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A numerical study on spin-polarized transport properties in a quasi-one-dimensional
wire with Rashba quantum dots is presented. The ballistic spin transmission proba-
bility and spin density profiles are obtained using the quantum transmitting boundary
method. The Fano-Rashba effect on the spin transmission is analyzed as a function
of the Rashba spin-orbit coupling strength for single dot and double dot systems. The
spin density profiles show the localized states that contribute to the backscattering and
spin-flip processes in the Rashba dots. The results enlighten us on the Fano-Rashba
effect caused by local Rashba spin-orbit coupling and provide concrete ideas for mod-
eling a system with spin-polarized transport for future applications. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5031476

I. INTRODUCTION

The development of nanotechnology has been a subject of significant focus in recent decades.
Fundamental studies have been carried out on the properties of materials and the possibility of a new
paradigm of applications. As part of this effort, research involving the spin degree of freedom of the
electron has recently exploded.

Magnetic fields can be used as a tool to manipulate the direction of spin of an electron. The
spins of electrons naturally align along the direction of the magnetic field. This has led to studies of
many different materials, such as ferromagnetic metals and diluted magnetic semiconductors. But
from the perspective of applications, it is much more convenient to control the direction of spin
using only an electric field and not a magnetic field. One method of doing this is the Rashba effect.
After the Datta-Das-type spin transistor1 was proposed, the Rashba effect, first reported in the 1960s,
attracted renewed attention because it plays a crucial role in manipulating spins in spintronic devices.
In various InAs quantum well structures, the spin band splitting has a magnitude of several meV
and the Rashba coupling parameter is of the order of 10-11 eV m. The intrinsic Rashba effect in a
semiconductor hetero-structure caused by the asymmetric potential is small when the asymmetric
potential is small. However, the asymmetric potential can be tuned using an additional electric field
external to the system.2,3 In a spin transistor, electrons with aligned spins are injected into the channel
and an external electric field induces strong Rashba spin-orbit coupling (RSOC) to rotate the spins.
This is the key concept behind a spin-polarized field effect transistor (SPFET).

The ballistic conductance of a two-dimensional electron gas (2DEG) system has been a subject
of study for many years. Recently, the transport properties of a one-dimensional quantum wire
(1DQW) have been investigated extensively, since only a few populated sub-bands are allowed in
the 1DQW compared to the 2DEG system.4,5 The 2DEG system has many propagating channels,
because the Rashba-induced spin-splitting is comparable to the energy sub-band spacing. Therefore,
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the ballistic conductance of 1DQWs based on semiconductors, metals, and other compound materials
has been studied with or without external magnetic fields in various ways in the search for possible
applications.6–14

The Fano effect is a quantum interference effect that occurs when a discrete energy level and
continuum energy states are present in the same system. The electrons traveling through the continuum
energy states are trapped in discrete energy level states. This effect has been widely studied in
an interferometer with quantum dots.15–17 When the dots are formed by RSOC, it is called the
Fano-Rashba effect.

In this paper, we numerically study spin-dependent transmission in a 1DQW with various num-
bers of Rashba quantum dots. An area of local RSOC controlled by electrical gating is called an
embedded Rashba quantum dot (RQD). We choose the one dimensional system to avoid mixing effect
between propagating channels. The aim of this work is to propose a spin device based on RSOC and
to investigate how the Fano-Rashba effect changes with the number of RQDs. Because we focus
on the spin precession due to RSOC only, we do not include an external magnetic field. A quasi-
one-dimensional wire (Q1DW) formed by applying split gates to a 2DEG system has well-separated
channels. While most previous works have considered uniform RSOC throughout the channel6–12 or
a local RSOC in small energy range,13,14 we consider various numbers of local RSOC in a large range
of energy in order to study the Fano effect as a function of the number of local RSOC. With a modu-
lation of the local RSOC, we study the Rashba-Fano effect as well as the spin-polarized transmission
in the system. Alongside changing the strength of the local RSOC, we analyze the Fano-Rashba
effect in the double dot case and compare it to the single dot case. With a clearer understanding of
the Fano effect, the result of this study give more concrete ideas controlling the spin polarization of
the output current, which would contribute to the spin filter and the spin transistor modeling. These
numerical studies can be further extended to study physical properties of a system having two dimen-
sional semiconductor materials like a graphene and a transition metal dichalcogenide as a channel
material.18–21

We show a schematic diagram of our model systems in Fig. 1. The scattering region is sandwiched
between two leads. Although the spin injection rate associated with the resistivity mismatch between
the lead and the channel is an important issue in spintronics research, the material of the lead is
not relevant in our numerical calculations. If a 2DEG formed by semiconductor hetero-structures
is considered, diluted ferromagnetic semiconductor (DMS) leads are preferred to increase the spin
injection rate in the experiment. The DMS leads require a low temperature experimental environment.

