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Abstract 

Autonomous navigation of unmanned aerial vehicles (UAVs) has posed several challenges due to the 

limitations regarding the number and size of sensors that can be attached to the mobile robots. Although 

sensors such as LIDARs that directly obtain distance information of the surrounding environment have 

proven to be effective for obstacle avoidance, the weight and cost of the sensor contribute to the 

restrictions on usage for UAVs as recent trends require smaller sizes of UAVs. One practical option is 

the utilization of monocular vision sensors which tend to be lightweight and have a relatively low cost, 

yet still the main drawback is that it is difficult to draw a certain rule from the sensor data. Conventional 

methods regarding visual navigation makes use of features within the image data or estimate the depth 

of the image using various techniques such as optical flow. These features and methodologies however 

still rely on human-based rules and features, meaning that robustness can become an issue.  

 A more recent approach to vision-based obstacle avoidance exploits heuristic methods based on 

artificial intelligence such as deep learning technologies, which have shown state-of-the-art 

performance in fields such as image processing or voice recognition. These technologies are capable of 

automatically selecting important features for classification or prediction tasks, hence allowing superior 

performance. Such heuristic methods have proven to be more efficient as the rules and features that are 

drawn from the image are automatically determined, unlike conventional methods where the rules and 

features are explicitly determined by humans. 

 In this thesis, we propose an imitation learning framework based on deep learning technologies that 

can be applied to the obstacle avoidance of UAVs, where the neural networks in this framework are 

trained upon the flight data obtained from human experts, extracting the necessary features and rules to 

carry out designated tasks. The system introduced in this thesis mainly consists of three parts: the data 

acquisition and preprocessing phase, the model training phase, and the model application phase. A CNN 

(Convolutional Neural Network), 3D-CNN, and a DNN (Deep Neural Network) will each be applied to 

the framework and tested with respect to the collision ratios to validate the obstacle avoidance 

performance.  
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INTRODUCTION 

Motivation 

With the recent demand for mobile robots with higher levels of autonomy, several challenges have 

come to presence, especially when it comes autonomous navigation of an agent within a certain 

environment. Although there are numerous requirements for an agent to be able to autonomously 

navigate, obstacle avoidance is considered one of the most fundamental factors, as the agent should be 

capable of avoiding obstacles during its navigation. During the navigation phase, autonomous 

navigation is usually obtained by applying path planning methods, where a certain path is assigned to 

an agent given that it has information on the surrounding environment. For a typical case, geometrical 

information such as the obstacles between the start and goal point are considered in the path planning 

stage, enabling obstacle avoidance capabilities for the autonomous agent. However, under certain 

circumstances where the environment is uncertain, or where the path cannot be generated due to issues 

such as the inability to obtain a map of the surrounding environment, real-time path planning may not 

be available. In such cases, local path planning methods take place instead of global path planning 

methods [1] where obstacle avoidance is considered as the main criterion.  

Meanwhile, due to the sensor limitations for small sized UAVs (Unmanned Aerial Vehicles), sensors 

that directly measure the distance may not always be a viable choice. As a result, monocular camera 

sensors have been a widely accepted choice of sensor due to its efficiency with respect to cost and 

computational power, weight, and size. These monocular camera sensors however, still pose some 

major disadvantages as the image data obtained from monocular cameras are not very intuitive. 

Considering the fact that there are so many possible number of outcomes and that the image data does 

not directly provide useful information such as the distance, it is extremely difficult to determine the 

features necessary for obstacle avoidance or derive certain rules based on the sensor data. Therefore, 

we focus on developing an effective measure to heuristically extract the necessary features and 

determine a rule for obstacle avoidance in this thesis. 

 

Research Objectives 

The objective of this thesis is to propose a human data-based imitation learning framework that can be 

applied to the obstacle avoidance of UAVs, where the appropriate features and rules are heuristically 

determined upon the given data. We propose a 3D-CNN based feature extractor and classifier for the 

imitation learning framework. The main goals of this study is as shown below. 

 The first goal of this work is to develop a human data acquisition system for the end-to-end imitation 

learning framework. A communication node that obtains data from the simulation environment will be 

used to both obtain data from the environment, and send control inputs later on as the neural network 
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is successfully trained. Through implementation of this communication node, not only can we test and 

evaluate the proposed system, but also expect future usages of the system in actual systems. 

 The second goal is to develop a deep learning model that is capable of extracting the necessary 

spatiotemporal features and derive a certain rule upon the training dataset. Unlike the majority of 

conventional researches regarding obstacle avoidance, the proposed neural network in this study will 

heuristically extract the features and obtain a certain rule for obstacle avoidance. 

