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Abstract 

 

Among diverse hierarchical theoretical methods in the field of condensed matter, Kohn and Sham’s 

prescription of density functional theory (named the Kohn-Sham equation) is particularly advantageous 

because of its practicality and simplicity. This equation allows the investigation of the electronic 

structure of materials on a first-principle basis without requiring inputs derived from prior knowledge. 

This thesis presents the integration of the Kohn-Sham density-functional equation into a time-evolution 

package to construct a real-time and time-dependent density functional calculation method. Using this 

computational tool, the real-time dynamics of electrons in materials were investigated. Numerical 

analysis of physical phenomena was performed that cannot readily be assessed using simple model-

based theories or static calculations. In this thesis, three separate studies are presented. The first is 

regarding the correlation between the spin state of conduction valley and specific phonon mode in 

monolayer MoS2. The second study is the revelation of Berry curvature and band topology in time-

propagating Bloch states under static E-field. The last study is on the real-time dynamics of ultrafast 

charge transfer. The focus is on exhibiting the unique advantages of the real-time propagation 

calculation method. It is proposed that the real-time propagation package can be further developed as a 

general tool to be applied to the calculations of material responses upon an infinitesimal probing 

perturbation or a strong external driver. 
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Ⅰ. Introduction 

  

Since Newton published the equation of motion for a classical point particle, mathematical 

formulations of physical laws have been pursued toward an ultimately generalized theory. Dynamical 

laws of physics written in simple mathematical form have allowed versatile predictions of nature, and 

thus provided a solid foundation for various areas of technological development. At critical moments, 

observed experimental results have deviated from or even sharply contradicted the contemporary theory. 

These contradictions have stimulated the development of physical knowledge and enabled the discovery 

of new properties of nature. In the early 20th century, the distinction between predictions of classical 

dynamics and experimental observations resulted in the formulation of quantum physics [1]. The 

unexpected behavior of nature showed brand-new physics phenomena in the quantum world such as 

wave-particle duality and the indistinguishable property of the particle. Based on these properties, 

Schrodinger, Heisenberg, and many other pioneers formulated the equation for the quantum mechanics 

of particles in the microscopic world. Note, it remains difficult to solve for many-body systems with an 

exact description of the indistinguishable property of quantum particles.  

 To predict the behavior of quantum particles using the Schrodinger equation, various approaches have 

been proposed and tested. Among these approaches, Kohn and Sham suggested that the 

indistinguishable property for a non-interacting particle can be approximated as a local density 

functional potential [2]. This effective potential makes it possible to describe the effect of a many 

electron system through the one-body equations, which is called Kohn-Sham equation. Based on this 

density functional theory (DFT) approach, steady-state properties of materials have been 

computationally investigated such as geometrical structure, electronic band structure, and magnetism. 

To explore the real time dynamics of electronic structure beyond the steady-state, the time propagation 

of the electron wavefunction in material has also been investigated using the time-dependent DFT 

(TDDFT) method and the time-profile of observable quantities evaluated by time-propagating 

wavefunctions, which can be directly compared with experimental observation [3, 4].  

 In this thesis, DFT and TDDFT are briefly reviewed. Intriguing physical phenomena related to real 

time dynamics are then introduced. In particular, three different studies in materials are presented as 

examples of real time dynamics. The first study is on spin-phonon interaction and phonon induced 

magnetism in monolayer MoS2 [5]. In this study, it is found that the spin expectation value of conduction 

band valley state in monolayer MoS2 shows large variation according to the specific phonon mode. 

Based on this spin-phonon interaction, phonon-induced spin-Floquet magnetism is suggested. The 

second topic is revelation of material Berry curvature and band topology in the time-propagating Bloch 

state [6]. The non-zero Berry curvature in the Brillouin zone generates the anomalous velocity of the 

Bloch state under the static E-field. Through the evaluation of the expectation value of the velocity 
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operator around the Brillouin zone under a static E-field, the quantum anomalous Hall conductivity and 

quantum spin Hall conductivity in 2D topological materials were obtained. The last study is a real-time 

dynamics simulation of ultrafast charge transfer [7]. Through an Ehrenfest dynamics simulation, the 

non-equilibrium dynamics phenomena of ultrafast charge transfer are evaluated depending on the initial 

kinetic energy of the ionic system. These three studies reveal the advantages of the real-time dynamics 

method that cannot be understood by steady state electronic structure. It was found that the time-profile 

of the physical observable becomes an important indicator to understand real time dynamics in materials. 

The real time dynamics calculated using the TDDFT method are used to investigate time propagating 

electron states under external perturbations.  
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Ⅱ. Theoretical background and computational details 

2.1. Density functional theory 

2.1.1. Kohn-Sham equation 

In 1960, Hohenberg and Kohn published two important theorems for the calculation of a system of non-

interacting particles [8]. The first theorem proves that the electron density is determined by the external 

potential. The second theorem reveals that the ground state energy can be obtained from the variational 

principle. Based on these two theorems, the effective one-body equation (called the Kohn-Sham 

equation) was introduced to evaluate the ground states of many electron systems. In this equation, the 

local density functional is employed to describe the electron-electron exchange and correlation 

interactions. By solving the Kohn Sham equation, the ground electron wavefunction and quasiparticle 

energy level can be evaluated. The Kohn Sham equation can be written as follows  

( ) ( ) ( ) ( ) ( )21

2
ion Columb XCV r V r V r r r   

 
−  + + + =       
 

 (2.1), 

where Vext, VH, and Vex are the electron-ion coulomb potential, electron-electron coulomb potential, and 

electron-electron exchange-correlation potential, respectively.   

In the early stages of DFT development, Kohn and Sham suggested electron-electron exchange 

interactions between non-interacting electrons in material can be approximated as the exchange 

interaction of homogenous electron gas. 

( ) ( )3 / 4electron gas

XCV r r  − =    (2.2) 

Although the many-body interactions between identical electrons cannot be solved exactly, this simple 

assumption makes it possible to describe the electronic structure of real material. After this suggestion, 

the more precise exchange functional has been investigated for the accurate description of electronic 

structure. The local density approximation (LDA) contains an exchange interaction term of 

homogenous electron gas and additional correlation term to compensate for the missing parts compared 

with the many-body interaction [9]. In addition, the spin state of an electron in the system is considered 

by assigning two distinguishable spin states. As a result, the steady state properties of a material (such 

as lattice parameter and band gap) may be calculated under the DFT scheme. 

 For an improved description of material properties using the ab initio approach, a generalized gradient 

approximation method is proposed which adds the gradient of the charge density term on the LDA 

functional [10]. However, there are still problems in describing material properties related to many body 

interactions of electrons by solving the one-body equation. For example, the band gap calculated by 

DFT often fails to match the experimentally measured optical band gap. This difference comes from 

the many body effect of photo excitation. To evaluate the many-body interaction of excited carriers 

from the ground state electronic structure, Hedin suggested the self-consistent equation called Hedin’s 
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cycle [11]. Based on his study, the optical band gap could be evaluated by DFT calculation with a 

correction for the many body interaction. For example, the GW approximation deals the two bodies 

interaction between hole and negative charge screening, and electron and positive charge screening and 

Bethe-Salpeter equation includes the four bodies interaction between hole, electron, negative and 

positive charge screening. There are similar approaches to evaluate the other many body effects under 

the DFT calculation such as the DFT+DMFT method [12]. 
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2.1.2. Self-consistent field and basis set 

Currently, computational packages for DFT calculation are mainly developed by a few professional 

groups. These packages have their own merits related to numerical calculation and technique. The 

computational algorithms used can be categorized depending on the basis set type for the electron 

wavefunction description. For example, the plane wave basis set is specialized to describe 3D periodic 

systems and is employed in the VASP, Quantum ESPRESSO, and Abinit packages [13-15]. However, 

the computational code with plane wave basis set incurs high computational cost for the Fourier 

transform process. The numerical grid basis set (employed in the Octopus package) can describe the 

various dimensional periodic system. The localized atomic orbital basis set (employed in the Siesta 

package) incurs low computational costs by use of an additional numeric algorithm. The full-potential 

linearized augmented plane wave basis set (employed in the Wien2k and ELK packages) can deal with 

the all electron structure using augmented core wavefunctions. While each basis set has particular 

computational issues associated with implementation, the main algorithm of the DFT calculation is 

generalized.  

The DFT self-consistent loop with plane wave basis set is shown in Figure 2-1. At the initial stage of 

the DFT calculation, the KS Hamiltonian of the system should be set. Atomic geometry, initial charge 

density, and basis set for KS states are required to construct the initial KS Hamiltonian. To construct the 

initial charge density ( ( ) ( )
2

occ
init guess

n

n

r r = ), guessed atomic orbital states ( ( )guess

n r ) are used. 

