode. In the case of pseudo-capacitors, the 

charges are achieved by faradaic electron transfer with chemically reversible redox reaction. In the 

case of hybrid capacitors, it has been increasing attracted due to using electrodes with one exhibiting 

mostly electrostatic capacitance and the other mostly electrochemical capacitance, like the lithium ion 

capacitors. 

 

1.2.1 Electrical Double-Layer Capacitors (EDLCs) 

For the first time, the studies of supercapacitor were focused on the only electrical double-layer 

capacitors which were called as the EDLCs. The EDLCs achieve physical ion adsorption and 

desorption to accumulate a lot of charges, and emerge from active materials at the electrode. Between 

the electrodes and the electrolyte, it can be confirmed that there is an interface. If the charge process is 

attained, the positively charged ions in the electrolyte move to the negative electrode, and the 

negatively charged ions in the electrolyte also move to the positive electrode. On the contrary, it can 

be put back again in the discharge process. When repeatedly applying to these processes, it can 

understand the working principle mechanism of the EDLCs, which are worked by physically storing 

electric charges for moving ions of electrolyte. It is non-faradaic reaction unlike pseudo-capacitors. 

The EDLCs use the carbon-based electrodes such as activated carbon (AC)
9
, graphene oxide (GO) 

10
, graphene

11
, carbon nanotubes (CNTs)

12
, and carbon aerogel

13
. Among carbon-based electrodes, 

graphene is the basic structural element of many other allotropes of carbon. It has many special 

properties: good mechanical and stability, outstanding electrical conductivity as well as high value of 

surface area. For these reasons, graphene is mainly used for the active materials on the supercapacitor. 
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Figure 1. 5. Schematic of the mechanisms of the charged and discharged supercapacitors. 
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1.2.2 Pseudo-capacitors 

It has been newly designing capacitors because the EDLCs has a limitation to achieve higher 

capacitance than before. The pseudo-capacitors are suggested to the world, which originates that it 

similarly works like batteries and EDLCs. The charge storage system of the pseudo-capacitors is 

achieved by the faradaic oxidation/reduction reactions, adsorption, or intercalation on the surface of 

electrodes with charge-transfer. As illustration in Figure 1.6, the protons of an electrolyte and the 

electrons of active materials combine to form a thick layer on the pseudo-capacitors compared to the 

EDLCs
14

. As a result, the EDLCs are worked by physical force, and the pseudo-capacitors are worked 

by redox reaction. Table 1.2 shows the more detail difference between EDLCs and pseudo-capacitors
5
. 

The pseudo-capacitors usually used transition metal derivatives as the active materials. Many 

transition metal oxides make effectively contributions to the high capacitance and the high energy 

density. This factor is important to attain higher capacitance for the pseudo-capacitors than the EDLCs. 
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Figure 1. 6. Comparison of charge storage system about the processes of (a) electrical double-layer 

capacitance and (b) pseudo-capacitance.
14

 

 

 

Table 1. 2. Differences of EDLC and pseudo-capacitance.
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1.3 Electrode materials for supercapacitors 

1.3.1 Carbon materials 

Activated carbon (AC), graphene oxide (GO), graphene, carbon nanotubes (CNTs), and carbon 

aerogel have one thing in common. All is a kind of carbon-based materials. Many carbon-based 

materials are widely used for the EDLCs due to large surface area and good conductivity. Among 

carbon-based materials, AC was firstly chosen for EDLC electrodes although its electrical 

conductivity is much lower than metal. AC can be applied to the methods of activation process: 

physical and chemical activation
15

. It has been produced by the heat treatment of carbonaceous raw 

materials at a various range of temperature (700-1200 ℃) using activating agent in the physical 

activation
16

. Aworn group reported that each of materials need a well-matching activating agent such 

as CO2, air, steam, or a mixture of gases due to achieving the high value of surface area
17

. Nabais 

group prepared the physical activation of coffee endocarp in the presence of both CO2 and steam at a 

temperature of 700 ℃, also discovered that the specific surface area is from 426 to 1,287 m
2
g

-1
 for 

CO2 activated carbons and is between 355 and 630 m
2
g

-1 18
. Rodriguez group also suggested that there 

is a difference of pore size that activation process using steam is wider pores than using CO2
19

. In the 

case of the chemical activation, it has been performed at a relatively low temperature (400-700 ℃) 

with activating agents such as NaOH, ZnCl2, KOH, and FeCl3
16

. It carried out carbonization and 

activation process together, resulting in the structure of better porosity. Zhang group performed 

activated carbon with the activation process using ZnCl2
20

. As a result, they found out that the ratio of 

material and activating agent as well as temperature influence the pore structure of product and the 

surface area. Jin group achieved the largest specific surface area of 2959 m
2
g

-1
 and high pore volume 

or 1.65 cm
3
g

-1
 for carbon materials

21
. For these studies, AC proves that it causes improving the 

capacitance with the surface area, pore size distribution, and pore properties. 