 Under the main assumption that there underlies a certain relationship or function between visual 

inputs and actions of a human when it comes to obstacle avoidance, we focused on teaching an agent 

so that it can map the image inputs to the heading directions for obstacle avoidance. Through sufficient 

acquisition of camera data and the corresponding control inputs generated from human experts, our 

neural network is likely to learn the underlying rule for obstacle avoidance. In this paper, we present a 

framework for obstacle avoidance with deep learning-based imitation learning methods. 3D-CNN 

models [Learning spatiotemporal features with 3d convolutional networks] will be utilized for the 

imitation learning framework, as obstacle avoidance with a monocular camera is considered a sequential 

task. 

  

Outline of the Thesis 

There are a total of five chapters in this thesis. The motivation and the objectives of this research are 

introduced in the first chapter, and a literature survey on researches regarding conventional and recent 

obstacle avoidance methods is conducted. In chapter 3, background information on deep learning 

technologies is given, where the CNN (Convolutional Neural Network) and 3D-CNN (3-Dimensional 

Convolutional Neural Network) utilized in this research are described. The overall imitation learning 

framework used in this study is described in detail in chapter 4. Experimental results as well as the 

training results of the neural network are given, and analyzed through a comparison of different neural 

networks. Chapter 5 provides the conclusion of this research, followed by the potential future work. 
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LITERATURE REVIEW 

Conventional Obstacle Avoidance Methods 

Obstacle Avoidance using Distance Measuring Sensors 

The most intuitive method for obstacle avoidance is to use sensors that directly measure the distance of 

the obstacles within the environment. Although LIDARs, depth sensors, and ultrasonic sensors all 

provide direct information on the distance information of the surrounding environment, we will be 

focusing on researches that utilize ultrasonic sensors due to the sensor restrictions of small-sized UAVs. 

Borenstein and Koren [2] introduce a nursing robot that uses two ultrasonic range finders to detect 

obstacles and map the surrounding environment. This research mainly focuses on developing methods 

to identify obstacles from the sensor data and enhancing the results in uncertain situations. Borenstein 

and Koren proposes another method [3] using vector field histograms that enables real-time obstacle 

avoidance. This study mainly uses a two-dimensional Cartesian histogram as a world model, where the 

grid is updated using on-board range sensors. Both researches do provide effective measures for 

obstacle avoidance of mobile robots, yet the main limitation of ultrasonic sensors is that they have a 

time delay due to their operation mechanism, and that the information provided by the sensor contains 

less contextual information compared to sensor data from LIDARs or vision sensors. 

 

Rule-based Obstacle Avoidance with Monocular Vision Sensors 

Obstacle avoidance methods using monocular vision sensors usually rely on feature extraction methods, 

where certain features are extracted from the image to identify and locate potential obstacles, or depth 

estimation methods, where techniques such as optical flow are used to estimate the depth based on the 

given monocular image.  

Souhila and Karim [4] introduce an obstacle avoidance system using optical flow to estimate the depth 

of the image. By using optical flow and FOE (Focus of Expansion) calculation, the agent utilizes a 

balance strategy to avoid the obstacles based on the monocular image. Song and Huang [5] introduces 

methods for fast optical flow estimation and applying it to the obstacle avoidance of a mobile robot. 

Although obstacle avoidance based on depth estimation techniques provide effective methodologies, 

the algorithm may lose robustness in some situations as the decision making logic or rule for obstacle 

avoidance relies on human made rules. 
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Heuristic Obstacle Avoidance Methods 

Reinforcement Learning  

Among the various heuristic approaches, reinforcement learning-based methods have recently been 

receiving attention in the field of robotics and control, due to its robustness and heuristic characteristics 

when it comes to the derivation of rules. Reinforcement learning is a type of machine learning which is 

mainly concerned about how an agent should behave within a given environment so as to maximize a 

cumulative reward, developing a policy for a designated task. 

Michels, Saxena, and Ng [6] introduced reinforcement learning methods for obstacle avoidance using 

a monocular vision sensor. In this study, a feature vector is determined from the image, where 

information on the distance to the nearest obstacle is included in the vector for learning purposes. 

Synthetic images are used and trained using reinforcement learning exhibiting reasonable depth 

estimates on real image data, and the control policy trained in a simulator worked well on real 

autonomous driving situations. Huang, Cao, and Guo also propose a reinforcement learning-based 

obstacle avoidance method [7] using Q-learning and neural networks. Infrared distance sensors with 

respect to multiple directions are used as the sensory input, determining the state of robot in the 

reinforcement learning framework.  

