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ABSTRACT 

 

 

Unmanned aerial vehicles (UAVs) are widely used in various areas such as exploration, 

transportation and rescue activity due to light weight, low cost, high mobility and intelligence. This 

intelligent system consists of highly integrated and embedded systems along with a microprocessor to 

perform specific task by computing algorithm or processing data. In particular, image processing is one 

of main core technologies to handle important tasks such as target tracking, positioning, visual servoing 

using visual system. However, it often requires heavy amount of computation burden and an additional 

micro PC controller with a flight computer should be additionally used to process image data. However, 

performance of the controller is not so good enough due to limited power, size, and weight. Therefore, 

efficient image processing techniques are needed considering computing load and hardware resources 

for real time operation on embedded systems. 

The objective of the thesis research is to develop an efficient image processing framework on 

embedded systems utilizing neural network and various optimized computation techniques to satisfy 

both efficient computing speed versus resource usage and accuracy. Image processing techniques has 

been proposed and tested for management computing resources and operating high performance 

missions in embedded systems. Graphic processing units (GPUs) available in the market can be used 

for parallel computing to accelerate computing speed. Multiple cores within central processing units 

(CPUs) are used like multi-threading during data uploading and downloading between the CPU and the 

GPU. In order to minimize computing load, several methods have been proposed. The first method is 

visualization of convolutional neural network (CNN) that can perform both localization and detection 

simultaneously. The second is region proposal for input area of CNN through simple image processing, 

which helps algorithm to avoid full frame processing. Finally, surplus computing resources can be saved 

by control the transient performance such as the FPS limitation. 

These optimization methods have been experimentally applied to a ground vehicle and quadrotor 

UAVs and verified that the developed methods offer an optimization to process in embedded 

environment by saving CPU and memory resources. In addition, they can support to perform various 

tasks such as object detection and path planning, obstacle avoidance. Through optimization and 

algorithms, they reveal a number of improvements for the embedded system compared to the existing. 

Considering the characteristics of the system to transplant the various useful algorithms to the embedded 

system, the method developed in the research can be further applied to various practical applications. 
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I. INTRODUCTION 

 

1.1  Motivation 

An embedded system on unmanned systems such as aerial vehicle, ground, and underwater, 

requires processing a large amount of data for a path planning, image processing, various mission in 

real time. Recently, advanced technologies in computational processing performance, network 

communication and energy technology have expanded operating area of the unmanned vehicle as well 

as increasing utilization in various areas such as exploration, transportation and military in Fig 1.1 [1,2]. 

In addition, various studies have been conducted in the fields of navigation, positioning, communication, 

power system to meet the system requirements according to the operating plan. 

Unmanned aerial vehicles (UAVs) are dramatically getting an attention in a number of applications 

but the size and weight of the vehicle is still limited by the scale of the operation [3], and the payload 

is also limited as the thrust is limited. This leads to a limitation of the computing resources being loaded, 

so it is essential to simplify the algorithm and increase efficiency in UAV operation. 

  

(a) Radiation monitoring (b) Firefighting 

 

(c) Transportation 

 UAVs for various purpose 
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In particular, this feature is remarkable in the image processing. Image processing is the core 

technology to handle important tasks such as target tracking, positioning, data streaming for operating 

unmanned vehicles. However, the amount of computation depends on the resolution of frame and 

complexity of the algorithm. It can be a threat to real-time operation on the embedded system.  

Convolution neural network (CNN) also can effectively solve complex nonlinear problems 

specially on image recognition though combination between feature extraction by convolution and 

classification for prediction by fully connected layer [4] but also, it is forced to bear computing load 

due to the increase in the calculations by nodes. So, embedded system should minimize computational 

load and use limited computational resources efficiently. 

 

1.2  Related works 

A number of researches have been proposed for performing specific task on unmanned vehicle. 

