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Abstract 
 

Each individual's usage behavior on mobile devices depend on a variety of factors such as time, 

location, and previous actions. Hence, context-awareness provides great opportunities to make the 

networking and the computing capabilities of mobile systems to be more personalized and more 

efficient in managing their resources. To this end, we first reveal new findings from our own 

Android user experiment: (i) the launching probabilities of applications follow Zipf's law, and (ii) 

inter-running and running times of applications conform to log-normal distributions. We also find 

contextual dependencies between application usage patterns, for which we classify contexts 

autonomously with unsupervised learning methods. Using the knowledge acquired, we develop a 

context-aware application scheduling framework, CAS that adaptively unloads and preloads 

background applications for a joint optimization in which the energy saving is maximized and the 

user discomfort from the scheduling is minimized. Our trace-driven simulations with 96 user 

traces demonstrate that the context-aware design of CAS enables it to outperform existing process 

scheduling algorithms. Our implementation of CAS over Android platforms and its end-to-end 

evaluations verify that its human involved design indeed provides substantial user-experience 

gains in both energy and application launching latency. 
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Ⅰ. Introduction 

 

As mobile devices have become an essential part of our lives, people expect more capability from 

them such as longer battery life, ubiquitous access to Internet, immediate response time, and fresh 

contents (e.g., messages, feeds, news, ads, sync data, or software updates). The recent advancement of 

cellular networks and cloud computing is partly fulfilling these needs. However, certain performance 

features such as long battery life and high quality-of-service (e.g., low latency and fresh contents) have 

intrinsic tradeoffs that make it difficult to optimize simultaneously. 

 

In a large-scale measurement study of 2000 Galaxy S3 and S4 devices by Chen et al. [2], [3], 45.9% 

of the total energy drain occurs during screen off periods. This high energy consumption mainly comes 

from background applications that update contents, collect user activity information, or keep 

components in active states [4], [5]. However, these background activities may not be always beneficial 

for users. For example, if a social network application updates its contents frequently (say every 20 

minutes), but the user launches this application once a day, then most updates unnecessarily waste 

network energy. 1  As a motivational example, we show the measured daily network usage 2  of a 

Facebook application on a Galaxy S7 smartphone running Android 6.0.1 in Fig. 1, where the update or 

collection intervals are less than 20 minutes.3 Also, gaming or map applications often keep high power-

consuming components such as CPU and GPS in active states while being in background. This 

operation is intended to provide immediate responses from those applications but wastes energy unless 

the user re-launches them within a short time. This inefficient stand-by operation is indeed observed in 

a popular game application, as shown in Fig. 2. To this end, we aim at managing mobile applications in 

a resource-efficient manner by exploiting per-user application usage behaviors analyzed in the 

perspective of contextual usage statistics. It is important to mention that managing applications not only 

influences the computing behaviors but also the networking behaviors of a mobile system which in turn 

leads to further resource optimizations such as delaying or suppressing non-urgent background network 

traffic. 

 

To our knowledge, the most widely used application controller in Android [8] and iOS [9] is called 

                                           
1 It is well known that frequent network traffic incorporates large ramp and tail energy overheads [6], [7]. 
2 We log network usage by reading /proc/uid_stat/[uid]/. 
3 The authors in [4] revealed that the Facebook application uses network data every 5 minutes or every 1 hour in their large 
scale measurement between Dec 2012 to Nov 2014. They also revealed that network traffic from background applications 
consumes 84% of total network energy, mainly due to periodic contents updates and their tail energy consumption. 
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Fig. 1. Daily network usage of the Facebook app and its corresponding state either being in the 

foreground or background. The Facebook app incurs background network traffic even when the user is 

not interacting with it. 

 

 
Fig. 2. Measured power consumption of a popular game application for foreground and background 

states in a Galaxy Note 2 smartphone. 

 

the low memory killer (LMK) that commonly kills (i.e., unloads or terminates) applications to secure 

more available memory. Popular memory kill algorithms that are often implemented with LMK purge 

applications in the order of either LRU (least recently used) or process priority [10]. As this mechanism 

is merely inherited from computer systems with abundant resources (e.g., energy), it never considers 

contextual information of application usages. Thus, it naturally fails to manage mobile applications in 

an efficient way. 

 

There have been two complementary approaches to tackle this problem. Several papers [11]–[14] 

tried to identify energy bugs/hogs, that mainly come from coding errors. This may successfully kill all 

detected buggy activities, but benign operations such as activity logging can also be stopped (false 
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positive) and unnecessary network activities may be mostly intact (false negative). Another recent 

approach in [2] proposed a metric called BFC (Background to Foreground Correlation) to quantify the 

level of user engagement for each application on the fly. If the BFC value is smaller than a threshold, 

background activities are implemented to be suppressed. [2] also developed HUSH that puts 

applications that have not been recently used in foreground into inactive states, and extends the duration 

of being in the inactive states in an exponential manner. They showed that the screen-off energy saving 

of their algorithms is 15-17% in their large-scale traces. 

 

The second approach partly tackled the energy-inefficient activities, but still this approach is myopic 

as it ignores the very important statistics on when the user will relaunch an application. As human 

behaviors have regular patterns in their daily lives, it is clearly possible to design a more efficient 

application controller that is far beyond the naive exponential mechanism. This is only possible when 

deeper understandings of per-user and per-application usage behaviors are acquired. 

 

To that end, we collect application usage of 103 Android users for which we deployed a logger that 

was designed to periodically send detailed application, sensor, and memory usage data to our server. 

The total data collected spans over 1057 days and reaches about 20GB. We find that the usage patterns 

follow heavy tail distributions: (i) The launching probabilities of applications follow the Zipf’s law, and 

(ii) inter-running and running times of applications resemble log-normal distributions. We also reveal 

detailed context-dependency in the re-launching probabilities, which convey more personalized control 

ideas over existing studies [15]–[19]. To realize a control algorithm that exploits such personalized 

context-dependency, we automate the procedure of per-user context extraction by adopting 

unsupervised learning methods that significantly improve prediction accuracy. 

 

With the contextual knowledge, we propose a new application control framework, CAS (Context-

aware Application Scheduler) that works by predicting when a user will launch an application and which 

application will be used. Trace-driven simulations with consideration of system overhead show that 

CAS outperforms the Android genuine resource scheduler, LMK, and Android 6.0. We also verify the 

practicality of CAS by implementing the system on Android. 
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Ⅱ. Related Work 

 

We classify previous work on mobile resource scheduling into several categories from experimental 

studies to implementations and summarize their contributions. 

 

Human behaviors on mobile application usage: To establish the foundation of context-awareness for 

mobile resource scheduling, several pioneering experimental studies [15]–[21] have been performed to 

analytically understand how humans use applications given contexts such as time/location information, 

and the last used application. Falaki et al. [21] studied usage traces from 255 users and found that the 

levels of activities are vastly different across users. They also found that screen off times fit well with 

the Weibull distribution. 

 

Application preloading algorithms: Those early studies on context-awareness led to the development 

of application preloading/prefetching algorithms [22]–[26] applications that substantially reduce the 

perceivable start-up latency (i.e., launch latency) by preparing required resources (including 

computation such as rendering, and communication such as feed updates) before they are requested by 

users. However, most previous studies have focused on which application a user will launch next, but 

not on when the user will launch it. [23] is the only work that concerned the moment of launching, but 

the authors did not consider the cumulative penalty of preloaded applications, hence their prefetching 

schedules may suffer from large energy wastage until the predicted application is actually accessed. 