With the development of CNTs, it has caused an important advancement in the electrochemical 

field of carbon materials. CNTs have attracted attention due to their unique properties such as good 

mechanical, thermal stability
22

, electrical property
23

, and pore structure
24

. Also, there is advantages 

that CNTs have a lot of mesopores, in which are interconnected, resulting in a continuous charge 

distribution. It has been widely used as the active materials in supercapacitors with the high specific 

surface area (single-walled carbon nanotubes >1,600 m
2
g

-1
 and multi-walled carbon nanotubes >430 

m
2
g

-1
)

25-26
. Pan group enhanced the surface area from 46.8 m

2
g

-1
 to 109.4 m

2
g

-1
 for electrochemical 

activation process, and achieved the increase capacitance value for three times
27

. Hata group reported 

the highly pure CNTs with a specific surface area of 1,300 m
2
g

-1
. They performed measurement of 

electrochemical performance using organic electrolyte to enlarge a range of voltage until 4 V, leading 

to high energy density value of 94 Wh kg
-1

 and high power density value up to 210 kW kg
-1 28

. 
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Recently, it was suggested that graphene can be mainly used as an active material for 

supercapacitor application due to its superior characteristics of large surface area
29

, high electrical 

conductivity
30

, and chemical stability
31

. Graphene is 2D structure that consists of a one-atom thick 

layer in a regular hexagonal structure
32-33

. Unlike other carbon-based materials such as AC and CNTs, 

graphene can be worked as current collector itself. Also, graphene has higher theoretical surface area 

(2,630 m
2
g

-1
) than all carbon-based materials used as electrode for supercapacitor

34-35
. The capacitance 

value is up to 550 F g
-1

, utilizing the entire surface of graphene electrode
30

. There are various 

production methods to synthesize the different types of graphene. Zhang group synthesized the three-

dimensional graphene networks as a current collector for supercapacitor using the ethanol-chemical 

vapor deposition (CVD) method. They applied the active material of nickel oxide to the current 

collector, and reported high capacitance of 816 F g
-1 36

. Jang group fabricated a mass-producible 

mesoporous graphene nanoball  using a precursor-assisted CVD process for supercapacitor 

application. They showed a specific surface area of 508 m
2
g

-1
 and a mesoporous structure with a pore 

diameter of 4.27 nm. The supercapacitor attained a specific capacitance of 206 F g
-1 37

. Except for the 

CVD process, mechanical exfoliation, epitaxial growth, electrochemical and chemical methods, and 

intercalation methods in graphite are applied to synthesize graphene for supercapacitor
38-41

. 
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Figure 1. 7. Fabrication process and characterization of single-walled carbon nanotubes (SWNTs) 

electrode.
28

 

 

 

 

 
Figure 1. 8. Schematic illustration of the mesoporous graphene nanoball.

37
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1.3.2 Transition Metal oxides 

Transition metal oxides are another alternative for pseudo-capacitor used as active materials due to 

high capacitance and high energy density. The active materials using transition metal oxides have 

higher value of capacitance than EDLCs about 10-100 times. Among the transition metal oxides, 

ruthenium dioxide (RuO2) is the most rising active material given its advantages of wide potential 

window, long cycle life, high theoretical capacitance, and good conductivity
42

. However, RuO2 is 

expensive as well as has a limitation applied to many applications to work in the range of 2.4 V 

voltage window for capacitor. Das group suggested that they introduced the electrodeposition method 

on the porous SWNTs film to overcome limitations. They achieved the highest capacitance value of 

1,715 F g
-1

 for RuO2-based supercapacitor, which comes close to the theoretical capacitance of 2,000 

F g
-1

 
43

. RuO2 is caused a serious problem such as environmental harmfulness despite some 

researchers’ effort. 

Nowadays manganese oxide (MnOx) attracts a lot of interest and has special properties such as 

physical and chemical properties with various applications: ion exchange
44

, catalysis
45

, biosensor
46

, 

energy storage
47

, and molecular adsorption
48

. Tong group developed a new route to synthesize 

mesoporous MnO2/carbon aerogel composites using the electrodeposition process, which is assisted 

by gas bubbles. They employed supercapacitor electrode, leading to high specific capacitance (515.5 

F g-1) 
49

. MnO2 is mainly used for active materials for pseudo-capacitor due to its low cost, superior 

capacitive performance, and environmental safety. 
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Table 1. 3. Pseudo-capacitance and conductivity of selected metal oxides
50

 

 

 

 

Table 1. 4. Summary of the transition metal oxide of electrode materials investigated.
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Chapter 2 Cotton-derived three-dimensional graphene current collector 

 

2.1 Introduction 

With the rapid increasing usage of electronic device, energy storage systems with high performance 

have been required. Among energy storage systems, supercapacitors have been developed as the rising 

energy storage device because of their high stability, superior power density, and quick charge-

discharge processes
1-4

. Charges can be stored by the electrostatic force at the interface between the 

surface of active materials and electrolytes for supercapacitors, which are called EDLCs
5-7

. The active 

materials of EDLCs are mainly used by many carbon-based materials with large surface area. Among 

many carbon-based materials, graphene has been researched as a rising material for supercapacitor 

application
8-12

. With a mass production, graphene loses the outstanding electrical conductivity, which 

it causes low value of capacitance despite the large surface area
13

. In addition, the EDLCs have a 

limitation about the low value of energy density compared to batteries
14

. For the limitation, pseudo-

capacitors have been introduced to achieve the higher capacitance than the EDLCs and high energy 

density like batteries
15-16

. Pseudo-capacitors are worked by utilizing both the electrostatic attractive 

forces and the redox reactions from the active electrodes of the transition metal oxides
17-21

. Transition 

metal oxides, known as RuO2 and MnO2, have advantages with high proton conductivity, high 

capacitance, and a wide potential window
22-26

. However, they suffer from poor conductivity and dead 

volume, which make it difficult to reach the theoretical capacitance as well as poor cycle stability
27

. 

Generally, three-dimensional metal-based current collectors like nanoporous gold (NPG) or nickel 

foam (NF) electrodes have been used because they provide fast electron and charge transport for high 

performance supercapacitors
28-30

. Due to an expensive cost and low surface area, they have trouble 

being commercialized even though they have unique properties. The large surface area is quite 

important factor as a current collector, which can increase active sites and decrease the dead volume 

of active electrodes
31

. For these reasons, three-dimensional metal current collectors have been studied. 