Among them, this work will deal with the researches related to target recognition. Target recognition 

contains object detection and classification, it is much useful technique for autonomous landing [5], 

autonomous driving [6], inspection [7,8] and so many applications. For example, in the case of detecting 

cracks through machine vision, there are method of image processing techniques using various kinds of 

filters such as morphological filter and Gabor filter. Data processing is done by applying Gabor filter 

invariant to rotation, allowing the detection of cracks in any direction [7]. However, the quality of the 

result varies greatly depending on the shape of the filter, so the design of the filter becomes very 

important.  

Various segmentation methods can be applied for crack detection, pixel based segmentation 

represented by region growing, have same limitation which difficult to choose number of seed pixels 

and effective position of seed pixel and design growing mask. 
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 Designed Gabor filters [7] 

 

Similarly, threshold based approaches may not be a general solution, depending on the designer's 

perspective and the propensity of the data, because the quality of the results depends entirely on the 

threshold [9]. Due to these limitations, researches have proposed that do not require thresholds or that 

leave the design of filters to be learned artificial intelligence based on data. 

 

 Different detection qualities depend on threshold [9] 
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Artificial intelligence rapidly becomes popular as a powerful technology to solve the various 

nonlinear problems that exist in real life. Especially, voice recognition, image recognition, and others 

are used in areas where there is a lot of noise and regularity cannot be derived. In the case of the artificial 

neural network, one of the deep learning technologies, the linear equation-based nodes are complex in 

structures like human neurons, creating nonlinear systems. It can draw multi regression area. 

 

 Structure of CNN 

 

 
 

 Structure of fully connected layer  Model of neuron inside of network 

 

Convolution is usually divided two steps, convolution layer and fully connected layer. The first 

step is for extraction characteristics by emphasizing specific parts of the image. And the next, with 

convolved image, network predicts output as result of calculation by nodes on fully connected layer.  

Both the applied kernels of convolution layer and the weights of fully connected layer are used as 

parameters learned through the backpropagation process by the error value from training dataset. 

The results obtained from CNN features and nonlinearities show good performance in object 

recognition. In the case of the crack detection mentioned above, results were also shown [8].  
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 Detection of crack with sliding window CNN [8] 

 

However, most of CNN algorithms ask high computational cost because of repetitive computation 

in convolution with kernels and linear computation with nodes. As shown in Fig 1.7, the researchers 

used that the sliding window method shown result, which requires a lot of computation by searching all 

areas of the frame. In the paper, we can confirm that the hardware specification is not mentioned but it 

is processed at 40s per frame. Frame Per Second (FPS) is under 0.025. 

To overcome the limitations of processing speed due to repeated computations, General Purpose 

GPU (GPGPU) became popular to apply parallel computation. GPGPU is computing acceleration 

technique using Graphical Processing Unit (GPU) which is a device originally developed for graphical 

work and is specialized in parallel computing, consisting of hundreds to thousands of processing units. 

With the development of artificial intelligence, the computational quantity has increased rapidly and 

with the use of a parallel computation capable GPU. The GPU's utilization area is expanded from simple 

graphical tasks to general purpose computing processors. Due to this usefulness, NVIDIA developed a 

variety of open source API, CUDA, for developers who want to use GPGPU and released the Jetson 

series to build ecosystems in embedded systems. 

Some algorithms suggested an optimized structure for real-time application of embedded systems 

[10,11], but still most of the algorithms cannot reach a significant speed of processing, at less than FPS 

3. Recent researches have been started to consider real-time operation on embedded environment but 

they concentrate on processing speed only [12,13]. There are not any mention about computing load 

only performance. So, there are still lack relevant studies on real world application.  
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1.3  Research objective 

The objective of this research is to develop effective image processing framework on embedded 

systems using neural network and various optimized computation techniques.  

There are three ways to minimize computational load. First is GPGPU, it helps by computing 

acceleration. Secondly, simplified structure from basis and high robustness are required for high 

performance and efficiency. For example, CNN algorithms is designed optimized and simplified 

through ROI pre-processing. Finally, the surplus resources are saved by limiting the processing speed 

as much as much as possible except desired performance. 

