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SUMMARY

Carbon capture, utilization, and sequestration technologies have been extensively studied to utilize

carbon dioxide (CO2), a greenhouse gas, as a resource. So far, however, effective technologies

have not been proposed owing to the low efficiency conversion rate and high energy requirements.

Here, we present a hybrid Na-CO2 cell that can continuously produce electrical energy and hydrogen

through efficient CO2 conversionwith stable operation for over 1,000 hr from spontaneous CO2 disso-

lution in aqueous solution. In addition, this system has the advantage of not regenerating CO2 during

charging process, unlike aprotic metal-CO2 cells. This system could serve as a novel CO2 utilization

technology and high-value-added electrical energy and hydrogen production device.

INTRODUCTION

Many researchers believe that global warming and climate change are the result of carbon dioxide (CO2)

generated by human activities over the centuries (Jenkinson et al., 1991; Obama, 2017). Thus, many coun-

tries and organizations have made great efforts to reduce their carbon footprint, and recently, the carbon

capture, utilization, and storage/sequestration (CCUS) technology has been studied to recycle CO2 as a

resource (Keith et al., 2018; Andersen, 2017; Dowell et al., 2017). In this regard, considerable research has

been focused on the chemical conversion of CO2 into high-value-added carbon compounds, such as meth-

anol, organic materials, and plastics (Liu et al., 2015; Li et al., 2016; Angamuthu et al., 2010; Darensbourg,

2007). However, owing to the low conversion efficiency, it has been pointed out that it cannot be an effective

greenhouse gas abatement technology (Bourzac, 2017; Markewitz et al., 2012; Mikkelsen et al., 2010).

Recently, aprotic (non-aqueous) metal-CO2 batteries have also been studied for the production of electrical

energy using CO2 (Zhang et al., 2015; Qie et al., 2017; Hu et al., 2016; Al Sadat and Archer, 2016; Das et al.,

2013). However, during the generation of electric energy, solid carbonate products accumulate on the sur-

face of the electrode, which deteriorates the performance anddischarge capacity. In addition, becauseCO2

is regenerated in the charging process, aprotic metal-CO2 batteries are not an efficient CCUS technology

for utilizing and reducing CO2. Thus, we have devised a hybrid Na-CO2 battery that continuously produces

electric energy and hydrogen simultaneously through efficient CO2 conversion with highly stable operation

over 1,000 hr from the nature of spontaneous CO2 dissolution in an aqueous solution. We further show that

unlike existing aprotic metal-CO2 batteries (Zhang et al., 2015; Qie et al., 2017; Hu et al., 2016; Al Sadat and

Archer, 2016), the proposed system does not regenerate CO2 during the charging process. Therefore, this

hybrid Na-CO2 cell, which adopts efficient CCUS technologies, not only utilizes CO2 as the resource for

generating electrical energy but also produces the clean energy source, hydrogen.

RESULTS AND DISCUSSION

The Proposed Hybrid Na-CO2 Cell and Its Reaction Mechanism

A schematic illustration of the proposed hybrid Na-CO2 cell is presented in Figure 1. The digital photo-

graphs of the system are also presented in Figure S1. This system could work continuously with Na metal

and CO2 as fuel at the anode and feedstock gas at the cathode, respectively. Na is regarded as a promising

candidate as a substitute for Li in terms of its electrochemically similar behavior along with low cost

(30 times cheaper than Li) from natural abundance and environmental friendliness (Noorden, 2014; Kwak

et al., 2015). The Na metal anode is kept in an organic electrolyte to prevent a direct corrosion from an

aqueous electrolyte separating by Na super ionic conductor (NASICON) membrane. The overall reaction

mechanisms are composed of a chemical reaction and an electrochemical reaction.