In particular, the fully connected three-dimensional metal is helpful for fast electron transportation 

due to the conductive networks
32

. It was also suggested that the resistance of welding metal nanowires 

presents lower about 2-10 times than non-treated nanowire by the Khang group
33

. However, NPG and 

NF electrode have a lower specific surface area because of their large density compare to carbon-

based current collectors.  

In this work, we present a facile and cost-effective method to fabricate nickel nanoparticle-coated 
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graphene foam (Ni-GF) as a three-dimensional current collector for supercapacitor. The entirely 

coated nickel nanoparticles on the surface of graphene foam play a role as a catalyst for the growth of 

graphene. They also help the graphene foam build the more conductive networks than before as a 

current collector. The Ni-GF showed large surface area, high electrical conductivity, and high-quality 

graphene. When nickel hydroxide (Ni(OH)2) as an active material was performed to electrodeposition 

on the Ni-GF, it reached the outstanding capacitance and the high energy density. The Ni(OH)2/Ni-GF 

nearly achieved the value of the theoretical capacitance with good kinetic properties for various 

electronic devices. 
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2.2 Experimental methods 

2.2.1 Fabrication of Ni-GF, Ni(OH)2/Ni-GF, and MnO2/Ni-GF electrode 

The commercial cotton was washed with acetone and coated by 2 M nickel chloride hexahydrate 

(NiCl∙6H2O) in water. The coated cotton was put into a vacuum desiccator for 12 hours. After fully 

dried, nickel chloride coated cotton was carbonized by the CVD process at 1000 ℃ for 2 hours with 

Ar and H2 gas. The Ni-GF was prepared by slowly cooling after the heat treatment. 

The Ni(OH)2/Ni-GF electrode was fabricated by depositing nickel hydroxide (Ni(OH)2) on the 

prepared Ni-GF. The Ni-GF electrode, Pt mesh, and Ag/AgCl(sat.) electrode worked as a working 

electrode, a counter electrode, and reference electrode. The electrodeposition of Ni(OH)2 was 

performed at -5 mA for 5 mins in a three-electrode system using 100mM nickel nitrate hexahydrate. 

Also, the MnO2/Ni-GF was prepared at 5 mA for 5 mins in 100 mM manganese acetate tetrahydrate 

via a similar method. 

 

2.2.2 Chracterization 

For the comparison of structures, the CC, NF, and Ni-GF were characterized by measuring FE-

SEM (SEM, FEI/USA Nanonova 230) and TEM (FETEM, JEOL TEM 2100). The crystallinity of the 

electrodes was confirmed by X-ray diffraction measurement (XRD, Ragaku Co. high X-ray 

diffractometer D/MAZX 2500V/PC with Cu Kα radiation (λ = 1.5406 Å ) with a scan rate of 1°s
−1

 in the 

2θ range of 10°-80°). The form of bonding between the components of the electrodes was checked by 

Raman microscopy (Witec, alpha300R) and X-ray Photoelectron Spectroscopy (Thermo Fisher Scientific, 

ESCALAB 250XI). The determination of specific surface area, pore size, and pore volume were analyzed 

by the Brunauer-Emmett-Teller (BET) method with a Belsorp max system (Bel Japan). 

 

2.2.3 Electrochemical tests 

The electrochemical performance of the Ni-GF was determined both in a three-electrode system 

and in a two-electrode system using a system controlled electrochemical interface by computer 

(VMP3 biologic). In the case of a three-electrode system, the programs of cyclic voltammogram (CV) 

and galvanostatic charge-discharge (GCD) were tested by the Pt mesh as the counter electrode and 

Hg/HgO electrode as a reference electrode in 1 M KOH as the electrolyte. The Ni(OH)2/Ni-GF 

electrode and the MnO2/Ni-GF electrode worked as the positive and the negative electrodes in a two-

electrode system. Electrochemical impedance spectroscopy (EIS) was analyzed at a frequency range 

of 100 kHz-0.1 kHz by using a potentiostat (Versa STAT 3, AMETEK). 
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2.3 Results and discussion 

A schematic diagram preparing the fabrication of Ni-GF with simple two-steps is provided in figure 

2.1, according to the corresponding photographs. The washed commercial cotton was coated with 2 M 

nickel chloride solution and dried by a desiccator in a vacuum state. With removing hydroxyl groups, 

the drying process proposed that it is formed by the coordination of nickel ions in a dipping solution 

and oxygen ions in a cotton. The Ni-coated cotton was carbonized by the CVD process with argon and 

hydrogen gas. It provided the growth of graphene with the nickel particle as a catalyst, forming the 

entirely graphene on the surface of cotton. Figure 2.1 shows photographs of the commercial cotton, 

the dried nickel-coated cotton, and the Ni-GF with nearly retaining the similar sizes due to well-

welded nickel particle in the cotton. The completed Ni-GF consists of nickel nanoparticles and 

graphene of the overall surface and has an enhanced electrical conductivity than a carbonized cotton. 

The change morphologies of the carbonized cotton with no coating and the Ni-GF show the 

scanning electron microscope (SEM) images in Figure 2.2a-d. The Ni-GF can confirm the similar 

structure with the surface coated nickel nanoparticles, while the commercial cotton composed the 

form of many bundles of fiber connected each other. The Ni-GF also exhibit the decreased bundles of 

fiber compare to the commercial cotton because of the mass evaporation and reduction of nickel 

nanoparticles with the CVD process. The step is provided by a slight shrinkage and maintenance of 

three-dimensional structure. Figure 2.2d show the uniformly coated nickel nanoparticles, resulting in 

good electrical conductivity and fast charge transfer. Figure 2.2e-f exhibit the structure of the Ni-GF 

with coated nickel nanoparticles and graphene in the transmission electron microscopy (TEM) images. 