These techniques can be used to verify the effects in the real-time processing and tested in the 

operating environment of a quadrotor type drone. 
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II. OPTIMIZATION TECHNIQUES FOR IMAGE PROCESSING 

 

 

 Summary of second section 

 

2.1  General Purpose of Graphical Processing Units 

In this part, the practical method will be proposed such as utilizing GPU, saving surplus computing 

resources, and usage on each core of Central Processing Unit (CPU), total usage of CPU and memory 

usage. To overcome the limitations of Open API, customizable program was built using C++ programs 

to ensure free and fast performance and image processing was implemented using OpenCV, an open 

source library on image processing. 

Although the tools provided by NVIDIA may be used directly for GPU programming, the programs 

developed in this study used the CUDA modules provided by the OpenCV library. Unlike CPU, there 

is no control unit or data cache, so memory occupancy occurs when GPU forwards processed data back 

to the CPU. So, it is needed to memory management and scheduling of each unit’s work because if 

memory shortage occurred, every process stops and delayed until it recovers spare memory space. In 

Fig 2.2 and Fig 2.3, red line shows running by CPU only and blue line by GPU maximized running. 

With graph which presents monitoring result, CPU usage was decreased during GPU running, but also 

memory usage was increased and kept even after end of the program. 
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 Comparison CPU of processing on GPGPU(red) CPU only(blue) 

 

 

 Comparison memory usage of processing on GPGPU(red) CPU only(blue) 

 

Saliency detection[14] was tested to apply GPGPU on embedded environment. Result was drawn 

in Fig 2.4 and summarized in the Table 2.1. The CPU model of embedded board is ARM Cortex-A57 

(quad-core) @ 1.73GHz. 
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(a) Result image without CUDA processing 

 

(b) Result image with CUDA processing 

 Saliency detection example 

 

 Performance and CPU usage 

 CPU only GPU maximize GPU optimized 

FPS 2.1 4.4~4.6 4.4~4.6 

CPU avg [%] 25.97 29.38 27.12 

 

Another phenomenon that occurs when using GPUs is the behavior of each CPU core differentiates 

appeared in Fig 2.5 and Fig 2.6. Only single thread is running, only one core is responsible for 

computing at its maximum without GPGPU. The other case is distributed computing load applied to 

each core of CPUs because of exchange of date between CPU and GPU.  

It was confirmed that the processing speed and the memory and CPU usage can be saved as Fig 

2.6, Fig 2.7 as a result of optimized method considering the driving characteristics and processing 

efficiency of the CPU and the GPU. 
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  Program execution using CPU only 

 

 

  Program execution using CPU and GPU 
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 Total usage of CPU for each test condition 

 

 

 Memory usage for each test condition 
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2.2  Limitation of Overperformance 

This approach which is limit FPS to constant minimum speed that does not affect the performing 

process or mission has been proposed to save surplus resources for other processing. For this test, 

processing was forced to sleep during as long as the time remains. FPS was adjusted from 13-14 to 10, 

average of CPU usage is reduced 40% to 30% in maximum running section of Fig 2.9 and Fig 2.10. As 

a result, computing resource was retained surplus resources by intended limitation of performance, but 

memory consumption is constant, because limiting the processing speed does not change the amount of 

data to be processed. It is also necessary to maintain a uniform and stable system, as it also affects the 

performance of other processes associated with imaging results. 

 

 Total usage of CPU at limited performance 

 

 

 Memory usage at limited performance 
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2.3  Convolutional Neural Network Visualization 

In the training session, a large amount of dataset must be stored and processed in memory, it is 

assumed to be performed in offline main computer considering time and computation efficiency. In 

other words, online training is not considered, but in the future work, the potential should be considered 

for the emergence of innovative ideas and advances in hardware. In this work, the parameters learned 

from the offline computer are transferred to the embedded system. 