The chemical reaction of CO2 dissolution mechanism is as follows:
https://doi.org/10.1016/j.isci.
2018.10.027
CO2(aq) + H2O(l) # H2CO3(aq), Kh = 1.70 3 10�3 (Equatio
n 1)
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Figure 1. Schematic Illustration of Hybrid Na-CO2 System and its Reaction Mechanism
H2CO3(aq) # HCO3
-(aq) + H+(aq), pKa1 = 6.3 (Equatio
n 2)

When CO2 is purged into an aqueous solution (e.g., distilled water, seawater, NaOH solution), CO2 dissolution

proceeds and carbonic acid (H2CO3(aq)) is formed through the hydration of CO2 (Equation 1). For a standard

state condition in pure water, this spontaneous chemical equilibrium of CO2 hydration is determined by the

hydration equilibrium constant (Kh = 1.703 10-3) (Housecroft and Sharpe, 2005). Then, the carbonic acid disso-

ciates into HCO3
- and H+ determined by the first acid dissociation constant (Ka1 = 4.46 3 10-7), shown in

Equation 2 (Harris, 2010). Because carbonic acid is a polyprotic acid dissociatingmultiple steps, an in-depth un-

derstanding of CO2 dissolution requires that the second acid dissociation step, i.e., HCO3
-(aq) # CO3

2-(aq) +

H+(aq) (Ka2 = 4.693 10-11), be considered (Harris, 2010). However, the secondacid dissociation constant is signif-

icantly smaller than the first (Ka1 >>Ka2),making it negligible in calculating the proton concentration. Thus, when

CO2 dissolved in water, it acidifies the aqueous solution andHCO3
-(aq) is predominant over CO3

2-(aq). The con-

centration of carbonate ions when CO2 dissolves in water at normal atmospheric pressure is provided at

Table S1. The mole fractions of carbonate ions depending on the pH of solution is shown in Figure S2.

The electrochemical reactions are composed of anodic reaction of sodium metal oxidation (Equation 3)

and cathodic reaction of hydrogen evolution (Equation 4):
Anodic reaction: 2Na / 2Na+ + 2e� Eo = �2.71 V (Equatio
n 3)
Cathodic reaction: 2H+ + 2e� / H2(g) E
o = 0.00 V (Equatio
n 4)
Net equation: 2Na + 2H+ / 2Na+ + H2(g) E
o = 2.71 V (Equatio
n 5)

Then, the electrochemical net equation is simply given as the oxidation of Na metal and the spontaneous

evolution of hydrogen (Equation 5). Because the potential of cathodic reaction is closely influenced by the

pH of aqueous solution, the dissolution of CO2 renders a favorable electrochemical reaction environment

by acidifying the aqueous solution.

Half-Cell Configured Electrochemical Analysis

The cathodic electrochemical profiles were closely examined using a cyclic voltammetry (CV) technique

on the Pt electrode (Figure 2A). An apparent cathodic peak in O2-saturated NaOH was observed
iScience 9, 278–285, November 30, 2018 279



Figure 2. Half-Cell Configured Electrochemical Analysis

(A) Cathodic CV profiles measured in O2-, N2-, and CO2-saturated 0.1 M NaOH at 10 mV s�1, using Pt as the working and counter electrode and Ag/AgCl

electrode as the reference electrode. A reference potential is described with Ag/AgCl instead of reversible hydrogen electrode (RHE) for the clarification of

potential difference with respect to purging gases and pH.

(B) Tafel analysis of the cathodic profiles.

(C) Cathodic CV profiles measured in O2- and CO2-saturated seawater.

(D) Corresponding Tafel plots.