 

Application unloading algorithms: The default low memory killers (LMK) on Android [8] and iOS 

[9] unload or terminate applications to secure more memory resource, when the available memory goes 

below a pre-defined threshold. Popular memory kill algorithms that are often implemented with LMK 

purge applications in the order of either LRU (least recently used) or process priority [10]. Android 

version 6.0 (Marshmallow), released in October 2015, adopts features called App standby and Doze 

mode [27] for energy saving. App standby suppresses background activities of an application that has 

not been used in foreground for 3 days. The Doze mode is enabled when a user leaves the device for a 

certain amount of time. Doze mode restricts background apps’ access to network and CPU for most of 

time, and lets background apps complete their activities for a short maintenance window. Doze mode 

schedules this maintenance window less frequently as the untouched period gets elongated. 

 

A recent paper [2] proposed simple unloading algorithms called BFC (Background to Foreground 

Correlation) and HUSH for screen-off background activities. The BFC metric quantifies the likelihood 

that a user will interact with an application during a next screen-on interval after its background 



5 

 

activities. BFC updates the metrics using an exponential moving average at the end of each screen on 

period, and unloads applications if their BFC metrics are less than a cutoff value α. Another algorithm, 

HUSH increases the suppression interval of an application if it has not been used in foreground using 

exponential backoff (i.e., the interval is multiplied by a given scaling factor σ). Once an application is 

used in foreground, the interval is reset to an initial value. This simplistic algorithm is shown to save 

about 15-17% of energy in their large-scale usage traces. Our preliminary work [1] was the first of its 

kind that jointly considers preloading and unloading of background applications. However, the 

scheduling algorithm therein was not able to systematically find an optimal schedule for a given 

resource constraint (e.g., energy, or launching latency). 
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Ⅲ. Preliminary 

 

In this section, we explain basic concepts for application processes. In Android OS, there are various 

application states each of which has its corresponding “process importance” ranging from 100 to 1000 

[28]. An Android application4 installed on a device stays in one of the states at a time slot. Fig. 3 shows 

all the states defined in Android and our simplified mapping of those states into three states: foreground, 

background, and empty. We define a foreground process to be a process in use and that is visible to 

users. By the definition, there can be at most one application in foreground at each time. An empty 

process5 is defined to be a process unloaded from memory, and thus no resource is allocated to that 

process. We denote a background process as a process that is loaded but not running on foreground. 

 

The rationale behind our simplification of states is that the processes that are running with no 

foreground UI on the screen show similar resource consumption characteristics (e.g., memory and 

power) as background processes of importance 400 rather than foreground processes running on the 

screen. Also, these processes can be unloaded just like background processes of importance 400 without 

disrupting on-going user experience, except system processes (e.g., phone caller and application 

launcher) that are designed to be running all the time, and user-interactive applications (e.g., music, 

radio and recorder) that are usable even without visible UIs. 

 

We depict the transitions between states in Fig. 4. An empty to foreground transition called cold 

launch occurs when a user touches an empty (i.e., unloaded) application to launch. A transition from 

background to foreground called warm launch is mostly made when a user chooses to use the 

application by relaunching an application that is still kept in the background, and thus has shorter latency 

than cold launch but consumes memory and battery for background activities. Therefore, user 

experience on battery life and application launch latency is highly dependent on the decision of putting 

an application in either of background or empty state. 

 

We further define the system state as either of off or on and its period. Tk
off denotes the k-th screen-

off period when all applications are either in background or empty, while Tk
on denotes the k-th screen-

on period for which an application is being used in the foreground. Fig. 5 depicts how the number of 

background applications (|B(t)|) changes as the screen state and foreground application Xk change over 

time, under the Android default scheduler LMK, where B(t) and Xk denote the list of background  

                                           
4 We interchangeably use process and application. 
5 The empty state corresponds to suspend in iOS [9]. 



7 

 

 

Fig. 3. The process states defined in Android [28] (left) and our simplified three states (right). 

 

 
Fig. 4. Our simplified states and transitions between a pair of states. 

 

applications at time t and the foreground application at k-th screen on period. Under LMK, a foreground 

process goes to background when the user switches to a different foreground application or turns off 

the screen. LMK kills applications in background in the descending order of importance values when 

the available memory goes below multiple levels of preset memory thresholds. This is surely done with 

no consideration on when the killed application is going to be relaunched. Thus, LMK results in higher 

cold launch probability, even though it keeps a number of applications in background and brings high 

energy wastes. 
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Fig. 5. Our slotted time model of off and on periods (bottom) and an example of corresponding sets of 

background applications at each slot by LMK (top). 
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Ⅳ. Measurement Study 

4.1. Data Collection 

 

To capture application usage behaviors of smartphones in the wild, we performed our own data 

collection with 96 Android users selected from a few popular Internet communities of South Korea 

during two weeks in Feb. 5-18, 2015. We provided a data logger programmed to periodically record 

application usage and device characteristics summarized in Table 1, and upload the data to our server 

daily. We anonymized all user information and IDs at the level of user devices. We asked users not to 

use task killers and not to manually unload applications while participating our experiment, in order to 

see how the Android genuine scheduler, LMK works. The average valid data per user is about 11 days, 

and the total data size is about 20GB. We also asked the participants to fill an anonymized survey 

involving occupation, age band, gender, and personal statement on their dissatisfaction of the 

smartphone (e.g., latency, freeze), summarized in our survey report [29]. To improve the reliability of 

the responses we did our best to create an anonymous interface to give them confidence in providing 

the correct information. Participants come from diverse occupations, genders, ages, and devices (e.g., 

Samsung Note2, Note3, Note4, S3, S4, S5, LG G2, G3). Most of participants use Android KitKat (4.4.2) 

(75%), where a small number of them use Jelly Bean (4.2.2 and 4.3) and Lollipop (5.0.1). From our 

survey, short lifetime, frequent freezes, and long start-up latency were still the major problems for 

participants, even though their smartphones were mostly state-of-the-art. 

 

 
Table 1. Logged events and associated fields. 

 

4.2. Key Observations from the Measurements 

 

We summarize key observations in this subsection. 
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Fig. 6. The percentage of states (importance) in recorded logs (top) and the number of running processes 
at a moment and the number of unique processes (bottom). The numbers (-%) in the top graph indicate 
the average portion of each state across all participants (This figure is best viewed in color). 
 

 
Fig. 7. Foreground activity of user 59 over two weeks (week 1 in Feb. 5-11 (top), and week 2 in Feb. 

12-18 (bottom)). Regular temporal patterns are observed in weekdays and in weekends. 

 

Application usage statistics of users and states: In Fig. 6, we plot the fraction of time spent in different 

process importance evaluated from our experimental logs, the number of running processes at a moment, 

and the number of unique processes that have ever been used during the experiment. We treat system 

and user-interactive (e.g., music) processes separately in the figure. We find that the number of running 

(foreground+background) processes per user is 5.2 on average, and the number of unique processes 

ever used per user is 55.1 on average, excluding system and user-interactive processes. 73% of unique 

processes have not been used in foreground for more than 3 days in our traces, and these processes will 

be unloaded by the feature App standby6 of Android 6.0 released in late 2015, which suppresses 

background activities of an application that has not been used in foreground for 3 days. However, the 

number of corresponding background processes in run is only 2 on average (40% of that in LMK) so 

that the energy saving from this feature is not significant as we will see in our simulation section. The 

fraction of time a process spends in the foreground state is about 6% on average, while the fraction of 

time in background is about 16 times of being in foreground. The fraction of time that the screen is on 

is 21% on average (i.e., 5 hours per day). 

 

Regularity in application usage: The existence of the regularity of application usage patterns of a 

person is the key to make a mobile system predictive, and thus more efficient. In order to understand 

individual application usage patterns, we investigate the timings of all foreground application actions  

                                           
6 Our measurement is conducted before this feature is provided. 
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Fig. 8. The CCDF (complementary cumulative distribution functions) of off (left) and on (right) period 

distributions in week 1 and week 2 of user 59. 