 

Imitation Learning 

Recent researches more actively utilize heuristic methods where data-driven or machine learning-based 

approaches that use apprenticeship methods [8], yet the algorithms that are used for the supervision of 

the machine learning model are still developed upon human-made rules. As a result, direct learning 

from human expert demonstration data may provide better results depending on the task, especially for 

cases where constraints on sensor usage are present. In fact, there have been multiple attempts regarding 

imitation learning from human experts. One of the most primitive researches was proposed by 

Pomerleau [9], where a single layer of a neural network was used to map the images to the steering 

angles, enabling the agent to stay on the road. Other work regarding how to teach an aircraft to fly using 

human data [10] has been introduced by Sammut, Hurst, Kedzier, and Michie. In this work, decision 

trees were used to train and design the autopilot for the aircraft. One representative example of imitation 

learning from human data was presented by Ross, Gordon, and Bagnell [11], using the DAGGER 

(Dataset Aggregation) algorithm. Here, a policy is determined online in an iterative manner, using the 

aggregated data from the algorithm. This algorithm was also used for vision-based autonomous 

navigation in forest trails [12]. Kim and Chen [13] presented an imitation learning framework for drones 

to track and follow a certain target based on neural networks.  
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DEEP NEURAL NETWORKS 

Artificial Neural Network 

Deep learning, a type of machine learning, refers to artificial neural networks (ANNs) with deep layers. 

The concept of ANNs was first introduced in 1943 by McCulloch, a psychiatrist and neuroanatomist, 

and Pitts, a mathematician. Through the utilization of ANNs, they were able to show that ANNs are 

capable of performing logic operations such as AND, OR, and NOT. This was obtained by the modeling 

of biological neurons, constructing networks with interconnecting units that have very simple functions 

[14]. This concept was later reviewed in 1958 by Rosenblatt [15] in 1958 as a perceptron problem. By 

the 1960s it was considered that all problems could be solved by ANNs, receiving a great amount of 

attention in various fields of research. However, Minsky and Papert discovered that ANNs were not 

capable of classifying XOR problems in 1969, which was considered a serious drawback of the 

technology. Rumelhart approached this issue by proposing a multilayer perceptron model with 

numerous layers in 1986 [16], and by doing so, he was able to approximate complex nonlinear functions 

including the previously unresolved XOR problem [17] with the existence of abundant data using the 

error backpropagation learning algorithm. The recent introduction of deep learning technologies into 

various fields, has brought about significant advances as numerous studies on basic multilayer 

perceptrons known as ANNs, or modified versions of ANN such as the CNN [18], which is well known 

for its performance in image processing, and the RNN (Recurrent Neural Network), which is mainly 

used in analyzing sequential data due to its recurrent structure. 

 Among the various types of neural networks in deep learning technologies, ANNs are the most 

basic type of neural network. A typical ANN is mainly consisted of an input layer, multiple hidden 

layers where a certain number of nodes or neurons make up a single layer, and an output layer. Each 

node is a perceptron that carries out a simple linear operation, and for a general ANN, each node from 

different layers are interconnected to each other. This is also known as a fully connected layer and is 

used in a combination of different types of layers for other neural networks.  

 Within the hidden layers, the connected nodes as a whole represent a highly abstracted function 

despite the fact that each node simply consists of a linear operation and an activation function, meaning 

that the deeper the layer of the ANN, the more complicated information the ANN can represent. An 

ANN layout is shown in Figure 1. x  is the input vector of the ANN, where an n -dimensional vector 

is used. ih  refers to the nodes within the hidden layer, where f  is the activation function, 
ij and 

ijb  represent the weight bias of the of the j th node in the i th layer. The output layer is expressed 

without an activation function. 
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Figure 1 Artificial Neural Network Layout 

 

Activation Function 

For neural networks, a nonlinear function also known as an activation function is used to signal the 

neurons of the network. Sigmoid and rectified linear unit functions are the most widely used activation 

functions for various neural networks, and functions such as hyperbolic tangent, leaky ReLU, Maxout, 

or ELU functions have also been used for certain purposes. 

 

Sigmoid Function 

A sigmoid function is a function with continuous values between 0 and 1, which is similar to a unit step 

function in a continuous sense. The most known advantage of this type of activation function is that it 

is capable of expressing derivative values easily, making it easy to apply to neural networks. 