(E–I) (E) Schematic diagram of hydrogen evolution potential related to pH. RHE calibration profile corresponding to hydrogen evolution potential measured

in (F) 0.1 M NaOH, (G) CO2-saturated 0.1 M NaOH, (H) seawater, and (I) CO2-saturated seawater.
near of �0.1 V versus Ag/AgCl, which could be ascribed to an oxygen reduction reaction (ORR) on the

Pt electrode (Park et al., 1986; Kim et al., 2016). When ORR occurred, a diffusion-controlled region

was found near of �0.2 V and a limiting current was observed due to the typical O2 mass transfer

limitation in ORR profiles (Kim et al., 2016; Bu et al., 2017). At the lower potential, a cathodic peak

corresponding to hydrogen evolution reaction (HER) was observed around �0.95 V in O2- and

N2-saturated conditions (Mahmood et al., 2017; Xu et al., 2016; Ahn et al., 2018). Meanwhile, in the

case of CO2-saturated condition, hydrogen evolution occurs more positively by 0.35 V due to the higher

concentration of H+. In addition, HER profiles, contrary to ORR profiles, presented sharply increasing

cathodic curves without a mass transfer limitation. For depth analysis, the kinetics of these electro-

chemical reactions were interpreted by an analysis of the Tafel slope (Figure 2B). Because ORR is one

of the most complex electrochemical reactions, involving 4 electrons with 2 reactants (O2 and H2O),

the reaction kinetics is sluggish, even on a state-of-the-art Pt electrode, with a value of 78 mV dec.�1.

However, HER only involves 2 electrons with 1 reactant (H+ or H2O depending on the pH) and thus

presented a low Tafel slope of 48 mV dec.�1 near the onset potential. Furthermore, the Tafel slope

is more decreased to 28 mV dec.�1 at an activation-controlled Tafel region, indicating a highly

efficient cathodic reaction. Furthermore, the cathodic CVs and the corresponding Tafel plots were inves-

tigated in seawater (Figures 2C and 2D). Likewise, it has been confirmed that CO2 dissolution in seawater

provides the electrochemically favorable environment toward HER. The hydrogen evolution potential

based on pH is described in Figures 2E–2I. These electrochemical profiles have significant implications;

the less corrosive environment of the quasi-neutral condition (pH � 7) could potentially allow the adop-

tion of abundant and non-noble-metal-based electrocatalysts. Thus, notably, this combined cathodic

reaction not only utilizes CO2 to generate H2 but also possesses highly efficient reaction kinetics,

possibly overcoming the key issue of sluggish discharge rates for common metal-air batteries (Wang

et al., 2014).
280 iScience 9, 278–285, November 30, 2018



Figure 3. Performance and Stability of Hybrid Na-CO2 Cell

(A) Chronopotentiometric potential profiles on the hybrid Na-CO2 system under various current densities. Discharge

processes are conducted in CO2- and N2-saturated 0.1 M NaOH to observe the effects of CO2 dissolution.

(B and C) (B) The chronopotentiometric discharge profile of Pt/C + IrO2 catalyst at 200 mA g�1 in CO2-saturated 0.1 M

NaOH. (C) Discharge profile of hybrid Na-CO2 system measured in CO2-saturated seawater. Surface observation of

carbon felt cathode before and after test.

(D–F) (D) Scanning electronmicrograph of carbon felt before and (E) after discharge in 0.1 MNaOH and (F) after discharge

in seawater.

(G) XRD profiles of carbon felt electrode before and after discharge in 0.1 M NaOH and seawater.
Performance and Stability of Hybrid Na-CO2 Cell

The actual working performance of a hybrid Na-CO2 cell is evaluated using a composite of Pt/C and IrO2

(Pt/C + IrO2) as a catalyst. Figure 3A presents the chronopotentiometric discharge profiles at a current

density of 50–200 mA g�1 under N2- or CO2-saturated 0.1 M NaOH. Discharging CV profiles measured in

various gas-saturated conditions were also investigated, and three distinctive reduction peaks were

found, as observed in the half-cell CV profiles (Figure S3). These findings confirmed that the dissolution

of CO2 led to a favorable HER environment in both NaOH solution and seawater. The full discharge pro-

file was investigated in a CO2-saturated NaOH solution (Figure 3B) with a mechanical recharge by replac-

ing the Na metal anode. As shown in Figure 3B, the highly stable operation over 1,000 hr was achieved

because only a gas phase H2(g) was produced during the discharge process, suggesting the similar na-

ture of fuel cell systems (Park et al., 2000; Sengodan et al., 2015; Yang et al., 2009). Also, the full

discharge profile measured under CO2-saturated seawater presented a highly stable operation over

