

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A population-based optimization method

using Newton fractal

Soyeong Jeong

Department of Mathematical Sciences

Graduate School of UNIST

A population-based optimization method using

Newton fractal

A dissertation

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Soyeong Jeong

A population-based optimization method using

Newton fractal

Soyeong Jeong

This certifies that the dissertation of Soyeong Jeong is approved.

12.13.2018

Abstract

Metaheuristic is a general procedure to draw an agreement in a group based on the

decision making of each individual beyond heuristic. For last decade, there have

been many attempts to develop metaheuristic methods based on swarm intelligence

to solve global optimization such as particle swarm optimizer, ant colony optimizer,

firefly optimizer. These methods are mostly stochastic and independent on specific

problems.

Since metaheuristic methods based on swarm intelligence require no central coor-

dination (or minimal, if any), they are especially well-applicable to those problems

which have distributed or parallel structures. Each individual follows few simple

rules, keeping the searching cost at a decent level. Despite its simplicity, the meth-

ods often yield a fast approximation in good precision, compared to conventional

methods.

Exploration and exploitation are two important features that we need to consider

to find a global optimum in a high dimensional domain, especially when prior in-

formation is not given. Exploration is to investigate the unknown space without

using the information from history to find undiscovered optimum. Exploitation is to

trace the neighborhood of the current best to improve it using the information from

history. Because these two concepts are at opposite ends of spectrum, the tradeoff

significantly affects the performance at the limited cost of search.

In this work, we develop a chaos-based metaheuristic method, Newton Particle Opti-

mization(NPO), to solve global optimization problems. The method is based on the

Newton method which is a well-established mathematical root-finding procedure. It

actively utilizes the chaotic nature of the Newton method to place a proper bal-

ance between exploration and exploitation. While most current population-based

methods adopt stochastic effects to maximize exploration, they often suffer from

weak exploitation. In addition, stochastic methods generally show poor reproducing

ability and premature convergence. It has been argued that an alternative approach

using chaos may mitigate such disadvantages. The unpredictability of chaos is cor-

respondent with the randomness of stochastic methods. Chaos-based methods are

deterministic and therefore easy to reproduce the results with less memory. It has

been shown that chaos avoids local optimum better than stochastic methods and

buffers the premature convergence issue.

Newton method is deterministic but shows chaotic movements near the roots. It is

such complexity that enables the particles to search the space for global optimiza-

tion. We initialize the particles position randomly at first and choose the leading

particles to attract other particles near them. We can make a polynomial function

whose roots are those leading particles, called a guiding function. Then we update

the positions of particles using the guiding function by Newton method. Since the

roots are not updated by Newton method, the leading particles survive after up-

date. For diverse movements of particles, we use modified newton method, which

has a coefficient m in the variation of movements for each particle. Efficiency in

local search is closely related to the value of m which determines the convergence

rate of the Newton method. We can control the balance between exploration and

exploitation by choice of leading particles.

It is interesting that selection of excellent particles as leading particles not always re-

sults in the best result. Including mediocre particles in the roots of guiding function

maintains the diversity of particles in position. Though diversity seems to be in-

efficient at first, those particles contribute to the exploration for global search finally.

We study the conditions for the convergence of NPO. NPO enjoys the well-established

analysis of the Newton method. This contrasts with other nature-inspired algorithms

which have often been criticized for lack of rigorous mathematical ground. We com-

pare the results of NPO with those of two popular metaheuristic methods, particle

swarm optimizer(PSO) and firefly optimizer(FO). Though it has been shown that

there are no such algorithms superior to all problems by no free lunch theorem, that

is why the researchers are concerned about adaptable global optimizer for specific

problems. NPO shows good performance to CEC 2013 competition test problems

comparing to PSO and FO.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Overview . 1

1.2 Global optimization problems . 3

1.2.1 Problem settings . 3

1.2.2 Exploration and exploitation . 4

1.2.3 Technical issues . 5

1.3 Summary of contents . 6

2 Population-based Metaheuristics 8

2.1 Population-based metaheuristics . 9

2.2 Applications of population-based methods . 12

3 Exploration and Exploitation in Chaos-based searches 14

3.1 Chaos v.s. randomness in optimization . 15

3.2 Adoption of chaos in global optimizers . 15

3.3 Chaos created by Newton method . 16

4 Newton Particle Optimizer1 24

4.1 Algorithm . 24

4.2 Searching manner of NPO . 26

4.3 Convergence of metaheuristics . 28

4.4 Local convergence of NPO . 30

4.5 Criteria for choice of m and M . 32

5 Construction of A Guiding Function 34

5.1 Conditions for an ideal guiding function . 34

5.2 Extension of a guiding function . 35

1Parts of this work will be published as: Jeong, S. and Kim, P, “A population based optimization method
using Newton fractal.” Complexity, in press.

vii

CONTENTS

5.3 Criteria for choice of leading particles . 37

5.3.1 Idle leaders in leading particles . 37

5.3.2 Personal best in leading particles . 38

5.4 Particles outside the boundary . 39

5.5 Exploration indicator . 40

6 Results 41

6.1 Tests in 2-dimensional search space . 41

6.1.1 2-dimensional test functions . 42

6.1.2 NPO v.s. PSO in 2D . 42

6.2 Tests in the high dimensional search space . 43

6.2.1 10-dimensional search space . 48

6.2.2 30-dimensional search space . 48

7 Conclusion 53

References 55

viii

List of Figures

Figure 3-1 An example of dynamics of a particle under a (guiding) function in the

1-dimensional search space: A particle starting from −1 denoted by ‘1′

is searching around a root (boxed point) to find a better approximation.

The movement is denoted from ‘1′ to ‘5′.[74] 18

Figure 3-2 Illrustration of the sequences staring from same points. They show dif-

ferent behaviors depending on degree coefficient m for the (guiding) func-

tion f(x) = x(x− 1)(x− 2)[74] . 19

Figure 3-3 The basin of attraction of Newton Method shows the Newton fractal.

This is an example of Julia sets associated to the Newton method for

f(z) = (z − p1)(z − p2) · · · (z − p5). The positions of pi are denoted by

white circles. Each different color region stands for a set of points that

converge to the same root by Newton method. Under the same (guiding)

function it shows varied fractality depending on degree coefficient m.[74] 21

Figure 3-4 Three Newton paths with different degree coefficient m: They are ini-

tiated from the same point (5, 5). The guiding function is f(z) =

z(z − 2i)(z + 1− i).[74] . 21

Figure 3-5 Newton paths generated from slightly different initial points near (3, 3)

(marked with a black circle): both eventually joins again at the target

point (2,−1) (marked with a black square)[74]. 22

Figure 3-6 The distribution of particles’ distance from a leading particle(after 50

times of iterations) follows the power law. All particles are initially

located on the unit ball centered at the position of a leading particle. The

straight lines are the least squares fitting line for log-log scale depending

on m. 23

ix

LIST OF FIGURES

Figure 4-1 NPO Algorithm. (a)A dotted line is represented the hidden fitness func-

tion and the global optimum labeled by diamond shape should be found.

(b)Distribute the particles in uniformly random manner. These parti-

cles are candidate solution and marked by white circle. (c)Evaluate the

fitness of the particles. (d)Choose the top 3 best fitters as leading parti-

cles. Leading particles are marked with black square label. (e)Make the

guiding function with leading particles. (f)Update the other particle’s

positions near the best fitter by applying Newton method with guiding

function. Then repeat from (c) until it satisfies the stopping criterion. . 27

Figure 4-2 Performance according to mmax. The parameter settings are 200 parti-

cles with 4 leading particles for rosenbrock function.[74] 33

Figure 5-1 A nullcline of a factored guiding function in 2-dimensional space as (4.1.2). 35

Figure 5-2 The distribution of particles using a biased guiding function(above) and

a proposed guiding function(below), with same initial condition for the

position of particles and degree coefficient m. t counters the iteration

step for NPO. min denotes temporal best. 37

Figure 5-3 The number of leading particles is important. Label denotes the ranking

of leading particles among 100 particles. It shows the results of n = 3 is

better than that of n = 4. 38

Figure 5-4 Choice of leading particles affects the result: the above adopts top 5 rank

performers out of 100 particles as leading particles. The below uses four

best fitters and one 40th rank fitter. The blue and red dots indicate the

cost values of ordinary and leading particles, respectively.[74] 39

Figure 6-1 Test functions which have no local minima. 44

Figure 6-2 Test functions which have several local minima. 45

Figure 6-3 Test functions which have many local minima. 46

Figure 6-4 2-dimensional results of test function in Table 6-1. 47

x

List of Tables

Table 6-1 Test Functions[42]. Each minimum of the functions is 0. 43

Table 6-2 Benchmark for NPO, PSO, FO: tested with 10-dimensional functions in

CEC 2013 competition[74] . 49

Table 6-3 Performance comparison of NPO, PSO, and FO in the mean ranking[74] . 50

Table 6-4 Benchmark for NPO, PSO, FO: tested with 30-dimensional functions in

CEC 2013 competition . 51

Table 6-5 Performance comparison of NPO, PSO, and FO in the mean ranking . . . 52

xi

1

Introduction

1.1 Overview

Groups have different characteristics from each individual. Albeit it is insignificant that a taxi

driver has a day off, it is significant that taxi drivers have a day off because it is a strike to

express their opinion. To settle some big problems, we gather and exchange ideas. Even though

feeble organisms such as ants, birds, fishes in nature, they also go around into a group to achieve

their goal. It is surprising that they solve the problem effectively pretending to be an intelligent

organism. Swarm intelligence emerges in a scale of groups from nature.

Swarm intelligence has been discussed for last two decades. It is closely related with self-

organization, decentralized system, dynamical networks, artificial intelligence, etc. Since the

swarm intelligence is not a central-control system, it is adaptable to distributed problem-solving.

Their decision making process is a natural selection. Natural selection does not mean that na-

ture selects the fittest but that the decision is made naturally from multi-agents’ behavior. This

kind of decision process is ideal and reasonable for the equality and fairness of members. Each

individual follows some simple rules but their actions result in a powerful and economical collec-

tive behavior. In the point of usage for interactions in population it is beneficial to describe the

interactive system. This is simulated as a population-based model in computer science. Those

population-based models belong to metaheuristic in nature-inspired algorithms[19].

Metaheuristic is a higher-level procedure to take advantage of a heuristic. It is indepen-

dent on specific problems whereas heuristic is dependent[61]. Population-based metaheuristics

are widely used to observe the behavior patterns of people in traffic, trades, etc, or to solve a

mathematical optimization problem. Each agent in the swarm is called a ‘particle’ and has a po-

sition in a search space. Each position represents a candidate solution for a global optimization

problem. Especially there are many global optimizers derived from a swarm in nature such as

Particle swarm optimizer(PSO)[11], Ant colony optimizer(ACO)[8], Firefly optimizer(FO)[65].

For global optimization, the balance between exploration and exploitation is critical. Ex-

1

1.1 Overview

ploration is to investigate the space without using the information from history to prevent the

particles from searching near the current best and getting trapped in a local minimum. Ex-

ploitation is to trace the neighborhood of the current best to improve it using the information

from history. Since these two concepts are at opposite ends of spectrum, the tradeoff among

population is the main consideration to reach the global optimum[53, 25].

There are two main categories for global optimization methods. One is deterministic meth-

ods, the other is stochastic methods. Classic deterministic methods are well-known gradient

descent method, state space search and so on. Typical stochastic methods are the proposed

above, metaheuristics using population. These methods are powerful and simple, but they have

demerits in difficult replay of implementation, premature convergence, weak exploitation.

Chaos-based optimizer can mitigate these disadvantages. The unpredictability of chaos is

correspondent with the randomness of stochastic methods. Because chaos is deterministic, it

is easy for a replay with less memory. There are some research papers showing that chaos

avoids local optimum better than stochastic methods and buffers the premature convergence

issue. There are many trying to use disorder in chaos in conventional stochastic methods and

they work well[55, 15, 12, 31, 39]. But stochastic optimization has been studied more often

until a recent date because of its simplicity and fast convergence. Stochasticity includes the

uncertainty and has a limitation to analyse what is going on in the system. Chaos has different

characteristics from randomness of stochastic methods. We utilize the benefit of chaos and

make up for the weakness of stochastic methods.

In this dissertation, we propose a population-based metaheuristic, Newton particle opti-

mizer(NPO), which is in press[74]. As suggested from its name, NPO uses the fractality of

Newton method in order to update the movements of particle positions in the search space.

Though the Newton method is well-known, the chaotic nature of Newton method is rarely

known. Newton method is deterministic but shows unpredictable movements in chaos. This

complexity of Newton method enables the particles to develop an efficient candidate solution.

The simple procedure for NPO is as follows. Firstly, initialize the position of population in

the search space with uniformly distributed random numbers. Secondly, calculate the fitness.

And choose some particles to be a candidate for optimum and make them the roots of a poly-

nomial function. These chosen particles are called ‘leading particles’. The polynomial function

whose roots are the leading particles drive other particles near them to exploit their neighbour-

hood by Newton method. It is favorable to choose current best fitters as leading particles but it

is tactically more beneficial to maintain the diversity among the leading particles. We achieve

the balance between exploration and exploitation by choice of leading particles and the degree

coefficient m in Newton method.

The polynomial function made by these leading particles is called ‘a guiding function’. Then

we can apply the Newton method to this guiding function in order to update the positions of

particles. Iterate these steps from choosing the adaptable leading particles based on their grades

2

1.2 Global optimization problems

and diversity to updating the particle position using guiding function. For monotonicity, the

current best fitter should include the leading particles. Since the roots are not updated by

Newton method, the current best fitter always survives after the update as long as it is chosen

as leading particles.

Construction of an ideal guiding function is crucial as well as choosing proper leading par-

ticles. It is easy to come up with one in 2 dimensional search space because we have complex

number system. We can make such a guiding function satisfying that whose roots are only

leading particles and symmetric in dimension and easy to handle. That is nothing but the

multiplication of the first order polynomial whose roots are leading particles. But we have to

extend the guiding function to higher dimension. The construction rule to multi-dimensional

space is discussed in detail later.

We clarify the local convergence of NPO with a modification. Though metaheuristic in

nature-inspired optimization has suffered for the difficulties of rigorous mathematical analysis[72],

NPO enjoys the strong analysis of Newton method, which has already been studied for a long

time. With the results of two popular metaheuristic methods, particle swarm optimizer(PSO)

and firefly optimizer(FO), we compare those of NPO. Because there are no such algorithms dom-

inant to all problems by no free lunch theorem[62], the researchers should consider the proper

global optimizer for the problems. NPO gives good performance to CEC 2013 competition test

problems comparing to PSO and FO.