After the construction of the KS Hamiltonian, the KS wavefunction ( ( )KS

n r ) and KS eigenvalues 

(
KS

n ) are evaluated using diagonalization. The KS wavefunctions obtained are expressed in the given 

basis set. For example, the KS wavefunction in the plane wave basis set can be described as follows 

( ) ( )
cutE

KS iG r

n n

G

r C G e = , where Ecut is maximum kinetic energy of the plane wave. The new charge 

density ( ( ) ( )
2

occ
new KS

n

n

r r = ) can be constructed using the obtained KS wavefunctions. The non-

linearity of the KS equation allows the new Hamiltonian (constructed using the new charge density) to 

provide a new KS wavefunction that is different from that previously obtained. Therefore, KS equations 

are self-consistently solved by updating the KS Hamiltonian. If the conserved criteria (such as charge 

density and total energy difference) are reached, the self-consistent loop is terminated. This process is 

a general self-consistent field algorithm of the DFT calculation. As a result, the ground state KS 

wavefunctions and eigenvalues can be obtained.  
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Figure 2-1. Flowchart for DFT self-consistent calculation 

  



 7  

2.1.3. Pseudopotential 

Effective approximation can significantly reduce computational costs. An example of an effective 

approximation method in the DFT calculation is the pseudopotential method [16]. This method is based 

on the simple idea that the core level electrons remain in their atomic orbital states, while valence atomic 

orbital states are redistributed by external perturbation. Under this assumption, only valence electron 

states in the KS Hamiltonian are considered. Additional potentials, called pseudopotentials, should be 

employed to compensate for the interactions between core atomic orbital and valence electron states. 

To generate the pseudopotential, all electron wavefunctions of a single atom system obtained by DFT 

calculation are required as follows: 

( ) ( )
  ( ) ( )

2

2 2

11

2 2

AE AE

xc nl nl

l l rd Z
dr rR r rR r

dr r r r r


  

 +
− + − + + = 

− 
  . (2-3) 

With all electron wavefunctions, pseudo wavefunctions and pseudopotentials can be evaluated. Using 

the spherical symmetry of a single atom system, only the radial part of the wavefunction can be 

considered. The pseudo wavefunctions obtained should satisfy several conditions compared with the all 

electron KS wavefunctions as follows:  

( )
( ) ( ) ( )

( )
( )

( )

2

,2 2

2

, 2 2

11
,

2 2

1 1

2 2

PP PS PS

l sc nl l nl

PP PS

l sc l lPS

l

l ld
V r rR r rR r

dr r

l l d
V r rR r

r rR dr





+ 
− + + = 
 

+
 = − +  

  (2-4) 

As a result, the pseudopotential for a given total angular momentum is given by:  

( ) ( )
( )

 

( ) ( )
max

,

2

0

,
vPP PP

l l sc xc v

l l
PS

v l

l m l

r
V r V r dr

r r

r rR r


 


= =−


= − −

−

=



 

 (2-5) 

In the KS Hamiltonian, the pseudopotential in Eq. 2-5 is used instead of the all electron potential.  
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2.1.4. Hubbard U potential in DFT 

Under the DFT scheme, the exchange-correlation potential sometimes fails to describe the charge 

transfer situation. This problem is called the over-delocalized problem. For example, the DFT 

calculation provides the negligible band gap of a Mott insulator (such as NiO), while its wide band gap 

is observed experimentally [17]. To remedy this problem of exchange-correlation functional, DFT with 

Hubbard U potential (DFT+U) method is employed [7, 17-19]. In this method, occupation dependent 

non-local potential enhances the on-site Coulomb interaction of the atomic orbital site. This DFT+U 

energy consists of occupation numbers of atomic orbital sites as follows:  

( )

,

,

,
2

ˆwhile  and .

I I I

Hub mm mm m m

I m m

I I

I k I k k I m m

k m m

U
E n n n

n P f P

  



      









 
= − 

 

= =

 

 
 (2-7) 

when the projection operators ( IP ) are made up of atomic orbital states (
I

m ). The occupation numbers 

( In  )of atomic orbital states are evaluated by applying the atomic orbital projector to the occupation 

of KS states ( ( )kf  ). From the Euler-Lagrange equation, the potential for DFT+U is given as follows: 

1ˆ ˆ ˆ
2

DFT U DFT

k k I I k

I

V V U n P     +  
= + − 

 
 .  (2-8) 

Depending on the occupation number of the atomic orbital state in the KS state, this DFT+U potential 

provides the negative and positive potential. If a system shows single occupation for the 1s orbital state, 

the DFT+U potential shifts -0.5U energy for 1s KS orbital state. As a result, it enforces the integer 

occupation of atomic orbital states (0 or 1 occupations).   
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2.2. Time dependent density functional theory 

 2.2.1. Introduction 

The ground state electronic structure and related material properties have been studied by solving the 

KS equation. However, the non-equilibrium dynamics of the electron carrier cannot be described by 

DFT calculation. In 1984, Runge and Gross introduced an important theorem for time-dependent 

quantum simulation [20]. The theorem proves the one to one mapping between time-varying electron 

density and external scalar potentials and is the time-dependent version of the Hohenberg-Kohn theorem. 

Based on this theorem, time-dependent density functional theory (TDDFT) has been developed [3, 7, 

21]. This method has been used to explore optical properties, light-matter interaction, and non-

equilibrium dynamics in condensed matter. There are two different approaches in the TDDFT scheme. 

The first approach is linear response (lr-) TDDFT, which evaluates the optical properties of a material 

in the frequency domain (such as the dielectric function). The second approach is real time propagation 

(rtp-) TDDFT, which proceeds the time-evolution of KS states by applying the time-evolution operator. 

In this thesis, the rtp-TDDFT method is used to investigate the real time dynamics of electron states in 

materials. 
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 2.2.2. Time-evolution operator in rtp-TDDFT scheme 

In the rtp-TDDFT scheme, construction of the time evolution operator (derived from the time-dependent 

KS equation) is the first step for time-propagation. The operator is written as: 

( )
ˆ

, exp
H

U t dt t i dt
 

+ = − 
 

 (2-8) 

By applying the time-evolution operator on the KS wavefunctions in the previous time step, the 

wavefunction at next time step is obtained:  

( ) ( ) ( ),t dt U t dt t t + = +  (2-9) 

In practical computation, there are various forms of time-evolution operator depending on the numerical 

technique being used. For example, the Suzki-Trotter type split time-evolution operator has an 

exponential form [4]. The KS Hamiltonian is composed of kinetic, non-local, and local terms which do 

not commute. To maintain the unitary property of the time-evolution operator with these non-

commuting components, the divided exponential operators of kinetic and non-local terms are split by 

size of local term in the 2nd order Suzki-Trotter type split time-evolution operator as follows:  

( )2

ˆˆ
, exp exp

2 2

ˆ ˆ
                        exp exp exp

2 2

ST NL
nd

Local NL

VT
U t dt t i dt i dt

V V T
i dt i dt i dt

  
+ = − −  

   

    
 − − −    

    

 (2-10) 

However, this method incurs a high computational cost during application of the exponential type time-

evolution operator on the KS wavefunction. Instead of this exact exponential form, the Crank-Nicholson 

type time-evolution method employs the linear equation solver. As a result, it provides a much more 

efficient computational algorithm compared with the exact exponential time evolution operator scheme. 