 

 
Fig. 9. The CCDF and the corresponding log-normal fittings of off (left) and on (right) periods of one 

randomly chosen user. 

 

(launching/stopping) and analyze the event intervals. For the visualization, we choose one user 

randomly and depict the timings of the application launches for two consecutive weeks in Fig. 7. We 

observe that the active hours are highly regular and the intensity of activities during the weekdays or 

weekends for two weeks resemble each other. More specifically, we find that there exists strong 

distributional similarity in both off and on periods in the first week and the second week, as shown in 

Fig. 8. These results confirm that temporal and distributional knowledge from usage history can be used 

to better predict the future application usage. 

 

Off/on period distribution: In Fig. 9, we fit off/on period distributions of a randomly chosen user to 

show that the distributions are heavy-tailed. We verify by Cramer-Smirnov-Von-Mises (CSVM) [30] 

and Akaike [31] tests that off/on periods of all users have the best fit with log-normal distributions7  

                                           
7 The probability density function (PDF) of the log-normal distribution with parameters μ and σ is xσ√2exp(−(ln() − )/2). 
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Fig. 10. The CDF of average off (left) and on (right) periods of users. 

 

 
Fig. 11. Off (top) and on (bottom) failure rates of users. The length of a time slot is one second. The 

dotted lines are failure rates of each individual user. 

 

rather than exponential, Weibull, truncated Pareto, gamma and Rayleigh distributions. We use the best 

fitting log-normal distributions as representative of off/on periods in the following sections for 

tractability. We also depict the CDFs of average individual off/on period of users in Fig. 10. The average 

individual off period in total is 15.5 mins for a whole day, 13.5 mins for the active hours (9:00 to 24:00) 

and 33.8 mins for the inactive hours (24:00 to 9:00). Not surprisingly, the off period in the inactive 

hours is much longer than in the active hours, as users tend to leave the device unattended during the 

inactive hours. The average individual on period is about 1.4 mins. 

 

Off/on failure rates: In order to deeply understand the application usage behavior, we quantify the  
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Table 2. The portion of user-triggered launches, average running times of 12 most popular applications 
and their top-1 to top-3 probabilities across all users. 

 
frequency of altering its state from “off to on” (launching) or from “on to off” during off/on periods at 

the elapsed time t, which is commonly called as the failure rate. Formally, the failure rate of T is  (t) ≜()(), for t such that FT (t) < 1, where fT (t) and FT (t) = P[T ≤ t] are the probability mass function and 

cumulative distribution function (CDF) of T, respectively. T can be either T off or T on. We call off failure 

rate (from off to on) for T off and on failure rate (from on to off) for T on. In Fig. 11, we plot off and on 

failure rates, for each user (dotted lines) and on average (solid line). For most of users, the off and on 

failure rates increase at first but soon decrease right after 10 seconds. The pattern of having decreasing 

failure rate over time is called negative aging [32]. This indicates that users are less likely to launch an 

app as the off or on period increases. Thus, an energy-efficient control needs to reduce background 

activities as the failure rate starts to get reduced. This also suggests that the increasing backoff 

mechanisms of HUSH [2] and Doze [27] can be effective although their schedules are neither optimized 

nor personalized given that the individual failure rates (dotted lines in Fig. 11) show distinct 

characteristics for different users. 

 

Frequently used applications: In Table 2, we summarize the 12 most popular applications across all 

participants from the perspective of the launching probabilities, average running times and top-1 to top-

3 probabilities. Top-n probability of an application is defined as the probability that the application is 

the n-th most frequently used application of a user. The most popular application in our experiment is 

shown to be KakaoTalk (com.kakao.talk), a messaging application known as used by 93% of 

smartphone users in South Korea as of May 2014. 95% of our participants use KakaoTalk. 

 

In Fig. 12, we depict the launching probability of frequently used applications of users. Note that the  
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Fig. 12. The CDF of the launching probability of m most frequently used applications (left) and Zipf 

distribution fitting for the average launching probability (right). The frequently used applications of 

each user are not identical. The dotted lines are for each individual user. 

 

Fig. 13. Memory (top) consumption in background and foreground, and cold/warm launch latency 

(bottom) of popular applications in 5 categories (Game, Messaging, Browsing, Portal/Video, Social). 

 

applications are individually sorted. We find that the launching probability follows Zipf’s law8 with 

exponent s = 1.4, and the aggregated launching probability of the 10 most frequently used applications 

of a user is more than 80% on average. Recall that the average number of unique applications ever used 

for a user is 55.1. Therefore, users tend to use a small fraction of the applications most of the time, and 

there is little gain in the start-up latency and related user experience when infrequently used applications 

are kept in background. 

 

Memory consumption: The average physical memory size of experimented smartphones is 2.14GB. 

From the log, we find that the available memory is 488MB on average, which is only 22.8% of the 

physical memory (90% of users have less than 31.6% of total memory available). This is mainly from 

the memory threshold of the low memory killer, below which it terminates applications. The lack of 

                                           
8 The frequency of elements of rank k, f(k;s,N) of a population of N applications is proportional to k-s, where s is the exponent 
of the Zipfian distribution. 
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free memory may freeze a mobile device frequently and degrade user experience. The average memory 

consumption of a controllable activity process is 55.4MB in background and 116MB in foreground. We 

depict memory consumption of 25 popular applications (5 applications in Game, Messaging, Browsing, 

Portal/Video, Social categories) in foreground and background in the top of Fig. 13. The memory 

consumption in background is almost half of that in foreground, so that a mobile device lacks available 

memory if many applications are running in background. The time averaged memory size from 

controllable activity processes in background is 325MB. Note that the mobile OS and system processes 

occupy 60% of physical memory on average. 

 

Warm and cold launch latency: In the bottom of Fig. 13, we present warm and cold launch latencies 

for the popular applications measured from our controlled experiment using Samsung Note2. To 

quantify the launch latency, we first measure the time durations until (1) screen rendering, and (2) 

loading application data in memory is completed, by filtering and monitoring Android logcat debugging 

outputs [33]. All other applications are unloaded before each measurement. We then regard the 

maximum of these two time durations as the launch latency. The average warm and cold launch 

latencies are 0.9s (rendering: 0.7s, memory loading: 0.4s) and 4.5s (rendering: 3.61s, memory loading: 

3.58s), respectively. The game applications show the most drastic difference in latency, where the warm 

and cold launches take 12.6s and 1.8s, respectively. This is mostly due to loading high volume of texture 

data onto memory and rendering initial game scenes. For the tested popular applications, application 

preloading that transforms a cold launch into a warm launch decreases the start-up latency by 80% 

(3.6s). 

 

User survey: We summarize key results from our survey. We first asked participants to choose major 

problems in their smartphones. 71% of participants chose short battery lifetime and 40% of them chose 

frequent freezes. Also, 46% of participants experience inconvenience from long start-up latency at least 

once a week. The battery lifetime that participants experience when it is fully charged is 9 hours on 

average, where it ranges from 3 to 24 hours. To increase battery lifetime and mitigate freezes, 82% of 

participants manually terminate applications and 28% of them use application killer software (e.g., 

Advanced Task Killer [34]). We also requested participants to list the applications with long startup 

latency and the length of perceived latency they experienced. More than 77% of participants have 

provided at least one application with long startup latency. The average startup latency of them is 7.3 

seconds, where that of gaming applications is 9.1 seconds (and messaging: 3s, social: 3.6s, browsing: 

6.3s, navigation: 6s). Thus, short lifetime, frequent freezes, and long start-up latency are still the major 

problems for smartphone users, even though their smartphones are almost state-of-the-art. 
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Context dependency: We also analyze app usage patterns incorporated under various contexts. Here, 

contexts correspond to any information that characterizes the situation of users, which enables us to 

predict future app/component invocations more accurately. In Fig. 10, the average inter-launching time 

at inactive hours (24:00 to 9:00) is about 3.6 times longer than the average inter-launching time at active 

hours. In Table 2, we find that the average on periods are vastly different across applications (e.g., long 

running time for games and browsers, and short running time for messengers). In Fig. 14, we depict the 

conditional launching probability of applications (Xk) for the previously used application (Xk−1), for one 

user in each week. The application index is sorted by the launching frequency in descending order 

(application 1 is the most frequently launched application). We choose 13 popular applications for 

visibility. We note that if there is a non-zero screen-off period between two consecutive on periods   

(Tk-1
on and Tk

on), Xk−1 and Xk could be the same application, and P[Xk = Xk−1|Xk−1] can be non-zero. We 

observe that the launching probability is vastly different depending on the previous applications. These 

patterns are also quite similar in each week. Therefore, the likelihood of launching an application at a 

moment depends on the previous application, and these statistics can be learned from history. We also 

observe context dependencies such as the duration of the previous intervals (Tk-1
off, Tk-1

on). For instance, 

after using a messaging app, the next inter-launching times are typically shorter than average, as the 

recipient of a message may respond quickly. We omit more details for brevity. 