1.2 Global optimization problems

Optimization is one of common tasks that occur in many aspects of a real life. There are

many sophisticated optimization tools developed to deal with such optimization problems. We

give some examples such as gradient descent method, simplex method, etc. But applying such

methods to the problem that we face in our daily life is too expensive and not efficient. We often

settle problems by trial and error using our intuition and experience. It is observed that many

organisms in nature do in the same way. It is surprising that they sometimes find the nearly

optimal solution naturally. We apply this principle into computer simulation for optimization.

We make clear some definitions and issues in these following subsections.

1.2.1 Problem settings

A function to be optimized, f :X → Y ⊂ R is called an objective(cost, fitness) function. The

global optimization problem is defined as:

find ~x ∈ S ⊆ Rd satisfying that f(~x) ≤ f(~y) for ∀~y ∈ S, (1.2.1)

3

1.2 Global optimization problems

where S is the search(parameter) space. d is the dimension of the problem space. ~x is the

candidate solution in the search space. In this dissertation, we solve so called “the black-box

optimization”, which is to find the global minimum of f with limited prior-information known.

There are some reasons that we prefer not to use conventional methods for this type of

optimization problems[67]. Conventional methods usually :

• focus on local search, which is not appropriate for global search.

• require more information on the cost function, such as derivatives.

• are hard to deal with highly nonlinear, multimodal problems and discontinuous

functions.

• sensitively depend on starting point.

For these drawbacks in the conventional methods we take approaches from heuristic methods

instead. Roughly, ‘heuristic’ means a way of solving problems based on trial-and-errors. It is

fast and efficient while trading off between accuracy and precison. In heuristic methods, an

agent or a determinant finds the optimum through its own experience and intuition. Heuristics

are usually problem-specific[61]. Heuristic approaches can be also computationally expensive

and difficult for replay of implementation[67]. The most expensive part of optimizing process is

usually calculating the fitness. Most heuristic methods require more iterations to complement

the lack of information such as derivative. Heuristic methods include the generation of random

numbers.

A metaheuristic is a way of taking advantage of a heuristic to solve general classes of prob-

lems, regardless of the specific characteristic of the problems. Metaheuristic methods can be

applied to various problems without many confinements[61]. Most metaheuristic algorithms

are gradient-free and does not require much information of fitness functions. Metaheuristics

do not have to consider nonlinearity, differentiability, or even the continuity, of f . Though

many metaheuristic algorithms include randomness, they are less sensitive than conventional

methods or heuristics on starting point because it can remedy the sensitivity using population

and escape from the local minima. It can give different solutions even with same staring point

like heuristic methods. Thus multiple runs are required with statistical analysis such as mean,

variance, median to evaluate the performance.

1.2.2 Exploration and exploitation

For an optimal global search, it is essential to make a proper balance between exploration

and exploitation. The ideal balance between exploration and exploitation leads us to a global

optimum economically. Exploration is to investigate the search space without the information

from history, to prevent the particles from getting trapped in a local minimum. Exploitation

is to trace the neighbourhood of the temporal best to improve it using the information from

history. Not many rigorous studies on the relation between exploration and exploitation has

4

1.2 Global optimization problems

been done yet in spite of its importance. It is difficult to make clear the universality and

uncertainty in global optimization problems.

Main issues about exploration and exploitation are following from a perspective of developing

an global optimizer[23]:

• definitions of exploration and exploitation.

• whether their relation is the ends of a continuum or orthogonal.

• how they achieve the balance through ambidexterity or punctuated equilibrium.

• which is better, flexibility or professionalism.

Though these concepts are derived from social science, they are worth considering for the

practical use in computational optimization. These concepts help us to enrich the contents for

optimization. There are some studies like realizing the diverse exploration without sacrificing the

exploitation[7] based on a different definition. It is generally accepted that the exploration and

exploitation cannot be achieved at the same time but they can sometimes, from the different

definition of exploration and exploitation. Another issue is to dealing with problem-specific

property. The structure of the given problems affects the manner of the agents’ moving during

the iterations of optimal processes. And we can divide the process into two parts, exploration

and exploitation. Then we assign the tasks for the searching agents. They may have flexibility

or professionalism. This affects to the performance.

To guarantee the validity for the optimizer to be introduced, it should be supposed that, at

least, the objective function has a decreasing trend near the minimum, on the premise. Because

most metaheuristic methods apply the exploitation as putting searching agent near the temporal

best. But even in the case that the premise breaks, we still can apply those metaheuristics,

since metaheuristic methods are supposed to be independent on problems.

There is so called ‘no free lunch’ theorem[62] that no algorithm gives the best solution all

the time. That is, the average of computation for all optimization problems in the same class

is same for all methods. There are no free lunches if the probability distribution on problem

instances of solvers is equally distributed. It means no algorithm is dominant all the time : Best

optimizer differs across problems. This implies that it is important to use proper metaheuristic

method depending on the characteristics of problems.

1.2.3 Technical issues

We describe some technical issues involved in the global optimization problems.

Initialization

At the initialization step, it is conventional that the positions of particles are uniformly dis-

tributed randomly. Though there is no guarantee that random initialization is the best, it is

5

1.3 Summary of contents

widely used. Here we use random initialization for all experiments.

Stopping criteria

The termination of a global optimizer is a trade-off between efficiency and accuracy. Since

it is never guaranteed to find a global optimum, we have to set the stopping criteria. We ex-

pect that the more iterations the optimizer did, the better the result would be as long as the

population avoid the local minimum successfully. But as iterations progress, it is much harder

to improve the current best. From the perspective of reliability and efficiency, setting proper

stopping criteria is important.

Limitation of the number of fitness evaluations is one of the most popular options. Evalua-

tion of fitness is usually a computationally-expensive part. Thus it is better with less number

of fitness evaluations though two experiments result in the same minimum values. Usually, the

adaptable number of fitness evaluation is the multiplication of 10000 and the dimension of the

search space[42]. One of the widely known problem sets, CEC 2013 problem set is also chosen

that. Here we use this criteria.

For other options, there are various performance metric such as generational distance[71], ep-

silon indicators[60], density[50]. These various metrics are adaptable for more difficult problems.

Because the accuracy limited to the number of fitness evaluations is insufficient for converging

to the global minimum[52]. There has been not much research done on stopping criteria for

various problems yet.

Performance evaluation

Due to the stochasticity, the performances are usually evaluated in statistical sense. Muti-

ple runs are required to validate the experimental results and we did 51 runs as suggested in

CEC 2013 problems set[42]. To get the median, an odd number is chosen. We tried to repeat

the process more than 51 times but the results seemed not to converge as the iteration number

increased because of the complex structure with limited computer memory.

Usually, the average of cost of current best for multiple runs is an important factor. An

global optimizer is said to be better if it has higher probability to the reach the better result

for multiple runs.

1.3 Summary of contents

In chapter 2, we introduce some backgrounds to understand the usage of swarm intelligence.

In §2.1, some typical population-based metaheuristics are introduced, such as particle swarm

optimizer, ant colony optimizer, firefly optimizer. And the applications of swarm intelligence

6

1.3 Summary of contents

optimization are discussed in §2.2.

In chapter 3, we consider the trade-off between exploration and exploitation using chaos.

This chapter explains how chaos is used for global optimization problems. In the first section,

the difference of chaos and randomness is introduced. Metaheuristics introduced in the previous

chapter can be modified using chaos instead of generation of random numbers. Because chaos

can be controlled with fewer variables and is well-structured, this property is effective for global

optimization. The detailed is written in §3.2. Finally, we check the chaotic nature of Newton

method to make a link between Newton method and global optimization problems.

In chapter 4, we propose the Newton particle optimizer(NPO)[74]. We elaborate on the

algorithmic procedure of NPO in the first section. And searching manner of NPO is in the

following section comparing with other conventional methods. In §4.3 the convergence issues are

written mainly based on the premature convergence, local convergence, and global convergence.

In §4.4 guaranteed convergence NPO is suggested for local convergence. In the last section, the

control of parameters, degree of coefficient m, is suggested for the better performance.

In chapter 5, we discuss the construction of an ideal guiding function for NPO. The extension

of a guiding function in multi-dimensional space is the main issue to apply NPO in the dimension

beyond 2-dimensional space. This chapter contributes to the improvement of the performance

of NPO. We introduce some practical issues for the choice of leading particles in §5.3. Dealing

with particles outside the searching domain is discussed in §5.4. And we suggest the exploration

indicator to measure the ratio between exploration and exploitation in NPO in §5.5.

In chapter 6, we apply NPO to the real problem set. We introduce some test functions and

show the 2-dimensional results in §6.2. We compare the results with PSO and FO in 10 and 30

dimensional space using CEC 2013 problem set, which consists of widely renowned benchmark

functions for global optimization.

In chapter 7, the conclusion is discussed.

7

2

Population-based Metaheuristics

Population-based optimization algorithms mimic the swarm intelligence in nature basically. We

see the swarm intelligence in our daily life, such as bird flocking, fish schooling, ant colonies

or human social behaviours. Closely observing these collective behaviours, many researchers

came up with ideas about population-based optimizations. Popular examples are particle swarm

optimization, firefly optimization, ant colony optimization, and so on.

Collective behaviours are interesting in the way that the swarm intelligence is decentralized

and self-organized, without any controller to govern the whole phenomena or to give any order to

each agent. Each individual in a swarm follows some simple rules, which results in the collective

behaviour in macro scale. From the outside, it seems that the swarm is an intelligent agent but

the swarm has a system to achieve their goal based on their implicit patterns of behaviours.

We are interested in how the system works because it is effective or close to be optimal. The

system is working in the way to take best advantages of the limited resources. That is why they

survive for last thousands of times in the nature.

We use these kinds of systems as metaheuristics in computer science and mathematical

optimization. The term ‘metaheuristic’ was proposed by Glover[19]. Each agent in a swarm

behaves by trial and error based on its experience, that is, in a heuristic way. A metaheuristic

is literally a higher level of procedure beyond heuristic to utilise the information from heuristic.

A heuristic is dependent on the specific characteristic of problems, whereas a metaheuristic is

independent. Metaheuristics can be applied when we have little information. We call those kinds

of problems black box problems. It is difficult to solve black box problem with conventional

methods such as gradient descent method. We introduce some nature-inspired metaheuristic

methods, especially population-based optimization algorithms in this chapter.

Search through the interaction of multiagent is more beneficial than the sum of information

of each agent’s search. An agent inspects the search space using its experience and makes a

decision for the next step. The strategy for the next step is based on simple rules with a little

uncertainty. However the experience for an agent is often not enough to make a decision in

8

2.1 Population-based metaheuristics

complex life. And the data is likely too big and complex to analyse. So multiagent can search

the space more stably. If they interact each other, multiagent move with more information

though it is computationally heavy. Since the computation of fitness is usually much more

expensive than data processing, population-based methods are favorable.

2.1 Population-based metaheuristics

We introduce four conventional population-based metaheuristics which have been widely used

in practial applications. The proper population size should be ‘not as large as to be dealt with

statistical averages’ and ‘not as small as to be dealt with as a few-body problem’[3].

Particle swarm optimization

Particle swarm optimization(PSO) has been proposed by Kennedy and Eberhart in 1995, in

the effect of imitating swarm behaviours of bird flocking and fish schooling[11]. Because PSO

is simple and convergent fastly, it is one of the most popular metaheuristics. PSO is juggling

with these following 4 main vectors to update the positions of particles[73].

• Position(xit) : The position vector of the i-th particle at iteration t step.

• V elocity(vit) : The velocity vector of the i-th particle at iteration t step.

• PersonalBest(pit) : The best position of i-th particle from all iterations in history.

• GlobalBest(gt) : The best position of all the particles at iteration t step.

With these 4 vectors, PSO updates the particle’s position as follows.

vit+1 = ωvit + φprp(p
i
t − xit) + φgrg(gt − xit)

xit+1 = xit + vit+1

pit+1 =

{
xit+1 if f(xit+1) < f(pit)

pit otherwise

gt = xjt where f(xjt) ≤ f(xit) for i ∈ P.

where P is the population set. rp, rg are uniformly distributed random numbers in [0, 1]. Pa-

rameter ω, φp, φg are the inertia weight, cognitive weight, social weight, respectively[73]. These

three weights are parameters to control the update of velocity. Inertia weight ω was intro-

duced in 1998. If ω is 1, then it is called Original PSO(OPSO). Otherwise it is called Standard

PSO(SPSO). Cognitive weight φp and social weight φg are sometimes called acceleration coeffi-

cients. The first term of velocity(vit) update rule is reflected the impact of the previous velocity

controlled by ω. The second term is called cognitive impact, and the third is social impact.

9

2.1 Population-based metaheuristics

Since the personal best is replaced once they find the better particles from each particle’s his-

tory, this has something to with cognitive skill of individual. Moreover the global best is found

through the interaction of all particles. This term relates with the social skill of a swarm.

The convergence of PSO has been studied in many ways[44]. There has been done many

researches about the convergence of PSO using constriction coefficient[6], limit[36], differential

equation[69], matrix[57, 35], difference equation[17], Z transformation[32], etc. We show the

main convergence result using limit.

Definition 2.1.1. (Variance of population’s fitness)[36] The variance of the population’s fitness,

σ2, is defines as

σ2 =

n∑
i=1

(fi − avg(f)

f

)2
where n is the number of particles, fi is the fitness value of particle i, avg(f) means the average

value of all fitness of the swarm, f is the normalizing factor to restrict σ2.

This following theorem shows the relation between the convergence and fitness values.

Theorem 2.1.1. [36] If PSO algorithm is prematurely convergent or global convergent, the

particles converge to one or some places in the search space S, and σ2 = 0.

We say PSO tends to lose diversity as the iteration goes on. As a matter of fact, most

metaheuristic suffers from this phenomenon before the population finds the optimum. We call

this convergence premature convergence.

Ant colony optimization

Ant colony optimization(ACO) has been developed by Marco Dorigo in 1992[8]. This algorithm

is the first attempt to establish a link between the behaviour of ants and computer science.

All of the individual ants communicate each other locally with ‘pheromone’. This chemical

substance, pheromone, carries out as a messenger by deposition and evaporation. To survive in

the barren land, it is essential for ants to find the shortest path connecting the ants’ nest and

food. No ants control the colony and give an order to each agent.

But it is interesting that they find the shortest way in the end. It is a good example of

problem-distributed solving and natural selection in nature. Each ant just follow the simple

rule. They lay down the pheromone in the way they pass at random initially. Then some

follower ants tend to choose strong pheromone trail. If the path is shorter, the more ants go

and come more often for the same time. It means that it is naturally selected for a shorter

path to have a strong pheromone by ants. As time goes on, the pheromone will be evaporated

for a path no ants choose. On the other hand, the strong pheromone trail attracts more ants

resulting in stronger pheromone path. This positive feedback system can be taken advantage

10

2.1 Population-based metaheuristics

of combinatorial and continuous optimization problems.