500 hr (Figure 3C). In other words, there is no deposition of solid discharge products that possibly causes

clogging or physical damage on the electrode as examined from scanning electron micrographs and

X-ray diffraction (XRD) patterns (Figures 3D–3G). In contrast, conventional aprotic metal-CO2 batteries

have exhibited typical clogging phenomenon by the deposition of solid M2CO3(s) (M = Li or Na),

Al2(C2O4)3(s), or MgCO3(s) on the surface of the electrode (Zhang et al., 2015; Qie et al., 2017; Hu

et al., 2016; Al Sadat and Archer, 2016; Das et al., 2013), which results in a performance drop with limited

capacity. A comparison of the capacities of various batteries is provided in Table S2. Furthermore, the pH
iScience 9, 278–285, November 30, 2018 281



Figure 4. Reversibility of Hybrid Na-CO2 Cell

(A) Anodic rotating disk electrode profile of Pt/C + IrO2 catalyst measured in CO2-saturated 0.1 M NaOH and seawater at

10 mV s�1, using Pt as a counter electrode and Ag/AgCl electrode as a reference electrode.

(B) Discharge-charge profiles measured in three-electrode configuration using Ag/AgCl reference electrode at 100 mA g�1.

(C) Charge-discharge profiles at various current densities under CO2-saturated 0.1 M NaOH and seawater.

(D) Cyclic charge-discharge performance measured in CO2-saturated 0.1 M NaOH and seawater at a current density of

200 mA g�1 for 700 hr.
of the CO2-saturated NaOH solution after the 1,000-hr operation was investigated and determined to be

6.62, indicating that the pH of the solution is stably maintained over 1,000 hr (Figure S4). The produced

gas during operation was analyzed by gas chromatography (GC), which confirms that this system gener-

ates only H2, as expected from Equation 4, during the discharge process (Figure S5). To identify a soluble

product, the aqueous solution was freeze-dried and obtained in the form of a white powder (the inset of

Figure S6). The XRD patterns of the white powder identifies it as pure NaHCO3 (Figure S6), commonly

known as baking soda. It is notable that the continuous enrichment of NaHCO3(aq) in the aqueous media

from the discharge does not affect the discharge performance, as shown in the 1,000-hr discharge profile

(Figure 3B). Therefore, CO2 gas has been successfully captured and converted to baking soda. The addi-

tional XRD profiles of the powder obtained through different drying processes are provided in Figure S7.

Furthermore, we investigated the practical CO2 conversion efficiency through quantitative GC analysis.

As shown in Figure S8, the practical efficiency of CO2 conversion during the discharge reaction was

determined to be 47.7%. Although this value is lower than the theoretical conversion rate, it is meaning-

ful in that it proves the additional CO2 dissolution during the discharge process. The detailed discussion

is available in Supplemental Information.
Reversibility of Hybrid Na-CO2 Cell

To confirm the reversibility of hybrid Na-CO2 cell, the anodic charge profile (electrolysis profile) was

observed. Because Na is one of the most abundant elements on earth, Na metal anode could be easily re-

cycled through a charging process in Na-ion-containing aqueous solution, such as seawater. Figure 4A

shows an oxidation rotating disk electrode profile for examining whether CO2 was reproduced during
282 iScience 9, 278–285, November 30, 2018



the charging process. Generally, the charging process is regarded as the opposite reaction of the discharg-

ing reaction. In this work, however, the generated H2 gas from the discharging process is naturally removed

on the surface of electrode, and thus the oxidation reaction proceeds as the oxygen evolution reaction

(OER) from the water oxidation (Equation 6).
2H2O / O2(g) + 4H+ + 4e� Eo = 1.229 V (Equatio
n 6)