Deeper layer Neural Network build more complex regression area as shown in Fig 2.11. ‘Deeper’ 

means an increase in the number of layers. However, it has high risk of facing which vanishing gradient 

problem. To prevent this, VGG Net proposed using multiple small-sized kernels [15]. It can be basis 

for determining the number of layers of network, the number and size of the kernel 5x5 and 3x3. Table 

2.2 presents designed structure of CNN for this work. 

 

 

 Regression area built by multiple layers 

 

 Network design principle 

Number of convolution layers 3 and more 

Size of kernels 5x5, 3x3 

Number of kernels per layer 2~3, less than 5 

Number of neurons on fully connected layer Determined by number of kernel and class 

 

Target image dataset was collected for training as shown Table 2.3. And they were enlarged by 

affine transform, translation, adding gaussian noise etc. Because enough image dataset is needed to train 

network at least 1000 patches per each class. And dataset pre-processing helps training more faster and 

enhancing result of training. 
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 Dataset specification 

Type Size Preprocessing True dataset False dataset 

Crack 64x64 Morphological filtered 1486 1665 

Circular target Various Canny edge detection 845 338 

 

 

2.3.1 Training Session Visualization 

CNN is too complex to understand mathematical operation, to predict result and to find cause of 

error or training not going well. Visualization is greatly intuitive technique for analysis, it can be the 

solution of understanding CNN. In this section, it will be shown how the operation of the network 

changes with the number of neurons of fully connected layers, and kernel changes by convolution layer. 

The network specifications used for the test are as shown in Table 2.4 and Fig 2.12. 

 

 Network parameters of trained CNN 

  Kernel size 
Number of 

kernels 
Pooling size 

Activation 

function 

Convolution layer 

Layer 1 5x5 3 2x2 ReLU 

Layer 2 3x3 3 2x2 ReLU 

Layer 3 3x3 5 2x2 ReLU 

Fully connected 

layer 

Number of 

neurons 
64, 128, 256 - Sigmoid 
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 Network structure of trained CNN 

 

 

 Error drop during network training 
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 Accuracy check for training dataset 

 

 Accuracy check for test dataset 
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Result as Fig 2.13 indicates loss of network. Loss is calculated by jth , desired output(yj) and 

predicted result(wijxj) multiplying by weights and output of previous layer (2.3). Fig 2.14 and Fig 2.15 

present result of dataset accuracy test during training. Test dataset is only for validation, not included 

parameters updating process. Referring to N64 data in green, it indicates that too low a number of 

neurons can have a negative effect on the reduction of training loss. 

In the graph, when the number of neurons on fully connected layer was cut, the loss was decreased 

at a slower rate, but as the training progressed, the loss reduced further, and the learning effect was 

better. The gradients of weights is updated by output error during the training. They are propagated to 

entire network by the chain rule (2.4). However, error value at the back of the network is lost close to 0 

while reaching the front of the network, convolution layer. It is called by vanishing gradient. This 

phenomenon can be detected in visualized kernels and convolved image with these kernels Fig 2.16 
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(a) 256 Neurons 

 

(b) 128 Neurons 

 

(c) 64 Neurons 

 Visualization of Convolved image with trained kernels 
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 Convergence time with number of neurons 

 

From the Fig 2.16, the learning efficiency of the convolution layer is increased, kernels generated 

much variously by analyzing the reason that the propagation of the error gradient occurred well by 

reducing the number of neurons in the fully connected layer.  

Another evidence supporting this hypothesis is found in the visualization for monitoring the 

training process. In this process, it can be seen that the convoluted image converges to a certain form, 

and a network with a larger number of neurons converges more slowly according to result at Fig 2.17. 

Also, selective kernel approach can be used refer to visualized kernels and convolved image as Fig 

2.18 for efficiency. It will be tested and described at Sec 2.4. 