Firefly optimization

Firefly optimization(FO) has been proposed by Xin-She Yang in 2008 mimicking the pattern

of light-flashing of fireflies[65]. The fireflies follow these three rules. First, all fireflies are uni-

sexual. Any individual firefly will be attracted to all other fireflies. Second, attractiveness is

proportional to their brightness. For any two fireflies, the less bright one will be attracted by

the brighter one and move towards that. The brightness intensity decrease as their distance

increases. Third, the fireflies will move randomly if no other firefly is brighter than them.

The light absorption decays exponentially and light variation follows the inverse square law

by distance. FO updates the position as follows.

xt+1
i = xti + β0e

−γr2ij (xtj − xti) + αεti

where α is the scaling factor for controlling the step sizes of the random numbers. γ is a scale-

dependent parameter for controlling the visibility of the fireflies. β0 is the attractive constant.

It is worthy of comparing FO and PSO[66]. Note that as γ, in FO, converges to 0, that

would be the standard PSO. Computationally, FO is nonlinear whereas PSO is linear. Thus

we enjoy more dynamic nature with FO. Actually, FO can implement the multi-swarming with

strong nonlinearity. This implies that FO can be more efficiently applied to solve multimodal

problems. And we do not have to consider the initialization of velocity with FO, unlike PSO,

because there is no velocity terms in FO. On the other hand, FO has a scaling factor, γ, which

is used for various problems with less manipulation.

Genetic algorithm

Genetic algorithm(GA) has been developed by John Holland in 1975[27]. It simulates based on

evolution theory of Darwin. The main operators are ‘crossover, mutation, selection’. Through

the generation of populations, the operators are applied probabilistically. It is hard to apply

for design problems because the mutation often happens in a large search space. So it should

be taken apart into the simple representation. Like other metaheuristics, GA tends to stuck in

the local minima. One way to avoid this phenomenon is maintaining the diversity. For GA,

the importance of diversity is bigger than other methods because the crossover of a homoge-

neous population is not proper for the generation of new solutions. One way is imposing some

disadvantages for some similar populations but it is inefficient and dependent on the specific

problem.

11

2.2 Applications of population-based methods

2.2 Applications of population-based methods

Here we present several applications which population-based optimizations show outstanding

preformances in[45].

Clustering and classification

Clustering and classification are fundamental techniques for machine learning and data minin-

ing. For clustering the input data, each particle in an optimizer is a cluster centroid vector[59].

Population represents candidate clusterings for the data set. Then the fitness of particles is as

follows.

fitness :=

∑Nc
j=1[

∑
zp∈Cij

d(zp,mj)/|Cij |]
Nc

d(zp,mj) :=

√√√√ Nd∑
j=1

(zpk −mjk)

where zp is p-th data vector and mj denotes the centroid vector of cluster j. Subscript k is the

dimension. Here Nd is the input dimension, and Nc is the number of cluster centroids. |Cij |
is the number of data vectors belonging to cluster Cij . PSO shows a better convergence with

lower fitness errors[2, 29].

Control

There are many optimization-related issues in a wide range of control problems such as adap-

tive control, fuzzy control, proportional-integral-derivative(PID) control. Especially in handling

the difficulties from high order, time delays, and nonlinearities, heuristic methods yield great

performances[16]. Many artificial intelligence (AI) techniques such as neural network, fuzzy sys-

tem, and neural-fuzzy logic have been taken to tune controller parameters. Especially genetic

algorithm has been successfully applied to such problems. However, due to the lack of diversity

and the premature convergence, it deteriorates numerical performance. We can apply any other

metaheuristics to overcome such difficulties[24, 22, 1].

Image and video

Maintaining the high resolution with as small capacity as possible in the image and video

is the important issue. As watching video is on-trend, the traffic for video has been increased

so rapidly. It needs to be found how much bitrate should be assigned with limited resources on

12

2.2 Applications of population-based methods

a video. Within the framework of optimization problems, each particle represents the combina-

tion of resolution and bitrate with a constraint. Because the feature is changing in a video, the

adaptable combination keeps changing. This mechanism is similar to an evolutionary process

against constantly changing environment in nature.

Neural network training

Artificial neural networks are being used to process the input data in many areas, such as clas-

sification, feature extraction, clustering, and approximate inference. A neural network function

is defined as a composition of weighted sum of nonlinear activation functions, mathematically.

Hyperbolic tangent, sigmoid or rectifier function are popular for an activation function.

Training a neural network is an optimization problem to find the weight of a neural net-

work function that minimizes an error function. From the perspective of global optimization

problems, it is desirable that a smooth change of the neural network function’s weight results

in a smooth change of the value of an error function. In this case, gradient descent method

works well. But if an activation function is non-differentiable, or complicated, population-based

metaheuristics are adapable.[13, 47] Population-based metaheuristics does not require much

information about the cost function. In addition, evolutionary algorithms(a subset population-

based metaheuristics) can be used to optimize network structure as well as network parameters

in combination sense.[10] In this permutation problem, due to the topological symmetry in the

error function, there exists many local minima.

13

3

Exploration and Exploitation in

Chaos-based searches

We introduce the concept of chaotic-based search and its nature, especially in terms of balancing

between exploration and exploitation in this chapter. Chaos theory is a theory of nonlinear

dynamical systems that deals with interaction between order and disorder. Though a chaotic

system may follow few simple rules, it can generate irregular dynamics in a bounded region.

Such characteristic of chaos can be applied to find an optimal solution. Chaos-based search has

these three important properties[64].

• the sensitive dependence on initial conditions

• the semi-stochastic property

• ergodicity

Even with a slightly different initial condition, the behaviour of chaotic system is totally

different. This attribute is distinct from the predictability of linear systems. Strictly speaking,

chaos is predictable as long as we know the exact information of the state, which is almost

impossible. As of now, chaos is extremely hard to predict due to the limitation of observation

equipments. Randomness of stochasticity is a disorder, whereas chaos is complex like random-

ness but well-structured. That is why we say chaos has the semi-stochastic property. This

property can be used for optimization algorithm instead of randomness. Though chaos is sen-

sitive on initial condition, the chaos based optimizer is quite stable on initial condition because

of the third property of chaos, ergodicity.

Ergodicity has something to do with the uniformly distribution of random numbers with

respect to time and space. Ergodicity means the time average of random process is the same as

its average over the probability space. This enables the optimizer to inspect the space metic-

ulously in search space. Since chaos has an ergodic property and is densely periodic, chaotic

based optimizer finds the optimum stably regardless of the initial condition.

14

3.1 Chaos v.s. randomness in optimization

In following sections we will see using chaos is reasonable for global optimization problem

enabling us to tune the balance between exploration and exploitation effectively.

3.1 Chaos v.s. randomness in optimization

A deterministic system consists of three followings ingredients[26]:

• the time-evolution equations

• the values of the parameters describing the system

• the initial condition.

Deterministic optimizers such as gradient descent method are good at finding local minima

in convex problems. But they often fail to find a global minimum especially in non-convex and

complex problems. By using chaos we enjoy not only the advantages of deterministic system,

but also semi-randomness which is similar to stochastic system. So chaos sometimes is said to

be ‘semi-deterministic’[49] or pseudo random[9].

The characteristics of a deterministic system make it more beneficial to use chaos instead

of randomness in global optimizer. Usually global optimizer has many iterations. So stochastic

optimizer needs many random numbers and computational memory to repeat the implemen-

tation. But we can get the semi-random numbers from chaos as time goes by. What is more,

these random numers can be somewhat predictable within a few steps and are senstive on initial

condition with a few degrees of freedom because it has only a few parameters in the system. A

degree of freedom is the number of independent variables to describe the system[26]. Comparing

with the fact that randomness has so many degrees of freedom, the random numbers from chaos

saves us the computational memory and cost.

Strictly speaking, chaos is hard to predict while random noise is completely unpredictable.

Being hard to predict is different from being unpredictable. Though the behaviour of chaos is

very hard to predict, it is already determined depending on the initial condition and a few pa-

rameters. The more information of the system we have, the better the prediction of behaviour

would be improved. We can gather more evidence to guess. But for stochastic system, we

cannot know the result even if we have all the exact information of the current state. No one

knows the result until it has been done though it has same initial condition. The nature of

stochasticity involves uncertainty, which is not desired.

3.2 Adoption of chaos in global optimizers

This section contributes to check the characteristics of chaos for global optimizers. There are

many conventional optimizers such as PSO, FO, GA using chaos[55, 15, 12, 31, 39]. They show

the chaotic nature is effective for global optimization. There are two main advantages in the

following.

15

3.3 Chaos created by Newton method

Strong exploitation

Chaos system is aperiodic which means that the state is never repeated no matter how much

time passes[26]. Actually chaos has a dense periodic orbit. This enables the particles to exploit

near temporal best candidate solution. This is a desired phenamenon as it has been shown that

the particles’ state space of PSO is not a recurrent process[48].

Though chaos is hard to predict, it is bounded in a region for a few initial steps. Using

this property we can enjoy exploitation by control of the number of iterations. Lower number

of iterations enables exploitation whereas higher number enables exploration in the bounded

domain.

Avoidance from local minima

Since most population-based metaheuristics move particles by the interaction among popu-

lation, this finally results in the prematurely convergence to some places in the search space[43].

Particles’ stagnation mostly happens before they find the global minima because of lack of

diversity within the population[37]. However, the chaos-based optimizers drive particles using

chaotic nature regardless of the interaction by accident. Chaos makes the continuous search in

a wide area, say, exploration. Chaos is topological mixing and this property plays a role like

uniformly distributed random numbers. The particles driven by chaos never gather, and never

stop.

3.3 Chaos created by Newton method

Newton method is widely renowned but not many people know that Newton method has a

chaotic nature. We introduce the chaos created by Newton method in this section.

Newton’s (or the Newton-Raphson) method[28, 51] is one of the most popular iteration

methods to find roots of the continuously nonlinear differentiable functions where

x : f(x) = 0.

It linearly approximates one of the roots depending on initial guess x0 according to this recurrent

process

xn+1 = xn −
f(xn)

f ′(xn)

as n gets a larger integer. It can be proved in many ways. Assume that f ∈ C2[a, b], where

x0 ∈ [a, b] is an approximation to the solution x of f(x) = 0 such that f ′(x0) is non-zero, and

16

3.3 Chaos created by Newton method

|x− x0| is small. By Taylor series,

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(ξ(x))

where ξ ∈ (x, x0). Higher order terms are small and negligible. Since we are looking for x

satisfying that f(x) = 0,

0 = f(x0) + (x− x0)f ′(x0).

Then,

x = x0 −
f(x0)

f ′(x0)
:= x1.

For diverse movements, we apply modified newton method, which includes a degree coeffi-

cient m. For a nonlinear function f , the approximations to the roots are updated as

x←− x−m f(x)

f ′(x)
. (3.3.1)

If we choose x close to one of its roots of f initially, it fastly converges to the corresponding

roots. The sequence generated from (3.3.1) can be susceptible to the starting point and the

degree coefficient m. We can check the sensitivity through visulatization of basin of attraction

in complex system. If f : C→ C is a complex function then the basin of attraction of Newton

method shows a fractal nature[38]. The trace of x is called Newton path.

A polynomial function whose roots are p1, p2, · · · , pn can be constructed as

f(x) = (x− p1)(x− p2) · · · (x− pn) (3.3.2)

where pi are n locations of interest in R. If we apply the Newton method (3.3.1) to (3.3.2)

iteratively, the particle x wanders around those roots. We check that in Figure 3-1. We call

this function as ‘guiding function’ as in (4.1.1), introduced later.

The behaviour of a point is sensitive depending on the choice of m. As in Figure 3-2 the

sequence of a particle whose degree coefficient m is 1 converges so fast to one of the roots,

x = 2, in (a), whereas the sequences of m = 2.5 and m = 4 in (b) and (c), respectively, seem

to wander around the roots, x = 0, 1, or 2, during the iterations. The movement of a particle

whose degree coefficient m is a higher value is more irregular around the root, even jumping

around 60. However, it is an important observation that the movements are bounded and never

escape from x = 2.

In the 2-dimensional space the dynamics is even more diversified under the (guiding) func-

tion, f = f(z), z ∈ C. Sensitivity on the initial point, of Newton method, divides the domain

into complicated regions. We call them Julia sets, according to the points where the elements

of the each region converge to. In Figure 3-3, each region with a different color stands for a set

17

3.3 Chaos created by Newton method

Figure 3-1: An example of dynamics of a particle under a (guiding) function in the 1-dimensional
search space: A particle starting from −1 denoted by ‘1′ is searching around a root (boxed point)
to find a better approximation. The movement is denoted from ‘1′ to ‘5′.[74]

18

3.3 Chaos created by Newton method

Figure 3-2: Illrustration of the sequences staring from same points. They show different behaviors
depending on degree coefficient m for the (guiding) function f(x) = x(x− 1)(x− 2)[74]

19

3.3 Chaos created by Newton method

of points that converge to the same root by Newton method. The boundaries of such regions

show the fractal geometry, implying the corresponding Newton paths are very diverse.

We compare three Newton paths in Figure 3-4 with distinct values of m in the complex

plane. Three examples show the movement of particles initiated at the same point (5, 5). Those

are attracted to the origin under the same (guiding) function f(z) = z(z − 2i)(z + 1− i). The

particle with m = 1 make a gradual search toward the origin, whereas the ones with m = 2.5

and m = 3.5 show rather irregular motions around it. It is remarkable that the movements of

the latter cases are erratic mix of jumping and mincing. Figure 3-5 shows the sensitivity on the

initial points. The Newton paths are totally different though we start from the slightly different

initial points near (3, 3). They converge to the same point in the end. This “diversely- conver-

gent” searching paths enables the population to search the space balancing between exploration

and exploitation.

It is notable that the particles jump depending on long tail distribution as in Figure 3-6. The

distribution covers a wider area with m increased, indicating stronger exploration. However, the

presence of the power-law implies that the particles exploit as well as explore simultaneously.

20

3.3 Chaos created by Newton method

Figure 3-3: The basin of attraction of Newton Method shows the Newton fractal. This is an
example of Julia sets associated to the Newton method for f(z) = (z−p1)(z−p2) · · · (z−p5). The
positions of pi are denoted by white circles. Each different color region stands for a set of points
that converge to the same root by Newton method. Under the same (guiding) function it shows
varied fractality depending on degree coefficient m.[74]

Figure 3-4: Three Newton paths with different degree coefficient m: They are initiated from the
same point (5, 5). The guiding function is f(z) = z(z − 2i)(z + 1− i).[74]

21

3.3 Chaos created by Newton method

Figure 3-5: Newton paths generated from slightly different initial points near (3, 3) (marked with a
black circle): both eventually joins again at the target point (2,−1) (marked with a black square)[74].