FIG. 1. (a) A schematic diagram of a quasi-1D quantum wire with a parabolic confinement potential along the x-axis. The
spin direction of incident electrons is fixed to | ↑> along the z-axis. (b) A quantum wire with a single Rashba dot of size l.
(c) A quantum wire with double Rashba dots, each of size l, with a distance between the two of d.
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We impose a parabolic confinement potential along the x-axis to induce electron movement along
the y-axis. Since the movement along the x-axis is limited, we call this system a quasi-1D wire.
The parabolic confinement potential can be created using the additional electrostatic potential of
additional split gates in the 2DEG system. The diagrams for the one and two RQD cases are shown in
Figs. 1(b) and 1(c). We focus on the dependence of the observed effects on the number of dots. In our
model, the intrinsic RSOC due to the inversion asymmetry, which is often treated as a perturbed term
in analytical calculations, is considered negligible compared to the RSOC created by the external
electric field.

II. THEORY

The effective mass Hamiltonian of a Q1DW with RQDs can be written as follows:

H =
~2

2m∗

(
∂2

∂x2
+
∂2

∂y2

)
+

1
2

m∗ω2
c x2 + HR, (1)

where 1
2 m∗ω2

c x2 is the confinement potential along the x-axis and HR =
1

2~ ({α(y), py}σx − {α(y), px }σy)
is the RSOC-Hamiltonian. The confinement potential gives transverse modes εn = ~ωc(n − 1

2 )
(n= 1, 2, . . .). Here, {} represents an anti-commutator, α is the Rashba strength, and σi(i= x, y, z) is
the Pauli matrix.

Since most previous works have considered uniform RSOC throughout the channel of the system,
they have used a constant Rashba strengthα. However, we useα as a function of space to allow for local
RSOC. When α is a function of space, HR =

α
~ (~σ ×~p) is not Hermitian and the Rashba Hamiltonian

must be defined using an anti-commutator to ensure the hermiticity of the Hamiltonian.15 After
including Pauli matrices, the Hamiltonian in the dimensionless form H̃ becomes

H̃ = *
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where the unit energy is 1
2~ωc and the unit length l0 is

√
~

mωc
. When we choose the unit of energy to

be 10 meV, the unit of length is about 10 nm. The function γ(y) is a dimensionless Rashba strength
defined as a function of space as γ(y)= γ0

(
f
(
y − l

2

)
− f

(
y + l

2

))
for a single RQD15 (Fig. 1(b)) and

γ(y)= γ0(f (y− 3
2 l− 1

2 d)− f (y− 1
2 l− 1

2 d) + f (y + 1
2 l + 1

2 d)− f (y + 3
2 l + 1

2 d)) for double RQDs (Fig. 1(c))
with f (y)= 1/(1 + ey/σ). Here, d is the distance between the RQDs, γ0 is the strength of the RSOC,
and σ is a small diffusivity. Since the physical dimension of α is energy times length, we calculate
the dimensionless constant as γ0 =

2mα0
~2 l0 =

α0
0.5~ωc×l0

. The Rashba coupling parameter α0 is related to
the gate electric field linearly. The dimensionless constant γ0 is also proportional to the gate electric
field and represents the strength of RSOC in the dots.

The wave functions of incident electrons in the nth mode in the left and right leads are
written as,22,23

ΨL,n(x, y)= eiknyψ↑n(x)| ↑> +
∑∞

j=1

(
rj,↑↑e

−ikjyψ↑,j(x)���↑> +rj,↑↓e
−ikjyψ↓,j(x)���↓>

)
, (3)

ΨR,n(x, y)=
∑∞

j=1

(
tj,↑↑e

ikjyψ↑,j(x)���↑> +tj,↑↓e
ikjyψ↓,j(x)���↓>

)
, (4)

where kn =
√

EF − εn, EF is the Fermi energy, and εn(= ~ωc(n − 1/2)) is the nth eigen-energy for
a parabolic confinement potential along the x-axis. rj,↑↑ and tj,↑↑ correspond to the reflection and
transmission coefficients, respectively, of the jth sub-band for a spin-up state to a spin-up state.
Evanescent modes (εn > EF) decay exponentially outside the scattering region. By using the wave
function in the scattering region, ΨS(x, y)= φ↑(x, y)��↑> +φ↓(x, y)��↓>, the transmission probabilities
(TP) for a spin-up state to a spin-up state in the nth sub-band and the jth sub-band are calculated as
follows:24