As shown in Figure 2.2f, it is confirmed by the nickel nanoparticles and the graphitic layers. The 

nickel nanoparticles of morphology were surrounded by the graphitic layers, causing enhanced 

efficiency of the electron transfer. Based on the CVD condition, we can develop the Ni-GF, resulting 

in the increased electrical conductivity and the effective electron/charge transfer. 
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Figure 2. 1. Schematic illustration of the fabrication process for Ni-GF 
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Figure 2. 2. SEM images: (a-b) the commercial cotton, (c-d) the Ni-GF and TEM images (e-f) of the 
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Ni-GF 

 

As shown in Figure 2.3, the X-ray diffraction (XRD) patterns were checked after the CVD process. 

The XRD peaks could indicate the carbon and the nickel, confirming the Ni-GF. The domain of (002) 

plane of graphitic carbon can be identified by the peaks at 26.5
o
, resulting in the growth of graphene, 

whereas the respectively strong peaks are explained as those of the reduction of Ni
2+

 by the CVD 

process with a hydrogen gas. The reduced nickel ions play a role as catalyst to create a graphene, 

corresponding to the plane of (111), (200), and (200) at 44.7
o
, 52.0

o
, and 76.4

o
. This data can also 

demonstrate that nickel ions in the nickel chloride solution help the cotton form the graphene 

networks as catalyst, retaining the ion state without the oxidation process by the hydrogen gas. 

The Raman spectroscopy (Raman) can check the existence of the graphene in Figure 2.4. There are 

the Raman peaks, corresponding to a D band, a G band, and a 2D band at 1350 cm
-1

, 1580 cm
-1

, and 

2680 cm
-1

. It can present the crystallinity according to the intensity ratio of the D band and the G band 

and the high quality compared to the intensity ration of the G band and the 2D band. The carbonized 

cotton with no coating process showed a low crystallinity with a ratio of ID/IG, whereas the Ni-GF 

with nickel particles showed the higher crystallinity than without nickel particles, achieving the ratio 

of ID/IG (0.57). The ratio of I2D/IG is determining the quality of graphene, reaching the few layers of 

graphene with a high ratio of I2D/IG (0.93) from the Ni-GF. These results can explain a high electrical 

conductivity and a large surface area, causing the Ni-GF to achieve the high performance for 

supercapacitors. 

Further characterization of the Ni-GF was performed by X-ray photoelectron spectroscopy (XPS), 

shown in Figure 2.5. The Ni2p1/2 and Ni2p2/3 peaks at the binding energy of 869.9 eV and 852.6 eV 

detected in the Ni-GF, which confirmed the reduction of Ni
2+

 (Figure 2.5a). As appeared in Figure 

2.5b, the C1s peak at the binding energy of 284.6 eV consists of regions both a sp
2
-carbon at 284.5 eV 

and a sp
3
-carbon at 284.9 eV, corresponding to the contents of 97% and 3%. The content of the sp

2
-

carbon is low in the C1s peak, indicating the high quality graphene according to the low defect sites.  
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Figure 2. 3. XRD pattern of the Ni-GF. 
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Figure 2. 4. Raman spectra compared to the carbonized cottons without nickel and with nickel. 
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Figure 2. 5. XPS spectra of (a) Ni2p1/2 and Ni2p2/3 regions and (b) C1s region of the Ni-GF. 

 

 

Specific surface area can be checked using a BET, including nitrogen adsorption/desorption 

isotherm curve and determination of pore size in Figure 2.6. As shown in Figure 2.6a, the shape of the 



 

 

28 

 

Ni-GF is near type IV according to a hysteresis loop, indicating that the structure consists of slight 

micropores and most mesopores
34

. The specific surface area of Ni-GF was 16.4 m
2
g

-1
, and the pore 

sizes are in the range of 1-30 nm due to the mass evaporation of nickel and carbon during the 

carbonization. Compared to commercial NF (0.1 m
2
g

-1
), the Ni-GF presented the high value of surface 

area, leading to improved electrolyte permeability and enhanced ion/electron pathways. The 

mesoporous Ni-GF is attributed to the fast ion transport in the electrolyte, resulting in the good 

performance for supercapacitor. 

Figure 2.7 shows the XRD results of the Ni-GF before and after Ni(OH)2 deposition. The XRD 

pattern in Figure 2.7b exhibits the peaks of the Ni(OH)2 and the graphite oxide unlike the Ni-GF 

before electrodeposition. The words of green color can be confirmed to a α-Ni(OH)2 (JCPDS, 38-

0715) with the positions of peak at 13.5
o
, 33.7

o
, and 59.5

o
, corresponding to the (003), (006), and (110) 

planes
35

. The comparison of before and after electrodeposition is fairly indicated by the existence of 

Ni(OH)2. The XRD data shows uniformly Ni(OH)2-deposited Ni-GF electrode, which Ni(OH)2 

formed by the electrodeposition method plays a role as an active material. 
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Figure 2. 6. BET analysis of (a) nitrogen adsorption isotherm curves and (b) determination of pore 

size of the Ni-GF. 
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Figure 2. 7. TEM patterns of (a-b) the Ni-GF and (c-d) the Ni(OH)2/Ni-GF.  
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Based on these characterizations of the Ni-GF, the supercapacitor performance is checked by the 

CV, GCD, and EIS tests. The CV test was performed at various scan rates to observe the shape of the 

CV curve. The shape of the CV curve shows the typical battery-like behavior with cathodic and 

anodic peaks, involved by the redox reaction between NiO and NiOOH (equation 2.1)
36

. 