22

3.3 Chaos created by Newton method

Figure 3-6: The distribution of particles’ distance from a leading particle(after 50 times of iter-
ations) follows the power law. All particles are initially located on the unit ball centered at the
position of a leading particle. The straight lines are the least squares fitting line for log-log scale
depending on m.

23

4

Newton Particle Optimizer1

We propose Newton particle optimization(NPO) algorithm[74] and its convergence in this chap-

ter. NPO is a population-based metaheuristic for global optimization problems. NPO enables

the particles to search the space balancing between exploitation and exploration based on the

chaotic nature of Newton method. Using chaos, NPO can control the irregular behavior with

a few degree of freedom. This implies that NPO requires less random numbers than other

stochastic metaheuristic methods. NPO is simple and powerful. In addition NPO is convergent

fastly due to the convergence property of Newton method.

Complexity of the Newton paths can used to develop a global optimizer. It can be con-

structed for a guiding function f whose roots are the temporal best, or candidate for optimums,

of population according to fitness function g. By (3.3.1) all other particles are attracted to the

temporal best of g along the Newton paths. The sequences of particles’ positions are irregular,

likely to wander around the temporal best, or sometimes take an unexpected jump away from

them. If the temporal best is improved, the guiding function f is updated accordingly. We up-

date the position of particles with newly constructed guiding function whose roots are temporal

best by Newton method at every iteration step.

4.1 Algorithm

We explain the algorithm of NPO in 2-dimensional search space first. A fitness function(or cost

function) g : C → R is a function to be optimized. Each particle is a searching agent and the

population is N . Their positions are denoted as zi ∈ C, 1 ≤ i ≤ N . Each particle has a degree

coefficient mi ∈ C. By Newton method the position of i-th particle zi is updated as following:

zi ← zi −mi
f(zi)

f ′(zi)
(4.1.1)

1This work will be published as: Jeong, S. and Kim, P, “A population based optimization method using
Newton fractal.” Complexity, in press.

24

4.1 Algorithm

where f is a polynomial function that is defined to be a guiding function. Do not confuse f

with g, to be optimized. We can attract the particles near its roots by (4.1.1). That is why we

need a root finding method like Newton method. The main concern is about how to construct

the guiding function f to apply (4.1.1) for all particles.

We easily come up with a guiding function in 2-dimensional space because of the complex

system. A guiding function f(z) is constructed as a polynomial of degree n whose roots coincide

with p1, · · · ,pn, as

f(z) = (z − p1)(z − p2) · · · (z − pn). (4.1.2)

We can use the guiding function to search the space around its roots, possibly temporal best

solutions, which are the candidate optimum.

At each iteration of the scheme, we choose n best fitters with respect to the fitness function

g as leading particles. That is, we pick p1, · · · ,pn, such that

pi = zk where g(zk) is the i-th minimum among g(z1) · · · , g(zN) (4.1.3)

for i = 1, · · · , n. It always needs not n best fitters to be leading particles but the first best fitter

should belong to the leading particles for monotonicity to the optimum.

Note that all the particles except the leading particles are attracted toward leading particles.

Once the positions of all particles are updated, we examine their fitness to choose the next

leading particles p1,p2, · · · ,pn. Then we refresh the guiding function f accordingly, and reapply

(4.1.1) to the particles. As long as the guiding function is a polynomial function, convergence

of the algorithm is guaranteed from the convergence of the Newton’s method and the monotone

convergence theorem. However, like other heuristic optimization methods, convergence here

means convergence of the sequence of solutions in which all particles have converged to the

points of leading particles, which is called ‘premature convergence’. In the search-space, those

points may or may not be the optimum.

The pseudo code of the whole process is in Algorithm 1.

We want to extend the NPO to higher dimension, in Rd, d ≥ 3. We set a guiding function

f(x) = (f1(x), · · · , fd(x))T where x ∈ Rd and fi(x) is a real valued function in Rd. Now (4.1.1)

becomes the multi-dimensional Newton method

x← x−MDf |−1x f(x), (4.1.4)

where M is a d-by-d constant matrix and Df |−1x is an inverse of the Jacobian matrix of f at x.

The eigenvalues of M are related with local search tendency, m. As the eigenvalues increases

from 0, the searching paths around the leading particles become more and more irregular as we

25

4.2 Searching manner of NPO

Algorithm 1 Newton Particle Optimization (in C)[74]

for each particle do
Initialize particle zi with mi.

end for
while maximum iterations or minimum error criteria is not attained do

for each particle do
Calculate fitness value g.

end for
Choose n best members p1,p2, · · · ,pn in the search domain.
Set the guiding function f(z) = (z − p1)(z − p2) · · · (z − pn).
for each particle do

zi ← zi −mi
f(zi)
f ′(zi)

end for
end while

observed in 2-dimensional case in Figure 3-2 to 3-4. We will check the appropriate value of m

later in this chapter.

4.2 Searching manner of NPO

The searching manner of NPO is in contrast to conventional methods. We compare NPO with

the two typical optimizers, gradient descent method(GDM) and PSO. When it comes to using

population, NPO and PSO belong to same class and GDM belong to the other class. Before

we move on to this topic, it needs to be mentioned that NPO and PSO are heuristic whereas

GDM is algorithmic, which is the opposite concept of heuristic. Being algorithmic is following

step-by-step procedure based on the information, not on the intuition or randomness. Other

than that the algorithmic way requires more information than heuristic style, they have a dif-

ferent type of uncertainty.

As a matter of fact, GDM has a hidden uncertainty which derives from the initial guess.

GDM may give us different results depending on the initial condition not as long as the function

to be optimized is convex. In order to keep the uncertainty from the initial guess off, it is safe

to start with multi-agent as population-based methods do. Because the most expensive part of

optimization is usually the evaluation of fitness, population-based methods are computationally

heavy but it is worth using if the fitness function is complicated. Though population-based

methods usually start with uniformly random distributed candidate solutions, the interaction

among population lessens the impact of initial guess.

Population-based methods can relieve the uncertainty from initial guess, but most of population-

based methods are stochastic and bring randomness to move particles. As we mentioned above,

population-based methods are adaptable to solve the intricate problem. Without randomness, it

is hard to take action for current situation flexibly. So most population-based methods include

the generation of random numbers.

26

4.2 Searching manner of NPO

Figure 4-1: NPO Algorithm. (a)A dotted line is represented the hidden fitness function and the
global optimum labeled by diamond shape should be found. (b)Distribute the particles in uniformly
random manner. These particles are candidate solution and marked by white circle. (c)Evaluate
the fitness of the particles. (d)Choose the top 3 best fitters as leading particles. Leading particles
are marked with black square label. (e)Make the guiding function with leading particles. (f)Update
the other particle’s positions near the best fitter by applying Newton method with guiding function.
Then repeat from (c) until it satisfies the stopping criterion.

27

4.3 Convergence of metaheuristics

With regard to randomness, NPO and PSO are different. NPO uses the property of chaos

whereas PSO generates the random numbers to search the space. The biggest difference is the

degree of freedom to control the stochasticity. NPO needs the random numbers for initialization

of particles’ positions and their degree coefficient m. On the other hand, PSO needs random

numbers at every iteration from the initialization step. This implies that NPO is less uncertain

than PSO. In addition NPO can get the same result as long as the initial condition is same.

As a population based method, NPO suppresses the uncertainty from every iteration but keeps

the uncertainty from initial guess, like GDM.

From the structure of the algorithm, each particle in PSO compares the best current opti-

mum with its own private best and makes a noisy crawling toward the target. The particles in

NPO do not memorize their history and simply jump toward one of the best known optimums

in a diverse way.

4.3 Convergence of metaheuristics

For convergence of metaheuristic methods, there are three types that should be considered. First

is premature convergence, which means that the particles gather somewhere and stop moving

before the stopping criteria is satisfied. We want to avoid this convergence because it results

in getting trapped in local minima, leading to bad performance. Many metaheuristics have an

issue of premature convergence. There are some researches proposed to avoid the premature

convergence. Premature convergence of a global optimizer should be checked carefully.

Second is local convergence, which means that the particles converge to a local minimum.

This is the basic ability to be expected to achieve for an optimizer. Third is global convergence,

which means that the particles find a global minimum. This convergence is the most desired

convergence but no algorithm can guarantee this convergence regardless of the characteristics

of fitness functions. Generally it is hard to distinct whether the particles are prematurely con-

vergent, locally convergent, or globally convergent. Without local convergence, the global con-

vergence is also not guaranteed even for a convex function. Check the definition in the following.

Definition 4.3.1. (Particle’s convergence)[57] A particle i is said to be convergent if

lim
t→+∞

xi,t = p

where xi,t is the position of particle i at time t, and p is the any fixed position in the search

space S. The optimizer is said to be ‘prematurely convergent’ if all particles are convergent.

Let f : Rd → R be a measurable function to be optimized in the search space S ⊂ Rd. The

28

4.3 Convergence of metaheuristics

function D is defined as

D(yt, xi,t) =

{
yt if f(g(xi,t)) ≥ f(yt),

g(xi,t) if f(g(xi,t)) < f(yt)
(4.3.1)

where g(xi,t) denotes the application of an optimizer[57]. yt denotes the current global best at

time t. The following condition is a necessary condition for local and global convergence of an

optimizer.

Definition 4.3.2. (Algorithm condition)[57]The mapping D : S×Rd → S should satisfy f(D(x, ξ)) ≤
f(x) and if ξ ∈ S, then f(D(x, ξ)) ≤ f(ξ).

From the construction, D is satisfying the algorithm condition.

Definition 4.3.3. (Optimality region)[57] The algorithm is said to have found a solution if it is

able to generate a point in the optimality region, Rε, defined as

Rε = {z ∈ S|f(z) < ψ + ε},

where ψ denotes the essential infimum of f .

This following is the sufficient condition for convergence to a local minimum.

Definition 4.3.4. (Local convergence)[57] For any xt ∈ S there exists a γ > 0 and an 0 < η ≤ 1

such that

µt(dist(xt+1, Rε) ≤ dist(xt, Rε)− γ or xt ∈ Rε) ≥ η

Let {xt}∞t=0 be a sequence generated by the algorithm, D. Then

lim
t→∞

P (xt ∈ Rε) = 1.

This following is the sufficient condition for convergence to a global minimum.

Definition 4.3.5. (Global convergence)[57] For any (Borel) subset A of S with m(A) > 0,

∞∏
t=0

(
1− µt(A)

)
= 0

where µt(A) is the probability of A being generated by µt. Let {xt}∞t=0 be a sequence generated

29

4.4 Local convergence of NPO

by the algorithm, D, then

lim
t→∞

P (xt ∈ Rε) = 1.

To understand how an optimizer finds the optimum effectively, it might be a good choice

to study about the convergence of an optimizer. PSO keeps moving until all particles’ fitness

values are same. Note that it does not mean the particles gather in a point. They can be scat-

tered in some points as long as their fitness values are same. Whereas the particles of NPO can

be scattered in a few points without reference to fitness values. NPO maintains the diversity of

particles well.

Though PSO algorithm cannot guarantee the local convergence, it can be guaranteed with

modification of the position of the global best particle only. F. van den Bergh et al. showed

premature convergence of PSO and modified PSO to achieve local convergence[57]. This mod-

ified PSO is referred to as guaranteed convergence PSO(GCPSO). For GCPSO, the update of

global best particle xτ , whose index is τ , is

xτ,t+1 = yt + wvτ,t + ρt(1− 2rt),

where rt is randomly chosen from uniformly distributed [0, 1]. The previous two terms in the

update equation is same with standard PSO algorithm. Outstanding modified part, ρt, is defined

as follows.

ρt+1 =


2ρt if #successes > sc

0.5ρt if #failures > fc and ρt > εm

ρt otherwise

(4.3.2)

where εm represents the smallest allowable value of ρ, maybe the machine precision. A ‘failure’

occurs when f(ŷt) ≥ f(ŷt−1) and a ‘success’ occurs when f(ŷt) < f(ŷt−1). The number of

successes, or failures is reset to zero when the failure, or success happens, respectively.

4.4 Local convergence of NPO

Standard NPO is prematurely convergent. A guiding function has a neighborhood convergent to

the roots, called radius of convergence, by Newton method. On the other hand, finding minimum

within finite candidate solution is impossible for black box problems. Thus the particles stagnate

before they find the minimum.

But it can be guaranteed with variation similar to the procedure of GCPSO in the previous

section[57]. We call modified NPO as guaranteed convergence NPO(GCNPO). For NPO, there

needs to keep updating the positions of leading particles to avoid premature convergence. This

following theorem and its proof are similar to those of PSO[57].

30

4.4 Local convergence of NPO

Theorem 4.4.1. (Local convergence of GCNPO) GCNPO is locally convergent if the particle

updated with

xτ,t+1 = yt + ρt(1− 2rt)

belongs to leading particles as well as the global best particle yt does so. ρt is defined in (4.3.2)

and rt is a random number in [0, 1]. By entry of random numbers, the particles keep moving in

any situation and search the space densely or sparsely.

Proof. Randomness, ρt part is exactly from the GCPSO[57]. This update is about sampling a

point from a hypercube whose length is 2ρ centered at temporal best, yt. Since ρt is changing, we

denote ρ instead. Mk denotes that hypercube and µk denotes the uniform probability measure

defined on Mk. Premature convergence never happens because it keeps updating the position

of leading particles by randomness regardless of any interaction of particles or environment. We

define a compact set

L0 = {x ∈ S : f(x) ≤ f(x0)} (4.4.1)

where x0 is the particle who has the largest fitness value, defined as

x0 = argmaxxi{f(xi)}, i ∈ Z, 1 ≤ i ≤ N (4.4.2)

where N is the population. Then yt ∈ L0. And yt ∈ Mk. Thus m[Mk ∩ L0] > 0. m denotes

the Lebesgue measure of a set. A non-degenerate sampling volume µk with support Mk exists.

Now we check the local convergence of GCNPO.

S is compact and has a non-empty interior. Then so does L0. By definition, Rε ⊂ L0.

Because a closed subset of compact set is compact, Rε is compact with a non-empty interior.

Refer [57] in detail. We choose a ball, B′, centered at c′ in Rε. x
′ is the argument of x ∈ L0

for the maximum distance with c′. B is the hypercube centered at c′ whose side length is

2(dist(c′, x′)− 0.5ρ). C is the convex hull of x′ and B′. The tangent line connecting B′ and x′

is the longest line of x′ and B′. This implies that the volume surrounded by any other convex

hull made by any x ∈ L0 is greater than the volume of C ∩B. Therefore for any x ∈ L0,

µk[dist(D(ŷ, xτ), Rε) < dist(x,Rε)− 0.5ρ] ≥ η = µ[C ∩B] > 0

where µk is the uniform distribution measure on the hypercube whose center is at x with side

length 2ρ. Therefore GCNPO is locally convergent.