The Crank-Nicholson type time-evolution operator scheme is based on the time-reversal symmetric 

propagation between time forward and backward wavefunctions as follows [7]:  

( ) ( ), ,
2 2

dt dt
U t t dt t dt U t t t 
   
+ + + = +   

   
 (2-11) 

 By Taylor expansion of the exponential operator up to first order, the 2nd order Crank-Nicholson type 

time-evolution operator is obtained:  

( ) ( )
1 / 2

1 / 2

iHt
t dt t

iHt
 

−
+ =

+
  (2-12) 

When the Hamiltonian and KS wavefunction at time t is given, in the numerical calculation, Eq. 2-12 

becomes the simple linear equation problem:  

( ) ( ) ( ) ( )1 / 2 1 / 2iHt t dt iHt t + + = −  (2-13) 

To compare the two different time evolution schemes, benchmark tests were performed with various 
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systems. To compare the accuracy of the time evolution operators, the numerical error of the total energy 

( ( ) ( ) ( )0tot totE t E t E = −  ) is evaluated during the time-evolution of the steady state KS 

wavefunctions. The time-propagation of an Al dimer system is evaluated by Crank-Nicholson and 

Szuki-Trotter type time-evolution operators with various time steps, as shown in Fig. 2-2(a). A smaller 

time step provides accurate time-propagation, showing less numerical error in the KS total energy in 

both time-evolution operator calculations. However, there is negligible accuracy difference between the 

Crank-Nicholson and Szuki-Trotter type time-evolution operators. In Fig. 2-2(b), the computational 

cost is evaluated with various systems: Al dimer, Benzene molecule, and indolequinone-methide (MQ) 

molecule. The computational time cost of the Szuki-Trotter type time-evolution operator grows 

logarithmically with respect to the number of KS states. The computational cost of the Crank-Nicholson 

type time-evolution operator is comparably small. Hence, the Crank-Nicholson type time-evolution 

operator is more practical than the Szuki-Trotter type.  
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Figure 2-2. (a) Numerical error and (b) computation time cost for TDDFT calculation with various 

conditions.  
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 2.2.3. Born-Oppenheimer and Ehrenfest dynamics 

  To evaluate the material system under the DFT scheme, electronic and ionic systems are treated 

separately. The steady state electron system is evaluated by solving the KS equation [22]. The ionic 

motion is evaluated by solving the Newtonian equation of motion with the Hellman-Feynman force 

term. In this approach, the electrons are always following the equilibrium state with the given ionic 

position. This treatment is based on the Born-Oppenheimer approximation which posits that there is 

always faster electronic motion enough to reach ground electronic structure comparing with ionic 

motion by heavier atomic mass. However, TDDFT calculation can treat the non-equilibrium electronic 

motion by applying the time-evolution operator [7]. As a result, the electronic and ionic motion can be 

described beyond the Born-Oppenheimer dynamics. By proceeding the electronic and ionic motion 

with the same time step (called Ehrenfest dynamics), the real time dynamics of interaction between 

electronic and ionic system can be evaluated 
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Ⅲ. Phonon-induced valley-Floquet magnetism in monolayer transition metal 

dichalcogenides 

 3.1. Transition metal dichalcogenides and vallytronics 

The developments of laser technology have enabled to investigate ultrafast optical response of 

materials. Recent pump and probe experiments show that the valley selective carrier excitation and 

observation of its valley polarization are demonstrated in monolayer MoS2 [23, 24]. By the strong spin-

orbit coupling (SOC) interaction and absence of inversion symmetry, valence band maximum valleys 

at K and K‵ have spin splitting gaps in the monolayer MoS2 [25]. This electronic structure makes it 

possible that the circularly polarized light with band gap resonant frequency generates the spin and 

valley polarized excited carrier in conduction band minimum (CBM) valley at K or K` point depending 

on the helicity of circularly polarized light as shown in Figure 3-1a. As a result, we can write and read 

the information in valley states of monolayer MoS2 through the optical response. To make this 

phenomenon a useful application, various optical properties in monolayer MoS2 have been investigated 

in aspects of excited carrier life time and carrier separation. Some studies revealed that the spin and 

valley polarized states are rapidly disappeared at high temperature [26]. Especially, the ultrafast spin 

dynamics of excited carrier is observed at the CBM valley state. In this study, I investigate the physical 

origin of ultrafast spin depolarization in CBM valley of monolayer MoS2. 
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Figure 3-1. (a) The carrier distribution for the spin and valley polarized excitation by circularly 

polarized light. (b) Top view of monolayer MoS2 and side views with eigenvectors of optical phonons. 

(c) Time profile of the spin expectation value of the conduction band maximum valley state under 

presence of coherent E'' phonon. (d-f) time profiles of spin expectation value with each of coherent 

phonon modes E'', E', A1, A2'' and with the frozen lattice.  
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3.2. Ultrafast spin dynamics in monolayer MoS2 

The geometry of 2H phase of TMDC consist of one transition metal atom and two chalcogenide 

atoms, and they are inversion asymmetrically distributed in the hexagonal structure as shown in Figure 

3-1b(left). As a representative example material, the monolayer MoS2 is employed to investigate the 

ultrafast spin dynamics of its CBM valley state. Monolayer MoS2 has four optical phonon mode at Γ 

point as shown in Figure 3-1b(right). The E‵‵ phonon mode shows the alternating in-plane oscillation 

between two S atoms. The E‵ phonon mode shows the alternating in-plane oscillation between Mo atom 

and two S atoms. The A1 phonon mode shows the alternating out-plane oscillation between two S atoms. 

The A2‵‵ phonon mode shows the alternating out-plane oscillation between Mo atom and two S atoms. 

With coherent motion of each phonon mode, the spin dynamics of CBM valley state are investigated 

using TDDFT calculations. For the initial carrier distribution (t=0), spin and valley polarized excited 

carrier at K point is prepared as shown in Figure 3-1a. To investigate effect of coherent phonon mode, 

the initial atomic velocity is set toward the eigenvector of each phonon mode. When coherent E‵‵ 

phonon mode is presented in the monolayer MoS2, interestingly, we found that the spin of CBM valley 

state is dramatically changed within the few hundred femtoseconds comparing with other phonon 

modes as shown in Figure 3-1c to 3-1f. It is noteworthy that the effect of E‵‵ phonon mainly induces 

the ultrafast spin dynamics of CBM valley state. In addition, the time scale of spin dynamics consists 

with previous experimental result which reveals the spin depolarization of CBM valley state within few 

hundred femtoseconds [26]. 
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Figure 3-2 (a) Band structure of monolayer MoS2. (b) Band structure of the conduction band 

maximum valley with displaced along E'' phonon. (c) The inclination angle and splitting gap (
gap ) of 

conduction band valley spin state displaced along E'' phonon. (d) Band structure with the equilibrium 

geometry and displaced atomic geometry along E', A1, A2'' phonon. In (b) and (d), the atomic 

displacement is scaled with given maximum atomic position shift 0.1Å. The dashed blue box in (a) 

indicates the area in (b) and (d).  
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3.3. Effect of E‵‵ phonon mode and effective magnetic field 

To understand the detail physics of E‵‵ phonon mode on the spin of CBM valley state, the static 

electronic structure of monolayer MoS2 is investigated using DFT calculation. By the spin-orbit 

coupling interaction and absence of inversion symmetry, Monolayer MoS2 has large spin splitting gap 

( 156VBM

spin meV = ) in valence band maximum (VBM) valley states and comparably small spin splitting 

gap ( 3CBM

spin meV = ) in CBM valley states at K and K‵ points, as shown in Figure 3-2a. These spin states 

of CBM and VBM valleys are both polarized along the out-plane direction. To understand the role of 

E‵‵ phonon mode on the static CBM valley state, the band structure of monolayer MoS2 with atomic 

position displaced geometry toward eigen vector of E‵‵ phonon mode is evaluated as shown in Figure 

3-2b. This band structure shows changed CBM valley state which has the increased spin splitting gap 

and the spin polarized states along the in-plane direction, which direction is parallel to atomic position 

displaced direction. This behavior of CBM valley state with respect to amplitude of atomic displacement 

is summarized in Figure 3-2c. It shows that the larger atomic displacement along the eigen vector of 

E‵‵ phonon mode induces the higher spin splitting gap and inclination spin angle of CBM valley states. 

This result reveals that the atomic displacement along the eigen vector of E‵‵ phonon mode provides 

effective in-plane magnetic field from the SOC term. On the other hand, there is no significant variation 

on CBM valley state comparing with E‵‵ case as shown in Figure 3-2d.  
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Figure 3-3. The spin trajectory calculated by model Hamiltonian with (a) linearly polarized and (b) 

circularly polarized magnetic field. The Floquet eigenstate calculated by (c) model Hamiltonian and (d) 

TDDFT. The inset of (c) show the Floquet eigenstates.  
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3.4. Simplified model Hamiltonian and Floquet eigenstates 

 From the results of TDDFT and DFT calculations, the simplified model Hamiltonian is set to mimic 

the spin dynamics of CBM valley state with coherent E‵‵ phonon mode:  

( ) 0 z ph y ph
ˆ ˆ ˆ sin( )H t t    = +  (3-1) 

where 
0 , ph , ph  and ̂  are intrinsic spin splitting gap, phonon induced spin splitting gap, E‵‵ 

phonon frequency and Pauli matrix, respectively. This model Hamiltonian has two terms that first is the 

intrinsic SOC interaction along the out-plane direction and second term is the oscillating effective 

magnetic field induced by E‵‵ phonon mode along the y-direction. With this simplified model 

Hamiltonian, the time propagation of spinor states is investigated. To solve this model Hamiltonian 

numerically, we determined the coefficients of model Hamiltonian from the calculation results of the 

band structure with atomic displacement and time profile of spin dynamics of CBM valley state. When 

the phonon induced spin splitting gap ( ph ) is three times higher than intrinsic gap ( 03ph = ), the 

initially spin-down state ( ( )0 0.5zS t = = − ) shows dramatical spin-trajectory as shown in Figure 3-

3a. In addition, this calculation result shows similar spin trajectory as TDDFT calculation with given 

initial kinetic energy ( 13kinE meV=  ) (see Figure 3-1c). It indicates that this simplified model 

Hamiltonian well describes the spin dynamics of CBM valley under the effect of E‵‵ phonon mode.  