 

 
Fig. 14. The conditional launching probability of applications (Xk) for a previously used application 

(Xk−1) in each week of user 59. 
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Ⅴ. System Architecture 

 

 
Fig. 15. The overall architecture of CAS and its operations over time. 

 

In this section, we propose our system design of CAS as depicted in Fig. 15. Our framework consists 

of three major components: 1) context monitor, 2) user profiler, and 3) background application controller. 

Over these system components, CAS runs in three phases: collection, pre-computation, and control. 

The collection phase builds personalized statistical information about application usage patterns such 

as described in Section IV. This data will be used in the pre-computation and control phases. The 

precomputation phase will be discussed in more detail with the algorithm descriptions in Section VI. 

Here, we overview how each component works sequentially. 

 

Collection phase and context classification: In the collection phase, context monitor collects various 

contextual information in background, to build information base on application usage pattern. Contexts 

we collect are screen state, time and location information, memory and CPU/network usage, application 

launch sequence, and battery level. Using the information base, the user profiler analyzes per-

application usage behavior, cross-correlations of application usage behaviors, and resource 

(power/memory) consumption of background applications according to component-wise power models  
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Fig. 16. A sample off-period classification by “active” (8am - 11pm) and “’inactive” (11pm - 8am) 

hours obtained from the first week trace (top) of one user. The classification obtained from the first 

week is applied to the second week (bottom) and it still shows a good match from regularity in human 

behaviors. 

 

in [35], [36], with diverse statistical measures such as failure rates and launching probabilities. 

Collection of data for learning may take some time (e.g., one week) in order to prepare a reasonable 

amount of statistics at first (e.g., when a user buys a new phone). 

 

To better exploit contexts, the collected context information of traces can be classified and labeled. 

For instance, time of a day can be roughly classified into two labels, active and inactive hours, which 

may show two distinct probabilistic distributions of off and on periods by the nature of human life 

cycles. The labels resulted from classifications of many contexts will lead to a condition for prediction, 

where the condition is composed of a tuple of context labels such as (time = Active, last app = 

Facebook). People have different lifecycles and habits, so that contexts should be classified individually. 

In order to classify contexts automatically in a personalized manner without asking users a manual 

classification, we adopt unsupervised learning techniques. Unsupervised learning aims at classifying 

input data autonomously by clustering the data by their correlation (i.e., similarity). For instance, when 

classifying “time of a day” into k continuous time blocks, we can setup the following clustering problem 

which minimizes the residual sum of square errors from the clustering.9 We solve this problem using a 

k-means algorithm [37]. min ∑ ( − [| ∈ ]):∈ + ∑ ( − [| ∉ ]):∉ , 

where Sk is time of a day of k-th sample (at the beginning), and HA is the active timezone that is  

                                           
9 We similarly formulate and solve this problem for other contexts such as previous off and on periods. 
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Fig. 17. CDF of prediction errors for off (left) and on (right) periods of users. 

 

continuous (e.g., HA = [a,b], where a is 10:00 and b is 21:00). Sk ∈ HA if Sk is within the time interval of 

HA. We depict an example of “time of a day” classification for off periods in Fig. 16. The diurnal pattern 

of this user is clearly identified by the classification. We find that most of the users need only 2 

continuous time blocks (i.e., k = 2) to describe their temporal activities and show very little gain from 

further separation. 

 

In Fig. 17, we depict the residual sum of squares of users for off and on periods in the test set (i.e., 

the second week of the trace), where the contexts (time of a day, previous off and on periods, last used 

application) are trained from the first week of the trace. We note that these dependencies including 

diurnal patterns are vastly different among users depending on their usage patterns and lifestyles. The 

residual sum of squares is decreased by 29.8% and 40.3% for off and on periods on average, respectively. 

Thus, it is clear that our automatic context classification leads to more accurate prediction. We also find 

that the entropy10 of the next launching app, Xk, is substantially reduced as well, which is omitted for 

brevity. Intuitively, lower entropy means reduced uncertainty and better predictability. 

 

Pre-computation and control phases: Based on this analysis, the background application controller 

computes sets of background applications for possible combinations of contexts in both off and on 

periods, in the pre-computation phase. For each cluster C (i.e., a tuple of several contexts), we use the 

conditional distribution Tk|C and conditional probability of Xk|C where these conditional values are 

trained under the cluster C. In other words, our algorithm (which will be explained in the next section) 

will run for each cluster C. Therefore, we exclude the conditional information C in the rest of the paper, 

i.e., Tk = Tk|C and Xk = Xk|C, for simplicity. This pre-computation happens once in a while (e.g., one time 

per week) to adapt for the change of the application usage behavior. Pre-computation also runs during 

the inactive hours with the device connected to its charger, to avoid any inconvenience to users. During 

the control phase, at the start of each off or on period, the controller calls the context monitor and 

                                           
10 The entropy for an application launch is − ∑ [ = ] log [ = ]∈ . 
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acquires the contextual information at the moment as its input. Based on the pre-computed list of 

background applications at each moment for the given contextual information, background application 

controller executes pre/unloading during the on or off period. As the recommended list of background 

applications at each moment are pre-computed, these executions do not bring any computational burden. 
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Ⅵ. Algorithm Design 

 
In this section, we formulate a submodular optimization problem that selects the best set of 

background applications to minimize the total penalty in energy and start-up latency. Then, we develop 

a practical scheduling algorithm for CAS. We also develop an iterative algorithm that finds the optimal 

schedules for a given energy constraint. This constrained optimal scheduling is practically valuable to 

users who want the best application performance at each level of energy allowance. 

 

6.1. System Model 
 

 
Table 3. Summary of major notation. 

 

System states: We summarize major notations in Table 3. We let Ω (|Ω| = N) denote the set of 

controllable applications of a user, which does not include any system and user-interactive processes. 

We define B(t) ⊆ Ω and (t) ⊆ Ω to be the sets of applications in the background and empty states, 

respectively, which are our main control knobs. 

 

We define the system state as an off/on period as in Fig. 5. We denote Tk
off and Tk

on as random variables 

of the k-th off and on period, respectively. We denote Xk as the foreground application that runs during 

the time duration of Tk
on.11 We recall that the failure rate is defined as  (t) ≜ ()(), for t such that 

FT (t) < 1. T can be either Toff or Ton. We also define the partial failure rates for a set of empty applications 

                                           
11 We omit the subscript k unless confusion arises. 
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(t) as (),  =  () ⋅ [ ∈ ()], which quantifies the rate that one of empty applications (t) 

is launched at t. Note that (Ω,t) =  (t). 
 