31

4.5 Criteria for choice of m and M

4.5 Criteria for choice of m and M

We can control the trade-off between exploration and exploitation in NPO by adjusting the

parameter m in (4.1.1), which is a ‘degree coefficient’. A particle’s movement is determined by

its initial position and its degree coefficient m. This m affects to the movement of a particle

by distance or convergence to the leading particles. The assignment of various m to population

makes them follow diverse Newton path.

when it comes to modified Newton method, the sequences are bounded if their m values

satisfy |m− n| < n, where n is the degree of a polynomial guiding function. The sequences are

convergent if their m values satisfy |m − 1| < 1. If |m| is small, then movement of particles is

also small as in Figure 3-6. Meanwhile, the particles move erratically if |m| is close to 2n.

We suggest the practical region form by experiments in Figure 4-2. Every particle is assigned

to different values m ∈ Rd. Subscript i is the dimension for mi. We can assign same values in

every dimension or not. We choose the random numbers from the interval [0,mmax] uniformly

for mi. The optimal values for mmax is illustrated in Figure 4-2. They show it is good to choose

m around the middle of the range, that is, mmax ≈ n. y-axis denotes average of the required

number of fitness evaluation to lower the error below the tolerance, 10−8 for 51 multiple run.

With less number of particles, mmax > n is a proper choice to generate more diverse Newton

paths.

For diverse behaviors of particles, we can change and mix the combination of the particles

and their degree coefficient m without control of the value m itself. Standard NPO assigns fixed

m for every particle. But the particles can be aligned in the order of their fitness values. This

process is deterministic but hard to be expected so that it is like an uniformly mixing effect.

From initial choice of m, we have well mixed random numbers, m and match the particles and

m in fitness ranking order. In standard NPO, if a particle has a big |m|, this particle is working

for the exploration all the time. But if we assign m for fitness ranking this gives the particles

flexibility.

32

4.5 Criteria for choice of m and M

Figure 4-2: Performance according to mmax. The parameter settings are 200 particles with 4
leading particles for rosenbrock function.[74]

33

5

Construction of A Guiding Function

We present the conditions for an ideal guiding function for Newton Particle Optimizer in this

chapter[74]. Generating a proper guiding function is the main issue to balance between the

exploration and the exploitation. In the previous chapter, we naturally came up with the

guiding function in 2-dimensional space using complex system. However, in higher dimension,

it is problematic to make an adaptable guiding function. We check the qualification of a guiding

function and propose how to construct a guiding function in multi-dimensional space.

5.1 Conditions for an ideal guiding function

Taking a proper guiding function is closely related to the performance of NPO. There are three

conditions for an ideal guiding function to be satisfied as follows[74].

(1) the function has zeros at the designated points and no zeros elsewhere.

(2) the function is symmetric.

(3) the inverse of its Jacobian is easy to compute.

The first condition is essential for the guiding function to attract particles to the roots. The

second condition is for uniform search without bias. The third condition is for the efficiency

of computation from Newton method. This is relatively easy to satisfy as long as the guid-

ing function is a polynomial function. The proposed factored polynomial as (4.1.2) in 1 and

2-dimensional search space satisfies all those conditions. But unfortunately, there are no such

factored polynomials in more higher dimensional space. Thus we give up the first condition

partly, to construct a guiding function in Rd, d ≥ 3.

Still, this guiding function is satisfying with having zeros at the designated points but it

may have other zeros in the search space. We call these undesired zeros as ‘phantom’. As a

matter of fact, the phantoms help particles to explore the space. The Newton method drives

34

5.2 Extension of a guiding function

Figure 5-1: A nullcline of a factored guiding function in 2-dimensional space as (4.1.2).

other particles to the point where the function has zeros, whether it is a desired point or not.

Phantoms slow down the convergence preventing the particles from gathering only near the

leading particles. This is an undesired phenomenon especially in low dimension because the

search space is so small that NPO can find the good enough candidate optimum soon. But for

higher dimensional search space, existence of phantoms is not an issue. Leading particles are

changed depending on their fitness values at every iteration step, then phantoms are changed

if one of the leading particle is changed. Though we have some phantoms at every step, it will

be gone easily whereas best fitters survive as long as it fits well to the problem.

5.2 Extension of a guiding function

We suggest a natural extension of (4.1.2) in a higher dimensional search space. (4.1.2) can be

rewritten in the complex form as f(x + iy) = u(x, y) + iv(x, y) and pj = qj + irj . When the

number of leading particles are 3, the corresponding component functions are

u(x, y) =

n∏
k=1

(x− qk)−
n∑
l=1

(x− ql)
n∏

m=1,m 6=l
(y − rm),

v(x, y) = −
n∏
k=1

(y − rk) +
n∑
l=1

(y − rl)
n∏

m=1,m 6=l
(x− qm) (5.2.1)

35

5.2 Extension of a guiding function

where n is the number of leading particles. We show the nullcline of this guiding function in

Figure 5-1. There are three intersections which would be the positions of leading particles.

When the number of leading particles are 4, the corresponding component functions are

u(x, y) =

n∏
k=1

(x− qk)−
n∑

m=1

n∑
l=1,l>m

(x− qm)(x− ql)
n∏

k=1,k 6=l,m
(y − rk) +

n∏
k=1

(y − rk),

v(x, y) = −
n∑
l=1

(x− ql)
n∏

m=1,m 6=l
(y − rm) +

n∑
l=1

(y − rl)
n∏

m=1,m 6=l
(x− qm). (5.2.2)

As we see, the form is changed whether the number of leading particles is an odd or even number

regularly. Now we propose, as an extension of (5.2.1), a general guiding function in Rd as

fj(x) = (−1)j+1
{ n∏
k=1

(xj+2 − pj+2,k)−
n∑
l=1

(xj − pj,l)
n∏

m=1,m 6=l
(xj+1 − pj+1,m)

}
(5.2.3)

where pi = (pi,1, · · · , pi,d)T , 1 ≤ i ≤ n denotes the position of a leading particle. Here we use a

circular indexes like xd+1 = x1 in (5.2.3).

Though (5.2.3) is an extension of the case when the number of leading particles is 3, it can

be used for more than 3 particles. The guiding function f(x) may have zero vectors at other

than p1, · · · ,pn in Rd, d ≥ 3 as long as f(x) vanishes if x = pi, 1 ≤ i ≤ n. As we mentioned

in the previous section, such extra zeros do not lower the searching performance much. Such

phantom roots appear irregularly and helps the particles to search the space globally.

We attach some figures about the proposed guiding function in Figure 5-2. These figures

represent the first two components of the position of all particles in 3-dimensional search space.

As iteration goes on, the particles are finding the minimum of rosenbrock function. The iteration

step and current minimum is denoted in the title. The leading particles are marked with asterisk.

We compare the proposed guiding function and wrong guiding function, which does not satisfy

the first two proposed conditions. In the above row in Figure 5-2, the particles gather near

the leading particles from every direction for the first few step, but it finally follows a line as

in the pictures at t = 20. In the below row, whereas the particles gather near the leading

particles from every direction for proposed guiding function. This is desired because we want

the particles to search the space all around uniformly. Though the initial position and m are

all same in Figure 5-2, the performance of a proposed guiding function is better than that of a

biased guiding function, as denoted in their titles. The current best values are 0.62217, 0.17931

at t = 20 for both guiding functions, respectively. The proposed guiding function is reasonable.

36

5.3 Criteria for choice of leading particles

Figure 5-2: The distribution of particles using a biased guiding function(above) and a proposed
guiding function(below), with same initial condition for the position of particles and degree coefficient
m. t counters the iteration step for NPO. min denotes temporal best.

5.3 Criteria for choice of leading particles

We can control the balance between exploration and exploitation with the choice of leading

particles p1, · · · ,pn. Their relative positions affects other particles’ movement because they

are ingredients of a guiding function. We suggest the choice of the temporal best fitters in

(4.1.3). But this may result in lack of diversity and premature convergence to current optimums,

preventing the particles from keeping searching the better one.

This is about parameter setting for implementation. The number of leading particles, n is

a hyper parameter, which is usually determined in 3 ≤ n ∈ N ≤ 5 by trial and error, for the

population size of 100 ∼ 1000 particles. Determination of n affects to the performance as in

Figure 5-3.

5.3.1 Idle leaders in leading particles

To prevent the premature convergence, or getting trapped at local minima, we need some

idle leaders. Idle leaders mean mediocre fitters who are not the best fitters. By experiment, in

Figure 5-4, we compare two cases of leading particles, one of which uses top 5 best fitters(above)

and the other uses top 4 best and 1 mediocre fitter with a low rank(below). The below case

with idle leader is worse then the above at first, it finds the better temporal best in the end

successfully. Again, the choice of leading particles has something to do with a balance between

exploitation and exploration. The idle leaders seem useless but actually they stop the particles

from focusing on a small region. Once the particles gather in a small region, they lose the power

to search the space globally in many metaheuristics because the particles’ momentum comes

37

5.3 Criteria for choice of leading particles

Figure 5-3: The number of leading particles is important. Label denotes the ranking of leading
particles among 100 particles. It shows the results of n = 3 is better than that of n = 4.

from their interaction. Diversity is essential for global search. Organization of best fitters as

leading particles dominate all other particles easily. This seems efficient in the short term but

it does not in the long term. Though it takes time to find a good candidate for idle leaders, it

is worth of taking up the challenge to explore the unknown space. Otherwise we face the limit

that those best fitters set up potentially.

5.3.2 Personal best in leading particles

In comparison with PSO, NPO differs in many respects. PSO moves particles refering the

personal best and global best whereas NPO moves mostly considering the temporal global best,

which are the leading particles. To contemplate the cognitive impact from personal best like

PSO, we can introduce the personal best in leading particles for NPO. We organize leading

particles as two best fitters, one mediocre fitter, and one personal best, pjt of a fitter j. The

personal best at t is

pit =

{
xit if f(xit) < f(pit−1)

pit−1 otherwise

38

5.4 Particles outside the boundary

50 100 150 200 250 300 350 400 450 500

Iteration

10 1

10 2

 g
(x

)

50 100 150 200 250 300 350 400 450 500

Iteration

10 1

10 2

 g
(x

)

Figure 5-4: Choice of leading particles affects the result: the above adopts top 5 rank performers
out of 100 particles as leading particles. The below uses four best fitters and one 40th rank fitter.
The blue and red dots indicate the cost values of ordinary and leading particles, respectively.[74]

where xit is the position vector of the i-th particle at iteration t step, as in PSO.

Indeed, it would be profitable to stay leading particles near every local minima so that

other particles improve the leading particles by exploitation. Introducing the personal best of a

particle plays that kind of role in NPO. To take best advantage of the personal best in leading

particles near the local minimum, the degree coefficient m of those particles attracting the

leading particle should lie in the bounded region, not in a convergence region. If the personal

best is not the temporal best in leading particles, then it is expected that it may slow down the

global convergence but it gives a chance to improve the personal best and find local minimum.

This introduction of the personal best is about strong exploitation, not about the exploration.

5.4 Particles outside the boundary

We usually solve the optimization problem in the bounded domain. It means that the particles

for valid candidate solution should stay in the bounded region. But what if the particles get

out the boundary?

A standard way is confining a particle if it gets out of boundary. A particle would be on

the boundary on compulsion if it goes out. Though this way is simple but the optimizer wastes

the computational source too much just for the boundary. Or we can use modulo operations,

which we move the particle on the position of left-over part in division of length of bounded

domain. This way gives an effect of randomness and makes the system more complicated and

unexpected.

39

5.5 Exploration indicator

Another way is staying the position if the position of a particle turned out to be outside of

boundary at the next step, potentially[18]. Or we can control the velocity vector. The velocity

vector is the update vector of a position. Many methods like PSO, FO, etc, confined the velocity

vector to Vmax. This seems just for staying the particles in the domain, but it has something to

do with the convergence issue[6]. These all methods to control the particles outside boundary

are good but NPO considers them in a different way.

NPO leaves them wander around even though the particles are out of boundary because

they will come back as long as the leading particles are in the boundary. The thing we have

to do is preventing the leading particles in the boundary. It is simply settled because we give

penalty to the particles outside the boundary not to be chosen as leading particles. We do not

need to calculate the fitness of particles outside and need to just put the big numbers in their

fitness values. This way is easy and not artificial, and has no randomness. As we mention in

§4.4, the position would be bounded if |m − n| < n for a guiding function whose degree of a

polynomial is n.

5.5 Exploration indicator

Since the balance between exploration and exploitation is so important, we suggest a measure

to indicate how much the parameter is set for the exploration[74]. We define an exploration

indicator(EI) as

EI1 =
mmax

2n
. (5.5.1)

Note 0 < EI1 < 1. If EI1 is small, the particles tend to exploit more than explore the search

space. As EI1 is nearly 1, they widely explore the search space. Usually the parameter is set

as EI1 ≈ 0.5.

In NPO, we can control the trade-off with not only the degree coefficient m but also the

choice of leading particles. Thus we suggest another exploration indicator. We define

EI2 =
1

2
− n(n+ 1)

4σ
+

n(n+ 1)

4(nN + n− σ)
(5.5.2)

where σ is the summation of the ranks of the leading particles. Note 0 < EI2 < 1. If EI2 gets

closer to 0, this implies that the leading particles are chosen from temporal best fitters, say,

low exploration(high exploitation). Contrastively, if EI2 gets closer to 1, this implies that all

leading particles come from mediocre fitters, implying high exploration(low exploitation). In

Figure 5-4, the exploration indicators are (a) EI2 = 0.015 and (b) EI2 = 0.366, respectively.

40

6

Results

We show the experimental results of Newton particle optimizer(NPO) for various global opti-

mization problems and compare the performance with those of particle swarm optimizer(PSO)

and firefly optimizer(FO) in this chapter.

Considering a generality of black-box problems, it is hard to evaluate how good a global

optimizer is. By the no-free-lunch theorem[62], there are no such algorithms that are always

dominant for all problems. So evaluation for some optimizers may seem meaningless but there

still exist the better optimizers for the specific problems. Here we adopt some popular test func-

tions in 2-dimensional space and CEC 2013 problem set, which is widely used for evaluation of

optimizers for higher-dimensional problems.

Refer that metaheuristic methods are interactive systems. They should be adjusted them-

selves in any circumstance. A hyper-parameter is a parameter set before the iterations and

usually set by human by trial and error. Least human intervention is desired for automation,

and a fixed parameter is not adaptable for changing environment. Thus the less the number

of hyper-parameters is, the better the optimizer is. What is more, the performances of many

optimizers are significantly affected by the parameters. Some parameters controls the balance

between exploration and exploitation. Other parameters determine the position somewhere

between the private best and global best. These parameters are artificial indeed. It is good to

know the adaptable parameters before the implementation in advance, which is almost impos-

sible. The best thing is removing the hyper-parameters and the second best thing is making

the control of parameters easy like NPO. We show some results and the results are changeable

under the different parameter set. But from the perspective of finding adaptable parameters,

NPO is more beneficial than PSO, and FO.