 The effect of circularly polarized E‵‵ phonon mode on the spin state of CBM valley is also 

investigated under the model Hamiltonian study. The simplified model Hamiltonian, which describes 

the spin state of CBM valley with right-handed circularly polarized phonon, is written as  

( ) ( ) ( )( )0 z ph y
ˆ ˆ ˆ ˆsin cosph x phH t t t      = + + . (3-2) 

With initial spin down state ( ( )
0

0
1

 
 =  

 
), the analytical solution of the spin dynamics for Eq. 3-2 

is written as  

ph

ph

ph2

2

sin( )

( ) ,
sin( ) cos( )

i t

R

R

i t
R R R

R

ie t

t
i t t

e







−

 
−  

 
 =

 
  +  

  

 (3-3) 

where 
ph 0

2
R

 
 = +  and ( )

2
2

phR R  =  + . This spin trajectory of CBM valley state shows 

double circularly rotating shape as shown in Figure 3-3b. When the Hamiltonian has time periodicity 
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(
2

ph

T



= ), the time-dynamics can be decomposed into Floquet eigenstate α α

i te − =  , which 

satisfies following equation 

α α α α ph
ˆ ( ) ,  with ( ) ( 2 )H t i t t

t
  

 
−  =   =  +  

. (3-5) 

The Floquet analysis can provide simple picture of time periodic dynamics. The analytical solution of 

Floquet eigenstates of Eq. 3-2 is written as   
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+ +

ph

ph

2ph ph

α α +

ph

2ph ph

α α

ph

/
,   with . 

22 ( )
/

/
,   with . 

22 ( )
/

i t

i t
i t

R

i t

i

R

t
i t

R

R

e

e e

e

e e











 




 




−

− −

 
− +  −  

 
− −  −  

−

 
 

 =  = = + 
 −  

 

 −
 






=  = = − 
 +  



− 

 



+

 (3-6) 

The spin-trajectories of these Floquet eigenstates show simple Larmor precessions with opposite 

direction as shown in Figure 3-3c. The linear combination of these Floquet eigenstates 

( ( ) ( ) ( )t c t c t + −+ − =  +  ) describes the all spin-trajectories governed by Hamiltonian in 

Eq (3-2) with given initial conditions. To verify the Floquet eigenstate of model Hamiltonian, the spin-

trajectory of Floquet eigenstate calculated by time-evolution of CBM valley of monolayer MoS2 with 

initial condition ( ) ( )α0 0CBM

KS t t
−

= =  =  as shown in Figure 3-4d. On the other hand, the left-

handed circularly polarized phonon provides the different spin trajectory comparing with right-handed 

case as follows 
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 (3-7) 

where 
ph 0

2
L

 
 = −  and ( )

2
2

phL L  =  + . 

This result indicates that there are different spin trajectories between time-reversal partners under the 

circularly polarized phonon on the system. 
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Figure 3-4. (a) Schematic time reversal symmetric charge carrier distribution at CBM valley. (b) Time 

profile of spin expectation value under the circularly polarized E'' phonon. (c) The spin-Floquet 

eigenstates at K and K' induced by circularly polarized phonon. (d) Time profile of spin expectation 

value under the linearly polarized phonon.  
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3.5. Phonon-induced Valley magnetism in monolayer MoS2 

Based on the Floquet analysis, we found that the circularly polarized phonon provides the different 

spin motion between time-reversal pairs of CBM states in monolayer MoS2. For an example, the shallow 

electron doped monolayer MoS2 can be considered as shown in Figure 3-4a. There are two occupied 

spin polarized states at CBM valleys, which are spin down and spin up states at the K and K‵ points, 

respectively. The time propagation of these two states are proceed under the circularly polarized E‵‵ 

phonon mode in Eq. 3-2. The time-reversal broken spin trajectories at K and K‵ points show the net 

non-zero spin Sz value as shown in Figure 3-4b. This behavior can be easily clarified by Floquet analysis. 

With the same-helicity of circularly polarized phonon, spin state of CBM valleys at K and K‵ points 

suffer opposite helicity. For example, the spin trajectory of CBM state at K point follows Hamiltonian 

with the right circularly polarized light in Eq. 3-6, while CBM state at K‵ point follows Hamiltonian 

with the left circularly polarized light in Eq. 3-7. Considering the Sz expectation value for Floquet 

eigenstate is given as  

( )2 2

z ph
ˆ( ) ( ) 2 1 /t S t  

+ +
  = +  , (3-8) 

the Floquet eigenstates at K and K‵ points show different Sz value as shown in Figure 3-4c. As a result, 

this time-reversal symmetry breaking induces the non-zero net spin magnetism. On the other hand, the 

linearly polarized phonon keeps time-reversal symmetry and provides time-averaged zero net out-plane 

spin magnetism as shown in Figure 3-4d.   
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Table 3-1 The spin splitting gap of VBM and CBM states, and the E'' phonon frequencies of various 

TMDCs. 
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Figure 3-5. (a) The initial carrier distribution for one electron excited state at the K valley of monolayer 

WTe2. Time-profile of spin expectation value of CBM state at K point calculated by (b) TDDFT and (c) 

model Hamiltonian with zero phonon energy (
ph

1

2
 ). (d) Time-profile of spin expectation value of 

CBM state at K point calculated by model Hamiltonian with single phonon energy (
ph

3

2
 ).   
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3.6. Spin-phonon interaction in other TMDC materials 

Up to now, monolayer MoS2 is employed to understand the phenomena of effect of E‵‵ phonon on 

CBM valley. Through the Floquet analysis in Eq. 3-8, we found that the higher CBM spin splitting gap 

provides the larger phonon-induced Floquet magnetic moment. To find the best candidate material for 

experimental observation of this Floquet magnetism, various TMDC species are considered. The spin 

splitting gap of VBM and CBM valleys and phonon frequency of E‵‵ mode for TMDCs are summarized 

in Table 3-1. Among them, monolayer WTe2 provides the highest spin splitting gap of CBM valley, and 

I expected that the monolayer WTe2 shows highest value of phonon-induced magnetic moment.  

To investigate the phonon-induced magnetism in monolayer WTe2, the real-time spin dynamics of 

CBM valley is simulated with y-direction linearly polarized E‵‵ phonon using TDDFT calculation. For 

the initial condition at t=0, the spin up CBM state at K valley is occupied by excitation as shown in 

Figure 3-5a and the atomic velocity is set toward the eigenvector direction of E‵‵ phonon with zero-

phonon energy ( ( ) ph

1
0

2

atom

kinE t = =  ). The real time dynamics of monolayer WTe2 system is 

calculated by TDDFT. The time-profile of spin state is shown in Figure 3-5b. By comparing with this 

calculation result and model Hamiltonian in Eq. 3-1, the strength of effective magnetic field induced by 

E‵‵ phonon mode ( ph 00.44 = ) is evaluated as shown in Figure 3-5c. The effect of single phonon 

quanta ( ( ) ph

3
0

2

atom

kinE t = = ) is also considered, and we found that stronger effective magnetic field 

strength ( ph 00.75 = ) is induced by more phonons as shown in Figure 3-5d.  
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Figure 3-6 The cumulative time average of the total spin in monolayer WTe2 induced by (a) linear and 

(b) circular polarized E″ phonon. The same total spin of the bilayer WTe2 with a circular polarized Eu 

phonon energy with (c) zero-point phonon (
ph

1

2
 ) and (b) single phonon (

ph

3

2
 ). 
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3.7. Phonon-induced magnetism in monolayer WTe2 and bilayer WTe2 

 The Floquet magnetism in monolayer WTe2 induced by phonon is investigated in the time-reversal 

symmetric carriers of CBM valleys as a good experimental candidate material. As similar as monolayer 

MoS2 case, it is found that the expected net spin magnetic moment induced by linearly polarized phonon 

with zero phonon energy is negligible in monolayer WTe2 system as shown in Figure 3-6a. On the other 

hand, the circularly polarized phonon induces the non-zero spin magnetic moment as shown in Figure 

3-6b. Comparing with the induced spin magnetic moment in monolayer MoS2 ( 0.0078avg BS =  ), 

monolayer WTe2 shows higher value ( 0.06avg BS = ) with zero-phonon quanta. It is consistent with 

the result of Floquet analysis that the larger spin splitting gap provides the higher phonon induced 

magnetic moment value.  