 

 

 Convolution kernel visualization 
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The benefits of visualization can be summarized as follows 

i. Visualization result helps understanding when training results don’t get better 

ii. Intuitively identified CNN 

iii. Basis for training completion with network loss 

iv. Selective selection of convolution kernels 

 

2.3.2 Test Session Visualization 

CNN is useful algorithm for object classification and after classification, there are many 

applications that follow, such as image segmentation, target positioning after classification. However, a 

fully connected layer that accepts linked image with convolution layer and performs classification with 

input. It only accepts fixed size inputs, and this process removes the positional information of the signal 

enhanced by the convolution. To applying on object segmentation and the localization of the detected 

target requires location information, which causes problems. Fully Convolutional Networks (FCN) 

considers fully connect layer as the 1x1 convolution operation [16].  

 

 

 Class activation mapping [17] 
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There are some techniques to set position of object such as sliding window method [8], but that 

method is taken too long time to process in real-time, So, alternative method should be applied, that is 

visualization of CNN [17-20]. Activation map visualizes activation of neurons with convolved and 

Global Average Pooling (GAP) image shown in Fig 2.19 [17]. 

Each GAP image is connected to the output class with weights that means how important it is in 

the associated class. Fig 2.20 is processing image by level of neuron activation according to the depth 

of the network. The deeper network shows more accurate results as show. Target detection and 

localization can be performed simultaneously or if the target exists in a frame, the activation map 

demands few nodes that is multiplication between number of convolutional kernels and output class  

 

 

  Level of activation according to the depth of the network 

  



28 

To compare the result of crack segmentation, image processing technique will be proposed. A 

number of segmentation methods tried for crack detection but as mentioned in Sec. 1.2, it has threshold 

decision problem how much value is appropriate and design parameters dominate quality of results. In 

this work, the biggest feature of people recognizing cracks in a structure is that it has a continuous line 

with non-direction and dark compared to the brightness of surrounding pixels. Therefore, the algorithm 

should be constructed to detect cracks based on these characteristics and minimize the effects of the 

parameters that make up the algorithm. 

First of all, Image I is performed maximizing features of crack and noise removal through 

morphological filters following steps on Table 2.5. After step 1, binarized with Otsu threshold. It makes 

markers as seed of area segmentation. Watershed is a kind of area segmentation method. With coupling 

the divided areas to determine whether the existing connection between the two areas is a crack or not. 

The average value of the pixels in the regions satisfying the condition of (2.1) is compared and the 

cracks are discriminated by thresholding according to (2.2). All the processing result by step is shown 

Fig 2.21. 

 

 Procedure of crack detection 

Step Process Function 

1 Morphological filtering, Erode Maximize features of crack 

2 Otsu binarization Making markers for segmentation 

3 Morphological filtering, Erode and Dilate Noise removal 

4 Draw contours Drawing makers 

5 Watershed segmentation Dividing cracked area 

6 Area indexing and binding Finding contact contour 

7 Thresholding (2.1), (2.2) Crack discriminating 

 

pij ∈ 𝐼𝑎𝑟𝑒𝑎, p𝑘𝑙 ∈ 𝐶𝑐𝑟𝑎𝑐𝑘 (2.3)  

(
∑𝑝𝑖𝑗

𝑛𝑎𝑟𝑒𝑎
−

∑𝑝𝑘𝑙
𝑛𝑐𝑜𝑛𝑡𝑜𝑢𝑟

) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (2.4)  
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(a) Original image 

 

(b) Eroded image 

 

(c) Making makers with binary image 

 

(d) Watershed segmentation 

 

(e) Area indexing and binding 

 

(f) Crack discriminating by thresholding 

 Crack detection process 

 

However, there are still limitations to using the threshold. Fig 2.22 shows the results of a method 

that minimizes the impact from the threshold. When the values of the pixels that are orthogonal to the 

connecting line which is segmented are plotted as a graph, if the variance of the passing through contour 

is large, it has high possibility of crack and if the graph shows uniform pixel values, it may not the crack. 