6.1 Tests in 2-dimensional search space

First, we show the simple results in 2-dimensional space.

41

6.1 Tests in 2-dimensional search space

6.1.1 2-dimensional test functions

We introduce 16 test functions for fitness functions and classify those functions into 3 classes

depending on the number of local minima[42]. It is no wonder that existence of many local

minima makes the problem harder. In Table 6-1, functions from no.1 to no.4 have a unique

global minimum and no local minima. Functions from no.5 to no.12 may have not global

minimum and have several local minima. The others have many local minima. The number of

local minima affects the performance significantly because getting trapped in a local minimum

prevent the particles from searching a global minimum. Visualization of the functions is attached

in Figure 6-1,6-2,6-3.

6.1.2 NPO v.s. PSO in 2D

We display the results in Figure 6-4, obtained with functions in Table 6-1. Figure 6-4 shows

the performances of NPO and PSO, respectively. The first figure (a) is the median values of

51 multiple runs for the minimization of the functions. It shows almost similar performances

for NPO and PSO in (a). The second figure (b) is the mean values of 51 multiple runs of the

number of iterations that required to get the minimum. If the minimum found by an optimizer is

attained to the tolerance 10−10, then the optimizer stops iteration. Maximum iteration number

is 1000. It is notable that NPO converges to the global minimum so fast except some fitness

functions, no. 7, 8, 14. On the other hand PSO converges much slower than NPO in (b), but

its probability to attain the minimum is 1 as we see in (c). This happens because of the hyper-

parameters. The parameters in NPO focus more on strong exploitation and those in PSO more

on strong exploration. In (d), we can check the running time.

The detailed parameters are follows. Population size n is 100 for both methods and the initial

position of particles are same to remove the advantage from initial position. For NPO, the matrix

M for each particle was chosen such that its eigenvalues lie between 0.5 and
√

8 ≈ 2.83. We

use 3 leading particles from top 3 best fitters for strong exploitation. The parameters for PSO

were set to the recommended values which are widely used in the benchmark tests[5, 21, 30].

42

6.2 Tests in the high dimensional search space

Table 6-1: Test Functions[42]. Each minimum of the functions is 0.

No. Function Domain

1 Beal
(
1.5− x1(1− x2)

)2
+
(
2.25− x1(1− x22)

)2
+
(
2.625− x1(1− x32)

)2 [−4.5, 4.5] ×
[−4.5, 4.5]

2 Zakharov x21 + x22 + (0.5x1 + x2
)2

+ (0.5x1 + x2
)4

[−5, 10]× [−5, 10]
3 Matyas 0.26(x21 + x22)− 0.48x1x2 [−10, 10] ×

[−10, 10]
4 Branin −0.3978873 + (x2 − 5.1

4π2x
2
1 + 5

πx1 − 6)2

+ 10(1− 1
8π) cos(x1) + 10

[−5, 10]× [0, 15]

5 Goldstein Price −3 +
(
1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 −

14x2 + 6x1x2 + 3x22)
)

×
(
30+(2x1−3x2)

2(18−32x1+12x21+48x2−
36x1x2 + 27x22)

)
[−2, 2]× [−2, 2]

6 Easom 1− cos(x1) cos(x2)
exp

(
− (x1 − π)2 − (x2 − π)2

) [−2π, 2π] ×
[−2π, 2π]

7 Drop-wave 1− 1+cos
(
12
√
x21+x

2
2

)
0.5(x21+x

2
2)+2

[−5.12, 5.12] ×
[−5.12, 5.12]

8 Rosenbrock 100(x2 − x21)2 + (x1 − 1)2 [−5, 10]× [−5, 10]

9 Ackley e− 20 exp
(
− 0.2

√
1
2(x21 + x22)

)
− exp

(
1
2

(
cos(2πx1) + cos(2πx2)

))
+ 20

[−15, 30] ×
[−15, 30]

10 Perm
∑2

i=1

(∑2
j=1(j

i + 0.5)
(
(
xj
j)i − 1

))2
[−2, 2]× [−2, 2]

11 Six-hump camel
back

1.0316284 +
(
4− 2.1x21 +

x41
3

)
x21 + x1x2

+ (−4 + 4x22)x
2
2

[−3, 3]× [−2, 2]

12 Michalewicz 1.8013034− sin(x1) sin20
(x21
π

)
− sin(x2) sin20

(2x22
π

) [0, π]× [0, π]

13 Shubert
(∑5

i=1 i cos
(
(i+ 1)x1 + i

))(∑5
i=1 i cos

(
(i+ 1)x2 + i

))
+ 186.7309088

[−10, 10] ×
[−10, 10]

14 Rastrigin 20 + x21 − 10 cos(2πx1) + x22 − 10 cos(2πx2) [−5.12, 5.12] ×
[−5.12, 5.12]

15 Schwefel 837.9657745− x1 sin(
√
|x1|)− x2 sin(

√
|x2|) [−500, 500] ×

[−500, 500]
16 Levy wi = 1 + (xi − 1)/4, i = 1, 2.

(w1 − 1)2
(
1 + 10sin(πw1 + 1)2

)
+ (w2 − 1)2

(
1 + sin2(2πw2)

)
+ sin2(πw1)

[−10, 10] ×
[−10, 10]

6.2 Tests in the high dimensional search space

This section compares numerical performances of NPO with those of PSO and FO in the high

dimensional search space. We tested with 28 benchmark functions suggested from the CEC 2013

competition for real-parameter optimization[33]. CEC 2013 problem set is including with 5 uni-

modal functions, 15 multi-modal functions and 8 composite functions in range [−100, 100]d,

where d is the dimension of search space.

43

6.2 Tests in the high dimensional search space

Figure 6-1: Test functions which have no local minima.

44

6.2 Tests in the high dimensional search space

Figure 6-2: Test functions which have several local minima.

45

6.2 Tests in the high dimensional search space

Figure 6-3: Test functions which have many local minima.

46

6.2 Tests in the high dimensional search space

Figure 6-4: 2-dimensional results of test function in Table 6-1.

47

6.2 Tests in the high dimensional search space

6.2.1 10-dimensional search space

The fitness functions lie in 10-dimensional space and 51 multiple runs are implemented for each

test function. We limit the number of evaluations of functions as dimension times 10000, that

is, 100000 for 10-dimensional problems.

The detailed parameters are followed. NPO uses 4 leading particles, 3 from best fitters

and one from the 50% performer. The matrix M for each particle was chosen such that its

eigenvalues lie between 0 and 4. The parameters for PSO were set to the recommended values

which are widely used in the benchmark tests[5, 21, 30]. The parameters for FO were taken

from [56, 41].

Table 6-2 shows that performances of three schemes are comparable. However, the sum-

marized mean ranking of NPO, PSO and FO in Table 6-3 are respectively 1.821, 2.107 and

2.01, which indicates that NPO is practically better than PSO and FO with these benchmark

functions.

6.2.2 30-dimensional search space

As the dimension becomes higher, NPO and PSO put a new complexion on the performance.

NPO tends to give better result than PSO in higher dimension. Because NPO can drive the

particles to temporal best with strong exploitation. The suggested number of fitness evaluation

is the multiplication of dimension and 10000. It is merely increased linearly while the search

space gets larger exponentially. Therefore under CEC 2013 problems’ suggestion, NPO has a

preponderance over PSO and FO.

On the other hand, for the computational cost, NPO is more expensive than PSO. Because

NPO includes inverse computations for matrix inside at every iteration. Whereas the compu-

tational cost of PSO increases linearly as the dimension is higher. Thus we have to choose the

proper metaheuristic methods in a given environment for trading off between computational

cost and accuracy.

The detailed parameters are as follows. NPO uses 3 leading particles, all from best fitters.

The matrix M for each particle was chosen such that its eigenvalues lie between 0 and 3. The

parameters for PSO were set to the recommended values which are widely used in the bench-

mark tests[5, 21, 30]. The parameters for FO were taken from [56, 41] except for delta=0.02.

Table 6-4 shows that performances of three schemes are comparable. However, the summa-

rized mean ranking of NPO, PSO and FO in Table 6-5 are respectively 1.5, 2.357 and 2.143,

which indicates that NPO is practically better than PSO and FO with these benchmark func-

tions.

48

6.2 Tests in the high dimensional search space

Function Best Worst Median Mean Variance
1 NPO 1.000e-08 1.000e-08 1.000e-08 1.000e-08 1.000e-08

PSO 1.000e-08 1.000e-08 1.000e-08 1.000e-08 1.000e-08
FO 2.413e-06 1.526e-05 8.771e-06 9.311e-06 8.862e-12

2 NPO 1.935+04 1.056e+06 2.269e+05 3.291e+05 2.670e+05
PSO 3.686e+04 2.911e+06 2.767e+05 4.520e+05 5.253e+05
FO 2.720e+03 2.255e+05 3.900e+05 5.487e+04 2.480e+09

3 NPO 9.035e-01 1.234e+08 9.889e+05 5.881e+06 1.765e+07
PSO 4.078e-03 4.513e+07 1.077e+05 1.631e+06 6.624e+06
FO 2.429e+00 1.877e+03 6.572e+01 2.622e+02 1.854e+05

4 NPO 4.565e+01 1.671e+03 2.231e+02 3.531e+02 3.360e+02
PSO 3.972e+02 3.814e+03 1.223e+03 1.340e+03 6.479e+02
FO 1.162e+02 5.479e+03 1.311e+03 1.655e+03 1.514e+06

5 NPO 2.130e-05 3.202e-04 1.141e-04 1.232e-04 6.380e-05
PSO 1.000e-08 1.000e-08 1.000e-08 1.000e-08 1.000e-08
FO 7.248e-04 2.908e-03 1.652e-03 1.709e-03 2.628e-07

6 NPO 4.910e-06 7.939e+01 9.853e+00 7.926e+00 1.107e+01
PSO 4.753e-02 7.699e+01 1.013e+01 8.818e+00 1.053e+01
FO 3.314e-03 9.820e+00 9.814e+00 9.440e+00 3.505e+00

7 NPO 8.153e-03 1.650e+01 1.586e+00 3.488e+00 4.058e+00
PSO 4.003e-01 8.370e+01 2.790e+00 7.079e+00 1.384e+01
FO 7.785e-03 1.504e-01 2.231e-02 3.281e-02 8.395e-04

8 NPO 2.008e+01 2.047e+01 2.032e+01 2.030e+01 9.520e-02
PSO 2.009e+01 2.047e+01 2.033e+01 2.031e+01 8.881e-02
FO 2.014e+01 2.050e+01 2.038e+01 2.036e+01 6.315e-03

9 NPO 1.324e+00 6.142e+00 3.495e+00 3.493e+00 1.098e+00
PSO 7.067e-01 5.864e+00 3.123e+00 3.045e+00 1.214e+00
FO 4.928e-02 2.492e+00 1.644e+00 1.500e+00 3.757e-01

10 NPO 9.353e-02 1.202e+00 4.733e-01 5.136e-01 2.461e-01
PSO 3.693e-02 1.321e+00 3.151e-01 3.828e-01 2.482e-01
FO 1.751e-02 2.833e-01 8.426e-02 9.841e-02 3.595e-03

11 NPO 8.060e-09 2.989e+00 4.997e-01 6.962e-01 7.574e-01
PSO 1.000e-08 4.975e+00 1.990e+00 1.974e+00 1.272e+00
FO 9.950e-01 1.492e+01 4.975e+00 5.736e+00 8.497e+00

12 NPO 2.984e+00 2.984e+01 1.293e+01 1.356e+01 5.561e+00
PSO 2.985e+00 3.927e+01 1.293e+01 1.435e+01 7.071e+00
FO 9.950e-01 1.691e+01 5.970e+00 6.438e+00 1.150e+01

13 NPO 7.426e+00 3.828e+01 2.293e+01 2.271e+01 8.047e+00
PSO 4.003e+00 3.909e+01 2.258e+01 2.215e+01 7.815e+00
FO 1.990e+00 2.745e+01 1.046e+01 1.129e+01 4.502e+01

14 NPO 2.995e-01 2.894e+02 7.649e+01 1.087e+02 8.823e+01
PSO 3.747e-01 5.912e+02 1.018e+02 1.257e+02 1.114e+02
FO 1.189e+01 9.208e+02 4.004e+02 4.424e+02 3.466e+04

15 NPO 2.676e+01 1.442e+03 8.231e+02 8.216e+02 3.104e+02
PSO 2.846e+02 1.555e+03 7.610e+02 7.990e+02 2.823e+02
FO 1.303e+02 8.364e+02 2.537e+02 2.984e+02 2.719e+04

16 NPO 5.424e-02 1.021e+00 4.327e-01 4.365e-01 2.474e-01
PSO 5.023e-01 1.634e+00 9.331e-01 9.553e-01 2.372e-01
FO 1.304e-02 3.961e-01 8.392e-02 1.140e-01 7.635e-03

17 NPO 1.097e+01 1.985e+01 1.405e+01 1.464e+01 2.113e+00
PSO 2.308e+00 2.157e+01 1.440e+01 1.376e+01 4.639e+00
FO 1.242e+01 3.003e+01 1.757e+01 1.808e+01 1.674e+01

18 NPO 1.400e+01 4.754e+01 2.411e+01 2.558e+01 7.811e+00
PSO 7.196e+00 5.724e+01 3.009e+01 3.051e+01 9.823e+00
FO 1.207e+01 2.984e+01 1.687e+01 1.770e+01 1.698e+01

19 NPO 2.148e-01 1.299e+00 5.489e-01 5.837e-01 2.068e-01
PSO 3.495e-01 1.106e+00 6.702e-01 6.785e-01 1.950e-01
FO 4.368e-01 1.703e+00 8.771e-01 9.387e-01 8.351e-02

20 NPO 9.732e-01 3.876e+00 2.744e+00 2.733e+00 6.217e-01
PSO 9.494e-01 3.621e+00 3.202e+00 2.979e+00 6.406e-01
FO 1.826e+00 5.000e+00 3.269e+00 3.261e+00 4.416e-01

21 NPO 3.000e+02 4.001e+02 4.001e+02 3.982e+02 1.389e+01
PSO 2.000e+02 4.002e+02 4.002e+02 3.649e+02 7.370e+01
FO 4.002e+02 4.002e+02 4.002e+02 4.002e+02 2.201e-14

22 NPO 1.250e+01 4.068e+02 1.682e+02 1.741e+02 9.757e+01
PSO 2.879e+01 4.089e+02 2.098e+02 2.039e+02 1.028e+02
FO 2.532e+01 1.424e+03 5.736e+02 5.582e+02 8.571e+04