Nevertheless because the majority of values are expressed as values between 0 and 1, the weights of 

the nodes may not be effectively updated as the layers get deeper, or the learning speed may be 

decreased given that the gradients are such small values [19]. The sigmoid function and its plot are 

given below in Equation (1) and Figure 2, respectively. 
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Figure 2 Sigmoid Function 

 

Hyperbolic Tangent Function 

The hyperbolic tangent function has a sigmoidal shape similar to the sigmoid function, but the output 

values are between the range -1 and 1. Such properties reduce the probability of the network getting 

stuck during the training phase as the range is increased from (0, 1) to (-1, 1). The hyperbolic tangent 

function and its plot are shown below in Equation (2) and Figure 3. 
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e e
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e e
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Figure 3 Hyperbolic Tangent Function 
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Rectified Linear Unit Function 

The Rectified Linear Unit (ReLU) Function is another type of activation function used for neural 

networks. In response to the learning speed or weight update problem for the sigmoid function, the 

ReLU function has been widely adopted as it only uses positive output values. The main advantage of 

this function is that the gradient is either 0 or 1, overcoming issues such as the vanishing gradient 

problem. [20][21]. The ReLU function and its plot are shown below in Equation (3) and Figure 4. 

 

 (z) max(0,z)f  (3) 

 

 

Figure 4 Rectified Linear Unit (ReLU) Function 

 

Backpropagation 

In general, the weights and biases of the neural network are optimized using algorithms such as gradient 

descent for the backpropagated errors during the training phase of the neural network. The training 

process of a neural network mainly consists of three steps: the training data is first passed through the 

network using forward propagation, next the error is evaluated based on the feedforwarded value, and 

finally the network parameters are updated based on the calculated error. These steps are repeated until 

the error or loss of the object function reaches a certain threshold value.  

 The process of the backpropagation of errors is shown below in Figure 5, and the errors in each the 

output and hidden layers with respect the i th node are expressed in Equations (4) and (5), respectively. 

( )ln

i is the error in the layer ln , in the i th node and 'f is the derivative of the activation function 

used in each layer. jiW is the weight of the i th  to j th connection in the network. 
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Figure 5 Backpropagation Algorithm 

 

  



13 

 

Convolutional Neural Network 

A convolutional neural network is a type of deep neural network that uses convolution operations within 

the layers [18]. Due to the convolution operation, the CNN in particular has proved to be effective when 

it comes to analyzing images. This type of neural network was originally inspired by the way animals 

perceives visual inputs, since animals view images in a way similar to that of the convolution operation. 

Humans as well look at local parts of an image when identifying images instead of looking at the image 

as a whole, where local features are extracted for the analysis process. CNNs extract features within the 

input data based on the different types of convolution kernels or filters that are used, providing a 

significantly more effective measure to analyze imagery compared to basic ANNs.  

 

Convolution Layer 

The convolution layer is the most distinctive feature of a CNN. In these convolution layers, a 

convolution operation is conducted. By definition, the convolution operation in one-dimensional 

continuous domain is defined as the following Equations. The   refers to the filter or kernel of the 

convolution operation, whereas x  refers to the input of the function. s  is the output or result of the 

convolution operation. 

 

 ( ) ( ) ( )s t x a w a t da  (6) 

 (t) (x* )(t)s  (7) 

 

In a two-dimensional discrete domain, in which a normal image is considered, the convolution operation 

is illustrated in Figure 6. The convolution operation is done throughout the whole input, usually with a 

stride of 1. 

 

 

Figure 6 Convolution Operation in 2D CNN 
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Pooling Layer 

One additional characteristic of CNNs is that the pooling operation is done after the convolution 

operation is conducted. Pooling refers to the process of down-sampling of the input data by reducing 

the dimension with respect to a certain rule. As the raw input data or image contains a considerable 

amount of unnecessary data, down-sampling of the data also helps prevent overfitting issues [22], and 

thus pooling is an essential part of CNNs.  

 The two most commonly used types of pooling are max pooling and average pooling. Unlike the 

convolution operation, the pooling kernel usually has a stride value that is same as the size of the kernel 

itself, so that the pooling operation does not overlap. For max pooling, the maximum value within the 

pooling kernel is selected, and the average value is saved for the average pooling operation. 

 

 

Figure 7 Different Types of Pooling Operations 

 

Fully Connected Layer 

The feature extraction and down-sampling process is finished within the convolution and pooling layers. 

The features that are picked up in the previous layers are input to a fully connected layer in order to 

carry out tasks such as classification. 
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3D-Convolutional Neural Network 

In addition to 1D and 2D convolutional operations, 3D convolutional operations can be done with the 

usage of a 3D convolutional filter. This typical type of neural network is known as a 3D CNN, and is 

widely used for volumetric analysis due to its capabilities to extract three dimensional features. 

Depending on the type of analysis, the feature vector of the input data is passed on to the fully connected 

layer, enabling classification tasks in the fully connected layer. An example of a 3D convolution filter 

is shown below in Figure 8. 