Tn,j,↑↑ =
ftran

finc
=

kj

kn

���tj,↑↑
���
2
, (5)
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where finc and ftran are the probability flux incident and transmitted, respectively. When we consider

propagation along the same sub-band only, Tn,n,↑↑ =
���tj,↑↑

���
2
. In the scattering region, the spin density

of the spin-up state is defined as

ρ↑(x, y)= |<↑|ΨS(x, y)> |2 = ��φ↑(x, y)��2. (6)

The Tn,j,↑↓ and the spin density ρ↓(x, y) for the spin-down case are written similarly to Eqs. (5)
and (6).

As we all know, the analytical solution of this system is very difficult to obtain. Therefore,
we perform numerical calculations based on the Quantum Transmitting Boundary Method (QTBM)
developed by C. S. Lent.25 The QTBM is written in the frame of the finite element method, which
is one of the numerical approaches used to solve partial differential equations. The QTBM can be
applied to a system with an arbitrary potential and several leads. 5041 nodal points are assigned to
each spin component in our calculation.

III. RESULTS AND DISCUSSION

The electrons do not really share a single direction except when they pass through a magnet.
However, to study how the localized RSOC changes the direction of spin, we assume that the injected
electrons are aligned in one direction. We consider a case in which spin-up (+z-direction) electrons
are injected into our numerical calculation. We show the TP as a function of the Fermi energy (EF)
for different numbers of quantum dots and different RSCO strengths (γ0) in Fig. 2. In our calculation,
propagation in the lowest sub-band (n=1) is considered and we write T1,1,↑↑ simply as T↑↑ hereafter.
We analyze the results from two perspectives – that of the TP rate change and that of the Fano-Rashba
resonance (FRR) dip change upon variation of the number of dots and the RSOC strength (γ0). While
the ballistic TP in a wire with uniform RSOC has a constant value of 1, an FRR dip and a total TP
of less than 1 appear in the wire with the local RSOC. From the calculation, we see that the depth of
the FRR dip changes drastically as γ0 changes. The FRR dip starts to appear around γ0 = 0.8. As γ0
increases, the dip width becomes larger and the dip moves to lower energy both in the single dot and
double dot cases. A notable result arises in the rate of spin inversion for the two different cases. In the
double RQD case, the spins of the incident electrons are flipped even in the low energy region. There
is almost no spin-up transmission where EF < 1.0 (the dotted line in Fig. 2(d)). However, in the same
energy region, the spin inversion occurs partially in the single RQD case and there are both spin-up
and spin-down transmissions (Fig. 2(b)). This result shows that the double RQD is more efficient in
generating spin-polarized electrons in transmission. For γ0 = 2.0, the total TP is significantly reduced
due to backscattering, resulting in a smaller output signal than γ0 = 1.0 in both the single and double

FIG. 2. The transmission probabilities T↑↑ (dotted line), T↑↓ (dash-dotted line), and T↑↑ + T↑↓ (solid line) with different
Rashba strengths γ0. (a) γ0 = 1.00 and (b) γ0 = 2.00 for the single Rashba dot case. (c) γ0 = 1.00 and (d) γ0 = 2.00 for the
double Rashba dot case. All parameters are in dimensionless units.



125124-5 Park et al. AIP Advances 8, 125124 (2018)

dot cases. We will come back to this point again, when we discuss Fig. 4. When we consider the case
of spin-down (- z-direction) electrons being injected, we have the results that T↓↑ =T↑↓ and T↓↓ =T↑↑.
We present all the results in dimensionless units. If the unit of energy is 10 meV and the unit of
length is about 10 nm, γ0 = 2.0 is of the order of 10-12 eV m and the Rashba spin splitting energy is
much smaller than the sub-band energy splitting of the parabolic confinement energy.6 The ballistic
transport through the lowest sub-band is a reasonable approximation and the parameters we use in
the numerical calculation are realistic.