Power consumption and memory usage model: For applications included in Ω, we define a power 

function, : 2 → ℝ and a memory function : 2 → ℝ that respectively represent the amount of 

the average power and memory usage of a set of background applications. Based on the observations 

made in [35], we model P as a monotone submodular function12 of B(t). Our model is reasonable since 

applications share hardware components, and each of them becomes more power-efficient as the 

utilization becomes higher. We define Δ() = (⋃{}) − () as the marginal increase in power 

consumption by adding an application i in the background application set B. A memory function M is a 

linear additive function13 for any B(t). Note that we use average power and memory consumption for 

long-term optimization. For simplicity, we model that the energy consumption for preloading and 

unloading is minor in the long-run and that the transition delay is much shorter than one time slot. These 

models practically make sense as the preloading/unloading consume its power less than a few seconds 

and happen only a few times an hour. More detailed discussion on the consumption of the transition 

energy will be provided in the simulation section. 

 

6.2. Problem Formulation 
 

We aim to develop a scheduling algorithm for CAS that reduces and balances energy consumption 

and user disutility from experiencing cold launch of applications, under a given memory budget Mth. 

Since there is a trade-off between the energy consumption and the user disutility, we adopt a parameter  to treat both metrics as a unified measure. A user who is less sensitive to latency but is keen to extend 

battery lifetime will choose a smaller  value, and vice versa.14 The optimal scheduling algorithm for 

CAS can be obtained from the optimization problem that minimizes both the energy consumption and 

the user disutility over the infinite time horizon. The optimization problem is formally defined below. 

We present the equation by the summation of two components corresponding to off and on period 

optimizations for better understanding. min(),∀()
 + min(),∀()

  

 ≜ ∑ ℙ[ = ](∑   () +  ∙ ℙ[ ∉  ()]) , 

                                           
12 ( ∪ ) ≤ () + () − ( ∩ ) for ,  ⊂ Ω, and () ≤ () for any  ⊆ . 
13 For any disjoint sets ,  ⊂ Ω, ( ∪ ) = () + (). 
14 We will discuss later in this section how γ can be automatically determined for a user who wants to limit either of energy 
consumption or disutility. 
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H ≜ ∑ ℙ[ = ](∑  () +  ∙ ℙ[ ∉  ()]) , 

where  = ℙ[T off = 0], Bon(t) ⊆ Ωk, and Ωk = Ω \ {Xk}. We use Boff(t) and Bon(t) to denote the set 

of background applications in an off and on period, respectively. 

 

The optimization is decomposed into off and on problems (i.e., Hoff and Hon), each of which 

corresponds to the optimization during a screen-off or screen-on period. In the off-period optimization 

(Hoff), the summation of P(Boff(τ)) from τ = 1 to t indicates the energy consumption when the length of 

an off period is t and the second term quantifies the expected disutility from the cold launch of an 

application weighted by γ. In an on period, the disutility is multiplied by the probability that the user 

will switch to another application without going through an off period (i.e., ℙ[T off = 0]). Otherwise, 

the device will go into an off period (i.e., the user stops using the device) and there will be no disutility. 

 

By restating energy and disutility terms in Hoff using ℙ[Toff ≥ t], we have H =  ℙ[ ≥ ]( () +  ∙   (), )  

from the definition of the partial failure rate. Since we have assumed that the latency and energy 

overhead for preload and unload are minor, the sets of optimal background applications for time slots 

and their resulting snapshot objectives become uncorrelated. Hence, in this formulation achieving the 

optimality in each snapshot (i.e., time slot) warrants the global optimality. The snapshot problem in 

each slot in an off period is as follows: 

P-off: min()   () +  ∙   (),                  (1) 
subject to   () < ,  () ⊆ Ω.                   (2) 

Similarly, in an on period, we have the following problem: 

P-on: min()  () +  ∙   (),  
subject to  () < ,  () ⊆ Ω. 

In the rest of the derivation, we focus on the P-off problem, as the P-on can be identically handled by 

letting Bon(t) ⊆ Ωk. For simplicity, we omit the superscript off in T off, Boff(t), and  (Boff(t),t) unless 

we need to emphasize them. Thus, the objective function to minimize is rewritten as ℎ((), ) =() +  ∙ ((), ). 

 

Proposition 6.1: The objective functions in P-off and P-on are submodular. 

Proof: From the definition of submodularity, it is straightforward to see that the sum of a submodular 

function and an additive function is submodular, by subtracting the additive function in the inequality 
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(i.e., adding an additive function to a submodular function does not break the inequality). Since P(B(t)) 

is submodular and ((t),t) is additive, the objectives in P-off and P-on are submodular.  

 

6.3. Scheduling Algorithm Design 
 

Proposition 6.1 clarifies that our problem formulation in Eq. (1) is of a constrained submodular 

minimization with an upper bound constraint. Note that a constrained submodular minimization with a 

lower bound cardinality constraint has been proven to be NP-hard in [38]. Since the cardinality 

constraint can be generalized to rational weights and g(S) = f(Ω \ S) is also submodular15 such that the 

upper bound constraint can be transformed to a lower bound constraint, our problem is also NP-hard. If 

P(B(t)) were additive, then this problem becomes a 0-1 knapsack problem, which can be solved using 

dynamic programming. For an unconstrained submodular minimization problem, Orlin et al. [39] 

developed an optimal polynomial-time algorithm with complexity O(N5L + N6) where L is the time for 

function evaluation. The computational complexity of the optimal algorithm is already too heavy for 

mobile systems even without a constraint. Hence, we propose an algorithm for constrained submodular 

minimization with limited complexity (e.g., up to quadratic time complexity) that could result in sub-

optimal performance, but in practice is often close to optimal performance. To that end, we provide 

necessary conditions for a policy to be optimal in Theorem 6.1. Then, we will show that our proposed 

policy satisfies these necessary conditions. 

 

We denote π = ()  as a control policy. We define Π as a set of rational control policies 

as follows: Π = : () ⊉ (),  ∀,   . .  (, ) ≤ (, ). 

The reason why it is rational is that an optimal control policy should not add more background 

applications in B(t) when the failure rate decreases. We will show that an optimal control policy ∗ 

satisfies ∗ ∈ Π in the following Theorem 6.1. 

Theorem 6.1. 

 

Theorem 6.1 (Necessary condition): If ∗() is an optimal control of P-off in Eq. (1), then for any  ∈∗() and  ∈ \∗() such that (∗() ∪ {}) ≤ , () ∆(∗()\{}) ≤  ∙ ({}, ), and ( ) ∆∗() ≥  ∙ ({}, ).  

                                           
15 For S,T ∈ Ω, g(S) + g(T) = f(Ω \ S) + f(Ω \ T) ≥ f(Ω \ (S ∩ T)) + f(Ω \ (S ∪ T)) = g(S ∩ T) + g(S ∪ T). 
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Also, an optimal control policy ∗ = ∗()  is in Π. 

Proof: (i) Suppose that there exists  ∈ ∗()  such that ∆(∗()\{}) >  ∙ ({}, ) . Then ℎ(∗()\{}, ) < ℎ(∗(), ) for ℎ((), ) = () +  ∙ ((), ), and ∗() is no longer an 

optimal control. (ii) can be proved in a similar manner. 

 

Now, we will show that ∗ ∈ Π by contradiction. For any t1,t2 such that (Ω,t2) ≤ (Ω,t1), let ∗(t1) be an optimal control at t1. Suppose that B(t2) ⊇  ∗(t1) is an optimal control at t2. From the 

optimality of ∗(t1), () − ∗() ≥  ∙ (, )ℙ[ ∈ ], 
where  = (\∗() . Also, since (, ) ≤ (Ω, ) , () − ∗() ≥(, )ℙ[ ∈ ] and ℎ(∗(), ) ≤ ℎ((), ). Therefore, B(t2) is not an optimal control at t2 

and ∗ ∈ Π. 