 The last stage for the experimental observation is the generation of coherent circularly polarized E‵‵ 

phonon. The E‵‵ phonon in monolayer TMDC is infra-red (IR) in-active mode, it means that the 

experimental generation of coherent E‵‵ phonon is impossible. However, bilayer WTe2 has the IR 

active Eu phonon mode, which mode is two alternating E‵‵ phonon mode between AB stacked bilayer 

WTe2. The effect of Eu phonon mode on the time-reversal four CBM valleys is evaluated using model 

Hamiltonian study. It is found that circularly polarized Eu phonon mode of bilayer WTe2 provides 

enhanced induced magnetic moment value 0.12avg BS =   with zero-phonon quanta and 

0.24avg BS =  with single-phonon quanta as shown in Figures 3-6c and 3-6d. This result indicates that 

the bilayer WTe2 is most promising candidate material for experimental observation of the phonon 

induced magnetization. 
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3.8. Conclusion 

 In this study, the effect of coherent phonon mode on the spin state of CBM valley in monolayer MoS2 

is investigated. The time-profile of spin dynamics reveals that coherent E‵‵ phonon mode induces the 

significant variation of spin state at CBM valley by generating effective magnetic field. In addition, I 

found that the circularly polarized phonon can induce non-zero spin magnetic moment in the time-

reversal symmetric system. It is also verified that the other monolayer TMDC species show the same 

spin-phonon interaction. Especially, I suggested that the bilayer WTe2 is the best candidate for the 

experimental observation of phonon-induced magnetism.  
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Ⅳ. Revelation of band topology in time propagating Bloch state 

 4.1. Berry curvature and topological classification in condensed matter  

The adiabatic transition of state along the closed loop generates the additional phase (called Berry 

phase) [27]. Recent few decades, a property of Berry phase has been investigated in various field of 

physics. In the condensed matter physics, the electrons in periodic potential is characterized by Bloch 

vector ( k  ) which can be a geometrical parameter of reciprocal space [28]. When the electron 

adiabatically travels a closed loop of Brillouin zone (BZ), it obtains the Berry phase depending on the 

transition path. This effect of the Berry phase can be written in a local gauge-invariant field tensor form 

(called Berry curvature (
k

 )). The non-zero Berry curvature acts like an external magnetic field in the 

material. By applying a static E-field, for example, it occurs anomalous velocity of Bloch state as 

follows k

k k

e
v E

k


= − 


 . Especially, inversion symmetry broken honeycomb lattice system 

shows the opposite value of Berry curvatures between time-reversal partners points. Utilizing this 

characteristic of material, application devices are suggested in several studies [29]. 

The topological classification of quantum Hall state is firstly identified by Thouless, Kohmoto, 

Nightingale and Nijs (TKNN) [30]. They reveal that quantized Hall conductivity is identical to 

mathematically defined geometrical class (called Chern number n). This study ignites the discovery of 

topological material without net non-zero magnetic field. In 1988, Haldane shows that graphene system 

with alternating magnetic flux induces band gap at Dirac points with non-zero Chern number, while net 

magnetic flux is zero on the entire system [31]. Few decades later, Kane and Mele proves that two 

copies of Haldane’s model in time reversal symmetry can exist in graphene system with the strong spin-

orbit coupling interaction [32]. Bernevig, Hughes and Zhang also show the same time reversal 

symmetric topological state in quantum well structure. This topological phase of material is called 

quantum spin Hall state [33]. Because time-reversal symmetric system always shows zero Chern 

number (n=0), new identification of topological class for this state is required. Unlike a clear definition 

of charge Hall conductivity, the non-conserved spin texture gives a suspicion of evaluation of quantized 

spin Hall conductivity using linear response methods [32, 34]. Instead of classification defined by 

physical observable origin, Z2 topological identification is employed to analyze the band topology [34]. 

Recently, the topological phase transition by external perturbation is suggested, such as light [35]. On 

the other hand, it is doubtable that the topological class of material is well identified by the linear 

response methods with non-equilibrium carrier distribution.  

In this study, the band topology and Berry curvature are evaluated by the time-propagation of KS 

state. With trivial insulators, the transport properties of Bloch state, such as Bloch oscillation and 

anomalous velocity, are investigated. As a second example, the transverse conductivity of quantum 

anomalous Hall insulator is evaluated from the Brillouin zone integration of anomalous velocity under 
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the static E-field. Finally, the quantized spin Hall conductivity is calculated in quantum spin Hall 

insulators. These studies indicate the Berry curvature and topological property are well exposed by the 

expectation value of velocity of time-propagating Bloch states and can extend to evaluate the 

topological phase of non-equilibrium state.  
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Figure 4-1. Time propagation of a Bloch band of a three-dimensional trivial insulator in response to an 

applied E-field. (a) The band structure of the solid cubic He. (b) Time profile of the band energy of four 

selected Bloch states. (c) Time profile of longitudinal ( xv ) and transverse velocities ( yv  and zv ) of 

the Bloch state starting from Γ point. Inset of (a) shows the unit cell with the direction of the E-field. In 

(a) and (b), the four selected Bloch states are denoted by the symbol of square, circle, triangle, and 

diamond.  
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4.2. Bloch oscillation in cubic He solid 

 

The study of time-propagating Bloch state under the static E-field is started with trivial atomic 

insulator. As a gedanken system, the cubic He atomic insulator is employed as shown in inset of Figure 

4-1a. With lattice constant 
0 3a = Å, this system has wide band gap (16.5 eV) and single occupied 1s 

band with 0.28eV band dispersion as shown in Figure 4-1a. The static E-field is applied along x-

direction with field strength 
3 ˆ3.7 10E x−=   V/Å and specific Bloch states are traced; 

( )0.25,0,0k = − − , ( )0,0,0 , ( )0.25,0,0 , and ( )0.5,0,0X  in the unit of 
0 02b a= . The time 

profies of band energy ( ˆ( ) ( ) ( ) ( )
k k k

t t H t t  = ) are shown in Figure 4-1b. Under the static E-field, 

I found that the band energy of Bloch states follow the band dispersion of ground state under the relation 

between Bloch vector and static E-field 
0( )k t k eEt= − . For example, the Bloch state starting from 

Γ point shows increament of band energy ( )t  until the 200 fs following the band dispersion. The 

other Bloch state starting from X, Δ and -Δ points are also traking the adiabatic energy band dispersion. 

This result indicates that the Bloch states in wide band gap insulator show the adiabatic transition 

following the ground energy dispersion under the weak static E-field. 

The velocity expectation value contains band dispersion and anomalous velocity terms as follows 

,

( , )
( ) ( , )n

nn k

k t e
v t E k t

k


= − 


  [28]. When the static E-field is applied on the system, the 

anomalous velocity can be generated by non-zero Berry curvature. However, there is negligible Berry 

curvature value in this cubic He solid insulator. The velocity expectation value of Bloch state in this 

system only describes the band dispersion 
( , )n k t

k




 term. The time profile of velocity expectation 

value for Bloch state starting from Γ point is shown in Figure 4-1c. The longitudinal velocity ( )xv t  

against the applying E-field direction shows oscillation with time period 1 0 375T b eE fs= = , while 

there are negligible variation on transverse velocity ( )yv t   and ( )zv t  . This time periodicity of 

velocity expectation value is originated from the periodicity of Brillouin zone, which phenomena is 

known as Bloch oscillation [36]. 