 

 

Figure 8 Comparison of 2D and 3D Convolution Filter 

 

Convolution through Time 

 3D CNNs have originally been applied to volumetric analyses such as MRI imagery [23] or point cloud 

classification [24] [25]. However, by viewing the time axis as a third physical dimension, we are able 

to extract spatiotemporal features within the given data through 3D convolution. This type of approach 

has been introduced in several studies regarding action recognition [26] [27], and can be applied to 

other sequential problems such as obstacle avoidance. In further sections, we will be discussing the 

actual usage of the 3D CNN in the imitation learning framework of this study. Figure 9 illustrates the 

process of convolution through time. 

 

 

Figure 9 Convolution through Time 
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IMITATION LEARNING-BASED OBSTACLE AVOIDANCE FRAMEWORK 

Problem Statement 

For a typical obstacle avoidance problem using a monocular vision sensor, features that are able to 

abstract the information of the obstacles within the images must be first extracted, followed by the 

decision making based on such feature vectors. This process may be challenging as human-defined 

features and rules may not always be guaranteed its robustness. One approach is to heuristically 

determine the features and rules based on a given dataset of expert demonstration using supervised 

learning. As humans are able to autonomously navigate within a given environment even with only the 

usage of visual data, the main assumption in this work is that humans use a certain policy to navigate 

with visual inputs, i.e., there exists a certain relationship between the images and control inputs in order 

to achieve obstacle avoidance. In this research, we will focus on how the necessary data is provided and 

used to train the neural network, and validate the performance of the 3D CNN that is used in this study 

through comparison with two other types of neural networks. 

 

Imitation Learning 

Imitation learning, also known as apprenticeship learning, is a methodology where a certain agent learns 

rules from expert demonstration. The key concept is similar to the process of a child learning from a 

teacher or their parents. Initially, data is collected from the expert demonstration, which is used to train 

a certain classifier or regressor via supervised learning techniques. This classifier or regressor is used 

as the policy for the imitator or agent to choose certain actions within the given environment. An 

example of the imitation learning concept is shown below in Figure 10. 

 

 

Figure 10 Imitation Learning Concept 
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Data Acquisition and Preprocessing 

To obtain the human expert data for training, we established a connection node based on ROS (Robot 

Operating System) to save the images from the simulation environment to the training database in the 

machine learning server, as shown in Figure 11. ROS is a meta-operating system that provides various 

libraries and functionalities for various types of robot control mechanisms and simulations [28]. A 

Gazebo simulator was used to provide the simulation environment and a RotorS model was used for 

the training and testing of this study. The training environment used to obtain the training data is shown 

in Figure 12 (a) and an example of the drone image is shown in Figure 12 (b).  

  

 

 

Figure 11 Data Acquisition System 

 

 

(a) Training Environment               (b) Drone Image Example 

Figure 12 Training Environment and Image Example 

 

 The training images were obtained at 15 frames per second, and each image was down-sampled to 

a grayscale image. The image resolution was 120x160, and a total 2 hours of training data was acquired. 

The training data specifications are shown in Table 1.  
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Table 1: Training Data Specifications 

Parameters Scale 

Image Resolution 120x160 

Channel 1 (grayscale) 

Sampling Rate 15 fps 

Control Directions 3 

Total Duration 2 hours 

 

 One corresponding control input from the human expert was saved into the database with a 

timestamp so that it could be matched with the image data during the training process. For simplicity, 

three directions in total: left, right, and straight was used, and the control input directions were applied 

to the drone in an incremental manner so that the heading angle of the drone increases or decreases 

depending on the extent or duration of the previous control input directions. One-hot encoding was 

applied to the control input data before the training process was done. One-hot encoding is a way of 

encoding the categorical integer features in a one-hot numeric array [29], which is widely used 

throughout machine learning in many cases where the categorical variables do not have an ordinal 

relationship. 

 After the training data was fully collected, the total dataset was divided into a training and test 

dataset with a ratio of 7:3, i.e., 70% of the data is only used for the training process whereas 30% of the 

data is only used for testing purposes and is not used during the training process in order to prevent and 

effectively test overfitting issues. 

 

Proposed Framework 

The final layout of the proposed imitation learning framework for obstacle avoidance is shown below 

in Figure 13. The system mainly consists of three phases. First the training videos and its corresponding 

expert decision data is aggregated into a certain dataset, where preprocessing is done for the ease of 

training. Next, the collected data is used to the train the 3D-CNN model, and applied to the simulated 

drone when the model is successfully trained. Below in Figure 13 is an illustration of the human data-

based imitation learning framework for UAV obstacle avoidance in this study. 
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Figure 13 Proposed Imitation Learning Framework 

 

Network Architecture and Training 

The architecture of the 3D CNN used in this study is shown in Figure 14. Four convolutional layers, 

two max pooling layers, and one fully connected layer was used in the model. The size of the 

convolution filter and pooling kernel were 3x3x3 and 2x2x2, respectively. Two convolutional layers 

were used as a set prior to the pooling layers, where 8 channels were used in the first set of convolutional 

layers and 16 channels were used in the second set of convolutional layers.  