 

We further define Π  as a set of monotone rational control policies as follows: Π  = : () ⊉ (),  ∀,   . .  (, ) ≤ (, ) 

By the definition, Π  ⊆ Π. A monotone rational control policy tends to minimize the number of 

control actions (i.e., preloads/unloads), which in turn reduces the control overhead as shown in 

Proposition 6.2. 

 

Proposition 6.2 (Control overhead): For a monotone rational control policy  ∈ Π , if (, ) is 

unimodal with t, both the numbers of control actions (i.e., preloads and unloads) are less than or equal 

to N. 

Proof: Suppose that (, ) is unimodal with t and its maximum is at τ. For t ≤ τ, (, ) is non-

decreasing and () ⊂ () for any ,  ∈ [1, ] such that  < . The number of preloads in [1, ] is ∑ |()\( − 1)| = ∑ (|()| − |( − 1)| ). Thus, the number of preloads for  ∈ [1, ] is less than or equal to N since |()| ≤ , ∀ and there is no unloading. For t > τ, r(Ω,t) 

is non-increasing and and B(t1) ⊃ B(t2) for any ,  ∈ [1, ] such that t1 < t2. The number of unloads 

in (τ, ∞) is ∑ |( − 1)\()| = ∑ |( − 1)| − |()| , and it is less than or equal to 

N, and there is no preloading. 

 

CAS scheduling algorithm: We propose a greedy-based algorithm that makes locally optimal choices 

in finding a set of background applications, and thus satisfies the necessary conditions in Theorem 6.1. 

This may result in sub-optimal performance but works well in practice due to the Zipfian distributed 
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launching probability. Intuitively, most dominant or frequently used application with high launching 

probabilities are chosen as background applications in the first few iterations. Our scheduling algorithm 

also incurs small control overhead from Proposition 6.2, as we will show that the obtained policy is a 

monotone rational policy. 

 

 
CAS-Scheduler(γ) 

 
input: (∙), (∙), ̃(∙), ℙ[ = ], ,    

output: a, … ,  , , … ,  , and (1), … , ( )  

Step (A) Compute a local optimal sequence. 

1: A  ←  ∅. 
2: for  = 1 to  do 

3:    ⟵ argmax∈\ ℙ[](⋃{})(). 
4:    ⟵ max∈\ ℙ[](⋃{})(). 
5:   if (⋃{}) >  then 

6:      c ⟵ ∞ and break 

7:   else  ⟵ ⋃{}. 

Step (B) Assign controls at each time slot. 

1: for  =  1 to   do 

2:    ⟵ max{| ≥ ∙̃() , ∀ ≤ }. 

3:   () ⟵ . 

 
 

Note that tmax is the maximum duration from all observable off or on periods such that ℙ[T > tmax] 

goes to zero and B(t) = ∅ for t > tmax. Our scheduling algorithm pre-computes the entire sequence of 

locally optimal control actions in step (A) and assign them in each slot in step (B). In step (A), if more 

than one application becomes tied, it breaks the tie by arbitrarily choosing one of them. The 

computational complexity of our algorithm is O(N2 + NT) where complexities of step (A) and (B) are 

O(N2) and O(NT), respectively. 

 

It is easy to see that the obtained policy from our scheduling algorithm is a monotone rational policy. 

Also, the obtained control policy satisfies the necessary conditions for optimality in Theorem 6.1, since 

it makes locally optimal choices in line 3 of step (A) and stops increasing the background application 
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set when there is no improvement in the objective function in line 2 and 3 of step (B). We also note that 

our scheduling algorithm does not change its control decision if the environmental conditions (e.g., 

power/memory functions, failure rates, or launching probabilities) are maintained. As those conditions 

are stationary or slowly changing over time, re-computation of the algorithm happens rarely in practice 

(e.g., once in a day or even less frequently). At the run time, the predetermined schedule is just being 

executed. In our CAS architecture in Section V, the policy wakes the device up only when there is an 

action to apply (either of preload or unload), and does nothing otherwise, to minimize energy overhead. 

 

Using contextual information: In our framework, we can use more elaborate values of partial failure 

rates of applications (i.e., off/on period distributions and next application probabilities) using 

surrounding contexts such as the previously used application (Xk−1), time of a day (Zk), location (Lk), 

previous time durations (  and ). Each context is monitored and recognized at the beginning of 

each off/on period. If context set C is detected, that period will use the conditional distribution Tk|C and 

conditional probability of Xk|C where these conditional values had been trained under the context set C. 

We will show the performance benefit from exploiting contextual information in Section VII. 

 

6.4. Bisection Method for an Energy or Disutility Constrained Optimization 

 

Although it is possible for a user to jointly optimize energy and application launching latency through 

our framework, it is often more straightforward to optimize the latency performance given an energy 

constraint that coincides with the user’s charging pattern. For this, we consider the following energy 

constrained problem, where our original problem (minHoff)16 can be viewed as the Lagrange relaxation 

problem of this problem.17 min(),∀()
∑ ℙ = ℙ[ ∉  ()] ,                 (3) 

subject to ∑ ℙ ≥ ( () ) ≤ ,                   (4) 

where  is the average energy constraint for an off period. The optimal objective of the Lagrange 

relaxation problem will be no smaller than the optimal objective of the problem (3). This gap can 

become smaller as we have shorter time slots and more fine-grained control of background applications. 

To that end, we approximate the solution of the energy constrained problem with the original weighted 

sum minimization problem. In particular, we devise an iterative algorithm to find the trade-off parameter , under which our scheduling algorithm meets the given energy constraint. As the trade-off parameter 

                                           
16 We focus on the off problem for simplicity. 
17 The trade-off parameter γ is a reciprocal of the Lagrange multiplier λ. 
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 increases, more applications will be scheduled in background in a monotone rational control policy 

(as well as in our scheduling algorithm from line 2 of Step (B)), so that the energy consumption 

increases and disutility decreases. In other words, for any monotone rational control policy, the energy 

consumption is nondecreasing and disutility is non-increasing in . 

 

To find the trade-off paramter  , under which the obtained policy satisfies the given energy 

constraint, we use a bisection method (similar to [40]), which is reliable if the initial interval [, ] 
is chosen appropriately. Note that since both the objective function and the constraint are neither 

continuous nor differentiable, we cannot apply first-order or second-order iteration algorithms (e.g., 

gradient descent or Newton’s method) that are faster than the bisection method in specific conditions. 

One can apply a quasi-Newton method, but the convergence is guaranteed under specific conditions 

including Lipschitz continuity. 

 

From the non-decreasing property of the energy consumption with respect to γ in the weighted sum 

minimization problem, there exists  ∈ [, ] that satisfies the energy constraint with the smallest 

error in the interval,18 if  yields less energy than  and  has higher energy than  , where  is 

the average energy budget in an off period to satisfy the given lifetime constraint. In each iteration, the 

method computes the energy of the middle point,  =  , and chooses the half interval (either [, ] or [, ]), in which the solution exists. The formal iteration algorithm is as follows. 

 

 
Bisection method for a given energy constraint  

 
input: , ,  = 0, sufficiently large  

output: , (1), … , ( ) 

1: while  −  > , 

2:    = ( + )/2. 

3:   ((1), … , ( )) ⟵CAS-Scheduler(). 

4:    = ∑ ℙ    ≥ (()). 

5:   if  ≥ ,  = ; else  = . 