NiO  +  OH
-
       

                 
            

                    
              NiOOH + e

-
                  (2.1) 

As shown in figure 2.8, it is exhibited by electrochemical performances compared to the Ni-GF, NF, 

and carbonized cotton (CC). To compare their performances for supercapacitor, they were produced 

by electrodeposition of Ni(OH)2 under the same condition as current collectors. The Ni-GF shows the 

largest area of the CV curve at 20 mV/s, indicating that the Ni-GF has the highest capacitance among 

them (Figure 2.8a). The capacitances were also calculated by GCD tests, resulting in the superior 

value of the Ni-GF compared to others. According to Figure 2.8a and b, the Ni(OH)2/CC electrode has 

a poor electrical conductivity due to the capacitance obtained electrochemical tests. The CV curve of 

the Ni(OH)2/CC is showed, resulting in irreversible redox reaction. Except to the Ni(OH)2/CC, the 

Ni(OH)2/Ni-GF and the Ni(OH)2/NF can check a reversible reaction in the CV curves (Figure 2.8a). 

However, the capacitance value of Ni(OH)2/Ni-GF is larger than the Ni(OH)2/NF because of the 

difference of the surface area. The Ni-GF has more active sites than NF, achieving the high 

performance for supercapacitor. The faster charge and ion transport of the Ni-GF is exhibited by the 

EIS analysis in more details. The Ni-GF and NF have smaller semicircles than the CC in the high 

range of frequency and a high value of slope in the low range of frequency, whereas the CC exhibits 

the largest semicircle and a small slope. Figure 2.8c means that the Ni-GF and NF have good ion 

diffusion properties. The Ni-GF is the best performance as a current collector due to the graphene 

with the porous structure even though NF has similar property with the Ni-GF. 
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Figure 2. 8. Electrochemical behaviors of (a) CV curves at 20 mV s
-1

, (b) GCD curves, and (c) 

Nyquist plots compared to the Ni-GF, NF, and CC. 
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The electrochemical behaviors of the Ni(OH)2/Ni-GF electrode were determined in a three-

electrode system as shown in Figure 2.9. Figure 2.9a provide the CV curves at scan rates of 1, 2, 5, 10, 

20 mV s
-1

, indicating that the area of the CV curves is increased according to increasing scan rate. The 

area of the overall curve at scan rates is related to the capacitance in the CV system (equation 2.2)
37

. 

    
  

  
                                      (2.2) 

The specific capacitance of the Ni(OH)2/Ni-GF electrode is proved by a graph obtained by GCD 

curves based on equation 2.3 
38

. 

                                            (2.3) 

Figure 2.9b shows the GCD curves of the Ni(OH)2/Ni-GF electrode, indicating that the Ni-GF has 

effective charge storage. The specific capacitance values were 3,214, 3,296, 3,099, 3,027, and 3,010 F 

g
-1

 at the current densities of 10, 20, 50, 100, and 200 A g
-1

. The high capacitance is provided by the 

properties of the Ni-GF as a current collector, which have advantages of the high surface area and 

great electrical conductivity with the structures. The good cycle stability was confirmed for a three-

electrode system in Figure 2.9c, retaining the capacitance after 10,000 cycles. These can be explained 

by the improved electrical conductivity and the large surface area of the Ni-GF, indicating the 

effective charge transport to the active material and the outstanding kinetics of the reversible redox 

reaction. Based on these results, it was used as a supercapacitor application. 

It can be checked in Figure 2.10, indicating that the electrochemical properties are obtained by the 

Ni(OH)2/Ni-GF//MnO2/Ni-GF device in a two-electrode system for hybrid-capacitor. The CV curves 

of the device show oxidation and reduction of active materials, exhibiting the reaction for the MnO2 in 

a low potential range and for Ni(OH)2 in a high potential range with increased scan rate of 50 mV s
-1

 

(Figure 2.10b). The capacitance of the asymmetric supercapacitor presented a good stability for 

30,000 cycles. Figure 2.10a check the decrease for 5,000 cycles, whereas the high stability is above 60% 

for 30,000 cycles. 

Further, the Ni(OH)2/Ni-GF//MnO2/Ni-GF device achieved the excellent energy density of 175 Wh 

kg
-1

 and power density 722 W kg
-1

 in a two-electrode system (Figure 2.10c). In comparison with other 

reported supercapacitors using Ni(OH)2 as an active material, high value of energy density and power 

density is confirmed as shown in Table 2.1. 

In our Ni-GF-based supercapacitor, the large surface area and the good kinetic property suggest 

improved electrical conductivity and high electrochemical performance with a simple fabrication 

method. Specially, the Ni(OH)2/Ni-GF//MnO2/Ni-GF hybrid-capacitor shows a superior value of 

energy density, resulting in new capacitor in the various fields. 
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Figure 2. 9. Electrochemical behaviors of the Ni(OH)2/Ni-GF electrode: (a) CV curves at different 

scan rates, (b) GCD curves at various current densities, (c) cycle stability until 10,000 cycles. 
 



 

 

35 

 

 

 

Figure 2. 10. Electrochemical performances of the hybrid-capacitor: (a) cycle stability for 30,000 

cycles, (b) CV curves at different scan rates, (c) Ragone plot in a two-electrode system. 

 

 

 

Table 2. 1. Comparison of previously reported Ni(OH)2-based supercapacitors. 