 

 

  



 34  

 

Figure 4-2. (a) Band structure (upper panel) and Berry curvature (lower panel) of inversion symmetry 

broken graphene. (b) Schematics of the Brillouin zone and the Dirac cone with three selected k-points 

in the K valley of the BZ. (c) Time profile of band energies of the VBM and CBM states at the specified 

three k-points in K valley. (d) Time profile of the longitudinal velocities of the states of three k-points 

in K valley. Inset shows the same longitudinal velocity of K′+δ point. (e) Time profile of the transverse 

velocity of the states starting from the K+δ and K′+δ points. (f) The same as (e) for the state starting 

from K+δ point with various strength of the E-field: 0E E= . Here, 0E  indicates the strength of the 

E-field used for (c)(d)(e). In the inset of (a), atomic symbols schematically depict the inversion-broken 

sublattices of two C atoms by Hubbard U potential.  
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4.3. Valley Hall system: inversion symmetry-broken graphene 

The pristine graphene has two Dirac points at K and K‵ points in the Brillouin zone. When inversion 

symmetry of graphene is broken by perturbation, band gap and Berry curvature are developed at the 

Dirac points. In this study, the inversion symmetry broken graphene is constructed by applying the 

Hubbard U potential on the p-orbital of single Carbon atom site A ( 4U eV= ) as shown in inset of 

Figure 4-2a. As a result, band gap (0.38eV) and locally non-zero Berry curvature are developed at K 

and K‵ points as shown in Figure 4-2a. This non-zero Berry curvatures at K and K‵ points show 

opposite value ( ( ) ( )k k = − − ) by time reversal symmetry. To investigate the real-time dynamics of 

Bloch states with non-zero Berry curvature, the static E-field along the x-direction is applied 

3

0
ˆ ˆ1.45 10E E x x−= =  V/Å and responses of specific Bloch states near the K point are traced; K, K+δ, 

and K-δ with 

0

2
ˆ0.03 x

a


 =  as shown in Figure 4-2b. The time profiles of band energy of these specific 

Bloch states are shown in Figure 4-2c. The band energies of valence band state starting from K (black) 

and K-δ (blue) points decreases following the Dirac cone by static E-field along the positive direction 

as shown in Figure 4-2b (right). On the other hand, the band energy of valence band state starting from 

K+δ (red) point increases up to 47fs by claiming the Dirac cone and decreases after that time by going 

downhill on the Dirac cone. This result indicates that the Bloch states follows the adiabatic energy 

surface of Dirac cone during the time propagation. 

 The time profile of longitudinal velocities of three Bloch states indicate the group velocity along x-

direction (

xk




) as shown in Figure 4-2d. After the 75fs, longitudinal velocity of three Bloch states 

converse the same value of slope of Dirac cone. In addition, the Bloch state starting from K‵+δ point 

shows the similar time-profile of velocity as K+δ point as shown in inset of Figure 4-2d. By non-zero 

Berry curvature of this system, on the other hand, applying the static E-field along the x-direction 

develops the anomalous velocity ( ( )eE k−  ) along y-direction direction. The transverse velocities of 

Bloch states starting from the K+δ (red) and K‵+δ (blue) are shown in Figure 4-2e. When these two 

points reach the top of the Dirac cone at 47 fs, the amplitude of transverse velocities are maximized by 

the highest value of local Berry curvature. This result indicates that the anomalous velocity is explicitly 

described by expectation value of velocity of time propagating Bloch state.  

 In addition, I investigate the adiabaticity of time-propagating Bloch state under the strong static E-

field. The electronical breakdown of semiconductor can be occurred by transition between conduction 

and valence band under the strong E-field, which phenomena is known as Zener tunneling. The 

probability of Zener tunneling is given by terms of E-field strength and band gap (
1/2 3/2

exp
2

r gapm

E

 
−  
 

). 
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The critical field strength can be estimated as follows 3

2
c r gapE m


=  . To investigate the effect of 

strong static E-field on the Bloch state, we applied various strengths of E-field on the Bloch state in the 

inversion symmetry broken graphene; 
0E , 

02E , 
03E  and 

05E  while 
0 0.04 cE E= . I found that 

the stronger static E-field strength induces the oscillation of transverse velocity with higher amplitude 

as shown in Figure 4-2f. On the other hand, the field strength under the 0.04 cE  keeps the adiabatic 

transition as shown in Figure 4-2c to 4-2e. It is noteworthy that the non-equilibrium excited dynamics 

and adiabatic transition can be both evaluated using TDDFT calculation. 
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Figure 4-3. (a) Atomic geometry, (b) band structure and Berry curvature, and (c) the time-averaged Hall 

conductivity. Red and blue lines in (b) indicate the positive and negative spin state polarized along the 

z-direction, respectively. The inset of (c) shows the time profile (gray) and the time-averaged profile 

(red) of the Hall conductivity after the adiabatic turn-on. 
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4.4. Quantum anomalous Hall insulator 

 

In 1988, D. Haldane shows the Chern insulator, so called quantum anomalous Hall insulator, can be 

formed in graphene system under the net zero magnetic flux [31]. This quantum material is found at the 

system has single spin sector band inversion by strong spin orbit coupling interaction [37, 38]. Recent 

theoretical study revealed that the half halogenated monolayer Sn is quantum anomalous Hall insulator 

by band inversion of ferromagnetic ordered p-orbitals of Sn. To investigate the effect of static E-field 

on the quantum anomalous Hall system, the half hydrogenated monolayer Sn is employed which atomic 

geometry is shown in Figure 4-3a. This system shows BHZ-type single spin sector band inversion at 

the Γ point. The Berry curvature and quantized Hall conductivity (
2

xy

e

h
 =  ) calculated by Kubo 

formular are shown in figure 4-3b [37]. To trace the time profile of Hall conductivity in this system, 

time evolution of Bloch states is proceeded using TDDFT method. The static E-field 
3 ˆ1.10 10E y−= 

V/Å is applied on the system with adiabatic turn-on duration (20 fs). The Hall conductivity of the system 

is evaluated by the summation of transverse velocity around Brillouin zone as follows 

( ) ( ) ( )
, ,

,

1
ˆy

xy yn k n k
n kx x

J
t t t

E mE
   = = −   (4-1) 

The time-averaged Hall conductivity ( ( ) ( )
0

1 t
avg

xy xyt d
t

   =   ) indicates the quantized Hall 

conductivity of half hydrogenated monolayer Sn as shown in Figure 4-3c.  

 

  



 39  

 

 

Figure 4-4. (a) Schematics of the geometry and the Brillouin zone of fully hydrogenated Bi. (b) Band 

structures with (solid line) or without (dashed line) spin orbit coupling interaction term. Doubly 

degenerate valence bands are labeled A to D from the highest band. (c) Spin Hall and charge Hall 

conductivity calculated from the time-evolving Bloch states under the static E-field. (d) The band-

resolved spin Hall conductivity from degenerated second valence band (B) and from the rest (A+C+D). 

Inset of (c) depicts the bias E-field and the spin current. 
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4.5. Quantum spin Hall insulator 

 

By presence of strong spin-orbit coupling interaction, the quantum spin Hall effect is firstly suggested 

in graphene structure. The electronic structure of this material consists of two inversely paired Chern 

insulator under the time reversal symmetry [32]. As a result, quantized spin Hall conductivity 

( ) 20.5 /spin

xy xy xy e h   = − =  is formed, while there is zero charge Hall conductivity. The definition 

of this topological state is closely related with study of TKNN [30], but the degenerated spin state by 

time reversal symmetry makes it hard to compute the quantized spin Hall conductivity using linear 

response approach. In this study, I tried to evaluate the quantum spin Hall conductivity from the spin 

velocity expectation value of Bloch state under the static E-field using TDDFT. As an exemplary system 

of quantum spin Hall insulator, the full hydrogenated Bi is employed. The atomic geometry and the first 

BZ of this system are shown in Figure 4-4a. By comparing the band structure with and without spin-

orbit coupling interaction term, the band inversion induced by strong spin-orbit coupling term is 

identified at K and K‵ points as shown in Figure 4-4b. Because of time reversal symmetry, each band 

is double degenerated by spin up and spin down states.  

By applying the E-field strength 
6 ˆ3.37 10E x−=   V/Å with adiabatic turn-on duration 10fs, the time 

profile of spin Hall conductivity in the full hydrogenated Bi system is evaluated from the expectation 

value of spin velocity; 

( ) ( ) ( ) ( )   ( )spin

, , , ,
, ,

1 1 ˆˆˆ ,
2

ZS

xy y Z yn k n k n k n k
n k n kx x

t t j t t S t
E mE

     = − = −   (4-2) 

The quantized spin Hall conductivity is rapidly conserved after the adiabatic turn-on period, while the 

charge Hall conductivity evaluated by Eq. 4-1 is negligible as shown in Figure 4-4c. It is noteworthy 

that the non-conserved spin states near band inversion points provide the quantized spin Hall 

conductivity, while the linear response evaluation of spin Berry curvature doesn’t show quantized value 

(
20.75 /spin

xy e h = ) by them. Unlike the result of linear response with this non-conserved spin texture 

[32, 34, 39], quantized spin Hall conductivity evaluated from time propagation originates from the 

property of unitary operation in expectation value. The unitary operation on the spin state doesn’t 

disturb the expectation value given as 

( )   ( ) ( )   ( )

( ) ( ) ( ) ( )

1

, , , ,
,

, , , ,

1 1ˆ ˆˆ ˆˆ ˆ, ,
2 2

ˆ ˆ
2 2

Z y Z yn k n k n k k k n k
nn k k

y yk k k k
k k

t S t t U S U t

t t t t

     

     

−

   

=

= −

 

 
  (4-3) 

As a result, the expectation value of the spin Hall conductivity with non-conserved spin state can evalute 
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the quantized spin Hall conductivity of conserved spin state along the certain direction (e.g. ZS ).  