To understand the FRR dip, we plot the spin density profile for the double RQD system in Fig. 3.
We plot two cases for comparison. One is a case with γ0 = 1.0 and EF = 0.6, which corresponds to
the case in Fig. 2(c). This point has total TP value close to 1.0. The other is a case with γ0 = 2.0
and EF = 1.4, which is a position where FRR occurs in Fig. 2(d). In the former case, the up-spins
of incident electrons start to rotate to down-spins in the region of the first RQD. The regions of the
dots are drawn as shaded areas in each figure. As a result, the spin-down density is dominant at the
end of the wire as shown in Fig. 3(b). The spin precession depends on the length of a dot and on the
strength of RSOC. In our case, the spin rotates by π for γ0 = 1.0 and by 2π for γ0 = 2.0. In the latter
case of γ0 = 2.0 for EF near the FRR dip, there exist localized states at the dot region. They contribute
to the backscattering in both the spin-up and spin-down cases, resulting in a reduction of the TP as
shown in Fig. 3(c) (spin-up) and in Fig. 3(d) (spin-down). Both the spin-up and spin-down electrons
are localized at the two RQDs. While the density profile in the single dot case takes a dicotyledon
form,25 that in the double dot case looks like a four-leaf clover.

As we noticed that the double RQDs produce well-defined spin-polarization as shown in Fig. 2(d),
we now focus on the transmission of the double RQD system in detail. We show the spin-up and
the spin-down TPs as a function of the Rashba strength γ0 and the Fermi energy EF in Fig. 4. Note
that spin-up electrons are injected into the system in this case. In the small γ0 < 0.5 region, the
spin-up transmission is dominant in all through the EF region (Figs. 4(a) and (b)). In the region
where γ0 > 0.5, the spin precession due to the Rashba effect being prominent means spin-up and
the spin-down transmission coexist. As EF goes up, each TP oscillates with γ0 variation. When
EF > 1.3 and γ0 > 2.0, we notice that there appears a Fano-Rashba resonance line where the total

FIG. 3. Spin density profiles for a wire with double Rashba dots. (a) Spin-up and (b) spin-down density profiles with Rashba
strength γ0 = 1.00 and Fermi energy EF = 0.6. (c) Spin-up and (d) spin-down density profiles with γ0 = 2.00 and EF = 1.42.
All parameters are in dimensionless units.
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FIG. 4. The transmission probabilities for the double Rashba dot case (l = 1, d = 1). (a) T↑↑ and (b) T↑↓ are obtained as a
function of the Rashba strength γ0 and the Fermi energy Ef simultaneously. (c) The transmission probabilities T↑↑ (solid line)
and T↑↓ (dotted line) as a function of the Rashba strength γ0 for a fixed Fermi energy Ef = 0.6. (d) As (c), but for Ef = 1.0. All
parameters are in dimensionless units.

TP becomes zero. Note that in the present setting, the transmission is through the lowest energy
sub-band. We know that spin conductance changes with the energy of incident electrons from pre-
vious figures. Here, to show the manipulation of the spin-polarization by changing γ0, we plot the
spin-up and spin-down TPs as a function of the Rashba strength γ0. For EF = 0.6 (Fig. 4(c)), when
γ0 > 1.5, only the spin-down electrons can travel to the end of the channel in our plot range. In this
case, the spin-up polarized current cannot be obtained by varying γ0. For EF = 1.0 (Fig. 4(d)), how-
ever, we can get either a spin-down or spin-up current by choosing γ0 = 1.5 or γ0 = 3.0. This means
that the spin-polarization can be manipulated electrically. Of course, the backscattering mentioned
above reduces the total output current. This phenomenon seems intrinsic to a wire with localized
RSOC.

IV. CONCLUSION

We have investigated the Fano-Rashba effect for ballistic spin-polarized transmission through a
quasi-1D semiconductor quantum wire with different numbers of Rashba quantum dots. The Fano-
Rashba resonance dip shifts to lower energies and the dip width becomes wider as the Rashba
spin-orbit coupling strength increases in both the single and double dot cases. The Fano-Rashba
effect is well explained by the spin density profiles of the localized states, which are responsible
for backscattering. The spin precession caused by the Rashba quantum dots induces a change in the
transmission probability. A double dot system is more effective at producing the polarized spin current
than a single dot system. This polarization of the spin current can be manipulated by an external electric
field, which produces the local Rashba spin-orbit coupling. Since the total transmission probability
is suppressed by localized states in Rashba dots, the value of the local Rashba spin-orbit coupling
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strength should be chosen carefully when designing a spin device using Rashba quantum dots to
optimize signal detection.
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