Materials Energy density Power density Electrolyte 

Ni(OH)2/Ni-GF 175 Wh kg
-1

 722 W kg
-1

 1M KOH 

Ni(OH)2/RGO 75 Wh kg
-1

 800 W kg
-1

 2M KOH 

Ni(OH)2/graphene-porous graphene 77.8 Wh kg
-1

 174.7 W kg
-1

 6M KOH 

Ni(OH)2/MWCNT-PEDOT:PSS 58.5 Wh kg
-1

 780 W kg
-1

 1M KOH 

Ni(OH)2/pyrolytic graphite 98.3 Wh kg
-1

 302 W kg
-1

 1M NaOH 

Ni(OH)2/graphite 35.7 Wh kg
-1

 490 W kg
-1

 1M KOH 
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2.4 Conclusion 

In conclusion, we have fabricated a new current collector that consists of high quality graphene and 

nickel composite (Ni-GF). The completed Ni-GF reveal more improved electrical conductivity than 

carbonized cotton and more enhanced surface area than commercial nickel foam. These properties 

result in achieving excellent capacitance and retaining high stability after 10,000 cycles in a three-

electrode system. We also caused the Ni-GF fast electron transport and effective ion pathway in an 

electrolyte with the mesoporous structure. Furthermore, we developed an outstanding supercapacitor 

with the high value of capacitance and energy density using the Ni(OH)2/Ni-GF//MnO2/Ni-GF device. 
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Chapter 3 Hybrid-capacitor material for the controlled ratio of metal 

colloid ions  

 

3.1 Introduction 

Nowadays, it shows that the rapid increase in the demand for portable and wearable electric devices 

and energy storage systems requires simple small scale but large-scale energy density and 

environmentally friendly device
1-2

. As one of the energy storage systems, supercapacitors have 

attracted great attention because of long-term cycle life, high power density value, and good operating 

safety at fast charge/discharge processes compared to batteries
3-6

. However, there is a main limitation 

of low energy density because of their energy storage mechanism, forming the electrical double layers 

on the surface of electrode
7-9

. In order to overcome the weakness, many researches have been reported 

using metal oxides as active materials for pseudo-capacitors. Pseudo-capacitors have two methods of 

storing energy: by using physically electrostatic forces in electrical double-layered capacitors (EDLCs) 

and using reversibly redox reactions in the surface of active materials
10-12

. It was widely used by 

pseudo-capacitors, indicating that the advantage was high capacitances according to a wide potential 

window. Although pseudo-capacitors provide good performances, they have a poor conductivity and 

low cycle stability
13-16

. For these reasons, hybrid-capacitors are on the rise as a promising energy 

storage system, combining the advantages with EDLCs and pseudo-capacitors. It can be challenged 

by achieving high specific capacitance or operating wide working voltage window. It has been to 

enhance the capacitance by utilizing many active materials such as transition metal oxides
17-18

, and to 

widen the operating voltage range using organic electrolytes
19-20

. 

Among many types of active materials, transition metal oxides have been used to increase 

capacitance, which can be activated by redox chemistry in the electrode surface. However, the 

reversible redox reaction occurred only at the surface of active materials, indicating that the inner part 

in the active materials cannot act as a electrode
21-22

. In addition, the poor utilization leads to low 

capacitance and low energy density. Recently, the poor utilization problem was overcome by 

introducing the colloid system as a active material. For example, Xue group reported the new active 

materials based on inorganic salt like CoCl2, demonstrating that the salt electrodes can show a fast and 

reversible redox reaction
23

. However, they explained the electrode materials as a pseudo-capacitor that 

is controversial problem at present. The colloid system was suggested the new charge storage 

mechanism by Liang et. al
24

. They achieved 353 Wh kg
-1

 of energy density at 2250 W kg
-1

 of power 

density, but the capacitance retained only 1.5% capacitance at 30 A g
-1

. They showed that it was too 

much loss and poor stability although they reached high electrochemical performance. 
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In this study, by utilizing the colloid system in energy storage devices, I challenged a hybrid-

capacitor with the ratio of Ni
2+

 and Co
2+

 (1:1) electrode as a active material and carbonized cotton as a 

current collector. The Ni
2+

 and Co
2+

 colloidal electrode (NC) was utilized by redox reactions in whole 

colloids unlike transition metal oxides for pseudo-capacitor. In addition, the carbonized cotton (CC) 

plays a role of a current collector to help the enhancement of stability from the colloid electrode. The 

NC/CC electrode has improved capacitance and better stability than before reports. A device 

consisting of the NC/CC cathode and Mn
4+

-colloidal anode (Mn/CC) shows good rate capability and 

enhanced energy density. 
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3.2 Experimental methods 

3.2.1 Fabrication of carbonized cotton 

The commercial cotton was washed with acetone and dried at 60 ℃ for 12 hours. After fully dried, 

washed cotton was carbonized by the CVD process at 1000 ℃ for 1 hours with argon gas. The CC 

was fabricated by slowly cooling after annealing. 

 

3.2.2 Preparation of colloidal electrodes in a three-electrode system 

For the comparison of behaviors in a three-electrode system, nickel chloride hexahydrate salts, 

carbon black, and polyvinylidene fluorine were mixed with the ratio of 6:3:1. The resulting slurry was 

pated onto a graphite current collector and dried at 60 ℃ for 3 hours. The Co
2+

 and Ni
2+

:Co
2+

 (1:1)-

colloidal electrode were prepared following same process like a Ni
2+

-colloidal electrode. 

 

3.2.3 Production of NC/CC and Mn/CC electrodes for hybrid-capacitor 

The NC/CC electrode was fabricated by dip-coating 1 mmol nickel chloride hexahydrate in ethanol 

on the prepared CC and then dried naturally. The Mn/CC was also prepared by a similar method. The 

NC/CC//Mn/CC device was combined with the NC/CC and the Mn/CC as positive and negative 

electrode, respectively. The filter paper separates the two electrodes and electrolyte is used by 1M 

KOH. The prepared device was performed to in situ activation of colloidal electrodes by the cyclic 

voltammetry system. The device was completed after 20 cycles, forming activated colloidal electrodes. 

 

3.2.4 Characterization 

For the structures and the detection of elements with materials, the CC, NC/CC, and Mn/CC were 

characterized by using FE-SEM (SEM, FEI/USA Nanonova 230). The bonding of the CC after 

carbonization was checked by Raman microscopy (Witec, alpha300R). 