As an extreme case of non-conserved spin texture, the fully hydrogenation Bi without inversion 

symmetry is considered as shown in Figure 4-5a. By the absence of inversion symmetry, the most spins 

of Bloch states are aligned along the in-plane direction as shown in Figure 4-5b. Under static E-field 

6 ˆ3.37 10E x−=   V/Å with adiabatic turn-on duration 10fs, the spin Hall conductivity is evaluated from 

time-propagation Bloch state. Same as inversion symmetric case, the quantized spin Hall conductivity 

is also calculated using Eq. (4-2). It is noteworthy that the expectation value of spin Hall conductivity 

evaluated from time-propagating Bloch state under static E-field reveals topological property of the 

system regardless of the spin states. 
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Figure 4-5. (a) Schematic geometry and (b) The spin resolved band structure of fully hydrogenated Bi. 

(c) Spin and charge Hall conductivity calculated by TDDFT. In (b), the color depicts the magnitude of 

the in-plane spin component. 
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4.6. Non-equilibrium dynamics; graphene nano-ribbon 

Here, the non-equilibrium dynamics under the non-zero Berry curvature system is demonstrated which 

cannot be evaluated by the linear response approach. The example system is zigzag-edged graphene 

nano-ribbon (GNR). By applying static E-field (
3 ˆE 1.68 10 x−=   V/Å) along the ribbon axial direction, 

the current flow of one-dimensional (1-D) Bloch states is calculated using TDDFT. By the time-reversal 

symmetry of the system during the time propagation, there is absence of charge Hall current [29]. On 

the other hand, the charges accumulate on both edges by depleting the charge in the central of the ribbon 

as shown in Figure 4-6a. This result is come from the valley-Hall effect of the GNR. The electronic 

structure of zigzag-edged GNR has metallic band state and positive and negative non-zero Berry 

curvatures in the one-dimensional (1D) BZ which are come from zone-folding of graphene’s two Dirac 

points (K and K′). Among 1D Bloch states, the states originated from the K and K′ valley provide the 

positive and negative anomalous velocities. As a result, the real space charges in GNR are transferred 

to both edge side under the static E-field. 

Numerous previously studies reveal that time-reversal symmetry breaking by circularly polarized 

light can induce non-zero Hall current [40]. In the case of GNR, the presence of a circularly polarized 

light breaks the carrier distribution between the time-reversal pair K and K′ valleys. To simulate the 

simultaneous time-reversal symmetry breaking of GNR system, the velocity gauge form of circularly 

polarized light is described in time dependent KS Hamiltonian. Using TDDFT calculation, the current 

density of the 1-D Kohn-Sham bands is evaluated by applying static E-field along the axial direction  

( 4 ˆE 3.6 10 x−=    V/Å) and the circularly polarized E-field ( 4 ˆ ˆE 6.7 10 ( ) i tx iy e − −=  +  V/Å and 

1eV = ). As a result, the carrier distribution in edge sides loses their symmetry and develops the 

charge Hall voltage across the ribbon width as shown in Figure 4-6b. 
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Figure 4-6. (a) Schematic of valley Hall effect (left) and the calculation results for the time-varying 

charge density in the graphene nano-ribbon. (b) The same as (a) but with a circularly polarized E-field 

in addition to the static axial bias. In (a) and (b), the time-varying charge density is obtained by 

( )  0, ( , ) ( )xz y t dxdz r t r  = − , and edge

L  and edge

R  are the time-averaged charge obtained in 

each edge region of the ribbon (W=26Å): 
0

0.8

1
( ) ( , )

t
L

edge xz

W

t d y dy
t

   


=     and 

0.2

0

1
( ) ( , )

W
t

R

edge xzt d y dy
t

   
−

=     
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4.7. Conclusion 

 In this study, I investigated the Berry curvature and band topology through the time-propagating Bloch 

states. The adiabatic transition and Bloch oscillation is observed in the time-propagating Bloch state of 

large band gap atomic insulator under the static E-field. The anomalous velocity induced by the local 

non-zero Berry curvature is also simulated in the inversion symmetry broken graphene system. The first 

two studies verified that the property of Bloch state related with periodicity of Brillouin zone and the 

Berry curvature is well described in the TDDFT scheme. In the last two examples, the quantized 

anomalous Hall conductivity and quantized spin Hall conductivity are evaluated from the velocity 

expectation value in the quantum anomalous Hall and quantum spin Hall insulator. It is noteworthy that 

the expectation value of transverse spin velocity leads to quantized spin Hall conductivity of topological 

insulator regardless of the spin texture.   
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Ⅴ. Long-range charge transfer in real-time dynamics 

 5.1. Introduction 

 The charge transfer is commonly happened between the chemical compound and material interface. 

For example, the charge transport between different electronegativity molecules makes the anion and 

cation molecules. In the catalysis processes, especially, the charge transfer between electrode and 

molecule is one of important reaction, and there are a lot of effort to improve the charge transfer reaction 

rate. The material design for the catalyst and complex chemical reaction have been suggested by 

theoretical and experimental studies [41, 42]. However, it is hard to describe the exact experimental 

charge transfer situation using first-principle approach [41]. The density functional theory usually fails 

to evaluate the experimental observed energy level difference of chemical system and charge transfer 

situation under the one-body description. Beyond the density functional theory calculation, the many-

body and quantum chemistry calculation, such as GW and Moller-Plesser 2nd order perturbation 

calculations, are employed the describe the accurate chemistry system. On the other hand, enormous 

computational cost is required for these high accuracy calculation methods. As a temporary approach, 

the parametric Hubbard U potential is used to correct the quasiparticle level under the density functional 

theory scheme [18]. 

The wrong description of over-delocalized charge state is one of well-known problem in density 

functional theory calculation. This problem originates from the failure description of the on-site 

Coulomb interaction. Even though the distance between anion and cation is very far, for example, the 

non-zero charge transfer is depicted by the density functional theory. This failure is also reported in the 

solid system. For example, the band gap Mott insulator is induced by charge transition and density 

functional calculation fails to describe it. To correct the inaccurate on-site Coulomb interaction, 

parametric Hubbard U potential is employed, and the band gap of Mott insulator is successfully 

described as similar as experimental result. Therefore, the correction of on-site Coulomb interaction is 

required to describe the accurate charge transfer situation under the density functional theory scheme. 

 Among the various methodologies of molecular dynamics simulation, the ab initio molecular 

dynamics approach provides the time profiles of accurate chemical reaction including the change of 

chemical bond, charge transfer, and atomic position. This scheme based on the Born-Oppenheimer 

approximation that assumes adiabatic transition of electronic system. Under this approximation, on the 

other hand, the non-equilibrium dynamics of electron states is neglected and evaluates the inaccurate 

time scale of chemical reaction. In this study, time-dependent density functional theory calculation is 

used to describe the non-equilibrium dynamics of electron state under the Ehrenfest dynamics that treats 

the electronic and ionic motion simultaneously. In addition, the Hubbard U potential is implemented in 

the time dependent KS Hamiltonian to simulate the real time dynamics of charge transfer [7]. 
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5.2. Inaccurate description of density functional theory in the long-range charge 

transfer situation. 

 To simulate the real time dynamics of charge transfer situation, the terephthalonitrile (TPN) 

potassium (K) system is employed as shown in Figure 5-1a. By the difference of electron negativity 

between K and TPN molecule, there can be charge transfer K atom to TPN molecule. The energy surface 

of TPN-K system with respect to distance between TPN and K atom is evaluated by Moller-Plesset 2nd 

order perturbation (MP2), which provides the chemically accurate description of exchange interaction 

between identical electron wavefunctions, as shown in Figure 5-1b. Interestingly, there is distinct kink 

point in the energy surface at 3.7 Å distance (Z) between K atom and TPN molecule. Based on the 

charge analysis for each fragment, it is revealed that there are single electron charge transfer between 

TPN molecule and K atom at short distance range (Z<3.7Å) and charge neutral state at long distance 

range (Z>3.7Å) under this chemical accurate calculation. Even though there is ionic bonding energy 

difference between restrict open shell (RO) and unrestricted (U) MP2 calculation, they show similar 

chemical trend which are the exothermic ionic bonding at short range and negligible bonding energy at 

long range. 