The oxidation curve corresponding to OER (Kim et al., 2016; Bu et al., 2017) was observed in a CO2-

saturated NaOH solution near 1.0 V versus Ag/AgCl (from the Nernst equation, the OER potential can

be calibrated by 0.0592 V 3 pH). In addition, the qualitative GC profiles indicate that O2 was gener-

ated during the oxidation process (Figures S9 and S10). We further investigated the oxidation profiles

in seawater, which presents the typical chlorine evolution reaction (Kim et al., 2015) instead of OER

(Figure 4A). It is noteworthy that the charging process does not generate CO2, which had already

been consumed during discharge, as opposed to the conventional metal-CO2 battery system, which

emits CO2 during the charging process (Zhang et al., 2015; Qie et al., 2017; Hu et al., 2016; Al Sadat

and Archer, 2016). The discharge-charge performance of this system was evaluated in the three-elec-

trode configuration using Ag/AgCl reference electrode to closely distinguish the potential applied on

the cathode and anode (Figure 4B). Since a cell potential (Ecell) is defined as a potential difference of

cathode and anode (Ecathode � Eanode), the potential gap decreases during discharging and increases

during the charging process. On repeating the discharge-charge process, the cathode potential profile

(Ecathode) presents discharging and charging plateau, clearly proving that this system is rechargeable.

Furthermore, the charge-discharge profiles at various current densities under CO2-saturated NaOH so-

lution and seawater are examined as shown in Figure 4C. Cyclic charge-discharge performance was

evaluated to verify its reversibility and reproducibility (Figure 4D). Both cyclic performances were highly

reproducible and obtained without variations over a period of 700 hr, indicating that H2 is stably pro-

duced utilizing CO2 and that the cathode was kept fresh, without clogging or damage, during a

repeating discharge and charge process.

In summary, we have devised hybrid Na-CO2 cell utilizing CO2 as a useful resource. This new system has

three distinctive advantages. First, it uses a kinetically fast HER as a discharge reaction thanks to a sponta-

neous CO2 dissolution, enabling the provision of high current compared with the present aprotic system.

Second, unlike conventional aprotic CO2 batteries, wherein solid products are clogged on the electrodes,

this system can continuously produce gas-phase hydrogen during discharge without damaging the elec-

trode. This ability enabled highly stable performance to be achieved over 1,000 hr. Third, the proposed sys-

tem has the unprecedented great advantage of not regenerating CO2 while recycling Na metal through

charging process. Therefore, this hybrid Na-CO2 cell truly fulfills the purpose of a real CCUS technology,

as it consumes CO2 efficiently throughout the process. This novel system could potentially serve as a

new CO2 utilization technology and a stepping stone for the future utilization of renewable energy

technologies.
Limitations of Study

We have devised hybrid Na-CO2 cell utilizing carbon dioxide as a useful resource. Although we have

utilized HER as the facile cathodic reaction rather than ORR in aqueous electrolyte, we could not

exclude the fact that the discharge reaction of hybrid Na-CO2 cell is relatively slow because of the

low conductivity of the ceramic NASICON electrolyte, which can allow only Na+ ions to pass through.

The present work indicates the novel hydrogen generation technology from CO2 utilization and is

meaningful in that it proves the additional CO2 dissolution during the discharge process, but further

work is required to improve the CO2 conversion efficiency and power densities of the hybrid Na-

CO2 cell.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, 10 figures, 2 tables and can be found with this

article online at https://doi.org/10.1016/j.isci.2018.10.027.
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Figure S1. The components of hybrid Na-CO2 cell. Related to Figure 1. (A) The 

digital photograph of hybrid Na-CO2 cell. (B) The anode and cathode assembly of Na

-CO2 cell. (C) The components of anode coin cell. Details are available in Transparen

t Methods. Related to Figure 1. 