 
 

                                           
18 Note that a mixed policy (that takes deterministic policies with some probabilities) can make the energy consumption 
continuous, so that the solution exists within this interval by the intermediate value theorem. We assume that the time slots are 
sufficiently short such that the error can be smaller than the given tolerance (). 
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Since the interval becomes half in each iteration, the number of iterations to converge is log( ). 
In other words, the rate of convergence of the bisection method is 1/2, where the rate of convergence is log→ ∗∗ , where   is the value at k-th iteration, and ∗ is the weight such that the energy term 

is equal to the energy constraint, i.e., E = V . Note that the iteration algorithm can be easily generalized 

to consider both off and on periods, by considering the time-averaged energy consumption. Also, the 

iteration algorithm can be similarly applied to the constraint on disutility from application launch 

latency. We will see the convergence of our iteration algorithm in Section VII. 
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Ⅶ. Trace-driven Simulation 

7.1. Setup 

 

To evaluate power consumption and latency performance of CAS for our measurement traces, we 

develop a trace-driven simulator incorporating the average power and memory functions, P(·) and M(·). 

We model P(·) by the component-wise power model (e.g., CPU, screen, WiFi, cellular, and GPS) in [35] 

and our measurement on utilization of components for each application in our traces. M(·) is directly 

computed from our measurement log. In the trace-driven simulation, we compute the performance of 

CAS in which the control decisions are made by the proposed scheduling algorithm. All statistics and 

classifications are obtained from the first week of the trace (i.e., training set) and simulations are 

conducted for the second week of the trace (i.e., test set). We further compare a set of existing algorithms 

including the default Android scheduler (LMK), App standby and Doze mode [27] in Android 6.0, BFC 

and HUSH proposed in [2] with CAS. The contextual information we used is summarized in Table 4.19 

As the gain from location information is turned out to be negligible, we exclude the location information. 

Authors in [23] also found that the benefit from location information in prediction accuracy is minimal 

as it is already partially captured by the application sequence and time information. The parameters of 

BFC (α = 0.1) and HUSH (σ = 1.2) are chosen as in [2]. The memory threshold for CAS is set to be 30% 

of the total memory size for each user leading to 840MB on average.20 

 

 

Table 4. Summary of contextual information. 

 

7.2. Key Results 

 

We depict the performance of different scheduling algorithms in Fig. 18, and summarize results as 

follows. 

 

Inefficiency of LRU-based LMK: As a baseline, we evaluate the performance of LMK from our 

experimental logs. The average power consumption from background applications is about 111mA,  

                                           
19 We used the k-means algorithm to classify “time of a day” and “previous durations”. 
20 Our measurement data indicates that on average about 60% of total memory is occupied by the OS and system processes. 
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Fig. 18. Comparison of scheduling algorithms. The error bars indicate 25th and 75th percentiles. 

 

which is much higher than the typical idle power consumption of 10mA in the most up-to-date 

smartphones. The average power consumption of a foreground application during screen on periods is 

about 562.5mA. Given that, our experimental traces show that the energy consumption of background 

applications amounts to 48.5% of the total battery capacity under LMK. These measurements lead to 

12.2 hours of average battery life for the devices in our experimental logs whose average battery 

capacity is about 2800mAh. The average cold launch probability with LMK is measured to be 43% with 

average memory occupancy of 212MB from controllable background applications.21 

 

Android 6.0, BFC and HUSH [2]: The feature, App standby [27], in Android 6.0 unloads applications 

that have no foreground activity for more than 3 days. The portion of unique applications that can be 

affected by App standby option is observed to be 73% of total installed applications, but only 39% of 

background activities under LMK are affected (See Fig. 18(a)). This is due to active killing of 

applications under memory pressure in LMK. Therefore, energy saving for background applications  

                                           
21 Note that 212MB is only for the background applications. In general, the memory utilization of a device is much higher as 
it further involves foreground and system processes. 
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Fig. 19. Background application schedules of CAS for one user in off periods. The x-axis is in log scale. 

We list the application names of the ordered sequence in the graph and the numbers (-%) indicate the 

launching probabilities. 1: Messaging, 2: Browsing, 3, 5: Social, 4: Navigation, 6: Contacts, 7: Utility. 

 

over LMK is limited to 19.4% (total energy saving is 9.4%). Another feature, Doze mode [27] in 

Android 6.0, restricts background activities is enabled after a user leaves the device for an hour. Then, 

the suppression time windows are increasing as 1, 2, 4, and 6 hours, where the maintenance windows 

are scheduled in between suppression windows for 5 minutes. Doze mode further reduces background 

energy by 33% over LMK, but its additional energy saving is not significant as the time portion of off 

periods over an hour is only about 28%. Note that only 3% of off periods are longer than an hour. 

 

BFC and HUSH algorithms unload background activities more aggressively each of which 

suppresses 51% and 47% more compared to LMK. The background (total) energy savings over LMK 

in BFC and HUSH are 31.2% (15.1%) and 32.7% (15.8%), respectively. One potential problem of BFC 

and HUSH is that they update control decisions only by relying on latest activities of applications. For 

example, in HUSH, the suppression interval is reset to an initial value (i.e., 1 min) every time an 

application gets a foreground activity, which is not efficient for low active applications. In all these 

schemes, their cold launch probabilities and staleness are higher than LMK, since these algorithms only 

suppress background activities. 

 

CAS: CAS achieves diverse operating points depending on the trade-off parameter . Our scheduling 

loads more background applications as  increase as shown in Fig. 19. Also, according to our finding 

that the launching probability decreases as the elapsed time passes by in each off/on period (i.e., 

negative aging), CAS unloads more and more background applications as time goes by. As the failure 

rate starts to decrease after around 30 seconds, low priority applications are unloaded sequentially. 

Eventually, all background applications are unloaded after 12, 40, and 90 minutes for different operating 

points,  = 6e+4, 1.5e+5, and 3e+5, respectively. CAS achieves a similar cold launch probability with 

only 0.7 background applications (14% of LMK) for  = 6e+4 in Fig. 18. The background and the 
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total  

 

Fig. 20. CDF of staleness in two applications, Naver Line and Facebook, on one user. 

 

energy savings over LMK become as high as 51% and 25% on average for  =6e+4. Also, CAS 

reduces the cold launch latency by 26% over LMK for  = 1e+6, with lower energy consumption. 

 

Staleness: We define app staleness as the average elapsed time since the last background or foreground 

activity of an application as in [2]. This metric captures the user experience especially for applications 

that need to regularly update their contents (e.g., social networking and messaging applications). The 

average app staleness under LMK is 1.5 hours. In Android 6.0, BFC and HUSH, their app staleness 

values are always higher than or equal to LMK because these algorithms do not restore unloaded 

background activities as shown in Fig. 18(a). Unlike other algorithms, CAS preloads background 

applications and reduces the average staleness by 33% and 41% over LMK for  = 6e+4 and 3e+5, 

respectively. 

 

To see how the app staleness varies with scheduling algorithms, we compare app staleness of five 

popular social and messaging applications from different scheduling algorithms for one user in Fig. 

18(c). Because this user only infrequently uses the Facebook app and sometimes does not use it for 

more than 3 days, the App standby of Android 6.0 unloads it, which in turn leads to a very high app 

staleness. However, CAS predicts the moment that an application is used next, so that the average 

staleness becomes much shorter than other algorithms across all applications including the social and 
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messaging applications. We also depict the CDF of staleness for two applications, Naver Line and 

Facebook, on the same user, in Fig. 20. In the Naver Line application, the staleness from CAS is 

stochastically less than that of any other algorithms. Other applications show similar performance 

characteristics. In Facebook, LMK has a higher probability for small staleness (e.g., less than 1000 sec) 

than CAS, but the average staleness of CAS is still smaller than that of LMK. This is because CAS 

preloads Facebook once in an off or on period most of the time so as to prevent the extremely long 

staleness. 