23 NPO 3.999e+02 1.837e+03 1.090e+03 1.097e+03 3.703e+02
PSO 2.271e+02 1.575e+03 8.299e+02 8.140e+02 2.908e+02
FO 3.874e+01 1.993e+03 4.077e+02 4.849e+02 1.019e+05

24 NPO 1.106e+02 2.175e+02 2.079e+02 2.022e+02 2.309e+01
PSO 2.001e+02 2.211e+02 2.098e+02 2.099e+02 5.524e+00
FO 2.001e+02 2.166e+02 2.002e+02 2.022e+02 2.163e+01

25 NPO 1.149e+02 2.202e+02 2.059e+02 2.059e+02 1.409e+01
PSO 1.205e+02 2.214e+02 2.101e+02 2.087e+02 1.349e+01
FO 2.001e+02 2.111e+02 2.002e+02 2.009e+02 5.615e+00

26 NPO 1.039e+02 2.000e+02 2.000e+02 1.736e+02 3.938e+01
PSO 1.060e+02 3.176e+02 2.000e+02 1.864e+02 7.060e+01
FO 1.020e+02 3.144e+02 2.002e+02 1.969e+02 8.862e+03

27 NPO 3.002e+02 5.414e+02 3.059e+02 3.409e+02 6.418e+01
PSO 3.003e+02 6.391e+02 4.935e+02 4.373e+02 1.224e+02
FO 3.010e+02 4.000e+02 4.000e+02 3.559e+02 2.416e+03

28 NPO 1.000e+02 6.426e+02 3.000e+02 3.423e+02 1.239e+02
PSO 1.000e+02 3.000e+02 3.000e+02 2.882e+02 4.706e+01
FO 3.001e+02 4.001e+02 3.001e+02 3.217e+02 1.727e+03

Table 6-2: Benchmark for NPO, PSO, FO: tested with 10-dimensional functions in CEC 2013
competition[74] 49

6.2 Tests in the high dimensional search space

Function NPO PSO FO

1 1 1 3

2 2 3 1

3 3 2 1

4 1 2 3

5 2 1 3

6 1 2 3

7 2 3 1

8 1 2 3

9 3 2 1

10 3 2 1

11 1 2 3

12 2 3 1

13 3 2 1

14 1 2 3

15 3 2 1

16 2 3 1

17 2 1 3

18 2 3 1

19 1 2 3

20 1 2 3

21 2 1 3

22 1 2 3

23 3 2 1

24 1 3 1

25 2 3 1

26 1 2 3

27 1 3 2

28 3 1 2

Mean Rank 1.821 2.107 2.0

Table 6-3: Performance comparison of NPO, PSO, and FO in the mean ranking[74]

50

6.2 Tests in the high dimensional search space

Function Best Worst Median Mean Variance
1 NPO 7.336e-06 1.546e-04 2.496e-05 3.212e-05 2.633e-05

PSO 5.634e-03 5.443e-05 5.531e-04 9.455e-04 1.225e-03
FO 4.030e-05 8.755e-03 2.590e-03 2.788e-03 3.820e-06

2 NPO 3.496e+06 1.877e+07 1.219e+07 1.181e+07 3.611e+06
PSO 4.412e+07 5.542e+06 1.850e+07 1.955e+07 8.890e+06
FO 1.496e+07 3.682e+07 2.414e+07 2.445e+07 2.729e+13

3 NPO 2.121e+07 1.520e+09 2.828e+08 4.378e+08 4.316e+08
PSO 1.678e+09 2.797e+07 2.771e+08 4.075e+08 3.611e+08
FO 9.015e+07 1.227e+10 4.713e+09 4.978e+09 6.476e+18

4 NPO 4.726e+02 2.361e+03 1.064e+03 1.184e+03 4.5449e+02
PSO 1.672e+04 7.799e+03 1.212e+04 1.203e+04 2.352e+03
FO 4.982e+04 8.882e+04 6.376e+04 6.349e+04 7.175e+07

5 NPO 2.810e-03 1.200e-02 6.841e-03 7.019e-03 2.347e-03
PSO 7.281e-02 4.830e-03 2.260e-02 2.769e-02 1.593e-02
FO 6.943e+01 1.636e+02 1.155e+02 1.140e+02 6.018e+02

6 NPO 5.557e+00 1.283e+02 7.353e+01 6.777e+01 2.068e+01
PSO 1.559e+02 2.002e+01 9.432e+01 9.291e+01 3.367e+01
FO 2.290e+01 1.190e+02 7.284e+01 7.183e+01 3.079e+02

7 NPO 1.253e+01 8.567e+01 3.922e+01 3.971e+01 1.830e+01
PSO 7.794e+01 8.197e+00 4.031e+01 4.275e+01 1.421e+01
FO 4.720e+01 1.085e+02 7.209e+01 7.381e+01 2.368e+02

8 NPO 2.084e+01 2.111e+01 2.097e+01 2.097e+01 5.791e-02
PSO 2.105e+01 2.083e+01 2.095e+01 2.095e+01 5.215e-02
FO 2.084e+01 2.106e+01 2.095e+01 2.095e+01 3.023e-03

9 NPO 8.156e+00 4.121e+01 1.840e+01 1.885e+01 5.334e+00
PSO 3.541e+01 1.234e+01 2.217e+01 2.176e+01 4.940e+00
FO 1.329e+01 2.786e+01 2.068e+01 2.045e+01 1.292e+01

10 NPO 2.015e+00 1.371e+01 5.153e+00 5.400e+00 2.801e+00
PSO 2.756e+01 1.240e+00 4.394e+00 5.273e+00 4.369e+00
FO 1.641e+00 1.755e+01 4.856e+00 5.509e+00 9.168e+00

11 NPO 1.323e+01 4.481e+01 2.861e+01 2.872e+01 8.098e+00
PSO 5.561e+01 1.606e+01 3.011e+01 3.099e+01 7.488e+00
FO 3.384e+01 9.851e+01 6.570e+01 6.597e+01 1.938e+02

12 NPO 3.331e+01 2.214e+02 7.170e+01 1.088e+02 6.611e+01
PSO 2.351e+02 3.360e+01 1.124e+02 1.179e+02 5.343e+01
FO 3.583e+01 9.752e+01 6.174e+01 6.085e+01 1.924e+02

13 NPO 7.992e+01 2.123e+02 1.660e+02 1.617e+02 3.704e+01
PSO 2.511e+02 7.184e+01 1.969e+02 1.917e+02 3.060e+01
FO 1.034e+02 2.234e+02 1.514e+02 1.562e+02 6.868e+02

14 NPO 4.715e+02 2.072e+03 9.579e+02 1.008e+03 3.106e+02
PSO 2.601e+03 5.521e+02 1.055e+03 1.102e+03 3.705e+02
FO 2.056e+03 4.692e+03 3.279e+03 3.263e+03 3.107e+05

15 NPO 2.034e+03 8.073e+03 6.695e+03 5.359e+03 2.084e+03
PSO 7.7230e+03 5.015e+03 7.043e+03 6.945e+03 5.205e+02
FO 1.912e+03 4.827e+03 3.159e+03 3.163e+03 4.569e+05

16 NPO 1.876e+00 3.269e+00 2.527e+00 2.554e+00 3.028e-01
PSO 2.775e+00 1.454e+00 2.285e+00 2.257e+00 3.275e-01
FO 1.095e-01 1.069e+00 3.377e-01 4.002e-01 5.688e-02

17 NPO 5.644e+01 1.481e+02 7.926e+01 8.177e+01 1.795e+01
PSO 1.807e+02 7.090e+01 1.160e+02 1.174e+02 2.245e+01
FO 4.430e+01 8.163e+01 6.049e+01 6.102e+01 9.078e+01

18 NPO 1.993e+02 2.571e+02 2.224e+02 2.235e+02 1.424e+01
PSO 3.177e+02 1.886e+02 2.613e+02 2.591e+02 2.295e+01
FO 5.570e+01 1.277e+02 7.408e+01 7.820e+01 2.906e+02

19 NPO 2.299e+00 7.928e+00 4.107e+00 4.299e+00 1.094e+00
PSO 9.857e+00 2.809e+00 5.194e+00 5.395e+00 1.534e+00
FO 2.209e+00 7.152e+00 3.889e+00 4.042e+00 1.300e+00

20 NPO 1.017e+01 1.500e+01 1.194e+01 1.200e+01 7.945e-01
PSO 1.500e+01 1.150e+01 1.500e+01 1.385e+01 1.302e+00
FO 1.451e+01 1.500e+01 1.500e+01 1.498e+01 9.241e-03

21 NPO 2.001e+02 4.435e+02 3.001e+02 3.249e+02 7.618e+01
PSO 4.436e+02 1.028e+02 3.009e+02 3.525e+02 8.651e+01
FO 2.005e+02 6.406e+02 3.007e+02 3.307e+02 6.492e+03

22 NPO 4.523e+02 1.828e+03 9.580e+02 1.020e+03 3.113e+02
PSO 1.896e+03 5.436e+02 1.174e+03 1.165e+03 2.902e+02
FO 2.974e+03 7.244e+03 4.991e+03 5.171e+03 1.075e+06

23 NPO 2.073e+03 7.974e+03 4.425e+03 4.993e+03 1.948e+03
PSO 7.919e+03 5.916e+03 7.151e+03 7.121e+03 4.242e+02
FO 3.571e+03 6.590e+03 5.603e+03 5.453e+03 5.187e+05

24 NPO 2.107e+02 2.633e+02 2.296e+02 2.316e+02 1.222e+01
PSO 2.924e+02 2.510e+02 2.685e+02 2.675e+02 8.869e+00
FO 2.085e+02 2.656e+02 2.341e+02 2.339e+02 1.136e+02

25 NPO 2.551e+02 2.884e+02 2.721e+02 2.721e+02 8.050e+00
PSO 3.207e+02 2.627e+02 2.904e+02 2.900e+02 1.120e+01
FO 2.046e+02 3.040e+02 2.746e+02 2.667e+02 7.140e+02

26 NPO 2.001e+02 3.521e+02 2.004e+02 2.192e+02 4.727e+01
PSO 3.776e+02 2.002e+02 2.014e+02 2.656e+02 7.752e+01
FO 2.002e+02 3.509e+02 3.305e+02 3.030e+02 3.341e+03

27 NPO 4.456e+02 8.760e+02 7.468e+02 7.455e+02 8.392e+01
PSO 1.149e+03 7.335e+02 9.153e+02 9.164e+02 8.155e+01
FO 4.641e+02 8.727e+02 6.769e+02 6.698e+02 8.027e+03

28 NPO 1.002e+02 1.437e+03 3.002e+02 3.186e+02 1.606e+02
PSO 1.531e+03 1.006e+02 3.015e+02 3.611e+02 2.920e+02
FO 1.008e+02 2.545e+03 3.016e+02 3.886e+02 2.243e+05

Table 6-4: Benchmark for NPO, PSO, FO: tested with 30-dimensional functions in CEC 2013
competition 51

6.2 Tests in the high dimensional search space

Function NPO PSO FO

1 1 2 3

2 1 2 3

3 2 1 3

4 1 2 3

5 1 2 3

6 1 3 2

7 1 2 3

8 3 1 2

9 1 3 2

10 2 1 3

11 1 2 3

12 2 3 1

13 2 3 1

14 1 2 3

15 2 3 1

16 3 2 1

17 2 3 1

18 2 3 1

19 2 3 1

20 1 2 3

21 1 3 2

22 1 2 3

23 1 3 2

24 1 3 2

25 2 3 1

26 1 2 3

27 2 3 1

28 1 2 3

Mean Rank 1.5 2.357 2.143

Table 6-5: Performance comparison of NPO, PSO, and FO in the mean ranking

52

7

Conclusion

NPO takes a deterministic approach based on a well-established mathematical operation, New-

ton method. Due to the inherent fractal nature and strong convergence of the method, NPO

seems to enjoy both features of exploration and exploitation, making effective optimizations for

a wide range of functions.

For NPO, the balance between exploration and exploitation can be handled simply as a

property of a multi-dimensional mapping by a guiding function. Because such mapping can be

easily created by conditions of an ideal guiding function in §5.1, it can be analysed and tuned for

the convergent/divergent movements of searching agents. This characteristic provides us with

consideration of customizing the guiding function depending on the quality of test functions for

future work.

For local convergence of NPO, we partly adopted randomness in NPO, but this may not

be necessary. There are some chaotic-based optimizers guaranteed local convergence without

randomness[43]. Many metaheuristic methods including NPO drive the particles by the force

derived from the interaction among population. This characteristic ends up with particles’ stag-

nation and lack of diversity. Though NPO is one of them, it has inherent pseudo randomness

using chaos unlike other methods. We can use this property to temporal best instead of ran-

domness.

We suggested two ways to pick the leading particles in this dissertation but there can be

proposed more ways. Choosing leading particles is a parameter to control the balance between

exploration and exploitation in NPO. Especially suggested ways consider the fitness values of

the particles only. We can use other information such as geographic information of leading

particles or the multiplicity of a guiding function. We can choose the distant leading particles.

This may get worse the performance because of its poor exploitation ability but this is good

at exploration. Moreover, it is known that if the derivative of a function is closely zero, then

the particle runs away from the root by Newton method. The balance between exploration and

exploitation can be controlled by leading particles and guiding functions.

53

Besides, there are many general problems in global optimization. As we introduced some

technical problems in §1.2.3, it is important to set the proper criteria in global optimizer such

as stopping criteria, initialization, the number of fitness evaluation, etc. Not much research has

been done yet in spite of its importance. To evaluate the performance of an optimizer, we need

the adaptable measure. Mean ranking is dependent on the fitness value, which is not desired.

Metaheuristics consider the universal structure of fitness function regardless of its specific char-

acteristics or scale. And for practical use, we suffer the curse of dimensionality of search space.

The search space is exponentially increased as the dimension gets higher. This difficulty should

be handled in proper way practically. What is more, the ideal balance between exploration and

exploitation is unknown. Though we handle this by trial and error, there need more rigorous

research to clear the global optimization problem from this respect.

54

References

[1] Abido, M. (2002). “Optimal design of power-system stabilizers using particle swarm opti-

mization.” IEEE transactions on energy conversion 17(3): 406-413. 12

[2] Abraham, A., et al. (2008). “Swarm intelligence algorithms for data clustering. Soft com-

puting for knowledge discovery and data mining.” Springer: 279-313. 12

[3] Beni, G. (2004). “From swarm intelligence to swarm robotics.” International Workshop on

Swarm Robotics, Springer. 9

[4] Bonyadi, M. R., et al. (2014). “Particle swarm optimization for single objective continuous

space problems: a review.” Evolutionary Computation 1530: 9304.