 The input of the neural network was reshaped into a 15x120x160x1 tensor, where 15 represents the 

time step of the input videos, 120x160 represents the input dimension, and 1 represents the number of 

color channels, indicating that a single channel grayscale image was used. Despite the given time step 

of 15, we connected the most recent image to the fully connected layer as the decision for obstacle 

avoidance is mainly affected by more recent states. The architecture of the 3D CNN is illustrated in 

Figure 14. 

 

 

Figure 14 Architecture of 3D CNN Network 
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Loss Function 

Among various types of loss functions, cross entropy with logits is one of the most commonly used in 

classification problems for deep learning. The cross entropy [30] is as shown below in Equation (8). 

 

 ˆ ˆ( , ) log logy (1 y) log(1 y)
i i

i

H p q p q y , (8) 

 

 Here, i
p  and i

q  represent the true probability and predicted values of the given model, where 

{ ,1 }
i

p y y  , and { ,1 }
i

q y y  . By using logits with the cross entropy, we are able to use a non-

negative cost function and stretch the values for correct and incorrect predictions. This loss function is 

optimized with respect the weights and biases of the neural network given the training data. 

 

Hyperparameters for Training 

The hyperparameters for the training of the 3D CNN are as shown below in Table 2. The total number 

of iterations was set to 5,000 and a batch size of 50 was selected to feedforward the input data. The 

neural network was optimized with the Adam optimizer with a learning rate of 0.005, and the cross 

entropy with logits function was used as the loss function as described in the previous section. 

 

Table 2: 3D CNN Training Parameters 

Parameters Value 

Iterations 5,000 

Batch Size 50 

Learning Rate 0.005 

Loss Function Cross entropy with logits 

Optimizer Adam 

 

Results and Validation 

In this section, the training results of the 3D CNN is analyzed and compared with a CNN and fully 

connected DNN (Deep Neural Network). The three networks will be tested and compared in terms of 

prediction accuracy, and the obstacle avoidance performance with respect to the success rate in each 

test scenario will be validated as well.  
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Experimental Setup 

The training of the neural networks were done offline on a separate machine learning server. The server 

runs Ubuntu 16.04 with 3 NVIDIA TITAN Xp GPUs, and the learning is implemented in Python 3.6 

with Tensorflow 1.4 GPU.  

 The weights and biases of the trained models are transferred to the local machine that runs the 

simulation, and in addition to the accuracy evaluation of each model, real-time obstacle avoidance 

success rates will be compared. In order to determine the obstacle avoidance capability of each neural 

network, four additional test scenario maps were designed. The obstacle layouts were randomized in a 

way that patterns from the test maps were not foreseen during the training phase. The test scenario maps 

are shown below in Figures 15 and 16. 

 

             

Figure 15 Test Scenario Map 1 and 2 
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Figure 16 Test Scenario Map 3 and 4 

 

Training Results 

The imitation loss of the 3D CNN proposed in this study is shown below in Figure 17. The loss 

converges within 1,500 iterations, and the accuracy of the three networks are compared in Table 3. 

 

 

Figure 17 Training Loss of 3D CNN 
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 The accuracy of each network is calculated based on the number of correctly predicted values for a 

given amount of samples. For each network, a total set of 500 input batches randomly selected from the 

test dataset were feedforward, where the 3D CNN exhibited the highest accuracy of the three, followed 

by the CNN and DNN. However, in terms of total accuracy, the 3D CNN and CNN did not exhibit a 

significant difference.  

 

Table 3: Accuracy Comparison by Neural Network Type 

 3D CNN CNN DNN 

Training Accuracy 96.9% 95.2% 82.5% 

Test Accuracy 82.7% 81.9% 73.4% 

 

3D CNN 

Based on the 3D CNN architecture discussed above, the confusion matrix is as shown below in Table 

4. The results of the confusion matrix for each neural network was determined based on the 500 input 

batches that were used to calculate the classification accuracy. 

 

Table 4: Confusion Matrix of 3D CNN 

 Predicted Left Predicted Right Predicted Straight 

True Left 0.92 0.03 0.07 

True Right 0.01 0.95 0.06 

True Straight 0.07 0.11 0.98 

 

CNN 

The CNN architecture shown below in Figure 18 was used for the CNN model. The confusion matrix 

for the CNN is shown in Table 5. 