 

Figure S2. Mole fractions of the three different carbonate forms, i.e., carbonic acid ion, 

bicarbonate ion, and carbonate ion, as a function of pH of dissolved solution (Note: 

carbonic acid ion here includes ionic carbon dioxide). Related to Figure 1.



 

Figure S3. Cathodic full-cell CV profiles measured by Pt/C+IrO2 catalyst at 0.1 mV s-1 in 

the hybrid Na-CO2 system conducted in three-electrode configuration using Ag/AgCl. 

Related to Figure 3. CV profiles measured in O2, N2, or CO2 saturated (A) 0.1 M NaOH (B) 

seawater. These profiles reveal the CO2 dissolution could render a favorable electrochemical 

environment to HER. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S4. The pH of the CO2-saturated 0.1 M NaOH solution. Related to Figure 2. (A) 

before test and (B) after 1000 hours test.  



 

Figure S5. Gas chromatography (GC) profiles of generated gas during discharge process, 

Related to Figure 3. The gas obtained during cathodic reaction proceeded in (A) CO2 saturated 

0.1 M NaOH (B) CO2 saturated seawater. 



 

Figure S6. XRD profile of the solidified aqueous solution via freeze-drying. Related to 

Figure 3. The inset shows the obtained white powder. 

 



 

Figure S7. XRD profiles of the soluble product after discharge reaction obtained by 

various drying conditions. Related to Figure 3. (A) Dried at room temperature. Because non-

marine evaporites precipitate in different proportions of chemical elements from those found 

in the aqueous environments, three different minerals (nahcolite: NaHCO3, thermonatrite: 

Na2CO3·H2O, and trona: Na2CO3·NaHCO3·2H2O) are naturally obtained. (B) Dried at 70 oC 

oven. Only Na2CO3 is formed when dried at high temperature. 



 

Figure S8. The experimental CO2 conversion efficiency. Related to Figure 3. (A) 

Theoretical CO2 conversion rate at current of 100 mA. (B) The quantitative GC profiles of 

outlet CO2 gas during practical measurement condition for different inlet CO2 flow rate of 23.0 

mL min-1. 

We have determined the efficiency of CO2 conversion during the reaction time. First, 

theoretical CO2 conversion rate is determined by calculating H+ removal rate during discharge 

reaction. Because one CO2 molecule can make one H+ molecule from the dissolution process 

(i.e., CO2 + H2O → H+ + HCO3
-) and two H+ molecules can make one H2 molecule (i.e., 2H+ 

+ 2e- → H2), we can assume two CO2 molecules can contribute to produce one H2 molecule 

(100 % conversion efficiency). As shown in Figure S8A, the theoretical CO2 conversion rate 

is determined at the current of 100 mA, i.e., 1.39 mL min-1. Then, the quantitative GC profiles 

of outlet CO2 gas during discharge reaction have been examined. As shown in Figure S8B, the 

measurement proceeds at the inlet CO2 flow rate of 23.0 mL min-1 and the outlet CO2 flow rate 

was 22.34 mL min-1. Accordingly, the practically converted CO2 rate is determined, i.e., 0.66 

mL min-1. Thus, the practical efficiencies of CO2 conversion were calculated to be 47.7 %. 

Although this value is lower than the theoretical conversion rate, it is meaningful in that proves 

the additional CO2 dissolution during the discharge process. It is also expected that the time 

that CO2 contacts the solution (i.e., it related to the depth of the solution.) will also affect the 

conversion rate.  

 



 

Figure S9. The GC profile of generated gas during the oxidation process. Related to 

Figure 4 and Figure S10. The data indicates a generation of O2 gas (In detailed GC profiles 

are available in Figure S10). 