 

Energy overheads of CAS: There are energy overheads in CAS that are from logging information, 

processing algorithms, preloading actions and wakeup alarms for pre/unloading. Note that the 

application controller sleeps during the time when the set of background applications stays the same, 

and wakes up only when the control action is needed to make changes. Our measurement reveals that 

contextual information logging without location information consumes only about 5mA. The pre-

computation phase consumes 30mAh to compute the control policies for all context sets. This 

corresponds to power consumption of 1.25mA under a daily update frequency. Wakeup alarming for a 

control action and actual preloading of an application are turned out to consume on average about 

0.03mAh and 0.4mAh, respectively. Note that unloading happens in a flash, and thus it consumes nearly 

0mAh. In CAS, the average frequencies of wakeup alarms and preload actions are less than once in 2 

mins for the chosen parameters. Overall, the energy overhead required for running CAS does not exceed 

23.3mAh per hour at maximum, which is about 0.8% of the battery capacity and is much smaller than 

the huge gain obtained from CAS. We take into account these energy overheads in CAS. 

 

Battery life and start-up latency: To quantify the gain in the user-perceived metrics such as battery 

lifetime and expected start-up latency, we calculate them based on our measurement over popular 

applications (see Fig. 13) and summarize them in Table 5. We include a simulation of the ideal yet 

infeasible scheduler, Oracle, that exactly knows when and which application the user will use next. 

Note that the upper bound of battery lifetime simulated from Oracle is 21.9 hours. For CAS, we apply 

the bisection method in Section VI-D to achieve the same disutility or energy as LMK, and the same 

energy as HUSH. The average battery lifetime of a device is extended to 16.3 hours in CAS from 12.2 

hours observed under LMK, with the same disutility (i.e., the expected start-up latency). When the 

lifetime of CAS is equalized to that of LMK, the expected start-up latency is reduced from 2.45sec in 

LMK to 1.85sec in CAS. When the lifetime of CAS gets equalized to that of HUSH, CAS can reduce 

the expected start-up latency from 2.66sec to 2.24sec. 
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Table 5. Comparison of scheduling algorithms. 
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Ⅷ. Android Implementation 

 

We implement CAS on Galaxy Note 2 (the most popular device in our traces), which runs Android 

4.4.2, KitKat. Three major components (context monitor, user profiler, and background application 

controller) are implemented and packaged as a system service. The implementation of context monitor 

specifically for CAS focuses on collecting application usage history and time of the day information 

that incurs minimal energy overhead, and uses delayed write for saving data in the SQL database (i.e., 

SQLite of Android) in a highly energy efficient manner. To this end, the background application 

controller uses BroadcastReceiver and AlarmManager to execute preloading and unloading at desired 

moments with little use of CPU resource. In order to realize preloading, we use 

getLaunchIntentForPackage method together with startActivity included in PackageManager of 

Android. 

 

To unload processes, we implement the linux shell command execution of am force-stop <Package 

Name>22 in Android using the Android NDK (native development kit), where am stands for activity 

manager. To make CAS work independently from Android LMK or Linux OOM (out of memory) killer 

underneath Android platform without interfering with them, we substantially relaxed all low-memory 

related parameters and virtually disabled such resource schedulers. In order to let an application stay 

unloaded as per our decision, we also intercept app invocations23  such as the asynchronous IPC 

(InterProcess Communication) message passing mechanism called Intent, which can wake up an 

unloaded process. This may delay notifications or messages of unloaded processes which we will 

discuss later. 

 

Android Experiment: For the experiment of our platform, our service is designed to precisely follow 

the application and screen behaviors precomputed over a collected trace as a time series for each 

scheduling algorithm. Note that we choose to perform this replay style emulation as it is better than a 

hand-carried experiment from the perspective of ensuring a fair comparison between the algorithms. 

Our replay service turns on and off screen by using WakeLock method in PowerManager class and 

lockNow method in DevicePolicyManager class, respectively. Because our experiment rules out any 

human intervention, it is reasonable to keep the system awakened using WakeLock while we emulate a 

screen on period. Although our emulation method is not perfect in mimicking user behaviors in 

                                           
22 We gain the super user (su) access by rooting the device to perform am, which will be unnecessary once our scheduling 
algorithm is integrated with Android. 
23 This interception is similarly implemented as [2]. 
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foreground UI such as touch actions, it is fair to say that this end-to-end evaluation capturing all possible 

system overheads sets a baseline of the performance of CAS in reality. 

 

We summarize the results of CAS ( =6e+4) and LMK and the usage patterns for the two randomly 

chosen users in Table 6. One of these users turned out to be a light user and the other a mild to heavy 

user. We find that the energy savings of CAS from LMK are 43% and 30% for each user, as the numbers 

of background applications in run are significantly reduced. The average power during screen on periods 

is also reduced since CAS unloads background applications both in screen off and on periods. The 

experimental results confirm that energy saving from CAS can be indeed significant in practice. As a 

future work, we plan to extend our experiment toward user studies that involve evaluations of user-

perceived benefits with CAS installed in the actual user devices. 

 

 
Table 6. Experimental results of CAS and LMK over 1-day traces of two users on Galaxy Note2. 
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Ⅸ. Discussions and Caveats 

 

There are practical issues that need to be considered before CAS can be widely used. The issues are 

mostly on the application characteristics and semantics that can be affected by controlling the 

application.  

 

Discomfort from Unloading: Our application control may delay notifications or messages for 

unloaded applications. This can have both pros and cons, as deferring or neglecting advertisement 

messages can relieve one’s stress and receiving important messages later can be big losses. However, 

long delay occurs only when these applications are not likely to be launched for a long time, so that the 

actual inconvenience may not be critical, as our result on staleness confirms. To avoid such 

inconvenience, we can consider staleness of applications in our objective directly, and allow 

background activities intermittently to reduce or bound staleness, which we leave as a future work. We 

can also whitelist some critical applications from application controlling as follows. 

 

Whitelisting: Some apps should not be unloaded from background even though they may be 

infrequently used. For example, caller apps such as Skype should be able to receive calls at anytime. 

Thus, application categories such as call, music, radio, and recorder need to be excluded from 

application control, which we already excluded them as user-interactive processes. A more intelligent 

way is to ask users whether they want to whitelist infrequently used apps as in [14]. We can also use 

crowdsourced statistics of applications to minimize the need for user inputs. As more applications are 

whitelisted, the possibility of energy saving is reduced as well. Because whitelisted applications will 

work as intended by developers without considering other applications and application usage behaviors, 

this may incur energy inefficiency of the entire system. 

 

Privacy issue: Our context monitor and user profiler can have privacy sensitive data (e.g., sleeping 

hours from time of a day classification), which should be encrypted and only accessible by CAS. We 

note that because CAS runs on a mobile device and does not rely on cloud resources for analyzing its 

application usage patterns, there is no privacy or security concern for leaking personal data to Internet. 

 

Dataset bias: Our trace data can be biased in the sense that we collected traces of the participants from 

Internet user communities in Korea, who may be more tech-savvy than general populations. We will 

collect more diverse trace data in the future work, and study the performance depending on the level of 

user activity. 
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Ⅹ. Concluding Remarks 

 

Our scheduling framework, CAS, is the first work that considers both preloading and unloading 

dimensions in application scheduling. Through CAS, we have shown in this paper that mobile systems 

can achieve much higher efficiency in resource management than conventional systems by 

understanding human behaviors on application usage and related contextual information. Trace-driven 

simulations demonstrate that CAS outperforms LMK, HUSH, and Android 6.0. We also implement 

CAS on Android and validate the performance through experiments. We underscore that the significant 

gain of CAS is from regularity and context-dependency of human behaviors. 

 

CAS requires sufficient application usage history with context information (i.e., long collection 

phase). For future work, we are interested in training model parameters faster using a learning 

framework, and crowdsourcing of statistics from the devices of the same type or of similar attributes, 

which can bootstrap the collection phase. We will study other energy-efficient contexts and how to 

classify them to increase the prediction accuracy. 
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