 

 

Figure 18 CNN Architecture 
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Table 5: Confusion Matrix of CNN 

 Predicted Left Predicted Right Predicted Straight 

True Left 0.93 0.07 0.13 

True Right 0.01 0.86 0.17 

True Straight 0.04 0.12 0.96 

 

DNN 

The architecture of the DNN model used for the comparison in this study is shown in Figure 16. Three 

fully connected layers with 100 nodes each were used for the DNN, and the input was reshaped into a 

120*160 vector for the neural network. Among the three neural networks, the DNN exhibited the lowest 

classification accuracy. The confusion matrix for the DNN is shown in Table 6. 

 

 

Figure 19 DNN Architecture 

 

Table 6: Confusion Matrix of DNN 

 Predicted Left Predicted Right Predicted Straight 

True Left 0.77 0.03 0.23 

True Right 0.01 0.83 0.01 

True Straight 0.23 0.05 0.94 
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Performance Evaluation 

Success Rate Evaluation 

The neural networks were tested upon ten times each with respect to the four test scenario maps. The 

collision avoidance success or failure was determined by the distance between the drone and the 

obstacles. If the drone is positioned within 0.05 meters of any obstacle, the scenario is regarded as a 

failure and the simulation is stopped.  

 The success rates of each neural network regarding the different test maps are shown in Table 7. 

The 3D CNN exhibited the highest success rate among the three neural networks. For the test maps 1, 

2, and 3 the 3D CNN showed near 100% success rates. However for test map 4, due to the unseen layout 

of obstacles, only the 3D CNN succeeded at least once, indicating that test map 4 was a great challenges 

for each of the neural networks. 

 

Table 7: Success Rate by Neural Network Type and Test Map 

 
Test Map 1 Test Map 2 Test Map 3 Test Map 4 

3D CNN CNN DNN 3D CNN CNN DNN 3D CNN CNN DNN 3D CNN CNN DNN 

Success 

Rate 
80% 50% 10% 80% 40% 20% 90% 50% 10% 30% 0% 0% 

 

 

Test Map 1 Trajectories 

The trajectories of each neural network for test map 1 are shown in Figure 20. The red lines indicate 

failed cases, whereas the blue lines indicate the successful trajectories of the drone. The position 

information of the drone was sampled at 15 Hz.  
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(a) 3D CNN                      (b) CNN 

 

(c) DNN 

Figure 20 Test Map 1 Trajectories 
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Test Map 2 Trajectories 

The trajectories of each neural network for test map 2 are shown in Figure 21.  

 

 

(a) 3D CNN                      (b) CNN 

 

(c) DNN 

Figure 21 Test Map 2 Trajectories 
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Test Map 3 Trajectories 

The trajectories of each neural network for test map 3 are shown in Figure 22.  

 

 

(a) 3D CNN                      (b) CNN 

 

(c) DNN 

Figure 22 Test Map 3 Trajectories 
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Test Map 4 Trajectories 

The trajectories of each neural network for test map 4 are shown in Figure 23.  

 

 

(a) 3D CNN                      (b) CNN 

 

(c) DNN 

Figure 23 Test Map 4 Trajectories 
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Farthest Point Evaluation 

In addition to the overall success rates and individual trajectories of each trial, we analyzed the 

trajectories of the drones with respect the distribution of the farthest points for each network in each 

map. Because the success rate only determines the success and failure of the test scenario in a Boolean 

manner, we are able to more effectively analyze the performance of each network by visualizing the 

distribution of the farthest points as the distance traveled upon each trial reflects the obstacle avoidance 

capabilities of the network. 

 

 

Figure 24 Box Whisker Plot for Farthest Points in Maps 1 and 2 
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Figure 25 Box Whisker Plot for Farthest Points in Maps 3 and 4 

 

 From the box whisker plots of the three neural networks for each map, the 3D CNN exhibited the 

best performance in terms of traveled distance as well as consistency in results. The horizontal lines in 

each figure represent the starting and end points, with 0 as the starting point and 24 as the end point; if 

the farthest traveled point is beyond the value 24, the drone or neural network has successfully finished 

the trial. The upper and lower limits of each whisker represents the maximum and minimum values, 

and the red line indicates the mean value. The upper and lower edges of the box represent the upper and 

lower quartile of the data distribution. In maps 1, 2, and 3 the CNN also showed that it was capable of 

crossing more than half of the map in most trials. The DNN however, was not able to successfully 

demonstrate obstacle avoiding capabilities as most of the farthest traveled points were located in the 

first half of the map. 
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 Based on the distributions obtained for each scenario, the mean values of the maximum traveled 

distance for each case were compared. The actual values are shown in Table 8, and the values are 

visualized for comparison purposes in Figure 26. 