Figure S10. Raw data of gas chromatography profiles of evolved gas during charging 

process. Related to Figure S9 and Figure 4. As shown in Figure S9, the GC profile reveals 

the gas contains O2, CO2, N2. This raw data of GC intensity profiles is obtained and total gas, 

and each gas component profiles are indicated. The total gas is obtained in order of GCounts 

(1.25 × 109). For O2, it obtained in almost same intensity (1.25 × 109). For CO2, however, the 

intensity is obtained in 7.0 × 107, revealing the intensity is significantly smaller than that of O2 

(~ 2 order difference). Because the measuring is conducted in CO2 purged aqueous electrolytes, 

the dissolved CO2 could be generated. In the case of N2, a bit more intensity is obtained in 3.0 



× 108. Since N2 cannot be produced in any electrochemical oxidation reactions, it is arisen from 

the inflow of air during measuring process. Therefore, the evolved gas during charging process 

is confirmed to be O2.  

  



Table S1. Concentration of various ions when CO2 dissolves in water at normal 

atmospheric pressure. Related to Figure 1. 

pCO2 

 (atm) 

[CO2(aq)] 

(mol L-1) 

[H2CO3(aq)] 

(mol L-1) 

[HCO3
-(aq)] 

(mol L-1) 

[CO3
2-(aq)] 

(mol L-1) 

[H+(aq)] 

(mol L-1) 
pH 

3.5 × 10-4 1.18 × 10-5 1.41 × 10-8 2.29 × 10-6 4.69 × 10-11 2.29 × 10-6 5.64 

 

 

Table S2. Comparison of various batteries capacity. Related to Figure 3. 

 
Current density 

(mA g-1) 

Catalyst loading 

(mg cm-2) 

Gravimetric capacity 

(mAh g-1) 

Area specific capacity 

(mAh cm-2) 

This work 200 2 210,000 420 

Li-CO2 

battery 

(Zhang et 

al., 2015)  

50 0.27-0.45 14,723 6.5 

Li-CO2 

battery 

(Qie et al., 

2017) 

300 0.3 16,006 4.8 

Na-CO2 

battery (Hu 

et al., 2016) 

1,000 0.071 60,359 42.9 

Na-CO2 

battery 

(Das et al., 

2013) 

70 0.76-1.28 3,478 4.5 

Mg-CO2 

battery (Al 

Sadat and 

Archer, 

2016) 

70 0.76-1.28 2,540 3.3 

Al-CO2 

battery (Al 

Sadat and 

Archer, 

2016) 

70 0.5-1.0 13,322 13.3 

Li-O2 

battery 

(Kang et 

al., 2006) 

280 0.72 11,060 8.0 

Li-ion 

battery 

(Wang et 

al., 2012) 

280 6.66 225 1.5 

 

  



Transparent Methods 

Half-cell configured electrochemical analysis.  

In three-electrode half-cell measurements, a platinum wire was used as both of working 

electrode and counter electrode with Ag/AgCl (saturated KCl filled) reference electrode in 0.1 

M sodium hydroxide (NaOH, Sigma-Aldrich Co.) in pure water and seawater (taken from sea 

of Ulsan and filtered to remove visible impurities). To estimate pH and hydrogen evolution 

potential in the solution, a reversible hydrogen electrode (RHE) calibration was conducted in 

H2-saturated solutions where platinum wires were used as the working, counter electrodes and 

Ag/AgCl as a reference electrode at a scan rate of 1 mV s-1. For all half-cell configured 

experiments, iR correction was applied by measuring the resistance of solution (0.1 M NaOH, 

CO2-saturated 0.1 M NaOH, seawater, CO2-saturated seawater). The ohmic resistances of 

before CO2-saturated 0.1 M NaOH, after CO2-saturated 0.1 M NaOH, before CO2-saturated 

seawater, and after CO2-saturated seawater have been confirmed as 12.5, 35.8, 4.2 and 4.0 , 

respectively. A rotating disk electrode testing was conducted by using a mixture of 20wt.% 

Pt/C and IrO2 catalyst (Sigma-Aldrich Co., mixed in 1 : 1 gravimetric ratio) on RRDE-3A (ALS 

Co.). The mixture of catalyst was prepared into a catalyst ink by dispersing 10 mg of the 

catalyst in 1 mL of a binder solution (45 : 45 : 10 = ethanol : isopropyl alcohol : 5 wt.% Nafion 

solution (Sigma-Aldrich Co.), volumetric ratio) followed by a bath sonication process. The 

oxidation RDE profiles were measured by 5 L of the catalyst ink drop-coated glassy carbon 

disk electrode, where area is 0.1256 cm2, at a scan rate of 10 mV s-1. All electrochemical tests 

were carried out using Biologic VMP3. 