The yellow line indicates pixel value by perpendicular line of crack candidate contour, the green line is 

the mean value of whole contour. 
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(a) Crack 

 

(b) Not crack 

 Discrimination crack 
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2.4  Region proposal 

Resolution refers to the quality of images and captures detailed characteristics. Even small objects 

can be detected, so the detection performance is directly proportional to the resolution, but an 

appropriate compromise between performance and processing speed is needed because the amount of 

data needed to calculate increases dramatically as the resolution increases. Thus, the Region of 

interest(ROI) approach extracts and processes only a portion of the image, which can be less affected 

by resolution, thereby increasing the efficiency of the algorithm. 

If the algorithm selects a candidate area to detect a target and examine only that area, the processing 

speed and accuracy will be improved. ROI selection can be made using the characteristics of image data 

such as color, material, shape, etc. So, region proposal based on pre-processing by image processing. 

ROI is important circular target detection. For this case, ROI can be choose using Hough circle 

transform of Affine moments invariants(AMIs). The sample algorithm was built as an example, it 

consists of image processing part for ROI selection and feedforward network to classify ROI from result 

of image processing as Fig 2.23. Network condition and training condition were described in Table 2.6 

and Table 2.7. 

 

 

  ROI proposal as input of CNN  
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 Network condition 

Input (=Image Size) 
Convolution 

Layer 
Kernel 

Kernel 

Size 

Hidden 

Layer 
Neuron Output 

784 (=28x28) 1 3,4,10 7x7 1 64 2 

 

 Training condition 

Training dataset Validation dataset Learning rate Momentum Training accuracy goal 

1276 548 0.001 0.9 98% 
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The overall algorithm operation speed was limited to FPS 10, and the processing speed was verified 

by measuring the time taken per feedforward in Table 2.8. Delays do not occur even when there are 

more than 20 input patterns that have gone through image processing.  

It was confirmed that continuous detection of deformation such as rotation and tilt is possible and 

that similar patterns can be distinguished through the neural network as shown in Fig 2.24 and Fig 2.25, 

but incorrect detection occurred depending on the size or shape of the detected pattern in Fig 2.26. CNN 

may also not be able to learn well due to incomplete elements such as noise, resolution, unobtrusive 

features in the filming environment, thereby reducing accuracy. 

Also, case 3 and case 4 were tested with selective kernels, it shows similar performance as much 

as using all kernels trained in Fig 2.27, but also lower hardware resource consumption used as shown 

in Fig 2.28. 

 

 Processing time on real-time CNN 

Case Kernel Convolution layer[ms] Neuron Fully connected layer[ms] 

(1) - - - - 

(2) 10 3.5~4.08 64 0.96~1.3 

(3) 4 1.38~2.0 64 0.24~0.53 

(4) 3 1.06~1.23 64 0.18~0.35 

 

 

 

 Test result(1) filtering  

 

 

 Test result(2) filtering and detection 



34 

 

  Test result(3) rotation invariant and fault result 

 

 

  Result of proposed algorithm with various kernels 

 

 

  CPU total usage [%] 
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III.  IMPLEMENTATION OF UAVS 

 

NVIDIA Jetson TX1 as computing board of Fig 3.1 was used for test, also ZED stereo camera of 

Fig 3.2 was taken as image sensor. It provides own API that can be installed for development. Through 

the API, the advantage is that stereo image matching is performed by an internal processor, which 

enables rapid use of depth information. Pixhawk is a kind of microcontroller used as flight controller 

which is communicated by Mavlink message packet. It has various sensors for attitude estimation such 

as magnetometer, accelerometer and barometer. It is shown in Fig 3.3. All the specification of product 

was arranged in the Table 3.1-3. A quadrotor drone of Fig 3.4 was set as test platform with computing 

board, image sensor and flight controller. The optical motion capture module of Fig 3.5 was used for 

record ground truth data such as attitude and position. 