This clear description of charge transfer fails with density functional theory calculation. With two 

types of local exchange-correlation functionals, the potential energy surfaces and transferred charges 

depending on the distance between TPN molecule and K atom as shown in Figure 5-1c and 5-1d. Unlike 

the MP2 calculation results, calculation results with PBE and LDA functionals show the continuous 

energy surface curves with non-zero binding energy at long distance (Z>5Å). The non-zero values of 

transferred charge at long distance (Z>5Å) are also described by the wrong description of on-site 

Coulomb interaction of density functional theory.  

To remedy this problem, parametric Hubbard U potential is applied on the single K atom (U=4eV). 

The potential energy surface and transferred charge curves with additional Hubbard U potential are 

evaluated with respect to distance between TPN molecule and K atom shown in Figure 5-1e and 5-1f. 

The potential energy surface curve with Hubbard U potential indicates the two distinct curves which 

are deep potential well (red) and flat line (black). The transferred charge curve reveals that the deep 

potential energy well originates from the Coulomb potential between charge transferred ions and flat 

line describes negligible interaction between charge neutral KPN molecule and K atom. This result 

clearly shows that the additional Hubbard U potential remedies the wrong description of on-site 

Coulomb interaction in density functional theory calculation and improves the chemical accuracy 

similar as MP2 calculation. 
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 Figure 5-1. (a) schematic geometry of TPN-K. Potential energy curve with respect to distance between 

TPN molecule and K atom calculated by (b) MP2 correction method, density functional theory 

calculation with (c) and without (e) Hubbard U term on K atom (U=4). Transferred charge curve with 

respect to distance between TPN molecule and K atom evaluated by density functional theory 

calculation with (d) and without (f) Hubbard U term on K atom (U=4). 
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5.3. Real-time dynamics of charge transfer in TPN-K system 

 Under the accurate description of on-site Coulomb interaction by additional Hubbard U potential, the 

time-profile of charge transfer in TPN-K system is investigated using TDDFT. To simulate the charge 

transfer situation, charge neutral ground state of TPN molecule and K atom (Z=4.2Å) is used as an 

initial electronic structure and initial velocity of K atom toward the TPN atom is set as shown in Figure 

5-2a. With three different initial kinetic energies of K atom, the time-profile of distance between TPN

molecule and K atom are evaluated using TDDFT shown in Figure 5-2b. This result indicates that the 

distance between TPN molecule and K atom is linearly decreased by initial kinetic energy. The time-

profiles of potential energy and transferred charge with initial Kinetic energy T0=0.68eV are also 

calculated by TDDFT as shown in Figure 5-2c and 5-2d, respectively. The variation of total energy for 

electron system is negligible up to 40 fs. After the distance between TPN molecule and K atom is lower 

than 3.3Å at 40 fs, on the other hand, potential energy dramatically decreases and charge transfer is 

happened within 10 fs.  

Unlike Born-Oppenheimer dynamics in ab initio molecular dynamics simulation, Ehrenfest dynamics 

in TDDFT calculation can describe the non-equilibrium dynamics of electronic structure. To investigate 

the non-equilibrium effect in the TPN-K system depending on the initial kinetic energy, the time-profiles 

of potential energy and transferred charge curves are compared with static ground state calculation 

results as shown in Figure 5-2e and 5-2f. Among three different initial kinetic energies, the potential 

energy curve with the highest initial kinetic energy shows the most deviation from the ground potential 

energy curve. In addition, the transferred charge curves also show the delated charge transfer position 

with higher initial kinetic energy. These results reveal that the non-equilibrium dynamics is significant 

to describe the molecular dynamics involving chemical reactions at high temperature. 
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Figure 5-2. (a) Schematic initial condition of TPN-K. (b) Time profile of distance between TPN 

molecule and K atom depending on the initial kinetic energy of K atom. The time-profile of (c) potential 

energy and (d) charge transfer curves with 0.68 eV initial kinetic energy of K atom. (e) The potential 

energy and (c) charge transfer curves with respect to distance between TPN molecule and K atom 

calculated by static DFT and TDDFT. 
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5.4. The description of Anderson impurity model in the real-time dynamics 

 The dynamics situation between itinerant electron reservoir and localized impurity state have been 

studied using Anderson impurity model. This Hamiltonian with single defeat site can be written as 

( )† † † †

,

, ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
k k k d d d k k d d k d d

k k

H a a c c V a c c a Un n         
  

 
 

= + + + +   (5-1) 

The first and second terms of Eq. 5-1 indicate the itinerant states and defect site state, respectively. The 

third and last terms describes the hybridization interaction (V) between itinerant states and defect state 

and on-site Coulomb interaction (U) of defeat state, respectively. Depending on the interaction 

parameter V and U, the various correlated phenomena between itinerant states and defect site state can 

be described, such as Kondo effect. The non-equilibrium effect of this kind of correlated interaction can 

be evaluated by time propagation of this system. For example, the transition rate between itinerant and 

defect site states would be depending on the static U and V values and time dependent parameter as 

shown in Figure 5-3a.  

Here, the real-time dynamics of Anderson impurity system is investigated in the material. The 

graphene with single Ca atom system is employed as shown in Figure 5-3b. The Ca atom locates far 

away from graphene hexagonal hollow site with distance Δ. For the initial condition, two electrons are 

artificially located in the Ca atom by static E-field. Before time propagation, the applied E-field is 

abruptly turned off and it induces the charge oscillation between graphene state and Ca atom. Based on 

the charge analysis, the time profile of charge state ( )Q t  of Ca atom is calculated as shown in inset of

Figure 5-3b. At the initial distance Δ=3Å and various Hubbard U value, the charge oscillation in the 

frequency domain ( )Q    is evaluated as shown in Figure 5-3c, while the charge oscillation of

frequency domain is obtained by Fourier transform as follows ( ) ( ) ( )

0
Im

i t
Q Q t e dt

 


 + =
    . 

Depending on the value of U on Ca atom, the peak position of oscillation frequency and amplitude are 

changed. It indicates that the Hubbard U potential is modulated the on-site Coulomb interaction (U) of 

the impurity Ca atom site and it reflects on the charge oscillation. Comparing with Δ=3.0Å and Δ=3.5Å 

cases, in addition, the peak position shift of the oscillation frequency is increased with longer distance 

as shown in Figure 5-3c and 5-3d. This variation reveals that the hybridization interaction (V) and the 

distance (Δ) between graphene and Ca atom are strongly correlated.  
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Figure 5-3. (a) The schematic state transition between itinerant state and impurity state. (b) Schematic 

geometry of graphene and Ca atom system with distance Δ. The charge oscillation in frequency domain 

with distance (c) Δ=3.0Å and (d) Δ=3.5Å between graphene and Ca atom. The inset of (b) indicates the 

time profile of charge oscillation. 
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5.4. Conclusion 

 In this study, the description of static and non-equilibrium charge transfer situation is investigated 

under the first principle approach. To remedy the electron over-delocalization problem of DFT which 

gives wrong description of charge transfer situation, the parametric Hubbard U potential is employed 

in the KS Hamiltonian. I found that this additional potential describes the accurate charge transfer 

situation as the quantum chemistry calculation MP2. Based on this calculation accuracy, the real-time 

dynamics of charge transfer is evaluated using TDDFT. In the TPN-K system, the ultrafast charge 

transfer (~10 fs) is evaluated regardless of the initial kinetic energy of system. In addition, it is found 

that the higher initial kinetic energy induces the non-equilibrium dynamics deviated from the ground 

state potential energy surface. Finally, the real-time dynamics of Anderson impurity system reveals the 

role of the parametric interaction and distance between itinerant states and impurity state. Based on 

these studies, the non-equilibrium dynamics of charge transfer can be accurately calculated in various 

chemical reactions. 
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Ⅵ. Summary 

 In this thesis, the various real-time dynamics calculations are introduced using TDDFT. In the TMDC 

material, the strong interaction between spin state and specific phonon mode is revealed by TDDFT 

calculation and phonon-induced spin magnetization is suggested. In the various topological material 

and insulator, it is found that the time-propagating Bloch states under the static E-field reveals the 

material Berry curvature and band topology. In last, the non-equilibrium dynamics of charge transfer is 

simulated with the correction of on-site Coulomb interaction by Hubbard U potential. These studies 

reveal the significance of real time dynamics and possibility of TDDFT calculation. Especially, the 

description of non-equilibrium dynamics is unique advantage of TDDFT. This methodology can be used 

to discover new fascinating physical phenomena beyond the DFT scheme.   
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