Characterization techniques.  

The soluble solid products after discharge process in CO2-saturated 0.1 M NaOH were obtained 

through various drying process such as freeze-drying, natural drying at room-temperature, high 

temperature drying at 70oC oven. The phase identification of the obtained products was 



confirmed by X-ray powder diffraction (XRD) (Bruker diffractometer, Cu Kα radiation) at a 

scan rate of 1o min-1. The power patterns were analyzed using JADE 6.5 software. The 

generated gas from discharge process was collected using three-electrode configuration in CO2-

saturated seawater and 0.1 M NaOH by water substitution method using U tube. Then the gas 

was analyzed by gas chromatograph (Agilent 7820A GC instrument) with a thermal 

conductivity detector (TCD) and a packed column (Agilent carboxen 1000). The gas used for 

GC measurement were controlled using a mass flow controller (MFC) (Atovac GMC1200) and 

the exact volume value of gas was calibrated through a bubble flow meter. The gas evolved 

from the charging process were also collected by three-electrode configuration (Pt wires as a 

counter electrode, Pt/C+IrO2 catalyst loaded carbon felt as a working electrode, and Ag/AgCl 

as a reference electrode) in 0.1 M NaOH. The gas was analyzed by 450-GC chromatograph 

and 320-MS (Bruker Co.). The morphological analysis of the working electrode before and 

after discharge process in hybrid Na-CO2 system was examined by scanning electron 

microscopy (Nova FE-SEM, FEI Co.).  

Full-cell measurements. 

For testing the hybrid Na-CO2 system, the commercial Na-air battery (seawater battery) system 

was purchased at 4TOONE Co. and we modified the system into hybrid Na-CO2 system. The 

hybrid Na-CO2 system is composed of Na metal / organic electrolyte / solid electrolyte / 

aqueous electrolyte / cathode. For the organic electrolyte, 1 M Sodium 

trifluoromethanesulfonate (NaCF3SO3, Sigma-Aldrich Co.) in tetraethylene glycol dimethyl 

ether (TEGDME, Sigma-Aldrich Co.) was used. And NASICON-type (NASICON: Na super 

ionic conductor) Na3Zr2Si2PO12 with a thickness of 1 mm and a diameter of 16 mm was used 

as the solid electrolyte. The anode coin cell was assembled in Ar-filled glove box where the 

water and oxygen concentrations were kept less than 1 ppm. The sodium metal (Sigma-Aldrich 

Co.) with a diameter of 16 mm and a thickness of 0.5 mm was loaded on the stainless-steel 



metal support and the prepared organic electrolyte was filled between sodium metal and 

NASICON. After assembling the anode coin cell with proper sealing, the assemblage was 

moved out from the glove box. The assembled coin cell is 24 mm in diameter and 6.5 mm in 

thickness (2465 size). For the aqueous electrolyte, 150 mL of 0.1 M NaOH and seawater were 

used. The cathode was prepared by drop-coating the catalyst ink (Pt/C+IrO2 ink) in a carbon 

felt electrode (Fuel Cell Store Co.) with a loading density of 2 mg cm-2. The current density 

was normalized with the loading density of the catalysts. A titanium wire was used as a current 

collector of the cathode and the aqueous electrolytes were saturated by CO2 at a rate of 50 mL 

min-1 at the ambient air condition for electrochemical measurements in hybrid Na-CO2 system. 

All electrochemical tests were conducted using Biologic VMP3. 
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