 

 Jetson TX1 

Table 3.1 Jetson TX1 Specification 

CPU ARM Cortex-A57 (quad-core) @ 1.73GHz 

GPU 256-core NVIDIA Maxwell @ 998MHz 

RAM 4GB 64-bit LPDDR4 @ 1600MHz 

OS Ubuntu 16.04 

Dimension 50mm x 87mm x 40mm 
 

 

 

 ZED Stereo camera 

Table 3.2 ZED Stereo Camera Specification 

 Value Notes 

Resolution VGA to 2.2K FPS 100 to 15 

Depth range 0.5~20m 32bit 

FOV 90°(H) x 60°(W) - 

Power USB(5V) - 

API Support O - 
 

 

 

 Pixhawk 

Table 3.3 Pixhawk Specification 

Processor 
ARM Cortex M4 

256 KB RAM 

Sensors 

MPU6000 as main accel and gyro 

ST Micro 16-bit gyroscope 

ST Micro 14-bit accelerometer/compass 

(magnetometer) 

MEAS barometer 

Power 7V 

Interface UART, I2C, ADC input, Satellite input, PPM .. 
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 Test platform setup  Optical motion capture system 

 

3.1  Setpoint Generation 

All the setpoints were generated for velocity control in body frame as result of image processing 

for control, because camera is mounted on frame of drone. The center image of Fig 3.6 has noisy data 

generated because some pixels are lost during the matching process to get depth data.  

In order to more accurately measure the distance to the object, we used two methods of ignoring 

or correcting the noise. The first is to use a morphology filter that can close the internal hole by applying 

erode after dilation. Then, the empty data is then corrected by replacing it with the surrounding one. 

Another method uses histogram with inside of object contour area and the most numerous values are 

chosen to decide depth of object. This result shown the right image of Fig 3.6. 

 

 

  Depth data correction  

 

When two different objects appear to overlap in the image plane, they can be separated using depth 

map and setpoints can be created so that they are viewed from the front. Fig 3.7 shows that situation 
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with conceptual drawing. dAB indicates distance between object A and B in frontal view and xAB is the 

distance between two objects viewed from outside the front for the image plane. With this information, 

delta yaw from current yaw state and velocity in body frame can be calculated refer to Fig 3.8 and (3.1-

3) until delta yaw is zero. wz can be set considering safety and objective of mission. 

 

 

  Visual change according to camera position 

 

 

 

  Setpoint calculation using depth data 

 

 

 

∆𝜃𝑦𝑎𝑤 = cos−1(
𝑥𝐴𝐵
𝑑𝐴𝐵

) (3.1)  
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𝑟 = 𝑎 +
√𝑑𝐴𝐵

2 + 𝑥𝐴𝐵
2

2
 (3.2)  

𝑣𝑏𝑦 = 𝑟 ∙ 𝑤𝑧 (3.3)  

 

Fig 3.9 shows change of yaw and the resulting delta yaw. Finally, with the drone facing the object 

head-on, the yaw state from the local frame is placed to zero, so the result should be zeroed when the 

yaw state and delta yaw are combined, but the error value is much fluctuated, because of noise and 

image shake from moving of drone. It should be estimated and corrected to improve accuracy. 

  

 

 Yaw state data and setpoint 
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 Error of generated setpoint 

 

3.2  Collision Potential Area 

With depth information by stereo vision, collision potential area can be drawn potential collision 

area in image plane. Drone size in the real world can be converted to size in image plane by the depth 

data and a similar pyramid. And the units were also converted from meters to pixels by (3.4) and (3.5) 

and the process was plotted in Fig 3.11. So, if result of (3.6) is not empty image, there is a collision 

potential area indicated with red box meaning of warning like Fig 3.12 and Fig 3.13.  

Multiple green boxes in Fig 3.13 shows the size of the drone in a rectangular box along the distance 

from drone. In the left image of Fig 3.13, if a collision potential area is detected, it has been implemented 

so that the driving direction can be moved to other areas around it to avoid a collision risk. 