 

3.2.5 Electrochemical tests 

The electrochemical performance was evaluated using cyclic voltammetry (CV) and galvanostatic 

charge-discharge (GCD) by a computer controlled electrochemical interface (VMP3 biologic). The 

Ni
2+

, Co
2+

, and Ni
2+

:Co
2+

 (1:1)-colloidal electrodes were performed with the Pt mesh a Hg/HgO 

electrode as the counter electrode and reference electrode in 1 M KOH as the electrolyte. The 

NC/CC//Mn/CC device was measured in a two-electrode system. Electrochemical impedance 

spectroscopy (EIS) was analyzed at a frequency range from 100 kHz to 0.1 kHz by using a 

potentiostat (Versa STAT 3, AMETEK). 
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3.3 Results and discussion 

Figure 3.1 presents the overall fabrication process of the NC/CC electrode. First, a commercial 

cotton was washed in acetone and dried at 60 ℃ for 12 hours. Then, the dried cotton was reacted to 

heat treatment by the CVD process at 1000 ℃ for 1 hour with argon atmosphere. With obtaining 

many oxygen groups, the carbonized cotton (CC) was reacted by O2 plasma. The treated CC was 

coated with 1 mmol nickel chloride solution and 1 mmol cobalt chloride solution in ethanol, and dried 

at temperature of 25 ℃. The oxygen group in the CC played a role of connecting metal colloid ion, 

forming the uniformly coated Ni
2+

 and Co
2+

 colloid ions on the CC. In addition, the electrode 

including Mn2+ colloid ion was fabricated by the following method in Figure 2.1. After preparing the 

all electrodes, it was performed to the in situ electrochemical activation by the cyclic voltammetry test. 

For example, the following activation process occurred by the strong bonding between Ni
2+

 and OH
-
 

in the case of NiCl2-coated electrode (equation 2.1)
25

. 

NiCl2  +  OH
-
  →  Ni(OH)Cl  +  Cl

-
  →  Ni(OH)2  + Cl

-  
       (2.1) 

In addition, the Co
2+

 and Mn
2+

 colloidal electrodes were showed with similar reactions (equation 

2.2. and 2.3)
26-27

. 

CoCl2  +  OH
-
  →  Co(OH)Cl  +  Cl

-
  →  Co(OH)2  + Cl

-  
      (2.2) 

MnCl2  +  OH
-
  →  Mn(OH)Cl  +  Cl

-
  →  Mn(OH)2  + Cl

-  
     (2.3) 

The structure of colloidal electrodes was confirmed as shown in Figure 3.2 and 3.3. The fibers 

composed many carbon sources, including the CC. In addition, the images revealed that the nickel and 

cobalt ions are uniformly coated on the surface of CC as well as manganese ions using an energy 

dispersive spectrometer (EDS). 
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Figure 3. 1. Schematic diagram showing the fabrication process of the NC/CC. 
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Figure 3. 2. (a) SEM images of the NC/CC and elements mapping of the NC/CC: (b) carbon (in red), 

(c) nickel (in yellow), and (d) cobalt (in blue) 

 

 

 

 

 



 

 

46 

 

 

Figure 3. 3. (a) SEM images of the Mn/CC and elements mapping of the NC/CC: (b) carbon (in red), 

(c) manganese (in blue). 
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The electrodes consisting of Ni
2+ 

and Co
2+

, were performed to in situ activation using a cyclic 

voltammetry program. The ions in the colloidal electrode exchanged each other during the activation 

process. First, Cl
-
 ions in the NiCl2 exchanged OH

-
 ions in the electrolyte of KOH when Ni

2+
-colloid 

electrode reacted with CV cycling, forming Ni(OH)2 in the substrate electrode. Co
2+

-colloid electrode 

was also activated by the similar process such as the reaction of Ni-electrode. The result of activation 

process was to form the Ni(OH)2 and Co(OH)2 in the electrode. 

After the activation process, the Ni(OH)2 formed in the case of Ni
2+

-colloid electrode and Co(OH)2 

formed in the case of Co
2+

-colloid electrode reacted with KOH electrolyte in a three-electrode system 

(Figure 3.5). Figure 3.5a showed the reversible faradaic redox reactions as follows
28

: 

Ni(OH)2  +  OH
-
  ⇔  NiOOH  +  H2O  +  e-   

  
          (2.4) 

The anodic peak at 0.47 V and cathodic peak at 0.34 V with the scan rate of 1 mV s
-1

 in the CV 

curves were presented with the oxidation and reduction processes of the nickel ions (Ni
3+

 ⇔ Ni
2+

). In 

addition, a pair of redox peaks is showed to redox reaction for the Co2+-colloid electrode, indicating 

that the following reversible reactions occurred in Figure 3.4c
29

. 

Co3O4  +  OH
-
  +  H2O  ⇔  3CoOOH  +  H2O  +  e

-
       (2.5) 

The Co3O4 was formed by Co(OH)2 according to the in situ activation. Figure 3.4c indicated that it 

was confirmed by the anodic and cathodic peaks similarly to redox reaction of nickel ions. The shape 

of CV curves was non-rectangular, corresponding to the battery-like faradaic redox reaction. The 

characteristics of nickel and cobalt emerged in Figure 3.4. In the case of Ni(OH)2, it has various 

properties such as the theoretical capacitance of 2,584 F g
-1

 and the poor conductivity, causing the low 

stability
30

. However, the Co(OH)2 has the higher theoretical capacitance of 3,560 F g
-1

 as well as the 

better stability than the Ni(OH)2
31

. 
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Figure 3. 4. Electrochemical behavior of (a-b) Ni
2+