 

 

Figure 26 Mean Traveled Maximum Distance Comparison for all Scenarios 

 

Table 8: Mean Traveled Maximum Distance Comparison for all Scenarios 

 
Test Map 1 Test Map 2 Test Map 3 Test Map 4 

3D CNN CNN DNN 3D CNN CNN DNN 3D CNN CNN DNN 3D CNN CNN DNN 

Mean 

Max. 

Distance 

24.25 22.27 10.08 23.38 17.07 11.72 24.64 21.69 11.06 17.85 15.05 2.91 
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Trajectory Point Distribution Analysis 

One additional metric to evaluate the performance of each neural network is to obtain an overall 

distribution of the points of the trajectory for each scenario. The map was divided into square grids with 

0.8 as the length of each edge. Each square grid was regarded as bin, where the total number of points 

that fall into the bin were counted. Based on the counted points, the values were normalized and 

visualized in the following figures. The bins that were used to obtain the point distribution are shown 

below in Figure 27. The density of each bin is represented with a color value between blue and yellow, 

with yellow being the highest value, i.e., yellower bins indicate that the bin is denser with trajectory 

points compared to others.  

 Image data in particular is especially sensitive to factors such as noise and light, hence a robust 

image-based control algorithm should be able to return consistent values. For a neural network to exhibit 

ideal obstacle avoidance capabilities, more yellow bins should be present throughout the navigation 

path since consistent performance is an important criterion. 

 

 

Figure 27 Grid for Point Distribution Calculation 
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(a) 3D CNN 

 
(b) CNN                              (c) DNN 

Figure 28 Distribution of Trajectory Points throughout Map 1 

 
 From Figure 28, it can be noticed that the 3D CNN and CNN both exhibit consistent performances 

considering the point distribution of the trajectory points that fall into each bin. Nevertheless, the 

trajectory point distribution of the CNN had some variations throughout the last quarter of the map, 
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which implies a weaker consistency with respect to the performance of the 3D CNN. The DNN on the 

other hand, showed values lesser than 0.4 for all of the points beyond the half point of the map, 

indicating that not many trajectory points were located further throughout the map. 

 

   
(a) 3D CNN                      (b) CNN 

 
(c) DNN 

Figure 29 Distribution of Trajectory Points throughout Map 2 
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(a) 3D CNN                      (b) CNN 

 
(c) DNN 

Figure 30 Distribution of Trajectory Points throughout Map 3 
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(a) 3D CNN                      (b) CNN 

 
(c) DNN 

Figure 31 Distribution of Trajectory Points throughout Map 4 
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 In Figure 29, the difference between the 3D CNN and CNN is more noticeable. The CNN showed 

point distributions with lower values near the end of the map, indicating that variances regarding the 

performance was present. However, in Figure 30, the 3D CNN exhibited more variance than the CNN 

model. We can infer that the 3D CNN may have fluctuations regarding its performance in certain 

obstacle layout conditions. 

 For the results for map 4 in Figure 31, as the 3D CNN was the only neural network capable of 

avoiding obstacles, the trajectory point distribution was 0 for most of the values near the end point in 

the CNN and DNN case. Although the 3D CNN had only exhibited a success rate of 30 % for map 4, it 

can still be noticed that the performance of the neural network was consistent. 
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CONCLUSION AND FUTURE WORK 

An imitation learning framework using 3D CNNs for obstacle avoidance has been investigated in this 

paper. Through our experiments with a drone in a simulated environment, the 3D CNN model exhibited 

human-like behavior, and at the same time we were able to achieve acceptable results for obstacle 

avoidance without the utilization of complicated neural network structures, proving the feasibility of 

applying imitation learning to drones to conduct a certain task. Through comparison with a CNN and 

DNN, the 3D CNN exhibited superior results with respect to the success rate, consistency, and mean 

traveled distance.  

 Deep learning technologies have been able to outperform many of the existing algorithms through 

various fields by automatically extracting features for classification and regression. Yet, the largest 

drawback of deep learning is that it is considered a black box model, making it hard to interpret and 

analyze.  

 For future studies, the analysis of the neural networks should be done in order to make 

improvements to the current system in terms of performance. By analyzing the activated neurons within 

the hidden layers, we expect to obtain an understanding of the automatically selected features and rules 

from the neural network. In addition, as a goal point is not considered in the current task, we plan to 

implement goal-based obstacle avoidance and navigation, in a more complex environment. Our ultimate 

goal is to apply the imitation learning framework to an actual system with real images. 
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