 

[ ]
[ ] 2 tan( ) [ ]

2

x
x

FOV rad
FOV m d m=    (3.4)  

[ ]
[ ] [ ]

[ ]

x
drone drone

x

resolution px
W px W m

FOV m
=   (3.5)  

d d

drone objectA A  (3.6)  
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 Drone size in pixel by depth 

 

 

 Processed image with collision potential area and object information 

 

 

 Processed image with collision potential area and avoiding box 
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3.3  Odometry Assistant using Stationary Landmark 

Visual odometry is one of the useful technique for positioning of UAV on local frame such as 

Simultaneous localization and mapping(SLAM), data fusion with inertial measurement unit(IMU) 

sensor and homography. Using the homography matrix, it is possible to estimate the relative position 

and attitude of the camera in the local frame, but the process of finding and matching the features and 

calculation the multi-dimensional matrix is complicated and consumes a large amount of computation. 

Therefore, in this section, attitude information represented by Euler angles from the depth map and IMU 

is used to create the odometry through the relative position between the landmark object and the drone. 

Euler angles represent the rotation of a body from the world frame. They are defined as three 

rotations, phi (φ) for x-axis rotation, theta (θ) for y-axis rotation, and psi (ψ) for z-axis rotation, relative 

to the three major axes of the coordinate frame. So the body frame and the world frame can be converted 

to each other with rotation matrix in Fig 3.14 and (3.7). The rotation order is Z-Y-X when going from 

world frame to body frame. 

 

 UAV‘s body NED frame 

 

[
𝑥
𝑦
𝑧
] = 𝑅𝑤

𝑏 (𝜙, 𝜃, 𝜑) [
𝑋
𝑌
𝑍
] = 𝑅𝜙𝑅𝜃𝑅𝜓 [

𝑋
𝑌
𝑍
] (3.7)  

 

  



42 

A multi-rotor drone changes position by inducing a change in thrust direction using thrust and 

postural control, the posture of the camera mounted on the body, unless the gimbal is used, changes 

together. As the attitude of the camera changes, the image containing the landmark is also rotated and 

moved. Therefore, attitude data can be transferred from the flight controller and used for keeping erected 

image based on the local frame considering the order of rotation. The erected images from roll and pitch 

are shown in Fig 3.15 and Fig 3.16. Fig 3.17 shows the change in relative position after correction 

processing. 

 

 

 Image adjustment for rotation by x-axis 

 

 

 

 Image adjustment for rotation by y-axis 
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 Odometry assistant with object as landmark 
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IV.  CONCLUSION 

 

This work presents a computing optimization approach for embedded system specially on aerial 

vehicles and micro robots which should keep limited hardware. All embedded systems should be 

efficient and managed through hardware resource monitoring. 

Previously, the method for visual recognition of cracks was proposed to reduce the dominant 

structure of the parameters of the imaging algorithm, and crack detection and localization was 

performed through a neuron activation map. This allowed us to respond to the processing of images in 

a more diverse environment by minimizing parameter design elements. 

Also, in order to minimize the computing load of the algorithms driven by the embedded vision 

system, GPGPU technique was used to reduce the usage of CPU and increase processing speed through 

parallel operations, and memory management provides a method that can be used at a level that does 

not stop the system. In addition, ROI selection was performed through pre-processing to reduce the 

throughput of CNN, and the optimal network structure was selected through visualization at the 

Training stage, and the kernel was selected and simplified. Finally, valid results were obtained using 

methods such as securing surplus resources through speed limit. 

As discussed in Sec 2.4, the range of embedded visual systems that can be operated on the UAV is 

various and requires planning and monitoring to consider computing resources and maximize efficiency 

throughout the entire process. Especially for optimized application of CNN, there are still so many kinds 

of future work. In order to guarantee uniform image processing performance in an embedded system 

operating under various conditions, it is necessary to study the optimal parameters through neural 

network so that contrast, exposure, and sharpness of images can be adjusted. Also, research on 

transplanting previously validated CNN algorithms into embedded environments will also be needed.  
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