-colloid electrode and (c-d) Co
2+

-colloid electrode 

in a three-electrode system. 
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Figure 3.5 showed the comparison of the various ratio with Ni
2+

 and Co
2+

, corresponding to 1:1, 2:1, 

and 1:2. The Ni
2+

:Co
2+

 (1:1)-colloid electrode revealed higher stability than the Ni
2+

-colloid electrode 

as well as better performance than the Co
2+

-colloid electrode, whereas the ratio of 2:1 presented with 

poorer stability than previous electrode. In addition, the high stability is showed with high current 

density for Ni
2+

:Co
2+ 

(1:2)-colloid electrode. Electrochemical properties such as stability and 

performance were determined by the contents with ratio of Ni
2+

:Co
2+

, as shown in Figure 3.5. The 

Ni
2+

:Co
2+ 

(2:1)-colloid electrode achieved the capacitance value of 450 F g
-1

 at a current density of 1 

A g
-1

. However, the capacitance value of 401 F g
-1

 was showed at same current density for the 

Ni
2+

:Co
2+ 

(1:1)-colloid electrode with a same condition of mass loading. It has better stability at high 

current density even though the Ni
2+

:Co
2+

 (2:1)-colloid electrode has higher performance than it, 

because of the increased contents of cobalt ions. In addition, there is similar but distinct difference in 

comparison between the ratio of 1:1 and 1:2. With same mass loading, there is big difference of the 

capacitances that is 388 F g
-1

 for 1:1 and 339 F g
-1

 for 1:2. However, they showed a similar tendency 

in terms of stability with high current density (Figure 3.5b and f). It proved that stability was well-

retained when the electrode consisting of nickel hydroxide is combining the slight cobalt hydroxide. 

Mn
2+

-colloid electrode also presented the electrochemical behavior in a three-electrode system, as 

shown in Figure 3.6. Therefore, the Mn
2+

-colloid electrode played a role of a negative electrode and 

the Ni
2+

:Co
2+

 (1:1)-colloid electrode also played a role of a positive electrode, indicating that two 

electrodes was formed to hybrid capacitor. 
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Figure 3. 5. Electrochemical behaviors in comparison of (a-b) Ni
2+

:Co
2+

 (1:1)-colloid electrode, (c-d) 

Ni
2+

:Co
2+

 (2:1)-colloid electrode, and (e-f) Ni
2+

:Co
2+

 (1:2)-colloid electrode in a three-electrode 

system. 
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Figure 3. 6. Electrochemical performance of (a-b) Mn
2+

-colloid electrode in a three-electrode system. 
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The prepared colloid electrodes were assembled with a hybrid capacitor device in order to measure 

electrochemical performance as a charge storage. The carbonized cotton was used to overcome the 

poor cycle stability and to support the colloid electrodes. Coin cell consisting of the Ni
2+

:Co
2+

 (1:1) 

and Mn
2+

-colloid electrode in the CC (1 cm Ⅹ 1 cm) was fabricated and tested. Figure 3.7a showed 

the wide potential window range, combining the Ni
2+

:Co
2+

 (1:1) and Mn
2+

-colloid electrode. As 

shown in Figure 3.7b, the device exhibited areal capacitances of 65, 51, 35, 28, 17, and 17 mF cm
-2

 at 

various current densities of 1, 2, 5, 10, 20, and 30 mA cm
-2

, respectively. With high current density, 

the stability was retained until 27 %, compared to the stability of 0% using a graphite as a current 

collector (Figure 3.8). The carbonized cotton has oxygen groups after treated using O2 plasma, 

indicating that the nickel, cobalt, and manganese ions were performed to coordinate covalent bonds 

between the oxygen and metal ion. In addition, the bonding prevented metal ions from falling down 

the current collector, resulting in the better stability than graphite as a current collector. 

Figure 3.9a showed an obviously low loss of capacitance about 10% after 10,000 charge/discharge 

process at 10 A g
-1

. Further, the NC/CC//Mn/CC device exhibited the energy density and power 

density of 4.5 mWh cm
-2

 and 698.8 mW cm
-2

, respectively, when tested in a two-electrode system 

(Figure 3.9b). 

In summary, the unique concept of the controlled ratio between nickel ions and cobalt ions 

improved electrochemical performance and stability. In addition, the carbonized cotton provided the 

strong mechanical property treating with a pressure and the coordinate bond with metal ions, 

indicating that it has properties such as retained structure and higher stability than graphite. The 

NC/CC//Mn/CC was optimized by the simple fabrication and activation process. 
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Figure 3. 7. Electrochemical performance of hybrid-capacitor: (a) CV curves, (b) GCD curves, and (c) 

Retention with increased current densities in a two-electrode system. 
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Figure 3. 8. Comparison of retention with the current collectors of CC and graphite. 
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Figure 3. 9. Capacitor properties of the NC/CC//Mn/CC device: (a) Cycle stability for 10,000 cycles 

and (b) Ragone plot in a two-electrode system. 
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3.4 Conclusion 

I have challenged a new concept for metal ion-colloid electrode as an active material to improve the 

electrochemical properties. A ratio of Ni
2+

 and Co
2+

 was controlled by the concentration of dip-coating 

solution to solve the problems in terms of the performance and stability for capacitor. The controlled 

electrode was performed to in situ activation process, forming the metal hydroxides to achieve the 

high capacitance. The prepared Ni
2+

:Co
2+

 (1:1)-colloid electrode was used as a positive electrode with 

the Mn
2+

-colloid electrode as a negative electrode. Furthermore, the O2 plasma treated-carbonized 

cotton plays key role in retaining the stability with high current densities. For all these advantages, the 

NC/CC//Mn/CC device reached not only the stability of 27% while presenting the stability of 0% 

using graphite as a current collector but also retained the capacitance of about 90% at long cycle, 

respectively. 
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