[5] Chou, C.-W., et al. (2013). “Markov Chain and Adaptive Parameter Selection on Particle

Swarm Optimizer.” International Journal on Soft Computing 4(2): 1. 42, 48

[6] Clerc, M. and J. Kennedy (2002). “The particle swarm-explosion, stability, and convergence

in a multidimensional complex space.” IEEE transactions on evolutionary computation

6(1): 58-73. 10, 40

[7] Cohen, A., et al. (2018). “Diverse Exploration for Fast and Safe Policy Improvement.”

arXiv preprint arXiv:1802.08331. 5

[8] Dorigo, M. (1992). “Optimization, learning and natural algorithms.” PhD Thesis, Politec-

nico di Milano. 1, 10

[9] Du, K.-L. and M. Swamy (2016). “Search and optimization by metaheuristics.” Birkhaser)

July. 15

[10] Du, K.-L. and M. N. Swamy (2013). “Neural networks and statistical learning.” Springer

Science Business Media. 13

[11] Eberhart, R. and J. Kennedy (1995). “A new optimizer using particle swarm theory.”

Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International

Symposium on, IEEE. 1, 9

55

REFERENCES

[12] Emary, E. and H. M. Zawbaa (2016). “Impact of chaos functions on modern swarm opti-

mizers.” PloS one 11(7): e0158738. 2, 15

[13] Engelbrecht, A. P., et al. (1999). “Training product unit neural networks.” 13

[14] Fister, I., et al. (2013). “A comprehensive review of firefly algorithms.” Swarm and Evolu-

tionary Computation 13: 34-46.

[15] Fister Jr, I., et al. (2015). “A review of chaos-based firefly algorithms: perspectives and

research challenges.” Applied Mathematics and Computation 252: 155-165. 2, 15

[16] Gaing, Z.-L. (2004). “A particle swarm optimization approach for optimum design of PID

controller in AVR system.” IEEE transactions on energy conversion 19(2): 384-391. 12

[17] Gao, S., et al. (2006). “Convergence analysis of particle swarm optimization algorithm.”

Science Technology and Engineering 6(12): 1625-1627. 10

[18] Ghalia, M. B. (2008). “Particle swarm optimization with an improved exploration-

exploitation balance.” Circuits and Systems, 2008. MWSCAS 2008. 51st Midwest Sym-

posium on, IEEE. 40

[19] Glover, F. (1986). “Future paths for integer programming and links to artificial intelli-

gence.” Computers operations research 13(5): 533-549. 1, 8

[20] Gordon, D. M. (2010). “Ant encounters: interaction networks and colony behavior.” Prince-

ton University Press.

[21] Guerra, F. A. and L. d. S. Coelho (2008). “Multi-step ahead nonlinear identification of

Lorenzs chaotic system using radial basis neural network with learning by clustering and

particle swarm optimization.” Chaos, Solitons Fractals 35(5): 967-979. 42, 48

[22] Guo, C., et al. (2009). “Optimal control of continuous annealing process using PSO.”

Automation and Logistics, 2009. ICAL’09. IEEE International Conference on, IEEE. 12

[23] Gupta, A. K., et al. (2006). “The interplay between exploration and exploitation.” Academy

of management journal 49(4): 693-706. 5

[24] Hassanzadeh, I. and S. Mobayen (2007). “Optimum design of PID controller for 5-bar-

linkage manipulator using particle swarm optimization.” Proceeding of the 4th t Interna-

tional Symposium on Mechatronics and its Applications (ISMA07), Sharjah, UAE March.

12

[25] He, Q., et al. (2007). “Parameter estimation for chaotic systems by particle swarm opti-

mization.” Chaos, Solitons Fractals 34(2): 654-661. 2

56

REFERENCES

[26] Hilborn, R. C. (2000). “Chaos and nonlinear dynamics: an introduction for scientists and

engineers.” Oxford University Press on Demand. 15, 16

[27] Holland, J. H. (1992). “Adaptation in natural and artificial systems: an introductory anal-

ysis with applications to biology, control, and artificial intelligence.” MIT press. 11

[28] Hubbard, J., et al. (2001). “How to find all roots of complex polynomials by Newtons

method.” Inventiones mathematicae 146(1): 1-33. 16

[29] Kennedy, J. (2000). “Stereotyping: Improving particle swarm performance with cluster

analysis.” Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, IEEE.

12

[30] Khodier, M., et al. (2008). “Design of multi-band multi-section transmission line trans-

former using particle swarm optimization.” Electrical Engineering 90(4): 293-300. 42, 48

[31] Li, M., et al. (2013). “Prediction of gas solubility in polymers by back propagation artificial

neural network based on self-adaptive particle swarm optimization algorithm and chaos

theory.” Fluid Phase Equilibria 356: 11-17. 2, 15

[32] Li, N., et al. (2006). “An analysis for a particle’s trajectory of PSO based on difference

equation.” Jisuanji Xuebao/Chinese Journal of Computers 29(11): 2052-2061. 10

[33] Liang, J., et al. (2013). “Problem definitions and evaluation criteria for the CEC 2013

special session on real-parameter optimization.” Computational Intelligence Laboratory,

Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singa-

pore, Technical Report 201212: 3-18. 43

[34] Liao, Q., et al. (2017). “Parameter estimation of nonlinear systems by dynamic cuckoo

search.” Neural computation 29(4): 1103-1123.

[35] Liu, H.-b., et al. (2006). “Convergence analysis of particle swarm optimization and its

improved algorithm based on chaos.” Control and decision 21(6): 636. 10

[36] Lu, Z.-S. and Z.-R. Hou (2004). “Particle swarm optimization with adaptive mutation.”

Acta electronica sinica 32(3): 416-420. 10

[37] Malik, S. and S. Wadhwa (2014). “Preventing premature convergence in genetic algorithm

using DGCA and elitist technique.” Int J Adv Res Comput Sci Soft Eng 4(6). 16

[38] Mandelbrot, B. B. (1982). “The fractal geometry of nature.” WH freeman New York. 17

[39] Mengxia, L., et al. (2016). “The Particle Swarm Optimization Algorithm with Adaptive

Chaos Perturbation.” International Journal of Computers, Communications Control 11(6).

2, 15

57

REFERENCES

[40] Miller, P. (2010). “Smart swarm.” HarperCollins UK.

[41] Mo, Y.-b., et al. (2013). “Optimal choice of parameters for firefly algorithm.” Digital Man-

ufacturing and Automation (ICDMA), 2013 Fourth International Conference on, IEEE.

48

[42] Molga, M. and C. Smutnicki (2005). “Test functions for optimization needs.” Test functions

for optimization needs 101. xi, 6, 42, 43

[43] Okamoto, T. and H. Hirata (2010). “Global optimization using a multi-point type quasi-

chaotic optimization method with the simultaneous perturbation gradient approximation.”

Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on, IEEE. 16,

53

[44] ping Tian, D. (2013). “A review of convergence analysis of particle swarm optimization.”

International Journal of Grid and Distributed Computing 6(6): 117-128. 10

[45] Poli, R. (2008). “Analysis of the publications on the applications of particle swarm opti-

misation.” J. Artif. Evol. App. 2008: 1-10. 12

[46] Poli, R., et al. (2007). “Particle swarm optimization.” Swarm intelligence 1(1): 33-57.

[47] Rakitianskaia, A. and A. P. Engelbrecht (2009). “Training neural networks with PSO in

dynamic environments.” Evolutionary Computation, 2009. CEC’09. IEEE Congress on,

IEEE. 13

[48] Ren, Z.-H., et al. (2011). “The global convergence analysis of particle swarm optimization

algorithm based on Markov chain.” Control Theory Applications 28(4): 462-466. 16

[49] Rickles, D., et al. (2007). “A simple guide to chaos and complexity.” Journal of Epidemi-

ology Community Health 61(11): 933-937. 15

[50] Rudenko, O. and M. Schoenauer (2004). “A steady performance stopping criterion for

Pareto-based evolutionary algorithms.” 6th International Multi-Objective Programming

and Goal Programming Conference. 6

[51] Sauer, T. (2012). “Numerical Analysis (2nd).” Addison-Wesley, New Jersey, USA. 16

[52] Sharma, S. and G. P. Rangaiah (2013). “An improved multi-objective differential evolution

with a termination criterion for optimizing chemical processes.” Computers Chemical

Engineering 56: 155-173. 6

[53] Sheng, Z., et al. (2014). “Parameter estimation for chaotic systems using a hybrid adaptive

cuckoo search with simulated annealing algorithm.” Chaos: An Interdisciplinary Journal

of Nonlinear Science 24(1): 013133. 2

58

REFERENCES

[54] Shi, Y. and R. C. Eberhart (1998). “Parameter selection in particle swarm optimization.”

International conference on evolutionary programming, Springer.

[55] Snaselova, P. and F. Zboril (2015). “Genetic algorithm using theory of chaos.” Procedia

Computer Science 51: 316-325. 2, 15

[56] Takeuchi, M., et al. (2016). “Firefly algorithm existing leader fireflies.” Circuits and Systems

(APCCAS), 2016 IEEE Asia Pacific Conference on, IEEE. 48

[57] Van Den Bergh, F. (2001). “An analysis of particle swarm optimizers.” University of Pre-

toria South Africa. 10, 28, 29, 30, 31

[58] Van den Bergh, F. and A. P. Engelbrecht (2000). “Cooperative learning in neural networks

using particle swarm optimizers.” South African Computer Journal 2000(26): 84-90.

[59] Van der Merwe, D. and A. P. Engelbrecht (2003). “Data clustering using particle swarm

optimization.” Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, IEEE.

12

[60] Van Veldhuizen, D. A. and G. B. Lamont (2000). “On measuring multiobjective evolution-

ary algorithm performance.” Evolutionary Computation, 2000. Proceedings of the 2000

Congress on, IEEE. 6

[61] Weise, T. (2009). “Global optimization algorithms-theory and application.” Self-published

2. 1, 4

[62] Wolpert, D. H. and W. G. Macready (1997). “No free lunch theorems for optimization.”

IEEE transactions on evolutionary computation 1(1): 67-82. 3, 5, 41

[63] Wong, J. Y., et al. (2016). “Design of shell-and-tube heat exchangers for multiple objectives

using elitist non-dominated sorting genetic algorithm with termination criteria.” Applied

Thermal Engineering 93: 888-899.

[64] Wu, X. and Z. Chen (1996). “Introduction of chaos theory.” Shanghai Science and Tech-

nology, Bibliographic Publishing House. 14

[65] Yang, X.-S. (2009). “Firefly algorithms for multimodal optimization.” International sym-

posium on stochastic algorithms, Springer. 1, 11

[66] Yang, X.-S. (2017). “Nature-inspired algorithms and applied optimization.” Springer. 11

[67] Yang, X.-S. (2018). “Mathematical Analysis of Nature-Inspired Algorithms.” Nature-

Inspired Algorithms and Applied Optimization, Springer: 1-25. 4

[68] Yuan, X., et al. (2015). “Parallel chaos optimization algorithm with migration and merging

operation.” Applied Soft Computing 35: 591-604.

59

REFERENCES

[69] Zhang, L.-p., et al. (2004). “Analysis and improvement of particle swarm optimization

algorithm.” Information and control 33(5): 513-517. 10

[70] Zhang, Z.-H., et al. (2015). “Parameter estimation of atmospheric refractivity from radar

clutter using the particle swarm optimization via Lvy flight.” Journal of Applied Remote

Sensing 9(1): 095998.

[71] Zitzler, E. and L. Thiele (1998). “Multiobjective optimization using evolutionary algo-

rithmsa comparative case study.” International conference on parallel problem solving from

nature, Springer. 6

[72] Kenneth Sorensen (2015). “Metaheuristicsthe metaphor exposed.” International Transac-

tions in Operational Research, 22(1):3-18, 2015. 3

[73] Yang, X.-S. (2011). “Engineering Optimization : An Introduction with Metaheuristic Ap-

plications.” Wiley. 9

[74] Jeong, S. and Kim, P (2019). “A population based optimization method using Newton

fractal.” Complexity, in press. ix, x, xi, 2, 7, 18, 19, 21, 22, 24, 26, 33, 34, 39, 40, 49, 50

60

	1 Introduction
	1.1 Overview
	1.2 Global optimization problems
	1.2.1 Problem settings
	1.2.2 Exploration and exploitation
	1.2.3 Technical issues

	1.3 Summary of contents

	2 Population-based Metaheuristics
	2.1 Population-based metaheuristics
	2.2 Applications of population-based methods

	3 Exploration and Exploitation in Chaos-based searches
	3.1 Chaos v.s. randomness in optimization
	3.2 Adoption of chaos in global optimizers
	3.3 Chaos created by Newton method

	4 Newton Particle Optimizer1
	4.1 Algorithm
	4.2 Searching manner of NPO
	4.3 Convergence of metaheuristics
	4.4 Local convergence of NPO
	4.5 Criteria for choice of m and M

	5 Construction of A Guiding Function
	5.1 Conditions for an ideal guiding function
	5.2 Extension of a guiding function
	5.3 Criteria for choice of leading particles
	5.3.1 Idle leaders in leading particles
	5.3.2 Personal best in leading particles

	5.4 Particles outside the boundary
	5.5 Exploration indicator

	6 Results
	6.1 Tests in 2-dimensional search space
	6.1.1 2-dimensional test functions
	6.1.2 NPO v.s. PSO in 2D

	6.2 Tests in the high dimensional search space
	6.2.1 10-dimensional search space
	6.2.2 30-dimensional search space

	7 Conclusion
	References

<startpage>13
1 Introduction 1
 1.1 Overview 1
 1.2 Global optimization problems 3
 1.2.1 Problem settings 3
 1.2.2 Exploration and exploitation 4
 1.2.3 Technical issues 5
 1.3 Summary of contents 6
2 Population-based Metaheuristics 8
 2.1 Population-based metaheuristics 9
 2.2 Applications of population-based methods 12
3 Exploration and Exploitation in Chaos-based searches 14
 3.1 Chaos v.s. randomness in optimization 15
 3.2 Adoption of chaos in global optimizers 15
 3.3 Chaos created by Newton method 16
4 Newton Particle Optimizer1 24
 4.1 Algorithm 24
 4.2 Searching manner of NPO 26
 4.3 Convergence of metaheuristics 28
 4.4 Local convergence of NPO 30
 4.5 Criteria for choice of m and M 32
5 Construction of A Guiding Function 34
 5.1 Conditions for an ideal guiding function 34
 5.2 Extension of a guiding function 35
 5.3 Criteria for choice of leading particles 37
 5.3.1 Idle leaders in leading particles 37
 5.3.2 Personal best in leading particles 38
 5.4 Particles outside the boundary 39
 5.5 Exploration indicator 40
6 Results 41
 6.1 Tests in 2-dimensional search space 41
 6.1.1 2-dimensional test functions 42
 6.1.2 NPO v.s. PSO in 2D 42
 6.2 Tests in the high dimensional search space 43
 6.2.1 10-dimensional search space 48
 6.2.2 30-dimensional search space 48
7 Conclusion 53
References 55
</body>

